
AFIPS
CONFERENCE
PROCEEDINGS

VOLUME 37

1970
FALL JOINT
COMPUTER

CONFERENCE

AFIPS
CONFERENCE
PROCEEDI NGS

VOLUME 37

1970
FALL JOINT
COMPUTER

CONFERENCE

November 17 -19, 1970
Houston, Texas

The ideas and opinions expressed herein are solely those of the authors and are not
necessarily representative of or endorsed by the 1970 Fall Joint Computer Con
ference Committee or the American .. Federation of Information Processing
Societies.

Library of Congress Catalog Card Number 55-44701

AFIPS PRESS
210 Summit Avenue

lVlontvale, New Jersey 07645

©1970 by the American Federation of Information Processing Societies, IVlontvale,
New Jersey 07645. All rights reserved. This book, or parts thereof, may not be
reproduced in any form without permission of the publisher.

Printed in the United States of America

CONTENTS

A SPECTRU1VI OF PROGRAM]\1ING LANGUAGES

The macro assembler, SW AP-A general purpose interpretive
processor .. .

Definition mechanisms in extensible programming languages

VULCAN -A string handling language with dynamic storage
control .. .

MODERN l\1El\10RY SYSTEl\1S

On memory system design
Design of a very large storage system

Design of a megabit semiconductor memory systemI

DESIGN FOR RELIABILITY

Optimum test patterns for parity networks

A method of test generation for fault location in combinatorial logic ..

The application of parity checks to arithmetic control

OPERATING SYSTE1\1S AND SCHEDULES

Scheduling in a general purpose operating system

Scheduling TSS/360 for responsiveness
Timesharing for OS

SPY-A program to monitor OS/360

AEROSPACE APPLICATIONS

An efficient algorithm for optimum trajectory computation
Hybrid computer solutions for optimal control of time varying

systems with parameter uncertainties

COl\1PUTER PROCUREMENT REQUIREMENTS IN RESEARCH
AND DEVELOPMENT

The role of computer specialists in contracting for computers-An
interdisciplinary effort

Selected R&D requirements in the computer and information sciences

1
9

21

33
45

53

63

69

79

89

97
113

119

129

135

143
159

1\1. E. Barton
S. A. Schuman
P. Jorrand

E. F. Storm
R. H. Vaughan

R. l\1. 1\1eade
S. J. Penny
R. Fink
1\1. Alston-Garnjost
D. Lund
C. A. Allen
S. R. Andersen
G.K.Tu

D. C. Bossen
D. L. Ostapko
A. 1\1. Patel
Y. Yoga
C. Chen
K. Naemura
C. P. Disparte

V. A. Abell
S. Rosen
R. E. Wagner
W. J. Doherty
A. L. Scherr
D. C. Larkin
R. Sedgewick
R. Stone
J. W. l\1cDonald

K. S. Day

W. Trautwein
C. L. Conner

R. N. Freed
1\1. E. Stevens

l\1ULTI-ACCESS OPERATING SYSTEl\1S

Development of the Logicon 2+2 system
System ten-A new approach to multiprogramming

ANALYSIS OF RETRIEVAL SYSTEl\1S

On automatic design of data organization
Analysis of retrieval performance for selected file organization

techniques ... '.' .. .

Analysis of a complex data management access method by simulation
modeling '" .,

Fast "infinite-key" privacy transformation for resource-sharing
systems

COl\1PUTER ASSISTED UNDERGRADUATE INSTRUCTION

On line computer managed instruction-The first step

Development of analog/hybrid terminals for teaching system
dynamics .. .

Computer tutors that know what they teach
Planning for an undergraduate level computer-based science edu

cation system that will be responsive to society's needs in the
1970's .. '

COlVIPUTER CONIl\1UNICATION PART I

The telecommunication equipment market-Public policy and the
1970's

Digital frequency modulation as a technique for improving telemetry
sampling bandwidth utilization

THE ALOHA SYSTEl\1-Another alternative for computer com-
munications

CO~lPUTER AIDED DESIGN

Computer-aided system design

Integrated computer aided design systems

Interactive graphic consoles-Environment and software

INTERFACING COl\IPUTERS AND EDUCATION

l\lDS-A unique project in computer assisted mathematics

Teaching digital system design with a minicomputer
Computer jobs through training-A preliminary project report

169
181

187

201

211

223

231

241
251

257

269

275

281

287

297

315

325

333
345

A. L. Dean, Jr.
R. V. Dickinson
W. K. Orr

W. A. l\1cCuskey

A. J. Collmeyer
J. E. Shemer

V.Y.Lum
H. Ling
l\1. E. Senko

J. M. Carroll
P. M. l\1cLelland

J. S. Vierling
l\1. Shivaram

D. C. Martin
L. Siklossy

J. J. Allan
J. J. Lagowski
M. T. l\1uller

l\1. R. Irwin

G. E. Heyliger

N. Abramson

E. D. Crockett
D. H. Copp
J. W. Frandeen
C. A. Isberg
P. Bryant
W. E. Dickinson
lV1. R. Paige
R. C. Hurst
A. B. Rosenstein
R. L. Beckermeyer

R. H. Newton
P. W. Vonhof
W. C. Woodfill
l\1. G. l\1organ
l\1. R. l\1irabito
N. J. Down

COMPUTER COMMUNICATION PART II (A Panel Session)

(No papers in this volume)

SURVEY OF TIlVIE SHARING SYSTE1VIS (A Panel Session)

Technical and human engineering problems in connecting terminals
to a time-sharing system.

HYBRID SYSTEMS

l\1:ultiprogramming in a medium-sized hybrid environment
The binary floating point digital differential analyzer

Time sharing of hybrid computers using electronic patching

SIMULATION LANGUAGES AND SYSTEMS

Digital voice processing with a wave function representation of speech

SIl\1:CON-An advancement in the simulation of physical systems ...

COl\1:SL-A Communication System Simulation Language

Cyberlogic-A new system for computer controL

A model for traffic simulation and a simulation language for the
general transportation problem

ART, VICE AND GAl\1:ES

Realization of a skillful bridge bidding program
Computer crime .. .
Tran2-A computer graphics program to make sculpture

COl\1:PUTERS AND l\1:ANUFACTURING

l\1:anufacturing process control at IBl\tJ:.
Extending computer-aided design into the manufacture of pulse

equalizers.

EFFECT OF GOVERNl\I[ENT CONTROLS IN THE

COlVIPUTING INDUSTRY (A Panel Session)
Finite state automation definition of data communication line control

procedures
A strategy for detecting faults in sequential machines not possessing

distinguishing sequences
Coding/ decoding for data compression and error control on data links

using digital computers

COl\I[PUTATIONAL EFFICIENCY AND PERFOR1\IANCE

l\1inimizing computer cost for the solution of certain scientific
problems .. .

355

363
369

377

387

399

407

417

425

433
445
451

461

471

477

493

503

515

J. F. Ossanna
J. H. Saltzer

W. R. Dodds
J. L.Elshoff
P. T. Hulina
R. l\1:. Howe
R. A. l\IIoran
T. D. Berge

J. D. l\1:ar kel
B. Carey
B. E. Tossman
C. E. Williams
N. K. Brown
R. L. Granger
G. S. Robinson
G. R. Trimble, Jr.
D. A. Bavly

R. S. Walker
B. F. Womack
C. E. Lee

A. I. Wasserman
D. Van Tassel
R. Nlallary

J. E. Stuehler

L. A. O'Neill

D. Bjorner

D. E. Farmer

H. lVI. Gates
R. B. Blizard.

G. N. Pitts
P. B. Crawford

Analytical techniques for the statistical evaluation of program running
times , .. .

Instrumenting computer systems and their programs

NEW DIRECTIONS IN PROGRAlVIlVIING LANGUAGES

(A Panel Session) (No papers in this volume)

TEXT PROCESSING

SHOEBOX-A personal file handling system for textual data
HELP-A question answering system
CyperText-An extensible composing and typesetting language

COIVIl\1UNICATION AND ON-LINE SYSTElVIS

Integration of rapid access disk memories into real-time processors ..
1\1anagement problems unique to on-line real-time systems

ECAl\1-Extended Communications Access l\lethod
Programming in the medical real-time environment

Decision making with computer graphics in an inventory control
environment ... -...... .

Concurrent statistical evaluation during patient monitoring

SELECTED COlVIPUTER SYSTEl\1S ARCHITECTURES

Associative capabilities for mass storage through array organization ..
Interrupt processing with queued content-addressable memories

A language oriented computer design

PROSPECTS FOR ANALOG/HYBRID COlVIPUTING

(A Panel Session)
Analog/hybrid-What it was, what it is, what it may be

TOPICAL PAPER

The hologram tablet-Anew graphic input device

519
525

535
547
555

563
569

581
589

599

609

615
621

629

641

653

B. Beizer
B. Bussell
R. A. Koster

R. S. Glantz
R. Roberts
C. G. Moore
R. P. 1\1ann

R. G. Spencer
T. C. Malia
G. W. Dickson
G. J. Clancy, Jr.
N. A. Palley
D. H. Erbeck
J. A. Trotter, Jr.

J. S. Prokop
F. P. Brooks, Jr.
S. T. Sacks
N. A. Palley
H. Shubin
A.A.Afifi

A. 1\1. Peskin
J. D. Erwin
E. D. Jensen
C. 1\,fcFarland

A. I. Rubin

1\1. Sakaguchi
N. Nishida

The macro assembler, SW AP-A general
purpose interpretive processor

by M. E. BARTON

Bell Telephone Laboratories
Naperville, Illinois

INTRODUCTION

A new macro assembler, the SWitching Assembly
Program (SWAP), provides a variety of new features
and avoids the restrictions which are generally found
in such programs. Most assemblers were not designed
to be either general enough or powerful enough to ac
complish tasks other than produce object code. SWAP
may be used for a wide variety of other problems such
as interpretively processing a language quite foreign
to the assembler.

SWAP has been developed at Bell Telephone Lab
oratories, Incorporated, to assemble programs for three
very different telephone switching processors. (SWAP
is written in the IBM 360 assembly language and runs
on the 360 with at least 256K bytes of memory.) With
such varied object machines and the need to have all
source decks translatable from the previously used as
sembler languages to the SWAP language, it is no
wonder that the SWAP design includes many features
not found in other assemblers. The cumulative set of
features provides a powerful interpretive processor that
may be used for a wide variety of problems.

DESCRIPTION

The source language is free field. Statement labels
begin in column one. Operation names and parameters
are delimited by a single comma or one or more blanks.
Comments are preceded by the sharp sign (#), and the
logical end of line is indicated by the semicolon (;) or
physical end of card. A method is provided for user in
terpretation of other than this standard syntax ; SWAP
is currently being used as a preliminary version of
several compilers.

1

Inputs

The SWAP assembler may receive its original input
from a card, disc, or tape data set. The SOURCE
pseudo-operation allows the programmer to change the
input source at any point within a program. It is also
capable of receiving input lines directly from another
program, normally a source editor.

Outputs

Because the input line format is free field, the as
sembly listing of the source lines may appear quite
unreadable. Therefore, the normal procedure is to have
the assembler align all the fields of the printed line.
The positions of the fields are, of course, a programmer
option. There are several classes of statements that
may be printed or suppressed at the programmer's
discretion. In keeping everything as general as possible,
it is natural that any operation, pseudo-operation, or
macro may be assigned to any combination of these
classes of statements.

In addition to producing the object program, which
varies with different applications, and the assembly
listing just described, SWAP has the facility to save
symbol, instruction, or macro definitions in the form of
libraries which may be loaded and used to assemble
other programs.

Macro expansions and the results of text substitu
tion functions are another optional output. The pro
grammer completely controls which lines are to be
generated and the format of these lines. These lines
may be printed separately from the object listing or
placed on card, disc, or tape storage. This optional out
put may be used to provide input to other assemblers,

2 Fall Joint Computer Conference, 1970

and in this way SWAP can become a pseudo-compiler
for almost any language. This output can also be used
to produce preliminary program documents from com
ments which were originally placed in ·the source· pro
gram deck.

Variables

There are numerous types of variable symbols, such
as integers, floating point numbers, truth value, and
character strings. The programmer may change or
assign the type of any symbol as he wishes. Fot this
purpose, the type of a symbol or operation is repre
sented by a character. Each variable symbol may have
up to 250 user-defined attributes which are data as
sociated with each symbol. In addition, each symbol
represents the top of a push-down list which allows the
programmer to make a local use of any symbol.

A string variable would be defined by· the TEXT
pseudo-operation:

VOWELS TEXT 'AEIOU'

while a numeric value is assigned by SET:

LIMIT SET 10

The 'functional' notation is used extensively to
represent not only the value of a symbol attribute, but
also to represent array elements and predefined or
user-defined arithmetic functions. In the following
statement:

ALPHA (SA) SET BETA (SB) +10

the ALPHA attribute of symbol SA would be assigned
a value ten ·greater than the BETA attribute of symbol
SB.

An array of three dimensions would be declared by
the statement:

ARRAY CUBE (-1:1,3,0:2)=4

In this example, the range of the first dimension runs
from -1 through + 1, while the second dimension is
from + 1 through +3, and the third is from 0 through
2. Each element would have the initial value 4, but
the following statement could be used to assign another
value to a particular element of the array:

CUBE (-1,2,0) SET 5

An attribute, array, or function reference may occur
anywhere that a symbol may be used in an arithmetic
expreSSlOn.

Expressions

The following is a hierarchical list of the operators
allowed in expressions:

** or 1 exponentiation

* and / multiplication and
division

unary- and unary-, negation and comple-
ment

+ and addition and subtrac-
tion

=, >, <, -, = or ~ } => or ~ the six relational op-
=< or ::;; erators
& and -, logical AND and

AND of comple-
ment

and logical OR and EX-
eLUSIVE OR

(), [], and { } may be used in the usual manner to
force evaluation in any order.

Four particular rules apply to the use of these
operations:

1. Combined relations ApBpC are evaluated the
same as the expression ApB&BpC where pis any
relational operator.

2. Character strings in comparisons are denot~d as
quoted strings.

3. The type of each operand is used to determine
the method of evaluation. (For example, the
complement of an integer is the 32-bit comple
ment while the complement of a truth value is a
I-bit complement.)

4. If a TEXT symbol is encountered as an operand
in an expression, it is called an indirect symbol,
and its value is the result of evaluating the
string as an expression.

Predefined Functions

Several built-in or predefined functions are provided
to aid in evaluating some of the more common expres
sions. The following is a partial list of the available
functions:

E(EXP) Results in 2 raised to the
EXP power.

MAX (EXP1, .•• , EXPn) Returns the maximum of
the expressions EXP1

through EXP n.

STYP(EXP, C)

SET(SYMB, EXP)

Returns the value of EXP,
but the type of the result
is the character C as dis
cussed in the Variables
section.

Returns the value of EXP
and assigns that same
value to the symbol
SYMB. This differs from
the SET pseudo-opera
tion in that the symbol
is defined during the
evaluation of an expres
SIOn.

Programmer-defined functions

To allow the programmer to define any number of
new functions, the DFN pseudo-operation is provided.
The general form of a function definition is written:

DFN F(P1, P2, ••• , Pn) =A1:B1, A 2 :B2, ••• , An:Bn

where F is the function name, the Ps are dummy
parameter names, and the As and Bs are any valid
expressions. These expressions may contain the Ps and
other variables as well as other function calls which may
be recursive.

To evaluate the function, the Bs are evaluated left
to right. The result is the value of the A corresponding
to the first B that has a value of true (or nonzero).
The colons may be read as the word "if." A simple
example would be the function:

DFN POS(X)=1:X>0,0:X~0

which returns the value 1 if its argument is positive;
otherwise, the result is zero. If the expression Bn is
omitted, it is assumed to be true. Another example is
the following definition of Ackermann's function:

DFN ACK(M, N) =N+l:M=0,ACK(M-1, 1):

N =0, ACK(M -1, ACK(M, N-1))

Two features are provided to allow an arbitrary num
ber of arguments in the call of a function. The first is
the ability to ask if an argument was implicitly omitted
from the call. This feature is invoked by a question
mark immediately following the dummy parameter
name. If the argument was present, the result of the
parameter-question mark is the value true; otherwise,
the value is false. For example, the function defined by:

DFN INC(X, Y)=X+Y:Y?,X+1

would yield the value 7 when called by INC (2, 5) since

SWAP 3

Y is present, but the value of INC (3) is 4 since an
argument value for Y was omitted.

The other feature which allows an arbitrary number
of arguments is the ability to loop over a part of the
defining expression, using successive argument values
wherever the last dummy parameter name appears in
the range of the loop. This feature is invoked by the
appearance of an ellipsis (...) in the defining expres
sion. The range of the loop is from the operator im
mediately preceding the ellipsis backward to the first
occurrence of the same operator at the same level of
parentheses. As an example, consider the following
statement:

DFN SUM(X, Y) =A~X**(Y +C)'+- --

The range of the loop is from the + following the right
parenthesis backward to the + between the A and the
X. The call SUM (4, 1,2,3) would yield the same
result as the following expression:

A +4**(1 +C) +4**(2+C) +4**(3+C)

The loop may also extend over the expression between
two commas as the next example shows. A recursive
function to do the EXCLUSIVE OR of an indefinite
number of arguments could be defined by:

DFN XOR(A, B, C) =A-,B I B-,A: -,C?,

XOR(XOR(A, B) ,IC,l ...)

Sequencing control

The pseudo-operations that allow the normal se
quence of processing to be modified provide the real
power of an assembler. In SWAP, the pseudo-operations
that provide that control are JUMP and DO. JUMP
forces the assembler to continue sequential processing
with the indicated line, ignoring any intervening lines.
The statement:

JUMP .LINE

will continue processing with the statement labeled:
.LINE. The symbol .LINE is called a sequence symbol
and is treated not as a normal symbol but only as the
destination of a JUMP or DO. Sequence symbols are
identified by the first character, which must be a period.
A normal symbol may also be used as the destination
of a JUMP or DO, if convenient. The destination of a
JUMP may be either before or after the JUMP state
ment.

The JUMP is taken conditionally when an expres
sion is used following the sequence symbol:

JUMP .XX, INC> 10 # IS IT OVER LIMIT

4 Fall Joint Computer Conference, 1970

The JUMP to .XX will occur only if the value of the
symbol INC is greater than ten.

The DO pseudo-operation is used to control an as
sembly time loop and may be written in one of three
forms:

DO .LOC, VAR= INIT, TEXP, INC (i)
DO .LOC, VAR=INIT, LIMIT, INC (ii)
DO .LOC, VAR=(LIST) (iii)

Type (i) assigns the value of IN IT to the variable
symbol V AR. The truth value expression TEXP is
then evaluated and, if the result is true, all the lines
up to and including the line with .LOC in its location
field are assembled. The value of INC (if INC is
omitted, 1 is assumed) is then added to the value of
V AR and the test is repeated using the incremented
value of V AR.

Type (ii) is the same as type (i) except that the
value of V AR is compared to the value of LIMIT; the
loop is repeated if INC is positive and the value of V AR
is less then or equal to the value of LIMIT. If INC is
negative, the loop is repeated only while the value of
V AR is greater than or equal to the value of LIMIT.

Type (iii) assigns to V AR the value of the first item
in LIST. Succeeding values are used for each successive
time around the loop until LIST is exhausted.

The following are examples of the use of DO:

Type (i)
Type (ii)

Type (iii)

DO .Y,M=I,M~10&A(M»0
DO .X, K=I, 100, K+1
DO .Z, N = (1, 3, 4, 7,11,13,17)

Control of optional output

Selected results of macro and text substitution facili
ties may be used as an optional output. This is accom
plished by the use of the EDIT psuedo-operation
which may be used in a declarative, global, or range
mode.

The declarative mode does not cause any output to
be generated, but is used to declare the destination
(printer, punch, or file) of the output and the method
of handling long lines. It is also used to control the
exceptions to the global output mode. For example,
the statement:

PRINT EDIT OFF ('ALL') ,
ON ('REMARKS', NOTE, DOC),

CONT(72, 'X', '- - -')

would indicate that edited output is to be printed, and
that any line that exceeds 72 characters is to be split

into two print records with an X placed at the end of
the first 72 characters and the remainder appended to
the - - -. If EDIT ON, the global form, were to be
used with the above declarative, then only lines that
contain NOTE or DOC in the operation field as well
as all remark statements will be outputted.

The range form of ED IT allows a sequence of lines
to be outputted regardless of their syntax. Lines out
putted in this mode are then ignored by the remainder
of the assembly processes.

Two examples of this form are EDIT .NEXT which
causes the next line to be outputted, and EDIT .LINE
which causes all lines up to, but not including, the line
with the sequence symbol .LINE in its label field. See
the Appendix for examples of the use of the EDIT
pseudo-operation.

Macros

The macro facilities incorporated in SWAP make it
one of the most flexible assemblers available. The
macro facilities presented here are by no means ex
haustive but only representative of the more com
monly used features.

The general form of a macro definition is:

MACRO
prototype statement

macro text lines
MEND

The prototype statement contains the name of the
macro definition as well as the dummy parameter
names which are used in the definition. The macro
text lines, a series of statements which make up the
definition of the macro, will be reproduced whenever
the macro is called.

Any operation, pseudo-operation, or macro may be
redefined as a macro. Also, there are no restrictions as
to which operatiorrs are used within a macro definition;
this means that it is legitimate for macro definitions to
be nested.

Macro operators and subarguments

Macro operators are provided to allow the pro
grammer to obtain pertinent information about macro
arguments and some of their common parts. A macro
operator is indicated by its name character followed by
a period and the dummy parameter name of the
operand. For example, if a parameter named ARG has
the value (A, B, C), then the number operator,

N.ARG, would be replaced by the number of subargu
ments of ARG; in this example, N.ARG is replaced
by 3.

Any subparameter of a macro argument may be ac
cessed by sUbscripting the parameter name with the
number of the desired sub argument. Additional levels
of sub arguments are obtained with the use of multiple
indexes. As an example, let the parameter named ARG
assume the value P (Q, R (S, T)), then:

ARG(O)
ARG(I)
ARG(2)
ARG(2, 0)
ARG(2, 1)

is replaced by P
is replaced by Q
is replaced by R(S, T)
is replaced by R
is replaced by S

The macro operators may be used on the results of
each other as well as on subparameters; for example,
N.ARG (2) would be replaced by 2.

The following is an example of a simple macro to
define a list of symbols:

LIST(K,1)

.LP

MACRO
DEFINE LIST
DO .LP, K=1, N .LIST

SET LIST(K, 2)

NULL # MARK END OF DO LOOP
MEND

If the macro were called by the following line:
DEFINE «SYMB, 5), (MATRIX (2),7), (CC, 11))
it would expand to:

SYMB
MATRIX (2)
CC

Macro functions

SET 5
SET 7
SET 11

To provide more flexibility with the use of macros,
several system parameters and macro functions have
been made available. Macro functions are built-in
functions that are replaced by a string of characters.
This string, called the result, is determined by the
particular function and its arguments. The arguments
of a macro function may consist of macro parameters,
other macro function calls, literal character strings, or
symbolic variables. An example would be the DEC
macro function, which has one argument, either a
valid arithmetic or logical expression. The result is the
decimal number equal to the value of the expression;
the call DEC (7 +8) would be replaced by 15.

SWAP 5

Some of the major macro functions are:

1. IS (expression, string) is replaced by string if
the value of expression is nonzero; otherwise,
the result is the null string.

2. IFNOT(string) is replaced by string if the
expression in the previously evaluated IS had a
value of zero; otherwise, the result is null.

3. STR(exPl, exp2, string) is replaced by exp2
characters starting with the expl character of
string.

4. MTXT (tsym) is replaced by the character
string which is the value of the TEXT symbol
tsym.

5. MTYP (symb) is replaced by the character that
represents the type of the variable symbol
symb.

6. MSUB (string) is replaced by the result of doing
macro argument substitution on string a second
time.

7. SYSLST(exp) is replaced by the expth argu
ment of the macro call.

8. MDO(DO parameters; string) is a horizontal
DO loop where string is the range of the loop.
Each time around, the loop produces the value
of string, which is normally dependent on the'
DO variable symbol.

Keyword argulllents

When the macro is called, keyword arguments are
indicated by the parameter name followed by an equal
sign and the argument string. An example would be
the following calls of a MOVE macro:

MOVE FROM=NEWDATA, TO=OLDDATA
or

MOVE TO=OLDDATA, FROM=NEWDATA

Both calls will yield the same expansions as the expan
sion of the MOVE macro using normal arguments:

MOVE NEWDATA,OLDDATA

Default arguments

Default strings are used whenever an argument is
omitted from a macro call. The default string is as
signed on the macro prototype line by an equal sign
and the desired default string after the dummy param
eter name. Although the notation is the same, default
arguments are completely independent of the use of
keyword arguments.

6 Fall Joint Computer Conference, 1970

Marco pseudo-operations

The ARGS pseudo-operation provides a method of
declaring an auxiliary parameter list which supple
ments the parameter list declared on the prototype
statement. These parameters may also be assigned
default values.

The parameters defined on an ARGS line may be
used anywhere a normal parameter may be used. The
parameter values may be reset by the use of keyword
arguments.

I t is also possible for the programmer to reset his
named macro argument values anywhere within a
macro by using the MSET pseudo-operation. For
example:

PARM MSET DEC(PARM)

would change the value of P ARM to its decimal value.
The following is an example of the use of the ARGS

pseudo-operation:

MACRO
FUN NUMBER
ARGS WORD = (ONE, TWO, THREE)

NUMBER=WORD (NUMBER) .
MEND

When the macro is called by FUN 1 + 1, the following
comment would be generated:

l+l=TWO

but the call FUN 1+1, WORD = (EIN, ZWEI, DREI)
would generate:

1+1=ZWEI

Text manipulating facilities

Some of the more exotic features provided by SWAP
are the character string pseudo-operations and the
dollar macro call.

HUNT and SCAN pseudo-operations

The HUNT pseudo-operation allows the programmer
to scan a string of characters for any. break character
in a second string. It will then define two TEXT
symbols consisting of the portions of the string before
and after the break character. For example, the

statements:

BRKS TEXT '+-*/'

HUNT .LOC, TOKEN, REMAIN,
'LSIZE *ENTS', BRKS

will result in the symbols TOKEN and REMAIN
having the string values of 'LSIZE' and '*ENTS' re
spectively. If one of the characters inBRKS could not
be found in the scanned string, then a JUMP to the
statement labeled .LOC would occur.

The SCAN pseudo-operation provides the extensive
pattern matching facilities of SNOBOL3I along with
success or failure transfer of control. This pseudo
operation is written:

where TSYM is a previously defined string valued
variable. The SNOBOL3 notation is used to represent
the pattern elements PI through P n as well as the GO TO
field. See the references for a more detailed presentation
of these facilities.

Dollar functions

Dollar functions are very similar to macro functions
in that the result of a dollar function call is a string of
characters that replace the call. However, these func
tions may be used on input lines as well as in macros.
The dollar functions provide the ability to call a one
line macro anywhere on a line by preceding the macro
name with a dollar sign and following it with the argu
ment list in parenthesis. For example, the macro:

MACRO
CHECK A,B

IS(A<B, DEC(B-A) MORE)

could be called by:

IFNOT (DEC(A-B) OVER)
MEND

OP X # $CHECK(X, 7)

For X = 4, the line would appear in the assembly
listing as:

OP X # 3 MORE

and when X has the value 9, the line would appear as:

OP X # 2 OVER

Special control

A special pseudo-operation has been provided to
allow the programmer to ignore most of the SWAP
syntax on input lines. The pseudo-operation is called
UNIOP for universal operation, and it assigns the
macro named in the variable field as the operation to be
used for all succeeding lines. This means that regardless
of what appears on a statement, that macro is called
and may be used to decompose the line into meaningful
SWAP statements. The following macro will make a
simple test (i.e., the presence of an equal sign) to see
if a line is a FORTRAN arithmetic statement and inter
pretively perform the assignment if it is; otherwise, it
will call the macro named OTHER.

MACRO
ARITH

STRIP STATEMENT NUMBER
AND LOOK FOR EQUAL
SIGN

HUNT .OTHER, SYMB, RMDR,
'STR(7, 64, SYSLIN)', '='

MTXT(SYMB) SET STR(2, 62, MTXT(RMDR»
PERFORM ASSIGNMENT

JUMP .OUT # TERMINATE
MACRO EXPANSION

.OTHER OTHER 'SYSLIN' # NOT
ARITHMETIC STATEMENT

MEND

The system macro parameter SYSLIN is replaced
by the entire line of the macro call. The HUNT pseudo
operation will search for an equal sign and force a jump
to the statement labeled . OTHER whenever the equal
sign cannot be found. If UNIOP were initially set to
the ARITH macro by the statement:

UNIOP ARITH

then the line:

100 MTX(2, 3) =MTX(3, 2) +1

would serve as a call to the ARITH macro which would
then generate the following line:

MTX (2,3) SET MTX (3,2) +1

SWAP 7

Approximately 150 lines of SWAP macro definitions
(see the Appendix) were used to build an interpreter of
a FORTRAN like language. The following is a listing
of a sample program and the printout that resulted
from interpreting the program.

DIMENSION KOUNT(10, 10)
C
700 FORMAT (3X, 1014)
C

DO 50 N =1,10
KOUNT(N,l) =1

50 KOUNT(N, N) = 1
C

DO 100 N=3, 10
DO 100 M=2,N-1

100 KOUNT(N, M) = KOUNT (N -1, M)
C +KOUNT(N -1, M -1)

DO 200 N=1,10
200 PRINT 700, (KOUNT(N, M), M =1, N)
C

STOP
END

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

CONCLUSION

The general design and implementation of the SWAP
macro assembler has led to three things:

1. The job of writing a program in assembler lan
guage has been made easier. This is saving many
man hours of programmer effort over the life of a
project.

2. The development of intermediate level languages
using macros has been made easier. This is aiding
in the design of a true higher level language by
clarifying the requirements of the new language.

3. The interpretive processing capabilities of the
SWAP assembler have been used to solve a wide
variety of problems. This is significantly reducing

8A Fall Joint Computer Conference, 1970

the number of programs needed and, more
importantly, reducing the programmer effort
required to produce a given program.

ACKNOWLEDGMENTS

The author wishes to acknowledge the contribution of
Messrs. R. E. Archer, A. J. Emrick, N. M. Haller,
and E. Walton of Bell Telephone Laboratories, In
corporated, to the design and implementation of
SWAP. The author would also like to thank Mr. D. E.
Eastwood for his many suggestions and "philosophical
arguments." .

REFERENCES

1 D J FARBER R E GRISWOLD I P POLONSKY
SNOBOL, a string manipulation language
JACM Vol II No 1 pp 21-30 January 1964

2 D J FARBER R E GRISWOLD I P POLONSKY
The SNOBOL3 programming language
BSTJ Vol XLV No 6 pp 897-901 July 1966

3 M E BARTON N M HALLER G W RICKER
Service programs
BSTJ Vol 48 No 8 pp 2866-2880 October 1969

APPENDIX

A SWAP Program to Interpretively Process a
FORTRAN Like Language.

OFF (EDIT, • ALL') ,ON (' MACROS')
'IX' • FORMAT ITEM TYPES
'/,H'"(}' 'FORMAT BREAK CHARACTERS

SWAP 8B

SYSPRINT EDIT
FTYPESI T.EXT
BRKSI TEXT
FTYPTB~ TRPAT (X (70) I 'Q ') , (' (, , 'P') I C') , " C') , (' , , , 'C I) , (' /' ,

'S'),(X(7F),'Q'), (255) • TRANSLATE BREAKS TO

SQZI TRP~T (' ',0),(255)
EQ~ TEXT '='
DIMENSION OPSET ARRAY
STOP OPSET END1
CONTINUE OPSET NULL

•

AI .. PHABETICS
• DELETES ALL BLANKS
IE·QUAL SIGN IS BREAl< CHAP

MACRO t ALL UNDEFINED OPS ARE ASSUMED TO B.E EQUA'!'IONS
NONOP

HUNT .OUT V~ EI 'MTR (' STR (7 ,99, SYSLIN) " SQZ')' EQ~ • t SQTJEEZ
OUT BLANKS

IS (' Mryp (O.MTXT(V'» '=' U', DFN MTXT (VI)MTX':' (E~» IFNOT (MTXT (VI)
SET1 STR(2,99,MTXTCEI»)

MEND

LOC, VAL=1
MACRO

GOT 0
JTJMP
MEND

LOC (VAL) tt ALSO TAKES CARE OF COMPUTED GOTOS

MACRO
IF COND,EQ,GT

TMPI TEXT 'MTR('COND',SQZI),
SCAN TMPI *(EI)* *Lr~. It GET EXPRESSION
JUMP MTXT(LT~) EI<O
JUMP EQ E~=O
JUMP GT EI>O
MEND

MACRO
PRINT FMT

DO .x K~=2,N.SYSLST
IS (. STR (1, 1, SYSLST (K~)) ':' (',

'SYSLST(KI) ,
.X NULL

t. CHECR FOR ITERATIVE LISTS
ITEMI)IFNOT(ITMI:DEC(KI) TEXT)

FMT OU1'_ MOO (K~=2, N. SYSLST; MTXT (ITMI :DEC (K~»)
MEND

80 Fall Joint Computer Conference, 1970

MACRO
FMT OUT
KI SET 1;JI SET 0 ;JJI SET 0
.LP EDIT • NEXT t. GENERATE A LINE OF PRINTOUT
MSUB(MTXT(FMT:_:DEC(KI»)

JUMP .LP,SET(KI,KI+1) SFMT:_L It HAS FORMAT BEEN EXHAUSTED
JUMP .OUT,JI~N.SYSLSTIJISJJI tt WHEN PRINT LIST

EXHAUSTED OR NOTHING BEING DONE
JJI SEl' JI
.RLP EDIT • NEXT It BACK UP TO LAST LEFT PAREN
MSUB(STR(FMT:_K,SOO,MTXT(FMT:_:DEC(FMT:_R»»

TMP
VB

JUMP .RLP SET (KI,FMT:_P.+ 1) >FMT:_L&JJI<JJ <N.SYSLST
JUMP .LP,JI<N.SYSLST
MEND

MACRO
ITEMI

HUNT
MSET
MSET
MACRO

IT t. PROCESS ITERATIVE PRINT LIST
.LST,VARI,REM',·S.Q.IT',EQI
MTXT(VARI)
TMP(N. TMP) "ISOLATE LOOP INDEX

FRMNDX VS=I.DEC(VS)
VLSTI TEXT 'R.TMP(l).TMP(N.TMP-l)'

MEND FRMNDX
FRMNDX t. REPLACE INDEX BY ITS VALUE

ITMI: DEC (KI) TEXT 'MDO(VS:MTXT(REMI);MSUB{MTXT(VLST~»)'
JUMP .OUT

.LST NULL
ITMI:DEC(KI) TEXT IT

MEND
t

MACRO
FMT FOPMAT LST

t. IT WAS JUST AN EXPRESSION

EDIT SAVE, OFF It STOP PRINTING LINES
MEND FORT_PROG It SUSPEND PROGRAM DEFINITION

REMI TEXT • LST'
AI SET 0; ILINES SET 1;FMT:_R SET 1 ;FMT:_K SET 1
FMl' BRK OUT t. BUILD FORMAT DEFINITION
FMr: L SET- ILINES
FMT: : : DEC (IL lNES) TEXT f MOO (K~ 1 ,A I: Ml'X'l' (ITMI: DEC (KI))) •
FORT_PROG EXTEND t. RESUME SOURCE PROGRAM DEFINITION

EDIT RESTORE t, RESUME PRINT! m LI BT! NG
MEND

MACRO
FMT BRK OUT
.LP HUNT - .OUr,TRM~,REMI,'STR(2,99,MTXT(REMI» ',BRKS~
FMT BRK_:MTR(REMI,FTYPTBI,l)" GO ON TRANSLATED BREAK

JUMP .LP
MEND

t

FMT
FMT:_R
FMT:_K

BLMTI

REMI
.BR
REMI

I

MACRO
BRK C It COMMA OR RIGHT PAREN

HUNT - .OTJT, DUP~,TYPI, 'MTXT (TR~) ',FTYPE~
FTYP_:MTR(TYP~,FTYPTBI,,)
MEND

MACRO
BRK_P I. LEFT PAREN

SET ILINES-l" SAVE POSITION FOR AUTO REPEAT
SET 1:MDO(KI=1,AI;+K.MTXT (ITMI:DEC(R',»
SCAN REMI .(SAVE~). *SV21* /F(.Ol~)
SET MAX(l,TRMI) It DUPLICATION FACTOR
DO .BK,BI=1,BLMTI
TEXT 'MTXT(SAVEI) ,
BRK_OUT
TEXT
MEND

MACRO

, , MTXT(SV2 I> '

FMT BRK_S .t SLASH
BRK_C

FMT:_:DEC{~LlNES) TEXT 'MDO(KI=1,AI;MTXT(ITMI:DEC(KI)}) ,
AI SET 0 ;ILINES SET 'LINES.'

MEND
I

MACRO
BRK Q •• QUOTED STRING

ITM%:DEC(SET(A%,A'.1» TEXT 'Q.MTXT(REM')·
REM % TEXT 'STR(K.Q.MTXT(REM')+2,99,MTXT(REMi» t

MEND

•
MACRO

BRK_H tt HOLERITH STRING
ITMI:DEC(SET(AI,AI+1» TEXT 'STR(2,TRMI,MTXT(REMI»'
REMI TEXT 'STR(TRMI+1,99,MTXT(REMI»'

MEND ,
MACRO

FTYP_I t. INTEGER
LN MSET STR(2,10,MTXT(TYPI»
OP MSET DEC (MAX (1, DUP~))

SWAP 8D

ITMI:DEC(SET(Ai,AI+1» TEXT ':I.MDO(IN=1,MIN(DP,I.N.I.SYSLST
I.DEC (JI» ;I.DEC (I.SYSLST (SET (J~,JI+1» ,LN,' '»'

MEND
I

MACRO
FTYP X It BLANKS

ITMI:DEC(SET(AI,A'+1» TEXT 'MDO(NI=1,MAX(1,DUPI);)'
MEND

8E Fall Joint Computer Conference, 1970

MACRO
END

SYSPRINT EDIT OFF

I
FORMAT

END
END

MEND FORT_PROG
FORT_PROO
END 1
MEND

OPBITS ON(ACTIV~

OPBITS ON(ACTIV~
OPBITS OFF (CONT)

II TERMINATE SOURCE LI~TING
tt. END OF SOURCE PPOGRA~

It NOW EXECUTE SOURCE PFOGRAM
t t TERM! N1\ TE RUN

t ALLOW THESE OPS TO EXPAND
DURING MACRO DEFINIT!ON

t NO CONTINUATION ALLOWED FOR END
MACRO

EDIT OPBITS ON(ACTIVE)
EDIT ON (FORMAT, END)

• MACRO t MAKE ENTIRE PROGRAM A MACRO DEFINITION
FORT_PROG

SYSPRINT EDIT • NEXT •• EJECT TO NEW PAGE
1
PRINT EDIT ON It PRODOCE SOURCE LISTING

Definition mechanisms in extensible
programming languages

by STEPHEN A. SCHU1V[AN*

U niversite de Grenoble
Grenoble, France

and

PHILIPPE JORRAND

Centre Scientifique IBM-France
Grenoble, France

INTRODUCTION

The development of extensible programming languages
is currently an extremely active area of research, and
one which is considered very promising by a broad
segment of the computing community. This paper repre
sents an attempt at unification and generalization of
these developments, reflecting a specific perspective on
their present. direction of evolution. The principal in
fluences on this work are cited in the bibliography, and
the text itself is devoid of references. This is indicative
of the recurring difficulty of attributing the basic ideas
in this area to any single source; from the start, the
development effort has been characterized by an ex
ceptional interchange of ideas.

One simple premise underlies the proposals for an
extensi hIe programming language: that a "user" should
be capable of modifying the definition of that language,
in order to define for himself the particular language
which corresponds tb his needs. While there is, for the
moment, a certain disagreement as to the degree of
"sophistication" which can reasonably be attributed to
such a user, there is also a growing realization that the
time is past when it is sufficient to confront him with
a complex and inflexible language on a "take it or
leave it" basis.

According to the current conception, an extensible
language is composed of two essential elements:

* Present address: Centre Scientifique IBM-France

9

1. A base language, encompassing a set of indis
pensable programming primitives, organized so
as to constitute, in themselves, a coherent
language.

2. A set of extension mechanisms, establishing a
systematic framework for defining new linguistic
constructions in terms of already existing ones.

Within this frame of reference, an extended language is
that language which is defined by some specific set of
extensions to the given base language. In practice,
definitions can be pyramided, using a particular ex
tended language as the new point of departure. Implicit
in this approach is the assumption that the processing
of any extended language program involves its sys
tematic reduction into an equivalent program, expressed
entirely in terms of the base language.

Following a useful if arbitrary convention, the ex
tension mechanisms are generally categorized as either
semantic or syntactic, depending on the capabilities that
they provide. These two types of extensibility are the
subjects of subsequent· sections, where models are de
veloped for these mechanisms.

Motivations for extensible languages

The primary impetus behind the development of
extensible languages has been the need to resolve what
has become a classic conflict of goals in programming
language design. The problem can be formulated as

10 Fall Joint Computer Conference, 1970

power oj expression versus economy oj concepts. Power
of expression encompasses both "how much can be
expressed" and "how easy it is to express". It is es
senti ally a question of the effectiveness of the language,
as seen from the viewpoint of the user. Economy of
concepts refers to the idea that a language should
embody the "smallest possible number" of distinguish
able concepts, each one existing at the "lowest possible
level". This point of view, which can be identified with
the implementer, is based on efficiency considerations,
and is supported by a simple economic fact: the costs
of producing and/or using a compiler can become pro
hibitive. Since it is wholly impractical to totally dis
regard either of these competitive claims, a language
designer is generally faced with the futile task of
reconciling two equally important but mutually ex
clusive objectives wit.hin a single language.

Extensible languages constitute an extremely prag
matic response to this problem, in the sense that they
represent a means of avoiding, rather than overcoming
this dilemma. In essence, this approach seeks to en
courage rather than to suppress the proliferation of
programming languages; this reflects an increasing dis
illusionment with the "universal language" concept,
especially in light of the need to vastly expand the
domain of application for programming languages in
general. The purpose of extensible languages is to es
tablish an orderly framework capable of accommodating
the development of numerous different, and possibly
quite distinctive dialects.

In an extensible language, the criteria concerning
ecohomy of concepts are imposed at the point of formu
lating the primitives which comprise the base language.
This remains, therefore, the responsibility of the imple
menter. JVIoreover, he is the one who determines the
nature of the extension mechanisms to be provided.
This acts to constrain the properties of the extended
languages subsequently defined, and to effectively con
trol the consistency and efficiency of the corresponding
compilers.

The specific decisions affecting power of expression,
however, are left entirely to the discretion of the user,
subject only to the restrictions inherent in the extension
mechanisms at his disposal. This additional "degree of
freedom" seems appropriate, in that it is after all the
language user who is most immediately affected by
these decisions, and thus, most competent to make the
determination. The choices "rill, in general, depend on
both the particular application area as well as various
highly subjective criteria. What is important is that
the decision may be made independently for each indi
vidual extended language.

At the same time, the extensible language approach
overcomes what has heretofore been the principal ob-

stacIe to a diversity of programming languages: incom.;.
patibility among programs written in different lan
guages. The solution follows automatically from the
fact that each dialect is translated into a common base
language, and· that this translation is effected by es
sentially the same processor.

Despite the intention of facilitating the definition of
diverse languages, the extensible language framework
is particularly appropriate for addressing such signifi
cant problems as machine-to-machine transferability,
language and compiler standardization, and object code
optimization. The problems remain within manageable
limits, independent of the number of different dialects;
they need only be resolved within the restricted scope
of the base language and the associated extension
mechanisms.

Evolution oj extensible languages

An extensible language, according to the original
conception, was a high level language whose compiler
permitted certain "perturbations" to be defined. Se
mantic extension was formulated as a more flexible set
of data and procedure declarations, while syntactic
extension was confined to integrating the entities which
could be declared into a pre-established style of expres
sion. For the most part, the currently existing extensible
languages reflect this point of departure.

It is nonetheless true that the basic research under
lying the development of extensible languages has taken
on the character of an "attempt to isolate and generalize
the various "component parts" of programming lan
guages, with the objective of introducing the property
of "systematic variability". A consequence of this effort
has been the gradual emergence of a somewhat more
abstract view of extensible languages, wherein the base
language is construed as an inventory of essential
primitives, the syntax of which minimally organizes
these elements into a coherent language. Semantic ex
tension is considered as a set of "constructors" serving
to generate neW, but completely compatible primitives;
syntactic extension permits the definition of the specific
structural combinations of these primitives which are
actually· meaningful. Thus, extensible languages have
progressively assumed the aspect of a language defi
nition framework, one which has the unique property
that an operational compiler exists at each point in the
definitional process.

Accordingly, it is increasingly appropriate to regard
extensible languages as the basis for a practical language
definition system, irrespective of who has responsibility
for language development. Potentially, such an en
vironment is applicable even to the definition of non-

Definition Mechanisms in Extensible Programming Languages 11

extensible languages. Heretofore, it has been implied
that any given extended language was itself fully
extensible, since its definition is simply the result of
successive levels of extension. In conjunction with the
progressive generalization of the extension capabilities,
however, one is naturally led to envision a comple
mentary set of restriction mechanisms, which would
serve to selectively disable the corresponding extension
mechanisms.

The intended function of the restriction mechanisms
is to eliminate the inevitable overhead associated with
the ability to accommodate arbitrary extension. They
would be employed at the point where a particular
dialect is to be "frozen". In effect, such restriction
mechanisms represent a means of imposing constraints
on subsequent extensions to the defined language (even
to the extent of excluding them entirely), in exchange
for a proportional increase in the efficiency of the
translator. The advantage of this approach is obvious:
the end result of such a development process is both a
coherent definition of the language and an efficient,
operational compiler.

Within this expanded frame of reference, most of the
extensible languages covered by the current literature
might more properly be considered as· extended lan
guages, even though they were not defined by means of
extension. This is not unexpected, since they represent
the results of the initial phase of development. The
remainder of this paper is devoted to a discussion of
the types of extension mechanisms appropriate to this
more evolved interpretation of extensible languages.
The subject of the next section is semantic extensibility,
while the final section is concerned with syntactic
extensibility. These two capabilities form a sort of two
dimensional definition space, within which new pro
gramming languages may be created by means of
extension.

SEMANTIC EXTENSIBILITY

In order to discuss semantic extensibility, it is first
necessary to establish what is meant here by the
semantics of a programming language. A program re
mains an inert piece of text until such time as it is
submitted to some processor: in the current context, a
computer controlled by a compiler for the language in
which the program is expressed. The activity of the
processor can be broadly characterized by the following
steps:

1. Recognition of a unit of text.
2. Elaboration of a meaning for that unit.
3. Invocation of the actions implied by that

meaning.

According to the second of these steps, the notion of
meaning may be interpreted as the link between the
units of text and the corresponding actions. The set of
such links will be taken to represent the semantics of
the programming language.

As an example, the sequence of characters "3.14159"
is, in most languages, a legitimate unit of text. The
elaboration of its associated meaning might establish
the following set of assertions:

-this unit represents an object which is a value.
-that value has a type, which is real.
-the internal format of that value is floating-

point.
-the object will reside in a table of constants.

This being established, the .actions causing the con
struction and allocation of the object maybe invoked.
The set of assertions forms the link between the text
and the actions; it represents the "meaning" of 3.14159.

With respect to the processor, the definition of the
semantics of a language may be considered to exist in
the form of a description of these links for each object
in the domain of the language. When a programming
language incorporates functions which permit explicit
modification of these descriptions; then that language
possesses the property of semantic extensibility. These
functions, referred to as semantic extension mechanisms,
serve to introduce new kinds of objects into the lan
guage, essentially by defining the set of linkages to be
attributed to the external representation of those ob
jects.

Semantic extension in the domain of values: A model

The objects involved in the processing of a program
belong, in general, to a variety of categories, each of
which constitutes a potential domain for semantic
extension. The values, in the conventional sense, ob
viously form one such category. In order to illustrate
the overall concept of semantic extensibility, a model
for one specific mechanism of semantic extension will
be formulated here. It operates on a description of a
particular category of objects, which encompasses a
generalization of the usual notion of value. For example,
procedures, structures and pointers are also considered
as values, in addition to simple integers, booleans, etc.

These values are divided into classes, where each
class is characterized by a mode. The mode constitutes
the description of all of the values belonging to that
class. Thus the mode of· a value may be thought of as
playing a role analogous to that of a data-type. It is

12 Fall Joint Computer Conference, 1970

assumed that processing of a program is controlled by
syntactic analysis. Once a unit of text has been isolated,
the active set of modes is used by the compiler to
elaborate its meaning. Typically, modes are utilized
to make sure that a value is employed correctly, to
verify that expressions are consistent, to effect the
selection of operations and to decide where conversions
are required.

The principal component of the semantic extension
mechanism is a function which permits the definition
of new modes. Once a mode has been defined, the
values belonging to the class characterized by that
mode may be used in the same general ways as other
values. That is to say, those values can be stored into
variables, passed as parameters, returned as results of
functions, etc.

The mode definition function would be used like a
declaration in the base language. The following notation
will be taken as a model for the call on this function:

mode u is T with 7r;

The three components of the definition are:

1. the symbol clause "mode u",
2. the type clause "is T",
3. the property clause "with 7r".

The property c1ause may be omitted.

The symbol clause

In the symbol clause, a new symbol u is declared as
the name of the mode whose description is specified
by the other clauses. For example,

mode complex is ...

may be used to introduce the symbol complex. In ad
dition, the mode to be defined may depend on formal
parameters, which are specified in the symbol clause as
follows:

mode matrix (int ill, int n) is ...

The actual parameters would presumably be supplied
when the symbol is used in a declarative context, such as

matrix (4, 5)A;

The type clause

In the type clause, T specifies the nature of the values
characterized by the mode being defined. Thus, T is

either the name of an existing mode or a constructor
applied to some combination of previously defined
modes. There are assumed to be a finite number of
modes predefined within the base language. In the
scope of this paper, int, real, bool and char are taken
to be the symbols representing four of these basic
modes, standing for the modes of integer, real, boolean
and single character values, respectively. Thus, a valid
mode definition might be:

m ode integer is int;

The model presented here also includes a set of mode
constructors, which act to create new modes from existing
ones. The following list of constructors indicates the
kinds of combinations envisioned:

1. Pointers
A pointer is a value designating another value.
As any value, a pointer has a mode, which
indicates that:

-it is a pointer.
-it is able to point to values of a specified class.

The notation ptr M creates the mode character
izing pointers to values of mode M. For example,

mode ppr is ptr ptr real;

specifies that values of mode ppr are pointers to
pointers to reals.

2. Procedures
A procedure is a value, implying that one can
actually have procedure variables, pass proce
dures as parameters and return them as the
results of other procedures. Being a value, a
procedure has a mode which indicates that:

-it is a procedure.
-it takes a fixed number (possibly zero) of

parameters, of specified modes.
-it returns a result of a given mode, or it does

not return any result.

The notation proc (MI, ... , Mn) M forms the
mode of a procedure taking n parameters, of
modes MI ... Mn respectively, and returning a
value of mode M. As an example, one could
declare

mode trigo is proc (real)real;

Definition Mechanisms in Extensible Programming Languages 13

for the class of trigonometric functions, and then

mode trigocompose is proc (trigo, trigo)trigo;

for the mode of functions taking two trigono
metric functions as parameters, and delivering a
third one (which could be the composition of
the first two) as the result.

3. Aggregates
Two kinds of aggregates will be described:

a. the tuples, which have a constant number of
components, possibly of different modes;

b. the sequences, which have a possibly variable
number of components, but of identical
modes.
a. Tuples

The mode of a tuple having n components
is established by the notation [M1s1, ... ,
Mnsn], where M 1 ... Mn are the modes of
the respective components, and Sl ... Sn
are the names of these components, which
serve as selectors. Thus, the definition of
the mode complex might be written.

mode complex is [real rp, real ip];

If Z is a complex value, one might write
Z.rp or Z.ip to access either the real part
or the imaginary part of Z.

b. Sequences
The mode of a sequence is constructed by
the notation seq (e)M, where e stands for an
expression producing an integer value, which
fixes the length of the sequence; the paren
thesized expression may be omitted, in
which case the length is variable. The
components, each having mode M, are
indexed by integer values ranging from 1
to the current length, inclusively. The
mode for real square matrices could be
defined as follows:

mode rsqmatrix (int n)

is seq (n) seq (n) real;

If B is a real square matrix, then the nota
tion B(i)(j) would provide access to an in
dividual component.

4. Union
The union constructor introduces a mode char
acterizing values belonging to one of a specified

list of classes. The notation union (MI' ... , 1\1:n)
produces a mode for values having anyone of
the modes 1\1:1 ... Mil' Thus, if one defines

mode procir is proc (union (int, real));

this mode describes procedures taking one pa
rameter, which may be either an integer or a
real, and returning no result. A further example,
using the tuple, pointer~ sequence and union
constructors, shows the possibility of recursive
definition:

mode tree

is [char root,

seq ptr union (char, tree) branch];

The list of mode constructors given above is intended
to be indicative but not exhaustive. Moreover, it must
be emphasized that the constructors themselves are
essentially independent of the nature and number of
the basic modes. Consequently, one could readily admit
the use of such constructors with an entirely different
set of primitive modes (e.g., one which more closely
reflects the representations on an actual machine).
What is essential is that the new modes generated by
these constructors must be usable in the language in
the same ways as the original ones.

The property clause

The property clause "with 7r" when present, specifies
a list of properties possessed by the values of the mode
being defined. These properties identify a sub-class of
the values characterized by the mode in the type clause.
Two kinds of properties are introduced for the present
model: transforms and selectors.

1. Transforms
The transforms provide a means of specifying
the actions to be taken when a value of mode
M1 occurs in a context where a value of mode
M2 is required (1\1:1~M2). If M is the mode
being declared, then two notations may be used
to indicate a transform:

a. "from M1 by V.E1," which specifies that a
value of mode M may be produced from a
value of mode M1 (identified by the bound
variable V) by evaluating the expression E 1.

14 Fall Joint Computer Conference, 1970

b. "into M2 by V.E2'" which specifies that a
value of mode M2 may be produced from a
value of mode M (identified by the bound
variable V) by evaluating the expression E 2.
The following definitions provide an illus
tration:

mode complex
is [real rp, real ip]
with from real

by x. [x, 0.0],
into real

by y. (ify.ip=O
then y.rp
else error) ;

mode imaginary
is [real ip]
with from complex

by x. (if x.rp = 0
then [x.ip]
else error),

into complex
by y. [0.0, y.ip];

By the transforms in the above definitions, all of
the natural conversions among real, complex,
and imaginary values are provided. It must be
noted that the system of transformations
specified among the .modes may be. represented
by a directed graph, where the nodes correspond
to the modes, and the arcs are established by
the from and into transforms. Thus, the rule to
decide whether the transformation from Ml into
1\112 is known might be formulated as follows:

1. There must exist at least one path from MI
to M 2•

n. If there are several paths, there must exist
one which is shorter than all of the others.

lll. That path represents the desired trans
formation.

2. Selectors
The notation "take 1\11s as V.E" may appear in
the list of properties attached to the definition
of the mode M. It serves to establish the name
"s" as an additional selector which may be
applied to values of mode M to produce a value
of mode MI. Thus, if X is a value of mode M,
then the effect of writing "X.s" is to evaluate
the expression E (within which V acts as a
bound variable identifying the value X) and to

transform its result into a value of mode MI.
As au example, the definition of complex might
be augmented by attaching the following two
properties:

take real mag as Z. (sqrt (Z. rp i 2+Z.ip i 2»,

take radian ang as Z. (arctan (Z.ipjZ.rp»;

The mode radian is presumed to be defined else
where, and to properly characterize the class of
angular values.

As with the case of the constructors, the properties
presented here are intended to suggest the kinds of
facilities which are appropriate within the framework
established by the concept of mode.

In summary, it must be stressed that the model de
veloped here is applicable only to one particular cate
gory of objects, namely the values on which a program
operates. Clearly, there exist other identifiable cate
gories which enter into the processing of a program
(e.g., control structure, environment resources, etc.).
It is equally appropriate to regard these as potential
domains for semantic extensibility. This will no doubt
necessitate the introduction of additional extension
mechanisms, following the general approach estab
lished here. As the number of mechanisms is expanded,
the possibility for selective restriction of the extension
capabilities will become increasingly important. The
development of the corresponding semantic restriction
mechanisms is imperative, for they are essential to the
production of specialized compilers for languages
defined by means of extension.

SYNTACTIC EXTENSIBILITY

A language incorporating functions which permit a
user to introduce explicit modifications to the syntax
of that language is said to possess the property of
syntactic extensibility. The purpose of this section is to
establish the nature of such a facility. It is primarily
devoted to the development of a model which will serve
to characterize the mechanism of syntactic extension,
and permit exploration of its definitional range.

It must be made explicit that, when speaking of
modifications to the syntax of a language, one is in fact
talking about actual alterations to the grammar which
serves to define that syntax. For a conventional lan
guage, the grammar is essentially static. Thus, it is
conceivable that a programmer could be wholly un
aware of its existence. The syntactic rules, which he is
nonetheless constrained to observe (whether he likes·
them or not), are the same each time he writes a pro-

Definition Mechanisms in Extensible Programming Languages 15

gram in that language, and no deviation is permitted
anywhere in the scope of the program. The situation is
significantly different for the case of a syntactically
extensible language. This capability is provided by
means of a set of functions, properly imbedded in the
language, which acts to change the grammar. Provided
that the user is cognizant of these functions and their
grammatical domain, he then has the option of effecting
perhaps quite substantial modifications to the syntax of
that language during the course of writing a program in
that language; this is in parallel with whatever semantic
extensions he might introduce. In effect, the grammar
itself becomes subject to dynamic variation, and the
actual syntax of the language becomes dependent on
the program being processed.

The syntactic macro mechanism: A model

The basis of most existing proposals for achieving
syntactic extensibility is what has come to be called
the syntactic macro mechanism. A model of this mecha
nism is introduced at this point in order to illustrate
the possibilities of syntactic extension. The model is
based on the assumption that the syntactic component
of the base language, and by induction any subsequent
extended language, can be effectively defined by a
context-free grammar (or the equivalent BNF repre
sentation). This relatively simple formalism is adopted
as the underlying definitional system despite an obvious
contradiction which is present: a grammar which is
subject to dynamic redefinition by constructs in the
language whose syntax it defines is certainly not
"context-free" in the strict sense. Therefore, it is only
the instantaneous syntactic definition of the language
which is considered within the context-free framework.

The most essential element of the syntactic macro
mechanism is the function which establishes the defini
tion of a syntactic macro. It must be a legitimate lin
guistic construct of the base language proper, and its
format would likely resemble any other declaration in
that language. The following representation will be
used to model a call on this function:

macro cp where 7r means p;

The respective components are:

cp, the production;

7r, the predicate; and

p, the replacement.

The macro clause would be written in the form

macro C~'phrase'

where C is the name of a category (non-terminal)
symbol in the grammar, and the phrase is an ordered
sequence, Sl ... Sn, such that each constituent is the
name of a category or terminal symbol. Thus the pro
duction in a macro clause corresponds directly to a
context-free production. The where and means clauses
are optional components of the definition, and will be
discussed below.

A syntactic macro definition differs from an ordinary
declaration in the base language in the sense that it is a
function operating directly on the grammar, and takes
effect immediately. In essence, it incorporates the
specified production into the grammar. Subsequent to
the occurrence of such a definition in a program, syn
tactic configurations conforming to the structure of the
phrase are acceptable wherever the correspondingcate
gory is syntactically valid. This will apply until such
time as that definition is, in some way, disabled. As an
example, one might include a syntactic macro definition
starting with

macro FACT~'PRIlVI ! '

for the purpose of introducing the factorial notation
into the syntax for arithmetic expressions. Within the
scope of that definition, the effect would be the same as
if the syntactic definition of the language (represented
in BNF) incorporated an additional alternative

(factor): : = . .. I (primary)!

Thus, in principle, a statement of the form

c : = nl/((n-m)! *m!);

might become syntactically valid according to the
active set of definitions.

The production

The role of the production is to establish both the
context and the format in which "calls" on that macro
may be written. The category name on the left controls
where, within the syntactic framework, such calls are
permitted. One may potentially designate any category
which is referenced by the active set of productions.
The phrase indicates the exact syntactic configuration
which is to be interpreted as a call on that particular
macro. In general, one may specify any arbitrary se
quence (possibly empty) of symbol names. The con
stituents may be existing symbols, terminals which
'were not previously present, or categories to be defined
in other macros. This is of course, subject to the con
straint that the grammar as a whole must remain both

16 Fall Joint Computer Conference, 1970

well-formed and non-ambiguous, if it is to fulfill its
intended function.

In addition, the macro clause serves to declare a set
of formal parameters, which may be referenced else
where in the definition. Each separate call on that
macro can be thought of as establishing a local syntactic
context, defined 'with respect to the complete syntax tree
which structurally describes the program. This context
would be relative to the position of the node corre
sponding to the specified category, and would include
the immediate descendants of that node, corresponding
to the constituents of the phrase. Ata call, the symbol
names appearing in the production are associated with
the actual nodes occurring in that context. Thus, the
terminal names represent an individual instance of
that terminal, and the category names represent some
complete syntactic sub-tree belonging to that category.
In order to distinguish between different formal param
eters having the same name, the convention of sub
scripting the names will be adopted here; this notation
could readily be replaced by declaration of unique
identifiers.

The replacement

The means clause specifies the syntactic structure
which constitutes the replacement for a call on that
particular macro. It is written in the form

means 'string'

where the string is an ordered sequence, composed of
either formal parameters or terminal symbol names.
An instance of this string is generated in place of every
call on that macro, within which the actual structure
represented by a formal parameter is substituted for
every occurrence of its name. If the complete syntactic
macro definition for the factorial operator had been

macro FACTo~'PRIMl!'

means 'factorial (PRIM 1) , ;

then each call on this macro would simply be replaced
by a call on the procedure named "factorial", assumed
to be defined elsewhere.

When present, the means clause establishes the
semantic interpretation to be associated with the corre
sponding production; if absent, then presumably the
construct is only an intermediate form, whose inter
pretation is subsumed in some larger context. The
"meaning," however, is given as the expansion of that
construct into a "logically lower level language" .
While the replacement may be expressed in terms of
calls on other syntactic macros, these will also be ex-

panded. In effect, the meaning of every new construct
introduced into the language is defined by specifying
its systematic expansion into the base language. Ac
cordingly, one might consider syntactic extension
merely as a means for permitting a set of "systematic
abbreviations" to be defined "on top of" the base
language.

An important consequence of the fact that a syntactic
macro definition is itself a valid element of the base
language is that such definitions may occur in the con
text of a replacement. This is illustrated by the follow
ing example, showing how a declaration for "push
down stack" might be introduced:

macro DECLo~'TYPEI stack [EXPR1] IDEN 1;'
means 'TYPE1 array [1:EXPR1] IDEN1 ;

integer level_IDEN 1 initial 0;
macro PRIMo~'depth_IDEN l'

means 'res (EXPR1)';

macro PRIMl~'IDENl'
means '(if level_IDENI >0

then
(IDENI [level_IDEN1],

level_IDEN1 : =
level_I DEN 1 -1;)

else
error ("overdraw

IDEN1"))';

macro REFRo~'IDEN l'
means '(if level_IDENI <

depth_IDENI
then
(level_IDEN1 : =

level_ IDEN 1 + 1;
IDEN 1 [level_IDEN 1])
else
error ("overflow

IDEN 1"))';';

Thus a declaration of the form

integer stack [K] S;

would generate not only the necessary array for holding
the contents of the stack, but also several other declara
tions, including:

1. An integer variable, named level_S, corre
sponding to the level counter of the stack. It is
initialized to zero on declaration.

2. A literal, written "depth_S," for representing
the depth of that stack. Its expansion is given
in terms of the operator res, which is taken to
mean the result of a previously evaluated ex-

Definition 1\{echanisms in Extensible Programming Languages 17

pression, and presumed to be defined accord
ingly.

3. A macro definition (PRIlVh) which establishes,
by means of a compound expression, the inter
pretation of the stack name in "fetch-context".
This allows one to write "N: = S;" for removing
the value from the top of the stack S and assign
ing it to the integer variable N.

4. A macro definition (REFRo) which establishes
the corresponding "store context" operation.
One can then write "S: = 5 ;" to push a new value
into the stack.

The predicate

The where clause provides a way of specifying addi
tional conditions which must be satisfied in order that
the configuration defined by the phrase constitute a call
on that particular macro. Its absence implies that the
syntactic structure of the phrase is sufficient to identify
a call. When present, it serves to introduce additional
selectivity into the definition, which enhances the
effect of conditional expansion. It is also a vehicle for
enlarging the local syntactic context established at each
call on the macro, thereby expanding the set of formal
parameters declared within the definition.

As construed here, a predicate would be written as a
sequence of calls on specialized logical functions,
separated by the usual operators of predicate calculus
(conjunction, disjunction, implication, etc.) and
grouped by parentheses. The list which follows is
indicative of the kind of functions which might be
appropriate:

1. Si=Sj
which decides whether the syntactic configura
tions associated with the two previously declared
formal parameters, Si and Sj, are structurally
equivalent. S j may instead be the symbol E,

which is used to decide whether Si represents a
construct corresponding to the empty phrase.

2. Si~Sj
which is the opposite of function (1). The follow
ing definition

macro BLOCo~'LABL1: begin STATLlST1
end LABL2;'

whereLABL2~E ~ LABL2= LABL1
means . ..

illustrates the use of these functions III a
predicate.

3. Si~'phrase'
\vhere Si is a previously declared parameter
representing a category, and the phrase is written
analogously to that of the production in a macro
clause. It verifies whether the immediate sub
structure of the specified parameter corresponds
to the indicated configuration. The constituents
of the phrase are also declared as formal param
eters. An interesting example is suggested by a
peculiarity in PL/l, wherein the relation
"7 <6<5" is found to be true. A possible
remedy might be formulated as follows:

macro RELo~'REL1<EXPR3'
where REL1~'EXPRI < EXPR2'
means 'REL1 A res(EXPR2) < EXPR/ ;

The production in the where clause is assumed
to be included in the base language, and "REL A
REL" is taken to be syntactically defined
elsewhere.

4. Si:::::}'phrase'
which is analogous to function (3), except that
it verifies the sub-structure at an arbitrary depth,
even to the terminal string. An example of its
use might be:

macro ASGNo~'REFRl: = EXPR1'
where REFR1~'IDEN l'

A EXPR1:::::}'IDEN 2+ l'
A lDEN1=IDEN2

means . ..

These functions are readily generalizable into
an extremely powerful pattern-matching
mechanism.

5. 3Si~Sj
which determines, in the local syntactic context
of the previously declared parameter, Sj,
whether the immediate antecedent of S j cor
responds to the category specified by Si. Also,
Si is declared as a formal parameter representing
the "father" of S j.

6. 3S i:::::}Sj
which is simply a generalization of function (5),
establishing Si as the (nearest) direct antecedent
of S j, regardless of the distance, which belongs
to the category named by Si. For example, to
access the name (IDEN 1) of the procedure in
which a particular statement (STAT 1) is im
bedded, one might write a where clause of the

18 Fall Joint. Computer Conference, 1970

following form:

where 3 PROCl=>STAT 1

A PROCl~'HEADl ... '
A HEADl~'IDENl:proc ... '

The ellipsis notation is introduced with the
framework of functions (3) and (4) to indicate
that the structure of the corresponding con
stituents is irrelevant [and indeed, it may not
even be knowable in the contexts that can be
established by functions (5) and (6)].

7. 3 Si~'string'
which is successful on· the condition that the
string (generated analogously to the replacement
string) is directly reducible to the category
specified by Si, which is also declared as a formal
parameter to represent the cOIhpleted sub-tree
reflecting the analysis.

8. 3 Si{='string'
which is analogous to function (7), but the con
dition is generalized to verify whether the string
is reducible (regardless of the depth of the
structure) to the specified category. The defini
tion of the "maximum" function, which requires
two syntactic macros, provides an interesting
example:

macro PRIMo~'max (EXPRLIST 1) ,

where EXPRLIST l~'EXPRl'
means '(EXPRl)';

macro PRIMl~'max (EXPRLISTl)'
where EXPRLIST]~'EXPRLIST 2,

EXPR2'

A 3 PRIM2{='max (EXPRLIST 2)'
means '(if PRIJ\1:2 > EXPR2

then res PRIM2

else res (EXPR2))"

9. P (arguments)
where P is the name of a semantic predicate, and
the arguments may be either formal parameters
or terminal symbols. Such conditions constitute
a means of imposing non-syntactic constraints
on the definition of a syntactic macro. They are
especially applicable in those situations where
it is necessary to establish the mode of a particu
lar entity. For example, one might rewrite the
factorial definition as follows:

macro FACTo~'PRIMl!'
where is_integer (PRIM l)

means 'factorial (PRIl\1:l)' ;

In this form the definition also has the effect
of allowing different meanings to be associated
with the factorial operator, dependent on the
mode of the primary.

10. 3 Si: F (arguments)
Where F is the name of a semantic function
which conditionally returns a syntactic result.
Si is also declared as a formal parameter to repre
sent this result. The semantic functions and
predicates establish an interface whereby it is
possible to introduce syntactic and semantic
interdependencies. A likely application of seman
tic functions would be definitions involving
identifiers:

where 3 LABLl : newlabel (IDENl) ...

A particularly intriguing possibility is to pro
vide a semantic function which evaluates an
arbitrary expression:

where 3 CONST 1: evaluate (EXPR1) .•.

Obviously, this concept could be expanded to
encompass the execution of entire programs, if
desired.

I t is evident that the role of the where clause in a
syntactic macro definition is to provide a framework
for specifying those properties which effectively cannot
be expressed within the context-free constraints. The
fashion in which they are isolated allows these aspects
to be incorporated without sacrificing all of the prac
tical advantages which come from adopting a relatively
simple syntactic formalism as the point of departure.
With respect to the model presented here, however, it is
nonetheless clear that the definitional power of the
syntactic macro mechanism is determined by the power
of the predicates.

Operationally, the syntactic macro mechanism can
be characterized by three distinct phases, each of which
is briefly considered below.

Definition phase

The definition phase encompasses the different func
tions incorporated within the base language which act
to insert, delete or modify a syntactic macro definition.
Together, they constitute a facility for explicitly editing
the given grammar, and are employed to form what
might be called. the active syntactic definition. This con
sists of the productions of the currently active syntac-

Definition Mechanisms in Extensible Programming· Languages 19

tic macros (with their associated predicates and re
placements), plus the original productions of the base
language. An interesting generalization would be to
provide a means of selectively eliminating base lan
guage productions from the active syntactic definition,
there by excluding those constructions from the source
language; they would still remain part of the base
language definition, however, and continue to be con
sidered valid in the context of a replacement. In this
fashion, the syntax of an extended language could be
essentially independent of the base language syntax,
thus further enhancing the definitional power of the
syntactic macro mechanism.

Interpretation phase

The interpretation phase includes the processing of
syntactic macro calls. It consists of three separate
operations: (1), recognition of the production; (2),
verification of the predicate; and (3), generation of the
replacement. Obviously, these operations must pro
ceed concurrently with the process of syntactic analysis,
since syntactic macro expansion is incontestably a
"compile-time facility". Given the present formulation
of the syntactic macro mechanism, some form of what
is called "syntax directed analysis" suggests itself
initially as the appropriate approach for the analyzer.
It must be observed that the character of the analysis
procedure is constrained to a certain extent by the
nature of the predicates contained within the active
syntactic definition. Furthermore, the presence of
semantic predicates and functions precludes realization
of the analyzer/generator as a pure preprocessor.

In general, there will be the inevitable trade-off to
be made between power of definition and efficiency of
operation. It is pointless to pretend that this trade-off
can be completely neglected in the process of formu
lating the syntactic definition of a particular extended
language. However, deliberate emphasis has been given
here to power of definition, with the intention of pro
viding a very general language development framework,
one which furnishes an operational compiler at every
stage. It is argued that the problem of obtaining an effi
cient compiler properly belongs to a subsequent phase.

Restriction phase

The restriction phase, as construed here, would be a
separate operation, corresponding to the automatic
consolidation of some active syntactic definition in
order to provide a specialized syntactic analyzer for
that particular dialect. The degree to which this

analyzer can be optimized is determined both by the
syntactic complexity of the given extended language,
and by the specific constraints on further syntactic
extension which are imposed at that point. If subse
quent extensions are to be permitted, they might be
confined within extremely narrow limits in order to
improve the performance of the analyzer; they may be
excluded entirely by suppressing the syntactic defini
tion functions in the base langua'ge. In either case,
various well-defined sub-sets of context-free grammars,
for which explicit identification and efficient analysis
algorithms are known to exist, constitute a basis for
establishing the restrictions. This represents the great
est practical advantage of having formulated the syn
tactic definition essentially within the context-free
framework.

In conclusion, it is to be remarked that syntactic
extensibility is especially amenable to realization by
means of an extremely powerful extension mechanism
in conjunction with a proportionally powerful restric
tions mechanism. This approach provides the essential
definitional flexibility, which is a prerequisite for an
effective language development tool, without sacrificing
the possibility of an efficient compiler. In the end,
however, the properties of a particular extended lan
guage dictate the efficiency of its processor, rather than
the converse. This is consistent with the broadened
interpretation of extensible languages discussed in this
paper.

BIBLIOGRAPHY

1 T E CHEATHAM JR
The introduction of definitional facilities into higher level
programming languages
Proceedings of AFIPS 1966 Fall Joint Computer Conference
Second edition Vol 29 pp 623-637 November 1966

2 T E CHEATHAM JR A FISCHER Ph JORRAND
On the basis for ELF-an extensible language facility
Proceedings of AFIPS 1968 Fall Joint Computer Conference
Vol 33 Part 2 pp 937-948 November 1968

3 C CHRISTENSEN C J SHAW Editors
Proceedings of the extensible languages symposium
Boston Massachusetts May 1969 SIGPLAN Notices
Vol 4 Number 8 August 1969

4 B A GALLER A J PERLIS
A proposal jor definitions in ALGOL
Communications of the AGM Vol 10 Number 4 pp
204-299 April 1967

5 J V GARWICK
GPL, a truly general purpose language
Communications of the ACM Vol 11 Number 9 pp
634-639 September 1968

6 E T IRONS
Experience with an extensible language
Communications of the ACM Vol 13 Number 1 pp 31-40
January 1970

20 Fall Joint Computer Conference, 1970

7 Ph JORRAND
Some aspects of BASEL, the base language for an extensible
language facility
Proceedings of the Extensible Languages Symposium
SIGPLAN Notices Vol 4 Number 8 pp 14-17 August 1969

8 B M LEAVENWORTH
Syntax macros and extended translation
Communications of the ACM Vol 9 Number 11 pp 790-793
November 1966

9 M D McILROY
M aero instruction extensions to compiler languages
Communications of the ACM Vol 3 Number 4 pp 214-220
April 1960

10 A J PERLIS
The synthesis of algorithmic systems
First ACM Turing Lecture Journal of the ACM Vol 14
pp 1-9 January 1967

11 T A STANDISH
Some features of PPL, a polymorphic programming language
Proceedings of the Extensible Languages Symposium
SIGPLAN Notices Vol 4 Number 8 pp 20-26 August 1969

12 T A STANDISH
Some compiler-compiler techniques for use in extensible
languages
Proceedings of the Extensible Languages Symposium
SIGPLAN Notices Vol 4 Number 8 pp 55-62 August 1969

13 A VAN WIJNGAARDEN B J MAILLOUX
J E L PECK C H A KOSTER
Report on the algorithmic language ALGOL 68
MR 101 Mathematisch Centrum Amsterdam October 1969

14 B WEGBREIT
A data type definition facility
Harvard University Division of Engineering and Applied
Physics unpublished 1969

Vulcan-A string handling language
with dynamic storage control*

by E. F. STORlVI

Syracuse University
Syracuse, New York

and

R. H. VAUGHAN

National Resource Analysis Center
Charlottesville, Virginia

INTRODUCTION

The implementation of the man-machine interface
for question-answering systems, fact-retrieval systems
and others in the area of information management
frequently involves a concern with non-numeric pro
gramming techniques. In addition, theorem proving
algorithms and more sophisticated procedures for
processing natural language text require a capability
to manipulate representations of non-numeric data
with some ease, and to pose complex structural ques
tions about such data.

This paper describes a symbol manipulation facility
which attempts to provide the principal capabilities
required by the applications mentioned above. In
order to reach this goal we have identified the following
important and desirable characteristics for a set of
non-numeric programming capabilities.

1. Conditional Expressions: Since the formal repre
sentations of non-numeric information are ordinarily
defined inductively, it is to be expected that algorithms
to operate on such representations will also be specified
inductively, by cases. A conditional language structure
seems appropriate for a "by-cases" style of program
ming.

2. Storage Maintenance: Assemblers and other high
er-level langua,ges eliminate many of the troublesome
aspects of the storage allocation problem for the user.
Very little use has been made, however, of more so
phisticated storage maintenance functions. N on-nu-

* This work was supported by the National Resource Analysis
Center in the Office of Emergency Preparedness.

21

meric computation is provisional in the sense that one
ordinarily wants to transform a piece of data only if
that datum (or some other) has certain properties.
For example, a certain kind of English sentence with
a verb in the passive, may want to be transformed
into a corresponding sentence with an active verb.
Or, in a theorem proving context, two formal expres
sions may have joint structural properties which permit
a certain conclusion to be drawn. In practice, however,
it is the rule rather than the exception that a datum
will fail to have the required property, and in such a
case one wishes that certain assignments of values had
never taken place. In order to accommodate these very
common situations the semantics of Vulcan are defined
and implemented so that changes to the work space
are provisional. While this policy requires some com
plex machinery to maintain internal storage in the
presence of global/local distinctions and of formal/
actual usage, these maintenance features give Vulcan
much of its power and flexibility.

3. Suppression of Bookkeeping Detail: A program
mer should never need to concern himself with storage
allocation matters. Nor should there be troublesome
side effects of the storage maintenance conventions.
Specifically it should be possible to call a set of param
eters by name in invoking a procedure or subroutine
so that changes to the values of actual parameters may
easily be propagated back to the calling context. In
such a case no special action should be required from
the programmer. In addition the details of the scan of
a symbol string to locate an infix substring should
never intrude on the programmer's convenience. And
the use of local/global distinctions and formal/actual

22 Fall Joint Computer Conference, 1970

usage should require no special action in a recursive
situation.

4. Numeric Capabilities: It should be possible to
perform routine counting and indexing operations in
the same language contexts that are appropriate for
processing symbol strings. At the same time, more
complex numerical operations should be available, at
least by means of linkage to a conventional numerical
language.

5. Input/Output: Comprehensive file declaration
and item handling facilities should be included if the
non-numeric features are to be useful in realistic appli
cations. Simple formatting conventions should be avail
able to establish a correspondence between the fields
of a record and a suitable set of symbol strings.

6. Interpretive Execution: There is little penalty
associated with the interpretive execution of non
numeric algorithms, since the bulk of the system's
resources are concerned with accommodating a sequen
tial, fixed~field system to a recursive, variable-field
process. In addition, interpretive execution is easier
to modify on a trial basis, and permits some freedom
in the modification of source language syntax, provided
there is an intermediary program to convert from
source code to the internally stored form, suitable
for interpretive execution.

While there are other desirable features for a very
general programming language, these were accepted
as a minimum set for exploratory purposes. An overall
goal was to attain a reasonably efficient utilization
of machine resources. In this implementation study
it was felt desirable to achieve running speed at the
expense of storage utilization if a choice were required.
Since most non-numeric computing processes are
thought to be slow in execution, it was decided to em
phasize speed whenever possible in the Vulcan system.

List processing certainly plays a central role in the
applications contemplated here. But the Vulcan lan
guage was initially intended to be experimental and
to provide an exploration tool, and the implementa
tion was therefore restricted to string manipulation,
elementary arithmetic and file handling.

OVERVIEW

The Vulcan language has been successfully imple
mented on a Univac 1108 system running under EXEC-
8, and a comprehensive programmer's reference manual
is available. 1 The emphasis in the implementation of
V ul~an has been on providing a powerful storage main
tenance structure in place of complex and general ele
mentary operations. From experience with applica
tions this has been a satisfactory compromise. Ex-

travagant elementary operations have not been so
commonly needed, and when needed they are easily
supplied as specially tailored Vulcan procedures.
Storage maintenance for a recursive situation, on the
other hand, would be much more difficult to supply
in terms of more conventional programming language
structures.

V ulcan is an imperative rather than a functional
language. Since every call on a Vulcan procedure may
be treated both as. an imperative assertion and as a
Boolean expression there are places in the language
design where the notion of truth value assignment
has a character not predictable from more conven
tional usage. The conventions adopted to cover these
cases may be seen to be justified by their use in appli
cations.

Since Vulcan is a conditional language there are
no labels and no GOTO statements. In a word, the
logical structure of an algorithm must be expressed
in purely inductive terms.

For the numerical calculations associated with a
string manipulation algorithm there are rudimentary
arithmetic operations and conversions between alpha
numeric and binary, and there is a comprehensive
range test. All of these operations are defined only for
binary integers. 1\10re complex numerical processing
may be invoked by coding a Fortran program with
parameters passed to it from Vulcan. While there are
restrictions on this facility it has been found to be
more than adequate for the situations encountered so
far.

A complete package of' file processing functions is
available as an integral part of the Vulcan system.
Individual records can be read or written, files opened
or closed, temporary or permanent, on tape or mass
storage. By specifying a format in terms of lengths of
constituent substrings, a record can be directly de
composed into its fields by a single call on the item
handling facility. Calls on the item handler are com
patible with the Boolean character of a Vulcan pro
cedure.

There is an initial syntax scanner which puts the
Vulcan constructs into a standard form suitable for
interpretive execution. There are several constructs
which are admitted by the syntax scanner for which
there are no interpretable internal codes, and the
scanner is used to supply equivalent interpretable
internal codes for these situations. The ability to deal
with quoted material in any context appropriate to
an identifier is a case in point.

The scanner has been implemented so that a Vulcan
program may be punched on cards in free-field style.
There are no restrictions on the position of Vulcan
constructs on the program cards except that a dollar

sign (signalling a comment card) may not appear in
column 1, and columns 73-80 are not read.

The more common run-time errors are recognized
by the interpreter and there are appropriate error
messages. As with any non-numeric facility, restraint
and judgment are required to avoid situations where
excessive time or storage can be used in accomplishing
very little.

The entire Vulcan scanner/interpreter occupies
approximately 3900 words of core. A small amount of
storage is initially allocated for symbol tables and
string storage. When this storage is exhausted addi
tional .5000 word blocks of storage are obtained from
the executive. Routine data processing computations
seem to make modest demands on storage, while a
theorem-prover may consume as much storage as is
given it.

A system written in Vulcan consists of a set of Vulcan
procedures. A procedure is a sequence of statements,
and a statement is a sequence of clauses. A clause is
conditional in character and consists of a series of basic
symbol manipulation functions, Input/Output opera
tions, a limited set of arithmetic facilities, and pro
cedure calls. The language is recursive in execution
so that a call on a procedure is executed in a context
which depends on the data available at the time the
call is made. The distinctions between local and global
identifiers and between formal and actual parameters
that are common to Algol are explicitly utilized in
Vulcan.

LANGUAGE DEFINITION

Symbol strings

A string is a sequence of zero or more occurrences
of characters from the UNIVAC 1108 character set.
In particular, the empty string, with zero character
occurrences, is an acceptable string. A string is nor
mally referenced with an identifier and an identifier
to which no string has been assigned is said to be im
proper. (One common run-time error results from an
attempt to use an improper identifier in an incorrect
way.) A symbol string may also be quoted directly in
the context of an instruction. Except for the left-hand
side of an infix or assignment operation, anywhere that
a string identifier may be used, a quoted literal string
may be used in place of that identifier. For example,
both

(1) WRITE ('ABC')

and

(2) X = 'ABC', WRITE (X),

cause the string 'ABC' to be printed.

VULCAN 23

A facility exists to assign a literal string to an iden
tifier:

(1) X = 'ABC'

(2) Y = (assigns the empty string to Y)

Quoted strings may be associated together from left to
right. Suppose one wishes to assign the following literal
string:

RECORDS CONTAINING 'ABC' ARE LOST.

The following literal assignment will create and store
the above string:

X = 'RECORDS CONTAINING'" , 'ABC' " ,

'ARE LOST.'

Spaces outside quote marks are ignored by the
translator. Note that five sub-strings are quoted in
the above literal assignment:

RECORDS CONTAINING

ABC

ARE LOST.

The string value of an identifier is called the referent
of that identifier and it may be changed as a result
of an operation. Note that the quote mark itself is
always quoted in isolation.

Language structure

The instructions In Vulcan are embedded in ex
pressions which, like instructions, come out true or
false. A clause is an expression which has an antecedent
and a consequent part, separated by a colon, and
bounded by parentheses. The instructions are coded
in the antecedent and consequent parts and are sep
arated \\1.th commas. For example,

where the ~i and Pi are Vulcan instructions.
A clause comes out true if all the instructions in the

antecedent part, executed from left to right, come out
ture. In this case, all the operations in the consequent

24 Fall Joint Computer Conference, 1970

part are executed, from left to right. For example, the
clause

will come out true and PI will be executed just in case
instruction cPI comes out true and instruction cP2 comes
out false (its negation making it true).

A clause with no antecedent part always comes out
true:

The consequent part of a clause may also be empty:

(cPI, cP2:)

A clause with neither an antecedent nor a consequent
part comes out true and performs no computation.

(:)

A statement is a series of clauses enclosed in square
brackets:

The consequent part of at most one clause will
be executed within a statement. Starting with the
left-most clause, if a particular clause comes out true
(as the result of all the tests in its antecedent part
coming out true), then, as soon as execution of all the
operations in the clause is finished, the remaining
clauses are skipped and execution begins in the next
statement. If a particular clause comes out false (as
the result of some test in its antecedent part coming out
false), then, execution begins on the next clause. If
any clause comes out true in a statement, then, the
statement is considered to come out true. If all clauses
in a statement come out false, then, the statement is
considered to come out false.

A procedure body is a sequence of statements
bounded by angle brackets, < and). Each statement
in a procedure body is executed once in turn regardless
of the truth-value of the individual statements.

A procedure consists of the word PROCEDURE,
a procedure name, a list of formal parameters, the
necessary local and global identifier declarations, and
a procedure body. The truth-value of a procedure is
set to be the same as the truth-value of the last state
ment in the procedure body. For example, the form
of a procedure might be:

PROCEDURE T4(X);

LOCAL Xl, X2; GLOBAL Yl, Y2;

< [(cPI:PI)

(cP2: P2)]

[(cPa:Pa)])

A program is a set of procedures with a period (.)
terminating the last procedure. The initial procedure
is executed first and acts as a driver or main program
for the system. All other procedures are executed only
by means of calls to them. The completion of this
initial procedure terminates the run.

String manipulation operations

There are two basic string manipulation instructions,
the concatenate operation and the infix test.

Concatenation

Concatenation is used to build strings out of other
strings and the operation always comes out true. The
operation has the following format:

X = Xl . X2 XN,

where X, Xl, through XN are identifiers. For example:

(1) X = Yl.Xl.Y2.Z

(2) X = Tl.'A QUOTED VALUE'.USE

The strings referred to by the identifiers and literal
strings on the right-hand side of the assignment symbol
(=) are concatenated and the resulting string is as
signed to the identifier on the left. In the operation,
each of the identifiers and literal strings to the right of
the equal sign must be separated with a period.

The identifier on the left may appear several times
to the right of the equal sign. In this case, it retains
its original referent until the entire concatenation is
completed. The resulting concatenated string is then
assigned to the identifier to the left of the equal sign.
For example, if X is 'AB' and Y is 'C', then the opera
tion X = Y.X.Y.X.Y results in setting X to 'CAB
CABC'. The identifier on the left may be either proper
or improper, but each identifier on the right must be
proper.

Infix test

The basic test on a symbol string is the infix test,
and is written

(1) X/*.Y.*

(2) Z/*.'ABC'.*

In the first example, the test comes out true if the
referent of Y occurs as an infix in the referent of X,

and comes out false otherwise. In the second case, if the
literal string 'AaC' occurs in the referent of Z,
then the test comes out true, and false otherwise. The
asterisks play the role of dummy identifiers to take
up the residue prefix and residue suffix substrings de
fined by the occurrence of Y in X.

There are three variants of this test, typically writ
ten X/Y.*, X/*.Y and X/Y, asking whether (the
referent of) Y begins X, or ends X, or if they are equal,
respectively. Finally, EMPTY(X) asks of the referent
of X is the empty string.

In each of the above operations, all identifiers must
be proper.

A generalization of the infix test occurs when one
wants to retain, for later processing, the residue prefix
and suffix substrings that are defined as a consequence
of the infix test coming out true. For these purposes
the test may be written as follows:

X/U. 'ABC'.V
or

X/U.Y.V

where U and V are improper and X and Yare proper.
If there is more than one occurrence of the referent of
Y in X, Vulcan identifies the left-most occurrence.
For example, if the referent of X is 'ABCDEFGDEK',
one could ask if X contains the string' DE' :

X/U.'DE'.V

The test will come out true and assign the string' ABC'
to U and the string' FGDEK' to V. If an infix test
fails, then the identifiers U and V remain improper.

Procedure calls and local/global distinctions

Procedure calls and truth-value control

Vulcan procedures are subroutines and the procedure
call is the mechanism for calling a subroutine. Execu
tion of Vulcan procedures is strictly recursive so that
locally declared identifiers are recreated at each new
level of recursion. Parameters to the procedure are
also reconstituted at each level of execution. Distinct
versions of identifiers and parameters are preserved
at each level so that when execution returns to a given
level of recursion, the versions generated by subor
dinate calls are lost, higher-level versions are still
retained in a push-down store, and only the current
level versions are available to the procedure.

A procedure is given to the Vulcan system with a

VULCAN 25

(possibly empty) set of formal parameters as follows:

(1) SUBR

(2) T(A, B, C)

The procedure in (2), for example, may be called with
any identifiers in place of A, B, C, respectively. Thus,
the procedure call may be written:

T(X, Y, Z)

At execution time, the Vulcan interpreter makes copies
of the strings associated with X, Y, Z and assigns them
temporarily to A, B, and C, respectively. The pro
cedure is then executed on its formal parameters:
A, B, C. When execution is completed, the referents,
if any, of A, B, and C are copied back to X, Y, and Z,
respectively, subject to the condition that the pro
cedure call comes out true. If the procedure call comes
out false, the strings are not copied back and X, Y,
and Z remain as they were prior to the procedure
execution.

The procedure call is the sole mechanism for calling
a subroutine in Vulcan; and local identifiers, global
identifiers, and formal parameters, as well as quoted
literal strings, may be included in a list of actual param
eters.

A procedure can be caused to be repeated until the
call comes out true (or false). This allows an iterative
facility which sometimes uses less storage than an
equivalent recursion.

An asterisk preceding a· procedure call implies that
the procedure is to be executed repeatedly until the
procedure call comes out true.

*RECORD (X, Y, Z)

An asterisk with a minus sign implies that the pro
cedure is to be repeated until the negation of the pro
cedure call comes out true (i.e., "repeat until false").

* - RECORD (X, Y, Z)

In a conventional programming language the logical
flow of execution is controlled by branch instructions
and unconditional transfers. Since there are no labels
in Vulcan, there are no transfer instructions. The flow
through a Vulcan program is controlled by causing
certain clauses, statements or procedures to come out
true in some cases and false in others. The conditional
nature of a clause allows the programmer to choose be
tween alternative paths, and the procedure call allows
either path to be as complex as may be required. The
beginning user of Vulcan should make special note of the
fact that control is handled in terms of certain con-

26 Fall Joint Computer Conference, 1970

structs coming out true or false, and this is a definite
departure from conventional programming practice.
With this convention, it is sometimes useful to be able
to force the last statement of a procedure (and hence
the procedure) to be false although some clause in it
has come out true. This is. done by the FALSE com
mand. The FALSE operation, if executed in any clause,
will cause control to skip to the end of the statement
and will set the truth-value of the statement to be
false. A generalization of the FALSE command causes
control to pass immediately to the end of a procedure.
The command RETURN causes exit of the current
procedure with true, and the command RETURNF
causes exit of the current procedure with truth-value
false.

Local, global distinctions, and clause workspace

A procedure S is in the scope of a procedure T if
T contains a call on S, or else if T calls some other
procedure which in turn has a call on S, or else, etc.

Suppose it is desirable that an identifier be declared
in the procedure T and be available to the procedure
S \vithout including it as an actual parameter in a
call on S. Such an identifier will be available through
out the scope of T if it is declared in T to be GLOBAL.
In other words, that identifier will be available in T,
in all the procedures which are called by T, in all the
procedures which are in turn called by those, and so
on. An identifier which is not declared global is then,
by contrast, a local identifier, and in all cases it must
be so declared with the reserved word LOCAL. Such
an identifier is available only within the procedure
in which it is declared and its referent is not available
in any of the procedures which are called by it, except
as an actual parameter. Each identifier, then, must
be declared as either local or global, or implicitly de
clared by inclusion in a formal parameter list.

Each time a procedure is called, its declared identi
fiers are constituted afresh so that if a procedure calls
itself recursively its declared identifiers have separate
and distinct copies at each level of recursion.

The local, global distinction of identifiers. is further
used in that, within the execution of a clause, changes
to the referents of local identifiers and formal parameter
identifiers are contingent upon the final truth-value
of the clause. However, changes to the referents of
global identifiers are not subject to this condition. If
a clause comes out true, changes to all identifiers are
permanent. If a clause comes out false, .changes to
global identifiers are permanent but changes to local
identifiers and formal parameters are obliterated. In

effect, the execution of a clause is carried out in a tem
porary workspace so that changes made to any particu
lar id,entifier are· made permanent just in case one of
the following conditions holds: the clause containing
the assignment came out true or the identifier in ques
tion was global.

Storage is managed by dividing it into two regions
one for identifiers and their properties, and another
for strings themselves. An implementation of the
storage requirements of Vulcan is inevitably complex.
We note here that experience in using Vulcan led. to
the adoption of a garbage collection policy that is
very similar to that described by Kain. 2

Arithmetic operations

The arithmetic facilities provided in Vulcan, while
not complex in structure, allow for most counting,
averaging or testing that is needed. No floating point
instructions are provided, only integer arithmetic.
Normally, the representation of a binary integer is
a string which is six characters (i.e., 36 bits) in length.

A binary integer string may be converted to its
Field Data equivalent with the command ALPHA
(X), where X is the identifier for the binary integer
string. As a result of the operation, X is the identifier
for a string of numeric characters which is the value
equivalent of the binary integer. If the referent of
X is a negative integer, a minus sign (-) is prefixed
to the converted string; however, no sign is attached
for a positive integer. Although a Vulcan binary in
teger is a string six characters in length, any string :::;;
six characters may be interpreted as a binary integer.
Hence, the ALPHA (X) instruction allows the re
sulting referent of X to have a length of from one to
six characters. For example, if the twelve-bit (two
character) field extracted from a data file is binary,
then it may be converted to its alphanumeric equiva
lent with the ALPHA (X) command. No other arith
metic operation, however, allows this special repre
sentation of a binary integer. An error results if X is
improper, empty, or is more, than six characters In

length. ALPHA (X) always comes out true.
Inverse to the ALPHA (X) operation, a string of

numeric characters can be converted to a binary inte
ger with the BINARY(X) operation. The legal form
for a numeric string to be converted to binary is a plus
(+) or minus (-) sign or neither, followed by a purely
numeric field of at least one and at most 11 characters.
Blank characters may precede the sign, if any, may
intervene between the sign and the numeric field, and
may trail the numeric field. For example, the following

are well-formed numeric strings (the' ll.' symbol being
in terpreted as the blank character).

(1) '123'

(2) , ll.ll.9ll.ll.'

(3) 'll. + ll.68ll.'

(4) '-0'

The following are not well~formed numeric strings.

(1) '12 3'

(2) 'll.ll.9.000'

(3) 'll.$ll.19.24'

(4) '+ -86'

If the string to be converted· is not well-formed, then
BINARY(X) comes out false. If it is well-formed, then
the command comes out true and the referent of X is
the converted binary integer string, six characters in
length. If X is improper, error termination occurs.

Arithmetic operations are listed below.

(1) ADD (X, Y, Z) means X = Y + Z

(2) SUB (X, Y, Z) means X = Y - Z

(3) MPY (X, Y, Z) means X = Y * Z

(4) DIV (X, Y, Z) means X = Y j Z

(5) SETZRO (X) means X = 0

where the identifiers Y and Z must have referents that
are binary integers, six characters in length. Each
operation always comes out true .. The operation DIV
(X, Y, Z) yields the integral quotient in X and discards
the remainder.

There is one numeric test:

RANGE (X, Y, Z),

where the identifiers· X, .Y, and Z must be binary inte
gers, six characters in length. RANGE(X, Y, Z) comes
out true just in case X ~ Y ~ Z and comes out false
otherwise.

The following Vulcan· program illustrates the basic
operations and the language structure presented thus
far.

In this example, as part of a fact retrieval query
scheme, the task is to simplify an English language
sentence by replacing all occurrences of the string

VULCAN 27

'GREATER THAN' by the string '>', and preserve
the original.

Procedure INITIAL sets the values for the iden
tifiers W, X, and Y and then calls procedure REP,
passing in the actual parameters W, X, Y, and Z to
formal parameters A, B, C, and D. (Note that W, X,
and Yare proper and that Z is improper when the call is
made.) Procedure REP then replaces all occurrences of
string B in string A with string C and calls the new
string D. Notice that if no occurrence of B is found
in A, then D is simply set to the referent of A. Called
with the input given in procedure INITIAL, REP will
set the referent of Z to 'LIST ITEl\1S IF AGE> 24
AND WEIGHT> 150'.

PROCEDURE INITIAL;

LOCAL W, X, Y, Z;

([(: W = 'LIST ITEl\1S IF AGE GREATER THAN
24 AND WEIGHT GREATER THAN 150',

X = 'GREATER THAN', Y = '>', REP(W,
X, Y,Z»])

PROCEDURE REP (A, B, C, D);

LOCAL Xl, X2;

([(AjX1.B.X2 : REP (X2, B, C, D), D = X1.C.D)
(:D = A)])

INPUT OUTPUT OPERATIONS

The Input-Output operations in Vulcan fall into
two categories: (1) card reading and line printing
operations, and (2) file handling operations (for tapes,
Fastrand files, etc.).

Card read and line print

There are standard operations to read a string from
a card and to write a string on the line printer. The
instructions are as follows:

(1) WRITE (Xl, ... , XN)

(2) PRINT (Xl, ... , XN)

(3) READ (Xl, ... ,XN)

WRITE causes the referents of the strings for each
identifier in the list to be printed on successive lines.
PRINT, for each identifier in the list, writes out the

28 Fall Joint Computer Conference, 1970

identifier, followed by an ' =' sign, followed by the
string. If a string is longer than the number of print
positions on the line, remaining characters of the string
are printed on subsequent lines.

For each identifier in the list, READ reads the next
card and assigns the string of characters on the card
to the next identifier. Trailing blanks on a card are
deleted before assigning the string to the identifier.
If a blank card is read, the empty string is assigned
to the identifier.

The WRITE and PRINT operations always come
out true. READ comes out false if any EXEC 8 con
trol card is read, but comes out true otherwise.

There is a modified version of READ available for
use with remote terminal applications which avoids
unwanted line feeds and carriage returns.

File handling operations

The traditional concept of reading and writing items
(logical records) and blocks (physical records) is ex
tended in Vulcan to provide for the handling of in
dividual fields within items. An item in a file is thought
of as a single string which may be decoded into various
substrings, or fields. Alternatively, a set of substrings,
or fields, may be grouped together to form an item
which is then put into a file. These two functions are
accomplished by the ITIVIREAD and ITIVIWRITE
operations, respectively. Supplied on each ITIVIREAD
or ITlVIWRITE request is the name of the file to be
processed, a format which is a definition of the fields
within the item, and a list of identifiers. The specific
relation between the format and the list of identifiers
in each particular request is the subject of Part B of
this section. The general sequence of commands for
manipUlating data files in Vulcan is as follows. Prior
to executing the Vulcan program, buffer storage re
quirements must be supplied with the FILE statement.
Each file to be processed must be assigned, either ex
ternally or dynamically, through the CSF instruction
(described later). The file must be opened before reading
or writing and then closed after processing. A file may
be reopened after it is closed, and it need not be reas
signed unless it has been freed. The Vulcan file handling
capability employs the Input-Output Interface for
FORTRAN V under EXEC 8 described in the National
Resource Analysis Center's Guidebook, REG-104.
The user is advised to read this manual before using
the Vulcan file handling commands. The instructions
for file handling and their calling sequences follow.

1. OPEN: opens a file for processing.
CALL: OPEN(FN, l\10DE, TYPE, LRS, PRS,

LAF, LAB), where
FN = Filename (1-12 characters)

}VIODE = l\10de of operation (1 :::;l\10DE:::;7)
TYPE = Type of blocks (1 ~TYPE:::; 5)
LRS = Logical record size, for fixed size

records. (l:::;LRS:::;PRS). If
LRS = '0' then variable SIze
records are indicated.

PRS = Physical record size (1 :::;PRS:::;N,
where N is buffer size stated on
the FILE declaration).

LAF = Look-ahead factor (is ignored
if LAF= (empty»

LAB = Label (is ignored if LAB =
(empty».

Only the first five arguments are necessary for
opening a file. The label field (LAB), or the label (LAB)
and look-ahead factor (LAF) fields may be omitted
in the call. The OPEN request comes out true if the
operation is completed normally and comes out false
otherwise. I/O status information may be retrieved
with the STATUS instruction, described later in this
section. For example, the Vulcan instruction

OPEN('TEACH', '2', '2', '28', '28')

"\\-ill open an output file named 'TEACH' (with fixed
size blocks with no block counts and no sum checks)
of 28-word records each and 28-word items (i.e., one
item per physical record).

2. CLOSE: closes a file that has been opened.
CALL: CLOSE (FN, TYPE), where

FN = File name (1-12 characters)
TYPE = Close type (1<TYPE<5).

CLOSE always comes out true. For example, the in
struction

CLOSE('TEACH', '4')

will close file 'TEACH', without rewind if 'TEACH'
is a tape file, and with rewind if 'TEACH' is on a mass
storage device.

3. REWIND-rewinds a file.
CALL: REWIND (FN, where

FN = File name (1-12 characters).

The REWIND instruction rewinds a tape or drum

file that has been opened with the OPEN statement.
It always comes out true.

4. ITMREAD and RREAD-serve to input a
new record from a file.
CALL: ITlVIREAD (FN, F, List), where

FN = File name (1-12 characters)
F = Format
List = List of identifiers.

CALL: RREAD (FN, IN, F, List), where
FN = File name (1-12 characters)
IN = Item number (binary integer)
F = Format
List = List of identifiers.

ITJ\!IREAD reads the next available item from the
file while RREAD reads the item in item position IN.
IN = 1 causes the first item in the file to be read while
IN = 0 is equivalent to an ITIVIREAD command (i.e.,
a sequential read). The ITlVIREAD and RREAD
commands come out true if an item is read and come
out false if an end-of-file or an abnormal status is en
countered.

5. ITMWRITE and RWRITE-serve to output
a record to a file.
CALL: RWRITE (FN, IN, F, List), where

FN = File name (1-12 characters)
IN = Item number (binary integer)
F = Format
List = List of identifiers

ITJVIWRITE writes into the next available item
position of the file while RWRITE writes into the item
position specified by IN. IN = 1 specifies the first item

. and IN = 0 causes RWRITE to function like ITlVI
WRITE (i.e., write into the next available item po
sition). ITMWRITE and RWRITE come out true
if the task is normally . completed and come out false
otherwise.

6. STATUS-returns the status of an operation.
CALL: STATUS(X), where

X = Identifier having the returned status
as its referent.

The STATUS instruction is used only in connection
with the OPEN, ITMREAD (RREAD), ITIVIWRITE
(RWRITE), and CSF operations. Each of these in
structions is a link to the executive system where a
completion status is returned. If the particular task
called upon terminates normally, then, the Vulcan

VULCAN 29

instruction is set true, indicating normal completion.
If the task invoked is not completed normally (e.g.,
an end-of-file is encountered when reading), then,
the Vulcan instruction is set false, indicating an ab
normal status returned from the EXEC. The particular
value of the status may be retrieved with the STATUS
(X) instruction. The identifier X will have as referent
a six-character binary integer string, which is the status
code of the last operation performed. The STATUS
instruction itself always comes out true.

7. FILE-is a declaration of file facilities needed.
Format: FILE n, m; where

n = the number of files in use simultaneously
in a Vulcan program

m = the number of machine words of the
maximum physical record size of any
file.

The FILE statement for any Vulcan program may
appear in the declarations of any Vulcan procedure,
since it is really a meta-command to the Vulcan pro
essor and not an executable Vulcan instruction. If
more than one file statement is encountered, then, the
last one processed by the translator is entered and
earlier ones ignored. If no FILE statement is encoun
tered, then, no buffer space is allocated and no files
may be opened.

Item and field processing

The main result of Vulcan's ITMREAD (RREAD)
is to assign the characters in specified fields of an item,
sequentially, to a list of identifiers. The ITMWRITE
(RWRITE), alternatively, constructs an item from the
strings of a list of identifiers, again, according to a
specification of field sizes.

The Format identifier refers to a string whose legal
construction is specified as follows:

(format): : = ((phrase list»)
(phrase list): : = (phrase) I (phrase list), (phrase)
(phrase): : = (X-phrase) I (S-phrase) I (U-phrase)
(X-phrase): : =X(integer)
(S-phrase): : = S (integer)
(U-phrase): : = U (integer)

Two typical legal formats are '(S24, U24, X19, S4)'
and '(Xl, S2451, U18)'.

The format acts as a specification of field sizes to
read or write an item. On output of an item, the (X
phrase), X19, means to skip over the next 19 charac
ters in the item. (Effectively, this outputs 19 @ signs

30 Fall Joint Computer Conference, 1970

to the item.) The (S-phrase), S240, causes the referent
of the next list identifier to be written into the next
240 character positions of the item. If the string is
shorter than the field size (i.e., <240 characters),
binary zeros (@ signs) are filled out to the right. If the
string is longer than the field size specified by the
(S-phrase), an error termination occurs. On output,
the (U-phrase) is exactly like the (S-phrase).

On input of an item, the (X-phrase), X19, means
to skip the next 19 characters in the item. The (S
phrase), S240, means to assign the next 240 characters
in the item to the next list identifier, but with any
trailing binary zero characters (@ signs) deleted. The
(U-phrase), U240, is like the (S-phrase) but causes
unconditional acceptance of all of the next 240 charac
ters (specifically including @ signs).

The (S-phrases) and (U-phrases) of a format string
match up in a one-to-one correspondence with the list
of identifiers in the ITMREAD or ITMWRITE re
quest. It need not be, however, that the number of list
identifiers equals the number of (S-phrases) plus
(U-phrases). The shorter of the two lists terminates
the I/O request on that item.

To illustrate the ITMREAD, suppose we define the
following item: (Note that the 'Il' symbol is used for
the blank character.)

Word

1 A A A C
2 A N R A
3 M C L @
4 0 F F I
5 A 0 F Il
6 E R G E
7 Y A P R
8 A R E D
9 S S @ @

After execution of the following clause,

(Tl = 'FILENAIV[E',

T2 = '(X4·, S2, Xl, U9, X2, S36)',

1 9
C /
A A
C E
E M
N C
E P
N E
@ @

ITlVIREAD (Tl, T2, A, B, C, D):)

the strings A, B, C, and D will be defined as follows:

A:19
B: NRAC/IVICL@
C: OFFICEi:lOFAEl\1ERGENCYAPREPAREDNESS
D: (holds its previous value).

The following Vulcan program illustrates more
generally the file processing techniques presented. The

task is simply to catalog a Fastrand file, copy a tape
file into it, and terminate; or, if the Fastrand file is
already cataloged, simply terminate.

The first clause attempts to assign file 'FAST'; and,
if it is accepted, then the file is already catalogued and
the program will terminate. If the file is not already
catalogued, then another assign is made, this time re
questing that' FAST' be catalogued when it is freed.
If it cannot be assigned again, a message is printed
and the program terminates. In the second statement
the file 'TAPE' is assigned, calling for the mounting
of tape U1234. If this assignment cannot be made,
then the run terminates with a message indicating the
tape file could not be assigned. In the third statement
both files are opened successfully, or else a message
is printed that an open request failed and the run is
terminated. Once the files are opened, procedure COpy
is called until the negation of the procedure call comes
out true. That is,as long as the ITMREAD command
comes out true, then an item of data is written into
file 'FAST' and procedure COpy comes out true,
making its negation come out false. Hence, COpy is
to be called again. When ITMREAD finally comes out
false, the status of the last I/O operation is checked
to determine if an EOF was detected or an error oc
curred.

PROCEDURE l\1AIN;
FILE 2,1200; GLOBAL FNl, FN2, FORMAT, B2;
([(CSF ('@ASG,AFAST, F2') :
WRITE ('ALREADY ASSIGNED'), RETURN)
(CSF('@ASG, PC FAST, F2/ /TRK') :)
(:WRITE ('CANNOT ASSIGN FASTRAND FILE'),

RETURN)]
[(CSF('@ASG, T TAPE, T, UI234') :
FN1= 'TAPE',FN2= 'FAST', B2='2', BINARY(B2))
(:WRITE('CANNOT ASSIGN TAPE FILE'), RE-

TURN)]
[(OPEN(FN1,'4','4','100','1200'),
FORMAT='(U600)',*-COPY, CLOSE (FN1, '6'),

(FN2, '6'))
(:WRITE('CANNOT OPEN'))])
PROCEDURE COPY; LOCAL X;
([(ITl\1READ (FN1,' FORMAT, X):ITl\1WRITE

(FN2, FORMAT, X))
(STATUS(X), RANGE (B2, X, B2):
WRITE('EOF DETECTED') ,FALSE)
(: WRITE ('ERROR IN READ'), FALSE)]).

ADDITIONAL VULCAN COMMANDS

In addition to the string and file handling and arith
metic facilities already described, Vulcan includes

several other convenient instructions which we men
tion here. There is a command to decompose a string
based on character position rather than character value,
a command to compute the length of a string, and a
command to obtain elapsed CPU time in 200 micro
second increments.

There is an instruction to send a message directly
to the EXEC 8 executive request function, a page eject
command and a command to obtain a Teletype break
key contingency interrupt status. There is a trace fa
cility for observing the sequence of procedure calls
obeyed in execution and their resulting truth values. A
standard Fortran subroutine may be called in Vulcan,
which in turn may, under programmer direction, call
other Fortran programs. The legal parameters to this
standard program must be strings whose lengths are
non-zero multiples of six in length.

Finally, there is a DEFINE facility in which the
user may define a macro string with parameters. And
a respectable set of syntax and run-time errors is in
cluded providing suitable messages.

APPLICATIONS

Vulcan has been successfully applied to several
problems. A theorem proving system based on Robin
son's resolution principle3 has been implemented,4
and a trial system for the translation ofa simplified
subset of German has been studied.5 There is a general
File Management System6 which allows remote ter
minal communication in restricted English for the
purposes of changing and interrogating any files which
can be read by the 1108 executive. Fact retrieval sys
tems tailored to special applications have been con
structed, and a large scale command and control ac
tivity has used Vulcan procedures for the man-machine
interface.

SUMARY OF INSTRUCTIONS AND SYNTAX

1. Infix test:

2. Empty test:
3. Assignment:

4. Concatenation:

5. Procedure call:

XjA.Y.B
Xj*.'ABC'.*
Xj*.Z1
XjZ1.*
XjY
El\/[PTY (X)
X='ABC'
X=" ,
X= Y1.Y2.Y3.Y4
X=
T(X,Y,Z)
*GO
*-FETCH

VULCAN 31

FLINK(X1,X2)
6. Card read: READ (X,Y,Z)

TREAD (A,B)
7. Line print: WRITE(I,J,K)

PRINT(X,Y,Z)
8. File Handling: OPEN (FN,MODE,

TYPE,LRS,PRS)
CLOSE (FN,

TYPE)
REWIND (FN)
ITMREAD (FN,F,

A,B,C)
RREAD (FN, IN,

F,A,B,C)
ITMWRITE (FN,

F,X,Y,Z)
RWRITE (FN, IN,

F,X,Y,Z)
STATUS (X)

9. Arithmetic operations: ADD(X,Y,Z)
SUB (X,Y,Z)
l\1:PY(X,Y,Z)
DIV(X,Y,Z)
SETZRO(X)
BINARY (X)
ALPHA(X)

10. Arithmetic test: RANGE(X,Y,Z)
-RANGE (X,X,Y)

11. Truth-value control: FALSE
RETURN
RETURNF

12. l\1iscellaneous commands: DECODE (X,F,A,
B,C)

CSF ('@ASG, T,
F, T, U1234')

LENGTH (X,Y)
TIl\/[E(X)
ITl\,ISET(P AGE)
ITl\1SET (CON-

TIN,X)
TRACEN (l\1:AIN,

TGO,PR)
TRACEP (l\1:AIN,

TGO,PR)
TRACEF

13. Identifiers: LOCALX,Y,Z;
GLOBAL G1,TRU;
LOCALK;

14. File Facilities: FILE 3,1792;
15. Procedure: PROCEDURE T

(K,K2);
LOCALB1,B2;
GLOBAL 74; GLO

BALONE;

32 Fall Joint Computer Conference, 1970

FILE 1,500;
([C· .. : ...)
C ... : ...)]

[C· .. : ...)])

ACKNOWLEDG1\1ENTS

Conditional expressions are familiar from LISP, 7

and many of the features of Vulcan originally appeared
in CHA1\1P.8 The infix test and its variants are ele
mentary versions of the pattern-matching facilities
in SNOBOL9 but are much less comprehensive. File
handling facilities are direct calls on the NRAC Input
Output package,lO and its manual is available for use
with Vulcan.

The authors are indebted to Edgar 1\1. Cagley and
to Richard A. Stanley for their participation in the
development of Vulcan. 1\1r. Cagley designed many
trial applications to prove the usefulness of the lan
guage and 1\1r. Stanley prepared the syntax scanner
and other significant features. The management of the
National Resource Analysis Center supported the
project enthusiastically from its inception.

REFERENCES

1 R H VAUGHAN
Vulcan-programmer's reference manual
NRAC Executive Office of the President Office of

Emergency Preparedness Washington D C TM -209
April 1970

2 R Y KAIN
Block structures, indirect addressing, and garbage collection
CACM 12 July 1969 395-398

3 J A ROBINSON
A machine-oriented logic based on the resolution principle
JACM 12 1 Jam. 1965

4 T G HAMRICK
First-order logic on the machine
Master's thesis University of Virginia Charlottesville Va
June 1969

5 G P HILL
Syntactic analysis of simple German sentences using the
Vulcan programming language
School of Engineering and Applied Science University of
Virginia Charlottesville Va May 1970

6 N J RAY
Information management system
NRAC Executive Office of the President Office of
Emergency Preparedness Washington D C TM -208
May 1970

7 J McCARTHY et al
LISP 1.5 programmer's manual
The MIT Press Cambridge Mass 1962

8 E F STORM
CHAMP-character manipulation procedures in Algol
Comm ACM 11 Aug. 1968

9 D J FARBER et al
SNOBOL, a string manipulation language
JACM 11 2 Jan. 1964

10 R FEDDER
Input-output interface for Fortran V under EXEC-8
NRAC Executive Office of the President Office of
Emergency Preparedness Washington D C REG-104
Sept 1969

On memory system design

by ROBERT M. MEADE

Cogar Corporation
Wappingers Falls, New York

INTRODUCTION

A hierarchy of information accessibility exists in every
system. Even sjmple calculators employ a two-level
hierarchy consisting of internal registers and external
key-entered data. In a typical computer system we
find a multilevel hierarchy extending from working
registers through random-access main-memory, to
direct access devices, to sequential access devices, and
on outward to off-line archives.

System design always consists primarily in speci
fication of the hierarchy of information, of information
media, and of the controls for their interconnection.
Thereafter, it remains only to define the information
and the operations upon it to completely specify a
system.

The value of information is reflected in the frequency
with which it is referenced.! The system design problem
is to match the relative values of all information to the
relative access times of storage media. This must be
a dynamic matching because the value of the infor
mation in the system changes rapidly with particular
activity. The hierarchy control hardware and much
of the operating system software exist to accomplish
the matching.

An "optimum" system can be either one which will
perform a given application in a given amount of time
at the lowest cost, or one which will perform the given
application at a minimum cost/time product. Because
of the number of alternatives for each element of the
system there will be a set of nearly optimum configura
tions. Thus there is no one best system design. The
optimum hierarchy will be determined by the appli
cation and available elements rather than by a general
theory. However, the concepts discussed below can
aid in choosing the best elements for a given applica
tion.

There are two natural boundaries in th~ hierarchy of
information. The first occurs at the man/machine
interface; on one side exists the information that can

33

be electronically called by a program; on the other
side resides information that can only be supplied by
a human. This may be machine-readable such as a
library reel of tape, or it may be first-hand input from
a terminal. The second boundary occurs between in
ternal information that is directly addressed and ex
ternal information that must be transferred from an
other storage mechanism into the directly addressed
memory. This is commonly the boundary between
main memory and electro-mechanical storage. The dis
tinguishing characteristic is that program instructions
and data can be executed only from internal storage.
External information must be moved into the internal
memory by an explicit input/output command, gen
erally executed by a logically independent transfer
channel.

The definition of this internal-external boundary is
particularly critical. The addressing architecture of the
system determines the range of possible internal
storage. The channel command structure determines
the flexibility, autonomy and concurrency of the ex
ternal storage system.

From a user's point of view, this internal-external
distinction is arbitrary and awkward. For him it is an
additional nuisance in the already cumbersome practice
of referring to information by its system's location. It
is more natural for him to refer to information by
name in an inverse hierarchy of file, record, field, which
are logical data entities. This hierarchic information
structure is fundamental to the design of the storage
hierarchy.

Systems simulating memory of a single level have
been designed in order to provide a more natural pro
gramming situation. These are called virtual memory
systems because they allow the programmer to operate
as though physically external memory were the in
ternal program space. The physically internal memory
is made invisible or transparent to him by the software
used ~o control the flow of information. Hardware
implemented or assisted systems have been proposed,

34 Fall Joint Computer Conference, 1970

generally based upon the use of associative memory
techniques. Thus a discussion of memory hierarchy
is a discussion of virtual memory systems, and con
versely.

The multiple level hierarchy exists because of the
cost of storage. If the· storage device with the fastest
access time were also the least expensive, a system
would employ a single level of memory. Levels are
added only as the effective performance/ cost ratio
of the system is improved thereby. Thus, direct access
devices are used in addition to magnetic tapes because
their shorter access time enhances system performance.
Recently two-level implementation has similarly en
hanced cost-effectiveness of main 'memories, as in the
IBM System 360, Model 85.2,3

History

Basic concepts for memory hierarchy date from
around 1960. The first system to employ tranSpareIlt
two-level memory was the Atlas.4,5 This system used
random-access core memory as a buffer backed by a
large amount of drum storage. The programming space
was implemented in the latter; the information was
transferred in and out under a combination of hard
ware-software control in 512-word blocks or pages.
The performance was limited by the long access time
of the drum combined with the small capacity of the
core.

From 1961 to 1963 high performance systems em
ploying various buffering schemes were developed.
Based upon operational! experience with LARK and
STRETCH, the CDC 6600 and the IBM 360/91-95
were designed. Both of these employ a register stack
to buffer the flow of information from and to main
memory. This comprises a form of virtual memory
which is controlled by logic making instantaneous
analysis of the microstructure of the executed program.
The buffer algorithm is machine-design dependent.
In the model 90'S,6 this approach provided a rather
general virtual memory for the instruction stream
through the incorporation of the ability to do full
inner loops of instructions from the buffer. However,
no such loop exists for data.

Meanwhile, by 1962, the Atlas structure had been
analyzed by Bloom, et al./ with respect to high-per
formance system potential, with the result that they
proposed the use of a relatively small, but very fast,
main memory buffer as "look aside". This buffer was
to use an associative algorithm to map blocks of the
main memory for general instruction and data residence.
Conceptually, this was very close to the configuration
later implemented by the IB1VI l\10deI85.

In parallel with this evolution, software-controlled
virtual memory systems have been developed par
ticularly to service multiple remote terminals. These
systems- sequentially overlay in main memory data
froIl). many users who cannot be aware of the instan
taneous allocation of memory. The user programs as
though he has adequate addressable memory while
the software maintains the data on external storage
and calls it into memory in pages as required.

In order thus to transform physically external mem
ory into logically internal memory, transfer and control
algorithms had to be developed for the software. These
were subsequ~ntly refined for internal memory hier
archy control.

In 1967 Gibson P!lblished8 his definitive analysis of
performance considerations in two-level internal mem
ory hierarchy. This work, which led toward develop·,
ment of the IBM 360/85, will be used extensively
below.

Prior to that time there had been much debate on
how best to employ high-speed local storage. Intui
tively, transparent mapping buffers seemed inefficient
as compared to explicit use by a knowledgeable pro
grammer. It turned out that this view overlooked
inefficiences caused by programming overhead in direct
control and the fact that the hardware-implemented
control could perform more functions concurrently.

In order to prove efficiency of the transparent buf
fer it was necessary both to develop adequate simu
lation models for the system and to exercise these
models over an adequately large data base of repre
sentative programs. The published results showed
that programs have substantial clustering of activity
(i.e., some information has relatively high value) so
that subsets of the data can be collected for processing.

DESIGN

This paper's thesis is that an adequate theoretical
and statistical basis for the design of a memory hier
archy appropriate to a given application now exists.
This basis will be developed below.

The hierarchy exists to enhance the cost-effectiveness
of the system by integrating the characteristics of
dissimilar memories, trading access time and cost. In
order for this to be effective there must be a substantial
cost reduction accompanying substantially increased
access time. This implies that different levels in the
hierarchy must have a significant technical difference.
One cannot achieve a sufficiently high cost/performance
differential between a small and a large memory when
both employ ferrite cores. Thus it was the advent of
high-speed monolithic memory at the same ,time as the

development of hierarchy theory that made the hier
archy profitable.

Systems constructed to date have used at most one
level of transparent memory. Conceptually, it is natural
to extend the structure to additional levels. The dis
cussion below is intended to apply to multiple-level
systems as defined by Figure 1. In these, the inner
level buffer speed is closely matched to the processor's
operating cycle.

Access time and cost remain the basic memory
parameters; they are intrinsic while all others are sub
ject to system design. The additional parameters for
hierarchy design are block-size, buffer capacities, con
trol algorithms and information transfer rates. Before
discussing these in detail, a brief review of the termi
nology and operation of transparent hierarchy may be
helpful.

The objective is to gain processing speed by causing
most operational information to come from the fast
buffer. Because of the clustering of information, it is
probable that when data is used, it or neighboring data
will be subsequently used. The logic, therefore, de
termines for each effective address the presence of
the data in the buffer. If it is not present, the address
requires an access from the main memory. The system
logic then moves a contiguous data set called a block
(containing the addressed data) from the outer (main)

INTERNAL

EXTERNAL

DIRECTLY
ADDRESSED

L------r------
OUTER

(MAIN)

¢ CHANNEL

I

Figure I-Hierarchy of memory

LEVEL

o

2

3

n-I

n

On Memory System Design 35

lIJ~ 16 (!)o
j:!Z CAPACITY

1 2K BYTES
~~ 2 8K
U' 8 3 8K(FORTRAN)
a: 0::- 4 16K
lIJ ILl ~ 5 128 BLOCKS
a.. 1&..:::)

4 "-.. en I&..~ 2 en :::)- "-_ mz
~ ~i ..

"'-coo 2
lIJ z z
N :::):::)
- 00 3 ...J 1&..1&..

«~ 5
~o
O:z (ABSOLUTE MISS PERCENTAGE I
01f. z_

16 32 64 128 256 512 1024
BLOCK SIZE (BYTES)

Figure 2-Effect of block size upon buffer miss rates

memory to the inner (buffer) memory according to a
rule called the mapping algorithm. If the buffer is full,
the logic must first employ a replacement algorithm
to eliminate a block. The frequency of thus accessing
from outside the buffer, called the miss-rate, is the
prime determinant of the resulting performance.

Block size

The size of the block (group of bytes) to be handled
at the inner memory level is the first design choice.
Figure 2 shows the effect of varying the block size upon
the number of references not found in the buffer. 8,9

In order to suppress differences in magnitude caused
by other variables, the data is normalized to the mini
mum miss rate for each study. For a fixed buffer ca
pacity, the miss rate tends to first decrease as the
block size increases and then increase sharply after
the minimum is reached. The minimum occurs for
blocks in the range of 16 to 256 bytes. The increase
results from the block becoming so large that too few
are contained by the buffer. If the buffer capacity
increases to always contain the same number of blocks,
the miss rate continues to decrease.

More significant, therefore, is the traffic between the
buffer and the next level that results from the miss
rate. Since an entire block must be moved for each
reference not found in the buffer, this is the product of
miss rate and block size, as shown in Figure 3. This is
a function that always increases, and increases rapidly
as the block size goes above 64 bytes.

Thus, larger blocks imply the need for larger buffers
to maintain an adequate number of blocks, longer
total block transfer time, and greater backing store
bandwidth. Smal1 blocks imply a larger expenditure
in hierarchy control because of their number.

36 Fall Joint Computer Conference, 1970

9

8

7

I&J

0
Q:
0 6

LL l-
LL

U)

« C!)

0:: z 5
I- ~

0
0 «
L1J m
N

~
4

-I 0
« Q:

LL.
:E 3
0:: U)

0 I&J
I-Z)0-
m

(0.9) (1.0)

(ABSOLUTE TRAFFIC - BYTES I REFERENCE)

512 O--------~--~~--~----~--~ 32 64 128 256
SIZE (BYTES)

Figure 3-Effect of block size upon information required from
backing store

Combining these data one selects an inner level
block size of 32, 64 or 128 bytes for machines having a
binary number of bytes per word. Results to data
indicate that a 64 byte block is optimum~

In extending the structure to additional levels, the
same considerations apply. Because an intermediate
buffer is larger than an inner level, one prefers to use
large blocks in it to minimize the cost of control. Since
the miss rate is lower, the block size can be larger for
the same traffic level. In addition, larger blocks tend
to compensate for the longer access times. The use of
pages of up to 4,096 bytes is common in time-sharing
systems for disk or drum transfer blocks. This is much
too large, however, for a three-level internal memory
hierarchy. By analysis like that above, the block size
for a third-level should be from one to eight second
level blocks. Preliminary results indicate that a 4:1
ratio (256 bytes at the third level) is best. With disk
access times reduced by head-per-track designs and

effective request queuing, the reduction of the external
page size to 1024 bytes appears advantageous.

Capacity

Given a transfer block size, the next (and most im
portant) design parameter is the buffer capacity. The
percentage of memory references not found in the buf
fer is primarily determined by that capacity as shown
in Figure 4. The various plots represent specific pro
gram traces; the limits include the effects of different
algorithms. For a given capacity, block size and al
gorithm, there is a distribution of the references-not
found over a set of programs as shown in Figure 5. As
the size of the buffer is increased, this distribution
shifts to a lower average miss rate, and also becomes
less program sensitive, i.e., sharper.

The choice of buffer capacity must be based upon
performance and cost/performance analysis as dis
cussed below. Based upon miss-rate alone, one would
be unlikely to use a buffer of less than 8,192 bytes.

Since these data show that the buffer size does not

100
8

6 --- PROGRAM TRACES
a:: - DISTRIBUTION LIMITS w
IJ... 4
IJ...
::::J m
z 2

C
Z
::::J 10
0 8 IJ...

I- 6

0
Z 4

CJ)
W
0
Z 2
W
a::
w
IJ...

1.0 w
a:: 8

IJ... 6
0
f- 4
Z
W
0 BLOCK SIZE I: 64 BYTES a::
w 2
Q..

.1 0 128

Figure 4-Effect of buffer capacity upon buffer miss rates

depend upon the total memory of a system, the advan
tage of hierarchy increases as that capacity increases.
More powerful processors solve larger problems and
execute more small programs concurrently; they require
larger memories. The relationship between compu
tationa] speed and typi cal memory capacity is shown
in Figure 6 using the IBM 360 series as an example.
Thus, the more powerful the system, the more ef
fectively it can employ a hierarchy. As noted by Conti,
in highest performance systems a hierarchy must be
used to achieve the performance. Otherwise, the physi
cal size of the massive memories causes long cable
lengths and access time limiting system performance.

Conversely, in designing lesser systems, one even
tually needs so little memory that system costjper-

>
I-
..J

m
<X

.9r--------------------------.

.2

.1

64K BYTE
CAPACITY

16K BYTE

2 4 6 8 10
PERCENT OF REFERENCES
NOT FOUND IN BUFFER

Figure 5-Distribution of references outside buffer over
many programs

>- 4K~
l-
t)
f. IK ~
«
u
>- 2!56 I
a:::
o
~ 64-
~

...J
~ 161-

a::
>-
I-

.1

SB
f3

On Memory System Design 37

'1. SIO I IYSTE ••

11111. lid, ,.11 I III
t 4.11.0 2 4 1'10 Z 4 11100 z .. "1000

NORMALIZED SYSTEM PERFORMANCE

Figure 6-Main memory requirements as a function of
processor power

formance cannot be improved by a hierarchy. Clearly,
as the needed capacity approaches the buffer size, use
of two leve]s is uneconomical.

In extending the memory hierarchy structure to
multiple levels, the statistics of Figure 4 continue to
apply. They must be corrected for the block size used,
however. At each successive level the capacity must
increase as the access time increases. The number of
references not found in an intermediate level will be
approximately the same as if that level were itself the
inner level of memory in the system.

Algorithms

Each level in the hierarchy requires control al
gorithms to map the larger memory onto the smaller
and to determine the area of the smaller that is to be
overlaid. Mapping algorithms are all derived from two
basic approaches.

The first is associative mapping in which a section
of buffer is linked to any section of backing store by
maintaining with the data the address of the backing
store block currently residing in the buffer block. The
address storage for all blocks comprises a directory
memory, all of which must be interrogated in order
for any reference to be located. Unless relatively ex
pensive high-speed parallel-search associative memory
contains the directory, considerable time must be spent
searching the memory. The associative function can
also be implemented as a random access array of a
size equal to the total number of blocks that can be
addressed, as in the experimental 7044X system de
scribed by Brawn.1o This is an expensive method, how
ever.

The second basic algorithm is congruence mapping,

38 Fall Joint Computer Conference, 1970

in which the binary address of the main store block
is directly related to the corresponding buffer block
address, by truncation. It results in a loss of perfor
mance due to swapping blocks between memory levels.
This occurs because congruence is a simple homo
morphism between the many members in a subset of
all blocks in the backing store and a single block in
the buffer. Consequently, different program entities,
e.g., instructions and data, frequently conflict at a
buffer location and must be exchanged.

The most useful techniques combine associativity
and congruence. The 360/85, for example, associates
"sectors" of 16 blocks each in the buffer and backing
store. Blocks within the sector correspond uniquely,
by congruence. The "set associative" algorithm de
scribed by Conti is a kind of inverse, in which the sets
in the backing store are congruent to sets in the buffer
but blocks within the sets are associatively 1inked.

When a data block not contained by a full buffer
is needed, an algorithm must determine the area of
the buffer that is to be overlaid. For a pure congruence
mapping algorithm, this replacement algorithm is
implicit. When any measure of associativity exists,
however, a choice must be made. The basic alternatives
include random selection and activity-weighting. A
simple form of the latter is replacement of the least
recently used block. Refining this approach to include
measuring total block usage as well as how recently
blocks were used assigns a higher value to information
such as a supervisory routine which, although not
recently used, has been executed many times in the
program. These algorithms attempt to measure the
value of each block and to displace the least valuable
at any instant.

An ideal replacement algorithm can be defined as
one that always replaces that block which will be used
most distantly in the future. The practical methods
discussed above are close to this ideal. Extreme sophis
tication is not profitable; even the random displace
ment method is not significantly inferior.

Semiconductor memory is important in implementing
these controls as well as in creating the hierarchy.
Associative arrays effectively perform the address
mapping. A shift register set can implement least
recently-used replacement, which corresponds to a
push-down list. Indeed, the entire paging control can
be designed as a shifting associative tag memory.

Particular consideration must be given to the storing
of processor-generated information into memory. Since
the master data exists only at the outer level, this level
must be updated. This can be done in parallel with
writing into the buffer -from the processor. This tech
nique (store-thru) is effective when-the backing memory
is accessed by word, as in the 360/85, but can consume

excessive time in a block oriented backing memory.
Alternatively, a tag can be set for the buffered block
to indicate that it has been modified and to control
its transfer back to the master location when displaced.
This method can present a problem in a multi-processor
configuration or in the case of malfunction, in that the
master copy does not immediately show the true status
of the program. On the other hand, the unmodified
base data can be employed in a retry or recovery pro
cedure.

Similar considerations apply in block fetching. Since
requested data is needed immediately, it is always
profitable to fetch information from its current level
into the inner level and simultaneously into processor
registers. The fetching sequence can be ordered so that
the word needed is the first member of the block to be
fetched. However, the block being replaced must first
be written into the higher level if it has been updated
and store-thru is not used.

If the same block size were used at all levels one
would never copy from higher levels into intermediate
levels; rather the intermediate levels would fill by
displacement from the inner level. This imp1ies that
the effective capacity of an intermediate level would
be greater than its physical size. However, when larger

512 BYTE
BLOCKS

.Ol~--~----~--~----~----L----L--~
4 8 16 32 64 128

BUFFER CAPACITY (K BYTES)

Figure 7--,-Information from backing store as a function of
buffer capacity

blocks are used at outer levels it is better to transfer
them into intermediate levels to avoid reaccessing the
outer level for a subsequent working block contained
within the specified transfer block.

Information transfer

Hierarchy reduces the amount of data required from
the slower memories. The designer must, however,
provide sufficient bandwidth at each level to insure
that the access time rather than the time to transfer a
block, determines performance. The average data
requirements from a backing store are shown in Figure
7 as a ratio to those from the buffer. These are a func
tion of the miss rate and hence, of the buffer capacity.
The data rate from outer levels must also be adequate
for access bursts, interference from input/output and \
program startup.

The more demanding requirement is that a block
transfer be complete before a second block call is

8100~--------------------~--------------------------------------'
0::: 8 o 3= 6

W
~ m
v
"""
C/)
IJJ
-.J

~
2
w
~
.....
Z
o
C/)
C/)

~
C/)
z «
0:::
...... 10
IJJ 8

0:::
o
C/)

(!)
z
~

32 BYTE
BLOCKS

---- BURST TRANSMISSION RATE
TO SUPPORT ONE DOUBLE
WORD PER CYCLE PROCESS
ING RATE

o «.01L-----~----~~----~----~~~~----'*~~
m

Figure 8-Allowable backing store transmission times

On Memory System Design 39

50r---------------------------------------~

....
Z 40
w
o
a:::
w
tL

~ 30

9
w
o
z
«
~ 20
o
lL.
a:::
W
tL

a:::
~ 10
(J)
w
o
o a:::
tL

Figure 9-Effect of buffer miss rate upon processor performance

statistically expected. The time between block calls
is a random variable, Poisson distributed, with a mean
that is proportional to the average miss rate for the
given buffer capacity, as shown in Figure 4. The al
lowable transfer times (in buffer cycles) are shown in
Figure 8 as a function of buffer capacity and block size.

At each successive level, the basic information turn
over rate as determined by the memory cycle is lower.
The designer can compensate for this either be in
creasing the number of bits per memory cycle (word
length) or by activating a larger number of memory
units on each block reference (interleaving) .

Performance

Rigorous performance prediction for a proposed
system can be accomplished only by exercising its
design over a representative program set by simula
tion. Sufficient data has been published, however, to
permit reasonable estimates of performance to be made
from the given design parameters.

If one knows the average number of memory ref
erences that fall outside the buffer, he can readily
compute the corresponding time penalty, given the
backing store access time. If the percentage of processor
cycles that can generate memory references is also
known, a complete estimate of processing time can be
made. The total time T = T (processing) + T (buf
fer) + T (backing store). In making relative perfor-

40 Fall Joint Computer Conference, 1970

,,60--------------------------------------
t-
z
I.&J
050
0::
I.&J
a..
-40
en
en
330

I.&J
o
Z20 «
::t
0::
o
lL
0::
I.&J
a..

00 5 10 15 20 25 30 35
BACKING STORE ACCESS TIME (CYCLES)

Figure lO-Effect of backing store cycle upon processor
performance

mance estimates, the entire expression can be handled
as a summation of the fractions of the total time spent
in each activity.

Figure 9 uses this technique to show system per
formance in terms of degradation from what the sys
tem would give if the buffer provided the total memory
capacity, as a function of the percentage of references
not found in the buffer. The data given by Liptay for
the 360/85 are shown for comparison. In the case of
main memory access time of eleven cycles, it was
assumed that for everyone-hundred memory references
there were 42 processor-only cycles. The mean-time
between calls to the backing store was taken as greater
than the block transfer time. These data can also show
the effect upon performance of varying the backing
store access time (expressed as a multiple of the pro
cessor cycles) for various miss rates, as in Figure 10.

This approach is particularly useful in comparing
memory system alternatives. Using a reference system
it can be translated into absolute performance if
desired. However, it relates entirely to processor com
putational power, not system throughput.

In predicting performance when another level is
added, we note that an intermediate level acts as a
backing store to an inner level and as a buffer to an
outer level. Based upon the number of references not
found in that level, a time premium due to accessing
the next level can be added. For a given configuration

and set of access times, total running time can be
calculated as indicated above, using the data found in
Figure 4.

No experimental data has yet been published to
validate such estimates of multiple-level memory
hierarchy performance; no such systems are known to
have been constructed. Predictions based upon simu
lation require accumulation of a data base of represen
tative programs; in order to be convincing, these must
include system programs and others large enough to
use the available address space and to overflow inter
mediate members of the hierarchy. Purely theoretical
methods of performance prediction have been incom
plete because, as yet, no one has adequately char
acterized the parameters of the program process.

C ost/ performance

Unless marketing needs force a specific cost or per
formance target, the designer's objective is to minimize
the cost/performance ratio for the system within a
general area of performance. In the case of designing
the memory system he may have to compare sets of
one, two and three level designs. The basis for cost/
performance comparisons must be the performance
estimates discussed above. The costs must include all
of the memory, processor and control costs-not
merely raw memory cost-to arrive at a properly
balanced design.

For the two-level hierarchy, Figure 11 illustrates the

-..
~ 5.------------__

X

~3
..J
I.&J

°2
I

o
I.&J
N
..J
«
:E
0::
o
Z

2

8 16 32 64 128 256
BUFFER CAPACITY (K BYTES)

Figure ll-Costjperformance analyses of two-level hierarchy
examples

analysis to be made. Using appropriate costs for the
system elements, we plot the relative delay-cost product
as a function of the buffer capacity. This is proper be
cause the backing store capacity is fixed by the appli
cation. The most effective system is that in which the
delay-cost product is least. Curve (1) of Figure 11 is
plotted for arbitrary assumptions including: buffer
cost = $.25 per bit, two million byte main memory
cost = $45,000 ",ith access equal to 33 cycles, high
performance processor cost =$900,000, processor cy
cles = 32 percent. For these assumptions a buffer
capacity of 96K bytes is most effective. It is large be
cause of the long main-memory access time.

In order to illustrate the effect of varying these
assumptions, the following curves are also shown:

2. first leve1 buffer costs twice as high ($.50)
3. main memory access longer (50 cycles)
4. miss ratio improved (lowered) by a factor of

two for each capacity.

Some qualitative rules for optimizing memory
system cost/performance are apparent from these
analyses:

1. as buffer memory is relatively more expensive
less should be used;

2. as main memory is relatively slower more buf
fer should be used;

3. as algorithms yield a lower miss rate less buffer
should be used.

The converses also apply.
In order to assess the utility of a three-level hier

archy one must first evaluate the two-level alternatives.
To find the most favorable three-level configuration
we must consider a range of capacities for each buffer
level. Figure 12 shows how cost-performance values
for the three-level alternatives can be displayed as a
function of first-level buffer capacity for comparison
with the two-level situation.

Conditions that are favorable to the use of a three
level configuration include:

1. expensive first level technology
2. steep cost/performance curve for main memory

technology
3. relatively high miss ratios
4. large total memory requirements

An optimum three-level configuration will use less
first-level and more second-level buffer memory than
the equivalent two-level case. The two-level con-

On Memory System Design 41

--~ 5-------------------------------. -
I
(J)

84
X

~3
--'
LLJ
o

I 2
o
LLJ
N

--' «
::E

\

HREE-
LEVEL

256K

:;::S:~~:::::::>-

TWO
LEVEL

~O----~----~----~----~--~----~
Z 8 16 32 64 128 256

FIRST LEVEL BUFFER CAPACITY
(K BYTES)

Figure 12-Cost/performance analyses of three-level hierarchy
examples

figuration is more generally applicable, until a lower
cost bulk memory is available.

DISCUSSION

A properly designed memory hierarchy magnifies
the apparent performance/cost ratio of the memory
system. For example, the first case assumed in Figure
11 shows a cost/performance advantage of five times
that of a plausible single-level memory system with a
three-cycle access costing $.15 per bit. The combina
tion achieves the capacity of the outer level at a per
formance only slightly less than that of the inner level.
Because of the substantial difference in the capacities,
the total cost is not greatly more than that of the outer
level alone.

The early memory hierarchy designs attempted to
integrate the speed/cost characteristics of electronic
and electromechanical storage. Now the large per
formance loss could be predicted from the relatively
enormous access time of the rotating device. For ex
ample, degradation of more than 100 times over opera
tion from entirely within two-microsecond memory
would occur with addresses generated every two micro
seconds, 64K byte buffer (core) capacity, 512 word
block size, and 8ms average drum access time. To com
pensate for such disparity in access time, the inner
memory must contain nearly complete programs.

42 Fall Joint Computer Conference, 1970

160K

Figure 13-Distribution of program size

Successful time-sharing systems essentially do this.
Figure 13 shows the results of several studies13 ,14,15 of
the distribution of their program size.

These time-sharing systems also indicate direction
toward the use of multiple level internal memory. In
particular, they show the need for low-cost medium
access bulk memory. They are caught between in
adequate response time achieved paging from drum or
disk and prohibitive cost in providing enough of present
large capacity core memories (LCM). However, de
signers such as Freemanll and MacDougall12 have
stated that only by investment in such LCM can sys
tems as powerful as the 360/75 have page accessibility
adequate to balance system cost/performance. Free
man's design associates the LCM with a backing disk,
as a pseudo-disk system.

Transparent hierarchy can make it easier to connect
systems into multiprocessing configurations, with
only the outer level common. This minimizes inter
ference at the common memory, and delays due to
cable length and switching. It has no direct effect on
associated software problems.

To date, hierarchy has been used only in the main
(program) memory system. The concept is also power
ful in control memories used for microprogram storage.
There it provides the advantages of writeable control

memory, while allowing the microprograms to reside in
inexpensive read-only or non-volatile read-write mem
ory.

A primary business reason for using hierarchy is to
permit continued use of ferrite memories in large sys
tems. With a buffer to improve system performance,
ferrites can be used in a lowest cost design. It is un
necessary to develop ferrite or other magnetic mem
ories at costly, high performance levels.

The uSe of multiple levels also removes the need to
develop memories with delicately balanced cost/per
formance goals. Rather, independent efforts can aim
toward fast buffer memories and inexpensive large
capacity memories. This permits effective use of re
sources and implies higher probability of success.

Systems research in the near future should concen
trate upon better characterization of existing systems
and programs. There is still little published data that
describes systems in terms of their significant statistical
characteristics. This is particularly true with respect
to the patterns of information scanning that are now
buried under the channel operations required to ex
change internal and external data. Only from analysis
and publication of program statistics and accompanying
machine performance data will we gain the insight
needed to improve system structure significantly.

REFERENCES

1 C J CONTI
Concepts for buffer storage
IEEE Computer Group News Vol 2 No 8 March 1969

2 C J CONTI D H GIBSON S H PITKOWSKY
Structural aspects of the system/360-Model 85, I.-General
organization
IBM Systems Journal 7 11968

3 J S LIPTAY
Structural aspects of the system 360 Model 85, II-The
cache
IBM Systems Journal 711968

4 T KILBURN
Electronic Digital Computing Machine
Patent 3,248,702

5 T KILBURN D B G EDWARDS M J LANIGAN
F H SUMMER
One-level storage system
IRE Transactions on Electronic Computers
Vol 11 No 2 1962 pp 223-235

6 D W ANDERSON F J SPARACIO
R M TOMASULO
The IBM System/360 Model 91: Machine philosophy and
instruction handling
IBM Journal Vol 11 No 81967

7 L BLOOM M COHEN S PORTER
Considerations in the design of a computer with a high
logic-to-memory speed ratio
Proc of Sessions on Gigacycle Computing Systems AlEE
Winter General Meeting January 1962

8 D H GIBSON
Considerations in block oriented systems design
AFIPS Proceedings Vol 30 SJCC 1967 pp 75-80

9 S S SISSON M J FLYNN
Addressing patterns and memory handling algorithms
AFIPS Proceedings Vol 33 FJCC 1968 pp 957-967

10 B S BRAWN F G GUSTAVSEN
Program behavior in a paging environment
AFIPS Proceedings Vol 33 FJCC 1968 pp 1019-1032

11 D N FREEMAN
A storage hierarchy system for batch processing
AFIPS Proceedings Vol 32 SJCC 1968 p 229

On Memory System Design 43

12 M H MACDOUGALL
Simulation of an ECS-based operating system
AFIPS Proceedings Vol 30 SJCC 1967 P 735

13 A L SCHERR
Time-sharing measurement
Datamation Vol 12 No 4 April 1966 pp 22-26

14 I F FREIBERGS
The dynamic behavior of programs
AFIPS Proceedings Vol 33 FJCC 1968 pp 1163-1167

15 G E BRYANT
JOSS-A statistical summary
AFIPS Proceedings Vol 31 FJCC 1967 pp 769-777

Design of a very large storage system*

by SAMUEL J. PENNY, ROBERT FINK, and IVIARGARET ALSTON-GARNJOST

University of California
Berkeley, California

INTRODUCTION

The Mass Storage System (MSS) is a data-management
system for the on-line storage and retrieval of very large
amounts of permanent data. The MSS uses an IBM
1360 photo-digital storage system (called the chipstore)
with an on-line capacity of 3 X 1011 bits as its data
storage and retrieval equipment. It also uses a CDC 854
disk pack for the storage of control tables and indices.
Both these devices are attached to a CDC 6600 digital
computer at the Lawrence Radiation Laboratory
Berkeley.

Plans for the NISS began in 1963 with a search for an
alternative to magnetic tape as data storage for analyses
in the field of high energy physics. A contract was
signed with IBM in 1965 for the chipstore, and it was
delivered in March of 1968. The associated software on
the 6600 was designed, produced, and tested by LRL
personnel, and the Mass Storage System was made
available as a production facility in July of 1969.

This paper is concerned with the design effort that
was made in developing the }\1:ass Storage System. The
important design decisions, and some of the reasons
behind those decisions, are discussed. Brief descriptions
of the hardware and software illustrate the final result
of this effort.

CHOICE OF THE HARDWARE

By 1963 the analysis of nuclear particle interactions
had become a very large application on the digital
computers at LRL-Berkeley. More than half the
available time on the IBM 7094 computer was being
used for this analysis, and the effort was expanding.
Much of the problem was purely data manipulation
sorting, merging, scanning, and indexing large tape

* Work done under auspices of the U.S. Atomic Energy Commis
sion.

45

files-and single experiments produced tape libraries of
hundreds of reels each.

The problems of handling large tape libraries had
become well known to the experimenters. Tapes were
lost; they developed bad spots; the wrong tapes· were
used; keeping track of what data were on what tape
became a major effort. All these problems degraded the
quality of the data and made the experiments more
expensive. A definite need existed for a new approach.

The study of the problem began with establishment
of a set of criteria for a large-capacity on-line storage
device, and members of the LRL staff started investi
gating commerically available equipment. The basic
criteria used were:

a. The storage device should be on-line to the
central computing facility.

b. It should have an on-line capacity of at least
2.5XIOll bits (equivalent to 2000 reels of tape).

c. Access time to data in the storage device should
be no more than a few seconds.

d. The data-reading transfer rate should be at least
as fast as magnetic tape.

e. The device should have random-access
capability.

f. The storage medium of the device should be of
archival quality, lasting 5 years at least.

g. The storage medium need not be rewritable.
h. The frequency of unrecoverable read errors

should be much lower than on magnetic tape.
1. Data should be easily movable between the

on-line storage device and shelf storage.
j. The device hardware should be reliable and not

subject to excessive failures and down time.
k. Finally, the storage device should be economi

cally worthwhile and within our budget.

Several devices were proposed to the Laboratory by
various vendors. After careful study, including computer
simulation of the hardware and scientific evaluations of

46 Fall Joint Computer Conference, 1970

-'----- Control path
--. Dota path
~ Pneumatic box path

Developer Unexposed
fluids entry film entry

Monual .ntry
and .xlt for
boxes

.IL7a7 -5312

Figure 1-General MSS architecture

the technologies, the decision was made to enter into a
contract with IBM for delivery, in fiscal year 1968, of
the 1360 photo-digital storage system. This contract was
signed in June of 1965. The major application con
templated at that time is described in Ref. 1.

It was clear that one of the major problems in the
design of the associated software would be the storage
and maintenance of control tables and indices to the
data. Unless indexing was handled automatically by the
software, the storage system would quickly become
more of a problem than it was worth. Protection of the
indices was seen to be equally important, for the
system would be dependent on them to physically locate
the data. It was decided that a magnetic disk pack
drive, with its removable pack,was the most suitable
device for the storage of the MSS tables and indices.

A CDC 854 disk pack drive was purchased for this
purpose.

DESCRIPTION OF THE HARDWARE

1360 Photo-digital storage system

The IBM 1360 chipstore is an input-output device
composed of a storage file containing 2250 boxes of"
silver halide film chips, a chip recorder-developer, and a
chip reader. Figure 1 shows the general arrangement of
the chipstore hardware and its relation to the CDC 6600
computer. References 2 through 5 describe the hardware
in detail. A brief summary is given below.

A chip is 35 by 70 mm in size and holds 4.7 million bits
of data as well as addressing and error-correction or
error-detection codes. Data from the 6600 computer are
recorded on the chip in a vacuum with an electron beam,
taking about 18 sec per chip. The automatic film

developer unit completes the processing of a chip within
2.5 min; it overlaps the developing of eight chips so that
its processing rate is comparable to that of the recorder.

Up to 32 chips are stored together in a plastic box.
Figure 2 shows a recorded film chip and the box in
which it is kept. These boxes are transported between
the recorder-developer, the box storage file, and the chip
reader station by means of an air blower system.
Transport times between modules on the Berkeley
system average around 3 sec.

Under the command of the 6600 computer the
chipstore transports a box from the storage file to the
reader, picks out a chip, and positions it for reading.
The chip is read with a spot of light generated by a
cathode-ray tube and detected by a photomultiplier
tube at an effective data rate of 2 million bits per
second. The error correction-detection codes are checked
for validity as the data are read, and if the data are
incorrect, an extensive reread and error-correction
scheme is used to try to reproduce the correct data. The
data are then sent to the 6600 across a high-speed data
channel. Chip pick and store times are less than 0.5 sec.

The box storage file on the Berkeley 1360 system has
a capacity of 2250 boxes. This represents an on-line data
capacity of 2750 full reels of magnetic tape (at 800
BPI); 1360 systems at other sites have additional file
modules, giving them an on-line capacity three or more
times as great as at Berkeley.

A manual entry station on the chipstore allows boxes
of chips to be taken out of the system or to be reinserted.
By keeping the currently unused data in off-line storage
and retaining only the active data in the file, the
potential size of the data base that can be built in the
MSS is equivalent to tens of thousands of magnetic
tapes.

Figure 2-Recorded film chips and storage box

A process control computer is built into the chipstore
hardware. This small computer is responsible for
controlling all hardware actions as well as diagnosing
malfunctions. It also does the detailed scheduling of
events on the device. Communication between the
chipstore and the host computer goes through this
processor. This relieves the host of the responsibility of
commanding the hardware in detail, and offers a great
deal of flexibility.

854 Disk pack drive

The CDC 854 disk pack drive holds a removable
10-surface disk pack. The pack has a typical access time
of 90 msec, and a data transfer rate of about 1 million
bits per sec. Its storage capacity is 48 million bits.

MSS uses this pack for the storage of all its tables and
indices to the data that have been written into the 1360
chipstore. A disk pack was chosen for this function to
insure the integrity of the MSS tables. The 854 has a
proven record of hardware and data reliability. Also,
since the pack is removable, the drive can be repaired
and serviced without threat to the tables.

6600 Computer complex

The chipstore is connected to one of the CDC 6600
computers at LRL through a high-speed data channel.
The 6600 computer has 131072 words of 60-bit central
core memory (CM) , a central processor unit (CPU)
operating at a 100-nsec cycle rate, and 10 peripheral
processor units (PPU). Each PPU contains 4096 words
of 12-bit core memory and operates at a 1-}Lsec cycle
rate. The PPUs control the data channel connections to
the external input-output equipment and act as the
interface between jobs residing in C1\1 and the external
world.

The operating system on the 6600 is multiprogrammed
to allow several jobs to reside in CM at once and share
the use of the CPU. Two of the PPUs act as the system
monitor and operator interface for the system, and those
remaining are available to process task requests from
the monitor and execute jobs. The MSS, composed of
both CPU and PPU programs, has been built as a
subsystem to this operating system.

CHOICE OF THE MASS STORAGE SYSTEM
SOFTWARE

Design objectives

Having made the commitment on hardware, the
Laboratory was faced with designing and implementing

Design of Very Large Storage System 47

the associated software. The basic problem was to
produce a software system on the CDC 6600 computer
that, using the IBM 1360 chipstore, ,would lead to the
greatest increase in the productive capacity of scientists
at the Laboratory. In addition, it was necessary that the
system be one that the scientists would accept and use,
and to which they would be willing to entrust their data.
I t would be required to be of modular design and
"open-ended," allowing expansion and adjustment to
new techniques that the scientists might develop for
their data analysis.

Overall study of the problem yielded three primary
objectives. 1\1ost important was to increase the reli
ability of the data storage, both by reducing the number
of data-read errors and by protecting the data from
being lost or destroyed; much time and effort could be
saved if this objective were met. The second objective
was to increase the utilization of the whole computer
complex. The third was to provide facilities for new,
more efficient approaches to data analysis in the future.

The problem was divided into three technical design
areas: the interaction between the software and the
hardware, the interaction between the user and the
software, and the structure of the stored data.

In the area of software-hardware interaction, the
design objectives were to maximize protection of the
user data, interleave the actions for several jobs on the
hardware, reduce the need for operator intervention, and
realize maximum utilization of the hardware. This was
the approximate order of importance.

Objectives in the area of user interaction with the
MSS included making that interaction easy for the user,
offering him a flexible data-read capability, and supply
ing him with a protected environment for his data. Ease
of data manipulation was of high value, but not at the
expense of data protection. A flexible read mechanism
was necessary, since if the users could not read their data
from the 1\1SS, they would seek other devices. This
flexibility was to include reading data from the chips tore
at rates up to its hardware limit, having random access
to the data under user control, possibly intermixing data
from the chipstore, magnetic tapes, and system disk
files, and being able to read volumes of data ranging in
size from a single word to the equivalent of many reels
of tape.

The problem of data structures for the MSS was
primarily one of finding a framework into which existing
data could be formatted and which met the require
ments of system and user interaction. This included the
ability to handle variable-length data records and files
and to access these data in a random fashion. It was
decided that a provision to let the user reference his data
by name and to let the system dynamically allocate
storage space was very important. It was also important

48 Fall Joint Computer Conference, 1970

to have flexible on-line-off-line data-transfer facility so
that inactive data could be moved out of the way.

Software design decisions

Several important design decisions were made that
have had a strong effect on the nature of the final
system. Some of these decisions are listed here.

Each box used for data storage is given a unique
identification number, and this number appears on a
label attached to the box. A film chip containing data is
given a unique home address, consisting of the identifi
cation number of the box in which it is to reside and the
slot in that box where it is to be kept. Control words
written at the beginning of the chip and at various places
throughout the data contain this address (along with
the location of the control word on the chip), and this
information can be checked by the system to guarantee
correct positioning for retrieval of the data. It is also
used to aid in recovery procedures for identifying boxes
and chips. This control information can be used to help
reconstruct the MSS tables if they are destroyed.

The control words are written in context with the data
to define the record and file structure of the data on the
chips. The user is allowed· to give the address of any
control word (such as the one at the beginning of a
record) to specify what data are to be read. This scheme
meets the design objective of allowing random access to
data in the chipstore.

Data to be written into the chipstore are effectively
staged. The user must have prepared the data he wishes
to be recorded in the record and file structure he desires
in some prior operation. He then initiates the execution
of a system function that puts the source data into chip
format, causes its recording on film chips, waits for the
chips to be developed, does a read check of the data, and
then updates the J\1SS tables.

Data read from the chipstore are normally sent
directly to the user's program, though system utility
functions are provided for copying data from the
chipstore to tape or disk. If the user desires, he may
include a system read subroutine with his object
program that will take data directly from the chipstore
and supply them to his executing program. This method
was chosen to meet the objectives of high data-transfer
rates and to provide the ability to read gigantic files
of data.

To aid the user in the access and management of his
data in the J\1SS, it was decided to create a data
management control language oriented to applications
on the chipstore. A user can label his data with names
of his own choosing and reference the data by those
names. A two-level hierarchy of identification is used,

that of data set and subset. The data set is a collection
of named subsets, in which each subset is some structure
of user data. The control language is not limited to
manipulating only data from the chipstore; it can also
be used to work with magnetic tape or system disk files.

Two more decisions have greatly simplified the
overall problem of data management in the MSS. The
first was to allocate most of the on-line storage space on
the chipstore in blocks to the scientists engaged in data
analysis· of current experiments, and give them the
responsibility of choosing which of their data are to
reside on-line within their block and which are to be
moved off-line. The second decision was to treat all as
permanent. Once successfully written, film chips are
never physically destroyed. At most, the user may
delete his reference to the data, and the chips are
moved off-line.

DESCRIPTION OF THE J\1SS SOFTWARE

The system in use on the 6600 computer for utilizing
the chips tore results both from design effort at the
beginning of the project and from experience gained
during the implementation and initial production
phases. Its essential features are listed below.

Indexing and control of the data stored in the
chipstore are handled through five tables kept on the
disk pack, as follows.

The box group allocation table controls the allocation
of on-line storage space to the various scientists or
experiments at the Laboratory. Any attempt by a user
to expand the amount of on-line space in use by his box
group above its allowable limit will cause his job to be
aborted.

The box identification table contains an entry for each
uniquely numbered box containing user data chips. An
entry tells which box group owns the box, where that
box is stored (on-line or off-line), which chip slots are
used in the box, and the date of its last use.

The file position table describes the current contents
of the 1360 file module, defines the use of each pocket in
the file, and gives the identification number of the box
stored in it.

The data set table contains an entry for each of the
named collections of data stored in the chipstore. Status
and accounting information is kept with each data-set
table entry. Each active entry also points to the list of
subsets collected under that data set.

The subset list table contains the lists of named subsets
belonging to the entries in the data set table. A subset
entry in a list gives the name of the subset, the address
of the data making up that subset, and status informa
tion about the subset.

These tables are accessed through a special PPU task
processor program called DPR. This processor reads or
writes the entries in the tables as directed. However,
if the tables are to be written, special checks and
procedures are used to aid in their protection. Twice
daily the entire contents of the MSS disk pack are
copied onto magnetic tape. This is backup in case the
data on the pack are lost.

All communication to the chipstore across the data
channel link is handled through another PPU task
processor program called 1CS; 1CS is multiprogrammed
so that it can be servicing more than one job at a time.
Part of its responsibility is to schedule the requests of
the various user jobs to make most effective use of the
system. For instance, jobs requiring a small amount
of data are allowed to interrupt long read jobs. Algo
rithms· for overlapping box moving, chip reading, and
chip writing are also used to make more effective use
of the hardware.

1CS and DPR act as task processors for jobs residing
in the central memory of the 6600. The jobs use the
MSSREAD subroutine (to read from the chips tore) or
the COPYMSS system utility to interface to these task
processors. These central memory codes are described
below.

The reading of data from the chipstore to a job in
central memory is handled by a system subroutine
called MSSREAD. The addresses of the data to be read
and how the data are to be transmitted are given to
MSSREAD in a data-definition file. This file is prepared
prior to the use of MSSREAD by the COPYMSS
program described later; MSSREAD handles the
reading of data from magnetic tape, from disk files, or
from the chipstore. If the data address is the name of a
tape or disk file, MSSREAD requests a PPU to perf.orm

. the input of the data from the device a record at a tIme.
If the address is for data recorded in the chipstore, it
connects to 1CS, and working with that PPU code, takes
data from the chipstore, decodes the in-context struc
ture and supplies the data to the calling program.

A'system program called COPY1\,fSS is responsible
for supplying the user with four of the more common
functions in MSS. It processes the MSS data-manage-

TABLE I-Distribution of MSS Implementation Effort.

Operation

Procurement and Evaluation
System design
Software coding
Software checkout
Maintenance, documentation, etc.

Man-years

1.0
2.8
1.7
0.8
1.2

Design of Very Large Storage System 49

TABLE II-MSS Usage Per Week.

Number of read jobs
Number of write jobs
Chips read
Bits read
Unrecoverable read errors
Chips written
Percentage down time

250
100

11500
5.4X1010

15
1900
8.5

ment control language to construct the data-definition
file for MSSREAD. It performs simple operations of
copying data from the chipstore to tape or disk files. It
prepares reports for a user, listing the status of his data
sets and subsets. Finally, COPY1\,fSS is the program
that writes the data onto film chips in the chipstore.

To write data to the chipstore, the user must prepare
his data in the record and file structure he desires. He
then uses the MSS control language to tell COPYMSS
what the data set and subset names of the data are to be
and where the data can be found. COPY1\1SS inserts the
required control words as the data are sent through 1CS
to the chips tore to be recorded on film chips. After the
chips have been developed, 1CS rereads the data to
verify that each chip is good. If a chip is not recorded
properly, it is discarded and the same data are written
onto a new chip. When all data have been successfully
recorded and the chips are stored in the home positions,
COPYMSS uses DPR to update the disk pack tables,
noting the existence of the new data set-subset.

The remaining parts of the 1\1SS software include
accounting procedures, recovery programs, and pro
grams to control the transfer of data between on-line
and off-line storage. These programs, used by the
computer operations group, are not available to the
general user.

RESULTS AND CONCLUSIONS

Effort

A total of about 7.5 man-years of work was invested
in the Mass Storage System at LRL-Berkeley. The
staff on the project was composed of the authors with
some help from other programmers in the 1\,fathemati~s
and Computing Department. The breakdown of thIS
effort is shown in Table I.

Operating experience

The Mass Storage System has been in production
status since June 1969. Initial reaction of most of the

50 Fall Joint Computer Conference, 1970

TABLE III-Comparison of Storage Devices at LRL-Berkeley

CDC 607 CDC 854 IBM 2311 CDC 6603
MSS tape drive disk pack data cell system disk

On-line capacity (bits/device) 3 .3X 1011 1.2XI08 4.8X107 3.0X109 4.5X108

Equivalent reels of tape 2750 1 0.4 25 3.75
Cost of removable unit $13jbox $20/reel $500/pack $500/cell
Storage medium cost (¢/103 bits) 0.008 0.017 1.0 0.17
Average random access (sec) 3 (minutes) 0.075 0.6 0.125
Maximum transfer rate (kilobits/sec) 2000 720 1330 450 3750
Effective transfer rate& 1100 500 200 400
Approximate capital costs (thousands 1000 100 35 220 220

of dollars)
Mean error-free burst length (bits) 1.6XI09 2.5XI07 >1010 109 >1010

& Based on usage at LRL-Berkeley; the rates given include device-positioning time.

users was guarded, and many potential users were slow
in converting to its use. As a result, usage was only about
2 hours a day for the first 3 months. Soon after, this level
started to increase, and at the end of one year of
production usage a typical week (in the month of June
1970) showed the usage given in Table II.

IVlost of the reading from the chips tore is of a serial
nature, though the use of the random-access capability
is increasing. Proportionally more random access
activity is expected in the future as users become more
aware of its possibilities.

A comparison of the 1\188 with other data-storage
systems at the Laboratory, shown in Table III, points
out the reasons for the increased usage. For large
volumes of data, the closest competitor is magnetic tape
(assumed here to be full 2400-foot reels, seven-track,
recorded at 800 BPI).

The values shown in Table III are based on the
following assumptions: on-line capacities are based on
having a single unit (e.g., a single tape drive); capital
costs are not included in the storage medium costs;
effective transfer rates are based on usage at LRL, and
are very low for the system disk because all jobs are
competing for its use; and all costs given are only
approximate.

The average data-transfer rate on long read jobs
(involving many chips and many boxes) is more than
one million bits per second. This is decidedly better than
magnetic tape. Short reads go much faster than from
tape once the 3-sec access time is complete.

The biggest selling point for the Mass8torage
System has been the extremely low data-error rate on
reads. This rate is less than 1/60 of the error rate on
magnetic tape. The second most important point has
been the potential size of the data files stored in the
chipstore. Several data bases of from 20 to 200 boxes

of data have been constructed. Users find that having
all their data on-line to the computer and not having to
rely on the operators to hang tapes is a great advantage.
Their jobs run faster and there is less chance that they
will not run correctly.

The cost of storing data on the chipstore has proven
to be competitive with magnetic tape, especially for
short files or for files that will be read a number of times.
Users are. beginning to find it profitable to store their
high-use temporary files on the chipstore.

The system has not been without its difficulties.
Hardware reliability has at times been an agonizing
problem, but as usage increases and the engineers gain
more experience on the hardware, the down time for the
system has decreased significantly. We now feel that
5 percent down time would be acceptable, though less
would be preferable. Fortunately, lack of hardware
reliability has not affected the data reliability.

CONCLUSIONS

Though intended primarily as a replacement for
magnetic tape in certain applications, the MSS has
shown other benefits and capabilities. Data reliability is
many times better than for magnetic tape. Some
applications requiring error-free storage of large
amounts of data simply are not practical with magnetic
tape, but they become practical on the chipstore. The
nominal read rate is faster than that of magnetic tape
for long serial files. In addition, any portion of a file is
randomly accessible in a time ranging from a few
milliseconds to 5 seconds.

The MSS is not without its limitations and problems.
The 1360 is a limited-production device: only five have
been built. It uses technologies within the state of the
art but not thoroughly tested by long experience.

Keeping the system down time below reasonable limits
is a continuing and exacting effort. Development of both
hardware and software has been expensive. The software
was a problem because the chips tore was a new device
and people had no experience with such large storage
systems.

The Mass Storage System has met its purpose of
increasing the productive capacity of scientists at the
Laboratory. It has also brought with it a new set of
problems, as well as a new set of possibilities. The
biggest problem is how to live with a system of such
large capacity, for as more and more data are entrusted
to the chipstore, the potential loss in case of total failure
increases rapidly. The MSS offers its users important
facilities not previously available to them. More
important, the age of the very large Mass Store has
been entered. In the future, the MSS will become an
important tool in the computing industry.

Design of Very Large Storage System 51

REFERENCES

1 M H ALSTON S J PENNY
The use of a large photodigital mass store for bubble chamber
analysis
IEEE Trans Nucl Sci Volume NS-12 4 pp 160-163 1965

2 J D KUEHLER H R KERBY
A photo-digital mass storage system
AFIPS Conference Proceedings of the Fall Joint Computer
Conference Volume 29 pp 735-742 1966

3 L B OLDHAM R T CHIEN D T TANG
Error detection and correction in a photo-digital storage
system
IBM J Res Develop Volume 126 pp 422-4301968

4 D P GUSTLIN D D PRENTICE
Dynamic recovery techniques guarantee system reliability
AFIPS Conference Proceedings of the Fall Joint Computer
Conference Part II Volume 33 pp 1389-1397 1968

5 R M FURMAN
IBM 1360 photo-digital storage system
IBM Technical Report TR 02.427 May 15 1968

Design of a megabit semiconductor
memory system

by D. LUND, C. A. ALLEN, S. R. ANDERSEN and G. K. TU

Cogar Corporation
Wappingers Falls, N ew York

INTRODUCTION

This paper describes a 32,768 word by 36 bit word
Read/Write Memory System with an access time of
250ns, and a cycle time of 400ns.

The memory system is based on IV[OS technology for
the storage array and bipolar technology for the
interface electronics. A functionally designed storage
array chip with internal decoding minimizes the number
of external connections, thereby maximizing overall
system reliability. The average power dissipation of the
overall system is maintained at about OAmw per bit
including all support circuitry dissipation. This is based
on a card configuration of 102 modules with a maximum
module dissipation of 600mw.

System status

At present test sites containing individual storage
array chip circuits and single bit cross sections have
been processed and are being evaluated. Although
initial test results are favorable sufficient data has not
been accumulated to verify all design criteria. Source
drain storage array chip production masks are in line
with other levels nearing completion. Layouts of the·
bipolar support chips are complete and ready for
generation of production masks.

System description

An isometric view of the complete 32,384 word by 36
bit memory system is shown in Figure 1. The total
volume occupied by the system is 0.6 cu. ft., resulting in
a packing density of approximately 2 million bits/cu. ft.
A mechanical housing is provided for the eight multi
layer printed circuit cards that contain the memory
storage elements and peripheral circuits. To facilitate

53

insertion and extraction of cards a mechanical assembly
is also included. The card connectors are mounted on a
printed circuit interconnection board. All necessary
system wiring is done on the outside surfaces of this

1~
Lw~~

CONNECTIONS '.... ! /'. t t
'J,...... AIR

FLOW
I I

MEMORY SYSTEM ASSEMBLY
(8 CA RD)

Figure 1-Memory system assembly

54 Fall Joint Computer Conference, 1970

board with voltage distribution accomplished by the
internal planes. Additional edge connectors are mounted
in this board to accommodate I/O signal cabling via
plug-in paddle cards. Power connections are provided
at the outermost edge of the board.

Since the purpose of this design was to provide a
large, fast, low-cost system for use as a computer main
frame memory the following design constraints were
observed:

Capacity

A one megabit capacity was chosen to be representa
tive of the size of memory that is applicable to a fairly
large, high-speed processor. It was decided that the
system should be built from modular elements so that
memory size and organization could be easily varied.
An additional advantage of ease of servicing and
stocking accrued from this approach.

Speed

A balance between manufacturability and system
requirements was established in setting the performance
objectives. This tradeoff resulted in a goal of 250ns.
access time and 400ns cycle time.

Density

The density of memory cells should be maximized in
order to create minimum cost per cell. An objective of
1024 bits of information was chosen as a reasonable goal
using present LSI technology on a .125 in. X .125 in.
chip. In order to keep the I/O signal count within
reasonable bounds it was decided that address comple
menting and decoding should be included within the
chip. The chip was structured 1024 words by one bit.

Memory card

A drawing of the basic modular unit, the memory
card, is shown in Figure 2. The card is a multilayer
printed circuit unit with two external planes for signal
wiring and two internal planes for distribution of the
three required voltages and ground. Ninety-eight
double sided connecting tabs are situated along one
edge of the card on a .150 in. pitch. These tabs provide
for a mating connection with the edge co.nnectors
mounted on the interconnection board, and serve to
electrically connect all supply voltages and signal wiring

8.80 IN. ~ I-.96CM I I ,- 22.35 CM -,

~=~o~~~~~~~~;-
A A A A A A A A A P P '~

""""c TYP
A A A A A A A A A P P (39)

A A A A A A A A A P P
Ill£D

L A A A A A A A A A P P W
§ A A A A A A A A A P P B

~ A A A A A A A A A P P B
....

MEMORY
CARD

~ A A A A A A A A A P P CL ___ .-R (~rp

l A A A A A A A A A P P f'i ...- _ D~LAY TYP

g \ S/L S/L S/L S/L S/L S/L S/L S/L S/L B B L.t (3)

t:~ OIIIIIIlmmIIlIlIImlDl_IIIIIIHIIIIIIII.~
CONNE~TOR3 -11-.100 TYP -l. ..I:~ ~~ ::b
~ :=P ,BOARD ' • ,

- - =-r;;!;L L ___________ J fi

Figure 2-Memory card

to the card. The modules mounted on the card contain
one or two chips each, solder reflow bonded to a wiring
pattern on a ceramic substrate. Each module occupies a
0.7 in. square area. The 72 modules marked "A" cont~in
the storage array with two chips of 1024 bits each
included in each module. The "B" modules provide the
primary stages of bipolar buffering while the "P"
modules contain the secondary bipolar buffering and
decoding. :l\{odules "CL" and "DEL" provide for timing
generation while the remaining "S/L" modules perform
the sense amplification and latching functions.

Logic design

Memory system logic design was based on the
modular card concept to provide easy upward and
downward variation of total memory capacity. This
card contains all necessary input buffering circuitry,
timing circuits, storage elements, sensing circuits, and
output registers. The card is structured so that smaller
organizations can be obtained by depopulating modules.
TTL compatible open collector outputs are provided to
allow "wired-or" expansion in multiple card systems
such as the 32K word by 36 bit system discussed here.
Unit TTL compatible input loads help alleviate the
problems of driving a multiple card system.

Card logic flow

A signal flow logic diagram for the 8192 word by 18
bit memory card is shown in Figure 3. Thirteen single
rail address lines are required to uniquely determine one

Design of Mega-Bit Semiconductor Memory System 55

- READ/+WRITE o--.!...i-----+-I

B

+A
(8)

B
(9)

WORD
(9) DECODE ARRAY B AND 32 X 32 +A

(8)

(9) DRIVE
B ADDRESS +A

(8)

INPUTS

+A
(8)

B
(9)

+A
(8)

B
(9)

+A
(8)

B
(9)

+A
(8)

B
(9)

+A
(8)

B
(9)

z

~>0 { cU&...,
a:Ci! . GND
§~..J
I&.
Z
0 RESET
(,)

SET

CONFIGURATION {UPPER 112 - EVEN IITS 2,4,_ ETC.
CONTROL LOWER 112 - ODD BITI l,lI,5 ETC.

COST PERFORMANCE MEMORY CARD LOGIC
(8192 WORDS BY 18 BITS)

(WITH MI AND M2 INPUTS GROUNDED AS SHOWN)

Figure 3-Cost performance memory card logic

of 8192 words. Four control lines are required as
follows:

Select-causes selection of entire card.
Read/Write-determine the mode of operation to

be performed.
Set-provides timing for the output data register.
Clock-generates timing for read and write opera

tions as well as timing for cyclic data refreshing.
Thirty-six more lines are used for data-in and

data-out.

Read operation signal flow

All input lines are buffered immediately upon entering
the memory card. A second stage of address buffering is
included on the card to allow fan out to all 144 storage

array chips. Ten address lines (0-9) drive all storage
array chips on the card in parallel, decoding to one of
the 1024 bits stored on each chip. The remaining address
lines (10-12) are decoded and combined with the timed
Select pulse to create two Row Select signals which
energize two of the sixteen rows of array chips on the
card (two rows of chips per row of modules). Srnce there
are nine array chips in each row, a total of eighteen bits
are read out in each operation. The eighteen bits are
transmitted to eighteen combination differential sense
amplifier and latch circuits which are, in turn, wired to
the card connector interface.

Write operation signal flow

Cell selection is performed in the same fashion during
a write cycle as in a read cycle. However, instead of

56 Fall Joint Computer Conference, 1970

sensing the differential pairs associated with each bit
position as in a read operation, the lines are pulsed by
one of a pair of bit driver circuits. The magnitude of this
excursion is sufficient to force the selected cell to the
desired state as indicated by the condition of the
data-in line.

Storage array chip logic organization

The storage array chip is organized in a 32 by 32
matrix of storage cells. Five input address lines are
complemented upon entering the chip and then
selectively wired to the word decoder drivers to provide
a one-of-32 selection. These word drivers are also gated
by Row Select so that only storage cells on a selected
chip are energized. The remaining one-of-32 decoding
function is performed on the cell outputs using the
remaining five input address lines. The 32 outputs of
this final gating stage are wire-ored together to the
single differential pair of output bit lines.

Tillling structure

Because the array chip is operated in a dynamic
fashion, it is necessary to provide several timed lines
for periodic refreshing of data and for restoration of the
array chip selection circuits after a read or write
operation. To minimize the number of lines required at
the system interface, the timing generation circuits and
delay lines are included on each memory card. These
functions are implemented with nonsaturating current
switch circuits for minimum skew between timed pulses.
Tapped delay lines are used to chop and delay the input
clock pulse. A total of four timing pulses are generated
as described below:

Row Select: This line is used to turn on the array
chip word and bit selection circuits during a read or
write operation.

Refresh: This line is timed to follow the Row Select
line and energizes all word selection circuits to refresh
the array data.

Enable: The address inverters on the array chip are
enabled by this line during a normal read or write
operation. During the refresh portion of the cycle the
absence of this pulse disables the address inverters so
that all word selection circuits are simultaneously
energized. This permits refreshing of data in all storage
cells.

Restore: This line gates on load devices in all array
chip selection circuits· during the refresh portion of the
cycle. These devices provide a recharging path for all

o
I

ADDRESS .J

ENABLE --.J

SELECT I
REFRESH

RESTORE

TIME (nl)
160 400

I I

_1 _______ '

_____ ---....r

SELECT REFRESH

Figure 4-Storage array chip input timing

the selection circuit node capacitances that were
discharged during the immediately preceding operation,
and for the node capacitances of the storage cells
themselves.

A diagram showing the relative timings of array chip
input lines is shown in Figure 4.

A timing chart for the memory system interface is
shown in Figure 5. It can be seen that two timed lines
are required at this interface. The first is the Clock line
from which all the aforementioned timings are derived.
The second is the Set line which latches array data into
the output register.

Systelll operation

A block diagram for the complete 32K word by 36 bit
memory system is shown in Figure 6. Eight memory

CLOCK

SELECT

ADDRESS
MOOIFY

READ I
WRITE

SET

DATA OUT

DATA IN

T . 100 200 300 T . ~OO 600 700

- w w

Z ~ fUUUUL'
~ if/////M v////u//.

~~
WRITE

READ

Ii:a..-~

V//A!

ACCESS TIME • 2~0 nl

... 1.----- READ ----.... 1 -- WRITE ----t.1
TIMING DIAGRAM FOR COST PERFORMANCE

READ-WRITE MEMORY SySTEMS

Figure 5-,-Timing diagram for cost performance read-write
memory systems

.

SET

SELECT 0

DATA IN
(I - 18)

READ I WRITE

SELECT 2

SELECT I

ADDRESS
(13 LINES)

DATA IN
(19 - 36)

CLOCK

SELECT 3

-~

'/

- 1-1-

~
~

~ V

~
V

~~
~ ~

r\
r\ ~
1\

~~
l\~
~
1\ ~~

tLz:

8192 WORD
BY ~ 18 BIT

MEMORY CARD

~
8192 WORD

BY ~ 18 BIT
MEMORY CARD

8192 WORD
BY ~ 18 BIT

MEMORY CARD

8192 WOR!).
BY ~~ 18 BIT

MEMORY CARD

8192 WORD

'''~'T t!>:l MEMORY CARD

8192 WORD
BY ~ 18 BIT

MEMORY CARD

8192 WORD
BY ~ 18 BIT

MEMORY CARD

" 8192 WORD " BY ~~ 18 BIT
MEMORY CARD

Figure 6-Memory system block diagram

DATA OUT
(I - 18)

DATA OUT
(19 - 36)

cards, each containing 8192 words by eighteen bits are
interconnected as shown to form the total system. All
cards are addressed in parallel with four mutually
exclusive Select lines energizing one pair of memory
cards each cycle. Each card output is "wire-ored" with
three other card outputs to expand word depth from
8192 words to 32,768 words.

lV[aximum access time is 250ns as measured from the
+ 1.6 volt level of the input Clock leading edge transi
tion. IVIinimum allowable cycle time is 400ns. and is
measured in a similar manner from one leading edge
Clock transition to the next. Since the Clock line
provides refreshing of data, it is also necessary that a
maximum Clock repetition time of 1.2~s be maintained
to avoid loss of information.

Circuit design

In the design of LSI memories the most important
costs to be minimized are as follows:

Unmounted chip cost per bit
Chip carrier cost per bit
Printed circuit card cost per bit
Support costs per bit

Design of Mega-Bit Semiconductor Memory System 57

The chip cost per bit is largely a function of the area
of processed silicon required per bit of storage, the
process complexity as measured by the number of
masking or diffusion steps, and the chip yield. All of
these factors strongly favor a MOS-FET chip process
over bipolar process. For a given chip size the chip
carrier costs, the printed circuit cost and the support
costs are all inversely proportional to the number of bits
per chip, thus the advantage of high~density MOS-FET
array circuitry is overwhelming.

The chief drawback to MOS-FET circuits for semi
conductor memories is their low gain-bandwidth
compared with bipolar circuits using equivalent geo
metric tolerances. This shortcoming can be minimized
by using bipolar circuits to provide the high-current
drives to the MOS-FET array circuits, and by using
bipolar amplifier circuits to detect the low MOS-FET
sense currents. If the circuits are partitioned so that all
the devices on a given chip are either bipolar or MOS
FET, no additional processing complexity is added by
mixing the two device types within the same system.
The use of bipolar support circuits also allows easy
interfacing with standard bipolar logic signals, thus
the interface circuits can match exactly standard
interface driving and loading conditions.

Given an MOS-FET array chip, the two most
important remaining choices involve the polarity of the
MOS-FET device (n-channel or p-channel) and the gate
oxide thickness. It is well known that the trans
conductance of n-channel devices is approximately three
times that of equivalent p-channel device and thus the
current available to charge and discharge capacitance is
SUbstantially greater. Since the substrate is backbiased
by several volts in an n-channel device, the source-to
substrate and drain-to-substrate capacitances are also
slightly lower, with the net result that n-channel
circuits are a factor of two to three faster than equiva
lent p-channel circuits. This speed difference is critically
important if address decoding and bit/sense line gating
are to be included on the MOS-FET chip. Because the
transconductance of a MOS-FET device, and conse
quently its ability to rapidly charge and discharge a
capacitance, is inversely proportional to the gate oxide
thickne~s, it is advisable to use the minimum thickness
that the state of- the art will allow; in this case 500
Angstroms was chosen as the minimum that would give
a good yield of pinhole free oxide with adequate
breakdown voltage. Other key device parameters are
tabulated below:

V t = 1.25V nominal with substrate bias

psub = 20cm P type

'Ym = 33.5~a/v nominal

pd = 70/square N type

58 Fall Joint Computer Conference, 1970

r-----WOiti::"TWOito ------------ARRAV:::---l
I I NYERTER DECODER RESTORE

'

I R ~1t.NIA8LE II UNITS j 52 UNITS: IIV 52 UNITSJI

SAR~l J-- IOV I __ __
1---" -- ~R-i cs I" ~~~ty :
II I IOZ4 UNITS~

~ ~ ~ ~ I
L--+---+--+-':::"'--"'::::::~~~ FO'5"i-

I FO'18 ~ I
~----..,-~-----, I

I
INVERTER I DECOD£R 1 I
II UNITS I 52 UNITS I

10V

I fuaE I

1:~I_$j '.. .. i." -- --------~
1 ~C" I
I -i ~ -i ~ 1 • UN I TI ~~." ORO" I

L I 8/S PAIRSJ
-_~ ______ L _____________ _

Figure7-Array chip cross-section

Chip partitioning

Since it was desired that the same chip set be used to
configure memory systems of different sizes, different
word lengths, and different system speeds, many of the
chip partitioning choices are obvious. The timing
circuits, which are used only once per system, are
contained on a separate chip. The sensing and bit/drive
circuits are combined on one chip to allow easy expand
ability in the bit dimension. The array drivers are
contained on a third chip type to allow easy expansion
in the memory size, while general buffering and gating
logic make up the fourth chip type. The most important
chip-partitioning choice involves the dividing line
between bipolar and MOS-FET circuits at the array
chip interface. By including the array word-line
decoding and the array bit/sense line gating on the
array chip, the number of connections to the array chip
can be greatly reduced, allowing the chip carrier wiring
to be less dense and the chip pad size and spacing to be
relaxed. The complexity of the bipolar support circuitry
was reduced still further by including the address
inverters on the array chip, with a small penalty in
delay. Ifa MOS-FET sense amplifier/bit driver were
included on the array chip, however, the increase in
delay would be excessive, owing to the poor response
time of MOS-FET high-gain amplifiers. In the design
shown here, the cell sense current is gated to a bipolar
sense amplifier for amplification and discrimination, and
the cell nodes are driven through the same l\10S-FET
gating circuits to the desired state during the write
operation. This arrangement requires that approxi
mately 35 percent of the available array chip area be
used for decoding and gating circuits, with the remaining
65 percent used for storage cells. Figure 7 shows a

cross-section circuit schematic of the array chip.
Included below are nominal chip parameters:

Address input capacitance ... (including gate pro
tective device) 4pf

Enable input capacitance. . . (depending on ad
dress) 2.75 pf or 20pf

Restore input capacitance ... (including gate pro-
tective device) 57pf

Sense line input capacitance ... 5.5pf
Select input capacitance ... 8pf
Word line capacitance ... 7.5 pf
Bit line capacitance ... 2pf
Sense current ... 150JLa
l\1aximum gate protective device input 3400V

Storage cell

Typical MOS-FET storage cells are shown in
Figure 8. In ceIl8(a), Tl and T2 form the cross-coupled
pair, while T 3 and T 4 gate the external circuitry to the
cell nodes, either to sense the state of the cell by
detecting the imbalance in the current through T 3 and

+v

BI T I SENSE BIT I SENSE

~---------+-. WORD DR I VE

(0)

+v

BIT I SENSE BIT I SENSE

~---------+--. WORD DRIVE

(c)

Figure 8-Storage cell configurations

THIN OXIDE

L I... W----e-I
I
l ___________ -'

Figure 9-W /L ratio

T 4 or to write into the cell by pulling one node to ground
while simultaneously driving the other cell node posi
tive. The load devices, T5 and T6, replace the leakage
current from the more positive node during stand-by.
Since one of the load devices has full voltage across it at
all times, the standby power dissipation of the cell will
be quite high in comparison to the cell sense current
unless the W /L ratio, Figure 9, of the load device
(T 5, T 6) is made very small compared to the W /L ratio
of the cross-coupled device (TI , T2)' This, in turn,
requires that either the load devices or the active
devices or both occupy a large chip area. In addition,
the standby load current flowing through the on-biased
active device provides a voltage drop across that device,
tending to unlatch the cell. This effect can be com
pensated for by increasing the value of all device
thresholds, however, this will require a higher supply
voltage to maintain the same standby current thereby
increasing the power dissipation.

In cell 8(b), the standby power is reduced by pUlsing
the "restore" input at a clock rate sufficiently fast to
replace leakage current from the cell node capacitance,
while maintaining a low average power drain. The chief
drawback to this cell is the five connections must be
made to the cell, with a resulting increase in cell
complexity over (a) above.

Cell 8(c) shows the configuration chosen for this
memory. In this cell, both the word selection and the
restore functions are performed through the same
devices and array lines, by time sharing the word-select
and restore line. During read-out, the cell operation is
similar to 8(b) above. At the end of each memory cycle,
however, all word lines are raised to the "restore" level
for a period sufficient to recharge the cell node capaci
tances, then all word lines are dropped and the next
memory cycle can begin. Selection of the "restore" level
is dependent on the speed at which the cell node
capacitance is to be charged and the sense line voltage
support level required during restore. Too high a
"restore" level creates a large current flow thru the
restore devices lowering the sense line voltage used to
charge the cell; too low a voltage prevents the cell node

Design of Mega-Bit Semiconductor Memory System 59

capacitance from reaching the required voltage for data
retention. This cell employs fewer devices and less
complex array wiring than either of the cells above, and
thus requires substantially less silicon area. The
disadvantage of this approach is that the restore
function must be synchronized with the normal read/
write function since they share the same circuitry. The
average power cannot be made as low as in (b) above,
since the restore current and the sense current are both
determined by a common device, and the restore
frequency is determined by the memory cycle time;
however, the average power can be made significantly
lower than with the static cell 8(a) above.

MOS-FET support circuits

The MOS-FET support circuits employed on the
array chip are shown in Figure 10. A better understand
ing of the circuit operation will be gained by first
considering the MOS-FET inverter circuit (Figure 10).
At the end of a read/write cycle, the input address level
is held down, the E level is down, and the R line is
pulsed positive, charging node A to approximately +7
volts. When the R pulse has terminated, node A
remains positive awaiting the next input. At the start
of the read/write cycle, the address input is applied to
TI ; if the address line is positive, node A quickly
discharges through T I , and when E is applied to T 3,

+v

SELECT I REFRESH

r ~~
ADDRESS I 2 3 4 5

(b)

+V E

ADDRESS
R~ftr~l T3

TI I
I ""ur ...:.--.-.j . . 4 I-

-:- :±= CL

(a)

Figure lO-Array chip inverter-decoder circuits

6() Fall Joint Computer Conference, 1970

T 3 remains non-conducting and the address inverter
output remains at ground potential. If, however, the
address input line is a down level, then node A remains
charged to +7 volts, and both Tl and T2 are cut-off,
while T 3 is biased on. When a positive E pulse is
applied to T 3, current is capacitively coupled into
node A from both the E node and from the output node,
with the result that node A is driven more positive than
either; thus T 3 remains strongly biased on, charging the
output node capacitance to the level of E. When the
positive E pulse is terminated, the same action quickly
discharges the output to ground through the E line. At
the ead of the address pulse, a positive R pulse is again
applied to T2, restoring node A to + 7 volts. This
regenerative inverter has several advantages over a
conventional source follower circuit; (a) the output up
level is set by the level of the E input, and does not vary
with the device threshold voltage; (b) the output rise
time is nearly linear, since the gate-to-source bias on T3
remains well above the threshold voltage throughout
the transition, and (c) this same high conductance
output device can be used to both charge and discharge
the load capacitance. Since the leakage current from
node A during a cycle is negligible, the final potential
of node A, and thus the output drive current, is
determined by the capacitor-divider action of the
gate-to-source, gate-to-drain, and gate-to-substrate
capacitances associated with device T 3. Any of these
capacitances can be artificially increased to optimize the
circuit operation. The operation of the decoder circuit
(Figure lOb) is similar to the inverter just described,
with the bi-Ievel chip select/refresh line replacing the E
input discussed previously. Thus, a single word line is
selected to the higher (Select) level during the Read/
Write portion of the cycle, while all word lines are
selected to the lower (Refresh) level during the Restore
portion of the cycle. Thus the cell input/output devices
are biased to a low impedance to provide maximum
sense current during readout, and to a higher impedance
to reduce the power dissipation and maintain the
necessary sense line voltage during the restore operation.

Protective devices are used on all gate inputs to the
array chip to reduce the yield loss from static electricity
during processing, testing, and assembly. Because the
array chip uses a P-epitaxy grown on a P+ substrate it
was possible in this system to replace the usual RC
protective device with a more favorable zener type. This
device is an N + diffusion diffused at the same time as
the source-drain diffusions and exhibits a low internal
impedance when its depletion region intersects the P+
substrate. The required reverse breakdown voltage is
obtained by controlling the depth of the N + diffusion.
When driven with an impedance equivalent to a human
body, approximately 1000 ohms, gate protection is

1-----1

i 's VB. i NUMBER OF h V.
ATE

I IA~~~~~~~~sl
1 1 INFINITY I
1 1 1
I I I

Figure 11-Gate protective device

provided for input levels up to 3400 volts. Figure 11 and
equation 1 represent the characteristics and operation
of this type protective device as presented during the
IEEE, International Electron Devices lVleeting, October
29 thru 31, 1969.1 For analysis the device is arranged as
a series of distributed elements; each element con
taining sub-elements rs, ra, and V BR.

Vgate = V BR+ { (Vin - V BR)(rsra)I/2 [cosh (rs'Y /ra) 1/2]-1 } /

R8+(rSra)1/2 (1)

In this design 'Y, the number of elements, was set at
nine with the following sub-element values:

rs = 4.27 ohms

r = 61.2 ohms

V BR = 30 volts

The maximum capacitance before breakdown IS

1. 25pf.

Bipolar support circuits

Because of the critical timing relationships required
among the Select/Refresh, Enable, Address, and Re
store pulses to the array chip, all timing pulses are
generated on each card by a special timing chip and three
tapped delay lines. This arrangement· allows each card
to be fully tested with the timing circuits that will drive
it, and minimizes any interaction between cards in a
multi-card system.

The TTL compatible buffer chip allows interfacing
conveniently with the TTL compatible logic of the using
system, and 'minimizes the loading which the memory
presents to the system.

A schematic cross-section of the Drive and Sense
circuits is shown in Figure 12. The Driver module, when
addressed, selects a row of nine Array Chips from a low
impedance TTL output. The ten address inputs to the

Design of Mega-Bit Semiconductor Memory System 61

IIiADLI

TO 7 0'1'11111 AIIIIAY C:III.'

"'ST'"

CROSS SEeTION

HIVE -SENSE SCHEMATle

DIAGRAM

FIG. 1-2

--- - -------- - -- - - -------- ------ - ---- ---'-i
- I ~ 1

II_.ILICT
'1'1._111-, 7

~.:a 1
I till"

o-+-~,.,.,."

:::.- :! 0-+-
1
-----'

AaO-'-----'
.. 0-+------'

I
I
I
1

'1
I
1
1 _______________________________ .J

r- --------------------------
Vet

- ------ --------------------------,

DATAIII

KIlO

-FLOIII

81,.
ZlNO

DI'I' -DIIIVI _VI
OUT OUT

O-~:--~~----~-L==~====::~====~==~====~====t===~======~==~-4----~----~----~
I 111111 LATCII "DULl L _________ ., r- ___________ J

1 1
1
I
1

I

I

LATCII ~:;;.::=:::-r--<>
L-------"3I

I
I
1
I

ON. I
L ___ J

NT IIIIIT
III ..

Figure 12-Cross-section drive-sense schematic diagram

Array Chip serve to select one bit of the 1024 bits/chip.
The write pulse permits the data-in to be loaded
differentially into the single bit which has been ad
dressed. The removal of the write pulse turns off both
the "one" and "zero" bit drives with the low impedance
active pull ups rapidly charging the capacitance of the
bit lines to a voltage level required for the re~d mode of
operation.

15-0

140

130 1\
\

I 1 I

VAR 1 AT 1 ON OF JUNC T 1 ON TEMPERATURE
WITH

VELOC ITY AND INLET TEMPERATURE

CARD S l~lP~~9)"H,8.8"W

I I

·111

II.
UI

The sense amplifier requires a minimum differential
signal of 50 micro amps to detect a "one" or "zero"
stored in the addressed bit. This information is trans
ferred to a set-reset latch which is included to increase
the "data-good" time to the using system.

~
CARD PITCH" 0.6"
MODULE PI.TCH • 0.7" ... ~ Tin· 50·C

~
~
~
~ t--.

!
110

100

90
During a portion of every cycle not used for read/

write operation the timing chip provides refresh and
restore timing pulses which turn on all the driver mod
ules on the memory card to a lower voltage level, and
perform the refresh operation previously discussed.

r---r----

All four of the bipolar support chips are packaged
one-chip per chip carrier, to allow flexibility in con
figuring various size memory systems. In all cases,
the power density is limited to 600 mw per chip carrier,

80
150 200 250 300 350 400 450 500 550 600

- VELOCITY ft I min

Figure 13-Variation of junction temperature with velocity and
inlet temperature

62 Fall Joint Computer Conference, 1970

a level which allows for convenient forced-air cooling.
Because the limiting heat factor is the junction tem
perature of the bipolar support circuits an cooling
considerations are in respect to this parameter. Figure
13 illustrates the junction temperature as a function
of air flow thru the system.

CONCLUSION

The memory system described here is but one of many
possible sizes and organizations that can be created
using the same modular approach. If desired, several
smaller organizations can be used within the same
system without significant cost penalties. The system
approach to memory design has created an optimum
condition wherein each individual component is

matched to the other components with which it must
interact. This approach also yields a memory with
a simple, effective, easily usable set of interface re
quirements. It is anticipated that increasing yields
will allow prices competitive with magnetic storage
for high-performance main memories. This low cost,
coupled with high performance and density, makes
a powerful combination for use in future system de
signs.

REFERENCE

1 M LENZLINGER
Gate protection of MIS devices
Presented at International Electron Devices Meeting
Washington D C 1969

Optimum test patterns for parity networks

by D. C. BOSSEN, D. L. OSTAPKO and A. M. PATEL

IBM Laboratories
Poughkeepsie, N ew York

INTRODUCTION

The logic related to the error detecting and/or cor
recting circuitry of digital computers often contains
portions which calculate the parity of a collection of
bits. A tree structure composed of Exclusive-OR gates
is used to perform this calculation. Similar to any other
circuitry, the operation of this parity tree is subject
to malfunctions. A procedure for testing malfunctions
in a parity tree is presented in this report.

Two important assumptions are maintained through
out the paper. First, it is assumed that the parity tree
is realized as an interconnection of Exclusive-OR gates
whose internal structure is unknown or may differ.
This requires that each gate in the network receive a
complete functional test. Second, it is assumed that
detection of single gate failures is desired.

Since each gate must be functionally tested, an m
input Exclusive-OR gate must receive 2m input pat
terns. It will be shown that 2m test patterns are also
sufficient to test the network of any size, if m is the
maximum number of input lines to any Exclusive-OR
gate. Hence, the procedure yields the minimum number
of test patterns necessary to completely test the net
work for any single Exclusive-OR gate failure. It will
also be shown, by example, that the procedure is fast
and easy to apply, even for parity trees having a large
number of inputs.

GATE AND NETWORK TESTABILITY

Since the approach is to test the network by testing
every gate in the network, it is primarily necessary to
discuss what constitutes a test for an individual Ex
clusive-OR gate. Although it is assumed that the
parity trees are realized as a network of Exclusive-OR
gates, no internal realization is assumed for the Ex
clusive-OR gates. Hence, it will be presumed that all
2k input patterns are necessary to diagnose a single k-

63

input Exclusive-OR gate. Each gate, therefore, is
given a complete functional test so that single error
detection means that any error in "one Exclusive-OR
gate can be detected. The following is the definition
of a gate test.

Definition 1 :

A test for a k-input Exclusive-OR gate is the set of
2k distinct input patterns of length k. Figure 1 shows a
three input Exclusive-OR gate, the 23=8 input test
patterns, and the output sequence which must result
if a complete functional test is to be performed.

If the output sequence and the sequences applied to
each input are considered separately, each will be a
vector of length 2k. Thus;-the Exclusive-OR gate can
be considered to operate on input vectors while pro
ducing an output vector. Figure 2 shows a three input
Exclusive-OR gate when it is considered as a vector
processor. In terms of vectors, a test is defined as
follows.

Definition 2:

A test for a k-input Exclusive-OR gate is a set of k
vectors of length 2k which, when considered as k se
quences of length 2k , presents a1l2k distinct test patterns
to the gate inputs.

Theorem 1:

If K is a test for a k-input Exclusive-OR gate, then
any set M, MCK, having m, 2~m~k-l, elements
forms 2k - m tests for an m-input Exclusive-OR gate.

Proof:

Consider the k vectors in K as sequences. Arrange
the sequences as a k by 2k matrix in which the last m

64 Fall Joint Computer Conference, 1970

00010111

00101011

01001101
=:8 -.... 01110001

Figure I-Three input Exclusive-OR gate with test patterns

rows are the sequences in M. Code each column' as a
binary number with the highest order bit at the top.
Since the columns are an distinct according to definition
1, each of the numbers 0 through 2k-1 must appear
exactly once. Considering just the bottom m rows, it
follows that each of the binary numbers 0 through
2m-1 must appe:u exactly 2k- m times. Since each of
the possible sequences of m bits appears 2k - m times,
definition 1 implies that the set M forms 2k- m tests for
an m-input Exclusive-OR gate.

Network testability:

Two conditions are necessary for a network of Ex
clusive-OR gates to be completely tested. First, each
gate must receive a set of input vectors that forms a
test. Second, anyone gate error must be detectable at
the network output. For the first condition it is neces
sary that the set of vectors from which the tests are
taken be closed under the operation performed by the
k-input Exclusive-OR gates. The second condition
requires that any erroneous output vector produce an
erroneous network output vector. The structure of this
set of vectors and their generation will be discussed in
the following sections.

AN EXAMPLE

The test pattern generation procedure is so simple
and easy to apply that it will be presented by way of
an example before the theoretical properties of the
desired sequences are discussed. The algorithm pro
ceeds by selecting an arbitrary output sequence and

WHERE ~ = 00010111, ~ = 0010101 I, ~ = 01001101, .!!. = 01110001

Figure 2-Three input Exclusive-OR gate as a vector processor

Wo WI W2 W3 W4 W5 Ws

Wo 101 I 100 Wo 0 W5 W3 W2 Ws WI W4
WI 010 I I 10 WI 0 Ws W4 W3 Wo W2
W2 00101 I I

W3 100 101 I

W2 0 Wo W5 W4 WI

~3 0 WI Ws W5
W4 1100101 W4 0 w2 Wo
w5 I I I 00 10 w5 0 w3
Ws 01 1001 Ws 0

Figure 3-Test sequences and their addition table

then successively determining input sequences which
test each gate to produce the desired output.

Figure 3 presents the seven sequences and the as
sociated addition table that will be used in the ex
ample. Figure 4 illustrates the gate labeling procedure
which will be used to determine the inputs when the
output is specified. Figure 5 shows the parity tree with
57 inputs and 30 Exclusive-OR gates of two and three
inputs arranged in a four level tree. The procedure
generates eight test patterns which will completely test
all 30 gates of the tree.

The procedure is initiated by assigning an arbitrary
sequence to the output of the tree. In the example,
Wo is selected as the final output sequence. Employing
the 3-input gate labeling procedures shown in Figure
4, the inputs are determined to be WI, W 2, and W 4•

With these three sequences, the gate is completely
tested. These inputs are then traced back to the three
gates in the third level. Using the gate labeling pro
cedure again, the inputs for the gates from left to right
are W 2, W a, Ws; W 3, Wo; and W s, W 2• The sequences
assigned to the inputs can be determined quickly and
easily by making use of tracing and labeling. Under
proper operation, each gate is completely tested and a
single gate failure will produce an incorrect sequence

2 -INPUT 3-INPUT

NOTE: Wi == Wi (MOD 7)

Figure 4-Gate labeling procedures

at the output. Above each input the required sequence
is listed, and the correct output is the sequence Woo
The test patterns are obtained by reading across the
sequences and noting the correct output. The test is
completed by adding the all zero test pattern. This
should produce a zero output.

THEORETICAL PRELIMINARIES

Consider the set of vectors generated by taking all
mod-2 linear combinations of the k vectors of a given
test set K. This set is obviously closed under mod-2
vector addition. In a parity check tree network an
input of any subset of vectors from this set will pro
duce vectors in the set at all input-output nodes of
the Exclusive-OR gates. Some further insight can be
gained by viewing the above set as a binary group
code. The generator matrix G of this code, whose rows
are k vectors from K, contains all possible k-tuples as
columns. If we delete the column of all O's in G, the
resulting code is known as a MacDonaldl code in which
the vector length n is 2k -1 and the minimum distance
d is 2k - l • The cyclic form of the MacDonald code is
the code generated by a maximum length shift register.2

Theorem 2:

Any independent set of k vectors from the Maximum
Length Shift Register Code of length 2k -1 forms a test
set for a k-input Exclusive-OR gate, excepting the
pattern of all O's.

Proof:

Any independent set of k-vectors from the code
forms a generator of the code. In the Maximum Length
Shift Register Code as well as in the MacDonald Code,
2d-n = 1. This implies*3 that any generator matrix
of the code contains one column of each non-zero type.
By definition 2, this forms the test for a k-input Ex
OR gate excepting the test pattern of all O's.

Corollary:

For an m-input gate, m~k, any set of m-vectors
from a MLSRC of length 2k -1 forms a sufficient test.

The proof follows from Theorems 1 and 2.
The maximum length shift register sequences can

be generated2 by using a primitive polynomial p(X) of

* In Reference 3 it is shown that in a group code with 2d -n =

t > 0, there are t columns of each type.

Optimum Test Patterns 65

000
III 100 101 100 010001 101 001 110 100 010001 011 110 100 101 III III 001
110 III 010 III 100 101 010 101 011 III 100 101 001 01 I III 010 110 110 101
Oil 110 100 110 II I 010 100 010001 110 II 1010 101 001 110 100 011 Oil 010
001011 III 011 110 100 III 100 101011 110100 010101 011 III 001001 100
101001 110001 011.11 I 110 II I 010001 Oil '" 100 010001 110 101 101 II I
010 101 011 101 001 110011 110 100 101 001 110 III 100 101 011 010010110
100 010 001 010 101 OJ 1001 Oil II 1010 101011 110 II I 010001 100 100011

4SO 561 013561 602 124013 124 346561 602124 23534651 013 4SO 450 124

o
I
o
I
I
I
o
o

Figure 5-Four level parity tree with test patterns

degree kin GF (2). Let g(X) = (Xn-1)jp(X) where
n = 2k -1. Then the first vector Wo of the MLSRC is
the binary vector obtained by concatenating k-1
zeros to the sequence of the coefficients of g (X). The
vectors WI, W3 ••• Wl-2 are then obtained by shifting
WI cyclically to the right by one digit for 2k - 2 times.
The method is illustrated for k = 3. A primitive poly
nomial of degree 3 in GF (2) can be obtained from
tables,2 e.g., X3+ X + 1 is primitive.

g(X) = (X'l-1)j(Xa+X+1) =X4+X2+X+1.

Then Wo is obtained from g(X) as

Wo=10 1 1 1 0 0

The sequences WI, W2 ••• W6 are obtained by shifting
Wo cyclically as,

W1=0 1 0 1 1 1 0

W 2 =O 0 1 0 1 1 1

TV3 = 1 0 0 1 0 1 1

W4 =1 1 0 0 1 0 1

W5=1 1 1 0 0 1 0

W6 =O 1 1 1 0 0 1

Note that when W2k -2 is shifted cyclically to the right
by 1 digit, the resulting vector is Woo For the purpose
of uniformity of relationship among the vectors we

66 Fall Joint Computer Conference, 1970

introduce the notation: Wi== Wi (mod 2k_l). Now the
following theorem gives a method of selecting inde
pendent vectors from a MLSRC.

Theorem 3:

The vectors Wi, W i+l, ... , W i+k-l in a MLSRC of
length 2k -:-1 form an independent set.

Proof:

Suppose g(X) is given by g(X) = grXr+ gr_1Xr-I +
... + glX+gO, where r= (2k-l) -k. Then the set of
vector Wo, WI, ... ,Wk - I are given by

gr-l

o o ..

go 0 0 0

go 0 0

go 0

o
o
o

go

Clearly they are linearly independent. Because of the
cyclic relationship, this implies that Wi, Wi+I, ... ,
W i+k - 1 are independent.

Corollary:

The vectors Wi+I, Wi+2, ... ,Wi+m- I, and WiEBWi+lEB
... EBWi+m-I, (m~k), form an independent set. With
this as a test to an m-input Ex-OR gate, the correct
output vector is Wi.

As a direct consequence of the above theorems we
have the following algorithm for the test pattern gen
eration for a given Exclusive-OR network.

Algorithm for test pattern generation:

It is assumed that the Exclusive-OR network is con
structed in the form of a tree by connecting m-input
Ex-OR gates where· m may be any number such that
m~k.

1. Select any vector Wi from a MLSRC of length
2k -1 as the output of the network.

2. Label the inputs to the last Ex-OR as Wi+I,
W i+2, ••• , W i+m-l, and Wi EB W i+l EB ... EB W i+m-l·

3. Trace each of the above inputs back to the
driving gate with the same vector. Repeat steps

(2) and (3) to determine the proper inputs to
the. corresponding gates.

4. The vectors at the input lines to the Ex-OR tree
are then the test input vectors with the correct
output as Wi.

5. An additional all 0 pattern as input to the· net
work with 0 as correct output completes the
test.

It is easy to see· that the test patterns generated by
the above algorithm provide a complete test for each
Ex-OR gate in the parity check tree. Furthermore, any
single gate failure will generate an erroneous word
which will propagate to the output. This is due to the
linearity of an Ex-OR gate. Suppose one of its inputs is
the sequence Wi with a corresponding correct output
sequence W j. If the input Wi is changed by an error
vector to Wi+e, then the corresponding output is
Wj+e. Clearly, the error will appear superimposed on
the observed network output.

TEST MECHANIZATION

We have shown that the necessary test patterns for
a parity tree can be determined by a simple procedure
using a set of k independent vectors or code words
Wo, WI, ... , Wk- l from a MLSRC as the input to
each gate of k inputs. The result of applying this pro
cedure to a network is an input sequence Wi for each
network input and each network output. Testing is ac
complished by applying the determined sequences
simultaneously to each input and then comparing the
expected network outputs with the observed network
outputs.

Let the gate having the greatest number of inputs in
the. network show k inputs. The entire test can be
mechanized using a single (2k-l)-stage feedback
shift register. To do this a unique property of the
MLSR codes is used. From this property it follows that
the entire set of non-zero code words is given by the

~--Wo

L....--. ___ ---=,--... W,

------------'----~- W2"-3
0,--________________ W

2
"-2

Figure 6-Shift register for generating test patterns

2k - 2 cyclic shifts of any non-zero code word together
with the code word itself.

If a (2k-1)-stage shift register is loaded with a par
ticular code word Wo as in Figure 6, then the sequence
of bits observed at position 1 during 2k -1 shifts of
the register is the code word Woo Similarly for every
other position i, a different code word W i - 1 is observed,
so that the entire set of 2k -1 sequences is available.
Since the correct output of the network is one of the
code words, it is also available at one of the stage out
puts for comparison. The general test configuration is
given by Figure 7.

SELF-CHECKING PARITY TREE

Let us suppose that the test sequences and the shift
register connections for a parity network have been
determined as in Figure 7. A modification of this mecha
nization can be used to produce a self-testing parity
network under its normal operation. The key idea is to
monitor the normal randomly (assumed) occurring
inputs to the network and to compare them with the
present outputs of the shift register. When and only when
a match occurs, the comparison of the outputs of the
parity networks with the appropriate code words is
used to indicate either correct or incorrect operation,
and the shift register is shifted once. This brings a
new test pattern for comparison with the normal in
puts. Every 2k -1 shifts of the register means that a
complete test for all single failures has been performed
on the network.

12"-1 STAGE s.R.l

1 Wo ~~
W2"_3

PARITY · TREE
W2"-2 · ·

~~

....
.....,

j

OR I
!

ERROR

Figure 7 -General testing scheme

Optimum Test Patterns 67

ERROR

Figure 8-Self checking parity tree

The mechanization of the self-checking parity tree
is shown in Figure 8. The inputs to the AND gate
Awl are the set of input lines of the parity tree which
receive the test sequence Wi. The inputs to the AND
gates AWiO are the inverse of the input lines of the parity
tree which receive the test sequence Wi.

An alternate approach to self-checking is to use the
testing circuit of Figure 7 as a permanent part of the
parity tree. The testing is performed on a time-sharing
or periodic basis while the circuit is not used in its
normal mode. This is easily accomplished by having
the clock, which controls the shift register, gated by a
signal which indicates the parity tree is not being used.
This could be a major portion of the memory cycle
when the parity tree under consideration is used for
memory ECC.

CONCLUSION

We have shown that a very low and predictable number
of test patterns are necessary and sufficient for the
complete testing of a parity tree under the single failure
assumption. The required tests are easily and rapidly
determined by an algorithm which is presented. (An
application of this technique is also given for a self
checking parity tree.) Since the effect of the input test
patterns is a complete functional test of each gate, the
tests are independent of any particular failure mode.

68 Fall Joint Computer Conference, 1970

REFERENCES

1 J E MAcDONALD
Design methods for maximum minimum-distance I error
correcting codes
IBM J of R&D Vol 4 pp 43-471960

2 W W PETERSON
Error correcting codes
MIT Press Cambridge Massachusetts 1961

3 A M PATEL
Maximal group codes with specified minimum distance
IBM J of R&D Vol 14 pp 434-443 1970

A method of test generation for fault
location in combinationallogic* .

by Y. KOGA and C. CHEN

University of Illinois
Urbana, Illinois

and

K. NAE1VIURA

Nippon Telegraph and Telephone Public Corporation
Musashino, Tokyo, Japan

INTRODUCTION

The Path Generating Methodl is a simple procedure
to obtain, from a directed graph, an irredundant set of
paths that is sufficient to detect and isolate all distin
guishable failures. It was developed as a tool for diag
nostic generation at the system level, e.g., to test data
paths and register }oading and to test a sequence of
transfer instructions. But it has been found to be a
powerful tool for test generation for combinational
logic networks as well.

The combinational network to be diagnosed is repre
sented as a set of complementary Boolean forms, where
complementation operators have been driven inward
to the independent variables using DeMorgan's Law.
A graph is then obtained from the equations by trans
lating logical sum and logical products into parallel
and serial connections, respectively. A set of paths is
generated from the graph, which is irredundant and
sufficient for detection and isolation of single stuck
type failures.

The advantage of this approach to test generation
lies in the irredundancy and isolation capability of the
generated tests as well as the simplicity of the algorithm.
Several test generation methods have been devel
veloped,2,3,4,5,6 but none attacks the problem of efficient
test generation for failure isolation. Some of these
papers presented methods to reduce redundancy of

* This work was supported by the Advanced Research Projects
Agency as administered by the Rome Air Development Center,
under Contract No. US AF 30(602)4144.

69

exhaustively generated tests to isolate failures or near
minimal test generation methods for failure detection,
but their methods are impractical to generate tests
for actual digital machines. Actual test generation
using the method presented in this paper has been
done for the ILLIAC IV Processing Element control
logic, and is briefly discussed.

PATH GENERATING METHOD

In this section, test generation by the PGM (Path
Generation Method) to a given directed graph will be
discussed briefly.

Let us consider a graph with a single input and a
single output such as that shown in Figure 1. If this
actual circuit has multiple inputs or outputs, we add a
dummy input or output node and connect them to the
actual inputs or outputs so that the graph has only one
input and one output node.

There exist thirteen possible paths from the input
node No to the output node N5 of the digraph in Figure
1 but not all of these are needed to cover every arc of ,
the graph. We arrive at a reduced number of test paths
in the following manner.

Starting at the input node, we list all the nodes which
are directly fed by the input node, i.e., have an in
cident arc which originated at the input node, and
draw lines corresponding to the arcs between them.
Level zero is assigned to the input node and level one
to the nodes adjacent to the input node. Nodes directly
connected to the level one nodes are then listed and
assigned to level two. This step is repeated until all

70 Fall Joint Computer Conference, 1970

INPUT

OUTPUT

Figure 1-A directed graph

nodes are covered. If a node has already occurred on a
higher level c or previously on the same level, we define
it as a pseudo-terminal node and cease to trace arcs
down from it.

Whenever a path from the input reaches a pseudo
terminal node, we complete the path by arbitrarily

~ INPUT

No

Figure 2-Generated test paths

• denotes
a' pseudo
terminal node.

~ ---=:':":::---11)t---:;O~/1:""-__ d

d=o·b·c

a

b a
c

graph complement graph

o and 1 denote a stuck-at-one and stuck-at-zero

failure, respectively, and * denotes a masked failure

by the output failure.

Figure 3-AND gate and its graphic representation

choosing any route (usually the shortest) which goes
from it to the output. Six paths are obtained from the
digraph in Figure 1 as shown in Figure 2, where short
est paths are selected after reaching a pseudo-terminal
node.

The main advantage of this test generation method
is that the set of paths generated by the PGM is an
irredundant set which is sufficient for detecting and
locating any distinguishable single failure within any
cycle-free graph. It should be noted that any arc in the
graph is assumed to be able to be actuated independ
ently for a test path.

GRAPHIC REPRESENTATION OF
COMBINATIONAL LOGIC

To apply this PGM to a combinational logic network,
a graphic representation of a combinational logic
which takes into account stuck-type failures must be
used.

An AND gate with three inputs and one output has
possible s-a-1 (stuck at one) and s-a-O (stuck at zero)
failures. A s-a-O failure at output d is indistinguishable

from each s-a-O failure of the inputs a, band c, but there
exist five distinguishable failures, as shown in Figure 3.

Let· us consider the straightforward graphic repre
sentations of this AND gate and its complement ex
pression. In this example, a, band c can denote simple
variables or sets of subgraphs representing parts of a
logic network. Note that if the four paths are assumed
to be paths to test the AND gate where these. paths
can be actuated independently, all distinguishable
faults can be detected and single faults can be located.
The graphic representation is slightly modified to
demonstrate this, as shown in Figure 4, where F d=O

means no such fault that the output d is s-a-O.
It is obvious that anyone of five distinguishable

faults can be located by the four test paths, where only
one test path should be completed for each test. To
generate a set of test inputs, variable valu'es should be
assigned such that only the path to be tested is com
pleted and the rest of the paths are cut off. The test
values for the variables (a, b, c) are determined to be
(1, 1, 1), (0, 1, 1), (1, 0, 1) and (1, 1, 0) for a three
input AND gate.

If one input variable is dependent on another then
normally distinguishable failures may become indis
tinguishable. For example, if variable a is dependent
upon variable b, then a s-a-l failure at input a and a
s-a-l failure at input b may become indistinguishable
or undetectable.

Whenever anyone of the variables a, b, and c is re
placed by a subgraph which represents a part of a logic
network, the same discussion is extended to the complex

a

b

C

Fc"=1

Fd=o

Figure 4-Complex graph for test generation to take into
account failures

Method of Test Generation 71

:~d
(a) Original Logic gat~ d ~ ab + c

~
eao.

~F.:.', e~,.
e = d

Fe., CL" a.,
'C=O

~o

(b) Possible gate failures

: °0° 1;., F;
~_, b-,

~-o
(c) OR gate test

generation graph

(d) r.raph for test generation

e
subgraph for e and e

.lSr denotes a new indistinguish
able failure by connection.

Figure 5-A logic network containing a negation

graph. Also, a similar argument can be applied to an
OR gate. If a NOT operation appears between two
successive gates, the input variables to the following
gate are replaced by the dual subgraph of the preceding
gate. Alternatively, the graph will be given directly
from equations modified such that negations are driven
inward to the primary input variables by applying
DeMorgan's Law to the given Boolean equation. For
example, the graph for test generation with the logic
network in Figure 5a is given as shown in Figure 5d.

The same graph is derived from the transformation
of the Boolean equation as

d=ab+c=a+b+c

and the graph for test generation is given directly by
the above equation. It is obvious that distinguishable
failures in the original logic network are still distin
guishable in the complex graph representation for test
generation.

72 Fall Joint Computer Conference, 1970

~

~ T .. !::r--L i
tH ... Ji

1. L ___ J

~

~

piI-wi6--1

PAW-W17-:.t •

JiUti

r-------..,
~--------~I I

Fvm2-COf : I
!r---------~I :

I

r--------,
I

:
I
I
I
I

I
I
I

PY[8-ACLDl

Figure 6-An example of control logic of ILLIAC IV PE (Closed
dotted line denotes an IC package and half one denotes

a part of IC package)

From the previous discussion it will be noted that if
those input variables which correspond to the nodes
in a path test through the original graph of a logic func
tion are activated, the combinational logic network will
give an output of a logic 1, whereas if the path goes
through the complement graph, the output will be a O.
For example, if we set a = 1, b = 1 and c = 1 in Figure 4,
the output of the network is a logical 1. If a, b or c
stucks at 0, the faulty network will produce output 0
instead of 1. This test can detect single failures a, b, c
or output d stuck at o.

In order to detect the s-a-l failure of input line a, b, c
and output line d, the path tests in the complement
graph are required. A s-a-O type failure of one node in
an original graph will become a s-a-l type failure in
the complement graph and s-a-l type failure of one
node in an original graph will become s-a-O type failure
in the complement graph. Now it is clear that the com
plement graph of the original graph is required for the
output stuck at ~1.

In test generation methods which have been pre
sented in the past, the relationships between test gen-

eration and distinguishable failures in a combinational
network were not clearly established. The main ad
vantage of the graphic representation of a combina
tional network (including the complement expression)
is that the graph contains failure information explicitly
as discontinuities of arcs or nodes instead of s-a-O and
s-a-l failures in the original combinational logic
network.

TEST GENERATION FOR COMBINATIONAL
CONTROL LOGIC

The output of any portion of a computer control logic
is usually governed by many input conditions, but the
fan-in of a typical logical element is usually restricted
to only a few inputs. This causes the number of gate
levels necessary to generate a function to increase and
the structure of control logic becomes tree-like. The
network shown in Figure 6 is a typical control logic of
the ILLIAC IV PE. Since there are about 50 distin
guishable failures in the network, about 50 iterations
of a path sensitizing would be required by conventional
technique, or more than 8000 terms would have to be
handled by Armstrong's method.2 In both cases, neither
the irreducibility of tests nor the isolation capability
of distinguishable failures would be guaranteed.

The network of Figure 6 is translated into the graph
of Figure 7 and Figure 8, from which the PGM will
generate tests, and the irredundancy and isolation
capability of the generated tests are guaranteed as well
as the simplicity of the algorithm.

To make a test path in the graph, the variables on
the path under test should be actuated and the rest of
the paths should be cut off. If the original logic net
work does not have a complete tree structure, a few
conflicts may occur in assigning values to variables to

Figure 7-A graph representation of Figure 610gic diagram

make a test path generated by the PGM. These may
easily be resolved, as will be shown later.

Transformation of boolean equations to arc descriptions

The description of a combinational logic network is
assumed to be given by a set of Boolean equations
using the operators AND, OR and NOT.

For example, from Figure 6 of a part of the control
logic of the ILLIAC IV PE, the Boolean equation is

FYEM648L-T P-EX-UF-LH

FYE98ASLIT

FYEElA-HMT

PMW-El---O

PAW-WOl--l

PBW-WOl--l

P4W-W02--1

FYE98ABLIl

FYEElA-HMT

PMW-EI---O P--L-7I--O

Figure 8-A complementary graph of Figure 6 logic diagram

Method of Test Generation 73

PYE8-ACLDI +-(«PMW-EI---O AND NOT FYEM32-LOT) OR

«FYEElA-HMT OR NOT PMW-EI---O) AND NOT

FYE8-ACLCl) OR

«NOT P-EX-UF-LH AND

(FYEElA-HMT OR NOT PMW-EI---O» AND NOT

FYEM648L-T) OR

(NOT FYE98ASLIT AND

«FYEElA-HMT OR NOT PMW-EI---O) AND NOT

P-CARRYH-L AND NOT PEXDI-L48L») OR

«P4W-WIO--IOR PAW-W09--1 OR

PBW-W09--1) AND

(NOT P-EX-UFlLH AND

(NOT PAW-W16--1 AND PAW-W17--1) AND

(NOT FYEM329LIT OR NOT FYEMULTL9T) AND

(FYEElA-HMT OR NOT PMW-EI---O») OR

« (FYFElA-HMT OR NOT PMW-EI---O) AND NOT

P-EX-UF-LH AND NOT FYEM649L-T AND

(NOT PAW-W16--1 AND PAW-W17--1» AND

(PAW-WOl--l OR PBW-WOl--l OR

P4W-W02--1» OR

«PGC--16--1 OR P--1-7I--O) AND

«(FYEZlA-HMT OR NOT PMW-EI---O) AND NOT

FYE98ABLIl) OR

(NOT FYE9BABLFI AND

(FYEElA-HMT OR NOT PMW-EI---O»»);

Figure 9-Squeezed equation of Figure 6

derived* and this equation was then 'squeezed' by a
program as shown in Figure 9, where logical constants
(used to disable unused gate inputs) are removed from
the functional Boolean expression, and NOT operators
are driven into the innermost individual variables of
the equation by use of DeMorgan's Law.

N ow we try to transform the Boolean equations into
the graph descriptions. AND operations are trans-

* In the case of the ILLIAC IV PE design, the Boolean equations
are automatically generated from wiring information. This same
equation set was also used for debugging the logical design.

74 Fall Joint Computer Conference, 1970

z = a AND b z = a OR b

~a) AND operation (b) OR operation

Figure 10-Transformation of the Boolean equations into graph.
AND operation in graphic form

formed into series connections and OR operations into
parallel connections as shown in Figure 10.

The graphic representation of a combinational logic
network is translated as arc description for the input
to the PGM program. The AND operation, a AND b,
is translated as b~a, where a is the source node and b
the destination node. The OR operation is translated
as a~dn1, dn2~a, b~dn1 and dn2~b, where dn repre
sents dummy node.

In the arc description generation program which we
developed, redundant dummy nodes are removed in
sofar as possible. For example, dummy nodes can be
eliminated from the OR operation in the various ways
shown in Figure 11 depending on the original Boolean
equation.

For ILLJAC IV PE control logic we get 111 Boolean
equations. The 111 Boolean equations and their 111
complemented equations can be visualized as 222· sub
graphs and all connected to an input node and output
node. The arc descriptions of this big graph are pro
cessed by a program (PGM algorithm) to produce a
set of 464 paths for diagnosis.

Conflict and sneak paths

In a graphic representation, every path on the graph
is assumed to ,be able to be actuated independently to
the other paths, but this assumption is not always
true in the case of combinational logic network
representations.

For example, if there is a variable on a path such
that the variable simultaneously completes one portion
of the path and opens another portion of the path,
that is, the variable x appears as both x and x in one
path, then no test path actually exists.

In the following theoretical discussion, theseprob
lems will be analyzed accurately.

Let zbe a Boolean function of the Boolean variables
Xl, X2, ••• ,Xn and expressed as Z=Z(XI, X2, ••• , xn).

Let P be one of the path tests generated from the arc
description of the Boolean function z, and, be defined
bya set of Boolean variables on the path as P=

{Xll1 Xh, ••• ,Xla } where Xl l1 Xl 2, ••• ,xlaE {Xl, X2, ••• ,

Xn, Xl, X2, ••. , Xn }.

A path P= {Xll1 Xh, ••• ,Xlal is said to have a
conflict if there exists at least one Xi such that Xi E
{Xl, X2, ••• ,Xn }, Xli=Xi and Xlk=Xi for Xli' XlkE

{Xll1 Xh, ••• , Xla }·

The conflict in the path will cause some trouble in
the assignment of the variables. Most of the time, they
can be avoided and this will be discussed in the next
section.

Let P= {Xll1 Xl 2, ••• ,Xla } be one of the paths and
('YI, 'Y2, ••• ,'Yn) be one of the value assignments where
'Y i = 1 if i E {h, l2, .•. , la} and the other 'Y i values are
arbitrarily chosen. If there exists another path P' such
that P' = {Xhl1 Xh2' ••• ,Xht/} where Xh17 Xh2' •• ·' Xht/E

{Xl, X2, ••• ,xn } and Xhl = ... =XhfJ= 1 after the above
assignment, the path P' = {Xh17 Xh2' ••• , Xht/} is called
a sneak path.

The sneak path P' is actually a path with its variables
being assigned 1 in addition to the path P in which we
are interested. The test values assigned to the variables
of the path test P= {Xl17 Xh, ••• ,Xlal can detect stuck
type failures s-a-O or s-a-1 for each literal in the path.
For example, if one of the input signals is Xi (E P) then
the test pattern derived from P can detect a s-a-O failure
at input Xi. If one of the input signals is Xi (E P) and
its literal Xi appears in P, that is xiEP, then the test
pattern derived from P can detect a s-a-l failure at
input Xi. Note that this detect ability of the failures as
sociated with the input Xi is under the assumption

AA
~

i) (...) AND (A,tlR B) AND (•••

O
nl

A B

E

iii) (. . pR ••) AND (A PR B) AND E

A

Al\B
V

ii) C AND (A pR B) AND (•••

B

iv) C AND (A pR B) AND E

Figure ll-OR operation in graphic form

that there are no conflicts or sneak paths for any test
value assignment to the variables in the path. Ap
parently redundancy in the original logic network
causes sneak paths in the graph representation, and
these sneak paths reduce the detectability of failures
by the path tests.

This is discussed more precisely as follows: Let
P= {xzu XZ 2, .•• , xzal, where xzi(jE {I, ... , aD is a
literal in the path we are interested in and P' =
{Xhu Xh2' ••• Xh/3} (-~P) is a sneak path as defined pre
viously. Let a subset P" be defined as P" =pnp' •

Then the test value assignment to the variables of
path P can at most detect stuck-type failures in the
input signals XZu XZ 2, .•• ,xziEP". The test pattern
cannot detect failures in XZi+!' .•. , XZa E P - P".

This is proved as follows:
If a path P is in the original graph, a sneak path P'

cannot be in the complement graph. Let P be in the
original graph corresponding to the logical network
function f and P' be in the complement graph corre
sponding to the complemented logical network func
tion J. Then we can express f and! as follows:

f=XlI 'Xl2 .•• XZa+RI

!=Xhl. X h2' . . xh/3+R2

By sneak path definition Xlu Xl2, ••• Xla, Xhl1 ••• Xh{J

are assigned 1, therefore f = 1 + RI = 1. But f = 1 con
tradicts ! = 1 + R2 = 1. So a path P being in the original
graph and the sneak path pI being in the complement
graph cannot exist. Similar arguments can be applied
to prove that a path P be in the complement graph and
a sneak path pI being in the original graph cannot
exist. So P and P' both must be in the original graph
corresponding to the Boolean function f or both in
the complement graph corresponding to the comple
mented function J.

First, assume that the path P and the sneak path
pI are in the graph, not including complement expres
sion, corresponding to the original logic function f. If
all the variables in the path Pare ANDed together
the result is XlIXZ2Xl~ • • • Xla' This is a term of the Boolean
expression of the logic network function f after ex
pansion but before simplification. Similarly for the
sneak path pI we get another term XhlXhz •• ,Xh{J for
the Boolean functionf. Letf=xlI .. . Xla+Xhl" ,xh{J+R.

Where R is the logic sum of the remaining terms of the
Boolean function f.

Since Xl l1 XZ 2, ••• ,xziEP" =pnp' , we can rearrange
the function f as follows:

According to the value assignment and sneak path

Method of Test Generation 75

definitions, we assign 1 to Xl l1 XZ 2, • , Xla and Xhl1 • , Xh/3

for the variables corresponding to the path P. A test
with logic value assignment 1 to Xk can detect a s-a-O
failure at location Xk if the change of the logic value
from 1 to 0 will result in a change of the logic values
at the output. On the other hand a test with logic
value assignment 0 to Xk can detect a s-a-l failure at
location Xk if the change of the logic value from 0 to 1
will result in a change of the logic value at the output.
First consider the s-a-O failure for Xli where XliE P"
and XZi is positive. Under the value assignment scheme
xlr=l, xz 2=1, ... , xla=l, xhl=I, ••• and xh{J=I, also
R = O. If Xli stucks at 0 and R still remains at 0, this will
change the function value from 1 to O. This corresponds
to the change of the output of the combinational logic
network from 1 to O. If R contains such one term in the
form of sum of products, as XliXklXk2' • • Xky and Xkl =

Xk2= ••• =xky=l and Xli=O under the previous assign
ment, the stucking at 0 of XZi will change R from 0 to 1.
This keeps the output remain at 1 when the input Xli

stucks at O. Therefore, the test derived from the path
P cannot detect the s-a-O failure a Xli' This will not
occur when xZi is a one-sided variable. So the test can
detect the s-a-O failures for those positive one-sided
variables xljin P". For the variable,s Xli+l1 Xl i+2, •••

and Xla E P - P", the test cannot detect the failures.
Assume xjEP-P" is a positive variable and stucks at
O. The term XZ i+1XZ i+2 • • • Xla becomes 0 but Xhi+lXhi+2' ••

Xh{J is still 1 under the same value assignment scheme.
Since all xi's E P" are assigned logical 1, the function
value still remains at 1 regardless of whether Xj E P - P"
is 0 or 1. So the test cannot detect the s-a-O failures for
any positive variable Xj in P - P".

Similar arguments can be applied for s-a-l failure
of Xi and its literal xiEP. Now we have only proven
those paths in the original graph which correspond
to the Boolean function f. Similar arguments can be
applied to those paths in the complement graph except
the function is J instead of f.

If P" = P np' is an empty set, the test derived from
P cannot detect any failure. Thus this test is useless,
and such a path P is said to have a fatal sneak path P'.

Test generation

The PGM program generates a set of paths from
the arc descriptions of the combinational logic network.
These paths will be processed to produce a set of test
sequences to detect and locate the failures.

Let z be a Boolean function of Boolean variables
Xl, X2, ••• , Xn and expressed as z = z (Xl, X2, ••• , Xn) •

Without loss of generality, assume z is positive in
Xl, X2, ••• , Xi and negative in Xi+1, Xi+2, ••• , Xii that is,

76 Fall Joint Computer Conference, 1970

Xl through Xi appear in uncomplemented form and
Xi+! through Xj appear in complemented form only. But
Z is both positive and negative in Xj+l, Xj+2, ••• , Xn•

That is, both Xk and Xk (j + 1 ~ k ~ n) appear in the ir
redundant disjunctive form of· z. For example, if
Z(Xl, X2, X3, X4) =XlX2+X2X3+X4 then Z is positive in Xl,

negative in X3 and X4 but either positive or negative in
X2. Let us define those variables Xl, X2, • • • , Xi and
Xi+l, ..• , Xj as one-sided variables and those variables
Xj+l, Xj+2, ••• , Xn as two-sided variables.

Suppose the PGM program produces paths PI,

P2, ••• , Pm from the arc description of the equation
Z = Z (Xl, X2, ••• , Xn). Consider only one path Pl. Let
PI be defined by a set of variables on the path as
PI = {Xll' Xh, ••• , Xlal, where

Let Xl D Xlz, ••. ,Xla be defined as variables inside path
and other variables as variables outside path. For ex
ample, if we have Z=Z(Xl, X2, X3, X4) and PI = {Xl, X2},

then Xl and X2 are variables inside path and X3 and X4

are variables outside path.
If PI = {Xll1 Xl 2 , ••• , Xla } is one of the paths produced

by PGM program from the arc descriptions of the
equation Z=Z(Xl, X2, ••• xn), then one can get the test
from PI by the following procedure:

1. Set the positive variables inside path at 1 and
the negative variables inside path at O.

2. Check two-sided variables inside path. If Xi and
Xi appear in the path, conflict occurs. Stop. If
only positive form Xi of the two-sided variables
Xi appears in the path, set it at 1. Otherwise at
o.

3. Set the positive variables outside path at 0 and
negative variables outside path at 1.

4. Set the two-sided variables outside path at o.
5. Check for sneak paths.
6. If a sneak path exists, change one of the two

sided variables. Go back to step 5. If the sneak
path still exists after checking all the combina
tions of the binary values of two-sided variables
outside path, check for the fatal sneak path.

7. If no fatal sneak path appears, the assignment
of the logic values is good. Therefore, a test is
determined.

When the PGM was applied to the ILLIAC IV PE
control logic, onlysix of 111 equations were discovered
to have path conflicts. Many of these conflicts may be
avoided by rearranging the input cards to the PGM
program, since the paths selected depend somewhat on
the ordering of the input equations.

Application to ILLIAC IV PE control logic

The ILLIAC IV PE can be divided functionally into
three major portions, the data paths, the arithmetic
units such as the carry propagate adder, the barrel
switch, etc., and the control logic unit. Tests for the
data paths and arithmetic units have been generated
by other methods. l

To diagnose the ILLIAC IV PE completely, control
logic tests have been generated by an automatic test
generator system which uses the methods presented in
the previous sections.

The control logic test generator system consists of
the following subsystems:

1. Equation generation and simplification program
2. Transformation program to change Boolean

equations into arc descriptions
3. PGM program
4. Test generation program

a. Conflict checking
b. Value assignment to variables
c. Sneak path checking

They are combined into the system shown in Figure
12.

Pragram which drives
the "NOT" to the
innermost individual
variables

Transformation from
Boolean equations
into the Arc
descriptions

(111 equations)

~-r--_...L...J (464 tests)

Test Generat ian
1. Conflict checking
2. Assignment of

the variables
3. Sneak path checking

Figure 12-Controllogic test generation system

Method of Test Generation 77

TABLE I-Value Assigned Tests for Combinational Logic Network of
Figure 6 Diagram

(THE OUTPUT SIGNAL IS PYE8-ACLDl)

SIGNAL NAMES

FYE8-ACLCl
FYE98ABLFl
FYE98ABLIl
FYE98ASLIT
FYEEIA-HMT
FYEM329LIT
FYEM32-LOT
FYEM648L-T
FYEM649L-T
FYEMULTL9T
P4W-W02-1
P4W-WI0-l
PAW-WOl-l
P4W-W09-1
PAW-Wl6-1
PAW-W17-1
PBW-WOl-1
PBW-W09-1
PEXDI-L48L
PGC-I6-1
PMW-EI-0
P-CARRYH-L
P-FX-UFILH
P-EX-UF-LH
P-L-71-0

PATH NUMBERS
111111111122222222223333333333444

123456789012345678901234567890123456789012

111111111101110111111111111111111111111011
111111001111111110111010100000000000000000
111110111111011111111100100000000000000000
111111110111111101111111111111111100011111
010110010000111010111001101111011101101011
101111111111111011100000000000010000000000
111111111110111111111111111111111111111101
111111111011101111111111111111111111100111
110001111111111111011110100001111111111111
011111111111111111111000000000010000000000
001000000000000000100110111111111111111111
100000000000000100001111111110111111111111
000010000000000000000110111111111111111111
000000000000000000010111111110111111111111
000001111111111011000000000100000100000000
111110000000000100111111110111110111111111
000100000000000000000110111111111111111111
010000000000000000000111111110111111111111
111111110111111101111000000000000001000000
000001010000100001000110100000000000000000
010110010001111010111111111111111111111101
111111110111111101111000000000000000100000
001111111111111011100111111110000011111111
110001111011101111011000000010000000001000
000000100000000000000110100000000000000000
THE FIRST 21 PATHS ARE FOR THE
OUTPUT "PYE8-ACLDl" WHICH CORRE
SPONDS TO THE ORIGINAL GRAPH.
THE REST OF THE PATHS ARE FOR'
THE COMPLEMENTARY OUTPUT "NOT
PYE8-ACLDl" WHICH CORRESPONDS
TO THE COMPLEMENTARY GRAPH.

Table I shows the variable assignment for the control
logic tests in Figure 6.

Test generation by means of graph representation
of the Boolean functions of combinational logic net
works has several advantages over other methods.
First, distinguishable faults are explicitly expressed as
nodes in the graph. A test which is derived from one
path in the graph can detect stuck-type failures, if no
sneak paths exist. The nodes in the graph correspond
to the failure locations and failure types (s-a-O or
s-a-l) in the combinational logic network.

Test dictionaries for failure location can be generated
by a system similar to the test dictionary generator
system associated with the PGM program. The test
dictionary generation will be reported in a separate
paper.

CONCLUSION

The path generation method for test generation for
combinational logic has been discussed and an example
of the test generation system for ILLIAC IV PE control
logic has been presented.

Second, a complete set of tests for fault location can
easily be generated from the graph by the PGM pro
gram. If no conflicts or sneak paths exist in the set of
paths generated by the PGM, the corresponding set of
tests is sufficient for locating failures in the combina
tional logic network.

78 Fall Joint Computer Conference, 1970

This method is a powerful tool for testing tree struc
ture logic networks. If the structure of a logic network
is not of the tree type, the conflicts may occur.

A method of checking for conflicts and sneak paths
has also been presented. This is used to determine the
validity of the tests for the combinational logic network.
Conflicts can easily be reduced by replacing tests or
rearranging of the PGM inputs after inspection of the
generated tests. It is noted tha t these conflicts are not a
result of our approach, but rather a property of the
network itself.

Generally, conflicts will be few in control logic net
works because their structure is close to a pure tree
structure, and no sneak paths exist if there is no re
dundancy in a logical network.

ACKNOWLEDGMENT

The authors would like to thank Mr. L. Abel for his
enthusiastic discussion and our advisor,Professor D. L.
Slotnick.

This work was supported by the Advanced Research
Projects Agency as administered by the Rome Air
Development Center, under Contract No. US AF
30(602)4144.

REFERENCES

1 A B CARROLL M KATO Y KOGA
K NAEMURA
A method of diagnostic test generation
Proceedings of Spring Joint Computer Conference pp
221-228 1969

2 D B ARMSTRONG
On finding a nearly minimal set of fault detection tests for
combinational logic nets
IEEE Trans on Computers, Vol EC-15 No 1 pp 66-73
February 1966

3 J P ROTH W G BOURICIUS P R SCHNEIDER
Programmed algorithms· to compute tests to detect and distin
guish between failures in logic circuits
IEEE Trans on Computers Vol EC-16 No 5 pp 567-580
October 1967

4 H Y CHANG
An algorithm for selecting an optimum set of diagnostic tests
IEEE Trans on Computers Vol EC-14 No 5 pp 706-711
October 1965

5 C V RAMAMOORTHY
A structural theory of machine diagnosis
Proceedings of Spring Joint Computer Conference pp
743-7561967

6 W H KAUTZ
Fault testing and diagnosis in combinational digital circuits
IEEE Trans on Computers Vol EC-17 pp 352-366 April
1968

7 D R SHERTZ
On the representation of digital faults
University of Illinois Coordinated Science Laboratory
Report R418 May 1969

The application of parity checks to an arithmetic control

by C. P. DISPARTE

Xerox Data Systems
EI Segundo, California

INTRODUCTION

As circuit costs go down and system complexity goes
up, the inclusion of more built-in error detection cir
cuitry becomes attractive. l\1:ost of today's equipment
uses parity bits for detection of data transfer errors.
between units and within units. Error detection for
arithmetic data with product or residue type encoding
has been used to a limited extent. However, a particu
larly difficult area for error detection has been control
logic. When an error occurs in the control, the machine
is likely to assume a state where data is meaningless
and/ or recovery is impossible. Some presently known
methods of checking control logic are summarized below.

Methods of checking control logic!

Sequential logic latch checking

A parity latch is added to a group of control latches
to insure proper parity. The state logic must be desjgned
such that there is no common hardware controlling the
change of different latches.

Checking with a sim.ple sequential circuit

A small auxiliary control is designed which serves as a
comparison model for the larger control being checked.

Using a special pattern detecting circuit

An auxiliary sequential machine is designed which
repeats a portion of the larger sequential machine's
states in parallel. This gives a check during part of the
cycle of the larger machine.

Checking with an end code check

A check on the control outputs is accumulated and
sampled at an end point.

79

Inactivity alarm.

Checks the loss of timing or control signals.

Method of checking an arithmetic control

The application of parity checks for error detection
in an arithmetic control appears to have been first sug
gested in 1962 by D. J. Wheeler.2 He suggested the
application of a "parity check for the words of the store"
as an advantage of the fixed store control where parity
checks would be applied to each microinstruction word.
In a conventional type control, the method of applying
parity checks is similar provided that the parity bits are
introduced at the flow chart stage of the design. The
present method is applied to an Illiac II type arithmetic
control which is a conventional control rather than a
read only store control. The method gives single error
detection of the arithmetic control where errors are de
fined as stuck in "1" or "0".

THE ILLIAC II

The Illiac II which was built at the University of Il
linois is composed of four major subsystems as shown in
Figure 1. The Executive Subsystem includes Advanced
Control, the Address Arithmetic Unit and a register
memory. The Arithmetic Subsystem contains Delayed
Control, the Link Mechanisms and the Arithmetic Unit.
The Core Memory Subsystem is the- main storage. The
Interplay Subsystem contains auxiliary storage, I/O
devices and the associated control logic.

The Illiac I I arithmetic subsystem

The arithmetic Subsystem of the Illiac II shown in
Figure 2 performs base 4 floating point arithmetic. The
input and output channels carry 52 bits in parallel.

80 Fall Joint Computer Conference, 1970

Executive
Subs~m

t
I
I
I

•

Arithmetic
Subsystem

CONTROL A6. TH - - -
QA.TA A6.TH ---

Core
Memory

4------ ---------_____ •

- - ! -.. I ,
........................ I

• -.... -........

Interplay

Figure l-ILLIAC II organization

The first 45 bits of the operand are interpreted as a frac
tion in the range -1:::; f < 1. The last 7 bits are inter
preted as an integer base 4 exponent in the range:
-64:::;X<64. Both the fraction and the exponent have
a complement representation. The other input data
channel carries a six bit Delayed Control order which
specifies the operation performed by the Arithmetic
Subsystem;

The Arithmetic Subsystem is composed of three
principal units. The Arithmetic Unit (AU) contains the
computational logic and is divided into two maj or sub
units as indicated. The Main Arithmetic Unit (MAU)
and the Exponent Arithmetic Unit (EAU) handle the
fractional and exponential calculations respectively.
The second principal unit of the subsystem contains the
Link Mechanism (LM) logic. This logic transmits com
mands from De]ayed Control to the Arithmetic Unit
(AU). It may further be divided into gate and selector
mechanisms and status memory elements. Delayed
Control is the third principal unit of the Arithme~ic
Subsystem. Delayed Control logic governs the data flow
in the AU via the LM.

The order being executed by the AU is held in the
Delayed Control register (DCR). A new order cannot be
transferred to DCR until the order presently held has
been decoded and initiated by Delayed Control. If the
order requires an initial operand, Advanced Control
(AC) determines whether Delayed Control has used the
operand presently held in FI(IN). If so, AC places the
new operand in IN; otherwise, it must wait. If the order
requires a terminal operand (i.e., a store order) AC
checks the contents of the OUT register before the store
order is completed.

SPINDAC, a small delayed control

Delayed Control is constructed with a kind of logic
known as "speed-independent". The theory of speed
independence holds that a speed independent logic ar
ray retains the same sequential properties regardless of
the relative operating speeds of its individual circuits.3

The theory permits parallel operations while at the same
time precluding the occurrence of critical races .

A smaller version of Delayed Control called
SPINDAC (SPeed INDependent Arithmetic Control)
has been used as a model for the present study.
SPINDAC was designed by Swartwout4 to control a
subset of the Illiac II floating point arithmetic instruc
tions. The relatively simple arithmetic unit which
SPINDAC controls performs thirteen arithmetic in
structions including addition, multiplication, exponent
arithmetic, and four types of store orders. Iror the pur
poses of this study, SPINDAC has been divided into
eight subcontrols as shown in Figure 3. Each of the sub
controls has one or more states. The Add subcontrol,
for instance has five states Al through A5. In general,
there is one flip-flop in SPINDAC for each state. The
entire SPINDAC has 29 states.

The MAU, EAU, and LM

The essence of this description is due to Penhollow.5

The Arithmetic Unit (AU) consists of the Main Arith
metic Unit (J\tIAU) and the Exponent Arithmetic Unit
(EAU). These two units operate concurrently, but are
physically and logically distinct. Both receive their
operands from the 52 bit IN register. The first 45
bits of this are interpreted as a fraction, -I:::;f < 1, and
is the l\1AU operand. The last 7 bits are interpreted as

~g~-+ ________________________ 5=2~its~
From

Advanced
Centro!

From
Advanced --
Control

Link
----.. Mechanisms

4-
L ____ "- _______ , :

52 bits
F&~~T)--------------~--------------~

Figure 2-The arithmetic subsystem of the ILLIAC II

an exponent, - 64::; X < 64, and is the EA U operand.
The complete floating point operand contained by IN
may be expressed as p=f·4x • Floating point results
placed in OUT have the same form. Both f and x are
in complement representation.

The block diagram of the Illiac II MAU is shown in
Figure 4. Registers A, M, Q and R each have 46 bits,
while S has 48 bits. Since the two adders yield sums in
base 4 stored carry representation, A and S also contain
23 and 24 stored carry bits respectively.

TheMAU

During the decode step of every Delayed Control
order, the gate FlgMEM transfers the first 45 bits of
IN to M even though the order does not use an initial
operand. The results of the previous operation are gen
erally held in A and Q which represent the primary rank
of the double length accumulator. The Sand R registers
form the secondary rank of the double length accumula
tor which usually holds an intermediate result at the end
of an operation. During the store step of every store
order, the RESgRO gate transfers a modified copy of
R to the OUT register.

The two adders shown in Figure 4 are composed of
base 4 adder modules. The A adder has the contents of
the A register as one input and the output of the MsA
selector as the other. In either case, the selector output
in two's complement representation is added to the
stored carry representation held in A or S. A subtraction
is accomplished by causing 1\1 to appear at the selector
output and then adding an extra bit in the 44th posi
tion.

The selector mechanisms have memory. Once a par
ticular selector setting has been chosen by Delayed Con-

1 1
Exponent

ADD Clear.Ad:l mrmalize Arithmetic
Subcontrol SUBCONlROL Subcontrol ubcontrol

E1-E2 A1-A5 81-82 N1-N3
J
1

Isu~~~r~11 ~~ Su 01
51-56 M1-M8

! I

ICorTeCt Overflow Detect Zero
Subcontrol

K1-K2

J
-1

Decode II Subcontrol
D1

I

Figure 3-SPINDAC (SPeed INDependent Arithmetic Control)

From
F1(iN)

F1gMEM

Application of Parity Checks 81

To FO(OUT)
via RE5gFO

Figure 4-The ILLIAC II main arithmetic unit

trol it remains in effect until a new setting is made.
The settings shown in Figure 4 are easily interpreted,
provided the outputs of the A and S adders are used in
place of the register outputs.

The gate mechanisms do not have memory, so they
must be activated each time the contents of the as
sociated registers are changed. If the gate is not acti
vated, the register simply retains its old contents re
gardless of the bit configuration appearing at its inputs.

The EAU

The block diagram of the Illiac II EA U is shown in
Figure 5. The EA, ES, EM and E registers each contain
8 bits. The EAU does arithmetic modulo 256. An 8 bit
adder (D-adder) with an optional carry into the Oth
position provides the capability of doing exponent arith
metic and counting. It accepts the outputs of the EA
register and the sD selector as inputs, and yields a sum,
D, which can be placed in ES via gES or in E via DgE.
The selector sEA controls the input to EA via gEA.
The gate mechanism EMgE controls the input to E.
During the decode step the contents of Fl are trans
mitted to EM via FlgMEM. At the end of an opera
tion the exponent of the result is left in E.

The EA U decoder is a large block of logic whose in
puts are the outputs of the D-adder. Its purpose is to
detect specific values and ranges of the adder output.
Knowledge of these values is used in the execution of the
floating add instruction. Detection of whether the out
put is inside or outside the range -64::;x<64 is also
accomplished at this point. Since knowledge of the pre
vious range or value of d must be remembered during
the time the inputs to the adder are changed, gES or
DgE will gate the outputs of the EA U decoder into a

82 Fall Joint Computer Conference, 1970

to Delayed Control

F1gMEM

sD
EMsD
EMsD

OsO
-2s0
2sD

-22sD

Figure 5-The ILLIAC II exponent arithmetic unit

MgE

register cal1ed ED. The memory elements of this register
are named according to the range of d they represent.

The Link Mechanisms (LM) include gates, selector
mechanisms, and control status memory elements. De
layed control directs the data flow and processing in the
Arithmetic Unit (AU) via the LM. Delayed Control
requests may determine the state of the LM directly or
indirectly through the outputs of decoders. The inputs
to these decoders may be the outputs of registers, adders,
or status memory elements. Selector mechanism and
status memory elements remember their present state.
The outputs of certain status memory elements in
fluence the branching of Delayed Control. The setting
of one or more of these elements during the present
control step partial1y determines the sequence of future
control steps.

Figure 6-SPINDAC add sequence partial flow chart

to
A5

SPINDAC flow chart

A partial flow chart for the SPINDAC Add sequence
is shown in Figure 6. The actions in two of the five states
A3 and A4 are indicated. Inside each of the boxes are
the control outputs in the form of gating and selector
outputs. On the lines leading to each box are the condi
tional inputs in the form of decoder, status element and
selector outputs. They determine which of the control
outputs is to be energized. The signals in the boxes on
the center line preceded by ALL are always energized
when in that state.

The action effected by states A3 and A4 is the align
ment of operands for floating point addition and sub
traction. Rather than attempting to explain each of the
symbols in the flow chart, only the simple case for equal
exponents (i.e., no alignment required) will be explained.

The Equal Exponent Case

In Figure 7 the contents of A and Q are first right
shifted (74: AQsSR) then left shifted (4SRsAQ) so that
AQ remains with its original unshifted contents. The
exponent is gated into ES at A3 by gES in the ALL box.
The selector (with memory) El\1sD was initially set in
state Al (not shown) which sensitizes this path. In
state A4, the exponent is passed back to EA via gEA
and ESsEA. El\1gE gates the addend (subtrahend)
exponent to E. OMsS in A3 effects only a transfer.
Kl\1sA is always the final step before leaving the A3-
A4 loop. This is to assimilate carries which have been
in base 4 stored carry representation until the final pass
through the loop. XA controls the exit from the loop
(exit if XA= 1). The least significant carry into the
adder is cleared by C. All of these control signals are de
pendent on the various outputs of the exponent de
coders such as d> 0, es = 2 etc. The actions 2sD and

es>O)

(d>O)

A3 A4
'roml __ -1~A~LLL-__ ~~~~~y+~AL~L __ ~~~~~~~~to A2 - • • A A A5

(clone)

hv(es>0)

(cr)v<d>O)
AOs

Figure 7-Partial add sequence for equal exponents

12 (setting status element 12) are meaningless for the case
of equal exponents.

Speed-independent hardware

The logic design procedure used for Delayed Control
(and SPINDAC) employs Basic Logic Diagrams
(BLD's) developed by Swartwout and others at the
University of Illinois.6, 7 A digest of this work as well as
the design for a new error checking BLD is in the Ap
pendix.

In the logic design procedure, each state of the flow
chart such as A3 or A5 is associated with a control point
(CP). The CP in tum has some associated logic and a
flip-flop. Using this terminology, it can be said that the
Add sequence has five control points (five states) and
the entire SPINDAC control has 29 CP's. Using this
design procedure, the entire SPINDAC control can be
mechanized with 27 flip-flops and 346 gates.

THE APPLICATION OF PARITY CHECKS

A general arithmetic control moAel is shown in Figure
8. Here a bit pattern at the output of the control repre
sents a pattern of the gating and selector signals trans
mitted to the arithmetic unit. The pattern will be a func
tion of: (1) the instruction presently being executed,
(2) the conditional inputs and (3) the current step of the
control. The control must be protected against two types
of errors: first, an erroneous bit pattern at the outputs,
and second, an incorrect sequence of the internal states
of the control. In a "speed-independent" control, the
internal states of the control change one memory ele
ment at a time. In most practical designs, this means
that the internal states of the control must be encoded
with a high degree of redundancy. One systematic way
of achieving a speed independent control, for instance,

Encoded { Instruction
Being

Executed

Conditional
Inputs
~

Figure 8-An arithmetic control model

Application of Parity Checks 83

EMsD,CR,gP3

(es>O) r---------.. 2sD,ByCR,gP2
--------------_1 (es> 2)
-2sD, ByC R, gP1

ALL
gA,gQ,gEA,ESsEA,gPO

(done)

(done)

.n.(es>0)

Figure 9-Application of parity checks to simplified control
point A4

shifts the single active control point down a shift
register. If any two bits (control points) are true at the
same time, the control is known to be in an incorrect
state. A method is suggested here of applying one or
more parity check symbols to the outputs of the speed
independent control so that an erroneous output bit
pattern may be easily detected. If the control action
with faulty outputs can be detected before the effect
has been propagated, a replacement control may be
switched in or maintenance may be initiated.

Method

The method of applying single error detection parity
checks is explained with reference to simplified
SPINDAC control point A4 in Figure 9. In the flow
chart, some boxes are entered conditionally. These
conditional boxes are the ones which have gating or
selector outputs which are energized only if the appro
priate conditions are true. The signals gPO, gP1, gP2,
and gP3 are gating parity checks which have been chosen
according to the following three rules:

1. If a conditional box has an even number of gat
ing and/or selector signals, .add an odd parity
checking gate to each box (gP1, gP2 and gP3
in the example).

2. If a conditional box has an odd number of gating
and/ or selector signals, no parity checking gates
are added.

84 Fall Joint Computer Conference, 1970

RATIO OF
OfEO<ING HARDWARE
10 CONTROl HARDWARE

OVerflow & Detect Zero Sequence

CONTROL SIZE
"-----+-----1~---+----+--+_-__ IN NUMBER OF

5 10 15 20 25 30 CONTROL POINTS

Figure lO-Checking hardware vs. control size

3. Encode the entire ensemble of selector and gat
ing signals for the control point with an even
parity gate assuming that only one each of mutu
ally exclusive conditional signals is on. This even
parity gate, if required is placed in the ALL box.
(gPO in the exampl e).

The control point as finally encoded has an overall
even parity. If a single gating, selector or conditional
signal fails, an odd parity results so that detection may
be very simply accomplished.

If this procedure is applied to the add sequence, eight
parity gates must be added. The boxes to which parity
gates must be added in the partial add sequence flow
chart are indicated by heavy underscoring in Figure 6.
If the procedure is applied to each of the 29 control
points in the complete SPINDAC flow chart, 28 parity
checking gates are required to be added to its 81 gating
and selector outputs.

Hardware cost

While the hardware cost for the checker shown in the
Appendix is quite modest, the parity check hardware
requirement is significant. In particular, if there are
only a few control points in the control with a fairly
large number of gate and selector signals, the logic re
quired to check the control may be more than is re
quired for the control itself. The add sequence is a case
in point. If we use the conversion factor one flip-flop = 6
gates, the mechanization of the add sequence requires 99
equivalent gates while the number of equivalent gates
required for the checker (including the parity checker)
is 235. This gives a ratio of the checking hardware to the

control hardware of 2.37. This is worse than can be
achieved by triplication! If each of the eight SPINDAC
main sequences is considered to be a separate control,
the lowest ratio of checking hardware to control hard
ware that can be obtained is 1.27 for the multiply se
quence.

If the entire SPINDAC control is checked, the lowest
ratio of all is obtained, 1.15. Here a check on 81 gating
and selector requests must be made along with 28 parity
gate outputs. The majority of the 477 equivalent gates
required by the complete SPINDAC checker are used
in the parity check decoder. This decoder requires 337
of the total 477. The control itself requires an equivalent
of 412 gates giving the ratio of checking to control hard
ware of 477/412 = 1.15.

Cost VS. control size

By considering each of the eight principal sequences
of the SPINDAC as separate controls, as shown in Fig
ure 3, a plot of their respective ratios versus the number
of control points for each sequence can be obtained. This
plot is shown in Figure 10. In addition to the eight sep
arate sequences, the plot for the entire SPINDAC con
trol is given. If the entire Illiac II Delayed Control
were to be plotted, it is supposed that its ratio would lie
somewhat below the 1.15 for SPINDAC. This supposi
tion stems from the fact that SPINDAC was designed
to include the use of almost all of the gating and selector
signals of Delayed Control so that their number would
not appreciably increase for the larger control. Another
observation which seems to indicate a decreasing ratio
for larger controls is that the number of parity gates re
quired appears to increase at approximately one parity
gate per control point added.

Time penalty

The time penalty associated with the checker is also
a significant consideration. The parity checkers con
sidered above were tree-like structures used to obtain a
minimum hardware count. For instance in the complete
SPINDAC checker which required 477 equivalent gates,
eight logic levels were required to complete the parity
check. If the check of the control is to be made in an
"on-line" mode, this delay could be intolerable. For
example, if the micro-operation being checked required
only three logic levels for its control, an additional five
levels would have to be waited before proceeding. This
could slow execution more than a factor of two.

A compromise approach is to permit the gating and
selector signals to be passed on to the arithmetic unit
and to complete their parity check in parallel with actual

execution. For the final step in the sequence, execution
could be held up so that erroneous results from a faulty
control would not be propagated outside the unit. With
this approach, arithmetic execution for the checked unit
can be made close to the executionrate of the unchecked
unit.

SUMMARY

For the rather small model of SPINDAC which was
considered, the amount of hardware required for an
arithmetic control with built-in single error detection is
2.15 times the size of an unchecked control. Indications
are that the ratio would be lower for a larger control.
Though the control can be designed to inhibit propaga
tion of control signals until they have been checked, a
better design appears to be one where each sequence is
allowed to proceed in parallel with the checking of con
trol signals. Release of arithmetic results is held up
until the control outputs for the final step of sequence
have been checked.

Though the cost in gates for this method appears to
be quite high, it offers the advantages of ease of design
and protection against conditional input failure. Since
the input gating logic to the flip-flops is separately de
signed, a sequential error will often manifest itself by a
control "hang up." The degree of error localization is
also enhanced by the control point organization. When
an error is detected, it wil1 most likely be in the condi
tional inputs or outputs associated with that control
point.

ACKNOWLEDGMENT

The author wishes to acknowledge the contribution of
Dr. Algirdas Avizienis who suggested the use of a speed
independent control as a model.

REFERENCES

1 F F SELLERS M HSIAO L W BEARNSON
Error detecting logic for digital computers
McGraw-Hill New York 1968 Chapter 13

2 D J WHEELER
Read-only stores for the control of computers
Proceedings of the Second International Conference on
Information Processing Munich August-September 1962

3 D E MULLER W S BARTKY
A theory of asynchronous circuits
Proceedings of an International Symposium on the Theory
of Switching Harvard University April 1957 Annals No
29 of the Computation Laboratory of Harvard University
Cambridge Massachusetts Harvard University Press 1959

Application of Parity Checks 85

4 R E SWARTWOUT
Further studies in speed-independent logic for a control
University of Illinois Graduate College Digital Computer
Laboratory Report No 130 Urbana Illinois December 13
1962

5 J 0 PENHOLLOW
The arithmetic subsystem of the new Illinois computer
University of Illinois Graduate College Digital Computer
Laboratory Report No 160 Urbana, Illinois January 24 1964

6 D B GILLIES
A flow chart notation for the description of a speed-independent
control
Proceedings of the Second Annual Symposium on Switch
ing Circuit Theory and Logical Design Detroit Michigan
October 1961 AlEE Publication S134

7 R E SWARTWOUT
One method for designing speed-independent logic for a control
Proceeding of the Second Annual Symposium on Switching
Circuit Theory and Logical Design Detroit Michigan
October 1961 AlEE Publication S134

APPENDIX

The BLD logic design method

The logic design procedure used for the Illiac II
arithmetic control employs Basic Logic Diagrams
(BLD's) developed by Swartwout and others at the
University of Illinois. Some of these BLD's as well as a
new one for control logic checking are described below.

It will be noted by examination of Figures 2 through 4
that several standard and nonstandard symbols are
used. The symbol A is used for an AND circuit and 0
for an OR circuit. The memory element used in control
is designated as a vertical rectangle with a "I" indicat··
ing the true side and a "0" indicating the false side. It
is said to be in the "I" state when the "I" output is a
"I". These memory elements are Eccles-Jordan de
vices; however, they are different in that they react to
an input zero rather than a one. Logically the element
has two NAND elements cross coupled. This same ele
ment can be built with a reply signal as shown in Figure
4, Setting of Status Memory Elements.

The triangle enclosed in a circle and square is used to
designate the logical equivalent of the gate reply logic.
That is to say, when a gate is energized, the reply dupli
cates the input signal after some time delay. There may
be many combinatorial circuits and amplifiers involved
in the gate logic; however, the total system is equivalent
to a delay.

A sequencing control

In order to assist in understanding the basic sequenc
ing logic, an example is given in Figure 1. As shown in its
flow chart, this logic realizes the sequential energization

86 Fall Joint Computer Conference, 1970

A A gA gAr B B gB gBr C C
1 0 0 1 0 1 1 1 0 1
1 0 0 0 0 1 1 1
1 0 0 0 1 1 1 1
1 0 0 0 1 0 1 1

1 1 0 0 1 0 1 1
0 1 0 0 1 0 1 1
0 1 1 0 1 0 1 1
0 1 1 1 1 0 1 1
0 1 1 1 1 0 0 1 0

1 0 0 0 0

1 0 0 0 1 1

Figure 1-An example of a sequencing control

of gates. The table of states is given to show the
normal progression of a signal through such a circuit.

In this type of logic, the quiescent state of the memory
elements is the "0" state and thus the NAND normal1y
has a "I" output causing all of the gate replies to also be
"I". The first state shown in the table is for the condi
tion that the A memory element at Control Point 1
(CPl) is. active (in the "I" state) and the NAND of
CPl has gone to "0" but the gAr (gA reply) and all
other signals are in their quiescent state. When the gAr
signal changes to "0" this does not excite the next
NAND but it does cause the B memory element to turn
over. Note that the B memory element has the tempo
rary output state of 1-1 during the transition; however,
the zero side of the element is not excited until the one
side has changed to one. When B changes to zero,
memory element A becomes excited and goes to the
quiescent state of "0" which in turn causes the NAND
to go back to "I", which causes the gate to turn off and
its reply to go to "I". Thus the sequencing control has
moved from control point 1 to control point 2 and the
same sequence of events win occur with the Band C
memory elements and the gate gB.

It is important to note that with regard to the action

Figure 2-Two forms of parallel operation

of the gate (gA), the sequencing step from control point
1 to 2 had two substeps. In the first substep the gate is
turned on and a reply signifying this fact is received in
the control, then follow some control actions culminat
ing in turning the gate off. The first substep ends when
the reply is received indicating that the gate is on, and
the second substep ends when the reply is received that
the gate has turned back off again. These two same sub
steps are associated with every control step regardless of
whether the operations performed are those of gating,
changing selectors or setting memory elements. That is
to say, regardless of the nature of the devices controlled,
the reply sigrraJ will eventually duplicate the input sig
nal. Thus this example, and in fact all of the basic logic
diagrams, while given in terms of gates is an example of
any sequencing operation.

Common BLD features

For convenience sake, the sequencing portions of
control have been divided into areas called control
points (abbreviated CP). A CP includes the NAND
and such other logic as is necessary to perform the con-

Figure 3-Conditional operation and bypassing

ditional and sequencing operations. The CP numbers
appearing on the BLD logic drawings and flow charts
are there for reference purposes and the dashed lines
are used to separate the various CP's.

The logical symbolism used is discussed in connection
with the above example. In addition to these, two other
symbols of considerable importance are found through
out the BLD's. A circular symbol with only one circle
implies a nonrestoring circuit (non-restored logic level)
whereas a symbol with two concentric circles implies a
restoring circuit. Some of the restoring circuits also have
an asterisk after the logical description. These circuits
have shifted thresholds which were designed to main
tain speed-independent operation at a point where a
signal drives two restoring inputs.

BLD descriptions

Figure 2 shows two different methods for performing
two gating operations at the same time. The logic shown
for CP's 12 and 13 is preferred over that for CP's 11
and 12 since it operates faster. In the first mentioned
method the time required for the memory element at

--- --.(0
.--" ''l-'

--... Or---.-" " !
'---- +---------------+---4-...... -..c.

Flow Chart

$
Logic Diagram

RO
51 ro 51 52 ro ro R)r

Sl~
1 1 Merrory 1

52 ro 1 0 0 1 0
52 0 ro 0 1 0 0

0 0 1 1

ROr

Logical Equivalent of tv1emory Element With Reply

Figure ~etting of memory elements

Application of Parity Checks 87

r~~,s ! } which

~~~~& ~------__ ------_Hh_------+_~O ~~~~ 
Selector Selector 
Requests Requests 

~~m {~i~~========~~ 
NAND's '--_---' 

Figure 5-Basic logic diagram for control logic checker 

CP 13 to turn over is paralleled with the time required 
to turn the gate on and for the reply to arrive at CP 13. 

One of the most commonly used means of simplifying 
control logic is to create conditional request signals. The 
sequencing NAND output opens the conditional OR's 
and the conditional signal determines the specific opera
tion to take place. One form of conditional request is the 
Bypass signal as shown in Figure 3. This signal causes 
no action within the Arithmetic Unit but creates a 
fictitious reply signal which tricks the sequencing control 
into reacting as though a machine operation had taken 
place. Any gate, selector, or memory element can be 
bypassed through the use of an AND circuit as shown in 
Figures 3 and 4. 

Figure 4 presents both the methods used to set mem
ory elements and a logical equivalent of the memory 
element with reply signal. The logic of the memory ele
ment will be discussed first. The quiescent state for the 
element is with both inputs "I" and the outputs (1-0) 
or (0-1). Action will be initiated whenever a request 
(input "0") is received. If the element is in the state 
requested by the input "0" the reply will come quickly. 
If the memory element must change state, a step-by
step check of the signal flow through the circuit will re
veal that the reply is the last signal to be generated. 
Thus when a "0" reply signal is received, the memory 
element is in the state requested. During the second sub
step of a control step, the request signal is returned to 
"I" which causes the reply to change to "1". 

Control logic checking BLD 

Figure 5 shows a, Basic Logic Diagram which has 
been devised for control logic checking. Delay 1 is re
quired to cover the propagation delay of the decoder. 



88 Fall Joint Computer Conference, 1970 

Delay 2 is greater than Delay 1. The "l's" and "O's" 
indicate the quiescent states of the checker. The checked 
gate and selector requests are active when they go to a 
logical zero. If an error is detected the control is literally 

"hung-up" by the control logic checker. While the use of 
delays in the checker makes its logic something less than 
speed-independent, it may be pointed out· that delay 
lines were also used in the Illiac II to avoid races. 



Scheduling in a general purpose operating system* 

by V. A. ABELL, S. ROSEN and R. E. WAGNER 

Purdue University Computing Center 
Lafayette, Indiana 

INTRODUCTION 

In recent years there has been a great deal written and 
published about scheduling and storage management 
in .time sharing systems. During the same period there 
has been a significant trend toward the development 
of more general purpose operating systems on large 
computers. Such systems support a high volume batch 
processing operation and at the same time provide 
modes of computation usually associated with time 
sharing systems. They are multiprogramming and 
multiprocessor systems that execute jobs that enter 
the job stream from local and remote card readers, 
and from local and remote on-line consoles. Some jobs 
are interactive during execution and some are not. 
lVlany jobs use interactive file creation and editing 
and debugging processors even though they are basically 
batch jobs. 

This paper describes some aspects of an operating 
system of this type that is now running at the Purdue 
University Computing Center on a CDC 6500 sup
ported by an IBM 7094. The paper deals mostly with 
the scheduling mechanisms and strategies used in the 
system. These mechanisms and strategies are probably 
not new, since all kinds of scheduling disciplines have 
been proposed and discussed in the literature.! How
ever, we believe that this is the first time that scheduling 
and job movement techniques of the type described 
here have been implemented and used' in a very large 
system with the high job volume and diversity that 
characterize a large university computing center. 

* The work described in this paper was partially supported by 
the National Science Foundation under Grant No. GJ-245 for 
the establishment of the Indiana Regional Computer Network. 
It was also partially supported by Control Data Corporation 
through a research grant to the Purdue University Computing 
Center. 

89 

The Purdue MACE operating system 

The Purdue MACE operating system is based on 
the MACE2 operating system which was originally 
designed by Mr. Greg Mansfield of the Control Data 
Corporation. 

MACE is an outgrowth of the first operating system 
for the Control Data 6000 series that was developed 
at CDC's Chippewa Falls Laboratory.3 The under
lying design of that first system, the Chippewa Struc
ture, has formed the basis for several of the most suc
cessful operating systems for the CDC 6000 series. 
These include SCOPE 2.0, SCOPE 3.0-3.4, and MACE. 

The Chippewa Structure is successful, to a large 
degree, because it is closely integrated with the unique 
hardware organization· of the CDC 6000 series.4 That 
organization consists of one or two central processors 
(CPU's), and ten peripheral processors (PPU's), all 
of which share a large, fast central memory of 60 bit 
words. The CPU minor cycle time is 100 ns, while for 
the PPU it is one microsecond. 

The peripheral processors each have a full instruc
tion complement, including arithmetic, shift, and 
input/output instructions, and 4,096 12 bit· words 
of private storage. They share access to twelve, one 
megacycle 12 bit wide data channels. The PPU's are pri
marily designed for input/output tasks, communicating 
through the common central memory with the CPU, 
which is used mainly to perform computational tasks 
for executing programs. 

CDC markets several variants of the 6000 design, 
each of the same structure, differing from the others 
only in CPU configuration. The 6600, the fastest sys
tem, has a CPU with parallel arithmetic units. The 
6400 has a slower CPU with sequential arithmetic 
units. The 6500, which is the system in use at Purdue, 
has two 6400 CPU's. The 6700 has one 6600 and one 

·6400 CPU. 



90 Fall Joint Computer Conference, 1970 

Central memory in the Purdue 6500 system con
sists of 65,536* 60 bit words. The memory is organized 
in phased banks with access time of 100 nsec and cycle 
time of 1 microsecond. 

Central memory organization and the control point 

In the Purdue MACE operating system the large 
central store is divided into a user portion and a central 
memory resident system area. The system area which 
now occupies just under 11000 words, contains alloca
tion tables, routine and file directories, a small amount 
of system central processor code (most of the system 
executes in the peripheral processors), a number of 
key peripheral processor routines, and a set of job con
trol blocks, known as control points. 

A control point is a pivotal area, occupying 128 
words of central memory, through which job execution 
is controlled, and to which the resources for job· exe
cution are allocated. The control point may be thought 
of as the control element of an individual computer, 
and the entire set of control points as a division of the 
hardware machine into a number of separate ma
chines, each of which can execute· an independent task. 

The number of control points was fixed at eight in 
the original Chippewa System and was retained at 
that number in most derivative systems. One control 
point is allocated to various system overhead func
tions-storage movement, mass storage space alloca
tion, etc. The remaining control points can be as
signed to active jobs, including the. control of input
output devices such as card readers, line printers, 
remote batch stations, and keyboard consoles. While 
the MACE system retains this control point allocation 
method, it provides for the optional declaration of as 
many as 26 control points at system load time. 

A job is assigned to an active control point after 
it has been queued to a system mass· storage device 
(usually a disc storage unit). The resources required 
for the execution of the job are allocated to the control 
point. These include central memory space, central 
processor time, peripheral processor assistance, mount
able equipment (tapes, disc packs, etc.), mass storage 
space, and file pointers. 

The resources are allocated to control points through 
a monitor program which runs in a dedicated peripheral 
processor. A second dedicated peripheral processor 
runs a display program, DSD, that provides operator
system communication via a twin screen, display
keyboard console. 

The remaining peripheral processors are pooled for 

* The ~emory is to be expanded to either 98,394 or 131,072 
words III the summer of 1970. 

input-output and job sequencing functions. Each 
contains a small resident executive containing com
munication, overlay loading, and mass storage driver 
subroutines. The pool peripheral processors consti
tute one of the resources assigned to control points 
by the monitor, and execute programs which com
municate with the monitor through central memory 
registers. 

The control point area, which occupies a fixed por
tion of central memory, contains pointers relating to 
job status, and the resources assigned to the job. In
cluded in the control point area are a 72 word buffer, 
used to contain the control statements supplied for 
the processing of the job, and a 16 word area called 
the exchange package. 

The exchange package is used by the system monitor 
to control CPU allocation. A special hardware instruc
tion, called. an exchange jump, permits the monitor to 
interrupt a running CPU, save its register contents, 
and load all registers with new contents in a single 
operation. The exchange jump instruction, which 
executes in 2 microseconds, uses the read portion of 
the core memory cycle to obtain a word of register 
contents from the exchange area, and the write portion 
to store the previous contents of the corresponding 
registers of the interrupted CPU. 

When a job is at a control point waiting for the CPU, 
the exchange package area contains the register con
tents that are required to start or resume processing 
of the job. When the monitor performs an exchange 
jump for that control point, the registers are loaded 
from the control point area, and the control point area 
is loaded with an exchange package that the monitor 
uses to return control to the system when the job is 
interrupted or terminated. 

The rapid CPU switching capability provided by 
the exchange jump operation works in conjunction 
with a relocation and limit register in each CPU to 
provide an efficient method of memory allocation. The 
relocation registers in the CPU permit the assignment 
of a contiguous region of central memory to a program, 
which is totally isolated from any other area, and which 
can be moved rapidly to, from and within the user 
portion of central memory. 

Limitations of the Chippewa structure 

While the Chippewa Structure in its basic design 
permits effective multiprogramming use of the 6000 
system, it includes some static elements which seriously 
limit system performance. The major achievement 
of the IVIACE system was the relaxation of some of 
these control point restrictions. This process has been 
carried further in the Purdue :MACE system. 



The major static control point restriction in the 
original Chippewa Structure is embodied in the fact 
that once a job was brought to a control point,that 
control point was committed to that job until it either 
completed or aborted. In almost all cases this meant 
that once a job was brought into central memory it 
remained there until it was completed. This affected 
the design of resource allocation and job sequencing 
to such an extent that control point and job became 
almost inseparable. 

The closeness of the association between control 
point and job seriously affects the ability of a system 
of this type to respond to changing job loads. Thus, 
while the system can schedule jobs to control points 
on a priority basis, a new job of higher priority which 
enters the queues normally must wait until terminating 
jobs release sufficient resources. 

Early attempts to resolve the problem resulted in 
processors which permitted the system operator to 
manually suspend the processing of a control point 
job, and to dump its allocated core memory to disc 
storage in order to permit another to be loaded and 
processed. This process was severely limited by the 
slowness and· inaccuracy of operator intervention, and 
by the fact that it did not free the control point even 
though the job itself was no longer in memory. 

The A utoroll system 

One of the major advances of MACE over the earlier 
implementations based on the Chippewa model is the 
ability of the system itself to suspend a job and free 
its control point. The process, called rollout, consists 
of the copying of the complete job status, including 
control point data, to a mass storage file. The control 
point thus freed can be assigned to anoth~r job. In the 
reverse process called rollin, a rolled out job can be 
assigned to any available control point, the data in 
the file can be copied back into any available area in 
main memory, and the job can be resumed. 

The scheduling mechanism in the MACE system 
is of the type that has been called preempt resume in 
some recent publications.1 Among users of CDC 6000 
series equipment it is more frequently referred to as 
an autoroll system. The basic component of the system 
is a job scheduler that can interrupt jobs and cause 
themto be rolled out from main memory to make room 
for other jobs that, at least temporarily, have higher 
priority. The queues from which the scheduler selects 
the jobs that are to be brought into memory consist of 
input files and rollout files. The major function of the 
scheduler is to use the autoroll mechanism to control 
the movement of jobs between the job queue and main 

Scheduling in General Purpose Operating System 91 

memory in such a way as to provide for optimum utili
zation of system resources. 

There are many possible job movement strategies 
that could be implemented within the framework· of 
such a system.· The particular strategy described here 
is the one now in use in the Purdue MACE system. 
It seems to function well in the university environ
ment, and provides adjustable parameters that permit 
fairly significant changes to be made in response to 
changes in the character of the job mix. 

Job movement strategy 

The job movement strategy of the Purdue, MACE 
system is a dual function of the system monitor and a 
peripheral processor program, the job scheduler itself. 
The job scheduler executes on a short, periodic cycle 
(five seconds in the present system). It is also executed 
whenever a job sequencing operation changes the state 
of the machine--e.g., a job terminates or a new job 
enters the input queue. 

The job scheduler is priority driven. Each job in 
the system carries a single, twelve bit priority value, 
called the queue priority. A large value signifies high 
priority; a small value, low priority. Several priority 
classes and values are reserved for identifying jobs 
in special states, such as being rolled out or in, manu
ally rolled out, or waiting for some operator action. 

Each time the job scheduler executes, it constructs 
a snapshot of the executing, control point environ
ment. This includes data about the jobs running and 
the resources allocated to them. Against this picture, 
the job scheduler matches the jobs awaiting execution 
in the input and rollout queues. 

In descending order of queue priority value, the job 
scheduler compares the resources required by jobs in 
the queues against those available or in use by jobs 
of lesser queue priority. In the simplest case, where 
sufficient unused resources are available, the job schedul
er requests the assignment of a peripheral processor 
to the job by the monitor. That processor proceeds 
to roll in the job or begin its execution for the first 
time, while the job scheduler continues to· search the 
job queues. 

When a waiting job requires resources in use by exe
cuting jobs, the scheduler must consider the nature of 
the resources required. lVlany of them, such as central 
memory, the control point, central processor usage, 
and file pointer space, can be reassigned, since the 
rollout file will carry the status of their usage. Others, 
such as magnetic tape units, remain assigned to the 
job for its duration for practical reasons. 

After the job scheduler has selected a job for which 
resources can be made available, it constructs a rollout 



92 Fall Joint Computer Conference, 1970 

sequence which will free the required resources. The 
rollout sequence is built from the list of running jobs 
whose queue priorities are lower than that of the job 
being scheduled. Central memory space and control 
point availability are the two factors considered. 

Rollout density is controlled by the system monitor. 
In the normal job scan cycle, a job marked for rollout 
is assigned a peripheral processor by the monitor, 
unless a prespecified number of rollouts are already 
in progress. In the Purdue MACE system, the monitor 
limits the number of concurrent rollouts to two. 

Once the job scheduler has started a rollout sequence, 
rather than wait for the sequence to complete, it con
tinues to search for lower priority jobs which can be 
assigned to control points without affecting the rollout 
sequence, or starting another sequence. When the 
scheduler exhausts the lists of waiting jobs, it ter
minates. 

The scheduler is recalled periodically, at the end 
of each rollout step, or when some other job sequencing 
operation changes the state of the machine. When 
recalled, the scheduler builds a new snapshot of the 
environment, effectively "forgetting" the job which 
started the rollout sequence. Because the scheduler 
"forgets" that job, it can respond very quickly to 
changes in the queues. Thus, for example, if a job 
enters the queues with a priority higher than the one 
which started the rollout sequence, that job can be 
executed first. Or, for example, if a job outside the 
rollout sequence terminates before the sequence is 
complete, the job causing the rollout sequence can be 
assigned for execution as soon as the required resources 
become available. 

On a sub-multiple of its basic period, the job schedul
er executes an overlay which adjusts queue priorities. 
The queue priority adjustment overlay modifies the 
priorities of jobs in the input-rollout queues, and those 
of jobs in execution at control points. The modification 
of priorities for queued jobs is essentially an aging 
operation, to insure that jobs of equal starting priority 
and resource requirements proceed on a more-or-Iess 
first-in, first-out basis. 

The queue priorities of jobs in execution are modified 
as a major tactic in queue balancing. This modification 
is a portion of a three level management of job queue 
priority, in which the queue priority of a job is set to 
a high value when the job enters the input queue, is 
dropped to a lower value after an allotment of execu
tion time has elapsed, and is incremented each suc
ceeding time the job reaches a control point. 

When a job enters the input queue, it is assigned two 
queue priority values, a "first pass" and an "execution" 
priority, both based on its resource parameters. The 
first pass queue priority is based upon a user specified 

(but account limited) value, an input increment, and 
an origin increment. Currently each job receives an 
input increment of 60008 points, and an origin incre
ment of zero for local batch, 100s for remote batch, 
3008 for remote teletype, and 5008 for interactive orig
ination. The user value ranges from zero to 248• 

The second queue priority value is based upon job 
parameters and account code classifications. The job 
parameters include central memory requirement, cen
tral processor time requested, and the predicted output 
volumes. The execution queue priority value is con
structed from a table of range increments for each 
parameter. In general, the larger the parameter the 
smaller the increment it will add to the execution queue 
priority. 

When the job input file is completed, it is queued at 
its first pass queue priority value. The execution queue 
priority value is stored in the job input file. When 
the job reaches a control point, the execution queue 
priority is stored with other job description parameters 
in a control point area. Thus it is available to the 
queue priority adjustment overlay of the job scheduler. 

In scanning control point jobs, the queue priority 
adjustment overlay is preset to consider those jobs 
which have accumulated a specified amount of exe
cution time. When a job has reached that level, its 
first pass queue priority is replaced with the execution 
value. In almost all cases the result is a drop in queue 
priority. 

Currently, the first pass queue priority is replaced 
by the execution priority after a job has accumulated 
a total of twenty five seconds of central and/or periph
eral processor usage. With a large input stream volume, 
the modification usually results in the rollout of the 
job. However, in the Purdue job mix, 75 percent 
of all jobs complete before the modification takes 
place. For the user, the chosen time increment permits 
rapid turnaround for compilation-debugging runs, 
and usually guarantees that a job which aborts because 
of compilation errors will pass through the system 
very rapidly. 

The remaining jobs which do not complete before 
the queue priority modification takes place must run 
to completion at their execution queue priority values. 
Several factors combine to enhance their throughput. 
The first is a dynamic storage reduction performed 
by the relocatable loader. This improves job through
put because compilation and loading usually require 
more memory space than execution and usually com
plete before the queue priority modification takes place. 
Thus the additional execution time which the job re
requires can often take place at the reduced field length 
set by the loader. 

Secondly, jobs are aged by the scheduler's queue 



priority adjustment overlay. Thus as a job remains 
in the queues, its priority gradually increases. Finally, 
each job which is scheduled to a control point receives 
a small, additional queue priority increment. 

The control point increment, which is currently set 
to four aging units, is designed to protect the rollin 
time investment. The job is given a queue priority 
boost in an attempt to keep it in execution for a long 
enough time to make its rollin time cost reasonable. 
Otherwise, one could easily envision a job mix in which 
rollin-rollout operations enter a rapid cycle, induced 
by the aging process. 

Control point and central processor utilization 

The Purdue MACE system typically runs in an 
eleven control point configuration with one control 
point allocated to basic system functions as described 
in an earlier section. Three others are reserved for use 
by system input-output processors, one for the queuing 
(spooling) of peripheral I/O, one for remote batch 
terminal control, and one for PROCSY, an on-line 
console system. These three control points require 
small amounts of memory, determin:d by the number 
of active devices. They use very little central processor 
time, and a larger amount of peripheral processor time 
for the input-output operations required. 

The remaining control points are used for the exe
cution of user problems. The two central processors 
are cycled among active jobs on a round-robin basis. 
Each job at a control point which requires a CPU is 
allocated one for a 65 millisecond time slice. The ex
change jump operation keeps the switching overhead 
very low. Typically it is less than 100 microseconds 
per transfer. 

A job that issues an input-output request may re
tain the CPU for the full time slice and attempt to 
overlap its own computing with its I/O transfers. Al
ternatively, it may give up the central processor for the 
duration of the I/O transfer. A job that surrenders 
the CPU when it makes an I/O request is given another 
65 millisecond time slice as soon as the I/O transfer 
is completed. 

Other algorithms for the scheduling of central pro
cessors to jobs are being considered, but so far there is 
no evidence that the other algorithms provide any 
advantage over the round robin with a relatively short 
time slice. 

Job mix 

Since the jobs that are running in the system may 
vary greatly in their demands on system resources, it 

Scheduling in General Purpose Operating System 93 

is good scheduling strategy to attempt to maintain a 
mix of active jobs at control points that require dif
ferent resources and that make full use of these re
sources. Ideally there should be one or two jobs whose 
demands on CPU time are large compared with their 
input-output requirements, and one or two comple
mentary jobs which require only small bursts of CPU 
time, and have a great deal of I/O activity involving 
non-conflicting devices. 

The Purdue MACE job scheduler does not now 
consider these job mix factors in its calculation of 
queue priorities, since that would require data about 
the job profile that is not currently available in a form 
in which it can be used by system routines. Some job 
mix factors can be introduced manually in the present 
system through operator typeins that alter the queue 
priorities assigned by the system. 

A more dynamic automatic scheduling algorithm 
depends on the measurement and efficient encoding 
of job parameters relative to CPU and input/output 
and other resource usage on a continuing basis during 
the course of the execution of each job. 

The effectiveness demonstrated by our current use 
of the priority structure suggests that it would be 
possible to incorporate job mix factors in the priority 
value. Weare presently considering a priority evalua
tor system to be implemented as a secondary level in 
addition to and separate from the scheduler already de
scribed. The priority evaluator would use the job 
profile data, the machine environment, and scheduling 
constraint parameters to assign priorities which could 
provide an improved job mix. This type of priority 
evaluation could be performed at longer intervals, 
possibly in terms of minutes, could use the faster capa
bilities of the central processors, and would not affect 
the ability of the primary scheduler to react to rapid 
changes in system load. 

Tapes, disc packs and permanent files 

One of the major advantages of the autoroll system 
is the fact that it permits the handling of requests for 
allocation and mounting of tapes and disc packs and 
the queuing of requests for access to permanent files 
in such a way that little or no system resources are 
consumed by a job while it is waiting for equipment to 
become available or for tapes or disc packs to be 
mounted. 

Consider a job that enters the system with a job
card parameter that indicates that it will use magnetic 
tape. The jobcard indicates the maximum number of 
tape units that will be required in parallel, and to sim
plify the discussion we shall assume that this number 
is one. The job is scheduled to a control point based on 



94 Fall Joint Computer Conference, 1970 

its first pass queue priority and processing continues 
as for other jobs until a call for a tape occurs in the 
control statement stream. When such a tape request 
occurs the job is rolled out, and is marked as a job 
waiting for a tape unit. 

When a tape unit becomes available it is assigned 
to the job of highest execution queue priority that is 
waiting for a tape. The tape unit remains assigned to 
that job until the job terminates unless the job itself 
releases the tape unit prior to termination. 

The job is not automatically rolled back in by virtue 
of the fact that is has a tape unit assigned to it, but 
its execution queue priority is raised by 3008 points 
to help speed it through the system. 

While a job has a tape unit assigned it is rolled out 
every time a tape mount request is processed, and 
remains rolled out and ineligible for scheduling until 
the operator mounts the requested tape and types 
a message to that effect. 

Since the number of tape units is quite limited, it 
is very desirable that a job with assigned tape units 
be allowed to run to completion as soon as possible. 
This would suggest that the very highest priority 
should be given to jobs with assigned tape units. How
ever, this approach might produce time periods in 
which only tape jobs could be run, a situation that 
might be intolerable because of the requirements of 
on-line users, and the stated goal of providing fast 
turnaround for short debugging runs. As in most 
aspects of job scheduling, it is necessary to compro
mise between the very desirable goal of making most 
efficient use of a resource (such as tape units) and the 
many other goals established for the system as a whole. 

Mechanisms similar to those used for tape staging 
are used for access to disc packs and for write access 
to permanent files. The situation is complicated in 
these latter cases by the fact that more than one job 
in the system at a given time may require access to a 
particular disc pack or permanent file. 

Console support 

A very large number of jobs come into the System 
by way of PROCSY (Purdue Remote On-Line Console 
SYstem). PROCSY, which is described in more detail 
in another report, uses an IBM 7094 to drive a large 
number (50 at present) of teletype consoles as a remote 
job entry system for the 6500. The 7094 creates job 
files on a common disc pack unit. The jobs are exe
cuted by the 6500 and output may be returned to the 
consoles by way of the 7094 .. Rapid response during 
file creation and editing is provided by the 7094. Fast 
turnaround for job execution is guaranteed by the 
scheduling strategy that provides a special increment 

for console origin in addition to the 6000 point first 
pass increment. If the job is such that it can be com
pleted in less than 25 seconds of CPU and/or PPU 
time the results will be available at the console very 
rapidly. If the job takes more than 25 seconds it will 
probably be rolled out one or more times before com
pletion, and may be in the system for quite a long time. 
The user at the console could ask that the results be 
stored in the permanent file system for his later re
trieval, or he could simply come back later and list 
his output file, or he could divert the output file to 
the high speed printers in the computing center. 

In addition to PROCSY there are several interactive 
systems that can be operating on the System at any 
given time. These include NAPSS, the Numerical 
Analysis Problem Solving System, PICLS (Purdue 
Instructional and Computational Learning System) 
ALFIE (Algebraic Language For an Interactive En
vironment), and CRT, an interactive graphics system 
using the CDC 252 graphics console. 

The details of handling teletypes and the graphic 
console are slightly different from those in PROCSY, 
but the basic system is the same. The same scheduler 
using the same D;lechanisms causes the appropriate 
programs to be rolled in when needed to handle a line 
of text or some other interaction. They are rolled out 
when done to free system resources for other jobs. 
Here again, if the interaction stays within the basic 
first pass time limit, the response time is very good. 
If it requires more time per interaction, it is not con
sidered a proper interactive job in this environment, 
and response time may be very poor. 

In most cases the same mechanism that guarantees 
good turnaround for relatively short batch jobs also 
provides good response for interactive users without 
placing an intolerable load on system resources. 

Efficiency of job movement 

The job movement system discussed here differs 
from that in most systems using preemptive scheduling 
techniques in that the whole job is moved as a unit 
between peripheral storage and main memory. l\1:ost 
systems of this type make use of paging and/or seg
menting hardware and a software system that moves 
parts of a program between peripheral and main mem
ory as required. In most paging systems, a fixed length 
page of 512 or 1024 words is the unit of information 
that is moved. 

Rollout compared to paging 

Consider a job in a paging system. In order for 
the job to become active a relatively large number of 



pages (the working set according to Denning 5.6) must 
be loaded. When the job finishes its time slice, the 
pages that it had been using are scheduled to be rolled 
out to the paging drum or disc. In an active system 
it is very likely that all of the storage that was occu
pied by a job will be needed by other jobs, so that by 
the time the interrupted job is once again scheduled 
into core memory none of the pages that it had been 
using during its preceding time slice are still in core. 
This situation is almost exactly the same as if the job 
had been rolled out in its entirety from core memory. 
Various strategies have been suggested for such paging 
systems that would roll out all active pages on com
pletion of a time slice. A prep aging strategy would 
then roll the job, or at least a working set of the job, 
back in when it was again made active. A system of 
this type comes very close to an autoroll system in 
which the whole job is rolled out and brought back in 
when it is reactivated. 

There are some advantages in moving a whole job 
rather than individual pages. These advantages arise 
because of the greater efficiency of writing tracks 
rather than individual blocks during peripheral trans
fers. In the particular storage system in use at Purdue, 
a half track consisting of 3136 60-bit words is read or 
written during every 50 msec disc revolution, possibly 
after an initial delay of 20-100 msec for seek time. It 
does not take much longer to move the whole job 
than it would take to move a few selected pages of the 
job. 

There are of course other advantages, and possibly 
other disadvantages to paging systems. It is not our 
intention to discuss these here. Rather it is our in
tention to point out that autoroll systems are not neces
sarily inherently less efficient than paging systems. 

Use of extended core storage 

The efficiency of the autoroll system is enhanced 
in the Purdue Mace System by the use of Extended 
Core Storage (ECS) as a buffer for the rollout process. 

Extended core storage is a large core storage system 
designed to be used for streaming data to and from 
central memory. In its full configuration, with a mini
mum of 500,000 60-bit words, a streaming rate of 100 
nsec per word can be realized. The present 125K ECS 
at Purdue transfers data at 400 nsec per word. The 
250K configuration scheduled to be installed in the 
summer of 1970 will increase the streaming rate to 
200 nsec/word. 

In the Purdue l\;face system, whenever a rollout is 
signalled, the entire central memory field length of 
the job being rolled out is moved to ECS at the full 

Scheduling in General Purpose Operating System 95 

ECS streaming rate. The space that was occupied in 
central memory is then immediately released for use 
by other jobs. The contents of the field length that 
was streamed to ECS is then moved from ECS to a 
disc storage file at the same rate as it could have been 
moved directly from central memory to disc storage. 
Since the transfer rate to disc storage is about 62000 
words per second, the use of ECS to buffer the rollout 
process makes the field length of central memory that 
is being freed available from several hundred milli
seconds to several seconds earlier than in the unbuffered 
system. 

The reverse process of staging input or rollin files 
in ECS is under consideration, but its implementation 
would require some major changes in job movement 
strategies which are now being studied and evaluated. 

Performance 

Every job that goes through the system causes a 
sequence of messages to be written in a system file 
called DAYFILE. These messages tell when the job 
entered the input queue, how long it took in compila
tion and loading, how many times it was rolled out, 
what error conditions were encountered, when the job 
entered the print queue, etc. The DAYFILE data is 
used for billing purposes, and also serves as a data base 
for a number of programs designed to present a picture 
of the performance of the system. Some of the details 
of the programs and techniques used will be presented 
in another report. 

The Purdue MACE operating system was phased 
into operation during the summer of 1969 and took 
over as the only production system by the end of 
August. In the first full month Of operation, September, 
1969, a total of just over 25,000 jobs were run. Of 
these about 9000 were remote console jobs submitted 
by way of the newly introduced PROCSY system. By 
October of 1969 the total number of jobs was over 
60,000 of which about 25,000 were PROCSY jobs· 
By February of 1970, the last month for which sta
tistics are available at the time this is being written, 
the total number of jobs run in the relatively short 
month had risen to 80,000, of which about 45,000 were 
PROCSY jobs. The system has been able to absorb 
this very large increase in console-submitted jobs 
without seriously affecting its ability to handle batch 
jobs. 

The console system is now almost exclusively a 
remote job entry system. During the next few months 
we expect avery large volume of interactive computing 
to be added as the new interactive text editor and a 
new interactive algebraic language processor come into 
full production. Some hardware and system software 



96 Fall Joint Computer Conference, 1970 

changes are being made to accommodate this increased 
load, but it will be essentially the same system with 
the same scheduling and job movement mechanisms. 

On a typical busy day there are now in excess of 
10,000 rollouts. Short jobs, whether entered through 
card readers or through typewriter consoles get very 
good turnaround. Longer jobs are mostly relegated 
to the rollout queues during the main shift in which 
input activity is very heavy. IVlost of them are com
pleted during the late night shift when the console 
system is turned off. 

There is of course a very substantial amount of 
system overhead associated with rolling out and rolling 
back in over 10,000 jobs per day. This overhead does 
not seem to be too high a price to pay for the ability 
to handle interactive jobs, and the ability to imple
ment scheduling strategies like those that give fast 
turn-around to short debugging runs. 

In addition, statistics gathered before and after the 
introduction of the autoroll system show that the 
Purdue l\1ACE system is more efficient in its CPU 

utilization and in its central memory utilization than 
its predecessor systems. 

REFERENCES 

1 E G COFFMAN JR IJ KLEINROCK 
Computer scheduling methods and countermeasures 
AFIPS Conference Proceedings Vol 32 Spring 1968 p 11-21 

2 Control Data Mace operating system preliminary reference 
manual 
Control Data Corporation Publication No 44613900 

3 Control Data Chippewa operating system reference manual 
Control Data Corporation Publication No 60134400 

4 Control Data 6400/6500/6600 computer systems reference 
manual 
Control Data Corporation Publication No 60100000 

5 P J DENNING 
The working set model for program behavior 
Comm of the ACM 11 5 May 1968 p 323-333 

6 P J DENNING 
Virtual memory 
Technical Report Number 81 Computer Science Laboratory 
Princeton University January 1970 



Scheduling TSS /360 for responsiveness 

by WALTER J. DOHERTY 

IBM T. J. Watson Research Center 
Yorktown Heights, N ew York 

INTRODUCTION 

The performance of Rel~ase 4 of TSS/360 at the T. J. 
Watson Research Center was dramatically improved 
in the three-month period from November, 1969, 
through January, 1970. The improvements consist of 
an increase in system responsiveness by a substantial 
factor together with an increase in throughput. This 
was achieved by methodically adj usting the parameters 
of the TSS/360 'Table-Driven Scheduler in accordance 
with the Principles of Balanced Core Time and Working 
Set Size. 

The purpose of this paper is to set forth principles 
and methodology used to achieve the above initial 
results. The available evidence of improvement will be 
exhibited so that each reader can judge for himself the 
validity of the results. 

CONCEPTS AND PRINCIPLES 

Performance 

Performance is a highly subjective term having a 
broad spectrum of connotation to different classes of 
people. Fundamentally, performance is the degree 
to which a computing system meets the expectations 
of the person involved with it. The terms responsive
ness, throughput, turn-around time, availability, re
liability, number of terminals supported, CPU utili
zation, channel and device utilization, channel balance, 
and efficiency are but a few of the concepts that are 
usually included as aspects of performance. 

Responsiveness 

To a user of TSS/360, sitting at a terminal, the 
ability of the system to respond to his commands is 
his predominant view of performance. l He does not 

97 

care if only one other person is using the system simul
taneously with him or one hundred people. If he ex
pects that TSS/360 will respond to his EDIT request 
in two seconds and it takes four seconds, he is usually 
far more irritated than if he expects a response of ten 
minutes to some partial differential equation and it 
takes thirty minutes. The system should be substan
tially more responsive to those requests to which the 
user expects an immediate reply, than to those during 
which he turns his attention elsewhere. This is the 
primary assumption I made when I set out to improve 
the performance of TSS/360. 

On the other hand, if a person· expects that his re
quest will take awhile, say ten minutes, he usually 
turns his attention to other activities, or else he executes 
it in the background. Since his attention is not con
centrated on the response, he doesn't feel large delays 
nearly as intensely. In the days of batch computing, 
turn-around times in the range of one to two hours 
were frequently not distinguished by users who only 
turned their attention to it every two-and-a-half hours. 

Throughput 

To a system manager, the number of terminals he 
can support with TSS /360 is most important. Of course 
it is also important to consider the categories of work 
that the users are doing. Thus it is not unreasonable 
to speak of ranges from two to one hundred simul
taneous users when qualified by the work categories. 
An intuitively obvious but rarely mentioned concept 
is that, for some categories of trivial work, as respon
siveness improves, the number of terminals in use may 
increase only after a threshold of human performance. 
is reached. That is, if the system is responding at a 
rate slower than a person's response time, any initial 
improvements in system response will first result in 
the individual users getting more work done; only 
then will the system be able to handle more users at 
that level of responsiveness. This is a most important 



98 Fall Joint Computer Conference, 1970 

consideration. Allowing· variable delays in processing 
longer-running programs to build up as the load in
creases insures that the very fast ones can constantly 
provide their users with a fast response. This delay 
for long running programs is analogous to the concept 
of turn-around time in batch but is on the order of a 
few seconds instead of a few hours. 

Folded forms of programs2 

"By the unfolded form of a program we mean the 
form a program would take if it had available to it a 
large enough uniform memory to hold both itself and 
its data .... On the folded forms the addresses have been 
rearranged-folded-to-fit into the smaller address space 
actually available."2 In the TSS/360, unfolded forms 
of programs and data exist in virtual memory. When 
the program is executed, portions of the program and 
its data are automatically brought into main memory 
for execution. This will result in automatic folding of 
the program if its complete execution space require
ments are larger than the main memory available to 
hold it. It is important to fold a program into as small 
a space as possible without causing undue inefficiencies 
(called thrashing) due to an unnatural folding. A high 
degree of folding is important since it then permits 
many programs to be folded into main memory simul
taneously, thereby providing a potentially significant, 
increase in the level of multiprogramming. The relo
cation hardware on the :l\l{odel 67 makes automatic 
folding possible. 

Program locality of reference3 ,4 ,5 

"Program performance on any paging system is 
directly related to its page demand characteristics. 
A program which behaves poorly accomplishes little 
on the CPU before making a reference to a page of 
its virtual address space that is not in real core and 
thus spends a good deal of time in page wait. A program 
which behaves well references storage in a more ac
ceptable fashion, utIlizing the CPU more effectively 
before referencing a page which must be brought in 
from back-up store. This characteristic of storage 
referencing is often referred to as a program's 'locality 
of reference.'''4 Thus a program's locality of reference 
influences the degree of folding to which that program 
can be subjected with a minimal impact on its per
formance. A program with good locality will run ~ore 
efficiently in a small execution space than one with 
poor locality. 

The working set of a program5 ,6 

The working set W (t, T) of a program is the set of 
pages referenced in the T page references immediately 

prior to time t. As t progresses, W (t, T) mayor may 
not change; the better a program's locality, the less 
likely is it that Wet + 1, 'r) ~ Wet, T). It appears 
natural to try to fold a program in .such a way that the 
program's working set for a given time interval fits 
entirely in core. Clearly, no more core is needed for 
that program in that time interval. 

The working set size of a program5 ,6 

The working set size set, T) of a program at time t 
is the number of pages contained in the working set 
Wet, T). Thus it is quite possible to have the working 
set change and the working set size remain unchanged. 
It appears natural to try to refold the program when
ever its working set changes. This currently is difficult 
to do since it is not known in advance just when the 
working set is changing. In most paging systems, a 
working set size change is more easily detected. Thus 
it is possible to detect working set changes at least 
when the working set size changes. This paper describes 
a method for doing this. The relocation hardware of 
the lVlodel 67 makes the application of this concept 
possible. 

To put the concepts of locality of reference, working 
set and working set size in perspective, consider this: 

During a single interaction between a user at a 
terminal and TSS/360, several programs are 
usually executed for that user. Thus for the 
virtual execution time which spans this inter
action, the working set size mayor may not 
change; however, the working set will almost 
always change several times. Furthermore, 
for those programs having good locality of 
reference, the working set size during anyone 
time slice will usually be much smaller than the 
working set size for the whole interaction time 
interval. And, in addition, the maximum working 
set size for all the time slices will probably al
ways be smaller than the \vorking set size for 
the whole interaction time interva1. For those 
programs having poor locality of reference, the 
working set size for each time slice may frequent
ly approach the working set size for the entire 
interaction time interval. Good locality relates 
more to the rate at which new pages enter W (t, 
T) than to its actual size. 

Balanced core time 

Programs having poor locality of reference and a 
large working set size would greatly reduce the level of 
multiprogramming if allowed to remain in core for very 
long periods of time. This would initially appear to 



affect throughput. However, responsiveness is also 
affected since new requests for service cannot be 
quickly honored if core is currently tied up. Therefore 
the scheduling strategy proposed here will penalize 
programs with poor locality and large working set size. 

The Principle of Balanced Core Time states that the 
length of the time slice in terms of virtual CPU exe
cution time for anyone task is inversely proportional 
to the working set size in that time interval. This will 
minimize the elapsed time that any large program can 
clog memory. It will also allow programs with good 
locality to progress very rapidly. If there were no over
head associated with paging these programs in and out 
of memory this balanced core time principle could be 
applied in its pure form. But this is not the case. There
fore a minimum time slice length will be established for 
programs having a large set, T) and poor locality to 
prevent paging overhead from dominating the system. 
To compensate for this compromise, the duration 
between such time slices ",ill be considerably longer 
than the duration between slices for programs with 
smaller working set sizes. Since the latter constitute 
an observed large majority, the aggregate paging load 
on the system will decrease. The multiprogramming 
level will increase since more core is available more 
often. Responsiveness will also improve for the same 
reason. In addition the degree of CPU utilization will 
increase. These trends should be evident in the RE
SULTS section of this paper. 

Thus a paging system strikes back by reducing the 
service it provides to those who would misuse it. These 
scheduling characteristics become more a function of 
the goodness of the program than of the length of time 
it has been running. Therefore well-behaving programs 
will clearly be good and bad programs will hopefully 
become obsolete. 

TSS/360 table driven scheduler7,8 

The TSS/360 table driven scheduler consists of a 
set of programs in the resident supervisor of TSS/360 
used for scheduling, and a table with many rows 
(levels) of entries. The entries in anyone level of the 
table contain sufficient information to completely con
trol anyone task. Each task in the system has another 
table describing itself to the system. This table is 
called the Task Status Index (TSI). Each TSI has a 
pointer to some level in the schedule table. Thus by 
changing the value of that pointer a task is given a 
completely new set of scheduling parameters. These 
parameters include: 

1. Time, Space, and I/O limits to be used when 
executing. 

Scheduling TSS /360 for Responsiveness 99 

2. Priority, Space, and Time values to be used to 
determine when to schedule a task to be run. 

3. Pointers to other levels of the table which will 
replace the current schedule pointer in the task's 
TSI when some special condition occurs, or 
when one of the execution limits is reached. 

The supervisor programs used for scheduling are 
described in the TSS /360 Program Logic lVlanual for 
the Resident Supervisor.7 The schedule table entries 
are described in the TSS/360 Program Logic lVlanual 
called System Control Blocks. 8 

Structuring the table entries 

A broad spectrum of scheduling strategies can be 
implemented by changing only the entries in the 
schedule table. In this section of the paper one of 
several strategies implemented at the IB1VI T. J. Watson 
Research Center will be described. It attempts to em
body the concepts and scheduling principles described 
above. As such it should not be confused with the 
scheduling strategy normally distributed with TSS/ 
360. 

To better understand the scheduling strategies in 
the table it is helpful to consider sets oj levels grouped 
according to some primary goals of scheduling. 

First note that several specific programs are treated 
separately from all other programs. They are: 

1. The System Operator Task 
2. The Bulkio Task 
3. Logon 
4. Logoff 

In this initial work not much attention was paid to 
applying the above scheduling concepts and Plinciples 
to these programs. 

All other programs are divided into two categories, 
interactive and batch. In general, the same sets of 
levels exist for both. The only differences are: 

1. Interactive Programs have priority over batch. 
2. Initially, interactive programs have greater 

urgency to get started than do batch. 
3. The number of batch programs that are allowed 

to be run simultaneously is arbitrarily restricted 
to leave space capacity to handle anticipated 
interactive programs. 

With these exceptions, the following applies for 
scheduling interactive as well as batch programs. 

The interactive sets of table levels are the Starting 



100 Fall Joint Computer Conference, 1970 

Set, the Looping Set, the AWAIT Set, the Holding 
Interlock Set, and the Waiting for Interlock Set. 

The Starting Set 

The Starting Set of table levels are used to handle 
new inputs from the terminal. This is somewhat similar 
to the pipeline of IVL V. Wilkes. 9 This set of table levels 
has a twofold function: 

a. Facilitate a fast reply to the terminal if possible, 
and 

b. make an initial judgment of the current 
working set size of longer running programs so 
the best entrance to the '-Looping Set of table 
levels can be chosen for this program. 

This is accomplished by several successive table 
levels with high priority, small execution time limits 
(say lOOms.), and increasingly larger core space limits 
(say 16, 32, 48 pages). Each program as it enters from 
the terminal will progress upward through these levels 
each time it exceeds its space limit. 

Whenever it exceeds its time limit at any of these 
levels, the space limit of that level is used as the es
timate of the current working set size of that program. 
That program is then considered to be a longer running 
program. Its future execution will be controlled by the 
Looping Set of table levels. 

If the program exceeds its largest space limit, the 
largest allowable working set size (currently 64 pages) 
is used as the first estimate for future execution under 
control of the Looping Set of table levels. 

Any time the program finishes it is returned to 
the initial Starting Set table level for the next input 
from the terminal. 

The Looping Set 

The Looping Set of table levels performs three 
significant functions: 

a. It uses the schedule table parameters to follow 
the working set size of each program by regu
larly over- and underestimating its time and 
space requirements in a minimal fashion in ac
cordance with the balanced core time principle. 

b. It causes the load generated by long running 
programs to be spread out in time to allow 
Starting Set entries to be processed quickly. 

c. Finally, it optimizes the CPU utilization and 
penalizes bad paging programs by causing 
programs with minimal paging requirements 

to be selected for running far more frequently 
than those with large paging requirements. 
This penalty only occurs when the working 
set size is large and the program's locality of 
reference is poor. The Looping Set of table 
levels quickly detects any change in these situ
ations and dynamically adjusts to them. Thus 
few programs are penalized throughout their 
execution, while most receive consistently good 
serVIce. 

The AWAIT Set 

The AWAIT set is a special set of table levels re
served for those tasks doing tape I/O and other kinds 
of AWAIT operations. There is a parameter in each 
table level called AWAIT extension. This parameter 
is an elapsed time interval during which the current 
working set pages of a program are kept in core while 
the program is idle in the AWAIT state. Since this can 
cause severe elongations of real time compared to vir
tual time, smaller values of virtual time are allotted 
in this set of table levels than for a task of the same 
working set size in the Looping Set. 

The Holding Interlock Set 

This set of levels is another special set reserved for 
all programs which are currently holding interlocks 
on some system resource. Programs running from this 
set have high priority so that the interlocked resource 
may be quickly released. I currently assume that the 
working set size will not change significantly while 
holding these interlocks. This needs further investi
gation. 

The Waiting-for-Interlock Set 

This is a special set of levels for those programs which 
are waiting for interlocks currently being held by other 
programs in the Holding Interlock Set. Programs 
controlled by this set of table levels will be infrequently 
considered for dispatching until the interlock is re
leased. The same assumption about insignificant change 
in the working set size is made here as in the Holding 
Interlock Set. 

TOOLS AND THEIR USE 

Tools 

The tools used in this work were: 

1. The Carnegie Mellon Simulator (called SLIN, 
notCMS) 

2. Conversational SIPE 



3. A Basic Counter Unit (BCU) 
4. Level Usage Counters 

Of these, SLIN and BCU were used to gather some 
evidence of the improvements; however, the Level 
Usage Counters and conversational SIPE were the 
most important tools used for tuning, the primary one 
being the Level Usage Counters. 

SLIN 

The Carnegie IVlellon Simulator is a program de
veloped at Carnegie l\1ellon University that can co
exist in the Model 67 memory with TSS/360. It simu
lates multiple terminals and interfaces with TSS/360 
at the CCW level of the transmission control unit. 
Each simulated terminal can use a different set of 
commands (called a script) or all can use the same 
script. The overhead is quite low both in core space 
and CPU time. 

Conversational SIPE 

SIPE is a selective event trace capable of tracing 
many combinations of system functions simultane
ously.10 Depending on the events traced, overhead 
ranges from about 30 percent to less than 1 percent. 
Conversational SIPE traces all CCW s and their data 
at the transmission control unit. Its overhead is about 
1 percent. It was used only for user session measure
ments. 

TheBCU 

The BCD is a set of 16 hardware counters capable of 
measuring summary information about either time 
duration or frequency of use of the various hardware 
components of any computer. It counts at a one micro
second rate and was used occasionally to measure loads 
on the lVrodel 67 CPU and channels during user ses
sions as well as runs with SLIN. 

The Level Usage Counters 

The Level D sage Counters are a set of software 
counters, one for each level of the schedule table, that 
are incremented by one each time a task is dispatched 
at the level. They were used during the user sessions 
as well as during the SLIN runs. They provide infor
mation about utilization of the various schedule table 
levels and sets of levels. 

Use of the tools 

The initial experiments with the TSS/360 schedule 
table were run using SLIN, the BCU, and the Level 
Dsage Counters for instrumentation. Although we 

Scheduling TSS/360 for Responsiveness 101 

had two million bytes of LCS on our Model 67, this 
was rarely included when experimenting so results 
could be made as relevant to other installations as 
possible. The SHARE script (Figure 1) was used, 
initially running on 20 simulated terminals and, later, 
running on 36 simulated terminals. The script (run
ning with a single user) took approximately 2400 
seconds. Thus to minimize the probability of several 
terminals simultaneously executing the same lines of 
the script, the logon of all terminals was spread evenly 
over a 2400-second interval. The first (n-l) terminals 
repeatedly executed the script. The last terminal to 
logon executed the script only once. l\1easurements 
for all terminals were made from the time when the 
last terminal logged on until it logged off. Thus all 
simulated terminals were active during the measure
ment period, and at least one complete execution of 
the entire script was assured during that period. 

It is important to note that almost any scheduling 
technique will show similar results under light loads. 
It is only when system resources begin getting scarce 
that scheduling differences show up clearly. 

All runs after the initial one were made with 36 
terminals because earlier measurements had been made 
at that number and could be used for comparison. It 
was also a number at which scheduling changes made 
noticeable differences in results. 

Each SLIN run took close to two-and-a-half hours 
of stand alone machine time when all setup operations 
are considered. Furthermore, the SHARE script did 
not even come close to the characteristics of our live 
user load as measured by the BCD and Level Usage 
Counters. Therefore we installed the new schedule 
tables in the user sessions, and made measurements 
there. Although this was not a controllable load it 
was measurable with the BCD, conversational SIPE 
and the Level Usage Counters. During times when 
the system slowed, and at the end of every day, readings 
of the Level Usage Counters were taken. The cause 
of the slowdown was almost always traceable to un
expected use of large working set size levels. It was 
then possible to create a new table within a day that 
eliminated the previously detected slowdown. We 
found that it is unprofitable to regard every program 
as being unalterable, then attempting to fit the sched
uling table to this unmanageable program load. It is 
instead more profitable to allow the poorly-behaving 
programs to suffer, in the hope that their creators 
would rewrite in better fashion or discard them al
together. 

RESULTS 

These following results are valid for our particular 
hardware configuration using Release 4 of TSS/360; 



102 Fall Joint Computer Conference, 1970 

51 
31 
"6 
10 
82 
111 
3" 
48 
30 
5" 
31 
20 
44 
21 
20 
32 
51 
53 
21 
22 
45 
51 
68 
19 
34 
35 
50 
65 
lA 
67 
41 
16 
15 
14 
21 
46 
16 
16 
32 
15 
.15 
26 
12 
35 
12 
16 
16 
20 
51 
69 
16 
16 
99 
53 
16 
11 
16 
.11 
42 
41 
21 
18 

DDEP LIB,VP,DSN1!E=L1Bl,OPTION=JOBLIB 
DATA SOUBCE.TSSTWO,I 
1 REID ( 1, 2) 1, B, C 
2 FOR"lT(8X,P10~6,lX,P10.6,lX,Pl0.6) 
400 IF«8**2) .EQ.(4.0*I*C» GO TO 50 
20 DISC=B**2-4.0*A*C 
21 IF (DISC) 110,50,60 
40 11 R=- SI (2.0*1) 
300 12R=11R 
X1I=SQRT(-DISC)/(2.0*A) 
J 1 0 X21=Xl t 
48 GO TO 10 
50 Xl R=-BI (2. O*A) 
]20 X 2R=1 lR 
330 GO TO 370 
60 S +SQRT (DISC) 
35011R=(-B+5)/(2.0*A) 
36012R=(-8-5)/(2.0*1) 
310 Xll=O.O 
380 121=0.0 
10 IF(11I) 90,91,90 
91 WRITE (2,95) A,B,C,X1R,X2R 
95 PORftlT( lBO, lP4E15.4,E30.4) 
150 GO TO 100 
90 IF(11R) 80,81,80 
81 IF (12R) 80,82,80 
82 WRITE(2,8~ A,8,C,X1I,X2I 
83 FORMAT(lHO,lP3E15.4,2E30.4) 
151 GO TO 100 
80 WRITE(2,84) A,B,C,X1R,X1I,X2R,I2I 
84 FO R" IT ( 1 H 0, 1 P 1 E 1 5 • 4) 
100 STOP 
END 
IE 
"ODIFI SOURCE.TSSTWO 
100, 200 12R=11R 

. R, 1200 
0,1200 
1150, 210 12R=X1R 
iF. 
FTN T5STWO,Y,ISD=Y 
1000, 58 GO TO 70 

1400, 61) S=SQRT (DIS C) 

LOAD TSSTWO 
Qn ALIFY TSSTWO 
AT 1; BR A MC H "00 
SET A=4. 0, R=4.0,C=1.0 
AT 91;DISPL1Y X1R,X2R,X1I,X2I;5TOP 
RUN 1'551'WO 
RE'OVE 2 
SET A=5.0,B=1.0,C=2.0 
AT 70;DISPL1Y l1R,X2R,11I,X2I;5TOP 
RUN T5STWO 
RE'OVE 1,3 
RUl TSS1'VO 

].0 S. 0 3.0 
LI NR1 SOURCE. TS5TWO, (100,1600) 
PERftIT SOURCE.T5STWO,N,RO,*lLL 
D5S? SOURCE. T5STWO 
ER!5E LIB1 

Figure I-The SHARE conversational script with think times 

1000 

800 
600 
400 

!rl 200 

~ 90 
I.LI 70 
~ 
t= 50 
I.LI 30 (J) 
z 10 0 
(l. 

f3 8 
0:: 

6 
4 

2 

TSS RESPONSIVENESS 

- PIO 4.0 SCHEDUlER 

----- PlO 5.1 SOiEOULER 

_ ••.• - RESEARCH 4.0 SCHEDULER 

~ ro 30 ~ ~ w ro 00 ~ 00 

PERCENTILES OF RESPONSE TIME 

Figure 2-Results of SLIN runs with 36 terminals comparing 
the release 4 research table T47 with the TSS/360 release 4 

table and the best TSS/360 release 5.01 table 

they do not necessarily apply to any other TSSj360 
release or hardware configuration. However, the prin
ciples involved apply to all paging systems. 

Evidence of the results come in five forms: 

1. Controlled experiments on the SHARE conver
sational benchmarks. 

2. Improvements during user sessions on measured 
but unrepeatable loads. 

3. Improvements in behavior of exceptionally 
indicative programs. 

4. l\1easures of acutal working set sizes. 
5. BCU measurements of CPU usage. 

Controlled experiments 

The results of using SLIN to run the SHARE con
versational script on the T. J. Watson Research Center 
l\1odel 67 are presented in Figure 2. These results 
compare responsiveness from the original TSSj360 
Release 4 schedule table (Figure 3) with the best one 
for Release 5.01 (Figure 4) and the Research table 
T47 (Figure 5). The major effect of the new scheduling 
tables was to improve the responsiveness across the 
entire script by significant factors. A significant further 
improvement seems possible in this area and will be 
discussed in the section SUGGESTED EXTENSIONS. 

Improvements during user sessions 

I regard the results to be described here as the most 
significant evidence of substantial gains in TSSj360 
performance via application of the balanced core time 



Scheduling TSSj360 for Responsiveness 103 

0 

,.;a 

I i 5 I I ~ ~ ~ il i ~ ~ 
f~ .. 

5 .. ,.;a 

i i a I ~ ,.;a 

! ~I I :l III ~ 
TABLJ: a !I :t -< III ~ ~ 

J:NTJUES E E E E E E E E E E E E E E E E E E E E E E (CILUTJ:) 

8Y8OI'EBO 00 011 ONC eM 32 17 00 0000 05 00 00 00 00 00 tA 18 18 2C 00 00 00 00 
COIfYKBM .... ' 1-4 5 4C 4 32 17 1-4 0 5 5~80 5~80 1-4 1-4 80 A 1'7-lA 1'7-1A ~30 31J-3C 42-45 4B-U M-57 
CONVJ:lllo\TIOMAL 5 5 4C 4 21 32 5 0 1 81 81 5 5 ,80 A IB 18 31 3D " 41' 51 
COMVERMTIOMAL 6-1 5 tc 4 32 17 6-1 0 5 82-85 .2-85 6-1 6-1 80 A lC-ll' Ie-II' 32-35 3E-41 47-4A 50-53 51-11C 
BUUDO A 5 4C 4 32 17 A 0 0 A A A A 00 1 10 10 38 A A A A INl'l'IAL LEVEY 
BATCH (MIX) a.12 5 4C 4 32 17 8-12 0 I' B:..12 8-12 8-12 8-12 CO 0 21-21 21-11 8-12 8-12 8-12 8-12 BH2 
BATCH (ONLY) 13 A 4C 71 32 17 13 0 0 13 13 13 13 co 0 21 21 13 13 13 13 13 
LOGON 14 5 4C 4 31 17 14 0 5 14 14 14 14 00 A IA lA' 37 14 14 14 14 
LOIIOn' 15 5 4C 4 32 17 15 0 5 15 15 15 15 00 A . IB IB 38 15 15 15 15 

8Y801'EBO 1. 0 0121' 01 31 17 d- o 0 0 0 80 0 .8 0 0 0 0 0 
COJfVJ:RMTIOML 1'7-11' 0 121' 1 32 17 1t-1I' 0 0 1-9 1-9 1-9 1-9 80 1.,.1 17-11' 1-1 31-41 42-4A 4B-53 M-IIC IIOLDDIG 
B1JUDO 10 0 121' 1 32 17 10 0 0 A A A A 80 A 10 A A A A A DI'l'ZRLOCIt 
BATCH (MIX) 21-28 0 121' 1 31 17 21-21 0 0 8-12 8-12 8-12 8-12 80 8-12 21-11 a.12 au 8-12 8-12 8-12 LEVEY 
BATCH (ONLY) 21 0 121' 1 32 17 21 0 0 13 13 13 13 80 13 21 13 13 13 13 13 
LOOC:IM • LOGOI7 1A-2B 0 121' 1 32 17 IA-IB 0 0 14-15 14-15 14-15 14-15 80 1 14-15 IA-IB 14-15 14-15 14-15 14-15 14-15 

8Y8OPaIO 2C 5 4C 4 31 17 Ie 0 0 0 0 0 0 80 1 16 16 Ie 0 • 0 0 WAI'I'IIIG 
CONVJ:lllo\TIOMAL ~35 5 4C 4 31 17 ~5 0 0 1-1 1-1 1-' 1-1 80 1'7-11' 17-11' ~35 31-41 42-4A 4B-53 M-IIC JOB 
B1JUDO 36 5 4C 4 31 17 38 0 0 ~ A A A 80 20 20 38 A A A A IlftDLOCK 
LOGON • LOGOI7 37-38 II 4C 4 32 17 37-38 0 0 1 .. 15 14-15 14-15 14-15 80 21-22 21-22 37-38 14-111 14-15 14-15 14-15 LEfty 

PIlJ:JUDJCJ:l 31-41 II 4C 4 31 17 31-41 0 5 1-1 1-. 1-' 1-9 80 1-9 1-9 1-1 1-' 1-1 1-' 1-1 
~2 42-4A II 4C 4 31 17 G;,4A 0 A 1-1 1-9 I-I 1-9 80 1-1 1-' I-I 1-1 1~' 1-' 1-1 JIBBJUIlICJ: 
I'REDDICB3 4B-53 II 4C 4 31 17 4B-53 0 14 1-1 1-' 1-' 1-1 80 1-9 1-9 1-1 1-1 1-1 1-9 1-1 LEftY 
JllUJUDlCE4 M-5C II 4C 4 32 17 M-IIC 0 IE t-I 1-9 1-' 1-9 80 1-9 1-9 I-I I-I 1-9 1-9 1-' 

COMVJ:RMTIONAL OOlCYJ:RMTIOIfAL 
Ta:ND • IlAXCR 1I~1II1 4C 4 32 17 II~III 0 IE 5~1II 5~1II I-I 1-9 80 A 17-11' 17-11' ~35 31-41 42-4A 4B-53 M-IIC 

Ta:ND • IIAXCIl 61 • 4C 4 40 17 81 IE .1 81 80 A IB IB 31 3D 46 dI 51 OOlfVJ:IIMTIOKAL 

Figure 3-8chedule table T4----the TSS/360 release 4 table 

principle and the concept of working set size. Since 
quantitative comparative measures were not available, 
the following base can be considered for comparison: 

1. The load generated on our system by experi
enced users who had built up large files of 
sophisticated procedures, programs, and data 
was heavier than the one they generated in the 
first year of TSSj360 usage. 

2. When running without LeS, response time for 
trivial commands had regularly been above 30 
seconds when the load reached 15 simultaneous 
users. This was intolerable to users. The only 
measures I have of this are over a year old, and 
they show trivial command response nearer 
10 seconds for the 15 to 20 terminal range. 

Now for the results. Periodically, beginning in Jan
uary, 1970, we had run our user session for entire days 
without LCS but with one of the new tables (Figure 
5). On the days before and after these, our simul
taneous user load had been between 20 and 30 users 
for most of the day. This did not change when we ran 
without LCS with the new schedule table. At the 
time of writing this paper there is a mass of partially 
reduced SIPE data which contains a complete record 
of what all users were doing on those days. The fol
lowing will attempt to describe the behavior of the 
system on the day of the heaviest user load, January 
14, 1970. The morning is always lighter than the after-

noon; so, the afternoon will be described: 

1. There were over 40 people who used the system 
that afternoon. 

2. The system came up at 12 :42 in the afternoon. 
By 2 :05 we reached a level of 20 simultaneous 
users. 

3. We reached a peak of 29 simultaneous users and 
then hovered around 25 until 5 :00 p.m. 

4. The ~sers were not told that we were doing 
anything unusual. 

5. One user complained vociferously. He had a 
paper he was producing with the RUNOFF 
command at the terminal. He also knew exactly 
how fast RUNOFF could go under good con
ditions. He had a deadline to reach and only a few 
minutes extra time. He used TSSj360 from 1 :10 
until 3:23 p.m. In this period he executed 184 
commands, primarily editing from a 2741. The 
response to the 175 editing commands was less 
than two seconds for all but three commands. 
The unusual three were: 

5.4 seconds 

3.5 seconds 
33.0 seconds 

one line of a 10-line PRINT 
command 

To execute a FILE command 

He began the RUNOFF at 2:03 p.m. This 
was just when the simultaneous user load was 



104 Fall Joint Computer Conference, 1970 

STAR'l'ING 

LEV EL 5 

H(JL!)t NG 

I~"~RLOCK 

LEV EL.~ 

PRE.JtlOICE 

,;AITt'l!": 

POR 

I.EV EL 

THIRD 

LEVEL 

SYSOP~fi 0 
TNTERACTIVE 
T NTF-RACT IV P 
INTERAC1'IV~ 
INTRRAC'l'IVE 
INTFlnCTIV": 
IN T ER A CT IV ~ 
INTERACTIVE 
INTEUCTIVE 
I NT ER ACT IV P. 
SULK 1-0 
BATCH 
BATCH 
tUTCIi 
SlTCK 
BATCR 
aATCR 
SATCK 
8ATCR 
aATCR 
LOGON 
LOGOFF 

r. 
F 
V 
E 
L 

P 
R 
I 
o 
R 

CO fJ4 
01 04 
OJ. )4 
I) I 04 
04 all 
0') 011 
06 04 
07 04 
08 04 
09 04 
OA 04 
OB 1A 
OC 1A 
01) 1A 
OE 1A 
OF 1A 
10 1A 
11 H 
llH 
1 1 1.\ 
H v2 
1, {I/~ 

T 
5 
V 
A 
L 

fJ04C 
Otl26 
0026 
1)026 
(11)26 
0026 
0026 
0026 
0026 
002& 
()04C 
a04C 
D04C 
004C 
()OI1C 
004C 
a04C 
1)04C 
J04C 
004C 
004C 
()04C 

Q 

U 
1 
N 
T 

P A 
U if 
L T 
S E 
F X 

D 
E 
L 
T 
A 

'T 
S 
E 
PI 
D 

PI 
P 
R 
E 

T A 

W " 
1 1 
I T 
T T 

RP " 
CR R 
!tl! Q 
PP 

T 

04 J2 J2 OJ 0000 01 00 00 00 00 00 01 
04 ]2 12 01 UOOO 02 )4 34 OS 06 ~O O~ 
04 32 J2 02 0000 02 J4 34 06 06 60 O~ 
04 12 ]2 0] 0000 02 14 34 06 06 ~o O~ 
04 12 j2 04 0000 02 ]4 34 OS 06 ao O~ 
04 32 12 05 0000 02 J4 34 08 08 dO O~ 
04 J2 j2 O~ 0000 02 34 34 06 08 dO O~ 

04 ]2 32 01 0000 02 34 34 OH 06 ~O O~ 
04 il J2 Oq OOlO 02 J4 34 08 08 SO 05 
04 J2 J2 09 0000 02 34 34 OS 08 HO O~ 

04 46· 11& OA 0000 00 OA Ort OA OA 00 01 
04 46 46 08 0000 01 ~9 ~9 ~9 59 dO 00 
Q4 116 46 oc 0000 01 ~9 ~9 ~9 ~9 BO 00 
04 46 46 00 0000 01 ~~ ~9 ~9 ~9 BO 00 
04 46 46 OE 0000 01 S9 59 ~9 59 ~O 00 
04 4~ 46 OP O)~O 01 ~9 59 ~9 59 dO 00 
04 46 46 10 0000 01 ~9 ~9 ~9 ~9 ao 00 
J4 46 46 11 Daoo 01 ~9 59 59 59 ~O 00 
14 46 46 II 0000 01 59 ~9 ~9 59 ~o 00 
7~ lJ 7] 11 0000 ~o 1J 1J 1J 1J CO 00 
14 JL J2 14 0000 0114141 .. 14.)(J O~ 
J4 lH 28 1~ Doao 01 1~ 1~ 1~ 1~ ~u OA 

H 
L 
C 
K 

L II P 
C L R 
H C J 
L K 1 

P 
R 
J 
I. 

P 
R 
J 
J 

P 
R 
J 
4 

16 16 21 00 00 00 00 
17 11 J .. 1F IF l' 11' 
11 11 J4 1P 1F 11 l' 
17 11 JII 1P 1F 1F 1P 
17 17 J4 1P 1F 1F 1f' 
11 11 J4 1F 1F 1F 1P 
11 11 J4 " 1F l' 1P 
,., 1·/ J4 1F 1F 11 11 
11 17 J4 l' 1F l' 1P 
1"1 ,., J4 1P 1F 1F 1 P 
1A 1A l6 01 01 01 OA 
18 18 ~9 ~9 ~9 ~9 ~9 

18 18 ~9 ~9 ~~ ~9 ~9 

1B 18 ~q 59 ~9 ~9 ~9 

18 1B ~9 ~9 ~9 ~9 ~9 

1B lH ~9 ~9 ~9 ~9 ~9 

18 18 ~~ ~9 ~9 ~9 ~9 

18 1B ~q ~9 ~9 ~9 ~9 

1R 1B ~9 ~9 ~9 ~9 ~9 

1C 1C 1J 1J 1 J 1 J 1J 
10 lD 2~ 14 14 14 1 .. 
1e 1£ 14 1~ 1~ 1~ 1~ 

SYSOPRRO 16 ~o a04C 04 12 12 16 0000 00 00 OU 00 ~o JO OA 16 1b II 00 OU 00 00 
INTE:RAcrrvE 11 0') ')()4C 04 12 J2 1/1)0:)0 U1' ]11 J4 O'j ,)8 oil) OA 1"1 11 J4 l' IF lP 1P 
INTERACrrV! 1H U'l ,04C 04 12 J2 1~ ~300 01 49 49 OM OH dO OA 18 18 4~ 11 1F 1F 1r 
INT~RACTtV~ 1~ j5 \.I04C 04 J2 12 1i lJJC 01 4~ 4~ 0" JH oiU UA 1~ 19 49 IF 1F 11 1F 
RIJLK 1-0 1 A 'I') ~1)4C 04 4b 4b 1A ,)(JVO 00 0)\ OA UA ,)A 1)0 01 1A 1A 2b OA OA 01 OA 
31TCH 1li OJ') ')04C 04 4f, 4h liJ Ot)-)O 01 ')~ ')'j ~'1 ')9 'iU 00 1i) 18 ~9 ~9 ~9 ~9 ~9 

BA'!'CH 1C 'I') 104C 04 1.i 1J lC ,)000 01 13 1J U 13 IjO 01 1C lC lJ 1.t 13 13 13 
LOGON 1f) ao ;)(14C 04 n L£ 11) 001)0 lIO 14 14 14 14 00 OA 10 1D 2~ 14 H 14 14 
LOGOFP 1E 05 n04e 04 28 28 1E 0030 00 1~ 1~ 1~ 1~ ~O OA 1E lE 24 1~ 1~ 1~ 1~ 

WR rTE 

LOGOFF 
LOr-ON 
BULK 1-0 
:) YSOPERC 
INTERACTIVE 
I NT FIlAC':' IV E 
INT ERAC'T IV::: 
INTI!:RACTI V~ 
I N'l'ERACT IV F. 

1F 00 nouc 04 23 '3 1F 0000 UU J4 t4 OH 08 ~o OA 11 11 J4 l' l' 1F IF 

24 Oil (le4C 04 
25 06 (104e 04 
26 Of) ,)04C \)1' 

27 or, 004C 04 
2fl 06 n04C 04 
29 ')6 1)04C 04 
2A .Jh f)04C 04 
2~ 1(, I)()I~C 04 
2C '17 004C 04 

12 ]2 24 0000 OJ 1~ 1~ 1~ 1~ HO OA 1£ 1£ 24 1~ 1~ 1~ 1~ 
32 ]2 2~ Dono OJ 14 14 14 14 UO 01 1D 1D 2~ 14 14 14 14 
f2 J2 26 0000 OJ OA OA 01 OA 00 01 1A lA 26 01 OA 01 OA 
i2 J2 21 0000 OJ 00 00 00 00 00 01 16 16 II 00 OU 00 uO 
12 12 2H 0000 OJ 49 4~ Uti OH 80 OA lS 1H Ld 1F.1F 1P 1P 
12 12 24 0000 03 )0 30 08 liS HO OA 30 JO 29 IF lP l' 1F 
32 12 2A nooo OJ 11 Jl 08 08 dO OA J1 Jl LA 1P l' l' l' 
J2 12 7B 0000 OJ 12 12 OY UH ~o OA J2 32 lB 1F lP 1F 1P 
32 32 2C 0000 OJ 46 4M 08 08 dO OA 19 19 2C IF 1f 1F 1F 

rNTERACTIVE 10 )') 004C n4 32 J2 )0 0000 00 49 49 OH 08 dO OA 18 18 49 1F 1F 1P 1F 
INTERACTIVE J1 Of 004C 04 12 12 J1 0000 00 )0 JO 1)8 OM riO OA 30 JO 2H 1P 1F IF IF 
INTP.R,H:'!'[vF J2 05 !)04C 04 32 .12 Jl 0000 00 31 .11 08 08 HO OA Jl J1 29 IF 1F 1F 1F 
INT~RhCTrv~ 1] 0] n04e 04 J2 12 ]] 0000 00 j2 J2 08 06 dO OA J2 J2 2A l' IF 1F 1F 
INTERACTIVE IU OR 004C 04 J2 J2 jll 0000 OH JJ JJ 08 U8 ~O OA 3J JJ 29 1P 1f IF IF 

INTF.PAC1'IVE 40 01 004C 0446 46 40 0000 00 4Y 49 Ott l.IH ~O OA 19 19 4'J U' 1F· IF 11 
INTERACTIVE 41 07 G04C 04 4h 4b 41 0000 00 40 40 OS 08 80 OA 19 19 49 1F 1F 1F 1F 
INTP.RACTIVE 42 01 004C 04 46 46 42 OO?O 00 41 41 OH OS MO OA 19 19 49 1F lF 1F 11 
TNT!'IlACTIVr 41 01 004C 04 46 46 43 0000 OC 42 ,42 OS CH tlO OA 19 19 .. ~ 1P 1F 1F IF 
INTERICTIVE 44 07 004C 04 46 46 44 0000 00 4] ~J OK OH ~o OA 19 19 49 1F l' 1F IF 
INTER~crIVF 45 17 n04e 04 46 46 4') 0000 00 44 44 Oij OH SO 01 19 19 4~ IF l' 1F It 
INTEPACTIVR 116 01 n04C 04 4b 4" 46 0000 00 u~ 4~ OH 08 HO OA 19 19 4'1 1F IF 1F U' 
INTERACTIV~ 47 07 D04e all q6 46 41 0000 00 46 46 OM D~ HO OA 19 19 49 1F 1F IF 1F 
INTF.!HcrrvE 48 01 0()4C 04 46 46 41J 0000 00 41 41 08 08 liD OA 19-19 49 1F 1F 1F 1F 
INTERJCTIVE 49 p9 004C 04 46 46 49 0000 01 4H 48 OB OS HO OA 19 19 2C IF 1F 1P 1F 

THIRD LEVEL BATCH 50 10 OD4C 04 46 46 ~o 0000 00 50 SO 50 ~O ao 00 ~A ~A ~o ~o SO ~O ~o 

SECOND 

LEV~L 

HOL DINe; 
IN'l'BLOCK 

BATClI 
BATCH 
SA Tr. ff 
BATCH 
B1TCJ.f 
lJATCIf 
BATCH 
BATCH 
BATCH 

BATCH 

51 11 004C 04 4h 46 ~1 0000 00 51 ~O ~1 ~1 ~o 00 lB 18 ~1 ~1 ~1 ~1 ~1 

52 12 004C 04 46 46 52 0000 00 52 ~1 52 ~2 ao 00 18 1~ ~2 ~2 ~2 ~I. ~l 
5J 1J 004C 04 46 46 5J 0000 00 ~3 52 ~J 5] ~o 00 18 18 ~J 5] 5J 53 ~3 
~4 14 104C 04 46 46 54 0000 00 ~4 53 ~4 ~4 ~o 00 18 18 ~4 ~4 ~4 54 ,4 
55 15 ()04C 04 46 46 55 00:)0 00 ~~ ~4 ~5 5~ ~o 00 18 18 ~'> ~~ ~~ " ~~ 
56 16 OOIiC 04 46 46 56 tlOOO 00 56 55 ~fi '>6 ao 00 18 18 56 ,6 56 ~6 5& 
57 11 004C 04 46 ~6 57 UO?O 00 51 56 51 '>1 ~O 00 1B 1B ~1 ~1 ~I ~1 ~/ 
58 18 004C 04 46 46 5~ 0000 CO 5H 51 58 5B ~O 00 18 lB ~S 5M 5H ~8 58 
59 1q OO~C 04 46 46 59 0000 00 59 5~ ~9 59 dO OC lB 18 ~'I ~9 59 59 59 

'lA 35 004C 04 4~ 46 5A OOJO 00 ~O 50 ~O ~O dO 00 SA SA ~o '>0 ,0 50 ~u 

Figure 4-Schedule table T5-the best TSSj360 release 5.01 table 



ST18TIIG 

SET 

HOLDI'fG 

INTERLOCK 

SET 

PliE1UDICE 

WAIT! NG 

POR 

INT~RLOCK 

SET 

L P T 
EllS 
V I V 
P. 0 I 
L R L 

o I! " U I I 
I X X 
11 C 1/ 
T • D 

P I 
U II 
L T 
5 1 
E X 

Scheduling TSS/360 for Responsiveness 105 

D T I! T I 
ESP II II 
L E R I I 
TilE I I 
I D T T 

RP" H 
CR R L 

"" 0 C pp 
T 

L II 
C L 
H C 
L It 

p P 
R R 
J J 
1 I. 

P P 
R R 
J J 
J 

SYSOP~RO 00 05 0026 01 20 PP 00 0000 00 00 00 00 00 00 OA lb 1& I.J 00 00 00 00 
IITlRACT.IVE 01 lA 0010 01 10 PF 01 0000 00 117 51 3D 08 8D 01 17 17 2 .. 11' 11' 11' 11' 
t1tTERACl'IVE 02 18 0010 01 10 1'1' 02 0000 00 117 51 3D 08 80 01 ,., 17 I. .. 11' 11' 11' 11' 
IITERICTI'E 03 18 0010 01 10 1'1' 01 0000 00 .. 7 51 30 08 80 01 11 11 2 .. 11' 11' 11' 11' 
TRTF.RACTIYF. 0" 18 0010 01 10 Fl' 04 0000 00 In 51 30 08 60 01 11 n l .. 11' 11' 11' 11' 
IIITP.RACTIVE 05 18 0010 01 10 P'1' 05 0000 00 47 51 JD 08 tiO OA n 1"1 1.4 11' 11' 11' 11' 
INTERICTI'E 06 18 0010 01 10 1'1' 06 0000 00 .. 7 51 3D 08 80 01 11 11 1 .. 11' 11' 11' 11' 
IITlRACTIf1! 07 18 0010 01 10 P'1' 07 0000 00 .7 51 ]D 08 80 01 H 17 1.4 11' 11' 11' 11' 
INTERICT!'" 08 19 0010 01 10 1'1' OS 0000 00 47 51 30 08 80 01 17 11 211 11' 11' 11' 11' 
IITERlCTIYP. 09 19 0010 01 10 1'1' 09 0000 00 .. 7 51 3D 08 80 01 11 17 2 .. 11' 11' 11' 11' 
BULl{ 1-0 01 0 .. 0026 01 20 P'1' 01 0000 00 01 01 01 01 00 01 11 lA 2l 01 OAOl 01 
B1TCH OB 10 0013 01 10 1'1' OB 0121' 01 IIC 35 35 OB 80 01 lB lB 27 OB DB DB OB 
BATCR DC 1D 0013 01 10 rr OC 0121' 01 4C 35 35 OC 80 01 1 B 1 B 21 OC DC DC DC 
BlTCR 00 10 0013 01 10 "1' 00 012,. 01 IIC 3') 35 00 80 01 lB lB H OD 00 OD 00 
BATCR OE lD Don 01 10 1'1' OE 0121' 01 I&C 35 35 OE 80 01 lB lB U OJ! OJ! DB OJ! 
BATCR 01' 1D 0013 01 10 1'1' or 012' 01 IIC 35 35 OF 80 01 lB lB 21 or OF 01' or 
BlTCR 10 lD 0013 01 10 1'1' 10 0121' 01 I&C 35 35 10 60 01 lB lB 21 10 10 10 10 
BITCR 11 lD 0013 01 10 1'1' 11 012' 01 "C 35 35 11 80 01 lB lB II 11 11 11 11 
BITCR 12 10 0013 01 10 1'1' 12 012' 01 IIC 35 35 12 80 0& lB lB 21 12 12 12 12 
BITCR 11 lD 0013 01 10 PI' 13 0121' 00 I&C 35 35 13 80 01 18 lB 21 lJ 13 13 13 
LOGON , .. 03 0026 02 20 P'P 111 0000 00 , .. , .. 111 , .. 00 01 10 10 21 , .. 111 14 , .. 
LOG01'~ 15 0 .. 0026 02 20 1'1' 15 0000 00 15 15 15 15 80 01 lE 11 lO 15 15 15 15 

SYSOPEBO 
INTER'CTJV! 
TNTI!RICTIV! 
IlITERACTIVE 
SUL!{ 1-0 
BITCR 
BITC!f 
LOGOIl 
LOG01'1' 

"RIT! 

LOG01'P 
LOGOI 
BULK 1-0 
SYSOPERO 
IlIT!PlCTIV E 
IIITERACTIV~ 

I NTERAC1' IV,. 
81TCH 
BITCH 

GROIiING 

16 00 0013 01 20 F1' 16 0121' 00 00 00 16 00 00 01 16 1& I.J 00 00 00 00 
17 02 0013 01 10 1'1' 17 0121' 00 .. 1 28 11 Q~ 00 01 11 17 2 .. 11' lP lP 11' 
18 02 0013 01 20 FP 1~ 0121' 00 QB l8 1~ 08 00 01 18 18 I.~ IF IF IF 11' 
19 01 0013 01 10 PF 19 OllP 00 "I 2C 19 08 00 01. 19 19 I.b lP 11' 11' lP 
11 0) 0013 01 20 FF 11 012P 00 01 01 11 01 00 01 lilA 22 lA 11 11 11 
1B 04 001] Q1 10 FF 18 0111' 00 "c 35 18 UB 00 01. lB lB 21 lB 18 lB 18 
lC 04 001J 01 10 PI' lC 011P 00 35 ]& lC 13 00 01 lC lc 28 lC lC lC lC 
lD 01 ~Ot3 01 20 FP lD 0121' 00 , .. 14 lD , .. 00 01 lD lD 21 , .. , .. , .. , .. 
lE 03 0013 01 20 PP lE 0121' 00 15 15 lE 1~ 00 Oil! lE lO 15 15 15 15 

1F 01 0013 01 2J F1' lP 0000 00 11' 11' O~ 08 00 OA 11 11 24 lP lP lP lV 

20 06 0011 01 
21 06 0013 01 
22 06 0013 01 
23 06 0013 01 
2 .. 06 0013 01 
25 06 0011 01 
26 06 00 13 01 
27 06 0013 01 
28 06 0013 at 

20 PI' 20 0000 2J 15 15 15 15 60 Oil! lE 1.0 l~ 15 15 15 
20 1'1' 21 0000 21 , .. , .. lQ 14 80 01 1D lD 1.1 , .. 14 14 , .. 
20 1'1' 22 0000 23 01 OA 01 OA 80 OA 1& 11 21. 01 OA 01. 01 
20 1'1' 21 0000 01 00 00 00 00 80 01 16 16 23 00 00 00 00 
10 1'1' 2. 0000 2J 47 2B 3D 08 00 01 11 11 24 lP 11' 11' lP 
20 1'1' 25 0000 23 41 28 30 08 ~O OA 18 18 2~ 11' lP 11' 11' 
10 PI' 26 0000 2J 2B 20 1P 08 ~O 01 19 19 26 lP 11' 11' 11' 
10 P1' 21 0121' 23 jj 35 27 DB 80 01 18 18 l7 08 08 OB 08 
)0 PI' 2~ 012P 23 33 J~ 26 13 80 01 lC lc 28 13 13 lJ lJ 

Lo')::>I'IG llELAYIIG 
29 18 0026 n~ 10 PF 29 0000 00 21 28 3D 08 00 01 11 11 l" 11' 11' lP lP 
21 03 0026 08 18 PF 21 0000 13 41 19 3D 08 80 01 18 18 l~ 11' 11' 11' 11' 
IB 18 0026 02 20 PP 2B 0000 00 21. 2C lP 08 00 01 18 18 25 11' IF lP 11' 
2C 11 002b 02 10 F1' 2C 0000 00 2P lD 40 08 00 01 19 19 I.b 11' 11' IF IF 
20 16 0011 01 40 PP 20 0000 00 JO 2E 41 08 00 01 19 19 i6 11' 11' 11' lP 
2E 15 0013 01 ~O PF 2E ooal ao 31 32 112 08 00 01 19 19 16 11' 11' 11' 11' 
2F 14 0016 02 10 PP 2F 0000 l3 liB 28 J1' 08 80 01 19 19 lb 1P 11' 11' lP 
'0 14 002~ 01 10 PP 11 0000 2J .. I 2C 40 18 80 01 19 19 lb lP IF 1P 11 
it '" !I01"· 01 110' ff 11 0000 l3 "" I.D 111 Oil IlO 01. 19 '" .!b 1F 11' 11' 11' 
12 14 001J !Il 110 PF 32 0000 l3 49 lD III 08 80 01 19 19 2b 11' 11' lP 11' 

GROIII'IG 
TNT-P\CTIVE GROWING 

GBOIII'lG 
3~T 

Lv)"T NG 

RATSH 

SET 

A.lITT 

~!lOIIT!fG 

!>ELlYIN:: 
DELI Y'I !f,; 
DELlYI MG 
DELHING 

';!lOIII'iG 
DELAYING 
GROIiING 
GROIiING 
G.BOilING 
GROIiING 
DELAYING 
DELATING 
JELlYT NG 
JELlYI N!,; 

';ROIII~G 

DELATIN!,; 
,.ROIIIlIG 

I'iT~R'CTIVE GROIiING 

'H1' 
GROIiING 
GROiltNG 
DELATING 
DELATING 
DELUING 
JELA YIKG 

SHR!!IK ING 
LO)PI'IG DELAYING 
B1'EPACTIYE SHRI!lKING 
~Rr SHRINKING 

LOO!'! ~G 

SHRINKIN~ 

,)HRl!IKING 
DELAYING 
SIIRINKING 
5HR INK IN:> 
SHRI!lKING 

U lJ 002" Ud 10 1'F JJ 0121' 00 34 ]5 34 '4 00 01 18 18 H JII J4 J4 J" 
311 11 0026 08 18 1'1' 1 .. 0121' lJ 4C JJ 3J til 80 01 lB 18 21 311 JII 3 .. JII 
)'} lC 002& 02 20 FI' 3,} 0121' 00 J3 3b 39 J9 00 0& 1 B 1 B l"I J9 39 J9 39 
16 ta 0016 02 10 FF 36 Oll' 00 39 31 11 II 00 01 lC lC 28 31 J& J& Jl 
31 1& DOll 01 "0 t'1' 17 012P 00 3l 38 3B J8 00 01 lC 1C l8 JB JB 3B 38 
3d 1'1 ~Oll 01 "0 F' 38 012F 00 3B 3C 3C lC 00 01 lC 1C 211 3C JC 3C 3C 
1'1 11. 0026 01 20 1'1' J" OllP H 50 35 35 JI) ao 01 lC lC 28 J9 39 J9 J9 
JA 11 0026 01 30 PF 11 812F 2J "P J6 J6 JI 00 01 lC lC III JA JI JI J1 
JIl 1A 0011 01 40 1'1' 3B 0121' 21 liE J7 11 J8 80 01 lC lC 2~ JB J8 JB JB 
)C 11 0011 01 .. 0 Ft' lr 012' 13 .. E 31 18 3C 80 01 lC 1C I.Il JC JC JC 3C 

3D OS 0026 01 10 FP ]0 0121' 00 21 lB 3E 08 00 01 11 11 lq IF lP 11' lP 
JE DB 0026 01 10 1'1' 3E 012P 13 41 28 lD 08 80 01 11 11 211 11' 11' lP' 11' 
11' 1~ 0011 01 20 PI' lP 011P 00 21 2C "3 08 00 01 18 18 25 IF lP lP 11' 
40 11 0010 01 10 rl' QO 0121' 00 21' 20 .... 08 00 0& 19 19 26 11' 11' 11 lP 
41 16 000 .. 01 .. 0 'I' .. , 012F 00 30 2E .. 5 08 00 01 19 19 2& 11' 11' lP " 
41 15 000 .. 01 .. 0 pp 42 012F 00 31 32 lib 08 00 01 19 19 l& lP 11' 11' " 
III 14 OOll 01 20 1'1' IIJ 0121' 23 29 2C 3P 08 80 OA 18 18 :i5 IF 11' 11' 11' 
.. 4 111 0010 01 30 1'1' 4 .. 012' 23 2B 2D "0 08 80 0& 19 19 2& 11' 11' 11' 11' 
45 14 000" 01 .. 0 pr 45 012P 2J 2C 2E 41 08 80 01 19 19 26 lP 11' 11' 11' 
46 14 000 .. 01 110 P1' 116 0121' 21 2D 21! "2 08 80 01 19 19 26 IF lP 11' 11' 

.. 7 01 0026 10 08 1'1' III 0000 00 48 29 1D 08 00 08 11 11 2" 11' 11' IF 11' 
liB 01 0026 10 oa pF .. 8 0000 13 .. 1 29 3D 08 80 08 11 11 2Q 11' 11' 11' 11' 
119 17 0026 01 10 F1' 4" 0000 00 CIA 2C 40 08 00 0& 19 19 2b 1F 11' 1P 11' 
III 16 0026 02 20 FF 41 0000 00 48 28 JF O~ 00 0& 18 18 25 11' 11' 11' 11' 
48 15 0026 08 18 1'P .. 8 0000 00 III 29 lE 08 00 0& 18 18 25 11' lP 11' 11' 

4C 13 0026 10 08 F1' IIC 0121' 00 .. 0 J] "D .. 0 00 08 lB lB 21 .. D 4D .. D .. D 
liD 11 0016 10 08 1'1' 40011' 21 QC 31 IIC .. 0 80 08 lB 18 21 .. D .. D .. D liD 
4E 13 1)1)1~ 11 JC 1'1' .. E 0121' 00 111' 37 Jl !A 00 01 lC 1C l8 16E .. E Il£ II! 
liP ,. 0016 02 20 FF 4P 01l1' 00 SO 3& J9 J9 00 01 1C 18 21 .. , 4P Qp .. P 
50 10 0026 09 18 P1' SO 012F 00 11= 35 34 14 dO 01 18 lB 1.1 50 50 50 50 

:,rAP'!'I!!G 
:lsr 

IIITERACl'I'I E !>1 11 0008 01 20 FF 51 0000 00 28 '>2 JP Oil 00 01 18 llf i5 tF ,,. 11' 11' 
INT!RICTIV~ ~2 16 0006 11 30 F1' 52 OODU 00 2C 53 40 08 00 01 19 19 l6 11' 1F lP 11' 
INTERACTIVE 53 15 0004 01 110 1'1' 51 0000 00 2C 2D 40 08 00 01 19 19 2& 1P 1P lP lP 

Figure 5-Schedule table T47-The table in use when we first ran without LOS 



106 Fall Joint Computer Conference, 1970 

crossing the 20 mark and building rapidly. The 
average delay during the RUNOFF between 
522 lines of type-out was 3.4 seconds. This 
included four unusually high delays of 71.6, 
85.4, 87 and 117.1 seconds. It turns out that 
these unusual delays occurred because of a high 
level of simultaneous load. I was the chief per
petrator of this load and was thus hoisted on 
my own petard. I was doing a virtual memory 
sort over 2.5 million bytes of data during the 
interval of time when the four large delays 
occurred. This table still had its weak moments. 

This, however, was the only cloud on a per
fect afternoon. No other user complained. 

6. One user was on with an 1130-2250 doing 
algebraic symbol manipulation with LISP. 

7. Three users were on all afternoon using a medical 
application program. 

8. Two users were on editing using the REDIT 
command with a 2741 for input and a 2260 
scope for output. One of these two was the high 
success story of the day .. He was on from 1 :08 
until 2 :55 p.m. During this time he executed 
622 editing commands. This was an average 
interaction time of 10 seconds. This includes 
type-in time, processing time, think time and 
display time. And he is not a touch typist! 
He averaged 5.1 seconds to respond to TSSj 
360 with each new command. TSSj360, in turn, 
averaged 4.3 seconds to process his request, 
change the display and then open his 2741 
keyboard for the next request. This includes 
a single high peak of 104 seconds during my 
2.5 million byte sort, similar to the RUNOFF 
delays. 

9. The remainder of the users were in various 
stages of editing, compiling, executing, debug
ging, abending, and other normal operations. 
Most of the users were on the system for one 
or more hours of consecutive use that day. 

10. Ninety per cent of the compilations completed 
in less than one minute that afternoon. 

11. To compound the issue, we were running with 
what we considered to be a critically low amount 
of permanent 2314 disk space available on that 
day. There were between 4,000 and 5,500 pages 
of public storage available out of a possible 
48,000 pages, of on-line public storage. Thus 
I assume higher than normal delays due to disk 
seeking existed during this day. 

12. The most quantitative evidence I can offer 
from the contribution of the balanced core time 
and working set size concepts was obtained 
from the Level Usage Counters. 

a. Of all task dispatches, 89 per cent required 
less than 32 pages. 

b. Ten per cent required between 32 and 48 
pages. This could be even lower if the as
sumption is made that this simply reflects a 
working set change and not a working set 
size change. 

c. The remaining one per cent of all dispatches 
were for up to 64 pages. 

d. Breaking this down by sets of table levels, 
there were: 

Starting set 
Looping set 
Batch 
Holding interlocks 
Waiting for interlocks 
AWAIT 
BULKIO 
SYSTElV[OPERATOR 
LOGON 
LOGOFF 

28 percent 
30 percent 
4 percent 
5 percent 
2 percent 
5 percent 

10 percent 
5 percent 
6 percent 
5 percent 

13. Since the BCU has not been available SInce 
December 20, 1969, there were no BCU measure
ments made that day. 

14. The table in use on that day was T47 (Figure 
5), which is very similar to T48 (Figure 6). T48 
was created to reduce the impact on other users 
of people doing in core sorts of several million 
bytes on a computer which only allocates them 
several thousand. 

Changes in indicative programs 

The programs discussed here exhibit to a marked 
degree improvements which are present to a lesser 
degree in all programs. They are: 

1. A tutoring program, using a 2260 display with a 
2741 for some input formerly had the following 
property: 

If you asked it a question whose answer was 
unknown it displayed a message to that effect. 
Then after a few seconds the screen would change 
to let you choose what to do next. 

Once the first new table was put in use, the 
first message was usually not seen by most 
people. This was because the old normal system 
delay no longer existed. The program's author 
had to put in a PAUSE after the first message 
to allow it to be read. 

2. When the first new table was put into daily use, 
only one user was slowed down. He was using 



ST1RTJlIG 

SET 

HOLDING 

INTERLO'CK 

SET 

L 
I 
V 
I 
L 

P T 
R S 
I V 
o A 
B L 

0. " " U A I 
1 X X 
H C R 
T R D 

P A 
U II 
L T 
S I 
I X 

D T 
I S 
L E 
T H 
I D 

Scheduling TSS/360 for Responsiveness 107 

II T 1 
P W II 
R 1 1 
I I I 

T T 

RP" H 
CR R L 

"" Q C PP K 
T 

L II 
C L 
H C 
L K 

P P 
R R 
J J 
1 ]. 

P P 
II II 
J J 
1 .. 

SYSOPIBO 00 OS 0026 01 20 PP 00 0000 00 00 00 00 00 00 01 1& 1& 2J 00 00 00 00 
IHTER1CTIYE 01 18 0020 01 10 FF 01 0000 00 21 51 10 OK 80 01 17 11 2" IF IF 1F lP 
IRTERlCTlYI 02 18 0020 01 10 FP 02 0000 00 21 51 10 OK 80 01 17 17 lit 1P IF 1P 1P 
IHTER1CTIYI 03 18 0020 01 10 pr 01 0000 00 2~ 51 lD 08 KO 01 17 17 2 .. IF lP IF 1P 
IRTP.R1CTIYE 0 .. HI.0020 01 10 pr 0 .. 0000 00 21 51 JD OK KO 01 17 17 lq 1F 1F 1F 1P 
IHTER1CTIYI OS 18 0020 01 10 FF 05 0000 00 21 51 10 08 80 01 11 17 lq 11 1F 1F 1P 
fIITED1CTIYF. 0& 18 0'020 01 10 FF 06 0000 00' 21 51 10 011 ItO 01 11 17 lq U' IF IF 1P 
IRTIRlCTIYE 0'7 18 0'020 01 10' FP 01 0000 DO 21 51 10 011 80 01 17 17 lq 1F lP lP lP 
IHTIR1CTI'E 09 18 00'20 01 10 FP 08 DODO 00 21 51 lD 0'11 KO 01 17 11 2q IF IF lP lP 
IHTIUCfIYE 09 18 0020 0'1 10' FF 0'9 0'0'00 00 21 51 10 OK KO 0'1 17 11 2q 1F lr IF 1P 
BULK 1-0 0'1 011 00'26 0'1 20' FF 0'1 O'O'!)O' DO 01 0'1 01 01 00 01 11 11 :lI. 01 01 01 01 
BATCH OB lD 0011 01 10 FF DB 012r FE "C 15 15 OB KO OA 1B 1B 21 OB OB OB OB 
BITCH DC 10 0'0'13 01 10 FF DC 012r FE 4C 15 15 DC 80 01 1 B 1 B 2'1 OC OC OC OC 
BITCH DO lD 0013 0'1 10 FF OD D12r 1'1 4C 15.15 OD 80 01 lB lB 21 00 00 00 00 
B1TCR OE lD 0013 01 10 FF DE 012F FE .. C l!» 35 DE KO 01 lB 1B 21 01 DE OE DE 
BITCH or 10 0013 01 10 rF OF 012F FE 4C 15 15 DF 80 01 lB lB 21 OF DP OF OF 
BATCH 10 10 DOll 01 10 FF 10' 012F FE 4C 15 J5 10 110 01 18 lB 21 10 10 10 10 
BITCH 11 lD 0'013 01 10 FF 11 012F FI 4C 15 J!» 11 80' 01 lB 1B l7 11 11 11 11 
BITCH 12 10 0013 01 10 FP 12 012F FE 4C 15 J5 12 80 01 lB lB 21 12 12 12 12 
BlTCR 13 lD 001J 0110 PF 11 012F FI lie 151513 8001 1B lB 27 1J 1J 1J 1J 
LOGOH 14 03 0026 02 20 FF , .. 00'00 00 111 lit 14 14 DO 01 10 lD 21 , .. , .. , .. , .. 
LOGOFF 15 Olt 0026 02 20 FF 15 0000 00 15 15 15 1!» KO 0'1 11 lE 20' 1~ 1~ 1~ 1~ 

SYSOPERO 
IlITIR1CTIYE 
IN'l'ER1CTIVP. 
INTERACTIVE 
RULK 1-0 
BATCH 
BITCH 
LOGO II 
LOGOFF 

16 00 0026 02 20 FF 16 OllF 00' 00 00 1& DO DO 01 
11 02 0026 02 10 FP 17 012P 00 47 2B 17 OK 00 01 
18 02 0026 02 20 FF lK 012F 00 4B 28 lK O~ DO 01 
19 0.1 0026 02 30 FF 1'1 012F 00 ItA 2C 1'1 OK 00 0'1 
11 OJ 0026 02 20 FF 11 012F 00 01 OA 11 0'1 DO 0'1 
18 Olt 0026 02 10 FF 18 012F 00 ItC J5 18 DB DO OA 
lC 0" 0026 02 ]0 FF 1C 012F 00 35 3& lC 1J 00 0'1 
10 01 0026 02 20 FF 10 012F 00 14 lit 10 14 00 0& 
lE 03 0026 02 20 FF 1E 012P 00 15 1~ It 1!» 00 01 

1 b 1 b l j 00 DO 00' 00 
11 17 2" IF 1F IF 1F 
lK 18 2!» IF IF 1F IF 
1'1 1'1 if> 1F 1F 1F lP 
lllAl.l.ll111AlA 
lB 18 n 1B 1B lB lB 
1C lC 2H lC lC lC lC 
10 lD 21 , .. 14 111 , .. 
lE 1£ 20 1!» 1~ 1~ 1~ 

PREJUDICI WRITE IF 01 0026 02 23 FP IF 0000 00 IF IF 08 08 00 0'1 17 11 lq IF IF 1F IF 

llAI'l'IIIG 

FOR 

IN.TERLOCK 

SET 

LOGOFF 
LOGOIl 
BULK 1-0 
SYSOPBRO' 
IIITIRlCTIY I 
IH TERlCTIYE 
IIiTIRACfIYP. 
BATCH 
BITCH 

GROIIIIIG 
LOOPING DILATING 

G801llllG 
INTER1CTIVE GROIlING 

GROIIIIlG 
SET r.ROIIIIIG 

LOOPING 

BITCH 

SIT 

DILlfUIG 
DiLl TIlIG 
DILlYIIIG 
DELI fING 

GROIlING 
DELlflNG 
GROIIIIlG 
GROIlIIIG 
GROWIIIG 
GROVIIIG 
DJ!tUIIiG 
DIL1TlNG 
DILATIIiG 
OILUIIG 

GROWING 
lWAIT DIL1TIIIG 

GROIIIIIG 
IIITER1CTI'E GROIIING 

GROIIIIIG 
SET GROIIING 

DELATING 
DILAYI NG 
DELlTlNG 
DILlYIIiG 

SRRIllltitiG 
LOOPIIiG DILAYIIIG 
INTER1CTIVE SHBIIKIIIG 
SET S8R tNK ING 

LOOPING 
RITCH 
SET 

SHRTIIKIRG 

'>HtlIIIKIIiG 
DIUTING 
SHlIINKlllr. 
<;H!lIIIKINr. 
SHRINKIIIG 

20 06 
21 06 
22 06 
23 06 
21t 06 
25 06 
26 0& 
27 06 
28 06 

0026 02 
0026 02 
0026 02 
0026 02 
0026 02 
0026 02 
002& 02 
0026 02 
0026 02 

20 FF 20 000'0 FE 1!» 1~ 15 15 KO O~ lE lE 20' 15 1~ 
20 FF 21 0'000 FE , .. 14 , .. 111 80 01 10 10 21 lq , .. 
20 FF 22 0000 FE 01 01 01 01 KO 01 11 11 l2 0'1 0'1 
20 FP 2] 0000 FE 00 00 00 00 80 OA 1& 1& 23 00 00 
10 FF 2 .. 0000 FE 47 2B JD OK 00 0'1 17 17 lq IF IF 
20 FF 25 oooa FI 47 2B JD OK KO 01 lK lK l~ IF IF 
]0 FF 2~ 0000 PE 2B 20 3F 08 KO 01 19 1'1 2& IF IF 
10 FF 27 012F PE JJ 35 27 DB KO 01 lB lB l1 OB OB 
30 FP 2a 012F FE 31 J5 28 lJ 80 01 lC lC 2K lJ lJ 

1~ 1~ 
lq lit 
0'1 0'1 
00' DO' 
1F " 
1F 1F 

" " DB DB 
HlJ 

29 08 0026 08 10 FF 2'1 0000 00' 21 2B 10 0'8 DO 01 17 17 l .. IF 1F IF IF 
21 08 001& O~ 18 FF 21 0000 FE q1 29 10 OK 80 0'1 lK lK l~ IF IF IF IF 
2B 18 0016 02 20 FF 2B 0000 00 21 2C 1F 08 DO 01 18 lK l5 IF IF " IF 
2C 17 ·0026 02 10 I'P 2C 0000 UO 2F 20 40 08 00· 01 1'1 19 2f> 1F IF IF " 
20 16 .0013 01 itO FF 20 0000 00 JO 2E .. , 08 DO 0'1 19 1'1 26 IF IF IF 11 
2E 15 0011 01 40 FF 2E 0000 DO Jl J2 42 08 00 0'1 19 1'1 2& 1F IF IF IF 
2F lit 002& 02 20 FF 2F 0000 FE liB 2B 3F 0'8 80 01 19 19 26 IF 1P IF 1P 
10 14 0026 01 30 FF 3D 0000 FE itA 2C qo OK ~o 0'1 1'1 19 26 IF IF IF IF 
11 111 0026 01 qO FF 11 0000 FI 4'1 20 .. , 08 80 DA 19 19 26 IF IF lY IF 
]2 , .. 0013 01 40 FF J2 000'0' FE 1t9 20 42 08 80 0'1 19 19 l6 IF IF lY IF 

]) 13 0026 08 10 FF 13 01lF 00 JIt J5 14 JIt 00 0'1 lB lB 27 Jq Jq 3 .. J .. 
JIt 110026 08 18 FF 1 .. OllF FE 4C 33 J.i JII 80 DA lB 1B 2-' Jq jq JII JII 
)5 lC 002& 02 20 FF J'> 012F 00 JJ J6 J9 J<J 00 01 lB lB 21 3'J J<J 1'1 39 
16 lB 0026 02 10 Fr 16 012F 00 39 37 11 Jl 00 01 lC lC 28 Jl 31 31 Jl 
)1 11 001J 01 40 FF 37 012F 00 31 18 38 JB 00 0'1 1C 1C 2K J8 3B JB JB 
)8 19 001) 01 40 FF 18 012F 00 3B 3C )C 3C 00 01 lC lC 28 3C JC JC 3C 
19 11 0026 02 20 FF 19 012F FE !»O J~ 35 .i'l 110 01 1C lC 2K 39 19 .i'J H 
31 11 0026 01 30 FF 31 8111 FE 4F J& J6 Jl 00' 0'1 lC 1C III JA ~1 31 Jl 
lB 11 0013 01 itO PF 1B 012F FE 4E 37 17 1B 80 01 1C lC 28 JB 3B 38 JB 
lC 11 DOll 01 .. 0 FF lC 012F FE 4£ 17 18 iC 80 01 lC lC 28 JC JC JC JC 

10 DB 0026 01 10 FF JD 012F DO 21 2B 3E 08 00 0'1 17 17 2~ IF IF IF lP 
lE OB O~26 01 10 FF lE 012F FE 47 2B 10 08 80 01 17 17 2q IF IF IF IF 
3F 18 0013 01 20 FF 3F 012' 00 21 2C q3 08 00' 01 lK 18 2~ " IF IF lr 
40 17 0010 01 10 FF .. 0 012F DO 2P 20 44 08 00 01 19 19 2& IF IF IF IF 
Itl 16 0004 01 itO 'F Itl 012F 00 10 2E q5 08 00 01 19 19 26 IF lP IF " 
42 15 0001t 01 110 FF .. 2 01lP 00 11 12 1t6 08 00 01 19 19 2& IF IF IF IF 
.. 1 , .. 0013 01 20 FF 1t1 0121 FE 29 2C 1F 08 80 OA 111 18 25 IF IF IF 1F 
41t lq 0010 01 10 FF .. 4 012' FE 2B lD itO 0'8 80 DA 19 19 2& IF IF IF lP 
itS , .. 00011 01 110 FF It'> 012P FE 2C 2E 41 OK ao 01 1'1 19 26 IF IF IF IF 
46 lq lOOIt 01 itO FF 4& 012F FE 20 2E 42 JK 60 01 19 19 26 1F IF IF " 

1t7 07 ry026 10 08 FF 47 0000 00 1t8 29 3D 08 00 OK 17 17 lq IF IF IF IF 
1t8 07 0026 10 08 FF 1t8 0000 FI 1t1 29 10 08 80 08 17 17 2_ 1F IF IF lP 
1t9 17 0026 01 30 PF 49 0000 00 .. 1 2C qo OK 00 OA 19 19 2& IF IF IF lP 
ijl 16 0026 ~2 20 FF 4& 0000 00 4B lB 3F 08 00 DA 18 18 2~ IF IF 1F 1F 
ItS 15 0026 08 18 FF ItB 0030 00 47 29 IF. 38 00 DA 111 1M 2~ IF IF IF IF 

ItC 11 0016 10 08 FF .. C 012F 00 .. D 13 4D 40 00' 0'8 lB lB II qD qo qD 110 
.. 0 11 0026 10 08 FF .. D012F FE ItC H 4: 40 110 DK lB lB 2' qD qO 40 110 
.. B 18 0026 01 10 FF ItE 012F 00 rtF 31 3A ]1 00 01 lC lC 28 qB .. I qE 4! 
4F 11 00'26 02 20 FF ItF D12F 00 SO J6 19 39 00 OA lC lB II qp "F qF liP 
~O 19 0026 OS 18 FP SO 012F 00 IIC 35 3q J4 00 01 lB 1B 21 ~D !»D ~O ~D 

ST1RTlIIG 
SET 

IIlT£R1CTIVE ~1 17 0010 01 18 FF 51 0000 00 2F 52 3F OK 00 OA 111 111 2~ IF 1F IF IF 
tllTER1CTIVE '>2 16 OOOC 01 20 FF 52 000'0 00 2F 53 itO OK 00 DA 19 19 26 1F IF IF IF 
IIIT£R1CTIVF. ~j 15 ~OOq 01 JO FF 5] 0000 00 30 30 .. 0 08 DO 0'1 19 19 26 IF IF lP " 

Figure 6-Schedule table T48-A later research table for release 4 



108 Fall Joint Computer Conference, 1970 

an 1130-2250 to do algebraic symbol manipu
lation using LISP. After a minor adjustment 
to the Starting Set he reported that he was 
satisfied with the response and it was better 
than.before. 

3. The initial table also slowed down some assem
blies, namely those with many macros. Later 
they performed as follows: 
a. Assembling a program called SIPCON, over 

2000 cards with a few macros, takes one 
minute and 29 seconds when run stand alone. 
Formerly under the TSS/360 Release 4 
schedule table (Figure 3), with 20-25 users 
on the system with LCS in use, it frequently 
took 40-45 minutes. Now its maximum time 
has been 13 minutes. This occurred once. 
Assembling it over 10 other times during 
user sessions when 20 or more users were on 
showed a range from 2:19 to 6:13. Schedule 
table T48 (Figure 6) produced the 2:19 as
sembly. 

b. Repeatedly assembling a program called 
BROWSE which had about 2800 statements 
and many macros had the following results 
when more than 20 users were on: 

TSS/360 Release 4 
table: 

Early new tables: 
Table T47: 
Table T48: 

Over one hour 
20 min.-one hour 
13-22 minutes 
6 minutes, 9 seconds 

The results presented in the preceding three sections 
can be summarized as follows: 

1. The IBM T. J. Watson Research Center's 
Model 67, without LCS, could support about 
25 simultaneous users on Release 4 of TSS/360, 
maintaining a consistent response of 3 seconds or 
less to trivial requests, while· simultaneously ser
vicing large users rather well. Formerly we could 
support fewer than 15 simultaneous users on 
Release 4 of TSS/360 without LCS, and re
sponses to trivial requests were in the 10 to 30 
second range. There is no evidence to indicate 
that the· simultaneous user load could not be 
significantly further increased. 

2. The controlled experiments using SLIN were 
poor indicators of performance in a live user 
session. They were also poor indicators of the 
worth of most schedule tables since they never 
used most of the levels in the tables. This was 
due to the inadequacy of the SHARE script. 
Thus, a major problem to be tackled is to find 
a truly representative script (or set of scripts) 

and, since loads are constantly evolving, it is 
even more important to develop a methodology 
for automatically producing scripts that are 
characteristic of a given installation; and auto
matically verifying that fact. 

A second problem to be tackled is to define a 
shorter measurement period which produces valid 
results. The current technique requires more 
than two hours per run. 

Measured working set sizes 

In examining the results of daily readings from the 
Level Usage Counters I find the statistics to be re
markably similar to those reported under Section B, 
above. The only time this varied significantly was 
when one user had left a job to be run in batch that 
involved manipulating a 961 page matrix. That is 
more pages than are on our drum. It is over 4 million 
bytes of memory. Instead of running in the batch, it 
was run from a terminal, in the user session on J anu
ary 23, 1970. He was on from 8:15 until 11 :15 a.m. 
This caused erratic response but was not intolerable. 

Figure 7-The model 67 configuration at the IBM Thomas J. 
Watson . Research Center 



The following compares the two sets of statistics that 
reflect on Balanced Core and the Working Set Size: 

January 14 January 23 

<32 Pages 89 percent 80 percent 
32 < 48 Pages 10 percent 12 percent 
48 < 64Pages 1 percent 8 percent 
Starting Set 28 percent 12.5 percent 
Looping Set 30 percent 47 percent 
Batch 4 percent 0 percent 
Holding Interlocks 5 percent 8.5 percent 
Waiting for Interlocks 2 percent . 6 percent 
AWAIT 5 percent 9.6 percent 
BULKIO 10 percent 12.7 percent 
SYSTE1VIOPERATOR 5 percent 3.3 percent 
LOGON 6 percent 3.6 percent 
LOGOFF 5 percent 2.2 percent 

The primary conclusion drawn from this comparison 
is that the Working Set Size concept is valid for han
dling very large programs as well as many small ones. 
Furthermore, the Principle of Balanced Core Time 
permits a high degree of automatic folding of programs 
to occur in a Response Oriented System thus increasing 
the responsiveness. 

Be U measurements 

The BCD was only available to us in November 
and early December. The most significant effect of 
these measurements was to demonstrate that the user 
received more CPU time than he had under the Re
lease 4 TSS/360 Schedule Table. 

Release 4.0 
Table 

Early New 
Tables 

CPU/ELAPSED TIME 40-50 percent 70-90 percent 
Problem State/CPU 15-25 percent 40-55 percent 
Supervisor State/CPU 85-75 percent 60-45 percent 

There were also increases in overlapped operations 
between the Drum, CPU, and our 2 disk channels with 
the new tables. 

There was, however, one day under the TSS/360 
Release 4 Table when the CPU/Elapsed Time Ratio 
reached 90 percent and the Problem Program State 
received about 50 percent of that time. This was due 
to one user predominating the system. 

It is important to note that the BCU measurements 
can vary widely as a result of the load. Thus there is a 

Scheduling TSS/360 for Responsiveness 109 

small possibility that a sudden load change accounts 
for the above characteristics. 

SUGGESTED EXTENSIONS 

1. The Level Usage Counters can be used to mea
sure Working Set Size Profiles of Programs run
ning Stand-Alone. By varying the Time and 
Space Limits in the table systematically you 
could find ideal settings for programs such as 
EDIT, FTN, ASl\1, etc. 

2. Page Stealing was not available in Release 4 . 
Thus I had to use the Looping Set alone to follow 
the Working Set Size. Also, I could not distin
guish a change in Working Set from a change in 
Working Set Size. With future releases of TSS/ 
360, it is possible to do the following: 
a. Use the Stealing Percentage to determine if 

the Working Set Size is changing. If it is, 
flush out all changed pages, reset the Page 
Count to 0 and restart at the same level. If 
the Stealing Percentage is again exceeded, 
change to a level allowing more core for a 
larger Working Set Size. 

b. Set up a sequential set of levels of the table, 
using the Balanced Core Time Principle to 
establish time and space values for each 
level. When a program exceeds Time with 
no stealing, use the page count of the pages 
used to index into this sequential set of levels. 
This will enable the Working Set Size to be 
followed more closely. 

c. The Looping Set is still important for load 
distribution. Consider keeping a Balanced 
Core Time l\1easure in each task's TSI. This 
could be used in combination with the Table 
Level Parameters to determine when to delay. 

3. It is important to know the frequency with 
which the Working Set Size changes over 
various classes of programs. It is possible for 
blocked paging to hurt performance if the 
wrong Working Set Size estimate is used and 
the change in size is frequent. Again the Level 
Usage Counters could be used to determine 
this for various classes of programs run stand
alone. 

4. I do not yet know how to handle the Waiting
for-Interlock Set properly. There should be a 
closer correlation between the Waiting and 
Holding Interlock sets since I suspect that they 
flip flop rapidly. This is an important area for 
investigation. This is because it can have a 
serious impact on all tasks. 



110 Fall Joint Computer Conference, 1970 

5. Different Starting Sets can be set up for user~ 
with classically different terminals such as 
graphic devices, Remote Job Entry, type
writers, and input devices using displays for 
output. 

6. Since the preponderance of programs execute 
well with Working Set Sizes smaller than 32 
and even 16 pages, a careful study should be 
made in this area. 

7. It is important to use the estimated Working 
Set Size of the Level about to be used to deter
mine if sufficient core is. available to dispatch 
a task. This may completely eliminate low core 
problems. Currently, the estimate is the number 
of pages used by the task in its previous level. 

8. As the level of multiprogramming increases, 
the importance, and even the usefulness of page 
blocking decreases to a point where it may be 
negative. The primary purpose of blocking is 
to increase the level of utilization of the slower 
device. If the level of multiprogramming is 
sufficiently high then the paging device will be 
used optimally across all users. Furthermore 
no unwanted pages will be brought in. On the 
other hand, for low levels of multiprogramming, 
page blocking for individual users ·may be 
beneficial since there is spare power in the 
paging device. 

SUMMARY 

This paper presents results of concepts which demon
strate the importance of relocation hardware, not only 
to Time Sharing Systems, but also to good lVlulti
programming Batch Systems. 

It describes an initial implementation of the Principle 
of Balanced Core Time and its effect on responsiveness 
in a Time Sharing System. It describes the Concepts of 
Working Set, Working Set Size, Program Locality of 
Reference, and demonstrates the improvements to be 
realized by the proper application of these concepts to 
multiprogramming systems. 

Thus, the work described in this paper is the result 
of the ideas of many men brought together to demon
strate the potential fruitfulness of those ideas when 
fully implemented. This initial approach has been an 
engineering one. Thus, while I believe that these early 
results are dramatic, there is still room for very large 
improvements. 

ACKNOWLEDGMENTS 

l\1any papers say that the list of acknowledgments 
is too long and so they are frequently suppressed. 

Because of the nature of this work I feel that they 
should not be suppressed. 

I wish to publicly thank my wife, Peg, and my 
children, for understanding the unusual demands on 
my time for these past three months. We seem to go 
through cycles like this every four years. Next I will 
thank my friend and manager, Hugh Lynch, for his 
enthusiastic support and criticism and patience. Peter 
Markstein recognized the importance of this work very 
early and provided much encouragement. He also 
taught me about multiprogramming back in 1961. 
I am grateful to Jim Considine for his keen scientific 
approach to my work and for his help with many mat
ters pertaining to TSSj360 structure as well as for 
his help with the Level Usage Counters. Gerry 
Waldbaum has been most helpful with his modifica
tions to SLIN and suggestions for its use. Gene 
McGilton, Jim Dobbs, John Mancini, Ruius Denson, 
and Wally Harrison have provided valuable suggestions 
on the operational aspects of my work. And they did 
this at a time when they were very short of help for 
themselves. 

At a different level of detail I recognize the coopera
tion, help, and support provided by Don Harrison, 
Jerry Jaggi, Jim Griffin, Dick Lal\1aire, Bob Haskell, 
Jim Hancock, Dennis Weston, Denis l\/IcLance, Dave 
Favor, Lloyd Moore, Wayne Deniston and Dan Cease. 

I am grateful for the fine work of l\1rs. G. R. Ford 
and l\lrs. L. Dilley. They used the REDIT facility 
of TSSj360 to type and format the first draft of this 
paper. This enabled many changes to be easily made. 
The RUNOFF facility of TSSj360 was used for 
printing the paper. 

Finally the people whose ideas I used are mentioned. 
They are: Bob Nelson for his total understanding of 
relocation hardware and its ultimate importance; Dave 
Sayre for his constant expression of the importance of 
automatic folding of programs; Las Belady, Carl 
Kuehner, and Brian Randell for their work on Sched
uling, Program Locality of Reference and the use
fulness of Segmentation; and last but certainly not 
least is Peter Denning, whose papers describing the 
concepts of Working Set and Working Set Size have 
influenced this work. 

REFERENCES 

1 H HELLERMAN 
Some principles of time-sharing scheduler strategies 
IBM Systems Journal Volume 8 Number 2 pp 96-98 1969 

2 D SAYRE 
Is automatic "folding" of programs efficient enough to displace 
manual? 
CACM Volume 12 Number 12 pp 656-6601969 



3 L BELADY 
A study of replacement algorithms for a virtual storage 
computer 
IBM Systems Journal Volume 5 Number 2 pp 78-1011966 

4 B BRAWN F G GUSTAVSON 
Program behavior in a paging environment 
RC 2194 IBM Thomas J Watson Research Center 
Yorktown Heights New York 1968 

5 P J DENNING 
Virtual memory 
Technical Report Number 81 
Princeton University Princeton New Jersey 1970 

6 P J DENNING 
The working set model for program behavior 
CACM Volume 11 Number 51968 

Scheduling TSSj360 for Responsiveness 111 

7 IBM CORPORATION 
System/360 time sharing system resident supervisor 
Program Logic Manual Form Y28-2012 

8 IBM CORPORATION 
System/360 time sharing system, system control blocks 
Program Logic Manual Form Y28-2011 

9 M V WILKES 
A model for core space allocation in a time-sharing system 
AFIPS Conference Proceedings Spring Joint Computer 
Conference Volume 34 p 265 1969 

10 W R DENISTON 
SIP E: A T SS /360 software measurement technique 
24th National ACM Conference Proceedings p 69 1969 





Time-sharing for OS 

by ALLAN L. SCHERR and DAVID C. LARKIN 

International Business Machines Corporation 
Poughkeepsie, N ew York 

INTRODUCTION 

The objective of the Time Sharing Option (TSO)l 
was to provide a general purpose time-sharing capa
bility within the existing framework of the System/ 
360 Operating System. General purpose time-sharing 
includes: 

• A natural command language in which remote 
terminal users define their work. 

• Support for basic applications such as text 
editing, problem solving, and program develop
ment and testing in a variety of languages. 

• Extendibility-a simple way for terminal users 
or installation management to add specialized 
interactive applications to the system. 

The ground rules for providing this function within 
the operating system included: 

• Preserving compatibility with current OS data 
set formats and access methods. 

• Following OS conventions for user program 
interfaces. 

• Allowing no degradation of existing OS function 
because of the presence of time sharing in the 
system. 

TSO is designed for System/360 l\1odels 50 and up, 
with 512K bytes of main storage to operate both 
batch and time sharing concurrently. With 384K 
bytes, either time sharing or batch processing can be 
active, but not at the same time. TSO will also operate 
on the System/370 Models 155 and 165. TSO will be 
available in the first quarter of 1971. 

TSO FUNCTIONS 

We shall look first at the functions and capabilities 
provided by TSO, and then at how this support was 
incorporated into the operating system. 

113 

The TSO command language is similar in style to 
some existing terminal-oriented or time-sharing sys
tems, such as CALL/360-0S,2 Dartmouth BASIC,3 
CTTS,4 and CP67/CMS.5 Commands are simple 
English words or abbreviations: for example, "RUN" 
to compile, load, and start a program, or "LINK" to 
invoke the Linkage Editor. Command operands 
provide flexibility for varied function, but almost all 
operands normally take a default value, and do not 
have to be entered. When required information is 
omitted, the system prompts the user for it. Explana
tions of command functions and formats are available 
through a HELP facility. l\1ost messages have b~n 
kept brief, but when a novice needs further explanation 
of a message, he can receive it by typing a question 
mark. 

The command language can be used to: 6 

• Enter, store, modify, and retrieve data at the 
terminal. 

• Solve problems. 
• Develop and test programs. 
• Execute programs, either interactively, in the 

time-sharing environment, or by submitting 
them for batch execution. 

• Control most of the operation of the system 
from a remote terminal. 

The installation management determines what capa
bilities will be made available to each terminal user. A 
profile of each user's typical processing requirements 
and authorizations is kept within the system. 

The profile is used to allocate resources for the 
user when he activates his terminal to start a time
sharing session or "logs on" to the system. A new 
dynamic allocation facility allows the user to create 
new data sets, or allocate old ones, during the terminal 
session. The user does not have to specify these data 
sets in advance, as he would in a batch environment. 



114 Fall Joint Computer Conference, 1970 

Text and data handling 

Commands are available to enter, store, edit, and 
retrieve data sets consisting of text, data, or source 
programs. For example, the text for reports can be 
created, stored, edited, and printed in a format of 
the user's choosing at the terminal. Data sets can be 
edited by referring to each data record by a line 
number, or by referring to the data by context. For 
instance, a particular string of characters, say a symbol 
name, can be changed to another string, in a single 
line or wherever it occurs throughout a program, with 
a single command. 

Problem solving 

Three language processors specially designed for 
mathematical problem solving by users who are not 
necessarily professional programmers are available 
under TSO. Two are components of the Interactive 
Terminal Facility (ITF): 

• ITF: BASIC, a simple algebra-like language 
easily learned by anyone familiar with mathe
matical notation. 

• ITF: PL/I, a subset of the full PL/I language, 
that provides a powerful conversational lan
guage. ITF: PL/I statements can be executed 
line-by-line, as they are entered, or collected 
into procedures and subroutines for later 
execution. 

An error in either ITF language can be detected as 
soon as the incorrect statement is entered, allowing 
the user to correct it before going on. An interactive 
debugging feature allows the problem-solver to test 
his procedures in ITF: BASIC and PL/I using his 
own statement numbers, labels, and variable names. 

The third problem-solving language is Code and 
Go FORTRAN, a version of the full FORTRAN IV 
language with some extensions included for the time
sharing environment. Fields in the FORTRAN source 
statements do not need to begin in particular "col
umns" of the statement, but can be entered free-form. 
A new list-directed I/O statement is provided to 
simplify access to the terminal from an executing 
FORTRAN program. The FORTRAN syntax checker 
and the DEBUG package are provided for statement 
scanning and program testing. 

Program development 

The programmer is able to invoke from his terminal 
any processor or most programs written to operate 

under the operating system. In particular, he can 
call FORTRAN, COBOL, PL/I, ALGOL, assembler 
language, and other OS-compatible language pro
cessors for his source programs. Any of these lang
uages can be used to write interactive programs, 
since standard OS sequential access methods (BSAM 
and QSAM) can be used for I/O directed to the 
terminal. 

Some language processors specially modified for 
the terminal environment are available with the com
mand language. These include an assembler (F), 
FORTRAN IV (G1), the PL/I Optimizing Compiler, 
and American National Standard (formerly USAS) 
COBOL Version III. The modifications to these 
processors include prompters, to ask the user for 
compilation options, and specially formatted diagnostic 
messages and listings designed for the terminal. Because 
of the compatibility between the batch and time
sharing environments, programs can be developed 
and tested at the terminal for eventual batch execu
tion. Source language syntax checking is provided 
for PL/I (F) and all levels of FORTRAN, either 
line-by-line, as the program is keyed in, or by whole 
programs. 

The TEST command allows programmers to start 
and stop programs, inspect and change the contents 
of main storage and registers during execution, trace 
program flow, and display the value of variables 
during execution. The TEST command can be entered 
whenever any program terminates abnormally, or 
whenever a user interrupts an executing program 
with the terminal attention key. 

Command language extension 

The TSO command language is open-ended; any 
user can add commands to the existing set. Each 
command entered from the terminal invokes a com
mand processor to perform the function associated 
with the command name. Command processors are 
unprivileged programs, and any program can be 
defined as a command by adding the load module to 
a command library. Commands can be added to the 
system command library to be available to all system 
users, or to a private command library, to be available 
to only one user or a subset of the system users. 

A set of service subroutines is available for use by 
all command processors written in PL/I or assembler 
language. These routines implement common functions 
and ease the task of creating new command processors. 
The functions provided include: 

• Command syntax scanning and parsing. 



• Message formatting, and other I/O handling, 
allowing terminal device type independence. 

• Allocation and freeing of data sets as they are 
needed. 

NEW CONTROL PROGRAl\{ FUNCTIONS 

TSO has been implemented on the l\/IVT configura
tion of the operating system, to take advantage of 
the existing program sharing, subtasking, and storage 
protection facilities, all desirable in a time-sharing 
environment. With a few modifications and extensions, 
the existing job management and task supervision 
functions were used, ensuring continued compatibility 
between the time-sharing and batch environments. 
For each user logging on to the system from a remote 
terminal, an OS job is created. A large number of 
these time-sharing (or foreground) jobs, as well as 
batch jobs, share the available resources of the system. 
In particular, the jobs created for terminal users can 
share a foreground region of main storage. A single 
terminal job is brought into a foreground region and 
allowed to execute for a short time slice. The other 
terminal jobs are saved temporarily on an auxiliary 
storage device. At the end of the active job's ti~e 
slice or when it starts waiting for I/O from the termI
nal ~er, a main storage image of the job is copied 
out to auxiliary storage, and another job is brought 
into the region for its time slice. One or more regions 
of main storage can be defined as foreground regions, 
and remaining storage can be used for batch (or 
background) jobs, up to a total of 14 regions. 

The process of copying job images back and forth 
between main and auxiliary storage shown in Figure 
1 is called swapping. A dedicated access method 
supports swapping to 2311, 2314, and 3330 disk 
storage, and 2301, 2303, and 2305 drum storage. The 
channel programs are tailored to the individual devices 
in use. The process can be set up .so that two swap 
devices are used in parallel, doubling the effective 
swap rate. In case a particular device becomes full, a 
spill mechanism is provided. For example, if a 2301 

S_ 
DATA 
SET 

MAIN STORAGE 

Figure I-TSO foreground job swapping 

FOREGROUND 
REGION 

Time-Sharing for OS 115 

drum is normally used for swapping, but becomes 
full under a. peak load, the overflow can be directed 
to another device. 

Before a job can be swapped out of main storage, 
it must be "quiesced," or forced into an inactive 
state. I/O requests are intercepted, or allowed to 
complete if already in progress, and control blocks 
are "unhooked" from system queues. l\{ost control 
blocks including Task Control Blocks (TCBs) and 
I/O b~ffers, are kept in a reserved area within ~he 
foreground region, and are swapped out along w.Ith 
the job. Only that portion of the foreground regIOn 
that the job is actively using is swapped out. 

I/O buffers for the terminal are an except~on t.o 
the quiescing procedure. All I/O for the termInal IS 
handled through the Telecommunications Access 
Method CTCAl\{). Because of the relatively long 
periods of time involved in terminal I/O, quiescing is 
not practical. Terminal buffers are not sw~pped o'!-t 
along with the job, but are kept in superVIsor maIn 
storage. Thus a user at the terminal is not aware. of 
the swapping process: his terminal keyboard remams 
unlocked and he can enter input whether his job is 
in main storage or not. 

CONTROL FLOW 

Figure 2 is a generalized diagram of the flow of 
control among the routines implementing the time
sharing subsystem. These routines are brought i?-to 
main storage only when the operator starts the tIme 
sharing operation; the system can be started be~ore
hand for batch processing. If the operator stops tIme
sharing, the associated storage is again made available 
for batch jobs. 

At the highest level of control under the l\1VT 
supervision routines are the Time Sharing Control 
Task and the TCAl\1 l\{essage Control Program. The 
Control Task handles system-wide functions such as 
initiaiization and control of foreground job swapping. 
The lVIessage Control Program handles all I/O for 
terminals, both for TSO foreground jobs and any 
other teleprocessing applications that· may be present 
in the system. . 

Below the Time Sharing Control Task is a Region 
Control Task for each foreground region. It supervises 
those terminal jobs assigned to· its region, and handles 
the quiescing function. A LOGON/LOGOFF Scheduler 
is invoked for each user logging on to the system. 
This routine builds the internal job control language 
necessary to define the user's terminal job to the 
system, using information stored in the user profile 
and in a cataloged procedure specified by the user. 



116 Fall Joint Computer Conference, 1970 

MVT CONTROL PROGRAM 

TI ME SHARING 
CONTROL TASK 

REGION 
CONTROL TASKS 

LOGON/LOGOFF 
SCHEDULERS 

COMMAND 
PROCESSORS (CP) 
USER 
PROGRAMS 

TERMINAL 
I/O 
REQUESTS 

Figure 2-System control flow 

LOGON invokes, through l\1VT job scheduling 
routines, a problem program, called the Terminal 
Monitor Program, that handles both TSO and user
defined commands. When the user enters a command, 
the Terminal Monitor Program attaches the appro
priate command processor or user program as a sub
task. 

Important decision-making functions of the control 
program have been isolated in a single component 
called the Time Sharing Driver, shown in Figure 3. 
Each of the other routines continually passes informa
tion on system events to the Driver-time slice end, 
swap out complete, a job waiting for terminal I/O, 
etc. From this stream of information, the Driver 
maintains a picture of the current system workload, 
and based on this information, makes decisions about 
what should be done next. The Driver orders actions 
to be carried out by other control routines through a 
parameter list interface. The Driver itself is entirely 
insulated from the rest of the system by the Time
Sharing Interface Program. This design allows in
stallations with interests in special-purpose or experi
mental time-sharing systems the freedom to replace 
the Driver with a scheduler of their own design. 

SYSTEM TUNING 

Time-sharing system performance is often measured 
by response time at the terminal. Response time is 
in turn largely determined by three factors: 7,8,9,10 

• The number of users logged on to the system. 
• The average user "think" time per interaction 

(one give-and-take between the user and the 
system). 

• The average service time, per interaction, in
cluding processing and swapping overhead. 

The second two factors depend on the type of process
ing the users of the system require. A system set up 
to handle the relatively short think times and pro
cessor times typical of text-editing applications would 
not perform optimally for a set of users running lengthy 
numerical analysis programs. To allow for varying 
installation and user requirements, the TSO Driver 
accepts controlling parameters from the installation. 
These variables describe system configuration, such 
as the number of foreground regions to maintain; 
they may request the Driver to use one of several 
algorithms it has for scheduling use of system resources; 
they may specify constants used in the algorithms. 
This flexibility allows the installation to tailor the 
scheduling and time slicing functions to best serve 
its mix of jobs. 

For instance, consider an installation whose users 
typically do two types of processing-problem solving 
with one of the conversational languages such as ITF: 
PL/I, and mathematical calculations that are long
running, compute-bound jobs. This installation will 

MVT CONTROL PROGRAM 

TIME SHARING 
INTERFACE PROGRAM 

(TSIP) 

DRIVER 

~----__ ...r-- (PARAMETER LIST) 

Figure 3-The TSO Driver 



probably ",ish to optimize response to the conversa
tional users, rather than use a simple round-robin 
type of scheduling. 

TSO allows the installation to set up multiple service 
queues for the jobs assigned to each time-sharing 
region. In this case, two queues could be defined, with 
the higher priority queue for the conversational jobs. 
Jobs on the queue could be given a four or five hundred 
millisecond time slice-enough to complete almost 
any single transaction in a problem-solving language. 
A job that doesn't finish a transaction within a time 
slice would be shunted to the second queue, where it 
would be allowed a five or ten second time slice, 
depenping on the number of jobs on the queue. Anytime 
a job on the higher priority queue is ready to execute 
-typically when it receives a line of terminal input 
-it will be swapped in for its time slice immediately, 
interrupting any second-queue job that happens to 
be executing. This preemptive scheduling will reduce 
response time to conversational requests to the mini
mum, at the cost of lt~ngthening somewhat the time 
for completion of the compute-bound requests. 

Among the scheduling variables that can be set by 
the installation are the number of service queues for 
each region, the average service time for each queue, 
the minimum time slice guaranteed to each job on a 
queue, the thresholds-either in execution time or 
program size-that determine to what queue a job 
is assigned, and the method to be used for dividing 
execution time among multiple foreground regions 
and the background regions. 

CONCLUSION 

With the addition of logic to handle the swapping of 
terminal jobs in and out of foreground main storage 

Time-Sharing for OS 117 

regions, the existing IVIVT control program capability 
for multiprocessing was found to be a suitable base 
for a general purpose time-sharing system and, through 
the natural command language, the full services of 
the operating system are available to remote ,terminal 
users. 

REFERENCES 

1 IBM system/360 operating time sharing option;· planning 
forTSO 
IBM Data Processing Division Form GC28-6698 White 
Plains 1969 1970 

2 CALL/360-0S description manual 
IBM Data Processing Division Form H20-0673 White 
Plains 1969 

3 J G KEMENY T E KURTZ 
BASIC 
Dartmouth College Hanover 1966 

4 P A CRISMAN ed 
The compatible time sharing system: a programmer's guide 
MIT Press Cambridge 1965 

5 Control program-67/Cambridge monitor system 
IBM Cambridge Scientific Center Cambridge 1968 

6 Certain of the functions described are provided as IBM 
Program Products, available for a separate license fee 

7 G ESTRIN L KLEINROCK 
Measures, models, and measurements for timf3-8hared 
computer utilities 
Proceedings 22nd ACM National Conference Thompson 
Book Company Washington DC 

8 J M McKINNEY 
A survey of analytical time-sharing models 
Computing Surveys June 1969 

9 A L SCHERR 
An analysis of time-shared computer systems 
MIT Press Cambridge 1967 

10 A L SCHERR 
Time-sharing measurements 
Datamation Vol 12 No 4 April, 1966 





SPY-A program to monitor OS/360 

by R. SEDGEWICK, R. STONE, and J. W. McDONALD 

Western Electric Engineering Research Center 
Princeton, New Jersey 

INTRODUCTION 

It is generally agreed that one of the major problems 
facing the manufacturers of large scale computer 
systems today is the problem of measuring the per
formance of a computer in conjunction with the operat
ing system which drives it. This problem is under con.., 
sideration for operating systems currently in the design 
and implementation stages through studies on: (i) the 
establishment of reasonable criteria under which 
performance can be measured; (ii) means of actually 
making the measurements; and (iii) ways of using the 
information obtained to optimize the performance of 
the system under the established criteria for a par
ticular user's environment. 

For existing operating systems the problem is some
what different, especially in cases where it is not feasi
ble to make any changes to the operating system itself. 
First, extracting information from the system is a 
non-trivial problem under the constraint that the 
system cannot be modified. Second, the information 
obtained is little more than academic unless it reflects 
inefficiencies in the system caused by the environment 
of user jobs being processed, as optimization can only 
be effected by restructuring this environment or by 
setting parameters to direct the system to operate ac
cording to the environment. 

A related problem that has arisen with the advent of 
time-sharing and multiprogramming systems is that 
of monitoring system execution. This is an important 
area of research for two reasons: First, one charac
teristic of many existing operating systems is that they 
just cannot function without a fair amount of operator 
intervention, and the operator must know exactly 
how the resources of the system are being utilized in 
order to carry out his job effectively. Second, situations 
often arise in a multiprogramming or time-sharing en
vironment in which it is not altogether clear exactly 
what action is being taken by the system. The ability 
to observe the performance of such a system in opera-

119 

tion is of importance to systems programmers and 
managers to enable them to more effectively "tune" the 
system and watch the local effects of any changes 
made. This ability can also be of value to users of a 
machine-the typical user has no concept of his im
pact on the operating system, and a certain amount ofl 
awareness can enable him to better appreciate how 
incorrect estimates of his system resource requirements 
can affect the entire user community. 

A considerable amount of work has been done in the 
general area of system performance measurement in 
the past, and a wide variety of approaches to the 
problem are represented.4,6,ll In general, however, they 
can be roughly categorized into three classes: theoreti
cal studies (simulations and statistical work); hard
ware monitoring devices; and software data gathering 
techniques. 

The theoretical studies2 ,8,lo generally focus on the 
much broader problem of improvement of operating 
system design so that maximum efficiency can be 
provided under very carefully thought out criteria. 
The process is to make use of thorough statistical 
analyses in conjunction with generalized computer 
system models to develop a coherent theory which 
clearly defines (and generally suggests solutions to) 
basic problems in operating system design related to 
overall system performance. This work is invaluable 
to the system designer, and is a fundamental step in 
the development of future computer systems, but it 
is in many cases not directly applicable to the problems 
associated with existing systems, especially when the 
point of view is taken that the internal mechanism of 
the system must be viewed essentially as a fixed entity. 

Hardware measurement3 ,6 is accomplished through 
the use of an independent set of instruments which have 
the capability of sensing, decoding, and recording 
selected electronic signals in the system being measured. 
This approach to the problem has the decided advan
tage that the measurement device can be used indis
criminately 'with little effect on normal system opera-



120 Fall Joint Computer Conference, 1970 

tions-a voluminous amount of data can be obtained 
on the operation of the system in its natural state. 
The danger, of course,exists that a good deal of extra
neous data could be obtained-the amount of useful 
data is dependent on the sophistication of the inter
face to the host computer and the amount of flexibility 
in the measurement device itself. (An example of a 
very flexible device can be found in the SNUPER 
COMPUTER3 project, where an auxiliary computer, 
which can be programmed to accept or reject available 
data, is used as a measurement device.) The main 
disadvantage in the use of hardware techniques is that 
it is often difficult to correlate the data being gathered 
with the software being run on the machine or the 
software representing the internals of the operating 
system. The data gathered often shows very clearly 
how effectively the hardware is being utilized, but 
aside from reconfiguring the hardware it is in general 
not clear what steps could be taken to improve upon 
the observed results. 

Software measurement techniques9 ,12 generally con
sist of data gathering programs which run while a 
system is in normal operation, and reduction pro
cedures which extract useful measurements from the 
large volume of data thus obtained. The differences in 
implementation can be found in the types of events 
monitored, the rate at which they are monitored, and 
the algorithms used in the data reduction process. 
There are many different schools of thought in all of 
these areas-one obvious reason is that measurement 
of an operating system is quite dependent on the struc
ture of that system. Not only are the data gathering 
techniques a direct function of the system being 
studied, but also significant events in one system are 
quite different from significant events in another. The 
principal difficulty with software measurement is that 
the measurement procedures themselves utilize some 
percentage of the resources of the system-·every ef
fort must be made to minimize this percentage. 

When considering software measurement techniques, 
one must make a clear distinction between measuring 
the operation of a system from within and observing 
it from the outside. One feature common to most 
existing system measurement programs is that they 
are being developed by people who have the luxury 
of being able to work with the internals of the system 
being measured. This allows them to facilitate some
what the process of extracting information from the 
system, and to provide very accurate measurements 
of relevant system events. This type of observation 
from within can be done at many levels-the most. 
desirable method is to provide for insertion of "hooks" 
in the system early in the design process, and allO\y 
for a workable interface between the measurement 
procedures and the operating system, so that the system 

can be made responsive to the measurements obtained. 
(An example of such a system is the XDS Sigma 5/7 
BTJ\1 system. 7) However, the point must again be 
emphasized that in many cases the operating system 
must be viewed as an unalterable product of the manu
facturer: Measurement must be done by merely looking 
at the internals; and optimization can only be effected 
by rearranging the environment in which the system 
operates. 

There is far less work in the Jiterature on the subject 
of dynamically monitoring system execution. Although 
some capabilities in this area are necessarily provided 
in most operating systems, a major obstacle is that 
output is normally done on a typewriter-like console
the state of a multiprogramming or time-sharing system 
changes far too quickly for such a device. A graphic 
display is a much more appropriate device for dynamic 
monitoring for at least two reasons: First, all changes 
in the system can be recorded, allowing the observer 
to choose those he may consider significant as he 
watches the system in operation. Secondly, inter
actions within the system can be easily observed be
cause all information is presented simultaneously
the effect of an activity in any part of the system can 
be seen in other sections, as it develops. This type 
of global view of the·· dynamics of the system would 
not be possible on anything other than a graphic 
display. An excellent example of work in this area is 
the GDJ\1 system at Project J\1AC,1 which provides 
dynamic displays of a very flexible format allowing 
observation of the operation of the lVIULTICS time
sharing system. 

The subject of this discussion, the Spy project, 
represents one approach to this dual problem of mea
suring and monitoring operating systems for an existing 
multiprogramming system--a version of IBJ\1's operat
ing system, OS/360. A system was developed which 
presents information concerning the jobs being pro
cessed by the operating system, the direct access devices 
connected to the computer, and the state of the Sys
tem/360 CPU. Data is in general gathered through 
software techniques, but a facility for rudimentary 
hardware monitoring is also employed. The informa
tion is displayed dynamically and in real time on a 
graphic display unit and selectively saved on paper 
tape for later analysis. No modification whatsoever to 
OS/360 is involved, and a negligible amount of over
head is incurred, so that the system can be used to 
analyze and observe the operation of OS/:360 in day
to-day operations. 

Concepts and definition of terms 

The version of OS/360 to be analyzed was :~\'lVT 

CVlultiprogramming "Tith a Variable number of Tasks), 



and any further discussion of our implementation of 
a monitor would be impossible without the use of 
some of the terminology and concepts related to OS / 
360, l\1VT, and the System/360 hardware. The intent 
of this section is to provide a rudimentary explanation 
of the most basic terms. 

IBl\1 defines multiprogramming as "a general term 
that expresses use of a computing system to fulfill two 
or more different requirements concurrently."14 In 
general "requirements" are defined in terms of tasks, 
where a task is the smallest independent unit of work 
for the processor. In multiprogramming, the effect 
is as though all tasks in the machine at one time were 
running asynchronously. Tasks can be system tasks 
(readers, writers, schedulers, etc.) or user tasks. The 
users of the system generally submit their work to the 
system in terms of jobs, the individual parts of which 
are broken off as tasks by the system. 

The computer resources are those parts of the hard
\-vare that can be allocated to individual tasks. The 
resources about which we will be concerned will be 
core storage, the central processing unit, and disk 
(direct access) storage-all of which will be referred 
to together in this paper as the resources. 

A volume for the purposes of this discussion will be 
a single disk pack and a unit will be the disk drive upon 
which the volumes can be individual1v mounted. 

The wait light is one of five lights on the console of 
the 360/50 which are meant to indicate the "state" 
of the machine. In normal operations, when it is off, 
the CPU is in the process of executing an instruction, 
and when it is on, the CPU is waiting, generally for 
some I/O activity. 

Hardware configuration 

The specific system being analyzed was running on 
a IBM System 360 Model 50 with 512K bytes of core 
with an eight drive 2314 direct access storage facility, 
plus various other peripheral equipment. During de
velopment, a 1024T{ byte 2361 LC8 unit and a second 
2314 ",ith four drives were added. The monitor system 
was implemented on this machine and on a PDP-9 
with 8K of core equipped with a Graphic-II Display 
Unit. Communications between the two machines was 
done via a Parallel Data Adapter (FDA) connected 
to a 2701 Data Adapter Unit on the 360 and to a 
specially designed interface on the PDP-9. In addition, 
the PDP-9 has the hardware capability of monitoring 
the state of the wait light on the 8/360. 

It is fully realized that this is a somewhat peCUliar 
hardware configuration, and some effort is being ex
pended to modify the system to allow it to be run on 
more standard configurations. The only equipment 

Spy 121 

Figure I-Hardware configuration 

absolutely essential is an S/360 Model 30 or higher and 
some suitable output device-the above equipment 
was chosen for use simply because of its availability. 

Software structure 

The final system consists basically of two software 
packages: one in the 360/50, which takes samples on 
selected information within 08/360, accumulates 
statistics, and sends information to the PDP-9 at 
selected intervals; and one in the PDP-9, which re
ceives the information, independently monitors the 
wait light, formats all of the information for display, 
and produces a hard copy record of the important 
statistics. 

The emphasis in implementation of the programs 
on the 360 was in modularity, and the final system 
consists of a set of assembly language subroutines. The 
modules comprising the OS/360 interface portion of 
the program were debugged in PlJ/I, so that use could 
be made of the powerful I/O and error correcting 
facilities of the higher-level language. Working modules 
were then translated into PL/360 to gain the advan
tages of high speed and low storage requirements im
plicit in assembly language level programs. This method 
resulted in the production of efficient code quickly, 
as the advantages of both levels of programming were' 
made use of, and there was little effort in conversion 
due to the structural similarity of the languages. The 
transmission and central control modules of the system 
were written and debugged in assembly language, 
simply because the tasks to be performed required 
low-level interfaces to the system. 



122 Fall Joint Computer Conference, 1970 

All of the PDP-9 software for SPY was written and 
debugged in assembly language on the PDP-9, chiefly 
because of the lack of any workable higher-level lan
guage, and because of the necessity for low-level inter
faces to the special purpose I/O devices (the PDA 
and the wait light). 

GENERAL DESCRIPTION OF INFORIVIATION 
RETURNED 

The principal output of the Spy system is a dy
namically changing graphic display consisting of a 
wide variety of information relating to the operation 
of the 360/50 and OS/360. The display is divided into 
four sections (see Figure 2): one containing specific 
information concerning the jobs being processed; one 
showing the utilization of the direct access devices 
(on which the system is heavily dependent); one con
taining running averages of selected summary informa
tion (the information used in system measurement); 
and one containing a continually recyc1ing graph 
showing the percentage of CPU utilization. All of the 
information is updated dynamically as the events it 
reflects occur, under the constraints outlined in the 
section below on timing and sampling. 

Also output is a punched paper tape containing the 
data reflected in the summary statistics as wen as 
some data retained from the samples of the wait light. 

Figure 2-Graphical output from Spy 

Identification information is also included, so that a 
large amount of data can be collected over large periods 
of time and analyzed statistically to aid in drawing 
some general conclusions on overall system perfor
mance. 

Timing and sampling 

Most of the activity in the SPY system is regulated 
by a set of three basic timed intervals. In the S/360, 
these are maintained with the use of the standard 
task timing facility (STIMER), which allows the 
system to operate by taking control of the CPU only 
for a very short time at the end of each interval and 
relinquishing it during the interval. It is recognized 
that this practice of relying on the operating system 
to do the timing may be somewhat unsafe, since ir
regularities in the timing algorithms of the operating 
system could lead to irregularities in the data gathered. 
However, the PDP-9 utilizes a hardware clock for its 
timing, so that it is able to ensure accurate timing 
and program synchronization-the STIMER facility 
is relied upon solely to relinquish control for real 
time intervals and has proven adequate for this pur
pose. 

So that the system could be made useful as both a 
measurement and a monitoring tool, two intervals 
were needed for timings during the execution of 8PY. 
First, a "transmission interval," which represents the 
time between transmissions to the PDP-9, and hence 
the time between changes in the graphical display. 
A second interval needed is the "sampling interval" 
or time between the accumulation of samples on the 
S/360. 

A lower bound on the choosing of a transmission 
interval was set by the ability of the eye to follow 
changes in the information presented, and an upper 
bound resulted from the fact that selection of long 
intervals resulted in the missing of changes in the 
system. A reasonable compromise between these two 
limits appeared to be ten seconds. 

The selection of a sampling interval was governed 
by the need to have a statistically significant number 
of samples, while not spending so much time sampling 
that performance might be degraded on smaller or 
slower systems. The choice of one second resulted in 
an acceptable number of samples and an extremely 
low overhead. 

Sampling of the wait light in the PDP-9 represents 
measurement and monitoring of the 8/360 hardware 
rather than the OS/360 software, so that different 
criteria are used in the. timing. The most significant 
point is that it was considered necessary to sample 



the state of the wait light as often as possible-this 
is done every 1/60 of a second, which is the granularity 
of the standard clock on the PDP-9. An intermediate 
average is computed for display purposes every 5/6 
of a second, and a final average retained before the 
graph is recycled. The aim was to produce a dynamically 
changing graph which moves fast enough so as not to 
seem frustratingly slow to the observer, and slow 
enough so that the data displayed is in some way 
significant. 

In addition, it was necessary to define a third in
terval, a "statistics gathering interval," at the end of 
which the measurement data is output on hard copy 
for later analysis. The length of this interval is dic
tated by the amount of data that needs to be saved, 
and the rate at which it is being accumulated. In the 
current implementation of the system, a value of two 
hundred seconds is used. (This value was chosen for 
convenience only, as it represents the amount of time 
it takes the wait light graph to complete one cycle.) 

Scheduled Jobs and tasks 

The information given in this section of the display 
allows monitoring of the various user jobs and system 
tasks that have been selected for execution by the 
operating system. There is one entry for each such 
task, and for each entry, the following information is 
given: 

(i) An identification of the entry (the job name, 
step name, and procedure name). 

(ii) "FROM" and "TO" addresses indicating the 
locations in main core assigned the program 
by the operating system. 

(iii) The amount of core requested by the program 
(and the amount given it by the operating 
system-this number is equal to the difference 
of the "FROl\t{" and "TO" addresses). 

(iv) The amount of core actually being used by the 
program (in general very different from the 
amount requested). 

FROM TO AMT USE TME 1 
NUCLEUS 000 054 84 .. · .............. 1 
J082 EXECUTE 054 090 60 eo 466 ...... 

1 JOB3 EXECUTE 090 006 70 70470.····· 
JOB4 EXECUTE 006 126 80 80473 ...... I 
WTRLCS OOE 5C2 500 14 10 ............ 

1 spy Spy 500 50E 14 12 ............ 
MASTER SCHEDULER 50E 600 34 28 ............ ; 

Figure 3-Typical job and task information 

UNIT 
130 
131 
132 
133 
134 
135 
136 
137 

CNT 
25 
o 

27 
1 I 
o 
o 
o 
o 

VOL-IO 
1 I I I I 1 
000001 
000002 
000003 
000004 
000005 
000006 
000000 

OCB 
I 
o 
3 
3 
1 
o 
o 
o 

Spy 123 

USEI 
o I 
~I 
3 I 
I I 
I I 
~ I 

I 

Figure 4-Typical direct access device information 

(v) The time remaining in the time interval al
lotted the program step by the operating sys
tem. Changes in this number reflect the relative 
CPU utilization of each job. 

This information presents a true "picture" ot the 
condition of the machine in relation to the jobs being 
processed-allowing continuous monitoring of the 
treatment of the various jobs by the operating system, 
and the use (or misuse) of the system by the various 
jobs. Figure 3 shows a "snapshot" of this section of the 
dispJay during normal system operations. 

Direct access device utilization 

This area of the display contains information con
cerned with the direct access devices attached to the 
system. For each direct access unit, five pieces of in
formation are displayed: 

(i) 
(ii) 

(iii) 

(iv) 

(v) 

The unit number identifying the disk drive. 
The volume name of the disk pack currently 
mounted on that unit. 
A measure of the number of potential users of 
the unit. (The number of DD cards pointing to 
that unit.) 
A measure of the number of users actually using 
the unit. (The number of open DCBs pointing 
to the unit.) 
A number from 0 to 100 representing the p~r
centage of time the user of the unit changes. 
(A measure of contention on the unit.) 

With this information one is able to monitor and 
gather statistics on the operation of the direct access 
devices and their utilization by both the users and the 
operating system itself. This is ver~ useful because ~ne 
characteristic of 08/360 is that, III general, effectIve 
operation of the system is dependent on effective 



124 Fall Joint Computer Oonference, 1970 

operation of the direct access devices. Figure 4 shows 
the information typically displayed in this section. (the 
CNT field is the number described in (v) above
the other fields are self-explanatory). 

Global information 

This section of the display contains most of the 
information used in system measurement. Although 
it is expected that this section will be expanded in the 
near future, in the current implementation of Spy 
it contains summary information concerning the non
system tasks. This information is also useful in mon
itoring the system, so it is presented on the display 
as both instantaneous data (the values determined in 
the sample at the end of the transmission interval), 
and cumulative data (averages of the values sampled 
since the beginning of the statistics gathering interval). 
The following is the data presented: 

(i) The average number of jobs in execution (this 
is a much smaller number than the number of 
tasks displayed in the section described above
a job can occupy core but not be eligible for 
execution). This is clearly a very important 
global measure for a multiprogramming system, 
as it can be taken to more or less reflect the hard
ware and software capabilities of the system 
to run multiple jobs. 

(ii) The "average region size" of all of the jobs 
currently in execution (corresponding to the 
"amount of core requested" above). This number 
is an indication of the amount of core given to 
the users of the system after the space for the 
operating system and space lost due to frag
mentation have been subtracted. 

(iii) The average amount of core being used by the 
jobs in execution (corresponding to the "amount 
of core used" above). This number, when com
pared to the average region size, shows the 
ability of the programs to estimate their core 
resource requirements. 

Figure 5-Wait light graph 

This information is used in both system monitoring 
and system measurement to observe the effectiveness 
of the OS/360 implementation of multiprogramming, 
the appropriateness of the system parameters that have 
been selected for the installation, and whether or not 
the user community is utilizing the system effectively. 

CPU utilization (wait light) 

The wait light portion of the display consists of a 
graph on the Graphic-II Display, the X-axis of which 
is time, and the Y-axis of which is the percentage of 
time the "wait" light on the 360 is off (i.e., the computer 
is active). 

The result is a dynamic display indicating the de
gree of activity of the CPU of the 8/360 (see Figure 
5). Although this information could lead to incorrect 
conclusions if taken as an absolute measure, this graph 
has proven very effective, taken in conjunction with 
the other information displayed, in giving an observer 
a feel for the load on the CPU at any time. 

PROGRA~18TRUCTURE 

360 program structure 

As mentioned above, the 360 program is modular 
in design and can essentially be divided into three 
major logical sections: a control program, a transmis
sion package, and an information retrieval package. 
The control program maintains the three defined sam
pling intervals and calls the other sections accordingly. 
The transmission section formats the data for trans
mission and graphical display and does the actual 
transmission. The information retrieval package (the 
OS/360 interface) gathers specified data from the 
internal workings of the operating system, does the 
sampling, and puts the data into character format. As 
required by the design goals, no modification what
soever is made to 08/360. 

This is possible due to the fact that 08/360's data 
space consists of a series of tables chained together in a 
complex queue structure. 13 Information about individual 
tasks in the system is determined by searching the task 
queue and weeding out the tasks which are active 
(those tasks which have no "daughter" task on the 
linked list). Information stored about each task in
cludes its name, core location, core requested, and 
whether it is a system task. Time information for a 
task is found from its "mother" task, and actual core 
utilization is determined by adding the various parts 
of its region that have not been actually used. 



Direct access information is determined by a list 
of the locations of the status data about the units. This 
data yields the currently mounted disk pack, whether 
a mount is in progress, active users, and potential 
users. In addition, it is possible to trace chains back
ward to determine the name of the last user, and hence 
status information is built up concerning the degree 
of contention. 

PDP-9 program structure 

The major goal in the development of the PDP-9 
program was to produce a clean, readable display, 
while at the same time acting as a I/O device s]aved 
to the S/360. Functions to be performed were: the 
reception and display of all the data accumulated by 
the S/360 programs; the maintenance and display 
of the wait light graph; and the production of the 
punched paper tape output. The program gives highest 
priority to processing related to receiving data from 
the S/36D-at no time does the 360 have to wait for 
the PDP-9 to accept a transmitted message. if this 
were allowed to occur, the integrity of the samp]ing 
times would be compromised more than necessary. 

The main control portion of the program sets up the 
initial display, initializes the PDA to accept messages 
from the 360, and sits in a tight loop: awaiting a signal 
from the PDA handling routine indicating that a com
plete message has been received; and sampling and 
maintaining a count on the state of the wait light. 
At the expiration of every ,")/6 second interval, the 
wait light count is converted into the commands neces
sary to update the wait light graph, and the main loop 
reentered. When a message from the 360 arrives, a 
message decoder determines which information was 
received and rebuilds the portion of the display which 
is to be updated. If the message received contained 

Figure 6-Software structure 

Spy 125 

the final average information, an output routine formats 
and punches out the paper tape hard copy. Upon 
completion of message processing, the PDA is reini
tialized for input and the main loop reentered. 

COMMUNICATIONS 

Introduction to equipment 

As mentioned above, the communications link used 
by the Spy system is a high-speed Parallel Data Adap
ter interfaced to the IBM 2701. It should be pointed 
out that transmission at this rate (180,000 bytes/sec) is 
not crucial to the operation of the system-much slower 
rates would probably be sufficient. On the other hand, 
the adapter is almost a hard wire connection between 
the computers and as such does not require sophis
ticated low-level programming or extensive error 
diagnostic routines. The use of the PDA was simply 
a case of utilizing the most convenient communications 
device. 

Conventions 

The communications conventions are rather simple 
and straightforward-conversation between computers 
is kept at a minimum and is essentially in one direction 
with the PDP-9 acting as the receiver and the 360/50 
as the transmitter. Acknowledgment of reception is 
contained and diagnosed within the hardware and the 
channel of the PDA so that the customary acknowl
edgment transmission is unnecessary. 

The transmission buffers are of a constant length-
2048 bytes. The data are preceded by a one byte code 
describing which type of data format is being sent. All 
information to be displayed is sent in PDP-9 Graphic
II display code (two 7-bit ASCII characters packed 
in the low order 14 bits of each 18 bit word) with con
trol characters that determine the physical position 
on the screen where the data is to be displayed. The 
"global" information is transmitted in 8 bit ASCII
this is done to make easier the task of producing the 
punched paper tape. (In future versions of SPY, an 
character translation will be done in the PDP-9, to 
reduce overhead on the S/360.) 

Transmittal (8/360 program,) 

The Parallel Data Adapter is a non-supported device 
under OS/360, and the I/O routines were therefore 
written at the lowest level allowed users by the system 
(EXCP-EXecute Channel Program). This has the 



126 Fall Joint Computer Conference, 1970 

additional benefit of keeping core requirements at a 
minimum. 

The PDA is OPENed as an output device once for 
every run of the program. For every message to be 
transmitted, the appropriate code conversion is per
formed (input to the transmission package is EBCDIC), 
a test made to ensure that the previous transmission 
was successfully completed, and the EXCP macro 
issued to direct the system to begin transmission. 

Reception (P DP-9 program) 

Communications on the PDP-9 is done at the hard
ware I/O level, with the use of a standard routine 
developed along with the PDA which does the actual 
READ into PDP-9 core and sets the various hardware 
flags to notify the 2701 of proper reception. The main 
PDP-9 program is notified of the reception of a com
plete message via a simple "event variable." 

INPUT-OUTPUT INTERFACES 

Graphic-II display 

All information presented by the Spy system is 
displayed on the Graphic-II display unit, a general 
purpose display driven by the PDP-9. The display 
processor generates pictures from a Hbuffer program" 
in the PDP-9 core which defines displays in terms of 
point, line, and character information. The PDP-9 
program builds and maintains the buffer program 
and directs the display interface in presenting and 
regenerating the display. 

With the exception of the wait light graph, all of the 
information presented is in character form, and this 
information, along with positioning information, is 
put into the display buffer by the PDP-9 program. 
The wait light graph is produced by dynamically 
modifying the display buffer to define small vectors 
which trace out the percentages measured. 

The wait light 

The hardware interface to the S/360 wait light con
sists of an actual hardware connection from the physi
cal wait light socket on the 360 console to the PDP-9, 
and an interface on the PDP-9 allowing the state of the 
light to be tested with a single machine language in
struction (S360W-Skip on 360 Wait light). 

Operator' s Console 

I t was also deemed necessary to include in SPY an 
interface to the S/360 operator's console, so that a 
mechanism could be provided to allow modification 
of some of SPY's internal parameters at execution 
time. In addition, the facility was included to allow 
the operator to request any of the information provided 
by SPY for output on the console. 

The I/O function is performed by sending a request 
for information to the console (WTOR), resulting in 
a console message to which the operator can reply 
at any later time. Rather than waiting for this response 
from the operator, Spy interrogates OS/360 at the 
end of everyone second sampling interval to determine 
whether the operator has sent a message. When a mes
sage is sent, Spy simulates the occurrence of the end 
of the transmission-interval, but routes the transmis
sion to the operators console instead of the PDP-9. 

Planned add1:tions 

Now that a working system has been developed and 
has proved useful, one direction for future research 
will be to explore the possibilities of incorporating less 
expensive display devices into the system, for the 
purpose of allowing Spy to be generated and used on 
any System 360 for a modest cost. Since most of the 
information presented is in character form, this is only 
a matter of acquiring the hardware and programming 
new "transmission" packages. The first new device to 
be included in this way will probably be an IBIVI 2265 
Display Station, or some similar device. It should be 
pointed out that a major drawback in such a system 
will be the loss of the wait light graph, although ways 
of providing some type of replacement for this are also 
being researched. In general, the emphasis in future 
development will be on complete generality and modu
larity in relation to I/O devices. Another area thatwiU 
have to be researched for versions of the system without 
the PDP-9 will be in statistics gathering and production 
of hard-copy results. The development of programs 
on the S/360 which will save data (either on disks or 
magnetic tape) is under consideration, but still under 
the basic constraint of minimizing overhead on the 
S/360. 

A separate area of future work will be in researching 
ways of making maximum utilization of the hardware 
currently being used, and developing more special 
purpose hardware to expand the capabilities of the 
system. As of this 'writing, this has already been begun 
in the implementation of a high-resolution (down to 
40 microseconds) clock in the PDP-9 to allow extremely 



accurate wait light sampling, and an expansion of the 
wait light interface to allow other lights on the 360 
console to be monitored. 

APPLICATIONS OF THE SYSTEl\1 

Analysis of 08/360 operation 

Over the past several months, Spy has been used 
to aid in analyzing the performance of the 360/50 with 
]V[VT, and the following conclusions have been reached 
concerning the operation of this particular computer 
facility and the impact of Spy upon operations. 

The most serious effect of running a highly variable 
job stream (i.e., jobs with widely differing resource 
requirements) in a multiprogramming environment 
on a computer with no virtual memory capabilities is 
"core fragmentation." The core fragmentation problem 
can be defined as the situation that exists when all of 
the core resources of the machine are not being utilized 
because of the fact that the available core is not con
tiguous. This situation was observed to be most detri
mental to system performance. 

In addition, two problems were observed in relation 
to the direct access devices: First, contention was found 
to be serious on those devices needed by all the users 
(i.e., the output spool device). Secondly, a problem was 
observed in the apparent non-reenterability of the 
device allocation routine in cases where a new volume 
is required. 

In the area of user impact on the operation of the 
system, the most harmful thing observed was over
estimation of the core resource-ranging from 50 per
cent to 150 percent. The difference between the amount 
estimated and the amount used is a totally wasted 
productive resource. In addition, a similar problem 
was noticed in the use of the direct access devices
users would have the system allocate devices for their 
use, and then never use them-·another wasted re
source. 

The general conclusion reached was that resources 
were being underutilized-not only due to possible 
system inefficiencies (the operating system generated 
for this particular machine possibly was not completely 
tailored to the workload being studied), but also due 
to some lack of understanding on the part of the user 
community of the effects (and requirements) of multi
programming. 

Viewing multiprogramming 

A motion picture film has been made from the out
put display of Spy showing a carefully selected job 

Spy 127 

stream. This film has become an extremely valuable 
tutorial aid in demonstrating multiprogramming to 
the unsophisticated. To the more knowledgeable, it 
presents a real look at the actual occurrence of prob
lems in a running computer, and the reasons that cause 
such a system to fall below the ideal maximum effi
ciency. 

The film begins with a clear system with only Spy 
present and then adds a single program and the system 
tasks n~cessary for that program. Slowly, the capability 
for more programs is added until a three job system is 
achieved. As jobs move in and out of execution, prob
lems of core fragmentation, contention, unused core, 
and unused disks are observed. 

The technique of using a movie, while not changing 
the amount of information presented, has allowed that 
information to be presented· to persons outside the 
immediate environment, and has permitted the dis
play of a controlled selection of jobs with a wide range 
of characteristics. 

CONCLUSION 

The SPY system has proven invaluable not only as 
a means of measuring the performance of a computing 
system but also as a tutorial aid in the theory of multi
programming. 

The statistics gathering capability, as expected, 
proved to be vital to the functions of "tuning" a system 
and validating hardware and software changes. Al
though the measurements retained for analysis in t~s 
first version of the system were rather coarse, they dId 
bring to light some fundamental problems in the use 
of the operating system, and led to some action being 
taken towards system optimization. 

The monitoring capability proved to be very valu
able in giving many observers a true feel for how the 
operating system works. In addition, the availability 
of operator information was often useful a~d sho,:ed 
much potential, depending on the types of Jobs bemg 
run at an installation, and thus the degree of operator 
control over jobs entering the system. 

The two major design goals were clearly met: no 
modification whatsoever was made to OS/360 in any 
of the software development; and it was at all times 
clear that th~ effects of Spy upon the operation of the 
system are negligible. It utilizes less than 1 percent 
of the CPU time, occupies only 14K of core storage, 
and uses no secondary storage units. 

One extension of the work presented in this paper 
",ill be the use of Spy to aid in more serious statistical 
studies on the operation of computing systems. Now 
that a means has been developed to extract salient 



128 Fall Joint Computer Conference, 1970 

information from the system, a serious developmental 
effort can be expended towards expanding the system 
to produce data which can be used in more valid and 
meaningful statistical tests on system performance. 

In conjunction with this work it is hoped that not 
only can the capabilities provided by the system be 
generalized, but also the applicability of the system 
can be extended. It is felt that this project has shown 
such a system to be an effective tool in any computing 
environment, and it is hoped that this experience can 
be expanded upon by the implementation of the system 
at other S/360 installations. 

REFERENCES 

1 J M GROCHOW 
Real-time graphic display of time-sharing system operating 
characteristics 
AFIPS Conference Proceedings Fall Joint Computer 
Conference Volume 35 pp 379-386 1969 

2 G ESTRIN L KLEINROCK 
Measures, models, and measurements for time-shared 
computer utilities 
Proceedings ACM National Meeting pp 85-95 1967 

3 G ESTRIN et al 
SNUPER COMPUTER-A computer in instrumentation 
automation 
AFIPS Conference Proceedings Spring Joint Computer 
Conference Volume 30 pp 645-6561967 

4 P CALINGAERT 
System performance evaluation: Survey and appraisal 
CACM Volume 10 No 1 pp 12-18 January 1967 

5 R A ARBUCKLE 
Computer analysis and thruput evaluation 
Computers and Automation Volume 1.5 No 1 pp 12-15 
January 1966 

6 F D SCHULMAN 
Hardware measurement device for IBM system/360 
time-sharing evaluation 
Proceedings ACM National Meeting pp 103-109 1967 

7 J E SHEMER D W HEYING 
Performance modeling and empirical measurements in a 
system designed for batch and time-sharing users 
AFIPS Conference Proceedings Fall Joint Computer 
Conference Volume 35 pp 17-26 1969 

8 T B PINKERTON 
Performance modeling in a time-shared system 
CACM Volume 12 No 11 pp 608-610 November 1969 

9 H N CONTRELL A L ELLISON 
Multiprogramming system performance measurement and 
analysis 
AFIPS Conference Proceedings Spring Joint Computer 
Conference Volume 32 pp 213-2211968 

10 A L SCHERR 
An anlysis of time-shared computer systems 
Research Monograph No 36 MIT Press Cambridge 
Massachusetts 1967 

11 T HASTINGS et al 
Conversational system performance and measurement 
DECUS Proceedings Fall Symposium pp 191-201 1969 

12 W R DENISTON 
SIPE: a TSS/360 software measurement technique 
Procedings 24th National ACM Conference 1969 

13 IBM System/360 Operating System: System control blocks 
IBM Corporation White Plains NY Form C28-6628 

14 IBM System/360 Operating System: Concepts and facilities 
IBM Corporation White Plains NY Form C28-6535 1968 



An efficient algorithm for optimum trajectory computation 

by KENTON S. DAY 

ESL Incorporated 
Sunnyvale, California 

INTRODUCTION 

This paper describes a variation to the steepest
descent method for generating optimum trajectories. 
The steepest-descent approach to trajectory optimiza
tion was formulated by Kelley,l,2 Bryson et aI., 3-5 for 
numerically solving a variety of two-point boundary
value problems. The procedure is iterative, requiring 
repeated forward numerical integrations of the state 
differential equations and backward integrations of 
the adjoint equations. In many applications, however, 
convergence was slow; thus, several techniques for 
speeding convergence were devised.6,7,8 

The computational algorithm presented in this paper 
requires that a perturbation of fixed size along one 
segment of the trajectory effect the same diminution 
of the penalty function as along any other segment. 
This essentially compensates for differences in sen
sitivity over various parts of the trajectory. An ad
vantage of choosing the direction of uniform sensitivity 
is that a priori knowledge of the system behavior can 
be used effectively to speed convergence without in
creasing computational effort. 

In the proposed method the nominal trajectory must 
be computed and stored, and the adjoint equations 
integrated backward. The uniform sensitivity direc
tion is searched to determine the optimum step size 
corresponding to the greatest diminution of the penalty 
function. Only the unconstrained optimization problem 
is considered in this paper, though a general formula
tion of optimum programming requires terminal con
straints on the state and inequality constraints on 
both the state and control variables all along the 
trajectory. (Constraints of this nature are often con
verted to unconstrained problems by judicious selection 
of a penalty function.2,5,6) 

The proposed method is compared to the conven
tional steepest-descent algorithm by an example of the 
interceptor missile control problem. In all cases studied, 
the proposed method converged immediately whereas 

129 

conventional steepest-descent was oscillatory and slow. 
Neither method, however, can distinguish between 
local and global minima as with most other iterative 
algorithms. The usual procedure is to rerun the method 
with different starting conditions. 

PROBLEM FORMULATION 

The problem is to minimize 

fP = fP[x ( T), TJ 

subject to constraints 

dx/dt=f(x, a, t) 

x(to) =Xo 

(1) 

(2) 

(3) 

W[x(T), TJ=O (4) 

where X=(Xl···Xn)'= state vector, f=(fl···fn)'= 
velocity vector, fP and Ware scalar functions, and 
aCt) is a scalar control variable. The terminal time T, 
fixed or free, is determined from (4). Constraints at 
x (T) as well as on a (t) are assumed to be accounted 
for in (1). Furthermore, f is assumed to be differentiable 
in x and a. 

STEEPEST-DESCENT 

The method of steepest-descent requires guessing an 
initial control a(t), and integrating (2) from initial 
state (3) until W =0 to obtain the first nominal tra
jectory x(t). A small control variation oa(t) causes a 
corresponding trajectory variation oX (t) that must 
satisfy (to first order) 

(d/dt)ox=F(t)&c+G(t) oa (5) 
where 

[
dh ... /da] 

G(t) = 

dfn/da 



130 Fall Joint Computer Conference, 1970 

a( t} 

100 

T 

Figure 1-Control perturbations 

and the partial derivatives are evaluated along x (t) . 
Perturbations in <p and W at the terminal time due to 
oa(t) and dT are 

d<p= [a<p(T)/ax], dx(T) + (a<p/aT) dT 

and 

dW =0= [aW(T)/ax], dx(T) +[aW(T)/aT] dT 

where 

and 

a<p/ ax = (a<p/ aXle " "a<p/ axn )' 

aw/ax= (aw/aXI" " ·aw/axn )' 

dx(T) =ox(T) +[dx(T)/dt] dT 

These equations combine to give 

d<p= {a<p/ax- [(ci>/W) (aW lax) ]}'t=Tox(T) ="-k'ox(T) 

(6) 

where k is a vector constant (defined explicitly) for the 
nominal x (t), and 

ci> = a<p/ aT + [( a<p/ ax)' (dx/ dt) ]t=T 

TV =aw/aT+[(aw/ax)'(dx/dt) ]t=T 

In place of (6), the penalty function variation can 
be expressed as an integral 

d<p= fT p'(t)G(t)&x(t) dt 
to 

where pet) = (PI"" "Pn)' is defined by the differential 
equation 

dp/dt= -F'(t)p 

with boundary conditions 

peT) =a<p(T)/ax- {(ci>/W)[aW(T)/ax]} 

The usual procedure is to choose oa (t) so as to cause 
the greatest diminution in <p for a fixed II oa II defined 
by 

/I oa /I = fT oa2(t) dt 
to 

(7) 

The gradient direction is oa(t) = -p'(t)G(t) and the 
optimum step size "A minimizes <p[a- "Ap'G] for the 
present iteration. Thus, the best control for the next 
iteration is 

anew(t) =a(t) +"Aoa(t) 

UNIFORM SENSITIVITY 

Uniform sensitivity varies from the method just 
described in the choice of oa. Instead of (7), the norm 
is taken as 

/I oa /I = fT a(t)oa2(t) dt 
to 

aCt) >0 (8) 

and the uniform sensitivity direction is 

oa(t) = -p'(t)G(t)/a(t) (9) 

It remains to determine a (t) such that the sensitivity 
of (1) to oa(t) is uniform over the entire trajectory. 

Assuming that a nominal control aCt) and trajectory 
x(t) on [to, T] are available, the time interval [to,·T] 
is partitioned into small increments of width fl.t. Any 
small control perturbation oaT at time r, to~r~ T, of 
the type shown in Figure 1, with amplitude A (r), 
duration fl.t, and fixed norm II oaT II is required to effect 
an equal change in <p as a control variation oaT' at r' 
of the same size (i.e., /I oaT' II = II oaT II implies d<pT= 
d<pT' ). The effect of oaT on x (T) is 

J
T+at 

ox(T) = if>(T, s)G(s)A(r) ds 
T 

where if> is the transition matrix of (5). The norm of 
oaT, from Figure 1 and (8) is 

From (6), <p is uniformly sensitive if k' OX (T) is constant, 
so for d<pT=d<pT', it follows that 

[ J
T+at ] 

d<PT= k' T if>(T, s) G(s) ds A (r) = constant (11) 



Eliminating A (r) from (10) and (11) gives 

[ f
T+~t ]2 

X k' T cf> ( T, s) G (s) ds (12) 

The original steepest-descent gradient direction 
-p'(t)G(t) is modified by aCt) (see (9)) at r=t to 
produce uniform sensitivity in the penalty function. 
The optimum step size A, as before, minimizes 
<I' (a - AP' (t) G (t) / a (t) ). The method always generates 
directions of descent whenever steepest-descent does. 
Although (12) is an integral equation, the mean-value 
theorem can be invoked for both sides of the equation 
giving 

forr ~~, r ~ r+ At. It is irrelevant to let At~O since 
control perturbations vanish in the limiting case. How
ever, the right hand side of (12) is smooth, and in 
keeping within the framework of practicttlity, it should 
suffice for small but finite At to substitute r for ~ and r, 
i.e., 

a(r) ~C[k'<p(T, r)G(r) J2 (13) 

where C is a positive constant and r is any time on 
[to, TJ. 

Equation (13) calls for computing a transition 
matrix, but this is not always necessary for the iterative 

VELOCITY 

DRAG 

GRAVITY 

GROUND RANGE 

Figure 2-Vehicle nomenclautre and coordinate system 

Trajectory Computation 131 

I 

T 

1~ l--.1t 

A (7"') 

I 

~. 
I 

·t 7"' T 0 

Figure 3-Approximation to equation 12 for the interceptor 
missile example 

process to be efficient. It may suffice to know gross 
behavior of aCt) on [to, TJ. Trends can often be ob
tained by treating F(t) and G(t) as constants or by 
estimating aCt) a priori as in the following example. 

Example: the interceptor missile 

This example considers optimal guidance of an inter
ceptor missile to a fixed space point in minimum time 
with the additional terminal constraint that the inter
cept occur with a specified flight path angle. The dy
namic equations for the nomenclature of Figure 2 are 

dr/dt= V cosO 

dhjdt= V sinO 

dV/dt= [F(t)/m(t) J cosa-gsinO 

- [p(h) V2CD (a, M) S/2m(t) J 

dO/dt= [F(t)/m(t) J(sin a)/V - (g/V) cosO 

+[p(h) V2CL (a, M) Sj2m(t) VJ 
where r=range, h=altitude, V = velocity, O=flight 
path angle, a = angle of attack (control variable), g = 
gravity, F=thrust, m=mass, p=air density, M = mach 
number, and S=reference area. The stopping condition 
and penalty function are 

W=Y2[r(T) -rrJ2=0 

<1'= T+Y2R1[h(T) -hrJ2+~R2[O(T) -OrJ2 

where (r rh r VO r)' defines the terminal state vector 



132 Fall Joint Computer Conference, 1970 

,\ ~ STEEPEST - DESCENT 
10.. ',"\. II' 

~' '"', ,,".', "., /\ '''.' "",,, ;\ \ '.' \,' \ 
\ '-' \ 
\ \. Y UNIFORM SENSITIVITY 

.... 
O~_~I~I~"_~~~~~~.~ ___ ~.~. __ ~.~_~.~.~_~. 

1 2 3 4 5 6 1 8 9 ro 
NUMBER OF IlERATIONS 

en 

~ ~'L V STEEPEST - DESCENT 
Q ~, " A 

4C \ ',.,' '/~" /' 

i!: ~-o.2 -\ " ',/ '\ ~\ 
f ~ \ './ \ /. 
~ I \ \ ' 
~ s \ \,' ; t-O·1 - \r UNIFORM SENS ITIVITY 

:e e5 \ .. 
m ~ 0 • .'",,- • • • • • • • ~ 1 2 3 4 5 6 7 8 9 10 

4C 
NUMBER OF ITERATIONS 

10K------------------. 
~--.---. __ ... .r STEEPEST - DESCENT 

" -- "--... ---". --... ............. 
\ .... , 
\ "., 

5K - \r UNIFORM SENSITIVITY ....... ". 

\ ., 
" o I • 'J,t I • I I I I 

123 456 7 8 9 ro 
NUMBER OF ITERATIONS 

Figure 4-Illustration of convergence for the interceptor 
missile example 

[VeT) is unspecified], and Rl = 10-4 and R2 = 104 are 
constant weighting factors selected. to equalize each 
term in cp when equalities in the convergence criteria 
are satisfied. Iteration terminated when the following 
conditions of convergence were simultaneously 
achieved: reT) =rI, I h(T) -hI I ~100 feet, 

IO(T) -fh I ~0.02 rad, 

and ~t~O.Ol seconds = difference between successive 
iterations. 

The function for a (t) shown in Figure 3, was esti-

mated from the linearized state equations and used as 
an approximation to (13). This type of result for aCt) 
might be expected since a control variation 5a early in 
flight, when the velocity and atmospheric density are 
high, has much greater effect on the terminal state 
(and consequently cp) than the same 5a later in flight 
at a higher altitude. The curves in Figure 4 illustrate 
convergence for steepest-descent and uniform sensi
tivity for an intercept at 100,000 feet range, 20,000 
feet altitude, and zero flight path angle, and are repre
sentative of convergence behavior for other space 
point intercepts that were studied . 

CONCLUSION 

A practical extension to the method of steepest-descent 
has been developed which seems to enhance conver
gence properties without significantly increasing com
putational effort. Based on the requirement that the 
penalty function be equally sensitive to a fixed control 
perturbation along any segment of the trajectory, the 
direction of uniform sensitivity was determined. The 
uniform sensitivity direction essentially represents a 
modified steepest-descent gradient. Therefore, the basic 
steepest-descent algorithm is unaltered except at the 
stage where the control perturbation is computed. 

The proposed method always generates directions of 
descent whenever steepest-descent does, and has con
vergence properties superior to the latter-at least 
when applied to optimal interceptor missile control. In 
fact, the development evolved out of difficulty in 
forcing steepest-descent convergence in application to 
optimal missile guidance. Figure 4 typifies the level of 
improvements in convergence that were realized for 
two types of missiles and over a wide range of atmos
pheric intercepts. 

REFERENCES 

1 H J KELLEY 
Gradierd theory of optimal flight paths 
ARS J Volume 30 pp 947-953 1960 

2 H J KELLEY 
Method of gradients 
Optimization Techniques G Leitmann Ed Academic Press 
New York New York Chapter 61962 

3 A E BRYSON et al 
Determination of lift or drag programs that minimize re-entry 
heating 
J Aerospace Sci Volume 29 pp 420-430 1962 

4 A E BRYSON W F DENHAM 
A steepest-ascent method for solving optimum programming 
problems 
J Appl Mec Volume 29 pp 247-257 1962 



5 W F DENHAM A E BRYSON 
Optimal programming problems with inequality constraints
II: Solution by st~epest-ascent 
AIAAJ Volume 2 pp 25-341964 

6 L S LASDON et al 
The conjugate gradient method for optimal control problems 
IEEE Trans on Automatic Control Volume AC-12 pp 
132-138 1967 

Trajectory Computation 133 

7 W E WILLIAMSON W T FOWLER 
A segmented weighting scheme for steepest-ascent optimization 
AIAA J Volume 6 pp 976-9771968 

8 R ROSENBAUM 
Convergence technique for the steepest-descent method of 
trajectory optimization 
AIAA J Volume 1 pp 1703-1705 1963 





Hybrid computer solutions for optimal control of time
varying systems with parameter uncertainties* 

by W. TRAUTWEIN and C. L. CONNOR 

Lockheed Missiles & Space Company 
Huntsville, Alabama 

SUMMARY 

A hybrid computing scheme is described which eco
nomically solves optimal regulator problems for time
varying systems. The variational problem of deter
mining optimal time-varying controller gain schedules 
is reduced to a sequence of standard one-dimensional 
parameter searches and high-speed simulations by 
restricting the class of optimal gain schedules to be 
piecewise linear. 

A major shortcoming of most optimization tech
niques-the high sensitivity to parameter uncertainties 
-is mitigated by making the performance index de
pendent upon two or more different simulations. 
Choosing highly adverse operating conditions for per
formance evaluation largely reduces the sensitivity of 
the optimized system to off-nominal conditions. This 
is illustrated by an example, the design of a load-relief 
attitude controller for large launch vehicles. Other 
practical features of the hybrid optimization include 
the use of free-form, non-quadratic performance mea
sures to specify design goals in the most direct manner 
with only minor mathematical constraints concerning 
their functional form. 

INTRODUCTION 

Hybrid computers have long found wide use in param
eter optimization of time-invariant dynamic systems. 
Fast-time, repetitive analog simulation of the system 
dynamics is combined with a functional minimization 
scheme programmed digitally. A performance index, 
formulated in accordance with the design goals, is 
minimized by iteratively updating the adjustable 
parameters between subsequent analog runs.1 

* Work supported by NASA-MSFC Contract No. NAS8-30515, 
Mod II, Task 1. 

135 

A basic advantage of hybrid optimization over linear 
optimal control theory is that performance measures 
can be freely selected to best reflect the design objectives, 
whereas the quadratic criteria required by linear con
trol theory are in gen~ral difficult to relate to the ~esign 
goals. System nonlinearities and constraints imposed 
upon certain state variables or control parameters can 
be accounted for in the hybrid approach without 
difficulty. 

These practical features made it desirable to solve 
another important engineering problem, optimal con
troller design for time-varying systems, by a similar 
technique.· Optimal controller adjustments in this case 
become functions of time which in general require 
variational techniques for their solution. For regulator 
design without specified terminal conditions the varia
tional problem can readily be reduced to a sequence of 
parameter optimizations if the optimal gain schedules 
are restricted to piecewise linear functions of time. In 
another section the basic approach will be described for 
completely defined systems. An extension of the hybrid 
technique to drastically reduce the sensitivity of the 
optimized system to parameter uncertainties or other 
off-nominal conditions is given later in this paper. A 
more detailed discussion of the optimization method 
and its application to booster load relief controller 
design is given in Reference 2. 

OPTIMAL REGULATOR DESIGN FOR TIME
VARYING SYSTEMS UNDER NOMINAL 
CONDITIONS 

Formulation oJthe control problem 

The dynamics of. the system (plant) be described 
by the first-order vector equation 

x=](x, il, t) (1) 



136 :Fall Joint Computer Conference, 1970 

r 

Figure I-Assumed polygonal form of optimal gain schedules 

where i is the n-dimensional state vector, J an n-dimen
sional functional vector, u an m-dimensional control 
vector (m5:n) and (") =d/dt. 

The control law be dictated by available sensors or 
other limitations in cost and complexity. For this dis
cussion we assume a linear control law 

u(t) =K(t)i(t) (2) 

where K is an m X n gain matrix. The design problem 
then is to determine the gain matrix K (t) so that the 
performance measure 

J =J(x, u, t) (3) 
;. 

is minimized. J is a positive definite function of other
wise free form, selected to best reflect the design 
objectives. 

Restriction to piecewise linear gain schedules 

The computational load can be greatly reduced with 
little or no loss in optimality of the solutions if the mn 
gain schedules of K (t) are assumed to be piecewise 
linear functions of time as shown in Figure 1. Then the 
optimization problem is reduced to a parameter search 

Figure 2-During optimization cycle at time t p , a search is 
performed in Ki parameter space of the mn gain slopes for 

optimum performance 

Time Varying ___ -, 
Parameters 

Disturbances 

,----
i 
I 

I 
I 

OPERATE) 
RESET I 

I 
1-------, 

COMPUTER 
LOGIC 

CONTROL 

I 
I 
I 
L_ 

PLANT 
DYNAMICS 

PERFORMANCE 
ANALYZER 

J = I(i, u, t) 

DIGITAL 

Slopes 01 
Controller . 
Parameter. I K 

I 
I 
I , 

GRADIENT 
MINIMIZA TION 

J- MIN 

------=-~ -=-=-=--=--=---=--=-r:::-::-_-__ 
HOLD/COMPUTE I 

I 

Figure 3-Basic control system optimization scheme. Complete 
plant and control system dynamics are simulated repetitively on 
analog console of hybrid computer. Performance is analyzed 
after simulation in digital computer and optimized by iterative 

changes in slopes of controller gain schedules. 

for the mn gain slopes Kj of the gain matrix K (t) as 
shown in Figure 2 which can be carried out based on 
standard hybrid techniques. In this regulator problem 
the performance index does not contain the terminal 
state. Thus, forward integrations are sufficient to deter
mine the optimum. The basic computing scheme is 
shown in Figure 3. The analog simulation serves a 
dual purpose. Performance is repetitively evaluated 
during an optimization cycle in fast time. Once the 
optimum set of gain slopes It( j = 1, 2, ... mn) is 
determined the optimum parameters are used during 
a real time simulation from one update time (t,,) to the 
next (t,,+l) using the same analog circuit (Figures 4 
and 5). 

Fast Time Predictions 
/' Optimization Cycle" 

Optimization 
-Cycle "+ I 

'r--~----~~----~~~~~~--~----t 
t" 

Figure 4-Series of fast time predictions at update time tp leads 
to optimum gain slopes Xi opt(j = 1 ... mn). Subsequent real 
time simulation uses Iti opt from tv to next update time t,,+l 



LOgi~L Control 
Input '3 T S 

el eZ 

Track 8. Store Unit Behavior 

Real Time Mode Fast Time Mode 

o 

fl .... _ ... O~ __ Machine 

t/l_ l t" t" t"+l Time Track 8. Store 
Unit Output ,... 
(To Integrator IC) -e3 Ie .... ~ .... --' . 

r--- Machine 

Integrator Output eZ ~ II" · Time 

~I:: :"-+1- M~_ 
Recorded Output e Fast Runs ... Time 
(Recorder is stopped Z kfl Real Tune Slmulatlon 
during fast runs) 

-+-..L.....JL.......J.... ________ ..... Real Time 

t"-lt,, ~l 

Figure 5-Simple analog circuit for real time simulation and fast 
time predictions using same integrators 

Minimization method 

In order to distinguish between local ffilmma and 
absolute minima the search in the Xj parameter space 
is performed in two phases: 

1. Systematic Grid Search 
All possible parameter combinations within a 
region of specified limits and a grid of specified 
fineness are evaluated for their performance J. 
Such a complete survey is feasible as long as the 
parameter space is of low dimension as in present 
applications (Figure 6). 

2. Gradient Search 
The Fletcher-Powell-Davidon gradient method3 

uses the grid search minimum as a starting point 
to precisely locate the minimum. 

Example: Booster load relief controller design 

The practical features of the optimization scheme are 
best illustrated using the following example. The peak 
bending loads at two critical stations, Xl and X2 (Figure 
7) of a Saturn V launch vehicle shall be minimized 
during powered first stage flight while the vehicle is 
subjected to severe winds with a superimposed gust 
(Figure 8, top strip) and to an engineout failure at the 
time of maximum dynamic pressure. 

The major variables are: 

a vehicle angle of attack 
control engines gimbal angle 

Hybrid Computer Solutions 137 

Parameter Combinations Evaluated 
During Grid Search 

Grid Search 
Minimum 

o 

-0.1 C>=---O---C>--~-~----(l_-o 
-0.1 0 Kl 0.1 

Gradient 
Search 
Minimum 

Figure 6--Parameter optimization performed in two phases: 
(1) Systematic grid search (0) for complete survey of parameter 
space; Grid point of minimum J ( 0) serves as starting point for 
(2) gradient search which locates the minimum more precisely 
(D). From grid search contour plots (Lines of J = Const) can be 

displayed at CRT for better insight into J-topology. 

1/ generalized displacement of bending mode 
at nose of vehicle 

cP vehicle pitch attitude error 
X commanded pitch attitude relative to 

vertical at time of launch 
z drift, normal to the reference trajectory 
~ slosh mass displacement, normal to refer-

ence traj ectory 
Y (x), Y' (x) bending mode normalized amplitude and 

slope at station x 

Disturbance terms due to engine failure: 

cPF pitch acceleration due to engine failure 
ZF lateral acceleration due to engine failure 
1/F bending mode acceleration due to engine failure 

Control law 

The attitude controller to be optimally adjusted has 
feedback of attitude error, error rate and lateral 
acceleration: 

(4) 



138 Fall Joint Computer Conference, 1970 

Figure 7-Minimax load relief performance criterion to minimize 
peak bending loads at two critical locations, Xl, X2: 

j
tv+To 

~ =max/MBi(t) /MBi / +q ()2RG(t) dt--+min 
~=1,2 tv 
tv~t<tv+To 

Normalized 
Peak Bending 
Loads 

System equations 

Mean Square of Rate 
Gyro Output to 
Ensure Trajectory 
Stability 

(6) 

The vehicle equations of motion as simulated on the 
analog console are: 

Rotation: 

Translation: 

Bending Mode: 

Sloshing: 

Position Gyro Output: 

cJ>i = cJ>+ Y' (xPG)7J 

Rate Gyro Output: 

(Ji= cb+ Y' (XRG) 7j 

Accelerometer Output: 

Ti=Z+Al4>-A2cJ>-A31i+A47J 

Gimbaled Engine Dynamics: 

Shaping Filters: 

Attitude Error Filter: cJ>s=</li(Pos+1)/P1s+1) 

Rate Error Filter: 

Accelerometer Filter: Ts=TiRo/(S2+R1S+Ro) 

Angular Relationship: 

a=cJ>-i/V+aw 

aw= tan-1(Vw cosx/V - Vw sinx) 

Wind 
Disturbance aw:o~ 

Failure 
Mode 

Optimized 
Gain 
Schedules 

Pitch 
Angle 

Engine 
Deflection 

Bending 
Moments at 
Station Z 

At Station I 

Leeward Engine Failure . ,outF ~ Engme No. I lIn I ~ 

a l I r== '¥ 
(sec) O~ I: 

~gz ~r 
m/sec 

~ :r (deg) 

+5.0 [ 

(d~g) 0 

MB2 
+0.: r 

M
BZ 

MBI +0.:[ 
MBI 

60 

I 

I : 

I 

I 

I~~ 

I 
I 

I r:;:: 
Peak Moment for 

I /'- Constant Gain Case 

~ 53% higher than peaks 
I L""";= of optimized system 

I 
I 

; ,/\_ Peak Moment for 
~ Constant Gain Case 

50% higher than peaks 
I~ of optimized system 

70 80 90 

Figure 8-Typical Saturn V S-IC optimization results. Three 
gain schedules are optimally adjusted to minimize the peak 
bending loads among two stations (1541 and 3764 inches) for the 
disturbance and failure history of the top charts. Peak loads 
are substantially reduced compared with nominal Saturn V 
performance (without accelerometer feedback). Weighting 
factor q=O.05; floating optirilization time interval To=20 sec in 

performance criterion (6) 



Engine Failure Switching Function: 

{
+ 1 windward engine out 

o = 0 no failure 
- lleeward engine out 

Only one bending mode and one slosh mode was in
cluded in this study. The bending moment at station 
Xi is 

M Bi = M' aia+ M' /lit3+ M';;~ 

Complete numerical data for all coefficients used in the 
simulation are compiled in Reference 4. 

Selection of performance index 

In earlier studies4 quadratic performance criteria 
such as 

(5) 

were-used. They allow a straightforward physical inter
pretation and at the same time can still be loosely 
related to linear optimal control theory. Neglecting 
external disturbances (aw ~ 0), Equation (5) can be re
written in the more familiar form 

where a is an n-dimensional coefficient vector, q3, q4 
are constants depending upon ql, q2, M a' and M / and 
superscript T denotes transpose. 

The results from optimizations where Equation (5) 
was minimized were disappointing insofar as peak 
bending loads were reduced by a few percent only, 
whereas the major reductions were in the RMS values 
of the bending loads. 

Since peak loads are of major concern to the designer, 
a more direct approach was made to reduce peak loads 
by using the minimax criterion (6) of Figure 7. During 
each run bending load peaks at both critical stations 
were sampled and compared. Only the greater of the 
two peaks was included in J. This peak amplitude 
normalized with respect to the structural limit M B was 
the major term in J. The only additional term, the mean 
square of measured error rate, was included to ensure 
smooth time histories and trajectory stability. This 
performance criterion reduced the number of weighting 
factors to be empirically adjusted to one, whereas n 
such factors must be selected in linear optimal control 
theory for an nth order system. 

Hybrid Computer Solutions 139 

Wind 

aw 

100~ ~_ 
Disturbance ~ 

o Windward Engine Failure 
Failure l: 
Mode Engine No. 3{~t +-r -----,...Jr== 
Optimized 
Gain 
Schedules 

Pitch 
Angle 

Engine 
Deflection 

Bending 
Moments at 
Station 2 

At Station 1 

a 
o ~~ 

I 
I 

a l ~~t~~==~I~r=== 
(sec) I 

~ t+--.,.....-~.-.,--
50 [ (dtg ) r 

fl 
(deg) ~ [~--""""",,,,,,,,,,I~-+--= r ,~ 

I 
I 

MB2'5~, 
M B2

0 ~ 
I ~ • 
I 

'5~ MBI - - : 
M 0 -+- _ .. __ .+--

BI \. 
Flight Time -sec 

60 70 80 90 

Peak MOIllent for 
Constant Gain Case 
22% Higher Than Peaks 
of Optimized System 

Peak Moment for 
Constant Gain Case 
25% Higher Than Peaks 
of Optimized System 

Figure 9-8aturn V 8-1C optimization of Figure 8 repeated 
for assumed windward engine failure under otherwise identical 
flight conditions. Optimal gain schedules are strongly dependent 

upon assumed failure condition 

Results 

A typical optimization result is shown in Figure 8. 
Drastic reductions in bending moment peaks result 
from the minimax criterion compared with the constant 
gain case. It should be noted, however, that perfect 
predictions 20 seconds ahead were used in the optimiza
tion including the anticipated failure. 

In Figure 9 the results of a similar case ar.e shown. 
All flight conditions are identical to the previous case 
except for the failure mode: a leeward engine fails in 
Figure 8,a windward engine in Figure 9. Again, peak 
bending loads are substantially reduced in magnitude 
compared with a case with nominal constant adjust~ 
ments of the controller. However, two of the three opti
mal gain schedules (ao(t) and g2(t)) differ drastically 
for the two failure modes. In view of the lack of any 
a priori knowledge about time and location of a possible 
engine failure no useful information can therefore be 
gained from the two optimizations concerning load 
relief controller design. This basic shortcoming of all 
strictly deterministic optimization schemes must be 
relieved before the method can be applied to practical 
engineering design problems characterized by parameter 
or failure uncertainties. 



J 

140 Fall Joint Computer Conference, 1970 

-Upper Bound J of 
Performance for 
Failure A ~ B 

Failure A 

B 

K K 
optA or B optB 

Figure lO-Optimum adjustment of scalar control parameter K 
considering possible occurrence of failure A or B 

OPTIMAL REGULATOR DESIGN INSENSITIVE 
TO FAILURE UNCERTAINTIES 

Previous work to reduce parameter sensitivity has 
centered around inclusion of sensitivity terms aJo/aK 
in the performance index to be minimized, where J 0 

denotes performance under nominal conditions and K 
is the uncertain parameter vector.5 Substantial addi
tional computational load would arise if such an ap
proach were implemented on the hybrid computer. 
Moreover, in the case of possible failures the uncertain 
parameters may vary discontinuously from one discrete 
value to another like the engine failure switching func
tion in the preceding example: 

{

I for Failure A 
0= 0 for Nominal Case 

-1 for Failure B 

Another approach is therefore chosen: The hybrid 
optimization method is extended to account for such 
failure uncertainties even if no partial derivatives exist. 
Consider the case of two possible failure conditions, 

A or B. The performance index evaluated for each 
failure may be of the form of Figure 10. Neither K optA 

nor K oPtB would be optimal in view of the uncertainty 
concerning the failure mode. Performance might be 
unacceptably poor at the level I Au if Failure A occurred 
and the control parameter were adjusted at the opti
mum for Failure B. The best tradeoff in view of the 
failure uncertainty is the minimum of the upper bound 
of J A and J B (solid line in Figure 10). In the example of 
Figure 10 this optimum which is the least sensitive to 
the type of failure lies at the lower intersection of the 
two curves. 

Extension of the optimum-seeking computing scheme 

The most direct way to locate the minimum of the 
upper performance bound is to simulate all possible 
failure modes for a given set of control parameters in 
order to determine the upper bound I. A gradient de
pendent minimization technique can again be applied 
to seek the minimum. One might expect convergence 
difficulties around the corners of these I-functions. 
However, only minor modifications were necessary to 
the basic Fletcher-Powell-Davidon gradient scheme and 
to the preceding grid search to locate comer-type 
minima. The changes included a relaxing of the gradient 
convergence test (I VJ I ~~, where }; is a small 
specified number). If all other convergence tests are 
passed, then ~ is doubled in subsequent iterations. In 

q1MB1 

:T") -:IJ 
~j.B4\1J 

Flight Condition A I Flight Condition B 
(Windward Engine Out) (Leeward Engine Out) 

MAxlMBil 
MBi 

Figure ll-Generalized load relief performance criterion to 
minimize upper performance bound J for two possible 

operating conditions 

j
t,,+To 

} = max I MBi/MBd + 82RG(t) dt~min 

t" 

CaseA,CaseB 
i=l,2 
t,,<t<t,,+To 



order to keep the number of analog simulations low, 
only one failure case associated with the local upper 
bound is simulated for approximate gradient computa
tions based on J (K + llK). During the grid search 
much computing time can be saved by checking if the 
upper performance bound J is much larger than the 
performance index J of the less critical case. Then 
evaluation of only one failure case is necessary for the 
neighboring grid points. 

A pplication to the booster load relief problem 

In its extended form the optimization technique is 
ideally suited to minimize the effects of possible failures 
in the booster attitude- control problem. The design 
goal is to minimize peak bending loads for the worst of 
several possible failure conditions. To this end the two 
most adverse flight and failure conditions are simulated 
to determine the upper performance bound J of both 
cases for each set of parameters as shown in Figure 11. 
The performance index J, now a function of both ad
verse cases, is then minimized following much the same 
scheme as in the basic approach. 

In Figure 12 results obtained by considering a single 
failure mode only (solid lines) as in Figures 8 and 9 are 
compared with results gained from the extended op
timization scheme which considers both adverse failure 
conditions to minimize the upper performance bound. 
The former gain schedules (solid lines) are closely 
tuned to the specific flight and failure condition and 
therefore, differ drastically for the two adverse failure 
conditions and cannot be used for controller design. 

Simultaneous consideration of both adverse failure 
modes (dotted lines) leads to a single set of controller 

Flight COI1ditiOll "A": Flight Condition "B'I: 
LEEWARD ENGINE OUT WINDWARD ENGINE OUT 

j.'~'.b#¢·····1 ""3J-"~i-,pl 

.---+ j 1 .-E-i 
lJ ':",1 ~~i.J ... :9 
!l ~:+ ?§f J~'-E .?"1iJ 

bO eec 100 eec 60 etc IO!l.p(. 

Figure 12-Deterministic optimization for one failure case 
only (solid lines) compared with optimization subject to failure 
uncertainty (dotted lines) with consideration of two possible 

failure modes 

Hybrid Computer Solutions 141 

Failure B 
Station 1 

50 Failure B 

l_35~ Station Z 

r:f 
'- 40 

IQ 

-L 
III 

I'Z3% 

"0 .. 
0 
~ 30 
tlO~ 
'::"0 
... 4) 

'g .!l 
4)-
~ .. 
.lo: 6 

Failur~ J : ~ zo o.e Station 1 

I I 

I Constant Gains I I Optimized Gains 
ao=O. 9, a1=0. 67, ao(t) 

gz = 0 gZ(t), a 1 = const. = 0.67 

Figure 13-Peak bending loads for Saturn V S-IC powered 
flight compared for constant gain case and for case optimized 
for failure of leeward or windward engine. Wind profile as shown 

in Figure 8; Assumed engine failure time 76 sec 

gain schedules. The reduction in peak load is smaller 
than before for Condition A, whereas the milder Con
dition B even shows some increase in bending load. A 
closer inspection of the resulting loads in Figure 13 
reveals that an ideal tradeoff between failure effects 
A and B was achieved. All peak loads are brought to a 
common level of about 33 percent of the structural 
limit M B, whereas the constant gain controller adjust
ment exhibits loads up to 52 percent of M B. 

COMPUTATIONAL ASPECTS 

Experiments were made on the EAI 8900 computer 
to determine if acceptable accuracy and repeatability 
is obtained for a time scale of 1000 times real time. Re
peatability was found to be within 2 percent for the 
time scale 1000 and within 0.5 percent for slower time 
scales using a circuit and interface similar to the opti
mization scheme. Two percent repeatability was con
sidered sufficient. Therefore, a time scale of 1000 times 
real time is used during fast time predictions. In the 
booster control problem the optimization of two gain 
schedules takes about 5.5 minutes hybrid time. 

Up to 40 analog simulations per second are presently 
achieved for analog run times of typically 20 milli
seconds (Figure 14). Using nine grid points for each 
parameter during the grid search locates the minimum 
sufficiently close in the example presented. After 3 



142 Fall Joint Computer Conference, 1970 

Control Gain 
a o 

Control Gain 

Bending 
Moment 

MBI 

MBI 

o 
z 

z 
o 

.5 

0 

-..... "r 

• II 
I. 

• • • -

l -l' 

Fast Time Predictions I "'_It-f-- I I r I 

t-~ Grid se,arch , ==R Gradient 
1"'""- Search ... I ... C;i. ~ii:,f---' ... 

,. r. ,. .. 
Real Time Simulations 

• .. i • 
• • • . r • 

Machine Time 

.... 
~ 
IT, 

~r-I~ 

'. 

•• 

t 
1 
'1 

;Cd .-
Pi ...... 
III 

I 
T 

Figure 14-Typical computing speed is 20 to 40 analog simula
tions per second on EAI 8900 computer including AID transfer 
of performance index, D I A transfer of new parameters between 
simulations. Time scale used during fast runs: 1000 times real 

time; Typical analog run time 20 millisec. per run 

to 5 iterations of the following Fletcher-Powell-Davidon 
gradient search the minimum is found with sufficient 
accuracy. 

ACKNOWLEDGMENT 

The authors wish to acknowledge the contributions of 
Messrs. Roger Lin (now EAI, NASA Ames) and S. Lo 
in hybrid programming and computations. 

REFERENCES 

1 G A BEKEY W J KARPLUS 
Hybrid computation 
John Wiley & Sons Inc Section 9 New York 1968 

2 C L CONNOR W TRAUTWEIN 
Control system optimization for Saturn V launch vehicles using 
gradient techniques 
Final Report Contract NAS8-30515 Mod II Task 1 
LMSC/HREC D162122-I & III Huntsville Alabama 
February 1970 

3R FLETCHER M J D POWELL 
A rapidly convergent descent method for minimization 
Computer J Vol61963 

4 W TRAUTWEIN J G TUCK 
Control system optimization for Saturn V launch vehicles 
using gradient techniques 
Final Report Contract NAS8-:21335 LMSC/HREC 
A791836 Lockheed Missiles & Space Company Huntsville 
Alabama October 1968 

5 P DORATO 
On sensitivity in optimal control systems 
IEEE Trans Vol AC-8 pp 256-257 July 1963 



The role of computer specialists in contracting for 
computers-An interdisciplinary effort 

by ROY N. FREED 

Widetl & Kruger 
Boston, Massachusetts 

INTRODUCTION 

The complexity of computer-communications technol
ogy requires computer specialist involvement in the 
negotiation arid structuring of contracts relating to 
computer systems if many business arrangements im
portant to the parties are to work out smoothly and suc
cessfully . Numerous businessmen and lawyers are not 
yet sufficiently sophisticated concerning the unique 
qualities of· computers and their uses to set up viable 
contractual relationships respecting the more complex 
uses of the technology without substantial guidance 
from persons acquainted with the vulnerabilities of users 
and suppliers in particular types of transactions. As 
users and suppliers now become aware, somewhat be
latedly, of the pitfalls in contracting in that area of 
technology, computer specialists have challenging op
portunities for interdisciplinary professional involve
ment with lawyers. This paper suggests means for mak
ing such involvement as fruitful as possible for all 
parties concerned. 

POOR CONTRACTING PRACTICES HAVE 
PREVAILED 

The inadequacy of contracting for computer systems 
and computer use and the adverse consequences of that 
inadequacy to user and supplier alike finally are being 
recognized, if the response to the author's public dis
cussion of the subject is any criterion.1 Warnings based 
on sheer professional judgment went unheeded for a 
number of years. Only when poorly structured transac
tions started to result in litigation and in large damage 
awards against major companies did users and suppliers 
commence to explore ways to achieve sounder contracts. 
The primary stimulus probably was the verdict for al
most $500,000 against IBM's Service Bureau Corpora
tion in April, 1969, for damages found to have resulted 

143 

from incorrect representations made so carelessly as to 
amount to legal fraud. * 

Computer contracts require special attention for a 
number of reasons. In many situations, the subject mat
ter is more complex than that normally encountered in 
purchase or lease transactions. At the very least, for ex
ample, the operations of an entity suddenly might be
come entirely dependent upon the sustained function
ing of a machine system. This would be the case whether 
an in-house system or an external time-sharing service is 
used. Previously, interruptions of equal magnitude were 
possible only in the most unusual of circumstances, 
such as a strike or equally dire development that im
mobilized large quantities of people. Consider, as a 
further and more specific example, the use of an ex
ternal time-sharing service to conduct business record
keeping and information processing. By taking that 
step, a fundamental segment of a business is carved out 
and turned over completely to an outsider. Controls that 
formerly were enjoyed directly now must be main
tained vicariously, through the vehicle of contracts, 
thereby introducing the conflicting interests of a sup
plier and the need to resort to a legal tribunal for the 
resolution of disputes. Means must be provided, in such 
an arrangement, to insure that the supplier will respond 
adequately to largely unpredictable future needs for in
creased volume and variety of services, will handle 
catastrophes with genuine concern, and will protect 
critical information from unauthorized disclosure. 

Frequently, the technology insinuates a particular 
supplier more deeply and irreversibly into the opera
tions of the user than do other machines or techniques. 
The time and expense entailed in introducing a comput
er system often bar switches to other suppliers of hard
ware or services once the process of computerization 

* Clements Auto Co. et al. v. Service Bureau Corporation, 298 
F. Supp. 115 (D. Minn. 1969). Decision also reported in The 
Wall Street Journal, April 19, 1969. 



144 Fall Joint Computer Conference, 1970 

has been started. Long lead times for system design, 
hardware procurement, and record transformation 
often make it impossible for an unhappy customer to 
change suppliers, thereby reducing his bargaining power 
in an improvident transaction. Even where a short term 
lease is used in an effort to preserve freedom of action, 
that freedom is illusory unless it is feasible to switch to a 
compatible system. It becomes imperative to identify 
potential failures of suppliers no later than the very 
outset of contract performance if the customer is to 
have genuine freedom to bargain and maneuver. 

In many cases, the transactions involve finan
cial outlays or commitments substantially greater 
than those usually assumed. Some system sales prices 
are substantial. Even the purchase of extensive time
sharing service can involve great sums in many cases. 

And many types of transactions are so novel that 
reports of negative experience with them are not 
available for guidance in avoiding frictions. This is 
especially the case with time-sharing services. 

The concrete impacts of bad contracts have been 
great. Suppliers have been subjected to large awards 
of money damages or have settled. for them out of 
court. * Customers have suffered from severe disruptions 
of their operations and substantial portions of their 
true losses cannot be quantified and recovered as money 
damages. ** Much annoying wrangling undoubtedly 
has occurred in many situations that never ended up 
in the courts. At the very least, innumerable customers 
have been extremely dissatisfied because they expected 
more from their contract transactions than they 
received. 

The improvident transactions frequently impugn the 
technology and discourage or delay its proper use. 
Potential users justifiably can become gun shy from 
some reports of difficulties encountered. It still seems to 
be especially newsworthy to detail problems en
countered with computer systems. 

Until recently, the contents of contracts used in the 
computer industry· appear to have been influenced 
largely by marketing people. l\1any of the form docu
ments studiously avoided detailed statements of the 
subject matter involved. A large number of them 
reflected the greater bargaining power of the supplier. 
Few of them mainfested the careful draftsmanship, 
including respect for the rules of grammar, their 

* See, for example, Clements Auto case, supra; Food Center 
Wholesale Grocers, Inc. v. International Business Machines 
Corp., (U.S. District Court for Massachusetts) (jury verdict of 
$53,200), The Wall Street Journal, March 27, 1968;.and U.S. v. 
Wegematic Corp., 360 F. 2d 674 (2nd Cir. 1966). 
** See particularly Clements Auto case, supra, and Food Center 
Wholesalers case, supra. 

intrinsic importance would seem to warrant for the 
reasons just detailed. 

PROPER CONTRACTING APPROACH 

Proper contracting in the computer area requires at 
least the application of the best negotiating and con
tract-drafting techniques found applicable to other 
subject matter if not probably even some superior ones. 
There is no mystery surrounding the nature or use of 
those techniques. Essentially, they require (a) thorough 
negotiation of each transaction to identify and cover 
all significant points and (b) careful statement in 
writing of the precise nature of the transaction worked 
out by the parties. Effective negotiation entails antic
ipation of situations that might arise during the course 
of the transaction and treatment of how the parties 
will handle them if they happen to occur. There is no 
substitute for painstaking· thoroughness in covering 
both basic aspects. Normally, those functions are 
performed by persons knowledgeable in the subject 
matter and by lawyers, both working together. 

Contracting for computer systems or services re
quires especially careful use of those techniques for the 
reasons noted in the review of the effects of poor 
practices. This care demands particular attention to 
the factual aspects of computer transactions and to the 
formulation of contract documents to cover them. The 
facts surrounding the transactions frequently are 
not obvious, but appear only after application to the 
transactions of imaginative analysis by technically 
skilled persons. Moreover, many transactions extend 
over long periods of time, and the persons involved in 
carrying them out can benefit from considerable guid
ance in the form of a clearly written, explicit agreement. 
This is particularly' important because personnel 
turnover frequently· interjects complete strangers 
into the middle of complex transactions. 

Computer specialists must be called upon to identify 
the pertinent facts in contractual transactions, which 
might include the nature of the customer's needs, the 
technical aspects of the products or services considered 
to fill their needs, and the types of business approaches 
available to secure those products or services. That 
function of computer specialists has a number of 
manifestations. They must prepare specifications cover
ing the supplier's performance and occasionally the 
.~ustomer's environment into which the supplier's 
product or service will be introduced. They must 
select ways for determining whether performance of the 
products or services has been satisfactory, usually 
through the use of acceptance tests. With respect to 
software, they must identify such factors as the 



Role of Computer Specialists in Contracting for Computers 145 

possible need for maintenance, the likelihood that a 
particular program will be enhanced, and the precise 
nature and form of the items that should comprise a 
specific software package. They should be able to 
evaluate the risk that a particular proprietary package 
will be pirated and thus requires an effort to fence it in 
legally. They should point out jeopardies to file in
formation in time-sharing applications, propose phys
ical means for preventing unauthorized access to it, 
and identify remaining needs for legal protections to 
bolster the physical fences that are utilized. 

The possible contributions of the computer specialist 
along the lines suggested can be identified readily by a 
technical audience, such as that to which this paper is 
addressed, with slight stimulation and suggestion. To 
that audience, in contrast, the role of the lawyer re
quires elucidation. The lawyer usually functions in 
contr~ct situations, as in most of his other professional 
activities, essentially as a craftsman rather than as a 
specialist in particular subject matter that might be 
involved. He is skilled in verbalizing the details of 
relationships, reducing complicated arrangements to 
writing,· and prodding the parties for an identification 
of potential circumstances that require advance treat
ment. Lawyers are accustomed to assimilate technical 
subject matter sufficiently to carry out their pro
fessional function, although some of them seem, up to 
now, to have felt that computer-communications 
technology is more complex than they are prepared for. 
This unfortunate state of mind is not IlIiiited to lawyers 
in the United States. A lecturer of the Faculty of Law 
of the University of Stockholden notes that in Sweden 
"suprisingly few lawyers work with and have gained 
insights into the legal technicalities of computer 
acquisition although the whole area is well suited for 
legal analysis and involvement.' '2 

The experienced contractual frictions adverted to 
above suggest that lawyers have not been involved in 
many computer transactions, expecially not lawyers 
versed in preventive law. Since the publicity on the 
recent lawsuits, it seems clear that lawyers will be 
called upon increasingly in that area. Under those 
circumstances, computer specialists will have an 
opportunity to achieve an interdisciplinary working 
relationship with lawyers in the contracting activity. 
That relationship will be most fruitful and most 
satisfying to computer specialists professionally if they 
identify their own role and fulfill it effectively. It might 
be helpful to consider the nature and scope of that role. 

Computer specialists must. take substantially full 
responsibility, frequently entirely on their own initia
tive, for identifying factual aspects that require 
treatment in negotiations and contract drafting. They 
must bring those aspects to light realistically, pointing 

out the genuine likelihoods that the identified situations 
will be encountered, the probable consequences if those 
situations are ignored, and the means for providing for 
them by contract. 

Computer specialists must interpret to lawyers the 
significance of the factual aspects they uncover. In 
that effort, they must insure that the lawyers gen
uinely understand their explanations. This function 
is fraught with special difficulty because of the tendency 
to use unique words in the computer area, many of 
them coined only recently and many of them not 
enjoying universally accepted meanings. 

Also, computer specialists must take considerable 
initiative in performing their function. They must 
identify points requiring treatment, frequently without 
clues or guidelines from the lawyers, and then they must 
persuade the lawyers, if necessary, that those points are 
important enough to be treated. They must devote 
the meticulous, time-consuming effort necessary to 
work up and state product or service and interface 
specifications, acceptance tests, and other detailed 
technical points. Only they can do those things. More
over, only by preparing and adopting full and clear 
specifications can both parties recognize fully what is 
expected and required to be delivered, depending on 
their points of view. All too much of contractual 
difficulties and misunderstandings stem directly from 
sloppiness in that respect and a failure to reach complete 
agreement on those fundamental matters. 

Computer specialists probably would get considerable 
useful guidance in identifying salient points to be 
covered by considering what they would want to know 
if they suddenly were given responsibilities, either as 
computer specialists or business managers, for a 
particular transaction, without any prior involvement 
with it. 

It might be helpful to examine a potential time
sharing relationship as a case in point. Assume that a 
multi-location commercial customer is considering 
buying recordkeeping, accounting, and other in
formation processing services from a supplier having 
data processing facilities located strategically over the 
country. Those services will include order processing, 
billing, inventory control, payment and financial re
porting. The user's primary contact with the supplier 
will be through the input-output terminals on its 
premises. The complete records will be kept in binary 
code. on disks in the supplier's system. The software 
will be prepared at the supplier's expense and will be 
used to serve other companies as well, some of which 
are competitors of the customer. What general points 
would a computer specialist alert the customer's 
lawyer to for treatment in the contract? He probably 



146 Fall Joint Computer Conference, 1970 

would include at least the following: 

1. Descriptions of the nature of the serVIces to 
be provided, along these lines: 
a. Specific types of outputs. to be provided, 

by the supplier, including precise formats 
and frequencies. 

b. Response and cycle times for various kinds 
of output. 

c. Permissible error rates in output. 
d. Permissible downtime for different kinds of 

services. 
2. Statements of important characteristics to be 

included in the system to be used, such as the 
following: 
a. Measures to prevent unauthorized disclosure 

of customer's information. 
b. Means for recording usage of services for 

billing purposes. 
3. The need for flexibility in satisfying the cus

tomer's unpredictable requirements for in
creased quantities and new types of services at 
reasonable prices. 

4. Some way to assure the customer of genuine 
freedom to seek another source of services when 
a switch is permissible contractually. 

5. Assurance that the customer will suffer minimal 
interruption even if a catastrophe strikes the 
computer facility that usually serves him. 

6. Protection against financial exposure in case of 
patent infringement. 

What detailed items would the computer specialist 
seek to have included pertinent to those general 
points? He would want, for example, to have exact 
output forms created in advance and appended as 
exhibits to the contract. He also would want the 
entire array of specific services that make up the ulti
mate service listed and described. They might include 
the furnishing and maintenance of terminals, the use of 
communications lines, training; the supplying of 
manuals, and software consultation, as well as the 
delivery of output papers that result from the pro
cessing of input supplied by the customer, the function 
on which most attention normally would be con
centrated. 

Why would the software specialist ask for treatment 
of some of the items included in the list? If the variety 
of system features intended to preserve privacy of 
customer data are specified, periodic system audits 
could be conducted to see whether they still are in use. 
The discovery of deficiencies by that measure hopefully 
would make it possible to prevent leaks by remedying 
their potential causes. Companies offer specialized 

services that include computer system security audits. 3 

Similarly, if charges are imposed based on usage of 
services as determined by the supplier's computer, it 
might be advisable to provide for periodic audits of that 
portion of the system. The writer's personal experience 
with a telephone company persuades him of the merits 
of such a precaution. * 

Hopefully, the customer's needs for the data pro
cessing services will increase. Since he is delegating 
responsibility for data processing activities to the 
supplier and is relinquishing his opportunity to see to 
it directly that those needs are filled, the customer 
must secure an open-ended commitment on the quantity 
of services he may call for. as time goes on. Procedures 
must be worked out to make it likely that the supplier 
can, in fact, fill those needs. These might include the 
furnishing to the supplier periodically. of information 
that would indicate the customer's expanding needs 
sufficiently in advance for the supplier to meet them. 
Arrangements for adding new data processing services 
at fair prices are essential, since data processing systems 
must be dynamic to provide new functions that become 
apparent to imaginative users. 

A critical factor is the need to make the customer 
truly independent of the supplier after afirm-com
mitment period of reasonable length and even during 
that period if the supplier falls down on his contractual 
obligations. Otherwise, the customer is placed at a 
serious disadvantage in bargaining for future prices and 
in forcing the supplier to live up to promises he has 
made. At the very least, the customer should arrange to 
receive a signal of the advisability of switching at the 
end of the initial period long enough in advance to work 
out the change in the source of data processing, possibly 
even to an in-house set up. Some consideration might 
be given to the feasibility of securing rights to use the 
supplier's software after termination of the supply 
contract, as a means of achieving that freedom. How
ever, that approach is a most complex one that must 
be examined extremely carefully from the points of view 
of economics and technical feasibility. 

Finally, means to avoid the adverse consequences 
of always potential catastrophes must be included. At 
the very least, frequent dumps of records for off
premises storage must be required and provisions must 
be made for recreation of the records from interim 
transaction. input source documents. Also, the avail
ability, on short notice, of back-up facilities and 
alternate communications means must be insured. 

* Many years ago, the writer's informal, personal challenges of 
the accuracy of a series of bills for telephone service based on the 
quantities of local calls made resulted in a substantial refund 
covering all charges for excess calls. 



Role of Computer Specialists inCohtracting for Computers 147 

These examples could be enlarged substantially. 
However, they should be sufficient to suggest the 
contributions the computer specialist will make. 

We have explored what the computer specialist can 
and should do in an interprofessional contracting 
effort. But his ability to contribute can be without 
value unless it is made available effectively. How 
should the computer specialist undertake to perform 
his function? Essential1y, he must develop a genuinely 
mutual relationship with the lawyer on the team. 
That requires that he both acquire an understanding 
of the legal role and interpret his own role to the 
lawyer. For the professional comfort of the people 
involved, each of them must make it clear in in
dividual situations that a true synergism exists between 
them and that neither will attempt to dominate the 
situation or otherwise place the other in a professionally 
unsatisfactory light. 

The computer specialist should inform the lawyer, 
where appropriate, of the desirability to the specialist 
of explanations of subtleties of legal phraseology. For 
example, it frequently would be instructive to be aware 
of the true significance of a stated "warranty against 
defects in materials or workmanship" when it is 
followed by language imposing time limitations on the 
customer's enjoyment of the "warranty" and partic
ularly that specifying what action the supplier is 
obligated to take when given timely notification of a 
claimed defect. 

He also might consider whether expressions the 
lawyer attempts to use to describe situations in the 
computer industry or technology have any real mean
ing. For example, he might encounter a statement 
such as "an on line, real time, teleprocessing environ
ment, as those terms are commonly accepted in the 
data processing industry." Do those terms really have 
a regularly accepted meaning anywhere? Is there 
actually something that might be called "the data 
processing industry' '? 

The computer specialist should furnish pertinent 
advice in that respect, as well as in others, to avoid 
the creation of pitfalls that can have serious adverse 
consequences in the future. It is easy to pass such 
errors by during the contracting process because they 
have no obvious adverse impact at that time. This 
aspect is reminiscent of the observation made to the 
writer by a man whose will was patently deficient in 
that it would deprive his heirs of substantial sums of 
money because of a failure to avoid unnecessary taxes. 
He blandly declared, "I've had this will for five years 
and it's been perfectly all right for me." 

The computer specialist also can perform a very 
useful function in many cases by stimulating the lawyer 
to look for unique legal exposure in the transaction. For 

exam.ple, it is important to take whatever precautions 
are possible to provide that the information itself 
stored in a time-sharing system, as distinguished from 
the records of that information that include relatively 
expensive media owned by the supplier, are the prop
erty of the customer and to prevent loss of that informa
tion to outsiders through legal process used to levy on 
the recording media or to secure information for 
litigation through so-called discovery procedures. 

In fulfilling his responsibilities to inform and guide 
the lawyer, the computer specialist must present his 
advice with scrupulous regard for professional niceties. 
Preferably, the advice should be given to the lawyer 
discreetly without providing any basis for embar
rassment. Of course, the computer specialist is entitled 
to no less courtesy and sho'uld insist upon receiving it. 

In fact, the interdisciplinary effort entails mutuality 
of such explanations, in both subject matter and 
manner of presentation. The lawyer should request 
and the computer specialist should supply graciousiy 
explanations of words and expressions stated in com
puterese. As a matter of practice, such inquiries by the 
lawyer provide useful tests of the meaningfulness of 
the mode of expression for the somewhat technical 
aspects of a contract. It is essential that substantially 
all of a written agreement, if not the entire agreement, 
be readily understandable by non-technical people. 
Frequently, such people have major roles in the 
performance of agreements. Those people might in
clude purchasing agents, contract administrators, 
and billing clerks, for example. And it is necesary to be 
prepared for the fortunately rare, but extremely 
linportant, occasion when an agreement ends up in 
court. There, understandability could be critical, and the 
understanding of technical material frequently experi
enced is at a relatively low level and is rarely aided by 
the awkward procedure provided for exploring the 
facts. As in other respects, if the lawyer does not 
question, on his own initiative, the meaningfulness 
of expressions on technical aspects, the computer 
specialist should test his understanding of them and 
remedy them if necessary. If the material is deficient in 
that regard, getting it by the lawyer is a false victory. 

A CHALLENGE AND AN OPPORTUNITY 

As this discussion indicates, poor contracting 
practices have created a general situation with serious 
adverse financial and other consequences for con
tracting parties in the computer area. The solution 
seems to involve the adoption of contracting techniques 
whose soundness has been demonstrated in other areas. 



148 Fall Joint Computer Conference, 1970 

Achieving that solution entails an interdisciplinary 
effort by computer specialists and lawyers, working as 
a team. That essential approach presents significant 
challenges to identify the distinct, complementary roles 
of the participants and to establish working relation
ships that are professionally mutually satisfactory. 

In undertaking to meet those challenges, computer 
specialists have great opportunities to expand not only 
their professional involvements but also their knowledge 
of the functioning of the legal process. 

It is hoped that computer specialists will take what
ever initiative is necessary to insure that they will 
be called upon to meet those challenges and enjoy 
those opportunities. Such initiative might include 
preparation for the role and demonstration of an ability 
to fulfill it. Undoubtedly, many lawyers will welcome 

Editor' 8 Note 

the opportunity to team up with computer specialists 
so qualified. 

REFERENCES 

1 R N FREED 
Get the computer system you want 
Harvard Bus Rev pp 99-108 Nov-Dec 1969 

2 P SEIPEL 
Introducing law students to computers: Swedish experiences 
Rutgers J of Computers and the Law Vol 1970 Spring 
pp 88-93 

3 B ALLEN 
Danger ahead: Safeguard your computer 
Harvard Bus Rev pp 97-101 Nov-Dec 1968 

4 J J WASSERMAN 
Plugging the leaks in computer security 
Harvard Bus Rev pp 119-129 Sept-Oct 1969 

Pages 149 through 158 have been deleted from this volume. 



Pages 149 - 158 deleted from volume 



Selected R&D requirements in the computer 
and information sciences* 

by M. E. STEVENS 

National Bureau of Standards 
Washington, D. C. 

INTRODUCTION 

Under the provisions of the Brooks Bill, PL 89-306, 
enacted in 1966, the Center for Computer Sciences 
and Technology of the National Bureau of Standards 
has been authorized to sponsor and to conduct research 
and development work in the computer and informa
tion sciences and technologies, especially where the 
problems are unique to Government or where the 
results are likely to have wide applicability in Govern
ment operations. In addition the CCST attempts to: 
(1) maintain awareness of advances in the field of 
automatic data processing and related sciences and 
technologies (a truly broad interdisciplinary spectrum); 
(2) disseminate information on advanced developments, 
especially with a view toward the cross-fertilization 
of ideas, and, (3) identify areas where breakthroughs, 
either theoretical or pragmatic, are needed in order 
to achieve more effective or efficient use of ADP tech
niques or in order to anticipate future requirements 
for standardization efforts. 

In this context, a first and necessary approach to 
R&D requirements analysis is the apparently obvious, 
(but often neglected) one of fact-finding. As a cliche 
has it, we must find, fix, focus, and face the facts. To 
find, fix, and focus the facts, the CCST has been en
gaged over the past several years in selective reviews 
of the literature in the computer and information 
sciences and technologies, and in related fields, for 
the purpose of identifying areas of continuing R&D 
concern. A series of reports, resulting from such re
views, is in process of preparation and pubHcation. 

To date, the first three volumes of NBS Monograph 
113, Research and Development in the Computer and 
Information Sciences, have been issued. They cover, 
respectively, information acquisition, sensing, and 
input (Volume 1); information processing, storage, 

* Contribution of the National Bureau of Standards 

159 

and output (Volume 2), and overall system design 
considerations (Volume 3), including, for example, 
requirements and resources analyses in network plan
ning, software/hardware requirements, and advances 
in hardware technologies. 

Further reports in the series are planned to include 
such topics as the maintenance of the integrity of 
privileged files, the domain of information selection, 
storage and retrieval (ISSR) research, ISSR and li
brary automation system development requirements, 
natural language processing, and problems of system 
evaluation. In effect, the present paper presents a 
preview, an overview, and a summary of the projected 
series of reports, prepared in advance of the comple:... 
tion of several proposed further volumes. 

The difficulties of undertaking such tasks of re.,. 
viewing and reportage should be obvious. The scope 
and the spectrum of areas of concern range quite 
literally from A to Z-automata theory to zero-cross
ings in speech recognition, automatic abstracting to 
Zip codes, and AbeHan groups to Zipf's Law, for ex
ample. 

Marvin Minsky's "Steps Toward Artificial Intelli
gence"! was a Renaissance-Man's approach to pattern 
recognition, language processing, question-answering 
and machine-aided inference, CAl (Computer As
sisted Instruction) and CAD (Comput.er Aided Design) 
and CAC (Computer Assisted· Classification). But 
what of adaptive modems, computer generation of 
kinoform representations of three-dimensional objects 
(some of which may be purely conceptual), photo
chromic or thermoplastic data storage, laser pipes 
for communication systems, large-scale display screens 
with half-tone or color capabilities? What of the auto
matic segmentation of very large and complex computer 
programs? What of the behavioral effectiveness of 
men in the man-machine interactive situation? It is 
obvious, therefore, that the authors of the review
series reports (and the author of the present advanced 



160 Fall Joint Computer Conference, 1970 

summary paper in particular) will be Jacks-of -all
trades, and masters of none. 

As Punchard2 points out with considerable cogency, 
no one, in 1939, could have predicted the invention 
of the transistor (1948) and certainly not the first steps 
of man upon the moon in 1969, which could not have 
been achieved with vacuum-tube technology. Who, 
then, would be rash enough to guess the inventions 
and innovations likely to occur in the next 30 years, 
from 1970 to 1999 (assuming, of course, that man will 
be able to adequately control his societal relationships, 
his environment, and his machines)? 

Nevertheless, in terms of R&D requirements that 
can be immediately foreseen, certain trends would 
appear to be indicative of probable early progress 
and accomplishment. Among them are the following: 

• First, there is increasing recognition that we 
are faced with what Warren Weaver, as early 
as 1948,3 called "the problems of organized 
complexity" . 

• Second, a critical emphasis is beginning to 
emerge upon the man in man-machine rela
tionships, including not only behavioral ques
tions but (even more importantly) problems 
of the enhancement of individual creativity 
and of the protection of individual privacy. 

• Third, data compaction and redundancy re
duction requirements are beginning to be recog
nized in all fields of information processing and 
teleprocessing, from remote data collection by 
means of automatic sensors to the systematic 
purging of libraries and files. Filtering of tele
metered data, for example, is crucial to effec
tive analysis and interpretation. Image en
hancement in pattern recognition, reduction 
of synonymity in natural language processing, 
and data compression in speech or pictorial 
data transmission are other prime examples. 

• Fourth, there isa growing convergence of 
cross-disciplinary efforts in a number of signifi
cant problem areas. 

A common attribute of the typical problem areas 
is that of steadily increasing complexity-:;tdvanced 
hardware in processor and system design requiring new 
and unprecedented programming techniques to take 
full advantage of parallel processing, associative mem
ory access and organization, and multiprogrammed 
system control, for example. Further, it is becoming 
increasingly difficult to isolate and insulate communi
cation and computing functions in the emerging tele
processing networks. It will be increasingly necessary 

to deal effectively with hierarchies of language, hier
archies of storage devices, and hierarchies of systems. 
The challenges of communication at all levels- man 
to man, man to· machine, and machine to machine
demand our. ~immediate and committed attention as 
interdisciplinary specialists now, and for the fore
seeable future. 

The state of the art and the state of the practice of 
the computer and information sciences and technologies 
pose enormous and virtually unprecedented chal
lenges for the Seventies, and beyond. These challenges 
are truly interdisciplinary. They are indeed the prob
lems of organized complexity. They intimately and 
interdependently involve major problems of both 
systems and society. 

Facing these facts involves the recognition that, 
as of the beginnings of the Seventies, we are giving 
Topsy (who "just growed") the initiative. Many, 
many interests (from suppliers to users) are primarily 
concerned with the status-quo-ante-bellum, yet many 
developments with the most serious socio-economic 
implications are, in fact, on-going. In many fields, 
technological developments often outstrip requisite 
social awareness and control. In our field of the com
puter and information sciences, the question of social 
responsibilities should be, but seldom is, of vital con
cern to all of us. 

SOME REQUIREMENTS IN TERMS OF 
GENERALIZED INFORMATION 
PROCESSING AND TELEPROCESSING 
FUNCTIONS 

Considering first a generalized information pro
cessing system, we see in Figure 1 the functional areas 
in which R&D requirements arise. With respect to 
Box 1, for example, we can identify more specific 
requirements as shown in Figure 2. Similarly, some 
of the areas of R&D concern for Boxes 2 and 3 are 
shown in Figure 3. 

rt is impossible in a short summary, of course, to do 
more than to sample, often quite randomly, a few of 
the R&D· implications shown. For example, we may 
merely note that image enhancement operations in 
pattern recognition (such as stroke thinning, contrast 
enhancement, and noise elimination) are complemented 
in the case of natural language processing by KWIC
indexing "stoplists" and by synonym reduction and 
homograph resolution. 

However, certain illustrative trends towards future 
development, improvement, and exploitation require
ments may be emphasized. First, with respect to in
formation acquisition, sensing, and input, the fol-



I 
I 
I 

I 

r--, 
I I 
I I 

,---'---....... ., I 

I 
I 
J 

I 
--i 

I 
I 
I -, 

: I I L------ ________ ~ ______________ J 

Legend: 

Figure 1 

process flow 

feedback flow 

lowing major areas of concern are indicated: 

• Data filtering, compaction, and compression
in general, the reduction of redundancy, but 
with reserve capability for, reproduction or 
regeneration of reasonable facsimiles as re
quired, 

• Teleprocessing networks-their design, imple
mentation, use, and regulation as necessary, 

• Advanced communications techniques-further 
development of CATV, domestic satellite net
works, laser pipes, 

• More versatile, efficient, and economical OCR
especially with respect to open-ended character 
sets, exotic alphabets, true page reading, graphic
symbol recognition, two- and three- dimensional 
graphic inputs and identifications, and 

• Audio inputs, including speaker identification 
and speech recognition. 

Secondly, with respect to pattern recognition gen
erally, continuing empirical and theoretical develop-

Selected R&D Requirements 161 

ments will be required in such areas as the following: 

• Determination of membership in classes es
pecially in the case of non-linearly separable 
functions, 

• Recognition of cursive handwriting, continuous 
and intonated speech, and fingerprints, 

• Scene analysis, and 
• Automatic categorization and classification, in 

general, including text in the case of automatic 
subject content analysis. 

Communications system challenges include: global 
facsimile transmission, automatic international tele
phone and data transmission networks, and the ex
tension and practical application of optical data trans
mission techniques (for example, as of today, lasers 
are useful primarily at the opposite ends of the distance 
spectrum-that is, for only a few miles or for millions 
of miles4). Other communications hardware require
ments have been predicted for much higher speeds 
of switching and signaling systems, for high-velocity 
four-wire transmission facilities, for common controls 
in switching systems, and for equipment capable of 
handling different bandwidths.5 

1. Information 

I 
I 
I 

Acquisition 

I Physical and 

I Envi'romnental 

I Conditions 
I 
I 
I 
I 
I 
I 
~ Availability 

: ConSiderations 

I 
I 
I 
I 
I t- Data capture 

I and collection 

I 
I 
I 
I 
__ Data 

transmission 

Areas of Continuing Concern 

1 

Physical measurements 

Simulation 

Remote access instrumentation 

Statistical sampling 

Resource analysis 

Market analysis 

Intelligence evaluation 

Improved c{)mmunication techniques 

Improved dissemination techniques 

Requirements analysis 

i 

Improved sensor capabilities 

Sensor selectivity and filtering 

Detection requirements analysis 

Quality control of source data organization 

Feedback-controlled re -scanning 

) 
Improve.d transmission facilities 

Error detectiop and correction 

Improved data filtering and compression 

Figure 2 



162 Fall Joint Computer Conference, 1970 

z. Information Sensing _-, 
and Input 

I 
(Feedback I 
control of I 
threshold ..-+ 
settings) I 

I 
I 
I 

3. Pre-processing ___ J 
Operations 

AREAS OF CONCERN: 

Audio and graphic input 

Pattern recognition 

Speech recognition 

Text processing 

Executive and monitor programs 

Remote inquiry stations 

Criterial feature extraction 

Image enhancement 

Information enhancement 

Error detection 

Error correction 

Graphical manipulation languages 

Figure 3 

Even more importantly, it is to be noted that: 
"The introduction of Data Communications to an 
established data processing operation is an essentially 
revolutionary development: it changes the lives of 
everyone concerned. I t places new demands on the 
manager, the systems analyst, the programmer, and 
the computer operator, and presents them with a 
new set of problems."6 

In particular, the problem of man-machine inter
facings, in terms of various levels of terminal design, 
user-oriented languages, human- engineering, and be
havioral or attitudinal factors deserve intensive and 
continuing attention. Terminal keyboards, text-editing 
facilities, graphical communication devices, and other 
services or facilities should not only be easy to use, but 
easy to learn how to use. 

Considering next the information processing and 
storage functions of Figure 1, we note in Figure 4 some 
of the R&D requirements affecting these operations. 
For example, in the area of processing -system plan
ning and management, we must learn more about 
realistic needs for modularity, replication, and recon
figuration of system and network components; for 
system self-checking and self-repair, and for on-line 
diagnosis and instrumentation. Then, as problems and 
needs are defined, the appropriate R&D efforts must 
be undertaken. 

Can the techniques of input-output economics be 
applied to systems design of information processing 
and information utilization operations? If so, as Tell 
suggests, a measure comparable to dollar value for 
the effectiveness of information flow must yet be 
developed. 7 

Requirements for handling a variety of input and 
output modalities and for processing more than one 
I/O channel simultaneously clearly indicate the need 
for continuing R&D efforts in parallel processing, 
multi-access scheduling, and multiprogramming, as 
well as in the sensing and display techniques as such. 

Priority scheduling, dynamic allocation and real
location of system and network resources, and pro
tection of access to only authroized users, are all 
problems presenting relatively unprecedented chal
lenges not only to the technologies but to the under
lying sciences as well. 

On the theoretical. side, we note that advances in 
automata theory may provide means for the realiza
tion of desired matching functions in hardware with 
minimal component requirements; that iterative cir
cuit computer designs (such as Holland machines8), 

might be effectively applied to problems of pattern 
detection and identification, and that "an important 
goal of automata theory is a basic understanding of 
the computational process for various classes of prob
lems. The theory must go beyond the notion of compu
tation and how that difficulty is related to the organi
zation of the machine that performs the computation."9 

Other examples of R&D requirements affecting 
Figure 4 include the following: 

• Logical design for effective utilization of large 
interconnected circuit arrays,10 . 

• Multivalued logic systems permitting more 
effective use of advanced opto-electronic ele
ments,ll 

• More flexible pagination mechanisms, especially 
for graphical data processing, 

• Design and use of multilevel storage systems, 
• Maintaining file integrity, from the protection 

of privileged information to the provision of 
adequate roll-back and recovery procedures in 
the case both of minor failures and also of catas
trophes, 

• More effective on-line debugging, diagnostic, 
and instrumentation techniques, and 

• More accurate and more sophisticated simula
tion models. 

Next, typical R&D requirements with respect to 
output are shown in Figure 5. Some specific questions 
of concern are as follows: How adequate are remote 
console and keyboard designs? What about large-scale, 
high-resolution displays for group viewing? How im
portant is color or three-dimensional projection or 
highlighting of selected features of a display? These 
and related questions raise R&D questions of both 
hardware and human engineering. 



Figure 4 

It will have been noted that certain rather obvious 
and important areas of research and development 
have been omitted from Figures 1-5. They are con
sidered to be of broader applicability, affecting more 
than one Box or function. Volume 3 of our series, there
fore, separately reviews such overall design considera
tions as requirements and resources analysis; problems 
of system networking; input/output, terminal design, 
and characters sets; advanced software; advanced 
hardware, and debugging, on-line diagnosis and simu
lation. Here, we will consider for examples of pertinent 
R&D problems only the areas of programming and 
advanced hardware technology. 

Continuing R&D concerns in the area of program
ming languages represent several conflicting require
ments. On the one hand, there is recognizable need for 
common-purpose languages that will be compatible 
with a wide variety of systems and types of applica
tions; on the other hand, there are needs for hier
archies of language systems. In addition, a number of 
specialized requirements exist for new and more ver
satile languages,geared to the user who is relatively 
unfamiliar with computer systems, especially in such 
areas as on-line problem-solving and graphical data 
processing. 

For example, Newman points to "the difficulty of 
specifying new graphic techniques using the available 
programming languages" 12 and Sutherland states: 
"The lack of precise ways to formulate and represent 
graphical language fundamentals impedes the use of 
graphical techniques in many problem areas."13 Direct 
input and manipulation of two- and three-dimensional 
graphic data is of major interest in terms of machine
aided design (architecture, automotive styling, high-

Selected R&D Requirements 163 

way engineering, and ship design, among many ex
amples) and pattern recognition (including the auto
matic analysis and interpretation of ecological, agri
cultural, geological, and other "patterns). 

Another R&D need indicated in the literature is 
that of automatic segmentation of very large pro
grams.14 Agaifl, a challenge posed by Burge in 1966 
appears as fully pertinent today, namely: "Can we 
get a computer program to scan a library of programs, 
detect common parts or patterns, extract them, and 
re-program the library so that these common parts 
are shared?"15 

Typically, the spectrum of available and desired 
programming languages ranges from a wide variety 
of relatively natural, but constrained, conversational 
uses of remote consoles interacting with processor 
centers to highly sophisticated executive control, ' 
monitoring, and simulation languages. More and more 
complexity is being required in executive, control, 
and protection programs, while at the same time 
typical users are less and less likely to have had pro
gramming or computer training. 

Continuing progress (as Perlis noted in the first 
ACM Turing Lecture) will depend upon the balances 
to be achieved "between efficiency and generality" .16 

Finally, we note that: "Work on programming lan
guages will continue to provide a basis for studies on 
languages, on the concept of grammar, on the relation 
between actions, objects and words .... "17 

Hardware areas of R&D concern include, first, the 
increasing interdependence of hardware and software 
and the emergence of "firmware" (or wired-in micro
programming).18 Next, there are advanced technolo
gies (opto-electronics, holography, laser technology, 
photochromics, large-scale integration, or LSI, and 

Reactive outputs 
and display 

Machine-aided 

Figure 5 

13. Post 
Processing 
Operations Formatting 

Transliteration 
Translation 
Consolidation 

Advanced Printp,g 
deve lopm ents 
Photocomposition 
and Character 
generation 

Hard copy and 
facsimile 
reproduction 
Multiple output 
modes 



164 Fall.Joint Computer Conference, 1970 

the like) for such applications as the foHowing: 

<. Interconnection problems in integrated circuit 
design, aggrav~ted by the advent of LSI,19 

• High-density, multi~bit data storage, including 
color-coding of a single "bit" position in ad
vanced storage <media, 20 

• Efficient recording and regeneration of three
dimensional and color images, and 

• Improved design of scanning and image en.:. 
hancement techniques. 

Some more specific examples are as follows: 

• Laser beam recording does not require a vacuum, 
by contrast with electron beam recording, which 
does. However, for many applications, there 
appear to be continuing problems with laser 
deflection techniques.21 22 

• "At today's pace of innovation, holography may 
be outmoded before it approaches being prac
tical. One of the latest competitors for 3-D 
display, storage, and wave conversion applica
tions is the kinoform".23 More particularly, 
"the kinoform is a new, computer-generated, 
wavefront reconstruction device which, like the 
hologram, provides the display of a three-di-
mensional image. In contrast, however, the 
illuminated kinoform yields a single diffraction 
order and, ideally, all the incident light is used 
to reconstruct this one image" . 24 

• LSI permits the wiring-in of "spares" on the 
same wafer, so that diagnostic logic and special 
programs can be used to effect self-repair ;25 
further, advances in LSI should make associa
tive memories of reasonable size practical. 28 

• "Photochromic high-resolution films coupled 
with proper light sources and optical systems 
can provide the storage of millions of bits to the 
square inch. A micro-holographic indexing 
system used with such storage devices may 
revolutionize data storage and retrieval" . 27 

A final illustrative area of hardware R&D concern 
is that of storage developments both with respect to 
high speed main memories and also with respect to 
very large storage capacities. Little more than a year 
ago, the race for increased speed was in terms of nano
seconds, but today we are beginning to talk of pico
seconds (trillionths of a second).28 

There have been numerous predictions in the past 
as to the skyscraper proportions of the equipment 
that would be required to store all the information 

contained in the collections of the Library of CongresQ 

or the U.S. Patent Office. These proportions are rapidly 
shrinking, with data cells, ultrafiche, and other ad
vanced technologies, and they will become entirely 
outmoded if planned research in molecular storage can 
be brought to fruition. However, the greater problem 
is: how can men organize the information to be placed 
in such vast machine stores so that it can be effectively 
manipulated, correlated, selected, and retrieved? 

The growing interdependence of systems and society 
demands the symbiosis of men and machines ;29 but 
with a far greater emphasis upon the man (as trans
mitter, receiver, editor or monitor, guardian, pub
lisher, and user of machine-processed information) 
than has prevailed up to now. Thus we may preview 
other reports in the R&D requirements series primarily 
in terms of communication problems: man-with-ma
chine, machine-with-machine, and man-with-man. 

COMMUNICATION PROBLEM AREAS 

Three major communication problem areas that 
involve computer and information sciences research and 
that emphasize the man in man-machine relationships 
can be identified as foHows: 

• The human factor problems in system planning, 
use, and evaluation, 

• The "man-machine communication gap. . . the 
greatest obstacle to the wider enjoyment of the 
services of the computer" ,30 and 

• Man-to-man communication as aided by ma
chine, especially with respect to the improved 
utilization of recorded knowledge. 

An important approach to the determination of R&D 
requirements in the computer and information sciences 
is the identification of handicaps currently being en
countered in reductions-to-practice. The first and most 
obvious problem is that of problem definition itself. 
In particular, the area of requirements analysis in 
system design and system planning presents many 
current difficulties. While the introduction of informa
tion processing techniques has not changed the kind 
of fact-finding, analysis, forecasting, and evaluation 
operations required, it has changed the degree of the 
efforts required. 

Yet with respect to such critical factors as user be
havior, user reactions, and especially user effective
ness, there is very little objective data available. 
Similarly, with respect to questions of loadings of 
teleprocessing networks new methodologies of require
ments and resources analysis are needed, and better 



communication between the potential users of systems 
and the systems designer must be developed. 31 

The handicap of handicaps is that, in general, we 
do not know enough about human behavior. What is 
available, or what can be developed, with respect to 
user-need and market analyses? The airlines, with 
operational teleprocessing networks today, can keep 
their operations effective because their markets are 
constrained and therefore their typical user require
ments can be forecast with reasonable accuracy. So, 
too, with command and control systems within a 
specific area of defense responsibility. The case is not 
so, however, with commerical time-sharing services 
in general (although some such services may be offered 
only for restricted types of applications such as banking 
tansactions) and certainly not for nationwide (and 
even international) information acquisition, announce
ment, dissemination, and retrieval services. 

Why should behavioral research with respect to man
machine interactions be required in the planning and 
design of advanced information processing and tele
processing systems? Many problems of unknown hu
man behavioral factors in the design, use, and evalua
tion of such systems have, in effect, been "swept
under-the-rug"-perhaps because of the very obvious 
difficulties of fact-finding, and undoubtedly because of 
the even more obvious difficulties of arriving at effective 
and valid· solutions. 

Some specific examples of R&D requirements cited 
in the literature are as follows: 

• "The crucial regions for research and develop
ment seem to lie on both sides of the literal 
interface" .32 

• "Very little is known about individual per
formance differences, user learning, and human 
decision-making, the key elements underlying 
the general behavioral dynamics of man-com
puter communications". 33 

• "Human errors and the education of human 
beings are, therefore, two systems design factors 
which must receive significant attention" .34 

• "Quite often the most important parameter in 
a system's performance is the behavior of the 
average user. This information is very rarely 
known in advance ... "35 

Other critical factors largely neglected both in 
system design and in system use are the questions of 
the accuracy and reliability of the content of the in
formation in the system. Thus, the development of 
improved reliability indicators and automatic inference 
techniques should be of serious R&D concern.36 

Selected R&D Requirements 165 

Another type of handicap indicative of continuing 
R&D requirements with respect to communication 
problem areas is that of current lack of compatibility 
and convertibility between systems and between 
system components, in the sense that we need con
vertibility by means of interface equipment and pro
cedures, compatibility at least to the extent of con
ventions for interchange and common practices, and 
standardization wherever feasible. Voluntary American 
National Standards· already exist for various infor
mation-interchange requirements, including biblio
graphic reference data formats on magnetic tape and 
ASCII, the American Standard Code for Information 
Interchange, but much more work is needed on ex
tended character sets and on transparent-mode pro
cedures, and these are only the beginnings of the ma
chine-to-machine communication problems. 

By contrast, however, it may be said that not even 
the beginnings have been made on the problems of 
man-machine communications. In particular, a major 
goal of on-line responsiveness and interactive feed
back is to "free the man-machine interface from the 
need for letter-perfect information representation by 
the man" . 37 

The problems are aggravated by the plethora of time
sharing languages ("the number of time-sharing in
stallations is roughly equal to the number of languages 
offered among them';38); by the "glaring experimental 
lag" in systematic studies of man-machine communi
cation techniques and procedures33, and by recognition 
that: "The potentials of information systems that 
adapt to the user's response patterns are yet to be 
realized ... [and] "we have been ... humbled and chal
lenged by our ignorance of how a dialogue should be 
structured, how we should mold the machine to fit 
the man" . 39 

Three years ago, J. C. R. Licklider pointed out that 
the real difficulties of networking for teleprocessing 
purposes are not likely to be problems of hardware 
but rather that they will be predominantly those 
of " ... social and software organization, of conventions, 
formats, and standards, of programming, interaction, 
and communication languages" .29 

Beyond the individual man-machine communica
tion problems are those of society (men-at-Iarge) and 
machine interactions. The protection of privileged 
information is the most obvious example of the socio
political problem. How far should the machine pos
sibilities for rapid data accumulation, correlation, 
analysis, and summation (of vital importance to na
tional, regional, and local planning, to law enforce
ment, to nationwide services in medical care, to public 
welfare programs) be allowed to proceed at the expense 
of some loss of personal privacy? What penalties (pro-



166 Fall Joint Computer Conference, 1970 

fessional, social, legislative, juridical) are to be im
posed, and what sanctions incurred, for abuses? 

Requirements for extensive training and retraining40 

of potential users (scientists, engineers, and practi
tioners in a wide variety of professional fields; execu
tives, managers, legislators, judges; businessmen and 
insurance men and bankers; computer programmers, 
scholars and students, and perhaps even housewives) 
for effective use of man-machine facilities raise the even 
more important, and more difficult, problems of man
to-man communications, especially as they may be 
machine-assisted. 

In terms of general-purpose network planning (and 
one man-machine combination to another man-ma
chine interaction in particular), we are faced with 
"the vast possibilities and intricacies of direct human 
communication".41 More generally, we may note the 
importance of oral communications, especially in the 
sense of the "Invisible College". 42 

However, much of the thrust of R&D requirements 
in the computer and information sciences is toward 
effective utilization of recorded knowledge, and, par
ticularly, the efficient handling of reported scientific 
and technical information. 

In a technological sense, the device that launched the 
first major revolution in communication and docu
mentation since the invention of written alphabets, 
the printing press, is today obsolete. Increasingly, 
techniques of photocomposition and electronic genera
tion of characters and other graphic symbols are re
placing those of movable-type. The more cogent 
question, however, is: will the printing press and its 
latter day equivalents become obsolete in the societal 
sense? Has the book had its day; will scientific and 
technical journals fade away? Will libraries, as we 
know them be no more? 

As of the beginnings of the '70s, printing and paper 
are still with us, and this is likely to continue to be the 

I 

case for some time to come. Nevertheless, new tech-
niques are revolutionizing our traditional methods 
of preparation, publication, and dissemination of 
recorded information: Machine-assjsted editing, com
puter-generated preparation of camera-ready copy or 
direct output to microform, publication in microfiche 
form, mechanized indexing and selective dissemination, 
and on-line text search together portend a second major 
revolution in communication and documentation. 

There has been no one Gutenburg (or his Chinese 
predecessor); instead, there have been a number of 
interdisciplinary contributions. In the review-series 
reports not yet completed, we have stressed ISSR, 
natural language processing, and machine-aided in
ference, as in question-answering systems or "cogni
tive economy" . 43 

The contributions of the computer sciences to the 
more traditional library and information sciences lie 
in such areas as the following: 

• The automation of the production cycle, from 
author to typesetter to user, often via selective 
dissemination systems, 

• The development and utilization of machine 
systems for information selection, storage, and 
retrieval, 

• The design and implementation of telepro
cessing networks for the interchange and co
operative processing of bibliographic informa
tion, including the effective use of facsimile 
transmission, 

• The continuing advancement of storage tech
niques and media, both graphic and digital, 
including not only increasing capacities at 
steadily decreasing costs b\1t also the develop
ment of high-order-relational schemes of as
sociation, selection, and recall, 

• The further development of natural language 
processing techniques, with emphasis upon 
moving from syntactics to semantics, from 
context dependency to context expectancy, 
from extraction to abstraction, and 

• The advancement and exploitation of question
answering, error-detection and consistency
checking, and decision-making capabilities of 
machines. 

However, our knowledge of the principles and mech
anisms of information transfer in man-with-man 
communications has remained discouragingly primi
tive by comparison to the mastery of technologies for 
information handling (meaningful communication as 
opposed to mere transportation or transmission). 

Natural language processing requirements arise 
both in the handling of scientific and technical. infor
mation (machine-compiled and machine-generated in
dexes; information search and retrieval as in the case 
of the legal literature for example) and man-machine 
dialog situations (CAl, question-answering systems). 
On-line searching of subject-content-indicators, other 
selection criteria and full text (simultaneously, if 
desired) is already practically realizable, and, by the 
beginnings of the '70s, respectably large and diversified 
data bases are beginning to become available on a 
commerical service basis. We need, however, to ex
periment (as Salton44 has on a test-basis) with varying 
search strategies and with the identification of the very 
real problems of synonymity, multiple meanings of a 
given character string, and noise (such as garbles on 
input). Such R&D efforts may provide us with sensible 



clues to the solutions of problems of misspelled, mis
leading, and even missing data. 

The major handicap in the area of natural language 
processing, nevertheless, remains the lack of adequate 
R&D efforts in semantics, upon which rock the initially 
promising MT efforts have nearly all floundered. Only 
the mere beginnings have been made, for example, in 
the use of contextual information for homograph resolu
tion. 

The use of contextual information for error detection 
and correction can hardly be overemphasized, whether 
it is for OCR input, misspelled or mispronounced names 
(both people and pharamaceuticals), or the recovery 
of an encrypted message garbled in transmission. Con
text expectancy, rather than merely context dependency, 
is a likely clue to improved techniques of automatic 
syntactic analysis, classification or indexing by com
puter, and pattern recognition generally. 

Many R&D challenges remain in these areas, from 
the specific (in automatic categorization or statistical 
association, for example, there are severe problems of 
matrix manipulations when the collections of data or 
objects are realistically large) to the truly fundamen
tal-the problems of human perception, learning, 
concept formation, knowledge, and communication, 
as such. 

The proper study of mankind, even in an age of 
accelerating machine sophistication, is man. Thus, for 
the long-range, the social scientists, the psychologist, 
and the epistemologist are likely to play increasingly 
crucial roles in the basic computer and information 
sciences. What we know, how we know, and how ma
chines can help us know, are likely to be the themes 
for AFIPS conferences in the '80s. Hopefully, for 
science, for systems, and for society, the truth shall 
make and keep us free. 

REFERENCES 

1 M MINSKY 
Steps towards artificial intelligence 
Proc IRE 49 No 1 pp 8-30 Jan 1961 

2 J C R PUNCHARD 
What's ahead in communications 
IEEE Spectrum 7 No 1 pp 51-54 Jan 1970 

3 W WEAVER 
Science and complexity 
Amer Scientist 36 pp 536-544 Oct 1948 

4 J VOLLMER 
Applied lasers 
IEEE Spectrum 4 pp 66-70 June 1967 

5 T B WESTFALL 
Global cables and satellite communication 
IEEE Spectrum 3 No 10 pp 64-66 Oct 1966 

6 G O'TOOLE 
Preparing for data communications 
Computers & Automation 18 No 5 pp 33-35 May 1969 

Selected R&D Requirements 167 

7 B V TELL 
A uditing procedures Jor information retrieval systems 
Proc 1965 Congress FID 31st Meeting and Congress Vol II 
Washington D C Oct 7-161965 pp 119-124 Spartan Books 
Washington D C 1966 

8 J HOLLAND 
A universal computer capable of executing an arbitrary 
number of sub-programs simultaneously 
Proc Eastern Joint Computer Conf Vol 16 Boston Mass 
Dec 1-3 1959 pp 108-113 Pub by Eastern Joint Computer 
Conf 1959 

9 J HARTMANIS P M LEWIS lIRE STEARNS 
Classifications of computations by time and memory 
requirements 
Information processing 1965 Proc IFIP Congress 65 Vol 1 
New York NY May 24-291965 Ed W A Kalenich pp 31-35 
Spartan Books Washington D C 1965 

10 L C HOBBS 
The impact of hardware in the 1970's 
Datamation 12 No 3 pp 36-44 Mar 1966 

11 E M RING H L FOX L C CLAPP 
A quantum optical phenomenon: implications for logic 
Optical and electro-optical information processing 
Ed J R Tippett et al pp 31-43 MIT Press Cambridge 
Mass 1965 

12 W M NEWMAN 
A system for interactive graphical programming 
AFIPS Proc Spring Joint Computer Conf Vol 32 Atlantic 
City N J Apr 30-May 2 1968 pp 47-54 Thompson Book Co 
Washington D C 1968 

13 W R SUTHERLAND 
Language structure and graphical man-machine 
communication 
Information System Science and Technology Papers pre
pared for the Third Cong Scheduled for Nov 21-22 1966 
Ed D E Walker pp 29-31 Thompson Book bo 
Washington D C 1967 

14 M N PERRY 
Handling very large programs 
Information Processing 1965 Proc IFIP Congress 65 Vol 1 
New York NY May 24-291965 Ed W A Kalenich 
pp 243-247 Spartan Books Washington D C 1965 

15 W H BURGE 
A reprogramming machine 
Commun ACM 9 No 2 pp 60-66 Feb 1966 

16 A J PERLIS 
The synthesis of algorithmic systems 
Proc 21st National Conf ACM Los Angeles Calif Aug 
30-Sept 1 1966 pp 1-6 Thompson Book Co Washington 
D C 1966 Also in JACM 14 No 1 pp 1-9 Jan 1967 

17 A CARACCIOLO DI FORINO 
Special programming languages 
Centro Studi Calcolatrici Elettroniche 21 p Universita di 
Pisa Italy 1965 

18 A OPLER 
New directions in software 1960-1966 
Proc IEEE 54 1757-1763 Dec 1966 

19 B R SHAH K L KONNERTH 
Optical interconnections in computers 
1968 WESCON Technical Papers 16/5 Aug 1968 6 p 

20 A FLEISHER P PENGELLY J REYNOLDS 
R SCHOOLS G SINCERBOX 
An optically accessed memory using the Lippman process for 
information storage 



168 Fall Joint Computer Conference, 1970 

Optical and electro-optical information processing Ed 
J R Tippett et al pp 1-30,MIT Press Cambridge Mass 1965 

21 L C HOBBS 
Display applications and technology 
Proc IEEE 54 pp 1870-1884 Dec 1966 

22 W A GROSS 
Information storage and retrieval, a state-of-the-art report 
Ampex READOUT special issue 9 p Ampex Corp Redwood 
City Calif 1967 

23 Datamation 15 No 5 131 May 1969 
24 L B LESEM P M HIRSCH J A JORDAN JR 

The kinoform: a new wavefront reconstruction device 
IBM J Res & Dev 13 No 2 pp 150-155 Mar 1969 

25 E C JOSEPH 
Computers: trends toward the future 
Proc IFIP Congress 68 Edinburgh Scotland Aug 5-10 1968 
Vol 1 invited papers pp 145-157 North Holland Pub Co 
Amsterdam 1968 

26 R F GRAHAM 
Semiconductor memories; evolution or revolution 
Datamation 15 No 6 pp 99-101 June 1969 

27 Rand D for tomorrow's computers 
Data Systems pp 52-53 Mar 1969 

28 Datamation 15 No 4193 Apr 1969 
29 J C R LICKLIDER 

Interactive information processing 
Computer and information sciences II Proc 2nd Symp on 
Computer and Information Sciences Columbus Ohio Aug 
22-241966 Ed J T Tou pp 1-13 Academic Press New York 
1967 

30 M HALPERN 
The case for natural-language programming 
AFIPS Proc Fall Joint Computer Conf Vol 29 San 
Francisco Calif Nov 7-10 1966 pp 639-649 Spartan Books 
Washington D C 1966 

31 L C CLAPP 
Some brainware problems in information systems and 
operations analysis 
Information System Science and Technology 
Papers prepared for the Third Cong scheduled for 
Nov 21-22 1966 Ed D E Walker pp 3-6 Thompson Book 
Co Washington D C 1967 

32 J C R LICKLIDER 
Man-computer interaction in information systems 
Toward a national information system Second Annual 
National Colloquium on Information Retrieval Philadelphia 
Pa Apr 23-24 1965 Ed M Rubinoff pp 63-75 Spartan Books 
Washington D C 1965 

33 H SACKMAN 
Current methodological research 
Position paper for sessions on managing the economics of 
computer programming Proc 23rd National Conf ACM 
Las Vegas Nev Aug 27-291968 pp 349-352 
Brandon/Systems Press Inc Princeton N J 1968 

34 C S PEDLER 
New variables in the data processing equation 
Computers & Automation 18 No 5 pp 28-30 May 1969 

35 E YOURDON 
A n approach to measuring a time-sharing system 
Datamation 15 No 4 pp 124-126 Apr 1969 

36 R M DAVIS 
Information control in an information system 
Draft of lecture delivered to the Washington D C Chapter 
The Institute of Management Sciences Oct 18 196749 p 

37 R G MILLS 
Man-machine communication and problem solving 
Annual review of information science and technology Vol 2 
Ed C A Cuadra pp 223-254 Interscience Pub New York 
1967 

38 T MARILL L G ROBERTS 
Toward a cooperative network of time shared computers 
AFIPS Proc Fall Joint Computer Conf Vol 29 San 
Francisco Calif Nov 7-10 1966 pp 425-431' Spartan Books 
Washington D C 1966 

39 G TUBER P E WILLIAMS B L HISEY 
R G SIEKERT 
The organization and formatting of hierarchical displays for 
the on-line input of data 
AFIPS Proc Fall Joint Computer Conf Vol 33 Pt 1 
San Francisco Calif Dec 9-11 1968 pp 219-226 
Thompson Book Co Washington D C 1968 

40 G W BROWN J G MILLER T A KEENAN Eds 
EDUNET 
Report of the Summer study on Information Networks 
Conducted by the Interuniversity Communications 
Council (EDUCOM) 440 P Wiley New York 1967 

41 A M CAIN I H PIZER 
The SUNY biomedical communication network: 
implementation of an on-line, real-time, user-oriented, system 
Levels of interaction between man and information Proc 
Am Doc Inst Annual Meeting Vol 4 New York NY 
Oct 22-27 1967 pp 258-262 Thompson Book Co 
Washington D C 1967 

42 D J PRICE 
Some theories about scientific papers and their authors 
Proc Sixth Annual Meeting National Federation of Science 
Abstracting and Indexing Services Washington D C Mar 
20-22 1963 Ed R A Jensen pp 47-56 Pub by NFSAIS 
Washington D C Nov 1963 

43 A M HORMANN 
Planning by man-machine synergism a characterization of 
processes and environment 
Rept No SP-3484/000/00 83 p 
System Development Corp Santa Monica Calif Mar 31 
1970 

44 G SALTON 
A utomatic information organization and retrieval 
514 p McGraw-Hill Inc New York 1968 



Development of the LOGICON 2 + 2 system 

by ALBERT L. DEAN, JR. 

LOGICON, Inc. 
San Diego, California 

INTRODUCTION 

LOG I CO N is a systems and software engineering firm 
that has been heavily involved during the past nine 
years in developing special systems and software to be 
used primarily for military and space flight applications. 
In March of 1969, LOGIC ON began to investigate the 
feasibility of using a time-sharing system in its opera
tions. Because a large portion of LOGICON personnel 
were involved in software development, it was felt that 
a time-sharing system used as a program development 
and documentation environment could be of significant 
aid to these activities. 

An examination of other LOGIC ON operations 
revealed that many activities such as contract admin
istration, project planning and control, personnel 
management, financial planning, and marketing could 
also make effective use of a time-sharing system. Not 
surprising was the fact that many of LOGICON's 
business activities are very similar to activities of firms 
of the same size but operating entirely different 
businesses. A key capability required by nearly all of 
these activities was a need to interact with files and data 
bases while performing concurrent computational 
operations. 

A survey of time-sharing systems available indicated 
that none of these systems really provided interactive 
file and data-base management capabilities. This result 
seemed to indicate the need for such a product; there
fore, LOGICON embarked upon the development of a 
time-sharing system called the LOGICON 2+2 System. 

The 2+2 System has been developed specifically to 
provide very powerful computational, file, and data
base management capabilities on an interactive basis. 
The 2+2 System is unique-not only because of its file 
and data-base management capabilities, but also 
because it was developed for the most part with "off the 
shelf" fixed-wire hardware, microprogrammed hardware 
and software designs and/or components. These com
ponents have been organized to form an effective 

169 

environment in which processes may be run in a 
multiplexed fashion for many simultaneous users. Each 
user has access to a virtual machine which executes one 
or more processes in his behalf free from undesired 
interaction with other users. 

This paper describes an analysis of the LOGIC ON 
2+2 System mission, the system requirements derived 
from this analysis, the development methods employed 
in creating the system, and the operational and 
organizational characteristics of the resulting system. 

SYSTEM MISSION ANALYSIS 

The mission analysis for the LOGICON 2+2 System 
began with a delineation of system objectives. Four 
major objectives were defined for the 2+2 System. The 
2+2 System must: 

• provide capabilities that will allow it to be used 
as a software development facility by LOGICON 
in its various system development activities. 

• be capable of supporting a variety of applications 
in the general business environment, such that it 
can be used by LOGICON or other business 
firms as an in.:house general purpose system or as 
a vehicle for supplying time-shared services to 
outside users. 

• be capable of supporting a wide class of users, 
from the novice user to expert programmer, over 
a performance spectrum ranging from interactive 
to batch processing. 

• be organized in a way that will allow it to be 
easily modified or extended so that it can be used 
to form a variety of special purpose systems that 
may be useful as products. 

Given the above objectives, a mission analysis was 
developed for the 2+~ System. This mission analysis 
was broken into three major categories: (1) marketing, 
(2) application, and (3) user requirements. 



170 Fall Joint Computer Conference, 1970 

Marketing requirements 

The marketing requirements were developed accord
ing to type of customer. Three types of potential 
customers were identified for the 2+2 System. These 
are: 

• Customers who need one or more general purpose 
computer systems with interactive shared-access 
capabilities to meet in-house information pro
cessing requirements. 

• Customers who are or are planning to provide 
and market interactive remote access computer 
services in one or more application areas. 

• Customers who need, either for themselves or as 
contractors to other organizations, a general 
purpose system that can be easily specialized to 
form the primary component of a dedicated 
application system. 

An analysis of the potential market represented by 
these customers produced two major results. 

First, a number of potential 2+2 System customers 
were currently subscribing or were considering sub
scribing to a time sharing service to meet their inter
active processing needs. If the 2+2 System was to 
replace these services through in-house installation or to 
replace the equipment providing the service, it must 
meet two basic requirements: (1) the 2+2 System had 
to be able to demonstrate a significant cost/performance 
advantage over existing services and systems, and (2) 
the facilities provided by the 2+2 System must be 
compatible with the facilities offered by existing systems 
(at least on a subset basis), while providing increased 
capabilities. 

Second, five major areas of application were identified: 
(1) scientific computation, (2) general business data 
processing, (3) education, (4) data bank operation, and 
(5) specialty applications such as health and construc
tion. The area of scientific computation, while the 
largest market, is currently becoming saturated, and as 
a result-very competitive. The general business data 
processing market is largely unserved and seems to have 
even greater potential than scientific computation, 
particularly in the sectors involving small manufactur
ing and large wholesaling. The education, data bank 
operation, and specialty application markets all have 
good potential but require significant development. As a 
result, it was decided that the 2+2 System must 
primarily provide those capabilities required to serve 
the scientific computation and general business data 
processing markets, and where possible, provide those 
facilities needed by the education, data bank, and 
specialty markets. 

A pplication requirements 

A study was carried out to identify the capabilities 
required to support the preceding areas of application. 
The results are summarized as follows: 

Scientific computation covers the activities of desk 
calculation, statistical computation, engineering des~gn, 
simulation, and general mathematics. To support 
scientific computation, the 2+2 System need not 
provide extensive data-base management capabilities. 
The software requirements for this application area are 
almost exclusively connected with the development of 
high level problem-oriented languages and their pro
cessors. Fast computational processors and high-speed 
batch, graphic display, and printing keyboard terminals 
constitute the major hardware requirements for this 
application. 

General business data processing covers the traditional 
activities of accounting, payroll, inventory control, 
production control, and internal financial and sales 
analysis. This application area requires that its software 
provide extensive file and data-base management 
capabilities coupled with a set of application procedures 
for handling: payroll and labor distribution; order entry, 
shipping, billing, and sales statistics; purchase order 
preparation and accounts paYl:ljble; inventory control, 
production control, and cost accounting. 

The hardware required for this application consist of: 

• keyboard printing terminals with print speeds 
from 10 to 50 characters per second for order 
entry, billing, and small report preparation. 

• graphic display terminals for data entry and 
inquiry. 

• remote batch terminals for high-speed data input 
and output. 

• mass storage devices with extensive capacity for 
files and their associated data bases. 

Data bank operation covers the application of an 
operator-established and maintained data base that is 
referenced by his customers on a "read only" basis to 
secure some item of information such as credit ratings, 
checking account balances, stock quotations, etc. The 
software required for this application also involves 
extensive file and data management capabilities. The 
hardware requirements are equivalent to those of 
general business data processing, except that special 
terminals are probably required. 

Education covers the application areas of computer 
aided instruction, test scoring, student counseling, and 



reference retrieval. The software requirements for this 
area include extensive data-base management functions 
and simple interactive program preparation facilities to 
allow the user to easily construct course presentations, 
aptitude tests, and reference inquiries. The hardware 
required is again similar to that needed for general 
business data processing, with the addition of specialized 
terminals for instruction. 

Specialty applications include areas typified by a 
highly specialized orientation to work functions unique 
to a particular occupation. The software requirements 
for the construction industry include the need for 
PERT, cost forecasting, and accounting packages that 
utilize a data base for required parameters. In the 
medical field, software packages are required to 
accommodate patient management, inventories of 
drugs, personnel scheduling, patient billing, clinical 
history maintenance, insurance coverage, and patient/ 
bed scheduling. Hardware requirements can be met with 
current equipment, with the exception that special 
terminals will probably be needed. 

User requirements 

User requirements for the 2+2 System were de
veloped according to user types, functions, and system 
loading. 

Types of users 

The number and types of computer users are 
expanding at a high rate. To provide facilities that will 
accommodate all of these users, it is necessary to 
categorize them into a few major categories. 

Novice. A novice user produces no programs; he 
simply supplies parameters to programs produced by 
others. Included in this category are clerks, secretaries, 
foremen, librarians, teachers, and managers. They will 
need no knowledge of the application, and in fact-they 
will resist learning to use a system if it significantly 
detracts or absorbs time from their primary work 
assignments. 

Technician. A technician is a professional in some 
field other than programming, such as engineering, 
finance, marketing, manufacturing, etc. The term 
technician is used in the dictionary sense ("a specialist 
in the technical details of an occupation") rather than 
in the more limited sense. He prepares programs to solve 
his own problems or those of a novice. He is not aware 
of the hardware features or capabilities. In general, he 
uses only a small sub-set of the hardware and software 
features of the system. He is aware of only a "virtual 
machine" much like the current BASIC systems; with 

Development of the Logicon 2+ 2 System 171 

additional facilities for report composition, text editing, 
and data-base management. 

Programmer. A programmer produces programs to 
serve the computational or data processing needs of an 
organization. He programs largely in standard pro
cedural languages such as COBOL, FORTRAN, 
ALGOL, PL/1 and RPG. He will, on occasion, use 
special system development languages. He uses the 
software supplied by the system manufacturer, which 
includes job control facilities, sort, and general utility 
programs. The fundamental system software commands 
represent his interface with the system. 

User Functions 

In order to further identify the 2+2 System require
ments, a description was prepared the way each type 
of user would use the system. The following represents a 
summary of this analysis. 

Novice. The novice user interfaces with the system on 
an interactive level that permits him to select and 
control the operation of the system as his commands are 
being executed. The kinds of functions utilized by the 
novice user include data entry, inquiry, display, report 
generation, and function invocation; and in some cases, 
file and data-base definition. 

Technician. The technician works at a programming 
level that will provide the functions necessary to write 
programs that then become new operations at the 
interactive level. The kinds of functions used by the 
technician include file and data-base definition, data 
entry, procedure and process definition, editing, and 
simple program debugging. 

Programmer. The programmer works at a defining 
level that will allow the creation of new commands and 
programming facilities for use at the novice and 
technician levels. To accommodate these activities, the 
system must provide the facilities needed to: define 
hierarchies of named files; assign access attributes to 
allow controlled sharing of files; enter programs, data, 
and text into files; translate source programs to form 
executable code; test the resulting object programs and 
insert these programs into the system to form new 
commands and programming facilities. 

User loading 

To provide some basic guidelines for developing the 
2+2 System, it was essential to estimate the system 
load produced by the various users. The system loading, 
as given below, is based upon data from current systems 
and includes the load from all interaction types. 



172 Fall Joint Computer Conference, 1970 

TABLE I-User Attended Terminal Load per Terminal 

Application Type 

Computational Remote 
Load Component Time Sharing Data Processing Inquiry 

Processing 
instructions per 
second 3,500 3,500 250 

Data-base accesses 
per second .14 .226 .25 

Instructions per 
data-base access 25,000 15,500 1,000 

Disc type data-
base capacity 
(megabytes) 1 1 1 

Archival type data-
base capacity 
(megabytes) 10 10 10 

User-attended terminal load. The load that a user 
applies to a· computer system is heavily influenced by 
the logistics and scheduling of jobs to and from the 
computer system. This load is essentially independent 
from the speed of the user's terminal. The user adjusts 
his output requirements so that the time he spends 
waiting for output is tolerable. In current systems with 
10 cps teletypes, about 35 to 40 percent of the user's 
to~al terminal time is spent in printing for all purposes. 

Loads for three different application types are given 
in Table I. The proc~ssor load value in instructions per 
second, per terminal, is essentially independent of 
computer speed and compiler software efficiency. It can 
be shown that this processing load is primarily deter
mined by the scheduling parameters used by the 
system. For systems having the same response time, 
those with larger quanta will serve fewer users and do 
more processing per user than those with smaller 
quanta. The value of 3,500 instructions per second, per 
terminal (Table I), is .typical of systems designed to do 
user attended terminal work. 

The data-base access load is expressed in terms of 
processor instructions executed per each access, and it is 
independent of any scheduling influences. The data-base 
load expressed in accesses per second follows the 
processor load instructions per second, as the scheduling 
method is changed. 

Batch and remote batch load. If the user is not at a 
terminal waiting for results while his job is being run, 
that job is called a batch job. The chief difference 
between batch work and user attended terminal work is 
that the user .does not receive his results immediately 

and he may not submit another job until after he has 
received and studied his· results. The man-machine 
interaction cycle is much longer than with a user 
attended terminal, and the rate at which users submit 
successive jobs is much less dependent upon the length 
of that user's job. 

User jobs are done in a batch mode when they are too 
long to wait for in a user attended terminal mode or 
when they require too much output for· an individual 
user terminal and a faster, shared, batch terminal is 
required. 

Table II shows some typical characteristics of a batch 
or remote batch systerrl load. 

SYSTEM REQUIREMENTS 

Using the preceding analysis of the LOG ICON 2 +2 
System mission, requirements for the basic organization 
of the system and its hardware and software components 
were developed. 

Hardware requirements 

The 2+2 hardware system was conceived to consist of 
four major components (1) an application subsystem, 
(2) an extended memory subsystem, (3) a communica
tions-I/O subsystem, and (4) a control subsystem. 

Application suhsysteIn 

The application subsystem was defined to consist of 
an arithmetic processor . connected to a high-speed 
memory; The requirements developed for the applica-

TABLE II-Batch and Remote Batch Load Characteristics 

Characteristic 

Mean executed processor instructions for one 
program execution (activity) 

Mean lines-of output for one program 
execution (on-line high-speed printer) 

Mean executed instructions per data-base 
access 

Mean executed instructions per line of output 
(on-line high-speed printer) 

Remote batch-restricted output, executed 
instructions per line of output 

Quantity 

35 million 

2,000 

15,500 

17,500 

35,000 



tion subsystem were: 

• that it be able to sustain an instruction rate of 
3500-7000 instructions per second, per active 
user. 

• the processor should be microprogrammed to 
allow specialization as needed for a given 
application area. 

• it must be able to support fragmentation of 
programs and data, through either paging or 
segmentation, and further provide access control 
over these program fragments. 

• the processor should provide extensive multi
level interrupt capabilities. 

Extended lllelllory subsystelll 

The . extended memory subsystem was defined to 
consist of a drum storage unit and a controller con
nected directly to the application subsystem's memory. 
The requirements derived for the extended memory 
subsystem were: 

• the drum storage unit must have a capacity equal 
to at least 10 times the amount of virtual 
memory allowed for each user. 

• when the latency and transmission rate for a 
block of data is considered, the "average" access 
time for a word in the extended memory 
subsystem should be no greater than 10 times 
the cycle-time for application memory. 

COllllllunications-I/O subsystelll 

The communications-I/O was defined to consist of a 
processor with communications and peripheral adapters 
connected directly both to the high-speed memory of the 
application subsystem and to its own high-speed working 
memory. Attached to the communications-I/O sub
system are a variety of peripherals and communication 
devices. The requirements developed for the communi
cations-I/O subsystem were: 

• it must be capable of supporting multiple 
communication lines, either duplex or half
duplex, with bandwidths ranging from 110 to 300 
baud for the low-speed lines and 2,000 to 19,200 
baud for the high-speed lines. 

• all device connections for the low-speed devices 
on the comnlunications-I/O subsystem (includ
ing the low-speed peripherals) must conform to 
EIA RS 232 interface standards. 

Development of the Logicon 2+ 2 System 173 

• it must support ASCII codes. 
• the processor should be micro-programmed and 

have sufficient speed to allow line management 
and device control to be accomplished by the 
processor, versus special device adapters. 

• it must be capable of storing .5 million bytes of 
information on-line, per user of the system. 

• when the seek time and transmission rate are 
considered, the "average" access time for a word 
in the disk storage units should be no greater than 
10 times the access-time of the extended 
memory subsystem. 

• at least some portion of the disc storage capacity 
should exist on removable media. 

Control subsystelll 

The control subsystem was defined to consist of a 
processor connected to the communication-I/O mem
ory and the application memory. The requirements 
derived for the control subsystem were: 

• it must be connected to the other subsystems via 
interrupt and acknowledge lines to form a 
control network within the system. 

• it must be microprogrammed to allow specializa
tion as required for its control functions. 

Software requirements 

Three major requirements were defined for the 2+2 
software. The software must: 

• be based upon a proven design. 
• when integrated with the hardware, provide 

users with a uniform environment free of 
hardware idiosyncrasies. 

• provide a graduated set of capabilities In 
response to different types of users. 

With these requirements in mind, the 2+2 software was 
conceived to consist of two major systems; the operating 
system and the application system. 

The operating systelll 

Requirements developed for the operating system 
specified that it must: 

• be organized in a modular fashion to facilitate 
modification or extension as required. 



174 Fall Joint Computer Conference, 1970 

• allow for a distributed type of operation where a 
user can select, use, and pay only for those 
modules required by his job. 

The operating system was defined to consist of four 
major components: (1) the file manager, (2) the I/O 
manager, (3) the process manager, and (4) the data-base 
manager. 

The file manager must provide the capabilities 
required to: 

• form hierarchies of named files. 
• allow access attributes to be assigned to these 

files, and enforce these access definitions. 
• enter or extract information in or from these 

files. 
• enable file backup and recovery in the event of a 

failure. 

The I/O manager must provide the facilities required 
to: 

• control the communications and peripheral de
vices of the system. 

• support two modes of data access; random and 
sequential. 

• provide the functions of read, rewrite, and 
append; where rewrite refers to the ability to 
write over existing data, and append refers to 
writing on an "unwritten" portion of data. 

• supply format control over both physical and 
logical streams of data; where physical format is 
dictated by the device, and logical refers to a user 
supplied structuring. 

The process manager must provide the capabilities 
required to: 

• create processes consisting of procedures and 
data. 

• allocate resources required to execute these 
processes. 

• schedule the execution of processes, both system 
and user. 

• monitor the execution of processes. 
• maintain an accounting of the usage of the 

system resources by processes. 

The data-base manager must supply the capabilities 
required to: 

• define multi-level data structures and access 
attributes. 

• associate defined data with one of four access 
methods; sequential, indexed-sequential, linked 
list, or multi-list as defined for a designated file. 

The applications systelll 

Requirements defined for the application system were 
that it must: 

• provide a uniform interface to the users of the 
2+2; i.e., interactive commands and batch 
control statements for equivalent functions are 
the same. 

• provide "total" functional capability in each of 
its subsystems so that all the facilities required 
by a user for the solution of his problems are 
available to him with the subsystem. 

• provide a graduated set of capabilities that 
match the need of the various types of users; 
novice, technician, programmer, operator, and 
"owner." 

The application system was defined to consist of three 
major subsystems or classes of subsystems; an executive, 
language subsystems, and application library. 

The executive subsystem must provide the facilities 
needed to: 

• establish an interface between the user and the 
system in the form of a command language and 
command language interpreter. 

• interpret user commands and invoke the appro
priate system functions. 

• allow for the modification and extension of the 
command language. 

The language subsystems were divided into three 
categories, corresponding to type of user: (1) novice, 
(2) technician, and (3) programmer. 

The language subsystems supplied for the novice user 
must: 

• operate on an interactive command level basis. 
• provide the functions required to do data entry, 

inquiry, display, and updating of data bases. 
• provide the functions to carry out simple desk 

computations using formatted forms and reports. 

The language subsystems supplied for the technician 
must: 

• provide the functions needed to accomplishD.le 
and data-base definition, data entry, procedure 



and process definition, editing, and simple 
program debugging. 

The language subsystems supplied for the program
mer must allow him to: 

• define hierarchies of named files. 
• assign access attributes to allow controlled 

sharing of files. 
• enter information into these files consisting of 

programs, data and text. 
• translate source programs to form files of 

executable code. 
• select, edit, merge, and link files to form pro

cesses that are ready for execution. 
• load linked processes and invoke execution. 
• monitor and retrieve the results of an executed 

process. 
• select, edit, and format source language, flow

chart, and text files to form the documentation 
for a new command or system. 

The application library must provide a series of 
scientific, engineering, and general business packages. 
In particular for business-these packages should be 
concerned with payroll, inventory control, accounting, 
production control, and internal financial and sales 
analysis. 

DEVELOPMENT METHODS 

The development methods employed for the 
LOGICON 2+2 System merit discussion for several 
reasons. First, while a number of time-sharing system 
descriptions have been published, only fragmentary 
information has been presented concerning the methods 
used to develop these systems. Second, the methods 
used to develop the 2+2 System represent a systematic 
approach to the construction of a time-sharing system. 

The discussion of the 2+2 System development is 
divided into two sections. The first section describes the 
general development scheme, while the second section 
describes the development tools utilized to produce the 
system. 

General development scheme 

The general scheme used for development of the 2+2 
System can be called an "outside-in to inside-out" 
approach. This process is illustrated by Figure 1. 

The notion of outside-in to inside-out development is 
analogous to the evaluation of an expression, in that one 

Development of the Logicon 2+2 System 175 

starts at the outside and proceeds inward identifying the 
primary operands and operators and their ordering. 
Once the primary operands are identified, the process is 
reversed and the constituents of an expression are 
combined, according to the applicable operator rules, 
to produce the value defined by the expression. 
Similarly, the development of the 2+2 System pro
ceeded from the "outside-in to inside-out." 

Outside-in 

The outside-in path is divided into two phases; 
specification and design. During the specification phase, 
a system requirements specification was produced that 
identified the types of service to be supported by the 
system, the classes of users to be served, the functions to 
be supplied to these users, and the possible major 
components required to provide these functions. Using 
the system requirements specification as a guide, the 
functional, organizational, and operational character
istics of the 2 + 2 System were defined. From these 
definitions, a system architecture specification was 
developed. 

Given the system architecture specification, effort was 
then directed toward producing detailed designs for 
subsystems and their major components as called out in 
the system architecture specification. It should be made 
clear, if not already so, that one does not proceed 
directly through the transformation of requirements-to 
the architecture-to the detailed design-without some 
iteration and intuitive knowledge of the feasibility of the 
resulting object. 

Inside-out 

At this point, the detailed designs for each subsystem 
and major component were transformed into executable 

SYSTEM 
REQUIREMENTS 

SYSTEM 
ARCHITECTURE 

SYSTEM 
TEST 

SUBSYSTEM 
DESIGN 

SUBSYSTEM 
TEST 

COMPONENT 
DESIGN 

SUBSYSTEM 
IMPLEMENTATION 

COMPONENT 
IMPLEMENTATION 

Figure l-Outside-in to inside-out approach 



176 Fall Joint Computer Conference, 1970 

Figure 2-2 + 2 system logical structure 

hardware/software logic. This transformation was 
accomplished by translating the design for each module 
of a component or subsystem with the implementation 
language appropriate to that module; i.e., wire-wrap 
lists, microprogram assembly language, or system 
assembly language. 

As each module was implemented, an effort was made 
to ascertain that a module met the functional and 
operational requirements defined for it. This was 
accomplished by building a skeleton for the next higher 
structure in which the component was to reside; and 
then, supplying the appropriate input parameters and 
calls to the module, verifying the correctness of the 
output parameters and returns, and measuring critical 
execution time and frequency of use. This process was 
repeated at successive levels of integration until a 
complete subsystem was developed. The subsystems 
~ere then tested, and upon successful test completion, 
Integrated into the system. As each subsystem was 
integrated into the system, an iterative testing pro
cedure was applied. This procedure basically started at 
the innermost modules, insuring their continued 
integrity, and proceeded outward until the newly 
integrated modules or subsystems were checked. 

Development tools 

The tools utilized to develop the 2+2 System may be 
grouped into two categories; support system facilities 
and target system facilities. 

The support system facilities were established on a 
time-sharing service system on which LOGICON 
purchased time. The facilities provided by the support 

system consisted of a simulator for the target machine; 
an assembler, to produce code for the target machine or 
its simulator; a program debugging package running 
under the simulator, for aiding in the checkout of 
system software; and the standard file and editing 
facilities of the time-sharing system on which the 
support system resides. 

The target system facilities consisted of a simple 
run-time executive with a simple dump and trace 
capability for loading, executing, and monitoring the 
execution of software modules developed for the 2+2 
System. In addition, a simple file system was developed 
to allow modules to be placed on the 2 + 2 System mass 
storage. Finally, a linking loader was also placed in the 
development executive for aiding in the generation of 
system programs. 

SYSTEM DESCRIPTION 

The LOGIC ON 2+2 System is composed of six 
major components: (1) the application subsystem, (2) 
the extended memory subsystem, (3) the communica
tion-I/O subsystem, (4) the control subsystem, (5) the 
operating system, and (6) the application system. The 
logical organization of the LOGICON 2+2 System is 
illustrated in Figure 2. 

These six components have been integrated to form 
an environment containing the facilities necessary to 
concurrently process a wide range of user applications. 
This concurrent processing is accomplished by multi
plexing the system's facilities against the requirements 
of the system's users. In addition, these facilities have 
been regularized to eliminate hardware inconsistencies. 
As a result, each user is provided with a virtual machine 
containing the facilities required for his application, 
free from undesired interaction with other users and 
hardware idiosyncrasies. 

The fundamental unit of user activity in the system 
is a process. A process is a related sequence of operations 
executable on the processor(s) comprising the virtual 
machine. These operations are executed in one of two 
modes; user and system. User mode operations are 
executed directly while system mode operations are 
indirectly executed. System mode operations are hard
ware instructions or extensions to these hardware 
instructions implemented as software procedures, which 
require protected and controlled execution in order to 
assure effective and uniform usage. 

To utilize the 2+2 System, a user sends a connect 
signal to system via his terminal device. The system 
responds by establishing a process called the executive 
for the user. The executive first validates the user's 
access to the system and then operates as an interface 



to the user, interpreting the users commands and 
invoking system functions in response to these 
commands. 

Through commands, the user is able to create and 
cause the execution of one or more processes on behalf 
of his application. These processes may be system 
supplied as in the case of the language subsystems or 
user supplied applications or combinations of both. 

In the remaining portion of this paper, the com
ponents comprising the 2+2 System are described in 
more detail. 

The 2+2 hardware 

The 2+2 hardware is composed of four major 
subsystems: (1) the application subsystem, (2) the com
munications-I/O subsystem, (3) the extended memory 
subsystem, and (4) the control subsystem. The physical 
organization of the 2+2 System is illustrated in 
Figure 3; 

Application subsystelll 

The application subsystem has been constructed using 
a microprogrammed processor augmented with a 
Virtual Address Translator (designed by LOGICON) 
and a 900 nano-second, 16-bit word core memory 
ranging from 32 to 64 thousand words. The instruction 

ClOP MEMORY 
4K THROUGH 32K 

LARGER SIZES INTERLEAVED 

,.,MEMORY 32K.4IIK. __ 

_AY INTERLEAVING 

Figure 3-2+2 physical organization 

Development of the Logicon 2+ 2 System 177 

set for the application processor was developed by 
LOGICON specifically for the 2+2 System using the 
microprogramming capability of the processor. 

The Virtual Address Translator, or VAT, allows 
virtual addresses consisting of a page number and offset 
to be translated into physical addresses. The core 
memory provides for four-way interlace and page 
protection facilities of read, write, and execute. The 
instruction execution rate of the application subsystem 
is approximately .5 million instructions per second, 
which equates to a capability of supporting between 64 
to 128 users-depending upon core memory size. 

The cOllllllunication-I/O subsystelll 

The communications-I/O subsystem was also 
constructed with a microprogrammed processor. This 
processor is connected to the application subsystem's 
memory and has its own high-speed working memory 
of 900 nano-seconds; a 16-bit word core memory, 
ranging in size from 8 to 32 thousand words; a set of 
asynchronous line adapters for 16 to 128 lines, in groups 
of 16; with bandwidths ranging from 110 to 300 baud; 
a set of synchronous line adapters for 4 to 16 lines, in 
groups of 4, with bandwidths of 2,000 to 19,000 baud; 
and peripheral adapters for the disk and magnetic tape 
storage devices. Normally, one synchronous line is used 
to attach a remote batch terminal consisting of a 300 
cpm card reader and a 400 lpm line printer. 

The disk storage units have removable media, 28 
million-byte storage capacity, and an average access 
time of 45 milliseconds. Up to eight disk units can be 
attached to the mass storage controller. 

Tape storage consists of from one to eight tape drives 
working 25 ips; 800 bps with 7 or 9 channel recording. 
Based upon the use of eight disk storage units, the 2+2 
System can support 348 users having minimal storage 
requirements and up to 64 users requiring heavy storage 
needs. The "access-timen to disk storage is less than 10 
times the access-time to the extended memory 
subsystem. 

The extended Illelllory subsystelll 

The extended memory subsystem for the 2+2 System 
was constructed using a drum having a 1 million word 
capacity, expandable to 4 million words, with a 
1 million word-per-second transfer rate and an average 
access time of 8.5 milliseconds. The extended memory 
subsystem is connected to the application subsystem 
memory. The drum controller was designed and 



178 Fall Joint Computer Conference, 1970 

developed by LOG ICON to provide the required 
interface. 

The control subsystelll 

The control subsystem was constructed using a 
microprogrammed processor. The instruction set for the 
control processor is almost identical to that of the 
application processor. 

The control processor performs all system scheduling 
and I/O management tasks. It therefore controls the 
information flow between the application processor 
memory, extended memory, and mass storage. To 
accomplish these control functions, it is connected to the 
communications-I/O processor, the application pro
cessor, and the drum controller with interrupt and 
acknowledge lines. The control processor is connected 
to both the communications-I/O subsystem's and the 
applications subsystems's memory. 

The 2+2 operating system 

The 2+2 operating system is composed of four major 
subsystems: (1) the file subsystem, (2) the I/O sub
system, (3) the control subsystem, and (4) the data-base 
subsystem. 

The file Illanager 

Files in the 2+2 System are organized in a hierarchical 
fashion or tree structure of finite length (five levels) 
with a root directory origin. The structure contains 
pointers or entries for all nodes at the next lower level. 
These nodes may be directories themselves or point to 
some next level. The terminal nodes for the structure 
are files. 

The file manager provides the operations needed to 
allow directories of files and files to be created, linked, 
modified, opened, closed, and deleted. The file manager 
consists of four major components: (1) the directory 
control module, (2) the access control module, (3) the 
storage mapping module, and (4) the backup and 
recovery module. The directory control module provides 
those functions required to create directories, create 
files and as a result create an entry in the appropriate 
directory, delete directory entries thereby deleting a file, 
and deleting directories. The access control module 
provides the capabilities needed to specify and enforce 
the use and access allowed for shared files. The access 
attributes provided are read, write, append, and 
execute. The storage mapping module maintains maps 

of all storage devices and the allocation of the space 
represented by these devices. The backup and recovery 
module provides the functions required to periodically 
dump files and to reestablish files in the event of a 
mishap. 

The 110 Illanager 

The I/O manager provides operations such as the 
reading and writing of sequential and random files and 
enabling the execution of physical input-output 
operations expressed in terms of logical parameters. 

The I/O manager is organized into three major 
components: (1) the device control modules, (2) the 
device strategy modules, and (3) the I/O control 
module. The device control modules are particularized to 
manage a specific type of device and to control its 
operation, both in normal and error mode. The device 
strategy modules are responsible for the logical manage
ment of the device in terms of the data stream being 
transmitted to or from the device. The device strategy 
modules provide the function needed to access data in a 
random or sequential fashion, to format data, and for 
the logical operations of read, write, or append. The I/O 
control module is responsible for scheduling and manag
ing the flow of data streams from one device to another, 
from one process to another, etc. 

The process Illanager 

The process manager provides the functions necessary 
to create, ~ctivate, block, and terminate processes, and 
also allocate resources and schedule their usage. In 
addition, it provides a mechanism for interprocess and 
interuser communication. It allows a process to create 
an "event," to be notified when an "event" occurs, and 
to delete "events." The process manager is composed of 
four major modules: (1) the scheduler, (2) the resource 
allocator, (3) process control, and (4) the accounting 
module. 

The scheduler module is responsible for ordering the 
execution of processes in the 2 + 2 System. The scheduler 
accomplishes this ordering by maintaining a queue or 
process execution requests that are selected through a 
multi-level priority algorithm. The resource allocator 
provides the functions required to allocate and manage 
the resources of the 2+2 System. The process control is 
responsible for process creation, loading, execution, 
unloading, and destruction. During execution, the 
process control acts as the interface between the system 
and a user's process. The accounting module is responsi
ble for metering, pricing, and lMlling for the facilities 
of the system used by its users. 



The data-base :manager 

The data-base manager is responsible for the 
management of records in a data base and consists of 
three major modules: (1) the record access control 
module, (2) the record content module, and (3) the 
record format module. The record access control module 
is concerned with two types of access control. The first 
type of access control is involved with the logical 
operations of extracting or inserting a record in a data 
base through one of four access methods; sequential, 
indexed sequential, linked list, and multi-list. The 
second type of access control is involved with security 
conventions defined for a record, and insuring that these 
conventions are not violated. 

The record content module is responsible for associ
ating and maintaining lists of the elements that com
prise a record. The record format module is responsible 
for providing the facilities for mapping contents of a 
record from one format to another for input-output 
operations. The record format module provides the 
facilities for associating a data base with the descriptions 
of the formats to be applied to that data base. 

The 2+2 application system 

The 2+2 application system is composed of three 
major components: (1) the executive, (2) the language 
subsystems, and (3) the application library. 

The executive 

The executive consists of three major elements: (1) a 
command language, (2) the command interpreter, and 
(3) the command library. The command language is the 
vehicle by which the user and the system communicate 
with each other. Through the use of the command 
language, the user is able to issue instructions to the 
system, directing it to perform some desired operation 
or set of operations. The command language interpreter, 
upon receipt of a command, scans the command and its 
arguments, calls the needed command subroutines from 
the command library, links these procedures, and 
transfers control to the linked procedures for execution. 
The command library contains a series of subroutines 
that enable the operation of the commands defined for 
the 2+2 System. Users of the 2+2 System have the 
capability to augment this command library through the 
use of commands supplied for that purpose by the 
system. 

Development of the Logicon 2+ 2 System 179 

The language subsyste:ms 

The application system consists of a number of 
subsystems, each of which support a given language. In 
general, each language subsystem consists of a sub
system executive, command processor, language pro
cessor, and routine processor. There are three levels 
of language subsystems. Each level equates to the type 
of system user involved; novice, technician, or 
programmer. 

For the novice user, a desk computation and data-base 
entry/inquiry command system has been developed 
called DESK-DATA, which combines the properties of 
a desk calculator and a simple data-base management 
system. The DESK-DATA language allows the novice 
user to establish data base, enter data into or make 
inquiries against the data bases, generate reports from 
these data bases whether on hard copy or a graphic 
display device, and define and perform simple computa
tions on the data bases. 

For the technician, three language subsystems are 
supplied: (1) an extended form of BASIC that provides 
extensive file and data-base management capabilities, 
(2) APL, also augmented with file and data-base 
facilities, and (3) a powerful text editing language. 

For the programmer, FORTRAN IV, a subset of 
PL/1, and assembly language are provided. 

The application library 

The application library is composed of a large and 
growing collection of programs designed to perform 
explicit functions on behalf of its users. The application 
system is perhaps the most important component of the 
2+2 System in the sense that it is directly concerned 
with the user's requirements. 

SUMMARY 

The 2+2 System is in the final stages of development 
and it is now clear that it will meet the functional and 
operational requirements set out for it. The success of 
this effort was in large part due to the project team 
involved. Special acknowledgment is given to R. E. 
Wolfe and John Mallory for the microcode design and 
development; Frank J. Rosbach, Allen Ginzburg, and 
Jan C. Bartlett for the design and development of the 
2+2 Operating System; Glen S. Jerpseth, Robert A. 
Thompson, Paul K. Richards, Leland S. Purrier, and 
James A. Craig for design and development of the 2+2 
Application system; and to George P. Futas and 
Donald F. Lacy for their design and development of the 



180 Fall Joint Computer Conference, 1970 

Extended Memory subsystem. Special thanks are given 
to Frank C. Robbins for his aid in editing this paper. 

REFERENCES 

1 A BENSOUSSAN C T CLINGEN R C DALEY 
The multics virtual memory 
Second ACMSymposium on Operation System Principles 
Princeton New Jersey October 1969 

2 R C DALEY J B DENNIS 
Virtual memory processes and sharing in multics 
First ACM Symposium on Operating System Principles 
Gatlinberg Tennessee October 1967 

3 B W LAPSON 
Scheduling and protection in interactive multi-processor 
systems 

Project Genie Doc P-ll University of California Berkeley 
February 1967 

4 B W LAMPSON 
Time-sharing system reference manual 
Project Genie Doc R-21 University of California Berkeley 
August 1966 

5 B W LAMPSON W WLICHTENBERGER 
M W PIRTLE 
A user machine in a time-sharing system 
Proceedings IEEE December 1966 

6 J H SALTZER 
TrajJic control in a multiplexed computer system 
MAC-TR-30 (thesis) MIT Cambridge Massachusetts 
July 1966 

7 M J SPIER E I ORGANICK 
The multics interprocess communication facility 
Second ACM Symposium on Operating System Principles 
Princeton New Jersey October 1969 



System Ten-A new approach 
to multiprogramming 

by R. V. DICKINSON andW. K. ORR 

The Singer Company 
San Leandro, California 

INTRODUCTION 

Historically, the creation of a multiprogramming 
computer system, one capable of concurrently operat
ing a number of independent programs, has been 
viewed largely as a programming task, the task being 
that of creating an executive program which allocates 
resources, schedules tasks, and manages input/output. 
The problems involved in the implementation and 
operation of such programs have been well documented 
in the literature. 1 

System Ten, shown in Figure 1, embodies a new 
approach to the design of multiprogramming systems. 
The system, while capable of concurrently operating 
up to twenty independent programs, has no software 
executive. All executive functions are performed by 
hardware. This paper describes the architecture of 
System Ten with particular emphasis on the hardware 
executive and the system design decisions which made 
its implementation straightforward and inexpensive. 

SYSTEM DESIGN PHILOSOPHY 

As System Ten evolved several fundamental decisions 
were made to simplify the tasks of the hardware 
executive. These are briefly discussed below under 
the categories of resource allocation and system con
trol. 

Resource allocation 

Main memory allocation is done on a fixed partition 
basis, that is, a contiguous area of fixed size is allotted 
to each user. Further, while the executive must be 
responsive to changes in memory allocation, it is not 
responsible for making these changes. 

User device assignments are·· made through simple 
hardware connections. Since device assignments are 

181 

generally made with a particular task, or class of 
tasks in mind, it is the responsibility of the user to 
respond to device reassignments. 

The foregoing comments on device assignments 
pertain to peripheral devices such as card readers, 
card punches, printers, and operator oriented terminals. 
File storage devices such as magnetic tapes and discs 
are shared facilities, accessible to all partitions. 

A fixed amount of processing time is allotted to 
each user program using a round-robin discipline. 

System control 

The user has complete control over the initiation 
of an IO operation; however, processing time is not 
again allotted to the user program until the system 
has completed the operation. Thus, an IO operation 
started in one partition is overlapped with processing 
in other partitions but not with processing in the 
partition issuing the IO instruction. 

A supervisory console is not required by the system. 
The occurrence of a Program Check is handled by 
the executive through the simple expedient of request
ing that the user load another program, generally an 
error analysis routine. 

Figure l-System Ten 



182 Fall Joint Computer Conference, 1970 

!!IQ] 
......... .1 

.. ~ 
00 
TAPE 3 

PROCESSING UNIT 

Figure 2-System structure 

Those familiar with other systems offering multi
programming facilities will recognize that the above 
decisions regarding resource allocation are very similar 
to those implemented in many executive programs. 
The significant difference is that reallocation of re
sources in System Ten is accomplished by changing 
a few simple hardware connections, whereas in other 
systems reallocation is accomplished by passing a "few 
simple" instructions to the executive program. More
over, in System Ten, system generation consists of 
making the same hardware connections; in other 
systems it requires something quite different. 

SYSTEM ORGANIZATION 

System overview 

The major components of System Ten are depicted 
in Figure 2. The Central Processing Unit (CPU) 
includes those components enclosed within the solid 
line. The peripherals and file storage devices are 
separately packaged. In contrast to many computer 
systems, the peripherals need not be located in close 
proximity to the CPU; instead, they may be distributed 
as dictated by application requirements. 

All activity in the system is controlled by the 
Arithmetic/Control Unit (ACU) which includes a 
hardware multiprogramming executive. In addition to 
instruction fetch and execution, the ACU schedules 
tasks and manages input/output. 

Memory is ferrite core with a 3.3 p's cycle time. It 
can be divided into as many as twenty partitions, 
each capable of supporting an independent user 
program. Unlike. most multiprogramming systems, 

there is also a common partition of memory which 
can be shared by several user programs permitting 
the exchange of information at memory speed and 
the use of common subroutines. Maximum memory 
size is 110K (decimal) six bit characters. Each character 
in memory is addressable. 

Associated with each user partition is an Input/ 
Output Channel (IOC) which can control up to ten 
peripheral devices. These devices are accessible only 
to the associated partition. The peripherals and the 
IOC are interconnected with a single, shielded twisted 
pair which can be up to two thousand feet in length. 
Transmission between the peripherals and the IOC is 
bit serial, character serial at fifteen hundred characters/ 
second. 

System Ten peripherals include an operator oriented 
workstation with a 25 CPS printer and full alpha
numeric keyboard, a 300 CPM card reader, a 100 
CPM card punch, a 450 LPM line printer, a 300 CPS 
paper tape reader, and a 100 CPS paper tape punch. 

Communications capability is provided by the 
Synchronous Communication Adapter (SCA) which 
can be substituted for a standard IOC. It enables 
the System Ten to communicate with remote terminals 
or computers at up to 1200 characters/second. The 
SCA can operate either on four-wire dedicated circuits 
or on switched circuits and has dialing and automatic 
answering capability. The SCA is designed to operate 
with the standard USASCII code and communication 
nrocedures. 

The System Ten can also support up to ten disc 
drives and four magnetic tape drives. These devices 
are available to all user programs and are controlled 
by the File Access Channel (F AC). The F AC can 
accommodate data transfer rates of up to 250,000 
characters/ second. 

Each disc drive has a storage capacity of ten million 
six bit characters stored in one hundred character 
records. Average access time is seventy-five milli
seconds and average latency is 12.5 ms. A tape drive 
can accommodate either seven or nine channel tape 
with a density of either 556 or 800 bpi. USASCII, 
EBCDIC, and other standard codes can be accom
modated. Tape speed is 25 ips. 

Memory organization 

1\1emory is allocated in one thousand character 
segments. Each partition, including common, may 
contain from one to ten segments. Shown in Fig. 3 
is a maximum memory configuration with 10K char
acters allocated to the common partition and 5K 
characters allocated to each of twenty user partitions. 



Note that a system with memory allocated as shown 
would also include twenty 10C's, one for each user 
partition, since the number of 10C's in a system 
determines the number of user partitions that the 
system will support. In fact, the amount of memory 
allocated to the partition associated with a given 
10C is determined by a jumper block setting in the 
10C itself. A minimum System Ten consists of 10K 
core, lK of which must be allocated to common, and 
one 10C. 

The common partition is divided into three areas. 
The first three hundred characters are reserved for 
the executive. User programs may read from but not 
write into this area. The executive uses this area to 
store the program status work (PSW) , channel com
mand word (CCW) , and file access mask (FAM) 
for each user partition. 

The PSW for a partition includes the partition 
size, program counter, condition codes, and status 
flag for that partition. The status flag identifies the 
currently active partition. The CCW contains the 
10C operation code, the residual character count, and 
the current data address when an 10C operation is in 
progress for that partition. 

The F AM defines the degree of file access permitted 
that partition. A partition may be denied all access, 
allowed access only through a subroutine resident in 
common, allowed read access, or allowed full access 
to the disc drives. Disc access control applies to all 
drives in the system. In contrast, tape access control 
is specified for each individual drive.· A partition may 
be allowed access to any combination of the four 
tape drives. Write protection for the first area of 
common can be temporarily inhibited, permitting 
initialization of the F AM for each partition. 

The second area of common is available to all user 
programs and is referred to as nonprivileged common. 
The third area, privileged common, is accessible only 
to those user partitions which have been designated 
(with a jumper on the associated 10C) as privileged 
partitions. N onprivileged partitions may not access 
this area. 

A base register and a limit register are used by the 
executive to establish boundaries for the currently 
active partition. Addressing within user partitions is 
relative to the base address of the partition. Figure 3 
illustrates the relationship between absolute and 
relative memory addresses. A user program can address 
only that portion of memory within its own partition 
and the common partition. 

Within each partition there are three four-character 
fields which can be used by the user program as index 
registers. A five-character field is reserved for storage 
of the PSW when a Program Check occurs. 

System Ten 183 

SYSTEIVI OPERATIONS 

Multiprogramming executive 

The System Ten multiprogramming executive con
sists of four control routines implemented in hardware: 
Instruction Fetch, Partition Switch, 10 Control, and 
Interrupt Service. Flow charts of these routines are 
shown in Figures 4a, 4b, 4c, and 4d. 

The allocation of ACU time to user partitions is 
handled on a round-robin basis. Each partition is 
allotted 40 ms of processing time. When this interval 
is exhausted and a successful branch is executed 
processing time is then allotted to the next partition. 
This condition (branch timeout) is detected at the 
end of the Instruction Fetch routine as illustrated in 
Figure 4a. The steps involved in partition switching 
are shown in Figure 4b. 

Partition switching also occurs whenever a partition 
initiates an 10C operation or if disc head motion is 
required for an F AC operation. In these instances, 
switching is initiated by the 10 Control routine as 
shown in Figure 4c. 

10C interrupts are detected by the Instruction 
Fetch routine which transfers control to the Interrupt 
Service routine (cf Figure 4d). Interrupts are also 
detected and serviced during an F AC operation (cf 
Figure 4c). 

Whenever a LOAD REQUEST is detected, whether 
initiated by the user or the ACU, the program counter 
is cleared and a READ CONTROL command is 
issued to the 10C. This enables entry of one instruc
tion into location zero of the partition. When the 
READ CONTROL has been terminated, the instruc
tion just entered is executed. This feature provides 
the capability to initiate program loading. 

0 0 

PROTECTED 
COMMON 

299 1------- 299 
300 300 

NONPRIVILEGED 

4999 
COMMON 

f-o-----.- 4999 
5000 5000 

PRIVILEGED 

ABSOLUTE 9999 
COMMON 

9999 RELATIVE 
ADDRESS 10000 --0 ADDRESS 

PARTITION 

14999 
0 

4999 
15000 --0 

104999 4999 
105000 --0 

PARTITION 
19 

109000 4999 

Figure 3-Memory organization 



184 Fall Joint Computer Conference, 1970 

Figure 4a-Instruction fetch 

The ACU initiates a LOAD REQUEST whenever 
it detects a Program Check. A Program Check can be 
caused either by an attempt to execute an invalid 
instruction or by an illegal memory reference. When 
a Program Check occurs, the PSW is stored within 
the partition. 

The 10 Control routine initiates all 10C and FAC 
operations and posts status following their completion. 
10C operations are overlapped with processing in 
other partitions. F AC operations are not overlapped; 
processing is halted during an F AC operation in order 
to provide immediate response to F AC memory 
requests. 10C interrupts are serviced, however. 

Access to F AC devices is granted on a first come, 
first served basis. If a disc seek is required, it is over
lapped and the disc is unavailable to other partitions 
until the operation has been completed. Having once 
accessed a disc, a user partition is not allowed to 
initiate a seek until the other partitions are given an 

opportunity to access that disc. This prevents a 
partition from monopolizing a disc file. 

User/system interaction 

Interaction between a user and System Ten gen
erally begins with program loading. To accomplish 
this, the user must assign address zero to an input 
device such as a card reader, paper tape reader, or 
workstation. Each input device is equipped with a 
LOAD switch; operation of this switch interrupts 
processing in his partition and permits him to enter 
one instruction. This instruction is loaded into location 
zero of his partition and executed the next time the 
partition is active. 

Normally, this instruction is the first of a bootstrap 
loader. While any input device may be used for program 
loading, only the device assigned address zero can 
be used to initiate program loading. 

There is one variation of the initial program load 
procedure described above. If the first character 

STORE PSW 
IN COMMON 

INCREMENT 
PARTITION 

LOAD PSW 

Figure 4b-Partitionswitch 



entered is a unit separator, the input operation is 
terminated, and a disc read instruction is loaded into 
location zero. This instruction when executed will 
load the first 100 character sector from drive zero into 
the first 100 locations of his partition. The program 
thus loaded will generally be the first part of a disc 
oriented program loader. 

When a program check occurs, the system will 
indicate this condition by lighting the LOAD lamp 
on the device zero. The user may then initiate loading 
of a new program. This program, generally an error 
analysis routine, can examine the PSW stored in the 
partition to determine the address of the offending 
instruction and perform other checks to determine 
what went amiss. 

Online program debugging is most conveniently 
accomplished if device zero is a workstation. Using 
the program loading procedure described above, the 
user can enter one or more instructions to selectively 
change or display the contents of his partition thus 
monitoring the progress of his program. 

In addition to the LOAD switch, the workstation 
has a SERVICE REQUEST switch. Operation of this 
switch sets a flag in the IOC which can be tested 
under program control, permitting the user to interact 
with his program without interrupting its execution. 

Figure 4c-IO control 

IDENTIFY 
IOC 

TRANSFER 
CHARACTER 

UPDATE 
CCW 

TERMINATE 
10 

System Ten 185 

NO 

Figure 4d-Interrupt service 

PROGRAMMING CONSIDERATIONS 

The System Ten character set is a six bit subset of 
the USASCII character set obtained by omitting the 
sixth bit (b6) of the USASCII code. (See Figure 5). 
Although control characters (columns 0 and 1) cannot 
be stored internally, they can be generated by a 
WRITE CONTROL instruction for output. 

System Ten instructions are designed to operate 
on fields of variable length, up to ten thousand charac-



186A Fall Joint Computer Conference, 1970 

TABLE I -System Ten Instruction Set 

INSTRUCTION OPERATIONS 

ADD 

SUBTRACT 

(B) +(A)~(B) 

(B)-(A)~(B) 

MULTIPLY (A)X(B)~(B)* 

DIVIDE (B)*+ (A)~(B) 

TRANSFER CHARACTER (A)~(B) 

TRANSFER NUMERIC (A)~(B) 

EXCHANGE (B)¢(A) 

EDIT (A)~(B) 

FORM NUMERIC (A)~(B) 

COMPARE 

BRANCH 

READ 

WRITE 

WRITE CONTROL 

ters in certain instances. The instructions, however, 
are of fixed length, namely, ten characters as illus
trated by the instruction format shown in Figure 6. 

System Ten is a decimal machine in that all arith
metic instructions operate on decimal fields. A decimal 
digit is stored in binary coded decimal form using the 
low order four bits (b1-b4) of a character. Operand 
addresses, the A and B fields of the instruction, and 
o-.;>erand lengths, the LA and LB fields are also decimal 
quantities. 

The AC and BC bits indicate whether the fields 
addressed by A and B respectively, are located in the 
common partition or in the user partition. Thus, a 
maximum of 20K characters of memory are available 
to the System Ten programmer, 10K in common 
and 10K in his partition. 

The IA and IB fields of the instruction are used 
for index register selection. They are two bit binary 
fields; IA = 0 indicates that the A address is not in
dexed, IA = 1 indicates that the effective address is 
A plus the contents of the first index regis~er, and 
so on. 

The System Ten instruction set is given in Table 1. 
(A) denotes the contents of the field address by A. 

REMARKS 

(B)* is a field of length LA+LB, whose most significant digit is 
addressed by B. 

See above 

The fields are of the same length, 10LA + LB. 

Only the numeric portion of (B) is changed. The fields are of the 
same length, 10LA + LB. 

The A and B fields are exchanged. The fields are of the same length, 
1OLA+LB. 

The transfer is controlled by a Mask located at B. 

The numeric information in the A field is right-aligned in the B field. 

1 (A) 1 is compared with the 1 (B) I. 

A conditional branch is made to the instruction addressed by A or B. 

LA specifies the device address, LB selects the channel (lOC/FAC), 
A is the address of the first character in the input area and, B is the 
character count. 

Instruction fields are as defined for READ. 

Same as write, except that characters appearing in columns 4 and 5 
(figure 5) are translated, and output as the control characters of 
columns 0 and 1. 

When a branch instruction is encountered, control 
passes to the instruction addressed by A if the condition 
specified by LA is met. If this condition is not met 
the condition specified by LB is checked and if met, 
control passes to the instruction address by B, other
wise the next instruction in sequence is executed. 

In addition to specifying conditions related to the 
outcome of arithmetic and input/output operations, 
the LA and LB fields may specify that a subreutine 
branch is to be taken or that a branch is to be taken 
when a device has a pending SERVICE REQUEST. 
In this latter case, the address of the device requesting 
service is stored at the location specified by B. 

One form of unconditional branch allows the pro
grammer to give up a portion of his allotted processing 
time. This is the branch and switch instruction. When 
this instruction is encountered, a branch is taken and 
partition switching occurs. For example, if a program 
is waiting for a request for service from a terminal, it 
can be designed to relinquish processing time to other 
partitions until the -request occurs. 

In disc input/output instructions, the B field is 
the address of a six character disc address rather than 
a character count. No character count is required as 



disc records have a fixed length of one hundred char
acters. 

A disc file has fifty records per track. Record ad
dresses are interleaved by five so that there are four 
sectors between sequentially addressed sectors. This 
permits the programmer to modify disc addresses 
and do a limited amount of housekeeping between 
sequentially addressed sectors. Thus, random access 
file organizations which employ some form of scram
bling can be implemented very efficiently. There is, 
however, a penalty when purely sequential access 
methods are used. 

CONCLUSION 

System Ten demonstrates the feasibility of providing 
multiprogramming capabilities, without the need for a 

b1 0 0 0 0 I I I I 
b6 0 0 I I 0 0 I I 
b5 0 I 0 I 0 I 0 I 

b4 b3 jb2 bl I:::S: Row 0 I 2 3 4 5 6 1 

0 0 o 0 0 NUL DLE SP 0 • P • P 

o 0 0 I I SOH DCI ! I A Q a q 
0 0 I 0 2 STX DC2 . 2 B R b r 
0 0 I I 3 ETX DC3 -# 3 C S c • 
0 I 0 0 4 EOT DC4 S 4 D T d t 
0 I 0 I 5 ENQ NAK % 5 E U • u 
0 I I 0 6 ACK SYN a C F V f v 
0 I I I 1 BEL ETB ~ 1 G W 9 w 
I 0 0 0 8 BS CAN ( 8 H X h • 
I 0 0 I 9 HT EM ) 9 I Y i J 
I 0 I 0 10 LF SUB * : J Z j z 
I 0 I I II VT ESC + ; K [ k { 
I 1 0 0 12 FF FS • < L , I' : 
1 I 0 1 13 CR GS - M ] m 1. 
I I I 0 14 SO RS . > N A- n ~ 

I I t I 15 SI US I ! 0 0 DEL 

Figure 5-Character set 

LA 
2 

o 

A 
ADDRESS LB 

2 3 4 5 
CHARACTER 

System Ten 186B 

B 
ADDRESS 

6 7 8 9 

Figure 6--Instruction format 

complex software executive. Adoption of a system 
design philosophy oriented toward application require
ments rather than unlimited generality made imple
mentation of the hardware executive a straightforward 
and inexpensive task. 

ACKNOWLEDGMENTS 

We would like to thank the many individuals who 
contributed to the development of System Ten. 
Worthy of particular mention are D. Neilson, E. 
Poumakis, and H. Schaffer whose ideas provided the 
framework for the system as it exists today. 

REFERENCES 

1 T B STEELJR 
Multiprogramming--Promise, performance, and prospect 
Proceedings FJCC Vol 33 p 99 1968 



On automatic design of data organization 

by WILLIAM A. McCUSKEY 

Burroughs Corporation 
Paoli, Pennsylvania 

INTRODUCTION 

A number of research efforts have contributed to the 
beginning of a methodology for the automatic design 
of large-scale information processing systems (IPS). See 
for instance Nunamaker.1 One facet of study in these 
efforts is the design of data organization. 

Such a study was undertaJmn in the context of 
Project ISDOS,* now at the University of Michigan. 
The purpose of the study was to develop a model of the 
data organization design process and to create from this 
model a method for generating specifications of alterna
tive data organizations. The first step of the study was 
to obtain a view of data organization uncomplicated by 
data usage. To this end the design of data organization 
(DOD) was divorced from the total IPS design process. 
A method for decision-making, which relates data 
organization to data usage and a measure of effective
ness, was to be a second phase of the study. 

The purpose of this paper is to outline some initial 
results and implications of a set-theoretic approach to 
DOD which was developed for ISDOS. The assumed 
framework of the DOD process is described briefly. 
Within this framework concepts of data are defined in 
terms of sets. The DOD process can then be described in 
terms of set-theoretic operations. Finally some implica
tions of the approach are given. 

ORGANIZATION OF DATA-A FRAMEWORK 

The term data is used here to mean the IPS represen
tation of objects which are used as a basis for decision or 
calculation. The term data organization is used here to 
mean the set of relationships among data established by 
the problem definer or created by the system designer, 
as well as the representations of these relationships in 
the IPS. A design of data organization is a specification 

* Information System Design and Optimization System 

187 

of these relationships, of their representations in the 
IPS, of the representation of the data in the IPS 
storage, and of the logical access and storage assignment 
proc;esses which will operate on the data organization. 
The term process is used here to mean an operation or 
set of operations on data, whether that process is 
described by the problem definer or defined by the 
system designer. The system design procedure is itself a 
process and will be referred to as such. 

The procedure for organizing data for an IPS may be 
thought of ideally in terms of four operations. First, 
a problem definer interprets a problem in his environ
ment and defines a set of requirements which are as 
complete and concise as possible and which any solution 
of the problem, manual or automatic, must satisfy. 
A problem definition is complete if, in order to solve the 
problem, a system designer needs no further information 
from the problem definer. The problem definer defines 
the information processing problem in terms of sets of 
data, membership relationships among· these sets of 
data, processes operating with the data, time and 
volume requirements on the processing, other con
straints, and a measure of effectiveness for the solution. 
In order that the best possible design be produced, 
relative to the given measure of effectiveness, the 
problem definer should place as few restrictions as 
possible on the number of alternatives the system 
designer may consider. 

Second, the system designer develops a specification 
of logically ordered structure for the data and the logical 
access processes which may be used to find any element 
in the structure. This structure will be called the logical 
organization of the data. An example is a binary tree, 
array, or any directed graph. 

Third, the system designer specifies for these logically 
structured data the corresponding representatio1;ls in the 
storage and the strategies for storage assignment. The 
resulting structure will be called physical organization 
of the data. 

And fourth, the implementor of the system converts 



188 Fall Joint Computer Conference, 1970 

the actual data from its present form to a form which 
meets the new specifications. 

Within this framework the approach was to view all 
concepts of data in terms of sets and then to define the 
design process, steps one through three above, in terms 
of set-theoretic operations on these sets. The set
theoretic details may be found in McCuskey.2 The 
following attempts a more narrative description. 

CONCEPTS 

The concepts of data organization described below 
must be viewed in the context of an ideal automated 
design system such as ISDOS. The problem statement, 
written in a formal problem statement language, is input 
to a system design program. This program specifies how 
processes should be organized into programs, how data 
should be structured logically and physically, and how 
the programs and data should be managed as a com
plete system. The system design is then automatically 
implemented. 

The goal of this description of data concepts is to 
provide a framework within which to formulate a 
precise, simple algorithm. The algorithm must operate 
on a problem definition of data to produce a specification 
of IPS storage organization for the actual data. 

Because of this goal the sets of data which the 
problem definer describes are viewed here as set
theoretic sets related by unordered cross-product 
relations. The algorithm must then establish what 
redundancies to keep, specify how the data should be 
ordered and then specify how this logical structure 
should be represented in storage. 

The goal requires that the distinction between logical 
and physical data organization be defined precisely. The 
logical structure discussed below is the structure which 
is directly represented in storage. It incorporates some 
features, like redundancy specification, which are gen
erally considered in the realm of "storage structure". 

Problem description 

From the problem definer's point-of-view an IPS 
operates on symbolic representations of conceptual or 
physical characteristics such as name, age, address, etc. 
The elementary object used to build such IPS repre
sentations will be called a symbol. The problem definer 
must specify an alphabet, the set of all symbols which 
are valid for the problem he is defining. One such 
alphabet is the EBCDIC character set. 

Each occurrence of a characteristic, such as sex, 
amount, or title, may be thought of as an ordered pair 
of symbol sequences. The first component of the pair is 

the data name; the second component is the data value. 
The ordered pair will be called, generically, a data item. 
A data item will be denoted by its associated data name. 
An instance of a data item is a specific data name/data 
value pair. Thus (NAME, JONES)* is an instance of 
the data item NAME. Common usage abbreviates this 
statement to "JONES is an instance of NAME". A 
data item has sometimes been referred to as an attri
bute, data element, or datum. In common high-level 
programming language usage the data value is the 
"data" stored while the data name is "data about data" 
which appears in the source program and enters a 
symbol table during compilation. . 

From the problem definer's point-of-view the IPS at 
any point in time will contain representations of many 
different occurrences of a given characteristic, say 
warehouse number. Disregarding how warehouse num
bers are associated with other data in the IPS, one can 
describe a set of all distinguishable instances of a data 
item, named WHNO, existing in the IPS at the given 
time and having the same data name. Instances are 
distinguished by data value. The set WHNO contains 
no repeated occurrences of warehouse number. Such a 
collection will be called a data set at level 0 (henceforth, 
data set/O). The data set is referenced, like a member 
data item, by the data name common to all its elements. 
Context determines whether a data name refers to a data 
item or a data set. 

Associated with a data set/O is a number, called the 
cardinality of the set, which specifies the anticipated 
number of elements (unique data item instances) in the 
data set. Among data sets/O exist cardinality relation
ships such as: 

"at any given time approximately three unique 
instances of ITNO and exactly one unique instance 
of CITY will be associated with a unique instance 
of WHNO". 

The anticipated cardinality and cardinality relation
ships among data sets, as defined here, are characteris
tics of the information processing problem and must be 
specified by the problem definer. The elements of a data 
set represent unique occurrences of an object, such as 
warehouse number, used in the problem as a basis for 
decision or calculation. What objects are used and how 
many unique occurrences of each must be represented in 
the IPS at anyone time depend on how the problem 
definer interprets the problem. 

These cardinality specifications eventually will help 
the system designer determine how much storage space 

* A pair of right-angle brackets, ( ), will be used to indicate an 
ordered n-tuple (here a 2-tuple). 



may be required for any data organization design which 
he considers. 

The concept of data set may be extended to higher 
levels. Data sets/O may be related by a named set 
membership association. The problem definer then 
describes processes in terms of operations on these 
associations as well as data items. For example, an 
updating process might be defined for INV (inventory) 
where INV is the data name associating the data items 
WHNO (warehouse number), ITNO (item number), 
and QTY(quantity). Nothing is said about ordering or 
logical structure on INV except the specification of set 
membership. In set-theoretic terms INV is a subset of 
the unordered cross-product of the three data sets/O. 
INV names the data set/l (data set at level one), the 
next level above its highest level component. 

Such set membership relationships may be visualized 
in a non-directed graph as a tree in which data set names 
are associated· with vertices and dotted arcs represent 
membership relationships. A graphic representation of 
the data set/l INV is given in Figure 1. 

A data set/n (data set at level n) (n;?: 1) may be 
thought of as a set of (distinguishable) ordered pairs. 
Each ordered pair is unique within the data set/no The 
first component of the pair is the data name of this data 
set/no The second component of the pair is an unordered 
m-tuple. Each component of the unordered m-tuple is an 
element (itself an ordered pair) of a data set/j 
(05::j5::n-l). At least one component of the unordered 
m-tuple is from a data set/(n-l). The term data set 
component refers to a component of this unordered 
m-tuple. A data set component is referenced by its data 
name. Data set element refers to a unique member 
element of the data set/no Component instance refers to 
the instance of a data set component in a given data 
set element. Figure 2 gives an instance of the data set 

• :oN 
It' 

I 
, 

, , 
, , 

, " , " , " , " , " , " , • , " • • • 
DBO l'1'lfO qI'Y 

Figure I-Graph representation of data set INV 

Automatic Design of Data Organization 189 

<BY, {<1I00,) , (I'l'IJO,2) , (qrY,2 >}> 
<DV, i <WOO,l) , (I'l'lf0,)) , (qry,7>}> 

<In', {(1ft0,1) , (WOO,) , <CIl'T,l)}> 

(DV, { (CIl'Y,2) , (1100,2) , (IftO,2>1> 
(DV, I (WBlfO,) , (IftO,) , <qrY,7>}> 

Figure 2-Instance of data set INV 

INV. * The data set contains five data set elements. The 
data set components are WHNO, ITNO, and QTY. 
(WHNO, 3) is a componentinstance of WHNO in three 
data set elements. 

The concepts of cardinality and cardinality relation
ships, described above for data sets/O, are extended to 
data set/no As with data sets/O cardinality specifica
tions for data sets/n must be given by the problem 
definer. 

According to the above definitions a data set/n 
element is unique within its data set. However, multiple 
instances of the same data set element may appear as 
component instances in a data set at a higher level. In 
Figure 2 (WHNO,3) is a unique data set element of 
WHNO but is a component instance in three data set 
elements of the data set INV. This multiplicity of 
occurrence of the same data set element is referred to 
here as redundancy. The amount of redundancy-the 
multiplicity of occurrence of the same data set element 
-in a data set/n is determined by cardinality relation
ships among the component data sets, by the cardinality 
of each component data set, and by the association 
of data sets defined by the problem definer. 

The design of logical data organization may be viewed 
as a specification of the amount of redundancy and 
ordering of data set elements and component instances. 
For the design process to consider as many alternative 
logical structures as possible, as little structure-re
dundancy reduction and ordering-should be implied by 
the problem definition. The above view of data sets 
admits as much redundancy and as little ordering as the 
problem definition can allow and still be complete and 
concise . 

Logical data organization 

The first problem for the system design process is to 
take a specification of these data sets and, by performing 

* A pair of braces { }, will denote an unordered m-tuple. 



190 Fall Joint Computer Conference, 1970 

,., INV , , .. 
, 

• • ,., STOCK 
WHNO CITY 

• • 
ITNO QTY 

Figure 3-Graph representation of revised data set INV 

a sequence of operations, obtain a specification of logical 
data organization for the data set. Logical structure is 
provided for two reasons. First, the logical structure 
maintains in some form the membership associations 
established and referred to by the problem definer in his 
problem statement. Second, the logical structure pro
vides a path or sets of paths to any element of the 
structure. Logical access processes, for example binary 
search, depend on such paths. 

The logical structure of data may be visualized as a 
directed graph and will be called a data structure. Each 
vertex of the graph represents either a data item or a 
data structure. A data item or data structure repre~ 
sented by a vertex will be called a data structure 
component. An arc of the graph then represents a logical 
ordering relationship between two data structure 
components. Such a directed arc is an ordered pair of 
data structure components and will be called a connec
tion. The logical connection described here is the 
connection which will be represented directly in storage 
by a fixed or variable distance in the address space of the 
storage. A data structure can then be viewed as a set of 
connections-that is, a set of ordering relations among 
its data structure components. A series of contiguous 
connections, called a logical access path, may be formed 
between two data structure components. Logical access 
processes use these paths to access components in the 
structure. A specification of data structure is a pattern 
which when applied to an instance of a data set yields 
an instance of the given data structure. 

Consider the data set INV, revised and described by 
the non-directed graph given in Figure 3. INV has been 
redefined to be a data set/2. An instance of data set INV 
is given in Figure 4. To avoid the confusion of mUltiple 
brackets, the depiction of the data set instance in 

Figure 4 omits the bracket symbols of Figure 2 and 
factors the data names to the heading of the figure. Each 
circled single data value represents a data item instance. 
Data set membership relationships are represented by 
bounding lines in the heading. Each entire row repre
sents a data set element of INV. Each column represents 
instances of the specified data item. While a horizontal 
ordering of data items has been introduced in the figure 
for ease of reading, it must be remembered that this 
ordering is only artificial: the data set components 
WHNO, CITY and STOCK actually form an unordered 
3-tuple and ITNO and QTY form an unordered 
2-tuple . 

In the development of a data structure from the data 
set INV the system designer might specify the connec
tions (WHNO,CITY), (CITY,STOCK) and 
(WHNO,STOCK). Similarly the connections (ITNO, 
QTY) and . (QTY,ITNO ) might be specified within the 

. data structure developed from STOCK. The data 
structure· components of the data structure developed 
from INV are WHNO and CITY, which are data items, 
and STOCK which is itself a data structure. The 
structure indicated so far is depicted in Figure 5a. For 
convenience, INV and STOCK will temporarily be the 
names given to the data structures developed from the 
data sets INV and STOCK. 

Consider now the connection from WHNO to 
STOCK. This connection creates an ambiguous 
reference because there are t.wo data structure compo
nents in STOCK. If a logical access path is to be 
constructed from, say, WHNO to the data structure 

, DV , 
r-- S'l'OCIC~ 

lIDO Cl'l'Y I'l'110 Cll'Y 

G) ® ® ® 
CD @ @ (j) 

G) ® Q) (!) 

® @ ® ® 
G) ® Q) (j) 

CD @ ® @ 

® @ @ ® 

Figure 4-Instance of revised data set INV 



Automatic Design of Data Organization 191 

(a> 
,. 

DV , .. , " .. • • • • • .. • .. I 

STOCIC 

, 

(b) 

(0) 

(el) 

Figure 5-Development of a data structure for INV 



192 Fall Joint Computer Conference, 1970 

STOCK, then through STOCK to QTY, the questions 
can be raised: At what point or points, ITNO and/or 
QTY, can the path enter the data structure STOCK and 
at what point or points can the path exit STOCK? What 
is the precise path from WHNO to QTY and out to 
another component? 

It is important that this ambiguity be resolved. When 
the data structure is represented in storage, the pro
grams which represent 'the logical access processes will 
operate on the storage representations of the logical 
access paths in order to access a given component 
representation. The ambiguity in the path from 
WHNO to QTY must be resolved if the program 
representing the logical access process is to reference the 
representation of QTY from the representation of 
WHNO. 

The ambiguity is resolved here by designating one or 
more of the data structure components as entry 
components and one or more components as exit 
components of the given structure. A data structure 
component may be an entry component, an exit 
component, both, or neither. The set of entry and exit 
components will be called the boundary of the data 
structure. Since a data item may be considered an 
elementary data structure, the boundary of the data 
item is the data item itself. A data item is its own entry 
and exit component. 

Thus, the connection to a data structure means a 
logical reference to its boundary; that is, to each of its 
entry components. A connection from a data structure 
means a logical reference from each of its exit compo
nents. This interpretation of. connections makes no 
assumptions about the storage representation of the 
connection or of the boundary. When the boundary 
consists of multiple entry and exit components the 
logical access process must contain the logic for deciding 
through which entry and exit component the logical 
access path should go. 

In the graph depiction of a data structure the 
boundary may be represented by broken arcs from the 
vertex representing the data structure to the vertices 
representing entry components; and by broken arcs 
from the vertices representing exit components to the 
vertex representing the data structure. The graph 
representation of the data structure then has a vertex 
denoted by the name of the data structure and a 
sub-graph representing the logical relationships among 
the data structure components. The arcs representing 
the boundary specify which subgraph is associated with 
which data structure vertex. 

In the data structure INV, Figure 5b, WHNO has 
been designated as the entry component of the data 
structure INV and STOCK as the exit component. 
ITNO has been designated as both an entry and an 

exit component of STOCK. QTY occurs also as an exit 
component of STOCK. The boundary of INV is the 
component set consisting of WHNO and STOCK. 

One piece is still missing from the picture of a data 
structure. An instance of a data set may contain 
multiple instances of its components. For example, for 
each WHNO there may be one CITY but many 
STOCKs. In the data set INV the same WHNO 
instance and CITY instance, for example (WHNO,3) 
and (CITY,A) in Figure 4, were associated redundantly 
with each of three different STOCK instances. The 
logical design of the data may specify that for each 
STOCK instance the corresponding WHNO and CITY 
instances will be repeated and maintained in the logical 
structure. In other words full redundancy of data will be 
maintained. If this design is implemented in storage, the 
same values of WHNO and CITY will be stored for 
each related instance of STOCK. On the other hand the 
logical design may specify that only one occurrence of 
the redundant WHNO and CITY will be maintained 
and with that occurrence of WHNO and CITY will be 
associated a new data structure each of whose compo
nents is one of the related instances of the data structure 
STOCK. The redundancy of WHNO and CITY has 
been reduced. This structure is depicted in Figure 5c. 
A structure of multiple instances of the same data 
structure is sometimes called a repeating group. 

Within this newly created structure the instances of 
STOCK for a given WHNO/CITY combination are 
given some ordering, e.g., ascending numerical order by 
ITNO value. In addition, a boundary is specified for 
this new data structure; for instance, the entry com
ponent is the numerically first STOCK (f(ITNO» and 
the exit component is the numerically last STOCK 
(l(ITNO». In the graph these ordering and boundary 
specifications can be attached to the arcs to and from 
the STOCK vertex. The system designer may give a 
name to this new structure, as nS(1) in Figure 5c. 

Assuming the given redundancy reduction, one can 
apply similar reasoning at the level of INV. According 
to the cardinality relationships given earlier, several 
instances of the data structure for INV will occur in an 
instance of the data structure, one for each instance of 
WHNO. Each instance of INV will have the logical 
structure described in Figure 5c. This new structure has 
three components: WHNO, CITY, and nS(1). In each 
instance of INV, WHNO and CITY appear once and 
are connected to a data structure whose components are 
instances of STOCK. The data structure, nS(O), 
combining all instances of INV structure will be an 
ordering of instances and will have a specified boundary. 

The complete specification of the data structure is 
given in Figure 5d. The design gives a specification of 
both ordering and redundancy and establishes the 



network by which a data structure component may 
logically be accessed. Note that the membership 
relationships given by the problem definer have been 
maintained. 

Associated with a data structure is one or more 
logical access processes which function to find or access 
the relative logical position of a component instance in 
an instance of the data structure. A logical access 
process uses contiguous connection instances to con
struct a path to the relative position of the desired 
component instance. For example, to find the data value 
of CITY for a given data value of WHNO, an access 
process for the above structure might create. a path 
which starts at the entry component instance of the data 
structure DS(O) and courses through each instance of 
INV until it finds the given WHNO value which 
connects to the required CITY value. In each instance 
of INV the path leads from WHNO to DS(l) and exits 
via the DS(l) vertex. The access path does not course 
logically through the instances of STOCK. 

From the point· of view of the system designer a 
logical access process is like a problem-defined process. 
The system design process must incorporate it with the 
problem-defined processes into the program structure. 
Any data which the logical access processes need in order 
to function properly are designer-defined data sets which 
themselves must be organized logically and physically. 
At this point the system designer becomes a problem 
definer. 

Physical organization 

Physical organization of data means here the IPS 
storage representation of the given data structure. Two 
degrees of physical organization should be recognized: 
relative organization and absolute organization. Relative 
organization involves the manner in which the data 
structure components, connections, and boundary of a 
data structure will be represented in IPS storage. Such a 
specification involves questions of numbers of cells of 
memory required, sequential or non-sequential storage 
of components, header cells, etc., but not the actual 
locations of the data in storage. Absolute organization 
involves the actual locations of the components, 
connections, and boundary representations in storage. 
Absolute organization is specified by a set of storage 
assignment processes and must maintain the specified 
relative storage organization. In the following discussion 
major consideration is given only to the relative 
organization. 

For the design of relative physical organization a 
relative storage area is defined here. This conceptual 
storage area is an ordered set of cells. Each cell is 

Automatic Design of Data Organization 193 

Poai tion 36 y- Length 
I +-- b1ta-'0. , ......... , ......... 

1, ......... J 
2. ~---~r"''''~", 

!: r----.,;.----:O ... - ... ~ ... I ............... ~ I:--__ ---!l Ai 

5. r'" ............ 1 I 
6. ~-..........".. ... -... -... ~L ... 
7. I ......... ... 
8.1 ~ -"'-"'-... --~I ......... ...-r-------..;;:... 

9'1 ...... .J ...... "'1' I 
10. :......... ... _ r[ ... ~~ ..................... )t------!l ~ 
11. I ......... > -. - -

..... - ..... .............. ..... 

... ... ... : : ~'T-I ... -..;. ... ""'------.> I 

1 
Bode A 

J 
Figure 6-Storage node A in relative storage 

uniquely identified by an order-relative position and a 
length. Cells are non-overlapping. The length of a cell is 
measured in common units, such as bits. 

Looked upon as elements of a set, and regardless of 
what they will represent, the cells in relative storage 
may be grouped together conceptually in many different 
ways. A storage node, or simply node, is defined to be a 
collection of elements each of which is a cell or a storage 
node. The cells in a storage node need not be contiguous 
relative to the ordering. In Figure 6 node A consists of 
three elements: two nodes and a cell. A single cell may 
be regarded as an elementary node. 

For convenience in referencing a node relative to 
another node a measure of separation between the two 
nodes is defined. A separation between two nodes will be 
defined as the number of units of length, bits or words 
for instance, which, according to the given order-relative 
positions of the cells in relative storage, separates a 
reference cell in one node from a reference cell in the 
other node. The ceJl from which reference is made in the 
given node to another node will be called an exit cell 
of the given node. The cell to which reference is made in 
the given node from another node will be called an entry 
cell. The reference cells of a node will be called the node 
boundary. An elementary node or single cell is its own 
entry and exit cell. 

Specification of entry and exit cells for a node is 
required for much the same reason that entry and exit 
components are specified for a data structure. If 
particular boundary cells were not specified, then 
reference to or from a multi-cell node would be am
biguous. In Figure 6 cell 0 has been designated the entry 
cell of node A (denoted by Ai). Cell 7 has been designated 
the exit cell (denoted by A 0). 

It should be noted that the choice of the boundary 



194 Fall Joint Computer Conference, 1970 

3. 
4: 

8: 

9: 

B. 
~ 

Figure 7-Storage node B 

1 
Node B 

J 

of a node in the conceptual relative storage is arbitrary. 
Multiple entry and exit cells may be designated in a 
node. Several different separations can occur between 
two nodes if one or both have multiple entry and exit 
cells. In Figures 6 and 7 only a single separation has 
been defined between nodes A and B. This separation is 
one cell-Ao to B i . Figure 6 and following assume 
that all cells have the same length and that separation 
is measured in number of cells. 

The system designer must specify first how to 
represent a data structure by a node in the conceptual 
relative storage and then specify a storage assignment 
process for mapping the node into absolute storage. The 
relative storage representation of the components, 
connections, and· boundary of a data structure will be 
called here a storage structure. 

A data structure component is represented in the 
relative storage by a node. If the data structure 
component is a data item, this node may be a set of cells 
which are contiguous relative to the ordering of relative 
storage. In Figure 8a the designer has decided to 
represent the data item WHNO by a two-cell node with 
the first cell being both the entry cell,WHNO i , and the 
exit cell, WHNO o• The system designer has decided that 
the first cell of the node will be the reference cell in any 
future separation specifications. The specific order
relative position of this node in relative storage is 
unimportant. Only the separation between it and other 
element nodes of the given storage structure is im
portant. Figure 8a also represents data items CITY, 
ITNO, and QTY. The number of cells required to 
represent the data item is determined from Hie problem
defined size of the data value. This representation 
assumes that only the data value is to be represented in 
the node. 

If the data· structure component is a data structure 
itself then the storage structure maybe defined 
recursively by representing the components, connec
tions, and boundary of this component. 

A connection in a data structure may be represented 
in one of two ways: 

1. by a fixed separation between an exit cell of the 
node representing the first component and an 
entry cell of the node representing the second 
component; 

2. by a variable separation which will not be given 
actual value until storage assignment takes place. 

In either case the IPS will maintain a record of' the 
separation. In common practice the fixed· separation is 
recorded as a fixed address offset in program instruc
tions. To' handle variable separation the system 
designer may define another data item, a pointer, to be 
associated with the data structure component from 
which the connection is defined. The system designer 
also defines maintenance processes to update the pointer 
and perhaps other associated data sets, such as headers 
and trailers,· to aid in maintenance.· In Figure 8b the 
connection (WHNO,CITY) has been represented by a 
variable separation in the form of a pointer. A fixed 

(a) 

'lHN°l [ 
WHNO 

] WDOo CITyil CITY I C1TYo 
I I 

[ I'l'NOi ITNO 
] ITNOo qI'Yi qI'Y I qI'Yo I I 

(b) 

'lHN°i [ 'lHNO ] WHNOo I'l'NOi [ 
ITNO 

] I'l'NOo 

~ 
I I 

qI'Yi I Ql'Y I Q'l'Yo 

OITYi I CITY , CITYo 

(c) 

[ STOCK1 ITNO J STOClCo 

I r 
I qI'Y I, STOCKo 

Figure 8-Development of storage structure 



separation of two cells has been specified to represent 
the connections (ITNO,QTY) and (QTY,ITNO). 

The data structure boundary is represented by a node 
boundary developed in the following way. The designer 
may specify that the boundary of the node representing 
the whole data structure consists of the entry cells of 
nodes representing the data structure entry components 
and the exit cells of nodes representing the data 
structure exit components. Alternatively, the designer 
may incorporate additional cells in the node and define 
them to be the entry and exit cells of the node. He then 
defines a fixed or variable separation between these cells 
and the respective boundary cells of nodes representing 
the data structure entry and exit components. The 
additional cells and the boundary cells of nodes represent
ing the data structure entry and exit components to
gether represent the data structure boundary. 

In terms of the graph representation of a data 
structure, for instance Figure 5d, the use of additional 
cells corresponds to treatment of the broken arc, say 
from DS(l) to STOCK, as a true connection; DS(l) is 
represented by the additional cells and the connection is 
represented by fixed or variable separations between 
these additional cells and the ENTRY and exit cells for 
the first and last instances of STOCK, respectively. If no 
additionaJ cells are used, the broken arc is not viewed as 
a true connection and is therefore not represented 
explicitly in relative storage. 

In Figure 8c the data structure boundary of STOCK 
has been represented by the entry. cell of the entry 
component ITNO and the exit cells of the exit compo
nents ITNO and QTY. 

Associated with a storage structure is one or more 
storage assignment processes. A storage assignment 
process will apply the relative storage structure design 
to an instance of the data structure and assign actual 
physical hardware memory locations. The storage 
assignment process is responsible for maintaining all 
"data about data" which is necessary for assignment of 
positions and all positional information which is 
necessary for use by the implemented logical access 
processes. The anticipated number of length units, e.g., 
cells, required by a node to represent a data structure 
instance may be developed from the size of data item 
nodes, the cardinality relationships given by the 
problem definer, the amount of redundancy defined by 
the system designer, and the requirements of pointers 
and related additions. See McCuskey3 for details. 

A storage assignment process, like logical access 
processes, must be incorporated with the problem
defined processes to create program structure, whether 
at the operating system level or elsewhere. Any "data 
about stored data" which the storage assignment 
process requires is, from the point of view of the system 

Automatic Design of Data Organization 195 

r
I 

- -- - --I 
DlISIGlf PROCBSS I 

I DA.TA. 

I STRUCTURE 

I DESIGlIBR 

DESIGNER 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I STRUCTURE r - - - - - - - - - - - --.J 

I DESIGNER I 
I ~I----~ 

L ________ --l 

Figure 9-Data organization design process 

designer, just like problem-defined data-data sets 
which must be given logical and physical structure. 

DESIGN PROCESS 

The goal of the concept descriptions above is to 
provide a framework within which . to formulate an 
algorithm which, given a specification of problem
defined data, would specify how the actual data will be 
stored and accessed in the IPS. Figure 9 gives a very 
general flow chart of a design process for data 
organization. 

In the design process the data structure designer 
accepts a specification of data sets and generates a 
specification of data structure (components, connec
tions, and boundaries) and of logical access processes. 
While generating a specification of data structure, the 
designer acts itself as a problem definer; the problem is 
logical access to components of the data structure. The 



196 Fall Joint Computer Conference, 1970 

'\ DS(O) 

f'(1IBRO) I I 1(1UIIO) 

\/ BY 
./ ........... 

,; "-
,/ "-

,/ '\. 
/ "-

// \ 
/ \ 

t \ 
.-----...-.~.~ ~ 

1IBRO erl'Y / ~ , 
/ / '\ 

I / \ 
/ / \ 

/ /1 \ 
~~\ 
;.~ 

Figure 10-Result of process D 

definition of logical access processes must be input to 
the process structure design in order to be incorporated 
in the program specification. The structural information 
must be specified in terms of data sets and then input to 
the design algorithm. 

The storage structure designer accepts the specifica
tions generated by the data structure designer and 
produces a specification of storage structure (relative 
storage representation of data structure components, 
connections, and boundaries) as well as the storage 
assignment processes which will map the storage 
structure into absolute storage. Like the data structure 
designer, the storage structure designer is a problem 
definer; the problem is storage assignment. The storage 
assignment processes and information required by those 
processes must be defined and run through the design 
algorithm. 
The process structure designer organizes the original 
problem-defined processes, the logical access processes, 
and the storage assignment processes and generates 
program specifications. How the logical access processes 
are represented in programs depends on how the storage 
structure and storage assignment processes have been 
designed. How the storage assignment processes are 
represented in programs depends on the characteristics 
of the absolute storage of the IPS. 

In the context of this general picture of the design 
process only the specification of data structure and 
storage structure is considered below. An initial attempt 
at a method of generating alternative designs is 
described. The purpose of this attempt was to gain an 
understanding of what decision points are involved. No 

decision-maker has been developed. How a decision 
should be made at each point depends on the relation 
between the designed structure, the processes operating 
on it, and the performance criterion. As yet this relation 
is not understood . 

Consider the specification of data structure for set 
INV (Figure 3). Suppose first that the given redundancy 
is to be retained. Then a general, recursive data 
structure design procedure might be: 

Process D 

1. For each component of the given set, if the 
component is not a data item then apply Process 
D recursively. 

2. Define connections among the components of the 
given set. 

3. Define a boundary from among the given 
components. 

The process assumes all instances of a component are 
structured alike. A component may be a data set 
component or, in a repeating group, a data structure 
instance. The result of an application of Process D to 
INV, yielding a structure similar to that in Figure 5d, 
is given in Figure 10. Note that redundancy ofWHNO 
and CITY will be maintained here while in Figure 5d it 
is not retained. 

Suppose now that Process D has not been applied to 
INV. Suppose one wishes only to reduce redundancy. 
Reduction of redundancy may be accomplished in the 
following way: 

Process R 

1. Partition the original set according to the data 
values of instances of one or more components. 
A partition element is a subset of the original set. 
In a partition element each criterion component 
maintains mUltiple instances of the same data 
value. 

2. Replace the partition element by a new element 
in the following way: 
a. one instance of each criterion component 

replaces the multiple instances; 
b. the remainder of the original subset is grouped 

by itself as a separate element. 

The replacement operation will be called here 
truncation. The remainder will be called the truncated 
set. Figure 11 develops from Figure 4 a partition and 
truncation of INV according to the values of WHNO. 
The deleted component instances are blacked out. As in 
Figure 4 rows represent (unordered) data set elements 
and columns represent (unordered) data set components. 



In Process R step one establishes which redundancies 
may be reduced in step two. The partition in Figure 10 
establishes the redundancy of WHNO by definition; 
redundancy of CITY is established because the problem 
definer specified only one CITY instance per WHNO 
instance. The truncation operation performs the actual 
redundancy reduction. Neither, one, or both of WHNO 
and CITY may have redundancy reduced. In Figure 11 
both were chosen. 

These operations may be extended. A sequence of 
partitions leads to several levels of redundancy reduc
tion. The sequence of partitions establishes a set of 
candidates for redundancy reduction at each level. The 
candidates are the criterion components established at 
that level or above and other components which are in 
one-to-one correspondence to criterion components. 
Starting at the deepest level and working upward, the 
design process can decide which candidates to choose 
for redundancy reduction. For a given candidate to have 
its redundancy reduced to a minimum its redundancy 

, must be reduced at each level from the deepest up to the 
level at which it originally entered the set of candidates. 
If its redundancy is not reduced at the deepest level then 
its full redundancy is maintained. Partial redundancy 
for a component is established by not selecting the 
component for reduction at some level in between. Once 
the component fails to be chosen it drops out of the set 
of candidates; its redundancy is fixed. 

This expanded redundancy reduction scheme at each 
level factors out selected components to the next higher 
level and leads to a hierarchical form of organization. 
The scheme may be combined with Process D above to 
form Process DS: 

Process DS 

1. Define n-Ievel partition. 
2. For level n, n-l, ... , o. 

a. Define a truncation at this level. 
b. In the truncated set. 

1. apply Process D with data set components 
and, possibly, truncated sets as 
components. 

ll. apply Process D with truncated set 
elements as components. 

Operation 2.b.i specifies the structure of an element 
of a repeating group or data set. Operation 2. b.ii 
amounts to specifying the structure of that repeating 
group. Once a component or truncated set has been 
structured it is a data structure component. 

Figure 5d shows the pattern resulting from one 
application of Process DS to INV. Figure 12 shows the 

Automatic Design of Data Organization 197 

~----------DN , 

WHNO CITY 

parti tion I ~ 
element "-

<D 

I: 

r--- S'1'OCJ( ~ 
l'l'BO QTY v ..... c•ti .. 

I~ ~] .. . 
101 
@ 

® 
Q) 

Figure 11-Partition, truncation, and redundancy reduction 

results of applying this pattern to the instance of INV 
given in Figure 4. 

Consider next the specification of storage structure. 
A data structure INV has been specified in Figure 5d. 
The cardinality relationships among WHNO and 
STOCK are known. Following the definitions given 
earlier, one can specify a storage structure design 
process as follows: 

Process SS 

1. Represent each data structure component. 
a. If the component is a data item then specify 

the storage representation of its value and 
represent the data item by a set of contiguous 
cells large enough to contain the storage 
representation of the value. 

b. If the component is a data structure, apply 
Process SS recursively. 

2. Represent each connection by either a fixed 
separation or variable separation. 

3. Represent data structure boundary by a node 
boundary. 

Figure 13 shows the result of an application of this 
process to the instance of the data structure given in 
Figure 12. The decisions shown in Figure 8 have been 
repeated here. Note that in the storage representation 
of data structure DS(l) the entry and exit cells of the 
node are additional cells; the broken arcs between 
DS(l) to STOCK in Figure 5d have been treated as true 
connections. These additional cells may be viewed as a 
header and a trailer for the data structure DS(1). 
Variable separation represents connections among in
stances of STOCK in DS(l) and among instances of 
INV in DS(O). One could question the value of this 



198 Fall Joint Computer Conference, 1970 

I 
I 
I , 
I 
I 
• , 
I 
I 
\ 

Figure 12-Instance of data structure 

design if one knew what the data usage was to be. 
However, the important point is that the storage 
structure process has represented all data structure 
components, connections, and boundaries as given in 
the data structure specification. 

Processes DS and SS have been implemented in 
ALGOL on the B5500. 

CONCLUSION 

Comments and implications 

The intent of the research on data organization 
described above was to build a model of the data 
organization process and to develop a method for 
generating specifications of alternative data organiza
tions. The set-theoretic approach was helpful in 
abstracting and precisely defining the component pieces 

of the data design problem. The model of data organiza
tion and the initial design procedures, as described 
above, are based on an ideal. The ideal is that a problem 
definer can provide a complete, concise and consistent 
problem statement which is completely sufficient for a 
system design process to generate specifications of an_ 
IPS to solve the information processing problem defined 
in the problem statement. One goal of Project ISDOS is 
to develop a problem statement language to facilitate 
such problem definition. Another goal is to define a 
design procedure to generate specifications. The follow
ing comments and implications must be viewed relative 
to this ideal. 

First consider data sets. The set-theoretic approach 
was stimulated by Information Algebra described in 
CODASYL.4 Many of the ideas developed there find 
similar concepts in the present formulation. For in
stance, property and value correspond to data name 
and data value. Property space corresponds somewhat 

~L 1 ] 

~I I 

~. 
I I 
I I 

f !lr' ;'f==t=. ~'~--L 1 ] ! w ..... (O).~ 

~ 
I 3 I 

I 

Figure 13-Instance of storage structure 



to data set, except that property space is a set of ordered 
n-tuples. However, the goal of Information Algebra was 
a non-procedural language. The concepts of data in 
themselves do not lead to a solution of the problem of 
automatic design. The abstract formulation was also 
influenced by Young and Kent5 who specify information 
sets and relationships which are the counterparts of data 
sets and cardinality relationships. 

Throughout the current paper, data sets were 
assumed to be problem-defined, or in special cases 
system-defined. In order to obtain a good system 
design, the designer may wish to redefine and coalesce 
some problem-defined data sets before proceeding to 
logical and physical organization. Such redefinition does 
not alter the logical and physical structure design 
processes just described. A pre-processor--data set 
redesigner-is introduced between the problem state
ment and the data structure designer. 

Next consider data structures. Several levels of 
meaning are commonly attached to the term "data 
structure". At the source languagelevel,e.g.,inALGOL, 
the programmer considers an ARRAY to be a data 
structure and thinks in terms of, say, dimensions. 
However, the structure represented in storage may have 
array elements in row major order. The programmer 
may never see evidence of this actual logical structure 
(row major order) but the IPS operates on the directly 
represented structure and must be designed to handle it. 
The term data structure, used in this paper, refers to the 
latter structure, the logical structure which is actually 
and directly represented in the IPS storage. In order to 
consider all possible alternatives, including structures 
which perhaps have no common names, the design 
process must operate in terms of the structure actually 
represented in storage. 

The design procedure for data structures involved 
partitioning, truncation and ordering. The given pro
cedure developed a generally hierarchical logical 
organization. The implications of applying multiple 
partition sequences and truncation to the same data set 
must be studied. Multiple partitioning would be 
required to develop more complicated, IDS-type struc
tures involving multiple paths through the same data 
structure components. 

The idea of generating logical access processes for a 
given data structure has interesting implications. In 
current practice data sets are structured to take 
advantage of the known, good access processes. For 
instance, data is often organized to take advantage of 
binary search or indexed sequential access. Often the 
data and its usage may not be suited to the known access 

Automatic Design of Data Organization 199 

processes. Perhaps what is needed is a procedure to 
generate logical access processes to fit the given data 
structure. The appropriate access process would be 
chosen dynamically at run-time according to the 
current status of the data. 

Consider next storage structures. The distinction 
between storage structure and "data structure" has 
been made before by others. See for instance D'Imperi0 6 

and Knuth. 7 However, their distinctions are apparently 
not specific enough to suggest the automatic design 
generator desired here. 

The idea of generating storage assignment processes 
to fit a given storage structure has implications similar 
to those of logical access process generation. Instead 
of designing a storage structure to fit the results of a 
given storage assignment process, perhaps we should 
have a generator to provide assignment processes 
tailored to the given storage structure. Within the 
context of automatic design and implementation of IPS 
these alternatives are worth considering. 

Finally, the utility of design procedures which 
generate alternatives is minimal until a decision-making 
process is developed to select among the alternative 
designs. The decision-making process relates the data 
organization to data usage, i.e., to the process and 
program structure design, and will require much more 
research. 

REFERENCES 

1 J F NUNAMAKER JR 
On the design and optimization of information processing 
systems 
PhD Dissertation Case Western Reserve University 1969 

2 W A McLUSKEY 
Toward the automatic design of data organization for large
scale information processing systems 
PhD Dissertation Case Western Reserve University 1969 

3 Ibid 
4 CODASYL DEVELOPMENT COMMITTEE 

(LANGUAGE STRUCTURE GROUP) 
An information algebra 
Comm ACM Vol 5 No 4 pp 190-204 April 1962 

5 J W YOUNG JR H K KENT 
Abstract formulation of data processing problems 
J Ind Engr Vol 9 No 6 pp 471-479 November-December 
1958 

6 M D'IMPERIO 
Data structures and their representation in storage 
Annual Review of Automatic Programming Vol 5 pp 1-75 
Pergamon Press Oxford 1969 

7 D E KNUTH 
The art of computer programming 
Vol I Addison-Wesley Reading Mass 1968 





Analysis of retrieval performance for selected 
file organization techniques 

by A. J. COLLMEYER and J. E. SHE MER 

Xerox Data Systems 
EI Segundo, California 

IN,:(RODUCTION 

With the rapid development of the Business Data 
Processing technology, numerous Data Management 
Systems have evolved. Many have been written for use 
on a variety of machines, in a variety of applications. 
In each case, the basic limitations on performance are a 
function of the file organization technique(s) supported 
within the system. Apart from such mundane considera
tions as cost, compatibility, etc., the selection of the 
"best" system is frequently reduced to the selection of 
the file organization technique best suited to the in
tended application. Just as a variety of applications 
exist, so a variety of file organization techniques are 
available. File organization techniques are frequently 
classified in terms of their operational characteristics. 
More basic, however, is a classification based on func
tional objectives. Collmeyer1 has described four basic 
types of file organization techniques. The simplest, 
Type 0, is exemplified by the "sequential" organization 
wherein records are filed in the order of arrival* and 
retrieval is accomplished via a sequential (top-to
bottom) search of the file. 

On the other hand, a Type 1 technique embodies a 
store-retrieve philosophy which provides for the ex
peditious retrieval of a record given a key which 
uniquely identifies said record. Techniques of this type 
differ basically in their approach to indexing. By index, 
we mean that instrument which facilitates the location 
of a record given an identifier. There are three basic 
types of indices: Spatial, Tabular, and Calculated. 
With a Spatial Index, records in a file are stored in 
(physical) order according to the values of their re
spective identifiers. Given an appropriate identifier, 
retrieval is accomplished by an intelligent search (e.g., 
binary search) of the file itself. In contrast, the Calcu-

* It is noted that file organization techniques of this type are 
frequently augmented with a pre-store sort. 

201 

lated Index takes the form of an algebraic transforma
tion, T, which converts an identifier into a subfile 
address. ** Here a subfile is defined as a set consisting 
of all records which, under the transformation T, yield 
the same "address." To retrieve a record, its identifier 
is transformed; an address is thus obtained. The 
records stored at this address are examined (by identi
fier) in an effort to locate the record in question. 

The third type of index is the Tabular Index. The 
tabular index approach involves the maintenance of a 
list of identifiers together with their respective record 
addresses. Retrieval is accomplished by searching the 
list for the given identifier, obtaining in the end the 
address of the desired record. The list itself may be 
viewed as a file, wherein each record consists of an 
identifier together with the address of the associated 
record. As a file, this list may be organized in accord
ance with any of the Type 1 techniques here described. 
That is, the index (list) may itself be indexed in one 
of the three methods (Spatial, Tabular, or Calculated). 
To be sure,· the most common method is the spatial 
indexing method. However, the index could just as well 
be organized as a random filet'with a Calculated Index; 
in which case one transforms an identifier to obtain 
the address of the appropriate index subfile. While this 
organization tends to minimize the time spent searching 
the index, it makes sequential processing very awkward. 
A third approach, which affords rapid retrieval without 
degrading sequential processing efficiency, involves the 
use of a (second) Tabular Index. This implementation 
is known as multi-level indexing and will be described 
fully in the next section. 

In the paragraphs which follow, models of the fore
going techniques are developed. These models are 

** File organization techniques of the Calculated Index variety 
are known as scatter storage techniques or "Hashing" techniques. 
t A random file is one in which the physical sequence of records 
has no logical meaning. 



202 Fall Joint Computer Conference, 1970 

INPUT OPERATION OUTPUT 

STEP 1 KEY (IDENTIFIER) SEARCH INDEX 'FILE ADDRESS 

STEP 2 ADDRESS ACCESS MAIN FILE DESIRED RECORD 

Figure 1-Retrieval process-Case I 

analyzed to quantitatively define the retrieval process. 
While this analysis could be extended to define addi
tional performance characteristics ( e.g., sequential 
processing efficiency, insert/delete time), such is out
side the scope of this paper. 

STATEMENT OF THE PROBLEM 

The techniques chosen for this investigation are 
members of a particular class of file organization tech
niques. They are, in the terminology of the preceding 
section, Type 1 techniques of the Tabular Index variety. 
That is to say, each of the techniques makes use of a 
(separate) list of identifier-address pairs to expedite 
the retrieval of a record given its identifier. Each tech
nique thus involves an index file in addition to the 
main file. For the purpose of this study, it is assumed 
that the main file is . organized as a random file. * The 
discussion focuses on three different approaches to the 
organization of the index file; that is, three different 
methods for indexing the index file. 

Case I: Spatial index 

The first technique features a Spatial Index. Rec
ords** within the index file are stored in (physical) 
order according to the values of their respective. identi
fiers. Retrieval (of an index record) is accomplished 
by a search of the file. On finding the appropriate index 
record, the address of the desired data record is ob
tained. The retrieval process is a two-step process 
(Figure 1). The first step is a search of the index file 
for the address of the desired data record. With this 
address, the main file is accessed and the record re
trieved. The time required· to retrieve a record thus 
depends on file parameters, the characteristics of the 
storage media, and the search strategy applied. 

* This is reasonable in view of the fact that we are concerned 
solely with retrieval. Other performance characteristics such as 
sequential processing efficiency are, of course, dependent on the 
organization of the main file. 
** Here a record consists of an identifier-address pair. 

Case II: Calculated index 

The second .. technique employs a calculated index. 
The key (identifier) is transformed to obtain the ap
propriate subfile address. An index subfile is then ac
cessed· in an effort to locate the desired index record. 
In the event the record is not found in its "home" 
location, one of several overflow strategies must be 
invoked. Once located, the index record provides the 
address of the desired data record. Hence the retrieval 
process is a three-step process (Figure 2). As before, 
the retrieval time is a function of the file parameters, 
the characteristics of the storage media, and the over
flow strategy employed. 

Case III: Tabular indices 

The third technique is known as multi-level indexing. 
By this technique K index files are maintained, each 
of which is constructed as a (logically) ordered set of 
sequential subfiles, where a subfile is defined as a chain 
of blocks (frequently a single block). 

Definition: A block is the amount of data physically 
transferred between secondary storage 
and main memory as a result of a single 
I/O operation. The block size is usually 
given in bytes or characters. 

For the purpose of this study, subfiles are fixed at one 
block. The lowest level index file (the K th level) is 
therefore a logically connected (linked) set of blocks 
each of which contains lip to bK index records. In the 
aggregate, this file contains as many records as the 
main file. The next level (index) file is likewise a logi
cally connected set of blocks each of which contains 
up to bK - 1 index records. However, this file serves as 
an index to the Kth index file. Accordingly, it contains 
a record for each subfile(block) of the Kth index file. 
Similarly, the kth level index file (a logically connected 
set of blocks each of which contains up to bk index 

INPUT OPERATION OUTPUT 

STEP 1 KEY (IDENTIFIER) TRANSFORM KEY "HOME" ADDRESS 

SEARCH "HOME" 

STEP 2 "HOME" ADDRESS LOCATION AND ADDRESS 
OVERflOW IF NECESSARY 

SJEP3 ADDRESS ACCESS MAIN FILE DESIRED RECORD 

Figure 2-Retrieval Process-Case II 



records) serves as an index to the k+ 1 index file. The 
retrieval process thus involves K + 1 steps (Figure 3). 

I t is the purpose of this paper to quantitatively 
define the retrieval process for each of the· techniques 
described above. Of particular interest is the mean time 
to retrieve a record, Tr. In the derivation of Tr a uni
programming environment is assumed; i.e., no delays 
are incurred as a consequence of shared equipments. In 
each case, Tr is expressed as a function of the file param
eters, the characteristics of the storage device and the 
search or overflow strategy employed. 

PROBABILITY MODELS 

To quantitatively define the retrieval process in 
each of the cases described above, it is necessary to 
model the search strategies as well as the secondary 
storage devices. In modelling the· search strategies, we 
are particularly interested in the number of blocks 
transported from secondary storage to main memory 
in the course of an index search. This number, repre
sented by j, is a random variable; the distribution of j 
is of course a function of the file parameters as well as 
the search strategy. Once j has been defined, it remains 
only to model the secondary storage devices. :For the 
purposes of this study, we have limited our considera
tion to two types of secondary storage. The first is 
exemplified by the drum, a fixed head device. The 
second is a moving arm device such as the disk. The 
time r required to transport (locate and transfer) a 
block from the media to main memory has been 
modelled for random addressing as well as sequential 
addressing (see Appendix C). 

In modelling the search strategies, we assume that 
each of the m records has the same probability of being 
referenced. With this assumption, we proceed to derive 
the mean retrieval time for each of the several cases. 

IMIUT OPERATION OUTPUT 

STEP 1 KEY (IDENTIFIER) 
SEARCH INDEX FilE ADDRESS (TOP LEVEL) 

STEP 2 ADDRESS SEARCH DESIGNATED ADDRESS 
SUBFllE (BlOCK! 

STEPK ADDRESS 
SEARCH DESIGNATED ADDRESS SUBFllE (BlOCK) 

STEPK+1 ADDRESS ACCESS MAIN FILE DESIRED RECORD 

Figure 3-Retrieval process-Case III 

Analysis of Retrieval Performance 203 

Case I: Spatial index 

In this case, records in the index file are stored in 
(physical) order according to the values of their re
spective identifiers. We shall assume that these records 
are filed in contiguous blocks, where the mean number 
of records per block is denoted by t. If the index file is 
searched sequentially from top to bottom, the mean 
number of blocks transported from the media to main 
memory IS (from Appendix A) 

E[j]= (n+1)/2 
where 

n~m/t 

The mean time to retrieve a record is therefore* 

Retrieval of index record 

where 

~ 

Retrieval of 
data record 

(1) 

(2) 

(3) 

Trand~Mean time to transport a block from the 
media to main memory assuming random 
addressing. 

Tseq~Mean time to transport a block from the 
media to main memory assuming sequential 
addressing. 

If a binary search of the index is performed, the 
mean number of blocks transported in the course of the 
search is (from Appendix A). 

E[j]=q[(n+ 1) /n]-[(2q-1) /n] (4) 

where q is obtained as the solution to 

2q- 1 :::;n:::;2q-1 
and 

n~m/t 

(5) 

(6) 

Figure 4 describes the variation in E[ j] as a function 
of m for several values of t. While the binary search 
involves fewer blocks than the sequential search, it 
does not follow that the binary search is faster. In this 
case the mean time to retrieve a record is given by 

Tr= E[j]Trand + 
~ 

Retrieval of 

Trand 
~ 

Retrieval of 
index record data record 

(7) 

* The expression above assumes that the processing time (CPU 
time) is negligible in comparison to the transport time. This 
assumption is quite reasonable; with present systems, a list of 
100 keys. can be searched in core in less than .5 msec, whereas 
a disk access may require 50 msec or more. 



204 Fall Joint Computer Conference, 1970 

.. / / I 
I SEQUENTIAl. IENCH I T~~_~IIECQII)5P111~ 

/ J / 
/i_~ ! 

,=50 / 
V '(J VT=l00 

~r=~ 

/ / /; ,.- i=50 irr
=l00 --

~ SEARCH 

~ 

, .. 
m ........ OFRECOfI)5 

,'" 

Figure 4-Mean number of blocks transported (Case I) 

An actual comparison of the binary search and se
quential search on the basis of retrieval time is pro
vided in the next section. 

Case II: Calculated index 

With a calculated index, the key is transformed to 
obtain the appropriate (index) subfile address. The 
address obtained via the transformation is the "home" 
location of the desired index record; that is, the address 
of the first of a set of blocks containing the subfile. If 
the record is not found in its "home" location, the sub
file must be transported a block at a time to main 
memory until the record is found or the subfile ex
hausted. Two schemes for mapping subfiles onto the 
media are described in Appendix B. The first is known 
as Linear Probing. With Linear Probing, the media is 
partitioned into n blocks each with a capacity of b 
records. A one-to-one correspondence between blocks 
and subfiles is established. * When the kth block is 
filled, a record belonging to the kth subfile is placed 
in the k+ 1 block, provided there is room. If the k+ 1 
block is filled, the k+2 block is probed, and so it goes 
until a partially filled (or empty) block is found. To 
retrieve a record, the search begins with the "home" 
location. If the record is not found, the next block** is 
probed, and so on. 

In an early paper on Linear Probing, Peterson6 de
scribed the variation in'the mean number of blocks 
probed to retrieve a record. His results, obtained after 

* To accommodate m records in n blocks, n must be greater than 
m/b. 
** The "next block" is the next physical block as well as the next 
logical block. 

a large number of insertions and deletions, are recorded 
in Figure 5. With Linear Probing the mean retrieval 
time is given by Equation 3 above. 

A second scheme, identified as Block Chaining, is 
defined in Appendix B. As with Linear Probing, n 
blocks each with a capacity of b records are allocated 
a priori, one for each subfile. However when the kth 
block is filled, records belonging to the kth subfile are 
placed in a separate overflow block chained to the 
(filled) kth block. Additional overflow blocks are 
added to the chain as needed. With Block Chaining, all 
the records belonging to a given subfile are contained 
in a chain of blocks, separated from those of another 
subfile. The obvious advantage of the Block Chaining 
approach is that a file may be expanded (beyond the 
original m records) dynamically, without restructuring. 
The mean number of blocks accessed to retrieve a 
record is derived in Appendix B and is plotted in Figure 
5. The mean retrieval time is given by Equation 7. 

Case I II: Tabular indices 

With multi-level indexing, K index files are main
tained, each of which is constructed as a sequential 
file. In general the number of levels K is selected so 
that the top level is contained entirely within a single 
block. Under the assumption that the mean occupancy 
of a block is the same for each of the K files, K may be 
obtained as a solution to the following: 

(8) 

Figure 6 describes the variation in K as a function of 
m for several values of t. The mean time to retrieve a 

'\ t-q 

lOO1IIIBdSCllO:BII_ 

~ 
9l=q 

JOIBIIWlN_IMIVq 
MI=q 

~ :.-;: ?? 
-::;-

.-. ===::::-'" :;. .... --- -
01.=.' I 
I J 

Lqll' 
!lN1~~lOO1II ---- 1 !lNr

MNI1 -
S-q 

Figure 5-Mean number of blocks transported (Case II) 



record is simply 
K 

L: frand + 
k=l 

'---v-----' '----v-" 

Retrieval of Retrieval of 
index record data record 

(9) 

If the top level is not contained within a single block, 
the mean retrieval time will be a function of the num
ber of blocks comprising said level, and the search 
strategy employed. Under these circumstances, the 
results of Equations 3 or 7 may be applied, together 
with Equation 9, to obtain an expression for Tr • 

CASE STUDY 

The results derived in the preceding section may be 
used to establish the relative merits of the several 
techniques. To illustrate this procedure, a hypothetical 
application is presented in the form of a brief case study. 
It is assumed that the file in question consists of m 
records. The index file (s), with the exception of the 
top level (Case III), are maintained on a drum while 
the main file is kept on disk. The block size is fixed (for 
all devices) at 1024 bytes. It is further assumed that 
the data records are 512 bytes in length; a retrieval thus 
involves a single disk access. Index records are 16 bytes 
in length (12 bytes for the key plus 4 bytes for the 
address). Therefore each block has a capacity of 64 
index records (b = 64). The drum and disk are char
acterized by the following parameters: 

Mean Latency 
Data Transfer 

Mean Seek 
Mean Latency 
Data Transfer 

Case I: Spatial index 

Drum 

11 = 17 msec 
Xl .43 msec 

Disk 

82 =75 msec 
12 =12.5 msec 
X2 = 4.16 msec 

In this case, the index file is organized as a sequential 
file-a physically contiguous string of blocks containing 
the m index records, ordered by key. We assume for 
the sake of example that the mean occupancy of a 
block is 50 records. This corresponds to a utilization of 
roughly 80 percent (U ~ .80). Under these circum
stances, the mean time required to retrieve a record is 
described in Figure 7. For files of 30,000 records 

. 

Analysis of Retrieval Performance 205 

SOllO:a>I~_" ,l til rO l 

OO&=!.-----

05=t-

az=l - .-
j 

, I 
! 
I 

r~som3Hi-TvL 

Figure 6-Number of index levels (Case III) 

or more, the advantage of the binary search IS 

considerable. 

Case II: Calculated index 

In this case, the index file is organized as a random 
file. Where linear probing is employed, the m records 
are distributed over n blocks. With block chaining, 
n' = n+ tl.n blocks are allocated. Figure 8 describes the 
variation in Tr as a function of m/nb. The utilization 
factors, U (Linear Probing) and U' (Block Chaining) 
are likewise plotted in Figure 8. For a utilization factor 
of .80, the mean time to retrieve a record, assuming 
Linear Probing, is 109.1 msec. With Block Chaining 
(and a utilization' of .80) the retrieval time is 115.2 
msec. Note that in either case, the retrieval time is in
dependent of the size of the file, dependent instead on 
the ratio m/nb where n is controllable via T. 

Case III: Tabular indices 

In this case, K sequential index files are maintained. 
It is assumed here that K is selected so that the top 
level index is contained entirely within a single block. 
Assuming a utilization factor of .80, K is obtained as 
the solution to the following inequality: 

50K - 1 < m ~ 50K (10) 

We further assume that the top level index (a single 
block) is kept in core. The time spent searching the 
top level may therefore be neglected. Hence, the mean 
retrieval time is given by 

Tr= (K-1) (ll+Xl) + (82+12+ x2) (11) 



206 Fall Joint Computer Conference, 1970 

,. 
v 

~ J 

/ ~ 

~ ~SEMCH 

-" ~ r.r 
~ 
~ / 
~ 

~ ~H 
b=84 
U~ .• 

,e' ,t' ,t' 
m NUM8ERCJ= RECatOS 

Figure 7-Mean retrieval time (Case I) 

Figure 9 describes the variation in T r as a function of 
m. For example, when 2,500<m<125,OOO(K=3), the 
mean time to retrieve a record is 126.5 msec. 

SUMMARY 

This paper has presented a general overview of several 
basic file organization techniques. Models were de
veloped to quantitatively examine the retrieval process 
given the characteristics of the storage device (s) and 
the details of the file organization. Attention was 
focused upon retrieval speed in a uni-programming 
environment. This was done to examine the retrieval 
process in a "best case" situation where no I/O queueing 
delays arise. Throughout this analysis it was assumed 
that once a block was transferred to main memory, 
any processing time spent searching the block was 

.- It_J~ 
- _ .Bl()Q(CHA",I~ 

, 

;/ ::--- - ..... 

/ -.... " " 
. " " " " ' ..... ...'" 

/ T, --- --.--- ------T, 

i . ~ 
~ 
5 . ~ 

/ 
T V 

Figure 8-Mean retrieval time (Case II) 

negligible in relation to the I/O time required to 
transfer the block from file storage. 

As can be noted from the CASE STUDY, retrieval 
via the Calculated Index technique is generally faster 
than the other techniques; moreover, Tr is independent 
of the number of records m. However, there are several 
trade-offs which must not be overlooked. The Calcu
lated Index organization tends to complicate expan
sion of the file since once the transformation T is 
established, allocation upon the media is relatively 
concrete (especially with Linear Probing). Also such 
a strategy. is not well suited for sequential processing 
because the transformation T is inconsistent with the 
concept of a sorted key list. Block Chaining allows for 
dynamic expansion of a file, but Block Chaining is 
generally poorer than Linear Probing when there is 
considerable deletion activity. This is due to the fact 
that within a block chain records must contiguously 
occupy the media (starting with the 1st block of the 
subfile), thereby increasing the expected number of 
blocks which must be accessed for record deletion. 
Moreover, Block Chaining can be substantially less 
efficient in media utilization than any of the other 
strategies (especially for large b). 

Although retrieval speed via Tabular Indices (multi
level indIces) is comparable to that of the Calculated 
Index, files organized with multi-level indices are not 
well suited to insert/delete activity due to the fact 
that the contents of all K sequential index files could 
be affected by a single change in the main file. However 
files organized according to this technique lend them
selves to restructuring and sequential prooessing. 

As can be noted from the examples, retrieval speed 
for the Spatial Index case becomes progressively worse 
than that of the other techniques as the size of the main 

I 
g 
! 
is 
~ 
11! 

! 
~ 1111 

!Ii I 
I 

,t' ,e' 
m NlMIEROF RECORDS 

,0' 

Figure 9-Mean retrieval time (Case III) 



file increases. However it can be argued that this or
ganization better supports sequential processing. Yet 
in multiprogramming environments, unless the file is 
dedicated, such an advantage is minimal since several 
independent programs may be concurrently contending 
for service from the same file I/O device(s), thereby 
randomly repositioning the access mechanism (s) with 
the occurrence of each I/O request. 

Little, if any, attempt was made to answer questions 
such as: How should a file be allocated to the media? 
What level(s) of index should reside in core, on drum 
and on disk? These questions cannot be answered 
satisfactorily without considering the frequency with 
which a file is referenced, and, in multiprogramming 
environments, queueing delays2-5 due to other users' 
requests for I/O. Questions dealing with the subjects 
of insert/delete time, efficiency of the multi-pro
gramming scheduling strategy, sequential processing 
time, etc., have likewise been ignored. However, per
formance characteristics such as these can be. investi
gated by extending the framework developed in this 
paper. For example, to examine multiprogramming 
effects, the transport time r might be considered to 
consist not only of the block transfer and device posi
tioning times but also queueing delays due to servicing 
of other program requests which, in order to maximize 
I/O throughput, are serviced according to a "shortest
access-time-first" algorithm.4 

ACKNOWLEDGMENT 

The authors wish to thank L. Lam for his programming 
assistance in the case study. 

REFERENCES 

1 A J COLLMEYER 
File organization techniques 
IEEE Computer Group News Volume 3 Number 2 pp 3-12 
March/April 1970 . 

2·J ABATE R DUBNER S WEINBERG 
Queueing analysis of the IBM 2314 disk storage facility 
JACM Volume 15 pp 577-589 October 1968 

3 E G COFFMAN 
Analysis of a drum input/output queue under scheduled 
operation in a paged computer system 
JACM Volume 16pp 73-90 January 1969 

4 P J DENNING 
Effects of scheduling on file memory operations 
AFIPS Conference Proceedings Volume 30 pp 9-21 1967 
SJCC 

5 G E BRYAN J E SREMER 
The UTS time-sharing system: Performance analysis and 
instrumentation 
Proceedings ACM Second Symposium on Operating 
Systems Principles pp 147-1571969 

Analysis of Retrieval Performance 207 

6 R MORRIS 
Scatter storage techniques 
CACM Volume 11 pp 38-441968 

7 W W PETERSON 
Addressing for random-access storage 
IBM Journal of Research and Development Volume 1 
pp 130-146 1957 

8 T CLOVE 
The influence oj data base characteristics and usage on direct 
access file organization 
JACM Volume 15 pp 535-548 October 1968 

9 B R BLOOM 
Some techniques and trade-offs affecting large data base 
retrieval times 
Proceedings ACM National Conference pp 83-951969 

10 M E SENKO V Y LUM P J OWENS 
A file organization evaluation model (FOREM) 
Proceedings Congress of the International Federation for 
Information Processing (IFIP) pp C19-C231968 

APPENDIX A: SEARCH STRATEGIES (SPATIAL 
INDEXING) 

Consider a file a consisting. of m records· which are 
distributed over a set 0 of n blocks according to the 
value of each record's identifier, where each block con
tains at least one record and sufficient space for as 
many as b records. Let P[i I m,b, n,] denote the prob
ability that an arbitrary block within the set 0 contains 
i records of the file (i.e., b-i records are not allocated 
within the block). The occupancy of any block may be 
characterized by the mean occupancy i . where, by 
definition, i=m/n (i.e., the occupancy of each block 
is independent of its order within the set 0). 

Since blocks within the set 0 must contain at least 
one record and no more than b records, the integral 
number of blocks n which comprise the file varies from 
h to m where h is the smallest integer greater than or 
equal to m/b. Without loss of generality, the fractional 
utilization U of the storage media may be described by 
the relation 

U=m/bn=i/b (A.l) 

where h~n~m. 
Hence the allocation of the file. is characterized by 

the parameters m, b, and n. 

Sequential search 

Assume that each item in a list of n items is equally 
probable of being referenced, and that upon any refer
ence to the list, items are sequentially examined until 
the referenced item is located. Thus given an arbitrary 
reference to anyone of the items, the probability that 
j items (1 ~j~n) must be searched before the desired 



208 Fall Joint Computer Conference, 1970 

item is found is expressed as 

(n)-1 
for j=l 

Pa[j I nJ= [ JrrO-2 
(n-j+ 1)-IJ [1- (n-k)-IJ 

k=O 

otherwise 

whereby 

Pa[j I nJ= (n)-1 15:j5:n (A.2) 

Thus the expected number* of items which must be 
searched (given the search is successful) is 

Es[j I nJ= (n+1)/2 (A.3) 

Binary search 

Consider a list consisting of n items with each item 
associated with an identifier which is a unique positive 
number (e.g., an integer ~1). Assume that items of 
the list are ordered according to their corresponding 
numeric identifiers. Now given an arbitrary reference 
to the list, assume the procedure to locate the referenced 
item is to successively divide the list into· smaller sub
lists, each of which contain the referenced item. At 
each step of the search the list (or sub-list) is divided 
in half by examining the item in the middle of the list 
(or sub-list) and making a decision as to whether or 
not the item examined is the referenced item and if , 
not, a binary decision based upon the sequential order
ing that determines in which part (the upper half or 
lower half of the list) the referenced item resides. Thus 
at each stage of the search if the search is unsuccessful , 
the size of the sampled list is reduced (roughly by a 
factor of ~) until the referenced item is found. 

With this method the referenced item is guaranteed 
to be located in a maximum of q search steps where 
2q

- l5:n5:2q -1 for n~2 and q~2. If each item is 
equally probable of being referenced, the probability 
that j items must be searched (i.e., a search involving 
j steps before the referenced item is obtained) is given 
by 

{

2i-lln for 15:j<q 
PB[j I nJ= (A.4) 

1- (n)-1(2 q- 1-1) for j =q 

Employing this result, the expected number of" 
search steps is 

* The E[.] notation is used to denote the expectation of the 
variable enclosed within the brackets. 

APPENDIX B: SCATTER STORAGE AND 
RETRIEVAL STRATEGIES (CALCULATED 
INDEX) 

Consider a file a which is constructed according to a 
scatter storage technique. Under this method, a trans
formation T converts a record identifier into one of n 
subfile addresses. Corresponding to each subfile there 
is at least one block allocated on the media. For our 
purposes, assume that n sequential blocks are initially 
allocated (one block per subfile) on the media (e.g., 
contiguous sectors upon a disk storage device). 

Now given a reference to an arbitrary record, applica
tion of the transformation T upon the record's key* en
ables one to immediately calculate which block contains 
the record provided the block is not filled, whereby 
only one access is required to retrieve the record. 

If a block becomes filled with b records during the 
construction of the file, there must be some provision 
to accommodate additional records which under T 

map into the same subfile. There are basically two ap
proaches to this overflow problem which for purposes 
of clarity are designated here as "method 1" and 
"method 2." 

Method 1 

Under "method 1" when the kth block is filled then 
an alternate block is chosen from the remaining n - 1 
blocks** according to a "collision strategy."6 

For this study, consider as an example of "method I" 
the commonly employed strategy known as Linear 
Probing.6.7 Under this collision strategy, a record be
longing to the filled kth block is placed in the (k 
modulo (n) + 1) block provided there is room. If the 
k+ 1 block is filled then the k+2 block is probed, and 
so it progresses until an unfilled block is found. 

Now since the transformation T is assumed to be 
perfectly random, the number i of records per subfile 
may be regarded as a random variable distributed ac
cording to the binomial distribution 

Peri 1m, n]= C) [(n)-lJ<[l- (n)-lJ"'-' (B.1) 

with mean min. 
In order to examine the problem of accessing a file 

constructed using linear probing, we rely upon the 
work presented in Reference 7. In an exhaustive study 

* Ideally the transformation T should evenly distribute the m 
records over the set of n blocks. 
** Obviously this can be accomplished providing m ~ nb 



of Linear Probing, Peterson7 empirically derived the 
mean number of block accesses Ee1[j I m, b, nJ re
quired to retrieve an arbitrary record. These results 
are graphically summarized in Figure 5 which displays 
the mean number of accesses versus the utilization 
factor U. 

Method 2 

The second basic approach to the overflow problem 
is designated as "method 2." Here there are two classes 
of blocks-those allocated a priori and those allocated 
because of overflow. Overflow records are kept in 
separate blocks which are allocated as overflow occurs. 

As one example of this method, consider that when 
a block is filled, another block is allocated to the file 
and chained to its filled predecessor. Thus a chain of 
one or more blocks comprise the kth subfile (remember, 
initially there is one block per subfile). Furthermore, 
assume that records are inserted into a subfile in the 
order of their creation, and if any record is deleted from 
a subfile then all records below the removed record are 
relocated such that the media is contiguously allocated 
within the block chain (starting with the 1st block of 
the subfile). Let us call this strategy Block Chaining. 

Hence as opposed to "method 1," overflow is onto 
blocks other than the original set of n, and subfiles are 
physically separated (i.e., no block contains records 
from more than one subfile). 

Let dn denote the number of blocks allocated for 
overflow. Then the total number of blocks n' over 
which the file is distributed is given by n' = dn+n. 
Now employing the result of equation B.l, the prob
ability that there are 7J additional blocks appended to 
the block chain of any arbitrary subfile is given by 

('1+1)b 

Pe2[7J 1m, b, nJ= :E Pe[i I m, nJ (B.2) 
i='1b+l 

where 0 ~ 7J ~ h -1, with h denoting the smallest integer 
greater than or equal to m/b, as before. Hence the mean 
number of blocks is 

EC2[n' 1m, b, nJ=n (1+ ~ ~PC2[1/ 1m, b, nJ) 

and the storage utilization factor becomes 

U' =m/(bEe2[n' 1m, b, nJ) 

where U'~U. 

(B.3) 

(BA) 

N ow given an arbitrary reference to any record 
within the file, the probability that j block accesses* 

* It is assumed that blocks within the chain (in which the refer
enced record resides) are examined in the order of allocation. 

Analysis of Retrieval Performance 209 
\ 

are required to retrieve the referenced record is expressed 

P C2[i I m, b, nJ= (.1.;6+1 {[i- (j-1)bJ/i} 

m 

XPe[i I m, nJ+b :E (l/i) 
j=jb+l 

XPc[i 1m, nJ) 

X {(I-Pe[O I m, nJ)-l} 

for l~j~h-l 

m 

:E {[i- (h-l)bJ/i} 
i=(h-l)bH 

XPe[i I m, nJ 

X {(I-Pe[O i m, nJ)-I} 

for j=h (B.5) 

Therefore with Block Chaining the expected number of 
blocks which must be accessed is 

II. 

E e2[j I m, b, nJ= ~jPe2[j I m, b, nJ (B.o) 
j=1 

APPENDIX C: I/O DEVICE MODELS 

Without loss of generality, let us consider two basic 
file I/O devices designated as "device I" and "device 2" 
where device 1 corresponds to a drum (fixed head 
device) and device 2 is a disk (moving arm device). 
Given these devices, a relevant performance index is 
the time r required to transport (retrieve and transfer) 
a block from the storage media to main memory. In 
the next sections, relatively simple mathematical 
models are developed to quantitatively express r for 
each device type. 

Before proceeding to this analysis, it is convenient 
to establish some common notation. Let P1l (t) represent 
the stationary probability density function for a random 
variable y with respect to the independent variable t 
(where t denotes time), and let Y (s) be the Laplace
Stieltjes transform of the distribution for y (i.e., 

Yes) = j"J e-8 tp1I (t) dt and YeO) =1). This notation is 
o 

employed in that which follows. 

Device 1: Drum storage 

Consider a drum is addressed to transfer a block of 
information. Since with a drum no head motion is 



210 Fall Joint Computer Conference, 1970 

required to position the read/write head(s) over the 
addressed track(s), the drum transport time rl is 
determined by computing the sum of drum latency II 
and block transfer time Xl. Thus, assuming that II and 
Xl are independent 

Rl ( s) = Ll ( S ) XI ( S ) (C.1) 

and the mean transport time is given by 

'11 = - dRI ( S ) / ds 18=0 = 11 + Xl 

Here, if the address is random, it is reasonable to as
sume that the latency delay is uniformly distributed 
over 0 to WI, where WI denotes the drum rotation time. 
Hence with ZI equal to the number of blocks that can 
be transferred in one drum rotation 

'11 = wl/2+wI/ Zl = [WI (Zl +2) J/2Zl If address is random 

(C.2a) 

,If the drum is already positioned when it is addressed 
(as is the case when the access is sequential), there is 
no positioning time (ll =0), whereby 

'11 = wI/ Zl If address is sequential (C.2b) 

Device 2: Disk storage (moving arm) 

Now assume a disk is addressed to transfer a block 
of information. A disk transfer request is analogous to 
a drum request except there is an additional seek time 
S2 required for arm motion to position the read/write 
head (s). Hence assuming disk seek time S2, latency 
time l2, and block transfer time X2 are independent, the 
transport time r2 for device 2 is characterized by 

(C.3) 

Therefore if the disk address is random, the mean 
transport time is expressed 

'12= (82+W2/2+W2/Z2) If address is random (CAa) 

where W2 is the disk rotation period; Z2 is the number of 

blocks transferrable per rotation; and 82 IS derived 
from the seek probability distribution 

82= -dS2(s)/ds 18=0 

If the disk address is non-random, but rather se
quential (i.e., there is no positioning time whereby 
S2=~=O) then 

'12 = W2/ Z2 If address is sequential (CAb) 

APPENDIX D: RETRIEVAL 

Now assume that a given I/O device (device 1 or 
device 2) is addressed j times to retrieve j blocks of 
information with all addresses being either all random 
or all sequential. * Let 'Y represent the total time re
quired to transfer and retrieve the j blocks, then 

res 1 j) = (R(s))j (D.1) 

where R (s ) is the Laplace-Stieltjes transform of the 
block transport time r for the respective device. 

Then removing the conditioning upon j 

res) = :E P[j](R(s)) j (D.2) 
ForAll j 

Hence 

-y=-dr(s)/dsI8=0=- L: jP[jJ(R(S))i-l 
ForAll j 

X dR(s)/ds 18=0 (D.3) 
But 

R(O) =1, -dR(s)/ds 18=0='1, 
and 

:E jP[jJ = E[ jl= ] 
ForAll j 

whereby 
-y=jf (D.4) 

* Hence all j accesses are independent and indentically 
distributed. 



Analysis of a complex data management access 
method by simulation modeling 

by V. Y. LU1VI, H. LING and 1\1:. E. SENKO 

IBM Research Laboratory 
San Jose, California 

INTRODUCTION 

The typical paper on file organization presents a 
qualitative discussion of a proposed search structure. In 
a very few instances, the writer may include one or two 
numbers to indicate system performance. In reading 
these papers, one is led to the impression that file design 
is an extremely simple problem and that intuitive 
guesses can easily provide optimal answers. However, 
the sophisticated file designer knows from experience 
that there are many relevant parameters and that they 
can drastically affect performance. This knowledge can, 
however, be frustrating because he cannot afford the 
machine time and resources to obtain a good design by 
performing an adequate parametric study on possible 
file organizations. (For example, setting up a large file in 
just one configuration can require several hours of 
machine time and several man days or weeks.) 

In this paper, we present an example of an alternate 
method, the use of a comprehensive simulation model to 
obtain adequately accurate answers. Such a procedure 

~::~: ~~--,<--'<;----; 

~::~; ~~~.>,----,<---; 

~::: 1 p...,"'--r'-T~"""'--i"-T.>....j 
Index l--'-1--'--'--'L.LJ-.LJ 

Master Index 

Figure 1 

CylinderN 

211 

can redqce the actual cost of a parametric study by 
factors of tens, hundreds, or thousands. The example is 
a parametric study of a complex indexed sequential 
access method involving thousands of machine runs. 

A smaller version of this study would be suitable for 
the design of a specific file while a larger version would 
be required to provide the basis for a file design 
handbook for the access method. In any case, this study 

(i) 1000 
o 
z 
o o 
w 
!!! 
CJ) 

o 
a: 
8 
w 
a: 
w 
> 
!!! 
a: 
I
w 
a: 
o 
I-
w 
~ 

i= 

100 

Number of Records = 50,000 
Cylinder Overflow 
No Master Index 
U = random keys 
S = sorted keys 
IC = insertion (write-checks included) 
CC = change (write-checks included) 

10T--r---------~-----,------------~----
100 1000 

NO. OF RECORDS TO BE RETRIEVED 



212 Fall Joint Computer Conference, 1970 

50 

I 8 40 

~ 
~ 
II: 

8 w 
II: 

§ 30 
w 
> w 
C 
t; 
II: 

e 
w 
! 20 

........ 
.... --..... --__ U,I --

Number of Records .. 50,000 
Cylinder Overflow 
No Master Index 
U .. random keys 
S .. sorted keys 
0" retrieval 

--- - ............ 

I - i~ _---
C - change ~ __ ------------ ~ 

U.Q _--------------
S.C 

S.Q 

10 

o+-----~------r-----.------,------~---
10 20 30 40 50 

PERCENT OVERFLOW 

Graph 2 

. gives, for the first time, an indication of the complex 
behavior of an actual data management access program. 

FOREM I, which was used for the study, contains 
300-500 FORTRAN statements dealing with the 
analytic evaluation of access time and storage layout for 
different parameter values. Each run consumes on the 
average about 10 seconds of machine time and a few 
minutes of designer set-up time. 

THE INDEXED SEQUENTIAL ACCESS 
METHOD 

The indexed sequential access method is one of the 
few fundamental, qualitatively different access methods 
(sequential, direct, and perhaps chained access being 
other possibilities). It is based on data and a hierarchy 
of indexes that are sequenced on a particular identifier. 
The method has been programmed by manufacturers 
and users in a number of specific implementations. In 
Figure 1, we present the physical storage layout of one 
specific implementation. Its variable parameters include 

( a) number of index levels, (b) device placement of index 
levels, (c) device placement of data, (d) block size of 
data, . (e) amount of overflow, (f) device placement of 
overflow, etc. Parameters which are fixed for a specific 

. file design include (a) actual method of access-direct or 
buffered sequential, (b) number of buffers, (c) type and 
number of transactions, (d) file size, (e) record size, etc. 

The paper is divided into three sections and an 
appendix. The sections are: 

a. The characteristics of direct access through the 
indexes; 

b. The characteristics of sequential search of the 
data; 

c. A comparison of the two methods. 

The appendix of the paper presents comparisons of 
model runs with actual computer runs to illustrate the 
accuracy attainable with the model's approach. 

50 

40 

I 
~ 30 
II: 

8 
w 
II: 

§ 
III 
> 
W 
C 20 ... 
w 
II: 
o ... 
w 
:IE 
i= 

10 

............. 
................ -....... 

Cylindar Overflow .......ndex 

--_ U,I ----
Number of Records = 50,000 
I -h:tsert 
C'"' c:hange 
0- retriewl 
S .. sorted keys 
U" r.ndom keys 

-----

U,C _-------------
U,Q _--------------
S,C 

s,o 

o+------.------.------.------~----~---
10 20 30 40 50 

PERCENT OVERFLOW 

Graph 3 



Analysis of Complex Data Management Access Method 213 

DIRECT INDEXED ACCESS 

In direct indexed access, the data management 
routine is presented with the identifier of a particular 
record. The identifier is compared sequentially ~gainst 
the key entries in the highest level index. When the 
identifier is matched, equal or low, descent is made to a 
section of the next lower level index by means of an 
address pointer associated with the appropriate key. At 
the track level index, for every prime track* there are 
two index entries: one containing the highest key in the 
prime track and one containing the highest key of the 
overflow associated with the prime track. Search of the 
prime track involves sequential processing of blocked 
records on the track. Search of the overflow involves 
following chains through the records that have been 
pushed off the prime track by insertions. The critical 

600 -_ ---- ................. .!!:.,I------
jg 

500 

z 
8 
w 
S!! 
~ 400 ________ ~----

8 U..Jl. -----
~ -------s,C 
~ I _________________ ~~~a~--------
~ 300-1-

w 
> w 
~ 
Gi a: 200 

~ 
w 
:i 
i= 

100 

Cylinder Overflow 
No Master Index 
Number of Records = 1,000,000 
U = random keys 
S = sorted keys 
I = insert 
C = change 
a = retrieval 

Ol+-----.-----.------.-----r----~--------
10 20 30 40 50 

PERCENT OVERFLOW 

Graph 4 

* A prime track is a track dedicated during the loading process 
to contain data records whose keys fall within a particular value 
range. When inserts are made and no space is available, records 
will be pushed off the track into an overflow area. These records 
are said to be overflow records. 

w 
> w 
ii: 

500 

Cylinder Overflow 
Master Index 

---
Number of Records '" 1,000,000 
U" random keys 
S '" sorted keys 
a '"retrieval 
I .. insert 
C = change 

..... -------

--
~ 200 

e 
------~'£...------ ..... ....-

U,Q. _----------s:-C--
w 
:I; 
j:: s,a 

100 

o+-----~----~------~----~------__ --__ 
10 20 30 40 50 

PERCENT OVERFLOW 

Graph 5 

parameters which we studied were: 

1. File size (two files: 50,000 and 1,000,000 records); 
2. Number and placement of index levels (Master 

Index (MI = 1\1), no master index (None), and 
master index in core (MC»; 

3. Overflow configurations: 
a. Overflow in the same cylinder as the prime 

track or cylinder overflow (IE); 
b. Overflow in the same pack (I B) ; 
c. Overflow on a separate pack (IS); 

4. Percent of overflow (eleven values: 0-50 percent 
at 5 percent intervals); 

5. Transaction types (query (Q), change (C or CC), 
and insert (I or IC». (The second C indicates that 
a write check is made.) 

6. Input key stream (random SU = U or sorted 
SU = S); 

7 . Number of records retrieved. 

The records were 725 bytes long and were stored in 
unblocked form on an IBM 2314 disk storage device. 
The indexes were on separate packs from the data and 



214 Fall Joint Computer Conference, 1970 

en a 
z 
o 
(,J 
w 
~ 

400 

U) 300 a 
u: 
8 
w 
u: 

~ 
w 
> w 
~ 200 
I-
w 
u: 
o 
I-
w 
:E 
i= 

............ 
' ........ ............... 

---._ U,I --
Cylinder Overflow 
Master Index in Core 
Number of Records = 1,000,000 
S = sorted keys 
U = random keys 
I = insert 
C = change 
Q = retrieval 

-- ...... --- ..... 

,-

~-----U,Q_----
-------~ 

S,Q 

Ol+------.------.-------r------r------~---
10 20 30 40 50 

PERCENT OVERFLOW 

Graph 6 

processing time for the qualified records was assumed to 
be negligible. Even though it was apparent that a large 
number of model runs were involved, it is also clear from 
the immediately previous .statements that all possible 
parameters were not varied. 

N umher of records retrieved 

Graph 1 indicates the general behavior of various 
transaction types as the number of records retrieved in 
a transaction is varied. In the unsorted key case, the 
average time per record remains constant, independent 
of number of records; the· sorted key case diverges from 
this curve because the access .arm requires smaller and 
smaller steps to transverse the data disk pack as more 
records are retrieved. In these runs, index blocks were 
not buffered so the divergence is not as great as it would 
be if the access arm on the index pack could march 
across the index files .also. Insert requires more time 
than change because records must normally. be moved 
to make room for the inserted record. 

Index structure 

Index structure tradeoffs can be considered by 
consulting Graphs 2, 3, 4, 5 and 6. Graphs 2 and 3 
indicate that a master index* is not useful for a small 
file while Graphs 4 and 5 indicate that the opposite is 
true for large files. This in itself is a relatively obvious 
conclusion, however, the location of the decision point 
between the two file sizes is of more interest. This 
decision point depends on whether index entries are 
placed in full track blocks (for performance) or in 
smaller blocks (to conserve core storage). Forfull track 
blocking with reasonable key sizes, a master index 
becomes useful only after the cylinder index exceeds four 
tracks in length (for an IBM 2314, this is equivalent to 
seven disk packs). At the other extreme, where each 

en 
0 z 
0 
(,J 
w 
~ 
U) 

0 
u: 
0 
(,J 
w 
u: 
8 
w 
> w 
~ 
I-
w 
u: 
0 
I-
w 
:E 
i= 

70 

60 

50 

40 

30 

20 

10 

U,I _...-"" -------

Overflow in same Disk Pack 
No Master Index 
Number of Records = 50,000 
U = random keys 
S = sorted keys 
I = insert 
C = change 
Q = retrieval 

,.,. ./ 
./ 

.,/ 
", 

,... ... -- -- ..". ---- ,... ......... u,.,S...- ...-"'-

----~.--- _-sC 

O+------.-------r------~----~------_r_ 
10 20 30 40 50 

PERCENT OVERFLOW 

Graph 7 

* Master index is an index to the cylinder indexes (Figure 1). 



Analysis of Complex Data Management Access Method 215 

entry occupies a separate physical block, the decision 
point lies at two cylinder index tracks (corresponding to 
about one-half of a 2314 disk pack). For the large file, 
the differences between these choices can be quite 
significant: 

a. master index, full track index blocking 1'-'130 
seconds; 

b. no master index, full track· index blocking 1'-'300 
seconds; 

c. no master index, one index entry per block 
1'-'1600 seconds. 

The permanent storage of the master index in core 
provides an additional 20 percent improvement over 
case (a) (Graph 6). 

ii:i 
0 
z 
0 
0 
w 
~ 
(I) 

0 
a: 
0 
0 w 
a: 

8 
w 
> w 
a: 
~ w 
a: 
0 
~ 
w 
::?! 
i= 

/ 

/ 
/ 

/ 

50 / 

40 

30 

20 

10 

U.I// 

---------~ 

Overflow in different Disk Pack 
No Master Index 
Number of Records = 50.000 
S = sorted keys 
U = random keys 
I = insert 
C = change 
a = retrieval 

/" 
// 

/ .",/ 
U.C,,/ ./ " ./ _ ..,,""G. O~""" ------ ....,.,"" 

___ ----' S.C 

O+-------~------r------,------~------_r_ 

10 20 30 40 50 

PERCENT OVERFLOW 

Graph 8 

700 

------
U.I,,""" 

-'-'~ 

.,..,. // 

600-r--------

ii:i 
o 
z 
o o 
w 
~ 
(I) 
o 

500 

~ 400 
o 
w 
a: 

~ 
w 
> w 
a: 300 
I-
w 
a: 

~ 
w 
::?! 
i= 

200 

100 

Overflow in same Disk Pack 
Master Index 
Number of Records = 1.000.000 
U = random keys 
S = sorted keys 
I = insert 
C = change 
a = retrieval 

/ ,.,..,..,.", 
U C..,,""" .",.. 
'''- ./ ....,.,-" "" __ -- U.q.......".., ---- ,.,. --- ..--" __ _' -- S.O 

-S.C 

04-------~------r_------r_----~r_----~ 

10 20 30 40 50 

PERCENT OVERFLOW 

Graph 9 

Overflow configuration 

Graphs 7-10 supplement Graphs 2 and 5 (the most 
desirable index configuration for IE) to provide a picture 
of performance behavior by overflow configuration. In 
all overflow cases, the numbers of logical and physical 
records per track are significant parameters in predicting 
performance. 

All operations are affected·by the number of ·logical 
records per track; even small percentages of overflow 
result in long overflow chains when there are one
hundred or more reCords per track. On the other hand, 
the number· of physical records per track primarily 



216 Fall Joint Computer Conference, 1970 

iii 
c 
z 
0 u 
w 
~ 
en 
C 
a: 
0 u 
w 
a: 

~ 
w 
> w 
a: 
~ 
w 
a: 
0 
~ 
w 
:E 
i= 

500 

400 

300 

200 

100 

Overflow in different Disk Pack 
Master Index 
Number of Records = 1.000.000 
U = random keys 
S = sorted keys 
I = insert 
C = change 
a = retrieval ./ 

", 
/ 

" ,,'" 
" " U.~'" ", 

" '" ..".," u.a ....... '" ---- ........ ---- ..".,"S.C ----------

10 20 30 40 50 

PERCENT OVERFLOW 

Graph 10 

infiuences insertion behavior. When room must be made 
for inserts on the prime tracks, the following records 
must be rewritten block by block until the last record is 
pushed into overflow. The penalty for rewriting large 
numbers of physical blocks on the prime track is so 
drastic that performance generally improves as overflow 
initially increases, because insertion into overflow is less 
costly. The surprising fact is that insertion performance 
will normally improve until the number of blocks in the 
overflow chain is twice the number of blocks on the 
prime track. 

As expected, cylinder overflow (IE) generally provides 
the best performance because no additional arm motion 
is required to access the overflow area. This performance 

advantage is somewhat compromised by the sensitivity 
of this configuration to insertions that are not uniformly 
distributed over all the cylinders. Since enough space 
must be reserved in every cylinder to hold the maximum 
number of inserts per any cylinder, there can be 
extreme space wastage in those cylinders which have 
little insertion activity. This problem can, of course, be 
eliminated by combining IE with one of the other 
overflow configurations, on same pack (IB) or on 
separate pack (IS), to handle unusually dense insert 
activity. 

The differences between same pack and separate pack 
are less significant than their differences with respect to 
cylinder overflow. In general, performance will be worse 
than separate pack for small amounts of overflow, but 

iii c 
z 
o u 
w 
!e 
en c 
a: 
o 
u 
w 
a: 
8 
w 
> 

250 

200 

~ 150 
~ 
w 
a:: 

~ 
w 
:E 
j:: 

100 

Number of Records = 50.000 

OVERFLOW IN SAME CYLINDER 

o L-____ ~~--__ ~------~------~----~ 

10 20 30 40 50 

PERCENT OVERFLOW 

Graph 11 



Analysis of Complex Data Management Access Method 217 

iii o 
z 

1,000 

8 w 100 
~ 
en o 
a: 
8 
w 
a: 
w 
> w 
a: 
~ 
w 
a: 

~ 
w 
:E 
i= 

10 

100 t,OOO 

Cylinder Overflow 
No Master Index 
Overflow = 0% 
Number of Records = 50,000 

10,000 

NO. OF RECORDS RETRIEVED 

Graph 12 

100,000 

eventually "will be better for very large amounts. This is 
because the initial arm movements to overflow for same 
pack overflow will be across half the prime area and a 
portion of the overflow. Arm movements for chain 
following inside the overflow area will be relatively 

1,000 

iii 
0 
z 
0 
() 

100 w 
!!! 
en 
0 
a: 
0 
() 
w 
a: 
w 
> w 
a: 
~ w 
a: 
0 10 
~ 
w 
:E 
i= 

100 1,000 

Cylinder Overflow 
No Master Index 
Overflow = 25% 
Number of Records = 50,000 

10,000 

NUMBER OF RECORDS RETRIEVED 

Graph 13 

100,000 

small. In the case of separate pack overflow, the initial 
and subsequent arm motions will average one-half the 
number of cylinders in the overflow. For amounts of 
overflow exceeding one-half pack in size, these longer 
subsequent motions will dominate performance. 

Designing a file with overflow 

It is generally believed that overflow hampers 
performance. In fact, since insertion performance often 
improves with increased overflow, optimum total 
performance may be obtained when there is a certain 
amount of overflow in the file. The optimum can be 
determined by weighting each of the individual curves 
for retrieval, update, and insertion by the percentage 
of transactions of that type. When the curves are added 
together, the minimum on the total curve will lie at the 
optimum overflow percentage. 

For example, in the case of the small file without a 
master index, we will assume that all transactions 

15~----____________________________ _ 

en o 
z 
8 w 10 
~ 
en o 
It: 
o 
U 
w 
It: 

~ 
w 
>' w « 
~ 
w 
It: 
o 
~ 5 
w 
:I 
i= 

Cylinder Overflow 
No Master Index 
Number of Records = 50,000 

(2) 

(4) 

(8) 

(16) 

0+------,-------r------.------,------'25 
o 5 10 15 20 

PERCENT OVERFLOW 

Graph 14 



218 Fall Joint Computer Conference, 1970 

iii 
o 
z o 

30 

~. 20 
~ 
fh o 
IE: 

8 
w 
IE: 

~ 
w 
> w 
a: 
I
w 
IE: 

~ 
~ 10 
t= Number of Records .. 50.000 

Number of BufferS in bnckets 
No MISter Index 

15(2) 

15(4) 

15(8) 
15(18) 

IB (2) 

IB (4) 

18 (8) 

IB (18) 

IS .. Overflow in different Disk PlICk 
IB .. Overflow in same Disk PlICk 

o+-----~------.-----~------._----_.------~ 
o 10 20 30 40 50 

PERCENT OVERFLOW 

Graph 15 

involve 100 qualified records, and transactions are 
evenly distributed among updates, retrievals, and 
insertions with random as well as sorted keys. Graph 11 
presents total performance curves for the three types of 
overflow allocation in the small file. Cylinder overflow 
(IE) performance is optimum with 25-45 percent 
overflow and separate pack overflow (IS) performs best 
at 10-15 percent overflow. The optimum for same pack 
overflow (IB) generally occurs at zero percent overflow. 

General 

In all test cases, the indexes and data were on 
different disk packs; and record accesses driven by 
random key input strings took significantly longer than 
accesses driven by sorted key input strings. These 
differences would be marginal if the indexes and data 
were located in the same pack. 

While update-in-place characteristics with or without 
write-check are very similar to retrieval characteristics 
since they involve only one or two added disk rotations, 
the use of write-check in record insertion creates 
entirely different characteristics. It can be extremely 

expensive if there are a large number of blocks on the 
prime track. Nonetheless, it is especially needed in 
insertion to protect the correctness of the rewritten data. 

THE BUFFERED SEQUENTIAL ACCESS 
PROCESS 

In this process,. the ·system is presented with an 
identifier and finds, by means of an index search, the 
location of the record having that identifier or the next 
highest identifier. At this point, it begins a buffered 
sequential search of the data, pausing at the end of each 
prime track overflow area to access the track index. 

For this study, we have assumed a particular imple
mentation. That is, on the prime track, one-half the 
total number of buffers may be active in a chained read 
or write operation at anyone time. If the total number 
of buffers is equal to twice the number of physical 
blocks on a track, then a complete track can be read or 
written in one revolution. Overflow tracks, on the other 
hand, are accessed one physical block at a time. When 
there is contention for reading and writing services, the 
principle of first-in-first-out is applied. 

iii o z 

300 

8 200 w 
~ 
en o 
IE: 

8 
w 
a:: 

§ 
.n 
w 
> w 
ii: 
I
w 
a:: e 100 
w 
2! 
t= 

Master Index 
Number of buffers in brackets 
Number of Records = 1,000,000 

15(2) 

15(4) 

15(8) 
15(18) 

IB(2) 

IB(4) 

IB(B) 

IB (16) 

1S .. OVerflow in different Disk Pack 
IB .. Overflow in same Disk Pack 

O+-----~------~-----r----~r-----~ 
10 20 30 40 50 

PERCENT OVERFLOW 

Graph 16 



Analysis of Complex Data Management Access Method 219 

Number of records retrieved 

Graphs 12 and 13 indicate the general performance 
behavior of the access process for various numbers· of 
records retrieved. For a given number of buffers and 
large numbers of records retrieved, it is an unexceptional 
linear function. These curves will, however, become 
more horizontal for fewer numbers of records, because 
the initial index search will be a more important factor 
in average access time per record. For similar reasons, 
the device placement of the indexes is only significant 
when small numbers of records are accessed. 

While the effect of the number of buffers will be 
discussed later, it. is interesting to note that large 
numbers of buffers are most useful for small· amounts 
of overflow. 

Overflow configuration and overflow percentage 

Graphs 12 and particularly 13 and 14 indicate that 
sequential performance is significantly affected by the 
amount of overflow present in the file. Arm motion to 
and in the overflow area is primarily responsible for the 
rapid change in performance characteristics. 

The slope of the cylin4er overflow (IE) curves is 
determined by the differences in access time between 

I 
100 

I 
200 

I 
300 

No Master Index 
Cylinder Overflow 
Overflow = 25% 
Number of. Records = 50,000 

I 
400 

I 
500 

NO. OF RECORDS READ (100 UPDATED) 

Graph 17 

28 

24 

22 

20 

iii 
0 z 18 
8 
~ 18 en 
0 
c 
8 14 

'" c 

'" 12 > 
'" i: 
~ 10 
'" c 
0 No Master Index ~ 8. 
'" Overflow in same· Disk Pack 
2 Overflow = 25% 
t= Number of Records = 50,000 8 

4 

2 

0 
100 200 300 400 500 

NO. OF RECORDS READ (100 UPDATED) 

Graph 18 

prime area records and overflow area records. This, 
in turn, is determined by the number of records that can 
be retrieved in one revolution from· the prime area 
because accessing in the overflow area is always at one 
record per disk revolution. The primary factors in this 
determination are prime area record blocking and 
buffering. The slight downward slope of the·· cylinder 
overflow (IE) curve for two buffers is due to the fact 
that larger numbers of overflow records reduce the 
necessity for reading index tracks. 

The knee in the pack overflow (IB) curves will occur 
at the overflow percentage where there is one overflow 
record per prime track. In these tests we have assumed 
that the overflow records are uniformly distributed over 
the. prime tracks; if we had not, then the knee in the 
curve would be less sharp. As can be seen for the present 
experimental configuration, pack overflow begins to 
outperform separate overflow· (IS) when each prime 
track . has about three overflow. records associated 
with it. 

Buffers and update performance 

In ,the case of retrieval discussed above, any increase 
in the number of buffers always causes the timing curves 
to shift downward, but parallel to their prior locations 



220 Fall Joint Computer Conference, 1970 

·22 

20 

18 
en 
0 

.z 16 0 
0 
w 
!e 

14 en 
0 
a: 
0 

12 0 w 
a: 
w 
> 10 w 
a: 
I-

8 w 
a: 
0 
I- 6 w 
:E 
t= 

4 

2 

0 
100 200 300 

No Master Index 
Overflow in different Disk Pack 
Overflow = 25% 
Number of Records = 50,000 

400 500 

NO, OF RECORDS READ (100 RECORDS UPDATED) 

Graph 19 

(Graphs 12 and 13). When some fraction of the records 
are updated, and therefore rewritten, there need not be 
a regular increase in performance as the number of 
buffers is increased. 

In Graphs 17, 18 and 19, as the number of buffers is 
increased from 2 to 8, the time to read x records and 
update y ~ x of them decreases regularly. However, 
a further increase up to, but less than, 16 buffers reduces 
overall performance. The reason for this phenomenon 
lies in the interference of seeks for reading and writing 
of data. When the capacity of the buffers available is 
less than, or equal to, one-half of a track (in this case, 
8 buffers or less), the access system can both write and 
read n/2 blocks in a single revolution (n is the number 
of buffers available). These two operations cannot be 
smoothly interspersed when ~ track < the capacity 
of the buffers < 1 track. 

In the above runs, the record processing time was not 
a significant factor. If processing time is significant, then 
instances will occur where the 2 buffer configuration will 
perform better than the 8 buffer one. A detailed analysis 
of these situations is quite involved and is best 
performed by simulation models. 

GENERAL CONSIDERATIONS 

Choice of access method 

In certain special cases, particularly when the records 
relevant to a search are confined to a small area of the 

file, the designer may use either basic direct or buffered 
sequential search. We provide here an example 
situation. 

If the overflow for the small file is organized on a 
cylinder overflow (IE) basis and the input keys are 
sorted, the basic direct access method will require 10 
seconds to access 100 records. (See Tables I and II.) The 
queued sequential access method, using 10 buffers, can 
retrieve about 1,000 records in the same time. In this 
case, if better than one record in 10 is pertinent to the 
query and processing time is insignificantly small, then 
sequential access will provide better performance. 

Generally speaking, if p is the number of records 
which must be read sequentially to find a qualified one, 
tq, the average time to read a record in buffered 
sequential mode and tb, the average time to read a record 
in basic random mode, then the queued mode is more 
efficient if tb > P etq• (This formula is most appropriate 

Retrieval & Update Time (sec.) 

Table I 

over- QISAM BISAM 
flow 

retrieve 500 records retrieve 100 records 

IE IS IB IE IS IB 
0 4.2-15 4.2-15 4.2-15 10(s) 10(s} 10(s} 

15(u) 15(u} 15(u) 
5 4.7-15 5.7-16 8.4-18 lO(s) 10(s} l1(s) 

I 15(u) 15(u} 161u) 
10 5.1-15 7.3-17 i 13-23 10(s) 10(s} l1(s) 

15(u} 15(u} 16(u} 
25 6.4-15 12-21 ! 15-23 10(s) 12(s) 14(s} 

'16(u) 17(u) 19(u) 
retrieve 500 records 

update 100 records 
update 100 records 

0 4.7-15 4.7-15 4.7-15 13(s) 13(s} 13(s} 
18(u) 18(u) 18(u) 

5 5.4-15 6.5-16 9.9-19 13(s) 13(s} 13(s} 
18(u) 18(u} 18(u) 

10 6-15 8.5-17 19-25 13(s) 13(s} 14(s) 
18(u) 18(u) 19(u) 

25 7.8-15 15-22 21-26 13(s) l4(s) 16(s) 
18(u) 19(u) 21(u) 

s = sorted keys 

u - unsorted keys 

No Master Index 

number of records = 50,000 

IS - Overflow in different Disk Pack 

IB - Overflow in same Disk Pack 

IE - Overflow in same Cylinder 

Table I 



Analysis of Complex Data Management Access Method 221 

when there are many· records to be read because the 
initial reading of the index in buffered sequential mode 
can affect tq substantially.) 

To approximately determine tq , let b be the number 
blocks per data track and T the track revolution time. 
Assuming the minimum number of buffers, 

tq~(1.5XT)/b+T. 

The factor of 0.5 represents the cost of possible revolu
tions. Thus, in the case of the sample files, the time to 
read a record is 

tq~(1.5X25)/8+25""30 ms. 

If the file has no master index, tb can be estimated by 

t~2T+Te+(Ne·T)/2 (cylinder index and data on 
separate packs) 

~2T+2Te+(Ne·T)/2 (cylinder index with data) 

where Te is average cylinder search time of the file, and 
N e is the number of cylinder index tracks. 

t~4T+Te+Tee 

ro.J4T+2Te 

(cylinder index and data separate) 

(cylinder index with data) 

where Tee is average cylinder search time in the cylinder 
index. For the small file, we have N e = 1. Thus, 
T~2X25+75+12.5~138. Reading 100 records in the 
basic direct mode requires approximately 14 seconds as 
confirmed by our measurement (Table I). Thus, if 
p~5 to 10, then the buffered mode and the basic direct 
mode provide similar performance. 

Variation of hardware parameters 

The results presented in this paper are for a particular 
device; it is, however, of interest to understand the 
effect of changes in hardware parameters, such as access 
arm speed, track size, rotational speed and processor 
speed. 

Of these parameters, access arm speed is the most 
independent of the others in its effect on performance. 
In the basic access method for typical configurations, 
a 100 percent increase in arm speed will result in about 
a 20 percent improvement in total performance. While 
increased arm speed will, significantly narrow the 
difference in performance between the direct indexed 
access processes for various overflow schemes, sequential 
performance will only be affected when large amounts 
of overflow exist in pack and separate overflow 
configurations. 

Track size, rotational speed, and central processor 
speed do, however, interact in a complex fashion with 
regard to the loss of revolutions. Increases in CPU speed 
generally will result in no performance deterioration and 
they may improve performance by saving previously 

Retrieval. & Update Times (sec) 

Table II 

over- QISAM BISAM 

flow retrieve 5000 records retrieve 1000 records 

IE IS IB IE I IS IB 

0 40-146 40-146 40-146 
13O(s) I 13O(s) 13O(s) 
176(u) 176(u) 176(u) 

5 44-146 64-190 85-189 
13O(s) : 132(5) 136(s) 
176(u) 180(u) 180(u) 

10 49-148 92-190 : 138-237 
13O(s) 138(s) 143(s) 
177(u) 183(u) 190(u) . 

25 61-149 160-242 I 155-237 
133(s) 156(5) 169(s) 
180(u) : 204(u) 214(u) 

retrieve 5000 records 
update 1000 records update 1000 records 

\ 

0 45-146 45-146 45-146 154~s) I 154~s? 
202(u) 202(u) 

154~s) 
202(u) 

5 51-146 95-190 I 154(5) 1 157(5) 161(s) ! 101-193 202(u) . 204(u) 208(u) 

10 59-148 152-241 1199-256 
154(5) 161~s) 168(s) 
202(u) 208(u) 215(u) 

25 76-149 191-264 1 222-267 
158(s) 181(s) 194(.5? 

i 205(u) 229(u) 240(u) 

number of records - 1.000.000 

Master Index Exists 

s ,. sorted keys 

u ,. unsorted keys 

IS = Overflow in different Disk Pack 

IB = Overflow in same Disk Pack 

IE = Overflow in same Cylinder 

Table II 

lost track revolutions. Track size and rotational speed· 
will normally result in gradual improvements in 
performance, except in the cases where the CPU can no· 
longer complete processing in time to access the next .. 
record. These cases will result in major discontinuous 
deteriorations in performance through lost revolutions. 

Other parameter changes 

The size of the records in a file influences performance 
considerably. For smaller record sizes, the timing curves 
will have a larger slope at all points and the inter
sections with the time axis will be lower. If the record 
size is very small, a slight increase in overflow per
centage will degrade performance tremendously. A 
larger record size shows exactly the opposite effect. Here 
the performance curves will intersect the axis at a higher 
point and they will have less slope. 

The number of records in a block or the blocking 
factor also affects performance. A large blocking factor 
will decrease storage space but it increases transmission 
time. Small blocking factors decrease transmission time 
but increase arm movement time. A thorough analysis 
is again needed to determine optimum blocking. 



222 Fall Joint Computer Conference, 1970 

CONCLUSION 

In this paper, we have presented a prototype parametric 
study of the type that is almost mandatory for knowl
edgeable design of a complex file organization. This 
study, which includes thousands of data points, would 
not have been possible without a fast, accurate simula
tion model such as FOREM I. The results are presented 
to give the reader an. indication of the intricate inter
dependence of the many parameters that he must 
consider if he wishes to produce an excellent file design. 

REFERENCES 

1 F o'NrUJ,tted file organization techniques 
Final Report Air Force Contract AF 30(602)-4088 May 
1967 

2 M E SENKO V Y LUM P J OWENS 
A file organizatum evaluation model (FOREM) 
IFIP Congress 1968 

APPENDIX 

This section presents comparisons of the model runs 
with actual computer runs to illustrate the accuracy 

Overflow2 
Hodel Measured Model 

Mode of Percent* Result Result Error 
Retrieval Handling Overflow (secs.) (secs.) (percent) 

File ind 0 186. 159. 17.0 
creation 

Sequential cyl 0 10.9*** 8.51 28.1 
retrieval 
Sequential 
ret=rieval 

cyl 5. 16.6 16.1 3.11 

Sequential cyl 16.1 30.0 27.9 7.52 
retrieval 
Sequential ind 0 10.9*** 8.64 26.1 
retrieval 
Sequential 
retrieval 

ind 5. 45.5** 36 •. 9 23.3 

Sequential 
r"':rieval 

ind 16.7 82.1** 69.2 18.6 

Sorted keyl cyl 0 422. 414. 1.93 
retrieval 
Sorted key cyl 5. 419. 414. 1.21 
retrieval 

~:~~~:v~? 'j cyl 16.7 448. 451. 9.67 

Sorted key ind 0 422. 412. 2.43 
retrieval 
Sorted key ind 5. 457. 464. 1.51 
retrieval 
Sorted key ind 16.7 613.** 544. 12.7 
retrieval 

Rand ... cyl 0 790. 732. 7.92 retrieval 
Randoa 

cyl 5. 787. 744. 5.77 
retrieval 

Randoa cyl 16.7 816. 773. 5.56 
retrieval 

Randoa 
ind 0 781. 715. 9.2 retrieval 

Randoa 
ind' 5. 802. 752. 6.64 

retrieval 
Randoa ind 16.7 922. 846. 8.98 

retrieval 
Randoa cyl 0 915. 970. 6.01 
IIDdate 

1 - The keys of the records to be retrieved are sorted in ascending order and 
retrieval carried outiq the order of, this reference. 

2 - cyl means cylinder overflow (overflow records in same cylinder as prime 
records). and 

ind means independent overflow (overflow records in different cylinders 
as prime records). 

Appendix insert 1 

Model I Measured I Kodel 
Mode of Overflow Pe.rcent* Result Result Error 

Retrieval Handling Overflow (secs.) (secs.) I (percent) 

Random 
: T 

cyl 5. 912. ; 951. ! 4.10 update i 

I 
J<aIldom 

cyl 16.7 941. i 999. 5.80 update 
Random 

ind 0 update 906. 
I 

955. 5.13 
Random ! ind 5. 927. 941. 1.49 update 
Random 

ind 16.7 update 1047. 1038. .87 
Random 

cyl 0 1422. ~ 1351. 5.25 insertion 
Random I cyl 5. 1418. 1381. 2.67 insertion I 
Random 

insertion i cyl' 16.7 1446. 1371. 8.16 

Random 
ind 0 2458. 1937. 26.9 insertion 

Random 
ind 5. insertion i 2493. 2005. 24.3 

Random 
ind 16.7 inser.tion i 2717. 2243. 21.1 

Sorted key 
cyl 0 1054. 1077. 2.13 insertion 

Sorted Key 
cyl 5. i 1050. i 1018. 3.14 I insertion I 

Sorted key 
cyl 16.7 I 1078. 

1 963. 11.9 insertion 
! Sorted Key 
I insertion ind 0 ; 1979. ! 1957. 1.12 

I sorted key ind 5. 2027. ! 1984. 2.17 insertion ; 
::iorted Key 

ind 16.7 2288. 2207. 3.67 insertion 

*In order to have the model set-up and the real data set-up be as close as 
possible, the 0 percent overflow actualily has a very small number of over
flow records. 

**The discrepanc¥ between model' and measured results is mainly due to the set
up of overflow records in the created data set. The overflow records belong
ing to the same track, for example, are stored very close to each other in 
the actual set-up. In the model, each pair of records is considered to be 
separated by half as many cylinders as there are overflow cylinders. 

***The error in this case is due to the assl!DlPtion that missing of revolutions 
occurs when control is returned to CPU to set up the reading of the track 
index and next data track. In the particular data set chosen, no missing 
occurs probably because there is a considerable amount of empty space at 
the end of each data track. 

Appendix insert 2 

attainable with the model's equation evaluation ap
proach. In calibrating FOREM I, more than 100 
experiments were set up, representing the various modes 
of· operation of the IBM Indexed Sequential Access 
lVlethod. The following tables record the 37 measure
ments which approximate the model set-ups. 

The measured results were obtained using an IBM 
360/mod 50 processor and IBM 2314 disk storage 
devices. The file has 100,000 records and each record is 
200 bytes long including an 8-byte key. The records are 
blocked full track in the prime area and unblocked in the 
overflow area. 5,000 records were processed in each caSH. 
The model assumes that record processing time is 
negligible. 

As the tables below indicate, the model gives fairly 
accurate results. The average error for all the. experi
ments is 8.3 percent. In some experiments, the actual 
set-ups are not quite the same as the model (those with 
asterisks) and large discrepancies exist between the two 
runs. Removing these cases results in an average 
deviation of 6.7 percent. 

l\1:easurements of other access methods not shown in 
the tables also have about the same accuracy. 



Fast "infinite-key" privacy transformation 
for resource-sharing systems* 

by J. ftI. CARROLL and P. 1\1. l\IcLELLAND** 

The University of Western Ontario 
London, Ontario, Canada 

INTRODUCTION 

In all systems affording real-time multiple access to 
shared co~puting resoUrces, there exists the risk that 
information belonging to one user, may, contrary to 
his intent, become available to other users, and there 
is the additional risk that outside agencies may in
filtrate the system and obtain information. Protection 
of information within central processors, auxiliary 
storage (disk, drum), and on-site bulk storage (tape), 
isa responsibility of the system; the responsibility for 
the protection of information in external, communica
tion links seems presently to devolve by default upon 
the user. The crux of the privacy issue is the design, 
evaluation, and implementation of hardware, software, 
and, operating procedures, contrived to discharge both 
of these responsibilities. 

This paper describes a real-time software system for 
privacy transformation applicable to the problems 
of both system and user. It will be presented within 
the context of Kno'V\>"ll threats to privacy, presently 
available counter-measures, and the current opera
tional environment. 

THREATS TO PRIVACY 

The challenges to the privacy of information in a 
computer system may be accidental or deliberate; this 
discussion relates specifically to deliberate challenges, 
although the software developed may afford some 
protection against the undesired consequences of 
accidental compromise. 

* Support of the Defence Research Board (Canada) and the 
Canada Council, Social Sciences and Humanities Division is 
gratefully acknowledged. 
** Now with the Univac Division, Sperry Rand of Canada, Ltd., 
Ottawa, Ontario, Canada. 

223 

The objectives, of deliberate infiltration include: 

1. Gaining access to information in files. 
2. Discovering the information interests of users. 
3. Altering or destroying files. 
4. Obtaining free use of system resources. 

The nature of deliberate infiltration will be discussed 
within the framework presented by Peterson and 
Turn, l who established the following categories:. 

A. Passive Infiltration 

1. Electro-magnetic pickup (from CPU or periph
eral devices). 

2. Wiretapping (on communications lines or trans
fer buses). 

3. Concealled transmitters (CPU, peripheral de
vices, transfer buses, communications lines). 

B. Active Infiltration 

1. Browsing. 
2. Masquerading. 
3. Exploitation of trap doors. 
4. "Between-lines" entry. 
5. "Piggy back" infiltration. 
6. Subversive entry by centre staff. 
7. Core dumping. 
8. Theft of removable media. 

Browsing is defined as the use of legitimate access to 
the system to obtain unauthorized information. 
111 asquerading consists of posing as a legitimate user 
after obtaining proper identification by ~ubversive 
means. 
Trap doors are hardware or software deficiencies that 
assist the infiltrator to obtain, information having 
once gained access to the system. 
Between-lines entry consists of penetrating the system 



224 Fall Joint Computer Conference, 1970 

when a legitima.te user is on a communications channel, 
but his terminal is inactive. 
Piggy-back infiltration consists of selectively inter
cepting user-processor communications and returning 
false messages to,the user. 

EXISTING COUNTER1\tlEASURES 

Methods to enhance privacy are roughly classified 
as follows: 

1. Access control. 
2. Privacy transformations. 
3. Processing restr.ictions. 
4. Monitoring procedures. 
5. Integrity management. 

Access control consists of authorization, identification, 
and authentication and may function on the system 
or file level. Authorization to enter the system or files 
is generally established by possession of an account 
number or project number. The user may be identified 
by his name, terminal, or use of a password. The user 
may be required to perform a privacy transformation 
on the password to authenticate his identity. Peters2 

recommends use of one-time passwords. 
Passwords may also include authority codes to 

define levels of processing access to files (e.g., read 
only, write, read-write, change protection). 
Privacy transformations include the class of operation 
which can be used to encode and decode information 
to conceal content. Associated with a transformation 
is a key which identifies and unlocks the transforma
tion to the user and a work factor, which is a measure 
of the effort required of an infiltrator to discover the 
key by cryptanalysis. 
Processing restrictions include such functions as pro
visions to zero core before assigning it to a second user, 
mounting removable files on drives with disabled 
circuitry that must be authenticated before accessing, 
automatic cancellation of programmes attempting to 
access unauthorized information, and software which 
limits access privileges by terminal. 
lJIlonitoring procedures are concerned with making 
permanent records of attempted or actual penetrations 
of the system or files. Monitoring procedures usually 
will not prevent infiltration; their protection is ex post 
facto. They disclose that a compromise has taken place, 
and may help identify the perpetrator. 
Integrity management attempts to ensure the com
petence, loyalty, and integrity of centre personnel. 
In some cases, it may entail bonding of some staff. 

! Threat Directed Coun ermeasure , 
Against I Access Privacy Process. Threat Integritl 

I Control Transform Restrict Monitor "anage. 

Passive 

~ iNmo NONE NONE NONE FAIR 

DEVICES • GOOD . · .. 
LINES, • . . · ~ONE 

Browsing SYSTEM iGOOD 
I 

GOOD' GOOD GOOD ~NE 

Masquerade .. : FAIR FAIlr FAIR GOOD IFAIR 

Between-Lines . 'NONE GOOD' FAIR FAIR ~ONE 

Piggy-Back .. 'NONE FAIR FAIR FAIR ~ONE 

Trap-Doors CPU NONE NONE ~ONE FAIR ~ONE 

DEVIC,ES FAIR GOOD IFAIR · .. 
Systems CPU NONE NONE INONE NONE ~D 

Entry DEVICES . FAIR .. FAIR .. 
Core Dump CPU ' NoNE NONE ~ONE GOOD ~D 

Theft IDEVIC,ES ,NONE GOOD !NONE FAI,R FooD 

Figure 1-Threat-countermeasure matrix 

EFFECTIVENESS OF COUNTERMEASURES 

The paradigm given in Figure 1, grossly abridged 
from Peterson and Turn, characterizes the effective
ness of each countermeasure against each threat. 

We independently investigated each cell of the 
threat-countermeasure matrix in the real-time resource
snaring environment afforded by the PDP-I0/50 at 
Western (30 teletypes, 3 remote batch terminals). 
Our experience 1eads to the following observations: 

Passive Infiltration: There is no adequate counter
measure except encipherment and 'even this is ef
fective only if enciphered traffic flows on the bus or 
line attacked by the infiltrator. Competent, loyal 
personnel may deter planting wireless transmitters 
or electromagnetic pickups within the computer centre. 
Browsing: All countermeasures are effective; simple 
aCcess control is usually adequate. 
Masquerading: If the password js compromised, most 
existing countermeasures are rendered ineffective. Use 
of authentication, one- time passwords, frequent change 
of password, and loyalty of systems personnel help to 
preserve the integrity of passwords. Separate systems 
and file access procedures make infiltration more diffi
cult, inasmuch as two or more passwords must be 
compromised before the infiltrator gains his objective. 
Monitoring procedures can provide ex post facto analy
SIS. 

Between-Lines Entry: Only encipherment of files, or 
passwords applied at the message level rather than for 
entire sessions, provide adequate safeguards. 1\10ni
toring may provide ex postfacto analysis. 



Piggy-Back Techniques: Encipherment provides pro
tection unless the password is compromised. Moni
toring may provide ex post facto analysis. 
Trap-doors: There is no protection for information 
obtainable from core, although monitoring can· help 
in ex post facto analysis. Encipherment can protect 
information contained in auxiliary storage. 

Systems entry: Integrity management is the only 
effective countermeasure. There is no other protection 
for -information in core; even monitoring routines can 
be overridden. Encipherment protects information in 
virtual storage only to the extent that passwords are 
protected from compromise. 
Core dump: There is no effective protection except 
integrity management, although monitoring procedures 
can help in ex post facto analysis. 
Theft: Encipherment protects information stored in 
removable media. 

Our initial study persuaded us that privacy trans
formation coupled with password authentication would 
afford the best protection of information. Integrity 
management procedures were not within the scope of 
this research. 

PRIVACY ENVIRON1VIENT: MANUFACTURERS 

Our next task was to investigate the privacy environ-· 
ment of resource-sharing systems. Five manufacturers 
of equipment, doing business in Canada, participated 
in our study. Their contributions are summarized in 
the following points: 

1. The problem of information security is of great 
concern to all manufacturers of resource-sharing 
equipment. 

2. lVlost manufacturers are conducting research 
on privacy; only a small minority believes that 
the hardware and software currently suppli.ed 
are adequate to ensure the privacy of customer 
information. 

3. The password is the most common vehicle of 
system access control; dedicated direct lines 
are recommended in some special situations. 

4. At least two manufacturers have implemented 
password authentication at the file level. 

5. There appears to· be no customer demand for 
implementation of hardware or software privacy 
transformations at this time. 

6. l\![ost manufacturers stress the need for integrity 
management. 

7. Two large manufacturers emphasize the need 
for thorough log-keeping and monitoring pro
cedures. 

Fast Infinite-Key Privacy Transformation 225 

RESOURCE-SHARING SYSTEMS 

j 

Number I 
of .Systems I A.utho.ri.zation Ident.ification A.uthority 

4 A.ccount t Name Password 

Project f 

3 A.ccou,nt t - Password 

3 Account t Name - I 
I 

I 
Project .f 

2 Account t - -
1 Account t Name Password 

1 Project t Name -
1 - - Password 

1 Project f - -

Figure 2-Access control in 16 Canadian resource-sharing systems 

8. Communication links are seen as a major se
curity weakness. 

We next surveyed 25 organizations possessing hard
ware that appeared to be suitable for resource-sharing. 
Sixteen organizations participated in our study, repre
senting about 75 percent by traffic volume of the 
Canadian time-sharing industry. From information 
furnished by them, we were able to obtain a "privacy 
profile" of the industry. 

The average resource-sharing installation utilizes 
IBM equipment (Univac is in second place). The typi
cal system has over 512 thousand bytes of core storage 
and 175 million bytes of auxiliary storage. The system 
operates in both the remote-batch and interactive 
modes. It has 26 terminals communicating with the 
central processors over public (switched) telephone 
lines. 

In seven systems, authorization is established by 
name, account number, and project number. Five 
systems require only an account number. Nine systems 
require a password for authority to enter the system; 
the password is protected by either masking or print
inhibit. 

Identification is established by some combination of 
name, account number, project number, or password; 
in no case is identification of the terminal considered. 
No use is made of one-time passwords, authentication, 
or privacy transformations. In no system is a pass
word required at the file level; seven systems do not 
even require passwords. Access control prOViSIOns of 
16 Canadian systems are summarized in Figure 2. 



226 Fall Joint Computer Conference, 1970 

Only two systems monitor unsuccessful attempts 
to gain entry. In nine systems, both centre staff and 
other users have the ability to read user's files at will. 
In six systems, centre staff has unrestricted access to 
user files. Only three organizations have implemented 
integrity management by bonding any members of 
staff. ' 

The state of privacy, in general, in the Canadian 
resource-shariIig industry, can be described as chaotic 
and, with few exceptions, the attitude of systems 
operators towards privacy as one of apathy. 

PRIVACY TRANSFORMATION: FUNCTIONAL 
SPECIFICATIONS 

It was decided, therefore, to begin development of a 
software system for privacy transformation that would 
be synchronized by an authenticated password, an
ticipating that sooner or later some users will demand 
a higher degree of security in resource-sharing systems 
than is currently available. Such an authentication·
privacy transformation procedure would afford the 
following advantages: 

1. Provide protection for the password on com
munications channels. 

2. Implement access control at the file level. 
3. Obviate the need for storing passwords as part 

of file headings. 
4. Afford positive user identification since only 

authorized. users would be able to synchronize 
the keys of the privacy transformation. 

5. Furnish "work factor" protection of files against 
browsing, "between-lines" entry, "piggy-back" 
infiltration, "trap doors" to auxiliary storage, 
entry of systems personnel to auxiliary storage, 
eavesdropping on transfer buses, and theft of 
removable media. 

The technique of privacy transformation that 
seemed most promising was a form_ of the Vern an 
cipher, discovered in 1914 by Gilbert S. Vernan, an 
AT&T engineer. He suggested punching a tape of key 
characters and electromagnetically adding its pulses 
to those of plain text characters, coded in binary form, 
to obtain the cipher text. The "exclusive-OR" addition 
is used because it is reversible. 

The attractive feature of the Vernan cipher for use 
in digital systems is the fact that the key string can 
readily be generated by random number techniques. 
For maximum security (high work factor) it is de
sirable that-the cipher key be as long as the plain text 

to be encrypted. However, if the flow of information 
is heavy, the production of keys may place extreme 
loads on the arithmetic units of processors-the rate 
of message processing may then be too slow to be fea
sible. Two solutions have been proposed. 

In the first, relatively short (e.g., 1,000 entries) keys 
are produced and permutations of them used until 
repetition is unavoidable. A second approach is to use 
an extremely efficient random number generator ca
pable of producing strings that appear to be "infinite" 
in length, compared to the average length of message 
to be transformed. 

PRIOR WORK (SHORT-KEY METHOD) 

An algorithm for a short key method presented by 
Skatrud3 utilizes two key memories and an address 
memory. These are generated off-line by conventional 
random number techniques. Synchronization of an 
incoming message and the key string is' achieved by 
using the first information item received to address 
an address memory location. The contents of this 
memory location provides a pair of address pointers 
that are used to select key words from each of the key 
memories. The key words are both "excJusive-OR'ed" 
with the next data item, effectively providing double 
encryption of it. The address memory is then succes
sively incremented each time another data item ar
rives. Each address location provides two more key 
address pointers and each key address furnishes two 
key words to be "exclusive-OR'ed" with the current 
data item. Key word pairs are provided on a one-for
one basis with input data items until the entire mes
sage has been processed. For decoding, the procedure 
is completely reversible. 

PRESENT WORK ("INFINITE" I(EY l\tlETHOD) 

We decided to use the infinite key approach be
cause it would: 

1. Reduce storage requirements over those re
quired by short key methods. This will tend 
to reduce cost where charges are assessed on 
the amount of core used; and, more importantly, 
will permit implementing the transformation 
on small computers (e.g., one having a 4096-
word memory) located 'V\<ithin the user's work 
space. 

2. Obviate the need for off-line key production 
and virtual storage of superseded keys [or 



reencipherment of existing files after a key 
memory change]. 

3. Provide extremely long key strings for improved 
work-factor protection of information. 

Our privacy transformation combines the speed 
of the arithmetic congruential method of random
number generation with the previously established 
randomness of a mixed multiplicative congruential 
generator. The length and composition of the seed for 
the key string are determined by the password of the 
file to be coded or decoded. Each unit of input text is 
"exclusive-OR'ed" with the next random number of 
the key in a one-to-one manner until the input plain 
text has been fully processed. The system has been 
implemented on a PDP-10/50 computer; the "unit 
of input text", in this case, is a 36-bit word. 

There are two programmes; the input/output 
(CRYPTO.IO) which handles password authentica
tion; and the privacy transformation (CRYPTO.2). 

In the first programme, the user calls the name of 
the file to be processed. The user's directory, CRYPTO. 
UFD, which is maintained as a protected file on the 
system disk area, is searched to verify that a password 
exists. (A user must contact the system security officer 
to have a file password entered.) If no password exists, 
the user receives an error message. Otherwise, the 6-
digit password is retrieved from disk to core, and the 
file name is stored in core for future reference. 

The user is now challenged to authenticate his 
identity. A random 5-digit octal number is transmitted 
to user's terminal, and he is expected to effect on this 
number a pre-determined transformation, dependent 
on the file password, and transmit the result to the 
processor. If the transformation is incorrect, an error 
message will be transmitted and the user line dropped. 
(A date-time group may be made part of this trans
formation to afford additiona1 protection against 
"piggy-back" infiltration.) 

If the transformation is correct, the file is initialized 
for output, a call is generated for the transformation 
routine, and the file name and password are supplied. 
Upon return of control from the transformation sub
routine, the run is terminated. Figure 3 is a logic 
flowchart for this procedure. 

IlVIPLEMENTATION ON A LARGE COMPUTER 

The privacy transformation makes use of a two-stage 
random number generator, IRAND, which supplies 
key strings dynamically in 512-word blocks. Each 
word is exclusively OR'ed with an input string of .five 
7 -bit ASCII characters to realize encryption or de-

Fast Infinite-Key Privacy Transformation 227 

cryption, as the case may be. Synchronization of the 
key strings with text is achieved by using the 6-digit 
password as the starting seed So for the seed-string 
generator, which is one stage of the two-stage random 
number generator. 

A key string of N random numbers is generated 
using the additive congruential method 

Xi+l==Xi+Xi-L (mod m) 

where m = 2b and b is 35, the bit length of the computer 
word; and where 

is the sequence 

which is called the seed string. 
The seed string is generated by using a conventional 

mixed multiplicative congruential generator of the 
form 

where 
a==±3 (mod 8) 

and is a value close to a = 2b12, to satisfy the Conveyou
Greenburger criterion.5 ,6 The value 131,069 has been 
found to be satisfactory. 

The value of C was selected to be < a and relatively 
prime to m. The value 7 was found to be satisfactory. 

The length of the seed string is variable but selected 
to fall within the range 16~L~79, in accordance 
with the suggestions set forth by Green, Smith, and 
Klem. 7 Its length is determined by adding 16 to the 
six lower order bits of the password. 

The period of usage of the seed string (N) is de
termined by adding 2K to the K low-order bits of SL, 
and is within the range 

For high-security applications, K = 18; for lower
security applications K = 12 to decrease the load on 
the arithmetic unit of the processor. 

After N random numbers have been generated in 
this fashion, the procedure is repeated using the cur
rent value of SL instead of the password (So). Thus 
the complete contents of a file may be enciphered with 
a vanishingly small probability that any portion of 
the key string will repeat. 

IMPLEMENTATION ON A SMALL COMPUTER 

Implementation of this privacy transformation on a 
small computer such as the PDP-8I (12-bit word, 



228 Fall Joint Computer Conference, 1970 

4096-word memory), requires certain modifications 
in the procedure. Two additive congruential generators 
are used so that all operations may be kept within 
the limitations of the machine's basic arithmetic 
capability (two's complement add). 

The seed of the second generator is stored as a string 
of 64 4-digit octal numbers. (We have found that 
digits of the expansion of pi work well; any random 
string can be used.) 

The second generator randomly initializes itself by 
cycling for a number of periods determined by the 12 
low-order bits of the password. It then generates a 
seed Sl, ... ,SL, for the first generator. The length of 
the seed is determined by the· six low-order bits of the 
password. The length of key string (e.g., period of the 
first generator) is determined by the value of the four 
octal digits of SL. (Note: all operations are carried 
out in octal arithmetic modulo 4096.) At the end of 
this period, So is set equal to S L and the process is 
repeated. 

CONVERT 
FILE-NAME 
TO SIXBIT 

INITIALIZE 
A CHANNEL 
FOR INPUT 

GET AN 
ENTRY 

GENERATE 
"RANDOM" 
5-DIGIT # 

PRODUCE 
TRANSF'OR"f. 
T=F(PASSW. 

" 

CONVERT 
"RANDOM" # 
TO ASCII 

EVALUATION 

Three tests were conducted on our privacy trans
formation programme as implemented on the PDP-
10/50. The first two tested in cipher key for random 
characteristics, comparing it with a mixed multiplica
tive congruential generator described in IBl\1} which 
we knew from experience in our Simulation Laboratory 
to have acceptably random characteristics. The tests 
evaluated goodness-of-fit to a uniform distribution , 
and serial autocorrelation lagged 1· to 5 (the second 
test thus has five distinct parts). 

The third test was for speed of producing encoded 
words. 

The randomness tests were conducted according 
to procedures attributed to 1. J. Good9 ,lo as described 
in N aylorll and Lewis.12 Each part of each test used 
100 random blocks of 1,000 numbers each, sampled 
from the "infinite" cipher key string. The 100 resulting 
values of chi2 (one value for each block), calculated 

CONVERT 
TO 

BINARY 

INITIALIZE 
AN OUTPUT 
CHANNEL 

NO 

LOG USER 
OUT 
IMMEDIATEL 

RELEASE 
I/O DEVICE 
& CHANNELS 

Figure 3-Privacy transformation routiuC's 



under the assumption of a fiat distribution in the first 
case, and no serial autocorrelation in the second, were 
then tested for goodness-of-fit to a chi2 distribution 
having 99 degrees of freedom. The criterion value, 
the 95 percent confidence level for chi2 with 9 degrees 
of freedom, was 16.9. Values of chi2 lower than this 
were deemed to signify that the outcome of a test 
was satisfactory. 

The test results are tabulated in Figure 4. It can be 
seen that the high-security cipher (K-18) is superior 
to the low-security cipher (K-12) with respect to both 
goodness-of-fit to a uniform distribution, and absence 
of serial autocorrelation lagged 1 to 5. Both cipher 
key strings were found to be superior in these qualities 
of randomness to the conventional mixed multiplica
tive _ congruentialgenerator. In addition, no evidence 
of cycling was observed in either cipher key string. 

The test of processing speed was carried out in the 
time-sharing environment of the PDP-I0/50 system 
under full load with "swap" times included. It was 
found that 135,168 five-byte words were produced in 
18.28 seconds (37,000 bytes per second) using the high
security (slower) procedure. It is felt that this test 

GET A WORD 
FROM INPUT 

BUFFER 

Figure 3-Privacy transformation routines 

Fast Infinite-Key Privacy Transformation 229 

(VALUES OF chi 2) 

~ !!!! 
Goodness Serial Autocorrelation 

of Pit Lag 1 2 3. " 5 

High Security 5.4 8.2 12.8 15.4 8.8 7.6 

Low Security 9.6 9.6 11.2 12.2 18.2 14.2 

MMC Generator 12.8 12.8 16.6 16.4 26.4 11.2 

(Acceptable chi2 = 16.9) 

Figure 4-Evaluation of the randomness of cipher key strings 

represents worst case conditions and that double the 
observed speed can easily be realized. 

SUMMARY 

The two-stage random number generator used in this 
privacy transformation proce~ure appears to possess 
excellent characteristics of randomness and is capable 
of producing a cipher key string that is effectively 
infinite in length. These characteristics should ensure 
high "work factor" security against cryptanalytic 
attack. (Actually, it is a rather good random number 
generator for general simulation work.) 

The speed of the encipherment routine is sufficient 
to keep up with normal data transfers between the 
processor and peripheral devices. 

Use of an authenticated password to synchronize 
the cipher key string affords several advantages: 

1. Differential access to files is achieved by as
signing a unique password to each file and in-
vesting only authorized users with it. 

2. Differential access at lower levels (e.g., records) 
requires only using more of these 6-digit pass
words. 

3. Storage of the passwords in a separate user file 
directory conserves space in user files and helps 
preserve the integrity of passwords. 

4. The authenticating transformation effected on 
the password ensures that it never appears in 
clear on communications lines. 

5. Posses~ion_ of the password and authenticating 
transformation positively establishes the bona 
fide authority of the user. 

Existence of high- and low-security modes for the 
privacy transformation allows the user to trade-off 



230 Fall Joint Computer Conference, 1970 

"work factor" protection against load on the pro
cessor's arithmetic unit at will. 

When the privacy transformation is modified to 
utilize two arithmetic congruential generators, the 
user is able to implement it on a computer having 
minimal word length, storage, and computational 
capability. He can, therefore, encipher his traffic on 
external switched lines at a hardware cost of roughly 
$10,000. 

It is felt that the authentication-privacy trans
formation system described provides a flexible, efficient, 
and economical method for ensuring the privacy of 
information in resource-sharing computer environ
ments. 

[An additional benefit arising from our research was 
the discovery of two "trap doors" in the PDP-10/50 
monitor, which were nailed shut by relatively simple 
programming fixes. This experience suggests to us 
that the security officer for a system handling sensitive 
information might find it worthwhile to assign at least 
one competent systems programmer as a "counter
infiltration" specialist with the assigned mission of 
discovering and repairing similar deficiencies.] 

ACKNOWLEDGMENTS 

This work was supported in part by the Canada Coun
cil, Social Sciences and Humanities Division, under 
grant number 69-0671 (Privacy and the Computer) 
and by the Defence Research Board (Canada) under 
grant number 9931-23 (Protection :J\!lethods for Real
Time Computer Systems). 

The additive congruential generator for a short 
word length machine was programmed and tested by 
G. M. Dawdy of the Computer Science Department. 

REFERENCES 

1 H E PETERSEN R TURN 
System implications of information privacy 
AFIPS Conference Proceedings Spring Joint Computer 
Conference Vol 30 pp 291-300 1967 

2 B PETERS 
Security considerations in a multi-programmed computer 
system 
AFIPS Conference Proceedings Spring Joint Computer 
Conference Vol 30 1967 

3 R 0 SKATRUD 
The application of cryptographic techniques to data processing 
AFIPS Conference Proceedings Spring Joint Computer 
Conference Vol 35 pp 111-118 1969 

4 T E HULL A R DOBELL 
Mixed congruential random number generators for binary 
machines 
JACM Vol 11 No 1 pp230-254 1964 

5 R R COVEYOU 
Serial correlation in the generation of pseudo-random numbers 
JACM Vol 7 pp 72-74 1960 

6 M GREENBURGER 
A n a priori determination of serial correlation in computer 
generated random numbers 
Math of Computation Vol 15 pp 383-389 1961 

7 B F GREEN J SMITH L KLEM 
Empirical tests of an additive random number generator 
JACM Vol 6 No 4 pp 527-537 1959 

8 Random number generation and testing 
IBM corp Form C20-8011 White Plains N Y 1959 

9 I J. GOOD 
The serial test for sampling numbers and order tests of 
randomness 
Proc Camb Phil Soc Vol 49 pp 276-284 1953 

10 I J GOOD 
On the serial test for random sequences 
Annals of Math Stat Vol 28 pp 262-264 1957 

11 T H NAYLOR J L BALINTFY D S BURDICK 
K CHU 
Computer simulation techniques 
John Wiley & Sons Inc New York pp 52-53 1966 

12 PAW LEWIS A S GOODMAN J M MILLER 
A pseudo-random number generator for the systems 360 
IBM Syst J Vol 8 No 2 p 136 1969 



On-line computer managed instruction
The first step* 

by JACQUELINE S. VIERLING 

Honeywell Educational Resource Center 
Minneapolis, Minnesota 

and 

1\1. SHIV ARA1\lI 

Quality Educational Development, Inc. 
Washington, D.C. 

INTRODUCTION 

Computer Managed Instruction (C1\111) is a term em
ployed to designate a system which " ... uses the com
puter to help the teacher administer and guide the 
instructional process."l The major features of CMI 
are diagnosis and testing, analysis, record keeping, 
and prescription. Diagnosis and testing is used to 
evaluate each student's performance at regular in
tervals. The resuhs are then analyzed to update the 
student's record and to provide a prescription which 
suggests the learning process the student should pursue 
to achieve his objectives. A computer-generated pre
scription would assign the student to one of several 
teaching-learning units consisting of textbooks, films, 
slides, or any of a multitude of technological media. 

A typical teacher today, who might be responsible 
for 50 or more students in at least two different courses, 
with 30 teaching-learning units per course, has no 
fewer than 3000 media assignments to make. The pri
mary purpose of the computer in CMI is to help 
teachers manage these assignments in a way which 
increases the efficiency and the quality of instruction 
afforded to each student. In order to provide this guide 
or prescription for the student, the computer must 
have access to files containing each student's objectives, 
all records which characterize the student's abilities 

* The work described in this article was carried out by Quality 
Educational Development, Inc., Washington, D.C. in conjunc
tion with the New York Institute of Technology and the United 
States Naval Academy under the United States Office of Educa
tion Contract No. 8-0446. 

231 

and performance, and the educational resources and 
materials which will be available to the student. Ad
ministrative uses of the computer (diagnosis, testing 
and record keeping) are currently available to many 
students throughout the country. The analysis of 
these records by a computer to provide an individual
ized learning prescription, however, is a relatively 
new concept. Algorithms must be developed which 
correlate a student's performance with a media pre
scription based on individual preferences and capa
bilities. In addition, the prescribed medium or media 
mix should be the one which will maximize the proba
bility that a student will achieve the stated objectives. 

The C1\111 system described here was used during 
a one semester multi-media physics course at the 
U.S. Naval Academy. The course was designed to 
evaluate seven media-mixes in order to elucidate an 
algorithm which correlates diagnosis, testing, and 
analysis with individualized prescriptions. The de
termination of such an algorithm is essential to the 
development of CMLThe first step in eMI develop
ment, therefore, is provided by the system described 
here which was used to perform diagnosis, testing, 
record keeping, and analysis. The second step is to 
determine the required correlation by a further analysis 
of the collected data. The third step would be the 
validation of the algorithm, and the fourth step would 
be the implementation of the complete CMI system. 
The system was used on a remote terminal connected 
via phone lines to a time-shared system. Time-sharing 
has many advantages: the remote terminal is easily 
accessible, the system services each user in a matter of 
seconds or minutes, and simple conversational lan
guages are available. An added bonus is the fact that 



232 Fall Joint Computer Conference, 1970 

TABLE I-CMI Programs 

Input Output 
Program Description files files TTY Output 

XNl Scoring program for weekly pre-tests and post-tests. H5 Xl-Xl2 Student scores, questions missed 
15 

XN2 Performs analysis of student scores by media group; de- 13 None Analysis by media and by question 
termines percent of students missing each question. H4 

Xl-Xl2 

TS2 Performs T-Score analysis of post-test scores 13 TS4 T -Score distribution 
Xl-Xl2 

XN9 Creates a file which lists each student's raw score and TS4 M2 None 
the corresponding T -Score. Xl-Xl2 

J 

XNIO Updates the file used to calculate student's cumulative Kl K2 None 
average T -Score; creates the file necessary to determine M2 T3 
student's percentile standing in class. 

XN8 Creates the output which gives for each student his raw H5 None Continuous output for all students. 
score and T -Score for the current week, his cumulative J 
average T -Score to date, and his percentile standing Kl 
in the class. 

schools which cannot afford a data center can often 
afford the costs of a remote terminal and time-sharing. 

Two design criteria were considered paramount to 
the structure of this CMI package: the system must 
be flexible enough to allow additions or changes with 
a minimum of effort, and the system should allow 
execution and maintenance by educators without 
the requirement for a staff of programmers. With 
these goals in mind, the programs were written in 
BASIC** by teachers who used time-sharing via a 
teletype terminal. The system was based upon student 
files which could be accessed by a series of application 
programs. Since the programs were essentially inde
pendent, the output could easily be changed by simply 
writing another program. The series of programs used 
is listed in Table I and the data files are described in 
Table II; they will be discussed in detail below. The 
data files were protected with a "password" to prevent 
unauthorized persons from reading or changing these 
files. This protection is necessary since students will 
often use the same time-sharing computer for problem
solving and tutorial sessions. 

** Beginners Algorithmic Symbolic Instruction Code, developed 
by Dr. Kemeny and Dr. Kurtz at Dartmouth College. 

T3 
Ml 

COURSE STRUCTURE AND SYSTEM DESIGN 

The physics course, which had been completely 
defined in terms of behavioral objectives2 was given 
to twelve sections comprising about two hundred 
students. Independent of their previously assigned 
sections, the students were randomly assigned to ten 
"groups". One group (CAl-I) utilized the computer 
in a problem solving mode, a second group (CAl-II) 
was exposed to a series of fifty tutorial lessons, and a 
third group (CNTR) served as controls.3 The other 
seven groups were assigned one of seven different 
media-mixes each week; during the semester, each of 
these groups tried each media-mix twice. The seven 
media mixes are lecture (L), lecture/study guide 
(L/SG), study guide (SG), illustrated book (IB), 
talking book CTB), audio visuals CAY), and student 
option (SO). Details of course design are ,veIl docu
mented elsewhere4 ,5 and only those items necessary 
for understanding of the CIVIl programs will be noted 
here. 

The students were given a weekly pre-test to de
termine their knowledge of material to be presented 
and a post-test which measured their comprehension 
of the previous week's instructional sequence. These 



On Line Computer Managed Instruction 233 

Name 

M4 

J 

13 

H5 

16 

XI-X12 

TS4 

Ml,M2 

Kl,K2 

T3 

TABLE II-DATA FILES 

Description 

Master file of student names. 

Master file of student names with absentees indicated for the current 
week. 

Number of students in each section who took the exam. 

Title of work unit, week letter. 

Contains student input data: load one section at a time. 

Student data files-contain scores, and results for each question, for 
every student. 

Contains information on T-Scores: frequency, cumulative frequency, 
raw score, and T-Score. 

Contains for each student-I.S. number, weeks raw score, corre
sponding T -Score. 

Contains for each student-I.S. number, sum of T-Scores, number 
of exams; used to determine student's cumulative average T-Score. 

Contains highest T-Score for current week, T-Score and frequency 
distribution; used to determine student's percentile standing. 

Created by 

User 

User 

User 

User 

User 

XNl 

TS2 

XN9 

XNlO 

XNlO 

Accessed by 

XN8 
XN9 

TS2 
XN2 

XNl,XN8 

XNl 

TS2, XN9 
XN2 

XN9 

XNI0 
XN8 

XN8 

XN8 

tests consisted of ten questions for which the students 
formulated their answers. In addition, they indicated 
their confidence that the answer was correct using a 
scale of 0-100 percent. Confidence testing was em
ployed since it yields a more precise measure of a 
student's knowledge. 6 It is also designed to discourage 
guessing which leads to a more reliable item analysis. 7 

The tests were scored using a logarithmic confidence 
algorithm,5 which assigns credit for an answer based 
both on its correctness and the percent confidence 
indicated. The logarithmic confidence algorithm is 
shown as it appears in the scoring program (Figure 1). 
For example a student who answers a question incor
rectly and indicates 100 percent confidence in the 
answer receives no credit (Table III: look for 100 per-, 
cent confidence under "Percent Confidence" column, 
move across line to column labeled "Answer Incorrect", 
read 0 percent of credit to be allotted). In contrast 
a student who answers a question incorrectly but 
indicates 0 percent confidence (read credit to be al
lotted under "Incorrect Answer" column on same 
line as 0 percent confidence) receives 40 percent of 
the allotted credit. For a ten question test, each ques-

TABLE III -Logarithmic Confidence Testing 

Assignment of Credit 

Percent Answer Answer 
Confidence Correct Incorrect 

100 100 0 
90 99 20 
80 98 26 
70 97 30 
60 96 32 
50 94 34 
40 92 36 
30 90 37 
20 86 38 
10 80 39 
0 60 40 

Percent Confidence The student expresses the confidence he has 
that his answer is correct. 
Assignment of Credit Credit is assigned based on both the 
correctness of the question and the percent confidence. For 
example, if a question is correct and the confidence expressed 
was 90 percent, 99 percent of the allowed credit will be given. 
On a ten question exam, this is 99 percent of 10 points or 9.9 
points. 



.234 Fall Joint Computer Conference, 1970 

1540 FOR 1=1 TO N 
1550 READ 12IACI) 
1560 IF ACI)=10 THEN 1700 
1570 IF ACI)=111 THEN 1700 
1 580 1 F A C I ) = 1 THEN 1 61 0 
1582 IF ACI)=O THEN 1610 
1584 LET CCI)=O 
1586 GO TO 1642 
1610 READ 62ICCI) 
1620 IF CCI»100 THEN 1720 
1630 IF ACI)=1 THEN 1670 
1640 IF CCI»=99 THEN 1650 
1642 LET E= .ul°CCI) 
1645 LET G=G+2°C2+CLOGCI-E)/2.303» 
1650 LET OCI)=1 
1660 GO TO 1695 
1670 IF CCI)=100 THEN 1675 
1671 IF C C I )<=1 THEN 1678 
1672 LET E=.OI°CCI) 
1673 LET G=G+2°C5+CLOGCE)/2.303» 
1674 GO TO 1680 
1675 LET G=G+I0 
1676 GO TO 1680 
1678 LET G=G+6 
1680 LET Gl=Gl+100/N 
1690 LET OC I )=2 
1695 NEXT I 
1700 RETURN 
1705 PRINT-DATA PUNCHED INCORRECTLY· 
1710 STOP 
1720 PRINT-CONFIDENCE GREATER THAN 100· 
1730 STOP 

Figure 1-The logarithmic confidence algorithm is shown as it 
appears in Program XN1 

tion is worth 10 points, and 40 percent of the credit or 
4 points would be given for this question. Blank an
swers were scored using 0 percent confidence. This 
type of complicated and time-consuming scoring is 
easily implemented with the aid of the computer. 

Thus each week, students were given a ten question 
pre-test and post-test. Their answers and percent confi
dence were recorded on a separate answer sheet. A 
typist was used to punch this information on paper 
tape for input to the computer. The first week, the 
student's formulated answers were input to the com
puter for grading. This proved tedious and time con
suming in terms of the variety of acceptable answers 
and the time necessary to punch the information on 
paper tape. In subsequent weeks, the wrong answers 
were marked and the typists used a code to indicate 
whether the answer was blank, correct, or wrong, and 
the percent confidence. In addition, the students were 
given a copy of the answer sheets so that they could 
check the results. During the course of the semester 
(200 students and 14 tests), only two corrections at-

tributable to input errors were entered. It is important 
to realize that this mode of input was made necessary 
because of course design constraints and the hardware 
facilities available. There are more desirable possi
bilities and these will be noted in a later section. 

SYSTEM OPERATION 

The student's responses after being punched on 
paper tape, were input via the teletype to the computer 
and stored in the form of separate data file for each 
section. The scoring program (XNl in Table I) read 
the input data in each of the section files and pro
duced output to the teletype. This output (Figure 2) 
listed the confidence score, the conventional score, 
and questions missed for each student. The output 
was posted, and students would then schedule extra 
instruction with their section professors to discuss 
the behavioral objectives related to the questions 
they missed. At the same time, the student responses 
were scored, program XNl created another set of 

V1L.lHE ) 

SECT I )'J I :1:')5 p,)ST-n:ST I~ESULTS 

SCJ!;,,: -
.\)l~'~;;: C:HF CJ,\lV 'j!Ji!::,TJ)\lS MI S~ED 

4Dl\',"S,,). 62.3 6(~ 3 5 6 7. 
31 ;::";';JF"r~ P. 1')9.7 9v1 

T)l\V/DSJ\I, F. 7,,). ') 6:1 2 d 9 10 

OI LG,'E,~, G. 93. 7 9;) 

.J.).-HSJ ~,,'i. 9:~. ~2 9) 

.{"'~ H:f)Y,',·:. 63. -4 51 I 2 "5 

·· .. jE'(r~,(, I). ~11. :; 711 7 q 

·,if \I\iJ S .. !~. 35.13 ID I 2 3 6 7 -) I:: 
~·'iAC {'_ST f, A. 41.7 Jlj o 3 4 5 6 7 3 Y IU 

",-11 Ti-l,.). A. 57. 3 ij":: 

SH f-i, <." . 19.2 I ~1.1 

SF!;:J (;>1 f::; .. ;.;. 47. " ~: .. ) ~ 3 4 S 7 1 9 10 

STJC-<S,A. 36. -3 B 3 J;J 

':ECrlSEL3E;; GE'" 59.::: 5') 3 4 6 7 -I 

.. ;·-il rr:,.J • :;t}. '5 7J I 4 :3 

~ .• I:_{J TE,·{. L. 52.·~ 5'3 

16 

s:~cr(·)>J Ij~~5 

H~~ DlSmI'1lJfI )'J .I? ::;C.)I'E!:; FH P·)ST-fESf ) 11:>-

6 I -7:3 71-'5"1 ?]- 13:3 

Figure 2-The output for section 1005 is shown to illustrate the 
output produced by Program XN1 when the weekly post-tests 

are scored 



80 REt-l TH I 5 IS THE :XS F'ILE 
100 720056, 3, 43.4, 1,2,1,1,2,2,1,1,1,1 
101 720133, 5, 57.8, 2,2,1,1,1,2,2,2,1,1 
102 721799, 1, 47.3, 2,2,1,1,1,1,1,1,1,1 
103 722835, 5, 74.5, 2,2,1,2,2,2,1,2,1,2 
104 723934, 5, 28 , 1,1,1,1,1,1,1,1,1,1 
105 724165, 5, 39.2, 1,1,1,1,1,1,1,2,1,2 
106 724872, 5, 66.3, 1,2,1,2,2,2,1,1,2,2 
107 725390, 5, 64.8, 2,1,1,2,2,2,1,2,1,2 
108 725425, 5, 52.9, 2,1,1,1,2,2,1,1,1,1 
109 725196, 1, 91.9, 2,2,1,2,~,2,2,2,2,2 
110 726699, 5, 54.8, 1,2,2,1,1,1,2,1,1,2 
111 726811, 1, 63.8, 1,1,2,2,2,1,1,2,1,2 
112 721539, 5, 42. , 1,1,1,1,2,1,1,1,2,1 
113 727945, 1, 71.4, 2,1,2,2,2,2,1,2,1,1 
114 728561, 1, 59. , 2,1,1,2,2,2,1,1,1,2 
115 728659, 5, 53.6, 2,1,1,2,2,2,1,1,1,1 
116 728925, 5, 49.4, 2,1,1,2,2,1,1,1,1,1 
117 73e921, 5, 39.8, 1,1,1,1,1,1,1,1,2,1 

Figure 3-0ne of the section data files created by Program 
XNl is shown. These files contain each student's I.D. number, 
confidence score, and his response to each question on the test 

data files (Table II, data files XI-X12) for each sec
tion (Figure 3) which contained the student's identi
fication number, group number, confidence score, and 
his response to each question in coded form (Figure 4). 
The identification or I.D. number is used to uniquely 
identify each student's responses. This number is 
stored along with the data and checked whenever 
programs manipulate these numbers to ensure that 
the responses of one student are not attributed to an
other student. These data files could then serve as 
input for any variety of analysis programs. 

STUDEfH I I D I NUMBER 

j 
103 

QUESTION 5, CORRECT 

QUESTION 7 HROflG 

Figure 4-A line from one of the data files (XI-X12) is annotated 
to indicate the items stored 

On Line Computer Managed Instruction 235 

QUALITY EDUCATIONAL DEVELOPMENT 

COMPUTER ANALYSIS OF STUDENT PERFORMANCE 

POST-TEST K CURRENT AND RESISTANCE 

ANALYSIS OF SCORES BY MEDIA 

GROUP 0-60 61-70 71-80 81-90 91-100 MEAN 

SG 0 0 5 2 13 91.1 

IB 0 1 6 12 89.7 

AV 2 0 3 6 8 87. 

SO 0 2 5 5 11 87.4 

TB 1 2 5 12 87.3 

L 1 1 8 7 87.4 

L/SG a 2 • 4 11 88.8 

CNTR 1 1 2 7 17 90.2 

CAI-I 1 3 2 6 82.2 

CAl-II 1 0 1 7 6 88.8 

Figure 5-The results of the analysis of scores by media group 
is shown for Post-test K. This output is produced by 

Program XN2 

Two of these programs will be described here. The 
first program (,fable I, Program XN2) accessed the 
data files to produce an analysis of performance by 
media group (Figure 5), and an analysis of performance 
by question (Figure 6). It should be recalled that the 
tests were scored by section since the section profes
sors were responsible for student grades but the media 
groups were randomly assigned independent of the 
sections. It was thus necessary to perform analysis 
both by section and by group. The data in the section 
files (files Xl-X12), therefore, had to be analyzed or 
sorted to determine the effectiveness of the different 
media-mixes. The "analysis by group" sorted the stu
dent confidence scores by media-group. On a weekly 
basis, the difference in performance by group was 
generally small. Conclusions on the effectiveness of the 
media-mixes must await an analysis of variance of 
group performance during the semester. In addition, 
the response of each student to each question was 
sorted by computer· to determine the percent of the 
students in each media group who missed each test 
question. This "analysis by question" or item analysis 
often showed distinct differences in performance by 
the various media groups. As an example, consider 
the results of the twenty-question test given at mid
semester (Figure 7). Question one which tested an 



236 Fall Joint Computer Conference, 1970 

QUALITY EDUCATIONAL DEVELOPMENT 

COMPUTER ANALYSIS OF STUDENT PERFORMANCE 

POST-TEST K CURRENT AND RESISTANCE 

ANALYSIS: PERCENT OF STUDENTS WHO MISSED A QUESTION 

QUES. 1 3 9 10 

5G 15. o 10. 25 15. 0 20. 15. 

IB 4.35 0 21.7 4.35 17.4 21.7 8.7 21.7 13. 

AV 10.5 10.5 15.8 10.5 10.5 21.1 10.5 0 36.8 10.S 

50 o 4.35 17.4 26.1 39.1 0 o 43.5 17.4 

TB 4.35 4.35 4.35 4.35 17.4 47.8 8.7 4.35 ~O.4 17.4 

L o 4.76 14.3 19. 42.9 4.76 0 33.3 14.3 

L/5G 4.76 0 14.3 9.52 0 57.1 0 o 33.3 9.52 

CNTR 25 3.57 14.3 3.57 14.3 7.14 7.14 3.57 0 35.7 

CAI-I 21.4 28.6 21.4 28.6 7.14 21.4 21.4 0 35.7 

CAl-II 13.3 0 13.3 6.67 20. 26.7 13.3 6.67 0 26.7 

TOTAL 11.2 4.49 12.9 10.7 16.9 36. 9.55 1.69 26.4 22.5 

Figure 6-Program XN2 also analyzes student responses to 
determine the percent of students missing each question as a 

function of media group. A sample output is shown 

objective on the manipulation of vectors was correctly 
answered by more than 95 percent of the students 
taking the exam. In contrast, question 19 was an
swered incorrectly by 28 percent of the students. If 
the breakdown by group is scanned for this question, 
the individual group percentages vary from 14 to 48 
with a low of 3.7 percent for the CAl group. It should 
be noted that all of the course objectives were not 
treated by all of the media. 8 The behavioral objec
tive tested by question 19 (electric field/superposition) 
was treated by the lecture, study guide, and CAl 
material of week G, and by a review study guide 
made available to all groups during the review week. 
If we can assume that all media were of equal content, 
it would appear that CAl best enables the achievement 
of this objective in general. Further analysis could well 
refine the conclusion in terms of individual student 
characteristics. 

The second program which will be discussed (Table 
I, Program XN8) provides the cumulative output of 
the weekly bookkeeping. This program illustrates the 
scope of data manipUlation possible using only simple 
BASIC statements and a file oriented time-shared 

system. Several other programs (see Tables I and II) 
must be executed to T-Score the exams and to produce 
the data files read by this program. The order of 
execution is XN9, XN10, and XN8. The output for 
each section (Figure 8) lists each student's name, his 
current weeks raw confidence score, the equivalent 
T-Score, the cumulative average of all T-Scores to 
date, and his percentile standing in the class. This 
program reads data from four different data files, 
three of which were written by computer programs. 
The M4 file (Figure 9) contained the master list of 
students in the course. This file contained the list of 
student names, identification numbers and group num
bers and it was grouped by section. After the post-test 
and prior to executing Program XN8, the M 4 file 
was copied into the J file and absentees were indicated 
in the J file. In this manner, the master list (M4 file) 
remained unaltered. This file is created at the begin
ning of the semester and is altered only when a student 

QUALITY EDUCATIONAL DEVELOPMENT 

COMPUTER ANALYSIS OF STUDENT PERFORMANCE 

POST-TEST H REVIEW EXAM 

ANALYSIS: PERCENT OF STUDENTS WHO MISSED A QUESTION 

QUES. A B C D E F G 

o 
CAl TOTAL 

1 

2 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

o o 4.76 0 4.76 0 o 
20. 21.7 19. 27.3 28.6 28.6 45.5 29.6 

40. 

o 
40. 

70. 

5. 

10. 

10. 

5. 

15. 

75 

20 

25 

75 

20 

10. 

50 

25 

75 

39.1 47.6 63.6 57.1 28.6 54.5 

4.35 0 4.55 0 o o 

21.7 33.3 63.6 28.6 28.6 27.3 

43.5 76.2 63.6 61.9 57.1 59.1 

13. 4.76 4.55 0 19. 9.09 

13. 14.3 13.6 4.76 19. 4.55 

17.4 28.6 27.3 19. 19. 36.4 

8.7 4.76 4.55 4.76 4.76 18.2 

8.7 19. 0 9.52 9.52 13.6 

69.6 71.4 72.7 66.7 66.7 77.3 

21.7 33.3 4.55 47.6 19. 36.4 

26.1 19. 40.9 28.6 23.8 36.4 

82.6 95.2 95.5 85.7 81. 81.8 

8.7 23.8 13.6 19. 19. 22.7 

8.7 19. 22.7 4.76 9.52 18.2 

30.4 71.4 68.2 52.4 57.1 54.5 

63. 

o 

44.4 

77.8 

3.7 

11.1 

25.9 

11.1 

11.1 

81.5 

18.5 

40.7 

63. 

22.2 

7.41 

74.1 

43.5 14.3 36.4 47.6 19. 36.4 3.7 

69.6 95.2 59.1 85.7 90.5 86.4 74.1 

1.13 

27.7 

49.7 

1.13 

36.2 

63.8 

7.34 

11.3 

23.2 

7.91 

10.7 

72.9 

24.9 

30.5 

81.9 

18.6 

12.4 

57.6 

27.7 

79.1 

Figure 7-The analysis of the percent of students missing each 
question is given for the mid-semester review exam to illustrate 

the feedback this output provides 



ON-SITE COMPUTER MANAGED DIRECTIVES 

CURRENT GRADES AND CUMULATIVE AVERAGE T-SCORES 

SECTION 803 

POST-TEST M MAGNETIC FIELD I 

N~ RAW SCORE T-SCORE CAS PSM 
(M) (M) (A-M) (A-M) 

BRILLA,R. 68.5 53 55 86 

CASKEY,H. 63.8 49 43 8 

DRAWNECK, R. 83.6 63 5}, 63 

HINSON,L. 67.8 52 56 91 

HOPPER,W. 71.7 55 48 34 

HORNE,B. 88.1 67 50 53 

JOHNSON,G. 75.6 58 56 91 

KENNEDY,T. 89 68 52 69 

KRATOCHVIL 79.8 60 49 44 

MARTIN,A. 64.1 49 51 63 

MC DEVITT,R. 63.9 49 45 14 

OSBORN,D. 63 48 50 53 

SCHULER,T. ABSENT ABSENT 48 34 

SHEARER,G. 67.7 52 48 34 

SMITH,D. 82.6 61 56 91 

SZOKA,M. 91.2 72 50 53 

TOMLIN,E. 79 59 59 96 

VAUGHN,D. 61.9 48 50 53 

WOOD,C. 46 38 41 5 

WILKENSON,J. 40.5 34 39 2 

Figure 8-The output from Program XN8 for one section for 
week (M) is shown 

drops the course. All programs which access data files 
check the I.D. numbers to ensure that there is no 
possibility of using the wrong data for a student's 
record. 

The other files accessed by XN8 were the Kl, T3, 
and Ml files (Table II); the Kl and Ml files were 
grouped by section. The Kl file (Figure 10) contains 
each student's I.D. number, the sum of his T-Scores, 
and the number of exams involved. This file can be 
used to calculate the cumulative average T-Score since 
that is the sum of the T -Scores divided by the number 
of exams. The Kl file is updated weekly by computer 
(Table 1, Program XNI0) in the following manner: 
the program reads the cumulative information from 
the Kl file, reads the current T -Score from another 
file (file Ml), checks I.D. numbers to ensure a match, 
then adds the current T -Score to the sum, increments 
the number of exams by one, and outputs this infor
mation to the K2 file. Thus after executing XNI0, 
the Kl file contains the previous weeks cumulative 

On Line Computer Managed Instruction 237 

data and the K2 file contains the updated cumulative 
data. The Kl file is then deleted (a paper tape of the 
file can be saved) and the K2 file is renamed to Kl 
before executing XN8. This minimizes the amount 
of data stored in the computer. 

The XN8 program also reads data from the Ml file 
(Figure 11) which contains student I.D. numbers, 
the raw confidence score, and the equivalent T-Score 
for the current week. The fourth file read by program 
XN8 is the T3 file (Table II) which contains the data 
necessary to determine a student's percentile standing 
in the class. 

A listing of program XN8 (Figure 12) is given to 
show the simple BASIC statements which are involved. 
For example lines 400-480 check that the I.D. numbers 
for all data refer to the same student. Should a mis
match occur, the program is written to print (lines 
420-430) the name of the student (A$) from the mas
ter file, his section (T), and the files involved. The 
program reads the student data one student at a time, 
and prints the results to avoid excessive use of sub
scripted variables since this would affect the permitted 

100801.,1.,1 
102 "BENHAM.,~1.".,720490.,5 
104 "BLAKEY.,B."., 720651., 5 
106 -BRUCKEH.,B.-.,721029.,1 
108 -CROOK.,K.-.,721694.,1 
110 -DIX.,S.-,,722079.,1 
112 -ENGLUND.,R.-.,722380.,1 
114 "GALLI.,W.".,722702,1 
116 -GILLOOLy.,J.-.,722863.,5 
118 -HEDRICK,M.-.,723584.,5 
120 -KEITHLY,T.-.,724410,5 
122 -KING.,M.-.,724571.,1 
124 "MOFFATT.,W.".,725978.,5 
126 "NEUPAVEH.,A.-.,726356.,1 
128 "NIELSEN.,J.-,726412.,1 
130 -PRINCE.,T.-,727014,1 
132 "ROUND,H ... .,724399,5 
134 -SCHUBB1T.,J.-,727700 1 1 
136 .. SHOElVlAKER., J. -,727896., 5 
138 .. SNYDER.,W ... .,728155.,5 
140 -SPRINGYAN,R.-.,728232.,5 
142 -VANMAELE.,J.-.,728932,5 
144 .. VANOHSDEL.,R ... .,728939,1 
150 0,0,0 

Figure 9-The Master File of student names (M4 file) is listed 
for one section to show how the names, J.D. numbers and group 

numbers are stored 



238 Fall Joint Computer Conference, 1970 

lOa 1 , 
101 720490 , 855 , 14 , 
102 720651 , 616 , 12 , 
103 721029 , 641 , 13 , 
104 721694 , 661 , 13 , 
105 722079 , 482 , 1 1 , 
106 722380 , 612 , 14 , 
101 122102 , 481 , 10 , 
108 722863 , 704 , 14 , 
109 72358/1 , 5Ll1 , 13 , 
110 724410 , 617 , 12 , 
111 124571 , 676 , 14 , 
112 725978 , 663 , 14 , 
113 726356 , 804 , 13 , 
114 726412 , 742 , 14 , 
11 5 727Q 14 , 716 , 13 , 
116 72L1399 , 618 , 14 , 
11 7 727730 , 635 , 14 , 
11 8- 127896 , 661.1 , 13 , 
11 9 728155 , 604 , 12 , 
120 728232 , 602 , 13 , 
121 728932 , 614 , i3 , 
122 728939 , 673 , 13 , 

Figure IO-The data stored in the Kl tile are listed for one section. 
This file contains the cumulative sum of each student's T-Scores 

and the number of exams involved 

length of the BASIC program. The initial information 
on the heading for each section is read and printed 
(lines 210-360), while the data for each student in the 
section is read and printed in a loop (lines 390-600). 
Program XN8 will always run error-free since three 
input files (Kl, ]\1:1, T3) are created by computer and 
the fourth file (M4) is checked during the execution 
of Program XN9. 

CONCLUSIONS 

The CMI programs described were successful from two 
points of view: the dead time between the student's 
responses and the analysis of results was kept to a 
minimum and the flexibility of the system was main
tained. Both of these advantages accrue from the fact 
that the system was operated on.:..line in a time-sharing 
mode. There is no doubt that the use of a batch-pro
cessing system increases the dead time between col
lection of data and output since turn-around time 
for even efficient data centers can range from 3-24 
hours. In contrast, time-sharing provides almost im-

mediate responses with a limiting factor being speed 
of input and output. The modular design of this system, 
with an emphasis on easy access to data and results, 
allowed a flexibility which is often lacking in large 
CMI programs where the sheer size and complexity 
of the program often precludes changes. In turn, this 
flexibility ensures user satisfaction since the system is 
responsive to individual requirements. Furthermore, 
the use of an easy conversational language (BASIC) 
allows direct access to the system by teachers, edu-
cators, and students. 

As noted above, a major area of consideration for 
on-line CMI is which remote terminal to use. In this 
experiment, a relatively large amount of time was 
required for input and output because the rate of 
transmission of the teletype is 10 characters/second. 
This time can be cut considerably simply by using one 
of the faster remote terminals available which trans-
mit at rates of 30 characters/second and are com-
patible with most time-shared systems. Furthermore, 
if the course design utilizes multiple-choice exam ques-
tions, students can mark their answers on a card and 
a mark-sense card reader can be used. This eliminates 

100 1 , 
101 720490 , 70.2 , 5'! , 
102 720651 , 73.3 , 56 , 
103 721029 , 56.8 , 45 , 
104 721694 , 84.2 , 63 , 
105 722079 , 65.2 , 50 , 
106 722380 , 26.8 , 22 , 
107 722702 , 0 , 0 , 
108 722863 , 53.6 , 43 , 
109 723584 , 52.1 , 41 , 
110 724410 , 84.6 , 65 , 
111 724571 , 55.2 , 44 , 
112 725978 , 43.3 , 36 , 
113 726356 , 85.4 , 65 , 
114 726412 , 75.3 , 57 , 
11 5 727014 , 69.5 , 54 , 
116 724399 , 0 , 0 , 
11 7 727700 , 67 , 51 , 
118 727896 , 57.1 , 45 , 
119 728155 , 76.3 , 58 , 
120 728232 , 69.2 , 53 , 
121 728932 , 31.4 , 28 , 
122 728939 , 49.8 , 40 , 

Figure ll-The MIfile, which contains a student's raw confidence 
score and the corresponding T -Score for the current exam, is 

listed for one section 



100 REM .... PROGRAM XNS .... 
200 DIM C (l00) 
210 FILES T3. H5. J. I'll. K1 
220 R~D Il.X1.N.C(N) 
230 IF,N=X1 THEN 245 
240 60 TO 220 
245 READ 12.VS.LS.KS 
250 READ 13,T,X,P 
255 R~D 14.Y 
256 READ 15,Z 
260 PRINT- ON-SITE COMPUTER MANAGED DIRECTIVES-
270 PRINT 
280 PRINT 
290 PRINT- CURRENT GRADES AND CUMULATIVE AVERAGE T-SCORES-
310 PRINT 
320 PRINT TAB(26);-SECTION -;T 
322 PRINT 
324 PRINT 
326 PRINT- POST-TEST - ;VS,LS;KS 
330 PRINT 
340 PRINT 
350 PRIN'C- NAME- ,-RAW SCORE- ,-T-SCOHE- ,-CAS- ,-PSM-
360 PRINT TAB (16);- (N)-; TAB (32 H- (N)-; TAB(44);- (A-N)-; TAB (59 >;- (A-N)-
370 PRINT 
380 PRINT 
390 READ 13,AS, 0, U 
395 IF 0=0 THEN 610 
400 READ 14,U1,G,T1 
410 IF Ul =D l'HEN 440 
420 PRINT-l.D'S FOR -;AS;- OF SECTION -;T;- DO NOT MATCH '-
430 PHINT-! IN THE J AND 1"1 FILES-
435 GO TO 660 
440 READ IS.U2,S,N 
450 IF U2=U1 THEN 490 
460 PRINT-I.D'S FOR -;AH- OF SECTION -;T;- DO NOT MATCH-
470 PHINT- IN THE J AND K1 FILES-
480 GO TO 660 
490 IF 6>0 'CHEN 540 
SOO LET M=INT< C!)/N)+.5) 
510 LET W=CCCM)/C(XI »"100 
520 PRINT AS,- ABSENT-.M.INTHJ+.5) 
530 GO TO 590 
540 LET S=S+T1 
550 LET N=N+1 
560 LET l'!l=INTCCS/N)+.S) 
570 LET W=CCCMI )/CCX1 »"100 
580 PRINT AS.G.T1.Ml.INT(W+.S) 
590 PRINT 
600 GO TO 390 
610 FOR 1= 1 TO 10 
620 PRINT 
630 NEXT I 
640 IF X<13 THEN 250 
6SO PkINT- THIS COMPLETES THE OUTPUT FOR THIS PROGRAM-
660 !)IOP 
700 END 

Figure 12-A copy of Program XN8 is listed to show the simple 
BASIC statements which can be used to manipulate student 

data files 

the time and personnel required to punch student 
responses on paper tape. Nothing in the system design 
precludes each user from choosing the terminal best 
suited to his needs. 

In summary, the implementation of CM! is essen
tial if teachers are going to effectively manage the 
learning process to provide individualized instruction. 
On-line CMI satisfies the needs of educators for a rapid, 
flexible, easily accessible system. On-line CMI can 
currently perform the tasks of diagnosis, testing, 

" 

On Line Computer Managed Instruction 239 

record keeping, and analysis. Such a system is also 
capable of elucidating, validating, and imp1ementing 
algorithms which provide individualized learning pre
scriptions. 

ACKNOWLEDGl\1ENTS 

The authors wish to acknow1edge the many helpful 
discussions and suggestions contributed by Dr. A. F. 
Vierling, Manager of the Honeywell Educational 
Instruction Network (EDINET), and Dr.A. T. Serlemit
sos, Staff Physicist at Quality Educational Develop
ment, Incorporated. 

REFERENCES 

1 H J BRUDNER 
Computer-managed instruction 
Science Volume 162 pp 970-976 1968 

2 Revised listing of objectives 
Technical Reports Numbers 4.3a and 4.3b United States 
Office of Education Project Number 8-0446 November 3 
1969 

3 A F VIERLING 
CAl development in multimedia physics 
Technical Report Number 4.30 United States Office of 
Education Project Number 8-0446 November 3 1969 

4 W A DETERLINE R K BRANSON 
Evaluation and validation design 
Technical Report Number 4.7 United States Office of 
Education Project Number 8-0446 November 3 1969 

5 W A DETERLINE R K BRANSON 
Design for selection of strategies and media 
Technical Report Number 4.9 United States Office of 
Education Project Number 8-0446 November 3 1969 

6 E H SHUFORD JR 
Confidence testing: A new tool for management 
Presented at the 11th Annual Conference of the Military 
Testing Association Governors Island New York 1969 

7 W C GARDNER JR 
The use of confidence testing in the academic instructor course 
Presented at the 11th Annual Conference of the Military 
Testing Association Governors Island New York 1969 

8 A F VIERLING A T SERLEMITSOS 
CAl in a multimedia physics course 
Presented at the Conference on Computers in 
Undergraduate Science Education Chicago Illinois 1970 





Development of analog/hybrid terminals for 
teaching system dynamics 

by DONALD C. }\iARTIN 

North Carolina State University 
Raleigh, North Carolina 

INTRODUCTION 

A recent study completed by the School of Engineering 
at North Carolina State University brought to light a 
very serious weakness in our program to employ 
computers in the engineering curricula, i.e., the inherent 
limitation on student/computer interaction with our 
batch, multiprogrammed digital system. The primary 
digital system available to students and faculty is the 
IBM SYSTEM 360/Model 75 located at the Triangle 
Universities Computation Center in the Research 
Triangle area. This facility is shared with Duke 
University and the University of North Carolina at 
Chapel Hill. In addition, the Engineering School 
operates a small educational hybrid facility consisting 
of an IBM 1130 interfaced to an EAI TR48 analog 
computer. We use some conversational mode terminals 
on the digital system but it has been our experience that 
they are of limited value in the classroom and, of course, 
only accommodate on the order of two students per hour. 

It is our feeling that terminals based on an analog or 
hybrid computer would materially improve student/ 
computer interaction, especially aiding the comprehen
sion of those dynamic systems described by ordinary 
differential equations. This paper has resulted from our 
attempts to outline and define the requirements for an 
analog computer terminal system which would effec
tively improve our teaching in the broad area of system 
dynamics. The need for some reasonably priced dynamic. 
classroom device becomes apparent when we consider 
the ineffectiveness of traditional lecture methods in such 
courses as the Introduction to Mechanics at North 
Carolina State University. This is an engineering 
common core course in mechanical system dynamics 
which has an enrollment of about 400 students per 
semester. This is a far cry from early Greek and Roman 
times when a few students gathered around a teacher, 
who made little or no attempt to teach facts but instead 
attempted to stimulate the students' imagination and 

241 

enthusiasm. As pointed out by Professor Alan Rogers at 
a recent Joint SCI/ ACEUG Meeting at NCSU, this 
intimate student-professor relationship simply cannot 
be achieved in today's large classes unless the instructor 
learns to make effective use of the modern tools of 
communication, i~e., movies, television, and computers. 
In effect, we turn students off by our failure to recognize 
the potential of these tools, especially the classroom use 
of computers. 

The material which follows points out the need for 
interactive terminals, describes the capabilities of 
prototype models already constructed, and then outlines 
the classroom system which is presently being installed 
for use in the fall of 1970. 

THE NEED FOR INTERACTIVE TERMINALS 

Classroom demonstrations 

The computer has long held great promise both as a 
means for improving the content of scientific and 

. technical courses and as an aid for improving methods 
of teaching. While some of this promise has been realized 
in isolated cases, very little has been accomplished in 
either basic science courses or engineering science 
courses in universities where large numbers of students 
are involved. It is certainly true that significant 
improvement in course content can be achieved by using 
the computer to solve more realistic and meaningful 
problems. For example, the effects of changing param
eters in the problem formulation can be studied. With 
centralized digital or analog computing facilities, this 
can be accomplished only in a very limited way, e.g., 
problems can be programmed by the instructor and used 
as a demonstration for the class. Some such demonstra
tions are desirable but it is impossible to get the student 
intimately involved, and at best they serve only as a 
supplement to a text book. At North Carolina State 



242 Fall Joint Computer Conference, 1970 

Figure 1 

University we have developed a demonstration monitor 
for studies of dynamic systems which seems to be quite 
effective. We recently modified our analog computers so 
that the primary output display device is a video 
monitor which can be used on-line with the computer. 
Demonstrations have been conducted for other disci
plines, for example, a Sturm Liunville quantum 
mechanics demonstration for a professor in the Chem
istry·Department. This demonstration very graphically 
illustrates the concept of eigenfunctions and eigenvalues 
for boundary value problems of this type. A picture of 
the classroom television display is shown in Figure 1. 
The instructor's control panel makes several parameters, 
function switches and output display channels available 
for control of the pre-patched demonstration problem. 
Switches are also available to control the operation of 
the analog computer . The direction we are proceeding in 
the area of demonstration problems is to supply the 
instructor with a pre-patched problem, indicate how to 
set potentiometers, and how to start and end the 
computation. Since the display is retained on a storage 
screen oscilloscope with video output, he can plot 
multiple solutions which will be stored for up to an hour, 
or he can push a button to erase the screen at any time. 
Some demonstrations have been put on the small video 
tape recorder, shown in Figure 1, but we find the loss 
of interactive capability drastically decreases the ef
fectiveness of the demonstration. 

Student programming 

In addition to classroom demonstrations, the student 
can be assigned problems and required to do the pro-

gramming. While we believe this to be an excellent 
approach for advanced engineering courses, such as 
design, systems analysis, etc., it has proven less than 
satisfactory for the first and second year science and 
engineering courses. Even when the students have had 
a basic programming course, valuable classroom time 
must be spent in techniques for programming, numerical 
methods, and discussions of debugging. The students 
tend to become involved in the mechanics of pro
gramming at the sacrifice of a serious study of the 
problem and its interpretation. With inexperienced 
students, even when turnaround time on the computer 
is excellent, the elapsed time between problem assign
ment and a satisfactory solution is usually much too 
long. 

We have tried this student programming approach 
for the past four years in a sophomore chemical engi
neering course. While it has been of some value, we 
are now convinced that it is not a satisfactory method 
of improving teaching. The teaching of basic computer 
programming does, however, have a great deal of merit 
in that it forces students to logically organize their 
thoughts and problem solving techniques. Also it helps 
to provide an understanding of the way computers 
can be applied to meaningful engineering problems. 
Thus, we intend to continue the teaching of basic 
digital computer programming in one of the higher 
level languages at the freshman or sophomore level, 
and then make. use of stored library programs for 
appropriate class assignments. In addition, we will 
continue to assign one or more term problems in which 
the student writes his own program, especially in 
courses roughly categorized as engineering design 
courses. 

Digital computer terminals 

It is appropriate at this point to emphasize why we 
feel time-shared or conversational mode terminals are 
not the answer to our current problem. It has been our 
experience that the conversational te~minal is an out
standing device for teaching programming, basic capa
bilities of computers, and solving student problems 
when the volume of data is limited. However, if the 
relatively slow typing capability of students is con
sidered, we have found that a class of 20 or 30 students 
can obtain much faster turnaround time on the batch 
system. To be sure, the student at the terminal has 
his instantaneous response, but the sixth student in the 
queue is still waiting two hours to run his program and 
use his few tenths of a second CPU time. One can cer
tainly argue that this is an unfair judgment since the 
solution is to simply buy more terminals for about 



$2500 each. Unfortunately, these terminals are like 
cameras and their use involves a continuing expense 
often greater than the initial cost. Connect time and 
communication costs for a sufficient number of termi
nals have discouraged such terminal use on the campus 
at the present time. The experience of the North 
Carolina Computer Orientation Project, which es
sentially provided a free terminal for one year at 
have-not schools, has been similar in that it proved 
very difficult for these schools to utilize the terminal 
in any science course other than a course in pro
gramming. 

Present limitations on classroom use of computers 

It is reasonable to ask why, in a university that has 
had good computing facilities for some time, computer 
use in the classroom is so limited. We feel there are 
several reasons why the majority of instructors do 
not use this means of communication to improve in
struction techniques. The first of these reasons must 
be classed as faculty apathy. There is no other ex
planation for the fact that less than 25 percent of our 
engineering faculty use the digital computer and less 
than 5 percent avail themselves of our analog facility. 
Admittedly, it is extremely difficult for a physicist, 
chemist or engineer who is not proficient in computing 
to program demonstration problems for his classes. 
Because such demonstrations, while a step in the right 
direction, do not really make use of the interactive 
capability of the computer to excite the students' 
imagination, there is often little motivation for the 
professor to learn the mechanics of programming. 
Fortunate indeed is the occasional instructor who 
has a graduate student assistant competent to set up 
and document such demonstrations. 

The second reason, closely coupled to the first, is 
that computer output equipment for student use in 
the classroom is either not available or just too expen
sive for large classes. Digital graphics terminals, for 
instance, sell for between 15 and 70 thousand dollars, 
depending on terminal capability, and an analog com
puter of any sophistication at all will cost 5 to 10 
thousand d,ollars with the associated readout equip
ment. In our basic introductory mechanics course, 
with ten sections of forty students, a minimum of 
twen ty such terminals would be required if we assume 
two students per terminal as a realistic ratio. Even if 
such analog or digital computer terminals were avail
able, we would then be faced with the problem of 
teaching the students (and faculty) a considerable 
amount of detailed programming at the expense of 
other material in the curriculum. We feel that analogi 

Development of Analog/Hybrid Terminals 243 

hybrid computer terminals designed to accomplish 
a specific, well-defined task, will provide an economical 
interactive student display terminal for many en
gineering courses. Such a terminal is described in this 
paper. 

CLASSROOM TERMINAL SYSTEM 

We have recently received support from the National 
Science Foundation to study the effect of student inter
action with the computer in courses which emphasize 
the dynamic modeling of physical systems. It is a well 
known fact that interaction with a computer improves 
productivity in a design and programming sense. The 
question to which we are seeking the answer is: Will 
computer interaction also improve the educational 
process effectively without leaving the student with 
the impression that we are using a "magic black box"? 
To accomplish this goal, we are installing sixteen ana
log/hybrid terminals in a classroom to serve thirty
two students. The classroom in which these terminals 
will be placed is about 150 feet from the School's analog 
and digital computer facility. 

At this point, we should place some limits on terminal 
capability and function. If we accept the premise that 
the student need not learn actual patching to use the 
analog computer terminal and eliminate the tradi
tional concept of submitting a hard copy of his com
puter output as an assignment, the desirable features 
of a terminal might be as follows: 

1. Parameters: The student must have the capa
bility of varying at least five different param
eters in a specific problem. Three significant 
digits should be sufficient precision for these 
parameters and their value should be either 
continuously displayed or displayed on com
mand. 

2. Functions: The student should have access to 
function switches to perform such operations 
as changing from positive to negative feedback 
to demonstrate stability, adding forcing func
tions to illustrate superposition, adding· higher 
harmonics to construct a Fourier approxima
tion of a function, introducing transportation 
delay to a control system, etc. Three to five of 
these function switches should be sufficient. 

3. Problems: The student should be able to select 
several different problems, say four, at any of 
the individual terminals. Depending on the size 
of the analog computer, the student could use 
the terminal to continue a study of a problem 
used in a prior class, compare linear and non
linear models of a process, etc. 



244 Fall Joint Computer Conference, 1970 

4. Response Time: The response time for each of 
twenty terminals should be about one to three 
seconds, i.e., the maximum wait time to obtain 
one complete plot of his output would be some
thing like one second plus operate time for the 
computer. Computer operate time has been 
selected as 20 milliseconds for our equipment 
although a new computer could operate at 
higher speeds if desired. 

5. Display: The display device for each terminal 
must be a storage screen oscilloscope or re
freshed display for x-y plots. Zero and scale 
factors must be provided so that positive and 
negative values and phase plane plots can be 
plotted. Scaling control must be presented in 
a manner which is easy for the student to use 
and understand. 

6. Output selector: The student should be able 
to select from four to five output channels for 
display on the oscilloscope. 

7. Instructor display: The instructor should have 
a terminal' with a large screen display which 
the entire class can observe. His control console 
should have all the features of the student 
terminals and should also have the capability 
for displaying anyone of the student problem 
solutions when desired. He should also have 
master mode controls to activate all display 
~-.--'-

I r--' i---. - to 

! ,~~ ~~I ? __ ~~; _T!t_,mK_s -' ;t J=> 
'I.. - ;?".--- ::hl I ~ i~, -,"~.-:~..--.--, I----,ril .... ~--' 

I ~ ~ U' ~ t \~ L ____ ~ ___ ) 
'.;,_ b ~I~t ~~ 
~ ~~~~.I) 

,~~~-----------

;;,~, !, I CONI'ROI. 

~.;-UNG 
AI) 

1.:~ING 9>!HL VIGIl'Pi GOMP'?j'ER FOR 

CONI'ROl. PlID SCALING O} 

'!'EHMlNALS 

Figure 2-Flow sheet for proposed analog/hybrid terminal 
system 

terminals. It would be advantageous for the 
instructor to have a small screen display to 
monitor student progress without presenting 
the solutions to the class on the large screen. 

Given a terminal system with these features, we 
have then defined the primary objective as being a 
study of the use of this classroom in some specific 
courses. We are initiating this evaluation with one 
course in Engineering Mechanics, Introduction to 
Mechanics (EM 200) and two courses in Chemical 
Engineering, Process Analysis and Control (CHE 425), 
and Introduction to System Analysis (CHE 225). Thus, 
we start our evaluation with one sophomore engineering 
core course with three to four hundred students per 
semester and two courses with thirty to forty students 
per semester at the sophomore and senior level. In 
addition to these two courses, we are attempting to 
schedule as many demonstrations of the system as 
possible for other departments in the hope of stimu
lating their imaginative use of the terminals. 

A flow sheet for the classroom terminal system is 
given in Figure 2. The system includes a small digital 
mini computer which is to be used for control, storage, 
and scaling of terminal information. The system con
sists of the following components: 

a. Sixteen student terminals 
b. One instructor terminal 
c. Digital mini computer with I/O device for 

programming 
d. Control interface to analog computer 

The inclusion of a small digital computer in this 
terminal system opens up some very interesting future 
possibilities such as using the terminals for digital 
simulation as well as analog. As will be seen in the next 
section, the digital computer provides scaliilg so that 
parameters can be entered in original problem units. 
It also acts as temporary storage for each terminal as 
it awaits service and controls the terminal system. The 
system is designed to operate in the following manner. 
The instructor informs the computer operator that he 
wishes to use problem CHE 2 during a certain class 
or laboratory period. The operator places the proper 
problem board on the TR-48 and then sets the servo 
potentiometers which are not controlled by the student 
terminals and static checks the problem with the hy
brid computer. He also sets up the program CHE 2 
on the mini computer just prior to class. From this 
point on the system is under the control of the in
structor and students. 



FUNCTIONAL DESCRIPTION OF TERMINAL 

General 

The basic terminal configuration is shown in Figures 
3 and 4. All display functions are located on the upper 
display panel and control or data input is provided on 
the inclined control panel. 

Control 

The controi functions available to the student in
clude power on-off, store, non-store, erase, and trace 
intensity. Th~se controls are located on either side 
of the oscilloscope display as shown in Figure 4. In
dicator lights are also provided in this area for ter
minal identification, error and terminal ready status. 
The erase function is used quite often by the student 
and thus is also available on the keyboard. 

In addition to the basic operating controls, the 
student can request either a single solution or repeated 
solutions on his display unit. For the single solution 
mode, he displays one solution as soon as the sequencer 
reaches his terminal address. In the repeat solution 
mode, his oscilloscope is unblanked and displays a 
solution each time the sequencer reaches his address. 

DBDEB 
Display Scaling 

Figure 3 

Development of Analog/Hybrid Terminals 245 

I+\yisi·ioisiul 
D!'~:rAl. Dl;':r'LA:t 

.-- -- -- --- - --- ----------t 
I I 
I I 
I RESERVED P'OR fWURE ALPHAl4ERIC I 
I I 
I KlTOCAiW EXf'ANSlVt. I 
I I 
I I I 
I I 
I I 
I I 
~-------------------- J 

EJ 
El III[!]!!) 

ffi@lill 0 CD0[I1 
0 Ikj@]~ 

EJ GB~ 

fHoiOl 
~ 

a 

~ 
B 
EI 
§ 
~ 

Figure 4-Terminal display and control panels 

The worst case response time for either mode would 
be on the order of one second, even if all other terminals 
had solution requests pending. 

Output display and scaling 

The primary output display device is a Tektronix 
type 601 storage screen oscilloscope. This oscilloscope 
is mounted directly behind the vertical front display 
panel as shown in Figures 3 and 4. These oscilloscopes 
are modified to provide for s~aling as shown below. 
The operating level circuit is modified to provide a 
switched store and non-store operation for the user. 
Output scaling is automatically selected when the 
student depresses anyone of the four push buttons 
on the left hand side of the display panel. The picture 
which indicates the normalized scaling is printed on 
the face of the lighted push button switch. 

The left hand switch scales the output signal to 
display positive X and Y values. The second switch 

. displays positive X and allows for both positive· and 
negative values of the Y variable. Phase plane plots 
can be displayed by selecting the right hand switch 
in this set. We have been using this type of output 
scaling for oscilloscopes in our laboratory for over a 
year with very satisfactory feedback from student users. 

The student must have the option of selecting from 
several X and Y analog output lines. This option is 

provided at the terminal by depressing either III 
or [!] then the appropriate number on the keyboard, 

and then the 1 ENTER I key. For example, if 



246 Fall Joint Computer Conference, 1970 

the student is instructed to plot Xl versus Y4, he would 
actuat~ the following keys on the terminal keyboard 
as shown below:· 

The digital software sets up the linkage between the 
requested output line and the control unit which 
switches variable outputs for specific problems to the 
two analog output lines leading to the classroom. All 
analog outputs are on the two X and Y lines, but each 
terminal Z line is energized only at the appropriate 
time, i.e., in answer toa solution request for that 
terminal. 

Parameter entry 

There are many ways in which parameters can be 
set frOIn an analog or hybrid computer terminal. In 
the first terminals we constructed, parameters were 
simply multiplexed potentiometers connected to the 
analog computer with long shielded cable. Thumb
wheel switches can be effectively used to set digital 
to analog coefficient units or servo potentiometers .at 
the analog computer. Since this hybrid terminal system 
includes a small digital computer, parameters will be 
entered with a fifteen digit keyboard as indicated in 
Figure 4. 

The parameter function switch, rp ARI, keyboard, 

and I ENTER I keys are used in the following sequence. 

Suppose the student wishes to set parameter number 
four at a value of 132. He would depress switches in 
the following sequence: 

IpARI EI EJ EJ o I ENTER I 
or I PAR 100000 lENTERI 

If the parameter number three were less than unity, 
say 0.05, he would enter 

I PARI EJElOEJ01ENTERI 
or I PAR lEI 0 EJ E]IENTER I 

This system allows the student to enter parameter 
values in the actual problem units, e.g., if the input 
temperature for a heat exchanger simulation is 150°F, 
he sets this value rather than some normalized fraction. 

If an error is made before I ENTER I is depressed, 

the register can be cleared with the I CLR I key. The 

use of actual rather than normalized parameters re
quires additional registers in the terminal but is es
sential for beginning students. We must remember 
that they are studying the dynamic system, not analog 
computer scaling. It is also in keeping with the concept 
of using the terminal as input and output for the hy
brid computer. If the parameters represent frequency, 
temperature, pressure, etc., they should be entered as 
they appear in the problem statement if at all possible. 

Since "parameter values are scaled by a program in 
the digital computer, scientific notation can also be 
used to permit both E and F format data entry from 
the hybrid terminal. The digital software interprets 
the input data to separate the mantissa and exponent 
portions of the number entered in E format. For exam
ple, the student might enter 

fENTERI 

and the digital computer would convert this number 
to +0.00015. 

Reading parameter values 

One significant advantage of the thumbwheel switch 
parameter entry as opposed to the keyboard is the 
ability to remember a specific parameter value at any 
time. If the student forgets the value, he needs to be 
able to display it at the terminal on request. This 
capability is provided by a six character plus sign 
display module located in the upper left corner of the 
terminal as shown in Figures 3 and 4. This display 
unit automatically shows the" student that his param
eter value was correctly entered at the keyboard and 
accepted by the digital computer. The format of the 
output display is controlled by the digital computer 
software. In addition to displaying the correct value 
of the parameter when entered at the keyboard, the 



value of any parameter previously set can be indicated 

using the I DISPLAY I key. Suppose the student 

wishes to retrieve but not change the value of param

eter three. He would press ~ , thenmon the 

keyboard, and then the I DISPLAY I key. The digital 

computer software then causes the proper value to be 

displayed and light keyboard button number II] to 

identify the requested parameter number. 
A separate digital display module could be used to 

indicate the requested parameter number, but lighting 
the keyboard number has some advantage when dis
playing the status of function switches as noted later. 

Analog/digital readout 

One of the advantages which immediately becomes 
apparent when the terminal includes digital readout 
and a small digital computer is the capability of re
turning numbers which are the result of an iterative 
calculation. A'· first order boundary value problem 
where the unknown initial condition or time constant 
is sought would be one illustration. Another example 
which we have been using in a basic process instru
mentation course is to demonstrate the operation of 
a voltage to frequency converter or time interval analog 
to digital converter. 

Any digital or analog number can thus be returned 
to a terminal by selecting one of the output lines for 

display. The student presses 0, followed by the 

appropriate number on the keyboard, and then the 

I DISPLAY J function key. This display feature is 

also extremely valuable in presenting calculated re
sults from the hybrid computer through the trunk 
lines as indicated in the overall system diagram, 
Figure 1. 

One variable parameter 

The availability of a control which can vary one 
parameter through some range of values is an important 

Development of Analog/Hybrid Terminals 247 

feature of the terminal. Thumbwheel switches and 
keyboard entry of parameters are fine but tend to be 
somewhat slow when the student is interested in ob
serving the effect of a range of parameter variations 
on a simulation or fitting a model to experimental data 
points. A potentiometer on the terminal, as we have 
employed in the past, avoids this problem but involves 
transmission of analog signals over long lines. As a 
compromise, either a two or four position switch is used 
to increment the value of any selected .parameter at a 
rate determined by the digital software. Thus, the 
student increases or decreases a particular parameter 
value at either a fast or slow rate with this switch. The 
sequence of operations would be as follows: suppose 
the student wishes to vary parameter four through a 
range of values to observe its effect on the solution. 
He might choose a starting value of zero for this param
eter which, for example, might represent the damping 
coefficient in a linear, second order system. He presses 

I PAR I, followed by the numbers 0 and 0 
on the keyboard and then selects the I ENTER I key. 

He then selects the I REPEAT SOLUTION I mode 

to observe the solution each time the sequencer reaches 
his terminal number. If the student has selected the 

I STORE I mode, he can then plot a family of curves 

as he increases the damping factor from zero to unity 
by pushing the parameter slewing switch in the increase 
direction. A four position switch allows a choice of 
either fast or slow incremental changes in the param
eter value. Another obvious application for this func
tion is in curve fitting of experimental data with one 
or more parameters. 

Function switches 

Control of the electronic function switches is pro
vided at each terminal. To set function switch one in 

theiONI position, the student presses I FUN I ,fol

lowed by the number [I] and 'o"k I on the key

board and then the I ENTER I key. If he wishes to 

know the present state of any function switch, he 

presses 'FUN I , the switch number, and then the 



248 Fall Joint Computer Conference, 1970 

I DISPLAY I key. The terminal response is to light 

the function switch number and either the I o"k I 
or I OFF I keys on the keyborad to indicate the pres

ent state of that particular switch. These function 
switches can be used in any way desired by the instruc
tor, e.g., adding successive terms of a power or Fourier 
series to demonstrate the validity of these approxi
mations, adding various controller modes in a process 
control simulation, etc. 

The instructor's terminal 

The instructor's terminal is designated as terminal 
number zero. This termi~l uses as its primary output 
device a Tektronix Type 4501 storage oscilloscope 
instead of the Type 601. Since this scanning oscillo
scope has video output, the instructor can display his 
solution on the closed circuit television monitor for 
the class at any time. In addition, the instructor has 
the capability of un blanking any or all student ter
minals to let them have a "copy" of his solution to 
compare with· their own. He can also unblank his 
terminal and pick selected student solutions for display 
to the rest of the class. 

SOFTWARE 

Basic operating system 

The basic software to serve the analog terminals 
is written in assembly language for the PDP-8 control 
computer. This is a 4K machine with hardware mul
tiply and divide, although this feature is not essential 
for terminal operation. The basic cycle time for the 
system is controlled by the analog clock which alter
nately places the analog computer in the initial con
dition and operate modes every twenty milliseconds. 
The first ten milliseconds of each initial condition 
period is to ensure adequate time for problem and func
tion selection by the relay multiplexer. The second ten 
milliseconds is the normal initial condition time to 
charge the integrating capacitors as shown below. 

....1 g 
~ 
....1 g 
~ 
8 
Pl 
R 

~ 

::.t~rx NORMfJ. -21- MlIX NOPA!,L, 

3IIITCHI~l'} AN.tI.LOG 301 IT CHING ANALOG 
PROSLEM SOLUT ION 

TIME IC TIME TTI.fE IC TIME 

AN"; LOG INrrIAL ANALOG OPERATE ANALOG INITIAL 

CONDrrION MODE MODE CONDrrrON MODE 

I-- 20 ms --~1Mo1.r--- 20 ms --... ~ ... ~,--- 20 ms --+ 

A terminal user can activate an action key at any 

time, e.g., t ENTER I , I DISPLAY I , ISINGLEI 

I SOLUTION I, or I REPEAT SOLUTION I . 
This request for action, along with the necessary 

data and address is stored in a 32 bit shift register in 
each terminal. As each terminal is interrogated in 
sequence by the PDP-8 the action bit is tested. If the 
user wants service, his data is transferred to a specific 
core area. For instance, suppose he wishes to set param
eter number 1 at a value of 0.32. He activates the fol-

lowing keys: ~ []] rn 0 m [!] 
IENTER I . The IENTER( key is the action code 

in this instance. When the sequencer reaches his ter
minal, this data is transferred to storage in the proper 
memory locations in the PDP-8. A similar action is 
taken to set function switches, and select problems or 
output channels. 

The basic operating system software controls all 
of these action operations. When a solution is requested, 
the parameters, functions, and outputs, along with an 
unblanking signal, is sent back to the terminal during 
the next analog computer operate cycle. The basic 
system software also converts the floating point 
parameter values supplied by the student to integer 
values used by the digital coefficient units or digital 
to analog converters. This feature of floating point data 
entry requires that the instructor provide the scaling 
information for each problem as described next in the 
application software section. 

A pplication software 

The application software is written in a special 
interactive language developed for the PDP-8. This 
language makes use of a cassette tape recorder in our 
system, but could be used from the teletype if neces
sary. The information required by the terminal operat
ing system to convert floating point to integer param
eters is their maximum and minimum values. When 
the instructor is setting up the terminal problem, the 
computer software solicits responses similar to the 
following: 

IDENTIFY YOUR PROBLEM NUMBER 

The instructor would then type, 

CHE4 



The computer responds with 

PROVIDE MAXIMUM AND MINIMUM 
VALUES FOR THE PARAMETERS 

If the instructor wishes to give the student control 
over parameters one and two, he types 

PAR 1, MAX 50, MIN 25 
PAR 2, MAX 0.5, MIN 0 
END PAR LIST 

A similar conversational procedure is used to identify 
function switches, problems, and analog computer 
output channels. In our system, this scaling and 
switching data is stored on the magnetic tape cassette. 
A paper tape unit could also be used if desired. When 
the instructor wishes to use the terminal system at a 
later date, he places his cassette in the tape deck and 
the proper problem board on the analog computer. From 
this point on, the problem or problems can be con
trolled from the individual terminals. 

COSTS 

The cost of a system such as described in this paper 
is naturally dependent on the number of terminals 
involved. Since our system was developed jointly 
with Electronic Associates, it is difficult to evaluate 
the actual development and design costs. The individual 
terminals, including a type 601 Tektronix storage 
oscilloscope should be on the order of $3500 to $4000 
each. Mini computers such as used in this system would 
range from $6000 to $10,000 and cassette tape systems 

Development of Analog/Hybrid Terminals 249 

are available for about $3000. The major question 
mark in the estimation of system cost is the hybrid 
control interface to couple the analog and digital com
puters. If a special interface could be developed for 
about $10,000, the cost of a ten terminal system would 
be on the order of $60,000. This system could be 
coupled to any analog computer and, of course, pro
vides basic hybrid capability as well as terminal op
eration. If a hybrid computer were already available, 
the terminals could be added for about $3500 to $4000 
each plus wiring costs. 

CONCLUSION 

The key to student and instructor use of these terminals 
is the development of appropriate handout materials. 
Several of these handouts have been written in pro
grammed instruction form and have resulted in very 
favorable feedback from students who used early models 
of the terminals. Although the complete classroom 
system will be used for the first time in the fall of 1970, 
we have been very gratified with student acceptance 
of the few terminals now in use. Laboratory reports 
now consist of answering specific questions concerning 
the dynamic system under study rather than computer 
diagrams and output. Also, the student can really 
proceed at his own pace, and return at any time to 
repeat a laboratory exercise simply by giving the com
puter operator the problem number . We are excited about 
the potential of this classroom terminal system and 
believe that we will see significant improvement in the 
students' understanding of dynamic systems as the 
system is used in additional curricula. 





Computer tutors that know what they teach 

by L. SIKLOSSY 

University of California 
Irvine, California * 

INTRODUCTION 

Computer tutors hold the promise of providing truly 
individualized instruction. Lekanl lists 910 Computer 
Assisted Instruction (CAl) programs, and this large 
number demonstrates the ,\~de interest in the field of 
computer tutors. 

The computer is eminently suited for the bookkeeping 
tasks (averaging, record keeping, etc.) that are usually 
associated with teaching. In such non-tutorial tasks, the 
computer is greatly superior to a human teacher. On the 
other hand, in strictly tutorial tasks, the computer is 
usually handicapped. In particular, CAl programs 
seldom know the subject matter they teach, which can 
be seen by their inability to answer students' questions. 

We shall consider the structure of tutorial CAl 
programs and discuss some of their shortcomings. Some 
of the latter are overcome by generative teaching 
systems. Finally, we shall outline how we can construct 
computer tutors that know their subject matter suffi
ciently to be able at least to answer questions in that 
subj ect matter. 

"IGNORANT" CO}V[PUTER TUTORS 

Most CAl programs have a structure very close to 
that of mechanical scrambled textbooks. These text
books and their immediate CAl descendants, which we 
shall call selective computer teaching machines, * consist 
of a number of frames. Figure 1 shows the structure of a 
frame of a selective computer teaching machine. 

The computer tutor may either start the frame with 
some statements (box labelled K2), or directly ask the 
student some question (K3). The student's answer (K4) 
is compared to a finite store of anticipated responses 
(K5). The answer itself may have been forced into a 

* Present address: University of Texas, Austin, Texas. 
* To use the terminology of Utta1.5 

251 

limited domain (multiple-choice question), or it must 
match exactly or partially (through key-words) some 
stored answers. 

The result of the diagnostic is submitted to a strategy 
program (K6). The strategy program may use addi
tional data, past performance for instance, to determine 
the next frame of the course. 

KI: 

STUDENT ANSWER 

K5: 
DIAGNOSTIC: COMPARE 

STUDENT ANSWER 
TO A FINITE NUMBER 
OF STORED ITEMS 

KG: 
STRATEGY p.: 

DETERMINE NEXT MOVE 
p. DENOTES 
PROGRAM 

Figure I-Frame of a selective computer teaching machine 



252 Fall Joint Computer Conference, 1970 

Disregarding the bookkeeping tasks that the comput
er tutor can perform, we shall concentrate on· the 
structure of the tutor. The two major criticisms that 
have been levied at selective computer teaching 
machines are: 

a. Their rigidity;- Questions and expected answers 
to these questions have been prestored. 

b. Their lack of knowledge. They cannot answer a 
student's questions related to the subject matter 
that is being taught. 

GENERATIVE TEACHING MACHINES 

In an effort to overcome the rigidities of selective 
computer teaching machines, some researchers have 
developed generative teaching machines. 

Figure 2 describes a frame of a generative teaching 
machine. In this case, the computer tutor, instead of 
retrieving some question or problem, generates such a 
question or problem, a sample of some universe. The 
generation is accomplished by a program called the 
generator program (L2). 

LI! 

UI: 

p. DENOTES 
PROGRAM 

~~~~L-________ __ 

COMMUNCATE ASPECTS OF
DIAGNOSTIC p. TO
STUDENT

Figure 2-Frame of a generative teaching machine

The sample is presented to the student who tries to
manipulate the sample: i.e., answer the question or solve
the problem. Concurrently* another program, the
performance program, manipulates the sample (L5).
The performance program knows how to manipulate
samples in the universe of the subject matter that is
being taught.

Before continuing with our description, we shall give
some examples of generative teaching machines. Uhr
has described a very elementary system to teach
addition. A program by Wexler3 teaches the four
elementary arithmetic operations. Peplinski4 has a
system to teach the solution of quadratic equations in
one variable. Uttal et al. 5 describe a system to teach
analytic geometry.

When Wexler's system teaches addition, the generator
program generates a sample, namely two random
numbers that satisfy certain constraints. An example
would be: four digits long, no digit greater than 5.
(Note that the number of possible samples may be very
large.) The performance program simply adds the two
numbers.

A diagnostic program (L7) analyzes the differences
between the answers of the student and the performance
program. In Wexler's system, the numbers given by the
student and the system mayor may not be equal. If
unequal, the diagnostic program may determine which
digits of the answers are equal, which number is larger,
etc.

The findings of the diagnostic program, together with
other information (such as past student performance),
are given to a strategy program (L9). This program may
decide to communicate some aspects of the diagnosis to
the student-for example : "Your answer is too small."
(L11); it may halt (L10); or transfer to a new or the
same frame (L1). Transferring to the same frame is not
an identical repetition of the previous frame, since
usually the generator program ·will generate a different
sample.

In a generative computer tutor, questions are no
longer prestored but are generated by a program. Since
the questions are not usually predictable with exacti
tude, a performance program is needed to answer them.
The performance program is at the heart of a computer
tutor that knows what it teaches.

PROGRAMS THAT KNOW WHAT THEY TEACH

The performance program of a generative computer
tutor can solve the problems in some universe; in other
words, we may say that the program knows its subject

* This is the meaning of the wavy lines in the flowchart.

Figure 3-Frame of a computer tutor that knows what it teaches

matter. We can use the performance program in two
additional ways beyond its use in generative tutors. The
performance program may answer questions generated
by the student. It can also explain how it answers some
questions and thereby teach its own methods to the
student.

Figure 3 describes a knowledgeable computer tutor.
The path of boxes L1, L2, L5, L6, L7, L9, L10 and L11
has been discussed above in the framework of a genera
tive tutor. The function of box L12 is to explain to the
student the problem-solving behavior of the perform
ance program in those cases when the behavior of the
performance program can be fruitfully imitated by a
human being.

In box L3, the student is allowed to generate samples.
The previous path can then be followed: both student
and computer· tutor can manipulate the samples with
the tutor helping the student. The tutor can also
manipulate the sample directly, thereby, in effect,
answering a student's question (path L3, L5/, L6/). We
can even let the tutor make mistakes (L4, L5/), which
gives the student an opportunity to catch the teacher in
error (LS).

It is important to let the student generate samples so
that he can find out what happens in particular cases
about which he feels unsure. It is impossible to pre
program a set of samples that would be satisfactory to
all students. In addition, some experimental evidence
(Hunt;6 Crothers and Suppes7) indicates that learning

Computer Tutors That Know What They Teach 253

occurs faster when students generate their own
examples.

A COMPUTER TUTOR THAT KNOWS SOME
SET THEORY

We shall illustrate the framework of a knowledgeable
computer tutor by a program that teaches set union.
The subject matter was selected for the ease with which
appropriate performance and diagnostic programs could
be written.

The programming language is the LISP 1.6 version of
LISP running on the PDP-10 computer. The program
is not completely polished and the outputs have been
slightly edited. A more definitive version of the program
will be described elsewhere, but we hope to give here
enough feeling for the power of such a computer tutor
to be appreciated.

Sets are represented by unordered lists. The sets
(A(B C» and ((C B)A) are equal. Each contains two
elements, one of which is itself a set. () is the empty
set.

A dialogue between the computer tutor and a student
follows. We first consider the'computer generative mode:

Computer: What is the union of (HI 32) and
((DOG»?

Student: (HI).
C. : Your answer is not right. Do you see

why?
S.: No.
C. : You missed some elements. The

following also belong to the union:
(DOG) 32. The union is ((DOG)
HI 32) ...

The output does not make it evident that the sets were
generated using a random set generator. The set
generator generates sets of a given number of elements
and of a given maximum depth. (A set with no subsets
as elements has depth 0.) The atomic elements of a set
are randomly selected from an array which includes the
atoms HI, 32 and DOG. The length and depth of the set
are themselves random numbers in ranges that are input
to the set generator routine.

The program computes the union of the sets (HI 32)
and ((DOG». The union is the set ((DOG) HI 32).
This result is compared to the student's response. The
computer tutor analyzes the differences between the
desired and obtained answers and, in this case, exhibits
the terms missing from the student's answer.

The path we have followed in Figure 3 is L1, L2, L5,

254 Fall Joint Computer Conference, 1970

L6, L7, L9, and L1l. We shall follow a different path
below and let the student generate sets.

C. : Type two sets and I will tell you their union.
S.: (AS AS) (B D).
C. : (AS AS) is not a set. Do you understand why?
S.: No.
C. : AS are duplicate elements in your first set.

Type two more sets.
S.: (A V D) ().
C.: The union of (A V D) and () is (A V D) ...

The inputs proposed by the student are checked for
well-formedness. The program finds that (AS AS) is not
an acceptable representation for a set since the element
AS is repeated. An appropriate diagnostic message is
given. The path in Figure 3 was L1, L3 and LS', with a
return to Ll. Next the student wants to determine how
union operates with the empty set. The path followed
was again L1, L3, and LS'.

We allow the tutor to make mistakes and give the
student a chance to catch them.

C. : Would you like to quiz me ? You type in two
or more sets and I will find the union. Then
you type whether I am right or wrong ...

S.: (RST) ().
C.: The union is (R S T).
S.: Wrong.
C. : No, you're wrong. I was right. Do you see

why?
S.: No.
C. : Type what you think the union is.
S.: (R S T).
C.: But that's what I typed. Type some sets.
S.: (A B) (A).
C.: The union is (A).
S.: Wrong.
C. : Oh my goodness! I did make a mistake ...

We expanded the previous path to include box L4. The
tutor now may make mistakes, and the student has an
opportunity to play teacher. If, when asked "Type what
you think the union is," the student had typed
"(T R S)," the tutor's response would have been: "The
sets (R S T)and (T R S) are equal." Here we have
followed the path L1, L3, L4, LS', L6/, L8, L7, L9
and L1l.

The tutor gives a final test to the student. In it, the
following appears:

C. : What is the union of the following sets:
(BIRD () S7) (S7 (DOG) 32 87)?

S. : Impossible.
C. : You caught me. The second list was not a set.

There is nothing like giving impossible problems!

TABLE I-Diagnostic Program for Set Union and Some Possible
Comments

Cases Determined by
Diagnostic Program

1. A=81 u82 (set equality)

2-1. (81U82)-A~()

2-1-1. «81 U 8 2) -A)
n 81~()

2-1-2. «81 U 8 2) -A)
n 82~()

2-2. A -(81 U 82)~()

Possible Partial Comments
to Student

Your answer is correct.

Your answer is incorrect.

You left out some element(s).

You left out some element(s) of
the first set.

You left out some element(s) of
the seconp. set.

Some element(s) in your answer
are neither in 8 1 nor in 8 2•

We have not yet coded the introspection program
that would explain to the student how the performance
program calculates set unions. Table I lists diagnoses
that can be used in teaching set union. The two sets are
S1 and S2: the student's answer is A. We assume that
all sets have been checked for well-formedness. U, n
and - denote set union, intersection and difference.

The tutor can diagnose not only that (for instance in
Table I, case 2-2) some elements in the answer should
not have been there, but also tell the student which
elements these are. Table II lists dIagnoses that can be
used in teaching set intersection. The two tables show
how algorithmic computations allow the computer tutor
to pinpoint the student's errors.

TABLE II-Diagnostic Program for Set Intersection and Some
Possible Comments.

Cases Determined by
Diagnostic Program

1. A =81 n 8 2 (set equality)

2. A~81n82

2-1. (81n82)-A~()

Possible Partial Comments
to Student

Your answer is correct.

Your answer is incorrect.

You left out some element(s)
which belong to both 8 1 and 82.

Some elements in your answer
do not belong to both 8 1 and 8 2•

Some element(s) in your answer
belong to 8 2 but not to 8 1•

Some element(s) in your answer
belong to 8 1 but not to 8 2•

Some elements in your answer
are neither in 8 1 nor in 8 2•

The symbol-manipulating capabilities required of the
computer tutor would be difficult to program using one
of the computer languages that were designed specifi
cally to write CAl programs.

RECIPE FOR A KNOWLEDGEABLE
COJ\1PUTER TUTOR

The framework of Figure 3 shmvs explicitly how a
knowledgeable computer tutor can be built. First, we
need a performance program which can do what we want
the student to learn. We have programs that appear to
know areas of arithmetic, algebra, geometry, group
theory, calculus, mathematical logic, programming
languages, board games, induction problems, intelli
gence tests, etc. The computer models which have been
developed in physics, chemistry, sociology, economics,
etc., are other examples of performance programs. To
complete the computer tutor, attach to the performance
program appropriate generator, diagnostic, strategy and
introspection programs.

We used our recipe for a knowledgeable computer
tutor to develop a tutor to teach elementary set theory
and gave examples of the capabilities of this tutor. The
manpower requirements for the development of a
computer tutor are considerable and we have not
applied the recipe to other areas. Our demonstration,
therefore, remains limited but we hope that it was
sufficiently convincing to encourage other researchers to
develop more knowledgeable and powerful computer
teaching systems.

The major difficulty that we experienced was in the
area of the topic of understanding of the diagnostic
program. In particular, linguistic student responses
could not be handled in general. Presently, we only
accept very limited student answers expressed in natural
language. The development of computer programs
which better understand language* would lead to a
much more natural interaction between student and
tutor.

CONCLUSION

:\1ost CAl programs cannot answer student questions
for the simple reason that these programs do not know

* See Simmons8 for an effort in that direction.

Computer Tutors That Know What They Teach 255

the subject matter they teach. We have shown how
programs that can perform certain tasks could be
augmented into computer tutors that can at least solve
problems or answer questions in the subject matter
under consideration. We gave as an example a program
to teach set theoretical union and showed the diagnostic
capabilities of the tutor. These capabilities are based on
programs and are not the result of clever prestored
examples.

The student-tutor interaction will become less
constrained after enough progress has been made in
computer understanding of natural language.

ACKNOWLEDGIVIENTS

J. Peterson and S. Slykhouscontributed significantly to
this research effort.

REFERENCES

1 H A LEKAN
I ndex to computer assisted instruction
Sterling Institute Boston Mass 1970

2 L UHR
The automatic generation of teaching machine programs
Unpublished report 1965

3 J D WEXLER
A self-directing teaching program that generates simple
arithmetic problems
Computer Sciences Technical Report ~ 19 University of
'Wisconsin Madison Wisconsin 1968

4 C A PEPLINSKI
A generating system for CAl teacMng of simple algebra
problems
Computer Sciences Technical Report ~ 24 University of
Wisconsin Madison Wisconsin 1968

5 W R UTTAL T PASICH M ROGERS
R HIERONYMUS
Generative computer assisted instruction
Communication ~ 243 Mental Health Research Institute
University of Michigan Ann Arbor 1969

6 E B HUNT
Selection and reception conditions in grammar and concept
learning
J Verbal Learn Verbal Behav Vol 4 pp 211-215 1965

7 E CROTHERS P SUPPES
Experiments in second-language learning
Academic Press New York New York Chapter 6 1967

8 R F SIMMONS
Linguistic analysis of constructed student responses in CAl
Report TNN-86 Computation Center The University of
Texas at Austin 1968

\

Planning for an undergraduate level computer-based
science education system that will be responsive
to society's needs in the 1970's

by JOHN J. ALLAN, J. J. LAGOWSKI and MARK T. MULLER

The University of Texas at Austin
Austin, Texas

INTRODUCTION

The purpose of this paper is to discuss the planning of
an undergraduate level computer-based educational
system for the sciences and engineering that will be
responsive to society's needs during the 1970's. Con
siderable curriculum development research is taking
place in many institutions for the purpose of increasing
the effectiveness of student learning. Despite the efforts
under way, only limited amounts of course matter using
computer-based techniques are available within the
sciences and engineering.

Planning for a frontal attack to achieve increased
teaching effectiveness was undertaken by the faculty
of The University of Texas at Austin. This paper pre
sents the essence of these faculty efforts.

An incisive analysis of the state of the art with regard
to the impact of technology on the educational process
is contained in the report "To Improve Learning" gen
erated by the Commission on Instructional Technology
and published by the U.S. Government Printing Office,
March, 1970.1 The focus is on the potential use of tech
nology to improve learning from pre-school to graduate
school. The goals stated in the above report are (1) to
foster, plan, and coordinate vast improvements in the
quality of education through the application of new
techniques which are feasible in educational technology,
and (2) to monitor and coordinate educational resources.

AN OVERVIEW OF COMPUTER-BASED
TEACHING SYSTEMS

Until recently, interest in using machine-augmented
instruction has been centered primarily on research in
the learning processes and/or on the design of hardware
and software.

257

Digital computer systems have now been developed
to the point where it is feasible to employ them with
relatively large groups of students. As a result, defining
the problems involved in the implementation of com
puter-based teaching techniques to supplement classical
instructional methods for large classes has become a
most important consideration. Whether the classes are
large or small, colleges and universities are faced with
presenting increasingly sophisticated concepts to con
tinually-expanding numbers of students. Available teach
ing facilities, both human and technical, are increasing
at a less rapid rate than the student population. Typi
cally, the logistics of teaching science and engineering
courses becomes a matter of meeting these growing de
mands by expanding the size of enrollments in lectures
and laboratory sections.

It is now apparent that we can no longer afford the
luxury of employing teachers in non-teaching functions
-whether on the permanent staff or as teaching assist
ants. Many chores such as grading and record keeping
as well as' certain remedial or tutorial functions do not
really require the active participation of a teacher, yet
it is the person hired as a teacher who performs these
tasks. Much of this has been said before in various con
texts; however, it should be possible to solve some of
these problems using computer techniques. In many
subjects, there is a body of information that must be
learned by the dtudent but which requires very little
teaching by the instructor. Successful methods must be
found to shift the onus for learning this type of material
onto the student thereby premitting the instructor more
time for teaching. Thus, computer techniques should be
treated as resources to be drawn upon by the instructor
as he deems necessary, much the same as he does with
books.

Basically, the application of computer techniques is
supplemental to, rather than a supplantation oj, the

258 Fall Joint Computer Conference, 1970

human teacher. The average instructor who has had
little or no experience with computers may be awed by
the way the subj ect matter of a good instructional
module can motivate a student. If the program designer
has been imaginative and has a mastery of both his sub
ject and the vagaries of programming, the instructional
module will reflect this. On the other 'hand, a pedantic
approach to a subject and/or to programming of the
subject will also unfortunately be faithfully reflected in
the module. Thus, just as it is impossible to improve a
textbook by changing the press used to print it, a com
puter-based instructional system will not generate qual
ity in a curriculum module. Indeed, compared with
other media, computer methods can amplify peda
gogically poor techniques out of proportion.

The application of computer techniques to assist in
teaching or learning can be categorized as follows:

1. Computer Based Instruction (CBI)-this con
notes interactive special purpose programs that
either serve as the sole instructional means for a
course or at least present a module of material.

2. Simulation
a. of experiments

1. that allow "distributions" to be attributed
to model parameters

2. that are hazardous
3. that are too time consuming
4. whose equipment is too expensive
5. whose principles are appropriate to the

student's level of competence, but whose
techniques are too complex

b. for comparison of model results with measure
ments from the corresponding real equip
ment

3. Data Manipulation (can be interpreted as cus
tomarily conceived computation) for

a. time compression/ expansion-especially in
the laboratory, as in data acquisition and re
duction with immediately subsequent "trend"
or "concept" display

b. advanced analysis in which the computation
is normally too complex and time consuming

c. graphic presentation of concepts-possibly
deflections under dynamic loading, molecular
structures, amplitude ratio and phase lead or
lag, ...

4. Computer-Based Examination and Administrative
Chores to accompany self-paced instruction.

SYSTEM DESIGN PHILOSOPHY

Design concepts that foster a synergistic relationship
between a student and a computer-based educational

system are based upon the following tenets:

1. The role of the computer in education is solely
that of a tool which can be used by the average
instructor in a manner that (a) is easy to learn,
(b) is easy to control, and' (c) supplements in
structional capability to a degree of efficiency un
attainable through traditional instructional
methods.

2. Computer-based' education, although relatively
new, has progressed past the stage of a research
tool. Pilot and experimental programs have been
developed to the point where formal instruction
has been conducted in courses such as physics2

and chemistry.3.4 Despite this, the full potential
of these new techniques has yet to be realized.
Future systems, that are yet to be designed, must
evolve which will provide sufficient capacity,
speed and flexibility. These systems must be
able to accommodate new teaching methods,
techniques, innovations and materials.

Programming languages, terminal devices and
communications should be so conceived as to not
inhibit pedagogical techniques which have been
successfully developed over the years. The sys
tem should incorporate new requirements which
have been dictated through progressive changes
in education and adjust without trauma or
academic turbulence.

3. Initial computer-based instructional systems
should be capable of moderate growth. Their role
will be that of a catalyst to expedite training of
the faculty as well as a vehicle for early develop
ment of useful curriculum matter. Usage by
faculty will grow in parallel with evolving plans
for future systems based upon extensive test
and evaluation of current course matter.

The design of individual instructional modules to
supplement laboratory instruction in the sciences and
engineering will follow the general elements of the sys
tems approach which has gained acceptance in curricu
lar development. 5 This approach to curriculum design
can generally be described as a method for analyzing
the values, goals, or policies of hu'man endeavor. The
method as applied to computer-assisted instruction has
been described in detail by Bunderson. 6

Although there have been several different descrip
tions of the systems approach to the design of curricular
materials, two major elements are always present:
course analysis and profiling techniques. Course anal
ysis consists of

1. a concise statement of the behavioral objectives

of the course expressed in terms of the subject
matter that is to be learned.

2. the standard that each student must reach in the
course.

3. the constraints under which the student is ex
pected to perform (which may involve an evalua
tion of his entering skills).

The results of the course analysis lead to an imple
mentation of the suggested design by incorporating a
curriculum profile ("profile techniques"), which con
tains

L function analysis, i.e., the use of analytical
factors for measuring the parameters of a task
function

2. task analysis,7 i.e., an analysis that identifies in
depth various means or alternative courses of
action available for achieving specific results
stated in the function analysis

3. course synthesis, the iterative process for de
veloping specific learning goals within specific
modules of instructional material.

A general flow diagram which shows the relationship
between the elements in the systems approach to cur
riculum design appears in Figure L

STATEMENT
OF

BEHAVIORIAL
OBJECT IVES

CONSULTANTS

PRODUCTION
OF

MATERIALS

Figure i-Systems approach to curriculum design

Computer Based Science Education System 259

Goals and behavioral objectives

Some of the longer range goals defined should be to
demonstrate quantitatively the increased effectiveness
gained by computer,:-based techniques and further, to
develop skill in the faculty for "naturally" incorporating
information processing into course design. Another long
range goal should be to effect real innovation in the
notions of "laboratory courses" and finally, to instill in
graduating students the appreciation that computers
are for far more than "technical algorithm execution."

In more detail, some of the goals are to:

L Plan, develop and produce computer-based
course material for use in undergraduate science
and engineering courses to supplement existing
or newly proposed courses. Course matter
developed will utilize a systems approach and
consider entering behaviors, terminal objectives,
test and evaluation schema, provisions for re
vision, and plans for validation in an institu
tionallearner environment.

2. Produce documentation, reports, programs and
descriptive literature on course matter developed
to include design and instructional strategies,
flow charts and common algorithms.

3. Test course matter developed on selected classes
or groups for the purpose of evaluation, revision
and validation. This is to determine individual
learner characteristics through use of techniques
such as item analysis, and latency response using
interactive languages.

4. Promote and implement an in-depth faculty in
volvement and competency as to the nature,
application and use of computer-based instruc
tional languages, course matter and techniques.

5. Compile, produce and make provisions for mass
distribution of such computer-based materials
as are tested, validated and accepted for use by
other colleges or institutions participating in
similar programs.

In an academic environment the use of time-sharing
computers for education is gradually being incorporated
as a hard-core element, which in time will become so
commonplace a resource for faculty and student use
that it will serve as an "educational utility" on an in
terdisciplinary basis. To achieve a high degree of effec
tiveness of such systems, the faculty using computer
based teaching techniques as a supplement to laboratory
type instruction must initially become involved. The
pedagogical objectives of this whole approach are:

1. To correct a logistic imbalance: i.e., a condition
marked by the lack of a qualified instructor and/

260 Fall Joint Computer Conference, 1970

or the proper equipment and facilities to perform
a specific teaching task (or project) being at a
specific place at a specific time.

2. To provide more information per unit time so
that, as time passes, the course will provide in
increasingly in-depth knowledge.

3. To allow new ranges of material to be covered
when one specifically considers things currently
omitted from the curriculum because of student
safety or curriculum facility costs.

4. To increase academic cost effectiveness, because
it is certainly expected that adroit information
processing will free the faculty from many
mundane tasks.

5. To provide both parties with more personal time
and flexibility, because it is anticipated that con
siderable amounts of time are to be made free
for both student and faculty.

6. To make a computer-based system the key to the
individualization of mass instruction by utilizing
dial-up (utility) techniques.

7. To develop laboratory simulation so that it is
no longer a constriction in the educational pipe
line because of limited hardware and current
laboratory logistics.

Evaluation criteria

In general, there are two distinct phases to the evalua
tion ot instructional modules. The first of these coincides
with the actual authoring and coding of the materials,
and the second takes place after the program has ad
vanced to its penultimate stage. These two types of
evaluation can be referred to as "developmental test
ing" and "validation testing," respectively.

Developlllental testing

This testing is informal and clinical in nature and
involves both large and small segments of the final
program. The specific objective of this phase of the
development is to locate and correct inadequacies in
the module. It is particularly desirable at this point of
development to verify the suitability of the criteria
which are provided at the various decision points in
the program. It is also anticipated that the program's
feedback to the students can be improved by the addi
tion of a greater variety of responses. Finally, testing
at this stage should help to uncover ambiguous or in
complete portions of the instructional materials.

Relatively few students (about 25) will be required
at this stage of evaluation; however, since this phase

is evolutionary, the exact number will depend on the
nature and extent of the changes that are to be, and
have been, made. Materials which are rewritten to
improve clarity, for example, must be retested on a
small scale to establish whether an improvement has
in fact been made. A final form of this program, in
corporating the revisions based on this preliminary
testing, will be prepared for use by a larger group of
students.

Validation testing

The formal evaluation of the programs will occur in
a section (or with a part of a section) of a regularly
scheduled class.

It is assumed that a selection of students can be ob
tained that is representative of the target population
for which the materials are designed. One of the follow
ing two methods for obtaining experimental and con
trol groups is suggested, depending upon circumstances
existing at the time of the study (i.e., number of sec
tions available, whether they are taught by the same
instructor, the willingness of instructor to cooperate,
section size, etc.).

The preferred method is to arbitrarily designate one
course section experimental and one course section
control with the same instructor teaching both sections.
An assumption here is that the registration procedure
results in a random placement of students in the sec
tions. The alternative method of selecting students
follows. The instructional programs are explained to
the total student group early in the semester, and a
listing of those students who are willing to participate
is obtained. Two samples of approximately equal size
are randomly selected from this list. One sample of
students is then assigned to work with the computer
assisted instructional facilities and is designated as
the experimental group.

The criteria used to evaluate the programs are as
follows:

1. The extent to which students engage in and/or
attain the behavioral objectives stated for the
program. For tutorial and remedial programs
pre- and post-tests are the instruments for
measuring attainment and will help answer the
question: Does the computer-based supplement
actually teach what it purports to teach? For
experiment simulations, the successful comple
tion of the program is prima facie evidence that
the student has engaged in the desired behaviors.

2. Achievement as measured by the course final
examination.

EXP. CONTROL

SAME INSTRUCTOR

STANDARDIZED STANDARD I ZED

AREA EXAM AREA EXAM

FORM 1 FORM 1
ATTITUDE ATTITUDE

INVENTORY INVENTORY

COURSE CONTENT COURSE

+ CONTENT

PRE-TEST CAl

SUPPLEMENT

POST-TEST

HOUR EXAM OVER COURSE CONTENT

I I
~ INDICATES IMMEDIATE

EFFECT
I I

~ __ J _______ t ___ ~
I FINAL EXAM .~ I ND I CATES OVERALL
I I EFFECT AND EFFECT ON

_-------1.------1 RETENTION II STANDARDIZED AREA EXAM FORM 2; I.=> INDICATES' NET GAIN IN

I
ATTITUDE INVENTORY I LEARNING AND CHANGES

I IN ATTITUDE

I I
I STATISTICAL ANALYSIS OF DATA: I
I THE EQUIVALENT OF AN ANALYSIS OF I
I COVARIANCE USING REGRESSION I
I TECHN I QUES I
L! ____________ ::.1

Figure 2-Test and evaluation schema for overall program

3. Net gain in achievement as determined by pre
and post-testing with the appropriate stand
ardized area examination.

4. Changes in student attitudes as measured by
pre- and post-attitude inventories.

The statistical treatment used to evaluate the pro
grams in light of the above criteria will be a multiple
linear regression technique equivalent to analysis of
covariance for criteria 2 and 3. The covariables used
will include, (1) A placement exam score (if available);
(2) the beginning course grade (for students in ad
vanced courses); (3) sex; (4) SAT* scores, high school
GPA **; and (5) other pertinent information available
in the various courses. The key elements of the test
and evaluation schema are shown schematically in
Figure 2.

IMPLEMENTATION

Planning is one of the most important aspects of
CBI and when done properly yields what we might
call a "systems approach" to curriculum or course
design. This means not only the setting up of a course

* Scholastic Aptitude Test.
** Grade Point Average.

Computer Based Science Education System 261

TABLE I-Curriculum Development Research Tasks

Task Type Research
Title Application Investigator

Machine D,IG,MM, Dr. J.J.A.
Element PrS, Res Assistant
Design Professor

Aerospace D, IG, MM, Dr. E.H.B.
Structural PrS, Sim, Stat, Assistant

Res Professor

Theoretical Sim, D, Rsim Dr. F.A.M.
Chemistry Professor

Dr.R.W.K.
Faculty
Associate

Biophysical
Analysis

SIM, Rsim, Stat Dr. J.L.F.

Application Code

Assistant
Professor

Department

Mech. Engr.

Aero. Engr.

Chemistry

Zoology

D-Drill and Practice; G-Graphics; IG-Interactive Graphics;
MM-Mathematical Modeling, Gaming; PrS-Problem Solving;
OLME-On Line Monitoring of Experiments; Sim-Simulation;
Rsim-Real Experiments Plus Simulation; Stat-Statistical Data
Processing ; Res-Research in Learning Processes.

of instruction by following a comprehensive, orderly
set of steps, but also a plan for involving other faculty.

No two curriculum designers will agree as to what
constitutes the essentials in outlining a course in its
entirety before beginning. However, there are certain
sequential or logical steps that can be defined precisely.
These steps have been designated below as the course
planning "mold" and are based upon actual in-house
experience in planning, developing, testing and evalua
tion of course matter. Examples of this planning as
shown in the entries in Tables I and II are authentic

TABLE II -Curriculum Development Research Task Cost

Task Title

Elements of
Design

Aerospace
Structures

Theoretical
Chemistry

Biophysical
Analysis

Total
Duration Dollar

(Mo.) Value*

27 $72,440.

31 $111,720.

24 $53,150.

19 $43,250.

* Not including hardware cost.

Personnel
Cost

$31,120.

$45,920.

$36,900.

$23,600.

Computer
Time
Cost

$41,320.

$65,800.

$16,250.

$19,650.

262 Fall Joint Computer Conference, 1970

and have been derived by requesting each new associate
investigator to fit the approach to beginning his work
into a "mold." Descriptive material for each prospec
tive participating faculty member is shown in the
following example, * and is organized as follows:

1. Title
2. Introduction
3. Objectives
4. Project Description
5. Method of Evaluation
6. Impact on the Curriculum
7. Pedagogical Strategy
8. Current or Past Experience
9. Related Research

10. Plans for Information Interchange
11. Detailed Budget *
12. Time Phasing Diagram
13. Application Cross-Reference Chart

EXAMPLE OF A PROSPECTIVE ASSOCIATE
INVESTIGATOR'S PROPOSAL:

INTERACTIVE DESIGN OF MACHINE
ELEMENT SYSTEMS

In troduction

Engineering design is a structured information/
creative process. The synthesis of physically feasible
solutions generally follows many design decisions based
on processed available information. The structure of
design information has been defined in the literature. 8

Processing this design information in a scientific and
logical method is important to the understanding of
how one teaches engineering design, particularly the
part that computer augmentation might play in the
process. Essentially, the computer can relieve the en
gineering designer of those aspects of problem manipu
lation and repetitive computation that might otherwise
distract him from the context of his problem. The
fundamental principle here is to have the designer
making decisions, not calculations.

Objectives

There are several objectives to being able to put a
student in an interactive situation for the design of

* It should be emphasized that the courses listed in Tables I and
II represent only a portion of the curriculum matter which is
being or needs to be developed.
* Sample forms for items 11, 12, and 13 can be obtained from the
authors. The form for item 11 in particular gives the details
necessary to arrive at a project's estimated dollar cost.

machine elements. One of the primary goals is to allow
students to consider machine element systems instead
of the traditional approach of the machine elements.
The object of this is to show the interplay of the
deflections and stresses due to imposed forces on
machine element systems. Another objective is to
allow distributions to be attributed to parameters of
systems normally considered as discrete. Latest in the
series of engineering texts are those that consider
probablistic approaches to design. Finally in the
design process, by definition, a task performed at one
instant in time does not give the observer of a designer
any information about what the designer's next task
might be. Hence, it' is most important to construct an
environment that will allow the student to "meander"
through the myriad of possibilities of. alterations of a
nonfeasible solution of a design problem that might
make it subsequently a feasible solution. Another ob
jective of using an interactive system is so considera
tions not necessarily sequential in an algorithmic sense
can be superposed for the student's consideration. That
is, he can consider system reliability, system structural
integrity, and system economics simultaneously and
make design decisions based on anyone of those
fundamental considerations.

Project description

This project involves the integration into a conven
tional classroom of one or more reactive CRT displays.
The addition of computer augmentation to the tradi
tional teaching of engineering element systems design
is proposed, in order to satisfy the needs of the under
graduate student who would like to be able to synthe
size and analyze more realistic element systems than
is now pedagogically possible. The following specific
desired functions in the computer-based system are
necessary to make it an easily accessible extension to
the student designer's functional capabilities:

1. Information storage and retrieval-The system
must be able to accept, store, recall, and present
those kinds of information relevant to the de
signer. For example, material properties, al
gorithms for analyzing physical elements, con
version factors, etc.

2. Information Interchange-The system must be
able to interact with the designer conveniently
so that he can convey information with a mini
mum of excess information during the operation
of the system. 8

3. Technical Analysis Capabilities-The system
must be able to act on the information pre-

sented, analyze it, and present concise results
to the designer.

4. Teaching and Guidance Capabilities-The sys
tem must provide the student designer with in
formation necessary to enable him to use the
system and also to tutor him in the context of
his problems.

5. Easy Availability-The system should be avail
able to the student user and adaptable to his
modifications. '

In essence this project can be described as the design
and implementation of a computer-based reactive
element design system which would be as integral a
part of a teaching environment as the blackboard,
doors and windows. Further, in this project the amount
of additional material in terms of reliability, value
analysis, noise control and other modern engineering
concepts that can be integrated into the standard
curriculum can be conveyed more effectively and to a
deeper degree.

Method of evaluation

The effectiveness of this method will be evaluated
by presenting the students with more comprehensive
design problems at the end of the semester. Several
observations would be made. First, they would be
able to take into account more readily the interaction
between systems elements in a mechanical network.
They should not require as many approximations with
respect to fatigue life, method of lubricating bearings,
etc.

Illlpact on the curricululll

The effect on the curriculum will be as follows. The
Mechanical Engineering Department at The U niver
sity of Texas has what is known as "block" options.
In this way, a student in his upper-class years may select
some particular concentrated area of study. Part of the
material that he now receives in one of his block courses
366N could be moved back to his senior design course
366K. The effects on the curriculum should be to free,
for additional material, one-half semester of a three
hour course at the senior undergraduate level for those
maj oring in design.

Pedagogical strategy

The strategy of the course at present is the solution
of authentic design problems solicited from industry.

Computer Based Science Education System 263

However, all analysis techniques are currently con
fined to paper and pencil with computer algorithms
where practical. The new strategy will add the ability
to analyze mechanical systems networks on an inter
active screen and have an opportunity to manipulate
many possible ideas (both changes in topology and
changes in parameters) per unit time.

Current or past experience

The investigator has spent several years on the de
velopment of interactive graphic machine design
systems both in industry and in academic institutions.
Further, the investigator has been teaching the design
of machine element systems since 1963 and prior to
that practiced design of machine element systems since
1958.

Related research

Professor Frank Westervelt at the University of
Michigan is currently conducting research in the area
of interactive graphic design. His maj or emphasis is
on the design of the executive systems behind interac
tive computer graphic systems. Dr. Milton Chace also
at the University of Michigan uses some software gen
erated by Dr. Westervelt's group. His concentration is
on using Lagrange's method to describe dynamic
systems and be able to manipulate the problem's
hardware configurations on the screen. Professor
Daniel Roos of the MIT Urban Systems Laboratory is
now putting a graphic front end on his ICES system.
Professor Gear at the University of Illinois has a system
running on a 338/360-67 system and his primary in
terest there is to work with people who are manipu
lating electrical network topologies and doing network
analysis. Professor Garrett at Purdue University is
using graphic terminal access to his university's com
puter for performing a series of analyses on mechanical
engineering components.

The unique aspect of the work that is envisioned
here, as opposed to all above mentioned relative works,
is primarily that it will be an instructional tool. That is,
the computer is recognized as an analysis tool, a
teacher, and an information storage and retrieval
device.

With respect to each of the above, there are two
connotations. With respect to analysis, the computer
will perform analysis in its traditional sense of en
gineering computation and it will also analyze the
topology of mechanical systems as drawn on the screen
such that the excess information between the designer
and the computer will be reduced. Concerning teaching,

264 Fall Joint Computer Conference, 1970

the computer will work with the student not only to
teach him how to use the system, but also in another
sense it will help him learn about his problem's context
by techniques such as unit matching and unit conver
sion and checking topological continuity before allow
ing engineering computations. With respect to informa
tion storage and retrieval, traditional parameters such
as material yield strengths and physical properties of
fluids will be available.

Another concept in interactive design will be de
veloped when the system can work with the student
and help him optimize apparently continuous systems
made up of objects such as bearings that only come in
discrete quantities, for instance VB inch increment bores,
etc.

Plans for inforInation interchange

Information interchange, of course, has two mean
ings: (1) how to get information from other schools to
the University of Texas, and (2) how to disseminate
the results of my research to other interested parties.
It is the responsibility of the principal investigator to
insure that information from professional society
meetings, personal visits to other campuses, research
reports, published articles, personal communication,
and "editorial columns" in both regional and national
newsletters of societies such as ASME, IEEE, SID,
SCI, ACM, and others are disseminated to his research
associates.

Further, it is the researcher's responsibility to gen
erate research reports, published articles, take the re
sponsibility for keeping his latest information in
"news items," attend meetings, and write personal
letters to other people in the field who are interested
to help keep them abreast of his current research
activity.

EXPERIENCES TO DATE

Completed projects

During the academic year 1968-69 two pilot projects
were conducted on the use of computer-based tech
niques in the instruction of undergraduate chemistry.
Fifteen curriculum modules were written for the Gen
eral Chemistry project and eight for Organic Chemistry.
In each instance the modules covered subjects typical
of the material found in the first semester of each course.
Each module was "debugged" and polished by exten
sive use of student volunteers prior to use in the pilot
studies. In each study, the modules were used to supple
ment one section of the respective courses under con-

trolled conditions. Results from this two-semester
study on computer-based applications in organic
chemistry indicate a high degree of effectiveness. Not
only was the study effective in terms of student score
performance, but also in terms of outstandingly
favorable attitudes towards computer-based instruction
by students and professors.

Concurrently, faculty members of the College of
Engineering have also conducted various courses using
computer-based techniques. Dr. C. H. Roth of the
Electrical Engineering Department has developed a
computer-assisted instructional system that simulates
a physical system and provides computer-generated
dynamic graphic displays of the system variables. 9 An
SDS 930 computer with a display scope is used for this
project. The principal means of presenting material to
the students is via means of visual displays on the
computer output scope. A modified tape recorder pro
vides audio messages to the student while he watches
the scope displays. A flexible instructional logic enables
the presentation of visual and audio material to the
student and allows him to perform simulated experi
ments, to answer questions (based on the outcome of
these experiments) and provides for branching and help
sequences as required. Instructional programming is
done in FORTRAN to facilitate an interchange of
programs with other schools.

Dr. H. F. Rase, et al.,l0 of the Chemical Engineering
Department have developed a visual interactive dis
play for teaching process design using simulation tech
niques to calculate rates of reaction, temperature pro
files and material balance in fixed bed catalytic reactors.

Other computer-based instructional programs de
veloped include similar modules in petroleum engineer
ing and mechanical engineering. In each instance, the
curriculum modules are used to supplement one or more
sections of formal courses. In several instances it is
possible to measure the course effectiveness against a
"control" group. Course modules generally contain
simulated experiments, analysis techniques using com
puter graphics, and some tutorial material.

The general objectives for all of the aforementioned
studies are as follows:

1. To give the students an opportunity to have
simulated laboratory experiences which would
otherwise be pedagogically impossible.

2. To provide the students with supplemental
material in areas which experience has shown to
be difficult for many students.

3. To provide a setting in which the student is al
lowed to do a job that professionals do; ·i.e.,
collect, manipulate and interpret data.

4. To give the student the feeling that a real, con-

cerned personality has been "captured" in the
computer to assist him.

5. To individualize the student-computer inter
actions as much as possible by allowing the
student to pace himself.

6. To give the student a one-to-one situation in
which he can receive study aid.

Present state of computer-based learning systems

Curriculum development in engineering and the
sciences is being accomplished within the University
of. Texas through the Computation Center CDC-6600
system using conversational FORTRAN within the
RESPOND time-sharing system. Also, small satellite
pre- post-processors such as a NOVA, a SIGMA 5 and
anSDS-930 are linked to the CDC-6600. Of special
significance is the Southwest Regional Computer Net
work (SRCN) which is now in the early stages of use
and is built around the CDC-6600. Some eight intra
state colleges and universities are linked. Workshop
and user orientation sessions are still under way con
current with curriculum development. The integration
of course matter for this network will be accomplished
during the next two to three years. A discussion of the
factors involved in curriculum software development
and some evaluation aspects follows.

Cost factors and management considerations

When developing an accounting system for examining
the cost of generating software for teaching, one readily
realizes that there is the traditional coding and the
subsequent assembly. and listing. However, because
academic institutions frequently have this class of
endeavor funded from agency sources, a next step is
very frequently hardware installation (if the terminals
or the central processor have not been "on board" prior
to the initiation of the research). Once the hardware is
available, however, on-line debugging can take place
and the first course iteration can begin. The next step
is the first course revisiQn in which the material is re
written, possibly restructured, to take advantage of
experiences on the first pass. Then, the second course
iteration is performed and finally the second course
revision.

The estimates for coding, assembly, listing, and
debug time, etc., are a function of

1. the computer operating system and its con
straints.

2. the coding proficiency of the professionals in
volved.

Computer Based Science Education System 265

3. the way in which the computer is supposed to
manifest itself, that is:
a. as a simulation device in parallel with the

real experiment,
b. as purely a simulation device,
c. as a base for computer-augmented design,
d. for data acquisition,
e. for computer-based quizzes,
f. for computer-based tutorial and drill,
g. or finally, for computation.

4. the degree of reaction required, that is in the
physiological sense, how the computer must
interact for the user's latent response.

5. the extent of the data base required and the
data structure required to allow one to manipu
late that data base.

The primary considerations are organization and
control. In this work the organization consists of the
following. At each college there is a project coordinator
who is the line supervisor for the secretarial services,
programming services, and technical implementation
services, and who acts as the coordinator for
consultants.

At the University level there exists a review panel,
composed of members of the representative colleges
and several people trom other areas such as educational
psychology and computing, which evaluates the works
that have been conducted in any six-month period and
also evaluates the request for continuation of funds to
continue a project to its duration. The actual fiscal
control of each project is with the project coordinator
of that particular college. Also, the purchase of equip
ment is coordinated at the college level.

The control as expressed above is basically a two
step control; a bi-annual project review, plus a budget
ary analysis, is accomplished by an impartial review
panel. Their function is to act as a check on the con
text of the material presented and to recommend con
tinuance of particular research tasks. As a further step,
this research is coordinated in all colleges by the Re
search Center for Curriculum Development in Sciences
and Mathematics.

SUMMARY

Dissemination of information

Dissemination of information is planned through (1)
documentation of publications in the form of articles,
reports or letters, (2) symposia to be held which cover
procedures and fundamentals for developing curriculum
in CBI and (3) furnishing of completed packages of

266 Fall Joint Computer Conference, 1970

course matter on computer tapes, cards or disks to
other colleges or institutions desiring, and able to use,
this material. Wide publicity will be given completed
course matter through such agencies as ERIC, ENTE
LEK and EDUCOM. The provision for continuing
periodic inputs to the above agencies will provide for
current availability of curriculum materials.

Future outlook

The future outlook for time-sharing in computer
based educational systems is extremely bright with
respect to hardware development. The advent of the
marketing of newer mini-computer models selling for
five to ten thousand dollars-some complete with a
limited amount of software-is already changing the
laboratory scene. The configuration of direct-connect
terminals, with the inherent advantage of installation
within one building, further enhances the use of this
type of system by eliminating the high expense of data
lines and telephones.

Software in the form of a powerful CBI language for
the sciences and engineering designed specifically for
minicomputers is perhaps one of the most important
needs. Rapid progress has been made in developing a
low cost terminal using plasma display or photochromic
technology, however, the promise of a low cost terminal
has yet to be realized.

A small college, high school or other institution may
be able to afford a small time-sharing computer system
with ten terminals that could meet its academic needs
for less than $36,000; however, still lacking isOthe vast
amount of adequate curriculum matter. Educators using
CBI are in the same position as a librarian who has a
beautiful building containing a vast array of shelves
but few books to meet academic needs of students or
faculty. The task of curriculum development parallels
the above situation and must be undertaken in much
the same manner as any other permanent educational
resource.

Educational benefits

Benefits that result from implementing this type
plan are a function of the synergistic interplay of (1)
personnel with expertise in the application of computer
based techniques, (2) computer hardware including in
teractive terminal capability, (3) faculty-developed
curriculum materials, and (4) the common information
base into which the entire research program can be
embedded.

The program can provide students with a learning

resource that serves many purposes. That is, the com
puter can be the base of a utility from which the user
can readily extract only that which he needs, be it
computation, data acquisition, laboratory simulation,
remedial review, or examination administration. At all
times the computer can simultaneously serve as an
educator's data collection device to monitor student in
teraction. This modularized dial-up capability can give
the students an extremely flexible access to many
time-effective interfaces to knowledge.

Administrative benefits

When this type project has been completed, all users
may have access to the results. This unified approach
can yield modules of information on cost accounting
which can be used as a yardstick by the University.

Further, this type project insures that data-yielding
performance is of a consistently high quality, and that
regardless of the subject matter on any research task
the depth of pedagogical quality is relatively uniform.

The subject matter developed can serve as the
basis for conducting experiments in teaching and con
tinuing curricular reform. Indeed, the association of
faculty in diverse disciplines can serve as a catalyst for
curricular innovations in the course of preparing ma
terials for computer-based teaching techniques.

The instructional efforts described here can serve as
the basis for displaying the unity of science and en
gineering to the undergraduate student in an indirect
way. For example, if a student is taking a set of science
courses in. a particular sequence because it is assumed
each course contributes to an understanding of the
next one, it is possible to use programs developed in
one course for review of remedial work in the next
higher course. Thus, an instructor in biology can as
sume a certain level of competence in chemistry with
out having to review the important points in the latter
area. Should some students be deficient in those as
pects of chemistry that are important to the biology
course, the instructor can assign the suitable material
that had been developed for practice and drill for the
preceding chemistry course. With a little imagination,
the instructional system can make a significant impact
on the student by giving him a unified view of science
or enginering. It is possible to develop both a vertical
and horizontal structure for common courses which
can be used on an interdisciplinary basis for integration
in the basic core curriculum in the various departments
where computer-based techniques are used. The re
vision problem of inserting new and deleting old ma
terial in such a system is considerably simplified for
all concerned.

There is a vast, largely unexplored area of applica
tions. As time-sharing methods become more wide
spread, terminal hardware becomes less complex, and
teleprocessing techniques are improved, the potential
usefulness of computers in the educational process will
increase. With the technology and hardware already
in existence, it is. possible to build a computer network
linking industries and universities. Such a network
would (1) allow scientists and engineers in industry to
explore advanced curriculum materials, (2) allow those
who have become technically obsolete to have access
to current, specifically prepared curriculum materials,
training aids and diagnostic materials, (3) allow local
curriculum development as well as the ability to utilize
curriculum materials developed at the university, (4)
allow engineers to continue their education, (5) provide
administrators with an efficient and time-saving method
of scheduling employees and handling other data proc
essing chores such as inventories, attendance records,
etc., and (6) provide industrial personnel with easily
obtainable and current student records to aid in giving
the student pertinent and helpful counseling and
guidance.

Although complaints have been voiced that com
puter-based techniques involve the dehumanization of
teaching, we argue to the contrary-the judicious use
of these methods will individualize instruction for the
student, help provide the student with pertinent
guidance based upon current diagnostic materials and
other data, and allow instructors to be teachers.

ACKNOWLEDGl\1ENTS

Special thanks are due Dr. Sam J. Castleberry, Dr.
George H. Culp, and Dr. L. O. Morgan (Director), of
the Research Center for Curriculum Development in
Science and Mathematics, The University of Texas at
Austin. Also, appreciation is extended to numerous

Computer Based Science Education System 267

colleagues who have contributed to our approaches with
their ideas.

REFERENCES

1 To improve learning
US Government Printing Office March 1970

2 N HANSEN
Learning outcomes of a computer-based multimedia
introductory physics course
Semiannual Progress Report Florida State University
Tallahassee Florida 1967 p 95

3 S CASTLEBERRY J LAGOWSKI
Individualized instruction in chemistry using computer
techniques
J Chem Ed 47 pp 91-97 February 1970

4 L RODEWALD et al
The use of computers in the instruction of organic chemistry
J Chem Ed 47 pp 134-136 February 1970

5 R E LAVE JR D W KYLE
The application of systems analysis to educational planning
Comparative Education Review 12 1 39 1968

6 C V BUNDERSON
Computer-assisted instruction testing and guidance
W H Holtzman Ed Harper & Row New York New York
1970

7 R GAGNE
The analysis of instructional objectives for the design
In Teaching Machines and Programmed Learning II The
National Education Association Washington DC 1965
pp 21-65

8 J J ALLAN
Man-computer synergism for decision making in the system
design process
CONCOMP Project Technical Report 1(.9 University of
Michigan July 1968

9 E A REINHARD C H ROTH
A computer-aided instructional system for transmission line
simulation
Technical Report No 51 Electronics Research Center The
University of Texas Austin 1968

10 H FRASE T JUUL-DAM J D LAWSON
L A MADDOX
The use of visual interactive display in process design
Journal Chem Eng Educ Fall 1970

The telecommunications equipment market
Public policy and the 1970's

by l\,IANLEY R. IRWIN

University of New Hampshire
Durham, New Hampshire

INTRODUCTION

The growing interdependence of computers and com
munications, generally identified with developments
in digital transmission and remote data processing
services, has not only broadened the market potential
for telecommunication equipment but has posed several
important public policy issues as well. It is the purpose
of this paper to explore the relationship between the
telecommunications equipment market and U.S. tele
communication policy. To this end we will first survey
the traditional pattern of supplying hardware and
equipment within the communications common car
rier industry and second, identify recent challenges
to that industry's conduct and practices. We will con
clude that public policy holds a key variable in pro
moting competitive access to the telecommunication
equipment market-access that will redound to the
benefit of equipment suppliers, communication car
riers, and ultimately the general public.

THE COMMUNICATION COMMON CARRIER

As a prelude to our discussion it is useful to identi
fy the major communications carriers in the United
States. The largest U.S. carrier, AT&T, provides up
wards to 90 percent of all toll or long distance telephone
service in the country. In addition to its long line di
vision, AT&T includes some 24 telephone operating
companies throughout the U.S.; the Bell Telephone
Laboratory, the research arm of the system; and
Western Electric, the manufacturing and supply agent
of the system.! These entities make up what is com
monly known as the Bell System.

The non-Bell telephone' companies, include some
1800 firms scattered throughout the U.S. These firms

269

render service in 85 percent of the geographical sector
of the country and account for 15 percent of the re
maining telephones in the U.S. The independents are
substantially smaller than AT&T and in decreasing
size include the General Telephone and Electronics
System, United Utilities, Central Telephone Company
and Continental Telephone respectively. Although
General is by far the largest, the independents have
experienced, over the past two decades, corporate
merger and consolidation.

Western Union Telegraph Company provides the
nation's message telegraph service, the familiar tele
gram and Telex, a switched teletypewriter service.
Recently, Western Union has negotiated with AT&T
to purchase TWX thus placing a unified switched net
work under the single ownership of the telegraph com
pany.2 In addition to their switched services, the car
riers provide leased services to subscribers on a dedi
cated or private basis. In this area, both Western Union
and AT&T find themselves offering overlapping or
competitive services.

The carriers, franchised to render voice or non··
voice service to the general public, reside in an en
vironment of regulation. Licenses of convenience and
necessity are secured from either Federal or state
regulatory bodies and carry with it a dual set of privi
leges and responsibilities. In terms of the former, the
carriers are assigned exclusive territories in which to
render telephone or telegraph services to the public
at large-a grant tendered on the assumption that com
petition is inefficient, wasteful, and unworkable. In
terms of the latter, the carriers must serve all users at
non·-discriminatory rates, submitting expenses, costs
and revenue requirements for public scrutiny and
overview. In the United States, the insistence that
utility firms be subject to public regulation rests on
the premise that economic incentives and public con
trol are neither incompatible nor mutually exclusive.

270 Fall Joint Computer Conference, 1970

THE POLICIES AND PRACTICES OF THE
CARRIER

Given the carriers and their environmental setting,
three traits have tended to distinguish the communi
cation industry in the past. These include, first, a
practice of owning and leasing equipment to sub
scribers; second, the policy of holding ownership in
terest in equipment suppliers and manufacturers;
and finally, a practice of taking equipment and hard
ware requirements from their supply affiliates. Each
of these policies has conditioned the structure of tele
communication equipment for several decades and
thus merits our examination.

Tariffs

In the past at least the carriers provided what they
term a total communication service. That service
embraced loops or paired wires, switching equipment,
interoffice exchange trunks and terminal or station
equipment. Prior to 1968, subscribers were prohibited
from linking their own telephone equipment to the
telephone dial network. This policy was subsumed
under a tariff generally termed the foreign attachment
tariff-the term "foreign" in reference to equipment
not owned or leased by the telephone company. Users
who persisted in attaching equipment not supplied
by the carrier incurred the risk of service disconnec
tion.

Carrier non-interconnection policy extended to
private communication systems as well as user equip
ment. In the former case, the denial of interconnection
rested on the carriers apprehension that customers
would tap profitable markets. Accordingly, customer
interconnection would lead to profit cream skimming,
loss of revenues to carriers, and ultimately require
the telephone company to increase rates to the general
public or postpone rate reductions.

Interconnection was also said to pose problems of
maintenance for the utility. With equipment owned
partly by subscribers and owned partly by utility,
who would assume the burden of service and who
would coordinate the introduction of new equipment
and new facilities? Whether these problems were real
or imaginary, public policy sanctioned carrier owner
ship and control of related terminal equipment under
the presumption that divided ownership would com
promise the systemic integrity of a complex and highly
sophisticated telephone network.

Telephone subscribers had little choice but to ad
just to the foreign attachment prohibition. This meant
that of necessity equipment choices were restricted

to hardware supplied and leased by the carrier. Com
petitive substitutes were by definition minimal or
nonexistent. In fact the carrier's policy of scrapping
old equipment removed a potential used market from
possible competition with existing telephone equip
ment.

Integration

In addition to certain practices embodied as filed
tariffs, the carriers owned manufacturing subsidiaries.
The integration or common ownership of utility and
supplier thus marked a second characteristic of the
industry. Obviously Western Electric, the Bell System's
affiliate dominated the industry, and over the years,
accounted for some 84 to 90 percent of the market.
General Telephone's supply affiliates, acquired since
1950, accounted for some 8 percent of the market.
Together the two firms approached what economists
term a duopoly market; that is, two firms supplying
in excess of 90 percent of the market for telecom
munication equipmen.t.3

Despite the persistence of integration, the efficacy
of vertical integration experienced periodic review.
In 1949, for example, the Justice Department filed
an antitrust suit to divest Western Electric from the
Bell System.4 The suit premised on a restoration of
competition to the hardware market, asserted that the
equipment market could grow and evolve under con
ditions of market entry and market access. In 1956,
a consent decree permitted AT&T to retain Western
Electric as its wholly owned affiliate on the apparent
assumption that divestiture served as an inappropriate
means to achieve the goal of competition.5 Instead,
market access was to be achieved by making available
Bell's patents on a royalty free basis.

Still later the Justice Department embarked on
another antitrust suit. This time the antitrust division
challenged General Telephone's acquisition of a West
Coast independent telephone company on grounds
that the merger would tend to substantially lessen
competition in the equipment market.6 The General
suit felt the weight of the Bell Consent Decree. So
heavy in fact was the Bell precedent that the De
partment cited the 1956 Decree as grounds for dropping
its opposition to General Telephone's merger. 7

Procurement

A third practice inevitably followed the carrier's
vertical relationship; namely the tendency to take the
bulk of their equipment from their own manufacturing
affiliates. Perhaps such buying practices were inevitable.

Certainly, in the carriers' judgment, the price and
quality of equipment manufactured in-house was
clearly superior to hardware supplied by independent
or nonintegrated suppliers.

Indeed, the courts formalized the procedure of de
termining price reasonableness by insisting that the
carrier rather than the regulatory agency assume the
burden of proof in the matter.8 The result saw the
arbitor of efficiency pass from the market to the dom
inant firm. Over the years the integrated supplier firm
has accorded itself rave reviews. Consultant's under
carrier contract repeated those reviews. But under the
existing rules of the game, one would hav~ hardly
expected the firm to act differently.

However long standing, the triad of tariffs, integra
tion and procurement has held obvious implications
for independent suppliers of equipment and apparatus.
First, non-integrated suppliers found it difficult to
sell equipment to telephone subscribers given the en
forcement of the foreign attachment tariff. Second,
the non-integrated supplier was not particularly suc
cessful in selling directly to integrated operating com
panies. No policy insisted that arms-length buying be
inserted between the utility and its hardware affiliate,
and indeed the integrated affiliate assumed the role
as purchasing agent for its member telephone carriers.
Little. surprise then that the percentage of the market
penetrated by independent firms has tended to remain
almost constant for some forty years.

Having said this it must be noted that the carriers
insisted that the quality, price and delivery time of
equipment from their in-house suppliers was clearly
superior to alternative sources of supply. It was as if
a competitive market was, by definition less, efficient
in allocating goods and services. The private judgment
of management was never put to an objective test.
Indeed, the carriers resisted formal buying procedures
as unduly cumbersome and unwieldy.9 That resistance
has tended to carry the day.

Third, vertical integration skirted the problem of
potential abuse inherent in investment rate-base pad
ding. Utilities, for example, operate on a cost plus
basis, i.e., they are entitled to earn a reasonable return
on their depreciated capital-a derivation of profits
that stands as the antithesis of the role of profits under
competition. Vertical integration compounded utility
profit making by providing an incentive to transplant
cost plus pricing to the equipment market. Certainly,
the penalty for engaging in utility pricing was difficult
to identify much less discipline. The affiliate occupied
the best of all possible worlds.

In all fairness one must note the institutional con
_.straint erected to prevent corporate inefficiency on the
equipment side. The argument ran that the regulatory

Telecommunication Equipment Market 271

agency monitored the investment decision of the
carrier. By scrutinizing the pricing practices of the
integrated affiliate indirect regulation prevented ex
orbitant costs on the supply side from entering the
utility rate base and passed forward to the subscriber.
Indirect regulation allegedly protected both the public
and the utility.

As an abstract matter, indirect regulation held an
element of appeal. Translating that theory into prac
tice was obviously another matter. On the federal
level, the FCC has never found an occasion to disallow
prices billed by Western Electric to AT&T.lO Yet, 65
percent of AT&T's rate base consists of equipment
purchased in-house and absent armslength bargaining. l1

Finally, vertical integration placed the independent
equipment supplier in an awkward if not untenable
position. As noted, the independent firm could secure
equipment subcontracts from its integrated counter-·
part. The dollar value of those subcontracts was not
unimportant. The problem was that the non-integrated
supplier was still dependent upon its potential com
petitor-a competitor who exercised the discretion
to make or buy. Little wonder then, that the viability
of independent equipment suppliers was controlled
and circumscribed by the tariffs, structure, and pro
curement practices of telephone utilities. Patently,
no market existed for the outside firms; and without
a market, the base for technical research and develop
ment, much less the incentive for product innovation,
was effectively constrained, not to say anesthetized.
Access to the telecommunication equipment was, in
short, limited to suppliers holding a captive market.
The government asked the monopoly firm to judge
itself; and after dispassion3lte inquiry the firm equated
the public interest with preservation of its monopoly
position.

MARKET CHANGES AND PUBLIC POLICY

]JI[arket changes

All this has been common knowledge for decades.
Whatever the pressures for reassessment and change,
those pressures were sporadic, ad hoc and often in-·
consistent. Today, however, the telecommunications
industry is experiencing a set of pressures that marks
a point of departure from the triad of policies described
above. In a word, the pace of technology is challenging
the status quo. More specifically, new customized
services tend to be differentiated from services ren
dered by the common carriers. Time sharing and re
mote computer based services, for example, provide
and impetus for a host of specialized information ser-

272 Fall Joint Computer Conference, 1970

vices. The rise of facsimile and hybrid EDP / communi
cation services is equally significant as a trend toward
specialization and sub-market development. Sub
scribers themselves, driven by the imperatives of
digital technology, seek flexibility and diversity in
their communication facilities. Segmentation and
specialization is gaining momentum.

At the same time, the telecommunication hardware
market is experiencing a proliferation of new products
that pose as substitutes to carrier provided equipment.
In the terminal market, for example, modems, multi
plexors, concentrators, teleprinters, CRT display units
are almost a daily occurrence~ Indeed, the computer
itself now functions as a remote outstation terminal;
and many go so far as to assert that the TV set holds
the potential as the ultimate terminal in the home and
the school.

The carriers, of course, have not stood idly by. In
the terminal market, touch-tone hand sets, picture
phones and new teletypewriters signal an intent to
participate in remote access input output devices as
well. But the point remains-carrier hardware no longer
stands alone. The proliferation of competitive sub
stitutes and the potential rise of competitive firms is
now a process rather than an event. '

The same technological phenomena is occurring in
the transmission and switching area as well. Cable TV
provides a broad link directly to the home, the school,
or the business firm. Satellite transmission poses as a
substitute for toll trunking facilities and the FCC has
recently licensed MCI as a new customized microwave
carrier. Furthermore, carrier switching technology is
challenged by hardware manufactured and supplied
by firms in the computer industry.

All of this suggests that carrier affiliates no longer
possess the sole expertise in the fundamental com
ponents that make up telecommunication network
and services. It is perhaps inevitable then, that the
growing tension between the existing and the possible
has surfaced as questions of public policy. These
questions turn once again on matters of tariff, pro
curement and integration.

Public policy decisions

Tariffs

Undoubtedly, the FCC's 1968 Carterphone Decision
marks one significant change in the telecommunication
equipment industry.12 Here the Commission held that
users could attach equipment to the toll telephone
network. Indeed, the Commission insisted that car
riers establish measures to insure that customer-owned

equipment not interfere with the quality and integrity
of the switched network. Subsequently, the Commis
sion entrusted the National Academy of Science to
evaluate the status of the network control signalling
device. Although somewhat cautious, the Academy
has suggested that certification of equipment may
pose as one feasible alternative to noncarrier equip
ment.13

The implications of Carterphone bear repetition.
For one thing the decision broadens the users option
in terms of equipment selection. The business sub
scriber no longer must lease from the telephone com
pany, but may buy hardware from other manufac
turers as well. For another, an important constraint
has been softened with respect to suppliers of terminals,
data modems and multiplexors as well as PBX or
private branch exchanges. Indeed, some claim that
the decision has established a two billion dollar market
potential for private switching systems.H Ironically,
the carriers themselves, to meet the demand for PBX's,
have turned to independent or nonaffiliated firms sup
plying such equipment.

Nevertheless, the Carterphone in softening previous
restraints continues to pose an interesting set of ques
tions. For example, what precisely is the reach of
Carterphone? Will the decision be extended to the
residential equipment market? Is the telephone resi
dential market off limits to the independent suppliers
of telecommunications equipment? These questions
are crucial if for no other reason than terminal display
units are already on stream and the carriers them
selves are now introducing display phones on a com
mercial basis. Indeed, the chasm between Carterphone's
reality and promise will bulk large if public policy
decides that the residential subscriber cannot be en
trusted with a freedom of choice comparable to the
business subscriber.

Vertical integration

The vertical structure of the carriers has also been
subject to reexamination. A relatively unknown anti
trust suit involving ITT and General Telephone system
is a case inpoint.15 The suit erupted when General
Telephone purchased controlling interest in the Ha
waiian Telephone Company-a company that was
formerly. a customer of ITT and other suppliers. ITT
has now filed an antimerger suit on grounds that
General forcloses ITT's equipment market. The ITT
suit represents a frontal assault on General's equip
ment subsidiaries, for ITT is seeking a ban on all of
General Tel's vertical acquisitions since 19.50. In a

word, the suit seeks to remove General Telephone
from the equipment manufacturing business.

While the suit is pending, it is obviously difficult
to reach any hard conclusions, but one can speculate
that anything less than total victory for General
Telephone will send reverberations throughout the
telephone industry and the equipment market. Cer
tainly, if General Telephone is required to give up its
manufacturing affiliate, then the premise of the West
ern Electric-AT &T consent decree will take on re
newed interest.

Another development in the equipment market
focuses on Phase II of the FCC's rate investigation
of AT&T .16 This phase is devoted to examing the
Western Electric-AT&T relationship. Presumably, the
Commission will examine Bell's procurement policies
as well as the validity of the utility-supplier relation
ship. What conclusions the Commission will reach
are speculative at this time. In terms of market entry
for the computer industry, the implications of Phase
II are both real and immediate.

Still another facet of integration is the relationship
of communication to EDP and carrier CATV affiliates.
In the former, the FCC has ruled that with the excep
tion of AT&T, carriers may offer EDP on a commercial
basis via a separate but wholly owned corporation.17

Nothing apparently prohibits a carrier from offering
an EDP service to another carrier-note the current
experiments in remote meter reading. By contrast,
the FCC has precluded carriers from offering CATV
service in areas where they currently render telephone
service.18 Both moves, to repeat, hold important
market implications for manufacturers of telecom
munication equipment.

ProcureInen t

Finally, equipment procurement has surfaced once
again as a policy issue. Consider Carterphone, domestic
satellites and specialized common carriers as sympto
matic of the procurement theme.

The premise supporting Carterphone is that the user
is entitled to free choice in his equipment selection.
Once that principle has been established, and that may
well be debatable, someone is bound to pose an addi
tional question. Should suppliers be permitted to sell
to the Carriers directly rather than through carrier
owned supply affiliates? Perhaps that precedent has
already been made. Bell System companies may buy
computer hardware directly from computer suppliers,
thus permitting the computer industry to bypass
Western Electric's traditional procurement assign
ment.19 The point may well be asked, does this policy
merit generalizing across the board?

Telecommunication Equipment Market 273

Access to the equipment market in the domestic
satellite field poses as a second issue. A White House
memorandum has advised the FCC that the problems
of spatial parking slots and frequency bands do not
bar the number of competitive satellite systenis.20

And in return, the FCC has reopened its domestic
satellite docket for reevaluation. If the Commission
adopts only segments of the White House memo,
domestic' satellites will presumably raise the issue of
competitive bidding in one segment of the hardware
market. As it stands now, all satellite equipment,
whether secured be Com Sat or the international car
riers, must be secured through competitive bids.21

These rules apply not only to the prime contractor,
but all sub-contracting tiers at a minimum threshold
of $24,000. The equestion persists, if domestic satellites
evolve within the continental U.S., will competitive
bidding procedures attend such an introduction whether
in satellite bird or in earth terminal stations. These
issues will likely gain momentum as the carriers move
into the production of ground station equipment.

Finally, an FCC proposed rule made in the area of
specialized carriers, bears directly on the equipment
market.22 The docket is traced to the FCC's MCI
decision which authorized a specialized carrier to offer
service between Chicago and St. Louis.23 Since the
MCI decision, the FCC has received over 1700 appli
cations for microwave sites. In its recent docket, the
Commission has solicited views in proposed rule
making that would permit free access of any and all
microwave applicants. As the Commission noted,
"Competition in the specialized communications field
would enlarge the equipment market for manufacturers
other than Western Electric. . . .' '24 If this policy be
comes implemented and the FCC can prevent the
carriers from engaging in undue price discrimination,
it is clear that the one constraint to the growth of
specialized common carriers will be the output ca
pacity of firms who manufacture such equipment.

CONCLUSION

In sum the premises supporting the tariffs, structure
and practices of the carriers have been exposed to
erosion and subject to revision. That change has in
turn spilled into the policy arena. Firms in the tele
communication equipment industry-and this incJudes
the computer industry-will find it increasingly diffi
cult to avoid the policy issues ofa market whose po
tential exceeds $5 billion.

One might argue that questions dealing with mar
ket entry are in one sense peripheral issues. That is,
public policy should direct its attention to existing

274 Fall Joint Computer Conference, 1970

structures as well as potential entry. In this context
competitive buying practices may well pose as a work
able solution to the vertical integration problem. But
that solution is obvjously of short term duration. The
pace of technology is suggesting that something more
fundamental must give. Over the next decade, the
nation's supply of telecommunication equipment must
expand by an order of magnitude and that goal stands
in obvious conflict with monopoly control of telecom
munication equipment suppliers.

REFERENCES

1 W H MELODY
I nterservice subsidy: Regulatory standards and applied
economics
Paper presented at a conference sponsored by Institute of
Public Utilities Michigan State University 1969

2 New York Times
July 291970

3 Final Report
President's Task Force on Communications Policy
December 7 1968

4 United States v Western Electric Co
Civil No 17-49 DNJ filed Feb 14 1949

5 Consent Decree US v Western Electric Co
Civil No 17-49 DNJ January 23 1956

6 United States v General Telephone and Electronics Corp
Civil No 64-1912 SD NY file June 19 1964

7 In the US District Court District of Hawaii International
Telephone and Telegraph Corporation v General Telephone
and Electronics Corporation and Hawaiian Telephone
Company Civil No 2754 G T&E's motion under Rule 19
Points and Authorities in Support Thereof April 21 1970

8 Smith v Illinois Bell Telephone
282 US 1930

9 Telephone investigation
Special Investigation Docket No.1, Brief of Bell System
Companies on Commissioner Walker's Proposed Report
on the Telephone Investigation 1938

10 The domestic telecommunications carrier industry
Part I Presidents Task Force on Communications Policy
Clearinghouse pp 184-417 US Department of Commerce
June 1969

11 Moody's public utility manual
Moody's Investors Service Inc New York August 1969

12 Before the FCC in the Matter of Use of the Carterphone
Device in Message Toll Telephone Service FCC No 16942
In the Matter of Thomas F Carter and Carter Electronics
Corporation Dallas Texas Complainants v American
Telegraph and Telephone Company Associated Bell
System Companies Southwestern Bell Telephone Company
and General Telephone of the Southwest FCC Docket No
17073 Decision June 26 1968

13 Report of a technical analysis of common carrier/user
interconnections
National Academy of Sciences Computer Science and
Engineering Board June 10 1970

14 New York Times
July 121970

15 In the US District Court for the District of Hawaii
International Telephone and Telegraph Corp v General
Telephone and Electronics Corp and Hawaiian Telephone
Company Complaint for Injunctive Relief Civil Action
No 2754 October 18 1967 Also Amended Complaint for
Injunctive Relief December 14 1967

16 Before the FCC In the Matter of American Telephone and
Telegraph Company and the Associated Bell System
companies charges for Interstate and Foreign
Communication Service 1966
Stanford Research Institute Policy Issues Presented by the
Interdependence of Computer and Communications Services
Docket No 19979 Contract RD-10056 SRI Project 7379B
Clearinghouse for Federal Scientific and Technical
Information US Department of Commerce February 1969

17 Before the FCC in the Matter of Regulatory and Policy
Problems Presented by the Interdependence of Computer
and Communication Service and Facilities Docket No
16979 Tentative Decision 1970

18 Before the Federal Communications Commission In the
Matter of Applications of Telephone Companies for Section
214 Certificates for Channel Facilities Furnished to
Affiliated Community Antenna Television Systems
Docket No 18509 Final Report and Order January 28 1970

19 A systems approach to technological and economic imperatives
of the telephone network
Staff Paper 5 Part 2 June 1969 PB184-418 President's Task
Force on Communications Policy

20 Memorandum White House to Honorable Sean Burch
Chairman Federal Communications Commission January
231970

21 Before the FCC In the Matter of Amendment of Part 25
of the Commission's Rules and Regulations with Respect
to the Procurement of Apparatus Equipment and Services
Required for the Establishment and Operation of the
Communication Satellite System, and the Satellite
Terminal Stations Docket No 15123 Report and Order
April 3 1964

22 Before the FCC In the Matter of Establishment of Policies
and Procedures for Consideration of Applications to Provide
Specialized Common Carrier Services in the Domestic
Public Point-to-Point Microwave Radio Service and
Proposed Amendments to Parts 2143 and 61 of the
Commission's Rules Notice of Inquiry to Formulate Policy
Notice of Proposed Rulemaking 1 and Order July 1970
(Cited as FCC Inquiry on Competitive Access)

23 Federal Communications Commission In re Application of
Microwave Communications Inc for Construction Permits
to Establish New Facilities in the Domestic Public Point
to Point Microwave Radio Service at Chicago Illinois
St Louis Missouri and Intermediate Points Docket No
16509 Decision August 14 1969

24 FCC Inquiry on Competitive Access op cit July 1970 p 22

Digital frequency modulation as a technique for improving
telemetry sampling bandwidth utilization

by G. E. HEYLIGER

Martin Marietta Corporation
Denver, Colorado

INTRODUCTION

A hybrid of Time Division Multiplexing (TDM) and
Frequency Division Multiplexing (FDM), both well
established in theory and practice is described herein.
While related to TDM and FDM, the particular com
binations of techniques and implementations are novel
and, indeed, provide a third alternative for signal
multiplexing applications. The essence of the idea is
to perform all band translation and filtering via nu
merical or digital techniques.

Signal multiplexing techniques are widely employed
as a means of approaching the established theoretical
limitations on communication channel capacity. In
general, multiplexing techniques allow several signals
to be combined in a way which takes better advantage
of the channel bandwidth. FDM systems accomplish
this by shifting the input signal basebands by means
of modulation techniques, and summing the results.
Judicious choice of modulation frequencies allows non
overlapping shifted signal bands, and permits full
use of the channel bandwidth. Refinements such
as "guard bands" between adjacent signal bands and
the use of single sidebands can further affect the system
design, but, in general, the arithmetic sum of the
individual signal bandwidths must be somewhat less
than haH the composite channel bandwidth.

TD1VI systems achieve full utilization of channel
bandwidth in quite a different way. Several signals
are periodically sampled, and these samples are inter
leaved so that the individual signal must be sampled
at least twice per cycle for the highest signal frequency
present in accordance with Nyquist's sampling theorem.
In this case, also, the number of signals that can be
combined depends upon the sum of individual signal
bandwidths and the bandwidth of the channel itself.

The sampling theorem states that only two samples
per cycle of the highest frequency component of a

275

strictly band-limited signal are required for complete
recovery of that signal. Nevertheless, 5 to 10 samples
per cycle are widely employed. There are reasons,
practical and otherwise, for the resulting bandwidth
extravagance:

1. Many times it is difficult, if not impossible, to
place a specific upper limit on "significant'.
frequency components. Safe estimates are made.

2. Interpretation of real-time or quick-look plots
is simpler and more satisfying if more samples
per cycle are available.

3. Aliasing or folding of noise is more severe for
relatively low sampling rates and inadequate
prefiltering.

This paper acknowledges the practice of over
sampling but avoids the difficulties previously de
scribed. Full use is made of the sampling bandwidth
by packing several signals into that bandwitdh utilizing
a form of FDM. The novelty lies in the use of FDM
and the way modulation is achieved for periodically
sampled signals.

SYSTEM DESCRIPTION

Before describing the system, it is useful to briefly
consider some theoretical background. The following
discussion should clarify the basic ideas. Consider a
source signal with the spectrum shown in Figure l(a).
It is well known that sampling signals at a frequency
is = l/T where T is the time between samples, results
in a periodic replication of the original spectrum as
shown in Figure l(b). Modulation of the original signal
by frequency /0 produces the usual sum and difference
frequencies, and sampling then results in the replicated
pattern shown in Figure 1 (c).

276 Fall Joint Computer Conference, 1970

I I I rh I I I

. -3 21. -I • -I 21. 0 1.21. I. 321.
I

(a) Original

r71 -T2~-~ I r71
-I. 1.21. I.

(b) Sampled

(c) Sampled and Modulated by fO

Figure 1-Spectral effects of sampling and modulating

Now consider three source signals with the spectra
shown in Figure 2(a), all with roughly the same band
width. Modulating the second and third signals with
the frequencies f8/2 and fs/4, respectively, results in
the shifted spectra shown in Figure 2(b). Summing
yields the composite spectrum shown in Figure 2(c).
This composite signal now makes full use of the sam
pling bandwidth.

Figure 3 shows the inverse process of obtaining the
original spectra. Demodulating by the same frequencies
used for modulation successively brings each signal
band to the origin where low pass filtering eliminates
all but the original signal.

Since few signals are strictly band-limited, it is
evident that crosstalk noise will appear in the received
signal. This noise can be controlled by the degree of
pre- and postfiltering. For certain relatively inactive
signals, the crosstalk may be no penalty at all. In
general, however, crosstalk presents the same problems
here as with any FDM system. The important point
to be made is that tracking of the modi demod oscilla
tors is not relevant since these operations are obtained
directly by operating on successive samples, i.e., there
are no local oscillators per se.

In general, modulation is accomplished by mul
tiplying the signal source by a single sinusoidal fre
quency or carrier. Sampled signals are modulated in

t.

(a) Three Oversampled Source Signals

C"'\ 1

(b) Original Signals Modulated by O. 1/2 fs' and 1/4 fs' Respectively

I' C"'\ 0 C'""\ t.
-I 2 I. 0 1 2 I.

(c) Combined Spectra (Reduced to Sampling
Bandwidth)

Figure 2-Combinations of oversampled signals

S;"ered by Low-Pass Fllt.rin~

~ C'\OC'\ ~ do~ A C'\OC'\ I .,
:. ! I, ·I s 1 2 I. I 0 I 1 2 I. Is 3 2 I.

I

(a) Combined Spectra of Three Oversamp1ed and Modulated Sources

1

1 1

, C"'\ f:,. C'\ c;J ~ f:,. ~ Q C'\ I) 1"'""Jr; •
3l1... -t, -12f~ I 0 ~ 12f" 's 32f.

(b) Demodulated by 1/2 f
; t s

I I

I rro G""\ rro C" fA) ~rro C\ rro C"' fA) ~
3!f, -, -12/. I 0 I 12/ I 321

... I ISS •

(c) Demodulated by 1/4 fs

Figure 3-Prefiltered separation of combined signals

the same way, but the modulating frequency mul
tiplier is required only at successive sample times.

Modulation (i.e., multiplication) by integer fractions
of the sampling frequency is particularly simple if
appropriate sample times are chosen. For example,
certain modulation frequency amplitudes are quite
easily obtained as shown in Table I. The phase shift
of 1'(/4 for 1/4 fs was chosen to avoid multiplication
by zero yet retain natural symmetry. All the modula
tion factors may be easily obtained by modifying the
sign of the signal magnitude and/or multiplying by
a factor of 1/2. Furthermore, the majority of inter
esting cases are handled by these modulation frequen
cies, packing two, three, or four FDM channels within
the sampling bandwidth. This degree of packing nicely
accommodates practical oversampling systems en
countered in practice. For particular applications, it
may be useful to employ arbitrary modulation frequen
cies and the corresponding sequence of numerical
multipliers (nonrepeating or repeating).

A hybrid form of implementation is shown in Figures
4 and 5. Figure 4 is the modulator, and Figure 5 is
the demodulator. Not explicitly shown, but implied,

Table I Modulation Factor

Modulation
Frequency General Expr.ession. k = 0,1,2,... Periodic Sequence

t fs cos (t fs 21fT) = cos k1f l, -1, ...

1 f
4 s

1 f
b s

1 f
3 5

s 1f (f) cos k;;- 21fT = cos k2

5 - 'If (f)
cos k 6' 21fT = cos k3

([s) 2
cos k 321fT = cos k3 1f

0, I, 0, -1, ...

(No t e Con stan l
Amplitude)

1, t, -t, -1, -to t.···
1, -t, -to ...

TABLE I-Modulation Factor

-- - - - - - - -- - - --- - - -- - -- - - - - - -- - - - -,
5, I

1/2

~f' . ,-1--1-....1...-,
IS

I
t

1 :

I
I

L ________________________________ ~

Notes:

To Conventional
Time Division
Multiplexing
System

1) fa' is a periodic pulse

stream. delayed with
respect to f s. the

sampling pulse sequence.
(See text..)

Figure 4-Sampled FD M modulator

is the use of the combined signal output as a single
sampled source for conventional TDM systems. The
system diagram assumes the case of four signals of
roughly equal bandwidth to be combined into a single
signal. Subfunctions such as sampling, counting, digital
decoding trees, and operational amplifiers can be im
plemented in a variety of ways utilizing conventional,
commercially available functional blocks or compo
nents. Details of the subfunction implementations
themselves are incidental to the concept but important
to the particular application. Referring to Figure 4,
the multiplexer modulator works as follows:

Four independent signals (Sl, S2, S3, and S4) are
accepted as inputs. One, shown as S1, goes directly
to the summing amplifier, A. Each of the other signals
is switched periodically under control of the approprl
ate binary counter which is synchronized and driven
by the sampling frequency pulses. As shown, S2 is
alternately switched from the first to the second of a
two-stage cascade of operational amplifiers. The effect
of this chain is to alternately multipiy S2 by the factors
plus one and minus one, i.e., the modulation factor
cos k7l"; = 0, 1, 2, ... in accordance with Table I and
considering the modulation signal valid at the sample
times only. Similarly, S3 is multiplied by the periodic
sequence (1, -72, -72) again in accordance with the
third line of Table I. The effect, considered at sample
times only, is to modulate Sa by 1/3 fs. Fip.ally, S4 is
modulated by 1/6 F s , by periodically switching this
signal to one of six inputs of the operational amplifier
chain with the gains (1, 72, -72, -1, -72, 72) in
accordance with line four of Table I.

All four outputs are summed by the operational
amplifier A, and the summed signal sampled at the

Digital Frequency Modulation 277

output of A at the sampling frequency, fs. It should be
noted that the switching counters can be changed at
any time after a sample is taken from the output of
A; therefore, the design of the system provides that
the pulse driving the counters is delayed slightly more
than the aperture time of the sampled output. This
mechanization provides ample time for switching opera
tions prior to the subsequent sampling. The sampled
output signal, St*, can be used as an input to a con
ventional TDM system.

The demodulator shown in Figure 5 is very similar
to the modulator. In fact, within the dotted lines it is
identical. Here, the appropriate output from a con
ventional TDM system, St*, is used as input to all
four counter-controlled switches. A sample and hold
operation is employed at the input in order to drastically
reduce the time response requirements of the operation
al amplifiers.

Again, sequentially switching the input effectively
demodulates St by the frequencies 1/6 fs, 1/3 fs, and
1/2 fs. Since this modulation is effective only at the
sampling instants, a sample and hold circuit is required
at each output. The low-pass filter eliminates com
ponents of all but the demodulated signal. Note that
for the demodulator, the signals f't should precede
fs in phase by the aperture (or pulse width) of St*,
to allow a maximum time for change in St* to be ac
commodated by the amplifier and switching chain.
Since fs is derived from St* and is a periodic signal,
any desired relative phasing is readily achieved.

SYSTEM ADVANTAGES AND CAPABILITIES

Several useful and interesting features are inherent
in the system:

1. Numerical Modulation of Sampled Signals
Because the modulation signal is required only

.---------------------.- --- --------1
'T" "

"

'3

"

1/2

• "{"ehron'"} L __ - - - --- --- - - - -- - - -------- ---- --
T c.in.tor f.

Figure 5-Sampled FDM demodulator

278 Fall Joint Computer Conference, 1970

at the sampling instants, a periodic sequence
of numerical multipliers substitutes for the
local oscillator of conventional frequency modu
lation systems. Conventional oscillator accuracy
and stability problems do not arise, and very
low frequency modulation is readily achieved.

2. Coincident Sampling of Several Signals-Con
ventional TDM systems may combine signals
sampled at the same rate, but at different in
stants of time. This approach provides for
combining signals sampled at the same rate
and same times. Full use of conventional TDM
techniques can be employed on the combined
signal.

3. Full Utilization of Sampling Bandwidth
The sampling rate chosen defines the unaliased
bandwidth in a sampled data system. Here, a
way of combining several independent signals
is employed so that the total sampling band
width can be utilized for transmission of in
formation.

4. Signal Independent Choice of Sampling Rate
As a corollary to 3, this system permits, even
promotes, oversampling of individual signals.
Oversampling is attractive and widely practiced
as previously noted. The system described here
avoids the usual oversampling penalties by
packing several independent signals within
the sampling bandwidth.

5. Noise Aliasing Avoidance-Some source signals
must be heavily prefiltered or oversampled
in order to avoid the noise signal folding effects
of sampled data systems. Again, oversampling
can be employed without the usual penalties.
It should be noted that wideband noise will
of course result in crosstalk among the combined
channels.

In summary, the system described gives a new di
mension in the design of signal multiplexed systems.
Combination of these techniques with the conventional
TDM and FDM techniques allows the designer to
tailor a sampled data system to the peculiarities of a
specific set of source signals, while making full use of
the available sampled bandwidth.

ALTERNATIVE IMPLEMENTATIONS

The hybrid system described herein uses pulse
amplitude modulation (PAM). However, pulse code
modulation (PCM) can be employed as well, in one of
several attractive alternative implementations. The

following system functions can be identified:

1. Sampling, timing, and switching;
2. Analog/digital (A/D) conversion;
3. Sample modulation/demodulation.

The modulator/transmitter also requires an adder
for combining the signals, while the demodulator /
receiver requires a suitable lowpass filter for each
output. Conversion to a digital representation of the
signals can be performed at most any point in the
system. Following conversion, the subsequent func
tions are performed via conventional digital arithmetic
and logic operations.

Exclusively digital implementation

As an extreme example, consider an implementation
that provides A/D conversion at the source (modu
lator/transmitter input).

Modulation is accomplished by arithmetic multi
plication of the source sequence values by the desired
modulation sequence, cos kOo where 0 = sT. Note
that in this case, the modulation sequence need not
be a periodic sequence if a means is provided for gen
erating the values cos k 00 for all integers, k.

Independent signals are combined after modulation
simply by arithmetic addition of corresponding modu
lated sequence values. The summed sequence is the
output. The combined PCM samples are then handled
as with a conventional TDM system.

At the demodulator/receiver, the input is the digital
sampled sequence as derived from a conventional
PCMsystem.

Demodulation is performed as before; arithmetic
multiplication of the input sequence by the appropriate
sequence of values, cos k 00•

Each resulting output must be filtered to eliminate
the other signal components. Filtering can be ac··
complished numerically using either recursive or
nonrecursive techniques.

The outputs then are available as separate signals
corresponding to those first transmitted. The digital
output sequence may be used directly for listing, fur
ther processing, or as an input to an incremental
plotter. Alternatively, D/ A, conversion and hold
operations convert the signal to its analog equivalent.

Mixed analog/digital implementations

Evidently, a number of obvious combinations of
PAM and PCM are possible. Thus, operational am
plifier (op-amp) modulation can be used in combination

with a time-shared AID converter and arithmetic
summation with the result handled as a conventional
PCM signal. Similarly, at the receiver, DI A conversion
may take place at the output of the PCM arithmetic
modulator, and the result passed through a conven
tionallow-pass analog filter for signal recovery.

A nalog system simplifications

Figure 4 presents the system in a way that aids
description and understanding. Good design practice
would permit combination of the modulation and
summing functions in a single op-amp stage. Similarly,
various combinations of cascades 2- and 3-way switches
might be advantageous instead of the single stage
6-way switch shown in Figure 4.

Modulation sequence considerations

The op-amp modulator implementation requires
that the modulation sequence, cos k eo, be a repeating
or periodic sequence. From a practical point of view,
only a small number of modulation values should be
employed, since each requires additional switching and
input to the op-amp. While the only theoretical limi
tation on the number of values is that eo be some
rational fraction of 211"', the simple ratios of the exam
ples shown should prove most useful in practice.

Arithmetic implementation of the modulation and
demodulation function imposes no constraint on the
number of distinct modulation values, cos k eo. Suc
cessive values may be generated arithmetically using
some equivalent of the following algorithm:

sinkeo = cos(k - l)eo sinOo + sin(k - 1)00 coseo

coskeo = cos(k - 1)00 coseo - sin(k - l)eo sineo

Only the initial values cos 00 and sin eo are required to
start. If eo is some rational fraction of 211"', the sequence
will be repeating; otherwise, not. In this case any de
sired modulation frequency (wo) may be realized.

Digital Frequency Modulation 279

Bandwidth packing variations

While roughly equal bandwidths were assumed for
the combined signals of the system described, the
fundamental constraint is that the sum of, signal
bandwidths plus guard bands must be less than the
sampling frequency. As usual with FDM systems,
both upper and lower sidebands for each signal must
be included in this consideration. Choice of a suitable
modulation frequency then depends upon the place
ment of each signal band within the sampling band
width. Clearly, many variations of center frequencies
and bandwidth are feasible and useful.

Variations in digital system

A general purpose digital computer can perform all
operations required for modulating, summing, demodu
lating, and filtering. Where such a computer is already
employed in the data system for switching, comparison,
calibration, and control, the additional functions
described here become particularly attractive. Stan
dard programming practices can be used to perform
the essential functions described here.

Alternatively, for the system example the arith
metjc operations required are quite simple. Multi
plications of Y2 and -1 are readily realized by right
shift and sign change operations, respectively. A special
purpose digital computer with few storage registers
and capability for "right shift," "add," "sign change,"
and conventional register transfers, will provide the
required functions.

CONCLUSION

The digital frequency modulation technique described
herein permits combination of several signals into a
single signal having a sampled bandwidth equal to
the sum of the original signal bandwidths. Utilization
of this technique to reduce the penalties of oversam
pled telemetry channels appears particularly attractive.

THE ALOHA SYSTEM-Another alternative for computer
communications*

by NORMAN ABRAMSON

University of Hawaii
Honolulu, Hawaii

INTRODUCTION

In September 1968 the Uhiversity of Hawaii began
work on a research program to investigate the use of
radio communications for computer-computer and
console-computer links. In this report we describe a
remote-access computer system-THE ALOHA SyS
TEM -under development as part of that research
program! and discuss some advantages of radio com
munications over conventional wire communications
for interactive users of a large computer system. Al
though THE ALOHA SYSTEM research program is
composed of a large number of research projects, in
this report we shall be concerned primarily with a
novel form of random-access radio communications
developed for use within THE ALOHA SYSTEM.

The University of Hawaii is composed of a main
campus in Manoa Valley near Honolulu, a four year
college in Hilo, Hawaii and five two year community
colleges on the islands of Oahu, Kauai, Maui and
Hawaii. In addition, the University operates a number
of research institutes with operating units distributed
throughout the state within a radius of 200 miles from
Honolulu. The computing center on the main campus
operates an IBM 360/65 with a 750 K byte core memory
and several of the other University units operate smaller
machines. A time-sharing system UHTSS/2, written
in XPL and developed as a joint project of the Univer
sity Computer Center and THE ALOHA SYSTEM
under the direction of W. W. Peterson is now operating.
THE ALOHA SYSTEM plans to link interactive com
puter users and remote-access input-output devices
away from the main campus to the central computer
via UHF radio communication channels.

* THE ALOHA SYSTEM is supported by the Office of Aero
space Research (SRMA) under Contract Number F44620-69-C-
0030, a Project THEMIS award.

281

WIRE COMMUNICATIONS AND RADIO
COMMUNICATIONS FOR COMPUTERS

At the present time conventional methods of remote
access to a large information processing system are
limited to wire communications-either leased lines or
dial-up telephone connections. In some situations these
alternatives provide adequate capabilities for the de
signer of a computer-communication system. In other
situations however the limitations imposed by wire
communications restrict the usefulness of remote access
computing.2 The goal of THE ALOHA SYSTEM is to
provide another alternative for the system designer
and to determine those situations where radio com
munications are preferable to conventional wire
communications.

The reasons for widespread use of wire communica
tions in present day computer-communication systems
are not hard to see. Where dial-up telephones and leased
lines are available they can provide inexpensive and
moderately reliable communications using an existing
and well developed technology.3,4 For short distances
the expense of wire communications for most applica
tions is not great.

Nevertheless there are a number of characteristics
of wire communications which can serve as drawbacks
in the transmission of binary data. The connect time
for dial-up lines may be too long for some applications;
data rates on such lines are fixed and limited. Leased
lines may sometimes be obtained at a variety of data
rates, but at a premium cost. For communication links
over large distances (say 100 miles) the cost of com
munication for an interactive user on an alphanumeric
console can easily exceed the cost of computation. 5

Finally we note that in many parts of the world a
reliable high quality wire communication network is
not available and the use of radio communications for
data transmission is the only alternative.

There are of course some fundamental differences

282 Fall Joint Computer Conference, 1970

between the data transmitted in an interactive time
shared computer system and the voice signals for which
the telephone system is designed. 6 First among these
differences is the burst nature of the communication
from a user console to the computer and back. The
typical 110 baud console may be used at an average
data rate of from 1 to 10 baud over a dial-up or leased
line capable of transmitting at a rate of from 2400 to
9600 baud. Data transmitted in a time-shared com
puter system comes in a sequence of bursts with ex
tremely long periods of silence between the bursts. If
several interactive consoles can be placed in close
proximity to each other, multiplexing and data con
centration may alleviate this difficulty to some extent.
When efficient data concentration is not feasible how
ever the user of an alphanumeric console connected
by a leased line may find his major costs arising from
communication rather than computation, while the
communication system used is operated at less than
1 percent of its capacity.

Another fundamental difference between the require
ments of data communications for time-shared systems
and voice communications is the asymmetric nature
of the communications required for the user of inter
active alphanumeric consoles. Statistical analyses of
existing systems indicate that the average amount of
data transmitted from the central system to the user
may be as much as an order of magnitude greater than
the amount transmitted from the user to the central
system. 6 For wire communications it is usua]]y not
possible to arrange for different capacity channels in
the two directions so that this asymmetry is a further
factor in the inefficient use of the wire communication
channel.

The reliability requirements of data communications
constitute another difference between data communica
tion for computers and voice communication. In addi
tion to errors in binary data caused by r~ndom and
burst noise, the dial-up channel can produce connection
problems-e.g., busy signals, wrong numbers and dis
connects. Meaningful statistics on both of these prob
lems are difficult to obtain and vary from location to
location, but there is little doubt that in many loca
tions the reliability of wire communications is well be
low that of the remainder of the computer-communica
tion system. Furthermore, ~ince wire communications
are usually obtained from the common carriers this
portion of the overall computer-communication system
is the only portion not under direct control of the system
designer.

THE ALOHA SYSTEM

The central computer of THE ALOHA SYSTEM
(an IBM 360/65) is linked to the radio communication

CENTRAL

COMPUTER

IBM 360165

TRANSMIT

DATA

DATA

MODEM

Figure I-THE ALOHA SYSTEM

~
~

~
~

channel via a small interface computer (Figure 1).
Much of the design of this multiplexor is based on the
design of the Interface Message Processors (IMP's)
used in the ARP A computer net.4, 7 The result is a
Hawaiian version of the IMP (taking into account the
use of radio communications and other differences)
which has been dubbed the MENEHUNE (a legendary
Hawaiian elf). The HP 2115A computer has been
selected for use as the MENEHUNE. It has a 16-bit
word size, a cycle time of 2 microseconds and an 8K
word core storage capacity. Although THE ALOHA
SYSTEM will also be linked to remote-access input
output devices and small satellite computers through
the MENEHUNE, in· this paper we shall be concerned
with a random access method of multiplexing a large
number of low data rate consoles into the MENEHUNE
through a single radio communication channel.

THE ALOHA SYSTEM has been assigned two 100
KHZ channels at 407.350 MHZ and 413.475 MHZ.
One of these channels has been assigned for data from
the MENEHUNE to the remote consoles and the
other for data from the consoles to the MENEHUNE.
Each of these channels will operate at a rate of 24,000
baud. The communication channel from the MENE
HUNE to the consoles provides no problems. Since
the transmitter can be controlled and buffering per
formed by the MENEHUNE at the Computer Center,
messages from the different consoles can be ordered in a
queue according to any given priority scheme and
transmitted sequentially.

Messages from the remote consoles to the MENE
HUNE however are not capable of being multiplexed
in such a direct manner. If standard orthogonal multi
plexing techniques (such as frequency or time multi
plexing) are employed we must divide the channel
from the consoles to the MENEHUNE into a large
number of low speed channels and assign one to each
console, whether it is active or not. Because of the fact
that at any given time only a fraction of the total
number of consoles in the system will be active and
because of the burst nature of the data from the con-

soles such a scheme will lead to the same sort of in
efficiencies found in a wire communication system.
This problem may be partly alleviated by a system of
central control and channel assignment (such as in a
telephone switching net) or by a variety of polling
techniques. Any of these methods will tend to make
the communication equipment at the consoles more
complex and will not solve the most important problem
of the communication inefficiency caused by the burst
nature of the data from an active console. Since we
expect to have many remote consoles it is important
to minimize the complexity of the communication
equipment at each console. In the next section we
describe a method of random access communications
which allows each console in THE ALOHA SYSTEM
to use a common high speed data channel without the
necessity of central control or synchronization.

Information to and from the MENEHUNE in THE
ALOHA SYSTEM is transmitted in the form of
"packets," where each packet corresponds to a single
message in the system.8 Packets will have a fixed length
of 80 8-bit characters plus 32 identification and
control bits and 32 parity bits; thus each packet will
consist of 704 bits and will last for 29 milliseconds at a
data rate of 24,000 baud.

The parity bits in each packet will be used for a
cyclic error detecting code. 9 Thus if we assume all
error patterns are equally likely the probability that a
given error pattern will not be detected by the code is10

2-32 =10-9•

Since error detection is a trivial operation to implement, 10

the use of such a code is consistent with the require- '

unr I

...,. 2

user "

sum

rtlTIt
In n

~ n I
· I • • · :

o Om
~ · • :

n

o

1000 orin I fA 0 0
Interference t t ~ time --+

repetitions ~

Figure 2-ALOHA communication multiplexing

THE ALOHA SYSTEM 283

ment for simple' communication equipment at the con
soles. The possibility of using the same code for error
correction at the MENEHUNE will be considered for a
later version of THE ALOHA SYSTEM.

The random access method employed by THE
ALOHA SYSTEM is based on the use of this error
detecting code. Each user at a console transmits packets
to the MENEHUNE over the same high data rate
channel in a completely unsynchronized (from one
user to another) manner. If and only if a packet is re
ceived without error it is acknowledged by the MENE
HUNE. After transmitting a packet the transmitting
console waits a given amount of time for an acknowl
edgment; if none is received the packet is retransmitted.
This process is repeated until a successful transmission
and acknowledgment occurs or until the process is
terminated by the user's console.

A transmitted packet can be received incorrectly
because of two different types of errors; (1) random
noise errors and (2) errors caused by interference with
a packet transmitted by another console. The first
type of error is not expected to be a serious problem.
The second type of error, that caused by interference,
will be of importance only when a large number of
users are trying to use the channel at the same time.
Interference errors will ,limit the number of users and
the amount of data which can be transmitted over this
random access channel.

In Figure 2 we indicate a sequence of packets as
transmitted by k active consoles in the ALOHA random
access communication system.

We define T as the duration of a packet. In THE
ALOHA SYSTEM T will be equal to about 34 milli
seconds; of this total 29 milliseconds will be needed for
transmission of the 704 bits and the remainder for re
ceiver synchronization. Note the overlap of two packets
from different consoles in Figure 2. For analysis pur
poses we make the pessimistic assumption that when
an overlap occurs neither packet is received without
error and both packets are therefore retransmitted. *
Clearly as the number of active consoles increases the
number of interferences and hence the number of re
transmissions increases until the channel clogs up with
repeated packets.l1 In the next section we compute the
average number of active consoles which may be sup
ported by the transmission scheme described above.

Note how the random access communication scheme
of THE ALOHA SYSTEM takes advantage of the
nature of the radio communication channels as opposed
to wire communications. Using 'the radio channel as
we have described each user may access the same

* In order that the retransmitted packets not continue to inter
fere with each other we must make sure the retransmission delays
in the two consoles are different.

284 Fall Joint Computer Conference, 1970

channel even though the users are geographically dis
persed. The random access communication method
used in THE ALOHA SYSTEM may thus be thought
of as a form of data concentration for use with geo
graphically scattered users.

RANDOM ACCESS RADIO COMMUNICATIONS

We may define a random point process for each of
the k active users by focusing our attention on the
starting times of the packets sent by each user. We
shall find it useful to make a distinction between those
packets transmitting a given message from a console
for the first time and those packets transmitted as
repetitions of a message. We shall refer to packets of
the first type as message packets and to the second type
as repetitions. Let X be the average rate of occurrence
of message packets from a single active user and assume
this rate is identical from user to user. Then the random
point process consisting of the starting times of message
packets from all the active users has an average rate
of occurrence of

r=kX

where r is the average number of message packets per
unit time from the k active users. Let T be the duration
of each packet. Then if we were able to pack the mes
sages into the available channel space perfectly with
absolutely no space between messages we would have

rT=1.

Accordingly we refer to rT as the channel utilization.
Note that the channel utilization is proportional to k,
the number of active users. Our objective in this section
is to determine the maximum value of the channel
utilization, and thus the maximum value of k, which
this random access data communication channel can
support.

Define R as the average number of message packets
plus retransmissions per unit time from the k active
users. Then if there are any retransmissions we must
have R>r. We define RT as the channel traffic since this
quantity represents the average number of message
packets plus retransmissions per uni ttime multiplied
by the duration of each packet or retransmission. In
this section we shall calculate RT as a function of the
channel utilization, rT.

Now assume the interarrival times of the point
process defined by the start times of all the message
packets plus retransmissions are independent and expo
nential. This assumption, of course, is only an approxi
mation to the true arrival time distribution. Indeed,

because of the retransmissions, it is strictly speaking
not even mathematically consistent. If the retrans
mission delay is large compared to T, however, and the
number of retransmissions is not too large this assump
tion will be reasonably close to the true distribution.
Moreover, computer simulations of this channel indi
cate that the final results are not sensitive to this
distribution. Under the exponential assumption the
probability that there will be no events (starts of mes
sage packets or retransmissions) in a time interval T
is exp(-RT).

Using this assumption we can calculate the prob
ability that a given message packet or retransmission
will need to be retransmitted because of interference
with another message packet or retransmission. The
first packet will overlap with another packet if there
exists at least one other start point T or less seconds
before or T or less seconds after the start of the given
packet. Hence the probability that a given message
packet or retransmission will be repeated is

[1- exp(-2RT)]. (1)

Finally we use (1) to relate R, the average number
of message packets plus retransmissions per unit time
to r, the average number of message packets per unit
time. Using (1) the average number of retransmissions
per unit time is given by

R[1- exp(-2RT)]

so that we have

R=r+R[1- exp(-2RT)]
or

(2)

Equation (2) is the relationship we seek between the
channel utilization rT and the channel traffic RT. In
Figure 3 we plot RT versus rT.

chama' .50 --------------- ----------- --------------
trafflc

RT .40

.30

.20

.10

.10

channal utilization r T

~'5 .186

Figure 3-Channel utilization vs channel traffic

Note from Figure 3 that the channel utilization
reaches a maximum value of 1/2e=0.186. For this
value of rr the channel traffic is equal to 0.5. The
traffic on the channel becomes unstable at rr = 1/2e
and the average number of retransmissions becomes
unbounded. Thus we may speak of this value of the
channel utilization as the capacity of this random access
data channel. Because of the random access feature
the channel capacity is reduced to roughly one sixth
of its value if we were able to fill the channel with a
continuous stream of uninterrupted data.

For THE ALOHA SYSTEM we may use this result
to calculate the maximum number of interactive users
the system can support.

Setting

. we solve for the maximum number of active users

A conservative estimate of A would be 1/60 (seconds)-l,
corresponding to each active user sending a message
packet at an average rate of one every 60 seconds.
With r equal to 34 milliseconds we get

kmax = 324. (3)

Note that this value includes only the number of
active users who can use the communication channel
simultaneously. In contrast to usual frequency or time
multiplexing methods while a user is not active he con
sumes no channel capacity so that the total number of
users of the system can be considerably greater than
indicated by (3).

The analysis of the operation ~f THE ALOHA
SYSTEM random access scheme provided above has
been checked by two separate simulations of the sys
tem. 12,13 Agreement with the analysis is excellent for
values of the channel utilization less than 0.15. For
larger values the system tends to become unstable as
one would expect from Figure 3.

THE ALOHA SYSTEM 285

REFERENCES
1 N ABRAMSON et al

1969 annual report THE AWHA SYSTEM
University of Hawaii Honolulu Hawaii January 1970

2 M M GOLD LL SELWYN
Real time computer communications and the public interest
Proceedings of the Fall Joint Computer Conference
pp 1473-1478 AFIPS Press 1968

3 R M FANO
The MAC system: The computer utility approach
IEEE Spectrum Vol 2 No 1 January 1965

4 L G ROBERTS
Multiple computer networks and computer communication
ARPA report Washington DC June 1967

5 J G KEMENY T E KURTZ
Dartmouth time-sharing
Science Vol 162 No 3850 p 223 October 1968

6 P E JACKSON C D STUBBS
A study of multiaccess computer communications
Proceedings of the Spring Joint Computer Conference
pp 491-504 AFIPS Press 1969

7 Initial design for interface message processors for the ARPA
computer network
Report No 1763 Bolt Beranek and Newman Inc January
1969

8 R BINDER
Multiplexing in THE ALOHA SYSTEM:
MENEHUNE-KEIKI design considerations
ALOHA SYSTEM Technical Report B69-3 University of
Hawaii Honolulu Hawaii November 1969

9 W W PETERSON E J WELDON JR
Error-correcting codes-Second edition
John Wiley & Sons New York New York 1970

10 D T BROWN W W PETERSON
Cyclic codes for error detection
Proceedings IRE Vol 49 pp 228-235 1961

11 H H J LIAO
Random access discrete address multiplexing communications
for THE ALOHA SYSTEM
ALOHA SYSTEM Technical Note 69-8 University of
Hawaii Honolulu Hawaii August 1969

12 W H BORTELS
Simulation of interference of packets in THE ALOHA
SYSTEM
ALOHA SYSTEM Technical Report B70-2 University of
Hawaii Honolulu Hawaii March 1970

13 P TRIPATHI
Simulation of a random access discrete address communication
system
ALOHA SYSTEM Technical Note 70-1 University of
Hawaii Honolulu Hawaii April 1970

Computer-aided system design*

by E. DA YID CROCKETT, DA YID H. COPP, J. W. FRANDEEN, and CLIFFORD A. IS BERG

Computer Synectics, Incorporated
Santa Clara, California

PETER BRYANT and W. E. DICKINSON

IBM ASDD Laboratory
Los Gatos, California

and

lVIICHAEL R. PAIGE

University of Illinois
Urbana, Illinois

INTRODUCTION

This paper describes the Computer-Aided System
Design (CASD) system, a proposed collection of com
puter programs to aid in the design of computers and
similar devices. CASD is a unified system for design,
encompassing high-level description of digital devices,
simulation of the device functions, automatic trans
lation of the description to detailed hardware (or
other) specifications, and complete record-keeping
support. The entire system may be on-line, and most
day-to-day use of the system would be in conversa
tional mode.

Typically, the design of digital devices requires a
long effort by several groups of people working on dif
ferent aspects of the problem. The CASD system would
make a central collection of all the design information
available through terminals to anyone working on
the job. With conversational access to a central file,
many alternative designs can be quickly evaluated,
proven standard design modules can be selected, and
the latest version of the design can be automatically
documented. The designer works only with high-level
descriptions, which reduce the number of trivial errors
and ensure the use of standard design techniques.

From October, 1968, through December, 1969,
the authors participated in a study at the IBM Ad
vanced Systems Development Laboratory in Los

* This work was performed at the IBM Advanced Systems De
velopment Laboratory, Los Gatos, California.

287

Gatos, California, which defined the proposed CASD
system and looked into the problems of building the
various component programs. Details of several
prototype programs which were implemented are
given elsewhere.1 There are no present plans to con
tinue work in this area. This paper is essentially a
feasibility report, describing the overall system struc
ture and the reasons for choosing it. It includes de
scriptions of the data forms in the system and of the
component programs, discussions of the overall ap
proach, and an example of a device described in the
CASD design language.

THE SYSTEM IN GENERAL

The (proposed) Computer-Aided System Design
(CASD) system is a collection of programs to aid the
computer designer in his daily work, and to coordi
nate record-keeping and documentation. It offers the
designer five major facilities:

H ig h-level description

The designer describes his device in a high-level,
functional language resembling PL/I, but tailored to
his special needs. This is the only description he enters
into the system, and the one to which all subsequent
modifications, etc., refer.

288 Fall Joint Computer Conference, 1970

High-level simulation

An interpretive simulator allows the designer to
check out his design at a functional level, before it is
committed to hardware. The simulation is interactive,
allowing the designer to "watch" his design work and
evaluate precisely design alternatives.

Translation to logic specifications

The high-level design, after testing by simulation,
is automatically translated to detailed logic specifica
tions. These specifications may take a variety of forms,
such as (1) input to conventional Design Automation
(DA) systems, or (2) microcode for an existing machine.

On-line, conversational updating

The designer makes design changes and does his
general day-to-day work at a terminal, in a conver
sational mode. Batch facilities are also available.

Complete file maintenance and documentation

Extensive record-keeping is provided to keep track
of different machines, different designs of machines,
different versions of designs, results of simulation runs,
and so forth. High-level documentation of designs
(analogous to that produced at lower levels by today's

KEY

..-.-.... = DATA FLOW

+---+ = CONTROL FLOW

Figure I-The CASD system

design automation systems) is a natural by-product
of the CASD organization.

The CASD system can thus be viewed as an extension
to higher levels of current systems for design, in roughly
the same way that compilers are functional extensions
of assemblers to higher levels.

The general organization of the system is pictured
in Figure 1. The designer describes his device in a
source design language, which is translated by a com
piler-like program called the encoder to an internal
form. The internal form is the input both to the high
level simulator (called the interpreter) and to a series of
translators (two are shown in Figure 1) which convert
it to the appropriate form of logic specifications. Dif
ferent series of translators give different kinds of final
output (e.g., one series for DA input, another series
for microcode). The entire system is on-line, operating
under control of the CASD monitor, which handles
communication to and from the terminals. The user
interface programs handle the direct "talking" to the
user and invoke the proper functional programs.

DATA FORMS IN THE CASDSYSTEM

Source design description

The CASD design language the designer uses is a
variant of PL/I, stripped of features not needed for
computer design and enriched with a few specialized
features for such work. PL/P and CASD's languageS
are described more fully elsewhere.

Procedures

The basic building block in a CASD description is
the procedure. A procedure consists of: (1) declarations
of the entities involved in the procedure, and (2) state
ments of what is to be done to these entities. A pro
cedure is written as a PROCEDURE statement, fol
lowed by the declarations and statements, followed
by a matching END statement, in the usual PLII
format:

PROC1: PROCEDURE;

declarations and statements

ENDPROCl;

defines a procedure whose name is PROC1.
A procedure represents some logical module of the

design, e.g., an adder. A complete design, in general,
would have many such procedures, some nested within

others. The adder procedure, for example, may con
tain a half-adder as a subprocedure.

Data iteJns

Each procedure operates on certain data items, such
as registers or terminals. These items are defined by
DECLARE statements, which have the general for
mat:

DECLARE name attribute, attribute, ... ;

The name is used to refer to the item throughout
the description. The attributes describe the item in
more detail, and are of two types-logical and physical.
Logical attributes describe the function of the item
(it is bit storage, or a clock, say); physical attributes
describe the form the item is to take in hardware
(magnetic core, for example). Logical attributes in
fluence the encoding, interpreting, and translating
functions. Physical attributes, on the other hand, are
ignored by the interpreter, giving a truly functional
simulation.

Like any block-structured language, the CASD
language has rules about local and global variables,
and scope of names. These have been taken directly
from the corresponding rules for PL/I.

Statements

The basic unit for describing what is to be done to
the data items is the expression, defined as in PL/I
but with some added Boolean operators, such as
exclusive or (jIJ), and some modifications to the bit
string arithmetic.

The basic statement types for describing actions
on data items are the assignment, WAIT, CALL, GO
TO, IF, DO, and RETURN statements. These are
basically as they are in PL/I, except as described below.

1. The assignment statement is extended to allow
concatenated items to appear on the left-hand
side. Thus:

XREG II YREG:=ZREG;

where XREG and YREG are 16 bits each and
ZREG is 32 bits, means to put the high 16 bits
of ZREG into XREG and the low 16 bits into
YREG. In combination with the SUBSTR
built-in function,4 this assignment statement
offers convenient ways to describe shifting and
similar operations. The assignment symbol itself
is the ALGOL" : = " rather than" = " as in PL/I.

Computer-Aided System Design 289

2. The WAIT statement takes the form

WAIT(expression) ;

It thus differs from PL/I in that it allows one
to specify a wait until an arbitrary expression is
satisfied. This is useful for synchronizing tasks
(see below).

3. The GO TO statement includes the facility of
going to a label variable, and the label variable
may be subscripted. This is useful for describing
such operations as op-code decoding-for ex
ample: GO TO ROUTINE (OP).

Sequencing

The differences in motivation between CASD's
language and PL/I are most evident in matters of
sequence control and parallelism. PL/I, as a program
ming language, does not emphasize the use of paral
lelism. Programs are described and executed sequen
tially, which is not adequate for a design language.

The basic unit of work in CASD is the node. A node
is a collection of actions which can be performed at
the same time. For example, XREG: = YREG; and
P:=Q; can be performed together if all t4e items in
volved are distinct. On the other hand, XREG: =
YREG; ZREG:=XREG; cannot be performed (as
written) at the same time, since the result of the first
written operation is needed to do the second. The
basic CASD rules are:

1. Operations are written as sequential statements.
2. However these operations are performed (se

quentially or in parallel), the end results will
be the same as the results of performing them
sequentially.

3. Sequential statements will be combined into a
single node (considered as being done in parallel)
whenever this does not violate rule 2. That is,
CASt> assumes you mean parallel unless there's
some "logical conflict."5

Of course, the designer may want to override rules
2 and 3. Another rule gives him one way to do this:

4. A label1ed statement always begins a new node.
Another way is by specifying parallelism ex
plicitly. If the DO statement is written as
DO CONCURRENTLY, all statements within
the DO will be executed in parallel. Finally,
the TASK option of the CALL statement makes
it possible to set several tasks operating at once.

290 Fall Joint Computer Conference, 1970

Preprocessor facilities

Some of the PL/I preprocessor facilities have been
retained. These include the iterative %DO, which is
particularly useful in describing repetitive operations,
and the preprocessor assignment statement, useful
for specifying word lengths, etc.

No defaults

Unlike PL/I, the CASD language follows the prin
ciple that nothing should be hidden from the designer.
In particular, it has no default attributes, and every
thing must be declared. Similarly, it does not allow
subscripted subscripts, subscripted parameters passed
to subroutines, or anything else that might force the
encoder to generate temporary registers not specified
by the designer. Such restrictions might be relaxed in
a later version, but we feel that until we have more
experience with such systems, we had better hide as
little as possible.

Internal form

Before the source description can be conveniently
manipulated by other programs, it must be translated
to an internal form. This form is designed to be con
venient for both the translator programs and the in
terpreter. Compromises are necessary, of course
a computer program might be the most convenient
form for simulatjon, but would be of no use at all to
the translator.

The CASD internal form resembles the tabular
structure used for intermediate results in compilers
for programming languages. It consists of four kinds
of tables: descriptors, expressions, statements and
nodes.

The descriptor table records the nature of each item
(taken from its DECLARE statement). The entries
are organized according to the block structure of the
source description and the scope-of-names rules of
the language.

The expression table contains reverse Polish forms
of all expressions in the source description, with names
replaced by pointers to descriptors. Each expression
appears only onee in the expression table, although
it may appear often in the source description. In effect,
the expression table lists the combinational logic the
translator must generate.

The statement table consists of one entry for each
statement in the source description, with expressions

replaced by pointers to entries in the expression table,
and a coded format for the rest of the statement
(statement type plus parameters).

The node table tells which statements in .the state
ment table belong in the same node, and the order in
which various nodes should be executed.

The internal form has thus extracted three things
from the source description-data items, actions to
be taken on those items, and the timing of the ac
tions-and recorded them in three separate tables
the descriptor, the statement, and the node tables.
The expression table is added for convenience.

Simulation results

The high-level simulation involves three forms of
data: values of the variables, control information, and
run statistics.

Before a simulation run begins, the variables of the
source design description (corresponding to registers,
etc.) must be assigned initial values. One way to do
this is with the INITIAL attribute in the DECLARE
statement) which makes initialization of the variables
at execution time a fundamental part of the description.
Sometimes, though, the designer may want to test
a special case, and simulate his design starting from
some special set of jnitial values. CASD permits him
to store one or more sets of initial values in his files;
and for a given simulation run, to specify the set of
initial values to be used. In this way, he can augment
or override the INITIAL attribute.

At the end of a simulation run, the final values of
the variables may be saved and used for print-outs,
statistics gathering, or as initial values for the next
simulation run. That is, a simulation run may continue
where the last one left off.

The high-level, interpretive simulation in CASD
is perhaps most useful because of its control options.
As an interpreter, operating from a static, tabular
description of the device, the CASD simulator can
give the user unusually complete control over the run
ning of the simulation. Through a terminal, he can at
any time tell the system which variables to trace, how
many nodes to interpret at a time, when to stop the
simulation (e.g., stop if XREG ever gets bigger than 4
and display the results), and so forth. These control
conditions may be saved just as the data values may
be, and a simulation run may use either old or new
control conditions.

Permanent records of a simulation also include sum
maries of run statistics (the number of subprocedure
calls, number of waits, etc.).

Translator output

Different translators produce different kinds of out
put. Assembly-language level listings of mircocode
might be needed for some lower-level systems, the
coded equivalent of ALD sheets for others. Typically,
output would include error and warning messages.

File structure

In an on-line, conversational system, it is particu
larly important that the working data be easily ac··
cessible to the user and the control language seem
natural to him. CASD attempts to facilitate user con
trol in two ways: through the user interface programs,
and the structure of the data files.

The basic organizational unit in the CASD files
is called the design. A design consists of all the data
pertinent to the development of some given device.
A design may have many versions, representing cur
rent alternatives or successive revisions. Each version
has some or all of the basic forms of data associated
with it: source description, internal form, simulation
results, translator output, and so on.

Two catalogs, one for designs and one for versions,
are the basic access points to CASD data. A typical
entry in the design catalog (a design record) contains
a list of pointers to the version descriptors for each
version of every design in the system. The version
descriptor contains pointers to each of the various
forms of data for that version (source description, ...)
plus control information telling which set of translators
has been applied to the design in this version, and so on.

These descriptors give the user interface programs
efficient access to needed data. For example, if the
user asks to translate a given design, the interface
finds the version descriptor, and can then tell if the
design has been encoded, and if not, inform the user
and request the input parameters for encoding.

PROGRAMS IN THE CASD SYSTEM

CASD monitor and support programs

All the CASD component programs are under con
trol of a monitor program, which provides the basic
services for communicating with terminals and allo
cates system resources. In the prototype version 6 the
environment was OS/360 1VIVT, and it was convenient
to set up the monitor as a single job, attaching one
subtask for each CASD terminal. The CASD files were
all in one large data set, and access to them was con
trolled by service routines in the monitor. The moni-

Computer-Aided System Design 291

tor also controlled the allocation of CPU time to various
CASD terminals within the overall CASD job. This
approach makes it easier to manage the various in
terrelated data forms within the versions, and would
probably work in environments other than OS/360
as well.

Besides the monitor and the data access routines,
the support programs include a text-editing routine
to use in editing the source description.

User interface programs

CASD system control is not specified in some general
language. Rather, each CASD function has its own
interface program, which has the complete facilities
of the system available to it.

The design records and version descriptors give
precisely the information needed by user interface
programs. A typical user interface program might be
one for encoding and simulating a source design descrip
tion already in the CASD files. The version descriptor
shows, for example, whether or not the source descrip
tion has already been encoded. The interface may then
give the user a message like "Last week you ran this
design for 400 nodes. Should the results of that run
be used as initial values for this run?" The point is
that the conversation is natural to the task at hand.
The tasks under consideration are well defined, and
each natural combination of them has its own interface
program.

Encoder

Since the CASD encoder is roughly the first haH
of a compiler, it may be built along pretty standard
lines. Care must be taken only in providing some sort
of conversational compilation facility. Conversational
interaction is an important part of the CASD approach
to design, and some sort of line-by-line feedback is
required. Similarly, since modification is so common
in design work, recompilation must be as efficient as
possible. Incremental compilation-translating each
source statement as far as possible on input, indepen
dently of other statements-is one answer. Then only
those statements which have changed since the last
compilation need be recompiled. The approach used
in the CASD prototype is described elsewhere. 7,8

Interpreter

The basic unit that the interpreter simulates is the
node table, the various statements which comprise

292 Fall Joint Computer Conference, 1970

the node are identified. These statments are then "exe
cuted" in two steps: First, all the expressions in the
statements are evaluated; second, the results are stored.
By this two-step procedure, the parallelism inherent
in the definition of the node is correctly simulated.

The interpreter steps from node to node, as they
appear in the node table, with several exceptions. One
is the conditional branch, where some (usually just one)
statment within the node must be evaluated or exe
cuted to determine what the next node should be.
Another exception is when wait, halt, or trace con
ditions have been met. Such "values" as "stop if this
item is referenced" may be stored with the item's
descriptor in the internal form. If this kind of condi
tion is encountered in a node, the interpreter takes
the action indicated before going to the next node.
Control conditions like these may be altered dynam
ically by the user, who may, when a "halt" condition
is satisfied, not only observe the variables and their
values, but alter the control conditions.

Translators

The translator used in the prototype system converts
the internal form to a list structure of the ma
chine logic. Techniques for translating from this to
DA input or actual circuits for any given circuit
family are straightforward. The elements of the list
structure are: hash cells, part cells, sub expression cells,
assignment cells, action cells, condition cells, and clock
cells. Hash (as in "hash code1

') cells contain index
entries and cross-references to the rest of the cells.
Part cells contain all the information declared about
each item; subexpression cells indicate how the various
items are to be combined to form circuits. Assignment
cells tell what data is to be transferred to where. Action
cells and condition cells are lists of which actions (e.g.,
assignments) are to be taken and under which con
ditions. Clock cells contain labels and other informa
tion about sequencing. Most of the information in
these cells comes fairly directly from the appropriate
tables in the internal form, but the translator links the
cells in a way that corresponds to the hardware that
must be generated. For example, all assignments to
a given register are linked together, and this might
correspond (for a particular circuit family) to a single
storage bus.

Essentially, the translator reduces the high-level
description to a form which currently known pro
cedures9 ,10,l1,12 can handle, by breaking up the infor
mation in the internal form and linking it up again
in several different ways. Details of the various linking

schemes and how they relate to the source description
are given elsewhere.13

Other programs

The general structure of the CASD system is flexible
enough to permit addition of other programs. A few
possibilities have been considered.

One obvious drawback of interpretive simulation
is the overhead. Simulation by compilation to ma
chine code would be perhaps 50 or 100 times as fast.
This is a significant difference on long runs, after the
design is basically checked out (e.g., runs to get firm
performance figures).

A generalized assembler program to prepare program
input to the interpreter would allow larger quantities
of software to be tested by "running" it on the ma
chine being simulated.

Cost-estimating programs operating directly from
the internal form would give quick-and-dirty estimates
without going through the entire hardware translation
process. Translation from the internal form to micro
code is another possible extension.

COMMENTS

History

Others-most notably Gorman and Anderson,14
Schorr,1s Franke,16 Duley and Dietmeyer,17,18 Fried
man and Yang,20 and Metze and Seshu21-have de
scribed languages and systems for logic translation or
simulation, and occasionally for both. Typically, in
logic translation systems, the design is described in a
special-purpose procedural language similar to pro
gramming languages. The description is usually at
a lower level than in CASD and is translated to Bool
ean equations, or some similar form, by programs
written for the purpose.

In most simulation systems, on the other hand,
designs are described in some high-level, general
purpose language-either a general simulation language,
or an existing programming language augmented with
timing subroutines and the like. The description is
translated by an existing compiler to a program which
performs the simulation.

There is good reason for this difference. Until re
cently, no existing programming or simulation language
was really adequate to describe logic, and no general
purpose simulation system was so deficient as to justify
creating a special system for simulating computer

designs. But the advantages of integrating logic trans
lation and simulation into the same system outweigh
these factors, in our judgment.

Integration of the two functions is achieved in CASD
by translating a single, high-level, special-purpose
language to a common internal form, providing input
to both logic translation programs and an interpretive
simulator. The interpretive simulation is also a key
point in making the system on-line.

Another innovation in CASD is the way in which
descriptions incorporate timing. Timing is included
rather explicitly in typical existing languages. At
lower levels, every statement or action is accompanied
by an indication of when it is to take place (at which
clock pulse, say). At higher levels, actions are simply
recorded sequentially, with some indication of how
long they take and what resources they require. (Simu
lators operating from these descriptions usually con
struct "future events" lists, ordered by increasing
time of occurrence, and simulate whichever event is
on top of the list at the moment.)

Timing in the CASD descriptions is based on the
use of asynchronous design as proposed by Metze
and Seshu. 22 Multiple tasks are synchronized by using
shared variables and referring to them with WAIT
statements. This approach has several advantages.
Asynchronous design at the functional level, as of
fered by the CASD system, allows reasonable hard
ware independence, since synchronizing conditions
refer to elements of the functional design rather than
to its physical implementation. (An -asychronous
description may, of course, be implemented in either
synchronous or asynchronous logic circuits.) Perhaps
most important, especially for an on-line system, is
that the PL/I multitasking scheme, from which the
CASD timing approach is derived, and techniques
like DO CONCURRENTLY make it possible to de
scribe timing relationships in a quick and natural
manner.

Advantages of an on-line system

Conventional design work is slowed by turn-around
time (in the model shop as well as in the computation
center) and an elaborate hierarchy of system architects,
engineers, and technicians. One result is that few al
ternatives are considered in designing a system, and
fewer still are evaluated in any systematic way. The
CASD system bypasses these limitations by putting
the designer directly in touch with a design system
by a terminal, having the system take over many of
the bookkeeping functions of design, and giving him

Computer-Aided System Design 293

immediate feedback at each stage of the design process.
Immediate feedback is important in:

a. Encoding, where descriptions are entered line
by line, and syntax is checked immediately,
allowing immediate correction and modification.

b. Simulation, in which the designer may "con
verse" with the system as his design is simu
lated. He may change control conditions as the
simulation progresses, look at values of data
items, and so forth.

c. Selection of different translation procedures
based on the results of simulation, cost esti
mating programs, or other translations.

Except for (a), these could be done with a batch
system, of course, but they are much more effective
in an on-line environment. Suppose, for example, that
a design for a computer is stored in the system, and it
contains special hardware for floating point operations.
The designer wants to know just what difference it
would make if he eliminated this hardware and did all
floating point operations with programmed subroutines.
With the CASD text-editing programs, the designer
would remove the description of the hardware for
floating point, and change the floating point operation
code descriptions to trap these operations to a specified
location. He would re-encode the description and correct
any errors. By simulating and translating both this new
description and the old one, he would obtain precise
figures on the exact difference in hardware and running
time. An on-line system can reduce this complicated
maneuver to a one-day job.

Advantages of an integrated system

Most of the advantages of integrating all aspects
of design in a single system can be summed up in one
word: control. Consider how important it is that the
simulation model accurately reflect the hardware that
is being built. Under the CASD system, this is auto
matic: the design description is the simulation model.

A necessary part of the design process is low-level
checking of logic circuits both for logical correctness
and for race and hazard conditions. In CASD, the sys
tem always uses proven . methods. Besides reducing
the necessary tests, this controlled logic synthesis
ensures the use of standard techniques and building
blocks. Different optimality criteria can be used and
the results compared. For example, the different ef
fects of restricting the logic to one chip type, or allowing
more freedom, might be compared. Criteria such as
these are often more important than minimizing the

294 Fall Joint Computer Conference, 1970

total number of circuits; and under the CASD system,
the correct criteria can be enforecd.

A good design must be reliable and allow ready
diagnosis of problems that occur. The CASD controlled
synthesis ensures that the resulting logic is diagnosable.
Indeed, the required diagnostic tests can be produced
as an integral part of the translation process by at
least one method.23 It is easy to see how translators
could be made to produce either duplicated logic,
triple-modular-redundant logic, or unduplicated logic
(say) if the designer wants to compare their relative
costs.

Finally, the advantages of a unified file system, pro
viding documentation automatically, are fairly clear.
Accurate, consistent, up-to-date documentation may
be the most important single feature of the CASD
system.

EXAMPLE

This section contains an example of a computer
described in the CASD design language. The computer
and the way it is described have been chosen to illus
trate the features of the language, rather than for any
intrinsic merit. The computer is a simple binary ma
chine called SYSTEM/D. It contains 65,536 32~bit

words of memory and 16 general-purpose and index
registers called XREG(O) through XREG(15). XREG
(0) always contains all zeros. It may be stored, tested,
and shifted, but not altered.

The instructions of SYSTEMjO are one word (32
bits) long. The first 8 bits contain the operation code.
The next 8 bits contain two four-bit fields, the M (for
modifier) and X (for index register) specifications.
The last 16 bits are used for an address.

The following instructions are described in the fol
lowing CASD description:

ST M,X,ADDR

CLA M,X,ADDR

BC M,X,ADDR

Store the contents of XREG(M)
into memory location [ADDR+
contents of XREG(X)].
Load the contents of memory
location [ADDR+contents of
XREG(X)] into XREG(M).
M may not equal zero.
Branch to location [ADDR+
contents of XREG(X)] if and
only if the contents of XREG
(M) is zero. (Since XREG(O)
is always zero, BC 0, X,ADDR
is an unconditional branch.)

RR M,X,ADDR Rotate XREG(M) right [con
tents of XREG(X) + ADDR]
places. The number of places to
rotate is always assumed to be
modulo 32.

BAL M,X,ADDR Branch and Link to location
[ADDR+contents of XREG(X)]
storing the return address (=
next location) in the low-order
16 bits of XREG(M), setting the
high-order 16 bits of XREG(M)
to zero. M may not equal zero.

SIO M,X,ADDR Start an input-output operation
on device number [ADDR +
contents of XREG(X)]. The M
field specifies which input-out
put operation is to be performed.

Figure 2 shows the data flow the designer might
expect CASD to generate, after entering the functional
description given in Figures 3 through 7. (The order
of the figures is for illustration only. The designer need
have only a shadowy outline of the data flow in mind
at the time he prepares his functional description.)

Figures 3 through 7 are annotated to highlight in
teresting features of the CASD language. Also note
that there are a few places where the designer did
choose to dictate the data flow. For example, the only
link to the XREG's is constrained to be through the Y
register by specifying Y: = MSDAT A; XREG(M): =
Y; rather than just XREG(M):=MSDATA; . So,
the designer can exercise as much or as little direct
influence on the final data flow as he chooses.

ACKNOWLEDGMENTS

We wish to thank George T. Robinson and Dr. Eugene
E. Lindstrom for their guidance and advice.

REFERENCES

1 E D CROCKETT et al
Computer-aided system design
Advanced Systems Development Division IBM
Corporation Los Gatos California Technical Report
~ 16.198 1970

2 IBM System/360 PL/I reference manual
IBM Corporation White Plains New York Form C28-8201

3 CROCKETT Appendix A
4 IBM Corporation page 237
5 CROCKETT Appendix G
6 IBID Appendix H
7 IBID Appendices I, J, K

(16)

MEM (16)

(32)

(16) XREG

MAR t t]OLATCHIITRAPLATCH!

~
(32)

16

~
8 (AOB)

SYSTEM/O DATA FLOW

Figure 2-Flow of data in SYSTEM/O

SYSTEMO: PROCEllUlE CPTlCf'lS(HAIN);
DECLAAE
~ ___ -,(£:i~~nWli's;ao;aoiUl"'~TIQ'ct""""CO'UlJlTEiA-A-""f----.....-1QCis.16-bitstcngldlvicl.)

CP BIT(S),
M SIT(~) ,
X BIT(~),
IIDIR BIT 16)

G DeFINED Of' IMlIxIlAOOl,

,~ Of'ERATICf'l CODE ",
'" MJIliFIER FIELD ",
'" Itax REGISTER SPECIFICATlCf'l ,,/
I':. AL>DRESS PORTICf'l Ci' INSTRl.CTICf'l"/

'~ HAIN ST~ DATA REGISTER '"

'" RIGHT HALF "/

XREG(O:I5) BIT(32), '" u.cex REGISTERS 0 THWIJGH 15 "'

&0:65535) 8IT02>;)~--I"'-""",,"IIItU-jrtrtJ~lRlJRT"i ""JAIr-------I-G2~==~KJ
MAR 8IT(l6), I" HAIN i'EKlRY AOOIESS REGISTER ,,/

IY,
2 YL 8IT(l6),
2 YR 8IT(6),

IOLATCH BITO),

IOREG 8IT(6),
lOOP BIT(8),
TlW'LATCH SITO),
IPLLATCH BITO),

'" Y REGISTER ,,/
I" LEFT HALF "/
'" RIGHT HALF x/
'" CCf'jTROL LATCH BETWEEN EXECUTICf'l ,,/
'" In) I/O ROUTINES ,,/
I" USED TO tt:lLD OEVICE iU'8ER "/
'" USED TO tt:lLD 110 Of' CODE '"
/" USED TO SIGNAL I/O TRAP "/
'" INOICATES IPL BUTTCf'l DePRESSED '"

Phyolcolottr __

_OIIIittod.

Figure 3-CASD description of SYSTEM/O, page 1

GO TO START;

MISSING PROCEDURES:

/" START THE I/O LOOP GOING '"

'" SET XAEG(O) EQUAL TO ZERO "/
'" RESET IPL LATCH IM:" 0Ct-lf ~/

'" FETCH PW EXECUTE AN OPERATlCf'l "I

::~~,~.R~~ ~r.h!'~": tr.~'t.T~i~ ::mber
:, II?~~~!."='~~O;: = 1?:.~oWcH
: ~~o. When the operation in compl it sots TRAPLATCH

:';~~tC=tiV;~~~w~~r~;!.:{~=~~:;!Mo<
including (CARRYFLAGzOl') the carry on the result.

Figure 4-CASD description of SYSTEM/O, page 2

Computer-Aided System Design 295

'x NRW. OPERATICf'l PROCEDURE x, C 1
~~ PR=~0:255) LAllCL INITIAL(ST,CLA,BC,RR,BAt.--, ------~ ~~

SIO,(250)ILLEGAL); '" <PCOCE DeCODE TABLE ~/ _ _

EAIlOR: PROCEOIJIf;

/" INSTRl.CTICf'l FETCH ROUTINE ,,/
N GO TO TRAPROJTINE,

'" AIJIlRESS CALCULATION PROCEDURE xI

~~CX). ,::. GET It«)(VALlE =/
1I£T_~IJ(PLUS,NOCARRy,AOOR'Y~>-------------Il =ma.i_ of)
END EAIlOR, - _____ ..J_

Routi ILLEGAL. TRAPROUTINE
nt;Itgivent..

Figure 5-CASD description of SYSTEM/O, page 3

BC: y:=-'OO;
~ ~:)'O' THEN RETIMj,

IC :=_,
RETIMf;

/x- EXECUTICf'l ROUTINES x/

/X STORE INSTRUCTlCf'l ,,/
IX EVALUATE EFFECTIVE ADDRESS "/
/x .GET REGISTER VALL£ ,,/
I" PUT IT INTO HAIN i'EKlRY "/

/X CCf'jD1T1~ BRN«:H RWTlNE x/

Figure 6-CASD description of SYSTEM/O, page 4

'" ilOTATE RIGHT ROUTINE "I

~---------------I"-~----ANO--L-I~--R-OUT-I-NE-,,-/----~~f~~
BAl.: EAIlOR;
L R:= (16)'0' IIIC,

XREG(H): = Y;
IC := MAR;
RETIMj,

/X START I/O ROUT INE x/
IX GET OEVICE NU1!ER x/
/X WAIT I.NTIL PREVIOUS 1-0 STARTS x/

Figure 7-CASD description of SYSTEM/O, page 5

296 Fall Joint Computer Conference, 1970

8 P BRYANT
A note on designing incremental compilers
Submitted to CACM August 1970

9 J R DULEY D L DIETMEYER
Translation of a DDL digital system specification to Boolean
equations
IEEE Transactions Vol C-18 April 1969

10 T D FRIEDMAN
ALERT: a program to produce logic designs from preliminary
machine descriptions
Research Division IBM Corporation Yorktown Heights
New York Research Report No RC-1578 March 1966

11 T D FRIEDMAN S C YANG
Methods used in an automatic logic design generator (ALERT)
Research Division IBM Corporation Yorktown Heights
New York Research Report No RC-2226 October 1968

12 D F GORMAN J P ANDERSON
A logic design translator
Proceedings AFIPS Fall Joint Computer Conference 1962

13 CROCKETT Appendix M

14 GORMAN and ANDERSON
15 H SCHORR

Computer-aided digital system design and analysis using a
register-transfer language
IEEE Transactions Vol EC-13 December 1964

16 E A FRANKE
Computer-aided functional design of digital systems
IEEE Southwestern Conference Record April 1968

17 DULEY and DIETMEYER op cit
18 J R DULEY D L DIETMEYER

A digital system design language (DDL)
IEEE Transactions Vol C-17 September 1968

19 FRIEDMAN
20 FRIEDMAN and YANG
21 G METZE S SESHU

A proposal for a computer compiler
Proceedings AFIPS Spring Joint Computer Conference
1966

22 IBID
23 CROCKETT Appendix N

Integrated computer aided design systems

by ROGER C .. HURST

North American Rockwell
Los Angeles, California

and

ALLEN B. ROSENSTEIN

University of California
Los Angeles, California

INTRODUCTION

Computer Aided Design, the initial phase of Engineer
ing Design Automation, has been characterized by the
development of individual computer programs for
engineering design tasks. These programs specifically
describe design tasks that are identified as repetitive in
nature and, as such, are appropriately interspersed
into the overall design process.

Design Automation is now entering a new phase
characterized by the need for an integrated design ap
proach to the modeling, synthesis, analysis, optimiza
tion, documentation, and production functions of
entire engineering projects and of complete engineering
fields. Concurrent with this need has come a recognition
of the generalized Morphology and Anatomy of the
Design Process which in turn has led to a rapid de
velopment of formal procedures for many of the basic
functions of the Design Matrix (Figure 1).1 Since the
Decision Making process which we call Design and its
fundamental elements apply without restriction to all
engineering activities, it is not surprising to find that
very general computerized design programs are be
ginning to appear which can be applied to whole classes
of engineering problems without regard to particular
disciplines.

Computers have long been applied to the analysis
phase of the design process with the great majority of
existing engineering computer programs, in fact, de
voted to analysis. A study of the limited number of
generalized models available to the engineer and of the
mathematics applicable to these models makes obvious
the utility of an analysis language such as Fortran and
the possibilities for further generalization.2 But analysis
and simulation are not the only phases of the Design

297

Process undergoing change. In response to the increas
ing need to search for an optimum solution have come
a number of optimization programs, and very recently,
a powerful generalized optimization program (General
Electric's AID)3 that may be coupled to existing
analysis routines to close the Design Process loop,
Figure 2.

The statement that the digital computer offers ex
tended assistance in many if not most stages of the
Design Process presents nothing new. We should like
to examine, however, some of the emerging advances
on the road from Computer . Aided Design to Design
Automation. It should be obvious that we are now
ready to seriously consider Integrated Computer Aided
Design systems that tie together individual stages of the
design process, many of which have already been pro
grammed.

INTEGRATED COMPUTER AIDED DESIGN
ICES AND ELECSYS

The requirements for an Integrated Computer Aided
Design system can be outlined as follows:

1. Generality must be extensive enough to provide
a substantial design capability for a complete
class of problems or major areas in engineering
fields such as Civil Engineering or Electrical
Engineering. System capabilities would of a
necessity include generalized optimization rou
tines and strategies, extensive data handling
and file capacity, and solution of simulation pro
grams as well as comprehensive analytical ca
pability-all to operate upon a common data set.

298 Fall Joint Computer Conference, 1970

,.,.""'....."

Figure 1

2. Flexibility is required to allow selection and cou
pling of preferred programs and the substitution
of data at will with negligible effort.

3. Problem Oriented Languages that allow the en
gineer to communicate with the computer in
the same engineering language that he would use
with fellow engineers are a necessity if the Inte
grated Computer Aided Design system is to
earn wide user acceptance.

4. A Programming mechanism should be available
to allow the insertion of new design routines or
the modification of existing programs with a min
imal investment in programming time.

In spite of the identification of the computer with
electrical and electronic engineering, and the early ex
tensive use of computers for the design of electrical
components such as transformers and electronic sub
systems including computer subsystems, the first
operational Integrated Computer Aided Design system
has appeared in Civil Engineering with the MIT de
veloped Integrated Civil Engineering System (ICES).4
It is the intent of this paper to briefly describe ICES
and then obtain some review of its capabilities by
describing a new Integrated ELECtronic Engineering
SYStem (ELECSYS) that utilizes the basic ICES con
cepts--"and programs for internal control of the computer
software and hardware.

Generality of the Integrated Computer Aided Design
concept will be demonstrated by the conversion from
the Civil Engineering environment of ICES to the
Electronic Engineering of ELECSYS. Flexibility and
Programming capability are explored by utilizing an
MIT·· modified version* of ICES as the programming
structure to activate the first subsystem of ELECSYS.

* Modified to drop off Civil Engineering SUbsystems and add
programming routines to simplify the task of adding new sub
systems.

In this case, we have modified an existing Electronic
Circuit Analysis Program (ECAP) -the DC analysis
portion only-to reflect the external subsystem re
quirements of ICES. Neither ICES or ELECSYS can
ever be considered complete systems in that they have
been deliberately designed for the almost unlimited
addition of engineering subsystems as desired.

ICES

Let us briefly examine the capabilities and structure
of ICES while reserving a more detailed explanation
for Appendix A.5

ICES has been designed to allow engineers with little
or no computer programming experience to apply the
computer to a wide range of engineering problems. The
user can view ICES as a set of engineering subsystems
in a particular discipline of engineering such as struc
tural analysis, soil mechanics, etc. , ... , which the user
can call upon individually or collectively to solve his
problems. Each subsystem has its own problem
oriented language that is derived from the natural
language of the discipline.

ICES is a modular, dynamic system that also has
been designed to simplify the programmer's task. Pro
gramming languages have been incorporated to enable
the programmer to readily make modifications and addi
tions. To provide a full ICES system capability, a
computer will ultimately contain a total of six languages
or perhaps we should say six language levels if we count
the final machine language itself (Job Control Lan
guage, FORTRAN, ICETRAN, Command Definition
Language, and Problem Oriented Language). However,
the user need only master the simple problem oriented
languages of the subsystems and disciplines that inter
est him. He communicates with a subsystem only
through the commands of the subsystem Problem
Oriented Language (POL).

The subsystem programmers, on the other hand, will

ITATI.NlOf MOILIM

fOMIIUU,tlONOfJIIIIOI

..MUNG YAL"'IYSTIM'OMaILATION

Y.

'YNlHlIIIOfALTlMA1IVlI

","~""'\,""LI" •.• IfIIIoJICtM,M ,....",.,
,,_IltAl.IIMI\IT¥
D.NOOUCIIM.IT't
1 ',....,....fY

YI

MAL"''' IV~

l __ --_L-_-_-_-_-_-_-k 1"':;;'~ ~-~._
c:o.tuNlCAtlON

-----'--r-
DlIIGNINF'o...u.,.

I

~
Figure 2-The design-planning process flow chart

require two additional languages besides Fortran. The
first which has been called the Command Definition
Language (CDL) is used to write a program for each
subsystem to interpret each command in the POLand
provide direction for the processing of each command.
The CDL specifies what information should be pro
vided in the engineer's commands, how and where
that information should be stored, and what operations
(ICETRAN programs) shall be used to perform the
desired operations upon the data.

I CETRAN, the second language of the subsystem
programmer, is an extension and expansion of FOR
TRAN that is used by the subsystem programmer to
develop the ICETRAN building block programs that

./ ./
ICETRAN

V PROGRAM

"

ICES
PRECOMPILER

~ " ./
GENERATED

FORTRAN
PROGRAM /

"
FORTRAN
COMPILER

~ " ./
MACHINE

LANGUAGE

/ PROGRAM

Integrated Computer Aided Design Systems 299

FLOW OF ceN rROL

__ - - - FLOW OF INFORM .. TlO"

COL
COMMAND
T R ANSLA T ION
RULES

Figure 4-Subsystem execution

operate upon the engineering data. To facilitate the
translation from ICETRAN to FORTRAN and finally
to machine language, a. special translator program is
provided called the ICETRAN Compiler, Figure 3.

Operation of an integrated ICES type system can be
partially explained and the remaining ICES system
elements introduced by referring to Figures 4, 5, and 6.
Stored in computer primary memory, we find the Execu-·

COMMAND
DEfiNITION
BLOCKS

L _ COMMAND
DEfiNITION
BLOCKS

IBM 360!75 COMPUTER

COMMON
COMMUNICATION
AREA

IBM 2311 DISK PACK I
"ICES 35" I

SECONDARY STORAGE

SUBSYSTEM
LOAD
MODULES

SUBSYSTEM
LOAD
MODULES

I
I

I
I
I
I
I
I

Figure 3-ICETRAN precompilation and compilation Figure 5-ICES system organization

300 Fall Joint Computer Conference, 1970

LEGEND:

PROGRAM

NOTE:
ICES EXECUTIVE
DIRECTS INTERNAL
SYSTEM LOGIC FLOW

Figure 6-System logic diagram

tive program that supervises and coordinates all ICES
jobs. The multi-subsystem capability of ICES demands
a dynamic data structure and extensive use of secon
dary storage. Stored in secondary memory for each sub
system are Subsystem Load Modules (constructed from
I CETRAN building block programs), Subsystem
Command Dictionary, and Subsystem Command
Definition Blocks.

The engineer's POL commands are dIrected to an
ICES Command Interpreter that proceeds on a com
mand-by-command basis. From a primary command
dictionary, the first subsystem requested by the en
gineer will be identified and the corresponding Com
mand Dictionaries, Command Definition Blocks, and

Load Modules called up from secondary storage by the
Executive program. The Command Interpreter can
now refer to the subsystem command dictionary to
process subsequent commands. Each subsystem com
mand calls for a specific Command Dictionary Block
which the Command Interpreter uses to analyze the
full command and transmit the correct information to
the required subprograms.

Data and information extracted from the commands
and the command definition blocks are stored in the
subsystem Common Communications Area where they
are available for processing by the ICETRAN pro
grams of the subsystem load modules.

ELECSYS

Keeping in mind the built-in prOVlSIOns for expan
sion and ch;'nge, let us examine the requirements for
an Integrated Electronic Engineering Design System
(ELECSYS) and its implementation, Figures 7 and 8.
We wish to provide in a single computer· aided design
system all of the analytical methods, design rules,
manufacturing standards, component characteristics,
tabular data, simulation routines, and optimization

ENG.

YES

LEGEND.

(ENCIHEER)

ICOMPUTUI

Figure 7-ELECSYS system flow diagram

programs necessary for the computer aided design of
electronic equipment. All of the foregoing should be
available to the user in problem oriented languages
with a common vocabulary and similar formats. It
should be noted that ELECSYS would be classified as a
computer aided design system instead of design auto
mated since the engineer will intervene at frequent in
tervals during the design process to establish desired
system behavior.

ELECSYS, Figure 7, has been laid out to follow the
iterative decision making pattern of the design process,
Figure 2. Design normally progresses from problem
recognition to problem definition where design require
ments, constraints, and performance specifications are
established. A field of feasible system solutions is next
synthesized which in turn can be broken down into
subsystem, module, and finally circuit specifications.
At some function level, it becomes convenient to review
the applicability of existing designs.

Electronic subsystems readily lend themselves to
classification and evaluation, i.e., amplifiers, flip flops,
shift registers, etc. ELECSYS would include an ex
tensive library of proven circuits and designs evaluated
in accordance with standard performance/cost criteria.
Full listings would also be provided of standard compo
nents along with their cost and performance character
istics. As the analytical capabilities of ELECSYS are
expanded, it has been suggested that a stage will
eventually. be reached when the computer can use its
off hours to rea~ the technical literature in order to
independently evaluate published circuits and update
its own library.

Both the engineer and the computer would review
their respective libraries for standard circuits capable of
meeting the required specifications. The ELECSYS·
Standard Circuit subsystem would provide the en
gineer with a thorough computerized search of existing
designs to meet specific performance specifications and
design criteria. If an acceptable circuit is not found, the
engineer will design a new circuit with the aid of the
computer circuit analysis programs. Final detailed
electronic designs are subject to many design reviews
to insure system performance and reliability. System
stress and reliability analysis can be done by the com
puter along with system simulation.

Since a common circuit data base is necessary for
both electrical and mechanical design, ELECSYS has
been conceived to provide POL routines for both the
electronic design and much of the mechanical design
required for manufacturing. After the electrical per
formance requirements are satisfied, the resultant
circuits are re-examined for fabrication. A set of pro
grams should be incorporated to carry manufacturing
from printed and integrated circuit layouts through the

Integrated Computer Aided Design Systems 301

CHr~SSIS

PRINTED
CIRCUIT

Figure 8-Electronic equipment

wire harnessing and cabling necessary to intercon
nect circuits and components.

A very general purpose optimization program that
can be coupled to analysis routines (such as G.E.'s
AID) is to be included to provide computer assistance
in the determination of improved circuit and electro
mechanical system design.

INITIAL IMPLEMENTATION-ECAPNC

ELECSYS has been conceived as a flexible integrated
electronic design system that incorporates as subsys
tems existing or new computer programs in part or in
wholew herever desirable. To test the feasibility of this
concept, we decided, as mentioned earlier, to build
IBM's ECAP (Electronic Circuit Analysis Program) into
ELECSYS as a subsystem for New Circuit analysis,
ECAPNC.

Implementation of ELECSYS began with the acquisi
tion from IBM of the ICES Type C Release version
containing all system programs necessary for ICES

302 Fall Joint Computer Conference, 1970

utilization including the programming capability for
adding new subsystems. Modification of the ICES Job
Control Language was required for the installation of
ICES on the UCLA Campus Computer Network.

With ICES operational on campus as "ICES35"
five major steps were taken to implement and verify
ECAPNC. The first three tasks were concerned with
the computer software needed by an engineer setting up a
subsystem. The next step employed the computer soft
ware provided to an engineer using a subsystem while the
final step became that of operational verification. Thus,
the first three tasks dealt with subsystem generation
whereas the last two specifically relate to subsystem
utilization in a problem oriented language environment.
Typical subsystem installation and operation can be
presented by reviewing those five tasks.

1. Precompilation, Compilation, and Object Load:
Programs are written in ICES FORTRAN
(ICETRAN) by the engineer designing an en
gineering subsystem which temporarily creates
and stores computer programs for engineering
operations. This task utilizes the ICES procedure
"Precompile, Compile, and Object Load" (Refer
to Figure 3) to process the written ICETRAN
programs in preparation for the next task of
Load Module Generation.

2. Load Module Generation: This task employs
the ICES procedure called "Load Module Gen
eration" to combine or link edit the ICETRAN
programs of the previous task into Subsystem
Load Modules that satisfy the computer hard
ware requirements. The Subsystem Load Mod
ules are computer programs permanently stored
for the performance of engineering operations.

To initiate ECAPNC, the DC Analysis portion of
the standard ECAP program was modified in accor
dance with tasks 1 and 2. In particular, six subprograms
were programmed in ICETRAN and added to the
original DC Analysis subprograms in order to provide
the final subscripted variable translation of ECAP
problem data. ICES CDL software cannot translate
POL data directly into Fortran subscripted variables,
thus, these extra ICETRAN programs provide the
necessary processing of ECAP compatible data. The
total package of I CETRAN subprograms (1400 cards)
were processed by tasks 1 and 2 to establish the en
gineering load module for the ECAPNC subsystem.

3. Subsystem Command Definition Execution: Uti
lizing the CDL of ICES, a subsystem vocabulary
must be developed to provide the Problem
Oriented Language (POL) required for task 4.

Permanent subsystem computer programs must
be created to interpret the engineer's English
language (POL) input and select the appropriate
building block programs for execution. ICES
CDL procedures are used to create a Subsystem
Command Dictionary and the individual Sub
system Command Definition Block associ
ated with each command in the subsystem
dictionary.

Command Definition Language (CDL) programs
were designed to translate the Problem Oriented Lan
guage commands of ECAPNC, extract the problem
data, and convert that data into the appropriate
ICETRAN variables to be operated upon by the
ICETRAN subprograms for DC Analysis (task 2). A
total of 400 cards were required to generate the Sub
system Command Definition Dictionary and its COm
mand Definition Blocks for the ECAPNC subsystem.

4. POL Program Execution: An individual pro
gram must be written for each new circuit re
quiring a DC performance analysis with
ECAPNC. However, the POL provided by task
3 completely routinizes this step making it
feasible to train technicians or secretaries to
convert the engineer's schematics into the re
quired punched cards or tape.

5. Circuit Execution: With a program written for
the desired circuit topology, the program can be
submitted to a computer with the initial values
of individual components and the allowable
range of component values to be investigated.
The ELECSYS system presently utilizes batch
computer processing techniques to obtain solu
tions of circuit problems. Since the POL is con
versational in nature, this is an unnecessary
restriction. Future systems will utilize a remote
CRT terminal or teletype to improve ICES
man-machine communication as well as job
turnaround time.

To verify the successful implementation of ECAP in
the ELECSYS subsystem, a sample electronic circuit
was run through tasks 4 and 5 of ECAPNC and com
pared with the results of submitting the same circuit
to the original ECAP program. The results were, of
course, identical.

The detailed explanation of the necessary ICES
modifications and required ECAP conversion under
tasks 1,2, and 3 is given in Reference 7. In Appendix B,
the POL Df task 3 is described and its application to a
simple circuit illustrated for tasks 4 and 5.

RESULTS AND CONCLUSIONS

This work was undertaken to obtain operational experi
ence with Integrated Computer Aided Design Systems
and to provide a basis for consideration of further auto
mation of the Design Process. We wished in particular
to test the concept of a very generalized Integrated
Computer Aided Design System that would be inde
pendent of its field of engineering application. Also,
although ELECSYS has been proposed (Figure 7)
with human intervention at every major step, it should
be apparent that further formalization of the engineer's
decision rules and data resources will allow significant
reductions in the number of unmechanized phases.
This, of course, would appear practical only if the
system can operate upon a common design problem
data base that is derived from the original problem
statement.

Allowing for the present limited ELECSYS imple
mentation, our experiences to date have been quite
satisfying. No unusual difficulties were encountered in
utilizing the structure of ICES, designed as an Inte
grated Civil Engineering System, for ELECSYS, an
Integrated Electronic Engineering System. The feasi
bility and economics of incorporating existing design
subprograms into an integrated design system has been
clearly established. Once the details of ECAP and ICES
had been mastered, the programming chores required
to generate the load modules (tasks 1 and 2) and the
language translator (task 3) were found to be quite
reasonable.

The ECAP DC Analysis program was converted to
ICETRAN in two steps. The first step required a com
patibility study of the language interface between
ECAP FORTRAN and ICES FORTRAN that resulted
in modification of several ECAP FORTRAN state
ments which would have created ICES system errors.
A second step was required to produce a set of sub
programs necessary to overcome a subscripted variable
limitation of the ICES Command Definition Language.
Completion of both steps produced a permanently
stored set of DC Circuit Analysis subprograms.
Utilization of the existing ECAP routines saved, of
course, the substantial effort that would have been
required to create a new circuit analysis program.

It should be observed that problem oriented lan
guage programs such as ECAP, STRESS, CIRC, and
STRUDL in reality solve the same general class of
problem. In each of these cases the computer is given
the problem topology and component lumped param
eter characteristics. With this data, the computer sets
up and solves the appropriate matrix. I t should be
feasible, therefore, to design into the Integrated Design
System a very general, lumped parameter, equation

Integrated Computer Aided Design Systems 303

writing, and analysis routine that would provide suit
able load modules and eliminate the need to repeat
tasks 1 and 2. When general, lumped parameter, load
modules have been created for an integrated design
system, incorporation of engineering fields utilizing
lumped parameter models will require only the pro
duction of the problem oriented language from task 3.

Utilization of the ICES Command Definition Lan
guage to generate the CDL subprograms for ICE
TRANjPOL interface control and a set of CDL sub
routines for data extraction and storage (task 3), gave
particularly interesting results. The programming
effort created a total of nine subprograms and five sub
routines with a final program source deck of 370 CDL
cards. A significant difference in programming effort
and time is realized when the 370 cards of the CDL
program are compared to the 1610 Fortran cards re
quired by the original ECAP Language Processor to
perform the same language translation. This compari
son would indicate that the ICES CDL provides a
simplified programming capability for data translation
of complicated POL such as ECAP. With the adoption
of Integrated Computer Aided Design Systems some
what dependent upon the programming investment,
the efficiency of the CDL will be of increasing impor
tance particularly if generalized load modules can be
developed to reduce the programming effort of tasks 1
and 2.

Review of ECAPNC revealed that the POL and
flexibility criteria were satisfied. The POL notation of
ECAP was retained with small modification. However,
whereas the original ECAP language requires text in a
fixed order as well as a rigid format that tends to in
crease language programming errors, the ECAPN C
ordering of the text supplying problem data is very
flexible. The integrated system concept offers still
further opportunity for increasing the flexibility and
utility of ECAP. Recently while reviewing ELECSYS
with Mr. Howell Tyson of IBM, who is one of the
originators of ECAP, Tyson pointed out the advantages
that could be obtained by interfacing the ECAPNC
sub~ystem with the existing ICES TABLE subsystem.6

A permanent file of electronic circuit components,
characteristics, particularly transistor models, could
be maintained by the TABLE subsystem and utilized
as required by the ECAPNC subsystem in conjunction
with the ICES system programs. By combining the
TABLE capabilities with ECAPNC, a more powerful
circuit analysis program could be achieved with circuit
lookup capability similar to the NET -1 program.

On the negative side, the average time for four
ECAPNC problem solutions was 21 seconds compared
to an average of 11 seconds for the identical solutions
with ECAP. The difference is caused by the separate

304 Fall Joint Computer Conference, 1970

processing that is performed by the CDL when ex
tracting problem data. For offices with a large circuit
analysis load, the differences in computing time could
become prohibitive. On the other hand, when analysis
is considered as· only part of the computational load
of the design process, the advantages of the common
problem data base of the Integrated Computer Aided
Design System should more than compensate for the
analysis computing inefficiencies.

BIBLIOGRAPHY

1 A B ROSENSTEIN
The concept of engineering design as a formal discipline
Proc ASME 8th Annual Technical Symposium Albuquerque
New Mexico November 17 1967

2 A B ROSENSTEIN
Modeling, analysis, synthesis, optimization, and decision
maker in engineering curricula
UCLA Department of Engineering EDP2-68 April 1968

3 J K CAREY R L RUSTAG
AID-A general purpose computer program for optimization
Recent Advances in Optimization Techniques edited by
Love & Vogi 1966

4--
Introduction to ICES
Department of Civil Engineering Massachusetts Institute
of Technology Cambridge Massachusetts Report R67-47
C 1967

5--
ICES System-General description
Department of Civil Engineering Masachusetts Institute of
Technology Cambridge Massachusetts Report R67-49
C.1967

6---
ICES Programmers Reference Manual
Department of Civil Engineering Massachusetts Institute
of Technology Cambridge Massachusetts Report R67-50
C.1967

7 R C HURST
The feasibility of an electrical/electronic engineering computer
system (ELECSYS) which utilizes the integrated civil
engineering system (ICES)
University of California at Los Angeles 405 Hilgard Avenue
Los Angeles, California 90024 Master's Thesis C 1969

8---
1620 electronic circuit analysis program (ECAP)
1620-EE-20X user's manual
International Business Machines Corp Technical
Publications Department C 1965

APPENDIX A

INTEGRATED CIVIL ENGINEERING SYSTEM
(ICES)

The ICES system is now ready to perform its pre
scribed system tasks (Refer to Figure 6). These tasks
are externally controlled by the IBM 360 Job Control

Language (JCL) and internally by the ICES System
Programs. The external control process provides in
formation to the computer system concerning the ICES
data flow between the IBM 360/75 central computer
and the IBM 2311 secondar,y storage disk pack. In
ternal control is provided by an appropriate ICES
system program for the complete performance of a
related system task. External and internal controls are
combined for each system task in order for the system
to be fully operational.

The following paragraphs illustrate the ICES con
trol process for the first four system tasks. The fifth
system task concerns circuit solutions and the design
iteration process of the engineer.

The first system task for subsystem implementation
concerns the translation of ICETRAN programs into
machine language (Figure 3). The Job Control Lan
guage directs information flow between computer
hardware units such as secondary storage devices (disk
pack), and tape units. After appropriate units have
been accessed, program QQFUBAR, internal con
trolling program designated by the Task 1 JCL, is
executed and successively linked to Program QQVOLO,
the ICETRAN precompiler; to Program IEJFAAAO,
the E-Ievel FORTRAN compiler; and to Program
QQNIX3, the object program loader.

The second system task for subsystem generation
concerns the permanent creation and storage of the
machine coded programs from Task 1. After similar job
initialization and secondary storage accessing, the JCL
designates the Program QQFUBAR2 to provide in
ternal control and successively link to Program
QQSETGEN, the load module interface program gen
erator; and program ASMBLER, the E-Level Linkage
Editor. Program QQSETGEN generates an interface
program called QQSETUP which is tailor-made for
every subsystem load module, and is used whenever
the generated load module is entered for the perfor
mance of Task 4, Problem Oriented Language (POL)
Program Execution. In particular, the Load Module
Description input for this task provides the necessary
information to generate a unique QQSETUP program.

The third and fourth system tasks have radically
different functions. Task 3 involves the subsystem
generation of Command Definition Language dic
tionaries, while Task 4 utilizes the data generated from
the previous tasks to perform overall subsystem ac
tivities for the solution of engineering problems.

Both tasks utilize Program QQICEX3, the internal
controlling ICES executive. For the engineer setting
up a subsystem, the ICES Executive program will
process and store Command Definition Language
programs. For the engineer using ICES in a problem
solving mode, the ICES Executive program will

process Problem Oriented Language commands as well
as control input/output, secondary storage file manage
ment, core memory allocation, and program loading of
subsystem load modules and command definition
dictionaries.

The POL Execution sequence starts with the initiali
zation of the ICES Executive program. This interrogates
the input data for the existence of POL commands. If
there are no commands, the program terminates. If
commands are present in the input data, the ICES
Executive calls the Command Interpreter and an ap
propriate Subsystem Command Definition Block
(CDB) and Dictionary. When a POL command is not
defined in the CDB, a POL error is given by the ICES
Executive program. If the POL statement is a valid
command, an appropriate Command Definition Lan
guage program is directed to extract problem data from
the POL command. Unless errors occur in the data or
data identifiers, the ICES Executive directs further
processing of the Command Definition Language pro
gram which may include either more CDB's or the
execution of CDL designated ICETRAN programs.
When an ICETRAN program is performed, engineering
results are calculated and tabulated for engineering
analysis. At this point, the ICES Executive can either
process more CDB programs or more ICETRAN pro
grams; or return to process subsequent POL commands.
After all POL commands have been processed, the
ICES Executive terminates the specific problem
solution.

It can be readily seen that there is no limit to the
number of subsystems that can be executed. Each sub
system is started when the POL contains a system
command that specifies the subsystem name. The
presence of this command causes the previous sub
system, if any, to be closed and the specified subsystem
to be processed hy the ICES Executive program. The
case of anyone computer run is specified by the system
command FINISH, which causes the last subsystem
to be closed, as well as the ICES system itself. Thus,
for the first time, an integrated system concept is
evolving for the solution of engineering problems as
complete discipline, rather than the present scheme of
disassociated, fragmented computer programs.

APPENDIX B

THE ECAPNC PROBLEM ORIENTED
LANGUAGE

Initial results from a generalized study of ECAP in
dicated that the Problem Oriented Language design
should be similar in format to the original ECAP input

Integrated Computer Aided Design Systems 305

language. This was advantageous for two reasons:

1. The POL design would utilize existing ECAP
language notation for the identification of elec
tronic circuit data. Thus, most of the data
identifier information required in the design of
the ECAPNC Command Definition Language
programs was readily determined.

3. The instruction of engineers in the use of
ECAPNC would not be substantially different
than that of the original input language. Also,
since ECAP is a widely used circuit analysis
program, engineers already familiar with ECAP
could easily convert to ECAPNC.

Based on the previous design criteria, the POL
design was developed to incorporate all existing ECAP
problem statements while satisfying related design
constraints imposed by the design of the CDL and
ICETRAN programs.

The completed design provides a detailed summary
of usage instructions for the engineer utilizing the
ECAPNC subsystem for DC circuit analysis.

BASIC COMMAND NOTATION

The engineer communicates problem data to the
circuit analysis subsystem through a POL program con
sisting of a series of statements known as Commands.
Each command utilizes the following two types of
elements:

1. Alphanumeric words that are used as labels for
commands, command modifiers, and data
identifiers.

2. Integer or decimal numbers that make up the
engineering problem data.

The alphanumeric words or single letters identify the
command statements according to the rules set forth
in the design of the ECAPNC Command Definition
Language. Each word in a command statement uniquely
specifies the problem data with respect to engineering
terminology. Usually the first word in the statement
defines the command, and subsequent words further
describe and label the type of data required for problem
solution. It is also emphasized that in addition to
supplying problem data, the command words can in
struct the subsystem to perform calculations on data
specified in previous command statements.

After appropriately identifying the engineering

306 Fall Joint Computer Conference, 1970

problem data, it must be specified in the following data
modes:

1. Integer data
These are numbers that do not contain a decimal
point, or commas.
Examples: 1 38 -1000 + 10000

Note: If the sign is omitted, it is assumed
positive (+).
The command notation for integer data is given
by in, where n is a subscript that uniquely
identifies integer data within a command
statement.

2. Decimal data
These numbers must contain a decimal point,
but no commas. There are two basic types of
decimal numbers, normal and exponential. The
normal decimals consist of digits preceded by
an optional sign.
Examples: 1.0 38. -1000. + 10000.
The exponential numbers are decimals multiplied
by the power of ten. Th~y have the form of a
decimal, but are followed by the letter E and a
signed or unsigned integer representing the
power of ten.
Examples: 10.E -1 3.8E1 -1.0E3 + 10E3
The command notation for decimal data is
given by Vn , where n is a subscript that uniquely
identifies decimal data within a command
statement.

The command text is now defined as the logical
meaning and ordering of the command elements
(alphameric words, and integer or decimal numbers).
For convenience and simplicity, the meaning and order
ing of the command text is abbreviated through the
use of special symbols such as underlines braces , ,
parentheses, and brackets. The following abbreviations
are summarized for subsequent reference:

1. Underlines are used to indicate the required
portion of an alphanumeric word in a command
statement. For example, if the word INCRE
MENT is used in a command, the engineer need
only give the letters INCR or any other word
starting with these letters such as INCREASE.

2. Braces are used to indicate that a choice exists
among the enclosed elements in the command
text.
Example:

r SENSITIVITY 1
~ WORST ~
lSTANDARD J

The engineer may choose one of the three words
within this command statement.

3. Parentheses are used to indicate that certain
words may be omitted in the command text.
Example:

DC (SOLUTION)

The engineer can specify the DC solution to a
problem and add the word SOLUTION if
clarity is desired. It is noted that if parentheses
enclose the example for braces, the entire set of
elements may be omitted.

4. Brackets are used to indicate' the alphanumeric
words that are used as labels for integer or
decimal data.
Example:

[BRANCH] i1 [NODES] i2 ia

It is ~~ted that an internal ICES programming
capabIlIty allows the engineer to omit the labels
and just insert the data in the order specified by
the subscripts, or to give the data any order
provided that they are labeled.
Example:

[~ODES] i2 ia [BRANCH] i1

In the last example, it should be emphasized
that i2 and ia are a group of related data with
the common label of NODES. Thus, this ca
pability stipulates that problem data may be
given in any order within the command text
provided that the data is labeled.

In essence, then, the POL command text consists of
alphanumeric words that define commands and label
data in conjunction with special symbols that specify
the language order and meaning.

GENERAL COMMANDS FOR THE ECAPNC
SUBSYSTEM

The design of the ECAPNC Problem Oriented Lan
guage is organized into nine separate commands. Each
command performs a unique function in the overall
problem solution. For instance, some commands
specify certain types of electronic circuit data while
others dictate the type of analysis that must be per
formed on the specified data. This section provides a
detailed explanation of all POL commands used in
describing electronic circuit analysis problems to the
ECAPNC subsystem.

The Problem Oriented Language for the ECAPNC

subsystem is summarized by the following command
names:

1. Subsystem Specification (ECAPNC)
2. Solution Specification (DC)
3. Analysis Specification (SENSITIVITY,

WORST CASE, STANDARD DEVIATION)
4. Circuit Description (DESCRIPTION)
5. Circuit Topology (INPUT)
6. Transconductance (TRANSCONDUCTANCE)
7. Execute Print (EXECUTE)
8. Branch lVlodification (MODIFY)
9. Transconductance Modification (TMODIFY)

It should be noted that an ICES capability in the
Command Definition Language allows POL commands
3 through 6 to be specified in any order when included
between the DC and EXECUTE commands. Thus, the
POL commands are partially order-independent which
enables the engineer to formulate problem solutions
in a language environment oriented towards normal
engineering practice.

In order to add clarity to the command descriptions,
a sample electronic circuit will be used to derive problem
data. The circuit schematic diagram (Figure 9) 8 shows
the DC equivalent of a single-stage common emitter
transistor amplifier. The transistor has been replaced
at the Base, Emitter, and Collector nodes by a DC
model containing a transconductance or current gain
(Tl). The circuit is prepared for computer solution by
numbering each electrical branch (B) and correspond
ing electrical nodes (V). The electronic components
that make up the circuit are given their respective pre
calculated values.

The circuit can be described as follows: In Branch 1,
between Nodes 2 and 0 (Ground), there is a Resistor
of 2000 ohms in series with a voltage source of 20 volts;
In Branch 2, between Nodes 1 and 0, there is a Resistor
of 6000 ohms in series with a voltage source of 20 volts;
In Branch 3, between Nodes 1 and 0, there is a Re
sistor of 1000 ohms; In Branch 4, between Nodes 1
and 3, there is a Resistor of 350 ohms in series with a
voltage source of 0.5 volts; In Branch 5, between
Nodes 3 and 0, there is a Resistor of 500 ohms; In
Branch 6, between Nodes 2 and 3, there is a Resistor
of 11.1E3 ohms; and between Branches 4 and 6, there
is an. equivalent current gain (1Ih/ e) of 50. This circuit
problem is now defined in a form which the ECAPNC
Problem Oriented Language can readily utilize.

The following commands are ~vailable to the en
gineer for communicating problem definitions to the
ECAPNC subsystem:

The subsystem Specification command specifies the

Integrated Computer Aided Design Systems 307

20v

-----1r

6000n

1000n

2N657
TRANSISTOR
EQUIVALENT

11.1K n

Figure 9-DC equivalent circuit for the single-stage common
emitter amplifier

required ELECSYS subsystem and is the first com
mand of any problem solution.

General form:*

ECAPNC**

Example:
ECAPNC

This is the name of the subsystem (ECAP New Circuit
Analysis) that performs DC electronic circ~it a~lysis.

The Solution Specification command is used to direct
the ECAPN C subsystem to perform the nominal DC
solution. It also prepares the subsystem for subsequent
problem data, and therefore, must follow the subsystem
Specification command.

General form:

DC (SOLUTION)

* A double asterisk, **, has been used to point out differences
between ECAP and ECAPNC notation, and commands unnoted
are identical. Also, this double asterisk in not part of the com
mand notation.

· 308 Fall Joint Computer Conference, 1970

Example:

DC SOLUTION

In the example, the word SOLUTION may be
omitted from the command text. It is noted that any
number of problems may be specified in one entry of
the subsystem simply by starting each problem with
this command.

The Analysis Specification command directs the
ECAPNC subsystem to override the DC solution com
mand and instead perform one of three available
analysis routines. However, to reach this mode, the DC
solution command must be given and followed by the
desired Analysis Specification command. Without an
Analysis command, a nominal DC solution will be
provided.

General form:

r SENSITIVITY

I
~ WORST (CASE)

lSTANDARD

Example:

(ANALYSIS) 1
(ANALYSIS) r
(DEVIATION))

SENSITIVITY

The example shows that the subsystem is directed to
perform the Sensitivity Analysis, which is a measure of
circuit output stability when each circuit component
is subjected to a one percent variation. The Worst
Case Analysis could have been specified instead of the
Sensitivity Analysis, and allows the engineer to obtain
the minimum and maximum DC solutions assuming
linear variation in component parameters. The Stand
ard Deviation Analysis could also have been specified
and would yield the three-sigma standard deviations
for all electrical node voltages subject to the worst
case component variations. The extreme parentheses
iIidicate that all three analyses are optional, and do not
have to be specified.

The Circuit Description command specifies the total
dimensions of the circuit topology. In the sample
problem, there are six electrical branches, three elec
trical nodes, and one current gain (also known as
transconductance or dependent current source).

General form:

DESCRIPTION (TOTALS) [BRANCHES] il

[NODES 'l2 ([DCUR] i3) **

where iI-integer number representing total circuit
branches, **

i2-integer number representing total circuit
nodes,**

i3-integer number representing total dependent
current sources. **

Example:

DESCRIPTION TOTALS BRANCHES 6

NODES 3 DCUR 1

The engineer must specify the number of circuit
branches and electrical nodes, otherwise, the DC solu
tion cannot be calculated. The number of current gains
is optional since some circuits may not contain transis
tors requiring this modeling technique.

The Circuit Topology command is used to specify
the electrical topology (Branches and Nodes) as well
as the component parameter data. This command is
identified by the word INPUT which is followed by
sub commands of similar format in a tabular arrange
ment. Each subcommand represents the complete
circuit data for each of the electrical branches, and
may be given in any arbitrary order as long as all
branches are tabulated. The label ENDB is used to
signal the end of tabulated circuit branch data.

General form (Tabular):

INPUT**

ENDB**

Where iI-integer number identifying each electrical
branch,

i2 - integer number for the initial node of branch,
i3-integer number for the final node of branch,
VI-decimal number for nominal component

value,
v2-decimal number for worst case minimum

component value,
v3-decimal number for worst case maximum

component value,
[B]-Circuit branch label,
[N]-Circuit nodes label,
[RJ-Resistor Impedance label (data in ohms),
[G]-Resistor Admittance label (data in mhos),
[E]-V oltage source label in series with Resistor

(data in volts),

[I]-Current source label in parallel with Re
sistor (data in amps).

Example:

INPUT

B 1 N02 R 2000. E 20.
B2 NO 1 R 6000. E 20.
B3 N 0 1 R 1000.
B4 N 1 3 R 350. E - 0.5
B5 N 3 0 R 500.
B 6 N 2 3 R 11.1E3

ENDB

I t is noted that resistor component data may be
specified as impedance or admittance while independent
voltage or current sources are respectively placed in
series or parallel with the resistor.

The Transconductance command is used to specify
current gains or dependent current sources such as
those occurring in transistor models. It utilizes a
tabular format to describe problems containing more
than one transconductance.

General form (Tabular):

TRANSCONDUCTANCE**

[T] i l [~J i2 i3 ([BETA] VI (V2V3) I
i ~
l [GM] VI (V2V3»)

ENDT**

Where iI-integer number identifying each transcon
ductance,

i2-integer number of the "from" electrical
branch,

i3-integer number of the "to" electrical
branch,

VI-decimal number of nominal gain value,
v2-decimal number of worst case minimum gain

value,
v3-decimal number of worst case maximum gain

value,
[T]-Transconductance label,
[B]-Current gain direction ("from" and "to"

branches) label,
[BETA]-Current gain magnitude label (dimension

less),
[GM]-Current gain BETA divided by the Im

pedance of "from" branch (data in mhos).

Integrated Computer Aided Design Systems 309

Example:

TRANSCONDUCTANCE

T 1 B 4 6 BETA 50.
ENDT

It is noted that the transconductance values may be
given as BETA or GM, and any number of transcon
ductances may be specified between the TRANSCON
DucTANcE command and the label ENDT.

The Execution Print command signals the end of a
problem specification and specifies the performance of
calculations by the ECAPNC subsystem as prescribed
in the Solution and Analysis commands. After the ap
propriate analysis has been performed, the subsystem
is ready to accept further commands.

General form:

EXECUTE (AND) (PRINT)

[NV] i l ([CA] i l [CV] i l [BA] i l [BV] i l

[BP] i l [SE] i l [MI] i l) **

Where iI-integer number equal to 1 (one), **
[NV]-Print Node Voltages label,
[CA]-Print Element Currents label,
[CV]-Print Element Voltages label,
[BA]-Print Branch Currents label,
[BV]-Print Branch Voltages label,
[BP]-Print Branch Power Losses label,
[SE]-Print Sensitivities label,
[MI] - Print Miscellaneous label (nodal and con

ductance matrices used in calculations).

Example:

EXECUTE AND PRINT

NV 1 CA 1 CV 1 BA 1 BV 1 BP 1

If an output label is not followed by the integer one
(1), the corresponding output is not printed.

After the circuit has been analyzed for the steady
state solution, the previously specified circuit data can
be changed utilizing two Data Modification commands.
The first command changes circuit component values
while the second changes transconductance values.
Both commands prepare the circuit specification for re
analysis toward an optimum solution.

The Branch Modification command is used to change
impedance, admittance, voltage source, and current
source data originally specified in the INPUT com
mand. The branch data is modified in one of two ways:

1. Discrete changes in nominal and worst case
data, or

310 Fall Joint Computer Conference, 1970

2. Incremental changes of each component value
in turn.

The command also utilizes a tabular format in which
the word MODIFY starts the tabulation and the label
ENDMB signals the end of data.

General form (Tabular):

MODIFY

ENDMB**

(~rn] v. (v,v,)

lmJ V4 V5V6

{
[~J VI (V2Va)

[~J V4 V5V6

([IJ VI (V2Va)

lcn v, v,v,

1
INCREMENT** J

o 1
INCREMENT** J

1
INCREMENT** J J

Where iI-integer number sequentially identifying each
subcommand in the MODIFY command, **

i2-integer number of electrical branch to be
modified,

vI-decimal number of changed nominal compo
nent value,

v2-decimal number of changed worst case com
ponent minimum value,

va-decimal number of changed ·worstcase com
ponent maximum value,

v4-decimal number of starting component value
for the increment modification,

v5-decimal number of increment steps in modi
fication range,

v6-decimal number of final component value
for the increment modification,

[BJ-Circuit Branch label,
[R J-Resistor Impedance label (data in ohms),
[GJ-Resistor Admittance label (data in mhos),
[EJ-Voltage source label (data in volts),
[IJ-Current source label (data in amps).

Example:

MODIFY

1 B 1 R 1000. 10. 3000. INCR

ENDMB

The example shows that the Resistor in Branch one
(1) is to be modified in ten increments from a value of
1000 ohms to a value of 3000 ohms, and is the only
branch to be modified.

The Transconductance Modification command is
very similar in construction to the Branch Modification
command. In this case, the tabulation starts with the
word TMODIFY and ends with the label ENDMT.
This command also has a tabular format which can
specify either discrete or incremental changes in cur-
rent gains. .

General form (Tabular):

T1VIODIFY**

iI [TJi2 I (CBETA]v. (V2Va) V
lCBETA]V' V5V6 INCREMENT" J I

l (CGM] VI (V2Va) 1 I
lCGM] V4 ViiV6 INCREMENT**))

ENDMT**

Where iI-integer number sequentially identifying
each subcommand in the TMODIFY com
mand, **

i2-integer number of transconductance to be
modified,

vI-decimal number of changed nominal gain
value,

v2-decimal number of changed worst case mini
mum gain value,

va-decimal number of changed worst case maxi
mum gain value,

v4-decimal number of starting gain value for
the increment modification,

v5-decimal number of increment steps in modifi
cation range,

v6-decimal number of final gain value for the
increment modification,

[T J-Transconductance label,
[BETAJ-Current gain magnitude label (dimension

less),

[GMJ-Current gain BETA divided by the im
pedance of "from" branch (data in mhos).

Example:

TMODIFY
1 T 1 BETA 60.

ENDMT

The example shows that the current gain is changed
from 50 in the original problem to 60 for the next
problem solution.

SUBSYSTEM RESPONSE TO POL COMMANDS

To use the ECAPNC subsystem, the engineer writes
a Problem Oriented Language program consisting of
the predefined ECAPNC subsystem commands. The
POL program represents a unique problem which
specifies electronic circuit data, analysis, and results.
Each POL program is then transcribed on standard 80
column FORTRAN coding sheets for keypunch. The
engineer can use all 80 columns of the sheet to program
commands, and should be careful to start each com
mand name on a new line. Also, all words and numbers
must be separated by spaces within every command.

The subsystem's response to the POL commands is
given by the Nominal DC Solution which provides
the engineer with a steady-state response for a linear
lumped-parameter electronic circuit. The following
POL program illustrates a problem solution for the
circuit described in Figure 9:

cc. 1

ECAPNC

DC SOLUTION

INPUT

B 1
B2
B3
B4
B5
B6

NO 2
N 0 1
N 0 1
N 1 3
N 3 0
N 2 3

R
R
R
R
R
R

2000.
6000.
1000.
350.
500.
11.1E3

ENDB

TRANSCONDUCTANCE

T 1 B 4 6 BETA 50.

ENDT

E 20.
E 20.

E - 0.5

cc.80

DESCRIPTION TOTALS BRANCHES 6
NODES 3 DCUR 1

EXECUTE AND PRINT
NV 1 BV 1 CV 1 CA 1 BP 1 BA 1

Integrated Computer Aided Design Systems 311

EC.APN(;

...
• •
• Jc.ES EeA'NC •
• "E. ~'keUIT DESIGN SU8SYSTEM •
• • • • • • •

DC ANAlYSIS

• • • • • • • • •
ole sou.Ji""
I",,,T

cl 1 N 0 2 It

d 2 .. 0 1 It

8 1 N .,) 1 It

&) It N 1 1 It

d S N 3 0 It

d b N Z) K

TKANSCLN.,)ucrANeE

2000.

oouo •

1000.

l§O.

WO.

E 20.

E ZOe

E -O.~

1l.1El

T 1 8 It ~ BETA 50.

ENOT

~ES~RIPTION T.,)rA~S BRANCHES 6 NOO~S) OeUR 1

EXECUTE AND PKINr NV 1 e. 1 ev 1 til 1 elV 1 8P 1

.... .,JOE \/l)U AlOes

haDES

1- 3

IfOLIAGES

O.2191tlZv8D 01 O.ll01210~O 02 0.226852710 01

f~AN'H VOL uc>£s

a~ANtHES

1- it
5- 0

e~AN'HES

1- It
5- 0

611ANtHES

1- It
5- I>

8RAN'HES

1- it
5- II

IIULJAC>ES

-O.l101Zl00u 02 -0.219lt21080 1)1
0.22od!>2110 01 0.880lt11200 01

-0.219lt22080 01 0.525093lftO 00

VOLTAGES

~:;~!!~~~~~ g~ g:!!~~~:~~ g~ -0.279lt22080 01 0.256931350-01

'uRRENTS

g:!::;g::~~g~ g:!::~:::;g:g~ -0.mmOoD-02 0.73ftOS9570-Oft

PuWtK lUSSES

0.J98 .. S333U-01 0.ft93398060-01
0.IOl9lit3~ 0-01 O. 39298ftft50-01 O. TS0166950-02 0.188610630-05

EtlAN'H 'URRENTS

eRAN'HES

1- ft
!>- 6

FINISH

'URIlENTS

g:::::~:::~:g~ g:!!:~:mg:g~ -0.219lt22060-02 0.13ftOS957D-01t

Figure lO-N ominal DC solution

This program is now ready for processing by the
ICES procedure called "Subsystem Execution." The
computer results for the Nominal DC Solution (Figure
10) are tabulated according to the circuit node voltages,
branch voltages,element voltages, element currents,

312 Fall Joint Computer Conference, 1970

element power losses, and branch currents. It is im
portant to note that the POL program is actually a
dialogue of the engineer's commands and the computer
system's solution results. Within the program, the
engineer can specify:

1. Any number of problem solutions on one com
puter run as long as each solution is initiated by
a DC or MODIFY command and terminated
by an EXECUTE command.

2. Any arbitrary order of the analysis and circuit
data commands (3 through 6) when included
between the DC and EXECUTE commands.

3. Any arbitrary order of the tabulated data within
the INPUT, TRANSCONDUCTANCE, MOD
IFY commands as long as the data is appropri
ately labeled.

APPENDIX C

MODIFICATION OF ECAP

The study of ECAP as the first ELECSYS BU bsystem
began with the gathering of source information on the
external and internal program description. The ca
pabilities of ECAP were analyzed for conversion
feasibility as determined by ICES limitations and re
quirements. The following results became the boundary
conditions for the ICETRAN conversion of ECAP:

1. The ECAP program has satisfied the ICES re
quirement specifying that engineering computer
programs must be written in FORTRAN IV,
E Level Subset;

2. The size of ECAP and time allotted for the
conversion process restricted the programming
effort to the DC Analysis portion of ECAP; and

3. The modifications will primarily consist of
adding ICETRAN subprograms for the transfer
of engineering data to the appropriate FOR
TRAN language variables utilized in ECAP.

The study also indicated that the design of the
ICETRAN language subprogram is subject to the con
current designs of two other interactive data transla
tion programs, the Command Definition Language and
the Proolem Oriented Language. In essence, then, the
design considerations in all three language programming
areas must reflect a mutual satisfaction of constraints
before the subsystem can be declared operational.

ECAP DC ANALYSIS

The ICETRAN conversion process started with the
acquisition of a disposable magnetic tape reel containing
the latest version of ECAP. Using an IBM 360/20 com
puter, the contents of the tape were displayed in the
form of a program listing and punched-card program
deck. The program listing yielded information on the
internal program logic and structure, while the card
deck served as the physical means of implementing
ICETRAN language modifications.

The DC Analysis card deck contained approximately
1200 FORTRAN IV source cards which were divided
into the following twelve subprograms (subroutines).

1. Subroutine ECA19-Passes control of program
from the ECAP Language
Processor (replaced by
ICES) to Subroutine
ECA20.

2. Subroutine ECA20-Controls processing of DC
Analysis, which includes
DC nominal solution, Sen
sitivity, Worst Case,
Standard Deviation, and
component parameter mod
ification solution.

3. Subroutine ECA22-Calculates DC nominal sol
ution.

4. Subroutine ECA23-Calculates DC nominal sol
ution.

5. Subroutine ECA24-Calculates DC Nodal Im
pedance Matrix.

6. Subroutine ECA26-Calculates DC Nodal Con
ductance Matrix.

7. Subroutine ECA25-Prints calculations of DC
nominal solution.

8. Subroutine ECA27-Controls Worst Case Anal
ysis of DC nominal solu
tion calculations.

9. Subroutine ECA28-Calculates Sensitivities,
and Standard Deviation;
and prints Sensitivities.

10. Subroutine ECA29-Prints Standard Deviation.
11. Subroutine ECA30-Modifies component pa

rameter values.
12. Subroutine ECA31-Prints type of modified

component, and modified
value during a particular
interaction cycle.

I t is noted that Subroutine ECA19 is an interface
subprogram between the DC. Analysis subprograms
and a set of subprograms known as the ECAP Language

Processor. This processor program performs the same
function as the ICES data translation programs
(ICETRAN subprograms, Command Definition Lan
guage, and Problem Oriented Language), and will be
partially replaced by a newly created set of ICETRAN
subprograms.

COMPATIBILITY OF ICETRAN AND FORTRAN

The conversion process was divided into two jobs:

1. To insure compatibility between ICETRAN
statement requirements and existing ECAP
FORTRAN IV statements, and

2. To create the necessary ICETRAN subpro
grams for the ICES data translation function.

Both tasks require a thorough knowledge of FOR
TRAN, and ICETRAN before any program modifica
tions can be undertaken.

The first job consisted of a complete inspection of all
FORTRAN language statements in the DC Analysis
program. This resulted in the modification to ICE
TRAN of two types of FORTRAN statements: The
Subroutine Statement, and Literal Constant Statement.

The Subroutine Statement appears as the first state
ment in any subroutine program. It has the following
general I CETRAN form:

SUBROUTINE name (aI, a2, ... ,an)
Where name is the subprogram name consisting of

one to six letters or digits. The first must be a letter,
but cannot start with the letters QQ.

aI, a2, . . . , an are the subroutine arguments (variable
names) of data values used in the subprogram for
calculations.

This statement IS the same as its FORTRAN
equivalent, but, in ECAP, subroutines with arguments
were written without a space between the subprogram
name and subroutine arguments; i.e., SUBROUTINE
ECA20 (ZPRL). This is critical in I CETRAN, espe
cially in the Load Module Generation task in Appendix
A of this paper. I t was found that five subroutines
(ECA20, ECA22, ECA24, ECA26, and ECA28) re
quired the appropriate spacing modification to conform
with the ICETRAN statement format.

The Literal Constant Statement is unique to ICE
TRAN and facilitates the programming of constants
containing alphameric information. It has the following
general ICETRAN form:

v='e'

Integrated Computer Aided Design Systems 313

Where v is a double precision scalar or variable name
less than six letters.

e is a set of eight or less alphameric characters set off
by apostrophes.

In ordinary FORTRAN, literal constants are defined
as decimal equivalents which are translated into a hexi
decimal representation of the literal word. For example,
in Subroutine ECA28, the integer variable N J is used
to output the letter R signifying a particular circuit
component, the Resistor. The following tabulation
compares FORTRAN and ICETRAN statement:

FORTRAN NJ = -0650100672

ICETRAN NJ='R'

After ICETRAN Precompile (System Task 1)
NJ =QQHCNV(-0650100672, +1077952576)

Before ICETRAN, the appropriate decimal equiva
lent number for ' R' was determined by a special com
puter program. Now, this program is built into ICES
as a load module program, QQHCNV, and eliminates a
previous FORTRAN programming limitation.

ICETRAN CONVERSION OF ECAP

The second conversion job had to be performed in
order to satisfy the following ECAP and ICES design
limitations:

1. All circuit data in ECAP is stored in subscripted
variable arrays.

2. The ICES Command Definition Language
(CDL) rules state that data cannot be directly
translated into subscripted variable arrays.

In order to circumvent these design limitations with
a minimum of ECAP programming changes, a solu
tion was devised that would utilize a set of ICETRAN
subprograms in conjunction with the Command
Definition Language to transfer circuit data from
temporary variables into the required subscripted
variables. In particular, the CDL could translate each
type of circuit data into a standard, predefined set of
temporary scalar variables. The CDL can then desig
nate an ICETRAN subprogram to perform the final
translation of data into a unique subscripted variable
within an array. It is important to note that each sub
program is individually executed as many times as
necessary to complete an array. The first step in this
proposed method is to tabulate all ECAP data arrays
and establish a set of temporary scalar variables for
the subprogram data translation. The following tabula-

314 Fall Joint Computer Conference, 1970

tion describes the ECAP data arrays, the corresponding
temporary. data variables, and overall data function:

ECAP Variable Temporary Function

I

Y (I)

YMIN (I)
YMAX (I)
E (I)
EM IN (I)
EMAX (I)
AMP (I)
AMPMIN (I)
AMPMAX (I)
NINIT (I)

NFIN (I)

NUMB

YT

YMINT
YMAXT
ET
ET
EMAXT
AMPT
AMPMIT
AMPMAT
NINITT

NFINT

Circuit Branch
Number

Impedance (R), Ad-
mittance (G)

Minimum R, G
MaximumR, G
Voltage Source (E)
Minimum E
Maximum E
Current Source (I)
Minimum I
Maximum I
Initial Node of Circuit

Element
Final Node of Circuit

Element
I NUMT Transconductance

Number
YTERM (I) YTERMT Transconductance

(BETA, or GM)
YTERML (I) YTERLT Minimum BETA, or

GM
YTERMH (I) YTERHT Maximum BETA, or

GM
ICOLT (I) ICOLTT Transconductance

"FROM" Branch
IROWT (I) IROWTT Transconductance

"TO" Branch

To modify data within these previous arrays, the
following variables are utilized:

VFIRST (1)

VSECND (I)

VFIRTT Nominal or First I tera
tion value

VSECNT Minimum or Number
of Increments

VLAST (I)

MOPARM (I)

MOSTEP (I)
MOBRN (I)

VLASTT

MOPART

MOSTET
NUl\IT

Maximum of Last Iter
ation value

Type of Component
(R, G, E, I, or GM)

Increment Designation
Branch or Transcon

ductance No.

To obtain the engineering results of the DC Analysis,
the following output variables are utilized:

NPRINT (1) NPR1 Prints Node Voltages
NPRINT (2) NPR2 Prints Element Cur-

rents
NPRINT (3) NPR3 Prints Element Volt-

ages
NPRINT (4) NPR4 Prints Branch Cur-

rents
NPRINT (5) NPR5 Prints Branch Voltages
NPRINT (6) NPR6 Prints Branch Power

Losses
NPRINT (7) NPR7 Prints Sensitivity

Analysis
NRPINT (10) NPR10 Prints Nodal Imped-

ance and Nodal Ad-
mittance Matrices.

In summary, the ECAP DC Analysis program was con
verted to ICETRAN in two steps. The first step re
quired that a compatibility study be performed to
check the language interface between ECAP FOR
TRAN and ICES FORTRAN (ICETRAN). It re
sulted in the modification of several ECAP FORTRAN
stat~ments which would have created ICES system
errors. The second step was required because of a de
sign limitation concerning the treatment of sub
scripted variables in the ICES Command Definition
Language. A set of ICETRAN subprograms was de
veloped to accomplish the final translation of circuit
data into ECAP subscripted variables. The completion
of both steps produced a permanently stored set of DC
Circuit Analysis subprograms.

Interactive graphic consoles-Environment and software

by ROBERT L. BECKER]\·1EYER

Research Laboratories, General Motors Corporation
Warren, Michigan

INTRODUCTION

The usual software support for graphic consoles does not
provide system services designed for the· console user
who is a production-oriented application expert. This
paper describes a console environment and high-level
language with a supporting operating system designed
for the application expert.

The aim has been to improve four troublesome areas:
programming a new application, defining input data for
functional routines, screen management and dynamic
error recovery.

The importance and acute need for improved software
of this type is substantiated by the large number of such
systems being designed and languages proposed. RAND
Corporation is developing a programmer-oriented
graphics operation.! At the University of Utah, W. M.
Newman is working on a high-level programming
system for remote graphic terminals,2 and A. van Dam
at Brown University is working on a hypertext editing
system. 3 The list is very long.

At the G.M. Research Laboratories, experience with
the DAC system4 has enabled us to evolve a console
environment incorporating those human factors in
man-machine communication which we have found to
be best. This paper describes the principal parts of that
environment with emphasis on external appearance.

The material is divided into four main sections:
graphic console environment, programming language,
procedure execution, and operating system. The prin
cipal features of the DAC programming services and
console man-machine communication techniques will be
outlined for background information. The system
facility and console appearance for selection of values
for input data will be described and illustrated. Control
of displays and interaction with procedure* execution
will also be discussed. Procedures use console displays
for a two-way communication instrument between user
and machine.

* The term procedure in this paper is a collection of computer
programs or subroutines linked with a logic structure designed
for several variations of a problem solution.

315

This environment is based on the belief that people
solving a problem using a graphic console should
determine as much of the display and execution logic as
possible. By making the programming language for
display generation and procedure logic use exactly the
communication techniques used during problem-solving
sessions, the application expert feels more at ease in a
programming situation. An additional strong aid to the
programming task is the automatic retrospective pro
gramming provided by the operating system. This allows
a console user to "capture" the solution procedure as it
evolves during his problem-solving session.

Program execution is done interpretively on an
internal structure that is, by design, amenable to change.
Most graphic console applications are "cut and try" and
highly dependent on the console user's background and
experience. The approach· and problem solution has to
be individualistic. With a flexible internal structure the
solutions can be altered many times so the final pro
cedure is tailored by the console user.

An operating system to manage screen displays,
accept all user interrupts and supervise execution will
be described in terms of the fundamental modules within
it. This system allows data to be defined by a· new
technique called "association." Association enforces a
uniformity in communication that helps to insure
usability of new programs without much experience by
the user. And yet the system is in no way dependent on
the actual appearance of the displays or assignments of
function buttons. *. The operating system** is table
driven, allowing it to service different applications and
many consoles simultaneously without restricting the

* A function button is a key or button that may be programmed
to link to a particular computer code when pushed by the console
user. These buttons may be special keys on the alphanumeric
keyboard or collected together in a separate box on the console.
** Operating system in this paper refers not to the basic system
support like 08/360, but to a collection of routines designed to
interpret pmcedure internal structure, handle all data associated
with this structure and interpret all the console user interactions
with functional parts of the console (keyboard, function button
or light pen).

316 Fall Joint Computer Conference, 1970

flexibility required by the user and at the same time
keeping the operations in the different consoles
separated.

Included is a complete example illustrating the
principal parts of this environment. Although only a
small portion of the language symbols are used in the
example, those used are among the most important.

GRAPHIC CONSOLE ENVIRONMENT

Long-range objective

A seven-year study4,5 on computer graphics with
emphasis on programming efficiency has led to the
long-range objective of a more direct path.for console
users to design solutions for their problems. Many
applications have been considered including body
design, statistical analysis, information retrieval and
project planning and controL A characteristic of these
applications is that the procedures continuously change
to incorporate improvements and new approaches. For
programming efficiency, a high-level language allowing
the application expert to program in an environment
very close to that in which they solve application
problems is needed.

DAC background

ForDAC4 system programmers designed what is
called the Descriptive Geometry Language (DGL). The
DGL statement

LN7, PT8, PT9, UF2 = INLIN(SU3, Y = 20.), RG2

makes symbolic references to geometric data. It also
uses a package of functional evaluations and subroutines
to do transformations, generate new data and other
geometric operations on the data. In DAC these
subroutines are called operators. In the DGL statement
above, the INLIN operator is used to find intersections
of surfaces and lines. We take the surface SU3 and the
plane Y = 20 and form an intersection over the range
RG2. The intersection line is LN7 with end points PT8
and PT9 and the surface normal unit vector function
UF2. A large number of such operators are available to
designers. All were written by G.M. Research
mathematicians.

Designers and engineers use these operators in
statements to write a computer program or procedure.
The system then interprets these statements one by one

in an interpretive mode. The designer or engineer, when
at the console, can start and stop at any statement in
his procedure. If need be he can back up and reexecute
any number of the statements to correct or modify the
design. Graphic Displays on the DAC console screen
provide for review and evaluation of the results. We
found, however, that application specialists were not
amenable to the discipline of a written programming
language and a search for a method of defining pro
cedures in a manner more natural to the users continued.

In the next system, groups of operators were made
available simultaneously via DAC console function
buttons (these are similar to those on the IBM 2250
function keyboard). The groups were called "overlays"5
because as each group became available, a celluloid
sheet with identifying labels for that group was placed
over the keyboard. In general, operators were grouped
by function; for example, the SURFACE overlay
operators dealt with surface definition problems. There
were eight overlays in all. The coding for these operators
was done by system programmers and required 13 to 30
man-months per overlay . Using a combination of
Descriptive Geometry Language procedures and over
lays, the DAC system is now being used heavily for
production work.

Based on our experience, the next development was to
communicate with the user through pictogram6 repre
sentations of the operators. Through considerable
experimentation with DAC-experienced users we were
led to the amalgam of proven DAC techniques and
pictogram communication which constitutes our present
console environment.

Improved console environment

The new environment provides the same operators as
were available through the function buttons of an
overlay in the previous system. The improvement is
obtained by pictorial communication between the
mathematical function routines stored internally to the
computer and the man sitting at the console who wants
to use them in a problem solution.

Screen management is carried out by dividing the
console display area into three function areas. A typical
screen format is shown in Figure 1. The upper area is
called the work area. The lower right-hand area is known
as the operator area and in some ways corresponds to the
celluloid overlay of DAC. The lower left-hand area is
known as the control area. The operating system
distinguishes between console user actions in these areas
and responds accordingly. The display in the work area
shows three parts of a design problem: a windshield
surface, some lines for the windshield wiper pattern and

the rear view mirror subassembly. * As the design is
evolved, the modifications and additions are shown in
this area of the screen.

The operator area in Figure 1 contains only text
describing intersection operations and thus wastes
communication potential of a graphic console. Contrast
this with the operator area shown in Figure 2 where a
pictorial representation, a pictogram (6, page 384), of
the functional capabilities of the operator realizes more
of this power.

The pictograms in the operator area show three types
of geometric intersections to determining an intersection
point. These illustrations, if well done, have a "uni
versality" that will transcend the limitations of the
prose equivalent shown in Figure 1. The differences
between these types of intersections and the geometric
elements involved is readily understood by those trained
in elementary geometry regardless of the way in which
they express the concept, as a mathematician or
designer. Consider the problem of designing a tool used
for automobile body panels called a die shoe and having
people from different departments working on problems
related to making this die shoe. Different jargon may be
used by the departments, but all persons will recognize
a blueprint or stylized drawing (or pictogram) of this
part. A simplification of the drawing of this part with
emphasis on the possible design operations can be shown

Proceed
MrNe Up

Exit
Sign Off

+

INTERSECTION POINT OPERATOR

SELECT TWO SELECT A LINE
SKEW LINES AND SURFACE

LINE I LINE

II NE 2 SURFACE

Figure 1-Display area format

* A subassembly is the automobile body designer's term for a
detail drawing of a subpart of a major assembly. For example,
a door lock subassembly of the door panel.

PrOCeed
Move Up

Exit
Sign Off

Interactive Graphic Consoles 317

+

Figure 2-External appearance of a graphic operator

in the operator area and the operator will be a useful
tool for people in any of the involved departments.

In the control area there are four possible controls.
The console user transmits his wishes for display control
and execution interruption to the operating system
through this area. Use of the three functional areas is
described in more detail below.

Suppose the user wished to find the intersection of a
surface and a line. These two parameters are indicated
in the center pictogram which represents this operation.
The user must supply the values for the parameters
from the work area display, however. The order in
which the values are defined is arbitrary. The user
starts by selecting with the light pen either the surface
or the line in the middle pictogram. This first selection
tells the system two things, which type of intersection is
to be calculated and which parameter is to be supplied
first.

The choice of parameters is done by associating each
stylized parameter in the pictogram with an actual
counterpart in the work area, using the light pen to
indicate the two members of the correspondence. The
first part of the association is made in the pictogram
allowing the system to limit the user's choice in the work
area to elements of compatible type. This prevents such
erroneous associations as a line parameter with a surface
element. This error prevention is done using the
technique of selective enabling described below. As soon
as all the parameters for the computation have been
defined, the system calls the appropriate subroutine
passing the work area line and surface chosen by the

318 Fall Joint Computer Conference, 1970

user. If mathematically possible, the subroutine com
putes the intersection and passes the intersection point
back to the operator for display in the work area of the
screen.

At any time prior to the completion of parameter
definition and the subroutine call, the user may redefine
any of the data values by a simple reassociation. He first
selects the parameter in the pictogram that is to be
redefined and the system prepares to override the work
area data choice made earlier. The user's second
selection of a work area item completes the parameter
redefinition.

In the windshield example, the user might associate
the line parameter in the pictogram with the center line
of the rear view mirror and the surface parameter with
the windshield surface. The windshield surface is
selected by placing the light pen over any part of the
boundary lines of the windshield.

The light pen selections make use of both selective
enabling and reactive displays.7 On display in the work
area of the example are lines, surfaces and points. The
operator can cause the system to enable fOl"'selection
lines only, points only, surfaces only or any combination.
This selective enabling is controlled by information
stored with each parameter in the operator and passed
to the system when the user selects a parameter in a
pictogram. All attempts to select items which are not
enabled are ignored. Selective enabling is not used in the
operator area display; all parameter representations in
this area are always enabled, allowing the user to
respecify parameters should he make an error.

The reactive display technique allows the user to
ensure that the intended element is being selected. This
is particularly important in crowded parts of the work
area where elements are close together. When a light pen
is over an enabled item, it is intensified and will remain
so until it is selected by removal of the pen from the
screen or until the pen is moved away from the item.
The user may thus adjust the position of the pen on the
screen until the correct element is intensified and then
make his selection. As a further aid to the user, only
enabled items are intensified.

The words on display in the control area represent
functions which can be executed independently of the
current operator and of the function being performed by
the operator. For instance, if the user selects "lVrOVE
UP," the operator is interrupted and the items on
display in the work area are shifted or translated up
some predetermined distance.

If an error occurs while using any operator, an
appropriate message can be put on display in the
operator area and the entire interpretation of the
operator will stop until the user acknowledges the error
with the light pen. Thus he has an opportunity to take

some immediate corrective action and continue. Re
sponse to an error might involve a change to a parameter
value and reexecution of that part of the operator or the
current operator may be pushed down and another
operator called up to generate new data. This new data
may then be used to replace some parameter value that
caused the error condition. The operator may also be
programmed to open an auxiliary path allowing the
user to supply extra data needed to overcome the error
condition. The system can provide some standard error
escapes, but the operator can be programmed to have
almost an unlimited variety of error recovery paths
dynamically selectable by the user.

With the same operating system supporting all
applications for screen management and interrupt
processing, data selection by association becomes para
mount and can be fine-tuned giving the console user
good response to his requests. All operators have a
similar internal structure: an APL8 structure generated
by APL statements within a system module from the
graphic operator source program. This structure is
illustrated for the example in Figure 2 later in the paper.
With similar internal structures a more uniform ap
proach to the console environment can be assured.
Uniformity is important because any departure from a
conventional course of action is a distraction for the
user. This became evident while observing DAC users
working in the overlay environment. Each overlay was
considered an experiment in human factors so the
standard course of action varied from overlay to overlay
and resulted in confusion for the user when switching
overlays.

OPERATOR PROGRAlVLLvIING LANGUAGE

Operator programming

The operator in the previous example has shown that
an operator must be able to present displays in the
operator area and associate each parameter of the
operator with the data selected by the console user. An
operator must also be able to invoke subroutines and
other operators, display the output from a subroutine
call, and give the console user the ability to select
alternative ways to solve his problem. The flow of logic
in an operator is such that a subroutine will not be
called until all its parameters have been given values.
As soon as the last parameter receives its value the
subroutine is called. The user has freedom of choice
of the order in which he specifies parameters,. thus he
may define values for the parameters of several sub
routines in a mingled sequence. For this reason the order

in which the statements of an operator will be executed
is indeterminate at the time of programming. This
contrasts with the usual type of program where
statements are executed in strict sequence except for
branching. The language used to program operators
must not only provide for simultaneous flow of data and
logic, but must allow an operator to begin execution at
almost any statement. Once the initial display for an
operator is made in the operator area, the user's selection
of the available parameters determines where the
operating system starts operator interpretation.

Graphical operator language and representation

The illustration of Figure 3 shows both the graphic
operator interface (operator picture) as before and a
graphic representation of the operator program, the
programmer's view of the operator. This program
representation is called a logic diagram since it describes
the logic flow of the operator. It is the programmer's
source program and is never shown to the console user
in an application problem-solving situation; however,
since operators are programmed at the screen in the
same way in which the application user solves his
problem, this diagram forms the work area display for
the operator programmer. The programming language
for operators is really a set of operators which add
symbols to the logic diagram and build the structure
to be used by the interpreter during execution. In
Figure 3 dashed lines show the connection between
symbols in the diagram that represent data parameters
and their graphic display representation in the operator
area.

This operator consists of three alternative waYil of
generating an intersection point. Each alternative is
shown as a horizontal line of symbols and ends with an
X symbol. Each line of symbols is referred to as an
alternative path. The upper path, represented in the
operator picture by the left illustration, covers the case
of intersecting two skew lines, and is made up of two AS
symbols, a CL and a DS symbol. The middle path
represents an intersection of a line and surface and the
lower path the intersection of two straight lines. The
three alternative paths are joined by a vertical line to
the AL or alternative symbol. With the AL symbol the
console user is free to select the intersection construction
that fits his needs for the problem at hand. Anyone of
the parameters may be selected to start the operator
and this selection will determine which alternative is to
be used.

In the first alternative path, the AS symbol repre
senting a data parameter denotes a data association as
described above. Part of the information stored with

Proceed
Move Up

Exit
Sign Off

Interactive Graphic Consoles 319

+ +

(iJiJ*
I I ~ \ , I
I I I \ , ,

~-_____ , , \ , I ,

I NTPT ' , \ \ ' ,
I I I \ ' I
L--OO-AL~I I , ' , I

01 I \ 102 031 : 09 ,
AS--AS-+CL-,-, os ~
02 03,09" I
(X) " I I I 0405 (X) 10
OO---AS-AS~AS--, CL-OS~

04 ~/ (X) I 10
",/ 0708 I 11

.----AS--AS --Cl-' DS~
07'" 08 11/

" '" __ '

Figure 3-Example operator

this symbol is a data-type used for selective enabling.
The number 02 below the AS is called a data code. The
data code is no different from a conventional parameter
name except it is a more compact way to display the
parameter. If the parameter name is desired, it can be
displayed along with data declarations and all other
information about the symbol. The data code also
represents an index into the data table (Figure 5) used
at execution time to store the data values assigned to
each parameter in the operator. If a complete parameter
cross reference is desired that data code may be selected
and all references' to that parameter will be shown by
intensifying all diagram symbols using that parameter.
The data code number is a sequence of numbers
generated by the system and assigned to symbols
requiring a data code as they are added to the diagram
by the programmer.

The third symbol, a CL symbol, represents a sub
routine call. The subroutine name is stored internally
with the symbol and may be displayed if requested by
the user. The data code 02 from the first symbol and
data code 03 from the second symbol are shown above
the CL. This shows 02 and 03 to be input items for the

320 Fall Joint Computer Conference, 1970

CL. Below the CL in the first path is data code 09. This
is the output data, the intersection point, from the
subroutine.

The DS symbol, next on the first alternative path,
means that a display of a computed data item is to be
made in the work area. Data code 09 above the DS
symbol indicates that this parameter is to be displayed.

All symbols in the logic diagram are interconnected
by a solid line. To follow this line from symbol to symbol
will show a logic flow within the operator. A sequence of
interconnected symbols will end 'with an X symbol
representing a path end. The two AS symbols, the CL
and DS symbol of the first path are interconnected and
terminated with the X signifying a complete path for
one choice of the alternative. When the X is reached the
logic flow returns to the next higher level and continues.
An X symbol on the highest level path terminates the
operator. The logic diagram differs from the standard
flow chart in that a path of symbols has level significance
and the logic flow automatically moves to the next
higher level when the path end is reached. An operator
logic diagram also has a larger set of symbols than the
average flow chart has kinds of polygons.

Further explanation of the alternative CAL) symbol
can now be given. It is possible to make displayed items
a part of more than one illustration, but regrettably,
this is not demonstrated in the example. There must be
at least one unique item to each AL path to allow the
system to determine which alternative the user intends
to use from the selection of a unique combination of
items. The unwanted alternatives are removed from the
operator picture area, further aiding the user by
deleting possible erroneous choices. The remaining
pictogram can then be enriched by additional required
parameters of lesser importance. This is shown in the
example by the OD, operator display, in the middle AL
path.

The OD symbol allows the programmer to determine
the composition of the operator area. Operators may
have one or more operator pictures and additions may
be made to the current picture. The OD symbol serves
both of these functions. Any OD on the principal or
highest level path means that the current picture is to be
wiped out and a new composition begins. An OD serving
this function is shown in the example immediately after
the name INTPT. The second OD in the example on the
middle alternative path shows the second function of an
OD. This OD is a tolerance value, unimportant to the
user of the operator until that path is chosen so the
display for that parameter is held back until needed.
The name symbol, INTPT in the example, is the
initializer for the operator containing required limits
and constants.

The Operator Programming Language Compiler

allows the programmer to start building up the logic
diagram in the work area symbol by symbol. At any
desired time, the logic diagram can be shifted to the
operator area and an operator picture built up in the
work area. Light pen associations between diagram
symbols and items on display in the work area build up
the operator graphic interface. There are many sources
for displays that may become parts of operator pictures
including a picture library, digitizing physical models,
parts of work area displays resulting from a design
session and a sketchpad facility.

The operator programmer can make rapid and
frequent changes to his operators. The display for the
operator picture can be altered in any way and any
change desired can be made to the logic diagrams. The
language compiler will automatically update the internal
structure to reflect the changes.

The operators can be executed with a minimum of the
logic diagram programmed so it can be built "cut and
try." Our DAC experience shows that this is much
faster for this type of work than a conventional
procedural language that requires careful preplanning
of all logic and all too often complete rewriting to
incorporate modifications.

PROCEDURE EXECUTION

Interpretive execution

A module of the operating system called the Executor
proceeds from symbol to symbol performing the
execution as in conventional interpreters. 1\1ajor symbols
like NAlVIE, OD, AL, AS and CL each have sub
routines to perform all the functions required. In this
example, the NAME processor sets up tables that drive
the operating system. These are illustrated in Figure 5
and discussed briefly in the operating system section.

After initialization the OD module is called. This
clears the operator area display and searches the
operator structure for symbols with displays, e.g., an
AS symbol. The display information is built up until
another OD symbol is found or the lowest path end
comes up. The picture is then painted on the screen. In
the example the operator picture would be painted as
shown in Figure 2.

Suggesied inpui sequence

In our example the next symbol is the AL and the
suggested input sequence scheme comes into play. This
is a prompting mechanism to aid the user with an
unfamiliar operator and also to reduce the number of

light pen selections that must be made. Its real function
is to make the first selection of each association for the
user. The first path of the AL and the first AS (with data
code 02 below) is suggested. Externally, the line in the
pictogram corresponding to that AS is intensified,
selective enabling is set up based on the data type stored
with the AS symbol, and the system waits for the user's
work area light pen selection to complete the association.
However, all other parameters in the work area remain
enabled and the user may override the suggestion. The
suggested input sequence is then interrupted by
selecting the parameter he requires. If this changes AL
paths the selected path is used for suggestion, otherwise
the system reverts to where the sequence was inter
rupted. In the windshield design example above, where
we suggested the operator was used to intersect the rear
view mirror center line with the windshield surface, the
first selection of the line in the middle pictogram of the
operator picture would be an interruption to the
suggested input sequence. The sequence would be
shifted from the upper path of the AL to the middle
path. The suggested input sequence is determined
entirely by programming, according to the order of
symbols in the logic structure. The CL, call, symbol
causes the Executor to check whether all parameters
required for the call have been given values so that the
subroutine may be called.

The CL symbol has a feature not available for
standard subroutine calls. It may be designated as
"once only" or "continuous" execution. The "once only"
form is the standard subroutine call but "continuous"
means that as long as anyone input parameter is
continually being given a new data value the subroutine
will continue to be reexecuted allowing a dynamic
change to an affected part of the design in the work
picture. This allows the user to make many small
adjustments to his work picture and monitor the result.

Operator internal structure

A portion of the internal APL structure and corre
sponding logic diagram is shown in Figure 4. The
language compiler, as directed by the logic diagram
built by the programmer, generates the internal struc
ture by executing APL9 statements.

The structure is composed of blocks of information or
entities and sets of entities with at least one kind of
entity for each symbol in the language. The entities can
be connected together into a set by internal pointers to
the next entity and to the previous entity in the set.
Entities may be members of one or more sets. There is
an entity type corresponding to each symbol type in the
operator logic diagrams.

Interactive Graphic Consoles 321

INTPT

LOD--Al~
OIr- 02 03 09

AS--AS--. Cl--DS~
02 03 09

1
1---
I
I

Figure 4-Internal APL structure

There are many ways an operator structure may be
modified. The entities can be changed, deleted or hooked
up in sets in various ways. These are local structure
changes with the advantage that they do not require
regeneration of the rest of the structure.

In the example of Figure 4, the logic diagram symbols
are each translated to an entity type in the internal
structure while logic flow and data flow determine the
set connections. Connected to the AL entity are its
three alternative paths and· most of the entities for the
intersection of skew lines path are shown. Also shown in
Figure 4 are two node blocks which serve to connect the
DATA entity (data code 09) to a set in the CL entity
and another set, but with the same set name, in the DS
entity. 9

Hierarchical program structures

A very important symbol not shown in the example
allows an existing operator to become a substructure to
a higher level new structure being programmed. It is the
primitive operator or PO symbol. An existing structure,
when included in _another structure, is a lower hier
archical structure and therefore primitive relative to
the higher level structure. The PO is like an external
subroutine with procedural language programs. This
means any operator structure can become a substructure
to another operator's structure. Large complicated

322 Fall Joint Computer Conference, 1970

I nitializer

Tables:
Control tnfor~ation 1
Data Type
Operator
Physical Screen Area

Executor

Figure 5-Console operating system modules

structures can be built up in modular fashion from small
simple structures.

A utomatic retrospective programming

As a problem is being solved using operator after
operator, the operating system can be told to keep a
history trace, i.e., to "capture" the procedure. The
system builds a simple structure and generates a new
PO symbol in that structure for each new operator as it
is called. The system tables generated for executionlO of
that operator are saved with the PO. When this simple
structure is complete, just a string of PO symbols, it is
modifiable in all the standard ways for operator logic
diagram generation and modification. Thus a new
operator is generated without programming a logic
structure, symbol by symbol, in the standard way. The
new operator as a simple linking of existing structures
was automatically generated by the system from the
history trace that was kept. It is retrospective in show
ing all steps to the new procedure including all data used
as input and even the false starts that were abandoned.

CONSOLE OPERATING SYSTEM

System modules and driver tables

The interpretive processing of the operator internal
structures is done by system modules driven by two

groups of tables as shown in Figure 5. One group of
tables contains information concerning a particular
application, screen formatting, data types, graphic
orders for control area display, function button
assignments, etc. This information remains constant
during execution and thus these tables augmenting all
the individual operator structures may be shared
between a number of consoles working on the same
application. The second group contains information
about the individual console user and the current
operator being executed. The use of a standard set of
system modules which are controlled by tables allows an
application to be tailored to its particular needs. At the
same time a uniform approach to the environment is
enforced. People working in a particular application are
never "surprised" by the kinds of reactions that are
expected from them in using their operators just
because some operator programmer wished for notoriety
by giving his operators a unique set of conventions.

The initializer allocates and initializes the tables
universal to an application. This initialization informa
tion is supplied by a programmer using one of the
programming operators. Different initializing informa
tion is called in if a switch is made from one application
to another. The control information table determines
the control area display. The data-type table indicates
types of data to be permitted when setting up for
selective enabling for an association. The physical
screen area table formats the screen into work area,
operator area and control area. The operator table
builds up a list of operators used when the user requests
automatic retrospective programming.

The name processor starts interpretation of a
particular operator. The tables it keeps are for the
current operator only. They are saved if a history is
being kept, but otherwise freed when the operator is
completed.

The executor module carries the structure inter
pretingalong from symbol to symbol. It determines
from the entity encountered what processor to call. If a
user steps out of the suggested input sequence, the
executor must make the change in logic flow and then,
when the association is completed, revert to the
suggested input sequence.

PROJECT DEVELOPlVIENT STATUS AND
PLANS

An experimental implementation of the key system
modules and major symbol processors has been made for
the IBIVI 360/67, a paged time-shared machine, with
several 2250 III graphic consoles attached. Positive
results were shown for the proposed internal structure

for operators and system management of the three
functional areas of the screen.

Further development for the operator programming
language is in progress. The power of the language needs
to be increased to include dynamic expressions for the
console user while in a problem-solving mode. These are
basic arithmetic expressions on numerical data. A higher
level expression permitting application defined expres
sions on the application dependent variables is also
under consideration. An example of the higher level
expression is the automatic calling up by the system of
the two skew line intersection point operator when a
point item is needed as data and the console user has
just selected two skew lines. lVlore development for the
automatic retrospective programming facility is also
planned.

SU1VIl\1ARY

The treatment of design problems at a graphic console
demands communication between man and machine in
a manner which is natural to the user so that he may
concentrate on finding application problem solutions.
This type of interaction can be achieved by presenting
the user with pictograms symbolizing concepts and
allowing him to select data by making an association
between elements of the pictogram and items of the
work picture.

Through selective enabling and reactive displays the
number of erroneous selections can be greatly reduced.
Since data selections may take place in any order, the
operators which manipulate the data differ from normal
programs in that the statements are not executed in a
predetermined order.

The programming of these operators is done in the
same graphic environment as application problem
solving using the same operator techniques. Through a
recording technique the sequence of operations at a
console may be captured and used as new operators.

The operating system will manage three functional
areas of the screen and permit extensive user interaction
with the system to control problem execution and the
screen displays. A uniformity of environment can be
achieved throughout all the programs of an application
that will make the user more at ease and minimize
learning to use new programs.

Interactive Graphic Consoles 323

ACKNOWLEDGl\1ENTS

The techniques and ideas presented in this paper have
been developed over a period of time at Generall\10tors
Research Laboratories as a cooperative effort of many
people working on DAC I and successor projects.
I thaIlk l\1ichael l\1arcotty for his assistance in the
preparation of the material for this paper.

REFERENCES

1 B W BOEM et al
POGO: Programmer-Oriented Graphics Operation
Proc of the Fall Joint Computer Conference Vol 34 pp
321-330 AFIPS Press Montvale New Jersey 1969

2 W M NEWMAN
A high-level programming system for a remote time-shared
graphics terminal
Conference on Computer Graphics University of Illinois
Urbana Illinois April 1969

3 A VAN DAM
Hypertex editing system for the /360
Conference on Computer Graphics University of Illinois
Urbana Illinois April 1969

4 E L JACKS
A laboratory for the study of graphical man-machine
communication
Proc of the Fall Joint Computer Conference Vol 26
pp 343-350 Spartan Books Baltimore Maryland 1964

5 B HARGREAVES et al
I mage processing hardware for a man-machine graphical
communication system
Proc of the Fall Joint Computer Conference Vol 26
pp 363-386 Spartan Books Baltimore Maryland 1964

6 P A KOLERS
Some formal characteristics of pictograms
American Scientist Vol 57 No 3 pp 348-363 1969

7 J D JOYCE M J CIANCIOLO
Reactive displays: improving man-machine communication
Proc of the Fall Joint Computer Conference Vol 31
pp 713-721 Thompson Book Company Washington DC
1967

8 G G DODD
AP~A language for associative data handling in PL/I
Proc of the Fall Joint Computer Conference Vol 29
pp 677-684 Spartan Books Washington D C 1966

9 G G DODD
AP ~ Associative programming language user's manual
Research Publication GMR 622 General Motors
Corporation Warren Michigan

10 G G DODD
Associative information techniques
Associative Aspects of Problem Solving p 51
American Elsevier Publishing Company Inc
New York New York 1970

MDS-A unique project in computer
assisted mathematics

by ROLFE H. NEWTON and PAUL W. VONHOF

Rochester Institute of Technology
Rochester, New York

INTRODUCTION-A MATHEMATICS

DIAGNOSTIC SYSTEM?!!!

In the education of the deaf, are there problems so
special that their solution justifies the use of a com
puter? And if there are such problems, how can the
computer best be used to solve them? Early in the
history of the National Technical Institute for the
Deaf, its administrators voted "Yes" on the first
question and "Let's find out" on the second; As a
result of these decisions, an IBM 1500 Instructional
System was included in the Institute's original home
on the campus of the Rochester Institute of Tech
nology.

The National Technical Institute for the Deaf
(NTID), is the only institution devoted exclusively
to education of the deaf in technical and scientific
studies beyond the secondary level. The NTID is
a division of the Rochester Institute of Technology,
and NTID students studying at the degree-level attend
classes that are predominately populated by "hearing"
students, students without an aural impairment. RIT
is justly proud of its status as the only conventional
"hearing" campus in the nation to educate large
numbers of deaf students.

There are, of course, special problems associated
with providing the means by which the deaf student
can adapt to the environment of the conventional
classroom. The instructor's lectures, inaudible to the
deaf student, must be made meaningful by the use of
interpreters and tutoring. The instructor must re
ceive training in the consideration of the special needs
of the deaf. Hearing students volunteer to make their
lecture-notes available to the deaf by means of special
self-duplicating notebooks. These are some of the de
vices that work toward placing the deaf degree-can
didate on an equal basis with his hearing coIIeague.

325

But it is in preparing the NTID student for par
ticipation in regular RIT classes that the most in
teresting problems occur. The problem most directly
related to pedagogy is inadequacy of educational
background. The educational backgrounds of incoming
NTID students generaIIy contain serious deficits in
the information, skiIIs, and attitudes necessary to
success in degree programs at RIT. It is the responsi
bility of NTID to rectify such instructional short
comings before the deaf student is exposed to the RIT
classroom. The responsibility for filling gaps in the
student's secondary education falls to the NTID
Vestibule Program. The project described in this article
was done by the Computer Assisted Instruction Sec
tion of NTID in support of the Vestibule Program.

But how did the remediation of instructional de
ficiencies become a project in computer-assisted in
struction? What special characteristics of the needs
of NTID' students make them susceptive to fulfillment
by computer-assisted instruction? What special at
tributes does the computer have that justifies its use
in the diagnosis and treatment of ailing educational
backgrounds?

Initially, the answers to these questions will be
given in general terms. First let us say that the re
mediation of instructional deficiencies became a CAl
project because (1) the nature of the problem seemed
appropriate to solution by computer, and (2) money
had been included in the budget for such an activity.

If the solution of an educational problem is to be
appropriate to the computer, the problem should be
complex enough that its solution requires the com
puter's capacity for easily manipulating large blocks
of data. In particular, the problem should need to
apply the computer's almost infinite capability for
conditional branching-the ability to sift, winnow,
and select output data-that depend on the nature
of the input. (For example, the computer can pre-

326 Fall Joint Computer Conference, 1970

scribe appropriate instruction if the student's answer
to a question indicated the need for such instruction.
A different response to the same question might
"branch" the student to a different remedial sequence
on the same topic or to a new topic, depending on the
correctness of the response.) It is, however, inap
propriate to use the computer unless the computer is
needed.

The implication of this stipulation that the com
puter's data-handling capability be needed is that it
is usually not appropriate to use CAl unless there
is great need for the program to adapt itself to a
highly disparate set of individual needs. A situation
appropriate to use of CAl might be one in which the
subject area is inordinately broad and/or the edu
cational backgrounds of students are extremely diverse.

Such a set of conditions exists among students en
tering the NTID. Probably the most prevalent in
structional deficiencies are within the subject-area
of pre-college mathematics. IVlany students display
serious shortcomings in this area of study so vitally
important to success in scientific and technical sub
jects. But, in any large group of students, the defects
generally appear over the entire range of the subject
from arithmetic to analytic geometry, with no means
of predicting what deficiencies any individual will
display. When the range of potential deficiency en
compasses the entire mathematics curriculum from
grades 8 through 12, the problem of ferreting out specific
lacks in the mathematical background of any in
dividual student is formidable. General review of
topic-areas over a range as broad as the secondary
mathematics curriculum is too time-consuming and
inefficient to be practical. Therefore, the diagnosis
of problem-areas must pin-point all the specific bottle
necks in the mathematics behavior of each individual
student. The objective of such a precise diagnosis
is that the resulting remedial instruction will en
courage the student to acquire all the missing learning
behaviors and only those behaviors that are truly
missing from his behavioral repertoire. The result
of such a program is that the student works full-time
in areas of deficiency and is never exposed to material
in which he has demonstrated proficiency.

Achieving this goal under the conditions described
in preceding paragraphs is a task that is peculiarly
appropriate to the unique capabilities of a computer
based education system. So the first task assigned to
the CAl Section of NTID was to design an instructional
system that would diagnose and remediate defects
in the mathematical backgrounds of incoming and
prospective NTID students. The instructional program
by which we are pinpointing defects in the skills that

comprise secondary mathematics has been. named a
Mathematics Diagnostic System (MDS).

This article not only describes the rationale, design,
and structure of the MDS, but also provides some
insight into its historical and philosophical aspects.
The article also contains evaluative information and
conclusions resulting from the first field tests.

The next few paragraphs very briefly describe the
events that led to the creation and utilization of our
J\t{athematics Diagnostic System (MDS).

HISTORY

With the passage of Public Law 89-36 in 1965, the
National Technical Institute for the Deaf came into
being. By 1968 the Rochester Institute of Technology
had been chosen as its home, and a small cadre of key
faculty-staff personnel became the organizational
nucleus. The Applied Science Building was designated
the location for NTID until permanent housing could
be completed. June, 1968, brought the appointment of
a director for the as yet nonexistent CAl Section of
the NTID. In July, 1968, IBM representatives in
stalled the IBJ\t{ 1500 Instructional System. Between
July and September of 1968, technically-oriented people
joined the section, and by October, 1968, there were,
in addition to the director, an operations manager, a
systems programmer, a computer operator, and a
keypunch operator.

By November of 1968, RIT and NTID faculty
members were trying their hands at writing instruc
tional programs for CAl, and student-assistants were
translating these programs into a computer language
called Coursewriter II. Lacking mediation by trained
CAl course development personnel, this method of
producing CAl materials proved to be not entirely
satisfactory. As yet there were no CAl course develop
ment people on board.

Meanwhile, in July, at about the same time the
1500 System was being installed, steps were being
taken that would eventuate in the Mathematics
Diagnostic System (MDS). Once secondary mathemat
ics was identified as an area of study appropriate to
the computer, Dr. Robert L. Gering, then director
of the CAl project, was apprised of the need to up
grade the mathematical backgrounds of NTID stu
dents ultimately to be registered in RIT's Calculus
75-101. Though he did not at that time know what
the exact solution to such a monumental problem
would be, Dr. Gering exhibited the educational acu
men for which he is justly respected; he decided that,
before a solution was attempted, the problem should
be defined. He decided that before trying to provide

students with skills prerequisite to learning the calcu
lus, these prerequisite skills had to be defined in detail
and in behavioral terms.

This approach to producing a diagnostic-remedial
instrument resulted in the Summer Mathematics
Workship in July, 1968. The Workshop was charged
with defining the skills necessary to the study of
Calculus 75-101 and therefore consisted of members
of the RIT mathematics faculty as well as members
of the NTID faculty and staff. The efforts of this
group were reasonably successful; it identified 23
subject-matter areas required for success in studying
the calculus, pointed to some of the skills required,
and indicated the emphasis to be placed on the various
topics. As might have been expected, this activity
did not produce a detailed statement of terminal be
haviors; what resulted was a fairly comprehensive
statement of projected course content.

Until December, 1968, the Summer Mathematics
Workshop was the last activity that led directly to
the development of the lVIDS.

In December, 1968, I was fortunate (I think), to
be appointed CAl Course Development Leader at
the NTID. Before coming to the NTID, I had spent
six years at Friden, Inc. (a division of the Singer Com
pany), applying educational technology to the problems
of training service technicians. Although the position
at Friden had required the creation and implemen
tation of multi-media instructional systems, use of CAl
had not yet been made available to us. W'hen the East
man Kodak Company offered the opportunity to
extend the scope of the job to include using the com
puter in education, I joined that company as an edu
cation communications specialist. W'hile at Kodak,
I developed some of the CAl techniques that later
were to facilitate the creation of the MDS.

Although no signs of the existence of an MDS were
to become visible for several months, during the next
eight months every working hour was devoted to some
aspect of the MDS. There were questions of rationale
and instructional strategy to be decided. Objectives
(terminal behaviors) and subobjectives (enabling
behaviors) had to be decided upon. And above all,
when problems of strategy, rationale, and purpose
had been resolved, there remained the overriding
urgent question, "Who will do the enormous amount
of rather specialized work that is required by this
project?"

For, contrary to the somewhat naive expectations
of the NTID administrators, this was not a job to
be done by one lone CAl course development special
ist. Even with the cooperation of a few subject-mat
ter experts, if this task were to be completed in time
to have maximum effect, it would require a substantial

Unique Project in Computer Assisted Mathematics 327

number of trained instructional programmers working
overtime. Getting additional people was a sticky
problem, for the table of organization provided for
but a limited number of full-time CAl personnel;
and most of these were allocated to technical support
of course development activities. And if authorization
to expand the course development staff could be ob
tained, where would we find competent CAl instruc
tional programmers who were available and who
would fit into a limited budget? People capable of
this kind of work are rare, usually they are already
employed, and they are expensive. It was obvious
that if instructional programmers were to be added
to the staff, they would have to be "home grown"
trained at the NTID. A time-consuming process and
not conducive to producing a l\1:athematics Diagnostic
System.

But what if development of the l\1:DS and the
training of personnel could be done simultaneously?
Why not a sort of "Learn as you earn" operation in
which the steps in developing the l\1:DS coincided with
the acquisition of expertise in educational technology?
In fact, could the production of the l\1:DS be organized
in such a way that it could be fragmentized; so that
it could be done by a large group of non-specialists
having backgrounds appropriate to learning the rudi
ments of instructional programming? We decided
that this approach was possible, and acted accordingly.
By l\1:arch, 1969, we had employed a group of ten people
having scientific and/or mathematical backgrounds
and had them working under the supervision of l\1:r.
Alex Andres, an educational consultant from the
University of Pittsburgh. The term of their employ
ment was to end June 30, 1969. Because all but one
member of the group were female, the group became
known as the "Distaff Practicum".

By July 1, the Distaff Practicum had, within the
constraint of a predetermined logic, produced the
first draft of the diagnostic portion of the l\1:DS. In
addition, they had produced first drafts of objectives
and subobjectives.Enough training had occurred that,
by excellence of performance and by expressed in
clination, three members of the Practicum were con
sidered to be usable on a full-time basis. So when the
term of the Distaff Practicum ended, it had not only
achieved its goals but had also provided the CAl sec
tion of NTID with an organizational nucleus of three
excellent people. In addition, one member of the
Practicum, a chemist, was retained by NTID's Divi
sion of Instructional Affairs.

Previous paragraphs have presented the Distaff
Practicum's work as being not only design and pro
duction but also as a sort of boot-strap training activity;
the members were on a "learn as you earn" basis.

328 Fall Joint Computer Conference, 1970

]Vlost of this training was of informal nature. It is,
however, worth mentioning at this point that some
formal training occurred when 8 to 10 days of the
group's time was spent in going through the Instruc
tional Technology Workshop (ITW) produced by
General Programmed Teaching. Bill Deterline, presi
dent of GPT, was the guiding spirit behind producing
the ITW workshop.

Besides ITW, the only other formal training in
struments made available to CAl instructional pro
grammers at NTID have been standard texts by
Skinner, Lysaught and Williams,]\iager, Bloom,
IVlarkle, and others. One text, not so well known as
the others, is this manual The Creation of Remedial
Courses for CAl, written at NTID between January
and June of 1969. While written primarily as a training
instrument, it functions equally well as documentation
of the principles, policies, and procedures used by
CAI-NTID to ensure effective instruction by means
of the computer.

We don't make any extravagant claims for this
little manual--it is just a "how to" book on causing
the computer to be a tutor. Perhaps this much should
be said on the subject of manuals that deal with the
"nuts and bolts" of CAl instructional programming:
They are scarce. The scarcity of such materials proba
bly accounts for most of the interest shown on our
manual. For example, I was surprised and flattered
when Dr. Gabriel Ofiesh, Director of the Center for
Educational Technology of Catholic University, re
quested multiple copies for use in graduate courses
in educational technology. IBM has requested per
mission to use the manual in some of its training activi
ties. If you have an interest in, or a use for, such a
handbook, it will be sent to you on request.

Using the manual to set the ground-rules for com
pleting the first rough approximation of the MDS,
the months of July through September, 1969, were
spent in revising and polishing existing diagnostic
test items, formalizing remedial prescriptions, and
translating the diagnostic portion of the MDS into
computer language, Course writer II. (In the first
version of MDS, remedial prescriptions were adminis
tered by an instructor-proctor.)

By the last week in September, the writing and
programming of the MDS was sufficiently advanced
that we were ready to work with our first group of
test subjects; we were ready to begin the initial field
test. On September 22, 1969, eight deaf students and
one hearing student sat down at the computer ter
minals and began item 1 of segment 1 of the Mathe
matics Diagnostic System (MDS). Three months
later, six of the nine were considered well-prepared
for entry into Calculus 75-101. Because they have

been in calculus for a short time, it is too early to
report positive results, but the prognosis seems fa
vorable.

While the students were working through the MDS
during the fall quarter of the school year, they were
producing performance records that would be the
basis for revising, improving, and extending the MDS.
The winter quarter of 1970 was spent in updating the
MDS from the original version, now known as MDS-Vl,
to the more effective, more reliable, more completely
computerized version designated MDS-V2. No new
students were accepted during the winter quarter
so that this major operation, the production of MDS
V2, could be as complete as possible by the time the
next group of students arrived in March of 1970.

When RIT's spring quarter began on March 23,
there were 20 NTID students on-line with the first
segments of the MDS-V2. For a number of reasons,
among the best of which was that our computerated
classroom has but 10 student-positions, the group was
divided into two classes, each containing 10 students.
Because MDS-V2 eliminates much of the administra
tive and clerical activity that had wasted the instruc
tor's time in MDS-Vl, it was thought that the ratio
of students to instructor could be raised from 4 to 1
in MDS-Vl to 10 to 1 in MDS-V2. Another significant
difference in the administration of MDS-V2 was that,
while remediation in MDS-Vl had been tutored by
the course authors, the instructors for MDS-V2 would
be members of the RIT and NTID mathematics
faculties.

At this point in our narrative perhaps some men
tion must be made of the role of the instructor-proctor
in the effective presentation of MDS-V2. As "proctor,"
he keeps the mechanical and technical aspect of the
course going smoothly; he sees that each student is
having no difficulty with operating the terminals;
he cooperates with the technical staff in operating
the equipment; he evaluates records of student prog
ress. These are the more mundane and mechanical
features of the job that require some technical ability
but do not evoke much creative effort.

But as "instructor" his knowledge of mathematics
and his tutorial effectiveness may well be strained
to the limit. This demand on the tutorial skill of the
instructor-proctor results from the fact that the na
ture of the MDS produces a mode of instruction de
manding that the full-time job of the teacher is to
teach--not to present instructiona1 materials. The
computer presents diagnostic materials, prescribes
remediation, and tests to see whether or not the de
sired learning behaviors have occurred. Because there
is no such thing as a perfect program, some of the
program must fail with some of the students. When

the program fails to produce the desired results, the
student is directed by the program to consult the in
structor. There is another, happier way that can pro
duce tutorial activity; the program may have so stimu
lated a student's imagination and enthusiasm for the
topic that he requires more information than has been
provided. When this happens, the student may volun
tarily seek the guidance of his instructor in going
beyond the limits of his program. Whatever the rea
sons for the demands placed on his teaching skills, the
instructor who operates in this setting is faced with an
intense, varied, and--I should think--rewarding ex
perIence.

While the combined activities of human and ma
chine are working to produce the most effective prepara
tion for calculus that is within their power, records
are being produced that will permit the effectiveness
of the course to be evaluated. The results of MDS-Vl,
considered by its authors to be a first rough approxi
mation, has been empirically evaluated and revised
on the basis of student performance records. Further
evaluation of MDS-VI will be possible when it becomes
clear how many of the difficulties experienced in cal
culus by MDS-VI students may be related to lack
of preparation-to failure of the MDS-VI. Such crudity
of method was thought to be not only adequate to
the circumstances of MDS-Vl but necessary if MDS
V2 were to appear on schedule.

Because MDS-V2 is considered to be reasonably
close to a finished product, evaluation of this instru
ment will be carried out by the NTID's Research and
Training staff. It is hoped that applying the talents
of this group to determine factors of reliability and
validity will produce data that are useful in improving
subsequent versions of the MDS. Data for this project
being gathered now during the spring quarter should
produce usable results before the opening of the fall
quarter in September, 1970. By the winter quarter
(1970-1971), it is expected that the MDS will have
reached a point of stabilization; that subsequent ver
sions will be extensions and additions to MDS rather
than revisions.

While determining the effectiveness of the MDS
in educating deaf students is of first priority, there is
reason to believe that it could be equally effective in
performing its function. for hearing students who
anticipate entering first year calculus at RIT. To test
this belief, during the 1970 summer quarter the MDS
will be given to two groups of regular RIT students
who would otherwise have been enrolled in pre-cal
culus math courses. If this experiment proves to be
successful, it will lend a universality to the applica
tion of the MDS that will greatly enhance its economic
feasibility--always an important faCtor in determining

Unique Project in Computer Assisted IV[athematics 329

the practicality· of any project in computerated edu
cation.

Practicality? Well, we here at the NTID think that
the l\tIDS, if not immediately justifiable on purely
economic grounds, points the way to innovations in
education of the deaf that will someday make CAl
projects feasible from all points of view, educational
as well as economical. Although it is much too early
to label the MDS an unqualified success, its existence
and apparent effectiveness are stimulating RIT and
NTID faculty members to cooperate in similar projects.
Several such projects are already under way; courses
in thermodynamics and circuit design are being pro
duced by the combined efforts of RIT faculty and the
CAl Course Development that could herald RIT's
emergence as a front-runner in the field of educational
technology as well as in the education of the deaf.
That is what we hope, and that is the goal toward
which we shall continue to work.

What I have told you thus far has been a history
and description of the first major project undertaken
by the CAl Section of the National Technical In
stitute for the Deaf. The information you have is but
part of a complete report on the l\tIDS that includes a
description of the underlying philosophy of course
design, the rationale and design-principle, and a report
on initial field-tests. If any of those present are in
terested in these details, please leave your name and
address and you will be sent a copy of the complete
report.

Also included in the final report are details of the
computing system by which the l\tIDS is administered.
This part of the report was prepared by l\tIr. Paul
Vonhof, Technical Support Leader for NTID's CAl
Section.

THE IBM 1500 INSTRUCTIONAL SYSTEM

The IBlVI 1500 Instructional System consists of
two major elements: a "hardware" element and a
"software" . element. All the items of equipment
mechanical, electro-mechanical, electrical, and elec
tronic-make up the hardware element of the 1500
System. The software element consists of the various
computer programs that instruct the hardware in
what it must do to achieve the results desired from
the 1500 System. Both elements must be present if the
system is to work; the hardware is just expensive junk
without the software, and the software in meaningless
symbology without the hardware. It takes both ele
ments working together as a complete system to pro
duce the instructional magic of which the System is
capable.

330 Fall Joint Computer Conference, 1970

For there is an element of magic about a machine
based instructional system that adapts itself to the
specific needs of individual students; that makes al
lowances for individual differences in learning rates,
entrance behaviors, and intellectual capacities; that
can perform this service for as many as thirty-two
students, not all of whom are working on the same
course; that records and reproduces data on course
performance and student performance; that, in short,
provides educational services the quality of which
is limited only by the capability and imagination of
the course-designer.

A machine such as we have been describing is, how
ever, only a machine. In the final analysis, it is no
better than the people who use it. Its effectiveness
depends very much on the interaction between the
people who consume its output, the people who con
trol its operation, and the people who design and
implement its input. These are the three general cate
gories of users served by the System: the student, the
instructor-proctor, and the course-author.

Of these three users r the student comes first, for he
is the ultimate consumer, the reason for the existence
of the System. The System prescribes or presents the
instructional materials that uniquely fulfill the needs
of the individual student. Instructions may reach the
student as text on the CRT (cathode-ray tube) dis
play. Or, the CRT may contain graphic information
with which the student must interact. Student in
teraction with the CRT may require the use of the
keyboard or it may require that responses be made
by pointing at the display with a Illight-pen." (The
light-pen communicates to the computer the exact
location of the spot at which the pen touches the
screen.) The student also may re~eive textual or graphic
information from the image-projector. (The image
projector is a random-access film-strip projector
with full-color capability.) The IBM: 1500 Instruc
tional System also includes an audio capability that
is not used at the NTID.

The System, of course, accepts and processes all
student responses, whether they are entered by means
of the keyboard or the light-pen. The material presented
to the student usually is contingent upon the nature
of the preceding student response. It should be ap
parent, therefore, that input and output are each a
part of a total continuum in which each determines
the other. This characteristic of the System allows
us to design courses having a high degree of adaptive
ness to individual student-needs; it is the characteristic
of the System that ensures the ability to provide in.;.
struction that is truly individualized.

To enhance the interactive nature of the CAl pro
gram, the System provides for student comments at

any time. It also permits the student to request help
from the instructor-proctor at any time the student
thinks he needs it.

While the student interacts with the System, the
instructor-proctor controls it. The duties of the in
structor-proctor are covered in a fair amount of detail
within the body of the text of this article, All that needs
to be added is that, because students and course
authors may simultaneously be using the System, the
proctor exerts control over the "activities of both stu
dents and course-authors. The term Iicourse-author"
includes both the instructional programmer and the
Coursewriter programmer. The System provides the
author with services that are essential to him. It
Ilassembles" his courses in a storage device-assembles
Coursewriter II into a format that can be interpreted
by the machine. During the execution, it Iiinterprets"
his courses-implements machine-language instruc
tions. It presents his courses as specified by the logic
of his program. It analyzes progress. The author can
make changes, additions, and deletions that are based
on information received from the System itself.

All the activities and services to author, proctor,
and student depend on human interaction with the
hardware/software complex that is the IBM 1500
Instructional System. Having given some indication
of what the System does, the remainder of this sup-

1442 Cord
ReodPuncn

Datoondprogrom
inputondoutpu',

1132 li". Printer

Perfo,nlOnce
recordsancfoll
print.dlish.

1131 Centrol Proce"intUnit

Activates Instructionol Stations.
Analyzesltuden'r.'POrI
Pr ... nts coune material.
Directloll,),,'em inputoncloutput.
Houle. tM CAl Programming Systems
which direct all CAl operations.

1502StotionControl

Control,movement
ofdoto~t\.' .. n
stations OI'dCPU.

InstructionolStotion

2310 Disk Storage

' _--/

Permonently
stores the CAl
Programming Sys
telTll, COUf .. mat
eriols,.tudent
recordt,dic'ion
orie.,ete.

AsmonYO$S
Disk StOf'age Units
moybe attoche-d.

Figure I-Interrelationship. of hard ware components

plement describes its hardware and software compo
nents.

Hardware

It is the hardware of the System that is visible to
the consumer or observer. He becomes familiar with
the keyboards, the light-pen, the CRT display, and
the film-strip projector-·all of the facilities to be
found in the computerized classroom. If he is a special
friend of the operations manager, the observer may
be allowed into the machine room, where he sees the
devices by which course materials are stored-the
magnetic disk drives and the magnetic tape units.
He sees the card reader/punch by which course ma
terials and computer software are created, assembled,
and entered into the system. Also located in the ma
chine room are the central processor and the station
control unit, which directs the flow of course materials
from the central processor to the appropriate terminals.
A printer prepares performance recordings and other
lists required in operating the System. (See Figure 1-
a pictorial representation of how the various units
relate to one another.)

Software

The 1500 software, expressed more formally as the
1500 Programming Systems, supports the 1500 hard
ware. It supervises and expedites all operations per
formed by the IBM 1500 Instructional System. In
addition to the Coursewriter II System described in
Appendix B, it includes six major programs that co
operate to keep the 1500 System operating efficiently.
These programs are:

1. Main Control Programs.
2. Station Command Processing Programs.
3. CAl Processing Programs.
4. CAl Support Programs.
5. CAl Utility Programs.
6. System Utility Programs.

The Main Control Programs are supervisory programs
and form the basic operating system. These programs
provide scheduling service to each instructional station
that demands individualized service in handling in
quiries and responses. They accumulate performance
records and, when necessary, provide the user with diag
nostic information about the operation. The operating

Unique Project in Computer Assisted Mathematics 331

system routinely stores and maintains all data needed
by the programs executed under its control.

Station Command Processing Programs provide
the language link between the system user and the
computer. It facilitates all communications between
the student terminal and the computer.

The CAl Processing Program is the major CAl
application program, Coursewriter II. This program
contains the Coursewriter II interpreter, which exe
cutes the user's assembled course and interacts with
the students at the terminals. The CAl Processing
Program can present textual material on the type
writer or display screen, present problems, process
student responses, and operate the image projector.
It performs arithmetic and logical operations. The
CAl Processing Program also can be called upon to
set and to interrogate a response timer, a device for
recording the speed with which students respond to
questions.

The Coursewriter II assembler translates Course
writer II language statements into a form acceptable
to the interpreter. The assembler is an important
program within the CAl Support Programs section
of the programming systems. Material can be inputted
by means of either keyboard entry or card input. CAl
Support Programs also allow for modifications to
courses.

The CAl Utility Programs allow certain special
background jobs to be done; these jobs support the
operations for organizing courses on magnetic disk.

The System Utility Programs provide the functions
necessary to preparing and maintaining systems
package.

All of the software briefly described in the preceding
paragraphs are necessary to control the multitude of
operations demanded of the hardware. Students taking
courses, authors . entering Course writer statements,
proctors sending' supervisory commands, and opera
tions people scheduling background jobs-·each makes
demands on the programs included in the 1500 Pro
gramming Systems.

SUMMARY

The combined facilities of the 1500 hardware and soft
ware present a versatile tool for instructional tech-.
niques. Thirty-two students, each working indepen
dently on a different problem or program, can time
share the system. Textual material, full-color film, and
audio messages can be presented to the instructional
stations under computer control. The computer auto
matically provides file maintenance to course and
user's records. Course and student information is

332 Fall Joint Computer Conference, 1970

stored and retrieved as required by each station when
it is serviced by the computer.

The operating system controls all interaction be
tween the students and the course material being
presented. The answer analysis of each problem and
the infinite branching through the course is auto
matically performed by the CAl processing programs.
The system allows for a standard dictionary of 128
characters, three special 128-character dictionaries,
and three graphic sets of 64 symbols each. Course
writer allows the system to display alternate diction
aries or graphics during course presentation. The

interactive graphic capability allows the student to
point at a position on the CRT and have the system
determine the co-ordinates of the pen . response. Fi
nally, the system is flexible in its software capabilities
and allows the user to make additions or extensions
to it.

But, above all, the IBM 1500 Instructional System
provides the course development specialist with a
means of presenting the student with a course the
effectiveness of which is limited only by human in
genuity. The potential of the System has only just
been scratched; CAl itself is but an infant-giant.

Teaching digital system design with a minicomputer

by lVIARVIN C. WOODFILL

Arizona State University
Tempe, Arizona

INTRODUCTION

Design education requires a study of the "art" involved
in a given discipline in addition to the study of its
"science." Textbooks tend to concentrate on the science
and leave the art as 'an exercise for the student.' One
solution to this problem is the use of a "real" example
of the discipline involved as a teaching aid and labora
tory tool. With this approach the art and science can
be taught in integrated form and with the given system
as a base, these principles can be readily extrapolated
to other systems. The "broad brush" approach to design
education without a base of knowledge tends to leave
the student little net gain.

In digital system design education a minicomputer
can provide a very good example of the discipline.
Minicomputers are superior to "larger" systems for
this use because they are small enough in size and
complexity to be easily understood, but with the ad
dition of suitable software can provide a very useful
computational tool. The Digital Systems Laboratory
(DSL) at Arizona State University was originated in
1966 with the aid of an NSF Educational Equipment
Grant which provided the funds for the computer
which forms the nucleus of this laboratory. The DSL
was conceived to provide: A very flexible teaching aid;
a prototype digital system which students could study
in detail; and a vehicle for student hardware, software,
and application experiments, studies, and projects.

THE COMPUTER

A DATA· 620 manufactured by Data Machines In
corporated (now Varian Data Machines) was the com
puter purchased for this laboratory. The DATA 620
(currently available in integrated form as the DATA
620/i) is a binary, parallel, single address, bus organized,
16 bit, general purpose digital computer with an ex
tensive command repertoire.! The computer was pur-

333

chased with a 4,096 word, 16 bit memory with memory
cycle time of 1.8 microseconds. The machine design
provides a bus oriented party-line I/O and a readily
expandable interrupt capability. A block diagram for
this computer is shown in Figure 1. The architecture
of this computer illustrates many of the "pin limited"
design constraints of large scale integration system de
sign which provides a "state of the art" system model
constructed with transistors.

CORE MEMORY

ARITHMETIC
UNIT

SELECTION (s) BUS

DATA 620 FUNCTIONAL ORGANIZATION

Figure I-Data 620 functional organization

334 Fall Joint Computer Conference, 1970

Figure 2-The initial systom

This computer was purchased with several options
which greatly enhanced its value as an instructional
tool. (A picture of the original system is shown in
Figure 2.) These options include: (1) A large classroom
display, (2) A micro-exec bus providing external proc
essor control; (3) the pulse instruction execution option;
and (4) A real-time clock. The classroom display shows
the contents of the registers in the processor and mem
ory and the state of the system's clocks. The communi
cation paths and interconnections are also illustrated
on this board. This board is used extensively in the
lecture as a training aid and demonstration media.
The micro-exec bus provides a means of external control
of the processor rnicro-signal execution. During demon
strations of the operation of the processor logic, a
switch box is used to selectively enable the processor
micro-signals to illustrate the execution of various in
structions and operations. This facility is also, an in-

valuable maintenance tool. The pulse execution option
provides the user with the ability to supply manually,
by a switch closure, the pulses normally supplied by
the 2.2 MHz master clock. This allows the observation
of the execution of machine instructions at the micro
step level which provides a very graphic display of the
operation of the processor logic. The real-time clock
which provides a time base interrupt capability is used
to illustrate real-time operation and provide "clever"
displays, i.e., the functioning of a multiplication algo
rithm in slow motion. The system also contains a
maintenance panel which facilitates oscilloscope obser
vation of the major processor microsignals for display
or maintenance use.

These options are very convenient but should not
be considered an absolute necessity. Most minicom
puters (including the DATA 620ji) have, for example,
a much more limited console than the DSL system.

However, the most meaningful interaction a student
has with. the computer is through the on-line teletype
and other peripherials so a limited register display is
inconvenient but not disabling. It should also be noted
that the DATA 620 is only one example of many mini
computers that could· be used in a laboratory of this
type.

The original system functioned well as a teaching
aid and display device but was not a satisfactory
"hands-on" tool for student laboratory use, because of
its slow and inefficient I/O facilities and its limited
software.

THE SYSTEM HARDWARE

The first problem to be solved in the realization of a
useful student tool was alleviation of the I/O bottle
neck. An off -line ASR-35 teletype was purchased to
allow off-line preparation of student tapes but the slow
input speed (25 char/second) of the on-line ASR-33
tape reader still limited system through-put. The grad
uate college at Arizona State University requires all
lVlaster of Science students to write an' Engineering
Report or Thesis as a final step in fulfillment of gradu
ation requirements. The expansion of the hardware of
this computer system has provided and will continue
to provide numerous Engineering Report and Thesis
project topics. To date, the following peripheral hard
ware has been interfaced to the system in this fashion:
(1) A paper-tape reader and punch with 50 character/
second capability (the reader and punch was an in
dustrial gift); (2) A Holly-Line Printer (also an in
dustrial gift) with 300 character/second capability;
(3) A 1000 character/second paper-tape reader; and
(4) A 150 character/second paper-tape punch (the latter
two were purchased with funds remaining in the NSF
Grant); (5) A patch panel facility for the micro-exec
bus to allow the implementation of patched machine
instructions (complex algorithms accomplished as one
machine instruction). Many other projects have in
volved the modification of the basic command structure
of the computer. The conditional jump structure of the
machine was augmented to essentially double the num
ber of, useful jump conditions. The mechanical sense
switches of the original computer were replaced with
logical switches (flip-flops) under program and/or me
chanical control. Extended addressing capability was
added which provides direct, indirect, and indexed
addressing to 32K words of memory was added. Fixed
point multiply and divide hardware was added to the
central processor. A hardware parity testing instruction
and hardware instruction to save the volatile state

Teaching Digital System Design with Minicomputer 335

indicators (overflow and sense switches) was added.
Logic was added which causes the execution of a halt
instruction to control return to the Operating System.
These changes and others have resulted in a dynamic
system hardware configuration tailored to the needs of
the system users. See Appendix A for the DSL in
struction format. Although the original computer was
composed of "discrete parts" most of the hardware
modification projects have been accomplished with
integrated logic. The hardware of the system is con
tinually being improved and expanded.

The following hardware projects are currently in
progress: (1) The addition of an auxiliary 64K words
of primary memory to the CPU (the memory was an
industrial gift); (2) The interface of a magnetic tape
system of four tape drives (also an industrial gift);
(3) The interface of a magnetic drum memory (also an
industrial gift); (4) The addition of a GE 115 computer
with card reader and line-printer as a secondary proc
essor (also a gift); (5) The construction of a priority
interrupt facility and analog to digital and digital to
analog conversion facilities. (6) The interface of three
additional ASR-33 teletypes which will provide the
basis for a time-sharing facility.

THE SYSTEM SOFTWARE

The development of adequate software to interface
the user with the physical capabilities of the system is
a never ending task. As each hardware change is realized
the system software must be redesigned to take fullest
advantage of the hardware. In a system with 4K words
of main memory and no secondary storage, the primary
system software design goal was to provide maximum
capability in minimum memory. All of the software
used in this system was designed expressly for this
system. Figure 3 shows the normal configuration of
memory in the laboratory system.

The primary operating system is called the Monitor
Utility Driver PACkage. (MUD PAC) which provides:
(1) Subroutines used by students (and the other system
software) to accomplish I/O (monitor); (2) A compre
hensive set of on-line debugging utility routines; and
(3) A driver system which allows on-line teletype con
trol of the entire system. Teletype control is essential
to the efficient operation and maximum through-put of
the system. The MUD PAC was designed to provide
the user with all the computational tools necessary for
the operation of the system with minimum interference
to the user. The MUD PAC requires 14008 or 76810

memory locations.
The monitor is organized into 3 subroutines: CHAR,

336 Fall Joint Computer Conference, 1970

OCTAL LOC

00000

01000

02000

03000

04000

05000

06000

07000

CONTENTS

MAS

ASSEMBLER

STUDENT
WORK
AREA

OVERLAY
AREA

(KORR)

MUD PAC
Figure 3-DSL system memory map

for character (8-hit) I/O; NU1\1B, for octal number
(6 digit) I/O; and MESG, for message (strings of
ASCII characters) I/O. In all cases, the setting of the
sense switches, which is under program control, desig
nates the I/O device involved and the direction of

data transfer. See Appendix B for further subroutine
description and the coding used for the accomplishment
of I/O operations under monitor control.

The utilities provided include the usual types of
utilities: Pseudo register manipulation, memory change,
memory initialization, memory dump, selective memory
search, location flagging, and program trace capabilities.
In addition, the routines to load and punch object
information in the object formats of this system are
provided. The more nonconventional of these formats
is known as monitor format and is an inefficient format
using octal numbers represented as ASCII characters
on paper tape to fill sequential memory locations. This
format is used by the students in the initial phases of
their laboratory course to enter their machine language
programs. This object format can be generated on an
off-line teletype and thus provides much better turn
around time for machine language programs than would
manual entry.

The driver routine accepts keyboard inputs of single
letter mnemonics, which correspond to one of the de
fined MUD PAC operations, then the driver accepts
the required number of parameters (octal numbers from
the keyboard) and transfers computer control to the
routine which performs the function of the particular
mnemonic. l\1UD PAC mnemonics are listed in Ap
pendix B. In addition to the utilities, driver mnemonics
are also provided to accomplish linkage to the other
system software, namely the Monitor Assembly System
(MAS) assembler and the overlay area programs, usu
ally the source tape correction program (KORR).

The l\1AS assembler was expressly made to take ad
vantage of the hardware of this particular system.
l\1AS possesses all the capabilities available in most
non-macro assemblers including page titling and source
line numbering. Current l\1AS operation codes are listed
in Appendix C. l\1AS contains predefined values for the
monitor subroutines and its syntax has been chosen to
complement the machine language structure of the
computer. The fixed portion of the l\1AS assembler
occupies less than 40008 or 204810 memory locations
and uses the student work area for tempo:rary storage~

The overlay area of the lab system normally contains
the KORR source tape correction which provides the
efficient source correction capability available auto
matically only in a punched card environment. When
ever a source tape. is assembled or pre-listed (which
can be done with KORR) each source line is assigned
a decimal identification number determined by its se
quential position on the source tape. Using these num
bers and the KORR mnemonics provided, during the
duplication of a source tape any combination of source
lines can be deleted, replaced, or added. This process

can be accomplished under on-line teletype control or
by preparing the corrections off -line and using the
auxiliary paper-tape reader as the on-line correction
device. The latter approach is used in the laboratory
to increase system through-put.

The efficiency of expressly designed software is illus
trated by the IVIAS assembler. In comparison with the
DAS assembler (supplied by the manufacturer) for this
system: (1) Both assemblers are self-contained (perform
their own I/O), however for DAS all I/O was through
the ASR-33 teletype (8ince that was the only I/O device
in the original system), whereas l\1AS uses the Remex
Reader, Holly Line Printer and Tally Punch; (2) The
fixed portion of DAS used 57768 or 307010 memory
locations, l\1AS uses 040008 or 204810 ; (3) DAS had
13410 defined op-codes, MAS has 16310 ; (4) DAS allowed
only four character labels, l\1AS allows 6 character
labels; (5) Within the 4K memory DAS would allow
the assembly of a program with 2241O-four letter labels,
l\1AS will allow 6401O-six letter labels. (6) l\1AS provides
source line numbering, parity checking of source input,
page titling, and automatic symbolic formatting. These
were not provided in DAS. The MAS assembler then
is clearly superior to the DAS assembler in every respect.
In defense of the manufacturer, the DAS assembler is
conditionally assembled from an assembler which can
be made to match the hardware configuration of any
DATA 620 system and thus is necessarily less efficient
in any given system. This a8sembler was designed and
coded as part of the graduate software design course.

SYSTEM USE

This laboratory system is used extensively in a senior
elective/ graduate course in Logical Systems Design
(enrollment about 80 per year) and in a graduate
Integrated Systems Engineering Program (enrollment
about 20). Both courses are preceded by a course in
Logical Component Design using Chu,2 and followed
by graduate courses in Digital System Hardware De
sign and Digital System Software Design.

The logical systems design courses have no pro
gramming prerequisite and the students begin by
learning to program the DSL system in assembly lan
guage and machine language. This process takes about
half of the course and results in the students acquiring
programming ability, knowledge of the use of the arith
metic hardware, and knowledge of the applications of
a small computer. During the second half the students
become familiar with· the micro-level processor signals,
system timing signals, system logic, instruction exe
cution logic and the significance and handling of inter-

Teaching Digital System Design with Minicomputer 337

rupts. The class is conducted in the classroom-labora
tory and frequent use is made of the available display
tools. In the laboratory portion of the course, the
students practice their skills in the writing, testing,
and debugging of programs of increasing complexity,
employing an increasing amount of the system hard
ware and software. In a typical laboratory sequence
the students first lab (about the second week of the
course) will include a simple program in machine lan
guage entered and executed manually by the students
through the console (with no software). Each subse
quent lab period the students are given more complex
problems and more software to work with. By about
mid-term the students are using the total system and
by the end of the semester the students are solving
problems requiring several weeks of coding and de
bugging. The students also spend some laboratory
periods involved with the hardware signals and the
micro-exec bus. When the students finish the design
course they have a common familiarity with the ma
chine and assembly language, use, logic, logical lan
guage, and micro-signals of this computer system and
limited exposure to alternate techniques. Primarily,
they have a solid base of knowledge about the processor
of this particular computer and an intuitive under
standing of what a computer can do and how the
internal functions are accomplished.

The emphasis in the subsequent graduate hardware
and softWare design courses is system oriented but they
are not restricted to the laboratory system, although
the base of knowledge or common language developed
in the DSL system is exploited. Even though these
courses are engineering based, they have no engineering
prerequisites and attract computer science students
from many other disciplines.

FUTURE PLANS

The most urgent problem presently facing the Digital
Systems Lab is the student load. With 3 hour laboratory
periods of 10 students each and one on-line teletype,
each student has about 18 minutes of computer time
per week to accomplish his assigned tasks. To provide
some relief a DSL DATA 620 simulator was built and
is available on time sharing service from a GE 600
system. This system is not the ultimate answer since
it tends to remove the student from the hardware
completely and it suffers from the "finite" lag problem
familiar to time share users. For the purpose of the
advanced students, however, the simulator provides an
excellent algorithm testing media.

A more tractable system will be achieved with the

338 Fall Joint Computer Conference, 1970

realization of a local time sharing capability. The system
will consist of three additional ASR-33 teletypes, which
will provide a total of four "user ports" to the system.
The design goal is to provide each user with a 4K
memory of his own, a utility capability roughly equal
to the present system, and, of course, the feeling that
each user has the complete system at his command.
Needless to say, successful completion of this project
depends upon the realization of additional memory
capability. The final system will of necessity separate
the user from the hardware to a greater extent than
the present system, but the alternative would be to
duplicate the hardware of the system and economics
forbid that solution. Since each system addition makes
the system more complex and difficult for the students
to comprehend, the basic 4K machine will continue to
provide the basis of instruction for the beginning course,
and the more sophisticated capabilities will be exploited
primarily in subsequent courses.

The digital systems laboratory has proven to be a
very successful and well received addition to a pre-

APPENDIX A

. DSL DATA 620 INSTRUCTION FORMAT

INSTRUCTION OP CODE 1V1 FIELD
U15-U12 U11-U9 U8

HALT 00 0
JUMP 00 1 S
JUMP&MARK 00 2 S
EXECUTE 00 3 3
SHIFT 00 4 (1) A&B

(0) AorB

REGISTER 00 5 Cond
CHANGE on OF

IMMEDIATE 00 6 0
EXTENDED ADDR 00 6 0

INDICATOR 00 7 CHG
CHANGE OF

viously pedantic curriculum. The choice of a mllll
computer for a digital systems design education labora
tory model is considered essential since such a machine
is large enough to perform many useful functions, but
small enough to be understood by an average student,
and small enough so other uses need not be found to
justify its cost. The development of this facility has
been a painstaking process of evolution and improve
ment requiring a considerable amount of time and
effort. However, the knowledge and experience gained
by all concerned has certainly justified the investment.

REFERENCES

1---
Varian Data 620ji computer manual
Varian Data Machines Irvine California 1968

2 Y CHU
Digital computer design fundamentals
McGraw-Hill Book Company Inc New York New York
1962

A FIELD MICRO INSTRUCTIONS
U7 U6 U5 U4 U3 U2 U1 UO

S S X B A 0 A C
S S· R R R F R M
2 1 0 0 0 + P

A RT LOG
COUNTI B LF ARTHI S H 1FT

°TTRAN] 01 INCR SOURCE DESTINATION
10 COMP. i XR BR AR' ·XR BR ARt
11 DECR

0
OP CODE FOR SW INSTR
IX X X xi 0 0 0

0 X X X X IY Y YI
M FIELD FOR SW

CHG SOF (1) RS3 RS2 RSl SS3 SS2 SSl
SS ROF (0)

Teaching Digital System Design with Minicomputer 339

EXT CONTROL 10 0 IF UNCTIO NI [DEVICE ADDRESSI

SENSE 10 1

[00 MEM] ID E V ICE ADDRESsl DATA INP 10 2 CLEAR 01 AR
DATA OUT 10 3 REG 10 BR

11 A&B

LOAD AR 01 1\/1 I ADDRESS (A) FIELD I
LOAD BR 02

LOAD XR 03

INCR MEM 04 M FIELD CODES

STORE AR 05 0-3 DIRECT

STORE BR 06 4 REL to PR

STORE XR 07 5 REL to XR

INCL OR 11 6 REL to BR

ADD 12 7 INDIRECT

EXCL OR 13

SUB 14

AND 15

MUL 16

DIV 17

APPENDIX B

1\1:0NITOR UTILITY DRIVER PACKAGE (1\1:UD PAC) DIRECTORY

CHAR: CALL* CHAR Loc. 07000

NUMB: CALL* NUMB Loc. 07001

Monitor Subroutines:

Inputs one 8 bit char into LS 8 bits of cleared AR or Outputs AR, MS 8
bits first then LS 8 bits.

Inputs a terminated octal number (in ASCII char) into BR (right
justified), or outputs the 6 ASCII char representing the input value
of BR plus 2 ASCII spaces if AR=O or the 2 characters in AR if ¢O.
Neither effect AR or XR.

MESG: CALL* MESG, 1\1: Loc. 07002 Inputs a string of ASCII chars delinated by , and stores them (2
char/word) in sequential locations starting at M and indicates E01\1:
with a cleared loc, or outputs a string of chars starting at M and
returns when a cleared loc is found. Neither effect AR, BR, or XR.

340 Fall Joint Computer Conference, 1970

Device Coding:

SSI represents mode: on is output-off is input

SS2 & SS3 determine device according to the following: 1 is on, 0 is off.

SS3 SS2 Device: (Input/Output)

0 0 T-R R/P

0 1 R-M/R/P

1 0 TTY Tape/ Line Pntr

1 1 TTY Keyb/ TTY Type

Utility and Driver Mnemonics:

Parameters are STRT, STOP, KEY, MASK Registers are AR, BR, XR, PR

Code: Parm: Description:

A 0 change AR

B 0 change BR

C 1 Change STRT

D 2 Dump loc STRT through STOP in SYST FMT

E 1 Elect (change) pseudo sense switches and overflow.

F 1 Flag location STRT

G 1 Go to loc in STRT

H 0 Halt return, go to PR

I 3 Initialize STRT through STOP with KEY

J 1 Jump to MAS, STRT determines pass

K 0 Korrect, source tape correction routine

L 1 Load or compare object tape SSI = L/C (0/1). SS2 = lVlont/SYST (0/1) format.

M 2 Memory dump of STRT thru STOP on line pntr.

N 0 New-Load new MUD PAC with BOOT loader.

0 1 Overlay linkage STRT is linkage code.

P 2 Punch loc STRT thru STOP in Monitor fmt.

Q 0 Query parameters and reg. (display all).

R 0 display Registers

S 4 Search STRT thru STOP looking for KEY considering only bits with 1 in IVIASK

T 2 Trace from STRT to STOP

Teaching Digital System Design with Minicomputer 341

U 0 Untrace

V 0 Vector reestablish interrupt vectors

W 0 Convert flex tape to ASCII.

X 0 change XR

Y 0 list entry to Korrect

Z 0 Zero all pseudo reg & reset pseudo overflow and sense switches.

APPENDIX C

l\10NITOR ASSEMBLY SYSTEl\1 (MAS) MNEl\10NICS

SINGLE WORD ADDRESSING SUBI SUB FROM AR
IMMED

LDA LOAD AR ANAl AND TO AR
LDB LOAD BR IMMEDIATE
LDX LOAD XR MULl MULT IMMEDIATE
INR INCREMENT AND DIVI DIV IMMEDIATE

REPLACE LDAE LOAD AR EXTENDED
STA STORE AR LDBE LOAD BR EXTENDED
STB STORE BR LDXE LOAD XR EXTENDED
STX STORE XR INRE INCR AND REPL EXT
ORA INCL OR TO AR STAE STORE AR
ADD ADD TO AR EXTENDED
ERA EXCL OR TO AR STBE STORE BR
SUB SUB FROM AR EXTENDED
ANA AND TO AR STXE STORE XR
MUL MUL BR BY MEM EXTENDED
DIV DIV A-B BY MEM ORAE OR TO AR

EXTENDED
ADDE ADD TO AR EXT

DOUBLE WORD NON- ERAE EXCL OR TO AR EXT
ADDRESSING SUBE SUB FROlVI AR EXT

ANAE ADD TO AR EXT
LDAI LOAD AR IMMED MULE MULT EXTENDED
LDBI LOAD BR IMMED DIVE DIVIDE EXTENDED
LDXI LOAD XR IMMED
INRI INCR AND REP INDICATOR CHANGE

IMMED
STAI STORE AR Il\1MED ROF RESET OF
STBI STORE BR IMMED SOF SET OF
STXI STORE XR IMl\1ED SSI SET SSI
ORAl INCL OR TO AR SS2 SET SS2

IMMED SS3 SET SS3
ADDI ADD TO AR RSI RESET SSI

IlVIMEDIATE RS2 RESET SS2
ERAI ENCL OR TO AR RS3 RESET SS3

IMl\1ED IDCN EXECUTE

342 Fall Joint Computer Conference, 1970

PRE-DEFINED EQU XNOF XEC IF NO OF
XAZ XEC IF AR ZERO

AR,BR,XR, AP,OF,AZ,BZ XANZ XEC IF A NOT ZERO
XZ,Sl,S2,S3 XBZ XEC IF BR ZERO

XBNZ XEC IF BR NOT
ZERO

MONITOR LINKAGE XXZ XEC IF XR ZERO
XXNZ XEC IF XR NOT

CHAR FOR CHAR I/O ZERO
NUMB FOR NUMB I/O XS1 XEC IF SSl
MESG FOR MESG I/O XS2 XEC IF SS2

XS3 XEC IF SS3
XNS1 XEC IF NO SSl

DOUBLE WORD XNS2 XEC IF NO SS2
ADDRESSING XNS3 XEC IF NO SS3

XIF XEC IF
JMP JUMP UNCOND XUL XEC UNLESS
JAP JUMP IF A POS
JOF JUMP IF OF SET
JAZ JUMP IF A ZERO MISCELLANEOUS
JBZ JUJHP IF B ZERO
JXZ JUMP IF X ZERO HLT HALT
JSS1 JUMP IF SSl NOP NO OP
JSS2 JUMP IF SS2 ENTR ENTRY POINT
JSS3 JUMP IF SS3 SYST SYSTEM
JAN JUMP IF A NEG COMMAND
JNOF JUMP IF NO OF SKIP SKIP NEXT LOC
JANZ JUMP A NOT ZERO TINA TRAN IND TO AR
JBNZ JUMP B NOT ZERO TPAR TEST PARITY O:F AR
JXNZ JUMP X NOT ZERO MCRO ENABLE MICRO
JNS1 JUMP IF NO SSl EXEC
JNS2 JUMP IF NO SS2
JNS3 JUMP IF NO SS3
JIF JUMP IF REGISTER CHANGE
JUL JUMP UNLESS
JMPM JUMP & MARK TZA TRAN ZERO TO AR
JOFM JMPM IF OF TZB TRAN ZERO TO BR
JAPM JMPM IF A POS TZX TRAN ZERO TO ZR
JANM JMPM IF A NEG TAB TRAN AR TO BR
JAZM JMPM IF A ZERO TAX TRAN AR TO XR
JBZM JMPM IF B ZERO TBA TRAN BR TO AR
JXZM JMPM IF X ZERO TBX TRAN BR TO XR
JS1M JMPM IF SSl TXA TRAN XR TO AR
JS2M JMPM IF SS2 TXB TRAN XR TO BR
JS3M JMPM IF SS3 IAR INCR AR
JIFM JUMP & MARK IBR INCR BR

IF IXR INCR XR
JULM JUMP & MARK CPA COMP AR

UNLESS CPB COMP BR
XEC EXECUTE UNCOND CPX COMP XR
XAP XEC IF A POS DAR DEeR AR
XAN XEC IF A NEG DBR DECR BR
XOF XEC IF OF DXR DECR XR

Teaching Digital System Design with Minicomputer 343

ZERO TRAN ZERO TO BES BLOCK ENDING
TRAN TRAN W/ SYMBOL
INCR INCR EQU SYMBOL EQUALITY
COMP COMP SPAC SPACE
DECR DECR EJEC EJEC

DATA CONSTANT
DECLARATION

SHIFT INSTRUCTIONS CALL SUBR CALLING SEQ
MORE INTERRUPT INPUT

LSRA LOG SHIFT RT AR STREAM
LSRB LOG SHIFT RT BR END TERMINATE
LLSR LONG LOG SHIFT RT PROCESS
LRLA LOG ROTATE LF AR TITL PAGE TITLE
LRLB LOG ROTATE LF BR DEFINITION
LLRL LONG LOG ROT
ASLA ARITH SHF LF AR
ASLB ARITH SHF LF BR I/O INSTRUCTIONS

LASL LONG ARITH SH LF
ASRA ARITH SHF RT AR EXC EXTERNAL CONT
ASRB ARITH SHF RT BR SEN SENSE
LASR LONG ARITH SM RT IME INPUT TO MEM

INA INPUT TO AR

PSEUDO OF CODES INB INPUT TO BR
CIA CLEAR INP AR
CIB CLEAR INP BR

ORG ORIGIN OME OUTPUT MEM
BSS BLOCK STARTING OAR OUTPUT AR

W/SYMB OBR OUTPUT BR

Computer jobs through training
A preliminary project report

by M. GRANGER MORGAN, MARY R. MIRABITO, and NORMAN J. DOWN

The University of California at San Diego
La Jolla, California

INTRODUCTION

Job training directed toward the disadvantaged popu
lation in the United States has been under way for
many decades. Traditionally this training prepared
people for lower entry level skilled and semi-skilled jobs
such as plumbers' aides, welders, clerks, and secretarial
help. Only recently, with the expanding awareness of
the significant social inequalities which continue to
characterize U.S. society, have large numbers of people
begun to realize that job training-for just any old
job-is not enough. If training is to have any appreciable
impact upon the social stratification that characterizes
the employment structure, efforts must be made to find
high entry level-jobs which are suitable for such special
training projects.

Of course job training is not the ideal-solution to the
problem. Something that might honestly be called a
"solution" will not come until the children of the dis
advantaged receive a quality primary and secondary
education and an equal opportunity for college level
training. There are plenty of people working on reform
ing the school system so that such educational equality
will one day be a reality. But despite some progress this
task is proving exceedingly difficult. In the meantime
there is a whole generation of young people who have
not enjoyed the advantages of an improved school sys
tem and who are without significant job skills. The ques
tion is, can we devise job training programs which will
train these young people for a career other than in low
entry level jobs?

A number of workers have looked to semi-technical
and business computer programming as a high entry
level job area in which disadvantaged students could
perhaps be trained. l They have viewed programming
as attractive because it does not require many of the
social prerequisites, such as the ability to speak dialect
free English or a working familiarity with business world
interpersonal relations, that are necessary for most high

345

entry level jobs. The only real prerequisites to training
someone as a semi-technical or business programmer are
an ability to organize ideas in a logical way and some
basic math skills.

A number of workers around the country have re
cently developed programmer training projects designed
for the disadvantaged. These workers have come to the
problem with different backgrounds and perspectives.
The various projects which have evolved display a rich
range of ideas, many of which might never have been
tested had the central planning and coordination that is
widely advocated by educationalists been applied to this
development from the outset. What is now needed is a
literature which describes these several efforts in detail
so that future workers will not have to rediscover what
has so far been learned, but can build on the basis of the
experience of others. This paper will describe one of these
projects, the University of California at San Diego's
project, Computer Jobs Through Training.

The basic approach

Work at UCSD on programming instruction for the
disadvantaged began in the summer of 1968 when we
offered a course in digital logic and basic FORTRAN
programming to a group of high school students who
were working on the campus in summer jobs made
available through the Neighborhood Youth Corps pro
gram. This initial course had no long term job training
intent. It was offered strictly as enrichment, as some
thing we thought would be a "good thing to do."

We were surprised by how well the course went, and
especially by how exciting the students found the sub
ject matter. We began quickly to see that programming
and other aspects of computer science were potentially
very useful topic areas for reaching and turning on
students who previously had not gotten very interested
in formal education.

346 Fall Joint Computer Conference, 1970

But while it is easy to get these students "hooked"
on programming, the standard teaching methods, par
ticularly the formal lecture situation, are totally inap
propriate. Programming is best taught to these students
the way modern languages are now being taught. Rather
than listening to lectures on the grammar of the lan
guage students learn the language by using it. Beginning
on the first day, the instructor gives a bit of basic in
troduction and then writes a simple program. He ex
plains it, but doesn't really expeet his explanation to be
fully understood. The students copy this program,
punch it onto cards, which is a painful process since
many have never typed, and after some brief instruc
tions run the job themselves on a small computer. In
evitably there are errors but sooner or later the job runs
and you see the first glimmerings of understanding and
excitement. In the weeks that follow you build on this
basic understanding, slowly enlarging on the student's
repertory until he has a command of most of the lan
guage.

The physical facilities

This hands-on approach works, but only if there are
adequate computing facilities available for all students
to use on a continuing basis. Economically the simplest
approach is to take the students to a central training
facility. In the compact inner cities of our major urban
centers this approach also makes good social sense. But
in San Diego, while the Black community is somewhat
localized, the Chicano or Mexican American community
is spread all across the city in a collection of widely
spaced communities. In the early portions of the course,
motivation is the single most important consideration
and one good way not to motivate people is to make
them sit on a bus for an hour or more every day riding
to and from a class.

The prospect of establishing a number of training
facilities throughout the community was financially un
reasonable. In addition, we were reluctant to choose any
one portion of the community for our efforts at the ex
pense of others. The solution we chose was a mobile
instructional facility housed in a forty foot trailer truck,
which through careful scheduling can simultaneously
support up to a half dozen courses at different locations
all around the city.

A used forty foot trailer was acquired in the spring
of 1969 as a gift from Safe way Foodstores, and with sup
port from the Rosenberg Foundation of San Francisco,
Montgomery Ward, and the University, the training
facility was constructed in this van during the summer
and fall of 1969, Figure 1. Our small project staff was
considerably aided in this work by a group of Neighbor-

Figure I-General exterior view of the Computer Jobs Through
Training mobile computer classroom facility. Both the tractor
and the forty foot trailer are used equipment which have been

reconditioned by the project staff

hood Youth Corps students and UCSD undergraduates,
largely from the Black and Chicano communities, who
contributed many long hard hours of work at low pay
along with much enthusiasm and a number of first rate
ideas.

The UCSD Computer Center is in the process of in
stalling a large Burroughs B6500 system. Until some
time in 1971 when that system will be supporting a full
complement of remote operations, our hardware in the
van consists of a small computer with free standing
FORTRAN capability and remote batch COBOL abil
ity. When the B6500 system is in full operation this
small machine will· probably be replaced by a terminal
consisting of a small card reader, a line printer and a
teletype.

One important hardware requirement is the ability
for students to interact with their program during execu
tion. We stress this kind of programming in the early
portion of the course because it helps significantly to
motivate students and keep interest high. We find too
that a drum plotter is a very useful device. Students

work up cartoons and other line drawings with con
siderable enthusiasm, and the systematic operations in
volved in pen control make for good practice in step by
step logic.

The floor plan in this facility is completely flexible.
This results in part from the admissions policy we have
adopted. The problem of identifying potentially success
ful programmers even among college graduates is sub
stantial.Making this identification for disadvantaged
young adults is an almost impossible task. It is widely
recognized that aptitude tests display a cultural bias.
More importantly, since many of the students we hope
to reach "turn off" in a testing situation, we feel that
massive pre-testing, which has been the approach of
some experimental programs, is not the answer.

Obviously. we must require basic math and logic skills,
and a level· of intellectual development on the part of
our students roughly equivalent to that of a high school
graduate. We do not specifically require a high school
degree, though most of our students have one or are in
the process of getting one.

To check for math and logic skills we administer a
short entrance test, which like all of our introductory

Computer Jobs Through Training 347

material is bilingual,with English on one side of each
page and Spanish on the other. But our basic approach
to entrance has been-anyone who seriously claims he
wants to be a programmer may enter the course. If he
has not done well on the entrance exam we warn him
that he will have trouble. But no one who is really
serious ip. claiming that he wants to take the course has
been excluded. Actual performance during the first
weeks of the course is the real entrance test.

All this is fine, but one must be realistic. Many
students will quickly discover that programming is just
not "their bag" and will drop out of the course in the
early weeks, others will stay with the course for some
while, but despite good motivation will just not be able
to do the work. These latter students we are trying to
direct towards alternative more appropriate forms of
training, such as the San Diego Urban League's key
punch school, so that their CJTT experience will not
represent a failure, but rather a first step toward some..:.
thing else.

Given the diminishing class size which results from
this approach to admissions we have designed the van
so that we can start out accommodating relatively large

Figure 2-Two interior views of the classroom van. Above, a student prepares to run her program. Below, a
general view of students in the first adult evening class

348 Fall Joint Computer Conference, 1970

numbers of students and then eventually switch over to
a more spacious floor plan once the class size has fallen
off. In addition, arrangements have been made to allow
the van to be subdivided into smaller areas for group
work with teachers aides. A laboratory set-up with
normal work benches is also possible. Figure 2 shows two
interior views of the van.

Curriculum considerations have dictated a number of
other aspects of the physical facilities. In our work with
Neighborhood Youth Corps students during the summer
of 1968 we looked at a large number of the 16mm films
on various aspects of computer science which are avail
able from industry. Almost none of these films are suit
able for use with our students. They are either much too
technical, or much too simple minded. As a consequence
a large set of 35mm slides has been developed for use
with the course. These slides come in three types:
course slides, which directly support· the curriculum
with flow charts, diagrams, drill exercises and· similar
materials; computer science orientation slides, which
provide students with an introduction to the physical
components of computer science, explain how they work,
and introduce the student to a large number of typical,
system applications such as airline reservation systems,
medical diagnostic systems, scientific systems, produc
tion control systems, and so on; and social orientation
slides which consider things like how to act and what to
expect in a job interview. So that these slides can be
used as an integral and natural part of the course,
without disrupting the flow of thought when slides are
introduced, the van has been equipped with a remotely
controlled projection system and variable intensity
lighting. The instructor is able to use slides easily and
at his convenience.

Finally, to support the hardware portion of the course
which is described below, the necessary DC logic volt
ages t signal lines, and 110 volt lines are distributed to
convenient plug panels located for student use through
out the van from power supplies and signal generators
located in a small, shop area in the forward portion of
the van.

The instructional program

Before describing the details of the curriculum which
has been developed for the CJTT course it is important
to explain what kind of person, with what kind of pro
gramming skills, we are training in this project and
what he will most likely do when he finishes the course.
Clearly we will not be producing systems programmers.
What we will produce are competent coders and pro
grammer/trainees, who unlike the graduates of many
private data processing schools will have a solid founda-

tion in the logical aspects of programming. Our gradu
ates will be able to take a well stated word problem,
work up the necessary logic, develop the flowchart,
produce the necessary code, debug the program, and
make it run.

But despite our earlier observation that the only real
prerequisite to success as a programmer is an ability to
think logically and a command of fundamental mathe
matics, it is nevertheless important to realize that while
many of today's successful programmers worked their
way up with only ~ high school degree, this is becoming
increasingly difficult to do. More and more a two year
AA in data processing or, better still, a four year BA
is becoming prerequisite to substantial progress up the
data processing ladder from the lower coder and pro
grammer positions,

Recognizing this, and understanding that we can
reasonably expect to train people who at the outset are
employable only in the lowest positions, we have at
tempted to design both our own project, and the kind
of job placements we have arranged, in such a way as
to maximize the possibilities of further education for
our students. Hence in our course we emphasize a str~:mg
foundation in the basic logical techniques of program
ming rather than the sort of cook-book introduction to
existing operating systems that is characteristic of
many of the private data processing schools. We treat
specific programming languages as secondary in im
portance to the fundamental ideas of program organiza
tion. But, in our choice of languages (FORTRAN and
COBOL) we have been careful to select those languages
which we think have the best potential for immediate
employment, consistent with our long term objective
of further education.

We begin with FORTRAN. Most of the semi-tech
nical programming jobs in the San Diego area require
FORTRAN, as do almost all of the major employers
with good programs for continuing employee training
and education. FORTRAN has two other important
advantages. Unlike COBOL, which requires a substan
tial knowledge of syntax before even simple programs
can be written, it is p()ssible for students to run and
understand simple FORTRAN programs on the first
day of class. A second advantage is the easy use of sub
routines, an aspect which we consider essential in teach
ing basic programming concepts.

The basic curriculum for the CJTT project was
evolved during the summer of 1969 with the support of
the Rosenberg Foundation and received preliminary
field testing on a second group of 15 Neighborhood
Youth Corps students in a 8 week summer course at
UCSD, Figure 3. The organization of the course is shown
in Figure 4.

The formally developed curriculum material con-

Figure 3-N eighborhood Youth Corps students from the eight
week pilot course run during the summer of 1969

sists of a carefully graduated sequence of problems de
signed to be as familiar and interesting to the student as
possible. The order of presentation of basic FORTRAN
instruction in the first third of the course is:

I. Simple Math
II. Loops and Sorting Using the Computed GO TO

III. IF Statements
IV. Data Arrays and Alphameric Formats
V. Subroutines and Special Math Methods

VI. DO Loops

Because of the great significance that we attach to get
ting our students fully versed in all aspects of program
logic, DO loops are purposely not intr0duced until the
very end of the introductory section so that students
are forced to manufacture all the looping structures
they require. With a very few exceptions, all our prob
lems are presented as word problems, both to force the
development of reading skill and also to get students in
the practice of working from written instructions, some-

Computer Jobs Through Training 349

thing most of them have done only rarely in their pre
vious activities.

Along with this graduated difficulty in program logic
goes a review of basic math concepts. This review takes
place as part of the programming rather than as a
separate topic since most of our students have been
"turned off" by math in school, largely because they
never could see any need or use for math. Having gotten
the student hooked on programming, it is then possible
to undertake a math review in the context of program
ming which students would never tolerate as a simple
abstract review.

All of the early material in the course is available in
English on one side of the. page, and Spanish on the
other. Clearly no programmer can be placed in a job in
this country if he is not fluent in English. Fluency in
English is a prerequisite for entrance to the course.
But being fluent in English and being comfortable in
English are two different things. During the 1969 Youth
Corps course we found that several of our Chicano
students became much more interested and did much
better work when problems were available bi-lingually
and when instructors showed a willingness to use
Spanish. It is clear that even students who when given
a choice frequently use the English version of problems
nevertheless appreciate having the Spanish version

Introduction to the basic logical

concepts of programming.

Basic FORTRAN.

Hardware, machine org., assembly language.
Tab equiPment.

~ 300 hours. Hore advanced programming workshop

in FORTRAN.

COBOL.

From other classes.

~ l ~ From other cl

TERMINAL WORKSHOP. Full eight hour

~ 300 hours.
days at the UCSD or Gulf General

Atomic Computer Center.

QI
.-t
as
<J
rJl

o

!
QI

~
as

.-t

~

!
asses.

Figure 4-Diagram of course curriculum. Time runs vertically

.350

•

•

•

•

•

•

Fall Joint Computer Conference, 1970

I
paSl' 1 of 2

prohh'm numb,or 11-6-0

Est.1S empIcado como programador por "Oradhy Imports Inc. ," unil compaii!a
que haec ncgocio con cmprC"sas cn Europa, Africa y Anu!rlca Latina. t:n
cstc moml'nto, 13 comp.1ilia th'nc (,Ul~nt3s aettvas en 12 pa{s(>s quI..' ticnen
las siF,uicntcs tarifas de cambio.

ArgentinO!
Brazil
Ecuador
Francia
Alemania
Ghana
Mexico
Harruecos
PaisC"s Bajos

::;iblica Arabe
Reine Unido

3~0.000 I'csos! $ t:.U.
l.054 Cruzeiros! $ F..U.

18.180 Sucre! $ E.U.
4.945 Francos! $ E.U.
4.000 Deutsch" H.nea/ $ E.U.
0.980 Cedls! $ E.U.

12.500 Pcsos! $ E.U.
5.060 Dlrhan! $ t:.U.
3.606 Gulld.rs! $ E.U.

38.700 Soles} $ L.U.
2.300 Libras! $ F..U.
0.419 Libra cst.rHn.! $ E.U.

1. Escribe un program.:! que convierta prccics en d~.13rcs l.mcrh· .. lnos a
pesos !·lexic:mos.

2. Escribe un programa que convlcrta pr('cios en cedis Chan('s('s 3 d~larC'6
Americanos.

3, La compania haec 1.1 mayor parte de su nC'gocio con cinco pa{sl's:
1) ~tcxico, 2) Francia, 3) Alemania, 4) Brazil, y ~) (;tlan.1.. I.as tarifas
de cambio de estos pals('s SE' cncuentran en tar jet as (>n 1 .. siguh'nte
forma

Flowchart y escribe un pro~r3ma qu,,· V3)'3 a r~ad tn la" t .. rU.1s de cambia
desde las tarj~tas (as,,~guratc d ... • qUl~ tl'Rt:as-.-a-;'--t-arj .. ·tas c.'n ordl'n ('or
recto). Despuc"s-t rcad in un pr':-cio en dolares :mc.'ricano$ y un ni.rri ... ro
de co'digo que cspccifuat..·l raIs qu .. · tu quicre::>, y wrih' out .. ,1 p ... (>do
equivalente en 1a moncd3 d-.·} pOlis es('ogido. ----

I
pac" I of I

prohl.,," "uml,,", UI. \.u

You have saved up enou,::h mORry to tT(,,,t yuurs"l1 tu chnnc.·r tlut. II yuu It.IV,'
$5.00 or more you (-an go- tt) Sish'r PCC'W(,(·I S ; If yuu h., .. -c.' $l. 00 Clr mv,.,. yuu

can go to Huifnlanls Barbt.'qur for c:hithnls .tnd J:f(· .. ·ns;·if yuu hay .. · $1.00 ur
more, you can go tn l\,·1ac Donaluls fur a hamburJ:('r; it ~'CJU h.lVC.' lc.·ss th.1ll .,
dollar, you have to cat at honle. Fill in the flowchart beluw and Wrltc a pru-

,um '0 '" ~, .,"',. 0
I I

f 1

o

• •

• •

• •

• •

• •

• •

I
pal~(' I of t

prnhlt·tn numlu'r 111··1-0

The IF Htatcnwnl is .L FOltTltAN jn~trudJOn to allt:r tIl(' opc· holls- th.tt ...
prugraln performs dl'pc'ntling upun till' (·ondlt!Clns whit II ... "ist. flc-rt· JS ,I

Sinl))l .. • t·xanlph' usillA til(' H'stah'lnt.'nt! A pro~ri.ull t Otllputc's til(' v ... lu,- of
NUZ. 1'hc l>roAr,;ulUllC'r W.Ul15 tu knuw if til(' valuc' of NUZ is nq,:atlvc. ·1.c'ro,
or positiyr. lit· wrilt,s:

IF (NUZ) ZOo l4. Z8
ZO WRITE (I. ZI)
ZI FORMAT ('NUZ L<; NEGATIVE')

GO TO 30
Z4 wllrn: (I. Z;)
Z5 FOIIMAT ('NUZ IS ZEIIO')

GO TO 10·
Z8 wllrn: (I. l'!)
Z9 FORMAT (':->Ui'. L<; POSITIVE')
30 CONTI;\;UE

U NUZ is n('~ati.Y(· tilt' progranl jUlups to LOt JI It is 7.e·", it jUlups to l4, If it
i. PUI.a II v.' it junlps tn lH. 10 plac,' of ~UZ you .. :an put SUIll" l"XI"~('SSlon bk,,·:

IF (NUZ" Z.:-;SUM) Zil. ZZl:. Z IZ

In this t:iUH' If NUZ·'l-"'SUM IN· U('1t411vt', lllC' IHO,:t"'cUlI J.t(J(·S to ZIZ, If it is

zero it ~U"S to lll. and if it is positlvc It J.:"e·!t tel l \Z.

Sonl(' fric'nds, of yuurtl who art' pub1i!thanJ: oJ, nc.·wspapt'r for the BI ... \.k, and
Chica.lu':. ,·Ulllnlumtac',. hav(' h'arnt·d that yuu oar..' oil prul!ranlOu'r .. iHI hav,' a~kcd
you tn h"lp t~ .. 'tn autulnat,· tlu- b,lhng" and re, ord. for th,-u adv(·rt1:it:·nlt.·nts.

I. Ad~c'rhli('nl\-lits .1rc· suld by th,' , .. Iuum ind). 1 hc.· ra.h' i5 SZ. SO p('tr
column in(·h for tht· f,rtit S ",du'6, $l.OO V .. 'r (·oluum lnc.:h fo·r all spat·t.'
bc.·yund; Inc,h,,!t. Flu\~'(hart .and-wrIte.· a pJ'ugr.uli ",-,:hJch wIn f('ad m the:
ai7.(· tll ... n -adv,·rusrlllc.'ni In c.:ulutnn Inc. he'::> II'"'Ull tht- kc.'rb{1ard and ~YPl· i)ut
th,' pru·c.', Wrlt,·,the prOJ.!rdrn lUI tlM-t It WIll c.·cmUnUt' to IHop back ~nd r(·ad
in n",w nUlllbc..'rs lur as lout: .. s yuu·wlsh.

palle I of I

prob) ... ,... 11111'11bc.·J' 111-8-0

,"Ull h.IY.· \U·'·1I lur, d til lu 11) .,\It'''II_.I. th .. · lIo •• II':, rc· .. ·urd:. HI ol c,h:icount storc.
'Iht- ".th·:-. In.ll1·H':1 r tJ .. , .. I~IOI- uncI. r:.I.lI'cI tit" Itlu .. h ... bout lUInpUl(.'rs and pro
Itr.:uununJ!" .. IHI "0 ":0. .. ,"uII,.I,· .·,.uni'll· ¥tJU otrt'):"Ina! 10 ""rill' hun a program
th •• t wall mo'Io.:.,' lin ''''''I,uh'r \\ur" II"'· .a ,)' ... n"y ,·.uh rtoJ:lster.

Yuu "'·.ant- tCt tH' •• blt- 10 I'"(·,H' HI tlu· pru c,' of .1 numbt'r of it('n1l. Coml)ute thC' tax
un lh., ,.a".tbl. tit In!to .•• rod th, n .. ,Id Ih,r:):!to .. II up t.~ 'It:urC' (Jut huw nlul-h the
(:uatunu-, .,)'IU, '.,u ,.151' ",.tlll II' ttt.:urt' Ilut huw til-lily t:,C'en stanlpS to
It'v,' hun. ,.,,1.£ "'·.lnt til ri .. tln1'> · .. r .. nd !lv,'r ... t:~HI lor ,·.aeh (·ustomer.

In add,tI"n.)UU Il. t .. ~01 C·f. tr ... ~ k ot thc.· tCJt~1 • .:as coUc,"H .. d during the day, and
thc.· lut .. 1 ~ "!'oil !to .• h .. If! I I. h • ,'h t.:",) of Itc'nl:

~ Ih·n) .l.!.!.

'oud. non~

hq-..".r Isr ..
at.atlulI .. ".,. S~.
h.rdw.r. ~"4
("loth.n, Sf.

"",.. '6 • ah p by att p ,II,., "phltn uf huw your prolr~nl Ihould work:

1. Typc.· In till' t ud.' ... lId vrH ~ ul .. Ol..:h .t~m.

l. Wh .. n yHU- h.v .. t'ntt· re'd All the' ''''n16. "lAke." the 'progranl write out the total
p",.c.::h ... " pra'"" th~ '.x. tlnd the" numb.r 01 ,re~n .tamps (one stamp for
~ach lOt p •• d IO-r pUh·h.at'. lc.·sa th,an $10.00. double that if you buy more
thAn $10.00, tor th .. ul~.

1. ThC' prOar.nl IO-e-I b.,-·k .nd II r(".d.,. to work on the next custonlC~r's
purch •• (' ••

4. At the cmd of the day you In.ak ... lht' p'Olr&l.nl writ·" out:

The total 01 aU pur(holst'S tnAd", that day in each llf the 5 categories
•• We'll ill the.' tot .. l ... Ito'. fur all t.'"liot"goncs.

b. The t.otai of ,all taxe. paid th..lt ~ .. y.

Thi. problenl i. ,a Jittl,' 'rlc.'ky. Bc.· 5llre to dt'sian a (·orrc'ct nowchart before
you try to code the prugraln •

Figure 5-Typical problems from the early stages of the course. All early problems are available in English
on one side of the page and Spanish on the other

•

•

•

•

•

•

available and feel more relaxed in the course as a con
sequence.

A few examples of some of the early problems for the
CJTT curriculum are given in Figure 5. Along with these
problems, brief non-credit drill sheets are used massively
in the early portions of the course. Unfortunately it is
not possible in the written version of this paper to give
a proper impression of the 35mm slides which have been
developed to accompany the course. This will be at
tempted in the oral version of the paper.

A knowledge of digital logic is hardly prerequisite to
most programming jobs, though it does make some of
the fine points of programming more intelligible. But
hardware can serve as an excellent motivational tool.
We explain to our students that computers are compli
cated in just the way that a house is complicated. The
bricks, nails, and boards which make up a house are
conceptually simple. It is only when thousands of them
are combined in a building that you end up with some
thing that is complicated. In much the same way,
AND-gates, OR-gates and flip-flops are logically simple
devices. It is only when thousands are wired together to
make a computer that you end up with a complicated
system.

We introduce hardware with as little talk about actual
circuit elements and abstract symbolism as possible.
The AND gate is introduced with a demonstration
which solves the problem "if it's sunny AND your friend
can come, you can go to the beach." The truth table is
worked out in terms of English:

1

is sun out? can friend come?

no no
no yes
yes no
yes yes

do you go?

no
no
no
yes

Once such a truth table is introduced for several simple
problems, the jump to more abstract levels of binary
notation is not too difficult. Likewise, more complex
circuit configurations such as two AND gates with their
outputs ORed together are used to solve day to day
problems. For example the circuit:

friend caD/::~:o c::>
weekend/not weekend go/don't go to beach

action/no action at home

solves the problem, "it it's sunny AND your friend can

Computer Jobs Through Training 351

Figure 6-A student wires a simple circuit with one of the
digital logic plug boards

come OR if it's the weekend AND there's no action at
home, you go to the beach".

In keeping with the hands-on philosophy of the proj
ect, individual logic plug boards which will allow each
student to work up his own circuits have been developed
as shown in Figure 6. The development of this equip
ment has been made possible with a grant of T -series
logic from Xerox Data Systems.

To conclude the hardware unit there is a final class
project. In an introductory class for engineers, the class
might build tape controllers, parallel to serial converters,
or similar devices. Many of our students find such ex
amples rather unexciting. Instead, we have chosen a
problem which is technically just as demanding, but
which is substantially less abstract. A model N-guage
rapid transit system for the city of San Diego has been
built and outfitted with appropriate micro-switches
which provide information on the trains at all times. The
set up is shown in Figure 7. The class is asked as a group
to develop the control logic necessary to automate the
system.

With this hardware background, an introduction to
machine organization and the fundamental ideas of as-

352 Fall Joint Computer Conference, 1970

lflgure 'I-~tudent staff member, Belton Flournoy, works on the
development of the model rapid transit system

l::leIIlbly language programming follow in a natural way.
We teach no specific assembly languages in this course,
but we do try to give our students a good idea of how an
assembly language works so that if later he must learn
one he will know what is going on.

The tab equipment unit is designed to give students
a very brief introduction-it is not designed to train
experts. We quickly outline the use of the program drum
on the keypunch and then briefly introduce and use the
sorter and accounting machine. The project has ac
quired 62 surplus type 910 control boards so that each
student is able to wire one simple listing problem.

As indicated in Figure 4 the middle third of the formal
portion of the course is devoted to more advanced pro
gramming concepts such as file organization and main
tenance, extensive use of subroutines, and similar tech
niques which are required for simple system work. The
final third of the formal curriculum introduces COBOL.
This portion of the course involves few new logical
ideas. Indeed, students do many of the same problems
that they have already worked in FORTRAN, so that

they can develop a feel for the comparative strengths of
the two languages.

Well before the end of the course it is clear which
students are doing well enough for job placement. When
these students complete the course they enter a Termi
nal Workshop of intensive full-time training for a
period of about seven weeks which prepares them for
their job. If the potential employer has indicated that
he requires specific skills, such as COBOL proficiency
or extensive magnetic tape experience, these are em
phasized. The Terminal Workshop is run at the UCSD
Computer Center and at nearby Gulf General Atomic.
Though we have serious financial difficulties, it is our
intention that all students who require financial assist
ance during this full time terminal workshop period will
receive a stipend.

Job placement

It is not sufficient in a project such as this one to
count simple placement in a programming job as suc
cess. What counts of course is the number of people
who continue to work in: the field long after initial place
ment. In order to minimize difficulties in the early
months after placement our students will be followed
carefully once they are out on the job by a Placement
Aide who will try to detect difficulties, either of a social
or technical nature, well before they become serious,
and take the necessary corrective action.

Our first course for young adults got under way in
February 19'70 on a nighttime basis. We made arrange
ments with local employers for placement of the modest
number of graduates that we expected from this first
course before the course began. However it is not reas
onable to expect to get massive commitments for place
ment for many students before a project such as ours
has produced its first graduates. Programmers are not
plumbers' aides. While industry will commit itself to
hire large numbers of low entry level people from train
ing programs, any reasonable employer will insist on
seeing the quality of the graduate before he commits
himself to hiring someone like a programmer.

To sell the project to employers we are using the mo
bile aspect of our facility-setting up in a potential
employer's parking lot with the van and a number of
our students and asking the employer to come have a
look at what we are doing. We are also seeking em
ployers' commitments to hire our graduates through
local organizations such as the Urban Coalition. At
the time of this writing the first full adult class has not
yet been graduated. Further details on the placement
aspects of the project will be provided in the oral version
of the paper.

Other aspects of the CJTT program

While job training is the principal objective of the
CJTT project, the two Youth Corps classes that we ran
during the summers of 1968 and 1969 were valuable in
their own right as courses which stimulated and moti
vated disadvantaged high school students toward fur
ther education and careers in computer science or in
other technical fields. We have been operating with a
small staff and a very small budget, and this together
with the fact that our primary objective has been or
ganizing the job training project has prevented a care
ful systematic follow-up on all of the NYC students.
However, judging from those students with whom we
have maintained contact, the courses have had a sig
nificant impact.

During the summer of 1970 we have made more
formal arrangements to continue this motivational type
of instruction for high school students. With financial
support from the San Diego Unified Schools we are
running three special motivational classes for credit as
part of the city school's summer session. These classes,
two for high school students, one for entering seventh
graders, are being conducted in schools with very high
enrollments of disadvantaged youths. The instruction
is being done by four UCSD Black and Chicano under
graduates who are majoring in computer science. Prog
ress in these classes has been excellent and we expect
to expand our in-school activities.

CONCLUSION

We have restricted ourselves in this paper to a straight
forward description of the CJTT project but it would
not be proper to conclude without giving some indica
tion of the very serious financial difficulties that we have
encountered. On the local UCSD campus we have re
ceived strong moral and financial support from Pro
fessor Kenneth L. Bowles who directs the Computer
Center and Professor Henry G. Booker, Chairman of
the Department of Applied Physics and Information
Science. Outside of this support, which had totaled just
under $40,000 by July of 1970, we have pieced together
an additional $40,000 from dozens ,of separate sources,
most of which are listed in the acknowledgments.

Much of this $80,000 of support which had been
organized as of July 1970 was in-kind assistance. With
t.his support the CJTT project has accomplished what
by normal University operating methods would have
cost slightly more than $150,000. This savings did not
come easily. It results from substituting labor for capital.
It was accomplished at times by turning highly qualified
programmers into painters and carpenters; by scroung-

Computer Jobs Through Training 353

ing used electrical conduit from old buildings about to be
razed; scrounging lumber from construction. site fore
men; putting Ph.D.s to work doing carpentry and dig
ging telephone pole holes.

Despite more than a year of strenuous salesmanship
and much proposal writing, the project had still not re
ceived any State or Federal anti-poverty monies as of
July 1970. Our evaluation of the funding situation is
that this experience is not unique, that others planning
similar programs can anticipate similar very serious
funding difficulties unless they can find strong sources of
local or private financial support.

Our estimated costs are roughly $150,000 per year or
just over $3,000 per student placed. Something like 80
percent of this cost is for salaries. No student stipend
costs are included in these figures. While we began this
work with great optimism, our experience to date has
led us to seriously question whether long term funding
of this magnitude can be organized. There is much talk
in the country about how important it is to do this sort
of thing but not very much money to do it. Future
workers would do well to explore the financial climate
with great care before launching new projects.

REFERENCES

1 While a number of workers have undertaken projects in
this field, the literature is still very spotty. A review of some
of these projects is available in:

DB MAYER
The involved generation-Computing people and the
disadvantaged
AAPS Proceedings of the Fall Joint Computer Conference
1969 p 679

In addition to the work reviewed in Mayer's paper we are
aware of work undertaken by:

R BELLMAN J BLOOD C FORD-LIVENE
Project Soul: Computer training for high school students
from disadvantaged areas
University of Southern California Technical Report
UCSEE-375 November 1969
T I BARTHA
Computer programmer training program
Report of the Computer Education and Research Center
Pratt Institute Brooklyn New York 11205
L H HARRIS
of Shell Development Corporation (P. O. Box 481) in
Houston, Texas, has run a training program for a number
of years.

ACKNOWLEDGMENTS

We wish to acknowledge the invaluable assistance of
Kenneth Bowles, Henry Booker, Jack Douglass, Frank

354 Fall Joint Computer Conference, 1970

Saiz, Roy Cazares, Ken Hicks, Qneeta Alexander and
Bob Sadler of the UCSD staff,along with the assistance
of many UCSD undergraduates and Neighborhood
Youth Corps students of whom Belton Flournoy, Susan
Halfon, Calvin Manson, Beverly Andrews, and Boyd
Pearson deserve special mention.

In addition, we gratefully acknowledge the financial
assistance of the University of California, The Rosen
berg Foundation, Gulf General Atomic, Safeway Stores,
Xerox Data Systems, Montgomery Ward, Bekins Van
Lines, Pacific Gas and Electric, Pacific Telephone, and
other local supporters.

Technical and human engineering problems in
connecting terminals to a time-sharing system

J. :F. OSSANNA

Bell Telephone Laboratories, Inc.
Murray Hill, New Jersey

and

J. H. SALTZER

Massachusetts Institute of Technology
Cambridge, Massachusetts

INTRODUCTION

Today, an increasing number of computer systems are
used interactively by their user communities. Inter
active use of computers, involving more prolonged
man-machine contact than non-interactive use, requires
a well human engineered user-system interface. The
interactive user's performance-his rate of doing work
and his ability and desire to utilize system capability-is
a sensitive function of the success of this human
engineering. In turn, the computer system's effectiveness
depends on achieving a satisfactory level of user
performance with reasonable efficiency.

This paper will be concerned with the human
engineering of connecting typewriter-like terminals to
general purpose time-sharing systems. Examples of such
systems are Digital Equipment's 10/50 system for the
PDP-lO, IBM's Time-Sharing System for the 360/67,
the Dartmouth Time-Sharing System, and the Multics
system at MIT. Such systems are used by a wide range
of users doing many kinds of work. Typewriter-like
terminals constitute. the majority of general-purpose
remote terminals in use today; examples are the
Model 37 teletypewriter! and the IBIVI Model 2741.2

Although more complex terminals, such as those
providing true graphical capability, are not specifically
treated, many of the factors to be discussed apply to
them. The special behavior and needs of specialized
systems are not treated, but some of the ideas presented
will apply in individual cases.

Value judgments about human engineering factors
always involve a degree of individual taste which in turn
depends in part on individual experience. J\1any of the

355

ideas expressed here are the outgrowth of experience
obtained during the growth and use of Project MAC's
CTSS system3 ,4 and during the development of
J\1ultics. 5

Good user performance becomes possible when the
user can easily and rapidly do what he wants to do.
Consequently, many of the human engineering factors
to be discussed relate to the user's ability to provide
input as rapidly as desired, to control output, and to
avoid unnecessary interaction.

First, we will discuss input/output strategies, since
they broadly affect most of the other areas to be
covered. Then we will discuss in turn, terminal features,
the terminal control hardware, and the terminal control
software-working from the user into the system.
Finally, we will briefly mention character sets and
character stream processing.

INPUT/OUTPUT STRATEGIES

The user's input consists of system commands,
requests to programs, data, answers, etc. From the
user's point of view, input can be divided into com
ponents according to whether or not it is expected that
the component will cause output to occur. Some input is
expected to cause output to occur-for example, a
command to list a file directory. Other input may be
expected to cause output only conditionally; for
example, a command to rename a file may output an
error comment only if the named file doesn't exist. Still
other input may be expected to cause no output-for
example, continuous text input into an editor.

356 Fall Joint Computer Conference, 1970

From the system's point of view, the user's input can
be considered a character stream containing certain
characters indicating that action should be taken. In
the common line-by-line input case, a return or new-line
character is the only action character. In general, there
may be a number of action characters. In certain
applications treating all characters as action characters
may be .appropriate. The user ordinarily should know
what action characters are currently in effect, since
typing dne of them initiates execution, which may in
turn cause output.

The human engineering problem in collecting a user's
input arises primarily because the user frequently knows
much of what his input is to be well in advance. He may
know the next several commands or the next several
editing requests he wishes to input. In general, the
components of this known-in-advance input can fall
into all three output relationship classifications.
Although the user often knows when to expect output,
the system cannot.

The user should not be unnecessarily prevented from
providing such input as fast as he can think of it and can
type it. By collecting input asynchronously rather than
synchronously with respect to the system's utilization
of the input, the user and the computer can work
asynchronously and in parallel rather than synchron
ously and serially.

There are four mechanisms that can individually or
collectively facilitate providing input.

First, input can be collected whenever there is no
output occurring. If the operation is full-duplex, * it is
even possible to collect input while output is occurring.
The typing of action characters should trigger program
execution but not inhibit further input. Such asyn
chronous collection of input is usually referred to as
read-ahead or type-ahead. A number of present day
systems4 ,5 provide a read-ahead strategy.

Read-ahead permits overlap of input with both
system response time and program execution. Also, it
permits programs such as text editors to gather text
'input continuously. Because erroneous input may be
encountered, programs must be able to produce
conditional output and also discard existing read-ahead
to prevent compounding of errors.

A second mechanism is to allow more than one
independent input component between action char
acters. For example, a system using new-line as an
action character should permit more than one command

* In full-duplex operation, transmission can occur independently
in both directions. This requires independent keyboard and
printer operation at the terminal, as well as independent input
and output at the computer. The modems (or data sets) typically
used to connect the kind of typewriter being discussed to the
telephone line ordinarily provide full-duplex transmission.

on a line. Editors in such a system should permit more
than one editor request per line. This outlook should
pervade every level of programming.

Third, commands and other programs should be
designed to avoid unnecessary interaction. One aid in
doing this is to allow the typing of arguments to a
command on the same line as the name of the command.
For example, typing "edit zilch" is preferable to typing
only "edit" and later answering the question,
"Filename"? Default parameter values can frequently
be assumed in the absence of typed arguments. Per
mitting both multiple commands and arguments enables
various schemes for inputting factored command and
argument sequences. 5

Fourth, it is convenient if the user can create a file
containing potential input and subsequently cause the
system to take input from this file.

The use of these mechanisms can also improve
system efficiency by reducing the number of separate
program executions, since the program may find more
input and be able to do more work during each
execution.

The user should have reasonable control over his
output. For example, whenever a stream of unwanted
output occurs, it should be possible to stop it without
undesirable side effects, such as losing too much of the
results of immediately previous interactions. An inter
rupt mechanism, such as that detailed later, can be
used to stop the output, cause execution to halt, and
discard any read-ahead. If the system allows an
interrupted program to catch the user's interrupt signal,
a program desiring an extra degree of sophistication can
be designed to recover from various conditions such as
unintended execution loops or unwanted output due to
unwise input. User control over output code conversion
is desirable and will be discussed later. The ability for
the user to direct program output to destination(s)
other than his terminal is quite useful. For example, the
output from a program which generates a large volume
of output can usefully be directed to a file for later
printing.

REMOTE TERMINAL CHARACTERISTICS

An excellent treatment of features desirable In
typerwriter-like terminals can be found in Reference 6.
We will treat here certain important terminal design
features which strongly affect the system designer's
ability to human engineer the system-user interface.

A typewriter may be viewed as a collection of data
sources-the keyboard, the receive-data lead of the
modem or data set, and possibly a paper-tape reader
and data sinks-the printer, a control detector, the

PRINTER

DATA SET

Receive Send
Data Data

CONTROL TAPE
DETECTOR L~~-----::l,L--""---:~OU-""1 READER

TAPE
PUNCH

Figure (la)-Typewriter data sources and sinks and possible
interconnections

send-data lead of the data set, and possibly a paper-tape
punch. Figure CIa) shows such a collection and possible
interconnections. Flexible user and/or system control
over these source-sink interconnections permits imple
mentation of various input/output strategies.

As a specific example, Figure CIb) shows the inter
connection control of a Model 37KSR teletypewriter.
Control of the switches occurs by detection of control
character sequences by the control detector associated
with the printer. The interrupt detector and generator
are discussed below. When the keyboard-to-printer
connection is closed the terminal is in half-duplex mode
and local printing of keyboarded data occurs. When this
connection is open the terminal is in full-duplex mode,
and the relationship between keyboarded data and
printed copy is under control of the computer system.
One common use of the full-duplex mode is to collect
passwords without printing them. The full-duplex mode
allows the printed characters to be simple mappings,
or even arbitrarily elaborate functions, of the keyboarded
characters. The ability to lock and unlock the keyboard
allows the system to constrain the user to type only
when input is able to be collected by the system.

The program interrupt ability previously mentioned
can be achieved by full-duplex operation of both the
terminal and computer, which permits an interrupt
implying character to be typed at any time. Another
method, which does not require full-duplex operation,
is the "line-break" technique, * where an always
generatable unique signal can be transmitted. In
addition, the ability of the terminal to respond to a
break or interrupt signal from the computer regardless

* The "line-break" or "break" signal usually consists of approxi
mately 200 milliseconds of "space" ("0" bits). This is distinguish
able from ordinary characters and is easily detected independently
without the necessity of being able to receive characters.

Technical and Human Engineering Problems 357

of its state provides a method of restoring the terminal
to a desired state-typically ready to receive control or
text information. As an example, the 1Vlodel 37 responds
to a break by locking the keyboard; the Model 37 break
generator and detector are shown in Figure (Ib).

The system should be able to maintain knowledge of
and control over the states of the terminal. In particular,
the system should be able to force the terminal into a
state where the system can print on the terminal
without user interference. As many terminal actions as
possible-for example, those causing carriage and paper
motion, color shift, source-sink interconnections
should be initiated by character sequences whether
terminal or computer generated. This implies that the
character set used should be sufficiently rich in control
characters.

The terminal should not inherently hinder imple
mentation of a read-ahead strategy. For example, the
keyboard should not lock automatically after the
typing of what the terminal assumes is an action
character, such as at the end of a line; such terminal
behavior is a violation of a general rule that the terminal
shouldn't try to "outguess the software."6 When a
system controls input by keyboard locking the user
should know when the keyboard is usable without
having to test it. For example, the Model 37 lights a
"proceed" lamp when the keyboard is unlocked. Using
a "new-line" function (combined carriage-return and
line-feed) is simpler for both man and machine than
requiring both functions for starting a new line; the
American National Standard X3.4-19687 permits the
line-feed code to carry the new-line meaning. The
terminal should have adequate functions for speeding
up both input and output. Horizontal tabs are essential,
form feed and vertical tabs are useful. They are the most
useful when the user can easily set the stops himself

BREAK
DETECTOR

CONTROL
DETECTOR

DATA SET

Receive Send
Data Data

Figure (lb)-Model 37KSR teletypewriter interconnections

358 Fall Joint Computer Conference, 1970

using control character sequences; this is possible in
some present day terminals.! ,8

When a terminal has reached the system via a
switched telephone network, the system may not
a priori know anything about the calling terminal, and
it can be useful if the terminal can send an identification
sequence to the system upon demand. This sequence
can be used to uniquely identify the terminal, to
determine the terminal type, and to indicate terminal
options. The Model 37 answer-back scheme is an
example of a more than adequate identification. The
economic advantage of having different terminal types
statistically share computer ports is a strong motivation
for the system to be able to experimentally determine
the terminal type. It is necessary only that each
terminal to be supported be able to respond to a
transmission from the system and that either the
transmission or the response be unique. Multics cur
rently supports four types of terminals and determines
which type by performing an experiment involving
identification responses.

The Model 37 teletypewriter and the Genera] Electric
TermiNet-3008 (Registered Trade Mark of the General
Electric Company) provide nearly all of the above
mentioned features. Consider the standard version of
IBM's ~10del 27412 terminal, which is widely used as a
time-sharing terminal. This terminal can only be used
in the half-duplex mode, so there is no way to inhibit
direct local copy or to exploit full-duplex operation. The
terminal cannot be interrupted by the system while the
keyboard is unlocked; thus the system can't force the
termin~l to accept output while the user is able to type.
This property makes read-ahead a somewhat dangerous
strategy, since conditional output is impossible while
the user is able to type. The keyboard locks as a result
of typing "return" (new-line), and requires the system
to respond and unlock the keyboard before the user can
proceed. Even with instant system response, the delay
before typing can continue (caused by the transmission
of control characters) is noticeable, so that any read
ahead strategy is degraded. No keyboard-unlocked
indication is provided for the user. Adding an identifica
tion mechanism, enabling interrupt to be always
generatable and receivable, adding a local-copy suppress
mode, and eliminating the automatic keyboard lock, are
possible modifications; unfortuna~ely, as is characteristic
of post-initial design changes, they add significant cost.

COIVIPUTER SYSTEJVI TERMINAL CONTROL
HARDWARE

The terminal control hardware used today broadly
falls into two categories. One is the peripheral stored-

program controller; the other is the hard-wired con
troller operated directly by the main computer. The
major difference between these in practice is in the way
the control software is modularized. The various
functions to be performed by the terminal control
hardware and software together can be divided between
them almost arbitrarily. The decisions made when
allocating logic between a main machine control pro
gram and a hard-wired or stored-program controller
involve a variety of economic and other management
considerations; it is not our intention here to discuss
relative virtues of hard-wired and stored-program
controllers. In either case, if the controller provides a
primitive but complete set of functions, the terminal
control program in the main computer can assume
primary logistic control over the terminals. Such a
controller is assumed in the following discussion, which
describes suitable controller functions.

Because it may be safely assumed that new and better
terminals will continue to be introduced, the terminal
controller should be flexible enough to permit operating
these new terminals with minimum modification.
Specifically, parameters such as the number of bits per
character, the character parity, and the bit rate should
be program controllable or at least field modifiable. At
any given time, there are usually several terminal types
worth supporting. The controller must be able to
handle the corresponding variety of line control

READ START SEQUENCE

1. SET TRANSMIT MODE.

2. TRANSMIT LITERAL "EOT" CHARACTER.

3. SET READ MODE.

4. READ ONE CHARACTER (SWALLOW "EOA" CHARACTER).

s. SET ACTION CHARACTER LIST TO (JUST) NEW-LINE.

6. TRANSFER TO READ SEQUENCE.

READ SEQUENCE

7. READ INTO BUFFER 1.

S. READ INTO BUFFER 2.

9. TRANSFER TO KEYBOARD-LOCKING SEQUENCE.

KEYBOARD-LOCKING SEQUENCE

lO~ SET TRANSMIT MODE.

11. TRANSMIT LITERAL "BREAK" SIGNAL.

12. STOP.

Figure 2-Command list to read the keyboard of an IBM 2741

requirements without undue programming effort and
without undue main processor intervention; this implies
suitable controller command chaining, which is de
scri bed later.

When terminals reach the system via a switched
telephone network, the system needs to be fully aware
of call-ins, disconnects, and line failures. Thus the
controller should make available to the software all
status available from the modem or data set, and allow
the system to enable interrupts for status changes.
Similarly, the controller should allow the system to set
all the control leads of the data set, so the system can
control data set answering, make lines in hunt groups
appear busy, and initiate disconnects. Such control
allows the system to disabJe improperly working lines
and to exercise system load control.

Certain terminal functions (tabs, form-feed, new-line,
etc.), require that a delay sufficient for completion
follow its initiation. If this delay is provided by the
inclusion of "fill" characters (causing no terminal
action), only the needed number should be transmitted.
Experience suggests that accurate delay calculation,
providing only the actual delay necessary, speeds up
output and gives the system a smoother and speedier
image. * Preferably, delays should be calculated to the
nearest bit time rather than to the nearest character
time.

An important controller feature is the ability to act
on a list of queued "commands" from the control
software. The command repertoire should include
commands to set controller and data set modes, obtain
controller and data set status, transmit from a buffer,
read into a buffer, transmit a literal bit string, and
transfer to another command. The tandem execution of
two or more read or write commands is usually called
"data chaining." The tandem execution of a list of mixed
read and write commands is usually called "command
chaining." A transfer command allows the list to be
conveniently built of sublists and dynamically threaded
together. The ability to transmit literal bit strings allows
the transmission of delays (all Is), breaks (all Os), and
canned control character sequences.

The ability to data chain while reading is an im
portant help in allowing continuous input, because it
allows a more relaxed software response to an exhausted
buffer. To simplify buffer management, the controller
should be able to interrupt on an action character but
continue reading sequentially into the same buffer; an
interrupt should also occur on data-chaining to alert the

* This effect was noticed during the early deveiopment and use
of Project MAC's CTSS. S~bsequently on both CTSS and
Multics, users quickly noticed longer-than-needed delays on new
terminals or due to untuned new software.

Technical and Human Engineering Problems 359

software of an exhausted buffer. It is useful if the action
character(s) detected can be dynamically set by the
software. If the action character(s) can be associated
with each individual read command and the action to
be taken individually specified, the ability to chain a
list of mixed read and write commands permits handling
a variety of terminal types and the design of good
read-ahead strategies. The detection of a received
"break" signal should halt the controller and cause an
interrupt.

Figure 2 shows a hypothetical command list similar
to lists implemented in Multics. The list illustrates
reading the keyboard of an IBM 2741 (modified to
accept break signals), and employs several sublistK
After an interrupt from the controller indicating the
exhaustion of buffer one, the control software would
ordinarily replace the transfer in step 9 with a transfer
to another read sequence. The keyboard-locking
sequence stops input should the system fail to obtain
another buffer prior to exhaustion of buffer two.

General Electric's General Input/Output Controller
(GIOC) used with the GE 645 system (on which Multics
is implemented) is an example of a communication
controller that provides most of the above-mentioned
controller functions. Reference 9 describes the design
of the GIOC.

TERMINAL CONTROL SOFTWARE

The following discussion will be concerned with
terminal control software in a main computer using a
flexible terminal controller. We will discuss the need for
flexibility of design and operation, the implementation
of input/output strategies, some of the responsibilities
to other system software, and a little about the interface
tq user programs.

The maj or areas where flexibility is important in
terminal control software are the ability to operate
various terminal types, and the ability to adapt to the
variable behavior and needs of users.

The advantages of being able to operate a variety of
terminals are: (1) freedom from dependence on one
terminal supplier; (2) ability to take advantage of newer
terminals; (3) user access to terminal features not all
found on one terminal; and (4) satisfaction of individual
user needs and preferences. The ability to operate
various terminals and to easily extend operation to new
terminals requires a flexible and convenient method for
converting between internal system character codes and
physical device codes, and for handling the different
kinds of terminal control.

If the terminal control software is designed to· be
driven by a collection of tables, it should be possible to

360 Fall Joint Computer Conference, 1970

embed device differences and perhaps user options in
the tables rather than in the harder-to-change program.
Flexibility and extensibility can be achieved by
sufficient ingenuity in choosing what information is to
be relegated to tables. The generality required in such
tables depends on the range of terminals to be controlled.
Control driving tables can include the following:

1. Input and output code conversion tables.
2. Device parameter tables.
3. Tables of controller command sequences for

identifying and operating the various devices.

The system-device code mappings contained in the
code conversion tables would include suitable "escape"
character sequences for handling system-defined char
acters not present on some terminals. * Also, additional
tables could be provided for alternative conversion
modes on the same terminal, ** and to accommodate, for
example, the user who wants to use a non-standard
print element on an IBM Model 2741 or an extended
character type-box on a Model 37 teletypewriter.

The device parameter table would contain such
information as default action characters, default output
line overflow length, default code conversion table name

. ' carnage return speed for delay calculations, character
parity, etc.

The operating command sequence information in
cludes sequences for initiating a write, writing, termi
nating a write, initiating a read, etc. The identification
command sequences are the ones used for terminal type
determination; often the terminal identification code is
obtained as a by-product of type determination.

If the hardware controller can interrupt on an action
character and otherwise continue, then only a small
fixed buffer space need be associated with each active
terminal-that needed for current physical input/
output by the controller. All other buffer space can be
pooled and assigned to individual terminals on demand.
A simple read-ahead strategy can· be implemented by
copying input characters from physical collection buffers
at action character interrupt time into a linked list of
input buffers obtained dynamically from the buffer
pool. When the user program requests input, the input
is taken from the user's input buffer list. Similar buffer
schemes have been long used for handling devices such

* For example, the sequence "¢ <" could be used to represent
a "[" on an IBM 2741,10
** If the default mode utilizes escape sequences for missing
characters, an alternative mode could print blanks for such
characters to permit inking them in.

as magnetic tapes, but are not often seen used for
terminal control.

Similarly, a user program's output can be copied into
a dynamically grown buffer list. Physical output occurs
by refilling from the output list the physical buffer
associated· with each terminal every time its contents
have been output. With half-duplex operation, emptying
the output list should reinstate read-ahead. Letting a
user program emit substantial output before suspending
its execution (referred to as permitting write-behind)
usually improves system efficiency by reducing the
number of separate program executions. Physical output
should be initiated as soon as there is any, and not
delayed perhaps waiting for a buffer to fill. Aside from
distorting the sense of program progress, such output
delay can make program debugging very difficult. For
example, debugging often involves inserting additional
output statements in various program branches to
obtain flow information. It is misleading not to see this
flow information prior to a program entering an
unintended loop, because of inappropriate output delay.

Of course, reasonable limits must be put on how much
read-ahead and write-behind is permitted, lest a single
user or his program seize all available buffers. Adequate
total buffer space should exist to cover reasonable
fluctuations in total demand. Algorithms to limit the
buffer space that can be claimed by one user should be
generous when conditions permit to avoid losing the
advantages of read-ahead and write-behind. During
peaks in total demand that tax the available space, these
algorithms should be graceful1y restrictive. Some
successful limiting algorithms4 involve allowing each
user to accumulate a fixed fraction of either the total
buffer space set aside for all such terminals, or of the
current remaining space. Because the average output
character rate is typically ten times the average input
character rate,11 the limiting algorithms must prevent
write-behind demands from completely depleting the
available buffer space, so that some space is kept
available for collecting input.

The terminal control software is responsible for
blocking further execution of the user's program when
it requests input and none is available, and whenever it
exceeds the write-behind limit. In the waiting.;.for-input
case, the program must be restarted when an action
character is detected. In the waiting-for-output case,
the program should be restarted when the back-logged
output has dropped to an amount whose physical output
time will approximately correspond to the restart delay
(system response), so that the physical output can occur
continuously.

Another responsibility of the control software is to
detect and report disconnects and the user's interrupt
(break) signals. Disconnects should be reported to the

system module responsible for reclaiming the communi
cation line and making it available to other users. The
interrupt should be reported to the system module
responsible for suspending the execution of the user's
program, pending input from the user indicating the
reason for the interrupt.

The subject of the interface between the terminal
control software and a user· program is too large to be
covered thoroughly in this paper. The flexibility built
into the control software should be available to the user
program. It should be possible, for example, to request
a different code conversion table, specify a new line
overflow length, discard existing read-ahead input, turn
off and on the terminal's local copy, disconnect the
terminal (if it is on a phone line), request the terminal's
identification code, etc. A particularly bad interface
example occurs in some systems in use today, in which
it is not possible to simply read from the terminal. The
user program can only issue a write-read sequence.
Output is forced to occur between each line of input.
Consequently, the user program is scheduled and
executed to perform this obligatory output. The overall
effect is to degrade system efficiency as well as seriously
slow down the user at the terminal.

The typewriter control software in the Multics
system is almost completely driven by tables organized
along the lines described above. A single control
program currently operates the Model 37 teletypewriter,
IBM Models 1050 and 2741, and the General Electric
TermiNet-300. Full read-ahead and write-behind are
implemented with a maximum limit which corresponds
to about 700 characters for both the read and write
buffer lists. A buffer pool of 250 14-character block has
proven adequate in a 35 user system. In addition each
active typewriter has physical read and write buffers of
about 100 characters each. After a program exceeds the
write-behind limit and is blocked from execution, it is
restarted when the write...;behind has dropped to about
60 characters.

CHARACTER SET AND CHARACTER STREAM
CONSIDERATIONS

The choice of a suitable character set and suitable
processing of the input and output character streams
are extremely important human engineering issues
which can affect the user's view of the system as much
as any of the factors already discussed. An earlier
paperlO contains a detailed treatment of these issues; it
includes discussion of character set choice, input and
output code conversion, input text canonicalization,
and input line editing.

Technical and Human Engineering Problems 361

CONCLUSIONS

The total effectiveness of a time-sharing system and its
user community depends a great deal on the human
engineering of the system-user interface seen by the
user from the vantage point of his terminal. We have
concentrated on the factors affecting the user's ability
to provide input at the rate he wishes and to· control
output. Suitable input/output strategies can allow the
user to work in parallel with the computer. We have
maintained that a coordinated design of the terminal,
the terminal control hardware, the terminal control
software, the system's command stream interpreter, the
commands, and other programs, are all necessary to
achieve the desired goal.

Many of the individual factors discussed, of course,
have been recognized as important in the design of
various systems. It is rare, however, to find a sufficient
set of these factors implemented to a satisfactory
extent. One reason for this is that the system designer is
often faced with using previously designed terminals
and terminal control hardware, and even previously
written software. Another reason is that even with
experience using a variety of interactive systems it can
be difficult to assess the sensitivity of the human
interface to differences in design. Too often, this lack
of complete design control together with insufficient
experience results in a system design lacking some
important features.

ACKNOWLEDGlVIENTS

Many of the techniques described here were developed
over a several year time span by the builders of the 7094
Compatible Time-Sharing System at MIT Project
MAC, and by the implementors of Multics, a coopera
tive research effort by the General Electric Company,
the Bell Telephone Laboratories, Inc., and the Massa
chusetts Institute of Technology. Among those
contributing to the understanding of how to effectively
implement typewriter input/output were F. J. Corbat6,
R. C. Daley, S. D. Dunten, E. L. Glaser, R. G. Mills,
D. M. Ritchie, and K. L. Thompson.

Work reported here was supported in part by the
Advanced Research Projects Agency, Department of
Defense, under Office of Naval Research Contract
Nonr-4102(01). Reproduction is permitted for any
purpose of the United States Government.

REFERENCES

1 Model 37 teletypewriter stations for DATA-PHONE
(Registered Trade Mark of the Bell System) service

362 Fall Joint Computer Conference, 1970

Bell System Data Communications Technical Reference
American Telephone and Telegraph Company September
1968

2 IBM 2741 communications terminal
IBM Form A24-3415-2 IBM Corporation N ew York

3 P A CRISMAN
The compatible time-sharing system: A programmers' g'uide
Second Edition MIT Computation Center The MIT Press
Cambridge Massachusetts 1965

4 J H SALTZER
CT SS technical notes
MAC Technical Report No 16 Project MAC Massachusetts
Institute of Technology March 15 1965

5 The multiplexed information and computing service:
Programmers' manual
MIT Project MAC Cambridge Mass 1970 (to be published)

6 T A DOLOTTA
Functional specifications for typewriter-like time sharing
terminals
Computing Surveys Vol 2 No 1 March 1970 pp 5-31

7 American National Standard X3.4-1968
American National Standards Institute Oct 1968

8 Programmers' manual for the General Electric-TermiNet-300
printer
No.GEK-15002 General Electric Company 1969

9 J F OSSANNA L E MIKUS S D DUNTEN
Communications and input/output switching in a multiplex
computing system
AFIPS Conference Proceedings Vol 27 Part 1 1965 (1965
Fall Joint Computer Conference) Spartan Books
Washington D C pp 231-241

10 J H SALTZER J F OSSANNA
Remote terminal character stream processing in multics
AFIPS Conference Proceedings Vol 36 1970 (1970 Spring
Joint Computer Conference) AFIPS Press Montvale
New Jersey pp 621-627

11 P E JACKSON C D STUBBS
A study of interactive computer communication
AFIPS Conference Proceedings Vol 34 1969 1969 Spring
Joint Computer Conference AFIPS Press Montvale
New Jersey pp 491-504

Multiprogramming in a medium-sized
hybrid environment

by W. R. DODDS

Bell Helicopter Company
Fort Worth, Texas

INTRODUCTION

Of the many roles that the digital computer plays in
a full hybrid environment, few are amenable to multi
programming. Usually, the speed mismatch between
a ~o~ern h~g~-speed analog computer and the typical
sCIentIfic dIgItal computer used in hybrid systems
demands that the digital be fully dedicated to the
particular task in progress. However, the use of the
digital computer for analog computer setup and check
out is a function which is performed several times a
day in an active hybrid computation laboratory and
t~i~ task does not make any severe demands upo~ the
dIgItal . computer. This paper describes a multipro
grammmg system used to effectively set up and check
out an analog computer whilestiH performing routine
background processing such as compilation ..

SYSTEM CONFIGURATION

A block diagram of the Bell Hybrid Facility is shown
in Figure 1. It consists of an IBM 360/44 digital com
puter linked to two SS-100 analog computers manu
factured by Hybrid Systems, Inc. This hybrid system
is. appl.ied to problems in the areas of structural design,
vIbratIOn analysis, rotor dynamics and flight simula
tion. It is used on a one shift basis with a staff of three
applications engineers.

DESIGN PHILOSOPHY

The software to be described has evolved after two
years of use in an active hybrid facility. A hardware
li~itation of the Bell hybrid system prevents the
8~multaneou8 addressing of both analog consoles from
the digital; hence, the software was not designed to
set up two analog consoles at the same time. In fact
the operating system DAMPS does not permit th~

363

simultaneous execution of two real time jobs. As the
setup and checkout software was originally specified
. ' It resembled more of a "wire-checker", and the FOR-
TRAN statements specified the outputs of amplifiers
in terms of preceding amplifiers and potentiometers.
However, it was soon found to be advantageous to
speci!y every component in terms of physical variables,
physICal constants and scale factors. This permitted
easy rescaling, facilitated reallocation of components,
and provided good documentation of potentiometers
and amplifier outputs.

An important feature of the setup software is that
it is user-oriented. The FORTRAN definitions of pot
settings, etc., are manipulated into a subroutine by
a job control procedure library. Scale factors and
static check conditions are usually read in at execu
tion time on data cards, providing a rapid means of
optimizing the static check. This constitutes the "paper

276 AMPLIFIERS
56 MULTIPLIERS
12 DFGS

132 POTS
PRIORI~_~~TERRUPTS 111M 360/44 G

131, 072 BYTES
FLOATING POINT

FUroRE
PRIORITY INTERRUPT

FUroRE

I---'~=:.....-.It--"::'::PR~IO""'RI""TY-I~NT-ERR-UP-TS--I 1 "SEC CYCLE TIME

16-31
276 AMPLIFIERS

56 MULTIPLIERS
12 DFGS

132 POTS

Figure I-Configuration of Bell Helicopter hybrid computer
facility

364 Fall Joint Computer Conference, 1970

PRIORIlY
LEVELS

QUEUE
o

31

QUeuE ""PlY
1

QUeuE
2 PROCESSING TASK

IN Q2

QUEUE f)lPlY
3

./
START PROCESSING

TASK IN Q1

ISSUS SVC
CHSCK

RECEIVE I/O
INTERRUPT STARTED

BY TASK IN Q~

BACKGROUND L--___________ --====-----==__

Figure 2-Illustration of task switching under various conditions

work" debug of a static check. This phase is kept dis
tinct from the hybrid execution of a static check, at
which time the actual wiring of the patch panel is
checked. This natural breakdown of the debugging
procedure into two phases permits one programmer
to be optimizing his static check while another is de
bugging the wiring of his problem.

OPERATING SOFTWARE

The heart of the multiprogramming software. is
the Data Acquisition Multiprogramming System
(DAMPS), which has been tailored to suit the specific
requirements of the Bell Hybrid Facility. DAMPS
is a "priority based" system operating on three levels,
viz., priority, foreground and background. The system
comprises 32 priority interrupt levels, four foreground
queues and a background queue. Processing is per
formed at the highest priority active at any given
instant. When a real time task (R TT) runs to comple
tion, lower level RTT's (if any) are initiated. If there
are no pending priority interrupts, then the foreground
queues are examined and the foreground task (FGT)
with the highest "priority" in a given queue gets con
trol. While the system is waiting for completion of
any data processing type I/O (DP I/O) command
issued by the current FGT, control is passed to lower
level queues or to the background. Foreground tasks
within a given queue are executed serial1y according
to the. specified priority of each task. This system of
priorities is illustrated in Figure 2.

Two fixed partitions of core storage have been al
located for the real time jobs (priority interrupt rou
tines and foreground tasks) and the background jobs.
Background jobs are initiated using the norma] job
control processor and jobs may be stacked in the card
reader for sequential execution. Real time jobs (RT.J's)
are initiated from the console typewriter using a special
real time loader. Consequently, real time jobs can

be initiated quite independently of any background
job that may be running. Likewise, either the back
ground or the real time job may be cancelled pre
maturely by the operator, each independently of the
other.

It is important to understand the mechanism of
switching between tasks. Only two events can cause
control to pass to a lower level queue.

a. The execution of a supervisor routine 'SVC
DONE' which indicates the termination of the
current FGT, at which time the queues are
then re-examined to determine which task should
be executed next.

b. If the current FGT issues an SVC WAIT or
an SVC CHECK, and the system is waiting
for completion of the I/O, then control is passed
to a lower level queue.

Similarly, two events can cause control to pass from
a lower level queue to a higher level queue.

a. If a routine is queued by a program operating
on a priority interrupt level, then upon com
pletion of the real time task, the queues are
examined to determine if the "newly queued"
routine is in a higher queue than the task cur
rently in control. If this is the case, the multi
programming monitor is called and a task
switching occurs.

b. If an I/O interrupt occurs, the queue from
which the I/O command was issued is examined.
If it is of a higher priority than the task cur
rently in control, then again a task switching
occurs, and activity on the lower level task is
suspended.

INPUT/OUTPUT DEVICE ASSIGNMENTS

In any multiprogramming system, the allocation of
the various I/O devices must be chosen with care;

Under DAMPS, the normal division of I/O devices
between the real time jobs and the background jobs
is shown below.

Real Time Job

Console Typewriter
Card Punch

Background

Console Typewriter
Card Punch
Line Printer
Card Reader

However, a modification was made which permitted
the use of the line printer by both an RTJ and a back-

Multiprogramming in Medium-Sized Hybrid Environment 365

ground job. The resolution of a printer conflict between
the RTJ and the background is presently left up to
the operator.

CHANNEL OPERATION

Basic to the operation of this multiprogramming
scheme is the concept of the IBM 360 channel. In this
particular application, for example, a channel program
is set up to set an 120 servo-set potentiometers, or to
scan all 346 addressable components. Once the I/O
is initiated, the channel accesses main storage on a
cycle stealing basis, and the CPU is free to perform
other processing. The I/O operations involved in set
ting up an analog computer typically take several
minutes (pot set, pot scan, amplifier scan) and this
time can be used to advantage for background pro
cessing. However, the multiprogramming scheme of
fered by DAMPS was only designed to work on DP
I/O type operations and not "real time" I/O opera
tions. A special program was written which made a
real time request control block (used for starting up
an I/O operation) resemble a DP I/O request control
block, prior to issuing an SVC CHECK.

ANALOG SETUP SOFTWARE

The essential requirements of a software package
to set up and check out an analog computer include
the following:

1. A means of defining all potentiometer settings
in terms of physical variables and scale factors.

2. A means of defining all amplifier outputs, either
in terms of physical variables, or as a product
of a preceding amplifier output and a pot setting.

3. Tabulation of theoretical values of all pots
and all addressable components with flagging
of outputs exceeding the scaling of the variable.

4. A means of setting up all the servo set poten
tiometers.

5. Provision of a potentiometer scan and com
parison of theoretical values and actual analog
values.

6. Provision of a component scan with a com
parison between theoretical values and actual
analog values with error flagging.

There are two distinct stages in debugging a static
check program. The first task is to ensure that the
problem is correctly scaled and that static check values
have been realistically chosen. This constitutes a
"paper work debug" of a static check program. The
second phase is to perform the static check on the
analog computer, checking the wiring and correct

functioning of the components. This can sometimes be
a time-consuming stage requiring several iterations.
The Bell Analog Setup Software Package (ANASET)
thus consists of two main stages.

The first program uses pot setting and amplifier
output definitions to generate three major arrays
an array containing the theoretical pot settings in
floating point format, an array containing the theoreti
cal amplifier outputs in floating point format, and an
array containing the servo-set pot addresses inter
leaved with pot settings in BCD format for only the
pots being used. An option is available to write these
three arrays out to a disc. This is used when the "paper
work debug" is finally complete. This first program
also prints out a listing of the theoretical values of
all pot settings and amplifier outputs. Perhaps the
most important feature of this program is that it can
be executed at the background level.

The second program is compiled to be executed as
a real time job using the real time partition. It ac
cesses the three arrays on the disc, sets up the poten
tiometers, scans the potentiometers and compares
the theoretical values with the read values. The pro
gram then pauses to permit adjustment of any errone
ouspots.

The static check is then performed by scanning all
components in the analog STATIC CHECK mode,
and comparing the theoretical values with the actual
analog values. Being an RTJ, it is initiated from the
console typewriter, and during the periods of pro
longed real time I/O, the background is free to con
tinue processing. Options are programmed into the
RTJ to bypass any of the I/O operations. This facility
is provided to permit re-execution of the static check
without the setting up of potentiometers which may
have just been set up and checked. Some salient details
of these two programs will now be discussed.

A naset (background array preparation)

A detailed flow chart of this program is shown in
Figure 3.

An intrinsic part of the AN ASET program is a
subroutine caned STMTS. This subroutine contains
all the user-defined pot definitions and amplifier out
puts. The parameter list of this subroutine consists
of the names of an the arrays used to define com
ponents. A typical (and simplified) STMTS sub
routine is shown in Figure 4. Its operation is best
described by a simple analog program.

Let dV/dt = - ClV + C2F

and

dX/dt = C3V

366 Fall Joint Computer Conference, 1970

INITIALIZE THEORETICAL
ARRAYS

ORIG(SOO)
POTSEC(132)

CALL S'IMTS TO
CALCULATE THEORETICAL

VALUES OF POT SETTINGS
AND AMPLIFIER OUTPUTS

ANALYZE THEORETICAL POT
SETTINGS FOR 'OUT OF

LIMITS' SORT INTO
SERVO-SET AND HANDSET POTS

BUILD A TABLE OF SERVO
POT ADDRESSES INTERLEAVED

WITH POT VALUES IN BCD
FORMAT - PTARAY(240)

NO

TABULATE THEORETICAL
VALUES OF POT

SETTINGS & COMPONENTS

Figure 3-Flow chart of program 'Anaset'

The analog program is shown in Figure 5.
Referring to Figure 4, statements 10-12 specify ini

tial conditions of prime variables used for the static
check. Statements 15-17 specify the values of any
constants. All of the above could also be read in using
the card reader. Statement 18 represents a physical
equation describing the time derivative of V. State
ments 20-22 are analog scale factors, etc. Statements
30-35 are the pot definitions in terms of the physical
constants. Statements 40-41 define amplifier out
puts. Statement 42 defines a check derivative in terms
of the physical equation. Statement 43 shows an al
ternative means of specifying a check derivative in
terms of previously defined amplifier outputs and pot

SUBROUTINE STMTS (PO,Pl,P2,P3,P4,P5,MO,Ml,M2,
1 M3,M4,M5,AO,Al,A2,A3,A4,A5,DA1,DA2,DA3,DA4,DA5,
2 VGO,VG1,VG2,VG3,VG4,VG5,SC4,SC5,SH,DR,RM4,RM5,DI)

REAL*4 PO(26),Pl(26),P2(26),P3(24),P4(15),P5(15),
1 MO(6) ,Ml(6) ,M2(6) ,M3(6) ,M4(3) ,M5(3) ,AO(26) ,Al(29) ,A2(29),
2 A3(31),A4(32),A5(35),DAO(15),DA1(15),DA2(15),DA3(15),
3 DA4(9),DA5(9),VGO(3),VG1(3),VG2(3),VG3(3),
4 VG4(10),VG5(10),SC4(42),SC5(24),SH(16),DR(16),
5 RM4(l9) ,RM5(l9) .

10 F = 4.92
11 V = 29.3
12 X = 19.002

15 Cl = 8.294
16 C2 = 3.142
17 C3 = 16.8

18 DVDT = -Cl*V+C2*F

20 EKl = 50.
21 EK2 = 1000.
22 VOLT = 100.

30 P1(01) = C2*F/EKl
Pl(04) = Cl/10.
P3(09) = C3*EK1/EK2

35 P4(02) = V/EK(l)

40 A2(01) = V/EK1*VOLT
41 A2(03) = -X/EK2*VOLT

42 DA2(01) = -DVDT/EK1*VOLT
OR

43 DA2(01) = -Pl(01)*100.+Pl(04)*A2(01)

RETURN

Figure 4-Subroutine STMTS showing parameter list and typical
statements specifying pot settings and amplifier outputs

settings. The first method is more rigorous as it relates
a specific component to a physical equation, facilitating
debugging.

The remaining routines in program ANASET employ
usual FORTRAN techniques to manipulate the arrays
produced by STMTS, to test for components specified
out of limits and to tabulate the theoretical values
of all components.

Program SSS (real time setup program)

This is the program which uses the three major
arrays previously stored on the disc by AN ASET.
All messages in this program are directed to the con
sole typewriter with the exception of the final static
check output which uses the printer. Afiow chart of
program SSS is shown in Figure 6.

-100

x
-100

- EK'('2)

Figure 5-Analog diagram of sample program

Multiprogramming in Medium-Sized Hybrid Environment 367

Figure 6-Flow chart of program SSS

As discussed earlier, a special subroutine is used to
effectively issue an SVC CHECK after a real time I/O
operation has been initiated. This allows control to
pass to any background processing until the I/O is
complete. During pot set, the I/O can be terminated
abnormally if a certain pot fails to set properly. If
this occurs, the program SSS regains control from the
background, determines which pot did not set (by
examining the residual byte count from the channel
status word) and sets up a new channel program to
continue setting pots starting at the failed pot. If the
same pot still fails to set correctly, a warning message
is output on the typewriter and the program continues
to set up the remaining pots. This type of abnormal
I/O recovery procedure is so rapid that it causes no
apparent delay to the background.

There is one very important problem area related

FUNCTION

ANASET Compilation and
Linkage Edi t

ANASET Execution

sss Execution

1. Set 1?0 Servo Pots

2. Scan 132 Pots

3. Adjust Out of Limit
Pots

4. Scan All 346
Addressable Components

5. Print Out Static Check
Results

MEMORY R~UIREMENTS rIME FOR !!XOCl'TlON

Background Partition 48K Bytes ,?:l Minute!l.

Background Partition 3U(Bytes 2 Minutf's

Real Time Partition 34K Bytes Approximately'} Minule

6 Mioutes

16 Sec-ond.

1 Minute

41 seconds

1 Hinute

Figure 7-Execution times and memory requirements for
Anaset and SSS

THEORETICAL VALUES OF POTENTIOMETERS

P108
Pl14
P121

HANDSET P125
P302
P401
P512

0.5000
0.2020
0.7642
0.1000
0.6459
1.6321 **OUT OF LIMITS**
0.0

THEORETICAL VALUES OF COMPONENTS

Component

MOOl
M002

AOOl
A002
Al09

DFG 410
SIH 004
D/R 009

Theoretical
Value

-1. 324
36.429

10.000
-15.462
168.562 **OUT OF LIMITS**
-16.829

1.621
49.998

Figure 8-Typical theoretical printout generated by Anaset

to the execution of program SSS. Toward the end of
the routine after the amplifier scan is complete, SSS
tabulates the results on the printer. However, if the
background is processing a compilation and the real
time job were given immediate control, the results
of the static check would be interleaved with the back-

TYPEWRITER LISTING

IASSI 135106
IIXFHD01 JOB, 671S31DDT0100038
rtload
//rtj
IASSI 135329
Ilexec rrr
END OF REAL TIME J08
rtload
IASSI 135412
/ /sysOl8 access dsdick,09l=' rel tim'
IA891 M091 RELTIM
/ /exec sss
IA90A M ALL REQ DISCS

ENTER CONSOLE NUMBER •• 0 OR 1
o
CHECK P1l3=SOOO
lASSI 140943
//AGHD09 JOB,676728DDP0200006
CHECK P320=6782
PAUSE TO SET our OF LIMIT POTS
nlESE POTS OUT OF LIMI TS
P026=.SOOO DIFF=.OOl1
PAUSE TO ADJUST POTS
PAUSE TO ALLOW BKGR. TO FINISH

FA83A INT REQ 000
STOP 0
END OF REAL TIME JOB

COMMENT

Time of day output by system
Job card of background job
Call real time loader
Indicate that an RTJ is to be executed
System provides time of day
Start execution of RRR (provides standard job control)
Indicates end of job
Call real time loader
Sys tern provides time of day
Access disc data set for arrays
Message for information
Start execution of SSS
Mount the disc specified above

Indicate which analog is to be set up
Analog console 0
Pot Pll3 did not set propE'\rly
System provides time of day for new background job
Job card for background job
Pot P320 did not set properly
All pots set up, adjust faulty ones
Pot scan complete, list out of limit pots
Correct value of P206 is .5000
Pause to adjust pots just listed
Amplifier scan complete, allow background to complete

if necessary
Background job complete
Printout of static check complete
Progran SSS complete

Note: Only messages appearing in small letters are input by the operator.

Figure 9-Typewriter log during multiprogramming an analog
setup and a background job

368 Fall Joint Computer Conference, 1970

STATIC CHECK RESULTS

Theoretical Actual Analog
Comeonent Values Values Difference

MOOl -1. 324 -1.320

M002 36.429 36.300
:

A001 10.000 9.542 0.458

A002 -15.462 +15.462 30.924 .
DFG 410 -16.829 -16.729

S/H 004 1.621 0.0 1;621

D/R 009 49.998 49.800 0.19~

Note: The fourth column is only printed out if the

difference exceeds 150 MY.

Figure lO-Typical static check results produced by program SSS

ground compilation listing, which is, of course, totally
unacceptable. Prior to the listing of the static check
results, a pause message is output on the typewriter,
giving the operator the option of waiting until com
pletion of the background job. If this is impossible, then
before the real time job gets ('ontrol of the printer, the
background job is suspended. The static check results
start at top of form and at completion of the printout,
the last page is ejected. Thus, the background job can
continue processing and any output appears on a new
page.

PROGRAM TIMINGS AND MEMORY
REQUIREMENTS

Figure 7 shows the various steps involved in setting
up an analog computer program using the full com
plement of the computer. Once the static check pro
gram is debugged, it is rarely changed, and only pro
gram SSS is executed on a recurring basis. Experience
has shown that a complex analog simulation using the
full complement of a computer takes about 30-40

minutes to set up. Since the complement of the analog
computer is fixed, the memory requirements of program
SSS do not vary and the operator merely accesses his
own particular data set containing his arrays. The
memory requirements of AN ASET depend upon the
size of the user's STMTS routine defining the pot
settings and amplifier outputs. An upper limit on this
routine (STMTS) is of the order of 25K bytes (de
fining every component in terms of physical variables) .

Figure 8 shows a typical printout of the theoretical
values of components produced by ANASET. Figure
9 shows part of the typewriter listing produced while
multiprogramming a background job with the execu
tion of program SSS. Although this may appear con
fusing at first glance, the messages in lower case letters
are actually input by the operator, the remainder are
messages output by the system or the real time pro
gram. Figure 10 shows some typical static check results
produced by program SSS.

CONCLUSIONS

A sophisticated software package for setting up and
checking out an analog computer while multipro
gramming background tasks has been outlined. The
operating software is based upon the 360/44 DAMPS
along with special modifications to permit multi
programming on real time I/O operations. The analog
setup software provides a means of checking analog
wiring directly against physical equations, offers
excellent analog program documentation and facili
tates paper work debugging of a static check program
without tying up the real time facilities of the hybrid
system. An entire static check of a program using the
full complement of the analog computer can be per
formed in less than forty minutes.

ACKNOWLEDGMENTS

This material is presented by kind permission of Bell
Helicopter Company.

The binary floating point digital
differential analyzer

by J. L. ELSHOFF and P. T. HULINA

The Pennsylvania State University
University Park, Pennsylvania

INTRODUCTION

Twenty years ago the digital differential analyzer,
DDA, was developed to replace the analog computer
in the solution of differential equations. Although the
DDA is slower than the analog computer, the DDA is
capable of more accurate results since its accuracy is
not bounded by its component characteristics. The cost
of solving differential equations with the DDA is
quite low compared with other methods such as a
general purpose machine, since the DDA is a more
simple device.

As time has passed, advances have been made in
DDA technology. These advances have resulted in
increased speed and accuracy/,2 reductions in cost/
and improvements in man-machine interface.3 Still the
DDA is seldom used except as a special purpose device.
Despite the dependence of the problem solution on the
quality of the components and the higher cost of the
analog computer, analog computation continues to
grow in popularity. Similarly, general purpose com
puters continue to be more widely used even though
they cost more and solve differential equations at a
slower rate than the DDA.

In recent years analog and digital computers have
been combined into hybrid systems.3 ,4 In theory, the
hybrid system takes advantage of the high speed of the
analog computer and the easy programmability and
decision capabilities of the digital computer. In practice,
however, the speed of the analog computer is greatly
reduced in operation~l performance by digital software
and the digital-to-analog and the analog-to-digital
conversion hardware. The general purpose digital
computer can be programmed in an easy problem
oriented language like Fortran while the analog portion
of the problem must be physically patched.

This paper concerns itself with a brief review of DDA
technology and an investigation of ways in which to

369

expand that technology. The emphasis is placed on in
creasing the speed, reducing the cost, and improving
the utility of the DDA in such a way that the DDA
would replace the analog computer and provide a more
practical hybrid system.

THE DDA

The vector form of the general linear homogeneous
constant coefficient ordinary differential equation can
be written

i;=Ax, x(O) = xo (1)

where A is a constant m X m matrix, and x and x are
m X i column vectors. In rectangular integration the
vector difference equation that replaces equation (1)
is

y(n+ 1) =y(n) +iJ(n) t>.t = yen) + t>.y(n) (2)

where from equation (1)

t>.y(n) =iJ(n)t>.t= (t>.t)Ay(n).

For any given value of y(O), an iterative solution of
equation (2) can be obtained. If yeO) =Xo, then x(t)
is approximated through the relation

x(ndt) =y(n) +O((dt)2)

where 0 ((t>.t) 2) represents the truncation error and
nt>.t= t.

In a DDA the fractional part of yen) t>.t is held in a
residue register (R register) and only the integer part
is used in equation (2). Let R(n) be the contents of
the R register at t = nt>.t. Then the equation for y (n) t>.t
is modified to

yen) t>.t+R(n-l) =t>.Z(n) +R(n)

where t>.Z (n) is a signed integer and I R (n) I < l.
Bartee, Lebow, and Reed,5 Huskey and Korn,6 and

370 Fall-Joint Computer Conference, 1970

l!.y--~ ...-----4--.. l!.Z

l!.t

o. BLOCK DIAGRAM

l!.y ~Z

l!.t

b. PROGRAMMING SYMBOL

Figure i-Basic DDA integrator

McGhee and Nilsen2 explain the mathematical prin
ciple of the DDA in detail.

Figure 1 displays the block diagram and a program
ming symbol for the DDA integrator. The Y register
contains the value of y(n). The AY input holds the
value of Ay, the incremental change of the integrand,
at each step. The AZ output and R register contain the
integral and residue of y (n) At, respectively. Finally,
the At input holds the value of At, the step size of the
independent variable.

With these values available, the iterative solution
to equation (2) can be completed. A single step of
rectangular integration is performed by the transfer
equations

Integration phase: Y At+ R--'?AZ + R

Incrementation phase: Y + A Y --'? Y

where AY is a weighted sum of AZ outputs. By alter
nating the integration and incrementation phases, the
solution to equation (2) is iteratively realized.

In operation the inputs and outputs in a DDA are
represented by two binary bits, the sign bit and coeffi
cient bit. For an arbitrary problem the input and out-

put increments each represent a fixed magnitude. For
example, if AY = c, where c is a constant, then the co
efficient bit is one or zero depending on whether or not
there is a AY during each particular incrementation
phase. The sign bit is one or zero depending on whether
AY is negative or positive. Thus, the value c is fixed for
the problem during the programming and is not actually
transferred during the solution. Only a signed coeffi
cient of one or zero is transferred.

In practice the inputs and outputs in a base e DDA
are coefficients of incremental values that are equal to
integer powers of e. By choosing a step size equal to
2-i in a binary DDA the Y At term can be calculated
by a simple shift instead of a multiplication. Let
At = 2- i for i a positive integer, then the Y register is
assumed to be shifted right i positions so that the R
and Y registers have their bits aligned. Thus, the inte
gration phase is reduced to a simple addition.

The method of programming a DDA resembles that
of programming an analog computer. A certain quantity
is assumed to be known. The other values are calculated
from the assumed value. Finally, the assumed value is
derived back from the known values. The actual pro
gram must then be physically patched.

The fixed point arithmetic used in the DDA is a
major disadvantage of the DDA. Problems must be
magnitude scaled for solution. Although GilF and
Knudsen8 have developed a completely systematic
procedure for scaling a DDA,the scaling problem is
difficult and solution accuracy depends upon estimated
maximum values.

Since the DDA has not enjoyed widespread use, most
of the developments in DDA's have been pointed at
particular problem solutions. Usually emphasis is
placed on increasing the speed and accuracy of the
DDA, which happen to be inversely proportional. An
improvement in one aspect of DDA's is often compro
mised by added complications and new problems in
other aspects. Like the analog, the inconvenience in
using the DDA contributes to its lack of popularity.
Because of the lack of popularity, only slight attention
has been focused on improving user convenience.

The emphasis in this work was aimed at user con
venience in a hybrid computing system. Since the
major problems seemed to be in programming and
scaling, they were given a high priority. Being digital)
two components can be connected or disconnected by
passing their connection time through an AND gate
with a switching variable that is either on or off,
respectively. Thus, in a hybrid system, the general
purpose computer can be used to program the DDA.
The obvious answer to the scaling problems seemed to
be floating point arithmetic. The use of floating point
arithmetic was also expected to be more accurate which

is a very desirable effect. Floating point arithmetic
was implemented in a DDA design and the design
simulated on a general purpose digital computer. The
implementation and simulation results appear in the
remainder of this paper.

THE BINARY FLOATING POINT DDA

The purpose of this section is to present the binary
floating point digital differential analyzer (BFPDDA).
The BFPDDA differs from the conventional DDA in
that the incremental units being transferred between
the components are exponents. Multiple bits must be
used to transmit an exponent instead of the usual one
or two transmission bits in the regular DDA. Yet with
as few as seven bits, signed quantities ranging from
2-31 to 2+31 can be passed from one component to another
component in the BFPDDA.

In the BFPDDA floating point arithmetic is intro
duced into the conventional DDA structure in place
of the normal fixed point arithmetic. The floating point
arithmetic transforms the conventional DDA in many
ways without losing its basic structure. The altered
structure, the mathematical algorithms, and the opera
ti9n of the BFPDDA are presented in the following
sections.

-. 1 ~
SHIFT

Y + AY ADDER
EXPONENT

1

r--==l 1 ~ I
RESCALE

Y REGISTER
INTEGRATE

CONTROL CONTROL

T
I

IT ~
Y- EXPONENT

R + Ydt ADDER
REGISTER

~!
R REGISTER

1

• r-
OUTPUT

CONTROL

1
AZ

Figure 2-BFPDDA integrator block diagram

Binary Floating Point Digital Differential Analyzer 371

THE BFPDDA INTEGRATOR .STRUCTURE

The BFPDDA should operate at the fastest speed
possible in order to effectively replace the analog com
puter; therefore, the integrators should operate in
parallel. Each integrator with its own adders and con
trol units is assumed to be on an integrated circuit chip.
Figure 2 is a block diagram of a proposed BFPDDA
integrator showing its basic units and the lines of com
munication among these units. Note that the four units
directly under the il Y input are the same as the units
in a DDA.

Let the current value of the integrand Y be repre
sented by

Y = ±.yyyy*2k

where yyy is the mantissa and k is the characteristic.
Similarly, the residue R is represented by

R= ±.rrrr*2k+j

where I j I is the number of positions the Y register is
shifted right so its bits are aligned with the bits of the
R register. The value of j is negative so that R < Y.
Using these definitions, general descriptions of each of
the units making up the integrator are briefly given as
follows.

Y +ilY Adder-This adder is used to increment the
value of the integrand.

Y Register-The Y register contains the mantissa of
the integrand.

R + Y ilt Adder-This adder performs the integration.
R Register-The R register contains the mantissa of

the residue.
Y-exponent Register-The Y-exponent is the char

acteristic of the integrand.
Rescale Control-The rescale control normalizes the

integrand.
Shift Exponent-The shift exponent is the number

of places which the R register is shifted left in order to
be aligned with the Y register.

Integrate Control-This unit controls the information
flow during each iteration.

Output C ontrol-This unit calculates the output
increment.

The Y and R registers contain mantissas of floating
point numbers in binary coded form. In this paper the
left most bit of the register is assumed to be the sign
bit. The radix point is assumed to lie between the sign
bit and the second bit of the register. Thus, the high
order significant bit of the Y and R registers is the
second bit. Thus, the R + Yilt adder is a simple integer
adder.

Similarly, the Y-exponent and shift exponent registers
contain exponents in a binary coded form. The Y-

372 Fall Joint Computer Conference, 1970

exponent register contains the number of shift positions
the Y register must be shifted to the left for the radix
point to be properly positioned. The shift exponent is
the number of places the R register is· shifted from the
Y register.

THE MATHEMATICAL ALGORITHMS FOR
THE BFPDDA

The implementation of floating point arithmetic in
the BFPDDA slightly alter the integration calculations
used in the conventional DDA. The change in num
ber representation requires an additional calculation to
determine the output exponent. Finally, in order to
make effective use of the dynamic scaling capabilities
of a DDA with floating point arithmetic, algorithms for
rescaling are included.

The integration phase of each iteration realizes the
transfer function

R+Ydt~dZ+R.

The Y and R values are represented by

and

where yyyy and rrrr are the contents of the Y and R
registers respectively. The Y-exponent register contains
k and the shift exponent register contains j. Let

where i ~j. Then the integration phase is described in
Algorithms I and II, where the carry flag is a simple
set and reset flip-flop.

Algorithm I.-Integration

1. Shift the Y register j - i positions to the right.
2. Add the shifted Y register to the R register.
3. If the R register does not overflow, reset the

carry flag;
Otherwise,
a. If the R register is positive,

1. Decrement the R register by 1.0.
11. Set the sign bit associated with ~Z to

positive.
lll. Set the carry flag.

b. If the R register is negative,
1. Increment the R register by 1.0.

11. Set the sign bit associated with ~Z to
negative.

lll. Set the carry flag.

Noticing that reqUIrIng i~j is a very practical
restriction in the BFPDDA structure. The Y register
is considered to be shifted I j I positions left in order to
be aligned with the R register. Therefore, if the step
size of the independent variable is not at least as small
as 2j , a multiple bit overflow, which the DDA is not
prepared to handle, could occur.

Algorthim II.-Output calculation

1. If the carry flag is set, transmit k+j as ~j along
with the sign bit.

2. If the carry flag is reset, transmit no output.

During each iteration, the integrand must be up
dated so that it is as accurate as possible. The incre
mentation phase performs the transfer function

Y+dY~Y.

The value of the integrand Y is the same as previously
defined. The value of ~ Y is of the form

where m is the exponent being received on the d Y input
lines along with the correct sign. The procedure used
for the incrementation of the integrand is now given in
Algorithm III.

Algorithm III.-Incrementation of the integrand

1. If k ~ m, invoke Algorithm IV;
Otherwise,
a. Shift ± 1.0 right k-m-l positions.
b. Add the shifted value to the Y register.
c. If the Y register overflows, invoke Algorithm

V.
d. If the magnitude of the Y register is less than

one-half without considering the Y -exponent,
invoke Algorithm VI.

An overflow condition occurs when the magnitude of
~ Y is larger than the magnitude of Y. Since this means
that the change in Y is larger than Y itself, the Y value
is considered to be negligible. In this case the integrator
is reset as defined in Algorithm IV.

Algorithm IV.-Resetting the integrand

1. Set the Y register to ±0.5 depending on the
sign of dY.

2. Set the Y-exponent register to m+ 1.
3. Set the R register to zero.

During the incrementation phase of each iteration,
the Y register is treated as a fixed point value. When
the Y register overflows, a rescaling of the integrator
is performed as described in Algorithm V.

Algorithm V.-Rescaling for an increasing integrand

1. Shift the Y register one position to the right.
2. Shift the R register one position to the right.
3. Increment the Y-exponent register by one.

Just as the value of the integrand may get larger in
magnitude, it may also get smaller. By keeping the
fractional value of the integrand normalized in the Y
register, output overflows will tend to be smaller but
will occur more frequently. The procedure for rescaling
for a decreasing integrand is shown in Algorithm VI.
Notice that this algorithm does not alter the R register.
Many tests seemed to indicate that ignoring the R
register gave the best results.

Algorithm VI.-Rescaling for a decreasing integrand

1. Shift the Y register one position to the left.
2. Decrement the Y-exponent register by one.

THE OPERATION OF A BFPDDA

As with the conventional DDA, the basic cycle of the
BFPDDA is a two phase iteration. The integration and
incrementation phases are outlined in Table I.

In phase I the integration is performed. While the Y
register is being shifted and added to the R register,
the output value is calculated. Then if an overflow oc
curs, the calculated output value is transmitted, other
wise, no output is transmitted and the calculated out
put value is ignored.

In phase II the integrand is incremented. An overflow
in the addition causes the incremented value to be stored
one position to the right and Y -exponent register to be
incremented by one. An increment that is larger than
the current value of the integrand causes the Y, Y
exponent, and R registers to be reset. On the other hand,
if the mantissa is small enough, the result is stored on~
position to the left in the Y register and the Y-exponen1

et 6(et) .
A~

6t

Figure 3-DDA program for et

Binary Floating Point Digital Differential Analyzer 373

TABLE I-BFPDDA Operational Iteration

I. Integration Phase II. Incrementation Phase

R+ Y !1t~!1Z +R Y+.!1Y~Y

1. Integration 1. Incrementation
2. Output Calculation 2. Rescaling

is decremented by one. In this way the integrand re
mains normalized.

THE ELIMINATION OF IVIAGNITUDE
SCALING

One of the major drawbacks of the ordinary DDA is
the fixed point arithmetic it employs. Each integrator
must be magnitude scaled in order that the integrand
register doesn't overflow during the problem solution
causing the program to abort. On the other hand, if the
maximum value is overestimated by a significant
amount, the error being delayed in the R register of the
integrator is much larger, causing the problem error to
be increased.

Consider the DDA solution of if - y = O. The program
for this equation is very simple as is shown in Figure 3.
Despite the simple program, et is one of the more diffi
cult solutions for the DDA to calculate. The expo
nential represents a continuously increasing function
with a large variation in magnitude. Since the accumu
lated error will never be canceled, the magnitude of
the error increases as the value of the independent
variable t increases. Also, the initial value of the expo
nential function is its minimum value which results in
very large initial errors since the integrator must be
scaled for the values of increasing magnitude of the
function.

Table II illustrates the effect of magnitude scaling
on accuracy. When the integrator was scaled for a maxi
mum value of 23, the error in calculating e2 with a step
size of 2-8 was approximately equal to the error in
calculating e2 with a step size of 2-13 in an integrator
scaled for a maximum value of 28. Although et may be
the extreme case, the exponential demonstrates the loss
of accuracy in DDA problem solutions with variables
that have a large variation in their magnitude .

The standard DDA has another scaling problem
which the exponential exhibits. When the DDA is
programmed, the step size must be fixed since the shift
between the Y and R registers of the DDA is directly
related to the step size. Thus the output line represents
a fixed quantity and each output pulse is one unit of
that quantity. If the step size is then changed, the out-

374 Fall Joint Computer Conference, 1970

TABLE II -Comparison of Maximum Errors in Calculating
e2 =7.3891 with a DDA Using Varying Magnitude Scalings

Step Size Maximum Integrator Value
23=8 28 =256

0.1553
0.0803
0.0406
0.0201
0.0102
0.0051
0.0026

3.3891
1.8891
1.0103
0.5141
0.2623
0.1309
0.0657

put quantity also changes. The new output quantity
then must be reprogrammed at each point where it is
used as an input to another component.

In calculating the exponential the integrator is
magnitude scaled. Suppose the maximum value is set
at 23 and a step size of 2-10 is selected, then each overflow
or output bit represents 2-7• The value of eO is loaded as
the initial condition and e2 is calculated. According to
Table II an error of 0.0392 has occurred. If this error
is determined to be too large, a smaller interval must
be chosen. Choosing an interval of 2-12 makes each out
put bit represent 2-9• Each increment of Y is then one
fourth of the previous increment size and the integrator
must be reconnected to allow for these smaller incre
mental values.

Fixed point arithmetic in the regular DDA also
causes scaling problems for integrators with more than
one input incrementing its integrand value. Since the
DDA is incremented by receiving a pulse, the incre
ment value is fixed within the integrator being in
cremented. Therefore, when the integrator receives
increments from two or more components, the inputs
must represent the same value.

The magnitude scaling problem does not exist in the
BFPDDA. As the integrand values become larger the
integrator rescales upward. Similarly, the integrator
rescales downward as the values become smaller in
magnitude. The user does not have to estimate the
maximum values or even know much about the rela
tionships among the integrators since each integrator
functions independently of the other integrators without
regard to the integrand magnitude.

Since the BFPDDA integrators rescale themselves,
the accuracy of the BFPDDA is better than that of a
regular DDA. When the integrand magnitude becomes
smaller, the integrator rescales downward causing the
fractional error of the integral in the R register to be
reduced. A smaller overflow then occurs in the integra
tion; however, the overflow occurs much sooner and

introduces much less delay error than in the standard
DDA. Thus the BFPDDA causes more, but smaller
overflows than the ordinary DDA in solving most
integrals which leads to more accurate solutions.

Two solutions of et were calculated using the
BFPDDA. After each iteration the calculated value
was compared with the actual value and the error deter
mined. The maximum errors in calculating e2 and e5 for
varying interval sizes is shown in Table III. The same
values were also calculated with a regular DDA and
also appear. When the magnitude scaling was done for
e2, only a three bit binary shift was necessary and the
DDA was practically the same as the BFPDDA. How
ever, when an allowance of eight bits was made for e5

in the DDA and two and one-half times as many itera
tions were performed, the BFPDDA was over ten
times as accurate as the DDA. The BFPDDA could
then solve e5 ten times as fast as the DDA for the same
accuracy, since speed and accuracy are inversely
proportional.

The values appearing in Table III indicate that the
BFPDDA is more accurate because of its rescaling
techniques and floating point arithmetic. Over the
shorter solution of e2 the accumulative error wasn't too
critical. When a slightly longer problem was solved
with a larger range in integrand magnitudes, the ac
cumulative error in the DDA greatly impaired its ad
vantages but only minimally effected the BFPDDA.

Other factors not appearing in Table III also make
the BFPDDA preferable. In changing from one inter
val size to another, the shift exponent register was
merely reloaded with the exponent of the step size
chosen for maximum accuracy. Otherwise, there was
no reconnection for the new problem solution. The
values taken from the BFPDDA were directly readable.
There was no multiplication by a scaling factor neces
sary to put the calculated result in a form relative to
that of the unscaled, original equation.

TABLE III-Comparison of BFPDDA and DDA in Accuracy
Solving et

Maximum Error in
Calculating e2 = 7.3891

DDA BFPDDA

0.1553 0.1524
0.0803 0.0790
0.0406 0.0392
0.0201 0.0198
0.0102 0.0099
0.0051 0.0050
0.0026 0.0025

Maximum Error in
Step Size Calculating e5 = 148.41

DDA BFPDDA

2-8 65.413 5.543
2-9 35.624 2.835
2-10 18.413 1.413
2-11 9.393 0.716
2-12 4.726 0.359
2-13 2.367 0.180
2-14 1.187 0.091

Another advantage of the BFPDDA appears when
second or higher order equations are solved. An inte
grator receives its integrand increments in the form of
an exponent instead of a pulse. Since the magnitude of

/ the increment is passed between the integrators, the
integrator may receive increments of different magni
tudes during the problem solution. Thus, the integrator
may have two or more increment inputs without having
the multiple inputs scaled to represent the same
magnitude.

In the BFPDDA magnitude scaling has been elimi
nated. Each integrator dynamically rescales itself in
dependently as the magnitude of its integrand varies.
The accuracy in the BFPDDA is not dependent on the
estimated maximum value used in the magnitude
scaling. With the BFPDDA the independent variable
step size may be changed easily with no reconnection
necessary. Finally, an integrator receiving an increment
from more than one component does not require all of
the incremental values to be of equal magnitude.

BFPDDA SOLUTION OF THE HARMONIC
EQUATION

The BFPDDA program for solving the harmonic
equation, x+w2x=O is shown in Figure 4. The result of
the solution is obtained at any given time during the
solution by reading the current value contained in the
sin wt integrator, which in this problem is simply used
as a summer. In the results shown in this section, sin wt
was read after each iteration and the error calculated
at each point.

The BFPDDA can solve the same problem with
many different parameters without being rescaled or
reprogrammed. Even large variations in the magni
tudes of the parameters have almost no effect. Table

Il(... cos (.. f)) Il (Sin (... f»
Sin (.. f)

Ilf Ilf

Figure 4-Interconnection of BFPDDA integrators to solve
harmonic equation

Binary Floating Point Digital Differential Analyzer 375

TABLE IV-Maximum Errors in One Cycle Sine Wave Solutions

0.4437
0.5653
1.8120
3.3890

2-10

0.00662
0.00881
0.01093
0.01328

Step Size
2-12 2-14

0.00165 0.00040
0.00217 0.00055
0.00271 0.00064
0.00361 0.00081

IV displays the maximum error that occurred during
the one cycle solution of a sine wave. The frequencies
were generated randomly from successive ranges
bounded by powers of two.

In the BFPDDA all the values shown in Table IV
were calculated without reprogramming or rescaling.
In the standard DDA a change to a smaller step size

, would necessitate reconnection so that the proper values
were represented. Similarly, the DDA has to be re
scaled each time the step size changes or the magnitude
of the frequency is significantly altered. In the case of
the BFPDDA the step size is changed by simply re
loading the shift exponent registers and setting a smaller
exponent on the independent variable input lines. A
new frequency is simply reloaded in the Y register of
the integrator being used for constant multiplication
and the initial condition reset on the w cos (wt) inte
grator in order to solve the harmonic equation for a
new w2 value.

The maximum errors increase as the frequency in
creases since one cycle of the sine wave is broken into
fewer intervals. Thus, as higher frequency sine waves
are generated, smaller intervals may be necessary in
order to maintain accuracy. The smaller intervals will
not increase the overall problem time, however, since
the range of one cycle is much smaller.

The harmonic equation was also used for comparing
the accuracy of the BFPDDA against the accuracy of
the DDA. For this test w2 = 1 and the integrator con
taining w2 was replaced by an inverter on the sign trans
fer bit. The results which appear in Table V show that
the BFPDDA is twice as accurate as the DDA.

CONCLUSIONS

The emphasis in designing the BFPDDA has been on
improving user convenience.9 By reconstructing a
standard DDA to use floating point arithmetic and to
transfer exponents between its components, an easily
programmable device requiring no magnitude scaling
resulted. Moreover, the floating point arithmetic
proved the BFPDDA to be more accurate than the

376 Fall Joint Computer Conference, 1970

TABLE V-Maximum Errors in a One Cycle Solution of the
Harmonic Equation with w = 1

Step Size

2-8

2-9

2-10

DDA

0.03209
0.01477
0.00709

BFPDDA

0.01605
0.00797
0.00406

ordinary DDA. The accuracy improvement becomes .
more significant as the variation in magnitude of the
problem variables increases. The BFPDDA also allows
for alterations in the rate of integration during a prob
lem solution since no new scaling is necessary.

Considering current technology and the BFPDDA,
the hybrid computing system could be headed for new
horizons. The BFPDDA with all main advantages of
digital computation in an analog environment will be an
excellent special purpose differential equation solver
on-line with a time-shared digital computer. Dynamical
systems with unknown solutions can quickly be solved
since the solution will not depend on estimated maxi
mum parameter values; Being digital the whole field
of automatic patching by program can make the
BFPDDA easier to use. Making the DDA floating
point and greatly increasing user convenience at only
a very slight cost increase should make hybrid com
putation very popular.

REFERENCES

1 M W GOLDMAN
Design of a high speed DDA
AFIPS Conference Proceedings Fall Joint Computer
Conference pp 929-949 1965

2 R B McGHEE R N NILSEN
The extended resolution digital differential analyzer: a new
computing structure for solving differential equations
IEEE Trans on Computers Vol C-19 pp 1-9 January 1970

3 T C BARTEE J B LEWIS
A digital system for on-line studies of dynamical systems
AFIPS Conference Proceedings Spring Joint Computer
Conference pp 105-1111966

4 M ,;y HOYT W T LEC 0 A REICHARDT
The parallel digital differential analyzer and its application
as a hybrid computing system element
Simulation Vol 4 pp 104-113 February 1965

5 T C BARTEE I L LEBOW I S REED
Theory and design of digital machines
McGraw-Hill New York pp 252-265 1962

6 H D HUSKEY G N KORN
Computer handbook
McGraw-Hill New York Chapter 3 pp 14-74 1962

7 A GILL
Systematic scaling for digital differential analyzers
IRE Trans on Electronic Computers Vol EC-8 pp 486-489
December 1959

8 H K KNUDSEN
The scaling of digital differential analyzers
IEEE Trans on Electronic Computers Vol EC-14 pp
583-590 August 1965

9 J L ELSHOFF
The binary floating point digital differential analyzer
PhD dissertation The Pennsylvania State University
University Park Pennsylvania September 1970

Time sharing of hybrid computers
using electronic patching

by ROBERT M. HOWE

University of Michigan
Ann Arbor, Michigan

and

RICHARD A. MORAN and THOMAS D. BERGE

A pplied Dynamics
Ann Arbor, Michigan

INTRODUCTION

Ever since the introduction of patchboards for allowing
storage of analog computer programs, the desirability
of having a remotely-controlled switch matrix to re
place the analog patchboard has been evident. Only re
cently, however, has automatic patching received wide
spread interest and study.l,2,3 One reason for this is the
current widespread availability of hybrid computer
systems, with the result that the automatic-patching
program can be stored and implemented through the
general purpose digital computer. Not only have hybrid
computers made automatic patching of the analog sub
system, therefore, more feasible, but also hybrid com
puters have emphasized the desirability of having
automatic patching.

Additional technological developments have made
automatic patching feasible. The availability of low
cost, high-performance solid-state switches for imple
menting the necessary switching matrices is very im
portant. Also, low-cost integrated circuit chips can be
used to provide the storage of the switch settings.
Finally, the availability and widespread use of digitally
set coefficient devices for the analog subsystem allows
high-speed setup of all the parameter values as well as
component interconnections. This in turn allows com
plete problem reprogramming within milliseconds
which means that timesharing of a single hybrid com
puter through remote stations is practical. The resulting
increase in computer cost effectiveness far exceeds the
extra cost of the hardware and software necessary to
implement automatic patching of the analog subsystem.
In the paragraphs to follow we will describe the details

377

of an automatic-patching system for the AD/FOUR
analog hybrid computer shown in Figure 1. As of the
writing of this paper more than 60 AD/FOUR com
puter systems are operating in the field, many of them
interfaced with general-purpose digital computers.
Because the AD/FOUR design tends to minimize the
number of switch elements needed to mechanize an
efficient automatic-patching system, it was decided to
add this capability to the existing system as opposed to
designing a completely new system from scratch. This
has the further advantage that any AD/FOUR systems
in the field can be updated to include automatic
patching.

The next section describes the configuration of the
AD /FOUR automatic-patching system. Following sec
tions present an example application, discuss diagnostic
considerations, and summarize the system capabilities
when operating in a time-shared mode using remote
terminals.

DESCRIPTION OF THE SYSTEM

In the AD/FOUR conventional analog programming
is achieved using patchcords for interconnections be
tween holes in the large removable patchboard in the
center of the console shown in Figure 1. This patch
board is divided into four quadrants (hereafter called
fields) , with a matrix of 32 X30 = 960 holes in each field.
The fields are numbered 0, 1, 2, and 3, as shown in
Figure 2, and the fields are normally filled with com
puting components in the order 2, 3, 0, and 1. Thus
field 1, in the upper right corner of the patchboard, is

378 Fall Joint Oomputer Oonference, 1970

Figure l-AD-4 computer system

the last to be filled with analog components, and very
few AD/FOUR systems are expanded into field 1. For
this reason it was decided to terminate the electronic
switch matrices for automatic programming in field 1.
These are then patched to the appropriate holes in
fields 0, 2, and 3 to mechanize the automatic-patching
capability. Thus a single analog patchboard is perma
nently wired with the automatic program configura
tion. Note that this patchboard can be replaced by a
conventionally-wired patchboard at any time when it
is desired to operate the AD/FOUR in the normal
patchboard mode.

As can be seen in Figure 1, there is a second patch
board on the right side of the console. This is just half
the size of the central analog patchboard, and termi
nates the logic-level signals associated with the hybrid
and digital computing elements in the AD/FOUR. No
attempt has been made to implement general-purpose
automatic-patching of the logic elements. Instead, it is
proposed to accomplish all logic functions in the digital
subsystem of the hybrid computer. The logic patch
board is wired to implement the necessary control and
timing functions when the AD/FOUR is operating in
the automatic-patching mode.

If completely flexible automatic patching were
needed, then it would be necessary to be able to con
nect every analog element to every other element.
Since this would require a prohibitively large number
of switches, one invariably divides the analog system
into identical modules when mechanizing an auto
matic patching system. Flexible interconnection of
analog components within each module is then pro
vided, along with programmable interconnections be
tween modules. In the AD/FOUR computer the
module size for automatic patching is an analog field,

which includes the following component count:

16 bipolar summer integrators
12 multipliers, each with a bipolar

input ' buffer amplifier
64 digital coefficient units (DOU's)

In addition, each of the 16 summer integrators and 12
multiplier buffer amplifiers has a digital reference unit
(28 in all). Function generation is performed using
DOU's updated from the digital computer, with special
dual comparators used to provide the necessary inter
rupts for DOU updating.

Figure 3 shows the circuit schematic within a given
AD/FOUR field for the summer-integrator and DOU
switch matrix. Each bipolar output of the summer
integrators in the field is permanently patched to a pair
of DOU's, utilizing 16X2=32 DOU's (amplifiers 200,
201, etc., in Figure 3). Each output of an additional 8
bipolar amplifiers (100, 101, etc., in Figure 3) is patched
permanently to four DOU's, utilizing 8 X 4 = 32 DOU's.
The input to each of these 8 amplifiers can be switched
to any of the 16 summer-integrator outputs. Thus all
summer integrators drive a minimum of 2 DOU's, and
can be programmed additionally to drive a total of 6,
10, 14, etc., DOU's.

The output of each of the 64 DOD's in the AD/
FOUR in Figure 3 can be programmed to any of the 16
summer-integrator input summing junctions, or any
of the 12 multiplier Y-input buffer-amplifier summing
junctions (see Figure 4). Thus a 64 X 28 summing
junction switch matrix for DOU outputs is represented
by the circuit in Figure 3, as well as a 16X8 switch
matrix for the DOD buffer amplifier inputs. Each
DOD is the standard 15 bit AD /FODR single-buffered
MDAO, with the most significant bit providing a
negative analog polarity. Thus a given DOD can be
programmed between a gain of -1.6384 and· + 1.6383
using two's complement logic and with a minimum bit
size of 0.0001. Since the DOD is a summing-junction

ANALOG
COMPONENTS

TERMINATED IN

FIELDS 0,2,3

Figure 2-Analog patchboard

output device, summing-junction switching can be
used throughout the switch matrix.

A digital reference unit (DRU) is permanently
patched to each of the 16 summer-integrator amplifiers,
allowing a programmable bias. Also, the output V re,
of an initial-condition amplifier is patched to all of the
16 integrator-summer input terminals. This allows
initial conditions for the entire field to be set sequen
tially using the single DRU which drives the initial
condition amplifier. The procedure starts with all inte
grators returned to the IC (Initial Condition) mode
with the DRU set at zero (i.e., VIC=O). This puts zero
initial conditions on all integrators, which are then all
switched to Hold. Following· this, each integrator is
switched to IC sequentially with the DRU programmed
to yield the desired initial condition for that particular
integrator. The integrator is then returned to Hold
and the next integrator switched to 10, etc. After all
initial conditions have been established in this manner,
the integrators can all be switched to Operate.

Figure 4 shows the schematic for the connections to
the 12 multipliers within a given AD/FOUR field.
The bipolar X inputs for each multiplier are perma
nently wired to specific summer-integrator outputs.
The bipolar Y inputs are each programmed to the out
puts of the 12 bipolar summers in the AD/FOUR field.
The summing junctions of these amplifiers are in turn

+1
-I

TOTAL OF

16 L I AMPLIFIERS

EACH DRIVING TWO Dcui

· . · . · .

28 SJ 8USSES

(16 L /'" 12 MULTIPLIER Y INPUTS)

AMPLIFIERS, EACH DRIVING

4DCui AND WITH INPUT

PROGRAMMABLE TO ANY

OF TH£ IIII AMPLIFIER

OuTPUTS.

Figure 3-Circuit schematic for DCU switch matrix

Electronic Patching for AD4 Hybrid Computer 379

TO 64 OCu', { :

+1

-I

TO 64 OCU's

}

16 SJ BUS

(16 ~ /,s)

'-f-l-'+-..

Figure 4-Circuit schematic showing multiplier switch matrix

switchable to the outputs of any of the 64 DOU's in
the field (see Figure 3). In addition, there is a DRU
permanently patched to the input of each of the 12 Y
input buffer amplifiers, allowing a programmable bias
into each multiplier Y input.

Extensive study of typical analog programs has
shown that the X inputs to multipliers are seldom all
independent. For this reason the multiplier X inputs
are assigned to summer-integrator outputs using the
configuration shown in Figure 5. The first four multi
pliers are assigned, respectively, to the first four sum
mer-integrators. The fifth multiplier (no. 221) has its
X input assigned to the fourth amplifier (no. 211) and
the sixth multiplier (no. 222) has its bipolar X input
patched to the common terminal of a 3-position, double
pole relay (nos. 220, 221). The position of this relay,
part of the standard AD/FOUR equipment comple
ment, is controlled by registers set from the digital
computer. In this way the X input. to multiplier 222
can be programmed to amplifier 210, 211, or 222. Thus
the configuration of multiplier X inputs. assigned, . re
spectively, to summer integrators in half a field can
be programmed to be 1,1,1,2,1; 1,1,1,.3; or 1, 1,.2,2.
Later examples show the utility of this scheme.

380 Fall Joint Computer Conference, 1970

RELAY
220

c

210

211

c
B A B

- - ----L-_--1-~
221 222

Figure 5-Schematic showing assignment of amplifier outputs to
multiplier X inputs in ofie-:.half of field 2

Four hard feedback-limiters are permanently pro
grammed, respectively, around four of the 16 summer
integrators in each field in the automatic-patching
system. DRU (digital reference unit) outputs are
permanently programmed in pairs to each hard limiter
to allow digitally controlled setup of the + and -
limits. In the AD/FOUR computer each summer
integrator is normally in the summer configuration. By
grounding, respectively, either one of two patchboard
holes associated with each summer integrator, the
amplifier can be changed to an integrator or high-gain
configuration. In the automatic patching system these
amplifier configuration holes in each field are patched
to corresponding holes in field 1. These· field 1 holes,
under register control from the digital computer, pro
vide program-controlled electronic grounds. Thus any
of the 16 summer-integrators in each field can be con
figured as summers, integrators, or high-gain amplifiers.

FUNCTION GENERATION

Generation of precision functions of one or more
,variables on analog computers has always presented
major difficulties. In fact, one of the principal tasks of
the digital sUbsystem in many hybrid problems has
been the generation of multivariable functions for use
by the analog subsystem. However, this approach has
serious dynamic limitations. Since it is desirable to
have the automatically-patehed analog computer oper
ate at relatively high speed in order to permit time
sharing, pure digital function generation is undesirable.
Instead, a hybrid method analogous to that first pro
posed by Rubin4 is utilized.

The graph in Figure 6 illustrates the function
generation method when applied to a function of one
variable. Between breakpoints Xi and· Xi+! the function
f(x) is represented as having intercept ai and slope bi,
i.e., f(x) =ai+bix. The mechanization is achieved by
terminating two DCU's in amplifier 1, as shown in the
figure. Whenever X crosses over into a new zone, e.g.,
between Xi+l and Xi+2, the two DCU's are updated to
represent ai+l and bi+l, respectively, the intercept and
slope in the new zone. High speed detection of the
zone in which X is located is achieved by a special dual
comparator with digitally-programmed bias inputs Xi
and Xi+l. Whenever X passes outside the zone bounded
by Xi and Xi+l, the gate shown in Figure 6 throws the
analog system into Hold. By sensing the state of com
parators A and B the digital computer determines
whether X now lies in the i-I or i+ 1 zone. It then looks

filii: o.bll

I + I

~ x

- flxl
+ b

ONE - VARIABLE
FUNCTION

fllI,yl :o+bx+cy+dllY

xy

DUAL
COMPARATOR

Figure 6-Circuit schematic for function generation

up the values for intercept a and slope b in the new
zone and sets the corresponding DCU's terminated in
amplifier 1 to the new values. It also sets the bias in
puts into comparators A and B to the corresponding
values for the new zone. After completing these opera
tions the digital computer restores the analog system
to the Operate mode.

Because the analog computer is in the Hold mode
while the digital computer is accomplishing the neces
sary DCU and DRU updatings, any dynamic errors
which would otherwise result from the time required
by the digital computer to accomplish the updatings
are eliminated. The only significant sources of dynamic
error include the lag in dual comparator response (the
order of one microsecond), the delays in Hold mode
control switches (the order of one microsecond), and
differential timing errors in activation of both Hold
and Operate mode control (less than one microsecond).
Also, offsets caused by cycling the integrators back and
forth between Hold and Operate must be considered.
In the AD/FOUR each such mode cycle causes the
order of 0.5 millivolts of additional integrator output
offset for integrators programmed with a gain of 1000
(typical for high-speed problem solution). At foresee
able Hold-Operate cycle rates in implementing the
function generation as described here, the equivalent
steady offset represents only from 0.01 percent to
0.1 percent of full scale. Even with these offsets there
will be no significant effect except where open-ended
integrations are involved. Study has shown that inte
grator drift during Hold is completely negligible over
the time required for updating DCU's and DRU's.

Generation of functions of two variables is imple
mented using the formula f(x, y) =a+bx+cy+dxy.
The circuit is shown in Figure 6 using 4 DCU's termi
nated in amplifier 2. The DCU settings correspond to
the function f (x, y) for Xi::; X ::; Xi+l, Yi::; y ::; Yi+l. When
either X or y moves into a new zone, as detected by the
respective dual comparator, the 4 DCU's are updated
while the analog computer is in Hold. The resulting
f(x, y) analog function is equivalent to linear inter
polation in X and y. A function of three variables can
be generated using the formulaf(x, y, z) =a+bx+cy+
dz+exy+fxz+gyz+hxyz. As before, the 8 DCU settings
needed to generate the three-variable function corre
spond to the appropriate x, y, and z zones.

Since each summer-integrator in the automatic
patching system can terminate any number of DCU's
and has a permanently assigned DRU (digital reference
unit), each summer integrator can be used to generate
any multivariable function or any sum of multivariable
functions. Reference to Figure 4 shows that each Y
input bipolar buffer amplifier for multipliers terminates
any number of DCU's as well as an assigned DRU.

Electronic Patching for AD4 Hybrid Computer 381

Thus it can be used to generate the sum of multivari
able functions, which in turn are multiplied by the
other multiplier input, X. In the AD/FOUR automatic
patching system 8 dual comparators, each with an
assigned DRU pair, as shown in Figure 6, are available
in each analog field. Inputs for these 8 dual comparators
can be assigned to any of the 16 summer integrators in
the field using switches driven by digitally-set registers.
Fixed function generators, e.g., sinx, cos x, and logx
function generators, can be terminated in multiplier
locations in the AD/FOUR. In this case the general
I/O format shown in Figure 4 for multipliers is pre~
served. For example, the Y-input bipolar buffer
amplifier is used to terminate the sin x and cosx fixed
dfg (still with summing-junction output and hence
output switches).

INTERFIELD PATCHING

Up to now we have only described the circuit con
figuration needed to patch automatically the connec
tions within an AD/FOUR field. It is, of course, also
necessary to implement interconnections between each
of the fields (three-fields maximum; see Figure 2). This
is accomplished in the following two ways:

I. The first of the two DCU's permanently as
signed to the output of each summer integrator
(e.g., DCU 200, 202, etc., in Figure 3) has its
output programmable to the summing-junction
input of any summer integrator in the other two
fields as well as summing junctions in its own
field.

II. The input to each quad DCU buffer amplifier
can be switched to any summer integrator am
plifier output in the other two fields as well as
in its own field (see Figure 3).

The effectiveness of the above automatic interfield
patching capability is best appreciated by studying
example problems. Extension of II above to amplifier
outputs trunked in from adjacent consoles provides
effective interconsole trunking capability.

DIAGNOSTICS

Diagnostics, both to determine proper component
functioning and to debug analog programs, is appre
ciably simpler with the automatic-patching system
than with a conventional analog patchboard program.
First of all, the patchboard on which the automatic
patching program is wired also serves as the diagnostic
patch board, i.e., no special diagnostic patchboard is

382 Fall Joint Computer Conference, 1970

required. Secondly, because of the fixed configuration,
the complete computer control of all component modes
and interconnections, the presence of programmable
initial conditions and bias inputs for every bipolar
amplifier,etc., it is extremely straightforward to write
the software for checking every analog amplifier, DCU,
DRU, and nonlinear element as well as every matrix
switch. For example, proper functioning of every DCD
and DCU output switch can be implemented by setting
a one machine-unit initial condition on the integrator
driving each DCU, with all other summer-integrators
programmed as summers. Each bit of the DCU can be
dhecked individually by programming the DCU back
to the driving-amplifier input and monitoring that am
plifier input. Next the DCU can be set at, say, unity
gain and its output switched successively to every
amplifier summing junction (both summer-integrators
and multiplier Y-input buffers). Proper matrix-switch
functioning is assured by checking the respective
amplifier outputs. Equally straightforward checks can
be implemented for other components, including a rate
test for all integrators using the programmable bias
(DRU) input. The thousands of individual checks
making up an overall three-field diagnostic will take
only seconds, with easily-identified printout of any
malfunctions.

A similar scheme is proposed for program verification,
where, successively, a given initial condition (usually
one machine unit) is applied to every integrator with
the output (or summing-junction input) to all ampli
fiers measured and stored. This allows checking of the
setting and input assignment of every DCU, as well as
its output assignment. By programming unit X and Y
inputs to each multiplier, successively, and monitoring
all summer outputs and integrator inputs, multiplier
output assignments can be checked. Function generator
set-up can be checked by observing amplifier outputs
for successively programmed values of the input
variable. It is believed that this type of program
verification is even more powerful and easily debugged
than the more conventional static check.

TIME SHARED OPERATION WITH
TERMINALS

I t is estimated that complete setup time for all com
ponent configurations, switch-matrix registers, and
DCU and DRU settings will be approximately 10 milli
seconds for the AD /FOUR automatic-programming
system. With integrators programmed at nominal
gain settings of 1000, this implies solution times of
perhaps 10 to 100 milliseconds for typical systems on
nonlinear differential equations. Such rapid program

turn-around time, in turn, suggests that it should be
quite feasible and extremely cost effective to time-share
a single AD/FOUR hybrid system among a number of
users stationed at remote terminals.

A relatively simple terminal system suitable for time
sharing is shown in Figure 7. This is the AD Dynamics
Terminal, originally developed primarily for the edu
cational market in order to allow individual terminal
operators to time share a single problem programmed
on the AD/FOUR or AD/FIVE hybrid computer.
Across the top of the front panel of the terminal are
eight 3-digit-plus-sign parameter entry thumbwheel
switch sets which are assigned, respectively, to 8 prob
lem parameters. To the right are 8 pushbuttons which
control singly or in combination logic signals on the
hybrid system which in turn control problem con
figuration. On the lower panel are channel selector,
gain, and bias controls for the x and y axes of the
memory scope used for solution readout. Also on the
lower panel of the terminal are the computer mode
control switches.

A number of terminals (up to 16 or more) can be
connected to a single AD/FOUR hybrid computer.
The computer interrogates each terminal in sequence
to see whether the operator has requested a solution
since the last interrogation of his terminal. If he has,
the computer sets his parameter values and proceeds
to generate a solution, which is stored on the memory
scope and takes, perhaps, 50 milliseconds. If the oper
ator has not requested a solution, the computer wastes
no time and skips to the next terminal for interrogation.
Under these conditions each terminal operator usually
receives a response to his solution request in a fraction
of a second, and can obtain and display multiple solu
tions for different parameter settings about as fast as

Figure 7-Dynamics terminal

he can reset the parameter-entry wheels and push the
solution button.

When operating with the AD/FOUR automatic
programming system, the Dynamics Terminal will be
used to call up various programs using the 8 logic
pushbutton switches (256 combinations). Several of
the pushbuttons can be used to assign the 8 parameter
inputs to different groups of problem parameters. If a
given terminal operator calls for a solution, his problem
is programmed on the AD/FOUR computer upon inter
rogation of his terminal. If the problem has been stored
in core (roughly 500 words required for a typical large
problem), then the program setup takes only about 10
milliseconds. The net result is an access time essentially
comparable to that now enjoyed with the Dynamics
Terminal System, except that each user receives his
own problem when he ob_tains control of the computer.

When the relatively simple Dynamics Terminals as
described above are used for time sharing, initial setup
and debugging of each problem must be done using
the conventional hybrid I -0 and not through the
terminal. Obviously, it would be advantageous to have
a more sophisticated terminal which also allows prob
lem setup and debugging, in addition to problem
running. This more sophisticated terminal will prob
ably require a keyboard, alphanumeric display, and
perhaps even a mini-digital computer. In any case, if
problem setup and debugging is to be achieved through
terminals while time sharing the hybrid computer with
other terminals, a very extensive and powerful software
system for time sharing will have to be available for
the digital subsystem.

A SIMPLE EXAMPLE

As a simple example for the programming of a non
linear differential equation, consider the Vander Pol
equation:

(1)

A circuit for solving this equation using the AD/FOUR
automatic-patching setup is shown in Figure 8. Since
the solution is known to approach a limit cycle of
amplitude 2, we have indicated that x/2 is computed.
Th us x = 2 corresponds to x/2 = 1 (one machine unit)
at the output of integrator 201. Since DCU's can be set
to gains between -1.6384 and + 1.6383, the value of
the parameter fJ., as set on DCU 212, can range up to
1.6383/4"-'0.4096. Although the gain (time scale) of
the two integrators is under digital program control,
integrator gain constants of 1000 would normally be
used for a high speed solution. Under these conditions
the resulting oscillation would have a period of ap-

Electronic Patching for AD4 Hybrid Computer 383

•• 2 •
X = JL(I-X I X-X

(51 ,..--___ --(210 .-_____ ---J

-1.0000

(61 212l-----------....J
4JL

Figure 8-Automatic patching circuit for Vanderpol's equation

proximately 6 milliseconds, which means that for five
cycles to be displayed the solution would take about 30
milliseconds. The problem can be rescaled to allow
higher values of fJ. by simply reducing each integrator
gain by the same factor. For example, if the gain of
each integrator is reduced by a factor of 4, DCU's 200,
203, and 212 would be reset to 0.25, -0.25, and fJ.,

respectively. Now fJ. can range. up to 1.6383, and the
computer solution is one-fourth as fast as before. Thus
about 120 milliseconds are required for some five cycles
of the solution. Or by programming the basic integrator
time scales to X 10,000 instead of X 1000, about 12
milliseconds is required for five cycles of the solution.

It should be noted that the address and data format
currently used for setting DCU's in the AD/FOUR
is used for setting the switch registers needed to pro
gram the connections shown in Figure 8. The address
indicates the device to which the switch common is
connected (i.e., the signal source). The data word in
dicates the component to which the device is connected
(i.e., the signal destination). A simple table stored in
the digital computer transforms each such statement
pair to a pseudo DCU address and data word, and the
switch register setting is implemented with standard
HCR's (hybrid communication routines) as if it were

384 Fall Joint Computer Conference, 1970

setting a DCU. Thus the following list would be re-
quired to implement the switch settings in Figure 8:

Setting No. Source Destination

(1) DCU 200 AMP 201
(2) DCU 201 AMP 211
(3) DCU 202 MULT 201
(4) DCU 203 AMP 200
(5) DCU 210 MULT 200
(6) DCU 212 AMP 200
(7) MULT 200 AMP 211
(8) MULT 201 AMP 210

For clarity the switch setting numbers (1) thru (8)
are shown in Figure 8 to allow correlation between the
above table and the settings. Actually, in implementing
the switch settings the digital computer merely thinks
it is addressing and setting DCU's, so that existing
HCR's (hybrid communication routines) can be used.
Although the example in this section is very simple, it
illustrates the implementation of the AD/FOUR auto
matic patching scheme for solving a nonlinear differ
ential equation. The actual switching configuration
described in this paper evolved from considering the
program for much larger problems, e.g., 'nonlinear
partial differential equations, six-degree-of-freedom
flight equations, complex control systems, etc.

AN EXAMPLE SOLUTION FOR NONLINEAR
FLIGHT EQUATIONS

As a second example, consider the solution of the six
degree-of-freedom flight equations. The automatic
patching program for these equations requires approxi
mately three fields of an AD/Four, the exact number
of components depending on the complexity of the aero
dynamic functions. One field of the program is illus
trated in Figure 9, where the program for the transla
tional and rotational equations is illustrated. The
following equations result from the summation of forces
along the flight-path axes and moments about the
bodyaxes:5

. Xw g
Vp=-'--

mg Vmax

. Yw g
{j= ---- -Rb8

mgvp V max

(2)

(3)

(4)

(5)

(6)

R
. !:t;x-Iyyp Q + Ixz p. + Nb b= b b - b -

Izz I zz I zz
(7)

Here Vp is dimensionless total velocity; a and {3 are
angles of attack and sideslip, respectively; Pb, Qb, and
Rb are body-axis angular-rate components along the
respective, x, y, and z body axes; PbS and Rb8 are roll
and yaw rates along stability axes; X w , Yw , andZw are
external forces along the respective flight-path axes;
Lb, M b, and Nb are external moments along the respec
tive body axes.

In writing Eq. (3) we have assumed {3«1, and in
writing Eqs. (5), (6), and (7) we have omitted non
linear terms which are negligible in effect. 5

The external force components X w, Y w, and Zw along
the flight-path axes are derived from force components
X s, Y s, and Zs along the stability axes by resolution
through the sideslip angle (j. Thus

Xw=Xs cos{j+ Y s sin{j

Y w = - X 8 sin{3 + Y s cos{3

Zw=Zs

(8)

(9)

(10)

The force components along the stability axes are
obtained from body-axis force components X b, Yb, Zb,
respectively, by resolution through the angle of attack
a. Thus

X8=Xb cosa+Zb sina

Y 8 =Yb

Z8= -Xb sina+Zb cosa

(11)

(12)

(13)

Finally, the body-axis force components include
gravity, propulsive, and aerodynamic terms, as shown
in the following equations:

Xb . Xp qS
- = - smO+ - - - CD (1I!, a) (14)
mg mg mg

Y b • qS
- = cosO smcp+ - Cy(M, (3) (15)
mg mg

Zb qS
- = cosOcoscp- - CL(M, a) (16)
mg mg

where 0 and cp are conventional pitch and bank angles
respectively, q is the dynamic pressure, and S is the wing
area. Also contained ih Eqs. (14), (15), and (16) are
three aerodynamic functions of two variables each in
volving Mach number M along with a and {j.

The moments Lb, M b, and Nb in Eqs. (5), (6), and

(7) are obtained from the following equations:

Lb=qSbCl

Mb=qSCCm

Nb=qSbCn

(17)

(18)

(19)

where b is the semispan, c is the characteristic wing
chord, and Cl, Cm, and Cn are, respectively, the aero
dynamic coefficients for roll, pitch, and yaw moments
about the body axes.

The circuit for implementing the solution of Eqs.
(2)-(19) using automatic patching is shown in Figure
9. Components are numbered on the basis that the
program is implemented in field 2 of the AD/Four.
Fields 0 and 3 are used to solve the remainder of the
six-degree-of-freedom flight equations. Shown in Figure
9 is the circuit for automatic patching of two resolvers
in a field (resolver 670 and 671 in the figure).

The resolver input angles, respectively, are driven by
amplifiers 230 and 231. X and Y inputs to resolver 670
are buffered with bipolar summing amplifiers 202 and
203, respectively. The Y inputs of multipliers 200 and
201, normally driven by these amplifiers, are instead
both driven by quad DCU amplifier 120. Similarly, the
X and Y inputs to resolver 671 are buffered with bipolar
summing amplifiers 242 and 243, respectively, while the
Y inputs to multipliers 240 and 241 are driven by quad
DOU amplifier 121. The outputs X' and Y' of resolver
670 are terminated in DCU pairs numbered 246, 247,
and 256, 257, respectively. Similarly the outputs of
resolver 671 are terminated in DCU pairs 266, 267, and
276, 277, respectively. Each of these DCU pairs lowers
the numbers of DCU's driven by the corresponding
quad DCU amplifiers from 4 to 2 DCU's.

Note in Figure 9 that there are 3 signals from adja
cent fields terminated in quad DCU amplifiers (num
bers 122, 123, and 130). Note also that there are 6
signals from an adjacent field originating in DCU's in
that field (numbers 100, 102, 110, 112, 120, and 122) .
These are terminated in field 2 as currents into sum
ming junctions. This illustrates the typical interfield
trunking capability of the AD/Four automatic patch
ing system.

The circuit in Figure 9 includes three 2-variable
function generators and illustrates the power and
flexibility of the automatic patching· system. For ex
ample, amplifier 200 along with multiplier 251 imple
ments Eq. (14) in its entirety, i.e., generates a function
of two variables, multiplies the function by a third
variable, and sums the result with two additional
terms.

Altogether the circuit in Figure 9 utilizes 15 out of
the 16 summer integrators in field 2, all 12 multipliers,
both resolvers, and 5 out of the 8 quad DCU amplifiers.

Electronic Patching for AD4 Hybrid Computer 385

Following the format given in the previous example,
we have the following list required to implement the
autopatch settings in Figure 9:

Setting
No. Source Destination

(1) DCU 204 MULT 251
(2) AMP 300 AMP 122
(3) DCU 224 MULT 251
(4) AMP 301 AMP 123
(5) DCU 234 MULT 251
(6) MULT 251 AMP 200
(7) DCU 102 AMP 200
(8) DCU 201 REX 670
(9) DCU 256 AMP 240

etc.

DCU settings, including those of reference DCU's such
as number 600, are implemented in the usual manner,
using the DCU address and 15 bit data word.

SUMMARY

There is a trade-off between hardware and software in
any automatic patching system. By choosing a system
of only three large modules of sixteen integrators each
we have enormously simplified the setup procedure,
allowing a direct programming technique without the
need for any fancy interpreter, i.e., standard HCR's
are utilized to control the interconnections. Indeed
the setup procedure is so direct that it is felt that there
is no additional training burden in implementing this
system.

The number of switches in the system is modest,
according to the following list:

Switches per Field:

64 DCU's to 28 S.J.'s 1792
12 MULT S.J.'s to 16 S.J.'s 192
8 QUAD DCU AMPL to 16 Outputs 12.8
8 DUAL COMP to 9 AMPL 72

2184
Interconnection between Two Fields:

(16 DCU'sX16) X2 512
(8QUADDCUAMPLto160utputs)X2 256

Total Switches 768

386 Fall Joint Computer Conference, 1970

One Field System
(16· Integrators)

Two Field System
(32 Integrators)

Three Field System
(48 Integrators)

2184

2184
2184
768

5136

2184
2184
2184
768
768
768

8856

These numbers compare very favorably with those
of other systems previously cited. Reference (3) points
out the advantage of a current-patched computer in an
automatic patching system. However, the profound
advantage of implementing such patching in a com
puter equipped with only digital coefficient devices and
controlling the interconnections ("patching") with
the same software which sets the coefficient devices has
been . overlooked.

I t can be seen from the switch quantities that the
system will add about 20 percent to the cost of the
hybrid system, a figure which can be substantially re
covered in the saving in patching hardware alone.

The system is flexible. Since it is implemented on a
patchboard, the patchboard can be modified easily.
Moreover, this patchboard can be removed and the
computer can be used in the traditional way. Also large
numbers of consoles can be easily and economically
retro-fitted with this system.

Finally, the system uses modern switches, e.g., elec
tronic. This will allow true hybrid time sharing pro
viding the rather large software investment is made.
Even without such an investment the system will pro
vide time sharing of the analog console with complete
re-patching between runs.

[II]
13001

[Oil]
nOll

[*c~
11301

t-

NOTE' terms -. in bnICkeIs (]

indicate iftpuIs !"""other !;.Ids.

I
T

Figure 9-Field 2 automatic patching circuit for translational
and rotational flight equations

REFERENCES

1 D A STARR J J JOHNSON
The design of an automatic patching system
Simulation June 1968

2 G HANNAUER
A utomatic patching for analog and hybrid computers
Simulation May 1969

3 T J GRACON J C STRAUSS
A decision procedure for selecting among proposed automatic
analog computer patching systems
Simulation September 1969

4 A I RUBIN
Hybrid techniques for generation of arbitrary functions
Simulation December 1966

5 L E FOGARTY R M HOWE
Computer mechanization of six-degree-of-freedom flight
equations
Simulation October 1968

Digital v~ice processing with a wave
function representation of speech*

by JOHN D. MARKEL and BERNARD CAREY

University of California
Santa Barbara, California

INTRODUCTION

Digital voice processing has advanced to a relatively
high level of sophistication due to the development of
the fast Fourier transform (FFT) algorithm.1,2 Com
pletevocoder systems have been developed around the
FFT& and with the advent of high-speed integrated
circuits and read-only memories to implement sine and
cosine tables for the FFT, actual real-time hardware
processing has been accomplished.4

Anyone familiar with analog vocoder systems is
aware of the somewhat unnatural sounding synthetic
speech output. There are two major reasons for this:
first, pitch must be extracted and reinserted quite ac
curately, and secondly, the consonant sounds must be
accurately represented because of their relatively short
duration but yet important perceptual quality. The
problem of accurate pitch extraction performed by a
fundamental frequency tracking filter in the analog
systems is effectively eliminated in the digital vododers
by the application of ceptral techniques in conjunction
with the FFT.5 However, the difficulty with generating
natural sounding consonants is still present which is an
inherent difficulty due to the frequency domain method
of generating the transient sounds.

In this paper we will· describe a basically new ap;.,
proach to digital voice processing which will be called
a "Wave Function Analysis and Synthesis System,"
due to the appearance of the basis elements (or func
tions) which are used in the repre~entation of the
speech. It is basically a time domain system as opposed
to the standard vocoder which performs the repre
sentation mainly in the frequency domain. With this
system we will demonstrate the capability of quite
accurate and natural sounding generation of synthetic
speech.

* This work was supported by Advanced Research Projects
Agency, Contract AF 19(628)-6004.

387

Development of a wave function approach

Several years ago Dr. Glen J. Culler of UC-Santa
Barbara observed that many sounds of speech, when
properly filtered, could be represented by derivatives
of the Gaussian function exp(-t2/2).6 It was discovered
that the nth derivative could be described explicitly
by a Gaussian function multiplied by the Hermite
polynomial of degree n. These functions are known to
satisfy the differential equation7

u(t) +at u(t) +b u(t) =0 u(O) =Cl u(O) =C2 (1)

with the particular form

where n is a nonnegative integer and gn (t) is the nth
derivative of the normalized Gaussian function. From
this point the equation was generalized to allow for
noninteger coefficients, expansion or contraction of the
solutions, time shifts and phase shifts. The general
form is6

u(t) + (2-11/ S)2(t-C)U(t) + (27r/ S)2(N2- ~)u(t) =0

(3)
with initial conditions given by

u(C) =A cos</>

u(C) =A(27rN/S) sine/>

The basic hypothesis behind the use of this differential
equation for analysis of speech is that properly filtered
speech can be represented by. members of the wave
function family described from its solution. The param
eters of this equation have been chosen so that physi
cally meaningful relationships are being used. Figure 1
illustrates a representative solution to equation 3. The
rationale behind the use of these parameters is that A
corresponds to the peak of the envelope which en
closes the wave function, S is a spread factor within

388 Fall Joint Computer Conference, 1970

....... ---- s --------....

A

t=c

Figure I-Representative wave function showing parameters
(N is approximately the number of half cycles under the envelope)

whose value nearly all of the energy of the solution lies,
C is the center of the envelope of the wave function, cf>
is the effective phase of the solution with respect to C,
and N is roughly the number of half cycles that would
be measured under the envelope function. V sing equa
tion 3 as a reference, the major part of the analysis is
based upon development of algorithms for automati ...
cally extracting the five parameters· mnemonically
referred to as the ASCON parameters from the. speech
wave.

Our motivation for simulating an automatic voice
processing system based upon the wave function ap
proach is based upon two main factors: (1) V sing the
VCSB speech on-line station developed by Culler it
has been demonstrated that high-quality synthetic
speech can be generated from the wave function param
eters extracted from real speech, and (2) an asymptotic
solution to equation 3 has been obtained which is of
closed form and yet is valid with respect to it over
nearly the ·whole range· of analysis, thus considerably
simplifying the algorithmic difficulties in transforming
speech into wave· function parameters. .

One ; of the major problems in the wave function
analysis-synthesis method is that of performing the
mapping from the speech wave to the parameters' of
the diff~rential equation (or wave' function solution).
Since:the desired goal is to make a "best" fit to the
speech wave in some sense with a known basis set, the
criteria for "best" will determine the algorithm. In this
paper we will describe a procedure for extracting the

desired wave functions based upon a four-point analysis
around each major sweep (to be defined shortly). First,
a brief discussion of the basis set chosen for the analysis
and synthesis will be presented and then the algorithms
pertaining to the automatic voice processing system
will· be considered.

The Gaussian cosine modulation (GCM) wave/unction
formulation

The basis elements we will use in the algorithm are
generated as asymptotic solutions to equation 3.
Through the use of an asymptotic form of the confluent
hypergeometric function (which is required for ex
pressing the exact time domain solution to equation
3), the surprisingly simple resultS

ua(t) =A exp[a(t-C) 2/4] cos[Wo(t-C) -cf>] (4)

is obtained where ua(t) is the asymptotic solution,

The solution is thus a Gaussian probability function
with a mean of C (sec.) and standard deviation of
(2/a)1/2 (sec.) modulated by a cosine wave of peak
amplitude A with center frequency Wo (rad/sec.).

This is a rather concise result to be derived from such
forbidding sounding names as confluent hypergeo
metric functions. However, if the requirement for
validity of the asymptotic solution (2N2_Y2 is "large")
is unrealistic with respect to physical speech, then the
fo;mulation is of limited value. It has been experi
mentally demonstrated that these asymptotic solutions
match the solutions generated recursively from equa
tion 3 over nearly the whole range of speech. The two
representations have the most error for small N. It
has been observed that the smallest N values (around
2-2.5) occur in the (100-400) Hz segment of the speech
range of interest. Figure 2 shows the asymptotic solu
tions ahd the recursive solutions forN = 2 and N = 3.6.
For N greater than 4 the two solutions are indistin
guishable. Therefore it is proposed that a more meaning
ful,differential equation to use as the mathematical
foundation from which the wave 'function family
w (t) = Ua (t) is derived is the one which has the solutions
in equation 4 as· exact and not asymptotic solutions.
By differentiation of equation 4 and substitution into
equation 5, one can verify that the GCM differential
equation is

wet) +a(t-C)w(t)

+ {wo2+a/2+[a2(t-C)2/4]}w(t) =0 (5)

i------t-o

I

5 t \/CUller FonrulAtion

~~ ~+---------~~--~---r--_\~~----------c
:i .,.. A = 1.0

S = 7 msec.
C = 9 msec.
¢ = 170 degrees
N = 2

'GCM Formulation

b 1?, 1b 1
TIME

+ ~ I 1---
~~ r+' __________ -6~~~~~~~------------
c:'
~
<

A = 1
S = 6 msec.
C = 9 msec.
¢ = 90 degrees
N = 3.6

\

~rror between Culler
and GCM Formulations

r)~--±b--~~~~~~--1?~t---lb+---1+
TIME

Figure 2-Comparison of recursive solutions to Culler
formulation and exact solution to GCM formulation

with initial conditions specified by

w(C) =A coscp

w(C) =A Wo sincp.

THE GCM ANALYSIS/SYNTHESIS SYSTEM

There are five basic processes involved in the pro
posed wave function analysis algorithm.

1. Preprocessing-The speech is filtered into appro
priate frequency regions. Each of the filtered
regions in the time domain is denoted as a
"substring."

2. Major Sweep Detection-The substring is
searched for a location in which a wave function
behavior can be isolated.

3. Gaussian Envelope Representation-Based upon
the extrema and corresponding time values
around the major sweep, a Gaussian envelope is
calculated which fits the data with some pre
defined error criteria.

4. Cosine Wave Representation-Based upon ex
trema near the peak of the calculated envelope
a frequency and phase term are generated which
then uniquely describes the wave function.

Digital Voice Processing 389

5. Residue Calculation-After the envelope and
cosine wave parameters have been extracted,
the corresponding wave function is synthesized
and subtracted from the filtered speech.

Figure 3 shows the proposed block diagram of the
analysis system. The preprocessor performs the digital
filtering of the signal into sub-strings covering the
(100,3000) Hz range. The major sweep detector per
forms the task of isolating a region around which a
wave function will be fit. Calculation of A, S, and C
corresponds to fitting an envelope around the major
sweep which satisfies some predefined error criteria.
Calculation of Phase cp and Frequency F corresponds
to fitting a cosine wave to the speech which matches
closely in the region of the major sweep.

Once the parameters have been generated, the corre
sponding wave function is generated over the region
I t- C I < 8/2. By subtracting this function from the
incoming channel signal, the error or residue is gen
erated which can then be represented by the next wave
function. Conceptually, the representation process is
carried on independently for each substring (as de
noted by the bold arrows) implying a multiple input
output configuration. The process of fitting a single
wave function to local segments of the substrings is
repeated over and over until the total time interval of
interest has been analyzed. Each of these processes
will now be c<?nsidered in somewhat more detail.

Preprocessing

The purpose of the preprocessor is to transform the
acoustic waveform denoted as a "string" into "sub
strings" that are amenable to wave function analysis.
It has been demonstrated elsewhere9 that a sufficient
condition for obtaining high-quality wave function
representation is that the string be filtered into four
substrings that cover the frequency range (100,3000)
Hz. Let s (t) be the original string with frequency com
ponents in the range (100,3000) Hz. Then

.4

s(t)= L Sn (t)
n=l

where Sn (t) IS the nth substring. In the frequency

domain
4

S(jW) = L Sn(jW)
n=l

The frequency regions Rn corresponding to Sn (jw) ,

'"

390 Fall Joint Computer Conference, 1970

set)

PREPROCESSOR

1/" -----r --",

:~ t +
~--------------~;rJ1r

L

MAJOR
&WEEP
DETECTION

--:;;

./

[.II

RESIDUE
CALCULATION

I.;<'
r . ~

II
,r " ./

GAUSSIAN
ENVELOPE
REPRESENTATIC ~,

~

COSINE
WAVE
REPRESENTATIOJ

, ,
'I

I.-'

WAVE FUNCTION
PARAMEI'ER SETS

Figure 3-Block diagram of GeM analyzer system. Bold arrows
denote multiple input-output situation.

sn(k), n: 1,2,3,4

Speech

Figure 4-Detailed block diagram of preprocessing section of
GeM analyzer

n= 1, ... , 4 are divided in the following manner:

100 <R1 < 400 Hz
- to

400 :s; R2 < 900 Hz

900:S; R3 < 1700 Hz

1700:S; R4 < 3000 Hz

This separation into four contiguous frequency regions
corresponds to convolution of sin x/x type bandpass
filters with s(t) to obtain the substrings. By applying
the discrete convolution equation, each of the four sub
strings for the system simulation is obtained as

62

Sn(k) = L h(j)s(n-j)
j=-62

where

sn(k) =Sn(t) It=kT k=O, 1,2, ... ,

hn(j) = (Bn/2) [sin(7rBnjT)/TrBnjTJ cos(27rFnjT) ,

and T is the discrete sampling period. The parameters
of the nth convolution kernal hn (t) are defined from the
nth region. For example B2 = 900 - 400 = 500 Hz and
F 2 = (400+900)/2=650 Hz. The preprocessor portion
of the wave function analysis system is simulated in
the form of Figure 4. In the present configuration a
string of up to 420 msec. can be recorded and stored
on the disk. Once stored, S (t) is then digitally convolved
using the above algorithm to obtain the sub-strings
Sn(t), n=I, ... , 4. At the present sampling rate of
17.5 kHz each substring corresponds to 7440 16 bit
computer words. Each substring is also stored on disk
where it then becomes available for the wave function
analysis programs.

To illustrate the effect of the preprocessor two ex
amples are presented, one for a vowel and the other for a
consonant. Shown in Figure 5 is a 35 msec portion of
the vowel /i! as in "eve" recorded from a male speaker.
Examination of the general structure shows a stable
repetition of a complex waveform. The substrings ob
tained by the just discussed algorithm are of a much
less complicated form as can be seen from the figures.

In Figure 6 is shown a 35 msec. portion of the fricative
consonant /s/ as in "she" from the same speaker.
Examination of this string shows it to be of a somewhat
random nature. Again the resultant substrings are of a
much simpler form. Now the wave function analysis
algorithms will be considered starting with the major
sweep detection.

Major sweep detection

To perform wave function analysis certain segments
of the filtered speech wave must be isolated as the
regions over which a wave function will be fit. Based
upon their time domain appearance we look for the
time at which the envelope of the speech wave reaches a

s (t)
4
L sn (t)

n=l

S4(t)

o
time (msec)

Figure 5-Representative portion of spoken vowel Iii shown
with substrings 8n (t), n = 1, ... , 4

s(t)

4
L s (t)

n=l n

s2 (t)

S4(t)

Digital Voice Processing 391

o time (msec) 35

Figure 6-Representative portion of spoken consonant lsi
shown with substrings 8n (t), n = 1, ... , 4

local maximum and define this as the location from
which wave function parameters will be extracted. One
method for doing this is to determine the absolute
values of the extrema as the definition of the points
defining the envelope which conceptually corresponds
to full wave rectification and low pass filtering. The
three main aspects of the algorithm namely (1) extrema
detection (2) constraints on extrema and (3) criteria
for major sweep will now be considered.

Initially the substring is tested to see whether the
first sample is greater than zero. If so, each succeeding
point is tested until a value is found which is less than
the preceding value. This point defines a local maximum

392 Fall Joint Computer Conference, 1970

. Major Sweep

Figure 7-Extrema and time of occurrence definitions as applied
to wave function behavior isolated around the major sweep

and a possible extremum value. A test is applied to
insure that the time of occurrence satisfies the extrema
constraints (explained below). If these are satisfied,
an extrema time and slope value are defined. Then a
test is applied for the major sweep (explained below).
If the constraints on extrema are not satisfied the index
counter is incremented and the next value is tested to
see if Xj+l is less than Xj. The counter is incremented
and this test is performed again until Xj+l is greater
than Xj. At this point a local minimum has been found
and it will then be tested as described above. If the
first value of the signal is less than or equal to zero each
succeeding point is tested until a value is found which
is greater than the preceding value. Then the process
continues as above. Thus the extrema detector can be
viewed as a flip-flop arrangement whose states change
whenever a local minimum or maximum is found. In
any extrema detection scheme it is necessary to place
certain constraints due to slight perturbations of in
significant perceptual value on the speech wave. It is
desirable to constrain both the minimum amplitude
difference and time difference between a potential
extrema but since the system is bandlimited, use of
time difference only has been shown to be acceptable.
Since the system we are considering is bandlimited to
3 kHz, 0.1 msec is a reasonable value to use for the
minimum allowable time before the next extremum
can be defined. A sweep is defined as the distance from
the previous extremum to the following extremum.
The major sweep is defined by requiring from a sweep
at time t, the following sweep to be greater in value

and the previous sweep to· be smaller in value. The
region of the largest sweep then defines the major
sweep.

Based upon the sweep as defined by the sweep
detector output, each isolated segment is given the
following definitions as shown in Figure 7 below. The
region (T A, T B) defines the location of the major sweep
and the location in which C must reside. The time TD
is the next extremum location past T Band T c denotes
the extremum closest to the left of T A. For the analysis
procedure presented here, WA through WD correspond
to the values of the extrema evaluated at the respective
times, TA to TD •

Gaussian envelope representation

It has been previously demonstratedlo that the exact
(in the sense of representing wave functions with mem
bers of the same family) analysis applied to real filtered
speech is inadequate. In this section an iterative solu
tion to the problem of finding the best (in the sense of
some predefined error criteria) wave function over a
segment of filtered speech is presented. The problem
we are working with falls under the classification of
nonlinear programming with constraints, that is,
problems in which mathematical programming tech
niques are used to minimize a given function
f(Xl, X2, ... Xn) nonlinear in the independent variables
by proper choice of a vector x = (Xl, X2, ... xn), where
the variables are constrained.

If the measured extremum Wi does not lie exactly
on some particular wave function, there will be an
associated error ei=/i-Ji where

Ji=A exp[(_7r2jS2) (t-C)2] cos(wo(t-C) -cp)

and fi = I Wi I defines the absolute value of the ith
extremum. Since we are measuring peaks we assume
cos(·) = ±1. By defining fi= t Wi t , the error ei meas
ures the deviation from the positive envelope and the
measured extremum. It is desired to minimize in some
sense the error between the envelope value and the
speech waveform value at several different points by
choosing the parameters A, S, and C properly. Given
the original function fn, n= 1, 2, ... N and estimate
In, n= 1, 2, ... , N the mean square error in discrete
form is defined by

N

E=N-I 2: (fn-Jn)2
n=l

There are many other measures but we shall restrict
our discussion to this one since it is probably the easiest
and most meaningful to implement for our problem.

Using the mean square error criterion, analysis of real
speech to obtain the A, 8, C parameters for a selected
segment implies minimization of the function

4

f(A, 8, C) = L { I Wi I -A exp[(-7r2/ 8 2) (ti-C)2]}2.
i=l

The most obvious method for finding the values of
the independent variables which minimize a function
is by setting the partial derivatives equal to zero and
then solving for A, S, and C, i.e.,

af/aA =0 af/as =0 af/ac=o

However, for this problem the function f is highly
nonlinear in both variables Sand C which for even
small K (on the order of three or four) would become a
very unwieldy algebraic problem. In addition this pro
cedure does not allow constraints to be applied. As an
example, the parameter N might be a negative number
which is physically meaningless.

We therefore consider numerical techniques for mini
mizing functions subject to constraints. This subject
is a complete field in itself and there are an endless
variety of approaches which can be applied to this
problem. For simplicity a steepest descent method will
be used with the inclusion of upper and lower bounds
on thp "Y~,riables A, 8, and C. Although steepest descent
methods are far from optimum in terms of speed of
convergence (for ill-conditioned problems) it has been
verified that by judicious choice of constraint equations
and variables (in particular, the optimization of 1/8
instead of S) quite satisfactory results can be obtained
with relatively few iterations.

The modified steepest descent method used in this
procedure is outlined below.

1. Define a set of lower bounds bli and upper
bounds bUi corresponding to variables Xi,

bli~Xi~bUi i=1,2,3.

2. Starting with an initial estimate x(O) =
[Xl(O), X2(0), Xa(O)] the ith iteration is as
follows:

3. The normalized gradient of f,

Vf(x)/ Ilf(x) II

is numerically calculated using central differ
ence forms and the direction of the search is then

sCi) = - Vf(x) / II f(x) II

Digital Voice Processing 393

Initial Envelope Estimate
Final Envelope Estimate

Figure 8-Example of GeM analyzer convergence capability.
Signal described by {A, S, C, cp, F} = {I, 6, 9, 90, 0.576}. Initial
estimates {Ao, So, Co,} = {0.95, 10.4, 8.97}. Final estimates

(four iterations) = {AJ, Sf, CJ } = {.99, 5.9, 9.0}.

4. Starting with initial step length ai, a new vector
x (i) is calculated from

xCi) =x(i-1) +s(i)ai

and using this new vector, f[x(i)] is evaluated.
5. If f[x (i)] <f[x (i -1)] the move was successful

and thus s (i) is doubled in length to give
sCi) =2s(i-1) and step (4) is repeated. If
f[x (i)] 2::f[x (i -1)] the move was unsuccessful
and thus the step length is reduced by some
factor p<1, i.e., ai=pai-l and (4) is repeated.

6. Procedure stops when some predetermined
criteria on the number of iterations and/or error
has been reached.

Figure 8 illustrates the capability of the analyzer to
converge upon correct parameter values based upon
initial conditions which are in considerable error with
respect to the correct values.

Next the determination of boundary conditions on
the parameters will be discussed and then the calcula
tion of the remaining two parameters cp and F will be
considered.

Bounding of A-First it is noted that the extrema
fix a lower bound on A, i.e., A 2:: (I WB I , I WA I). Thus

BL (A) = max (I WB I , I WA I)

Based upon the requirement that at least one full
cycle must be contained within the envelope of the
wave function a worst case is described by the situa
tion where cp= ±90°. Experimentally it has been deter
mined that the bound BU(A) = 1.5BL(A) is sufficient.

Bounding of C-Using the previously defined terms
(TA,WA), (TB,WB), and (Te, We), the center will
always lie between T A and T B. Thus we have the very
simple bounds BL(C) = TA and BU(C) = T B.

Bounding of 8-Bounding of 8 is the most difficult

394 Fall Joint Computer Conference, 1970

part of the procedure since only the highest amplitude
information near C is used in setting up the effective
width of the envelope near zero amplitude. A lower
bound on S can be easily obtained by observing that
S> T B - TA in all cases. As a first attempt at finding
an upper bound to S it has been decided to measure
the distances of straight line intersections from T A

with the time axis. A problem arises when two of the
extrema happen to take on nearly equal values. In that
case an upper bound is defined which depends on the
effective frequency of speech sample and a pre-deter
mined maximum N value. The bound is set at

To obtain rapid convergence in the algorithm it is
necessary to operate upon 1/ S instead of S since S
takes on a relatively large range of values. If S> 1
(msec.) for all conditions, then O<I/S<I, a much
smaller range of values. Therefore BL(S) is defined as
1 + T D - T A to insure that 1/ S is less than one. The
initial value of S is chosen between BL (S) and B U (S) .
These values are not critical and several other methods
might be just as good or better. For example, the initial
condition and b0U11ds of S could be defined by

1/ Sinitial = .5

BL(I/S) =0

BU(I/S) =1

However by using the bounds described, better initial
estimates (and thus faster convergence) is usually ob
tained. The important point is that 1/ S must be used
as the variable which is iterated upon and it must
satisfy the bounds 0 < 1/ S < 1.

Cosine wave representation

In most discussions of the wave function analysis
technique the relevant parameters were the ASCON
set.6 However for the GCM formulation, a more mean
ingful parameter set is the ASCOF set where F is a
frequency term that replaces N. The reason for this
change is that in the representation the envelope be
havior characterized by A, S, and C can be completely
isolated from the cyclic behavior characterized by cf>

and F. In terms of equation 3,

A logical criterion to apply in the determination of F
is that near the center of the wave function the effective
frequency equal F. The word effective is used because
we are defining frequency from only four points in time,
nearest C. If the speech were a cosine wave then the

terms frequency (as applied to the cosine wave) and
effective frequency (as applied to four points) would
be identical. Assume that tn, n=O, 1, 2,3 are the times
for which extrema are measured in the vicinity of the
major sweep. The frequency estimator will be defined
as

3

F = Y6 ~ (tn -tn_I)-I.
n=l

The phase will be defined so that a close fit is made at
t= T2 (T2= TB in the previous section), i.e.,

cos[21rF(T2-C) -cf>]= ±1

depending on the major sweep slope. Therefore

Residue calculation

To make an accurate wave function representation
from filtered speech the wave function corresponding
to the extracted parameters around a major sweep
must be subtracted from the original waveform before
proceeding in the analysis for the next wave function.
This is because the parameters extracted over a limited
interval of time describe a wave function that extends
over a larger interval, i.e., for a small portion of time
past the major sweep, the future values of the signal
are being predicted. Thus subtraction of the wave
function from the original signal generates the error or
residue which is then analyzed for the next wave func
tion. An additional task of the residue calculation por
tion is to set the index at which the sweep detector will
start next. Its choice to a large extent determines the
efficiency (and also accuracy) in the representation.
The minimum value for the starting index of the next
wave function in this study was set at (C+TD)/Fs

where Fs is the sampling frequency, T D is the last
extrema point (largest time value considered) and C is
the center of the wave function envelope. Figure 9
shows the representation and residue from filtered
vowell A/ as in "up" over (900,2000) Hz. Summarizing
the operation of the GCM analyzer, the algorithmic
procedure for extracting the string of ASCOF param
eters is as follows: The peak values and corresponding
times of the sampled substring sn(k), k=l, ... ,4 are
obtained. Then a major sweep is isolated. Applying the
algorithms just described, the wave function param
eters are calculated. Using these parameters, the corre
sponding wave function is calculated and then sub
tracted out from the original speech data. The residue

is then operated upon in the same fashion to obtain
the next set of parameters from the substring. Thus the
process is basically an on-line system that conceptually
with appropriate buffering could be a real time process
since the analyzer inputs sn(k) are also conceptually
real time operations. One can visualize the system then
as a 4 analyzers X5 parameters/wave function=20
channel system whose bit rate wiil vary depending
upon the incoming information rate. This is a rather
significant aspect of the system. Note that no voiced/
unvoiced decisions are required as in a channel vocoder.
All time references are contained in the C parameters.

Wave function synthesis system

As opposed to the various types of voice processors
now in use, by far the major share of computation is
required in the analysis system. Assuming that the
twenty channel signals have been correctly sorted into
the four different time varying parameter sets, the
synthesis is nearly a trivial matter. The synthesized
substrings Sn(t) , n= 1, ... , 4 are .obtained by applica-

~(t)

Residue = set) - get)

TIME

Figure 9-SJomparison of filtered region of I AI as in up,
R = (900,2000) Hz and the wave function representation along
with the residue. Representation composed of eight wave

functions.

Digital Voice Processing 395

tion of equation 4. Thus

Sn(k) = L 4>[n(i, n), k]
i

where n (i, n) denotes the ith set of wave function
parameters corresponding to the nth substring, and k
denotes the discrete time index, i.e., t = kT, k = 0,
1, ... , where T is the sampling period. The symbol 4>
denotes the wave function as a function of these vari
ables. In computational form,

4>[n(i, n), kJ=A(i, n)

X exp{[kT-C(i, n)]201l"2/S(i, n)2}

o cos {21l"F(i, n) o[kT-C(i, n)]-4>(i, n)}
where

n (i, n) = {A (i, n), S (i, n) , C (i, n) , 4> (i, n), F (i, n) }.

Since each wave function amplitude decreases as an
exponential squared, only the wave functions located
nearest to the corresponding present time t need to be
evaluated at the index k.

The total synthesis of the estimated string is de
noted by s(k) and is calculated in discrete form by
summing the substrings. Thus

4

s(k) = L sn(k)
n=l

EXAMPLES FROM SYSTEM SIMULATION

As a demonstration of the wave function approach
to speech analysis and synthesis, two multiphoneme
words were chosen. The first is the word "large" which
consists of the semi-vowel /1/, the vowel /a/, the semi
vowel /r/, and the plosive consonant /g/. The second
word is "men" which consists of the closed mouth
nasal consonant /m/, the vowel /1/, and the open
mouth nasal consonant /n/. These words contain
enough of a variety of the .. basic phonetic sounds to
illustrate the accuracy of the wave function speech
analysis and synthesis system.

Each word was uttered by a male speaker. Figure 10
shows a block diagram of the computer system that is
used to simulate and observe the wave function speech
analysis and synthesis system which has been described.
The speech passed through an A/D converter which
sampled the acoustic waveform at a 17.5 kHz rate with
an 11 bit quantization precision. 7,440 16 bit words,
which represent 420 milliseconds of the sampled speech,
are stored in the IBM 2311 magnetic disk storage sys
tem. The sampled speech word is filtered four separate
times into the four substrings Sn(t) , n= 1, ... , 4.
These represent the .(100,3000) Hz frequency region.

396 Fall Joint Computer Conference, 1970

Figure 10-Block diagram of system used to implement the wave
function analysis synthesis system

Each substring is then analyzed into its set of wave
function parameters which are also stored in the 2311
system. Each parameter set is operated upon by the
wave function synthesis program to generate its corre
sponding synthetic substring which is stored in the

o time (msec) 420

"Large"
Original

s (t)

"Large"
Synthetic
§ (t)

Figure ll-Comparison of original versus synthetic for
word "large"

FREQ

2

(KHZ)

1

o

L G E

time -+- "

'q'";YNAL

L A R G E

t 1 ;nt'

SYfIlTHF"

Figure 12-Comparison of spectrograms for word "large"

2311 system. The four synthetic substrings are summed
together to form the synthetic string set) which is also
stored in sampled form. At this point the original
speech string, the four synthetic substrings, and the
synthetic speech are all available for comparison and
examination. They can be examined by visual observa
tion on the Tektronix 611 storage display or listened
to after the digital word is passed through a D / A
converter-amplifier-speaker system.

o 420
time (msec)

"Men"
Original
s(t)

"Men"
Synthetic
§(t)

Figure 13-Comparison of original vs synthetic for word "men"
in range (100,3000) Hz

FREQ

2

(KHZ)

1

o

M E

ORIGINAL

N

time ~

M E N

time ~

SYNTHETIC

Figure 14-Comparison of spectrograms for word "men"

Figure 11 shows the original word "large" and the
synthetic word "large" for comparison. As can be seen,
there are detectable differences between the two time
waveforms but a consistent agreement in their general
structure exists. Figure 12 shows spectrograms of the
original "large" and the synthetic "large" that were
taken on a Kay Electric Company 6061B Sona-graph.
It is apparent that excellent agreement exists between
the frequency structure of the origi:p.al versus synthetic
words.

Figure 13 shows the time waveforms of the original
"men" and the synthetic "men." Excellent agreement
exists between the two time waveforms and only close
examination can show the differences. Figure 14 shows
the spectrograms of the original versus synthetic
"men." The frequency structure of the synthetic word
is in close agreement with that of the original word.

REFERENCES

1 J W COOLEY J W TUKEY
An algorithm for the machine calculation of complex fourier
series
Mathematics of Computation Vol 19 No 90 April 1965

Digital Voice Processing 397

2 W T COCHRAN et al
What is the fast fourier transform?
IEEE Transactions on Audio and Electro-acoustics Vol
AU-15 No 2 June 1967

3 A V OPPENHEIM
Speech analysis system based on homomorphic filtering
JASA Vol 45 No 21969

4 Applied Research Laboratory, Sylvania Electronic Systems
Real time digital vocoder demonstrated at 78th meeting of
Acoustical Society of America San Diego Calif November
1969

5 A M NOLL
Short-time spectrum and cepstrum techniques for vocal-pitch
detection
J ASA Vol 36 No 2 pp 296-302 1964

6 G J CULLER
An attack on the problems of speech analysis and synthesis
with the power of an on-line system
Presented to the International Joint Conference on
Artificial Intelligence May 8 1969 Washington DC

7 J A HOWARD R C WOOD
Hybrid simulation of speech waveforms utilizing a gaussian
wave function representation
Simulation Vol 11 No 3 pps 117-124 September 1968

8 J MARKEL
A gaussian cosine modulation (GCM) formulation for speech
analysis and synthesis
Computer Research Laboratory University of California
at Santa Barbara August 1969

9 B CAREY
Separation of the acoustic waveform into substrings
Computer Research Laboratory University of California at
Santa Barbara March 1970

10 J MARKEL
Considerations in the development of a wave function analyzer
Computer Research Laboratory University of California at
Santa Barbara January 1970

SIMeON-An advancement in the
simulation of physical systems

by B. E. TOSSMAN, C. E. WILLIAMS, and N. K. BROWN

Johns H opkins University
Silver Spring, Maryland

INTRODUCTION

The simulation of physical systems, once exclusively
the domain of analog computers, is also being performed
today by a variety of large-scale digital systems. Many
specialized programs have been developed to. permit
the study of electronic circuits, biological organisms,
and chemical processes, etc., by mathematical and
empirical modeling techniques. So often these programs
are written in procedural computer languages and may
require months of developmental investment (and
debugging) to yield a handful of computer-produced
results. In addition, if simulation parameters are not
well known, it may take hundreds of test runs to pro
duce a simulation model that realistically portrays the
actual processes involved. When the digital computer
utilized to perform the simulation is operated in a
batch-processing environment, such determination of
model fidelity may take weeks because of the time lag
from submission of test data to receipt of program
results. Smaller computer systems may permit almost
instantaneous turnaround and even on-line interac
tion, but too often do not have sufficie.nt memory size,
precision, or speed to be of much use in complicated
qigitalsimulations. The SIMCON simulation system
is an integrated hardware/software system developed
for the purpose of overcoming the difficulties of ap
plying large-scale digital computers to the simulation
of physical systems. The SIMCON system, which is
used in conjunction with the IBM 360/91 computer,
consists of the DSL/91 programming language, the
SIMCON control console, a hybrid data interface,
and a number of analog graphical peripherals. The
SIMCON simulation system shown in Figure 1 in
cludes the SIMeON console, incremental recorder
and duel-channel X -Y plotter. The discussion of the
SI1VICON system presented herein includes .. the re
sults from several hybrid satellite study programs,
as examples of its application.

399

SIlVICON SYSTEM DESCRIPTION

DSL/91 language

Quite often the simulation engineer or programmer
will find that a number of the blocks of his mathe
matical model involve representation of simple elec
trical or mechanical devices like flip-flops, relays, or
moderately complex transfer functions. Such appli
cation-oriented subprograms are rarely included in
PLl1 or FORTRAN libraries distributed by computer
manufacturers. In most cases, the routines will have
to be generated for the simulation program, and will
increase the amount of development time.

Figure 1-SIMeON. simulation center

400 Fall Joint Computer Conference, 1970

Figure 2-Simulation console

The SIMCON system offers a significant contribu
tion by including a programming language for the
express purpose of digital simulation of continuous
system dynamics.

DSLj91 (Digital Simulation Languagej91) is :z
non-procedural, problem-oriented computer language!
designed to operate either in the batch-processing mode
or in conjunction with the SIMCON console2 in the
time-shared mode of the lVlodel 91's operation. Simu
lation models may be expressed either at the block
diagram level or as systems of ordinary differential
and algebraic equations. Since the language is basically
non-procedural, equations and data may be entered
in any order, with the task of proper statement se
quencing being performed automatically by the lan
guage processor. DSL includes the FORTRAN IV
procedural language as a subset, thereby extending its
power to handle non-linear and time-variant problems
of considerable complexity. Furthermore, many fre
quently occurring simulation blocks such as relays,
switches, transfer functions, and function generators
are provided in a simulation-oriented subprogram
library.

Significant features of DSL/91 include a centralized
built-in numerical integration system providing a
choice of seven analytical techniques. These range
from ,a simple rectangular method to the very stable,
variable step-size, 5th order Milne Predictor-Corrector
method. Input and output of simulation data and re
sults are accomplished by· pre-formatted I/O routines
with emphasis on ease of use, not versatility.

Simulation control console(SIJIIICON)

In general, a simulation rarely performs in a manner
realistic to the physical system the first time, even if

correctly programmed. It is often necessary to run a
simulation many times before the values of the param
eters that cause behavior equivalent to the real sys
tem are found.· In many cases the express purpose of
performing a simulation is to determine if an improve
ment in the real system's performance can be attained
by mere parameter optimization, rather than complete
redesign. However, both of these processes require
the results to be scrutinized by a trained and knowl
edgeable analyst, who can, in cases of multi-parameter
optimization, play an important role in the problem
solution. Thus, the ability of an engineer to observe
and control the simulation's execution enhances the
applicability of the digital computer to simulation,
especially if he can iteratively rerun the problem and
conveniently change data between, or even during,
the runs.

The SIMCON console, shown in Figure 2, is de
signed to operate in conjunction with DSL/91 simu
lation programs, providing man-machine interaction
during simulation execution. This would not be eco
nomically feasible on such a large system as the l\1odel
91 were it not for the OS/MVT monitor system. The
time-sharing environment permits other programs
to run concurrently with the SIMCON system, and
thus. no computer . time is wasted while the engineer
studies his results or adjusts parameters at leisurely
speeds. Furthermore, to increase the speed of man
machine interaction, the console is organized around
a function keyboard concept, rather than a type
writer. Thus, standard commands are initiated by
depressing buttons, rather than typing keyword
phrases. Display of problem parameters is accomplished
by alphanumeric NIXIE tube registers, rather than
typewriter printed output. Hard-copy results, if de
sired, are available on the high speed system line
printer.

The console is organized around an IBM 1892
Process Operator's Console (Model 11) with customer
specified button labeling, housed in a specially designed
cabinet. One section of the console buttons is provided
for control of program execution. Using these buttons,
it is possible to start, stop, single-cycle, and restart the
solution of the problem. Another button group con
trols the display of problem data in the NIXIE regis
ters. The operator can select dynamically any three
of 50 preassigned program variables, and simultaneously
display these in floating:..point format. Furthermore,
certain special function buttons allow the display of
any program variable whose relative address within
the program is known, and the on-line assignment of
this variable to any unused address button of the 50
available. Other buttons of this group initiate program
dumps in scientific data formats, enable on-line selec-

tion of integration methods, and cause job termina
tion. Finally, simulation data may be entered while
the simulation is halted via a 14 button numerical
keyboard, or dynamically modified by an incremental
potentiometer.

A nalog graphical peripherals

In close proximity to the console are a number of
analog plotting systems capable of producing hard
copy graphics. A strip-chart recorder permits 8 problem
variables to be plotted parallel to each other on a
single continuous roll of reproducible paper. The
variables are graphed vs. the simulation time base,
with the paper chart being advanced by an incremental
drive. This technique prevents distortion due to multi
programming during the simulation's execution. An
analog memory scope allows simultaneous plotting of
two variables against a third, with the resultant plot
being retainable for the purposes of photography.
Finally, a 30-inch vertical X -Y plotter can be used
to produce two simultaneous indpendent cross plots
which may overlap without damage to the plotting
mechanism.

Hybrid data interface

The hybrid data interface, an IBM 1827 Data
Control Unit, contains eight 13-bit Digital-to-Analog
converters and a sixteen channel 14-bit Analog-to
Digital converter. Additional equipment, within the
1827, interfaces the 1892 Process Operator's Console
(SIMCON) to the System 360/91 computer as shown
in Figure 3. The D/ A converters may be used to drive
external analog equipment other than plotters. Thus,
simulations may be interfaced to real analog hardware
to test the performance of prototype and final designs
functioning in an otherwise all digitally simulated
environment. This mode of simulation is currently
being used in the study of magnetically damped satel
lites, wherein actual flight hardware is coupled to the
SIlVICON system. Specific examples are covered in the
applications section of this paper.

SIMCON SYSTEl\1 OPERATION

Application programs for SIMCON are written in
DSL/91 and are translated in FORTRAN IV by the
DSL language translator, a self-contained .program.
The regular OS/360 FORTRAN compiler and linkage
editor are then used to produce an interactive load
module. The load module is a completely contained

IBM
360/91

COMPUTER

f,;ULT-;-;(EXEil
I CHANNEL

L(~~~J

DATA CONTROL UNIT
(IBM 1827)

,-------,

SIMCON 401

I DIGITAL INPUT/OUTPUT 1-+--1 L _____ --l

r------l
I D/A CONVERTERS
L ______ J

Figure 3-Block diagram of SIMeON simulation system

executable program containing DSL system routines,
the SIMCON executive program, and a subroutine
representing the simulation mathematical model equa
tions.

The load module's execution is controlled from the
SIlVICON console by depressing preassigned function
keys. Each of the 104 keys presents a unique 16-bit
code to a digital input register in the 1827. The SIM
CON executive program interprets the button codes
and performs the desired action, providing feedback
to the operator at all times by means of backlighted
push buttons and NIXIE tube displays.

The software also contains terse diagnostic mes
sages which are displayed using the alphanumeric
NIXIE tubes and are accompanied by an audible
alarm. These features serve to guide the user toward
correct operation of the console.

Several manuals have been written to explain the
operation of the system to non-computer oriented
persons.1 ,2 With these manuals and occasional assist
ance from their authors, the system is used at APL
in an "open-shop" environment by engineers.

SIMCON SYSTElVI DEVELOPMENT

The development of the SIMCON system was a
joint undertaking by IBM, Harry Belock Associates,
and the Applied Physics Laboratory. The console
system was originally configured around IBM and
EAI components similar to the DES-P configuration
by D. Stemmer. HBA used the SIMCON system in
conjunction with a system 360/Model 44 computer.
APL became interested in the system when it was
first used by HBA to perform weapons system simu
lations under APL subcontract. In August, 1968, HBA
returned their leased Model! 44 computer to IBM and
transferred the console system to APL.

402 Fall Joint Computer Conference, 1970

DIGIT AL 360/91

COMPUTE GRAVITY.GRADIENT
AND SOLAR RADIATION

PRESSURE TORQUES

ANALOG HARDWARI

Figure 4-Simplified flow chart of TRIAD· hybrid simulation

The original software for the SIMCON system in
cluded a simulation language and a set of programs
which interfaced the DSL language to the SIMCON
hardware. The DSL/44 simulation language4 was
written by D. G. Wyman and W. M. Syn of IBM.
The interface programs were called Process Operator's
Console Support 1, written by R. Bloom of IBM.5
At HBA, these programs operated under 44PS, an
executive system for the 360/44, and occasionally
operated in supervisory state.

DSL/91 is an outgrowth of that simulation lan
guage, with language extensions developed at APL
and an improved interface to the console program.
A totally new set of console programs was developed
by HBA under subcontract . to APL, to replace
the original P.O.C.S. 1 programs. The integrated

system, including simulation language (DSL/91),
console executive routine (SIMCON), 1827 and
1892 Input/Output Access Routines, runs under OS/
MVT (or lVIFT) in "program state," using the OS
input/output supervisor for I/O services. The develop
ment, testing, and debugging of the redesigned system
at APL required about 18 man-months effort over a
six month period.

SIlVICON SYSTEM APPLICATIONS

Since most physical systems are described mathe
matically by means of differential equations, DSL/91
is of great utility in their representation and solution
by digital computer. Aerospace, bio-medical, and
transportation system engineers are primarily interested
in the design and optimization of control systems.
Here, DSL's transfer function blocks permit easy
representation of complex transfer function networks.
Today, however, we find increasing use of discrete
control systems often based on the application of a
digital computer as a part of the system itself. The
ability to model complicated logical procedures by
intermixing DSL and FORTRAN statements permit
thB complete digital simulation of such discrete hy
brid control systems. At APL, the SIl\1CON system
has been utilized in simulations of a fire-control radar
system, guided missile target engagements, projectile
rotational dynamics, and closed-loop satellite attitude
control systems. Of these simulation programs, the
most challenging and comprehensive have been the
satellite attitude control programs. These programs
have been designed around the hybrid interface to in
clude actual hardware in the simulation and make
maximum use of the SIl\1CON's parameter change,
run control, and concurrent data display capabilities.

Satellite attitude control system simulations

This section presents the application of the SIl\1CON
system to hybrid simulation of spacecraft with mag
netic damping systems. The hybrid simulation consists
of a digital solution of rigid body attitude dynamics,
coupled, via SIl\1CON and its D/ A and A/D inter
faces, to an analog spacecraft attitude control system.
This type of simulation was used in a study of the
NASA GSFC Radio Astonomy Explorer-B,6 APL's
OSCAR and TRIAD7 spacecraft and earlier by Gluck
and Wong (without SIMCON).8

A simplified flow chart of the APL hybrid simulation
is shown in Figure 4. The bulk of the simulation is
performed digitally, while the analog portion consists
of analog-type attitude control systems. In general,

the control system in its space environment receives
as inputs the earth's magnetic field, as a vector in body
coordinates. The control system includes elements
which exhibit magnetic hysteresis and which cannot
be satisfactorily modeled digitally. The outputs of
the control system are signals proportional to mag
netic dipole moments which, interacting with earth's
magnetic field, produce desired torques. The digital
portion of the simulation includes:

1. Computation of earth's magnetic field vector
at any point in the satellite orbit via a 48 term
Legendre expansion;

2. computation of attitude disturbance torques
deriving from aerodynamic, gravity-gradient
and solar radiation pressure; and

3. integration of the equations of· motion using
elements of the attitude transformation' matrix
as integration variables.

CENTER OF MASS

10 FOOT EXTENDIBLE BOOMS (2)

MAIN ELECTRONICS UNIT

Figure 5-TRIAD orbit configuration

(D/A INPUT SIGNAL)

SIMCON 403

LOCAL MAGNETIC FIELD

(

NORteiAL TO PLATFORM)
"EARTH

SOLENOIDS WITH

(D/A INPUT SIGNAL)

Figure 6-Hysteresis rod setup for computer

OSCAR and TRIAD simulations

OSCAR and TRIAD are gravity-gradient stabilized
magnetically damped spacecraft. Both utilize an ex
tended structure such that a large difference' in the
body moments of inertia give rise to gravity-gradient
torques tending to orient the extended axis earthward.
TRIAD includes, in addition, a high speed momentum
wheel which orients a second axis along the orbit nor
mal. The TRIAD configuration is shown in Figure
5. Both satellite systems are in relatively near earth
orbit ranging from 890 to 1100 km altitude.

Spacecraft librations (motion' of the extended axis
about the local vertical) are damped by the interaction
between long rods of a material which exhibits magnetic
hysteresis and earth's magnetic field. These rods are
installed within the solar panels. In the past, predic
tion of the attitude behavior of these satellites was
based on highly complex digital models of the hystere
sis function. The digital models were extremely expen
sive to run, often conflicted with each other and pro
vided only general attitude patterns.

In the SIMCON hybrid simulation, an actual set of
magnetic hysteresis rods, operating in their true analog
environment, are linked to a digital simulation. The
two rods are attached to an "L" shaped platform in the
same relative position as on the extended solar panels
(see Figure 6). The entire platform is positioned nor
mal to the earth's local magnetic field .. Solenoids, sur
rounding each rod, are driven by the computer (via
D I A converters) and produce a magnetic field equal
to that . which would be observed by each rod . if it
were in flight. Magnetometer sensorsadj acent to each
rod sense the rod magnetization and provide a signal
to the computer, via an AID converter, proportional
to the dipole moment of each rod. It is noted that the

404 Fall Joint Computer Conference, 1970

ANGLE IETWEIN SATELLiTe Z."XI$ AND LOCAL VERTICAL

Figure 7-TRIAD steady-state dynamics computer results

magnetometer sensors are positioned such that there
is no crosstalk between a magnetometer and an or
thogonal rod.

Operating in the SIlVICON environment, we are
able to check the alignment and calibration of the
hysteresis rod setup as an initialization phase of digital
simulation. In addition, during execution, the simu
lation can be put into a "hold" mode while simulation
study can be performed in one sitting.

Figure 7 is a representative example of the graphi
cal output generated during a TRIAD simulation. In
this case, the satellite's steady-state dynamics as a
function of two different hysteresis rod volumes were
examined. Using SIlVICON, the effective rod volume
was increased, from 2 cm3 to 8 cm3, after simulated
hours. The difference in the TRIAD steady-state
attitude angles, resulting from the rod modification
(a capability also built into the real system), is dis
played in Figure 6.

The execution cost of TRIAD and OSCAR hybrid
simulations have averaged $1.50 per simulated orbit
or $20 per simulated day. There are twelve variables
of integration with magnetic field computation and
D / A and A/D conversions performed every 10 seconds.

Radio astronomy explorer satellite simulation

The RAE hybrid simulation was similar in execu
tion to the OSCAR and TRIAD with the exception
that the analog portion consisted of a complete flight
attitude control system electronic package. The RAE
attitude' control system, as described in· Reference 9,
consisted of a set of magnetometers, electromagnets
and a signal processing package which included a
hysteresis function generator. Hysteresis rods could
not be used· because of the exceedingly weak magnetic
field at the RAE altitude (6000 km). The hysteresis

function generator along with the electromagnets
provided a damping system equivalent to an extremely
large set of hysteresis rods. The flight hardware also
included a command link for changing operating modes
of the system and the gain of the hysteresis function
generator.

This RAE simulation demonstrated the following
capabilities of hybrid simulation via SIMCON:

1. the magnetic control system hardware was
exercised in the same fashion as it would be
operated in orbit;

2. all the digital facilities of the IBM 360/91 in a
time-sharing multi-variable task environment
were fa vailable;

3. execution of program control via man-in-the
loop interaction was provided by the SIMCON
terminal; and

4. concurrent analog display of control system
performance was provided by analog peripher
als, including the eight channel incremental
recorder.

SUMMARY

SIMCON has been presented as a significant advance
ment in the simulation of physical systems. It includes
a digital simulation language for describing the dynam
ics of continuous systems and an interactive ter
minal for continuous program monitoring and hybrid
capability.

DSL/91, the digit.al simulation language adapted
to the IBM 360/91, utilizes the building block ap
proach of digital-analog simulators but retains the
power of logical and algebraic equation notation. DSL
and FORTRAN statements may be intermixed allowing
existing FORTRAN subroutines to become DSL
function blocks.

The SIMCON control console allows on-line moni
toring of problem execution, modification of data,
early termination of a run or execution· of sequential
runs. The console, in conjunction with DSL/91, can
thus test real physical system components in a closed
loop interactive environment as illustrated by the
RAE and TRIAD simulations.

REFERENCES

1 N K BROWN
DSLj91 programmer's guide
JHUjAPL Report BCE-T-0142 April 1 1970

2 R L McCUTCHEON
Simulation console operator's guide
JHUjAPL Report BCP-461 (BCE-T-0143) November 1969

3 L LEVINE
A new digital computer for solving differential equations
Simulation April 1965 (DES-1)

4 S M SYN D G WYMAN
An IBM 360 Model 44 program for the simulation of process
dynamics
(DSLj44) Contributed program No 360D 43.1.002

5 R BLOOM
Process operator's console support 1
(POCS1) Contributed Program No. 360D 16.8.001

6 BE TOSSMAN
RAE-B hybrid simulation and improved magnetic stabilization
system
APL Internal Memorandum S2P-2-238 April 7 1969

SIMeON 405

7 C E WILLIAMS B E TOSSMAN N K BROWN
Interactive hybrid computer simulations of magnetically
damped spacecraft
To be presented at AIAA Guidance Control and Flight
Mechanics Conference Santa Barbara California August
17-191970

8 A WONG R GLUCK
Inline hybrid computer for simulation of passively stabilized
satellites
Journal of Spacecraft and Rockets Vol 6 No 7 July 1969

9 B E TOSSMAN
Magnetic attitude control system for the radio astronomy
explorer-A satellite
Journal of Spacecraft and Rockets Volume 6 No 3 March
1969

COMSL-A communication system simulation language

by R. L. GRANGER and G. S. ROBINSON

Communications Satellite Corporation
Washington, D.C.

INTRODUCTION

In recent years, computer simulation has come to play
an important role in the design of communication
systems.1,2,3 Such systems frequently cannot be classi
fied as either purely continuous or as purely discrete
but are, instead, a combination of both continuous
and discrete subsystems. The simulation of such hybrid
systems cannot readily be carried out either in a dis
crete simulation language such as GPSS or in a con
tinuous simulation language such as CSMP. As a con
sequence, most simulation models of communication
systems are written in some general purpose higher
level language, e.g., FORTRAN, ALGOL or PL-l. A
notable exception to this general rule is BLODI and
BLODIB described in Reference 4. The simulation of
even moderately complicated communication systems
in a general purpose language poses several major
problems. First of all, the simulation model tends to be
time consuming to write and debug, difficult to modify
once written, an.d, unless considerable care is tak en,
requires an inordinate amount of time to execute. How
ever, the most important weakness of a communication
system simulation model written in a higher level
language is that the model usually is written by some
one with a limited knowledge of the actual system being
simulated. As a consequence, there frequently exists
the possibility that the simulation model differs in
some significant, but unnoticed, respect from the actual
system. Primarily to avoid this problem, a new simula
tion language, COMSL, is described which facilitates
the simulation of a wide variety of communication
systems.

COMSL, a Communication System Simulation Lan
guage, is designed for use by the typical communica
tion systems engineer who frequently has a modest
knowledge of some higher level language but very little
experience in the use of that language. COMSL is a
block diagram oriented language which is relatively
easy to learn and to use. Given a block diagram descrip
tion of a communication system, a valid COMSL

407

model can be written in a few hours whereas a similar
model written in a general purpose language, e.g.,
Fortran, might take a capable programmer several
weeks or even months.

A preliminary version of a translator which converts
valid COMSL statements into Fortran code has been
written. Care has been taken to ensure that the Fortran
code generated by the translator is as efficient as pos
sible. For example, few subroutine or function calls
are generated by the translator except to compute
certain initial system parameters. Since the simulation
of most voice communication systems- requires a sam
pling rate of at least 8 KHz, a significant execution
time savings is achieved by avoiding numerous repeti
tive subroutine calls. The translator is embedded in
the operating system in such a way that its presence is
unnoticed by the COMSL programmer. A few simple
control statements together with the COMSL system
description is all that is required to obtain a voice tape
"produced" by the simulated system. For video com
munication systems a digital tape is produced from
which one or more "frames" can be obtained using a
flying-spot scanner.

FUNCTIONAL CHARACTERISTICS OF COMSL

A simulation program written in COMSL consists of
the following four types of statements:

1. Block definition statements which define the
attributes of the various system blocks.

2. System definition statements which describe the
interconnection of the various blocks.

3. Signal analysis statements which permit the
computation of certain common statistics for
any arbitrary signal, e.g., first and second mo
ments, signal-to-noise ratio and power spectrum
estimates.

4. Control statements which specify options re-

408 Fall Joint Computer Conference, 1970

lating to the translation, execution, and output
phases of a program.

5. User defined blocks written as standard Fortran
subprograms.

Block definition statements

In order to simulate a given communication system,
the user examines the block diagram description of the
system and writes a single block definition statement
for each block that appears on the block diagram. The
block definition statements, which may be listed in any
order, are written in the following format:

BLKTYPE(BLKNUM, ATTRIBUTES). (1)

BLKTYPE refers to one of the block types shown in
Table 1. BLKNUM is an arbitrary, but unique, num
ber assigned to a particular block of this type. For
example, if there are six filter blocks in a particular
system, BLKNUM would take on values 1, 2, ... 6.
ATTRIBUTES refers to a list of attributes which de
fine a particular block of type BLKTYPE. The follow
ing is an example of a typical block definition statement:

FILTR(3, 1, 16, 250., 750., .5,). (2)

By comparing the attributes listed above with those
listed under block type FIL TR in Table 1, we see that
statement (2) defines a 16th order band-pass Cheby
shev filter with cutoff frequencies of 250 and 750 Hz
and a pass-band ripple of .5 db. The filter has been
assigned an arbitrary BLKNUM of 3.

System definition statements

Having described the attributes of all blocks in the
block diagram using block definition statements de
scribed above, the user next describes the interconnec
tion of the various blocks using so-called "system
definition statements." These are written in the follow
ing format:

Y = BLKTYPE'BLKNUM' (X) . (3)

Y is an arbitrary name, subject to certain restrictions
mentioned later, assigned to the output of a particular
block. X is the input to the block and BLKNUM is the
arbitrary block number given to the block in the corre
sponding block definition statement. It is important
to note the one-to-one correspondence between block
definition statements and system definition statements.
While the two statement types could have been com
bined into a single statement type, it is felt that this
separation of assignment of block attributes and the
definition of system structure yields a more natural, if

somewhat more lengthy, description of a given com
munication system.

As an example of a typical "system definition state
ment" consider the following:

X2=FILTR3 (XO). (4)

The above statement simply states that the input
to filter 3 is XO and its output is X2. The attributes of
filter 3 have, of course, been defined in a previous block
definition statement.

In order to avoid defining an unnecessarily large
number of trivial blocks to perform simple arithmetic
functions, the following basic operators are used:

Symbol Function

+ addition
subtraction

* multiplication

/ division

** exponentiation

Signal analysis statements

In the simulation of any system it is frequently
desirable to ascertain characteristics of a given signal
at an arbitrary point in the system. For example, one
may wish to know the signal-to-noise ratio at a particu
lar point in the system. Alternatively, one may wish
to know the spectrum of an arbitrary signal. This is
accomplished in COMSL through the use of so-called
"signal analysis statements" which take the following
form:

COMPUTE CTYPE(S1, S2). (5)

CTYPE is the pseudonym for the characteristic to
be computed, S1 is the signal to be analyzed and 82 is a
reference signal which mayor may not be needed. As
an example, assume that one wishes to compute the
signal-to-noise ratio at the output of a subsystem where
the input signal is XIN and the output signal is XOUT.
The following statement accomplishes this:

COMPUTE 8NR(XIN, XOUT, 1). (6)

At the termination of the simulation, the above state
ment causes the following to be printed once each
second for the duration of the simulation run.

SIGNAL-TO-NOISE RATIO= __ db FOR XIN,

XOUT at time __ _
where

SNR=10 log .. [[E (XOUT,-XIN,)'/XIN,']/ N]
(7)

BLOCK TYPE

FILTR

CXFRM

DXFRM

CMPRS

EXPND

QUANT

DELAY

ZOR

DERIV

INTG

LIMTR

SPCNV

PSCNV

FFT

FUNCTION

analog filter

user specified
continuous transfer
function

user specified
discrete transfer
function

JL-Iaw compressor

JL-Iaw expander

quantizer

arbitrary length
delay

zero-order hold

derivative

integral

limiter

serial-to-parallel
converter

parallel-to-serial
converter

fast Fourier
transform

Communication System Simulation Language 409

TABLE I - Available Function Blocks

GENERAL FORMl

FILTR (I, J, K, A, B, C, D)

CXFRM (I, J, K, A, B)
Y = CXFRM'I' (X)

DXFRM (I, J, K, A, B)
Y =DXFRM'I'(X)

CMPRS (I, A, B)
Y =CMPRS'I'(X)

EXPND (I, A, B)
Y =EXPND'I'(X)

QUANT (I, J, A)
Y = QUANT'I'(X)

DELAY (I)
Y =DELAY'I'(J)

ZOR (I, A)
Y =ZOH'I'(X)

DERIV (I)
Y =DERIV'I'(X)

INTG (I, A)
Y =INTG'I'(X)

LIMTR (I, A, B)
Y =LIMTR'I'(X)

SPCNV (I, J)

Y =SPCNV'I'(X)

PSCNV (I, J)

Y =PSCNV'I'(X)

FFT (I, J)
Y =FFT'I'(X)

BLOCK ATTRIBUTES

J = filter type
o-Butterworth
1-Chebyshev
2-Elliptical

K = the order of the filter
A = lower cut-off frequency
B = upper cut-off frequency
C = pass-band ripple (J = 1, or 2)
D = pass band/stop band ratio (J =2)

J = # of zeros of R(s)
K =# of poles of R(s)
A = array containing complex poles
B = array containing complex zeros

J = length of array A
K = length of array B

:} coefficients describing H(z)

A=JL
B = range of input to block

A=JL
B = range of input to block

J =# of bits, i.e., # of distinct quantization levels =2i-l.
A = range of input to block

J = duration of delay

A = incremental hold, i.e.,
Yi =Xi if I Xi -Xi_l I ~A
Yi=Xi_l if! Xi-Xi_l! <A

A = initial value

A = upper limit, B = lower limit
Y i =Xi if A~X~B

J = # of parallel paths out of the converter

J = # of parallel paths into the converter

J = dimension of the transform
note: X must be the output of an SPCNV block

410 Fall Joint Computer Conference, 1970

TABLE I-Available Function Blocks (Continued)

BLOCK TYPE FUNCTION GENERAL FORMl BLOCK ATTRIBUTES

IFFT

FHT

FWR

HWR

CNOISE

URAN

GRAN

CLOCK2

AND3

NAND3

INPUT

inverse fast Fourier
transform

fast Hadamard
transform

full wave rectifier

half wave rectifier

generates a specified
channel error rate

"noise" generator
with a uniform
distribution

"noise" generator
with a Gaussian
distribution

timing signal
generator

logical AND

logical NAND

inputs data

IFFT (I, J)
Y = IFFT'I' (X)

FHT (I, J)
Y=HT'I'(X)

FWR (I)
Y = FWR'I' (X)

HWR (I)
Y =HWR'I'(X)

CNOISE (I, J, A, B)

URAN (I, J)
Y=URAN'I'

GRAN (I, J, A)

Y =AND'I'(X)

Y =NAND'I'(X)

Y = INPUT (FILE 'N')

J = dimension of the transform

J = dimension of the transform

J = # of bits of quantization
A = maximum amplitude of signal
B = desired error rate

J = any odd integer

J = any odd integer
A = RMS noise level

note: generates a timing signal ITZ'I' =In where I n =0
or 1

note: Y =X if ITZ'I' = 1
Y =0 if ITZ'I' =0

note: Y =0 if ITZ'I' = 1
Y =X if ITZ'I' =0

note: N = 1, 2, 3, or 4, depending on which of four input
files is to be read

OUTPUT outputs data OUTPUT'I' (FILE 'P') =X note: P =5,6, 7, or 8, depending on which of four output
files is to be written

Note: I-The block definition statement and corresponding system definition statement are listed for each block. If one or the other
statement type is not required, its absence is denoted by --.

2-For example, CLOCK(3, 1.0) causes timing signal ITZ3 to take on values 10101010
3-The corresponding timing signal must be generated by the presence of a CLOCK definition statement.

As a further example, if one wishes to know the
power spectrum of an arbitrary signal, say Y1, then
the following statement is coded:

COMPUTE PWRSP'I'(Y1, N) (8)

where I is either 0 or 1 depending on which of two
algorithms is to be used.5 •6 At the termination of the
simulation an estimate of the relative power density
of signal Y1 is printed at N + 1 equally spaced fre
quenciesbetween 0 and the Nyquist frequency.

Communication System Simulation Language 411

TABLE II-Signal Analysis Statements

NAME
FUNCTION

PERFORMED GENERAL FORM COMMENTS

STAT computes first
moment, second
moment, and stand
ard deviation

COMPUTE STAT (X, INCR) computes and prints the first and second moments and
standard deviation of X every 'INCR' seconds

PDF computes the prob
ability density
function

COMPUTE PDF (X, XMAX,
XMIN, NPOINTS)

computes and prints the relative occurrence of X over
the interval XMAX to XMIN at intervals

(XMAX - XMIN)

NPOINTS

SNR computes the signal
to-noise ratio

COMPUTE SNR (Xl, X2,
INCR)

computes and prints the signal-to-noise ratio every
'INCR' seconds. Xl is the 'input' signal and X2 is the
'output' signal.

PWRSP computes an esti
mate of the power
spectrum

COMPUTE PWRSP'I'(X, N) computes an estimate of the power spectrum of X at N
equally spaced frequencies between DC and the Ny
quist frequency using one of two different algorithms
(I =0 or 1)

Control statements

A maximum of six control statements are needed to
execute a COMSL program. These control statements
are typically written in the following order:

INPUT ON FILE 'N'

OUTPUT ON FILE 'P'

(or, OUTPUT ON NEWFILE)

RUN TIME= __ SECONDS

(or, RUN TIME=_ FRAMES)

BLOCK DEFINITION

{Block definition statements}

SYSTEM DEFINITION

{System definition and signal analysis statements}

END SIMULATION

The nature of the control statements is, hopefully,
more or less self-explanatory. The first statement
simply specifies which of the available files are to be
used in the simulation. The OUTPUT statement
specifies which file the result of the simulation is to be

written on. The RUN TIME statement specifies the
length of the· simulation in seconds for voice· systems
or in frames for video systems. THE BLOCK DEFINI
TION, SYSTEM DEFINITION and END SIMULA
TION statements serve only to separate block defini
tion from system definition statements. Only the END
SIMULATION statement need be present if the
program contains only COMSL statements, i.e., if no
user defined subroutine or function subprograms are
present.

User defined blocks

One important feature of the language is the ca
pability for defining special purpose blocks in the form
of standard Fortran subprograms. In addition, any
legitimate sequence of Fortran statements can be in
corporated in the text of a COMSL program, subject
to the following restrictions which somewhat simplify
the translator design:

1. All TYPE, DIMENSION, COMMON and
DATA statements must precede the SYSTEM
DEFINITION statement.

2. The letter Z is not a permissible Fortran
character.

3. Fortran statement numbers greater than 800
are prohibited.

412 Fall Joint Computer Conference, 1970

PRINCIPAL FEATURES OF THE LANGUAGE

The systems which COMSL can simulate are com
binations of sampled-data and bandlimited continuous
subsystems. Incorporated in the language are func
tional blocks which create efficient sampled-data ap
prmdmations to arbitrary continuous transfer functions
using either the Z-transform, the bilinear Z-transform
or the matched Z-transform. The user of the language
need not. concern himself with the details of these ap
proximations assuming the input signal is bandlimited,
a reasonable assumption for most voice and video
communication systems. The functional block FIL TR
automatically generates a sampled-data approximation
to an analogue filter of standard form. The user need
only specify the conventional filter parameters in
Table 1. One of three sampled-data transformations is
then automatically selected depending on the filter
type, i.e., whether it is a low-pass, band-pass, high-pass,
or band-stop filter.

In addition to creating sampled-data approximations
to continuous filters, COMSL permits the user to de
fine in a straightforward way any arbitrary continuous
system transfer function. A sampled-data approxima
tion to that transfer function is automatically gen
erated using the functional block CXFRM described
below.

In a similar fashion, the user can define an arbitrary
sampled-data transfer function in a straightforward
way using the functional block DXFRM.

Specification of an analogue filter, using functional block
FILTR

The functional block FILTR creates a sampled
data approximation to an analogue filter of standard
type. It generates a set of difference equation coeffi
cients which define a Z-transfer function of the follow
ing form:

p

H(z) = .L: (A2i_l+A2iz-l)/(B2iz-2+B2i_lZ-l+1) (9)
i=l

where Z-l = exp (- sT) = the unit delay operator and
T = unit sampling interval.

In order to obtain coefficients {A} and {B} above
the following computational sequence is carried out:

Step 1: The poles and zeros of the low-pass continu
ous filter

prototype i Chebyshev . are determined.
r Butterworth}

lElliptic

Step 2: One of four standard band transformations
is applied to the low pass prototype in order
to obtain the desired continuous system
transfer function,· H (s) .

Step 3: The continuous transfer function is then
transformed using one of three sampled data
transformations, i.e., the Z-transform, the
bilinear Z-transform, or the matched Z
transform.

The complete algorithm, outlined above, used to com
pute coefficients {A} and {B} will be published later.
To some extent it parallels Reference 7.

Having determined the appropriate H (z) given by
Equation (9) the corresponding time domain difference
equations can be written in terms of coefficients {A}
and {B}:

where

(i=l, 2, ... , P).

X(nT) is the input to the filter at time nT and Y(nT)
is the output at time nT.

It may be worthwhile to note at this time that the
so-called "parallel" realization of an arbitrary sampled
data transfer function of the type given by Equation
(9) is not the computationally most efficient realiza
tion. In particular, an equivalent transfer function can
be obtained which yields an expression for Y (nT) in
terms of a single high order difference equation. This
simpler or so-called "direct" realization tends, however,
to be numerically unstable if the order of the difference
equation is greater than about 3. An excellent discussion
of the merits of apparently "equivalent" realizations
of an arbitrary H(z) can be found in Reference 8.

An important feature of COMSL is that it prints
(or plots) both the time and frequency domain response
of the sampled-data approximation to the desired
analogue filter. In theory, it is not possible to match
exactly both the time and frequency domain response
of the desired analogue filter. In practice, however, it
has been found that differences are almost invariably
insignificant. For example, if a 16th order Chebyshev
filter with a pass-band ripple of 0.5 db is desired, the
sampled data approximation will have a pass-band
ripple within ± .02 db of its desired value. In addition,
the insertion loss at the specified cut-off frequencies
will be within ± .02 db of the nominal value and the
fall-off of the "skirts" of the pass-band will closely ap
proximate the nominal value except near 0 and fNyquist.

Specification of an arbitrary continuous transfer function,
H (S), using functional block CXFRM

An arbitrary continuous system transfer function,
H (s), can be specified in CO MSL through the use of
the functional block CXFRM. The user specifies the
desired transfer function, H (s), in terms of its poles
and zeros., i.e.,

H(s) ~ [g (s-z,)]/ [f! (s-p;)], (M <N) (12)

A sampled data approximation to H (s) is then obtained
by applying one of three arbitrary sampled data
transforms. The user may specify the transformation
to be used or he may permit the system to select the
"best" of the three· transformations. It accomplishes
this by examining the frequency response of the desired
H (s) and choosing that sampled-data transform which
minimizes the RMS difference between the desired
frequency response and the response of the sampled
data approximation. As a normal output, a table (or
plot) of the time and frequency response of both the
specified H (s) and the resultant H (z) is generated.

Specification of an arbitrary sampled data transfer
function, H(z), using functional block DXFRM

An arbitrary discrete, i.e., sampled-data, transfer
function can be specified in COMSL through the use
of the functional block DXFRM. The user specifies the
desired transfer function, H (z), in one of the following
ways:

Form 1:

H (z) ~ [IT (z-z,)] / [z IT (z-p;)] (13)

Form 2:

N

H(z) = L (A2i_l+A2iZ-l)/(B2iZ-2+B2i_lZ-l+l) (14)
i=l

An equivalent set of difference equations correspond
ing to (13) or (14) above is generated by DXFRM. As
a normal output, the time and frequency response of
the specified discrete transfer function is printed (or
plotted) .

EXAMPLES ILLUSTRATING THE USE
OF THE LANGUAGE

In order to illustrate the use of the language a rela
tively simple voice PCM system is shown in Figure 1

Communication System Simulation Language 413

FILTER COMPRESSOR QUANTIZER

INPUT ON FILEl
OUTPUT ON F I LE5

r---~

RUN TIME = 20 SECONDS
BLOCK DEFINITION

FILTR (1.1.12.250 .. 3400 ... 5.)
CMPRS (1.100 ..)
QUANT (1.7.)
CNOISE (1.7 ... 0011
EXPND (1.100 ..)
FILTR (2.1.12.250 .. 3400 ... 5.)

SYSTEM DEFIN ITION
Xl = INPUT (FILE1)
X2 = FILTRl (Xl)
X3 = CMPRSl (X2)
X4 = QUANTl (X3)
X5 = CNOISEl (X4)
X6 = EXPNDl (X5)
X7 = FILTR2 (X6)
COMPUTE SNR (Xl .X7.1)
OUTPUT (FILE5) = X7

END SIMULATION

X6 X7

Figure I-Simple voice PCM system

together with its COMSL description. The corre
spondence between the block attributes shown in the
COMSL program and those specified in the block
diagram can be seen by referring to Table I. It should
be noted that the input files normally used in the
simulation of voice communication systems contain
speech data sampled at 8K Hz and quantized to 15
bits, i.e., max I XIN I =16384. In this example the
amplitude attributes of CMPRSl, QUANTI,
CNOISEl, and EXPNDI are assigned a default value
of 16384. The output of the simulation consists of a 20-
second voice sample "processed" by the simulated
system together with a tabulation of the signal-to
noise ratio computed on a second-by-second basis. In
addition, the impulse and frequency response of the two
filters in the system are printed.

A second example illustrating the use of the language
is shown in Figure 2. The system· shown is an experi
mental voice data rate compression system described
in reference 2. This example illustrates the ease with
which user defined blocks can be added to augment the
basic set of function blocks. In this example, ENCODE
and DECODE are standard Fortran subroutines. Since
the input to the encoder consists of 64 parallel paths,
the variable X3, as well as X 4 and X5, must be dimen
sioned accordingly within the Fortran subroutines
ENCODE and DECODE. The output from this
simulation consists of a 30-second voice sample "pro
cessed" by the system as well as an 129 point estimate
of the power spectrum of the "error" voltage.

IMPLEMENTATION OF THE LANGUAGE

A modular translator has been designed and a pre
liminary working version of it implemented under

414 Fall Joint Computer Conference, 1970

Xl X2 X3

INPUT ON FILE2
OUTPUT ON NEWFILE
RUN TIME = 30 SECONDS
1l.0CK DEFINITION

SPCNV (1.64)
FFT (1. 64)
IFFT (1. 64)
PSCNV (1. 64)

SYSTEM DEFINITION

X4

Xl = INPUT (FILE2)
X2 = SPCNVI (Xl)
X3 = FFTI (X2)
CALL ENCODE (X3. X4)
CALL DECODE (X4. X5)
X8 = IFFTl (X5)
X7 = PSCNVI (X6)
COMPUTE PWRSP2 (X7-Xl. 128)
OUTPUT (NEWFILE) = X7

END SIMULATION

X5

User defined subroutines ENCODE and DECODE

X8 X7

Figure 2-An experimental voice data rate compression system

OS/360 on an IBM 360/65. As of April, 1970, approxi
mately two-thirds of the system blocks shown in Table
I have been implemented, including FILTR, and pre
liminary versions of CXFRM and DXFRM.

The existing COMSL translator was written in IBM
System/360 F()rtran IV and compiled using the G
compiler. It accepts a valid COMSL program and gen
erates a corresponding Fortran program which is then
processed. in the normal fashion by the Fortran com
piler. While the translator is to some extent machine
dependent, care was taken to minimize that depen
dence. The implemented translator is approximately
60 K bytes in length. The Fortran code. generated
by the translator is roughly as efficient as that which
could be generated by a careful Fortran programmer.
As was mentioned earlier, the use of function or sub
routine calls in the code generated by the translator
has been avoided almost entirely except for certain
initial computations. This was necessary because the
relatively high sampling rate, 8kHz, for voice communi-

cation system simulation results in fairly lengthy
execution times for even moderately complicated· sys
tems. As a general rule, subprogram calls have been
avoided if the linkage time would represent more than
five percent of the total computation time for a par
ticular block.

REFERENCES

1 W K PRATT T KANE H C ANDREWS
Hadamard transform image coding
Proceedings of the IEEE Volume 57 pp 58-68 January 1969

2 G S ROBINSON R L GRANGER
Fast Fourier transform speech compression
Proceedings of the 1970 International Conference on
Communications (ICC 70) San Francisco June 8-10 1970

3 A V OPPENHEIM R W SCHAFER
T G STOCKHAM
Nonlinear filtering of multiplied and convolved signals
Proceedings of the IEEE Volume 56 Number 8 August 1968
pp 1264-1291

4 B J KARAFIN
A sampled-data system simulation language
System Analysis by Digital Computer edited by F F Kuo
and J F Kaiser John Wiley 1966 pp 286-314

5 R B BLACKMAN J W TUKEY
The measurement of power spectra
Dover Publications Inc N ew York 1958 pp 52-54

6 P D WELCH
The use of fast Fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified
periodograms
IEEE Transactions on Audio and Electroacoustics Volume
AU-15 Number 2 June 1967 pp 70-73

7 R M GOLDEN
Digital filter synthesis by sampled-data transformation
IEEE Transactions on Audio and Electroacoustics Volume
AU-16 Number 3 September 1968 pp 321-329

8 C M RADER
On digital filtering
IEEE Transactions on Audio and Electroacoustics Volume
AU-16 Number 3 September 1968 pp 303-314

CyherLogic-A new system for computer control

by G. R. TRIlVIBLE, JR.

Penta Computer Associates, Inc.
New York, New York

and

D. A. BAVLY

Penta Computer Associates, Inc.
Dallas, Texas

INTRODUCTION

The rapid advance of technology during recent years
has made possible the development and use of very
complex manufacturing processes. A prime example
of such a process is a modern oil refinery in which there
are actually many processes operating concurrently.
The control of such a process requires the monitoring
of pressures, temperatures, flow rates, and other such
variables at many points within the refinery. Based
on an analysis of the variables sampled, the process
is controlled by adjusting flow rates, opening and
closing valves, and recording the actions taken for
further analysis and evaluation of the results of such
actions.

A more restricted example of such a process is an
experiment performed in a research laboratory in which
a limited number of variables must be monitored and
only a few valves, switches, and other parameters
must be controlled. A bio-medical analysis or moni
toring system is another example of a relatively simple
process.

In all of these processes, control is based on an
analysis of the variables monitored. Actions are taken
to adjust the parameters of the system to make its
performance meet the required objectives. The loop
can be closed by having people monitor the variables
and manually adjust the parameters based on the
values of the variables, or the loop can be closed by
having a computer monitor the variables and auto
matically adjust parameters based on its analysis of
these values.

In a laboratory experiment, it is common to have a
technician monitor the experiment continuously. When
some variable exceeds a prescribed limit, he must

415

take action to adjust the system to bring the variable
back within the specified range· of permissible values.
In order to evaluate the experiment later, it is necessary
that the technician record the status of the system at
the time that he took the action and indicate what
action he took as well as the time the action was taken.

CYBERLOGIC OBJECTIVES

CyberLogic is designed to provide closed-loop con
trol and eliminate the need for a man to continuously
monitor the process being controlled. A computer is
used by CyberLogic to monitor the process, analyze
values of the variables, and determine whether some
action should be taken. The conditions existing within
the process being controlled are continuously analyzed
and action taken as a result 9f this analysis to adjust
the process variables and maintain them within the
required ranges.

The man is not excluded from the control of the
process, however, and CyberLogic includes facilities
through which he can exercise control over the process
by making modifications to the specifications defining
the system as well as being apprised of the status
of the system when particular events occur.

On-line control of a process by Cyber Logic provides
many advantages which are not possible with manual
control. One of these is repeatability. With manual
control, the performance of the system is dependent
upon the reaction time of the human being, who must
recognize the conditions having reached a point at
which some actions is required, then deciding what
action is necessary, and finally taking the action. If
the same conditions arise twice, the reaction of. the

416 Fan Joint Computer Conference, 1970

human being may be such that the second occurrence
is not exactly a duplicate of the first. With computer
control, using Cyber Logic, repeatability is obtained
with a high degree of precision, since the system will
recognize the conditions immediately and provide the
response necessary for the situation.

A secondary by-product of the use of CyberLogic
is the rapid response of the computer to changes in the
system. The manual system depends on human reaction
time, and Cyber Logic can respond much more rapidly
in most instances than the human being can respond.

The analysis of a process and evaluation of what
has happened is dependent upon an accurate record
of exactly what happened. Cyber Logic provides an
unbiased and accurate record of the system conditions
and actions taken. It does not depend upon a human
operator to write down the time at which some event
occurred and the action taken when it occurred, but
rather Cyber Logic will always record the time as well
as the conditions and the actions which are associated
with the event. As a result of having accurate records,
it is possible to do a comprehensive analysis of what
happened during the execution of a process and ob
tain a more accurate analysis as a result.

CyberLogic is based on using decision tables to
define the process to be controlled. These decision
tables define precisely every condition which can
occur in the system and specify what action is to be
performed when these specific conditions are met. The
decision table language is oriented towards the types
of functions which are performed in a simple process
control system and permit a technician who is not a
computer programmer to define the process in his
own terminology. Thus, this simple language is oriented
towards the user and he can express himself in terms
which are natural to him in defining the process.

One consequence of using decision tables is that it
forces a complete and comprehensive analysis of the
process and a definition of all of the possible conditions
which can occur. As a result, a much better under
standing of the process is derived, as well as avoiding
the possibility of overlooking conditions which normal
analysis and programming procedures would possibly
nuss.

Many process control systems are not fixed, but vary
as new instruments and modifications to the process
are introduced. It is desirable that the process be de
fined and set up in a minimum amount of time. In
addition, modifications to the process, once it has been
defined, should be easily and quickly made.

For example, the use of a computer controlling a
laboratory experiment requires that the experiment
be defined and the experiment be set up and run. Using
standard assembly language or FORTRAN language

programming, this can be a very time-consuming and
exasperating job. The decision table language used with
Cyber Logic is oriented specifically towards the types
of functions performed in a process control system
and will greatly facilitate the set-up of the experiment.

After an experiment has been running for a few days
or a few weeks, it is desirable to use the computer for
control of another different experiment. It is relatively
easy to define and check out a new experiment using
the decision table language with the Cyber Logic
system, so that conversion of the use of the computer
to the new experiment can be quickly and easily ac
complished. Thus, the conversion to a new experiment
is not a traumatic process, but one which can be per
formed with great ease and minimize the wasted time
of the computer between experiments.

Once a process or a laboratory experiment has been
defined by the decision table language within Cyber
Logic, and the system set up and the process running,
changes will frequently be made to the system. Cyber
Logic includes an on-line language which permits the
user of the system to make modifications to the system
and redefine the process for controlling the system to
a limited extent. This eliminates the need for making
up a new set of decision tables and compiling them
to generate a new control system. Once these modifi
cations have been made through use of the on-line
language and the system checked out, the user can go
back to the original source decision table language and
redefine the system completely.

In g~neral the objectives of the CyberLogic system
are to provide a flexible, easy-to-use system for con
trolling a wide variety of processes, which is easy to
set up and capable of being modified once the process
has been established and is operating. The decision
table approach has made it possible to meet these
objectives and provide a system which will find use
in a wide variety of applications.

CYBERLOGIC OVERVIEW

CyberLogic is a general purpose hardware/software
system which can be adapted to automate a wide
variety of closed loop control systems. The hardware
consists of a Redcor RC-70 computer, various peripheral
equipment including a teletype and high-speed photo
reader, and a flexible acquisition 10 system which can
be easily connected to various types of sensors, tran
ducers, A D converters, and switches. The software
consists of an executive routine which provides overall
supervisory control of the system and two language
translators. The first language, with both logical and
arithmetic capabilities, permits the user to describe the

control procedures to be performed by the system. The
second language operates on-line and permits the user
to change parameters and monitor the control pro
cedures during the course of operations.

Specification of the control procedures to be per
formed by the computer is accomplished through a
descriptive language in which control variables are.
defined, conditions to be checked are specified, and
actions to be performed when these conditions occur
are described. The language provides facilities to
define sources and destinations of input and output
quantities, associate interrupt processing routines with
hardware levels, specify sampling sequences and rates,
define time dependent events, and specify standard
subroutines to incorporate into the system. A trans
lator program converts these language statements into
a compact tabular format. These compact tables pro
vide the data base for interpretive execution of the
control procedures described by the user.

While the control procedures are being executed,
the user has a facility to temporarily shutdown the
system, make limited modifications to the control
procedures previously defined, and restart the control
procedures without performing retranslation. This
facility is provided by an on-line language which re
sides in memory with the executive. The on-line lan
guage permits the user to look at or modify the values
of control variables, to delete or change the order of
condition or action statements, or to substitute the
occurrence of one control variable for another in any
condition or action. This facility is useful in debugging
control procedures and in varying parameters of the
procedure within a very short response time.

The major features provided by the CyberLogic
System are:

1. A computer-independent control-oriented lan
guage which describes the sequence and timing
of control procedures to be applied to a physical
system.

2. The representation of such procedures by de
cision tables.

3. The translation of decision tables to a canonical
form to be interpreted by a real-time control
system which drives the physical process.

4. The ability to schedule the interpretation of a
decision table, or a sequence of decision tables,
at precise intervals of time, either once or
periodically.

5. The ability to specify continuous sampling of
variables attached to an Analog Multiplexor
and Converter asynchronous to the decision
table interpretation mechanism.

6. The ability to make available the latest values

CyberLogic 417

of both analog and digital input variables at
the beginning of the interpretation of a de
cision table, or sequence of tables, and to keep
a consistent set of values for these variables
until interpretation is completed.

7. The ability to send out a digital signal (either
of two voltage levels), or to generate a square
waveform which alternates between the two
voltage levels at periodic intervals.

8. The use of two separate time units; a fine reso
lution for updating the system clock and trans
mitting output waveforms, and a coarser reso
lution, expressed as a multiple of the fine resolu
tion, for execution of decision tables.

9. The ability to associate critical decision tables
with hardware interrupts, and the ability to
either return to the interrupted table, or to
initiate a new control path upon completion
of the critical procedure.

10. The ability to specify a decision table for a mas
ter shutdown procedure which may be initiated
by the normal scheduling mechanism, the de
tection of an inconsistent situation by the
system software, or by the initiation of the
"panic" interrupt.

11. The ability to make limited modifications of
a commonly occurring nature to the tables
by on-line commands, without recourse to com
plete retranslation.

12. The ability to specify decision tables to bring
the control system to a quiescent state prior
to the specifications of on-line language com
mands, and the ability to specify a decision
table to bring the system back to an operational
state following such specifications.

The How of the, Cyber Logic system showing the
relationship between the various hardware and soft
ware components is illustrated in Figure one.

CYBERLOGIC LANGUAGE

Cyber Logic provides a higher order language ap
proach to the problems of computer control. It enables
the control system engineer to design his control hard
ware and software simultaneously. In order to describe
the control software, he needs to define all his control
variables and specify the effects of their values upon
the rest of the system. This is done in the form of
decision tables by specifying the conditions to be
satisfied by variables either singly or in relation to
one another, and actions to be performed when various
combinations of conditions are satisfied. The statements

418 Fall Joint Computer Conference, 1970

I

- I
I

I

DATA DESCiuPTION
DECISION TABLES
SYSTEM INTERCONNECTION

On-Une System

....,Inte~ ~ste..!!1 _

1 _______ ._ ••••. __________ •• _

Figure l-Component overview

which make up this language are prepared on a form
and then are punched on paper tape. The paper tape
thus produced is fed into a translator program which
converts these language specifications to compact
lists of binary information which will be used to drive
the control process. These lists are interpreted by a
computer program which operates in an On-Line Real
Time environment and, under control of these lists,
samples variables, uses the values of the variables to
evaluate conditions, and the outcome of the conditions
to determine which actions need to be performed at
the present time, and causes the computer to perform
the necessary actions to control the system.

Some of the more significant features that are in the
language are the following:

1. The ability to define control variables as either
input, output or working variables and from then
on refer to them by a symbolic name.

2. The ability to perform arithmetic calculations
involving control variables and constants.

3. The ability to dynamically select the analog
inputs to be sampled at any time.

4. The ability to display the current value of any
variable on the teletypewriter.

5. The ability to interpret more than one table
using consistent values of a set of variables.

6. The ability to schedule another table for inter
pretation at a later time using the values of
control variables at the later time. Furthermore,
this procedure can be repeated a given number
of times with a specified frequency.

7. The ability to generate a digital representation
of a -square pulse which raises and lowers the
voltage level at specified frequencies.

8. The ability to escape to FORTRAN written
sub-routines when requirements beyond the
calculational facility of CyberLogic are required.

9. The ability to cancel pending requests for exe
cution of tables that have built up in the system.

The descriptive language required to describe control
procedures is divided into three parts. The first part
of the language describes the control variables as
sociated with the process. The second part of the lan
guage describes the conditions to be checked and the
actions to be performed when these conditions are
satisfied. These conditions and actions are represented
in the form of decision tables. The third part of the
language describes the connection of hardware inter
rupt levels to particular decision tables that have al
ready been defined in the second part.

DATA DESCRIPTORS

A "variable" is the basic processable unit of infor
mation within the system. A variable may be either
an analog input with up to 16 bits of precision, a single
bit discrete variable, or a two-word floating point
internal variable. It is referred to using a name con
sisting of up to four alphanumerical characters, and
is converted to a two-word floating point quantity
for uniformity of processing.

Data Description Statements define the variable
names and the characteristics of the variables. Thus,
once having described a variable through a Data
Description Statement, the user need no longer con
cern himself with its characteristics, but uses the
symbolic variables name to define the testing, pro
cessing, and input or output functions associated with
the variable. The format of a Data Description State
mentis

NA1V[E, LENGTH, TYPE

for an internal variable;

NA1VIE, LENGTH, TYPE, I/O UNIT, CHANNEL

for an analog input variable; or

NAl\1:E, LENGTH, TYPE, I/O UNIT, BIT #

for a digital input or output variable.

In summary, a NAME is used to refer to a variable
which is a single bit within a digital input word, a
single bit within a digital output word, a single word
on an analog multiplexor channel, or an internal vari
able. The size and physical location of the variable
are specified in the Data Description and the NAl\1E
is used to refer to the variable in the various processing
statements.

DECISION TABLES

The conditions to be checked and the actions to be
performed when conditions are satisfied are represented
by decision tables. The basic form of a decision table is
indicated in Figure 2. The upper left portion of the
table is called the Condition Stub, the lower left por
tion is called the Action Stub, the upper right is called
the Condition Entry and the lower right is called the
Action Entry. Each column in the right side of the
table is called a Rule.

The various conditions to be examined are defined
in the Condition Stub. For each condition, the entries
made in the Rules Columns for the corresponding
condition are Y, N, and -, to denote "Condition True",
"Condition Not True" or "Condition Irrelevant"
respectively. Each distinct set of condition values
(condition true or condition false) for the various con
ditions in the table results in the selection of a rule.
For each rule, an action, or set of actions, is to be
performed. An X in the box for a particular Rule/
Action combination indicates that the action is to be
performed when the conditions defining that rule
are met. A zero in the box for a particular Rule/Action
indicates that the action is not to be performed.

When a particular decision table is being interpreted,
the conditions are evaluated to determine which rule,
or rules, are true. If more than one rule is true, the
leftmost one in the table will be selected. The ordering
of the conditions in the table is irrelevant. When a rule
is found for which the various combinations of con
ditions are met, the actions which are to be performed,
as indicated by X's, are executed in sequence starting
with the top-most action having an X and proceeding
downward to the last action having an X.

TABLE NAl\1ES

Decision tables are given unique names by prefacing
the description of each table by a table name statement.
The format of this statement is

TABLE table-name, parameter

where table-name is a string of four or less characters

CyberLogic 419

Rule I Rule 2 Rule P

Condition I

Condition 2

Condition N

Action I

Action 2

Action M

Figure 2-Decision table format

used to identify a decision table. Because of require
ments of other language statements, certain combina
tions of characters must be reserved and cannot be
used as table names.

CONDITIONS

The conditions which can appear in the Condition
Stub may have one of four forms:

NAME1 R CONSTANT

NAME1 R NAl\1E3

NAME1 ± NAl\1E2 R CONSTANT

NAl\1E1 ± NAME2 R NAME3

Where NAME 1, NAME 2 and NAME 3 are the sym
bolic names of variables, CONSTANT is a constant
value and R is one of the six standard relational opera
tors (GT, GE, LT, LE, EQ, WE).

ACTIONS

Several types of elements may be used in the Action
Stub. The following descriptions of the Action Stubs

420 Fall Joint Computer Conference, 1970

indicate the various actions which can be initiated
when the conditions defining a rule are met.

1. Write Action: the WRITE Action causes a
line of output to be sent to the ASR-33. The
format of the WRITE stub is

WRITE literal-l name literal-2

2. Set Action: the format of the SET Action IS

SET name TO expression

The general form of an expression is:

Xl OPI fnl (name-I) OP2 X2 OP3 fn2 (name-2)

where Xl and X2 are either constants or the
names of variables, OPI and OP3 are one of
the operators * (multiply) or / (divide), name-1
and name-2 are the names of variables, OP2
is one of the operators + (add) or - (subtract),
and fnl and fn2 are one of the functions SIN
(sine), COS (cosine), TAN (tangent), SQT
(square root), LOG (logarithm), or EXP (ex
ponential) .

3. Count Action: The format of the COUNT
Action is

COUNT name

Each time the COUNT Action is executed, a
one is added to the variable. This action pro
vides the capability of counting the number of
occurrences of some event.

4. Go To Action: The GO TO Action provides
the capability of directing the Table Interpreter
to give control immediately to another table.
The format of the GO TO stub is

GO TO table-name

where table-name is the name of the table to
which control is given.

5. Call Action: The CALL Action provides a
means for calling subroutines which have been
included in the system. Subroutines may be
written in symbolic assembly or Fortran lan
guage, compiled independently, and then in
corporated into the control system. The form
of the CALL stub is

CALL subname (name-I, name-2, ... , name-6)

6. Execute Action: The EXECUTE Action is the
means of initiating the execution of other tables
asynchronously with the current table. The
format of the EXECUTE stub is

EXECUTE table-name TIlVIES nn
PERIOD time-l DELAYED time-2

where table-name is the name of the table to
be executed, nn is the number of times the table
is to be executed, time-1 specifies the period at
which the table is to be executed, and time-2
is the time interval to delay before the first
execution of the table.

7. Output Action: The OUTPUT Action causes
the immediate output of a digital variable.
The format of the OUTPUT stub is:

OUTPUT name

8. Pulse Action: The PULSE Action provides
the capability of periodically generating a
digital square wave. The format of the PULSE
stub is:

PULSE name TIl\1ES nn PERIOD time-l
WIDTH time-2 DELAYED time-3

where name is the name of the variable to be
read out, nn is the number of times the pulse
is to be generated, time-l specifies the period
of the pulse, time-2 specifies the pulse width,
and time...2 is the time interval to delay before
generating the first pulse.

9. Scan On Action: The SCAN ON Action pro
vides the ability to activate sampling of the
analog inputs named. The format of the SCAN
ON stub is:

SCAN ON name-I, name-2, ... , name-6

10. Scan Off Action: The SCAN OFF Action pro
vides the ability to inhibit samplings of the
analog inputs named. The format of the SCAN
OFF stub is:

SCAN OFF name-I, name-2, ... , name-6

11. Erase Action: The ERASE Action provides
the ability to cancel all pending EXECUTE
and PULSE actions. Upon recognition of the
ERASE Action, the system will erase from its
memory all requests to interpret tables that
were generated as a result of previously encoun
tered EXECUTE Actions, and all requests to
pulse digital output that were generated by
previously encountered PULSE actions. The
format of the ERASE stub is:

ERASE

SYSTEl\II INTERCONNECTION

The purpose of system interconnection is to trigger
the execution of a decision table based upon the oc
currence of a particular hardware interrupt. The

system interconnection statement associates a hard
ware interrupt level with a decision table, such that
whenever that interrupt occurs, control is assigned to
the Decision Table Interpreter, which causes the
associated decision table, or string of decision tables
joined by GO TO Actions, to be executed. The execu
tion of the corresponding table occurs immediately,
interrupting whatever processing is currently in prog
ress, with one exception. If the current processing is
due to another interrupt, it is allowed to finish, and
the table connected to the interrupt is serviced im
mediately thereafter. The format of a system inter
connection statement is:

table-name, level

where table-name is the name of the table to be executed
when an interrupt is received on a particular hardware
level.

ON-LINE LANGUAGE

While the system is running, the user may wish to
modify some parameters without going through the
entire process of translating from the source language
(decision tables and other specifications) to the tables
used to perform control of the system. The On-Line
Language provides the capability of performing such
modifications.

In order to perform these modifications without
causing instabilities in the control process introduced
by altering tables which may be executing or altering
variables which may be used by currently executing
tables, the user must bring the system to a quiescent
state before entering On-Line Language statements.
The user must preface his On-Line Language statements
with an EXECUTE command, which causes the
specified decision table to be executed immediately.
The purpose of this table is to bring the system into
the quiescent state. Similarly, the user must follow his
On-Line Language statements with another EXECUTE
command, which specifies a table whose purpose is
to restore the system to an operational state. The
format of the EXECUTE command is:

EXECUTE table-name

The following descriptions of the On-Line Language
Statements show the modifications that may be made
through the On-Line Language.

1. Set Statement: The SET Statement alters the
value of an internal variable to a constant
specified in the on-line command. The format
of the SET Statement is:

SET name TO constant

CyberLogic 421

2. Display Statement: The DISPLAY statement
causes the current value of any variable to be
typed out on the ASR-33. The format of the
DISPLAY statement is:

DISPLAY name

3. Delete Statement: The DELETE statement causes
a single condition, action, or rule to be removed
from the specified table. The format of the
DELETE Statement is:

DELETE CONDITION nn IN table-name

or

DELETE ACTION nn IN table-name

or

DELETE RULE nn IN table-name

4. Move Statement: The IVIOVE Statement causes
a rule or an action to be moved from its present
position in a decision table, and be placed di
rectly before another rule, or action, in the
same decision table. All rules (or actions) be
tween the specified ones are adjusted right or
left, as the case may be, by one position. The
format of the MOVE Statement is

lVIOVE RULE ii BEFORE jj IN table-name

or

MOVE ACTION ii BEFORE jj IN table-name

5. Swap Statement: The SWAP Statement causes
a rule or an action to be interchanged with
another rule, or action, in the same decision
table. All other rules· (or actions) besides these
two are unaffected. The format of the SWAP
Statement is:

SWAP RULE ii WITH jj IN table-name

or

SWAP ACTION ii WITH jj IN table-name

6. Change Statement: The CHANGE Statement
causes the name of a variable, used in a con
dition or action stub, to be changed to another.
The format of the CHANGE Statement is

or

CHANGE name-1 IN CONDITION
nn OF table-name TO name-2

CHANGE name-l IN ACTION
nn OF table-name TO name-2

422 Fall Joint Computer Conference, 1970

7. Replace Statement: The REPLACE State
ment causes the value of a condition or action
entry to be changed to a specified value. The
format of the REPLACE Statement is:

or

REPLACE CONDITION ii RULE jj
IN table-name BY symbol-l

REPLACE ACTION ii RULE jj IN
table-name BY symbol-2

In the case of a condition, the value is set to
symbol-I, which may be Y, N or-(dash). In
the case 'of an action, the value is set to symbol-2,
which may be X or 0 (zero).

ACKNOWLEDGMENTS

The system described in this paper was developed with
the cooperation of the IVlobil Research and Develop
ment Corporation. Weare particularly indebted to
the assistance and support provided by Drs. John P.
Heller and Steven J. Bomba of l\10bil Research and
Development Corporation.

REFERENCES

1 G W OERTER
A new implementation of decision tables for a process control
language
IEEE Trans on lnd Elec and Control lnst Vol IECI-15
No 2 December 1968 pp .57-61

2 E WEISS
Programming for better control
Control Engineering December 1968 p 84

A model for traffic simulation and a simulation language
for the general transportation prohlem*

by ROGER s. WALKER, BAXTER F. WOMACK, and C. E. LEE

The University of Texas at Austin
Austin, Texas

INTRODUCTION

Widespread interest in better traffic control techniques
has resulted in the past few years because of the rapidly
increasing numbers of vehicles in American cities. This
paper describes a modeling technique which promises to
be useful for traffic simulation and, thereby; aiding
development of more advanced on-line signal control
systems. For this method, simulation is accomplished
by stepping individual vehicles through a traffic network
system in accordance with driver responses to changing
traffic and environmental conditions.1,2 During each
time increment, a driv€r's response such as speed up,
slow down, etc., is computed from various input
conditions normally available to a driver. These inputs
might include His vehicle ahead slowing down," His
vehicle ahead stopped," etc. The vehicle's new positions,
velocities, etc., are then computed and the next vehicle
considered. Thus, the driver's responses to various input
conditions are preprogrammed for the various driver
types and intersection conditions. Vehicle arrival rates,
driver characteristics, and vehicle flow paths may be
functions of various statistical distributions. However,
by also allowing pre programmed driver actions, a
desirable mixture between statistical and heuristic
operations is obtained. Since the simulation can be used
to predict traffic conditions, on-line simulation can then
possibly be used as criteria for the selections of traffic
signal control patterns or other control techniques.

The modeling method described in this paper can be
used for implementing the step-through simulation
technique. To implement this method, Boolean Algebra
and modern system programming techniques are used.
Traffic flow through a hypothetical intersection con
trolled by four-way stop signs is used to illustrate the

* This research was supported in part by. the Joint Services
Electronics Program and Department of Civil Engineering at the
University of Texas at Austin.

423

method and to indicate the relative efficiency of a
computer program written on the CDC 6600 to
implement this method.

A simulation language, Traffic Network Simulator
(TRANS), is described. 3 TRANS provides the needed
programming flexibility to develop the general k
intersection, n lane network system. The program
described in this paper for modeling the four-way stop
intersection is not written in this language. However,
the programming concepts used in writing this program
were incorporated in developing TRANS.

The majority of traffic simulation models proposed up
to now have been developed around probability and
queueing theory. Descriptions of many of these models
are available in the literature. The model described in
this paper deviates somewhat from this standard
queueing theory approach and can be implemented for
various and multiple intersection types with minimum
memory and computer time requirements.

The first part of this paper describes the step-through
modeling technique followed by a discussion of some
results using the modeL Finally, the simulation language
TRANS which is currently being used for modeling a
general k intersection, n lane network, system, is briefly
described.

TRAFFIC NETWORK MODEL

As briefly discussed above the modeling technique
described in this paper attempts to simulate or model
the actions taken by the driver of each vehicle in a
system as the vehicles move within a street network.
This is accomplished by first prespecifying what the
driver's actions will be in response to several sets of
inputs that are available to him concerning the roadway
and traffic situation. The driver's actions are then
determined for each particular combination and for
each increment of time. Thus, by stepping each driver

424 Fall Joint Computer Conference, 1970

- -+=----+

'i :t
I
I

Figure I-Traffic network system

through the traffic network system, network traffic flow
can be realized.

To formulate this technique the following approach
was taken: first, a traffic network system was defined as
a network of various types of traffic intersections (i.e.,
four-way stops, two-way stops, signal-controlled, etc.),
each with one or more lanes per approach (see Figure 1).
Next, the set of n inputs required by the driver while
stepping through the system and the set of m driver
responses were defined as the driver input set and driver
response set, respectively. The set of decision response
functions was defined as that set of functions which
associates with each of the possible 2n evaluations of the
input set a value from the driver response set; see
Figure 2. There are 2n possible evaluations of the input
set, as each input variable of the input set has only two
possible values, i.e., yes or no. A second set of functions
denoted as the intersection functions associates a
particular set of driver inputs and driver responses to
the physical characteristics of an intersection type. A set
of intersection types completely describes a network
system.

Some typical vehicle inputs might be: present speed,
desired speed, and questions such as "Is the vehicle at
the intersection," or "Is the vehicle stopped." Some
typical driver responses are: stop vehicle, increase
speed, decrease speed, turn right, turn left, etc. Since a
particular driver response is determined by a set of
yes/no driver input combinations, the response function
may be expressed in a standard computer flow chart
form. The network system could thus be expressed by
all such intersection flow charts. Because of the way the

model variables were structured, the intersection and
system network functions form a Two-valued Boolean
Algebra. Thus, for example, each intersection type may
be expressed as a sum of products (or its dual, a product
of sums) of the driver input variables. A typical
decision response function might be:

where

A = XIX2+XaX4

Xl = no vehicle is in close proximity

X2 = not at desired speed

Xa = vehicle at intersection

X4 = first vehicle at intersection

A = accelerate vehicle

By expressing these functions in Boolean Algebra, the
standard rules regarding Boolean simplification apply.

Figure 3 depicts symbolically the traffic network
model. As may be noted in this figure, vehicles enter the
network system at a specified speed, lane approach, and
time. These dynamic vehicle characteristics are gen
erated from random deviates from prespecified distribu
tions. The appropriate response is then determined; that
is, accelerate, decelerate, etc., via the driver response
functions. Once the proper responses have been
determined, the vehicle's new position, speed, etc., are
found. This operation continues as the vehicle is stepped
through the network in accordance with the prespecified
or statistically generated flow. When the vehicle reaches
the edge of the network system, it is logged out of the
model. By observing this process for selected vehicle
speeds, directions, and time combinations, traffic flow
through the network model is realized.

In the section which follows, the four-way stop,
single intersection network will be considered.

Four-way stop single intersection network

Consider a four-way stop, single lane, single inter
section network as depicted in Figure 4. For the

VEHICLE INTERSECTION NETWORK
CHARACTERISTICS - CHARACTERISTICS - CHARACTERISTICS

DRIVER INPUTS DRIVER RESPONSE INTERSECTION TYPES

Figure 2-Table of model combinations

particular system shown, vehicles enter the system 450
feet before reaching the near side of the intersection and
exit 450 feet beyond this point. These dimensions are,
of course, completely arbitrary and may be selected to
describe a particular intersection of interest. The
intersection accommodates one lane for each of the four
directions-North, South, East, West-with stop signs
on each approach lane at the intersection.

The four-way stop intersection, as the name implies,
requires that all vehicles stop before entering the
intersection. The decision to proceed into the
intersection is then based on the particular traffic laws
of the city or state where the intersection is located. The
rules or laws selected for the four-way stop model being
described are those recommended by the National
Committee on Uniform Traffic Laws and Ordinances,
and are similar to those applicable in the state of Texas.
These rules may be stated as follows: 4

a. "When two vehicles approach or enter an
intersection from different highways at approxi
mately the same time, the driver of the vehicle
on the left shall yield the right-of-way to the
vehicle on the right."

b. "The driver of a vehicle intending to turn left
within an intersection or into an alley, private
road or driveway shall yield the right-of-way to
any vehicle approaching from the opposite
direction which is within the intersection or so
close thereto as to constitute an immediate
hazard."

c. "Except when directed to proceed by a police
officer or traffic-control signal, every driver of a
vehicle approaching a stop intersection indicated
by a stop sign shall stop at a clearly marked stop
line, but if none, before entering the crosswalk on
the near side of the intersection or, if none, then
at the point nearest the intersecting roadway
where the driver has a view of approaching
traffic on the intersecting roadway before enter
ing the intersection. After having stopped, the

VEHlai
ENTRY DRIVER{-

INPUT
SET

T
~~ DRIVER
DECISION
RESPONSE

Figure 3-Traffic network model

VEHlai
EXIT

Model for Traffic Simulation 425

NORTH BOUND

.."..

t
'900
I
1
J

1
J
1480,-~ ___ _

WEST.... I +-
BOUND -------------. bST

I --+ BOUND

~ a..~r-~--.;.---

I
I
J

~'f I
I
I

/NUMBERS INDICATE POSJnOHS IN
o EAat LANE FROM 0-900

, (IN FEET)

SOUTH 8OUtI)

Figure 4-Four-way stop intersection

driver shall yield the right-of-way to any vehicle
which has entered the intersection from another
highway or which is approaching so closely on
said highway as to constitute an immediate
hazard during the time when such driver is
moving across or within the intersection."

These rules are used in the model to govern the driver
as he steps through the intersection. By flow-charting
the driver's actions as he transverses the network
system, the decision response flow chart is generated.
In developing this chart, the vehicle input and response
sets are defined. Figure 5 depicts the decision response
flow chart for the four-way stop. Table I lists the
necessary driver inputs and driver responses used by the
driver as he transverses the network system. As noted,
only three responses are actually required by the driver,
namely, increase, decrease, or maintain speed.

To stop the vehicle, the vehicle speed is simply
decreased until its speed is zero. Similarly, when the
vehicle is stationary, movement is initiated by increasing
velocity.

Turning movements are not considered responses by
the model but part of the predetermined vehicle path.
That is, when a vehicle enters the system, the driver
destination has been prespecified as a left turn, right
turn, or straight through movement. Then, as the
vehicle is stepped through the network, if a turn is

426 Fall Joint Computer Conference, 1970

Figure 5-Four-way stop decision logic

specified for that vehicle, it is automatically initiated as
he follows the appropriate movement flow path~

Also indicated in both the vehicle input set and the
decision response flow chart are the inputs, vehicle less
than, greater than, or equal to critical distance. The

critical distance criterion is perhaps the most sensitive
of all vehicle characteristics and certainly one of the
more difficult ones to model realistically. The term
critical distance as used in the model is defined as that
distance which is required to stop or slow the vehicle
sufficiently to prevent it from colliding with an adjacent
vehicle or object. Thus, when the input, vehicle less than
critical distance, is true, the model should slow the
vehicle. The amount of slowing or decelerating is
important since insufficient deceleration will result in a
collision, and too much might result in oscillation about
the proper critical distance as the driver tends to
over-correct.

Briefly, the critical distance function was obtained by
first establishing a relation between acceptable decelera
tion rates and vehicle velocity. Once this function was
found, it was then used to express the distance required
to stop the vehicle as a function of the vehicle velocity.

Vehicle acceleration is also important although not as
critical as deceleration since the risk of a collision is very
small for reasonable rates of acceleration.

The model operation is as depicted symbolically in
Figure 3. Descriptive characteristics for a set of
vehicles is first generated by specifying for each vehicle

TABLE I-Vehicle Input and Response for Four-Way Stop

Driver Inputs

Distance less than critical distance
Distance equal to critical distance
Distance greater than critical distance
Vehicle in intersection
Vehicle exactly at intersection
First vehicle exactly at intersection
Right turning vehicle
Left turning vehicle
Straight thru vehicle
Vehicle at desired speed
Vehicle less than desired speed
Vehicle stopped
Car on right
Car on left
Car straight ahead
Car on right exactly at intersection
Car on left exactly at intersection
Car straight ahead exactly at

intersection
Car on right right turning
Car on right left turning
Car on right straight thru
Car on left right turning
Car on left left turning
Car on left straight thru
Car straight ahead right tuning
Car straight ahead left turning
Car straight ahead straight thru

Driver Responses

Increase speed
Decrease speed
Maintain present speed

an entry time, speed, lane approach, and vehicle flow
path. This set may be determined either statistically
with characteristics such as turning direction or lanes
biased according to some observed or preestablished
probabilities or distributions, or by other such means.
Then at the appropriate time each vechicle is queued
into the system model. Upon entry, the vehicle joins the
other vehicles already in the system and the proper
vehicle input set is generated. For each time increment,
each vehicle is sequentially examined, first determining
the appropriate decision response from the vehicle input
set in accordance with the decision response flow chart
of Figure 5, and then, as directed by this response, up
dating the vehicle input set.

Multiple intersections

The network system described in the preceding
section was for the four-way stop single intersection
network. The procedure used to model the multiple
intersection network of k intersection types is similar to
that just described; that is, a set of k decisoin flow
charts and the respective vehicle input and response sets
are developed. Vehicle entry information, however,
must include, in addition to the entry information
previously described, the entry intersection and an
expanded data flow path which specifies the intersection
combination sequence;. Then for the model operations,
the vehicle is simply stepped from one intersection to
the next as prescribed by the data flow path until it
leaves the network system. Hence, the multiple inter
section model is simply composed of multiple single
intersection models or subsystems.

SIl\1ULATION RESULTS

This section describes the use of the program for
traffic flow simulation through a four-way stop inter
section in which 100 randomly generated vehicles are
entered into the system over a 23 minute time period.
Of course, any desired vehicle input combination can be
specified for traffic simulation studies. As may be noted
in the summary information discussed later, the
direction selection was biased so that more vehicles were
selected for the northbound approach than lor the other
directions. This is realistic as in many cases one
approach often accommodates more vehicles than the
others. The 100 vehicles were entered into the system
over a 23 minute time period. The first vehicle with an
Ident of 1 entered the system at a time of 12.3
seconds on a westbound approach at a velocity of 6 miles
per hour. Similarly, the last vehicle with an Ident of 100
entered the system at 1302.4 seconds on a northbound

Model for Traffic Simulation 427

approach at 27 miles per hour. Table II provides some
selected results of the simulation run. As noted, the first
vehicle left the system at 54 seconds and was under 10
miles per hour for 13 seconds. Similarly, the last vehicle
left the system at 1336 seconds. The model terminated
at 1403 seconds, approximately 100 seconds after the
last vehicle entered the system (as specified in the data
cards). The last vehicle traveled under 10 miles per hour
for only 9 seconds, because of its faster entry velocity.
It exited on the westbound lane after turning left off the
northbound approach at the intersection. The grand
total printout provides a summary of the number of
vehicles counted into the system, the average stop time
delay, the average delay below 10 miles per hour, and
average time the vehicles were in the system. This
information, as may be noted, is given by lane approach
and turning movements. The actual time the system
was used, 1276 seconds, is also provided for intersection
study purposes. The minimum stop time delay is for a
one second period. This is program selectable, however,
in accordance with the desired driver response time.

The real-time-to-computer-time ratio for this par
ticular problem was approximately 60 to 1. By the
nature of the program technique, computer time
requirements are primarily dependent on the cycle time
selected (0.5 second for this example) and the number
of vehicles in the system at a given. time. It is relatively
insensitive to the number of intersections or to the
intersection type. Program memory requirements are
less than 8K.

TRANS, A TRAFFIC NETWORK SIMULATION
LANGUAGE

This section will briefly describe the simulation
language currently being used for modeling the k
intersection, n lane network system. It should be noted
that the use of this language is not limited to the traffic
network problem but could be used in a variety of other
simulation and control situations where particular
actions are dependent on sets of logical decisions. Other
such examples might include its use for modeling traffic
parking problems, airport runway congestions, ware
house or goods distribution, waiting line problems, or
missile range control countdown simulation for range
scheduling purposes. TRANS is compiled under
FORTRAN and permits the use of FORTRAN
statements and subroutines.

Program variables and parameters used in TRANS
are categorized according to the following classification:

Input Variables (driver input set)
Response Variables (driver response set)
Characteristic Parameters

428 Fall Joint Computer Conference, 1970

The input variables are the logical two-valued variables
used by the Boolean decision response functions for
generating the response variables. The response
variables are the two-valued variables that specify a
particular driver response. The vehicle characteristic
parameters describe the vehicle characteristic informa
tion needed for computing new position, speed,
direction, etc.

maintaining vehicle characteristics; that is, it contains
the input variables and characteristic parameters for
each vehicle. Since much of this information requires
only a few bits (e.g., only two bits are needed for each
logical input variable-yes, no, and don't care), this
information is packed into each stack word. Then during
simulation, the vehicle characteristics are extracted
from the stack for each vehicle at the appropriate time.

The basic program structure of TRANS consists of
five major subparts: the stack, the real-time cycle
processor, the response function processor, the extract/
repack processor, and the general utility processor.

The stack is a storage array used by TRANS for

The real-time processor subpart acts as the executive
of the simulation process transferring control to the
appropriate system and model subroutines. For example,
this routine calls on the response function processor, the
extract/repack processor, and the traffic model sub-

VEHI~U~ LEFT SYSTFM TDENT: 1 lSI- 13 TURN TVPf= 0 nJRErTJOIII= 13 TIMf= ~4.0{lOOO
TIMF: IN SYSTF.~=· 42.00000 STOP TIME DELAY. 1.00000 TTME. DELAY FOH Vf.:IlICLES tJND~R H). OOOOO~'PH= 13.00000

VEI-11C',E LEFl SYSTFM TDENT= 2 ISh 14 TUR,.J TYPE= 1 OIHEf:TION= 0 TIMF= 117.00000
TIME till SYSTE~: j4.0uOOO STOP TIME DELAY. 2.00(;00 TTME DElAY FOR VfHICLFS UNDI:R lO.OOOOOMPH= 9.00000

VEHICLE LEFT SYSTEM IOENT= 3 IC:;I. 15 TURN TYPF= 1 DlREnlolII= 3 TIME= 136.':;0000
TIME IN SYSTF.:"'= 31.000i)O STOP TIME DELAY. 1.00(100 TTME DELAY FOH VF.:HICLFS UIIIDFR 10.OOOOOfolPH= 8.00000

VEHlf:'.E LEFT SYSTF>-l T/IENT: 4 ISI= 13 TURN TYPF.:= 0 r)IRErTIo"l= 0 TIr.1F.= 162.c;OOOO
TIMF,: II'! SYSlF."'= :34.001)(10 STOP TJME DELAY= 2.00000 TTIWIF DELAY FnH VEHICLFS UNOFR 10.OOOOOMPH= 9.00000

VEHYCl.f LEFT SYS TFM rOI::.NT= c; lC;h 16 TURN TYPE= 0 nJHErTlo",. 2 TIME=. 179.000(1)
TJMF IN SYS1E"'= 36.00000 STOP Tl~r: OELAY: 1.00(100 TH"f DELAY FOk \/E'HIClFC; \lNOFQ 10.00000I"lPI"I= R.OOOOO

VEHIrtE LEFT SY5Tf:-.o HlFNT= ~ lSI: H TlIH'" lYPF= 3 OJRECTI'l"'· 1 TIME"= lQI,.IO,OOOO
TIME IN SYSTF~= ..i4.00000 STOP TIME OElAY. 2.00noo TT"'J: OE.L I\Y F O~ VFHICLFC; UNDFR lO.OOOOOMPI1= 9.00000

VEHlr, t:: tEFT SV!"TF>' TOF~T= 1 lCOI= 11 Tlhof'" TY..,F= 1 nIRf.rTt'1~1= 0 TIHF.= 210.00000
TJMf TN SYSTE"': J4.00QOt) STOP rI--E O€lt\Y. l.OO(ltlu TT~f DfLAY Fc)f. \/F"'YCLFC; U~.iOF~ 10.00000l"PI"I= ",1.00000

VF.HTC, ~ LFFT SV~TF," TI)FNT: "IC;h 1~ TI'k"'4 TVPF= 0 "" ... FrTlolIJ: (1 TIfI'IF= l?Il.l;oOOO
TI~F T~ SYSTE~= j4.0no~o STOP TIME n~LAY. ?onnno TT~f nEL~Y FOk VFHICLFC; ,llIJnFR 10.00000~PM= 9.00000

VE'HIr.l.f LFFT <;V!o;Tr~ TIlf-",r= q tcol. 13 TlJ~'Ij TV/Jr= 0 1t~F:r'In""c J TJI-4F= ??1.C:;OOO!l
TI~F Hi SYSTE"'= ..i •• ollono STt}F 1J"~ !lfLAY. }.on,II)1J TTMfo f1Fl!\'Y Fnk VFHTCLr." Ur\ll')FR li).OOOOO~·PI1= 9.(10000

VF.:HIe.~· LFFT SVSH·'~ Tt.JFNT. 10 JC;I. l~ Tlllofl\l "''''~a 0 ""~Ft"'lItI~,. 2 n""F: I'~H.C,OOO(l
Tp.4F Tr, !;YSlf.f'I= J,.OOOOO STOP II"F n~LAY. '.lIonrJ" TT"'~ IIfll\'Y ~n~ VFl1tCLFC; l'I\IOj;'~ 10.00000"P = 9.00000

VFHlr:1 F LFfT S'YSTF" ,oF,...r. 11 1,,1.]<; Til ' f'YI'Fs ~ 1)1kft"'lIn,.;. l TltolF': ('''4./'10001)
TJ~~ rN SYSTf"'s j~.OOf)f'tl STOP TI"'F nFLaYa 1.IIOM)" fT"''; IlHII'Y Fnl< \'FIoITCLFC "~mFR 10.00000~·p~i= ~.OOOOl)

vnnr, F. LEFT SYSH~' t,'FNTs It' I~l. t" ,,, f'Y~F= 0 nT"'H'l Tn ••• ? TJMF= ?12.c;tlOOIl
TI~~ r"- SYSTF"'= JC,.OU,l"f'I ~TO~ It\lF OFlA'fs ~."/\""" TT"'~ Ilfl IIY Fflk \iF""CI.~·~ I''''OFP JO.OO/\OOHPM= q.(lOOOO

VE ... y("" f LFfo1 SY~fF·~ yOFNTa 1-- 14;1. 17 T,''''~' IVt;F: ~ il{Hrr-llq",c 3 n,..F: 7/013.1'0000
TIM/:, ,r., SY5TF~= j-.Ul»)OU STIW 11"'F Of:L_VlI 1.1I0tl"" TT ~. i)lL"V ff'l" VF~IClF~ I/!\jf)FR]o.noI'lOo"'Prl= 8.00000

\IF.HII':I.F LFfo' SYC;H'·, !IlF~l. 1" J~t. '''' fl'~·' I'(Pf~ 1 nTFF-r-ll,"'. , TJIooIF= 7Q~.c;.(loon
Ttt.1F T~,' SYC;'FIlI. JI:I.OI •.)rn STn~ 'I'·IF 11~lA'Y. l •• ln''''I' TT"'~ nFI "Y .. nt'l IW'iTr.LF-" 'II'>II'FQ lO.O(,OCOj,P,",= 11.00000

VENICl", LFFT t;Y~'F'" TflF"fT. Ie, tC;l. L~ TII~"'IV~'J"= 1 nT ... F'·lT'I~j= I, TT"'F= 31~.C;OOO!l
TI""F It-, C;YSfE"' •. O.(lIj(l!ln C\TOP 11-...· n.LAV. I.",lil!)" TT~" II", flY Fnl< \lF~TClFC; "II.'OFQ lO.OOOOO~'PI-l= 8.00000

TABLE II-Results of Computer Run, 100 Vehicles

Model for Traffic Simulation 429

VFtlln F Lr:I-T ~VC:lJ.' '''''.NY. q, I~'. 14 T'"~''' TVPF'= n n''''frTTn'''l:] rIMF=l"~Q.OOOO{l
TIMf T'I.! SYC:'E"'z ~".n{Jrlfln ~'OJ: 'I"'F nFL_V. 1.unlll)n T''''r OHIIV fOk VF"'ICL~C\ "M)FP 1r..IJOnOOP-lp H.OOOO/)

VfHtr,1- tFFl CO:VC;H" flWIII'. 114 I~t. 11 TIJ~'I TVPF: 0 I)JRFrTI(U'= l fIMF=121'i.OOono
TH'~ " .. ~yqF"' ... H.OoI}I)O ~l()P 1,,,, .. n~LAV. JI,.OOtlOv TT"f. Ilf::"LAV "nil VF"HTCL~C: UNOFR lO.OoOOOt-lPH= 13.00000

VF.Hlr, F LEFT 5YS'F-" fll"Nla .,~ I~I. l~ TIIH"" rVI-'F= 0 nI~FrTIIlt.J1: ? TT~F=l?7Q.c.OOI)()

TIr"''' T'" SYSTr:"'. .13.01111(10 S1(l~ 'I"F Of LAVa 1.(101)1)0 TTMF IlfL IIV Ftlk VF't'lTCl r'C\ ",,!I')F~ 1 o.onolloMpH= 9.011001}

VEHlr., to Ln, SV5H",', TIJf..H'. q-, Ish . ., Tllw", fVPF= 0 nh .. fr:TJot.J: (I T1"""-=12Ql.C;I)OOO
TIM': tf'! SY~H-'. .~ ., • r, ,1 II n " STOF q ... f nELU. ~.nOI)(lO T 'M~ fin AY fn~ VFHICL~~ IINOFR In.()OOOo~P~= 9.00000

VFHTr, f LFf , C;VC;" ~ 'I If. T. "11 Iillih 1M T\J~'" TVIJF:= 1 DIRErT 11)"'1: (I TIMF.'l96.C:;OOOO
T IM~ , ~. SYSff. 11 .ll (Ill"" ~lnF 1 I aoIf. n~l.Y. 1.00no(l T''''I: UEl/IY F'nf. VFtiICL~~ t'Nf)FR lo.onooo"'PH= A.OOOOi)

VEHIC' f LFfT ~YC H"~ "'f:~l. 9~ 14ih 1~ T"W", TVI-'F. .~ f)Tj:.>FrTlo"J= 3 fl",F=1313.nooon
Tl"F ,,, SY51..-",. "". ClOIl"tl s,r~ 11 ,..f nf!lt.V. 1.000 11 0 TTloif DELAY fn~ VF'HJCLF'C\ UNf)F'~)O.OOOOO P~= 11.00000

vf.t1tru· lHl ..:v~tr·· T, If lilT. yq I4ih 11 T'.'~'" TV~F'. 1 f) I REt" T 1 0"'. 3 TIMF=13?4.floonn
n""F- , ~. C;YSlf."'= .:14.0.)111)., STOS= ""'f nfL.'u l.OOI'OO TU4E OfLH FO~ "FH[ClF'~ 'II'-JI)~Q) o.onO(lOf~PH= 9.000'00

"EHIrl f L£f' '3VC;lF ., 'PFIII'.)(lO 14;1= 14 TIIW"" TVPE: 3 nIHF.,rTTOf.'· 3 Tl""F'=lB6.Cioonn
TlMr , ... , SY!oi'F 1,. • I} I) fllltl STOF 1 JOo4F nF.LAY. '."nooo

Gt-.:Arlf' rnTlIl ~l'~"'f, y",VO..,M·.TT('I' F'O~ Tl"'f =1403.0(\000
C;YSTF:'" "~E 'l~F-.=12'''.\)OflOn

f\lOF<THI~nIJM~ ,WIORCllrH
STop TJMF: rE:L~Y ••• io'T T"~~. 1.4 lH'-r TUPN.

TIt~f i"~LAY FOk 10.1) Mo'.., ••••• toIT TWo/"'. q.A
TOTtll. VFHIClE~ CO""'TEO ••••• '~T TU~"'. "LF.FT 1'-'~'~.

EAST ~(I,,"'n IlPPI-I(,Ar.H
SToP TJME r:EI."'Y ••• Io1T TU~~i= 1.0 LEF r T"~"'.

TIME ~FlAY fOR 10.0 M~H ••••• RT TUWN. 11.0
TOTAl vfHTCI..ES CO"~TEO= •••• uT TURN. 1 LEFT TIJ~~=

SOllTHt}nllNr, oPP~C~C::ri

~ToP TtME r.F.LA't ••• ~T TOIo("'= 1.4 LEFT TURl'lla
TIME "fLAY FOR 10.0 ~PH= •••• ~T TURNa ~.6
rOTllI IfFHICLE5 COU·'l/TEO ••••• ~:T TI.i~~= 5 LEFT TlIQN=

~EST~r'll.l~n APPI10~CH

sToP ',MF r.F.lA't ••• ;:;1 rUqN= 1.5 LEF T TURNa
TIME 0fLAY FO~ lO.n ~OH ••••• ~T TUR~= Y.1
TOTAL VFHICLF.S COU1\jTEO= •••• '~T TU~"I= 11 LFFT TUkN=

TTMF nElI'Y FO~ VF:"'ICLF~ I. I NOFR lO.OOnOoMPH:

J.5 ST THRU:
I EFT TUQJIj=
,I; C;T THRUs

8.n ST Tt'lRlJa
I EFT TURN=

ST TH~Us

1.3 ST THPUa
I EFT TUPJIj=

3 ST THRU=

3.0 ~T THRU:
I fFT TUPJIj=

5 ST THRI'=

1.P
~.7 ST T~RU= 9.~

20 AVF~AGE TIMF IN ~YSTFM=

1.e;
11.0 ~T THRU= R.I;
2 AVfRAGE TIMF IN ~YSTEM=

2.1
8.3 ST THRU= 9.1

1~ AVF.RAGE TIM~ IN ~YS1EM=

r .1
12.0 ST THRU= 9.Q

14 AVERAGE TtMF IN ~YSTFM=

9.00000

3'5.4

36.7

TABLE II-Results of Computer Run, 100 Vehicles

routines after each stack entry during each real-time
cycle.

The response function processor is used to compute
.the proper driver responses from the Boolean decision
response functions and the input variables; thus, the
processor examines all input combinations associated
with a particular response, and if the proper combina
tions of inputs are true, the associated response is
indicated. Since each decision response function is a

Boolean function, the following technique is employed
to process this response:

Each driver response is first expressed in a sum
product form. The Boolean sum product functions are
generated by TRANS from the decision response
control statements used in describing each intersection.
A set of computer words are then used to contain each
product term where the bit positions of each variable
are identical with those of the input variable words in

430 Fall Joint Computer Conference, 1970

Figure 6-TRANS program flow

the stack. The set of all such word product terms then
describes the response function and all such sets
describe the intersection type. Each single product term
or computer word group is ANDed with the input set.
H the resulting ANDed word group is identical to the
product term, the response is set true. Accordingly, if
all terms are not true, the response is set false. This
operation continues until all response functions have
been examined.

The extract/repack processor is the processing routine
used to extract each variable and parameter word from
the stack as required by the traffic simulation sub
routines. Once these variables and parameter words
have been operated on and updated, the repack portion
of this processor is called on to repack these words into
the appropriate stack entries.

The general utility processor is the routine called on
during simulation for processing the STACK entry
assignment, stack entry releases, and variable request/
replace control statements.

TRANS program flow is as indicated in Figure 6; as
noted from this figure, the time is initially zero, and the
real-time cycle set to one. Then for each time cycle all
stack entries sets corresponding to vehicles are processed
as follows:

The response function processor first computes the
appropriate responses. The vehicle characteristic param
eters and variables are then extracted for the simulation
or model subroutines. Once these routines are completed,
the characteristic variables are repacked into the stack
entry and the next vehicle examined. This process
continues until all stack entries have been examined at
which time the real-time cycle is incremented and the
process repeated.

Model subroutines have the options to be processed
only once during model initializations (zero cycle tasks),
once at the beginning of each real-time cycle (one cycle

task), or for each stack entry during each real-time
cycle (n cycle tasks).

Some of the more pertinent control statements in
addition to those permitted by CDC 6600 FORTRAN
are listed below.

Network Configuration Statements

INTER-defines intersection configuration
ILNK-defines network linkage

Vehicle Characteristic Statements

INPUT-declares input variables
RES-declares response variables
PAR-declares characteristic parameters
FUN --defines decision response functions
FUN INTER-relates response functions to

intersection type

Model Subroutine Statements

SUB-model task subroutine declaration
ENDSUB-model task subroutine terminator
REQS-request stack entry assignment
RELQS-release stack entry assignment
REQUEST-request stack entry variable
REPLACE-replace stack entry variable
VEH-vehicle input declaration

~ I I Intenection A

o Direction

+indicators

3 1

2

Intersection B

'~
L

Intersection
configuration
control
statementll

Network
linkage
control
statements

I I I Intersection C

I
INTER, A, T1, 0, 2, 1, 3, 2, 2, 3, 3

_ LL L L Additional - direction/lane pairs
NUlllber of lanes

Direction indicator
Intersection type (four-way stop, etc")

Intersection identification

INTER, B, T2, 0, 2, 1, 2, 2, 2, 3, 0

INTER, C, Tl, 0, 2, 1, 2, 2, 2, 3, 2

I
ILNK, A, 2, B, 0

L L Connection intenection direction l L Connecting intersection" identification
Direction identification

Intersection identification

ILNK, B, 0, A, 2, 1, C, 3

ILNlt, C, 3, II, 1

Figure 7(a)-Network configuration control statments

Declares
input
variables

Declares
response
variables

Defines
decision
response
functions

Decision-Response Flow

I
INPUT, INPUT-I, 0, INPUT- 2 , 2, INPUT-3, 4

L L Additional declarations
Bit location in stack

Variable name

I
RESPONSE, ACTION-A, 6, ACTION-B, 8, ACTION-C, 10

L LAdditiOnal declarations
Bit location in stack

Response name

I

FUN. INPUT-I, INPUT-2, INPUT-3, INPUT-2, ACTION-A, ACTIElN-B

U L Additional declarations

No response
Yes response

Input variable

FUN. INPUT-3, ACTION-B, AClION-C

Figure 7 (b)-Vehicle characteristic control statements

PATH-vehicle path declaration
SIMULATE-generate random deviates for

specified vehicle characteristics

The Network Configuration Statements are used by
the model to describe a particular network configura
tion. Two such examples are depicted in Figure 7 a.

The Vehicle Characteristic Statements are used to
identify the various variables, parameters, and func
tions. Figure 7b depicts a typical example of their use.
Finally, the Model Subroutine Statements are used by
the model during the simulation process in the model
subroutines.

Model for Traffic Simulation 431

SUMMARY

A modeling method for traffic simulation studies has
been developed using a step-through or heuristic
procedure. A computer program was written for
implementing this technique using a hypothetical
intersection controlled by four-way stop signs. This
technique is currently being ~xpanded to include the
general k intersection, n lane traffic network using
TRANS, a problem oriented simulation language. The
model developed offers the following features:

L It is readily adaptable to the traffic network
problem.

2. The program used for implementing this model
requires minimum memory and computer time
requirements.

3. The modular design of the model permits ease in
expansion to include the many and varied
intersection types.

4. The program can be implemented on a small
process control computer such as the IBM 1800
to aid control logic for real time traffic control.

REFERENCES

1 R S WALKER B F WOMACK C E LEE
Traffic network simulation and control with driver response
criteria
Proceedings of the Houston Conference on Circuits Systems
and Computers 13 pp April 1970

2 R S WALKER B F WOMACK
A model for traffic simulation and control
Technical Memorandum No 15 Information Systems
Research Laboratory The University of Texas at Austin 102
pp January 1970

3 R S WALKER
TRANS, a simulation language for transportation models.
Paper in progress

4 Uniform vehicle code and model traffic ordinance (revised-1968)
National Committee on Uniform Traffic Laws and
Ordinances 525 School Street SW Washington DC pp
146-147

Realization of a skillful bridge bidding program*

by ANTHONY I. WASSER1VIAN**

University of Wisconsin***
Madison, Wisconsin

INTRODUCTION

The problem of bidding at contract bridge is an "in
tellectual" task which has never before been performed
skillfully by a computer program. Only Carley! has
made the attempt to handle this problem and his pro
gram used a very crude treatment; as a result, inferior
contracts were produced because bidding requires many
fine lines of distinction which his approach could not
make.

Slightly more work has been done on other problems
related to bridge. Berlekamp2 has done work on the
double-dummy problem for play of the hand, but
double-dummy is a perfect information situation and
bears little resemblance, beyond the rules for legal
play of the cards, to the actu~l game of bridge. Fur
thermore, his program was limited to no trump con
tracts and to contracts in which the declarer was to
take almost all of the tricks so that the number of cases
(and hence the size of the search tree) remained fairly
small.

More recently, Riley and Throop3 are developing
an interactive bridge playing program. Their program
does only play of the hand, given the final contract.
It is considerably more sophisticated than Carley's
program in that it attempts to determine an overall
strategy for the play of the hand rather than the
isolated, one-trick-at-a-time method used by Carley.
Because it ignores the bidding, however, the Riley
Throop program is unable to determine the likely
location of cards held by the opposition which might

* Work reported herein was supported in part by Wisconsin
Alumni Research Foundation and by National Science Founda
tion under grants GP-7069 and GJ-583. This paper is based on
a thesis submitted in partial fulfillment for the degree of Doctor
of Philosophy at the University of Wisconsin.
** Currently with Shell Development Company, Emeryville,
California.
*** Computer Sciences Department

433

have been inferred from competitive bidding, thus
causing the program to lose tricks which would not be
lost with proper application of such information. Some
of the more advanced play situations appear to be be
yond the scope of their present program as well. How
ever, it seems that the program can still be improved,
especially by extending it to react to bidding infor
mation.

In addition to the fact that bridge bidding is intel
lectually interesting and has never before been com
petently accomplished by a computer program, there
are numerous other reasons for studying the task.
First, bridge bidding requires a certain degree of
generality, with a vast number of bidding systems
and conventions in current use. In addition, the goal
of bridge bidding is not as well defined as the goals of
many other tasks. Thus, there can exist numerous
techniques to reach any given contract and there is
not always a final contract which is clearly superior
to all others.

Second, bridge bidding is a task of imperfect in
formation, since each player is aware of the exact loca
tion of only thirteen of the fifty-two cards in the deck.
Lack of perfect information is characteristic of a large
number of problem-solving environments, from cor
porate decision-making to play-calling in a football
huddle.

Third, bridge bidding is a partnership task. Each
player must react to both partner and the opposition,
distinguishing between friendly and hostile informa
tion, a process which requires a considerable amount
of judgment in a human. The partnership aspect of
bidding resembles the process of negotiation or arbi
tration or even an auction. *

Fourth, bridge bidding allows the investigation of

* Contract bridge is a modification of a game called auction
bridge.

434 Fall Joint Computer Conference, 1970

programming techniques which can be valuable in
many application areas. A task language for bridge
bidding was designed using the DEFINE capability
of Burroughs B5500 ALGOL so that a person familiar
with the game is able to read and understand programs
written in that language, despite possible inability to
write the program. In addition, one decision-making
model, chosen for its speed and efficiency, was employed
almost exclusively, with the intent of discovering the
extent to which it can be used.4

Fifth, bridge bidding is a significant intellectual
problem. The proliferation of books on the subject of
bridge bidding and the popularization of the Goren
point-count bidding system5 have mistakenly led
many persons to believe that the task of bridge bidding
is rendered trivial by simple adherence to the rules
advanced by one of these books and that skill in this
field is proportional to the ability to memorize and
apply the many different rules. Indeed, skillful bridge
bidding possesses many opportunities for the exercise
of "judgment" and "imagination", since no bridge
bidding "system" specifies action to be taken in all
cases and most systems do not adequately treat com
petitive bidding.

For all these reasons, then, bridge bidding is an ex
cellent subject for research and investigation.

PARTNERSHIP BIDDING

The initial goal of the research was to design a pro
gram which would bid very skillfully in the situation
in which only the two members of one partnership
make bids (non-competitive or "partnership" bidding),
with the opponents passing at each turn to bid. A
partnership must be skillful in non-competitive situa
tions as a prerequisite toward skill in competitive
situations, since competitive bidding is designed, in
part, to make it difficult for the opposition to explore
their combined holding thoroughly enough to reach
an optimal contract. Accordingly, the program was
designed so that it could be extended to competitive
bidding and eventually to other related tasks.

The program was further initially limited to the
Schenken system of bidding,6 ,7 chosen primarily be
cause of personal preference and familiarity. This
restriction was also made with the eventual extensions
in mind. The final initial restriction was to base the
scoring system on match-point scoring in duplicate
bridge. This last constraint is considerably less sig
nificant than the others, since it in no way prevents
the program from performing any task; it does, how
ever, have a slight effect upon the program's per
formance when another method of scoring is used.

The structure of the program is based on the idea
of classes of bidding sequences, each class encompassing
a large number of possible sequences. A bidding se
quence (for partnership bidding) may be defined as
the ordered set of bids by two partners from the opening
bid to the first pass made by a member of the partner
ship. There are more than 1010 of these distinct bidding
sequences possible, making the problem one of clas
sifying sequences and handling different classes in
appropriately different ways.

The various classes of sequences can be defined on
the basis of different types of opening bids. Each type
of opening bid is designed to give a certain' charac
terization of the opening bidder's hand and, generally,
to distinguish it in structure and strength. For example,
the opening bid of one heart is of the same type as an
opening bid of one spade, but of a different type than
opening bids of one no trump or two hearts.

The major classes may now be defined as the set of
all sequences beginning with a certain type of opening
bid. Thus, a program structure evolves. There is a
procedure OPENBID, * a procedure RESPOND, and
eight "sequence procedures" ONECLUBSEQ, ONE
BIDSEQ, ONENOSEQ, WEAKTWOSEQ, TWO
DYMESEQ, TWONOSEQ, PREEMPTSEQ, and
THREECLUBSEQ, defining the major classes for
the Schenken system. All of these sequence procedures
are similar, each representing individual bidding se
quences beginning with a given type of opening bid.
In addition, there are three special sequence pro
cedures, BLACKWOOD, GERBER, and STAYMAN,
corresponding to special bridge bidding conventions,
which may be called from any of the sequence pro
cedures. With this basic set of procedures, the problem
of non-competitive bidding can be adequately handled.

The decisions to create sequence procedures based
on the opening bid and to isolate the initial response
into a separate procedure are based on the fact that
the two most important bids in a bidding sequence
are the first two, particularly the opening bid. If the
opening bidder makes an incorrect bid, an incorrect
interpretation will be made of his hand. And the error
will be magnified if the opening bid is of a different
type than the proper opening bid, rather than just a
different bid of the same type. Future bids can clarify
this initial error, but can rarely make the contents
of the hand as clear as it would be with the proper
initial bid. The program structure reflects this state
ment in 'that an opening bid of the wrong type will
cause the program to enter the wrong sequence pro
cedure.

* Capitalized words refer to program designators;

The flow of control for partnership bidding is from
OPENBID to RESPOND to the appropriate sequence
procedure. Control remains within one of the sequence
procedures throughout the remainder of the bidding
unless one of the three special convention sequences
is entered, in which case control remains there for the
rest of the bidding. * Error recovery, if necessary, is
handled automatically within the sequence procedure
in control.

Partnership bridge bidding may be envisioned as
a giant tree structure in which each path in the struc
ture represents a possible bidding sequence and in
which each vertex represents a possible bid. Consider
the root of the tree to be the point immediately prior
to the opening bidder's bid. Then there are thirty-five
branches at the first level (one for each legal opening
bid), and each succeeding level has fewer branches
from each vertex, corresponding to the number of
remaining legal bids at that point. The longest path
is of length thirty-six (beginning with one club, then
each possible bid in succession, then a pass); the short
est is of length two (any legal bid followed by a pass),
ignoring the case in which both partners pass.

Since this tree has more than 1010 paths, a number
of simplifying assumptions are necessary in order to
make the task feasible. First, a much smaller tree may
be constructed using the previously defined notion
of classes. In this reduced tree, the first level has only
eight branches, one for each type of opening bid. Then,
for each of the eight opening bids, the responses may
be divided into several types, creating subclasses, and
these subclasses may be divided still further through
out the tree. In addition, the tree may be arbitrarily
severed at a length of ten or eleven, since few realistic
bidding sequences contain more bids. These assump
tions permit a huge reduction in the size of the tree,
leaving it with about fifty subclasses which, when
subdivided, leave several thousand paths down the
tree.

The number of paths may be reduced still further
by observing that a great number of bidding sequences,
while superficially different, are really quite similar
in many bidding systems, with only slight differences
in meaning or slight differences in the estimated
strength of the partnership. Thus, two paths of the
tree can be merged into one by treating sequences
of different subclasses identically, creating a new form
of structure, a loop-free directed graph.

I t was then necessary to connect the vertices so
that the network could be traversed. Each vertex was
given a marker which a member of the partnership

* An exception: STAYMAN can call BLACKWOOD.

Skillful Bridge Bidding Program 435

A

Beginning of sequence
procedure; opening bidder
enters here

Second level of sequence
procedure; responder
picks up marker at B

Third level of se
quence procedure;
opening bidder picks
up marker at C after
moving past
A and B

Figure 1-Traversing the network in a hypothetical
sequence procedure

could use to mark his place in the structure at each
turn. With this approach, a sequence of markers could
uniquely identify a path through the graph. Each
player, however, can only use markers that he has
found. (It may be that the program's partner is a
human who doesn't even know about the internal
representation of the bidding and who, in any event,
certainly doesn't find or use any markers.) Thus,
each bidder begins at the point at which he last found
a marker and each partner discovers the same set of
markers, since they are following the same path.

Consider a hypothetical structure such as that in
Figure 1 and assume that the program is bidding both
hands of a partnership. The opening bidder first enters
the sequence procedure at A as a result of the opening
bid and can then make a bid based on the previous
information. The responder then jumps to the same
sequence procedure and can move one level down the
graph (to point B) based on his partner's last bid to
the point at which he must make a bid. He finds the
marker at this point, then goes into the bidding pro
cess. At his next turn, he will return directly to· the
marker at B, follow the last two bids (his own and
partner's last) down the graph, find the new marker,
and make a new bid. In the meantime, the opener,
who has not yet picked up a marker, reenters the se
quence procedure at A, where he must move down
two levels, which he can do based on his own last· bid
and his partner's last bid. Now he finds the marker

436 Fall Joint Computer Conference, 1970

at C and makes a bid. This process continues through
out the bidding sequence, with each partner finding
the marker and moving down two levels based on the
last round of bidding to the point at which a new marker
is found and a new bid is made.

Each vertex represents a point at which a bid must
be made, a decision-making point. The bridge bidding
program attempts to bid in the same manner as a
human would, using the same decision-making criteria,
since the size of the task is too great to allow program
ming a completely specified set of rules. The order in
which various conditions and alternatives are tested
were chosen to correspond closely to the way in which
a human bridge expert would select a bid. The program,
in effect, simulates human judgment by considering
the same conditions and making the same evaluations
as would a human.

One of the major mechanisms of the bidding process
for each player is a running estimate of partnership
strength. At each turn to bid, each player reestimates
the minimum and maximum number of points held by
the partnership, based on information gained from the
bidding up to that point. The early versions of the
program used a static evaluation for each player's
hand, based on high card and distributional points,
computed at the time the hand was first dealt and
never changed. This was the figure used in computing
the strength of the partnership. Although this scheme
worked fairly well, it tended to be inaccurate in ex
treme cases.

To counteract these inaccuracies, a dynamic evalua
tion scheme was adopted. Each time it is a player's
turn to bid, REVALUEHAND is called, which re
computes his point count, awarding extra points on the
basis of length in his partner's bid suites) and shortness
in his unbid suit(s), and subtracting points from his
hand for shortness in partner's suites). Further ad
justments are made if the partnership agrees on a
trump suit. This dynamic scheme results in a more
accurate evaluation of the true partnership strength,
which, in turn, yields more aggressive bidding when the
strength of the two hands coincides and more cautious
bidding when the opposite is true.

The overall process for partnership bidding is now
completed. Following the opening bid, the responder
evaluates his own hand, evaluates the strength of the
partnership, and makes a bid. Then, until one of the
partners passes, each player finds the correct point in
the proper sequence procedure, reevaluates his hand,
makes a new estimate of the combined strength of
the partnership based on his own new valuation and
any additional information gained from partner's last
bid, then picks up the marker and makes a bid.

COl\1PETITIVE BIDDING

There are several significant differences between
partnership and competitive bidding. In the partner
ship case, the bidder always tries to make an offensive
bid; the competitive case requires the bidder to con
sider both offensive and defensive action. In competi
tive bidding, a partnership must be prepared for the
opponents' attempt to interrupt a perfectly normal
and logical bidding sequence with an intervening
bid. The partnership must also develop methods to
reach their best contract after their opponents have
opened the bidding. These differences and others make
skillful competitive bidding considerably more difficult
than skillful non-competitive bidding.

Competitive bidding is further complicated by the
existence of a huge number of bidding conventions,
very few of which are universally accepted as being
standard. For example, if the opening bidder bids one
no trump and left-hand-opponent bids two clubs, the
two club bid, a priori, can be interpreted as being a
natural bid or any of several special conventional bids.
The partnership using the two club bid, as well as
their opponents, must understand the meaning of that
bid, since future bidding action is highly dependent
on its actual meaning. The competitive bidding por
tions of the program, then, have to be able to both
make and interpret a large number of conventional bids.

Since the program was initially designed with the
intent of eventually incorporating competitive bidding,
the modifications to perform this task could be made
directly, without any major structural changes. A
procedure INTERVIEW was created which establishes
the bidding conventions to be used by each partner
ship. Procedures OVERCALL and RESPONDTO
OVERCALL, corresponding to OPENBID and RE
SPOND respectively, complete the organization of
the first round of bidding.

After conventions are, selected, the dealer bids first.
If and ,vhen one of the players makes an opening bid
(using OPENBID), OVERCALL is called for the
left-hand-opponent. Next, RESPOND is called for
opener's partner. The fourth player completes the
first round of bidding by using either RESPONDTO
OVERCALL or OVERCALL depending on whether
or not his partner made an overcall.

The partnership which opened the bidding then uses
the previously defined sequence procedures, which
have been modified for competitive. bidding. The op
position (the overcalling side) cannot use these pro
cedures as easily, since many of their bids are con
ventional and cannot be treated in the same manner.
In addition, when bidding on a hand becomes very
competitive and all four players have made bids, the

original sequence procedures tend to break down,
particularly when one of the players has passed once
or has doubled an opponent's contract for penalties.
For these reasons, a supervisory procedure NEXT
BIDDER was created. The responsibility of NEXT
BIDDER is to determine whether or not the original
sequence procedures are still usable and, if not, to pro
vide the mechanism whereby a player can make a
meaningful bid.

The Boolean variable OKTORAISE, computed by
NEXTBIDDER for each bidder at each turn, in
corporates many of the tests needed for successful
competitive bidding. OKTORAISE is true if the bid
der (or the partnership in certain cases) has sufficient
strength to bid at the current level of the bidding,
despite intervening bids by the opposition. If OKTO
RAISE is false, the bidder will, as a rule, pass or at
tempt to double an opposing contract.

Additional modifications were also necessary. First
among these was the inclusion of doubles and redoubles.
The program has to make both penalty and takeout
doubles, as well as interpret doubles by other players
correctly. Procedures TAKEOUTDOUBLE and PEN
ALTYDOUBLE return the value "true" if the hand
meets the conditions to make a takeout double or a
penalty double. Takeout doubles make bidding more
difficult since they indicate a wide range of strength.
Redoubles are much more easily treated since the vast
majority of them are made by responder following a
takeout double of the opening bid.

Another set of modifications. was necessary to
handle cue bidding, one of the most sophisticated areas
of bridge bidding. }\fany different meanings can be
assigned to a cue bid depending on the exact situation:
an overwhelmingly strong hand, control of the enemy's
bid suit, asking for control of the enemy's suit, an ace
showing bid, or a general purpose forcing bid when no
other useful bid is available. Since cue bids force
partner to bid, special checks for cue bids haU to be
included within the decision-making mechanism.

Many of these checks were made by the Boolean
array BIDBYWHO, which also checked to see that
both partnerships are not bidding the same suit. Since
two players on opposing sides will often have the same
strongest suit, one of the players will have to suppress
mentioning that suit once the other player has bid it,
unless he has some suspicion that the opposition bid
is psychic or artificial. **

Some change was also made in the means for evalu
ating partnership strength. First, REVALUEHAND

** This inference is very difficult even for the expert humau bidder
and currently beyond the scope of the program.

Skillful Bridge Bidding Program 437

was expanded to credit extra points for shortness in
the opponents' bid suites) and to subtract points for
apparently worthless honor cards in their suit(s). Second,
running estimates of the minimum and maximum
strength of. the opponents were established for each
player. These estimates are only lightly considered,
since the natural tendency is to believe one's partner
rather than the opposition. However, this information
is useful when trying to decide to double the opponents
or whether to bid a close contract.

There were a number of options available for hand
ling continuing bids by the overcalling side (the side
which did not make the opening bid). One constraint
was that the overcalling side might really have the
stronger hands and would need to have sequence pro
cedures which were as powerful and versatile as those
of the opening side. Another factor was that there are
a very large number of overcalls which, if improperly
grouped, could lead to an unmanageable number of
subsequences. *

Several observations were made which allowed great
simplification and eventual solution of the problem.
First, the easiest way to have the powerful sequence
procedures of the opening side available to the over
calling side was to use them directly as much as pos
sible. Second, in order to use them, the overcalls some
how had to be equated to opening bids. Third, extra
provisions were necessary to handle the special con
ventions and to make the overcall sequences resemble
opening bid sequences. (Note that, in actual bidding,
there is only one sequence; for purposes of explication,
however, two distinct subsequences, one for each
partnership, may be considered.)

The above observations were implemented in stages.
It became clear that whatever the overcall, the overcall
sequence would be highly dependent on the opening
bid (rather than the overcall), at least for the first
couple of bids. Thus, OVERCALL and RESPOND
TOOVERCALL were organized in much the same way
as RESPOND, setting up major divisions based on
the type of opening bid.

Next, overcalls were divided into classes. In doing
so, it was seen that regular (simple) overcalls and take
out doubles indicate approximately the strength as an
opening bid of one of a suit, that direct no trump over
calls are very similar to strong no trump openings, that
weak jump overcalls are similar to preemptive or weak
two bids, and that strong jump overcalls and cue bids
are roughly equivalent to strong opening two bids in
strength. This division showed that many overcalls

* Epstein8 calculates the number of competitive bidding sequences
to be of the order of 1047, compared with 1010 for partnership
bidding.

438 Fall Joint Computer Conference, 1970

could be treated very similarly to certain types of
opening bids and that, for these cases at least, the
same basic sequence procedures could be used for both
the opening side and the overcalling side, simply by
providing a set of markers for each partnership in each
sequence procedure.

This approach was successful for most, but not all,
of the competitive cases. In particular, it failed to
cover the highly conventional bids, such as unusual
no trumps, l\1:ichaels cue bids, and Astro. This failure
resulted from the very specialized nature and very
limited applicability of these conventional bids; in
other words, the approach was satisfactory for all but
the most specialized conventions. To solve this prob
lem, the overcalling side treated the opening bids as
belonging to one of three classes: strong opening bids,
weak opening bids, and no trump openings. Then,
three new sequence procedures were constructed to
handle the competitive situation, particularly the
special cases. These new sequence procedures, named
OVERONESEQ, OVERPREESEQ, and OVER
NTSEQ, call the regular sequence procedures when
ever possible, making the remaining decisions them
selves.

The overall program organization can now be sum
marized very simply. Following convention selection
and the first round of bidding, control passes to the
supervisory procedure NEXTBIDDER. For each
player in turn, NEXTBIDDER calls REVALUE
HANP, checks to see if the sequence procedures are
still valid for his partnership, and then either calls
one of the eight sequence procedures for the opening
side, calls one of the three new sequence procedures
for the overcalling side (which may then call another
sequence procedure), or uses its own methods to make
a bid. This procedure retains control until the bidding
is ended by three consecutive passes. *

EXTENSIONS OF THE BASIC PROGRAIVI

A number of extensions were then made to the
existing program, including the ability to use other
bidding systems, the ability to solve bridge bidding
puzzles, and the ability to play with up to three hu
man players. These extensions produced a large amount
of generality within the domain of bridge bidding.

The program at first bid only according to the

* An exception: when the left-hand-opponent of the opener
passes and the overcall follows the response, RESPONDTO
OVERCALL is called for the left-hand-opponent at his next
turn rather than a sequence procedure.

Schenken system, which is less popular among bridge
players than Standard American bidding. The ex
tended program contained four basic bidding systems:
Standard American, Goren (from which Standard
American has been derived), Schenken, and Kaplan
Sheinwold. In addition, many variations on these
systems were allowed and a large number of defensive
conventions were implemented. This choice of systems
was made since an overwhelming maj ority of bridge
players in the United States use one of these systems.
In addition, basic bids from the different systems may
be combined, as long as no contradictions are created. **

The biggest effect of the addition of the new bidding
systems was observed in those sections of the program
handling the first round of the bidding and in those
where the strength of the partnership was evaluated.
lVlost of the difference among the systems could be
incorporated into the estimates of partnership strength.
Much of the rest of the program was only slightly
altered.

Additional care had to be taken for those situations
in which the opening bid may be partially artificial,
such as a "short club" in Standard American bidding.
Of the eight sequence procedures, only ONEBIDSEQ
was significantly affected by these changes, as a result
of the greater range of strength indicated by an
opening bid of one of a suit in bidding systems other
than Schenken's.

Each of the systems has some special quirks that
must be specially treated, though, and each of these
special conventions was separately handled, creating
most of the programming work necessary to implement
each additional bidding system.

Defensively, most of the common conventions were
made available. At least three alternatives were pro
vided for each defensive situation. Several other pos
sible defensive devices, such as unusual no trumps and
Michaels cue bids, were also included. The limits were
rather 11 arbitrarily drawn.

The second major extension of the program was made
to enable it to bid with people. In its first version, it
would bid each hand using only information normally
available to that bidder. The result of the program's
bidding all four hands is that the program always "un
derstood" the meaning of the other bids. When the
program bids with humans, the problem of com
munication becomes significant, illustrating two major
considerations in a partnership game: the amount of
faith to place in partner's action and the amount of
credence to give to the opposition.

In bidding with one to three humans, the program

** Procedure INTERVIEW prevents such contradictions.

must interpret all bids as accurately as possible, given
the bidding systems of both partnerships. It is im
portant to note that a bad bid by a human might not
only tend to confuse the program, but might also
confuse any human player. The program tends to
put considerably more faith in its partner's bids than
in bids made by the opposition.

The inclusion of human players is handled by in
teractive procedures. Each partnership must decide
on its conventions and so inform the opponents, cor
responding to the convention cards used in duplicate
bridge games. The program interviews both partner
ships, which allows it to assign the proper meaning to
bids made by the humans. Other interactive procedures
allow humans to supply a hand for the program to bid,
as well as letting the program shuffle and deal hands
by means of random number generation. There are
facilities for replaying any hand and for varying the
number of hands being bid by humans.

The third major extension to the basic program allows
the program to solve bridge bidding puzzles: given a
hand, a bidding sequence, and the vulnerability, make
the "best" bid. This is a somewhat harder task than
merely bidding the same hand at each turn with three
human players. Whereas the program previously had
to interpret the other three players' bidding, in this
case, it must also interpret its own previous bids. In
numerous cases, the bids, supplied for previous rounds
do not conform to what the program would have bid
on its own. (Humans have the same difficulty.) Thus,
the program must reconstruct the entire bidding se
quence by going through the sequence one bid at a
time and computing the st~ength of each hand and
partnership.

PROGRAM PERFORMANCE

Skill at bridge bidding was established as a major
goal of the program development. It is trivial to write
a computer program to make legal bids; it is vastly
more difficult to achieve a high level of competence in
bidding. Hence, particular attention was given to skill
at all stages-first in partnership bidding, next in
competitive bidding, and finally in a variety of bidding
systems. As a result, the program is a highly skillful
bidder, capable of using a variety of conventions to
reach contracts which are often superior to those
reached by expert human players. Justifying this
assessment of the program's ability is the aim of this
section.

Several methods are used to illustrate the skill and
capabilities of the program. First, the program's bid
ding on some randomly dealt sample hands will be

Skillful Bridge Bidding Program 439

shown and discussed; second, the results of a non
competitive bidding contest will be given; third, a
summary of the program's performance against two
experienced human bridge players will indicate the
program's skill in competitive bidding; last, the pro
gram's attempts on some bridge bidding puzzles will
be discussed.

The bridge bidding program was tested on thousands
of randomly dealt hands and continually modified
on the basis of its performance on these hands. Every
bid on every deal was studied to be certain that the
program bid quickly and accurately to the best con
tract on those hands for which the best contract is
relatively obvious, observed the widely accepted rules
for describing various distributions and strengths,
and made generally "reasonable" bids. In competitive
bidding, the program will use all of the specified de
fensive conventions in addition to the partnership
bidding system and can adequately handle highly
complicated bidding sequences.

For example, the program bid all the hands on the
deal shown in Figure .2, producing a great deal of
competition. East will bid up to the four level on the

NORTH

s- A " 6 4

H- 10 9 6

D- 5 3

c- " 7 6 5

WEST EAST

S- " 9 7 S- 3

H- A CI 8 5 2 H- 3

D- 10 6 2 D- A K Q " 8 7 4

c- A 8 c- " 10 9 3

SOUTH

S- K 10 8 5 I

H- K " 7 4

D- 9

C.- K " I

SOUTH WEST NORTH EAST
PASS PASS I D

DOUBLE REDOUBLE 1 S 8 D
8 S 3 H PASS

" D
PASS 5 D DOUBLE PASS
PASS PASS

Figure 2-A complicated bidding sequence utilizing the redouble;
all hands bid by program

440 Fall Joint Computer Conference, 1970

N-S VUL
E-W VUL

NORTH

S- 7

H- 10 8 6 8

D- A K oJ 9 7 6 3

c- 9

WEST EAST

S- A 5 4 3 S- K 9 e
H- 0 4 3 H- A oJ 9 7 5

D- S D-

c- A oJ 7 4 3 c- K 10 6 5 8

SOUTH

5- 0 oJ 10 8 6

H- K

D- o 10 5 4 I

c- o 8

SOUTH WEST NORTH EAST

I C I D e H

5 D DOUBLE PASS PASS

PASS

Figure 3-Preemptive bidding as a defensive measure; all hands
bid by program

strength of his hand alone; after his partner's redouble,
the East-West partnership is simply too strong to
allow North-South to play the hand at a low level.
North, not counting on East to have such a strong
diamond suit and estimating about twenty points in
the North-South partnership, doubles the five diamond
contract, but East-West should successfully fulfill the
contract, losing only a spade and a club.

Very often the program will use weak bids de
fensively to prevent the stronger partnership from
obtaining the contract. On the deal in Figure 3, for
example, East-West have the majority of the points,
with four hearts being a very logical contract for them.
North-South compete, however, with North making
a weak jump overcall (one of many defensive con
ventions regularly used by the program) following
West's opening, and South making a preemptive raise
to game. North-South do not actually expect to make
five diamonds,. but rather to obtain a better score by
sacrificing than by letting East-West play and probably
make a heart game contract. Following South's bid of
five diamonds, West has very little choice but to double;
the level of bidding has risen too quickly for West to

obtain sufficient information about his own partner
ship to do otherwise. The North-South tactic is highly
successful here, since they will only be set one trick,
giving East-West two hundred points instead of more
than six hundred for successfully making four hearts.
(If declarer were lucky enough to correctly guess the
distribution of the heart suit, East-West could make
either six hearts or six clubs with careful play.)

The program is also able to successfully adjust
between being vulnerable and non-vulnerable, and is
able to reach a high percentage of possible slam con
tracts. Although the program occasionally makes bid
ding errors which produce bad results, it is, on the
whole, skillful in using many different conventions,
in making many kinds of bidding decisions, and in
reaching apparently acceptable contracts. However,
no measure of its ability in comparison with human
players has yet been given, and such a measure is
necessary for accurate evaluation of the skill of the
program.

The monthly contest "Challenge the Champs" in
Bridge W orld9 is an excellent means for evaluation of
non-competitive bidding. In this contest, two expert
bridge partnerships are matched against one another.
The editors select ten hands and determine point
awards in advance for each possible contract based
on the likely result in a good duplicate game, Le., a
duplicate game at a regional or national tournament.
By using these scoring awards, it is possible to compare
the program directly with the expert players bidding
the hands each month. The emphasis is on partnership
bidding, with competition either nonexistent, or
playing a minor part. "Challenge the Champs" was an
excellent measure since it provided an independent
evaluation of the program's performance on partner-
3hip bidding. Its only drawback is that the scoring
awards are only estimates and not substantiated by
results in actual play.

"Challenge the Champs" was highly useful in the
development of the bridge bidding program. Since the
contest is keyed to duplicate bridge results, as is the
program, the program could be tested and improved
using its ratings, helping to indicate the distinctions
that must be made in choosing a bid. The first eighteen
months of these hands (January, 1967, through June,
1968) were used in this manner with all major program
revisions being tested against the hands to see if there
was a net improvement in skill. The following twelve
months' hands were then used to actually measure
the program's ability. The program had never before
bid these hands, nor had any changes been made in the
program especially for this test. The program bid these
hands according to three different bidding systems:
Schenken, Standard American, and Kaplan-Sheinwold.

The average scores of the program in comparison with
the human players competing in the match on an over
all basis were as follows:

Experts

Winning Partnership
Losing Partnership

Bridge Bidding Program

Score

65.7
57.2

Schenken System 58.2
Standard American System 51.2
Kaplan-Sheinwold System 50.0

The editors of Bridge World consider a score above
seventy to be outstanding, with a score above sixty
excellent, and anything above fifty to be above average.
Thus, the program performed as well or better than the
average using all three systems, despite the fact that
the program had still not reached the final stage of
development. In particular, the defensive bidding
sections had not been thoroughly tested, vulnerability
was not yet properly taken into account, and there
were several coding errors in sections of the program
handling Standard American and Kaplan-Sheinwold
bidding, since they were added long after the program
was operational.

When the program had evolved sufficiently to re
duce these weaknesses, the same hands were run again
with the program's results considerably improved,
as follows:

Schenken System
Standard American System
Kaplan-Scheinwold System

Percent
Score Improvement

59.7
59.0
56.6

2.5
15.2
13.2

The great improvements in the Standard American
and Kaplan-Sheinwold systems can also be attributed
to a general improvement in the program, as evidenced
by the improved performance of the Schenken System.
In this later version of the program, both the Schenken
and Standard American systems beat both human
partnerships four times, lost to both twice, and finished
in the middle the remaining six times. The Kaplan
Sheinwold system won three times, lost three times,
and finished in the middle six times. The program has
undergone further improvement since these results
were obtained,· but any general evaluation based on a
third attempt on these hands would be biased since

Skillful Bridge Bidding Program 441

some of the improvements in the program were made
specifically with respect to bidding problems uncovered
in the contest. Even with just the above results, how
ever, it seems fair to say that the program achieves
the level of human experts in partnership bidding.

One example of the program's performance on
"Challenge the Champs" is shown in Figure 4 (Deal
3 of January, 1969), which shows the three systems
each reaching the very good contract of six no trump.
The Standard American sequence, using the strong
three no trump opening, bids directly to the slam.
Using the Schenken system, the program began with
the Big Club, then jumped in no trump to show addi
tional strength. The Kaplan-Sheinwold sequence is
more complex, beginning with the artificial two club
bid and continuing with the Gerber four club ace
asking bid, followed by the four heart bid, asking for
kings. Missing a king, West stops at six no trump. Al
though the top scoring award was given to the contract
of six clubs, the six no trump contract was second best

N-S NON-VUL
E-W NON-VUL

5-

H-

0-

r.-

WEST

A Q 5

A Q 2

A 10 II

A K " 5

~T4NOAPD AMERICAN BIDDING

SOUTH

PASS

SCHENKEN BIDDING

SOUTH

PASS

PASS

WEST

3 NT

PASS

WEST

1 C

3 NT

PASS

KAPLAN-SHEINWOLD BIDDINC

SOUTH WEST

2 C

PASS 4 C

PASS 4 H

PASS 6 NT

PASS

5-

H-

D-

C-

EAST

7 6 3

K oJ 5 4

K 8

J 7 6 3

NORTH

PASS

PASS

NORTH

PASS

PASS

PASS

NORTH

PASS

PASS

PASS

PASS

EAST

6 NT

EAST

I D

6 NT

EAST

2 NT

" D
5 C

PASS

Figure 4-"Challenge the Champs"-Deal 3 of January, 1969;
program bid East-West hands according to three different systems

442 Fall Joint Computer Conference, 1970

WEST

S-

H- K Q

D- A K

c- 9 S

(HUMAN I)

SOUTH

.. S

PASS

PASS

8

Q

..

S

H-

D

c-

2

01 10

s-

H-

D-

c-

NORTH

Q 10 .. 3 2

01 9 5

6 .. 3

Q 1

s-

H-

2 D-

c-

SOUTH

ol 8 6

10 1 6

S

K 01 6

(PROGRAM)

WEST

5 D

6 H

PASS

5

3

3

EAST

A K 9 1

A

9 8 1

A 10 8 4

(HUMAN 2)

NORTH

e S

PASS

PASS

PASS

2

(PROGRAM)

EAST

3 C

6 C

1 D

Figure 5-Program (East-West) bidding grand slam during
bidding contest

and far superior to the contracts reached by the expert
human bidders.

Although the results on "Challenge the Champs"
provided substantial evidence of the program's ability,
they were almost entirely partnership bidding and the
true test of the bridge bidder's skill comes on competi
tive sequences. Thus, some test of the program's
competitive bidding ability had to be designed. Dupli
cate bridge tournaments were the obvious source for
hands to use for testing purposes. The only draw
back to using actual results is that the program would
have to compete against human opponents (or another
program!) in order to obtain an accurate evaluation.*

A bidding contest was set up, matching the bridge
bidding program against two human players Who have

* If the program competed against itself, it would simultaneously
obtain both good and bad results, i.e., the final contract would be
good for North-South if and only if it was bad for East-West. The
expected result of such a contest would be a tie, regardless of the
skill exhibited.

played as duplicate bridge partners many times. One
of the two players is a Life l\1aster, with approximately
1000 master points; the other player has nearly a hun
dred. Hands were obtained from the American Contract
Bridge League national tournament held at Cleveland
in l\1arch, 1969, along with all of the scoring informa
tion from the actual tournament.

In the absence of play of the hand, some means for
evaluating the bidding alone had to be found. One such
means is to consider the average score made by those
partnerships bidding a particular contract and to com
pare it with the average score for other contracts on
the same deal. Since this method eliminates play of
the hand, it penalizes those partnerships which play
the hand skillfully and rewards those partnerships
which do not play so well. No other method for evalu
ating bidding alone, however, seemed to be quite as
feasible, and this method was agreeable to all concerned.

The author chose the entire set of thirty hands from
the Women's Finals at the national tournament for
this contest. The Finals include the top female bridge
players in the country, with many partnerships having
been eliminated in the two session qualifying round
for the Finals.

The contest was conducted in two sessions, with
fifteen hands being bid in each session. The program
bid according to the Schenken system in the first ses
sion and Standard American in the second session. The
human players used a Standard American system with
some more advanced conventions.

Each hand was scored so that the best score on each
hand was twenty-five points and the worst score was
zero (match pointed with a twenty-five top). Scoring
is such that the sum of the scores of both partnerships
for each hand totals twenty-five, i.e., a seventeen for
North-South means an eight for East-West. Twenty
seven of the thirty hands were bid to final contracts
which had been reached in the actual tournament.
On the remaining three hands, the author and the two
human players analyzed the entire deal to determine
the probable result for each partnership, assuming
intelligent play of the hand by both sides. Only one of
these three results favored the program. The overall
results were as follows:

Human Players Bidding Program
Score Percent Score Percent

Hands 1-15 219.75 58.6 155.25 41.4
(Schenken)

Hands 16-30 168.75 45.0 206.25 55.0
(Standard)

Total 388.50 51.8 361.50 48.2

Thus, the program was victorious in one session,
defeated in one session, and narrowly defeated overall.
Even in victory, the human players were held to a
percentage that would not be sufficient to win most
duplicate birdge tournaments. The program's overall
loss could have been averted by a swing of just four
teen points, which is available on every deal.

During the contest, the program successfully bid
a grand slam (Figure .5) despite intense competition
from the human opponents, who used preemptive bid
ding up to the four level, depriving the program of
considerable room to explore for a contract. Note
that a sizable amount of investigation by the program
came at the six level. This deal, on which the program
got twenty-one of the twenty-five points possible, was
the best result achieved by the program on its own
bidding, and acknowledged by the author and the
opponents to be the program's most spectacular bidding
performance.

The bridge bidding program made a very creditable
showing, very nearly defeating two experienced dupli
cate bridge players. In discussing the program's per
formance with the opponents, it was estimated that the
program was slightly more skillful than the average
duplicate bridge player at competitive bidding.

As a last test of the program's ability, the program
was given some bidding problems to solve. Bridge
bidding problems are designed, in general, to evaluate
skill on intermediate bids; there are some difficulties
with such problems, however, which can make them
somewhat unsuited for evaluation purposes.

First, as noted, the given previous bidding sequence
does not always agree with the bids the program would
have made. The program will then try to "correct"
its previous bidding error, producing a poor answer
to the puzzle.

Second, the specifications for the problems some
times assume a scoring system other than match
points or conventions which are unknown to the pro
gram. In these cases, the program does not perfectly
understand some of the bids given to it and is unaware
of some of the special conventional bids it is expected
to make in solving the puzzles.

When tested on problems which had neither of these
shortcomings, the program's performance was quite
respectable. The problems, however, served to out
line several areas in which the program's bidding is
weakest. One area in particular is that of cue bidding,
which experts use more frequently than does the pro
gram, especially when exploring for slams. The program
is also still fairly weak in adjusting for vulnerability
and in making successful penalty doubles. Combining
the evaluations obtained from all the different tests,
it also appears that the program has a tendency to

Skillful Bridge Bidding Program 443

be cautious in slam bidding, rarely bidding grand slams,
along with a tendency to be slightly aggressive in con
tracts at lower levels. Last, the program is unable to
make psychic bids and has only limited success at
counteracting psychic bids made by the opposition.

As a summary result of all these tests, it is fair to
conclude that the bridge bidding program is quite
skillful, performing at a near-expert level in non
competitive bidding and somewhat better than the
average duplicate bridge player in competitive bidding.
In addition, the program is able to provide fairly good
solutions to bridge bidding problems, Furthermore,
these results were achieved using more than one bid
ding system skillfully, a talent not possessed by many
human players.

CONCLUSION

The bridge bidding program, then, is a contribution
to the small quantity of skillful artificial intelligence
programs. In addition, the programming methods used
in the development of the program are useful tools
for other applications. The decision-making procedures,
for example, are written in the Bridge Bidding Language
which represents virtually all of the important con
ceptual and strategic notions of the task. Using this
language, it is very easy to transfer a bridge expert's
bidding technique to program code. The extensible
language features which yielded a Bridge Bidding
Language from Burroughs B5500 Extended ALGOL
could be similarly used to devise other task languages.

The program was also constructed with the goal
of having generality within the specific domain of
bridge bidding, as can be seen from the program's
ability to bid according to various systems and con
ventions and to handle tasks such as solving bridge
bidding problems. It is hoped that this work will help
lead to the creation of computer programs which are
skillful over a wide range of problems.

REFERENCES

1 G L CARLEY
Program for contract bridge
M S Thesis Massachusetts Institute of Technology 1962

2 E R BERLEKAMP
Program for double dummy bridge problems-a new strategy
for mechanical game playing
Journal of the ACM Vol 10 No 4 pp 357-3641963

444 Fall Joint Computer Conference, 1970

3 W RILEY T THROOP
A n interactive bridge playing program
Paper presented at Symposium of the National Gaming
Council Kansas City Missouri 1969

4 A I WASSERMAN
Achievement of skill and generality in an artificial intelligence
program
PhD Thesis University of Wisconsin 1970

5 C GOREN
Contract bridge complete
Doubleday and Company N ew York 1962

6 H SCHENKEN
Better bidding in fifteen minutes
Simon and Schuster N ew York 1963

7 H SCHENKEN
Howard Schenken's "Big Club"
Simon and Schuster N ew York 1969

8 R A EPSTEIN
The theory of gambling and statistical logic
Academic Press New York Chapter 8 pp 270-3011967

9 Bridge World
Vol 38 No 4 January, 1967 through Vol 40 No 9 June 1969

Computer crime

by DENNIE VAN TASSEL

University of California
Santa Cruz, California

One very positive sign in man's existence comes
from an unlikely source, that is, his ability to commit
criminal acts no matter how difficult the circum
stances. He escapes from escape-proof prisons, tampers
with tamper-proof devices, and burglarizes burglar
proof establishments. No level of technology has
found itself above the ingenuity of a clever, albeit
dishonest, mind, not even the computer.

These examples of larceny under difficult circum
stances illustrate Dansiger's basic rule: "Whenever
something is invented, someone, somewhere, im
mediately begins trying to figure out a method to
beat the invention." Computerized larceny has several
advantages over regular old style larceny. Actually,
the plain and obvious fact is that computerized larceny
is seldom discovered and usually difficult to prosecute
even if it is discovered. And since the details are not
yet common knowledge perhaps it is worth recon
structing them here, to establish a broad pattern of
its development. To start with, address customer
files are copied usually with the help of the owner's
computer, thus adding insult to injury. Once they
are copied the files are sold to a competitor and if
the competitor uses the files discretely no one is the
wiser, except maybe the sales manager who notices
that one company has suddenly become quite ag
gressive.

Many thefts are simply a by-product of a computer.
An example is the computer operator who steals a
hundred checks, prints them on a computer on Friday
night, cashes them during the weekend, and skips
town on 1\10nday. This is not really computerized
stealing since the fault lies in the safety of the. checks
and not the computer. But the crime is usually still
blamed on the computer even though a manual check
writing machine could have been used just as well.

There are several mythical examples of computer
crime. I call them mythical because they actually did
happen but the victim of the crime was usually so
embarrassed to admit he had been taken so easily,

445

that rather than suffer humiliation, he would prefer
to hush up the crime. The first mythical example
supposedly took place in a large bank when computers
were first being used; An alert programmer noticed
that the interest is calculated to the nearest cent and
then truncated. That is, if the interest is calculated
out to be 2.3333 ... it is simply left at 2.33-thus
contributing nicely to the bank profits. The programmer
simply fixed the computer to add some of the trun
cated portion to his account and in a short while,
ended up with a very sizable bank account. All the
time the customer accounts stayed in balance. Even
tually he was caught by bank auditors who noticed
he was withdrawing large sums and not making
similar deposits.

Another enterprising young man who received his
first set of bank depositors' slips with magnetically
imprinted account numbers on the bottom, correctly
surmised that the new computer system probably
only checked the magnetically imprinted account
numbers on the bottom of the checks. So he promptly
went to his bank and carefully dispersed his full
supply of imprinted slips among the neat stacks at
the bank desk. Not too surprising, the slips were used
all day by customers making deposits, and even less
surprising, the man stopped in the following morning
and closed his account, which had mushroomed to
over $50,000 and has not been seen since. Needless to
say, this scheme no longer works. Crime, like any
other business, offers the highest rewards to those
who are first to tryout a new method.

One of the more interesting aspects of this case is
the fact that even though the fault was the improper
design of the computer system, the computer was
the scapegoat. Using the computer as a. scapegoat is
a common day phenomenon. Election returns are
miscalculated and the computer is blamed when ·it is
really the blame of the programmer. The next time
you go into a business and someone blames the com
puter for an error ask him if he doesn't have people

446 Fall Joint Computer Conference, 1970

telling the computer what to do. It is safe to assume
that if the computer is screwed up, so is the rest of
the business, especially today when most businesses
depend so heavily on computers.

Since the computer cannot defend itself, nor prove
the accuser at fault, it is safer to blame the computer
than another person. This common acceptance of
the computer as a "giant uncontrollable brain" has
led to at least one very successful embezzlement.
Three employees (an account executive, a margin
clerk, and a cashier) of the Beaumont, Texas, office of
E. F. Hutton & Co., a major New York securities
firm, allegedly used the computer as a scapegoat
while they were milking customer accounts for more
than a half million dollars over a period of several
years. They were finally caught in 1968.

This enterprising trio was skimming funds off of
customer accounts. Every time one of the clients
noticed that his accounts were incorrect the customer
was allegedly told that the "dumb computer" had
made a mistake, a fable which received instant credi
bility. The computer all the time was giving the
correct results but the excuse covered up the fraud.

Nine years earlier between 1951 and 1959, another
brokage firm, Walston & Co., was electronically
siphoned of $250,000. By the time the theft was
uncovered, the thief had become vice-president.
Frank, a manager of a back-office operation pro
grammed Walston's computer to transfer money
from a company account to two customer accounts
-his and his wife's.

Even though his scheme was extremely simple it
nevertheless rates a niche in the history of computer
crime. He simply went into the office on a Sunday
morning and punched up computer cards to transfer
money from a company account to two customers'
-his own and his wife's accounts. The computer was
further programmed to show the money had gone to
purchase stock for the two accounts. Next, he sold
the supposedly purchased stock, pocketed the cash
and transferred some more money.

The only reason he got caught was because he with
drew a huge sum of money right before the end of
the year thus cheating himself out of the interest.
The company auditors were suspicious and examined
his accounts. Obviously, they found major irregulari
ties, but they were unable to figure out the embezzling
system, mainly because Frank hadn't stolen any
money from customer's accounts. "What he did was
absolutely undetectable without internal auditing,"
said William D. Fleming, Walston president. "Before
it happened no one dreamed such a thing could be
done, and if he hadn't explained how he did it, we
probably still wouldn't know."

Like most people, Frank took pride in his work and
he showed the auditors how he pulled off this smooth
embezzlement. The embezzler had been with the
company for years and had the most thorough knowl
edge of the computer system in the firm. Embezzlers
who can repay the stolen money seldom go to jail,
and since Frank couldn't repay the money he served
a year in Sing Sing prison.

At the same time Walston & Company was learning
a few things about computers that computer salesmen
usually overlook; another brokerage firm, Carlisle &
Jacqueline, was being bilked out of $81,000. Richard
D., data processing manager of Carlisle' & Jacqueline,
a brokerage house, instructed the computer to write
checks to fictitious persons and send them to his
home address. Again a little bad luck stopped this
scheme. The post office accidently returned one of
the checks to the firm and the clerk who received it
blew the whistle. George Muller, a managing partner
of Carlisle and Jacqueline, refused to discuss the
case. "We'd have to be crazy to give out all the details
now so that anyone who wanted to could do it again,"
says Mr. Muller. The embezzler was convicted, repaid
the money, and received a suspended sentence.

In this more recent example it was again only an
accident that the computer embezzlement was dis
covered. In the following case lady fortune smiled
with a favor on a programmer, Milo, and frowned
on the National City Bank of Minneapolis. Milo
had a very bad credit rating and occasionally wrote
checks on an empty account but the data processing
service center where Milo worked had just been hired
to computerize the check-handling system at the
bank where he had his account. While writing pro
grams to warn the bank of customers with empty
accounts and incoming checks he simply programmed
the computer to ignore his personal checks any time
his accounts had insufficient funds to cover them. The
program allowed each of his bad checks to clear the
bank, and didn't debit the employee's account for
the overdraft.

The only reason the scheme was discovered was
because the computer broke down and the bank was
forced to process the checks by hand and without
warning in· came one of Milo's checks. The check
bounced and the scheme was discovered. The check
bouncing programmer pleaded guilty in 1966, repaid
the money and received a suspended sentence.

Most criminal uses of computers are by individuals
but organized crime has not overlooked the possibility
of large profits through the use of computerized
embezzlement. There are already at least two cases
of large scale criminal use. In 1968, a Diners' Club
credit card fraud resulted in at least a $1,000,000 loss

to the credit card company. A computer printout of
real Diners' Club customers was used by the gang
to make up phony credit cards having real names
and account numbers on blank Diners' Club cards.
According to the police the computer listing was
stolen in 1967 by Alfonse Confessore in New York.
At the same time 3,000 credit cards disappeared.
Mter the crime was discovered Alfonse Confessore
was rubbed out in a gang-land style murder.

The forged credit cards were sold along with other
forged identification documents for $85 to $150 per
ID package to persons engaged in motor vehicle
thefts. Federal agents said that the forged cards were
often used to finance a leisurely trip to Atlanta, Georgia,
with a stolen car, followed by an air trip home, by
way of Miami, Florida.

The most interesting aspect of this case is the
sophisticated level of organization. The gang found
out that the club's computers were programmed to
reject only false names and/or numbers, so the first
indication of fraud often didn't come until the real
customer received his bill and complained. Thus, ID
packages would be completely safe for thirty to sixty
days with almost no risk to the user.

Federal agents said that Las Vegas casinos may
have been bilked out of hundreds of thousands of
dollars after granting credit on the basis of forged
Diners' Club credit cards. However; federal agents
also said that if any hotel wanted to cooperate in
underworld "skimming" of profits, this could be a
method of operations since bad credit losses are tax
deductible.

In another case a computer was used by a crime
organization to embezzle over $1,000,000 in Salinas,
California, before the owner was caught in 1968. A
service bureau owner, Robert, used his computer to
budget embezzlements so smoothly that he was able
to take a quarter of a million dollars wi thin a year
from a fruit and vegetable firm without the loss being
noticed.

Robert was an accountant and he noticed that the
fruit company had no complete audit operation. His
method included having the computer calculate just
how much should be embezzled during a specific
period. He did this by using false and real data in
different computer runs and by comparing the results
on the cost of produce and this way was able to keep
all operation costs and profits in balance. The only
reason he was caught was because a small-time bank
became suspicious of the size ofa check made out to
a labor organization. Robert was sentenced to from
one to ten years for grand theft and forgery.

Banks have traditionally been cautious when pro
tecting their money from embezzlement, so it is not

Computer Crime 447

surprIsmg that there have been few examples of
computer related crime, but a recent example shows
that they also can be victims. In 1970 it was discovered
that a total of $900,000 was taken from the National
Bank of North America, and a branch of Bank~r's
Trust Company in New York.

The scheme involved five men which included
three brothers, a bank vice-president and an assistant
branch manager.

The brothers were allegedly able to manipulate
bank funds without the banks computers detecting
them by making out deposit slips for cash transactions
when they were actually depositing checks, according
to the district attorney's office.

Since cash transactions are recorded as immediate
deposits, checks subsequently drawn were covered
by the false cash deposits.

If the deposits were made as checks, the computers
would not credit the money to the account immedi
ately. When checks were drawn, the computer would
indicate insufficient funds with an uncollected check
on deposit, a spokesman for the district attorney's
office said.

Two companies were involved in the operation of
the scheme, according to the district attorney's office.
Bay Auto Sales had an account at the National Bank
of North America and Baywood Stables had an account
at the Bankers Trust, both in Jamaica, Queens.

The brothers were members of both companies.
The scheme was uncover~d when a bank messenger
failed to deliver a bundle of checks to the clearing
house, leaving $440,000 worth of checks uncovered.
According to authorities the scheme had been going
on for four years.

As the three previous examples show organized
crime has already discovered the possibilities available
in criminal use of computers but so far no really big
embezzlements have been discovered. Yet several
very ripe possibilities exist. One of the most obvious
is in the area of large payrolls in companies as in the
old story about the bar that was losing money. When
a check was run, it was noticed that the bartender
rang up each sale on one of four registers. Of course,
when it was discovered the owner had only three
registers, the problem was solved.

Similar scenes have been used with payrolls. Either
friends, or fictitious people are paid extra amounts
each week. This is especially easy if there is a high
turnover of help, or lots of overtime, . or piece work
pay. Another payroll trick is to deduct extra amounts
for tax or other payroll deductions each week and
transfer the money to your account. Then at the end
of the year calculate everyone's deductions correctly
for income tax purposes. The only way someone could

448 Fall Joint Computer Conference, 1970

catch this is to save all your weekly payroll stubs and
see if the deductions add up correctly at the end of
the year. People have a tendency to believe the veracity
of a computer printout but careful observation shows
that computer programmers and auditors usually
sit down each week and calculate their pay to see if
it is actually correct. Just a couple of years ago an
engineer of an aerospace firm calculated his own
interest on his bank account and noticed that it was
incorrectly calculated by the bank-in the bank's
favor. After several letters the bank decided to humor
the guy and check out his account and sure enough
the customer was correct. Noone had thought to
question the computer. When is the last time you
calculated your bank interest or paycheck to see if it
was correct?

Another area of computer crime which is especially
vulnerable is in the area of payroll manipulation.
This fact is known by most auditors so payrolls are
usually audited rather closely. There was at least
one case where a large payroll theft was committed.
A group of young men manipulated the computers
of the Human Resources Administration in New York
City in order to divert over $2.7 million from the
anti-poverty program budget. Over a period of nine
months false pay checks were made out to 40,000
non-existent youth workers. It is estimated that up
to 30 people may have been involved in the scheme.

We have already seen one example of a computer
being used to calculate how much to embezzle in the
Salinas, California, case. Police can expect to see more
of this since organized crime has both the money and
the know-how for computer. usage. Some of the ways
in which computers are used to prevent crime include
the analysis of payrolls for excessive overtime pay, or
the analysis of inventories for excessive breakage, or
selection of any large change in price of items being
purchased or sold. All . these could be mistakes or
legitimate changes but they could also be an indication
of embezzlement.

<

The use of breakage or tolerance allowances is
another especially vulnerable area for computerized
stealing. Most companies such as . warehouses or
department stores have a shrinkage allowance to
cover items which are lost, broken, or the result of
bookkeeping errors. But if a programmer modified
the shrinkage allowance at the same time a large
scale theft was going on, the theft would probably
not be noticed. Once the theft was completed the
shrinkage allowance could be reset to its original level.
The previous examples of crime have been just crimi
nals modifying the old techniques for the field of
crime. But computers have brought forth a new era
of crime. This is already evident in the case when a

computer was used to calculate how much to embezzle.
But there are areas of crime which are unique to the
computer field.

A June, 1968 Baltimore headline stated that "Com
puter Gambling" was taking place in the Social Se
curity Administration. But an investigation showed
that all that was happening was 80-column cards
were being used in the passing of wages in the numbers
racket by a data processing operator. The possibility
of computerized gambling is quite real because black
jack and roulette programs that work quite well are
available. The only thing holding the computer back
is most people prefer the friendly blackj ack dealer or
the spin of the roulette wheel.

There has always been a rather good market in hot
computer gear such as cards, tapes, or disks but because
of their size, stolen computers have not until recently
entered the picture. In early 1969 a $2,500 Wang
Computer disappeared from the Argonne National
Laboratories. It was later traced to Iowa State Uni
versity by the F.B.I. A student working in a training
program of Argonne had fallen in love with his Wang
computer and took it back to college to do his home
work. However, as computers decrease in size
we can expect to hear of more stolen computers.

Not only is there a good market in computer
gear, but also many a computer hour has been quietly
sold by a third shift operator or a dishonest EDP
manager. Quite often the buyer is even in direct
competition to the establishment where the time is
"stolen" since one's competitor would have the most
suitable machine and software. In late 1967, the
Chicago Board of Education accused five employees
of its data processing bureau of setting up their own
data processing firm while using the Board's equip
ment. These five, who have since resigned, allegedly
were operating equipment during slow hours and had
been doing business with many reputable firms in
the city. '

The state investigating office found itself in a legal
quagmire when becoming involved in this case. Since
matters involving computer misuse, and especially any
unauthorized use, are so new there are very few prece
dents to guide lawyers as to whether something like
this could be considered criminal.

In addition to answering the veracity of the accusa
tion, the following questions must be answered. Does
the use of an unmetered scanner-paid for but not in
use-by those authorized to use it for the Board but
who use it for non-Board business constitute a crime?

The most common theft in the computer business
is in the area of software. Programs can be copied
and sold and the copier is almost guaranteed immunity
from any legal action since the original never dis-

appears. Competitors hire programmers sometimes on
the hope that even if the programmer won't bring
any software with them they will at least bring all
the software ideas with them to their new jobs. There
is no way to estimate software thefts because they
are so seldom discovered and quite often are not even
of concern to the loser.

One rather large software theft case came to light
on the British computer scene. The case involved the
biggest commercial installation in progress in Europe,
the state-financed airline BOAC. The programming
projects involved $100 million programmed on
360/50's and 700 Ferranti terminal displays. The
London Times at the end of April, 1968, printed a
short story which revealed that BOAC was investi
gating the circumstances in which some employees
had expropriated information for consultancy work.

The alleged plagiarism included a combination of
IBl\1:'s PARS (Programmed Airline Reservation Sys
tem) and the corporation's own seven million dollar
investment in software.

Another software house was implicated as the
receivers of the information. It has not been deter
mined whether any legal action will be taken but
company disciplinary measures have already been
taken against employees.

Another software theft which was discovered took
place in Texas. In this case the man was prosecuted
criminally for taking computer programs. He worked
for a company that developed geophysical programs
for oil companies. Each program had a value of about
$50,000. He took programs home to work on them
and kept copies of them. Within a short span of time
he had 50 programs and convinced his roommate to
approach a major oil company with the programs.
The oil company acted like it was interested and
cooperated with the police in accumulating evidence.
Both the programmer and his roommate were tried
and convicted and both received five year prison
sentences.

The Internal Revenue Service has long heralded
their computers as devices to prevent income fraud
so there was some poetic justice involved in the dis
covery in June, 1970, that these same computers had
been used to embezzle money.

No programming frauds have been discovered but
clerical staff has been discovered manipulating input
documents.

One would-be computer embezzler was an adjust
ment clerk who came upon information that some
tax credits were not being claimed, possibly because
they had been misfiled.

Through data she prepared for the computer, she
transferred the credits from one taxpayer's account

Computer Crime 449

to another. Each time the credit was recorded, she
transferred it to another account. When she felt sure
she had covered her trial enough, she credited the
tax credit to a relative and refund checks for $1,500
were duly issued.

The embezzlement was uncovered when the IRS
Inspection Service, pursuing its regular audit program,
came across a complaint from a taxpayer who claimed
he had never gotten credit for $1,500 he had paid.

Another misbehaving computer clerk was caught
through a banker's alertness. This clerk had manipu
lated records and established a false tax credit from a
true taxpayer for a relative. When the relative took
the refund check to the local bank, the banker became
suspicious about the size of the refund and alerted
IRS.

Inspectors retraced the path of the check back to
its source and found the document effecting the trans
fer to the relative.

Recently a news item reported that a spy had
turned over to Communist East Germany business
information on over 3000 West German companies.
A former data processing department employee made
duplicates of tapes stored at his company's leased
time facility and passed these behind the Iron Curtain.

And last but not least, there is the young man who
simply changed the program to accept the last card
of the file as the final total. This was accepted by the
company because no one had time to check out the
computer totals. His only mistake was he went skiing
one weekend and broke his leg.

CONCLUSION

If better protection measures for computer information
are not developed soon, the examples in this paper
will seem small in comparison to the new crimes that
will take place. I have purposely skipped all examples
of sabotage, accidents (man-made or natural), errors
and information thefts that could occur with com
puters. The future holds a real gold mine for a criminal
who specializes in manipulating or stealing computer
information. One good computer raid could have an
immense payoff. If there is any truth in the wise old
saying that we should be able to learn from our mis
takes, hopefully this short history of computer related
crime will alert us and help us to prevent crime in
the future.

REFERENCES

1 W AARON
Embezzlement-detection and control
Speech before the National Retail Merchants Association
EDP Conference 1968

450 Fall Joint Computer Conference, 1970

2 A M ADELSON
Computer bandits
True February 1969 pp 50 74-77

3 A M ADELSON
Whir, blink-jackpot!
Wall Street Journal April 5 1968 pp 1 15

4 B ALLEN
Danger ahead, safeguard your computer
Harvard Business Review November-December 1968 pp
98-101

5 Calculated computer errors manipulate three bank's security;
$1 million lost
Computerworld March 25 1970 P 1

6 Computer takes rap in securities swindle
Datamation August 1968 p 111

7 J DANSIGER
Embezzling primer
Computers and Automation November 1967 pp 41-43

8 Diners club fraud involved printout
Computerworld September 18 1968 p 1

9 Employee accused of illegal computer use
Datamation December 1967

10 FBI tracks wandering Wang
Business Automation April 1969 p 38

11 Fortifying your business security
The Office August 1969 pp 39-52

12 Individual responsiblility
Data Systems News Volume 10 Number 2 February 1969
p4

13 M OTTENBERG
Electronic tax fraud investigated at IRS
The Evening Star Washington DC June 24 1970 p A-I

14 Program plagiarism alleged in UK case
Datamation June 1968 p 91

15 $1 million embezzlement arranged by accountant
Computerworld 1969

TRAN2-A computer graphics program
to make sculpture

by ROBERT MALLARY

The University of Massachusetts
Amherst, Massachusetts

INTRODUCTION

Historically the techniques of sculpture have ten
ded to reflect the technological character and level
of the society in which the sculpture was made.
If primitive man carved bone and the Greeks cast
in bronze it should not be surprising that sculptors
today are using plastics, lasers, strobes, electronic
circuitry and transducers to link art with contemporary
technology. Even so, this still does not account for
why some of us have been using the computer, as
signing it a status above other "art-and-technology"
possibilities and viewing it as nothing less· than por
tentous in its implications for art.1

The computer is special among the technical re
sources previously available to the artist because for
the first time he has a tool, not only for executing a
work of art, but for conceiving one as well. Once a
computer has been programmed to generate a first
rate work of three-dimensional art with no direct as
sistance from a sculptor it will be legitimate to speak
of cybernetic sculpture in the fullest sense of the word.
Until then computer sculpture will qualify as cyber
netic only in the sense that the design process is sub
stantially facilitated by "intelligence amplification"
which is to say, by the use of advanced computer
graphic interactive systems.2

The core problem in computer sculpture is to pro
gram the machine to take in, manipulate and give
back three-dimensional information which can be used
to make sculpture. For example, a Massachusetts
sculptor, Alfred Duca, with the help of IBM pro
grammers, has used a computer tape and an N/C
machine tool to carve out a large and intricate spherical
sculpture in metaJ.3 Michael Noll of the Bell Te1ephone
Laboratories has programmed linear stereo-drawings
which appear three-dimensional when seen in a stereo-

451

viewer. On the other hand, he has apparently made
no provision for constructing an actual sculpture from
this authentically three-dimensional information.4
Others have used 2-D plotter drawings to "suggest"
sculpture, or' have used computer graphic material
to embellish the surfaces of a sculpture, or have used
computer graphic output to determine the flat shapes
to be incorporated into a sculpture. But in none of
these latter programs has the computer generated,
processed or delivered up the real thing in the way of
three-dimensional form information.

TRAN2

In beginning about three years ago to work on
TRAN2 our intention was not so much to anticipate
the computer sculpture of the future, with its awesome
kinetic and form transformational capabilities, as to
take a small but real step ahead within our immediate
resources. However, TRAN2 does qualify as a basic,
or prototype, computer sculpture program in the sense
that it provides for a full description of volumetric
objects within the machine, processes this information
in a meaningful way, and generates a usable output.
Moreover, the program is workable in that it has ac
tually been used to make a series of sculptures (see
Figure 1 and Figure 2). Now written in Fortran IV
for the IBM 1130 computer and plotter, when it has
been rewritten for the display it will be upgraded as
a more ful1y interactive program allowing for the almost
instant manipulation and transmutation of forms.

Form description

Crucial to the processing of three-dimensional form
information-be it architecture, sculpture or indus-

452 Fall Joint Computer Conference, 1970

Figure l-"QUAD III" TRAN2 computer sculpture in laminated
veneer. 60" high-1968. The sculpture was made from plotter
templates provided by the Amherst College IBM 1130 computer

trial objects-is the 3-space depiction of the object
within the machine.5,6 Perhaps there is no "best" way
of doing this, keeping in mind that some methods of

form and space description are more suitable than
others only in respect to the purpose of the program.
For example, MAGI uses a system called "combina
torial geometry"7 to assemble forms within the com
puter, but it is difficult, using this system, to revise
and further develop the forms as freely as a sculptor
would like. Other methods, which refer to surfaces
rather than volumes, would seem to be more promising
for shaping and processing three-dimensional material
assuming, that is, that provision is made at some point
for fully enclosing and defining these surfaces as bound
ed and complete sculptural volumes. 8 But whatever
the system used, if the computer is to be involved with
sculpture in an authentic way it must be given either
a comprehensive numerical description of the material
it is to work with or the means to generate this ma
terial for itself.

In this respect TRAN2 does both, using contour
sectioning, or "slicing," as the basic method of form

Figure 2-"QUAD IV" A TRAN2 computer sculpture in
laminated marble. 11" high-1969

description and form generation. In effect, the form
is s1iced-much as an apple or a chunk or baloney
might be sjiced, into a series of thin parallel cross sec
tions of equal thickness. These two-dimensional slices
comprise a vertical set, or array, of modular form in
formation units which are then graphed, digitized
and encoded onto computer punch cards. Each of the
slices has an axis point and a reference ("tick") mark
to position it on the vertical axis relative to all the other
slices comprising the set. It is by means of this "stack
ing" of two-dimensional data that the program converts
standard computer graphic capabilities to the require
ments of three-dimensional form description.

Two modes for form description input

TRAN2 provides for two modes of form description
input, though others might be devised. The first, called
INITL, requires an antecedent hand-·made "proto
type" form which must be traced three-dimensionally
using a special contour grapher designed for this pur
pose (see Figure 4). The grapher has a swinging probe
which, when held gently against the slowly revolving
form, traces off the contour levels one-by-one and
transfers them to graph paper. These graphs are then
digitized with XjY coordinates, using the vertical
axis as the Z coordinate, and transferred to punch
cards. Between 48 and 100 contours are needed, which
is insufficient to guarantee a smooth, continuous defi
nition of the form (i. e., without a visible demarcation,
or "step," between each contour·and the next), but is a
practical minimum considering the relatively small
capacity of the computer which has been available

INPUT TRANSfORMATIONS OUTPUT

Figure 3-Block diagram showing the basic program structure
of TRAN2

TRAN2 453

Figure 4-Contour sections are being traced from a styrofoam
prototype form mounted in the contour grapher. The contour
"slices" are then graphed and punched onto cards to provide

the form description input for the INITL input mode

to us and the amount of hand work required to trans
late the computer output into an actual sculpture in
the-round.

The second input mode, called PROFIL, dispenses
with the prototype form, but in its place the computer
must be given coded profile drawings (see Figure 5).
Eight profiles are stored at a time, though the computer
needs only on.e to generate a form with radial sym
metry. Two profiles generate a form having two planes
of symmetry and three generate a form with bilateral
symmetry. A set of four different profiles generates an
asymmetrical form, this being the number which is
normally specified unless one of the symmetrical
schemes is used.

By following the typed instructions given to it at
the console the computer "fills in" the form between
the profiles (see Figure 6). In calling up subroutines

454 Fall Joint Computer Conference, 1970

Figure 5-Profile drawings for use with the PROSA input
mode. Needed are two facing profiles on the Y-Z plane, making
four in all. The profiles are generally designed as matching sets,
though eight are filed in the computer at a time and are inter-

changeable

such as ELIPS, OVAL1, OVAL2, and SUPER the
sculptor can generate forms for which all the cross
sections at all levels along the vertical axis are either
perfect circles, ellipses, super-ellipses, or are one of
two kinds of ovals. In other words, the coordinate values
taken from the profile drawings are used by the com
puter to shape these geometrical cross sections (see
Figure 7).

While this ability to generate an asymmetrical sculp
ture characterized by a uniform, and perhaps sym
metrical, geometry throughout all the cross sections
is no guarantee of "beauty," it at least unlocks some
interesting possibilities for sculpture which deserve
further exploration. For that matter, the extensive
use (or should we say over-use?) of symmetry in so
much current computer art has yet to be applied to
three-dimensional structures and configurations, and
even in our use of TRAN2 we have hardly begun to

...... , .. -.6--- .. -: . ~. -= .-. 0-

Figure 6-Diagram showing how the computer uses the PROSA
input mode to combine 4 profiles and from them derive a contour
slice ADBC. 48 of these sections are stacked on the vertical axis
to define a complete form. It can be seen that if the same profile
were to be used in all positions (+ X and -X, and + Y and - Y)
the form would have radial symmetry and all the sections would
be circles. Available as options are yet other systems of symmetry

scratch the surface in this area. Evidence of our con
tinuing commitment to asymmetry, as against sym
metry, is the fact that QUAD, which shapes an asym
metric contour section based on quadrants taken from
four different ellipses, is still the most used subroutine
within the PROFIL group of input subroutines.

The transformation subroutines

The computer, once it has either been given or has
generated for itself the form description data it re-

A

C~-r------------~D

B
A

C~-T----~------~D

B

Figure 7-This diagram shows how the computer, using OV AI.
2, moves the minor chord AB to the center of the major cord CD,
making a cross section which is a perfect oval (AB and CD are
opposite points on two adjacent profile drawings). OVAL I
moves the major chord to the center of the minor chord, ELIPS
moves each chord to the center of the other to form a perfect
ellipse, and QUAD shapes a cross section comprised of quadrants

from 4 different ellipses

TRAN2 455

quires, in effect is converted into a sculptural modeling
and shaping tool. This is accomplished by calling up
one or more of the transformation subroutines such as
EXPND, EXPNT, ROTES, or MOVES. These gener
ate permutations on the form description data by means
of various mathematical functions which stretch and
compress the form in a variety of ways.9 The computer
requests instructions regarding the kind of transfor··
mation which is wanted and the specific values in
volved. For example, EXPND is used to stretch or
compress a contour section on the X or Y coordinate
or on both. If 1.0 is typed for X and the same for Y
there is no change in contour section or in the over-all
form. But if 0.5 is typed for X and 2.0 for Y the form
is halved on X and doubled on Y. Because the comput
er calculates these values for only one contour at a
time, and in sequence, it is possible to specify incre
mental transformations, either of a positive or negative
kind. In this way the sculptor can induce a more drastic
transformation at the top of the form than at the bot
tom (or vice versa).

In understanding the action of these transforma
tion "templates" it is important to bear in mind their
dependence on the underlying structure of the program,
based on the stacked layers of contour sections, which
limits them to the X/Y horizontal plane. As yet no
provision has been made in TRAN2 to introduce trans
formations on the Z, or vertical, coordinate. EXPND,
which is TRAN2's most basic "modeling tool," evenly
stretches or compresses the contour section over the
X/Y plane of transformation. In other words, the form,
in respect to its length and breadth, is uniformly
stretched or compressed-which means that the kind
of transformation is constant even when the values
are changed.

EXPNT (for exponential) surmounts this invariance
in offering the sculptor a wider range as regards the
kind of transformation permutations available to him.
Crucial to this much enlarged transformational capa
bility are various logarithmic and exponential func
tions and values which can be typed in.10

For example, using EXPNT the form can be com··
pressed on one side and expanded on the other, or the
degree of expansion or compression can be made to
vary continuously along the X/Y plane of transforma
tion. Once TRAN2 has been given a graphic console
and provided with proper instrumentation it should
be possible for the sculptor, using the typewriter and
function keys, to specify the class of transformation
he is seeking while he spins a knob in order to con
tinuously vary the values. This will enable the sculptor
to scrutinize his creation, which is slowly swelling and
contracting on the display, while he waits to seize the
moment it "gells"-either as the original image in

456 Fall Joint Computer Conference, 1970

Figure 8-TRAN2 perspective plotter drawing of a sculptural
form, which can be thought of as a preliminary sketch or "study."
The sculptor decides on the basis of these drawings whether to

complete the sculpture in some durable material

his mind's eye or as an unexpected discovery. The
sculptor should also have the option of subjecting his
form to a series of transformation sequences which
are more or less automatic in their operation. As
programmed transformation "scenarios" they will be

Figure 9-Photo of a complete set of plotter drawn contour
sections ready for projection onto the material to be used in

making the TRAN2 sculpture

Figure lO-A contour section has been projected and traced
onto a %H thick piece of luaun veneer and is being cut out with
a bandsaw. Marked on the veneer are the center hole and a
registry mark used to properly orient the slices in the stack as

the sculpture is being assembled and laminated

only partially under the control of the sculptor in the
sense of his fully anticipating what happens next. They
will be useful, not only as an expanded computer-aided
design resource, but for their cinematic possibilities.
As a third option the sculptor should also be able to
"harden," or "fix," any of the transformation permu··
tations at any given strategic point in the procedure,
using this new data set to replace the original form
description material as the basis for a further round
of transformation sequences.

Using ROTES incremental transformations can
also be used in order to rotate, or twist, the contour
sections sequentially-the final result being to twist
the form as a whole. Using this subroutine forms have
been twisted 3600

, and even 7200
, about the axis (with

rather bizarre results, it might be added). In general
a subtle, less drastic, rotation is preferable-for ex-

ample, the 60° rotation used in designing QUAD III
(see Figure 1).

It should be emphasized that the TRAN2 trans··
formations are cumulative-i.e., in being added to
gether in sequence they are in effect combined. For
example, the initial input form can first be expanded
using EXPND, then have its center point shifted on
the XjY plan using MOVES, then be twisted using
ROTES. Sorely needed is a subroutine on the order
of MOVES, but more versatile and drastic in its trans
formations. This subroutine would completely re
orient the sculpture relative to its axis, thereby as
signing it a new top and bottom and a new set of con
tour sections. By enabling the transformations to work
on the form from any direction, and along any desig
nated plane of transformation, the number of trans
formation possibilities would be multiplied many times
over.

Figure l1-The center hole is drilled

TRAN2 457

Figure 12-The cut out luaun sections are stacked on a steel rod
preparatory to gluing and laminating

The output subroutines

The group of output subroutines determines the kind
of drawing the computer is to m~ke. PERSP specifies
a perspective drawing (see Figure 8), the sculptor
typing in the angle of vision he wants-at, above or
below eye level. He also specifies the view or views he
wishes, which is apt to be a complete set taken at
regular intervals around the form. By instructing the
plotter to make a series of drawings-say, at 15° or
30° increments, he in effect revolves the form before
his eyes and achieves a rough idea of what it would
look like if he were actually to construct it. It is in
this sense that TRAN2 is an example of how computer
graphic techniques can be exploited by the sculptor
to extend and enhance the usefulness of drawing as a
way of sorting and clarifying visual ideas preparatory
to execu.ting them ina three-dimensional medium.

CONTR calls up a plot of the entire set of contour
sections as orthographic projections (see Figure 9).

458 Fall Joint Computer Conference, 1970

Figure 13-The stacked sections have been laminated together
and the irregularities ground down and smoothed

Each of the contours includes both a center point and
a reference mark to orient the contours in the proper
position one to the other. The entire set of contour$
is photographed as an 8XI0 inch positive transparency,
inserted into an overhead projector, projected onto
some appropriate material such as wood or plastic,
and traced. The set of traced contours is then cut out
(see Figure 10), the center holes are drilled (see Figure
11), and the contours are stacked over a metal rod
(see Figure 12). Final1y the contours are glued, lami
nated together under pressure, ground down to remove
the "steps" and irregularities (see Figure 13), and
smoothed and polished. These, of course, are manual
operations at the handicraft level, but in principle,
inasmuch as the computer has generated all the es
sential three-dimensional information, the sculpture
could also be made using an NjC milling machine.

Capabilities of an improved TRAN2 program

TRAN2 is slow in its operation when measured
against the potential of a large c.p.u. and a true inter
active program. It is also limited in that it can handle
solid, volumetric forms oriented around a central axis;
concavities are possible using the INITL input mode,
but undercuts are ruled out. Nor is it possible, using
PROFIL and its maximum of four profiles, to generate
a concavity-though the addition of, say, 12 profiles
might improve the situation in this regard (see Figure
14). It will be necessary either to enormously expand
the resources of TRAN2, or to develop a library of
specialized computer sculpture programs, if planar,
linear and open-form sculptures are to be made using
the computer.

An ideally interactive program along the lines of
TRAN2 wou1d allow the sculptor to draw his profiles
directly on the display using a light penH or sketch
pad arrangement. 12 He should then be able to evaluate
his work by referring to a graphic display which shows
the form slowly revolving about its axis. Next he should
be able to set in motion a series of transformation
scenarios of the type already described, then switch
back to the sketch mode-perhaps to refine the details
of the form with the light pen or stylus. If he should

Figure 14-A diagram showing how 12 profiles, instead of the
4 now used in PROSA, will permit the sculptor to introduce
concavities into his form and generate more complicated and
interesting surfaces. Needed is an elegant algorithm to generate

the smooth continuous curve which links the 12 points

decide he has taken a wrong turn at some point he
should be able to call upon the computer's memory
and return to an earlier stage in order to try some
thing else. In other words, the program should have
what amounts to a quick rewind and playback capa
bility based on a complete and permanent log of the
entire design process. Apart from its value to the
sculptor, a record of this kind might also be valuable
as a way of investigating systematically the dynamics
of the creative process and determining how one sculp
tor works as against another in creative problem solving.

It might also be helpful for the computer sculptor,
as for the architect as well, if he could rely on multiple
displays, each unit providing information regarding
a different aspect of the on-going problem. For example,
he might study several views of the same sculpture
at once, compare two or more current versions, or
refer back to an earlier version for comparison. Even··
tually a practical stereo display, and possibly a holo
graphic display,14 wjll optimize the efficiency of com
puter graphic systems for communjcating three-di
mensional form information with maximum visual
clarity and precision. In fact, we might define the
eventual goal of computer graphic systems as pro
viding the sculptor, architect or designer with a virtual
real-life experience of the form-in-progress so he may
design it better, more rapidly and with more assurance
that it will conform to his expectations once it has
actually been made.

A look over the horizon

The computer sculptor will make better use of
the computer to evaluate his work-in-progress when he
no longer has to rely on the rather crude wire cage
drawings to which graphic displays are now generally
restricted. A minimal step in the right direction would
be a drawing consisting of black lines against a white
field to replace the reverse image of white on black.
More remote, though beginnings are being made,13, 14
would be a simulated light and shadow version of the
form on the display giving the sculptor the option of
simulating a procedure he is apt to follow in his own
studio-namely, to adjust and vary the light
ing on the form for the clearest effect. Sequencing
the shifting patterns of mobile lighting configurations,
either with real lighting equipment or as simulated
images on displays, is an obvious computer potential.

Cybernetic sculpture

Ultimately interactive programs will become truly
cybernetic in the sense that the computer will move

TRAN2 459

beyond computer-aided intelligence amp1ification (com
puter-aided desjgn, in other words) into the more
creative aspects of the design process. The c9mputer
will be more than a "slave"; it will be more like a col
laborator or a virtual surrogate for the sculptor him
self. According to his inclinations the sculptor will
vary the manner and degree of his involvement with
the computer. He will use and interact with it, monitor
it or leave it, as it were, to its own resources.

CONCLUSION

The sculpture now made with the help of TRAN2
does not forecast the look of the computer sculpture
of the future, which will be mainly kinetic, have multi
media features and will probably be based on a cinema
type projection system Ijnking the computer with
holographic techniques. The relevance of TRAN2
in this connection is that-apart from the claims to
be made for it as one of the very first pioneering efforts
in the field-it does forecast, in its use of mathematical
methods, an approach to form description, as well
as form manipulation and metamorphosis, which wiJl
be crucial to these kinetic media of the future.

In conclusion I feel it an obligation to remind those
who know more about computers than they do about
art that I am at outs with some of my more conserva
tive artist colleagues who deny that the computer
can make any constructive contribution to art at an.
But what is more nettling is that I am also at outs with
some of my more avant-garde colleagues who will
acknowledge (or even insist) that the computer can
play a role in art but that TRAN2, which according
to them is involved in an anachronistic kind of "ob
ject" art, is not a valid way to go about it. I differ
with these latter critics in holding that "object" sculp·
ture (which is the kind most people think of, whether
it be realistic or abstract, when they think of sculpture
at all and which is the only kind we can as yet make
with TRAN2) still offers unexplored potentialities for
the computer to help uncover.

In any event, a beginning must be made at some
point, and for the present it may be a sufficient achieve
ment to have demonstrated that the computer can
play a role in the making of sculpture-all apart from
the question of how well it has done so.

REFERENCES

1 J REICHARDT
Cybernetic serendipity, the computer and the arts
Studio International London and New York 1968

460 Fall Joint Computer Conference, 1970

2 R MALLARY
Computer sculpture: six levels of cybernetics
Artforum Vol 7 No 9 pp 29-35 May 1969

3 R CHANDLER
Design for numerical control machining
Machine Design pp 4-24 February 15 1968

4 A M NOLL
The digital computer as a creative medium
IEEE Spectrum Vol 4 pp 87-95 October 1967

5 W FETTER
Computer graphics
Annual meeting of the American Society for Engineering
Educators 1966

6 C M THEISS
Computer graphic displays of simulated automobile dynamics
AFIPS Conference Proceedings Spring Joint Computer
Conference Vol 34 p 289 1969

7 MAGI
Description of the MAGI technique for accurate modeling and
graphic display of three-dimensional objects
Mathematical Applications Group Inc White Plains
New York 1967

8 T M P LEE
A class of surfaces for computer display
AFIPS Conference Proceedings Spring Joint Computer
Conference Vol 34 p 309 1969

9 C CSURI J SHAFFER
Art, computers and mathematics
AFIPS Conference Proceedings Fall Joint Computer
Conference Part 2 Vol 33 p 1293 1968

10 C CSURI
Leonardo: circle to square transformation
The Magazine of the Institute of Contemporary Art
Number 5 London pp 27-28 August 1968

11 I E SUTHERLAND
Sketchpad: a man-machine graphical communication system
MIT Lincoln Laboratory Technical Report No 296 January
1963

12 M R DAVIS T 0 ELLIS
The rand tablet: a man-machine communication device
AFIPS Conference Proceedings Fall Joint Computer
Conference Part 1 Vol 26 P 325 1964

13 C WYLIE G ROMNEY D C EVANS'
A ERDAHL
H ali-tone perspective drawings by computer
Technical Report 4-2 Computer Science University of
Utah-Salt Lake City Utah February 12 1968

14 H WILHELMSSON
Holography: a new scientific technique of possible use to the
arts
Leonardo Pergamon Press Oxford England VolIN umber 2
pp 161-169 April 1968

Manufacturing process control at IBM

by J. E. STUEHLER

IBM Corporation
Boulder, Colorado

INTRODUCTION

IBM manufacturing facilities in both the United
States and Europe have installed computer systems of
essentially identical design to aid in the control of
many types of manufacturing processes. The basic
structure of the system is depicted in Figure 1. One or
two central computer systems (IBM System 360) are
attached to several satellite computers (IBM 1130,
1800 and 360 processors) via a high speed Transmission
Control Unit (multiplexor).

The satellite computers attach to, and control,
various types of manufacturing process and test equip
ment. The central computer system serves as a data
bank, processor and shared input/output device for
the satellite computers. It provides for storage and
analysis of process data. The central computer mini
mizes the cost and size of the satellite computers by
performing tedious calculations, providing the facilities
of a large data base, and reducing input/output re
quirements. When used, the second central system pro
vides backup, additional capacity, and a better response
in a duplexed mode of operation.

This system structure was developed so that one
basic design could serve several IBM facilities, thus
reducing the hardware and software development costs
that would be incurred if each facility were required to
develop its own manufacturing process control sys
tem(s). In addition, the common design was able to
draw upon the combined resources of several locations
in order to make optimum use of critical skills.! An
other major advantage of the common control system
is in minimizing the cost of transferring products for
manufacture from one location to another.

This paper will describe the requirements for, and
development of, the common system. Also included
are some of the problems encountered and the over
sights, now corrected, that occurred during develop
ment and implementation.

461

HISTORY

The earliest major manufacturing process control
system to be implemented in IB1VI was the system
known as COMATS (Computer Operated Manufac
turing and Test System).2 This system consists of a
pair of duplexed 1460 Data Processing Systems which
are attached to numerous satellite processors through
a high speed multiplexor (Figure 2). The satellite pro
cessors are specially developed computers which provide
the control required to test most of the disk storage
products for which the system was designed. The sys
tem was conceived to reduce the costs associated with
developing, building and maintaining special test
equipment to do a similar job.

After COMATS became operational, it was obvious
that many other manufacturing facilities in IBM had
control requirements that could be met by a similar
approach. However, each IB1VI plant manufactures,
in general, products requiring their own particular test
and process control philosophies. COMATS, as imple
mented, would not meet all needs. Therefore, in order
to save each manufacturing location the cost of de
veloping a unique system,a system versatile enough
to meet the needs of most plants was developed.

THE MANUFACTURING ENVIRONMENT

The types of manufacturing processes in IBM extend
from the fabrication of microelectronic components
through the assembly and testing of complex electronic
processors; and involve tiny, precision machined parts
through large, electromechanical data processing input/
output equipment. The processes required to produce
these and other IBM products can, however, generally
be classified among five categories:

The first is a process which produces a large quantity
of a single type of electrical or mechanical component
such as a magnetic disk or core, or a tape or disk head.

462 Fall Joint Computer Conference, 1970

CENTRAL
SYSTEM 360

r------,
I CENTRAL I
I SYSTEM 360 I
I (OPTIONAL) I
L __ • __ -1

l
I

r-----.J

J
TRANSMISSION
CONTROL UNIT
(MULTIPLEXOR)

~_---,t f f L ______ ,
SATELLITE l

COMPUTERS
.--_L--";"-'

1130.1800
OR 360

COMPUTERS

r-l-,
I I

--______ --1 I
I I
I I
L.--rJ

I I
I I
I I

,1.. ___ L,
PROCESS AND I I

TEST EaUIPMENT I I
---------1 I

I I
I I L ____ 1

Figure I-Manufacturing process control system used in IBM

The computer may be used here to control the mecha
nized operatio~s. In addition, a great deal of process
optimization is possible when the computer is used to
collect and analyze data to determine the effect of each
process variable.

The second type of process produces many "cus
tomized" variations of a single product. Examples
include integrated circuits and printed circuit boards
and cards. The computer can play an important role
here by optimally controlling the process and test
equipment. However, the computer must also supply
information to the manufacturing process to "cus
tomize" the product. This requires obtaining and
storing large amounts of engineering information as to
how each component is to be made and tested.

The third type of manufacturing process produces
mechanical and electrical assemblies and subsystems.
Product examples include central processing units and
input/ output equipment such as printers, tape drives,
displays, etc. The process consists of assembly and test
operations. Most of the assembly operations are diffi
cult to mechanize. However, the computer may be
used to give assembly instructions. An important role

the control computer can play is in testing.3 The com
puter can supply customized diagnostic programs· for
assemblies under test, provide the control logic re
quired to test electromechanical input/output devices,
and retrieve and analyze test results to provide pro
cessed output for use in correcting assembly problems
9,nd controlling quality.

The fourth type of manufacturing process is general
machining of mechanical components. The computer
may be used to control the machining and measure
ment equipment. It is possible for the computer to
feed back measurement data to machine tools to con
trol and optimize the process. In addition, the computer
is required to convert engineering information into tool
instructions for each unique part to be machined .

The fifth type of process actually resides in develop
ment rather than manufacturing. An important step
in the development "process" is in proving the product
to be manufacturable. In order to experiment with
process variables, a flexible and easily programmable
control system is required. Furthermore, test data
analysis is important to determine the effects of varying
process parameters.

The manufacturing environment may be further
characterized by considering that anyone plant may
employ more than one of the above types of processes.

1460
DATA PROCESSING

SYSTEM

SPEC~AL

PURPOSE
COMPUTER

MULTIPLEXOR

Figure 2-COMATS

1460
DATA PROCESSING

SYSTEM

Furthermore, a manufacturing process may be spread
out in several buildings at distances of up to a mile
apart. The processes continuously change to allow the
introduction of new products or changes to existing
ones. In general, each change must occur rapidly in
order to keep pace with development and market re
quirements. Another trait of the manufacturing en
vironment is that entire manufacturing processes are
sometimes transferred totally from one location to
another to balance work loads. Often a manufacturing
process will be installed in two or more facilities for
increased production and/or emergency production.

SELECTION OF A SYSTEM APPROACH

With an understanding of the manufacturing en
vironment, the requirements for a common control
system can be identified. The most significant of these
includes sensor based input/output capability, exten
sive information handling and storing capabHity,
modularity with the ability to easily and rapidJy install
new applications, the ability to mix and transfer all
types of applications, and certainly not least important
is the requirement for economy.

The satellite computer system concept,4-9 as illus
trated in Figure 3, best implements the above require-

CENTRAL
DATA PROCESSING

SYSTEM

Figure 3-Satellite computer system concept

Manufacturing Process Control at IBM 463

ments. The satellite computers interface to process and
test equipment through sensor based input/ output.
These satellite computers may be transferred from one
location to another and additional satellites may easily
be added to expand an existing system. The central
processor can provide extensive data analysis and large
data banks, while minimizing the need for such capa-

, hility at the satellite.
Two other possible approaches to developing a manu

facturing process control system were considered and
eliminated for the purposes described here.1o A single,
large central computer system would not provide the
power, versatility and modularity required. This is
because of the number of different types of control
applications in a given IBM plant, and because each
such application normally undergoes frequent change
which would be difficult to cope with on a single com
puter system without affecting other applications. The
use of a separate' control computer for each process
would not be adequate because of the expense in pro
viding data banks and information analysis capabilities.
In addition, the cost of duplicated input/output equip
ment and redundant programming would be much
greater than with the satellite approach.

DEVELOPMENT AND IMPLEMENTATION

Central computer system

The IBM System/360 was considered the most
practical system for use as the central computer. The
primary considerations were growth capability plus
the existence of many types of input/output equipment
and commercially available programs. Only third
generation data processing equipment was considered
in order to provide state-of-the-art experience and
motivation for the skilled programmers who would be
needed to design the applications programs and im
plement an operating system. Other IBM data pro
cessing systems were considered which were generally
lower in cost than the 360. These systems may have
satisfied the needs of some types of processes where
large data banks and a great deal of data analysis were
not required (example: testing and process develop
ment). However, they had limited growth capability
compared to the 360; and they did not have the larger
analysis and input/output capabilities required in the
other process applications. Therefore, at the expense
of possibly "over computerizing" some very few loca
tions, the System/360 was selected to mai:Qtain
commonality.

464 Fall Joint Computer Conference, 1970

Satellite computers

It would be desirable to use a single type of satellite
computer in order to minimize programming and main
tenance costs through familiarization. However, be
cause of the diversity of control requirements at the
process level, this was not possible without greatly
increasing the average cost of each control application.
The amount of control logic required for process or
test equipment is inversely proportional to the logic
capability of the product being produced or tested.
That is, more "intelligence" is required to test compo
nents than is required to test input/output devices.
Similarly, more intelligence is required to test input/
output devices than is required to test systems. Thus,
in general, IBM 1800 and 360 Systems are used to
control process and test equipment which produces
components (process types one and two) while the
lower cost and lower powered 1130 System is used on
products having higher intelligence (process types
three and four). The 1800 Systems are interfaced to
process/test equipment through digital and analog
input/output channels. The 360 and 1130 Systems are
interfaced via special hardware connected to the
Original Equipment Manufacturers (OEM) channels.

System response

To keep the cost of the satellite computers low, it is
necessary to minimize the data processing requirements
(amount of core and speed) and the input/output equip
ment required at the satellite. Thus, the satellite com
puter will be heavily dependent on the central computer
for these services. However, when the satellite· com
puter requires data or programs from the central com
puter, or is required to send data to the central com
puter, it cannot wait for a long period of time as the
process or test equipment may also have to wait
(requiring more production equipment and higher im
plementation costs). Ideally, the satellite computer
should be able to send or receive data from the central
system as fast as the satellite could access its own files
if it had them. Thus, a system design specification for
simple data/program transfer was established at 500
milliseconds 95 percent of the time with the central
system handling 3600 interrupts/hour (an average of
one interrupt per second). This specification is the
length of time the satellite computer must wait from
the time it requests a program or data from the centra]
system (or requests the central system to take data)
until the program or data (an average of 2,000 bytes)
has entered the satellite (or the satellite has sent 2,000
bytes of data). This specification places severe require-

ments on the communications system between the
satellite and central computers as well as on the central
computer's operating system.

Communications system

A multiplexor was required to allow communications
between the satellite and central computers. The re
quirements of such a device included:

Modularity in the number of attachable satellites to
allow growth (a maximum of several hundred satellite
computers in some facilities was considered reasonable
while other facilities might never have more than a
dozen).

Distance capabilities for communicating up to one mile
were required to be able to cover a plant site.

CPU A
(SELECT07 CHANNEL)

I

MICRO
PROGRAM
CONTROL

lOGIC

./)

CHANNEL
INTERFACE

SERIALIZING
AND

DESERIAlIZING
lOGIC

1

CPU 8

I

I

()

~-..l--T __ -L.-_-,-_______ --.----'---1

CHANNEL
1

CHANNEL
2

r-'\.lr---O-~- SATELLITE COMPUTER :!:,.

Figure 4-Transmission control unit (TeU)

CHANNEL
512

Channel bandwidth for transmission in the megabit/sec
range was needed to minimize satellite waiting time.
That is, the channel bandwidth should be of the same
order of magnitude as the central CPU channel and
file transmission rates.

Serial by bit transmission was required to minimize
cabling costs.

High reliability of transmission was required to
allow operation ln an electronically noisy factory
environment.

No commercially available multiplexors were found
to be suitable under the above requirements. A Trans
mission Control Unit (TCU) was, therefore, developed;
this unit is shown schematically in Figure 4. The TCU
is basically a micro-programmed, solid state switch
which provides polling and allows the communication
of either of two central 360 computers with any of up
to 512 satellite computers (modular in groups of 64).
The TCU also provides serializing and transmission
logic which allows transmission of serial by bit data
over a single coaxial cable ata rate of 2.5 megabits/
second. The number of bits in error is less than one bit
for every 10 to the eighth bits transmitted. The TCU
communicates with a satellite computer via a transmis
sion adapter.

Central computer operating system

Some of the more important characteristics of an
operating system in the central system include the
following:

Response time to accept an interrupt from the TCU
and begin processing should be of the order of a few
milliseconds to provide the response required by the
satellite computer which may be waiting.

I nput/ output support for many different types of de
vices is required to allow the system to be applied effec
tively in the different process environments. That is,
one environment may require small, fast-access files
while in another environment slower access to large
quantities of information is required. Differences may
also be found in the requirements for graphic terminals,
printers, tapes (for history), etc.

Multi-programming is required to allow one or more
satellite computers to receive service while file accessing
or other input/output operations are pending for an
other satellite computer. This capability greatly re
duces the waiting time due to queues for the satellite
computers.

Manufacturing Process Control at IBM 465

Support software such as compilers, assemblers, analysis
routines, etc., is required to minimize programming
costs and the need for programmers.

Modularity is required in order to minimize the price
the small user must pay in core storage overhead which
is required to obtain the sophistication needed by the
larger user (examples include number of levels of
multiprogramming, requirements for compilers, con
current operation of peripheral input/output devices,
types and amounts of input/output equipment, etc.).

Two approaches were considered to implement the
above major requirements. One was to develop a
special operating system and the other was to imple
ment a commercially available one. The special oper
ating system would be best from the standpoint of
response and amount of core required since it could be
customized to perform well in these areas. The dis
advantages were that a great deal of development
work would be necessary to provide the versatility re
quired to support the varied input/output require
ments at each using location. Furthermore, advantage
could not be taken of already available compilers and
utility programs designed to operate under a com
mercially available operating system. For these reasons,
the decision was made to use a commercially available
operating system. 11. 12

The best system available to provide multipro
gramming capability was the IBM Operating System/
360 (OS/360) which was augmented by a "Secondary
Control Program" to provide a "real time" multipro
gramming environment for supporting the satellite
computers. This combination of OS/360, the Secondary
Control Program and an input/output appendage to
support the TeU is referred to as the Process Control
Operating System (PCOS). The core map of the
central computer is illustrated in Figure 5. TCU com
munications and TCU-detected errors are handled by
the TCU appendage. All TCU interrupts are passed to
the Secondary Control Program which invokes either a
core or disk-resident Service Module (real time pro
gram) to handle the interrupt. The Service Module
may (if required) initiate a background program to
perform analysis on information the satellite computer
has sent. The Service Modules always have priority in
utilizing the central system resources. This allows a fast
response to a satellite request for service.

Normally, the time required to enter a core-resident
Service Module after the TCU posts an interrupt to the
central computer is less than 25 milliseconds (if the
service module is not active).

A drawback of using OS/360 as compared to a special
purpose operating system is in the amount of core re
quired. A Model 40 is the smallest system in the 360

466 Fall Joint Computer Conference, 1970

OPERATING SYSTEM 360
NUCLEUS

TRANSMISSION CONTROL UNIT APPENDAGE

SERVICE MODULE 1

SERVICE MODULE 2

I I
SECONDARY I CONTROL

I I PROGRAM

I I
I I
I I

SERVICE MODULE N

BACKGROUND PARTITION 1

-

BACKGROUND PARTITION 2

-- I - I
I I
I I
I I
I I

BACKGROUND PARTITION N

'-- - -

Figure 5-Process control operating system (POOS)

line which can effectively run OS/360. This again is an
expense to some locations which might have started off
with a 360 Model 30 as the central computer if a
"special" operating system had been developed.

CONSIDERATIONS IN RETROSPECT

Experience has revealed two problems that have now
been solved but were not originally anticipated. One
was a hardware design problem and the other a soft
ware problem. After the TCU specifications had been
determined, any location planning on the first usage
of a type of satellite computer (i.e., 1130, 1800, or 360)
had the responsibility to develop the unique transmis
sion logic adapter between that type of satellite com
puter and the coaxial cable which connected to the
TCU. It was later learned that each designing location
had developed an interface completely different from
the others. As a consequence, common software in the
central system could not be used to communicate
with every type ofsatel1itecomputer. This was because
each type of transmission logic adapter presented differ
ent status indicators to the TCU or responded differ-

ently to TCU commands. Furthermore, since each
adapter was designed differently, an engineering
change placed in the TCU might affect some adapters
adversely while not affecting others. This put a handi
cap on the TCU designers.

This problem was solved by developing a common
transmission logic interface which could be used by
every type of satellite computer. The common adapter
was then uniquely interfaced to a particular type of
satellite computer as illustrated in Figure 6. Now all
satellite computers look the same to the TCU and
central system software.

CENTRAL SYsTEM(S)

TRANSMISSION
CONTROL

UNIT

,F))1) ~)
~---~.. TO OTHER

SATELLITES

<)

COMMON
TRANSMISSION

INTERFACE

UNIQUE
INTERFACE

SATELLITE
PROCESSOR

Figure 6-Transmission logic scheme

,
I

~

The software problem had to do with the definition
(or lack of definition) of the Service Modules (real time
programs) which reside under the Secondary Control
Program. Most system users were developing Applica
tion Service Modules to be unique to a given applica
tion. As an example, a particular tester would require
one or more unique Service Modules to completely
support it; and these "Application" Service Modules
could support no other application. Other using loca
tions, however, began development of "System Service
Modules." A single System Service Module could pro
vide service to two or more applications. An example
might be a System Service Module to retrieve informa
tion and store it on a file for any application, whereas
each Application Service Module contained its own
retrieval logic. The benefit of System Service Modules
is that these routines, which can be common, would
have to be developed only once. However, there is an
initially high development cost for each such Service
Module since they must offer a great deal of versatility.

The problem presented by having these two philos
ophies was that applications developed to be run on a
system using System Service Modules could not easily
be transferred to another location without also tr.ans
ferring the System Service Modules or rewriting the
application programs. This problem was solved by
defining and developing a common set of System
Service Modules which can be considered an integral
part of the operating system. Being able to change this
philosophy of operating system function attests to the
need for a great deal of operating system versatility.
It is not unreasonable to expect that other conceptual
changes will be made in the future based on knowledge
not yet gained.

DEVELOPMENT AND IMPLEMENTATION

Architectural, as well as hardware and software
specifications for the system were developed by repre
sentatives from each user location in 1967. Develop
ment responsibility for portions of the hardware and
software were assumed by several of IBM's manu
facturing locations. In 1968, the components of the
system were brought together at a single IBM manu
facturing facility in Boulder, Colorado, for successful
system testing. The system is presently installed. and
operating in nine domestic and two European IBM
manufacturing plants with plans for implementation
at several other plants. The need for a versatile system
approach can be attested to by looking at how the
common process control system is applied at several
IBM locations. At two locations, 30-50 satellite 1130
computers are being used for testing electromechanical

lVIanufacturing Process Control at IBM 467

Input/ output devices. Both of these locations utilize
the central system as the satellite's input/output device
(storing programs, reporting, etc.). Furthermore, the
central system performs test data and defect analysis
and reporting for the Quality Engineering organization.
Two other locations use the system heavily for con
trolling processes producing magnetic components.
Here some satellite computers (e.g., 1800's) are used
to control process variables while other satellite com
puters (e.g., 1130's) control test equipment. The central
computer is used to store and correlate test results with
process variables, thus allowing process optimization.
As soon as enough history can be built up, process
models can be designed and installed in the central
system to better control the processes. Two other
locations use the system primarily for supplying test
programs to central processing units undergoing test.
Here the central system stores and supplies large
diagnostic programs to satellite computers. The central
system collects test and diagnostic data for engineering
analysis. One of these two locations uses its system to
give assembly instructions via display units to assembly
personnel working on complex electronic subassemblies.
One IBM location uses its system to test complex inte
grated eircuit memory modules. Here the central sys
tem must supply test data to satellite computers which
control test equipment. Again, the central system re
ceives, analyzes reports and stores relevant test data
received from the satellite computer. Other IBM loca
tions have combinations of the above applications in
stalled on their systems. The number of satellite com
puters range from half a dozen at one location to over
50 at another. Central system configurations include a
single System 360 model 40, a pair of model 50's, and a
single model 65. All using locations appear satisfied
with the flexibility the system affords.

SYSTEM PERFORMANCE

It is impossible to generalize any system performance
criterion because of the differences in system configura
tion implemented by each using location (i.e.,· types of
input/ output, size of processor used, features of oper
ating system utilized, etc.). However, a "representa
tive" location has installed 22 satellite 1130 computers
on a System 360 model 40 central system with 256 K bytes
of core. They utilize the multiprogramming with a fixed
number of tasks (l\1FT) version of the 360 Operating
System and use a 2314 Disk Storage Unit as their bulk
file. The observed response of their system closely
follows the results of the simulation of their system
which is depicted in Figure 7. This shows that 1890
messages per hour can be handled with a response of

468 Fall Joint Computer Conference, 1970

8

5

.. 90% OF RESPONSES
WITHIN THIS LINE

(I)
Q
Z
0
U
UI
(I)

~ 3
UI
(I)
Z

~
UI
a:

2

o 5 10 15

MESSAG[S/HOUR IN THOUSANDS

Figure 7-System simulation

300 milliseconds (90 percent of the time). The system
performance specification of 3600 interrupts/hour being
handled within 500 milliseconds is shown to be met.
Other data show that with 1890 interrupts/hour, the
system is 20 percent utilized (with no background pro
cessing). Input/ output is one percent utilized. The
Service Modules (application programs) servicing the
interrupts had run times ranging from one to ten milli
seconds with an average of seven milliseconds. There
was an average of two file accesses per interrupt.

Another measure of system performance is central
system availability. This again varies greatly from
location to location. However, a represeI\tative system
(as described above) reports that their system is avail
able 423 hours out of approximately 429 per month.
(The system is utilized on a two and a half-shift, five
day/week basis.)

Most using locations agree that the major cause of
system down time is due to central system software
problems. The causes of these problems include:
operating system faults, PCOS faults and (most fre-

. quently) operator or programmer errors. This problem
is being reduced significantly by developing better
error handling and recovery routines into PCOS.

THE FUTURE

With a common system structure established in these
IBM manufacturing plants, it is now possible to de
velop additional common system services and
applications.

A present concept is a high level Process and Test
Language (PTL) which will allow an engineer with
minimum programming experience to efficiently and
rapidly apply a satellite computer to control process or
test equipment using the central systems resources for
compilation.13 The test or process engineer can develop
the control logic using macro statements in high-level
Janguages he can easily learn.14 Similar statements can
be used to send process/test information to the central
computer where programmer-written routines can
analyze, store and report on the information.

Projected for the future are satellite computer driven
machine tools with numeric control processors and
post processors resident at the central computer and
accessible by the satellite. It will be possible for ma
chine parts programmers to directly enter macro pro
gram statements in the satellite computer or a terminal
device to make a new part or modify an old. These
.statements will be sent to the central computer for
checking and compilation. The result of the compilation
will return to the satellite computer to cause execution
by an on line machine tool.

Process Automation programs which reside in the
central computer will be developed to directly accept
raw development (engineering) information. 15 These
programs will then interpret the design information
and send process information to satellite computers
which will be used to control process and test equip
ment. Among other benefits, this will allow a very
fast response to product/process engineering changes.

A common quality assurance analysis programming
system which will reside in the central computer is
being considered. This will allow the Quality Control
Engineer to easily use complex statistical methods in
analyzing process information when anew application
is installed on the system. It is possible that the Quality
Control Engineer will, in the future, be directly enter
ing high-level (macro) statements in a language like
PTL into the satellite computers. These statements
would specify data he would want collected and indi
cate to the central system what kind of analysis to be
performed on the data.

Another important future aspect is the more sophis
ticated use of data management techniques. Such tech
niques will allow a user to directly access system data
banks to retrieve test and/or process data without the
aid of a programmer. The user will then be able to

specify statistical programs to operate upon the data
and methods for presenting the final output.

The process control central system will be interfaced
to other manufacturing information systems which
process information pertaining to production, ware
housing, maintenance and in-process inventories. In
formation to be passed to those systems from the
process control system includes production yields,
equipment down time, units in process, units tested,
etc. By completing the tie of process control systems
to manufacturing information systems, plant automa
tion becomes possible.16,17

SUMMARY

The justification for undertaking a common manu
facturing process control approach in IBM was to
reduce redundant hardware and software development
and implementation costs at each IBM location. This
has been accomplished. In addition, it was possible, by
pooling ideas, to develop a system superior to that
which a single location could have developed. This
pooling of ideas and knowledge has ultimately led to a
process control solution which, in general, reduces the
costs of installing new manufacturing processes and
of modifying existing ones.

Although the system as described in this paper is
installed and operating at several IBM facilities, it
appears to be only a first step toward automation.
Almost daily, new ideas are born by one or more users
of the system as to how new functions could be added
to the system to either further reduce the implementa
tion cost of new applications or to improve the quality
of products being manufactured under control of the
system. It appears that these ideas, which are born as a
result of experience in using the system, are the real
justification for the common system approach since
many users can now benefit from a single idea and
development.

ACKNOWLEDGMENTS

It would be lengthy for the author to acknowledge all
individuals who contributed directly or indirectly to
the success of the system. However, the key hardware
developers were Messrs. R. Watkins, F. Thoburn and
T. RaIl all of San Jose, California, and Mr. K. Cisewski
of Rochester, Minnesota. The primary software de
velopers were Messrs. M. Mauldin and T. Reilly of
Kingston, New York, along with Messrs. R. Henry,
San Jose, California, and J. Calva, Rochester, Minne
sota. Messrs. R. Boydston and C. Connoy of San Jose,
California, developed the system simulator discussed

Manufacturing Process Control at IBM 469

in this paper. Special acknowledgment goes to Mr. W.
Moore in Harrison, New York (IBM's System Manu
facturing Division Headquarters), for the excellent job
he performed in initiating and coordinating the entire
project.

REFERENCES

1 W ANDERSON
Controlling processes with computers
Automation p 70 January 1969

2 J STUEHLER R WATKINS
A computer operated manufacturing and test system
IBM Journal of Research and Development Vol II No 4
P 4521967

3 J STUEHLER
Hardware-software trade offs in testing
IEEE Spectrum p 51 December 1968

4 N GAINES et al
Union carbide integrates multi-computer process control
Instrumentation Technology p 49 March 1957

5 J WAUGH A YONDA
NSRL on line computer system
IEEE Transactions on Nuclear Science p 129 February 1968

6 R HORST
The justification of digital process control
Modern Data p 20

7 V LOSKUTOV
Computation technology in automatic control systems
Mekhanizatsiya i A vtomatizatsiya Proizvodstva, No 32p 442
1964

8 C BOND
A digital-computer system for industry
Industrial Electronics p 221 May 1966

9 M MESAROVIC
Multilevel systems and concepts in process control
Proceedings of the IEEE 58-1 p 111 1970

10 J STUEHLER
The devoted, shared or satellite approach for computer control
of manufacturing processes?
Proceedings of Western Electronic Show and Convention
8-1 1969

11 J SPOONER
Real time operating system for process control
Instrument Society of America D1-1-DAHCOD 1967

12 P WEILER et al
A real-time operating system for manned spaceflight
IEEE Transactions on Computers C19-5 p 388 1970

13 E JOHNSON J McCARTHY
Development of software systems for automated test equipment
Proceedings of Western Electronic Show and Convention
21-2 1969-

14 Special issue on process control languages
IEEE Transactions on Industrial Control December 1968

15 R BOEDECKER
The computerized factory
Assembly Engineering June 1966

16 N CHIANTELLA
The systems approach to plant automation
ASTME Vectors 4 51968

17 F GUT
Operations control systems
Automation p 55 January 1969

Extending computer · aided design into the
manufacture of pulse equalizers

by LAWRENCE A. O'NEILL

Bell Telephone Laboratories
Holmdel, New Jersey

INTRODUCTION

A fundamental difference exists between the techniques
used to evaluate the performance of a circuit during
the design phase and during manufacture. One strives
for reality at all cost during design but wants an in
expensive test in the factory. For computer-aided
design, a sophisticated performance criterion is usually
selected that reflects how the circuit will function when
installed in a system. For economic reasons, however,
usually only a few simple tests on individual circuits
are performed during manufacture. Since it is difficult
to devise a simple test that will be indicative of system
performance, the tests performed may be inadequate
to reveal unsatisfactory units. Frequently, therefore,
the designer specifies extremely tight component toler
ances so that performance will approximate the nominal
design; this practice can lead to unnecessarily expensive
circuits.

To insure adequate performance at reasonable cost,
it is desirable to use the same criterion during manu
facture that was used during the design phase. The cost
of maintaining and using complete systems to test in
dividual circuits has made this approach unacceptable
in the past. Now it is feasible to employ sophisticated
criteria because many manufacturers, such as Western
Electric Company, are using computer operated test
facilities. The computer that controls the tests can also
contain a program that converts the measurements
into the system criterion. This is accomplished by
storing in the computer a representation of the re
mainder of the system. This stored data is combined
with data measured for a particular circuit and the
criterion calculated. In addition to providing a realistic
evaluation of performance, the stored representation
makes it possible to simulate worst case field conditions
at the manufacturing level. Furthermore, any modifica
tions that are made to the system can be included in
the test by simple software changes.

471

The application of system criteria to manufacturing
tests will be illustrated by considering the pulse
equalizers designed for a digital transmission system.
First it will be shown why a system criterion is required,
then the programming of the test will be discussed. It
will be demonstrated that even a complicated criterion
like error rate can be evaluated on the small computers
contained in the test facilities if appropriate algorithms
are developed.

DESIGN REQUIREMENTS

A set of pulse equalizers were designed for the T2
digital transmission system which operates at 6.3
million bits per second}· 2 The equalizer is a linear part
of the regenerator shown in Figure 1. Its function is to
reshape the pulses dispersed by the cable into a shape
suitable for deciding what level was sent. These pulses
are then sampled and- regenerated for retransmission.
The response of a properly designed equalizer is shown
in Figure 2. The upper trace is an isolated pulse after
dispersion by the cable and the lower is the response
of the equalizer. An actual transmission consists of a
sequence of these pulses spaced one time slot apart.
Since a time slot corresponds to two divisions on the
graph, it is evident that equalized as well as unequalized
pulses would overlap. If the equalizer output pulse was
sampled exactly at the pulse peak, the nonzero values
of the pulse in neighboring time slots could interfere
with the decisions made in those slots-this is· referred
to as intersymbol interference. Thus the equalizer de
sign should take into account both variations in sam
pling time and intersymbol interference caused by
adjacent pulses.

The performance criterion for equalizer design should
reflect the influence of all factors that might interfere
with the correct. regeneration of the transmitted in
formation. The design criterion selected was error

472 Fall Joint Computer Conference, 1970

INPUT
PULSES

REGENERATIVE REPEATER

Figure 1-Pulse repeater system

rate, the rate at which errors are made in regeneration.
The error rate calculation includes intersymbol inter
ference, sampling jitter, thermal noise, and crosstalk
due to neighboring transmission paths. Since the design
requirement for each regenerator is less than one error
in 107 transmitted pulses, the errors cannot be accu
mulated in evaluating the performance, instead the
probability of occurrence is calculated. The probability
of error assuming that thermal noise is normally dis
tributed is:

(1)

where (J'N2 is the variance of the noise and the limits indi
cate the region in which an unambiguous decision can
be made.

It is in the specification of the decision region that
all degradations other than noise are taken into ac
count. The separation between adjacent signal levels
can be maximized by correct sampling. This separation
decreases if samples are offset due to jitter in the timing
circuit. Furthermore, intersymbol interference reduces
the separation because the effect of pulses in adjacent
time slots is to modify the isolated pulse height. Cross
talk from adjacent signals influences the separation in
the same manner as does the intersymbol interference.
It is the need to include all these factors in the criterion
that makes the error rate calculation complicated.

The optimization of equalizer design based on mini
mizing the error rate leads to output pulse shapes that
allow correct regeneration with maximum separation
between the repeaters. Increased spacing between re
generators, which lowers system cost, also reduces the
signal level; thus it is necessary to keep all interfering
effects small. The optimized equalizers have limited
bandwidth to restrict the thermal noise, and yet they
provide pulses that have little intersymbol interfer
ence and are relatively insensitive to timing variations.
Since an equalizer cannot perform satisfactorily when
installed in a regenerator unless all the degradations
are small, the manufacturing decision on acceptability
of each equalizer should be based on a criterion like
error rate.

MANUFACTURING TEST

Programming the test computation

This discussion is based on realizing the entire error
rate criterion used in the design phase. As experience
in testing is acquired, it may prove satisfactory to use
a subset of these operations as a criterion, thus further
reducing the computation time. There were two basic
resources for the implementation of error rate as a
manufacturing criterion. First, there existed a general
purpose, digital Pulse Transmission Program (PTP)
that could be used to calculate system error rate using
measured equalizer data. Second, the standard pro
grams on the Computer Operated Transmission Meas
uring Set (COTMS)2 will automatically measure the
gain and phase of the equalizer at a predetermined set
of frequencies. Thus the primary task was to extract
from the general-purpose program a subset of instruc
tions that could calculate the error rate in a reasonable
length of time on the PDP-9 computer contained in
COTMS. It was imperative that the new program be
short and efficient because the execution times for the
instructions are relatively long and the storage capacity
limited on the PDP-9.

The programming task was divided into two sections;
the first was to reduce the run time of the PTP program
by restricting its generality, and the second was to re
write this program to account for the limitations of the
PDP-9. Let us review the steps taken in PTP to
calculate error rate so that the advantages of the
modified algorithms can be demonstrated.

First, a Fourier transform of the input pulse is cal
culated. In order to consider the pulse to be isolated
in subsequent calculations, it is necessary to separate
the pulses by 80 time slots. This separation, for
the bipolar code used, requires that a fundamental
frequency of 39 KHz be used for the transform. The
frequency domain representation of the pulse can then
be combined with frequency domain representations of
the cable and equalizer. l\1easured gain and phase data
can be loaded into the program to represent the equal
izer. The noise power is calculated and then an inverse

UNEQUALIZED

PULSE

EQUALIZED

PULSE

~

.....,-
.,.,""

/
\

./ "-
I I I I

TIME SLOTS

Figure 2-Equalizer response

transform is taken to find the equalized pulse shape
over 80 time slots with 20 gross points per slot. The
subsequent calculations are then performed in the time
domain.

Before searching for the peak of the isolated pulse,
the temporal resolution was improved by interpolating
additional points to provide 80 fine time points per
time slot. The peak is considered to be the correct
sampling point and time slots are marked off with
respect to it in both directions. Since the error rate de
pends on the intersymbol interference caused by pre
ceding and following pulses, it is necessary to consider
all se quences of a preselected length that can occur in
the in put code. There existed only 40 sequences five
pulses long in the ternary! code used-bipolar with six
zero substitution. An error rate is calculated for each
sequence and then an average error rate is calculated
using the probability of occurrence of each sequence.

To account for timing jitter, a sampling distribution
is assumed; then the actual error rate for each sequence
is found by averaging over the allowable timing varia
tions. For each sequence, a separate decision region is
obtained at the peak and at each allowed timing off-set
by calculating the intersymbol interference. The inter
symbol interference for each fine time point (t) IS:

3

let) = 2.: Mif(t+iT) (2)
i=-!, ir60

where M i is the amplitude of the transmitted pulse in
time slot i,

f is the isolated pulse response, and
T is the width of a time slot.

To account for crosstalk and any miscellaneous deg
radations, a fixed percentage of the remaining decision
region is subtracted. The probability of error is then
calculated for each time offset using equation (1). Then
the error rates are averaged first over the allowable
sequences and then over the timing variation to find
the performance of an equalizer.

The time required to compute an average error rate
by this method on the CDC 3300 computer was ap
proximately four minutes. * This time was reduced to
less than four seconds on the 3300 by two modifications
to the program. Thus, a program that could be executed
in a reasonable length. of time on the PDP-9 was ob
tained without sacrificing accuracy or eliminating any
factors that influence the error rate. This reduction was
accomplished by using a precomputed set of test condi-

* This computation time made iterative optimization of the
equalizers prohibitively expensive during the design phase. In
stead, a hybrid simulation was employed so that the entire
waveform could be computed in the time domain without re
quiring transforms to be evaluated.

Extending Computer-Aided Design 473

tions and calculating only the data absolutely needed
to determine error rate. This implies that test condi
tions that would yield a reliable indication of per
formance, such as worst case, would be preselected for
each equalizer. These conditions include cable type,
length and temperature, pulse shape, and any repeater
circuitry not present in the test equalizers. The test
conditions would then be combined using the standard
PTP program into a data set suitable for loading into
the modified program. Much of the generality required
in PTP to accomplish these operations can thus be
eliminated since the system simulation is stored as
data.

The other major departure from the PTP program
is that the entire pulse shape is not computed but only
those time points that influence the error rate calcula
tion. Much of the time in the PTP program is expended
calculating the pulse response from the frequency do
main representation of the system by inverse Fourier
transform. These time point calculations are kept to a
minimum by first searching for the peak of the pulse
with widely spaced time points, then refining its loca
tion, and finally computing with respect to the peak the
other points needed in the error rate calculation. A
simple search algorithm can be implemented because
the response of a correctly constructed equalizer can
be computed. For a manufactured equalizer to be ac
ceptable, it must possess approximately the same pulse
shape. Thus, an approximate location for the peak can
be used as the starting point in the search. Furthermore,
small amplitude ripples in the pulse shape can be
ignored in the search by selecting a decision threshold
that is an appreciable percentage of the approximate
pulse height. Initially, one time slot wide steps are
taken alternately forward and backward from the
starting location. After a value exceeding the threshold
is found, the search continues in the same direction
until the slope reverses. The location is then refined by
taking smaller steps and finally by a quadratic inter
polation. It was the drastic reduction of the number of
inverse transforms required, using this search pro
cedure, that accounted for most of the reduction in
execution time.

Test procedure

Let us now consider the steps necessary to measure
the equalizer and compute its performance.

1. Measure loss and phase as a function Of fre
quency on COTMS.

2. Combine measurements with precomputed data
and calculate the noise power.

474 Fall Joint Computer Conference, 1970

COMPUTER
CONTROLLED

TEST
FACILITY

I
I
I
I L ____ _

----------- -"LoW'LEVELBoAROi
I
I
I

I
I
I
I
I
I
I I L _______________________________ J

TEST JIG

Figure 3-Equalizer test configuration No.1

3. Compute pulse shape at required time points
and determine the intersymbol interference.

4. For all allowable pulse patterns calculate an
average error rate.

The entire equalizer can be measured by inserting
the equalizer card into the low level board of a refer
ence repeater, as shown in Figure 3. A separate refer
ence repeater would be requiredfor each cable type to be
equalized because different circuitry is used for each
type. Since the equalizer design includes a section that
au.tomatically adjusts for variations in cable length,
thIS section must be biased to correspond to the cable
length included in the program. The use of the repeater
as a test jig insures that the influence of all spurious
coupling paths will be included in the measurements.
An alternate measurement approach that could be
used is shown in Figure 4. This approach is not as close
to field operation as is the first procedure but it is
more easily implemented in the factory. A single test
jig can be used for all equalizers and no bias adjust
ments are required. The software could be modified to
make the fixed equalizer test identical to the first ap
proach but the passive components in the adjustable
would have to be tested separately. Either approach
should be acceptable and the timing investigations
would not be appreciably changed whichever one is
used.

COTMS will provide a list of the gain and phase
measured at a predetermined set of frequencies; it
automatically removes systematic errors and mini
mizes the influence of noise by repeating the measure
ment and averaging. Since the digital program requires
continuous phase rather than just the principal value
provided byCOTMS, the correction must be computed.
To determine unambiguously the correction, the fre-

quency range must be sampled to provide at least two
frequencies per revolution. The measurement of these
data at 109 frequencies required between 30 seconds
and 3 minutes, depending on the noise present in the
test configuration;

The data measured for the equalizer are used to
compute the noise power of the system. Then the data
are multiplied by the stored frequency data that repre
sent the remainder of the system. The resulting fre
quency data are then· a characterization of the entire
system that precedes the regenerator, including the
effects of cab]e and input pu]se shape.

The output pulse shape at the time points required
for the error rate calculation are obtained by inverse
Fourier transform from the combined frequency data.
Only three points about the peak and in each of the
neighboring time slots had to be calculated by inverse
transforms to account for the predetermined amount
of sampling jitter. The finer resolution time points
were then found by interpolation. The pulse data in
the neighboring time slots is used to compute the inter
symbol interference so that the average error rate can
be determined exactly as described previously.

EQUALIZER TEST RESULTS

A test program that computes error rate from gain
and phase measurements of an equalizer was extracted
from the PTP program. The considerations in writing
this program for solution on the CDC 3300 computer
were to minimize both run time and the storage re
quirements. The execution time, using the measured
data, to obtain the error rate is 3.873 seconds on the
CDC computer. The calculation is identical to that
performed with PTP; 109 harmonics are used in the
transform and all pulse patterns that can occur using
three preceding and one following pulses are evaluated
in the error rate calculation.

The program has not been rewritten as yet for the
PDP-9 computer but estimates of execution time have

I'OWEIt
r - - - - - - _E~~R~D!!! ~T __ ,

CDMI'UTEIt
CONTItOLLED

TEST
FACILITY

ri-__ ... I-l I
I
I
I
I _______ -,-_...J

Figure 4-Equalizertest configuration No.2

been made. These estimates are based on the time re
quired to compute a time point by inverse transform
since this is the most time consuming operation in the
program. This basic calculation was isolated and then
programmed for the PDP-9 computer. It was then run
on the standard computer and on one with an extended
arithmetic capability. The results are shown in Table 1.

Since a PDP-9 with extended arithmetic will be in
cluded in future test facilities, a crude estimate of
total run time was made based on the extended arith
metic speed. The execution time on the CDC computer
was multiplied by the ratio of transform time on the
PDP-9 to transform time on the CDC and the result is
less than 38 seconds. This estimate indicates that the
time to compute error rate would be of the same magni
tude as the time required to measure the data. A subset
of the measurement program has been run on the
PDP-9 computer and it was established that the time
estimates are reasonably accurate.

In addition, the storage required for the test program
has been reduced to 476lto locations, which is small
enough to be loaded into the PDP-9 at the same time
as the standard measurement program.

CONCLUSION

It is feasible to apply an error rate specification to the
equalizers constructed by Western Electric. The com
puter contained in COTMS can be used to calculate
error rate from the frequency domain measurements of
an equalizer in a reasonable length of time. The addi
tional time for calculation is estimated to be less than
40 seconds. Since the time is directly related to the
number of frequencies used, it might be further reduced
through analysis of the influence that the number of
frequencies measured have on the error rate calculation.

Since the results were so favorable, the approach will
be implemented on a PDP-9 computer. The next steps
are the writing of a PDP-9 version of the complete
measurement program and the determination of a set
of test conditions for a specific equalizer. These test
conditions, which include the entire system except for
the equalizer, can be used to simulate worst case field

Extending Computer-Aided Design 475

TABLE I

Time to Compute Inverse Fourier Transform (109 Harmonics)

CDC 3300
PDP-9 (Standard)
PDP-9 (Extended Arithmetic)

73 milliseconds
2100 milliseconds
700 milliseconds

conditions at the manufacturing level. Furthermore,
any changes in channel characterization, such as trans
mitted pulse shape, can be included in the test by
simple software modifications. It will then be possible
to evaluate both the technical and economic advantages
of this approach to equalizer testing.

As this example has demonstrated, it has become
feasible to apply the same criterion in manufacture
that was used in the design phase by using the full
power of a computer operated test facility. Thus, simple
tests can suffice to obtain a reliable indication of system
performance.

ACKNOWLEDGMENT

The author gratefully acknowledges the advice and as
sistance he has received from J. Chernak, E. M.
Butler, D. R. Smith, E. M. Underwood and R. G.
Schleich. He is particularly indebted to Mrs. R. M.
Allgair who wrote the programs and performed the
timing evaluation.

REFERENCES

1 Transmission Systems for Communication
Bell Telephone Laboratories Incorporated Fourth Edition
Chapter 27 pp 626-676 1970

2 J H DAVIS
T2: a 6.2 MbjS digital repeatered line
IEEE International Conference on Communication
Record pp 34.9-34.16 1969

3 W J GELDART G D HAYNIE R G SCHLEICH
A 50 Hz-250 MHz computer-operated transmission
measuring set
Bell System Technical Journal Vol 48 No 5 May-June 1969

Finite state automation-Definition of data
communication line control procedures

by DINES BJ0RNER

IBM Research
San Jose, California

INTRODUCTION

The notions of finite state automata, state transition
graphs and tables and the set of regular languages
being accepted (generated) by such automata are well
known. But for some reason these notions have not
been rigorously applied in the definition of data com
munication line control procedures. It is the objective
of this paper to do so and to show the naturalness of
this approach. We claim that we thereby arrive at a
complete, precise and unambiguous definition. Others
have attempted this before us. They have, however,
not used the descriptional tool of finite state autom
ata.1,2,3 Anyone or all of these references thus form
the basis on which we will compete and we shall use
essentially the line control procedures which these
documents set out to define.

It is shown how a multilevel hierarchical definition of
data communication line control procedures by means
of finite state automaton graphs leads to easily under
standable communication standards, complete and
unambiguous specifications, well-structured relations
between the syntactic, semantic and pragmatic issues
and embodies straightforward extensibility features.
It IS further shown how the definition is the basis for
an automatic conversion int~ all conceivable schemes
of implementation: active hardware logic, micro
program controls or software procedures. We specifi
cally mention the duality of implementing the generator
(transmitter) and acceptor (receiver). We finally
show the suitability of our technique to that of specify
ing the proper interlocking of asynchronously operating
full-duplex schemes, this latter scheme has applications
to the well-behaved, rather than well-policed, control
of systems of many parallel processes.

477

METHODOLOGY

We shall describe the definitional approach through
an example and will use a "multilevel iteration, top
down technique"4 whereby we first describe the total
system, then its major subsystems and subsequently
the components in each of these. We finally give the
complete (character oriented) logic of each component.
Exactly what we mean by this hierarchy will be ap
parent as we go along. We may also refer to this pre
sentation technique as one demonstrating "layers of
abstraction. "5 Needless to say, we would like to see
such a methodology applied in other areas.

Our example is that of a TWO WAY ALTERNATE
(or: half duplex) NONSWITCHED MULTIPOINT
data communication system with CENTRALIZED
OPERATION. (See Ref. 3 sections 5.5 and 6.4-5 and
Ref. 1, page 20, transparent-text mode.)

SPECIFICATION HIERARCHY

First level

As our first level we show Graph 1 on Figure 1.
C denotes the state of the" system in which the central

device c, e.g., a computer data transmission control
unit is communicat£ng a sequence of characters u (a word,
a sentence) to one or more remote devices r, e.g., key
boards and displays. The communicated sequence u in
turn transfers the system to state R. In state R zero or
one remote device is communicating another sequence
of characters v to the central device. This in turn brings
the system back to state C. We note that while c is
send£ng (or transmitting) u, r is receiving u and vice
versa-r is sending v which is received by c.

478 Fall Joint Computer Conference, 1970

GRAPH 1

u

v

Figure I-GRAPH 1
First level data communication system. C: Central- and R:

Remote System State

Yet another equivalent characterization is that each
of the two components, the central and the remote
subsystem, can take on either of two mutually exclu~ive
first level states or modes-receiving or transmittmg.
Note that no device can simultaneously be receiving
and sending. This half duplex or two-way alternate
scheme is truly reflected by the state transition graph
approach.

A final note in this section concerns the nature
(format, structure) of words uE U and vE V, where U
and V are languages. It is the precise definition of U and
V that concerns us.

We start out by defining an alphabet ~ (vocabulary),
a finite set of (terminal) symbols (where the use of the
word terminal has no connection with the fact that we
often call remote devices terminals). An n bit coding
allows for up to 2n symbols.

In our example the alphabet is:

~ = {eot, enq, soh, stx, dIe, syn, itb, etx, etb,ack, .nak}

U~aU~a=bcc

Underlined character triplets denote one symbol, and
except for bcc (block check character set, which may
take on any bit coding whatsoever), they are all control
symbols as distinguished from ~a and ~a. ~a denote
symbols a allowed in either prefix, header or t~xt
sequences. For reason of simplicity we omit a specIfic
breakdown of ~a in sub-subalphabets. ~a denote all
other symbols of even or odd bit parity.

A string is a sequence of symbols. The (infinite) set
of all finite length strings including the null string over
~ is denoted by .~*. U and V are true subsets of ~*.

ucL:*, vcL:*
From the next sections it will now be clear exactly how
words in U and V are defined.

Second level (See Graph 2 on Figure 2)

The subsystem r denotes one or more (but a finite
number of) remote devices. Transactions between c

and r can be grouped in two major classes: Polling
and Select-transactions.

In polling one remote device r is asked by the central
device c-through the use of a polling sequence p-to
communicate to the central device whatever polling
message pm or termination sequence t it might wish to
transfer. p brings the system from state Ci to state Rp.
The system goes to state Cp upon c receiving pm and
c sends back appropriate polling message replies pmr.
If these are erroneously received (i) by the system in
state Rp the remote device sequences a request reply
rr to c. The system then transfers to state Cpo Each of
the words p, pm, pmr, t and rr may range within corre
sponding well defined languages: Lp, Lpm, Lpmr, Lt
and Lrr.

In selection one or more remote devices are requested
by the central device to enable themselves for subse
quent selection messages sm communicated to them,
either one-by-one or on a broadcast basis, from the
central device. The selection process consists of one or
more selection sequences s each in turn followed by an
initial selection reply isr. These sequences bring the
system back and forth between states Rs and Ci with
the last such isr bringing the system to state Cs; where
as sm and their replies, the selection message replies

GRAPH 2

Figure 2-GRAPH 2
Second level data communication system p: polling- and s:

selection state

GRAPH 3

x,..------
(

I
I
I
I
I
I

/

x __ --'
/

(

I
1

I
I

!ll!!: r--4----t-----.

-----------,~

p ,

I
I

" I \ I
I I
I I

\ I~r
>..' _----, ' _- - ---, , \

(

I

!!.e!!!.-----+-----.. I
I
I
I
I
1

1
1

r--~-..+,;--......&.:..:...x,~ :
I
I I

I ("j I ("', :
I /

1 : : .---+---. I II

I ~', ~~_~--~ I IX .--...I-_---:..~-___, I 36 111>-,.--+'-_---'-""--_--.
I "I

I: ~ l~ I:
I 1\ e,p' €>-) 11\

l '----~-----I~ I
'-- - -- ../ "'- - ------

Figure 3-GRAPH 3

.. v
1>-
I
1

1

I
I
I

/

Third level data communication system. Transition from error
recovery states 37 and 38 to initial system state 1 not shown

smr, cause transitions between Cs and Rs. The system
in Cs finally terminates selection mode by sending a t
word to the remote devices causing a transition from
Cs to Ci. Like in polling we may speak of well defined
languages Ls, Lisr, Lsm, Lsmr, Lrr and Lt.

Third level (See graph 3 on Figu;e 3)

We now proceed to explode substates Ci, Cs, Cp, Rs
and Rp into submachines. In Graph 3 we have clearly
marked these and their relation to Graph 2.

First we cover some omissions from Graph 2 and
subsequently we subdivide further the Second Level
Languages.

1. When e.g., s in Graph 2 causes a transition from
Ci to Rs, then we actually mean to show: an s
sequence of transitions in Ci followed by a line
turnaround transition A from Ci to Rs. We shall
later explore this latter type of transition in depth.

2. States Rsir (substate of Rs). isr (is a) denote an
initial selection reply sequence indicating a

Finite State Automation 479

rejection (acceptance). After is a, a A will bring
us to either state 22 or 23 depending on whether
or not the central device wishes to select more
than one device. The (2) nondeterministic A
transitions from state 21 are thus resolved by
conditions in c which are combined with A.

3. States Rpm (Csm). Polling (selection) messages
may be blocked or nonblocked. A series of
blocked submessages, pmb (smb), will cycle
us around the 4 state loop 5-6-8-9-5 ... (23-24-
26-27-23 ...). The last blocked submessage or
a nonblocked message is here referred to as
pmt (smt) , t denoting text.

4. pmb's and pmt's (smb's and smt's) are either (1)
accepted pma (sma), (2) rejected pmr (smr) ,
or either (3) the message transmitting (remote
or central) device cannot interpret the reply (i)
or (4) the message receiving device has not been
able to detect the end of the message block thus
causing a timeout (i).

5. In case of an i-type reply the message trans
mitting device may choose either to communi
cate a request reply rr or enter some error recovery
procedure erp. This latter choice may also result
from repeated message reject replies. After suit
able error recovery procedures the system goes
to state 1.

6. After the last message block has been acknowl
edged-or if in polling the polled device has no
message to send-a termination sequence t
brings the system to state 1.

Fourth level

We now first expand the message generating/
recognizing super state Csm and Rpm, which like
Cpmr and Rsmr or Csrr and Rprr can be treated by

GRAPH 4

~

Csm
Rpm

Figure 4-GRAPH 4
Fourth level message transfer subsystem

480 Fall Joint Computer Conference, 1970

Figure 5-GRAPH 41
Fourth level message transfer subsystem

showing one graph. One then substitutes these graphs
into the less detailed third level graph. The latter and
remaining superstates are subsequently treated in
depth.

In Graph 4 (Figure 4) the fourth level state 1 (4.1)
equals either 3.23 or 3.5, 3.24=4.7=3.6 and 3.25=
4.9=3.7.

Graph 4 is identical to the regular expression:

(soh a+(etbUstx a+(etbUetx)) Ustx a+(etbUetx))bcc.

Graph 4 shows that our messages may be of either
of five constructions.

(pmb/smb)

(pmb/smb)

(pmt/smt)

(pmb/smb)

(pmt/smt)

GRAPH 42
1<im&!!Em

44.3
43.4
45.3

soh a+ etb bcc

soh a+ stx a+ etb bcc --
soh a+ stx a+ etx bcc

stxa+ etb bcc --
stxa+ etx bcc.

Figure 6-GRAPH 42

or

or

or

or

state 4.1 -42.1
4.2-42.2

.~ 1
~

I,

4.3 -142.3. 42.4. 42.sf
4.4!E42.6
4.S -142.7. 42.S. 42.9f
4.6 i!I 42.15
4.7-42.17

Fourth level message transfer subsystem. Detailed version dis
tinguishes between transparent and non-transparent texts

44.4--
45.8
46.7

44.3--

GRAPH
43

45.9

- -i> 42.1

-~44.1

Figure 7-GRAPH 43
Fourth level establishment selection and polling subsystem

a+ denotes a finite length string of one or more a's. En
closed between soh and stx or etb an a+ string denotes
a header; in front of some enq, ack, nak a+ denote a

prefix; otherwise a+ denotes text data.
The (minimal) finite state automaton (fsa) just

recognizing either of these 5 types of strings is shown
in Graph 41 (Figure 5).

We have chosen to split into separate final states,
states 4.7 and 4.9 due to the different subsequent actions
on affirmative replies.

We shall subsequently show a rather complete fourth
level graph [42 (Figure 6)] denoting the generation of
messages possibly involving transparent text data and
messages using intermediate synchronization char
acters, syn. Basically we use the sequence dIe stx to

denote the start of transparent data, dIe syn to denote
one synchronization character in transparent text data,
dIe dIe to denote one transparent text data dIe char
acter and dIe ext or dIe etb to denote end of transmis
sion text or block. The first dIe stx must by conven
tion be preceded by at least two syn's. In transparent

GRAPH 44

a _~43.7.

43.6-- - -t> 42.1

--~ _~ 43.1
~------------____________ -J

Figure 8-GRAPH 44
Fourth level establishment reply subsystem

42.111--
4U

42.18--
48.11

Figure 9-GRAPH45
Fourth level delivery termination and terminate subsystem

text mode a dIe itb signals a return to nontransparent
text mode (dIe == data link escape).

For the sake of completeness we next show the de
tailed content of each of the remaining superstates:
Ci, Rsir, Cpmr or Rsmr and Csrr or Rprr.

al ap, as denote the set ~a excluding both ap and
as, as (ap) is the character in an a+ enq sequence

which designates it as a selection (polling) establish
ment sequence (request). A speQific installation will
use individual a symbols in the string a+ ap a* enq

(a+ as a* enq) to select one (one or all) remote de

vice(s)-and to further select which subdevice is being
addressed-such as either card or paper tape reader

GRAPH 46

45.11--- ~ >.
- - - - - -1>45.1

45.10-_

>.
------- ---i>43.1

Csrr
~

Figure lO-GRAPH 46
Fourth level invalid reply subsystem

Finite State Automation 481

GRAPH A

Figure ll-GRAPH A
Fourth level line turnaround subsystem idealized

(punch) or keyboard (printer) within a 1050 system
(enq = enquiry) .

LINE TURNAROUND

We have so far shown the line turnaround function
just by the transition A, see Graph A, Figure 11.

If we address ourselves to a specific system imple
mentation we may then show A far more explicitly, e.g.,
by either of two half-duplex extremes shown in Graphs
Al and A2 (Figure 12).

In the first scheme (Graph AI) the transmitting
device terminates each communication by 2 or more
syn patterns subsequently followed by· a mark condi-

tion; after. at least two received syn patterns the re

ceiving device now becomes the transmitting device
and first sends at least 2 syn patterns. While this device

was in receive mode it constantly held its send line in
mark condition.

• • •

denote 2!!l
system state ---aI

- __ ---' GRAPH A 1

GRAPH A 2

• • •

Figure l2-Fourth level line turnaround subsystem
Graph AI: Conventional half duplex
Graph A2: Synchronous transmit/receive

482 Fall Joint Computer Conference, 1970

GRAPHS 60
character tr."sition:

8.
~ (4thlevell

corresponding USASCII bit transition:

GRAPHS 151
character trntion:

becomes:

(5th IeveII

~
q

p V

Y r

(4th Ievell

Figure 13-GRAPHS 50 and 51
Fifth level character subsystem

In the latter scheme (Graph A2) a device in receive
mode always transmits syn patterns and a shift to
transmit mode can thus be effected immediately after
receipt of the last character before syn.

CHARACTERIZATIONS

We now pause to characterize the type of transition
graph that we have so far produced.

Scope of definition

The graph(s) on level four define all valid (correct)
sequences which we may encounter on a data com
munication link under control of a TWO WAY ALTER
NATE NONSWITCHED MULTIPOINT system
WITH CENTRALIZED OPERATION. The defini
tion uses a line character as its 'smallest' indivisible
token.

Bit versus byte oriented definition

We may break the level four graphs down even
further; our next more detailed level may take a bit as
the smallest indivisible token (see Graphs 50 and 51,
Figure 13).

We choose however not to go to the fifth level for
several reasons. One is that we tend to think of line
control procedures as character oriented. Another is
that in our implementation we decompose the fifth level
bit-to-character assembly out of the general graph and
implement it as a simple shift register (serializer
deserializer) from which characters are read/decoded
in parallel over all bits.

Alternating replies

In certain line control schemes text messages are
acknowledged on an alternating basis, i.e., either ackO
for even-numbered blocks and ack1 for odd-numbered
or ackn where n ranges over 0-9. We have not shown
this in our graphs but will now do so using Graphs 42
and 45 (Cpmr) (See Graph 6, Figure 14).

GRAPH 6

• • •
• • .. G42n

• • •

Figure 14-GRAPH 6

• • •

Simplified fourth level alternating acknowledgment subsystem

Instead of showing repeated instances of the same
graph G42°-n , G45o- n) one can decompose Graph 6 into
one single instance of Graphs 42 and 45 combined with
a single counter (O-n). Again this is the way we would
implement such a system. But even on Graph 6 or on
the suggested decomposed graph we have not quite
shown the fact that a nak response often requires the
error-free retransmission of the same block, character
by-character as was erroneously communicated. Here
perhaps an English worded definition is superior to a
graph description. One could suggest that the latter
would make use of a queue or buffer into which we put
characters as we generate them. The buffer or queue
content would be reused if a nak response was received.
Otherwise it would be overwritten during the next
transmission.

Half duplex

The graph definition truly depicts the half duplex
nature of our line usage. We shall return later with
thoughts on how a transition graph definition might be
used to define full duplex line control procedures.

Definition, implementation, syntax, semantics
and pragmatics

The graph definition ~s the
implementation

It is well known that the transition graphs we have
shown so far can be interpreted in a mechanical way
as either hardware implementable sequential circuits
or soft-ware implementable tables.

First, however, some words on syntax, semantics and
pragmatics. The graphs represent the syntax or the
grammar defining all valid character sequences. In the
implementation one is also interested in:

• What to do with invalid character sequences?
• How to react to any sequence, valid or invalid?

So far our graphs show only generative capability
but we can easily augment the graph or its correspond
ing tabular representation to show the answers to both
of the above questions.

Take for example Graph 42 shown on Table 1 (Figure
15).

To give informally stated examples of what we mean
and imply by actions/semantics we list a few examples:

a; Start-of-header; set up suitable (hardware)
buffer, initialize (hardware) variables.

Finite State Automation 483

'" bcc ___ I------__ --.

I~ soh stx a dIe
State: !l!l etb eu fJ itb bee

i 1 2 a 6 b 10 c

2 3 d 2

3 ·6 f 3 e 4 15 k

4 6 f 3 e 5 15 k

5 6 f 3 e 10 g 5 15 k

6 7 h

7 7 j 8 15 L 17m

8 7 j 9 15 L 17 m

9 7 j 10 nl 9 15 L 17m

10 11 n2

11 13 p 13 p 13 P 12 13 P 13 p 13 p 13 P 13 p

12 13 p 11

13 13q 13 q 13 q 14 13 q 13 q 13 q 13" q 13 q

14 13 q 13 15 s 17t 6 r

15 16

F 16 45.1

17 18

F 18 45.4

19 15 17

The letters denote appropriate actions, i.e. semantics.

Unspecified (blank) entries all have next state transition to the error state 19 with
some appropriate action, suitably depending on the present state.

Figure 15-TABLE I
Tabular representation of state transition graph 42. The let
ters denote appropriate actions, i.e., semantics. Unspecified
(blank) entries all have next state transition to the error state 19
with some appropriate action, suitably depending on the present

state

b. Start-oj-text; no header, set up out device/text
buffer, initialize text variable.

c. Start-oJ-transparent-text; no header, no non
transparent text, set up out device/transparent
text buffer, initialize transparent text variable.

d. First header character, hardware count: = 1.
e. Subsequent header character, hardware count:

= hardware count .+ 1; buffer full? or output in
character to out device.

f. End-oj-header, store hardware count, interpret
header; start-oj-text, set up text buffer and
initialize text variable.

g. End-oj-header, ... , start-oJ-transparent-text, so
far no nontransparent text, set up out device/
text buffer and initialize variable, disable
parity check.

h. First text character; text character: = 1; output
in character to out device/buffer.

j. Subsequent text character; text character: = text
character + 1;

484 Fall Joint Computer Conference, 1970

k. End-of-transmission-block, no text, interpret
header, wait for block check . character, disable
parity check.

q. Transparent text data, use as such.
r. End-of-transparent-text-data, start-of- (nontrans

parent) -text reinitialize variables.

We have and shall not define the pragmatics of line
control procedures rigorously (formally).

Some of the pragmatics here are concerned with the
length of prefixes, headers, and text data and with the
principles of retransmission and error recovery
procedures.

Through this augmentation we have converted our
graph from a generator into a transducer: a machine ac
cepting and transducing (controlling the translation
of) the generated sequences. This machine can be im
plemented either strictly in wired logic, as a micro pro
gram in a general purpose transmission control unit
or as a software table switching/look-up mechanism.
We shall comment further on this.

Completeness

We wish to demonstrate the COMPLETENESS of
our definition. That is, we can prove that we have con
sidered all possible character sequences and rigorously
defined syntactically and semantically which are correct
and what to do with valid as well as invalid sequences.
Our definition and our implementation is therefore
unambiguous, each taken separately or both taken
together. The argument goes somewhat like this: (1)
There is a finite number of states (nodes) in our graph.
(2) In each state only a finite number of valid input
(transducer/recognizer) or output (generator) char
acters is possible. Thus we only have to make a finite
number of decisions in building our graph. The graph
is the proof.

The design style and structure that the graph ap
proach imposes on us is appealing.

Specification changes

Changes in the definition of line control procedures
can be readily effected. The graph approach immedi
ately reflects all nodes which may be affected by a
change. This is true for generators as well as for recog
nizers/transducers.

Generator and recognizer duality

N ow that we have seen that the graphs represent
both the generation and the transduction of data com-

munication transactions we can mention the possibility
of letting both phases be software or hardware con
trolled through the same graph in both the master (c)
and remote (r) systems. That is, the total collection of
state transition Graphs 42-46 coimected as shown by
Graph 3 is present in either type of device. Subgraphs
Ci, Csm, Csrr, Cst and Cpmr will be used by system c
as generators whereas any device in system r will use
them as transducers and vice versa-subgraphs Rsir,
Rsmr, Rpt, Rpm and Rprr will be used by system c as
transducers whereas anyone device in system r will
use them as generators.

To use a graph as a generator may not seem to have
a practical meaning in any particular instance of a
transaction. The generator generates all correct trans
actions, not a particular one. But somehow, someone
(be it a human being at a terminal or the automatic
program in a CPU at the central system) generates a
particular instance based on a few parameters (v) such
as (1) poll or select, (2) device address, (3) header/no
header, text/no text just header, (4) possible embedded
transparent text segments, (5) blocked/nonblocked
messages, (6) length of prefixes, headers and text
segments and (7) pointers to prefix (p), header (h),
and text (t) segment buffers. What we mean by the
generator generating a particular instance should now
be more clear.

Let us visualize a system (Figure 16) where c selects
r and sends messages to r.

Gc is the generator {Ci, Csm, Csrr, Cst}, Tc is the
transducer {Rsir, Rsmr}; Tr is the transducer {Ci,
Csm, Csrr, Cst} and Gr is the generator {Rsir, Rsmr}.

Gc uses parameters v and subsequently also link
parameters from Tr while stepping through the ap
propriate transition graphs (sequential machines,
micro programs or software tables).

Gr uses link parameters from Tr in its stepping
through appropriate graphs.

By link parameters we mean the information shown
in Graphs 42-46 relating the outcome (final state) of
some graph (say 42.16) to one or more initial states in
connected graphs (here 45.1).

Figure 16-Two way alternate non-switched multipoint system
with centralized operation of subsystems r from subsystem c

GRAPH 70
GeneratOr IG) G--. }; ~{d,s,p,e J

Figure 17-GRAPH 70
ALGOL 60 number generate graph. Fourth level

'f.he stepping process thus uses the parameters in
order to resolve next generator output in cases where
more than one next output character is correct. For
example, in Graph 4, state 1, if the v parameter indi
cates 'header,' then soh is output and the generator
graph action directs the control to fetch pointer to and
length of header buffer from v and to start outputting
header information. The header characters are matched
against the a's, i.e., a state transition from 4.2 to 4.3
and then recursively to 4.3 occurs unless the header
buffer contains invalid information, i.e., characters
different from, say, a. When the header buffer is ex
hausted the control again looks at v to see whether
any text transmission is required, etcetera.

Note here that we use the generator graphs in two
ways. In between prefix, header and text segments as a
generator, otherwise as a check (recognizer) on the
correctness of these segments. If, e.g., a header segment
contained 'stx' then a transition to state 4.4 would
occur. Depending on implementation we could either

GRAPH 71
Rec09l'lizer I R)

1: = { d,s,p,e } denote input,

A = { +,-,+ } denote output,

+ denotes error output.

e-

Figure 18-GRAPH 71
ALGOL 60 number recognize graph. Fourth level

State:

i : 1

2

3

4

5

6

E: 7

Finite State Automation 485

Input:

d

2+

2+

4+

4+

6+

6+

7+

I--. next
state

present state

s p e

2 ... 3- 5-

7+ 3- 5-

7+ 7+ 7+

7+ 7+ 5-

6- 7+ 7+

7+~ 7+ 7+

7+ 7+ 7+

output

S={1,2,3,4,5,6,7}

Figure 19-TABLE II
Fourth level tabular representation of Graph 71, Figure 18

use this transition to signal error, or the graph, when
the header buffer subsequently became exhausted,
would signal error because of the repeated attempt to
output stx (from state 4.5).

THREE BASIC IMPLEMENTATION SCHEMES

As pointed out in above, the generator definition
equals the transducer implementation. In this section
we show three such. The first is based on Graphs 70,
(Figure 17) and 71 (Figure 18).

The equivalent tabular representation is shown in
Table 2, Figure 19 (Table 2 defines ALGOL-60
{numbers)'s).

The three schemes are:

1. Hardware sequential machine or automaton
using logic gates and flip-flops.

2. Micro program in read-only/writable control
store.

3. Software program in main core.

486 Fall Joint Computer Conference, 1970

Input el:

X
1

Combinational

~t.1 DL09iCC. t :' Out,,""A.
~1 C ~ . .
. ...-.--.
Yn Yn

present state eS next state eS

State Register R

Figure 20-First Niveau sequential machine model

Scheme 1: A Finite State Machine (FSM)

The model of a hardware implemented fsm is given
in Figure 20.

C maps ~XS into AXS. The mapping is given in
Table 2. The number of flip-flops needed in R is n ~ Log2

(the number of states in S) , n suitably being the small
est integer larger than or equal to Log2 (I S I) • We
choose n = 3; and let + == -, i.e., we do not distin
guish between these two symbols. In Table 3, Figure

000

001

011

010

no

111

101

Input:

d=OO

0101

1001

0101

1101

1110

1101

1001

5=01

1:)100

1110

1110

1110

1110

1100

1110

34

p=l1

0110

1110

0110

1110

1110

1110

1110

Figure 21-TABLE III

State:

1010

1110 3

1010 2

1110 6

1110 7

1110 5

1010 4

Fifth level binary tabular representation of Table II, Figure 19

State:
000

001

011

010

110

111

101

100

Input:
00. 01 11

0 0

0 0 1

0 1 1

0 1 1

0 1 1

1 1 1

0 0 1

0 1 1

Figure 22-TABLE IV

10

1

1

1

1

1

1

1

Binary tabular representation of variable Ya in Table III,
Figure 21

21, we have coded 8E S as the binary number shown in
Table 2.

(This happens to be a 'not so good' internal state
coding.) Output '+' is coded as logical '1,' '-' and
'+' both as '0.' Input d='OO,' 8='01,' p='ll' and
e='10.'

Note that in Table 3, row 000, state 0 is undefined.
We can fill entries in row 000 with whatever Y1 Y2

Figure 23-Third Niveau logic primitive implementation of
variable Ya in Table IV, Figure 22

Xl

I---I-----~ Z

clock

Figure 24-Second Niveau logic block implementation of
sequential machine model of Figure 20

Y3 Z values we might find useful. From Table 3 we
then compute Yi (i= 1,2, 3) and Z as a Boolean func
tion: f(x1, x2, y1, y2, y3). Take for example Y3 or
Y3 shown in Table 4, Figure 22.

The logic for Y3 (C Y3) is indicated in Figure 23,
and a typical implementation from Figure 20 is shown
in Figure 24.

Scheme 2,' A microprogrammed transmission control
unit (p,TCU)

The p,TCU is to serve many independent lines
sharing the same microprogram for their identical line
control procedures.

In Figure 25 we show only the principles of the line
input data flow: An input character is de-Serialized
in SdS, transferred in parallel to BF and when service
able by the writable control store (WCS), the input
(u E ~) and the present state (s E S) which is kept in
Sreg are transferred to the WCS address decoder.

If the WCS is to act only as a recognizer then just
Table 2 (or some other appropriate table, e.g., Table 1)
is stored in WCS. The WCS word addressed by (s, u)
has value (s', 0) where s' is the next state and 0 is the

Finite State Automation 487

output ('controls to DF') (e.g. {+, -, + }), s' goes
back to Sreg and the WC S is ready to serve another line.

If the WCS is to manipulate the input (i.e., possibly
store u in a TCU line buffer (lbf) , changing code struc
ture, incrementing lbf address, decrementing character
count) then (s, u) initiates a several microword sub
routine via the (su) loop. Branches in this routine are
determined by conditions in the DF. The last micro
instruction contains s' and directs s' to Sreg whereafter
the WCS is again ready to serve any line.

All this is very trivial. What we should note however
is that the basic flow of the microprogram, i.e., the
proper sequencing of subroutines, is completely derived
from (e.g.) Graphs 42-46. In other words if we change
the definition of line control procedures then we can
mechanically relate such changes to the micropro
gramming of the TC U.

Scheme 3,' Software controlled recognition and
transduction

Let Table 2 or 3 be stored as a three dimensional
array T (1: I S I , 1: j ~ I , 1: 2) where I X I denotes the
number of elements in the set X. The next state part
of the table is stored in T(*, *, 1) whereas the output
or action label part is stored in T(*, *,2). Let INDEX
(CHARACTERSET, SYMBOL) map classes of 8 bit

+-I/O
interf
bus

ace
in

MICRO·PROGRAM

~T~'~~,~D
t()} LJ= ,~" I

I i I~ -~-~

conditions to OF controls to OF

DATA FLOW (OF)

1=== ne.t state:s'
1---

~ I

r I

I
1 f I

~IH~
I + I
I I I I
I I I I

Sreg I •••

rBl LINE ADAPTER

I ~

Figure25-Micro-programmed data eommunication control unit.
Only the input (read) data flow is shown

488 Fall Joint Computer Conference, 1970

Program 1:

PROGRAM:

ACTION:

ACTl :

ACT2:

. .
ACTM~

ACTM1:

ACTM2:

· · · ACTN:

PROCEDURE OPTIONS (MAIN);
DECLARE

~~~~~T~~~C~~:R1~fER (60), '''INITIALIZE PROPERLY'" 
INPUT_CLASS (0:60) FIXED BINARY (7), '''INITIALIZE PROPERLY'" 
T (l:S, 1:1:, 1:2) FIXED BINARY (15), '''INITIALIZE PROPERLY'" 
(INPUT. PRESENTSTATE) FIXED BINARY (15); 

PRESENTSTATE ,. 1; 

r EAD GET EDIT (SYMBOL) (A(l»; 
: INPUT = INPUT-CLASS (INDEX (CHARACTERSET .SYMBOL»; 

CALL ACTION (T (PRESENTSTATE. INPUT. 2»; 
PRESENTSTATE = T (PRESENTSTATE. INPUT. 1); 

L-____ GO TO READ; 

PROCEDURE (L); 
DECLARE SWITCH (N) LABEL INITIAL 

(ACTl. ACT2 ••••• ACTN) ; 
GO TO SWITCH (L); 

· · · RETURN; 

· · RETURN; 

· · · RETURN; 

· · GO TO EXIT; 

· · 00 TO EXIT; 

· · · GO TO EXIT; 

actions associated with 
val id input sequences 

actions associated with 
invalid input sequences 

END ACTION; EXIT: 
END PROGRAM; 

Figure 26-Pseudo PL/l program 

symbols into the set {I, 2, ... , I ~ I }. The pseudo 
PL/1 program on Figure 26 shows the generalized soft
ware program control statements into and around 
which any finite state algorithm can be arranged.6 

Conclusion 

It may be argued that we have shown nothing spec
tacularly new. in the three schemes-the main reason 
we include this section is to demonstrate the clear-cut 
relation between definition and implementation-a rela
tion which can be carried out mechanically, i.e., auto
matically. One is therefore greatly aided when having to 
decide whether a given scheme is to be implemented 
using method 1, 2 or 3. 

FULL DUPLEX 

Before describing how we would go about defining 
(and implementing) a full duplex scheme, the following 
brief remark or observation may be appropriate: It 
appears (at least to this author) that all full duplex 

schemes hitherto proposed could more appropriately 
either be called (termed) doubly interleaved half duplex 
or even just ordinary double simplex. This situation is 
truly reflected in the scheme next discussed. 

First we assume that the transmission is point-to
point or that if we have a multipoint (N) 2 station-) 
system. Then we assume that 2 out of N stations have 
been selected for point-to-point communication, and 
that the remaining N - 2 stations 'listen' to both of the 
two-way simultaneous communication. We shall not 
here elaborate on the selection problem. 

N ext we postulate that a definite full duplex data 
communication line control procedure exists. We finally 
assume that the text message, text-reply and reply
request scheme shown in Graphs 3, 42-46 is the one 
used but that we interleave these in a threaded manner 
when going full duplex . 

The constraints put on (or rules defined by) the 
postulated procedures are therefore: 

Rule 1: When one station (A) sends a 'packet' of type: 
'text-block,"reply' or 'reply-request,' then the 
other station (B) either sends "nothing" 
("null"), synchronization (syn) symbols or 
sends a "packet" of the same type. A term
ination sequence, eot, has type: text-block. 
'Text-block' and 'reply-request' are packets of 
the same type. This corresponds to the logic of 
Graph 2, Figure 2. 

Rule 2: The exact mutual character-by-character se
quence need not necessarily match. That is, 
any time combination of A orB beginning or 
ending their "packet" transmission is allowed. 

Rules 1 and 2 guarantee that the two way line will never 
carry packets of different types at anyone time. 

The example shown in Figure 27 is a particular 
instance of a set of line transactions. Note specifically 
the situation after text-blocks m2 where B first sends 
ack1 reply to m2(A~B), then reply-request !! in 
response to an erroneously received ack1 = i from A; 
not before B has received a correct reply (either ackn 
or nak) can B proceed to text-block ma. Concurrently: 
A has received an affirmative answer to m2(A~B), so 
A proceeds to ma (A ~B) before it has cleared the 
m2(B~A) reply. 

In order, therefore, to synchronize these two processes 
properly we employ the following two indivisible opera
tions7 which we define using a pseudo PL/l notation: 

S: SET: PROCEDURE (semaphore); 
semaphore: = 1; 
END SET; 



EXAMPLE, Full Duplex File Transmission 

• A-B • • B-A 

A-B 

transmission 
from X toY 
initialization 
of XfromY 

X sends a 
sequence, but 
Y receives 
/3 sequence 

initialization 
of Y from X 

Figure 27-Example. Full duplex file transmission 

B-A 

H: HOLD: PROCEDURE (semaphore) 
RECURSIVE; 

IF semaphore = 1 THEN semaphore: = 0; 
ELSE HOLD (semaphore); 
END HOLD; 

On Graph 8, Figure 28, we have shown the totality 
of generator (-G) and recognizer (-R) graphs in 
both stations and we have explicitly shown details 
concerning half of the otherwise symmetric channel 
traffic, in this case: text blocks mB~A. 

1. While text block generator TGb in B transmits 
mB~A the text block recognizer TRa in A is re
ceiving that same message. 

2. When TRa has received all ef mB~A then it re
leases the reply generator RGa. The release is 
accomplished through S({3A) and may precede, 
coincide with or succeed the time at which TGa 
ends transmission, i.e., goes to state A8. 

3. When the reply recognizer RRb has received the 
reply then it: either releases the request-reply 
generator RRGb because an erroneous reply was 

Finite State Automation 489 

received, this release is accomplished through 
S ( 'Y B), or releases TGb through S (aB) . 

4. If RRGb was initialized then a transition to 
state B6 will enable RRb to state B9. A com
pletion of the request-reply recognition again 
releases {3A thus enabling RGa and the two corre
sponding components RRb and RGa are thus 
brought to synchronize. We point this out here, 
but could as well do it for the cases where TGb 
in state B2 enables RRb to state B9 simultane
ously with TRa in state A2 ("'B2) releasing {3A 
thus enabling RGa in state A9 ("'B9). 

5. In more general terms: The possibility that a 
generator G of type x E {T, R, RR} in station 
u E {A, B} enables a recognizer R of type 
y E {R, RR or T, R} (taken in corresponding 
order) before the type x recognizer (xRu) has 
reached home condition (i.e., final- or end-state) 
should not bother us. yRu will not receive input 
before xGv has reached its home condition, v¢u. 

We thus see that the system· of three semaphores 
{a, {3, 'Y} in each of two communicating stations com-

GRAPH 10 

2!A~B~i-BiI ______ . ____ . ___ _ 

STATION A Istatej-Aj) 

Figure 28-GRAPH 8 
Third level full duplex file transmission. Generator and 

recognizer system 



490 Fall Joint Computer Conference, 1970 

pletely interlocks proper sequences. The semaphore 
values are initially {I, 0, O}, with respective TR's 
enabled. 

6. One further note: observe that if xGu at time 
't' goes to state j (uj) then xRv will at time 
't+~' go to either the error state or vj. This is 
true for all state transitions. We might say that 
the recognizer is always one time step (~) be
hind its associated generator, ~ being the time 
it takes to serialize, transmit and deserialize a 
character. 

In this specific example we do not require the in
divisibility of the Hand S semaphore operators. Thus 
we have not demonstrated the particular virtues of H 
and S. For the synchronization of more than two lines, 
however, one is greatly aided by such primitive 
operators. 

Our example demonstrated the notion of (two) co
operating sequential processes. As such it conceptually 
belongs to the field of parallel computations. This is 
presently being studied intensely. In fact, it is proper 
here to refer to the pioneering work by Petri8 and Holt.9 

Their work essentially embodies the research suggested 
by Lynch.10 

In fact, Graph 8 is a somewhat transformed version 
of a Petri net as defined by Holt. Our graph not only 
shows the algorithmic parallelity but in addition indi
cates an implementation. 

PRODUCTION SYSTEM DEFINITION 

As a final (although non-graphical) way of com
pletely and compactly defining a set of line transactions 
we now show how the language acceptable by an IBM 
1070 process communication systemll IBM 1071 termi
nal control unit in text mode can be specified through 
a top-down LL (1) 12 grammar G: 

(1) w ~ eoaB 
(2) B ~selM Teob 

T~TT T~ 

(3) T~ sot S (4) T~eoaA 

(5) S~CX S~ 

(6) C ~ char (7) C ~sel 
(8) A~charD 

(9) M~charD M~ 

(10) D~charH D~ 

(11) H~ char H~ 

2; = {eoa, sel, char, sot, eob} 

where char denotes a larger alphabet. 

Input: 

State: eoa 

i: 1 2 (1) 

2 3 

f: e: 3 3 

4 5 (4) 

5 3 

6 5 (4) 

7 5 (4) 

8 5 (4) 

9 5 (4) 

~ char 

3 3 

4 (2) 3 

3 3 

3 7 (9) 

3 7 (8) 

6 (5,7) 6 (5,6) 

3 8 (10) 

3 9 (11) 

3 3 

Figure 29-TABLE V 
Finite state transducer 

The regular expression R (G) is: 

sot 

3 

3 

3 

6 (3) 

3 

6 {3} 

6 (3) 

6 (3) 

6 (3) 

~ sel (eUcharUchar charUchar char char) 

(sot ( charUsel) * Ueoa (charUchar char 

eob 

3 

3 

3 

3+ 

3 

3+ 

3+ 

3+ 

3+ 

Uchar char char) )*eob 

and the mechanically constructed finite state machine 
top-down transducing L (G) = I R (G) I is shown in 
Table 5, Figure 29. 

CONCLUSION 

It is our hope that we will achieve the objective: that 
of data communication line control procedures being 
defined through some compact, complete and un
ambiguous methodology which lends itself to levels of 
abstraction and to well structured implementations. 
This results in better designed communication subsys
tems, be it software, hardware, firmware or all. The 
implications are: 

1. Better control of engineering changes if any are 
needed. 

2. A much more generalized service engineering 
training. 

3. Systems which are easier to diagnose-visualize 
that we use all error state transition actions in 
our diagnostics, and we know a priori that we 
have dealt with all possibilities. 

4. Much better chances of implementing new exotic 
line control schemes fast and efficient. 



5. Reliable techniques for evaluating and comparing 
different implementations software, firmware 
or hardware, and through the hierarchical struc
turing, any mix of these. 

We have chosen the model of finite state graphs, 
rather than that of a context-free grammar. We did so 
because the communications control processes are of a 
finite state nature. The context-free grammar model is 
too powerful for our purposes and the finite state 
graph model is claimed easier to grasp. One is in particu
lar aided by the visuality rather than the formality. 

The theory of (finite state) automata and formal 
languages has come a long way. There are scores of 
important results waiting to be used practically. 

ACKNOWLEDGMENT 

The author is indebted to Akira Saito of IBM Japan 
for pointing out a subtle error in a first draft. 

REFERENCES 

1 IBM CORP 
General information, binary synchronous communication 
IBM Systems Reference Library (SRL) Form No A27 -3004 

2 J EISENBIES 
Conventions for data communication 
IBM Systems Journal Volume 6 Number 4 pp 267-302 1967 

3 ANSI 
USA proposed standard data communication control 
procedures for USASCII 
Communications of the A CM Volume 12 Number 3 pp 
166-178 March 1969 

4 B RANDELL F W ZURCHER 
Iterative multilevel modeling, a methodology for computer 
systems design 
IFIP Congress 68 Edinburgh August 5-10 1968 
and 
B RANDELL 
Towards a methodology of computer system design 

Finite State Automation 491 

NATO science committee report: Software engineering 
pp 204-208 Garmisch Germany October 7-111968 

5 E W DIJKSTRA 
The structure of T.H.E. multiprogramming system 
Communications of the ACM Volume 11 Number 5 pp 
341-346 May 1968 
and 
E W DIJKSTRA 
Complexity controlled by hierarchical ordering of function and 
and variability 
NATO science committee report: Software engineering 
pp 181-185 Garmisch Germany October 7-111968 

6 D BJ0RNER 
Flowchart machines 
IBM research report RJ685 San Jose California April 1970 

7 E W DIJKSTRA 
Cooperating sequential processes 
Programming Languages Ed F Genuys Academic Press 
Chapter 2 pp 43-112 New York 1968 

8 C A PETRI 
Kommunikation mit automaten 
Schriften des Rheinisch-Westfalischen Institut fUr 
Instrumentelle Mathematik Universitat Bonn Nummer 2 
1962 

9 A W HOLT 
Information System theory project 
Report Applied Data Research Inc Princeton New Jersey 
September 1968 
and 
A W HOLT F COMMONER 
Events and conditions, An approach to the description and 
analysis of dynamic systems 
Report Applied Data Research Inc Princeton New Jersey 
1970 

10 W C LYNCH 
Commentary on the foregoing note 
Communications of the ACM Volume 12 Number 5 pp 261 
and 265 May 1969 

11 IBM CORP 
IBM 1070 process communication system 
IBM System Reference Library (SRL) Form Number 
A26-5780pp 14-181968 

12 D BJ0RNER 
The theory of finite state syntax directed transductions 
PhD Thesis Laboratory for Pulse- & Digital Techniques 
Technical University of Denmark Copenhagen January 
1969 





A strategy for detecting faults in sequential machines 
not possessing distinguishing sequences* 

by D. E. F AR1VIER 

Clarkson College of Technology 
Potsdam, N ew York 

INTRODUCTION 

The problem treated here is that of detecting faults in 
digital equipment by applying input sequences at the 
input terminals and observing output sequences at the 
output terminals. The checking of digital equipment 
by input/output tests applied at the terminals is 
motivated by current and future usage of large-scale 
integration techniques which make internal test points 
generally inacces~ible for testing purposes. The mod~l
ing of digital equipment by finite-state sequentIal 
machines and then designing fault-detection tests 
based on the state table is a general approach. The 
difficulty is that it results in very long experiments for 
large state tables, particularly for the case in which 
the state table does not possess a distinguishing se
quence, that is, an input sequence for which the response 
uniquely identifies the initial state. This paper presents 
a strategy for designing more efficient fault-detection 
tests for machines not possessing distinguishing 
sequences. 

The fault-detection problem may be viewed as a 
special case of the machine identification problem. The 
general machine-identification problem consists of 
determining a state table for an unknown finite-state 
machine by applying inputs and observing outputs. 
The fault-detection problem consists of determining 
whether the possibly faulty machine is describable by 
the state table of the known fault-free machine. The 
fault-detection test either verifies that this is the case 
or that it is not the case. If the test shows that the 
possibly faulty machine is not describable by the state 

* This paper is based on a dissertation submitted by the author 
in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy in Electrical Engineering at the Polytechnic Insti
tute of Brooklyn. This work was supported in part by the National 
Science Foundation Grant No. GK-l0218. 

493 

table of the fault-free machine, it provides no further 
information concerning its state table. 

The machine-identification problem was first treated 
by Moore.1 He proposes setting an upper bound, n, on 
the number of states which the unknown machine may 
possess. He then forms a composite state table fror.n 
all distinct state tables of n or fewer states. For thIS 
composite state table Moore finds a homing sequence, 
an input sequence for which the output uniquely identi
fies the final state. Application of the homing sequence 
to an unknown machine permits the determination of 
the final state of the composite machine (containing 
the unknown machine) and consequently of the ma
chine containing that state. The difficulty with this 
approach is that the number of distinct n-state tables 
grows very rapidly for increasing n and consequently 
the test procedures become impractically long. 

Further work on distinguishing sequences and homing 
sequences is contained in Gi1l2 and Hibbard.3 It is 
shown that every reduced· n-state machine possesses a 
homing sequence and that the shortest such sequence 
contains at most (Y2) (n) (n-I) symbols. It is also 
shown that a machine need not possess a distinguishing 
sequence. 

The design of test procedures based on knowledge 
of the state table of the fault-free machine was first 
treated by Hennie.4 Hennie's tests are true fault-de
tection tests rather than machine-identification tests. 
Hennie treats both the case in which a machine pos
sesses a distinguishing sequence and the case in which 
it does not. He demonstrates the feasibility of test 
procedures for both cases and presents the philosophic 
basis for the tests. He does not claim to present the 
optimum strategy for test design. . 

Kime5 presents an alternate strategy for the dIS
tinguishing-sequence case, which retains Hennie's 
philosophy, but is somewhat more systematic and 
results in a lower upper bound on the length of tests. 



494 Fall Joint Computer Conference, 1970 

Kohavi and Lavallee6 treat the problem of designing 
machines so that they possess distinguishing sequences 
and also present a special test organization for machines 
which possess distinguishing sequences composed of 
repetitions of a single input symbol. Kohavi and 
Kohavi7 present a test organization for the special case 
in which the machine possesses a variable-length dis
tinguishing sequence. In this case some of the states 
may be identified by a prefix of a longer distinguishing 
sequence (required for other states). 

The strategy presented in this paper includes the 
Kime organization and the Kohavi and Kohavi vari
able-length distinguishing sequence organization as 
special cases of a more general approach. Primary at
tention is focused on machines which do not possess 
distinguishing sequences, but the distinguishing-se
quence case is also included. 

For machines not possessing distinguishing sequences, 
an initial state must be identified by observing the set 
of responses to a set of input sequences, each element 
of the set being applied to the machine in the same 
initial state. Such a set of input sequences is called a 
characterizing set. It is possible to use different char
acterizing sets for the various states, some of lower 
order than others. The application of this strategy 
results in shorter test procedures. This is one of the 
principal features of this work. 

Another feature is a general treatment of locating 
sequences. A locating sequence, as used here, is an in
put sequence for which the observation of a specified 
response permits the determination of the state of the 
machine at some specified point in the sequence. Hennie 
treats a special kind of locating sequence, one which 
not only locates a state, but also checks the response 
to a characterizing set for the located state. In this 
paper Hennie's locating sequence is called a character
ization-verification sequence. The selective use of these 
sequences is an important feature of the testing strategy 
presented here. 

DEFINITIONS AND NOTATION 

The sequential machines considered in this paper are 
finite-state, synchronous, deterministic, strongly con
nected, and completely specified. The machines are of 
the Mealy model where X = {Xl, X2, ... , Xm} is a finite 
set of input symbols, S = {Sl, S2, ... , Sn} isa finite 
set of internal states, and Z = {Zl' Z2, ••• , zp} is a 
finite set of output symbols. There is an output func
tion, w(S", Xj), which specifies an output symbol for 
every SiE S,xjE X. There is a next-state function, 
O(Si, Xj), which specifies a next state for every SiE S, 
xjEX, 

Throughout this paper we shall be concerned with 
two machines: the fault-free machine, M, and the 
possibly faulty machine, M', A fault-detection test 
must establish that machine M' is or is not indistin
guishable from machine M, subject to certain assumed 
restrictions on M'. It is necessary to fix an upper bound 
for the number of states which M' may possess in 
order that the fault-detection test be finite. In this 
paper the upper bound is taken as n, the number of 
states of the fault-free machine. This is usually justi
fiable by knowledge of the internal structure of the 
machine being tested. It is also assumed that faults 
are logical, that is, M' is describable by a finite-state 
deterministic state table. 

In order to distinguish between the states of the 
machines M and M', we denote the ith state of M' by 
S/. It is our goal to establish that the behavior of M' 
for initial state S/ is indistinguishable from the be
havior of M for initial state Si. For· convenience we 
choose the same subscript for corresponding indis
tinguishable states of M and M'. 

In order to make these concepts precise, we make the 
following definitions. 

Definition 1 

A fault-detection test for machine M' is the application 
at the input terminals of M' of a sequence of input 
symbols such that the observation of the sequence of 
output symbols (response) produced at the output 
terminals is sufficient to determine whether or not M' 
is indistinguishable from M, subject to the assumptions 
that M' contains no more states than does M and that 
M' is representable by a finite-state deterministic state 
table. 

Definition 2 

A locating sequence for state Si of machine M is an 
input sequence for which the observation of a specified 
response is sufficient to determine that M is in Si at 
some known point in the application of the locating 
sequence. 

The state Si is located by the locating sequence. In 
accordance with whether Si is located prior to, during, 
or after the application, the sequence is an initial
state, intermediate-state, or present-state locating se
quence. An initial-state locating sequence and an inter
mediate-state locating sequence are also present-state 
locating sequences, since knowledge of the input se
quence and the state table for M provides knowledge 
of a future state of M after some state is first located. 



Strategy for Detecting Faults in Sequential Machines 495 

Throughout this paper the terms present-state or 
intermediate-state locating sequence are usually applied 
to sequences which are not also initial-state locating 
sequences. A reduced n-state sequential machine does 
not necessarily possess an initial-state locating sequence 
for any of its states. 

Definition 3 

A distinguishing sequence for machine M is an input 
sequence which is an initial-state locating sequence for 
all of the states of M. 

A distinguishing sequence can also be defined as an 
input sequence for which the response of the machine 
is different for each initial state. This is equivalent to 
the preceding definition. 

Definition 4-

A homing sequence for machine M is an input sequence 
which is a present-state locating sequence for all states 
into which M can be transferred by the homing se
quence. Any initial state is permitted. 

For an input sequence to be a homing sequence, it 
must be possible to apply it to the machine in any 
initial state and have it locate the present state. The 
response is a function of the initial state, but serves to 
locate the present state. We are assured that a present
state locating sequence for some state exists for every 
reduced n-state machine because a homing sequence 
exists. 

Definition 5 

A characterizing set for state Si of machine M is a set 
of input sequences for which the corresponding set of 
responses is unique to initi~l state Si, M being in Si 
prior to the application of each element of the char
acterizing set. 

The characterizing set for Si characterizes Si. 

Definition 6 

A characterizing set for machine M is a set of input 
sequences which is a characterizing set for every state 
of M. 

The characterizing set for M characterizes M. It is 
clear that a characterizing set for M can be obtained 
from the union of characterizing sets for all the states 
of M. A characterizing set for a state may thus be 
viewed as a subset of a characterizing set for a machine. 

An initial-state locating sequence for state Si is a 
characterizing set for Si of order one. Likewise, a dis
tinguishing sequence for M is a characterizing set for 
M of order one. 

Definitions 2 through 6 apply to machine M, the 
fault-free machine. These concepts can also be applied 
to machine M', the possibly faulty machine, provided 
that we can devise a test procedure for verifying that 
M' possesses n distinct states which are characterized 
by the characterizing sets for the n states of M. The 
following definition provides us with a required tool 
for this purpose. 

Definition 7 

A characterization-verification sequence for state S/ 
of machine M' is an input sequence applied to M' for 
which the observation of a specified response verifies 
that M' contains a state S/ which is characterized by 
the characterizing set for state Si of machine M. 

I t is incidental to the preceding definition that the 
way of forming characterization-verification sequences, 
presented in a subsequent section of this paper, results 
in their. being intermediate-state locating sequences 
for S/. 

Tables I, II, and III are the state tables for machines 

TABLE I-State Table for Machine Ml 

Present state 

A 
B 
C 
D 

Next state, Output 
input = 0 input = 1 

A, 1 C, 0 
A, 0 C, 0 
B,O D,O 
A, 1 D,O 

TABLE II-State Table for Machine M2 

Present state 

A 
B 
C 

Next state, Output 
input = 0 input = 1 

A, 1 
C,O 
B, 0 

B, 0 
A, 0 
C,l 

TABLE III-State Table for Machine Ma 

Present state 

A 
B 
C 
D 

Next state, Output 
input = 0 input -1 

A, 0 B, 0 
A, 0 C, 0 
A,O D,O 
A,l D,O 



496 Fall Joint Computer Conference, 1970 

M I , M 2, and Ma. These machines provide examples of 
the types of input sequences just defined. The examples 
are given in Tables IV through IX. 

TABLE IV-Example of an Initial-State Locating Sequence 

Initial state 

A 
B 
C 
D 

Response of M 1 to input sequence 00 

11 
01 
00 
11 

Note: 00 is an initial-state locating sequence for states Band C 
as demonstrated by the unique responses for Band C. 

TABLE V-Example of a Distinguishing Sequence 

Initial state 

A 
B 
C 

Response of M2 to input sequence 01 

11 
01 
00 

Note: 01 is a distinguishing sequence for M2 as demonstrated 
by the unique responses for each state. 

TABLE VI-Example of a Present-State Locating Sequence 

Initial state 

A 
B 
C 
D 

Response of M 1 to 
input sequence 0 

1 
o 
o 
1 

State after application 
of input sequence 0 

A 
A 
B 
A 

Note: 0 is a present-state locating sequence for state A, since a 
response of 1 verifies that the present state of M 1 is A. 

TABLE VII-Example of a Homing Sequence 

Initial state 

A 
B 
C 
D 

Response of M 1 to 
input sequence 10 

00 
00 
01 
01 

State after application 
of input sequence 10 

B 
B 
A 
A 

Note: 10 is a homing sequence for M l , since a response of 00 
verifies present state B, while a response of 01 verifies 
present state A. Also, 10 serves this function for all initial 
states. 

TABLE VIII-Example of a Characterizing Set for a State 

Initial state 

A 
B 
C 
D 

Response of M3 to input set to, 1O} , 

{O,OO} 
{O,OO} 
{0,01} 
{1,01} 

Note: The set to, 1O} is a characterizing set for state C, since the 
response set to, Ol} is unique to initial state C. 

TABLE IX-Example of a Characterizing Set for a Machine 

Initial state 

A 
B 
C 
D 

Response of M3 to input set to, 10, nO} 
to, 00, OOO} 
to, 00, 001} 
to, 01, 001} 
{I, 01, 001} 

Note: The set to, 10, 110} is a characterizing set for machine 
M3 as demonstrated by the unique response sets for each 
state. 

SUBDIVISION OF FAULT-DETECTION TESTS 

At the outset of the test procedure we must place 
machine M' into some reference condition in order 
that we may then apply the fault-detection test proper, 
which is designed for this specific reference condition. 
This consists of placing M' in some state, So', by 
applying a homing sequence for machine M, followed 
by a sequence designed to transfer M to So from its 
state at the conclusion of the homing sequence. This 
procedure is adaptive in nature since the transfer 
sequence used depends on the observed response to 
the homing sequence. Although this procedure treats 
M' as if it were M, if M' is not in fact transferred to 
So', this will be discovered in the fault-detection test 
proper and it is then established that M' is faulty. 

The fault-detection test is preset and is designed for 
application to machine M' in state So'. The test may 
be subdivided (at least conceptually) into two parts. 
Part (1) establishes that M' possesses n distinct states, 
SI', S2', ... , Sn', which are characterized by the char
acterizing sets for the n states of machine M. It also 
establishes that a locating sequence ( either initial
state or present-state) exists for some state of M'. 
Part (2) establishes that the next-state and output 
functions for M' correspond to the next-state and out
put functions for M . We call part (1) the character
izing portion and part (2) the transition and output 
checking portion. In applying the tests the two parts 
may occur in any order and may in fact overlap one 



another. It is convenient for the purpose of this dis
cussion to treat the transition and output checking 
portion first, remembering that it depends for its 
validity on the characterizing portion. 

TRANSITION AND OUTPUT CHECKING TESTS 

The following notation is introduced for the descrip
tion of this portion· of the fault-detection test. 

Let Si, 1 ~i~n, denote the ith state of M. 
Xi, 1 ~j ~ m, denote the jth input symbol. 
Sij=O(Si, Xj), denote the Xj successor state of Si. 
k i denote the order of the characterizing set for 

Si. 
{ Xii, X i2, . . . , X il, • . . , X ikJ, 1 ~ l ~ ki' denote 

the characterizing set for Si. 
k ij denote the order of the characterizing set for 

Sij. 
{ X ijl, X ij2, . . ., X ij1, . . . , X ijkii}, 1 ~ l ~ kii, de

note the characterizing set for Sij. 

Let Qil be the state in which M is left after applica
tion of X il, M being initially in Si. 

Qijl be the state in which M is left after applica
tion of Xijl, M being initially in Sij. 

T(Sa, Sb) denote an input sequence which 
transfers M from state Sa to state Sb. 

So denote the reference state for the test. 
Xo denote a sequence which takes M from So to 

a state Qo and which is also a present-state 
locating sequence for Qo. 

Xo may also be an initial~state locating sequence 
for So and is selected as such if machine M 
possesses an initial-state locating sequence for 
So. -

The following operation symbols are defined. 

1. Sequence inclusion is denoted by +. Xl + X2 
means any sequence which includes both Xl 
and X2 as subsequences. It is convenient to call 
this "summation." 

2. Multiple inclusion is denoted by L:.L:i=l Xi 
means any sequence which includes all n X/s 
as subsequences. These sequences are not neces
sarily disjoint, but may overlap. 

3. XY denotes sequence X followed by sequence Y. 

It is claimed that the following input sequence, 

Strategy for Detecting Faults in Sequential Machines 497 

TOCP, constitutes a transition and output checking 
portion of a fault-detection test. 

n ki 
TOCP=L: L: XoT(Qo, Si)XilT(Qil, So) 

i=1 1=1 

n m kii 
+ L: L: L: XoT(Qo, Si)XjXij1T(Qij1, So) (1) 

i=1 j=1 1=1 

That the inclusion of these subsequences is a suffi
cient condition for the sequence, TCOP, to constitute 
a transition and output checking portion of a fault
detection test is seen as follows. The first summation 
verifies a transfer sequence from state Qo to every other 
state. The second summation, together with this es
tablished transfer sequence, verifies the Xj successors 
and Xj outputs for every state. In fact, the second sum
mation includes the first. This is due to the assumed 
strongly connected property of the machine. The fact 
that every state is reached through some transition 
means that a transition check for one state also verifies 
a transfer from Qo to another state. Therefore, the 
second summation alone constitutes the transition and 
output checking portion. 

THE TRANSITION AND OUTPUT 
CHECKING TREE 

The various subsequences of the second summation 
of Equation (1) may overlap. The greatest overlap 
results in the most efficient fault-detection test. We 
now introduce the transition-checking tree as an aid to 
achieving maximum overlap. This tree is a form of 
state transition diagram with nodes representing 
states and directed branches representing transitions 
for specified input sequences. The tree consists of four 
portions as follows. 

1. The locating-sequence trunk consists of a single 
branch originating at state So and directed to 
state Qo. This branch is labeled with the input 
sequence Xo. 

2. The transition-covering portion consists of a 
state transition diagram originating from state 
Qo and developed tree-like through successive 
levels until all of the transitions of M have 
been covered; There are (m) (n) branches in 
this part, each labeled with a single input symbol. 

3. The characterization-completion portion carries 
the tree through an additional level. From each 
terminal node of the transition-covering portion 



498 Fall Joint Computer Conference, 1970 

is directed a branch or branches labeled with the 
input sequence or sequences needed to ensure 
that each node of the transition-covering portion 
be succeeded by tree paths labeled with se
quences covering every element of the char
acterizing set for the state associated with the 
node. 

4. The closing portion of the tree carries the tree 
through an additional level so that each tree 
path ends at state So. There is a branch from 
each terminal node of the characterization
completion portion labeled with the necessary 
transfer sequence to return the machine to So. 
In the event that a terminal node of the char
acterization-completion portion corresponds to 
state So, a closing branch labeled with A, the 
zero-length sequence, is included. 

Figure 1 is the transition and output checking tree 
for machine M 4, the state table for which is given in 
Table X. Table XI gives the responses of M4 to input 
sequences 0, 10, 010 for each initial state. 

Specializing the general notation previously gIven 
for machine M 4, we obtain: 

Sl=A 

S2=B 

S3=C 

S4=D 

We select So=A 

{Xu} = {010} 

{X2d= {010} 

{X31, X 32 } = to, 10} 

{X41, X 42 } = to, 10} 

Xo = 010, which is an initial state locating sequence 
for state A, having response 000 associated 
with it. 

Qo=A 

TABLE X-State Table for Machine M4 

Present state 

A 
B 
C 
D 

Next state, Output 
input = 0 input = 1 

B,O D,O 
A, 0 B, 0 
D, 1 A, 0 
D, 1 C, 0 

TABLE XI-Response of M4 to Inputs 0, 10, 010 

Initial state 

A 
B 
C 
D 

Response to input sequence 
o 10 010 

o 01 000 
o 00 001 
1 00 101 
1 01 101 

The transition and output checking portion of the 
fault-detection test is constructed directly from this 
tree. This is done by tracing all of the paths through 
the tree from the origin (So) back to the common 
destination (also So). The input sequences associated 
with these paths are then concatenated in any order 
to form the transition and output checking portion. 
That this is sufficient is seen from the fact that these 
paths correspond to the second summation of Equation 
(1), covering every transition (input/state combina
tion) , with each transition being followed by each 
element of the characterizing set for the successor 
state associated with the transition. The following is 
such a test for machine M 4, taken from the tree of 
Figure 1,· in left to right path order: 

(01000010) (010001011) (0100101011) (01010011) 

(01010101) (010110011) (010110101) (010111010) 

If the possibly faulty machine responds to the 
above sequence as would the fault-free machine, then 
one portion, in this case the longest portion, of the 
fault-detection test has been passed. 

In the following section we present a 23-symbol 
characterizing portion for this machine. The above 

} 

Locating 

Sequence 

Trunk 

Transition 

Covering 

Portion 

} 

Character
ization 
Completion 
Portion 

Closing 
Portion 

Figure 1-Transition and output checking tree for M4 



Strategy for Detecting Faults in Sequential Machines 499 

transition and output checking portion contains 70 
symbols, making a total of 93 symbols for the length 
of a complete fault-detection test for M 4'. Rennie 
designs a fault-detection test of length 152 symbols 
for this same machine, although he explicitly states 
that this is undoubtedly not optimal. The chief saving 
over Hennie's test is due to the following: 

1. A tree-organized overlapping procedure is uti
lized together with characterizing sets of order 
one for states A and B. Rennie uses the char
acterizing set {O, 10} for all the states. 

2. The sequence 010 is. used for the locating se
quence trunk of the transition and output 
checking portion. This contrasts with Hennie's 
corresponding use of a characterization-verifica
tion sequence for state D containing six symbols. 

The preceding example was for a machine which 
possessed an initial-state locating sequence for some 
state. Such a class of machines may be thought of as 
intermediate between the class of machines possessing 
distinguishing sequences and the most general class, 
possessing no initial-state locating sequence. For the 
most general case the transition and output checking 
tree is still applicable, but a present-state locating 
sequence must be used for the locating sequence trunk. 
The characterizing portion of the fault-detection test 
is much longer for such machines. In this case So is re
placed by the set of initial states for which Xo takes 
the machine to Qo. The closing portion of the tree may 
return the machine to any member of this set. 

TRE CHARACTERIZING PORTION OF 
THE FAULT-DETECTION TEST 

The characterizing portion of a fault-detection test 
is composed of characterization-verification sequences 
for each state linked together by appropriate transfer 
sequences. We now consider the organization of char
acterization-verification sequences. The strategy used 
is based on the behavior of the finite-state machines 
for repetitive input patterns. We require the following 
lemma for proving the desired result. 

Lemma 1 

Let xn denote n consecutive repetitions of the input 
sequence, X. If Xn is applied to the n-state sequential 
machine, M', the state. in which the machine remains 

is the same as a state in which it resided prior to at 
least one of the applications of X. 

Proof 

A specialized form of transition graph for a machine 
is obtained by letting directed branches between nodes 
represent the transitions between states which occur 
only for the input sequence, X. The application of Xn 
to the machine corresponds to tracing an n-branch path 
on this graph. Since M' is assumed to contain no more 
than n states, this path necessarily contains a loop. 
The lemma follows. 

We now proceed to the organization of a character
ization-verification sequence. The following notation 
is required: 

Let {Xl, X 2, ••• , Xl, ... ,Xk } denote a character
izing set for machine M. (1 ~ l ~ k) 

Qil, Qi2, ... , Qil, ... , Qik denote the set of 
states to which M is transferred by the appli
cation of X il , 1 ~l~k, M being initially in Si. 

T(Sa, Sb) denote an input sequence which 
transfers M from Sa to Sb. 

Then, { X iI, X i2, ••• , X il, .•. , X ik} is another char
acterizing set for M (and for Si). This is 
called the modified characterizing set for Si, 
each element being modified so as to return 
M to Si when applied to M initially in Si. 

Let { Z iI, Z i2, ... , Z il, •.• , Z id denote the set of 
responses of M initially in Si to the elements 
Xil. 

Let Y il =Xil 

Yi(k-l) = Y i n(k_2) Y in(k_3)· •• Yi1n Xi (k-l) 

Y ik = Y in(k_I)Yin(k_2)··· Yi1nXik (2) 

Let Wikdenote the response of M initially in Si to Y ik. 

Theorem 1 

Y ik, defined by Equation 2, is a characterization
verification sequence for state S/, that i~, its applica-



500 Fall Joint Computer Conference, 1970 

tion to M' and observation of response W ik verifies 
that M' has a state characterized by the characterizing 
set for state Si of machine M. 

Proof 

Note that Yi(k-l) concludes with Xi(k-l). The se
quence Xi (k-l) Y i n(k_2) Y i n(k_3)· •• Yiln is repeated n times 
just prior to X ik in the sequence Y ik• By Lemma 1 the 
state of M' just prior to the application of X ik must be 
the same as some state just prior to an application of 
Xi (k-l) Y i n(k_2) Y i n(k_3)· •• Yiln. If the correct output se
quence, W ik, is observed, this state is one for which 
M' responds to Xi(k-l) with Zi(k-l) and to X ik with Zik. 

Similar reasoning based on repetitive patterns shows 
that the state of M' just prior to the application of Xik 

is a state for which M' responds to the input set, 
{XiI, X i2, ••• , X ik }, with the response set, 

{Zil, Zi2, •.• , Zid. 

A characterization-verification sequence for state 
B' of the four-state machine, M3' (Table III), is now 
constructed. 

A characterizing set for M 3, {Xl, X 2, X 3 }, is the set 
to, 10, 110} as seen from Table IX. 

The modified characterizing set for state B is 
{01, 101, 110l} = {XBl, X B2, XB3}. 

The corresponding response set is {OO, 000, 0010} = 
{ZBl, ZB2, ZB3}. 

Therefore Y BI =XBl =01 

Y B2 = ynBlXB2 = (01)4101 

Y B3= YnB2YnB3XB3 = [(01)·4101J4(01)41101 

W B3= [(00)4000J4(00) 40010 

There exist more efficient ways of designing char
acterization-verification sequences, taking advantage 
of the existence of a number of distinct responses to 
some elements of the characterizing set in order to 
reduce the number of repetitions. The detailed treat
ment is omitted here. 

Frequently there are informal ways of designing the 
characterizing portion of a fault-detection test. An 
example is provided by the 23-symbol characterizing 
portion for machine M4 which has previously been 
mentioned. The following is a sufficient sequence for 
characterizing the states of M4' and verifying that 010 
is an initial-state locating sequence for state A'. 

Input 01 01 0 04 10 1 (01)4 10 0 
State of M ': A' B' D' D' D' D' C' C' C' A' 
Output: 00 00 1 14 01 0 (10)4 00 0 

The first five symbols show that there are at least 
three states, because there are at least three distinct 
responses to input sequence 010. State A' is located 
by response 000 to input 010 and B' is located by 
response 001 to input 010. The fifth symbol shows 
that there is at least one state for which the response to 
input 010 begins with 1. States C' and D' are then 
characterized by means of the characterization-verifica
tion sequences, 0410 and (01)410, respectively, and it is 
established that the response set to input set {O, 10} is 
{I, DO} for C' and {I, 01} for D'. 

VERIFICATION OF LOCATING SEQUENCES 

An initial-state locating sequence is readily verified 
by selecting it as one of the elements of the character
izing set. The characterization-verification sequences 
designed as indicated here then verify that it is in fact 
an initial-state locating sequence. A present-state 
locating sequence can also be verified by employing 
the characterization-verification sequences as inter-

mediate-state locating sequences for the basis of a 
partial transition and output checking tree, similar to 
the tree described in this paper. The method is straight
forward, but the explanation is lengthy and cannot be 
detailed here. 

CONCLUSIONS 

The strategy presented in this paper results in fault
detection tests which are more efficient than those 
described in previous work. The length is shortened by 
judicious choice of characterizing sets, advantageous 
use of overlapping sequences, and by use of the shortest 
locating sequence for establishing a reference. 

Experience has shown that the transition and output 
checking portion of a fault-detection test is generally 
the longest part. The saving in length achieved in this 
part by using the shortest locating sequence at leats 
equals the difference in length between the shortest 
locating sequence and the shortest characterization
verification sequence, multiplied by the number of 



transitions. The saving achieved by overlapping and 
judicious selection of characterizing sets is usually 
even more significant, since this results in tracing fewer 
paths through the tree and therefore reduces the total 
number of sequences required for the test. 

REFERENCES 

1 E F MOORE 
Gedanken-experiments on sequential machines 
Automata Studies pp 129-153 
Princeton University Press Princeton New Jersey 1956 

2 A GILL 
Introduction to the theory of finite-state machines 
McGraw-Hill Book Company New York 1962 

3 T N HIBBARD 
Least upper bounds on minimal terminal state experiments for 

Strategy for Detecting Faults in Sequential Machines 501 

two classes of sequential machines 
J Assoc Comp Mach Vol 8 pp 601-612 October 1961 

4 F C HENNIE 
Fault detecting experiments for sequent.,ial circuits 
Proc 5th Annual Symposium on Switching Circuit Theory 
and Logical Design pp 95-110 Princeton New Jersey 
November 1964 

5 C R KIME 
An organization for checking experiments on sequential circuits 
IEEE Transactions on Electronic Computers (Short notes) 
Vol EC-15 pp 113-115 February 1966 

6 Z KOHAVI P LAVALLEE 
Design of sequential machines with fault-detection capabilities 
IEEE Transactions on Electronic Computers Vol EC-16 
pp 473-484 August 1967 

7 I KOHA VI Z KOHA VI 
Variable-length distinguishing sequences and their application 
to the design of fault-detection experiments 
IEEE Transactions on Computers (Short notes) Vol C-17 
pp 792-795 August 1968 





Coding/decoding for data compression and error 
control on data links using digital computers 

by H. lV1. GATES 

Braddock, Dunn and McDonald, Inc. 
Albuquerque, New Mexico 

and 

R. B. BLIZARD 

Martin Marietta Corporation 
Denver, Colorado 

INTRODUCTION 

Data compression and error control have, over the 
years, been treated as two separate disciplines. Data 
compression can substantially reduce the loading of 
communication channels and error control using coding 
methodology, can reduce the amount of errors in the 
messages being transmitted, or allow the· system to 
operate with less power for a comparable uncoded in
formation rate. This paper demonstrates that both 
functions can be combined into one operation by apply
ing sequential decoding developed for error control to 
data compression. Because the same general method 
can be used to solve both problems, data compression 
and error control can be united in a single system and 
held accountable for the required theorems in informa
tion theory. 

The principal incentive for the use of sequential de
coding for both compression and error control is that 
it permits the use of the source redundancy with ex
tremely simple encoding equipment. Higher speed com
puting systems and larger available memories make it 
more feasible to use various redundancy schemes. In 
photographs, for example, line-to-line redundancy can 
successfully be used. 

The proposed process of combining data compression 
and error control in a sequential decoder is reversible 
because the original data is recovered intact with no 
compromising or loss of information and resolution. 
This is attributed to the sequential decoding process 
itself. Uncertainty about data modification and missing 
data does not exist. If the capacity of the channel is 
exceeded because of increased noise or information 
activity beyond the design of the system, the data out-

503 

put from the decoding process stops and delivers no 
further information until the channel improves. The 
transmitted data delivered to the user is thus creditable. 

The combined process does not require two separate 
systems; one for compression and one for error control. 
Data compression designers rely heavily on error free 
channels and error control factions assume purely 
random information into their system and data link. 
Naturally, neither is completely true. 

In simulating data channels, error control designers 
expend a great amount of effort in generating a pure 
random number sequence to test their system. Yet, 
the data compression specialist expends his time trying 
to identify patterns in what is sometimes the most 
obscure material. There should be little doubt that the 
two· processes are very closely related. 

Background 

The means for decoding convolutional codes first be
came practical when R. M. Fano in 1963 introduced his 
now famous sequential decoding algorithm. 1 ,2 1. M. Ja'
cobs3 recently discussed sequential decoding as it applies 
to retrieving data from a space probe. He points out that 
this is a particularly good application because fading is 
relatively unimportant, channel noise is nearly Gaus
sian, and the information rate is limited by the avail
able signal strength rather than by the bandwidth. 
Significant developments in the im.plementation of 
sequential decoders have occurred in the Pioneer IX 
space program;4 at the MIT Lincoln Laboratory;5 and 
by the Codex Corporation;6 and new algorithms for de
coding convolutional codes are being disclosed 
annually.7 



504 Fall Joint Computer Conference, 1970 

n = I 
k = It 
v 2 3 

(

1000 ) 
G = 1111 

1011 

move is up 
if m .. 0 

n 

move is down 
if m .. I 

n 

Noise' 

(a) Convolutional Encoder 

n+3 

(b) Code. Tree 

H=O,I,O,O 

Figure l-Binary convolutional encoder and its code tree for first 
4 moves 

The possibility of applying error control coding to 
data compression was first pointed out by Weiss8 who 
showed that block codes work fairly well for com
pressing data streams consisting of a few l's scattered 
at random among many O's. However, this type of 
source can be very efficiently and easily encoded with 
a run-length encoder. More interesting sources are those 
in which the redundancy is of a more complicated type 
and is not easily utilized by a block decoder. Sequential 
decoding is ideally suited to this type of problem. 

With block codes such as the orthogonal and BCH 
codes, the entire block is ordinarily decoded as a unit 
by computing correlations or by solving certain alge~ 
braic equations. Sequential decoding starts at the be
ginning of a message block and works toward the end 
by a trial-and-error process. A running account is 
kept of the reasonableness of the decoded message on 
the basis of received signal. If a wrong decision is made 
because of noise, the subsequent decoded message soon 
becomes unreasonable, and the decoder then searches 
back over its earlier choices until the correct message 
is found. It is relatively simple, in concept at least, to 
use what is known about the message probabilities to 
improve the likelihood criterion. This aUows more 
data to be tr~nsmitted over a given link and accom
plishes data compression. 

Convolutional Codes 

Figure la shows a convolutional encoder with a 
binary message source, M, assumed for the time being 
to be random information, and an error source, N, rep
resenting channel noise. Messages from the source S 
may be shifted in one or more bits at a time denoted as 
n. After each shift, v mod-2 adders (in this case three 
mod-2 adders) are sampled or commutated and the 
resultant bits passed into the transmitter equipment of 
the data channel. If four bits are shifted in before the 
encoder output is commutated, a convolutional data 
compression process occurs at rate %. The decoder 
must then use the a posteriori probability of the source 
S in defining the decoding parameters of the Fano 
algorithm. Normally, rates of Y2, ~, and even 7.4: are 
used in error control. That is, for each bit shift in, from 
two to four mod-2 adders are sampled. The number of 
mod-2 adders normally is fixed or hardwired for a par
ticular mission or channel requirement. The connec
tions from these mod-2 adders to the shift register, G, 
represents the codes themselves and a great deal has 
been written about this subject particularly if the shift 
register length, called the constraint length, k, is below 
12 to 15 bits. Random selection of these codes for large 
constraint lengths produces adequate, if not complete1y 
satisfactory, results.9 Two rates of 2/1 and 6/4 are 
demonstrated here. Constraint lengths of 60 bits are 
used as well. 

The basic channel 

The channel is important in both error control and 
compression since it represents the sole source of noise 
and thus errors into the system, that is, receiver front
end noise, electronic noise in the lines, and so forth, are 
combined into one noise error source. By definition 
then, the channel referred to here contains the system 
modulator, amplifiers, transmitters, antennas or cables, 
repeaters, receivers, and demodulators. The noise of 
this channel is assumed to be Gaussian or white noise. 
The channel is assumed to be stationary in the sense 
that its properties do not change with time. And the 
channel· is assumed to be memoryless. The channel is 
described as binary antipodal in which the transmitted 
waveforms in the absence of noise are a sequence of 180 
degree, phase-modulated waveforms, or binary data 
represented by plus and minus voltages for ones and 
zeros respectively. 

The restrictions imposed on the channel are to this 
point, fairly realistic, depending of course on the 
method of transmission. In passing, if the received 



Coding/Decoding for Data Compression and Error Control 505 

binary sequence is quantized into say four or eight 
levels for each bit received, the compression and error 
control performance can be increased. This is a well 
known fact in information theory. This quantization 
does not change the basic operation of this system or 
any of the convolutional decoders that this author is 
aware of. 

The decoder 

Convolutional codes generated by the encoder shown 
in Figure 1a can be decoded in one of several ways. The 
oldest practical method is the use of the Fano Algorithm 
which is well described in several references. 2 The Fano 
Algorithm sequentially decodes the data stream as it is 
received and thus the reference to sequential decoding. 
Actually, there are several new algorithms for decoding 
convolutional codes which are extremely clever and 
add promise to the combination of error control and 
data compression. 

Without going into great detail, a sequential decoding 
process will be described next. Any code produced by 
the convolutional encoder may be represented by a 
binary tree. The encoder input M =Ml, M 2, ••• , corre
sponds to an infinite path through the tree, and labels 
on the branches indicate the encoder output. Figure 
1 b demonstrates this point for a given convolutional 
encoder. Since more bits are being generated than re
ceived in the. encoder, i.e., n<v, redundancy is intro
duced to give the code error detecting and correcting 
capabilities. The received infinite sequence for the 
channel must similarly be compared with a receiver 
encoder replica to find the path which maximizes the 
conditional probability of the received sequence versus 
the absolute values of the code tree. Each move from 
one node to another represents a bit shift of informa
tion. Sequential decoding is then based on searching the 
most probable branches of a code tree. Whenever this 
path becomes too unlikely, a search is initiated for a 
better path. The sequential decoder is able to determine 
the correct path while examining only a fraction of the 
total set of possible paths. The number of searches de
pends on the errors introduced by the channel in the 
case of error control. If the channel is very noisy, the 
number of branches which must be searched before 
finding the most probable path becomes super expo
nential. The decoder is limited by the operating speed 
of the computer and the decoder input rate. The means 
of scoring which branch or path is best is referred to as 
the branch metric which is based on the conditional 
probabilities of the received versus the transmitted 
signal. 

THE COMPUTATIONAL LIMIT 

This section contains a discussion of the limits of 
performance that can be expected for data compres
sion with sequential decoding. 

If the convolutional code is fairly long, a sequential 
decoder has a very small probability of making an un
detected error. Instead, when the signal-to-noise ratio 
gets too high, it runs out of computational capacity 
and gives up until a new block is started by filling the 
encoder shift register with zeros. The amount of com
putation required for each node of the decoding tree 
is measured by the average number of branches that 
must be tried before the decoder can advance to the 
next node. It is easily seen that, as the signal gets 
noisier (or, if compression is used, as the data become 
more active), the decoder will make the wrong choice 
more often, and more trials must be made before the 
right path is found. 

At a certain point, called the computational limit, 
the average number of trials per node becomes infinite, 
and the decoder is bound to break down at least .oc
casionally. Work can progress beyond this limit if 
some losses in the message can be accepted-e.g., when 
it is possible to obtain a repetition of the parts that 
were lost. In general, however, the computational limit 
is a good criterion for the capacity of a channel using 
sequential decoding. Operation is very good to within 
a few percent of the limit, and is poor when the limit is 
exceeded. 

The computational limit is also equal to the union 
bound on the exponential error parameter for block 
coding.Io Consider a code block that contains N succes
sive transmitted signals. These may be biphase pulses, 
or they may be the tones of a frequency-shift-keying 
transmitter or any other discrete modulation scheme. 
This code block will be used to convey the information 
contained in N' successive message symbols. These 
may be the gray levels of N' picture elements, or per
haps N' letters of English text. It will be shown that 
there are codes (i.e., rules for mapping the N' symbols 
into the N signal elements) for which the probability 
of one or more errors in the block P e is bounded by 

P e5: 2-NEo (p , Q)+N' D(p) (1) 

where E (p, Q) is a function of the signal-to-noise ratio 
in the channel and D (p) depends on the message 
statistics. It is convenient to define R' = N' / N as the 
decoding rate. Equation. (1) can be rewritten as 

(2) 

to show that fora fixed R', the probability of error de
creases exponentially with increasing N so long as 
R'D(p) <Eo(p, Q). This defines the limiting rate Rc= 



506 Fall Joint Computer Conference, 1970 

Eo(p, Q) /D(p) that is also the computational limit for 
sequential decoders. 

The proof of Equations (1) and (2) can be shown 
using Gallager'S joint source and channel coding 
theorem.9 Gallager leaves the proof of a maximum 
a posteriori probability decoder r:equired for this system 
to the reader in problem 5.16 which I should like to do 
as well, although a complete proof does exist on re
quest.u The results of Gallager's joint source and chan
nel coding theorem for a discrete memoryless channel 
with equiprobable symbols is 

Pe~2-N{ Eo(p,Q)+pR} 

as opposed to the extended results of Equations (1) 
and (2) above. The units of Eo(p, Q) are in bits/ 
channel symbol. The equivalence between Rand 
R'D (p) exists so their units are the same. The ratio R' 
has units of data symbols/channel symbol and D(p) in 
bits/ data symbol. This agrees with pR so p is not dimen
sional and R is in bits/channel symbol. The term pR 
may in this case be interpreted as entropy since the 
binary source digits are independent and equiprobable. 
Although R'D (p) is not, in itself, entropy, it serves as a 
means of measuring system performance given the 
ideal case of pRo 

Because Eo(p, Q) is determined by the communica
tion link itself, exclusive of encoders and decoders, D is 
the quantity that determines how much a given mes
sage can. be compressed. If p = 1 

(3) 

where the { Wi} are the probabilities, based on all 
knowledge available to the decoder, of the possible 
message symbols. For instance, if the message is English 
text, each Wi would be the probability that the next 
symbol is a particular . letter or punctuation mark. The 
decoder could be programmed to take into account the 
part of the message already decoded, word frequencies, 
and the idiosyncrasies of the particular writer. 

D is the number of bits that would have to be 
transmitted on an errorless channel to convey the in
formation in each message symbol. . In the following 
sections, D will be evaluated for various types of source 
statistics. 

Equiprobable symbols 

Evaluating D in Equation (3) is particularly simple 
when all the symbol probabilities are the same. For 
the binary case, Wo = Wl= Y2and D = 1, indicating that 
the units of D are bits. 

With m equiprobable symbols, Wi = l/m for i = 1, 2, 
3, ~ .. m, and D = log2 m. This is exactly equal to the 

entropy H for this case and indicates that the computa
tional limit is the same as the Shannon bound for dis
crete noiseless systems. Of course, this is not a very 
interesting kind of source for data compression, but if 
m =3, for instance, the message could be coded into 
about 1.6 bits/symbol instead of going to 2 bits as 
would be required for a strictly binary system. Blizard, 
et al.,ll have shown interesting values for D based on 
some common distributions several of which are given 
in this paper. 

Binary source with unequal probabilities 

A binary source emits only two different symbols. 
These may be called one and zero. If the probability of 
one symbol is greater than that of the other, the data 
stream can be compressed. 

If the probability of one symbol isp, and that of the 
other I-p, Equation (3) becomes 

D = log2 [(p )1/2 + (1-P )1/2J2 

= log2 {1 +2[p(I-p) JI/2}. 

The corresponding expression for the entropy is 

- H = P log2 P + (I - p) log2 (1- p) . 

Figure 2 shows the amount of .compression, in, dB, 
that can be accomplished with sequential decoding and 
also the theoretical limit based on the entropy H. It is 
seen that sequential decoding will give slightly more 
than half the available improvement measured in dB. 

A line drawing is an example of a binary source. In 
this case, there is a large amount of redundancy in the 
two-dimensional picture that is available by extrapo-

o 

~ 3 
o 
'':; 4 
IV a: 

omputat ional l imi t/ 

./ 
,/ 

./ 
,/ / 

~ :::: ~'""" 
",,/ V 

/ 
/ 

/ 
L Entropy 

c: 5 
,~ 
O/l 

~ 6 / L 
Q. 
E 

.3 7 

10 
0,01 

/ 
/ 

/V 

Ji/ 
0.02 0,04 0,06 0, I 0.2 0.4 0.6 

Ratio of Symbol Probabilities, p/(J-p) 

Figure 2-Compression limits for a binary source 

1.0 



Coding/Decoding for Data Compression and Error Control 507 

6 

5 r- Note: 

it 

Normal Distribution, quantum 

~ interval - 1.0, standard 
/ deviation - C1 -III ..., 

..0 -
0 3 
"'0 
C 
co 

:J: 2 

~ 
/ 

/ 

~ /" 
lJI~ ~ 

~ 
~II~ 

-~ ~ 
~~ 

~ 

~ 
Ai ~ 

V'" 
~~rrerl BTdS 

~ o 
o. 1 0.2 0.5 1.0 2.0 5.0 

Figure 3-H and D for normal distribution 

lating the picture lines from the part of the image that 
has already been decoded into the region that is being 
decoded. The probability of "black" for an image 
element will strongly depend on its position relative to 
lines in the part of the image that has already been 
decoded. 

Normal distribution 

The prevalence of the normal (or Gaussian) distribu
tion in nature is generally exaggerated, but it is mathe
matically tractable and is a reasonable approximation 
in many practical cases. 

Suppose that the message consists of successive 
values of a variable v. At any point in the decoding, 
the next value of v can be predicted on the basis of past 
values and any other pertinent information. Assume 
that the actual value· differs from the predicted by an 
amount that is normally distributed with rms deviation 
equal to u. For simplicity in the notation, let the quan
tizing interval be 1. At each sampling time, the expected 
value of v is vo(t) based on a knowledge of all the previ
ous values of v. The actual value of v is 

v(t) = vo(t) +x(t), 

where x is the difference between the true value and 
the predicted value. 

Let x have a normal distribution: 

p (x)= [u(27r) 1/2J-1 exp ( - x2/2(2). 

With unity as the quantization interval, the probabili-

ties of the output symbols are 

j
l+1-VO 

wi!:p[i<v<i+IJ=. p(x) dx. 
~-vo 

The entropy per symbol is 

H[{Wi} J = L: Wi log2 Wi· 
i 

This equation can be evaluated directly for any 
values of (J and Vo, but it is more convenient to obtain 
a lower bound as follows. Note that Wi is the average 
value of p (x) over the unit interval from i - Vo to 
i+ I-vo. H[WiJ is then the entropy function of this 
average value. If the function is performed within the 
integral, this provides the average of H[p(x)], Since 
the entropy function H[ {wd J is concave down, the 
average of the function is never greater than the func
tion of the average. When the summation is performed 
over all i, the integral is extended over all x, and the 
inequality can be written as 

H[{wdJ~ f«> p(x) log2P(x) dx. 
-00 

(4) 

Similarly, for the lower bound on required channel 
capacity with sequential decoding, 

D[ {wd J!: 2log2 [L (Wi)1/2]. 
i 

Again, to get a lower bound, the square root can be 
performed under the integral, giving 

D[{wdJ~2Iog2 foo [p(x)J/2dx. 
-00 

(5) 

Integrating Equation (4) provides 

H~ log2 [u(27re)1/2J=2.05+ log2 u; (6) 

and from Equation (5), 

D~ log2 u(87r)1/2=2.33+ log2 u. (7) 

The above bounds are good approximations for large 
u. Exact results for u = 1 and Y2 are tabulated in Table 
1 with the expected value in the center of a quantum 
interval (A) and the expected value on the boundary 
between two quantum intervals (b). 

TABLE I-The Compression and Entropy Values for a Normal 
Distribution with U' = 1 and Yz 

U'=1 9'= Yz 
----------

A B A B 

H 2.11 2.09 1.24 1.36 

D 2.38 2.37 1.43 1.50 



508 Fall Joint Computer Conferen~e, 1970 

Search and 

110 - 2.32 

60-bit word lengths 

Source Encoder Decoder 

Figure 4-Model of a simple system 

The deviations from the bounds are small for u = 1 and 
less than 0.31 bit for u = Y2. 

Figure 3 shows the bounds, which are good approxi
mations for u> 1, and also the behavior for small u 
when the quantization boundary falls exactly on the 
expected value of v. 

D is the number of bits of channel capacity required 
to transmit each message element. Equations (6) and 
(7) are derived with the assumption that there is no 
limit on the range of v. Thus an infinite number of 
quantization levels are spaced at unit intervals. The 
amount of compression available at the computational 
limit depends on the actual number of quantization 
levels used. For example, suppose a picture is quantized 
to 64 gray levels (6 bits) and u=0.8. From Figure 3, 
D = 2.0 and H = 1.8. The compression ratio for sequen
tial decoding is 6/2 =3.0, and the maximum available 
is 6/1.8 =3.3. 

MODELING A SIMPLE SYSTEM 

A system example that used the a posteriori prob
abilities of the source is discussed. Despite the fact 
that this example is a simple system, it exemplifies all 
the problems and features of more complex codes and 
channels, if the nonstationary sources be excluded. 

System description 

Consider a rate 2/1 data compressor sO the source 
encoding is binary and memoryless with probability of 
a binary one occurring as p=p[IJ=I/32. Source en
coding consists of shifting in two bits at a time into a 
shift register and forming a parity check per unit time; 
source decoding consists of sequential decoding the 
resulting tree with the Fano algorithm. Figure 4 illus
trates the system. 

Since the probabilities of two symbols forming the 
input elements are unequal, the actual information 

content (entropy) is less than 1 bit/symbol and some 
compression of the data is possible. As was shown in 
(3), the compression term may be found as 

D = log2 [( wl)1/2+ (w2)1/2J2 = 0.425. 

The ratio of input to output symbols is 1/ D = 2.36, and 
for'this example a ratio of 2 was used. 

Consider a second examp] e pertaining to channel 
coding rather than source coding pointed out by G. D. 
Forney. Let the encoder use a nonsystematic rate Y2 
binary constraint length. code shown in Figure 5. The 
channel is a binary symmetric channel with error prob
ability p. Syndromes that contain all information about 
the errors and are independent of data are formed at 
the decoder so that all-zero data can be assumed. A 
syndrome sequential decoder decodes the syndromes 
and determines the error locations; the error locations 
are used to make corrections on the data. It is clear 
that the syndrome form of Figure 5 corresponds to the 
encoder of Figure 4, and that the behavior of the Fano 
algorithm sequential decoder is identical in the two 
cases. In particular, since Rcomp<Y2 for p<4.6 percent, 
it can be seen that computation is bounded for p4 < .6 
percent and can be determined for all p. 

Encoder Syndrome Generator 

Figure 5~Correspondence of channel coding to source coding 

the error probability is that for a rate Y2 constraint 
length 4 nonsystematic code, which would be com
parable to J. Heller's results7 at rate 73 with constraint 
length 4 if Q were not hard decision. The optimum 
metric ratio at Rcomp is 1/ -9.1 and the values used in 
simulation have been (1, -4, -9) and (1, -5, -11), 
which are Modulos 5 and 6, respectively. 

Simulated channel 

The system described in Figure 4 was programmed 
on the CDC 6400 computer in ascent. The system test 
consisted of the Fano algorithm decoder, encoder, and 
random number generator, which generated the binary 
information stream' so there would be control over the 
number of binary ones. The system performs 12,000 
calculations. per second. The CDC 6400 has a 60-bit 
word, which represents the maximum constraint length 
possible for this system. 

Simulations for this system were obtained for 8- and 



Coding/Decoding for Data Compression and Error Control 509 

48-bit constraint lengths at rate 2/1 convolutional 
codes and sequential decoding 300-bit blocks with a 
12-bit tail. The.decoder uses hard decision (Q=2) in
put. The code, in octal, used for k = 8 is 716 as shown in 
Figure 4 and 7162610413051275 for k=48. The com
puter simulations were made for information content 
P (WI) = 4 percent, 4.6 percent, 5 percent, and 5.5 per
cent where the theoretical Rcomp is at 4.6 percent. The 
results of this simulation are shown in Figure 6, where 
Pr(C?L) is the probability that the number of com
putations C is greater than the number of computations 
per bit L·· when moving through a single . branch. 
Theoretically, 

Pr(C?L) =KL-a 

where K is a constant and a the Pareto exponent. As 
the constraint length approaches 8 of this system, which 
is equivalent to 4 for the conventional convolutional 

1 

10- 1 

....J 

,',1 
u 

l-
a.. 

10- 2 

10 100 1,000 10,000 

L, Number of Computations per Bit 

Note: 

Source Activity 

~ 5.5% 

o 

o 

5.0% 
4.5% 
4.0% 

Errors at k=8 

4.85 x 10-3 

5.4 x 10-3 

6.7 x 10-3 

9.5 x 10-3 

Figure 6 Simulation of Convolutional 
Data Compression for Binary 
Symmetri c Channe 1 

Figure 6-Simulation of convolutional data compression for 
binary symmetric channel 

TABLE II-Summary of Picture Data 

Average Standard 
Picture Entropy Gray Level Deviation D 

1 1.90 50.3 2.48 2.3 
2 2.60 54.9 9.22 2.85 
3 3.06 34.8 9.84 3.4 
4 3.33 50.8 12.45 3.65 
5 3.65 41.5 10.08 3.9 
6 4.00 48.5 11.79 4.35 
7 4.67 41.2 11.61 4.95 

Note: (1) Picture fields are 684 elements/line and no less than 
598 lines/frame. 

(2) Each pixel (picture element) is 6 bits. 

code, the results approach those of J. Hiller7 with a 
slight loss going ~rom rate ~ to rate Y2. 

APPLICATION OF THE SYSTEl\1 TO A 
PRACTICAL PROBLEM 

One obvious application of convolutional data com
pression is to work with picture data, say from a space 
probe. Statistics of the source can be applied to the 
sequential decoding operation. As an example of this 
technique, seven digitized pictures have been studied 
to determine how much compression can be theoret
ically achieved. The digitized pictures were supplied 
by R. Rice from JPL.12 These pictures vary in activity 
from typical fiyby data, which generally are inactive, 
to pictures taken from landers, which are quite detailed 
and very active, i.e., difficult to compress. Three typical 
photos are shown in. Figure 7, which represent the 
data of pictures 1, 3, and 7 respectively. Once these 
theoretical values are established, the decoder can be 
implemented to decode similar data. 

Gathering source statistics from picture data 

The picture elements under study are quantized to 
6-bit messages (64 array levels). They vary in activity 
from an entropy 1.9 to 4.67 bits/picture element on a 
first difference calculation of one picture element to 
the element immediately behind it. Each picture has a 
field of 684 X 600 elements. Picture data.are summarized 
in Table II. 

The key to the data compression decoding problem, 
whether using sequential decoding or block decoding, 
is to predict with some' accuracy what a picture element 
value should be given the values of its surrounding 
neighbors. More explicitly, as the decoder moves 
through the picture from left to right and from 



510 Fall Joint Computer Conference, 1970 

Figure 7(a)-Mariner IV Flyby of Mars. Low picture activity 

top to bottom, we ask what is the value of the next 
picture element. 

The correlation value determined for given base 
pixel x and pixel Xi located at coordinates (u, v) from x 
is given by 

(8) 

Figure 7(b)-Ranger picture of lunar surface. Medium picture 
activity 

Figure 7{c)-Surveyor picture of lunar terrain. High picture 
activity 

where 0-2 is the usual variance computed for all pixels 
in the entire picture field. That is 

0-2=X2- (X)2. 

Obviously, c(u, v):::;l with perfect correlation, i.e., 
Xi=X, yielding c(u, v) = 1. 

Figure 8 shows an enlargement of a set of picture 

Region II 

Region i 

r I I I 
IT I 

Base 
Pixel 

--

egion II I 
Region IV 

ymbols Used in Resulting 
Correlation Values of Figures 
C-2 and C-3 

,A , 
I~; ~ 

J 
I 

One of 25 Base Pixel 
Pixels To 
Be Correlated with 
the Base Pixel. 
Distance from Base 
Pixel, rr::;-

d = u +v 

Figure 8-Correlation pattern composed of 25 picture elements 
(pixels) and one base element 



Coding/Decoding for Data Compression and Error Control 511 

elements. The x base pixel is correlated with each of 
the Xi elements within the pattern shown in the figure. 
When considering a pattern of more than one element, 
such as Figure 8, correlation becomes a function of 
distance, u and v, between the two pixels being corre
lated, where u is the horizontal distance and v the verti
cal distance. For the correlation pattern shown in 
Figure 8, 25 correlation values will be bound for one 
base pixel as a function of u and v. 

After completing the 25 calculations, the base pixel 
is moved one unit to the right along the picture line 
and 2~ more correlation coefficients are recomputed. 
These new results are averaged into the past results. 
Once the correlation calculations have been computed 
for one line, the base pixel is moved down by one line 
and the data again computed and averaged with all the 

en 
:I: 
I-
:z 
UJ 
I-

:z 

> 

2-
:z 
0 

I-
~ 
~ 
UJ 
a:: 
a:: 
0 
u 

en 
o 
:z 
~ 
en 
~ 
o 
:I: 
I-

:z 

10 

20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

2 3 4 5 6 7 8 9 10 

SQUARE ROOT OF (U**2+V**2) 
CORRELAT10N FUNCTION 

PIX 1 LOWER LEFT CORNER 

4 81216 202428 3236 404448525660 64 

GRAY LEVELS 
PROBABILITY DENSITY FUNCTION OF DATA SOURCE 

PIX , LOWER LEFT CORNER 

Figure 9-Autocorrelation of picture data using the pattern of 
Figure 8 (Probability density functions of the areas examined 

are included) 

10 

- 9 en 
:I: 

8 I-
:z 
UJ 
I- 7 
:z 

6 
> 

2- 5 

:z 4 
0 

I- 3 
~ 
~ 
UJ 2 a:: 
a:: 
0 
u 

-;;; 
20 0 

z 
~ 
en 18 
~ 
0 
:z: 16 I-

:z 14 

en 
UJ 

12 
~ 
~ 10 ~ 
> 
u 8 
~ 6 en 
0 
~ 

UJ 4 
> 
I- 2 
~ 
~ 
~ 
~ 
~ 
u 

~<l 

X 

~i 

2 

~~ 
<I 

<l 
<l 

<l 
<l 

3 4 5 6 7 8 

SQUARE ROOT OF (u**2+V~b't2) 

CORRELATION FUNCTION 

PIX 4 UPPER RIGHT CORNER 

<l 

9 

4 8 12 16 20 242832 36 40 4448 52 5660 64 

GRAY LEVELS 
PROBABI LI TV DENSHY FUNCTION OF DATA SOURCE 

PIX 4 UPPER RIGHT CORNER 

<l 

10 

Figure lO-Autocorrelation of picture data using the pattern of 
Figure 8 (Probability density functions of the areas examined 

are included) 

previous work. This procedure was accomplished on a 
CDC 6400 digital computer. 

The correlation pattern was subdivided, into. foul' 
regions, as indicated in Figure 8, to investigate direc
tional variation. Samples of the results· of our correla
tion computations are shown in Figures 9 and 10 for 
two pictures. Each of the four symbols represents one 
of the four regions. The probability density functions 
are also shown for regions in which correlation data 
were established. 

If the analyst wants to apply the correlation data to 
an· efficient prediction program, he must evaluate the 
results of Figure 8 using a mean square estimatiop. 
technique to determine how effective the correlation 
coefficients are in predicting results as a function of 
various patterns. The correlation patterns must be 
selected on the basis of which appears to be the most 



512 Fall Joint Computer Conference, 1970 

0.7 

q.6 

rfh rR, rrr 
I I I I 

~ ~ ~ 

1\ 
5 6 9 

............ 

c: 
ttJ 
(l,) 0.5 ~ 

E 
0 
'-
4- 0.4 \ 
c: 
0 

+J 
ttJ ~ --
> 0.3 
(l,) 

0 

V') 

~ 0.2 0::: ~ 
............... 
~ 

O. 1 

o 2 3 4 5 
('v 6 9 

Number of Elements 
Figure ll-RMS deviation from mean given a set of patterns 

efficient. The pattern shown in Figure 8 was used to 
gather data rather than trying to determine an efficient 
pattern. These results are then applied to the sequential 
decoder algorithm. 

Eleven pixel patterns were tested. These patterns, 
along with their performance, are shown in Figure II. 
The base pixel to be predicted is noted with an X. 

The vertical axis of this figure is the rms deviation 
from the mean of the base pixel to the surrounding 
values. High rms deviations represent large. errors in 
estimating the base pixel values. The horizontal axis 
represents the number of elements used to evaluate 
the gray levels of the base pixels. The correlation coeffi
cients were used for low, average, and highly correlated 
pictures. Thus, the top curve represents the rms devia
tion from mean for low correlated pictures using the 
different pattern structures shown. The middle curve 
and the bottom curve represent the average and highly 
correlated rms deviations from mean, respectively. 

From this set of curves, it can be seen that after 

four or five picture elements there is little need for the 
additional data supplied by more picture elements to 
estimate the value of the base picture element. 

Extending the model 

The example of the preceding section may he ex
tended to handle the picture data discussttd here. 
Knowledge of the picture statistics aids in the deCoding 
process just as it did for the binary case. The only 
difference in the source is the complexity of the data . 
For this simulation, use was made of the statistics as
sociated with Picture 2 (Table II), which are highly 
correlated. The standard deviation of the base pixels 
of this picture with their adjacent elements was com
puted at the same time the correlation data were col
lected. These deviations are shown in their respective 
locations associated. with the base pixel in Figure 12. 
These values represent an average over all base pixels 
in Picture 2 and are measured in terms of gray levels. 
The base pixel was predicted to within u = 2 or so using 
the results of Reference 8, which were programmed on 
a digital computer. The term D from Reference 7 was 
solved for a Gaussian distribution, which is a function 
of S. This calculation yields D=2.33+ log2 u=3.4 if 
u=2. The system is designed to run at rate ~~. The 
simulation used a convolution encoder with a 6-bit 
input shift, 4 mod-2 adder outputs, and a constraint 
length of 60 bits. 

The branch metric for the Fano algorithm is selected 
according to the distance the decoded message was 
from the guess as a function of u and the Gaussian 
distribution with mean of the distribution at x. A 
branch metric lookup table may be computed before 
the decoding operation is started so 

BM = log2 p= log2f(y) 
where 

f(x) = [u(27r)1/2J-l exp - {(x-x)2/2u2}. 

With a rate ~~ sequential decoder, four choices are 
available (if noise is not present) to generate the four 
branches of the code tree. 

System simulation 

The pictures were read from a 7 -track magnetic tape. 
The simulation included the encloder, branch metric 

1 .80 1 .60 1 .54 

1. 70 1 .34 base 
pixel 

Figure 12-Standard deviations of adjacent pixels to a base pixel 
of picture 2 



Coding/Decoding for Data Compression and Error Control 513 

lookup table, Fano algorithm sequential decoder, com
parator, and the appropriate control algorithms. The 
block diagram is shown in Figure 13. The pattern used 
for prediction 'is pattern 4 of Figure 11 with the appro
priate coefficients. To avoid startup problems, the first 
line and first column of each picture was read in and 
assumed to have been correctly decoded. This, in fact, 
identifies the single largest problem of systems like 
this one. It can be overcome, however, as discussed 
later. 

Again the system was programmed on the CDC 
6400, which provided sufficient core storage to store 
the data fields required to make proper evaluation of 
the base pixel. Searching time, however, is slow (100 
searches per second) due in part to the evaluation of 
the branch metrics. The results of the simulation are 
shown in Figure 14 when the average number of searches 
per line is shown as a function of first difference picture 
entropy. Each picture contains 684 elements per line 
and 683 coded elements are being simulated. The pro
grams have been limited to 40,000 searching operations. 
An attempt was made to decode Picture 6, first differ
ence entropy = 4.00, with some interesting results. The 
system started decoding properly, but after 50 or so 
lines the maximum number of searches was exceeded 
and an erasure occurred. The decoding of successive 
lines deteriorated rapidly where erasures occurred 
sooner on each line than the line before. Complete 
erasures occurred 7 to 8 lines after the first erasure was 
detected. 

The system was forced to restart halfway down, and 
the same phenomena occurred after several lines. The 
decoder simulation of Picture 7 would exceed the 40,000 
calculation limit with every line. Only a small portion 
of Picture 7 was simulated because of the long run 
times encountered. 

k = 60 
SHIFT = 6 

v = " 

Figure 13-Rate 3/2 simulation model for picture data 

UJ 
Z 

....J 
........ 
(/) 

UJ 
:J: 
u 
0:: 
c::{ 
UJ 
(/) 

IJ.. 
0 

0:: 
UJ 
co 
~ 
:::::> 
z 
UJ 
(!J 
c::{ 
0:: 
UJ 
:::-
c::{ 

74 

72 

4.0 

FIRST DIFFERENCE ENTROPY, H 
Figure 14-Performance of the 6/4 decoder-compressor 

The results imply that once an entropy of a value in 
the neighborhood of 3.65 is exceeded, then Rcomp is 
exceeded. From Figure 3, it can be seen that for H = 

3.65, 0"=3. For 0"=3, D=3.9, which is very near the 
output value of the convolutional encoder of 4. Theo
retically, at least, activity any higher than H =3.6 or 
so should be difficult to decode. This was verified by 
Pictures 6 and 7. The simulation uses a pattern of 5 
elements but the entropy was computed on two pat~ 
terns (first differences between the preceding element 
and the base pixel). Thus, some information should be 
decoded above the first difference entropy of 3.65. 

SPECIAL PROBLEMS 

Certain anticipated problems and some. possible solu
tions are discussed next. 

Variable activity 

Any data compression scheme (such as this one) 
that maintains a constant rate in terms of data points 
per unit time must be designed to operate with the most 
active data expected; consequently, it will achieve 
substantially less compression than is possible in the 
dull regions. If the regions of high activity are con
sidered to be analogous to bursts of noise, the analyst 
immediately thinks of interleaving as a way to even 
out the data statistics. In interleaving, the encoder 
would be equivalent to J separate convolutional en
coders, each accepting one out of every J consecutive 
data points. 

If there is an interval of active data m data points 
long, the decoder will only have to search through m/J 
branch points to get over the active region. Further
more, if the decoder fails on· one of the j channels but 
succeeds on the preceding and followin,g ones, it can 
interpolate between these adjacent data values to im-



514 Fall Joint Computer Conference, 1970 

prove the probabilities for the channel on which it 
failed, and thus may be able to decode it. 

It is also possible to treat regions of high activity by 
leaving off one or two of the least significant bits in 
each data word. Other types of processing can also be 
added to increase the compression. The decision to in
corporate them will depend on an evaluation of their 
cost in complexity, power, and weight, and on the gain 
in performance they offer. 

Startup 

When a two-dimensional image is transmitted, the 
decoder will utilize previously decoded lines to improve 
the probability estimates for the elements of the line 
being decoded. Because this information is obviously 
not available for the first line, some special technique 
must be used on the first line (and possibly a few more) 
of each frame. 

Perhaps the simplest method is to round off the data 
in the first few lines by forcing one or more of the least 
significant bits to be zero. In the course of a few lines, 
the rounding off would be gradually reduced and finally 
eliminated. For instance, suppose that 64 gray levels 
are encoded into 6 bits. The first line might be rounded 
off to 4 bits and the second to 5. In the third line, every 
other picture element might be rounded to 5 bits with 
the alternate elements intact, and the fourth line could 
have complete data. This would result in a picture with 
less detail on the upper edge than elsewhere. If this 
degradation cannot be tolerated, the first line can be 
transmitted at a lower rate with each picture element 
being repeated. However, this latter method might 
seriously complicate the data gathering system. 

A similar problem arises at the start and finish of 
each line because there are fewer neighboring picture 
elements available to help the prediction. It may be 
possible to solve this problem by making the ends of 
the coding blocks coincide with the ends of the lines. 
The decoder has an advantage at the start of a block 
because it never has to search back beyond the first 
node. Near the end of the block, it has a similar ad
vantage because of the series of zeros that is injected 
to clear the encoding register. 

CONCLUSIONS 

If computation can be done cheaply at the transmitter, 
then conventional types of data compression are pref
erable. Large buffers at the transmitter can smooth out 
variations in data activity, and uninteresting data can 
be removed by editing before transmission. 

The principal advantage of data compression using 
sequential decoding is that it requires no additional 
equipment at the transmitter. When transmitter costs 
are much greater than receiver cost, as in a space-to-

earth or air-to-ground link or where there are many 
transmitters and a single receiver, this method is likely 
to be cost-effective and may be the only possible one. 

For the space-to-earth link, the savings are in pro
ducing software for general-purpose computers on 
the· ground rather than hardware in space. In addition 
to . the obvious saving in reliability and in power and 
weight on the spacecraft, cost and development time 
can be saved by avoiding hardware design and qualifi
cation test. It is even possible to increase the informa
tion rate of vehicles already flying by modifying the 
decoding program to exploit data redundancy. 

REFERENCES 

fRMFANO 
A heuristic discussion of probabilistic decoding 
IEEE Transactions on Information Theory Vol IT-9 
pp 64-74 April 1963 

2 J M WOZENCRAFT I M JACOBS 
Principles of communication engineering 
John Wiley and Sons Inc New York N Y pp 405-476 1965 

3 I M JACOBS 
Sequential decoding for effective communication for deep space 
IEEE Transactions on Communication Technology 
Vol COM-15 pp 492-501 August 1967 

4 D LUMB 
Test and preliminary flight results on the sequential decoding 
of convolutional encoded data from pioneer I X 
IEEE International Conference on Communications 
Boulder Colorado p 39-1 June 1969 

5 I L LEBOW R G McHUGH 
A sequential decoding technique and its realizational in the 
Lincoln experimental terminal 
IEEE Transactions on Communications Technology 
Vol COM-15 pp 477-491 August 1967 

6 G D FORNEY 
A high-speed sequential decoder for satellite communication 
IEEE International Conference on Communications 
Boulder Colorado p 39-9 June 1969 

7 J A HELLER 
Seq'uential decoding: Short constraint length convolutional 
codes 
JPL Space Programs Summary 37-54 Vol III pp 171-177 
1969 

8 E WEISS 
Compression and coding 
IRE Transactions on Information Theory pp 256-257 
April 1962 

9 R G GALLAGER 
Information theory and reliable communication 
Wiley and Sons Inc New York 1968 

10 J MWOZENCRAFT I M JACOBS 
Principles of communication engineering 
John Wiley and Sons Inc New York 1965 

11 R BLIZARD H GATES J McKINNEY 
Convolutional coding for data compression 
Martin, Marietta Research Report R-69-17 Denver 
Colorado November 1969 

12 R F RICE 
The code tree wiggle: TV data compression 
JPL Report 900-217 STM-324-27 Pasadena California 
October 1968 



Minimizing computer cost for the solution of 
certain scientific problems 

by GERALD N. PITTS and PAUL B. CRAWFORD 

Texas A&M University 
College Station, Texas 

and 

BARRY L. BATEIVIAN 

University of Southwestern Louisiana 
Lafayette, Louisiana 

INTRODUCTION 

Many scientific problems require solution of the La
place, Poission or Fourier equation. These equations 
occur in heat flow, fluid flow, diffusion and structural 
problems. It is well known that these types of problems 
lead to large sets of simultaneous equations that fre
quently require a number of iterations consuming a 
lot of computer dollars before a solution is obtained. 
Frequently one must solve.· a few hundred to a few 
thousand simultaneous equations. Numerical methods 
likely to be used for solution include: (1) Liebmann,! 
an explicit method, (2) alternating direction implicit 
procedurel ,5 and (3) banded matrix mverSIOn 
technique.4 

The computer was first thought to be the salvation 
of the engineer or scientist who had to solve these 
types of problems because of the great speed of the 
machines. In early work with computers large computer 
appropriations were frequently made available to 
scientific researchers in this area. The engineer or 
research scientist could . afford the luxury of experi
menting with the many solution techniques that re
quired considerable computer time. However, times 
have changed in terms of computer appropriations. 
Many groups are now being brought into the computer 
act, and the budget is divided and distributed. Net com
puter appropriations to some groups have been de
creased or at most have been the same for the past 
few years. However, the computer is expected to per
form more and more tasks. 

Budget problems have caused the engineer and 
scientist to strive for the best solution at the least 
possible cost. Cost reduction can be a broad area; how-

515 

ever, to get to the heart of the problem, this paper 
investigates the costs of different methods of solving 
the cited equations. After determining the most eco
nomical method, the method is then scrutinized for 
internal cost reduction. 

I t was found that as far as cost is concerned, the 
three methods fell into the following descending order; 
(1) Liebmann, (2) ADIP, (3) banded matrix inversion. 
The cost per solution using ADIP was less than 1 
percent over the cost of the banded matrix method. 
The cost of Liebmann, however, was 200 percent larger 
than the smaller of the other two. ADIP was chosen 
for special study because of its versatility in solving 
both large or small transient or steady-state problems. 
The banded matrix method on the other hand is very 
limited by its required computer core space and be
comes impractical for a large number of equations, 
that is, more than a few hundred. 

MATHEMATICAL DEVELOPMENT FOR ADIP 

The partial differential equation that governs the 
unsteady-state flow of fluid or heat in rectangular 
coordinates of two dimensions is: 

(1) 

The ADIP procedure requires that one of the second 
derivatives, i.e., iJ2PjiJx2, be replaced with a second 
difference evaluated in terms of the unknown values 
of P, while the second derivative, i.e., iJ2PjiJy2, is re
placed by a second difference evaluated in terms of 



516 Fall Joint Computer Conference, 1970 

known values of P. Thus, in the alternating direction 
implicit method two difference equations are used. 

P x- Ax ,y,2n+l- (2+p) ·Px,y,2n+l+Px+Ax ,y,2n+l 

= -PX,y-Ay,2n+ (2-p) ·PX,y,2n-Px,y+Ay,2n (2) 
and 

P x,y-Ay,2n+2- (2+p) ·Px,y,2n+2+Px,y+Ay,2n+2 

= -Px- Ax ,y,2n+l+ (2-p) ·Px,y,2n+l-Px+Ax ,y,2n+l (3) 

where 
AX=Ay, 

The use of equations (2) and (3) alternately results 
in a set of tridigonal simultaneous equations that can 
be solved by a technique illustrated by Douglas2 and 
Peaceman and Rachford.3 

Use of equation (2) or (3) at each time step leads 
to N sets of N simultaneous equations of the form: 

where 

Ao+BoPo+CoPl=Do 

ArP r-l + BrP r+ CrP r+l = Dr 

An-1P n-2+ Bn-1P n-l +Cn = Dn- 1 

l~r~n-2 

(4) 

The solution of these equations can be accomplished 
as follows: 

Let Wo=Bo, 

where 

where 

where 

The solution is 

where 

l~r::;n-l 

br=Cr/Wr 

0~r~n-2 

go = Do/Wo 

gr=Dr-Argr-I/Wr 

Pn- 1 = gn-l 

0~r::;n-2 

(5) 

The w, b, and g are computed in order of increasing 
rand P is computed in order of decreasing r. 

PROCEDURE APPLICATION 

Two specific problems are presented here to illustrate 
the wide differences in computer execution cost of the 

ADIP method. Both problems represent fluid flow in a 
reservoir, one in a homogeneous media, the other in a 
heterogeneous media. The reservoirs are scaled to a 
10 X 10 net or grid size with a permeability coefficient 
located at each grid intersection. Note, a 10 X 10 is 
hardly of practical size, but was all our budget would 
allow for this study. The desired solution is a matrix 
of potential or pressure values at a steady-state condi
tion of the system. Each time step of the solution repre
sents one iteration. Each iteration is a small portion 
of the total computer expense, but becomes quite 
important in the costs. 

Referring to the above equations one may ascertain 
that each iteration is a function of p = c· (AX2 / At), and 
therefore the cost analysis will depend primarily upon 
the effects of this parameter. Table I shows the effect 
of varying this on the cost for the homogeneous case. 
Table II shows the effect of this parameter upon the 
costs for the heterogeneous case. 

RESULTS FOR THE HOMOGENEOUS CASE 

Table I shows the relative cost for different iteration 
parameters. 

Cost differences can be determined by comparing 
the effects of different iteration parameters. The solu
tion at the two points studied here are 48.35 and 51.33 
respectively. The solutions shown in Table I were 
determined to be convergent by point material balances. 
A small iteration parameter implies a large time step, 
therefore indicating the prospects of obtaining a solu
tion upon fewer iterations. However, this is not always 
the case because there is a limit to the size of the time
step. For example compare the number of iterations 
of the third entry to the fourth entry in Table I. It 
took 12 iterations for convergence for both solutions 
even though the increment was ten times smaller 
(meaning a larger time step) for the third entry than 
the fourth. However, on the whole for the homogeneous 
case the small iteration parameter (within some limits) 
will yield a less expensive solution. It was also dis
covered that the sequence in which the parameters 
are employed have a tremendous effect upon costs. 
Again, looking at Table I, the first entry requires six 
iterations while entry number four requires 12 itera
tions. They both use the same iteration parameters 
but one sequence is the reverse of the other. The direc
tion then in this case could mean a 50 percent cost 
reduction to obtain a solution. 

Comparing entry number six with entry number two 
in Table I shows that a tenth smaller parameter could 
yield a cost savings of over 50 percent. However when 
the use of this small and constant parameter (entry 



Minimizing Computer Cost 517 

TABLE I-Relative Computing Costs When Using Various Iteration Parameters 
(Homogeneous Media) 

Program 
No. Iterations(l)* p(2) 

1 6 .1---71.1 
2 8 .396 
3 12 .1---71.1 
4 12 1.1---7.1 
5 16 0.01---71.1 
6 17 3.96 

*See notes below: 
(1) Number of Iterations to Convergence 
(2) Iteration Parameter Sequence p = Il.x2 / Il.t 
(3) Iteration Increment Within the Sequence 
(4) Pressures (psi) at Points (x, y) 
(5) Computer execution times in seconds 

Increment(3) 

0.2 

.02 

.2 

.02 

(6) Approximate cost per equations (IBM 360/65 WATFOR) 

number two) is compared with a parameter sequence 
(entry number one in Table I) it is seen that a cost 
saving of about 25 percent is achieved by using the 
sequence. 

The three cost saving observations that can be made 
from Table I are: (1) use as small a parameter as pos
sible that yields convergence, (2) employ some se
quence of parameters instead of a single value, and (3) 
utilize the direction of the sequence that gives the least 
number of iterations. 

RESULTS FOR HETEROGENEOUS CASE 

Table II shows the relation between cost and itera
tion parameter for the heterogeneous case. The hetero-

P(4.6)(4) P(9.6)(4) Time (5) (Sec.) Cost(6) $ 

48.34 51.33 4.42 .44 
48.35 51.32 6.01 .60 
48.35 51.33 8.91 .89 
48.33 51.34 9.09 .91 
48.37 51.35 12.06 1.21 
48.62 51.18 13.34 1.33 

geneous case is quite different program-wise than the 
homogeneous case because it must utilize several com
puter library functions to generate and maintain the 
heterogeneous coefficients. The execution times shown 
in Table II are therefore much greater than those of 
Table 1. This difference in cost magnitude is also con
sidered a factor in determining the economic feasibility 
of simulating a heterogeneous system over a homoge
neous one. The heterogeneous case requires the gen
eration of reservoir geologic information (requiring 
considerably more subroutines and equations) there
fore requiring more computer execution time. 

The range of coefficients (k) for the heterogeneous 
case was (0.1-100). These coefficients were distributed 
randomly throughout the grid or net. Table II shows 

TABLE II-Relative Computer Costs When Using Various Iteration Parameters 
(Heterogeneous Media) 

Program 
No. I terations(l)* p(2) 

1 77 3.96 
2 72 .396 
3 6 0.1---71.1 
4 4 0.01---71.1 
5 100 .1---71.1 
6 18 1.1---7.1 
7 11 1. 1---70 . 01 
8 74 1.1---7.1 

*See notes below: 
(1) Number of Iterations to Convergence 
(2) Iteration Parameters Sequence p = Il.x2 / Il.t 
(3) Iteration Increment within the Sequence 
(4) Pressures (psi) at points (x, y) 
(5) Computer execution times in seconds 

Increment(3) 

0.2 
0.2 
0.02 
0.2 
0.02 
0.02 

(6) Approximate cost per 100 equations (IBM 360/65 O.S.) 

P(4,6)(4) P(9,6)(4) Time(5) (Sec.) Cost(6) $ 

49.34 49.59 59.58 5.96 
"45.61 45.86 57.05 5.71 
49.37 49.62 32.30 3.23 
49.11 49.54 30.94 3.09 
44.06 44.30 69.00 6.90 
49.06 49.36 36.31 3.63 
49.21 49.41 34.29 3.43 
46.47 46.72 59.62 5.96 



518 Fall Joint Computer Conference, 1970 

the results of several different iteration parameters 
upon the cost of solution. The exact solution at the 
designated points were 49.10 and 49.30, respectively. 
The approximate same generalities can be made about 
the heterogeneous case that were made about the 
homogeneous case. 

The one-tenth reduction in magnitude of the single 
value iteration parameter (comparing entry number 
one to entry number two) results in only a small frac
tion of the cost reduction shown for the homogeneous 
case. However, when a sequence of parameters is 
employed instead of a single value (comparing entry 
number two with entry number three) a cost reduction 
of about 90 percent is obtained compared to about 50 
percent for the homogeneous case. Again, as in the 
homogeneous case the direction of the sequence em
ployed can result in considerable savings. For example 
when comparing entry number three with entry num
ber six, one finds a savings of about 66 percent. For the 
heterogeneous case the cost was always greater than 
that for the homogeneous case. A greater number of 
iterations was required for convergence than for the 
homogeneous case. 

SUMMARY AND CONCLUSIONS 

Several factors should be considered before a large 
system of equations is solved. First, does the problem 
warrant a large computer expense? It is definitely more 
expensive to simulate. a heterogeneous system than a 
homogeneous one. Can a homogeneous solution be 
used, if so, the cost may be only a fraction of the cost 

of the heterogeneous case. Can a few equations be used 
rather than a few hundred or thousand? 

It was found that ADIP was superior in terms of 
breadth and cost, although it was slightly more ex
pensive than the banded matrix method. Within the 
ADIP method itself several dollar-saving techniques 
may be used. It is better to use a sequence of iteration 
parameters than a single repetitive value. The direction 
in which this sequence is employed is very important. 

For the homogeneous media it is better to use as 
small a parameter as possible. This appears to hold 
true for the heterogeneous media case with some 
limitations. 

If the factors presented in this paper are considered, 
the savings in terms of dollars can be very substantial. 

REFERENCES 

1 G D SMITH 
Numerical solution of partial differential equations 
Oxford University Press pp 149-151 1965 

2 J DOUGLAS JR 
On the numerical integration of J.!.xx + J.!.yy = J.!.t by implicit 
methods 
J Soc Ind Appl Math Vol 3 pp 52-65 1955 

3 D W PEACE MAN H H RACHFORD JR 
The numerical solution of parabolic and elliptic differential 
equations 
J Soc Ind Appl Math Vol 3 pp 28-44 1953 

4 B R KOEHLER 
Private Communication Texas A&M University 
College Station Texas March 10 1969 

5 B CARNAHAN H A LUTHER J 0 WILKES 
The implicit alternating-direction method 
Applied Numerical Methods Vol 2 pp 543-553 1964 



Analytical techlliques for the statistical evaluation 
of program running time 

by BORIS BElZER 

Data Systems Analysts, Inc. 
PenIlBauken, New Jersey 

INTRODUCTION 

The design of large software systems or real-time sys
tems imposes several constraints on the designer. Pre
dominant among these are the running time of the 
programs, the amount of memory used by these pro
grams, and the input/output channel utilizati~n. A 
well considered design not only runs, but has optImum 
efficiency. Efficiency is often measured by the running 
time of the program. 

If the designer must wait till the program is running 
to evaluate its running time, important design decisions 
will have been made, and cannot realistically be 
changed. Consequently, trades that could have im
proved the efficiency of the programs will not ha~e 
been made. This will result in higher unit processing 
cost, increased hardware, or a reduction of available 
capacity. In real-time programs, the difference may 
be that of working or not working at all. For these 
reasons, the system analyst and programmer require 
techniques that allow the evaluation of such trades 
and the early estimation of running time. 

Simulation is one method that has been used for 
timing analysis. The major blocks of the program are 
described in a simulation language that must be learned 
like any other programming language. The program 
simulator is run, statistics gathered, and the efficiency 
of the program judged thereby. 

Analytical techniques, on the other hand, have not 
been extensively used for several reasons: the analysis 
has been too tedious for the value of the results ob
tained; such analyses have required a greater knowledge 
of mathematics than typical for a programmer; the 
solutions can be overly complicated (e.g., including 
transient behavior). In short, both analytical methods 
and simulation have been effectively inaccessible to 

. the one who needs it most-the programmer. Yet this 
need not be, if we are willing to make a few analytical 
assumptions. 

519 

PROGRAM MODELS 

Simulation or analysis both require a model. The 
model that we shall use for a program is based on the 
flow chart of the program. The model consists of junc
tions, decisions, and processes, as depicted in Figure 1. 
Associated with each process is an execution time, ob
tained by counting the instructions (with appropriate 
modification for indexing and indirect operations) 
within that process. Associated with each decision is a 
probability for each of the several exident branches. 
The sum of such probabilities must equal 1. Further
more the probabilities are assumed to be fixed and , . 
not to depend upon how the program got to the partICU-
lar branch. This will be recognized as a Markov model 
assumption. Though this assumption is not always 
valid, * the number of cases in which it does not hold 
are sufficiently rare to allow us to ignore them. Further
more, if we do not assume a Markov model, the result-
ing analysis is overly complex. . 

There is one difficulty with this model; the processmg 
that takes place at a decision. It can be readily shown, 
that for analytical purposes, we can transform a decision 
to a new decision followed or preceded by processes, 
such that there is no work done at the decision itself. 
This is depicted in Figure 2. 

Having done this, we can simplify the model further, 
by eliminating the distinction between junctions and 
decisions. The new model consists of nodes and links. 
That is, the model is a graph. Associated with the out
ways of each node, there is a probability t~at that ou~
way will be taken. Associated with each lmk, there IS 
work required for the execution of the instructions 
represented by that link. A link then, can represent a 

* As an example, consider a program switch within a loop whose 
position is determined by a count o.f the number of pas~ages 

through the loop. While the mean IS unaffected, the vanance 
will depend on the way the program got to that point. 



520 Fall Joint Computer Conference, 1970 

JUNCTIONS 

- -- -

PROCESSES 

DECISIONS 

Figure l-Basic program elements 

sequence of instructions, a subroutine, or a whole 
program, depending upon what level we do our analysis. 

Having gone this far, we can introduce a further 
generalization into the model. Rather than assuming 
that the execution time for a link is fixed, we can as
sume that it is really the mean value of a distribution 
of running times for the link. We can characterize that 
distribution by its mean value (p,) and standard devia
tion (u). In practice, we shall find it more convenient 
to use the variance (A = ( 2) rather than the standard 
deviation. The resulting model is shown in Figure 3. 

OR, 

Figure 2-Equivalent decisions 

It is clear that any reasonable flow chart and, hence, 
any reasonable program operating within a single com
puter at one priority level, can be readily modeled in 
this manner. 

Our problem is then: given the graph corresponding 
to the flow chart of a program, properly annotated 
with the required link properties (p" A, p), determine 
the mean value, standard deviation, and the proba
bility associated with every combination of flow chart 
entrance and exit; there is after all, no need to restrict 
ourselves to programs that have only a single entrance 
and exit-that would not be realistic. 

Figure 3-Final model 



Before we do this, however, it pays to go into the 
question of how we obtain these numbers. 

ESTIMATION 

The running times for individual links are obtained 
by an estimated count of the instructions in that link. 
This can be done precisely. without programming. The 
real program must run, but its estimated version need 
not. We need not take the meticulous care that is 
mandatory for a real program. Furthermore, since 
almost all instructions are equivalent, we can replace 
the real instructions by estimators of these instructions. 
For most problems, the repertoire can be cut down to 
about 10 different generic instruction types. Similarly 
in indexing and indirect operations, we need not be 
concerned with which index register is used, and so 
forth. 

The standard deviation is either externally supplied 
or it results from an intermediate step in the analysis. 
In most computers, the variation in the running time 
of individual instructions is small and can be ignored. 

The difficult part of the analysis is the evaluation 
of the probabilities associated with the links. Some of 
these probabilities are externally supplied-that is, 
they are inherent in the job mix for which the program 
is written. How these are estimated depends upon the 
application. Many other probabilities, while difficult 
to estimate can be ignored. Consider the example 
shown in Figure 4. We have shown a decision which is 
followed by two radically different processes that take 
almost the same amount of time. It is clear that the 
probability in question is not important. Therefore, a 
crude estimate will suffice. The third type of probabili
ties are those which are inherent in the structure of the 
program. Thus, switches which are set on the first pass 
through the program and reset on the next pass, the 
number of times a program will go through a certain 
loop, etc., fall into this category. These are also readily 
obtained. Our pragmatic experience has been that 
about half of the probabilities are data dependent and 

Figure 4-N on-critical probabilities 

Analytical Techniques 521 

IJnk \..Lkn 

Figure 5-Series case 

readily obtained, 20 percent are non-critical, 25 percent 
are readily obtained from the structure of the program. 
The remaining 5 percent are sweaty and can require 
much analysis to obtain. However, since the analytical 
technique is fast, we can by parametrically examining 
values of these difficult probabilities, find out if they 
are indeed critical. 



522 Fall Joint Computer Conference, 1970 

I 

lJik 

U,ik' 

Figure 6-Parallel case 

ANALYSIS 

The analytical technique is a step-by-step node 
elimination based on what is sometimes called the 
"star-mesh transformation." We shall eliminate a 
node, and its associated incident and exident links and 
replace every combination of incident and exident link 
with equivalent links that bypass that node. There are 
three cases of importance-links in series, links in 
parallel, and loops. The situations for the series case is 
shown in Figure 5. The transformation equations for 
the series case are:1 

P ij = PikPkj 

The transformation for the parallel case is shown in 

Figure 6. The equations are: 

Pik=Pik' +Pik" 

/Jik = (P ik' /Jik' + P ik" /Jik") / (P ik' + P ik") 

Aik = (P ik'Aik' + P ik"Aik") / (P ik' + P ik") + 

(/Jik'2P ik' + /Jik"2Pik") / (P ik' + P ik") - /Jik2 

The transformations for the loop is shown in Figure 
7. The. equations are: 

Pik=Pik' / (l-Pii ) 

/Jik = /Jik' +PU/Jii/ (1-P ii ) 

Aik = Aik' + AiiPii/ (l-Pii ) +/Jii2P ii/ (1-P ii )2 

The algorithm proceeds as follows: 

1. Select a node for removal-other than an en
trance or an exit. 

2. Apply the series equations to eliminate the 
node. This creates new links. 

3. Combine parallel links into a single equivalent 
link by using the parallel equations. 

Figure 7-Loop case 



4. Eliminate loops. 
5. Repeat until only entrances and exits remain. 

For manual calculations it is best to represent. the 
flow chart by a matrix. The outmost column and row 
of the matrix is removed, reducing its rank. We have 
written a program that performs these calculations, a 
sample of which is shown in Figure 8. We have here a 
rather complicated model if we take into account all 
the possible loops and such. The links are described 
by the names of the nodes they span. The node names 
can correspond to the labels in the original flow chart. 
The special nodes "GILA" and "ZEND" are included 
as programming conveniences. The output shown has 
the expected probability of 1 and a mean value of 2263 

Figure 8-Single inway-single outway example 

INPUT 

SEQ. CODE ANODE BNODE PR08ABILITY 

INWA GILA. Ni 1 ......... 
2 LINK NI 0" 1 ......... 
3 " 0" 03 .33 .. .. N .. •• 67 ...... 
5 03 N5 .6. 
6 N3 .... 
7 N5 NI 1 ••••••••• 
8 N3 N" 1 ......... 
9 N" 02 I ......... 
I. 02 N2 .88 
II .. 01 •• '2 •••••• 
12 01 N3 .5 
13 .. N5 •• 5 ....... 
I .. OUTW Ne ZEND. I.e ....... 
15 ENDL 

END OF LINK ENTRIES 

CREATE THE FILE NANE WHERE THE 

I 
2 
3 

INPUT IS TO BE SAVED. 

CODE 

INWA 
LINK 
OUTW 

OUTPUT 

ANODE BNODE PROBABILITY 

GILA 
NI 
N2 

NI 
N2 
~£ND 

1.8"""8" 
I •• """." 1."""888 

MEM 

•••• H .... 
46. 
I .... . ......... 
18. .......... .......... 
88. ... 
••• e ...... 
I ... 
.17 
68. . ......... 
,- A39 

MEAN 

e."ee" 
8.2263£+"'" 
e."88" 

CONTROL 

DIST. 
DIST. 
01 ST. 
DIST • 
DIST. 
DIST. 
DIST • 
DIST. 
DIST. 
DIST. 
DIST. 
DIST. 
DIST. 
DIST. 

CONTROL 

DIST. 
D15T. 
DIST. 

I 
e 
3 .. 
5 
6 
7 
S 
9 I. 

II 
12 
13 
I .. 
15 
16 
17 

SEQ. 

I 
2 
3 .. 
5 
6 
7 
8 
9 

1. 
II 
t2 

Analytical Techniques 523 

Figure 9-Multi-inway, multi-outwayexample 

INPUT 

CODE ANODE BNODE PROBABILITY MEAN CONTROL 
INWA GILA. Nl .9. • •• e ...... DIST. .. GILA. N2 •• 5 •••••••••• 01 ST • 

GILA. N3 8 •• 5 ...... 9 •• e ...... D15T. 
LINK NI 01 I ••••••••• 37. DIST. 

01 N2 .e •• ' •• 8 .... DIST • .. N3 •• 8 ....... . ......... DIST. 
N2 02 I ......... 173. DIST. 
02 N .. ~'2 931. DIST • .. N3 e •••••••• 86~ DIST • ... N3 03 I ••• e.e ••• I ... D15T. 
03 N2 .6 115. D15T. 

0 .. . .......... 9 ... DIST. 
D~ NS • I ••••••• 8 •• DIST. N .. .., .•..... ..6. DIST. OUTW N4 ZEND. I ......... . ......... DIST. .. N5 ZEND. 1 ......... • ••••• e ... DIST. 

ENDL 

OUTPUT 

CODE ANODE BNODE PROBABILITY MEAN CONTROL 

INWA GILA NI 8.'8888" ".0"8" DIST. INWA GILA He 8.85.888 8.8"88 DIST. 
INWA GILA N3 8.85"888 ".8""" DIST • LINK NI He 8.28"888 ".37""E+82 DIST. 
LINK NI N3 8~88""8" jit·~78"[+82 DIST. 
LINK N2 N3 8.888888 8.2598[+83 DIST. 
LINK He N .. ..92e""8 8 .1184[+"4 DIST. 
LINK N3 N2 '.688.88 8.1298[+83 DIST. LINK N3 N .. ..368888 8.1548£+83 DIST. 
LINK N3 NS ...... 8 •• ..1888[+83 DIST. 
OUTW N .. iEND 

I •• "."." ".8"8" DI5T. 
OUTW N5 lEND l.e ••• 88 8.""8" DIST. 

microseconds. Another example, involving a subroutine 
with three entrances and two exits yields a somewhat 
more complicated result and is shown in Figure 9. 

The transformation equations can be derived on the 
basis of very weak assumptions. We assume a Markov 
model. We assume further that the running time for a 
link does not depend upon the running time of other 
links. The only thing that has to be assumed about the 
distributions representing a link is that they exist and 
have a first and second moment.! Other than that, the 
equations are valid for any distribution. There are 
additional refinements to the process to distinguish 
between deterministic and probabilistic loops that will 
not be discussed here. Furthermore, the analytical 
method is also applicable to the determination of 
memory utilization and channel utilization. 

To gauge the efficiency of the procedure; a 100 link 
program requires less than two seconds of 360/50 



524 Fall Joint Computer Conference, 1970 

time. The running time of a 1000 link analysis is under 
10 seconds. 

REFERENCES 

The algorithms described here were first developed by 
the author in 1964. The assumptions, however, were 
overly strong-i.e., required that all link distributions 
be Gaussian. A more formal derivation based on weak 
assumptions (i.e., the distribution exists and have first 
and second moments) is to be found in References 1,2, 
as well as a more detailed discussion of non-Markov 
models in which the node probability depends on the 
previous history of the program. It is shown there that 
while the mean value is not affected by these assump
tions, the standard deviation is. The algorithm as 
programmed, is accordingly modified. We have only 
presented the variance equations for the Markovian 
case. These equations can be readily shown to yield an 
upper bound for the variance. 

1 P WARMS JR 
Derivation and verification of system 6403 mathematical 
formulas 
Data Systems Analysts Inc 503-TR-3 December 15 1969 

2 PW ARMS JR 
Forthcoming MS thesis in computer and information science 
University of Pennsylvania 

3 W FELLER 
An introduction to probability theory and its applications 
John Wiley & Sons Inc Volume II Chapter XIV 1966 

4 B BElZER 
Application manual, system 6403 
Data Systems Analysts Inc 503-TR-2 August 22 1969 

5 P WARMS JR 
Instruction manual, system 6403 
Data Systems Analysts Inc 503-TR-1 August 22 1969 

6 S E ELMAGHRABY 
An algebra for the analysis of generalized activity networks 
Management Science Volume lO Number 3 April 1964 

This paper represents a parallel development in a more 
general area. Elmaghraby treats the generalized network. 
It will be seen that the network treated here is his EX
CLUSIVE-OR case. 



Instrumenting computer systems and their programs* 

by B. BUSSELL 

UCLA Computer Science Department 
Los Angeles, California 

and 

R. A. KOSTER 

North American Rockwell Information Systems Company 
Anaheim, California 

INTRODUCTION 

Considering the high cost and sophistication of data 
processing equipment, it is almost incredible that 
techniques for computer system measurement and 
evaluation have lagged so far behind. While it is true 
that computer technology has advanced at a rapid rate 
during the past 20 years, it is surprising that instrumen
tation for displaying system efficiency has only recently 
been given exposure in the literature; and even that 
literature is sparse. 

This paper will discuss some recent research in 
measurement carried on in the UCLA computer 
instrumentation project. The project proposed by 
Estrin et al., at the 1967 Spring Joint Computer 
Conference, was to develop measurement tools and 
techniques for the purpose of evaluation of hardware 
and software systems, instead of the historically 
dominant purpose of measurement for fault location and 
prediction. The two tools described here have been 
developed for low level self-measurement, requiring no 
special hardware. 

One tool is an efficient self-simulator that closely 
duplicates the operation of the machine it is running on. 
It can be probed at the subinstruction level by a data 
collection routine to determine detailed characteristics 
of the programs running on it. A simulator and two data 
collection routines for this simulator are described. 

The other tool is the implementation of an algorithm 
for making high precision measurements of the time 
duration of events or activities in the computer. This 
instrument measures the time interval of an activity in 

* This research was sponsored by the Atomic Energy Com
mission [AT(1l-1) Gen 10 Project 14]. 

525 

an operating program to about 2 microseconds accuracy 
using only an 8 MHz clock. 

BACKGROUND 

One generally makes measurements on a computer 
system in order to evaluate it. The evaluation may be 
for the purpose of acquiring a new system, optimizing 
an existing system configuration or, perhaps, for 
specifying an improved system. The measurement may 
be made on the system itself or on some simulation 
model of the system. The input for the measurement 
may be real data or a model of the data, e.g., statistical 
data. It is to be expected that the most accurate 
information is derived from measurements made on the 
actual system, using real data. 

Measurements may be made on resource utilization, 
be it memory space, peripherals or busses. Measurement 
may be made of computation time, event statistics or 
program structure. The choice of the measurement must 
be determined by the specific objective. 

Each instrumentation for measurement is expected to 
introduce artifact; either space, time, program structure 
modification or event statistics. A measure of the 
quality of an instrumentation is determined from both 
the artifact that it introduces and how well the artifact 
can be separated from the actual measurement in the 
final evaluation. 

Since most of the total running time involved 
arithmetic operations, early evaluations were based on 
the time to perform addition or "add time." If more 
involved arithmetic operations were available as primi
tive instructions, e.g., multiply, divide-these times 
were similarly considered in system comparisons. Input 



526 Fall Joint Computer Conference, 1970 

and output times were ignored in computing the run 
time of a problem and only the actual computing or 
central processing unit (CPU) time was considered. 

As more general· purpose applications evolved, costs 
for commercial users became more important. The job 
profile for a commercial use is generally one which has 
large volumes of data to be fed to the system; movement 
of the data within the system for sorting, merging or 
extracting pertinent records of files; and finally, output 
of these updated records or files. Since most of the 
activity involved peripheral equipment, and since the 
input and output time was so long compared to the 
actual computing time, performance measures were 
generally determined for I/O equipment only. Thus the 
familiar criteria of "cards per minute," "lines per 
minute" and "characters per second" became the 
performance parameters in a commercial computational 
environment. 

These early evaluation procedures can be classified as 
extremely crude data models applied to a crude. system 
simulation. 

Refinements in both the data and system models 
were made by including additional instructions, and 
broader classes of operations specific to particular users. 
For example, instruction-mix statistics have been 
gathered for scientific computations and for commercial 
users. These statistics are generally grouped into instruc
tion classes, and weights are assigned to the classes 
dependent upon the frequency of occurrence as measured 
in large groups of programs. Examples of mixes can be 
found in Arbuckle! and Smith.2 The mixes are used to 
compare computational efficiency between machines. 
For each operation, the manufacturer's listed operation 
speed is multiplied by the particular weight factor. 
A sum of all the products produces a "figure of merit" 
for comparison purposes. It must be noted that mix 
evaluations are only generally a measure of the speed of 
the logic hardware, instruction set. 

Other major factors affecting computational efficiency 
are usually not considered by mix evaluation: special 
instructions in a particular machine may not be included 
in the mix; multiple registers with multiple uses, 
hierarchical memory, and parallel arithmetic units are 
among special features not usually considered by mixes; 
mixes are usually developed for the "average" user in 
some class; some users are not well represented by any 
average mix. 

A refinement over the mix-statistics measure has been 
the kernel evaluation. In this exercise, small sample 
routines are coded for each machine under comparison. 
For scientific users problems such as solving two 
simultaneous equations in two unknowns, or evaluating 
a polynomial are typical. Commercial application 
kernels might be formatting output lines or searching a 

table for prescribed descriptors. In addition to compari
son of computation times, this method may display 
special features or instructions which are useful (or 
hindering) in each machine under investigation. A great 
shortcoming of this method is that it depends greatly 
upon the experience and skill of the programmer with 
the particular machine. 

Probably the best procedure for comparing systems is 
to program all of a user's jobs on all of the machines 
being considered. However, this not being practical, 
users have attempted to define small portions of typical 
work loads in order to run them on different machines. 
These problems are called "benchmark problems" and, 
of all of the procedures discussed so far, provide the best 
data and come closest to predicting a Hbest" system for 
a particular need. This is true not only because of the 
better data, but also because of our inability to generate 
accurate models of today's complex computer systems. 

The above described measurement and evaluation 
procedures were all designed to compare existing systems 
for possible acquisition. With the advent of parallel 
processing capabilities, time sharing of resources, 
multiprocessing, and the inclusion of an increasing 
number of system functions, t\eearlier, cruder methods 
of measurement yielded increasingly poorer evaluations. 
Other measurement procedures were developed. 

First to come upon the scene were channel analyzers. 
These hardware monitors essentially made measure
ments on the use of data channels and peripheral 
equipment from which it is possible to calculate the 
amount of overlap between the central processing unit 
and peripherals. Their prime use was in reconfiguring a 
system to increase efficiency. A later application of a 
similar device built by one of the large computer 
manufacturers was to demonstrate to potential cus
tomers the increased efficiency of a new product when 
running the customers' jobs. Recently complex hardware 
monitors have been described by Schulman3 and 
Estrin. 4 Schulman's monitor can attach information in 
up to 48 signals which describe a maximum of 48 
measurable parameters. Through suitable choice of 
connections significant measurements of system opera
tion can be made during the running of a problem. A less 
sophisticated version has also been built and at least one 
manufacturer is marketing a small hardware monitor of 
this type for general application. Estrin's proposed 
monitor has, as one of its major variances with other 
systems, the requirement that the measuring device 
have the ability to control or interfere with ongoing 
computations in the object computer system. The 
purpose of this interference is twofold. First, to be able 
to capture all essential data by slowing the object 
computer if the data is being made available too quickly 
for retention. Second, when simultaneous analysis of the 



'Instrumenting Computer Systems and their Programs 527 

data indicates more optimal program structure or 
resource allocation, the measurement system should be 
capable of making (or initiating) these alterations. 

As a first step toward this ultimate goal, software 
tools were developed to facilitate the collection of data 
for post-processing. The particular instrumentation to 
be described in this paper makes .measurements of both 
instruction use and event timing in an ongoing compu
tation in its normal environment in a computer. 

INSTRUCTION UTILIZATION 

The instrumentation program for measurement of 
instruction utilization consists of two parts: a data 
gathering routine, and a control and simulation routine 
that can be used with many different data gathering 

RESTORE 
OBJECT REG. 
• CONQCODE 

EXECUTE 
OBJECT 

INSTRUCTION 
(EXU INA) 

SAYE 
OBJECT REG 
• CONQ.CODE 

INA
INA +1 

OPCODE 

-SUBJECT 
INSTRUCTION 

EXECUTE (EXU) 

ALL BRANCH TYPES 

EXECUTE 
BRANCH - TYPES 
INTERPR ETIYEL Y 

INSTRUMENTATION 
CONTROL 
'UNCTIONS 

INA
NA 

(!:!EW ~DDRESS) 

Figure t--8igma-7 self simulator flowchart 

routines. The data gathering routine collects instruction 
mix statistics. The control and simulation routine 
simulates the object computer on itself, providing a 
means for data to be collected for each instruction 
cycle. It is important that nearly every program that 
would run on the uninstrumented object computer be 
able to run identically on the simulator. This means that 
the instrumentation must occupy minimal space and be 
able to retain control in spite of error, interrupt, or 
other conditions which may arise from the object 
program. It is also desirable, for economic reasons, that 
the simulator operate as fast as possible. 

The central element in the simulator is the Execute 
instruction of both the Sigma-7 and IBM/360 instruc
tion sets. 5 ,6 It causes the instruction residing at its 
operand address to be executed. In the main simulation 
loop the object program environment, its register and 
condition code values, are saved after and restored 
before the EXU instruction (Figure 1). The operand 
address of the EXU is incremented and' the operation 
code of the next object instruction is examined before 
executing it. If the object instruction can change the 
sequence of execution, e.g., a branch instruction, it 
would cause the simulator to lose control if executed in 
the main loop. Therefore it is executed interpretively 
by other routines. 

The data collection routine maintains a counter for 
each operation code that can occur in the object 
computer. Before executing each instruction, its counter 
is incremented. Additional counters for the conditional 
branch instructions record, for each condition tested, 
whether or not the branch actually occurred. 

The dominant elements contributing to the time 
artifact are proportional to the number of instructions 
executed under simulation, so relative artifact is usually 
more interesting to the user. A statement about relative 
artifact must assume an average execution time for 
instructions in the object program (running normally, 
without simulation), which is heavily dependent upon 
its instruction mix. Register-to-register operations in 
the 360/75, for example, typically take about 0.5 jJsec 
less than their register-to-storage equivalents. In the 
Sigma-7 the register-to-register operations typically 
take 1.5 jJsec more than their register-to-storage 
equivalents. Analysis of a small sample of programs 
written in assembly language by one of the authors 
indicates an average executio~ time of about 1.1 jJsec 
for the 360/75 and about 2.2 jJsec for the Sigma-7. 
Neither sample included any floating point or decimal 
operations and the author is not necessarily a "typical" 
coder, so no attempt will be made to defend these 
numbers as applicable to the general case. 

Using the listed "book" values of instruction times it 
was determined that the ratio of simulator time to book 



528 Fall Joint Computer Conference, 1970 

A. SIGMA-7 SIMULATOR ARTIFACT 

Natural 
Mnemonic jArtifact Time Ratio Instruction (comment) 

main loop 18.6 2.2 (av.) 8.2 all not named below 

BCS/BCR(b) 41.8 1.0-2.1 42-20 Branch on Condition Set/Reset 

BCSIBCR(nb 39.8 1. 9 -3.0 21-13 (no branch) 

BIR/BDR(b) 41.8 1.5-2.3 28-18 Branch on Increment/Decre-

BIR/BDR(nb) 39.8 2.4-3.3 17 -12 (n:> branch) ment Reg. 

BAL 47.4 2.2 -2.8 22 -17 Branch and Link 

EXU 31.0 1. 2-2. 4 26 -13 Execute (add subject instr. 
time) 

B. SYSTEM/360 - 75 SIMULATOR ARTIFACT 

Natural 
Mnemonic Artifact Time Ratio Instruction (comment) 

main loop 45.0 1.1 (av.) 41 all not named below 

BC(b) 36.1 1.0 36 Branch on Condition (RX type) 

BCR(b) 28.2 1.0 28 Branch on Condition (RR type) 

BC/BCR(nb) 15.5 1.0 16 (no branch) 

BCT /BCTR(b) 41.6/33.7 1.0 42/34 Branch on Count (RX/RR types) 

BCT /BCTR(nb) 21.0 1.0 21 (no branch) 

BXH/BXLE(b) 45.3/37.4 1.1 41/34 Branch on Index High/Low-Equal 

BXH/BXLE(nb) 24.7 1.1 22 (no branch) 

BAL/BALR 26.6/26.8 1.0 27 Branch And Link (RX/RR types) 

LM/STM 24.0 + 1. 6r 1. 4 + .26r 17 + 6r Load/store Multiple 
(r = no. of registers) 

EX 28.5 3.2 9 Execute (add subject lnstr. time) 

Figure 2-Simulator artifact 

time for the Sigma-7 instruction repertoire ranged from 
about 8:1 for main loop instructions to 20:1 (on the 
average) for branch type instructions (See Figure 2). 
Since monitor functions, including I/O, are normally 
not executed under simulation, it is to be expected that 
the average artifact is lower. 

The control routines allow insertion of calls in the 
object program to command the instrumentation to 
turn on or off or output its data through three Fortran 
CALL routines or assembly language branch and link 
instructions which turn on the instrumentation 
(INSTON), turn off the instrumentation (INSTOFF), 
or close the instrumentation and output the data 
(INSTCLOS). A call to INSTON starts executing the 
object program under simulation at the next instruction. 
A call to INSTOFF returns direct control to the object 
program but retains any data collected· so that a later 
call to INSTON continues the accumulation of data. 
A call in INSTCLOS outputs and clears the data tables 
before doing the INSTOFF function. The INSTON, 
INSTOFF pair can be used to instrument a subroutine 
or a portion of a program. Since the object program runs 
at natural speed when the instrumentation is closed or 
off this kind of control permits significant reduction of 
artifact. 

The infrequency with which calls are made to the 
control routines causes their relative contribution to 

overall artifact to be small. INSTON costs about 50 
instructions, depending upon arguments it must handle, 
plus about 50 more if the monitor call is used. INSTOFF 
costs about 20 instructions plus 50 if the monitor call is 
used. INSTOUT is about as expensive as INSTOFF 
plus the cost of the data output routines, which in most 
cases will totally dominate it. The first call to INSTON 
performs a number of once-only initializing functions 
that cost about 500 instructions. 

Artifact due to the simulation routines is shown in 
Figure 2. The Natural Time column gives the manu
facturer's published times for the instruction explicitly 
named and the assumed average time for fixed-point 
binary and logical instructions executed in the main loop 
of the simulator. The Ratio columns are a measure of the 
relative artifact, the artifact divided by the natural 
time. The average Natural Time in the first lines will be 
greater, and the Ratio less, in programs having a 
significant number of floating point or decimal instruc
tions or in programs compiled by a non-optimizing 
compiler. The range of natural times in Figure 2A 
assumes no indexing. Add 0.6 to the artifact for only the 
branch instructions if they are indexed in the Sigma-7. 
Figure 2B assumes single indexing; e.g., a nonzero base 
register field, in the artifact column. Add 2.1 JLsec to the 
artifact for RX type instructions if both the base and 
index register fields are nonzero and subtract 2.1 JLsec 
if they are both zero. 

The most important general conclusion that can be 
drawn from Figure 2 is that the Execute instruction is a 
definite aid to simulation in the Sigma-7 but, at least as 
implemented, it is not much help, from a time stand-
point, in the 360. In most cases, in fact, the instructions 
can be executed interpretively a little faster than they 
can in the main loop. To gain this speed advantage, 
however, it is necessary to treat practically each 
instruction as a special case, making the space artifact 
very large. A related observation is the fact that the 
EXU instruction in the Sigma-7 adds less than one Add 
time to its subject instruction whereas the EX instruc
tion in the 360 adds more than three Add times to its 
subject instruction. 

For many experiments it is desirable for the simula
tor to regain control automatically after an interrupt 
has given control to the operating system. In most cases 
this· will happen automatically except when the return 
to the user program is to a point other than that at 
which the interrupt occurred (as in the implementation 
of a PL/I "ON" condition). Explicit INSTON 
commands can be put in all such entries, but that is an 
error-prone operation for the experimenter. It is also 
desirable to have an end of job condition, particularly 
an unplanned one, cause an implicit INSTCLOS func
tion so that the data gathered so far can be recovered. 



Instrumenting Computer Systems and their Programs 529 

These goals were accomplished in the Sigma-7 monitor 
by adding only 25 words to it. It was estimated that a 
change of similar magnitude would be required on 
OS/360. They involve the use of a previously unassigned 
CALL (SVC) instruction to set a flag in the monitor 
that indicates that the instrumentation system is 
present. The flag can be explicitly reset and is auto
matically reset by the end-of-job processor. The routine 
that gets the address for a non-sequential return and the 
end-of-job processor check the flag and return instead 
to an address (in the flag word) that gives control back 
to the simulator it the flag is nonzero. The address that 
the monitor would have returned to or the fact that an 
end-of-job condition has occurred is passed to the 
simulator entry routine so it can take appropriate 
action. 

The object program 

In order to test the above described instrumentation 
software, an elementary problem was selected which 
utilized the I/O, performed arithmetic and which had a 
non-trivial looping structure. The results described 
below were obtained from tests run on the XDS 
Sigma-7 using the XDS Fortran compiler. 

The object program was a short Fortran program 
which calculated and printed the amortization table for 
a loan (Figure 3). The output consisted of 140 lines of 
data and 3 headlines printed on 3 pages. All variables 

'FORTRAN 

·--------~~n-q~-~N~271~lM~-~,.f~;~~-!~~-;~.I~~~-.-!·t~~yT-~iJUNi~,.iULi;-iAijci.-;---
---1..'..5_£P'« • ocJt« • NOy.« • OEC • , 

9AL • 100000 ______ B!oJ.t._!' __ 6.A ________________________________________ _ 

PMT • 0 .. _____ I'!!L~ __ l _______________________________________________ _ 
VR • 6. 

__ ~~T. "o:-'lQL--------------------
. _______ .. f __ '!_.P. ____________________________________________________________ ~----------

fR • RATE I 10 

·~--------~R·i t"~((;;5i-rR;--R4-fE--------------------------------------------------------
L-.£ORI1AT ~J_~~...!.lU _ _'_",..T P~lP--!lJ~.n1_!..ltU.L!LJ..l_'~.!.'_ J.1/_ 

l'U', TItS, 'PRINCIPAL', T62, 'BALANCE'/' I) .§ ____ tr __ J.!.. __ ·_f:.!h· __ '.I.L_Gtt_JJt_A. ____________________________________ . _______________ _ 
IPMT • PHT I 100 . ________ t.J!'!r._~ __ I~LL __ ~9_O' _______ . __________________________________________________ _ 
IPR • PR I 100 
[B~L L. +B~L I lQ.OIL.--:.. .......... _______ _ 

.1IL ____ J~!UJ(J6,j.U_!1I1N.H.t~Old.R,.IJ?!1_t,.P.rll,.lI~T' I"I.T,JP.~,PH, !IIAL,flM .. __ . ___ . 
11 F'ORMA.T I' ., A3, '.1,19,,12, TlIt, _Cl6, ',',12, 6X)J • _____ .P-!:tt._~_6.0.0.0 _______________ ~ _____________ .. ___________ .. __ . ________________________ . 

INT. IBAL • RAt£ I 12 • 500) I 1000 

--~~Z~L~·.~P~~~~~------------
• ______ J:lCL!' __ tl.fl.D.V':1!l1 . .12J.._t __ l. ____________________________________________________ .. _____ .. 

13 IF' 11':9 .NE. 11 G' Tit 15 
.1!1 ____ :(!.t_!' __ Y.!L±.~.l-------.. ------------------------___________________________________ _ 
15 IF' (SAL .GT. 01 G9 TO 6 
.l.L-£MT , PMT • SAL 

PR • PR + BAL ____ ~lo_I,, __ ·_'O' _______________________________________________________ . __________ .. _______ _ 

I • I • 1 _____ tf __ J_L_·_L1.!_..2J.._Q.II __ t~ __ L _____________________________________________ .. _. _____ . 
WRITEI6,20J 

~IlRMAT "1'1 
ST9P 

--------~~~_Q_--------------------------------------------------------_ .. _-----_ ... ------_. 

Figure 3-0bject program for instrumentation 

Figure 4-Mix statistics for object program 

were integer variables, so there were no floating point 
operations attempted. Scaling and rounding were done 
explicitly and the output was formatted with the 
months spelled out. 

The obJect program was instrumented as a whole and, 
in order to test the facilities of the instrumentation 
system, in parts. The latter was accomplished by turn
ing the instrumentation on and off, in order to focus the 
instrumentation on program sections of interest. 
Additionally one measurement was made by turning the 
system on, off, and closing it when the calculations 
reached January of a specified year. This was done by 
inserting statements of the form IF(YR. EQ. 67) CALL 
INSTCLOS before statement 15. 

Despite the simple nature of this test program, 
experiments described below reveal a good deal about 
the instrumentation process of its potential. 

EXPERIMENTS WITH THE OBJECT PROGRAM 

Instruction mix statistics 

The object program described above was run fully 
instrumented in order to provide a base for further 



530 Fall Joint Computer Conference, 1970 

experiments, by totalling the number of executed 
instructions and by displaying the instruction mix 
compiled for this Fortran program. Figure 4 displays 
the mix statistics from printout. An examination of this 
instruction mix indicates that byte instructions are used 
in compiling the formatted output in preference to byte 
string instructions. As a test on this hypothesis, a 
program was rerun with all WRITE instructions 
disabled. The mix statistics verified the hypothesis-no 
byte instructions were used. Additionally the total 
number of instructions used in the latter program was 
10,900 (without WRITE instructions) compared to 
922,041 for the full program-revealing that approxi
mately 911,000 instructions were used for formatting 
the printing 143 lines. The program was rerun with 
different groups of the three WRITE statements 
suppressed and measurements showed that the headline 
statement required 5,285 instructions, data printout 
required (on the average) 6,383 instructions while the 
page skip control statement required 1,661 instructions. 

As a test to see whether or not the method of 
formatting determined that the compiler used byte 
string instructions, the FORMAT statements were 
rewritten using Hollerith format (xH ... ,) and run 
with the data printout and page skip suppressed. Again 
the mix statistics showed that these instructions were 
not used. Further investigation revealed that the 
compiler had been written to be usable by a smaller 
system without byte-string manipulation capability. 

Program debugging 

A debugging aid that was temporarily put into the 
original simulator has proven so useful that it provides 
the basis for a separate data collection program. This 
program records in a circular queue the instruction 
address, operand address, instruction, and operand for 
each instruction executed. A queue capacity of fifty 
instructions appears adequate, but a larger capacity is 
easily possible. The space required by this program is 
about 700 words including its data. An instruction 
being simulated runs about 25 times slower than it 
would normally. When a program presents a difficult 
debugging problem, this routine can be loaded with it 
and turned on just prior to the suspected problem areas. 
Intermediate and/or terminal (object program fatality) 
data dumps can be produced. Turning the simulator off 
during execution ot debugged portions of the object 
program can reduce average artifact to reasonable levels 
even for long programs. 

EVENT AND INSTRUCTION TIlVIING 

Program accesible clocks in present day computing 
systems are included primarily for accounting purposes. 

Instruction and event timing require clock resolution 
which is several orders of magnitude finer·than that for 
billing purposes. I t is possible, however, to develop 
algorithms which can "see through" a low resolution 
process to the more accurate standard behind it. In this 
algorithm it is the timing precision of the individual 
"ticks" of the clock, not the time between them (clock 
resolution) that limits the accuracy of measurement. 
Its principle of operation is analogous to that of a 
vernier scale which proportionally divides the space 
between marks on a scale to permit a much higher 
measurement accuracy than would be indicated by the 
resolution of that scale. It is this type of vernier timing 
algorithm which has been implemented as a subroutine 
in the set of instrumentation programs. 

The TIME Subroutine measures the actual elapsed 
time of events within a user program to an accuracy of 
about two microseconds. It uses an 8 1\1Hz clock in the 
XDS Sigma-7 computer. It is fully compatible with 
Fortran and system protocol. The space and time 
artifact introduced is about 270 memory cells and an 
average of between 220 and 300 microseconds in most 
applications. 

The TIME Subroutine has two entries, $TIMON 
and $TIME. A call to $TIME is normally used to start 
the timer. A call to $TIl\1E is normally used to obtain 
the time (in 74: microsecond units) since the most recent 
return from TIl\1E. Optional arguments passed with 
the calls can be used to control auxiliary functions of the 
subroutine. These functions include calibration and 
hardware clock control. 

The vernier clock algorithm has four basic hardware 
requirements: there must be (1) an accurate hardware 
clock, (2) minimal jitter, and (3) a very short program 
loop whose time is (4) accurately known and which can 
detect when the clock is incremented. The discussion 
of error analysis will show how each of these require
ments enters into the determination of the accuracy of 
the vernier clock. In some systems (e.g., the XDS 
Sigma-7 computer) some of the critical times are 
dependent upon maintenance adjustments, tempera
ture, and other factors that make long term calibration 
of the timing routine hard to maintain. An analysis of 
calibration procedure will show that the presence of two 
clocks makes self-calibration practical. Systems without 
a second clock may require occasional manual calibra
tion with the aid of special hardware. Simple practical 
procedures involving attachment of an oscilloscope to a 
convenient point in the machine while a calibration 
routine is running and adjustments of a precision 
oscillator can be developed for most machines. 

In some software systems access to the hardware 
clock by a user program involves high and frequently 
variable overhead. These effects act like additional clock 



Instrumenting Computer Systems and their Programs 531 

jitter and program loop time and may have a fatal effect 
on the utility of an algorithm to a user. Since the core 
of the algorithm can be programmed in less than 50 
cells, it may be reasonable to make it a resident part 
of the system programs in some systems. It could then 
have direct access to the hardware clock. The control, 
calculation and calibration sections which would link to 
the core would then be brought in when needed as user 
or utility programs. 

The XDS Sigma-7 computer has two interrupt cells 
associated with each clock, the count interrupt and the 
zero inter~upt. If an interrupt cell contains the Modify 
And Test Word (MTW) instruction when that interrupt 
is activated (advanced to the active state), that 
instruction is executed and the interrupt is immediately 
cleared without changing the rest of the machine's state. 
Unless there are other interrupts waiting, control is 
immediately returned to the interrupt program. The 
MTW instruction increments the word at its target 
address by a specified amount between - 8 and + 7 and 
tests the result for "less than," "greater than," or 
"equal to" zero. If the MTW is in the clock count 
interrupt cell and the result is zero, the clock zero 
interrupt is triggered (advanced to the waiting state if 
armed and enabled). 

The fast clock triggers the count interrupt every 125 
microseconds .. This action will be called the· tick of the 
clock. Its timing is dependent upon a crystal oscillator 
which is probably stable to at least .01 percent. The 
interrupt will be activated when the currently executing 
instruction is complete. A similar slow clock triggers its 
count interrupt every 2 milliseconds at exactly the same 
time as every sixteenth fast clock trigger. Since the 
fast clock has higher priority, it will activate first. The 
time required for instruction execution in the Sigma-7 
has been observed to differ from nominal values by 
10 percent and from one cell to another, for the same 
instruction, by 1.2 percent. Short time (a few hours) 
stability for a fixed instruction in a fixed cell is better 
than 0.02 percent. No nominal value is given in the 
manuals for time to execute the interrupt and the 
MTW, but tests indicate a value of 6.0 p,sec with drift 
and short-term stability similar to that for other 
instructions. 

We can observe the content of a cell that is incre
mented by the clock before and after an event and 
calculate the number of whole 125 p,sec intervals that 
elapsed during the event. IVlultiplying this by 199 
(125 minus the 6 p,sec required for the interrupt) gives 
the time of an event ± 199 p,sec. The error is due to the 
fact that we do not know what part of the first and last 
intervals were occupied by the event. What is needed is 
a "vernier" timer that can divide the clock intervals 

r--- ------------, 
I I 
I OBJECT EVENT BEING I 
I TIMED. CLOCK TICKS I 

: m TIMES. : 

I I"TlME"-I"TIME")+ m ) : L _____________ , __ ~ 

I I '- ___ ... ..J 

r------

GET TIMER COUNT 
IN "TI_" (111) -------------------

SET UP CLOCK CELLS 

r-O, t--I 

2ND VERNIER 
LOOP 

PUT RESULTS IN 

ARGUMENT OF 

SUBROUTINE CALL 

Figure 5-Time subroutine flowchart 

into many small parts and estimate the number of those 
parts occupied by the object event. 

The algorithm that makes the vernier measurement 
is shown in Figure 5. After performing the requested 
control functions (not shown in the flow chart), the 
object program's call to $TIMON results in the entry 
at START TIMER. After setting up the clock cells, the 
program enters a loop that cycles until the clock ticks. 
The loop is a single instruction that would infinitely 
branch to itself except that it is the object of the MTW 
in the clock interrupt. cell. The clock tick causes the 
branch to go to the following instruction within one 
branch instruction time. When a tick is detected, control 
is returned to the object program event that is to be 
timed. The part of the first interval that is occupied by 
the object event is now known to a tolerance of the time 
it takes for one vernier loop. If the number of times 
through the vernier loop, (n) is one, the timing may be 
invalid so the timer starts again. 

The object event is executed and the object program 
calls $TIME. After setting up the clock cells and 
recording the count of the number of times the clock 
ticked during the event (m), a second vernier loop is 



532 Fall Joint Computer Conference, 1970 

entered. This loop counts the number of times it cycles 
until the next tick (n) (the BDR, Branch and Decre
ment Register, instruction is used for the loop to count 
cycles). The part of the last interval that is not occupied 
by the object event can now be calculated to a tolerance 
of the time of one of the second vernier cycles. With this 
information, the time spent in the object event can be 
calculated. 

Knowing m, the number of clock ticks, and n, the 
number of vernier cycles in the second loop, the time can 
be calculated by 

T=K1m-K2n+K3 

where KI, K2 and K3 are functions of the time and 
resolution of the vernier loop, the system clock tick, and 
the system overhead. Variations in the timing in the 
hardware require that each of the K's be determined 
experimentally by a calibration routine. However, 
nominal values for these constants were, in micro
seconds, 

Experiments 

Kl=119 

K 2=1.5 

{

89.2±1.5 for n> 1 
K3= 

89.75±2.05 for n= 1 

It is of qualitative interest to consider two simple 
experiments that were executed using the above timing 
routines. The first measured actual instruction timing 
in the computer. The second measured the time range 
and average value for real-time routine. 

A program was written to construct a table of 
instruction times similar to that supplied by the 
manufacturer except that, instead of specifying memory 
overlap, it explicitly specified the memory banks used 
by the instruction. The program was driven by a set of 
data cards that specified the instruction combinations 
to be tested. This allowed a subset of the table to be 
generated or the sequence of entries to be permitted for 
particular applications. It also allowed unusual combi
nations; e.g., indirect address and operand both in a 
register, to be tested. 

When operated in the normal mode, the Sigma-7 
(with 32K memory) uses one memory bank for even 
addresses and the other one for odd addresses. The 
program set up 500 instruction pairs. The even or odd 
one of each pair contained the specified instruction. 
The other one in the pair contained a branch to the next 
instruction (the fastest null operation available). These 
1000 cells were bracketed. by calls to $TIMON and 
$TIME.· When this· sequence was executed, the time 

was 5001 + 500B, where 1 is the execution time for the 
test instruction and B is the execution time for the null 
operation. The same 1000 cells were then all filled with 
the null operation and the sequence executed again, 
giving 1000B. The value of 1 was calculated, converted 
to microseconds, and printed. The first eleven bytes of 
the input card image were printed to the left of 1 and 
the comment field was printed to its right. 

A sample output is illustrated in Figure 6 showing 
timing measurements made to validate manufacturer's 
book values for instruction times. 

Column A gives the octal operation code whose 
mnemonics are in column 1. Column B indicates indirect 
addressing if an asterisk is present. Column C describes 
an even address (if 0) or an odd address (if 1) cor
responding to column J. If the instruction is not 
indirectly addressed, this corresponds to the effective 
address of the instruction. If indirectly addressed, this 
corresponds to the location of the cell pointed to by the 
address field of the instruction. Column D indicates 
indexing if set to 1. Column E describes whether the 
original instruction address is even if 0, or odd if 1, as 
indicated in column H. If the instruction is indirectly 

~ !!of. Q. §. f. §. !! ! :!. ~ 
1t8 -0 1 0 0 3·00 EVEN AND.6 -EVEN,1 (1'110 AI)O EVr.N) 
~8 -0 1 0 1 1!.69 EVEN AND,6 -EVEN,1 (IND A:)D ~DD) 

~8 -0 1 1 0 2·69 eDD AND,6 -EVEN,1 (1'10 A~D EVEN) 
~8 -0 1 1 1 3.0_ eDD AND,6 -EVE'J,1 (I'ID A!)O eDO) 
~8 -1 100 3.04 EVEN AND,6 -~'D,1 (1'10 A~O EVEN) 
~8 -1 101 2·73 EVE;\/ AND,6 _~DO,l ( HID ADD ~!')O) 

~8 -1 1 1 0 2.73 eDD ANO,6 -e~O,1 (1'10 A,)!) EVEN) 
48 *1 1 1 1 3·07 eOD AND,6 -e~!),l (1'10 ADD ~DI) 

30 0 o 0 l'SO EVEN AW,6 EVE'll 
30 0 1. 0 l·lt8 eoo A~~,6 EVEN 
30 1 o 0 1·lt9 EVF.:'l AW,6 !'I DO 
30 1 1 0 1·83 eOo AI'I,6 8'0 
30 o 100 2.lt2 EVEN A'll, 6 EVEN,l 
30 o 1 1 0 2·11 eDO Aw,6 EVEN, 1 
30 1 100 2.11 EVEN A;.I,6 ~DO,l 
30 1 1 1 0 2.lt6 BOD Aw,6 eOO,l 
30 -0 o 0 2·70 EVEN AII,6 -EVE'll (INO ADO EVEN) 
30 -0 o 1 2·39 EVEN AW.t6 -EVEN (1'10 ADO el)O) 
30 -0 1 0 2·39 eOD AW,6 -EVEN (1'10 A,)O EVEN) 
30 -0 1 1 2.73 eoo AW,6 -EVE", (1'10 AOO ~!)~) 

30 -1 o 0 2.H EVEN AW,6 _e:>o (1'10 A')" EVEN) 
30 -1 o 1 2.lt3 EVEN AW,6 _~')D (1'10 AOD ~""") 
30 -1 1 0 2·lt3 eOD AW,6 -eoo ( PolO A,)O EVE"J) 
30 -1 1 1 2.78 eOO AW,6 _~')o (1"10 ADD eOO) 
30 -0 1 0 0 3·00 EVE;\/ AW,6 -EVEN,t (1'10 ADD EVEN) 
30 -0 1 :) 1 2.69 EVEN A'II,6 _EVE'l,1 cIND ADD ~O!» 

30 -0 1 1 0 2.69 eDO Aw,6 -EVEN,1 (I"JO A,)O EVEN) 
30 -0 1 1 1 3.03 eOD AW.t6 *EVEN,l cIND AOD eOI) 
30 -1 1 0 0 3.03 EVE'I AW,6 -&:>0,1 (IND A,)O EVEN) 
30 *1 1 o 1 2.73 EVEN AW.t6 -&:>0,1 cI'lD ADD eD") 
30 -1 1 1 0 2·73 eDO AW,6 -&')0,1 (1"11) ADO EVE'l) 
30 *1 1 1 1 3·07 eM AIII,6 *~D".t1 (IND A"') ~"D) 
66 0 o 0 2.73 EVEN AW"I.t6 EvEN 
66 0 1 0 2·67 eDD AW"l.t6 EVEN 
66 1 o 0 2·72 EVEN AW"I.t6 e:>D 
66 1 1 0 2·81 !'lOD AWM.t6 e'D 
66 o 1 0 0 3.34t EVEN AWM.t6 EVEN,1 
66 o t 1 0 3·29 eDD AWM,6 EVEN, 1 
66 1 100 3.34 EVEN AW'1,6 eDO,l 
66 1 1 1 0 3.lt3 eDD AWM.t6 eDD,1 
66 *0 o 0 3.61 EVEN AW"1.t6 *EVEN (It>olD A')D EVEN) 
66 *0 o 1 3.62 EVEN AitlM,6 -EVEN (INO ADD ~OD) 

66 -0 1 0 3.57 eDD AWM,6 *EVEN (INO ADD EVr.~l) 

66 *0 1 1 3.70 eOD AWM,6 -EVEN (IND ADD eDO) 
66 _1 o 0 3·67 EVE" AW"1,6 _eDD (IND A')D EVEN) 
66 *1 0 1 3·67 EVEN AW!'1.t6 _~,o (I'lD AnD. ~DD) 

66 -1 1 0 3.61 eDO AWM,6 _e!)D (hID ADD EVEN) 
66 -1 1 1 3.75 eDD AWfo1,6 .eDD (1"'0 ADD eDO) 

Figure 6-Instruction timing test output 



Instrumenting Computer Systems and their Programs 533 

addressed then the effective address is even if 0 or odd 
if 1 as shown in column K. If the instruction is not 
indirectly addressed the field has no meaning. Finally, 
column G lists the calculated instruction times in 
microseconds. For all runs, the contents of register 1 is 
zero. 

Results of these tests indicated that most instruction 
times were within ±0.10 fJ.sec of the nominal times 
published by the manufacturer. The test data for 
identical experiments repeated to ±.Ol fJ.sec for four 
tests made over a two week period. A few instruction 
times, e.g., Branch on Incrementing/Decrementing 
Register (BIR/BDR), were as much as .16 fJ.sec less than 
nominal under some conditions. The odd memory bank 
appeared to be consistently .04 fJ.sec slower than the 
even bank for each reference the instruction had to make 
when there was no overlap (all references to the same 
bank). Comparison of the times for similar instructions 
on a condition-by-condition basis showed identical 
(±.Ol fJ.sec) times (examples: Add Word/Subtract 
Word, BIR/BDR, and Add Word to l\t{emory /Ex~ 
change Word (both read-modify-write), Load Byte/ 
Halfword/W ord, Store Byte/Halfword (but not Word)). 

A three dimensional graphic input device was 
developed at UCLA. It is similar in concept but different 
in many details from the Lincoln Wand developed by 
Roberts at Lincoln Laboratories. 7 The differences stem 
from efforts to make it lower in cost, eliminate some of 
the difficulties experienced with the M.l. T. wand, and 
interface it into the UCLA Sigma-7 computer and 
graphics system. It is described in detail by Makranczy.8 

The wand is a hand-held pointer containing a 
microphone in its tip. Four sonic transmitters are 
located in the corners of the graphics area. The associ
ated hardware determines the time it takes sound to 
travel between the transmitters and the microphone. 
These four times can be used to determine the location 
of the wand. The calculation to convert the four times 
into X, Y, and Z coordinates could be done either by 
special hardware or by the Sigma-7 computations. An 
embryonic form of the TIME subroutine was used to 
determine the average time required by the software 
conversion under simulated tracking conditions. Mea
surements indicated that 224 (±4) }Lsec were required to 
convert one set of data using the software. Since each 
set was available only once every 40 milliseconds, the 
computational load was less than 0.6 percent of the CPU 
time. 

CONCLUSIONS 

The work described above was concerned with two 
nearly independent tools for low level self-measurement 

in computers; self-simulators and timing programs. In 
each case a need was recognized, satisfactory existing 
tools were developed to work as well and efficiently as 
possible within the environment at UCLA (which is 
typical of many large computer user environments). 
The methods used are applicable to other environments. 

Self-simulation 

There is a class of experiments and environments for 
which self measurement via simulation is the best tool 
available. It has low initial cost, portability, and easy 
adaptability to the environment and to varying 
experiments, compared with external hardware measure
ment. It does not involve the system shutdown and 
reliability problems frequently associated with attach
ment of a special hardware. It can instrument a class 
of object programs that cannot be statically analyzed. 
It can collect a class of low level raw data that is not 
available to other software measurement techniques. 

Conversely, measurement via simulation introduces, 
at best, a rather large speed artifact and a space and 
facility limitation which tend to increase the cost of 
operation and restrict the range of measurable 
systems. 

The simulator programs that were described here 
have a lower artifact by at least an order of magnitude 
and a greater demonstrated adaptability than any other 
published simulators. 

Timing 

While much is said about fast machines, efficient 
programs, time-saving algorithms and devices, etc., 
very little has been done to provide the user with a 
means to measure the basic element of these statements 
-time. Gross time measurement devices are commonly 
provided for accounting and control purposes. Micro
scopic measures such as individual instruction times are 
provided. But it is the intermediate range of a few tens 
to a few thousands of instruction times that the user 
must work with when evaluating, comparing, or im
proving his programs, algorithms, and operating 
systems. 

The timing program that was described here provides 
a convenient means for timing events in this range to an 
accuracy of about one instruction time. When the basic 
accuracy of the hardware clock is not good enough its 
short-term stability may still be good enough to allow 
comparative measurement to the desired precision. 

This timing program is practical for a broad class of 



534 Fall Joint Computer Conference, 1970 

time measurement tasks but it does place some 
important restrictions on the environment in which it 
can be used and it introduces an artifact that may, in 
some cases, be intolerable. A range of hardware 
improvements have been suggested9 which would elim
inate restrictions and/ or reduce artifact for these 
timing functions. 

REFERENCES 

1 R A ARBUCKLE 
Computer analysis and thruput evaluation 
Computers and Automation pp 12-15 January 1966 

2 J A SMITH 
A review and comparison of certain methods of computer 
performance evaluation 
The Computer Bulletin pp 13-18 May 1968 

3 F D SCHULMAN 
Hardware measurement device for IBM system/360 time 
sharing evaluation 
Proceedings of 22nd National Conference of Association 
for Computing Machinery pp 103-109 1967 

4 G ESTRIN D HOPKINS B COGGAN 
S D CROCKER 
Snuper computer-a computer instrumentation automation 
AFIPS Conference Proceedings Spring Joint Computer 
Conference 1967 

5 XDS Sigma-7 computer reference manual 
Scientific Data Systems Inc Santa Monica Calif 
No 90 09 50 

6 IBM reference manual-IBM 8!fjstem/360 principles of 
operation 
International Business Machines Corp Poughkeepsie New 
York Form A22-6821 

7 L G ROBERTS 
The Lincoln wand 
AFIPS Conference Proceedings Fall Joint Computer 
Conference Vol 29 pp 223-227 November 1966 

8 T A MAZRANCZY 
Logic design and interface of a Lincoln wand system 
MS in Engineering University of California Los Angeles 
June 1969 
Also published as UCLA Engineering Report No 69-11 

9 R A KOSTER 
Low level self-measurement in computers 
PhD in Engineering University of California Los Angeles 
December 1969 
Also published as UCLA Engineering Report No 69-57 



SHOEBOX-A personal file handling system for textual data 

by RICHARD S. GLANTZ 

The MITRE Corporation 
Bedford, Massachusetts 

INTRODUCTION 

The SHOEBOX system, a part of MITRE's long-term 
effort in the development of text-processing systems, 1 

is designed to be the electronic analog of a personal 
desk file drawer. A desk drawer is conveniently at 
hand and readily accessible. It contains documents, 
reports, adversaria-probably most of which, if the 
work of others, haven't been thoroughly read, or if 
one's own work, remain unfinished. This material is 
organized under whatever whimsical scheme suits one's 
fancy; and as one's fancy changes, the file contents are 
variously combined or further segregated. (Or at least 
one would like to perform that kind of reorganization, 
at present a formidable undertaking.) Needless to 
add, the texts are set down in a variety of formats, the 
only common factor among them all being a close 
adherence to the grammar rules of natural language. 
Such an unstructured environment is the bane of 
digital mechanization, but it is to this problem that we 
have addressed ourselves. 

The system described below is more than a passive 
repository for textual information. As an interactive, 
time-shared, computer-based system, it can serve a 
community of users, working privately or in concert. 
Each user· can engage in such activities as browsing, 
searching, annotating, reorganizing, editing, indexing, 
and composing. He can digress at any time, perform 
another activity, and return to his original line of action. 
He can share his collection with others. He can apply 
one activity to the results of another: a particularly 
good example, and one that is possible on few com
mercial information storage and retrieval systems, is 
performing a search on the results of a previous search. 

Of course, the architecture of the computer and its 
peripheral gear impose some constraints on the form 
of the textual information, much the same as type
writer model and page size doin manual filing systems. 
SHOEBOX has three conventions: a maximum line 
length of 72 characters, no word division at the right 

535 

margin, and typography coded as nonalphabetic pre
fixes to words (for those applications where it is rele
vant). No attention need be paid to page boundaries, 
which are, after all, an artifact of paper systems 

It must be emphasized here that SHOEBOX* is 
only a cover term. As relevant research products within 
the larger context of investigation mentioned at the 
beginning of this paper come to fruition, they are 
refined and incorporated into SHOEBOX. Thus the 
system is a continually evolving one, and this descrip
tion of it is already obsolete. However, we do intend to 
maintain upwards compatibility. 

Other systems oriented toward handling personal 
files are being developed by Engelbart,2 Nelson and 
van Dam,3 and Reitman. 4 

DESIGN CONSIDERATIONS 

SHOEBOX is designed to be especially accom
modating to its human masters. Since the anticipated 
users of the system may have had no (professional) 
exposure to computing machinery, we deemed it 
important to ease the culture/technology shock. At 
the same time, we wanted to provide a versatile system 
capable of a wide range of text manipulations. Of 
equal importance, we wanted a system that could 
be transported to other computer centers. These 
overall considerations influenced our decisions in the 
realms of hardware configuration, software control, 
and data base structure. 

The system is interactive, as mentioned earlier, to 
provide the user with immediate response to his 
action and to allow him to react immediately to that 
response. For terminals, displays were chosen over 
typewriters or teletypes because of the ability of dis
plays to present large amounts of text almost instan-

* The name derives from the containers in which one of our pro
jected users currently stores his vital information: they bear a 
striking resemblance to footwear packages. 



536 Fall Joint Computer Conference, 1970 

~'::"~} 
====~-:: ITEM 

===-:.-= 

?:-:= } ITEM 

--_ .•. - } ITEM 

Figure I-Data base structure of SHOEBOX 

taneously. In addition, their comparatively silent 
operation is more conducive to the human thought 
processes the system is supposed to enhance. For 
transportability, the system operates on the rather 
common IBM 360/50, under OS. The display consoles 
are IBM 2260's, whose prime attraction is their 
availability and relatively low price. We would prefer a 
larger capacity scope with some kind of cursor or posi
tion controller like a "mouse," but no acceptable 
versions were available at the inception of this project, 
or are now, for that matter. Further details on the 
hardware and system software are discussed later in 
the paper. 

From the user's point of view, the data base is a 
collection of files, each labelled with a mnemonic of 
24 characters or less. (See Figure 1.) The files may be 
placed into a number of private file drawers, and 
each of these also has a mnemonic label. One file 
drawer, termed public, is available to anyone using the 
system. * 

A file is a sequence of lines of text, which may be 
grouped into items. An item, which is typically several 
paragraphs in length, may have a one or two character 
category code associated with each line. The category 
code can be used to indicate titles, authors, dates, 
descriptors, personal annotations, or what-have-you. 
Although the user mu~t identify which lines have which 
categories, the code scheme itself is completely his 

* There is also a system file drawer, which contains the programs 
SHOEBOX actually calls on to run itself. This arrangement 
makes modifying and improving the system quite convenient. 
Source programs are reorganized and manipulated in much the 
same way as straight text. This aspect of SHOEBOX will not 
be discussed here. 

choice and need only remain consistent within anyone 
file. 

Meta-textual information can be coded as well. FOl' 
example, if page reference to the hard· copy original is 
needed, a line containing the page number and having 
the category "p" associated could be used at the change 
in page. 

Note that items, files, and file drawers have no fixed 
size. They expand and contract to accommodate 
however many lines of text are inserted or removed. 

BASIC OPERATION 

To facilitate the detailed discussion which follows 
later in this paper, it will be helpful if we introduce at 
least the basic file manipulation operations. 

After logging on to the system by identifying him
self, the user opens the file drawer he intends to work 
with and selects a particular file to examine. Until he 
chooses another file, subsequent commands (with a 
few obvious exceptions discussed below) are con
sidered to apply to the file he has "placed on 
his desk." The command EXAMJNEFILE(irving) , 
entered on the top line of the CRT, will select the file 
named "irving" and will display the initial lines of 
irving on the remainder of the scope. * 

Beyond the right margin of each text line are dis
played the line category, if any, and the line position 
in the file. Line positions are numbered sequentially 
upwards from 1; they are automatically maintained· by 
SHOEBOX and need not be a concern of the user 
except for ontological reference. 

To browse through irving, the user can repeatedly 
enter the command NEXT, which will step him through 
the file one scopeful at a time. The command PRE
VIOUS reverses the direction of travel. l\1ore rapid 
skipping around is achieved by entering an integer n, 
which will cause irving to be displayed beginning at the 
nth line. To jump directly to the last several lines of the 
file the user enters LAST. Content-directed browsing , 
is also possible. Suppose he is curious as to whether the 
description "fig newton" occurs later in the file. The 
command FIND('fig newton') will cause SHOEBOX 
to search the rest of irving for the next line containing 
the character string "fig newton" . The displayed 
response is either the relevant portion of irving or the 
comment NOTHING FOUND. This is a primitive 
kind of search; later in the paper we will discuss the 
more powerful search capabilities available in SHOE
BOX. 

* We will adopt the convention henceforth of printing in full 
caps system commands and system responses. 



Personal comments can be interspersed throughout a 
file. Whatever is entered below the response line on the 
display can be incorporated into irving with the com
mand INSERTSCOPE. The new material will be 
treated the same as any other part of irving, although 
it would be judicious to mark the comment lines with a 
distinctive category code. 

When the user is finished with irving, he can place it 
back in the file drawer with the command FILE. Alter
natively, he can call out another file, say EXAMINE
FILE (arnold) , which puts irving away and places 
arnold on the desk. 

With this brief introduction to the "flavor" of SHOE
BOX, we would like to turn our attention first, to the 
very important human accommodation factors, and 
second, to a detailed exposition of the really powerful 
things the system can do. 

HUIVIAN FACTORS 

In the belief that an interactive computer system 
should be a complement to human thought rather than 
an intrusion, SHOEBOX commands are designed to 
mimic human textual activity. At the same time, 
actions which could be harmful if employed inad
vertently are made somewhat difficult to perform. 

One way we have made the system easy to learn is by 
grading the entire instruction set. The grading is done 
on the basis of both name and capability. For example, 
the novice may use the command EXAMINEFILE
(irving) to call out the file labelled irving. After a 
brief exposure to the system, he would undoubtedly 
prefer using the abbreviated equivalent command 
EF(irving). All long-named, frequently used commands 
have "obvious" abbreviations: IS for INSERTSCOPE, 
ML for IVIOVELINE, SF for SUBSTITUTEFILE, 
S for . SUBSTITUTE, etc. More experienced users 
can step up to the level of extended commands, e.g., 
EF(irving 55) will bring irving out from the file drawer 
and display it beginning at line number 55. Thus the 
user can promote himself to advanced levels to match 
his own needs, work habits, etc. We are currently en
gaged in publishing a series of graded instruction 
manuals and reference guides to aid and encourage 
this kind of personal development. 

Once learned, retention is high. The operations per
formed by the user, for the most part, parallel human 
desires, not machine requirements. The choice of 
command names and their verb or verb-noun con
struction is a familiar mnemonic device. Consistency 
also plays a role. The top of the scope is reserved 
exclusively for user commands; the second line, for 
system response. 

SHOEBOX 537 

We have endeavored to adhere to the principle that 
for every user action, there is a machine response. 
Ordinary conversation between humans becomes trying 
unless the listener occasionally nods his head or mur
murs some sort of acknowledgment. When the con
versational partner is a computer, a lack of response or 
even a delayed response can be deadly. This is especially 
so for the intermediate-level user: the tyro has no 
expectations anyway and the sophisticate will sit 
and curse the system programmers, but the sophomore 
is the one most likely to panic and perform a disastrous 
action. After the user enters a command on the command 
line, SHOEBOX indicates that it has received the 
command by erasing the response line. If the command 
is incorrectly formulated, or if the request cannot be 
carried out for some reason, a comment identifying 
the difficulty is displayed on the response line. If the 
command is properly executed, either a confirmatory 
statement is displayed on the response line or a relevant 
portion of the file "on the desk" is displayed from the 
response line down. For commands which are likely to 
take over six seconds to carry out completely, a running 
commentary of some reassuring sort appears on the 
response line. * ** 

The command set is designed to protect the user 
against himself. For example, wholesale deletion of 
material requires just a bit more thought. Unlike. most 
operations on the "desk" file, the command to delete 
the entire file requires that the file be named spe
cifically. In another situation, the unsophisticated user 
is not told how to directly replace the contents of one 
file with the contents of another. While such a command 
does exist, its hasty application could cause the un
wanted destruction of the target file. Instead, the 
inexperienced user is taught to first append the source 
file to the target file and then delete that portion of the 
target file he doesn't wish to save. By requiring such 
deletion actions to be explicit on the part of the user, 
we hope to save him from unnecessary grief. 

Perhaps the ultimate in user accommodation is 
reached with the facility provided in SHOEBOX for 
coining personal alternates for any of the commands. 
One of the staff members of the project, for instance, 
feels happier with EDFIL instead of EXAMINEFILE, 
STORP instead of SUBSTITUTE, and ADSCOPE 
instead of INSERTSCOPE. Any such neologism can be 
defined in the system lexicon with a single command. 

* At the time of this writing, we have not fully implemented this 
feature: it appears only on search commands at present, as a 
rendering of the number of (1) the current line being searched 
(in multiples of 20, to avoid overdemand on the central processor) 
or (2) the latest line where a match was found. 
** See Miller5 for an extended discussion of responsiveness in 
interactive systems. 



538 Fall Joint Computer Conference, 1970 

Furthermore, because the lexicon will handle any 
number of alternates to a SHOEBOX command 
name; potentially every user could satisfy his icono
clastic desires. 

We all make mistakes. If the user wishes to prevent 
SHOEBOX from completing the execution of his last 
command, he hits the "enter" key on the console 
keyboard again. Control then pops up to the neutral, 
()r waiting state. At this point, the user can return the 
file, unaffected, to the file drawer with the command 
GIVEUP. Or, he can change relevant variables (e.g., 
output format for a PRINTF command) and resume 
execution with the command RESUlVIE. 

When SHOEBOX itself is suspect, the command ? 
will cause the system to interrogate itself, indicate 
what its state of activity was, and return to that state. 
Sample responses to ? are WORKING, WAITING 
(for a command), and SWAPPING (between users). In 
case of system failure, the response to ? is a locked key
board. 

SHOEBOX is accommodating up to a point. At 
twenty errors, it becomes intolerant and logs off. 

SPECIAL CAPABILITIES 

Editing 

Correcting typographical errors, rewording phrases, 
and inserting and deleting. passages are typical editing 
operations on a text. With SHOEBOX, the author can 
immediately inspect the results of his decisions. 
If he remains dissatisfied, he can try again, or he can 
put the questionable material aside and come back 
later, or he can make a copy of it for subsequent com
parison with alternate phrasings. 

There are two basic ways to effect local changes in the 
stored text. One is to make u~e of the display hardware 
and type over the displayed lines of text. When the 
command SUBSTITUTE is given, the text lines on the 
scope replace the corresponding lines in the file. As a 
check, SHOEBOX redisplays the same scopeful, but 
from the now modified file. 

The second way makes use of a search-and-replace 
command called CHANGE. The command CHANGE
('a' 'b' n) replaces the string of characters a in line n of 
the desk file with the string of characters b. If there is 
more than one occurrence of a, only the first will be 
affected. Taking the previous sentence as an example 
and with the correct choice of n, CHANGE('will be' 'is' 
n) will transform the consequent phrase to read, "only 
the first is affected". 

With its ability to insert arbitrarily long strings, 
CHANGE can affect as well the text outside line n. On 

the specified line, deletions are closed up; and in
sertions are spilled over to a new line (and line numbers 
greater than n are incremented accordingly to allow 
for the interlineation). The contractions and expansions 
caused by a CHANGE command are not bubbled 
through the entire file. That would degrade the response 
time. Instead, when he has completed his editing modi
fications, the user can request that.the file be PACKed. 
This operation is analogous to the request one makes of 
a secretary to "type over" a manuscript; however, 
with an electronic file, the redoing takes only seconds. 

CHANGE is a graded command. If a second numer
ical argument is specified, as in CHANGE('a' 'b' m n), 
the first occurrence of a, if any, in line m, line m+ 1, ... 
line n is replaced by b. The command CHANGEALL 
makes the same replacement for every occurrence of a. 
IVlultiple changes within a line can be achieved by 
providing successive pairs of strings in the argument, 
as in CHANGE('a' 'b' 'e' 'd' m n). Another CHANGE
type command affects the line category code only. 

An extensive error analysis is provided which informs 
the user of an error in syntax, the non-occurrence of 
a in a line, the non-occurrence of a line number in the 
file, and, for the wise guys, the requirement that m 
cannot be greater than n nor can either of them be less 
than one or greater than the number of lines in the 
file. 

Copying 

Copies of items or of entire files can be made and 
placed at the end of any file or within any file drawer. 
For safety's sake, however, no command can make 
reference to a particular place within a file unless that 
file is on the desk (so that the affected portion can be 
visually inspected). Thus, only portions of the desk 
file can be copied and placed at specified points within 
the desk file. 

The commands which copy from the desk file are 
exemplified by the following: 

APPENDTO(arnold 34)-places a copy of line 34 of 
the desk file at the end of 
arnold (which can also be 
the desk file) 

INSERTLINE(12 34)-places a copy of line 34 of 
the desk file before line 
12 of the desk file 

In the first example above, if arnold doesn't exist in the 
file drawer, a new, empty file with that name will be 
made; and then the appending operations will be 
performed. Items as well as individual lines can be 



SHOEBOX 539 

AFTER COMPLETING THIS QUESTIONNAIRE, HIT "ENTER" . 
......................................... . IS THE FILE YOU WANT SEARCHED. TYPE SEARCH REQUEST BELOW: 

.......................................... ARE THE CODES OF THE LINES YOU WANT SEARCHED IN THE FILE . 

......................................... . IS YOUR NAME FOR THE FILE WHERE THE ANSWERS WILL BE PUT . 

............. . ARE THE NUMBER OF LINES BEFORE THE MATCH LINE THAT YOU WANT IN EACH ANSWER 

................ ARE THE NUMBER OF LINES AFTER THE MATCH LINE THAT YOU WANT IN EACH ANSWER 

.............. DO YOU ALSO WANT THE DATE OF THE RELEVANT DOCUMENT ALONG WITH EACH ANSWER? 

Figure 2-Questionnaire for SIMPLESEARCH 

copied: APPENDTO(arnold 34 52) will copy the item 
encompassed by lines 34 through 52 to the end of 
arnold. INSERTLINE(12 34 52) would be proces~ed 
in a similar fashion. Further, extensions of these 
commands allow several non-contiguous passages to be 
copied at the same time. In this manner, an extract of an 
article could be taken, and stored in a file of such 
extracts or tacked onto the article itself. The command 
INSERTFILE, with appropriate arguments, will copy 
an entire file and place it before a specified line of the 
desk file. 

To make a separate copy of a whole file, there is no 
need to take the file out of the file drawer. The com
mand COPYF(irving arnold) makes a copy of irving 
and labels it arnold. If there already is an arnold in the 
same file drawer, its contents are discarded first. 
Because of the danger of catastrophe with this com
mand, the incautious user is well advised to employ 
instead the following two-step procedure: 

EXAlVIINEFILE(irving) 

APPENDTO(arnold 1 Last) 

If there was something in arnold beforehand, the 
appending operation will preserve it. An· alternate 
safe procedure is to enter first 

EXAlVIINEFILE( arnold) 

and then, only if the response is ARNOLD NOT A 
FILE, enter 

COPYF(irving arnold) 

The command APPENDFILE(irving arnold) makes a 
copy of irving, if it exists, and appends it to the end 
of arnold, if it exists. Thus, a third alternative IS 

APPENDFILE(irving arnold) 

Searching 

While rapid access and facile manipulation materially 
aid the· collector and analyst of information, the crux 
of the problem is discovery and rediscovery of what is 

pertinent. There is always an uncomfortable feeling 
about pigeonholing material under headings or even 
tagging material with a multitude of descriptors
critical snips of information seem to get lost by this 
preca tegoriza tion. 

The situation is especially acute in public affairs, 
where personalities, events, and issues which received 
little notice in the past may suddenly move to center 
stage. When past history lies scattered among the files, 
retrieval is difficult. The ability of SHOEBOX to 
search on the actual words in the texts, as well as on 
descriptors and categories, greatly enhances the relia
bility of the search. 

We have already introduced our most primitive 
search command, FIND. Briefly, FIND('fig newton') 
will search the desk file, from the second text line 
currently displayed to the end of the file, for the 
first occurrence of the string "fig newton" which lies 
completely within a single text line. (At the request 
of some users, we have implemented a related com
mand, FINDANCHORED, which looks only along 
the left margin.) 

A higher degree of search capability is attained with 
SIlVIPLESEARCH. When this command is entered, 
the questionnaire in Figure 2 appears on the scope in 
response. * 

Note that: 

1. the file to be searched need not be on the desk 
2. the entire file is searched 
3. the search can be restricted to lines with certain 

categories 
4. the search does not cease at the first match, but 

begins again at the next item . 
5. the "answers" are not displayed but put into a 

file for subseq~ent inspection and manipulation 

* Not explicitly called out in the questionnaire are the values for 
two system variables, which indicate (1) the category assigned 
to the date line (or· any other category line to introduce each 
answer) and (2) the category of the line which begins or termi
nates every item. We assume these variables, once set by the 
user, are uniform for his entire file collection. 



540 Fall Joint Computer Conference, 1970 

TABLE I-Composition Possibilities for SIMPLESEARCH 

Concept 

Word 

Concatenation 

Disjunction 

Specific Optionality 

Complementation 

Phrasing 

Anchored Stem 

Free Stem 

Non-specific Optionality 

Example 

newton 

fig newton 

fig I date 

newton %interference rings 

newton -, interference rings 

date I (fig newton) 
date I fig newton 

'newton*' 

'*newton' 

'*newton*' 
'newton' 
'3newton' 

newton 1 rings 

newton 7 rings 

6. pre- and post-context can be specified (with 
FIND, the pre- and post-context are fixed at ° 
and 9 lines, respectively) 

We will describe the form of the search request by 
illustration rather than by formal definition. In this 
instance, a formal statement would be pedantic. The 
reader is first advised to consult Table I. 

As an example, let us suppose an analyst keeps a file 
of newswire reports on South Vietnam. Let us suppose 
further that many months later he is assigned a task 
which involves retrieving those news bulletins which 
give actual figures in mentioning American troop with
drawals. One of the search prescriptions he could try is: 

'*000' %us 'troop' 3 'withdr' I ('pull' out) 
Reports containing any of the following phrases would 
be identified and retrieved: 

· .. 30,000 US troops withdrew .... 
· .. 5,000 US troops will withdraw .. . 
· .. 46,000 troops will be pulled out .. . 
· .. 10,000-man troop withdrawal .. . 
· .. 365,000 troops could have been withdrawn ... 
· .. 44,000 troops to pull out ... 

Searches for all occurrences of 

newton, newton's, newton?, newton.", 3newton (supposing the prefixed 
numeral denoted typographical coding), 3newton-3raphson, newton
sec/m; i.e., any matching string of characters delimited by non
alphabetics 

fig newton, fig newton's, "fig" newton, etc. 

fig, date, fig's, date?, etc. 

newton interference rings, newton rings, etc. 

newton diamond rings, newton pastry rings, newton circus rings, etc., 
but not newton rings or newton interference rings 

date, fig newton, etc., but not date newton; 
date newton, fig newton, etc., i.e, disjunction takes precedence over 

concatenation (and over specific optionality and complementation, 
as well) 

same as the word newton, plus newtonian, newtonians, newtons, and 
(newtonian), newtons', etc. 

same as the word newton, plus antinewton, etc. 

both the above, plus antinewtonian, etc. 
equivalent notation 
3newton, 3newton's, etc;, but not newton, newton's, etc. 

newton rings, newton interference rings, newton diamond rings, newton 
pastry rings, etc. 

newton, etc., followed by up to 7 intervening words and stems, 
followed by rings, etc. 

It should be noted here that, under SIlV[PLESEARCH, 
unlike FIND, these phrases can be found even if they 
begin and end on different lines. 

After the search has been completed, the results and 
a copy of the questionnaire itself are placed in the 
designated answer file for examination. Consequently, 
the search can be reformulated and applied to the 
source file or the answer file. If a third file is designated 
as the repository for the second search, the two results 
can be compared. Or, the same search can be applied 
to another file without rekeyboarding anything except 
the file label. Finally, using the annotation and reorgani
zation commands, our Vietnam analyst can compose a 
report and incorporate the corroboratory search results. 

A third degree of search capability is reached with 
CSEARCH (for contingent or complex search). This 
search request provides greater selectivity over the 
choice of items to be searched within the file and allows 
greater control over the format of the answers. Espe
cially potent is the search prescription itself: it allows 
unordered search terms, contingent searches, and 
synonymic substitution. 

The command CSEARCH causes the questionnaire 
in Figure 3 to be displayed. 



SHOEBOX 541 

**NAME OF FILE-> 
**SEARCH FROM LINE-> **TO LINE-> 
**REMEMBER LINE CODES->( ) **IGNORE->( ) **TERMINATOR-> 

1 
2 
3 
5 
6 
7 
8 
9 
10 

**SEARCH REQUEST ('LINE CODES' 'SPECIFICATION'; .. , ;)-> ( 

Figure 3-Questionnaire for CSEARCH 

(The line numbers are displayed to allow modifying 
the answers to the questionnaire with the SHOEBOX 
editing commands.) Line 1 asks for the name of the 
file to be searched; line 2 allows the user to limit the 
extent of the search; line 3 provides for the setting of 
certain system variables; and lines 5 through 10 
accept the search prescription. Table II lists the 
additional composition possiblities under CSEARCH. 

Conjunction is typically used when dealing with 
key words or descriptors. For example, the search 
prescription 

(k d) wood, preservative 

would be expected to'find items relating to preservatives 
for wood, where d and k are the categories of the lines 
containing the index terms. 

$NU.lVI is a two-argument function which can be 
embedded in a search specification. To illustrate with 
a simple usage, let us assume that the entire search 
prescription is of the form: 

c $NUM('m' en') 

where c is a category code and m and n are non-negative 
integers (with or without internal punctuation; e.g., 
52,000, 69.03.14, 3.14159). Then any item whose c 
line has a number in the closed interval [m,n] will be 
found and selected (provided m and n have a 
consistent format). This numerical capability has 

many applications; the example shown in Table II for 
calendar dates is particularly appealing. ' 

One of the most attractive .. facilities within 
CSEARCH is the power of pattern substitution. Con
sider our analyst again. Suppose now he is given the 
assignment of accumulating all reports which mention 
cease-fire violations in the Middle East. He might 
begin by formulating a tentative search specification 

arabs 3 'attack' israel 

which will find sentences such as "Arabs attacked 
Israel last night". But since many nations fall under 
the rubric "arab", he will soon realize that a better 
specification is 

jordan 1 egypt 1 lebanon '1 syria 1 iraq I 

(saudi arabia) 3 'attack' israel 

This phrasing will find "Jordan has attacked Israel", 
etc. Using stems instead of words, as in 

'jordan' I 'egypt' I 'leban' 1 'syria' I 

'iraq' I (saudi 'arabia') 3 'attack' 'israel' 

he can locate "Jordanian troops attacked Israeli 
positions", "Lebanese artillery attacked Israeli forti
fications", etc. Rather than have to rekey this rep
resentation for "arabs" each time he modifies his 
search request, the analyst can define them to be mem-

TABLE II-Additional Compositional Possibilities for CSEARCH 

Concept Example 

Conjunction date, fig 
date, fig newton 

Numerical Interval $NUM('69.01' '70.03') 

Substitution $CLASS snacks 

Searches for all occurrences of 

both date, date), etc. and fig, fig/, etc. anywhere in same text portion 
both date, etc. and fig newton, etc., i.e., concatenation takes prece

dence over conjunction 

items dated between January, 1969 and March, 1970 [see text for 
further explanation] ;. 

the components dictated by the search pattern labelled "snacks" 
[see text for further explanation] 



542 Fall Joint Computer Conference, 1970 

bers of a labelled set. Then he would write the previous 
search specification as 

$CLASS arabs 3 'attack' 'israel' 

where he· has defined $CLASS arabs, after further 
thought, to be the long disjunction 

'arab' I 'guerilla' / (al fatah) / 'jordan' / 

'egypt' / 'leban' / 'syria' / 'iraq' , 

(saudi 'arabia') ... 

In this manner, he has defined the set of entities he can 
henceforth refer to as "arabs". This maneuver not only 
saves him from keyboarding this long pattern again as 
he constructs related search prescriptions, it also saves 
him. the bother of remembering or redetermining what 
political groups of people comprise Arabs in the Middle 
East. Thus he can readily specify the reverse request, 

'israel' 3 'attack' $CLASS arabs 

"Attack", of course, is not the only verb which connotes 
aggressive activity. The analyst could again reformulate 
his search specification as 

$CLASS arabs 3 $CLASS aggress 'israel' 

where he has defined $CLASS aggress to be the pattern 

'attack' / 'bomb' / 'shell' / 'strik' / 

struck / 'hit' ,·'straf' ,'raid' , 'sink' , 

sank / sunk 

These class definitions become a permanent part of the 
user's file collection. At any time, however, he can 
employ the editing commands of SHOEBOX to ex
amine the CLASSes he has defined and to effect a 
change in content or label. 

$CLASSes can be embedded in one another. For 
example, journalistic style allows such synecdochic 
expressions as "Amman claims their artillery shot 
down ... " Our analyst might very well wish to set up 
an equivalence between country and capital, VIZ.: 

$CLASS israel '- {'israel' , (tel aviv) } .-
$CLASS jordan '- { 'j ordan' / amman} .-
$CLASS egypt '- {'egypt' , cairo} .-
$CLASS lebanon : = {'lehan' , beirut} 

$CLASS syrIa '- {'syria' , damascus} .-
$CLASS iraq '- {'iraq' / baghdad} .-
$CLASS saudi '- {(saudi 'arabia') /--*} .-

* The capital of Saudi Arabia is left as an educational enterprise 
for the reader. 

and in turn: 

$CLASS arab : = {arab / guerrilla, (al fatah) , 

$CLASS jordan I $CLASS egypt' 

$CLASS lebanon / $CLASS syria, 

$CLASS iraq' $CLASS saudi} 

and perhaps even further: 

$CLASS mideast : = {$CLASS arab I $CLASS israel} 

Concomitant with the power of embedded $CLASSes 
is the danger of self-referral. CSEARCH expands all 
$CLASSes in the search prescription given it before 
actually proceeding with the search. If there is an 
infinite loop, or if the expanded search prescription is 
so huge that it threatens to take up all the allotted 
list space in the computer, the comment VICIOUS 
LOOP is displayed on the response line of the scope. 

The concept of $CLASS is also useful in dealing 
with spelling variations in transliteration. The name 
of the leader of Al Fatah has appeared in print as 
"Yasser", "Yassir", and tty asir". Often one entity 
has several names: trinitrotoluene, TNT; lysergic 
acid diethylamide, LSD, LSD-25; Songmy, Song My, 
Son IVly, l\1y Lai, Mylai, l\1ylai #4, l\1ylai Village #4, 
Pinkville. Establishing a substitution class both 
records the alternations and ends the reliance on one's 
memory. 

The indolent and the impatient can also use $CLASS 
to advantage. Why keyboard "Society for the Pre
vention of Cruelty to Animals" if a substitution class 
with "spca" can be set up? If there is no standard 
acronym, make up your own nickname; for example: 

$CLASS rocky : = {governor nelson h rockefeller 
'nelson rockefeller , 
the new york governor} 

When first conceived, $CLASS was seen as a means 
to facilitate synonym sets and thesaurus hierarchies 
(and hence the name, $CLASS). As programmed, 
however, it is an instrument for wholesale pattern 
substitution. Any pattern, even a search prescription 
itself, can be defined as a $CLASS. Thus, a frequently 
required search prescription can be incorporated within 
a $CLASS and called out for subsequent use. 

There is one search mode in CSEARCH left to dis
cuss-contingency. If a sequence of search prescrip
tions is given, separated by semicolons, the subsequent 
search prescription only applies to the items satisfied 
by the previous prescription. While effectively only a 
conjunction of searches, this mode of search will save 
a considerable amount of search time in large files. 



By way of illustration, the following search prescription 

d $NU1VI('69.06.20' '69.08'); 

a south vietnam; 

(h b) '*000' %$CLASS us 'troop' 3 

'withdr' I ('pull' out); 

will, first, select from the file all items whose d line 
contains a date between June 20, 1969 and the end of 
August, 1969; second,. select from this subset all items 
whose a line contains the descriptor "south vietnam"; 
and third, select from this new subset all items whose 
h or b lines contain a text passage satisfying the search 
specification shown. 

At the completion of the search, a line number 
reference to each "hit" and the total number of "hits" 
are displayed. Based on this information, the user may 
decide to broaden, narrow, or reformulate his query. 
Or he may decide to place the items found by 
CSEARCH in an answer file. To do this, he com
pletes another questionnaire, which allows him to label 
the answer file, to store with the answers the original 
search questionnaire with the $CLASS terms in the 
search prescriptions expanded out, and to control the 
formatting of the answer file and certain associated 
data. 

Reorganizing 

Armed with the results of his searching, the user can 
make new files, discard unwanted files, merge files to
gether, rearrange items within a file, and move files from 
one file drawer to another. For the author, reorganizing 
commands can be used effectively to cut-and-paste 
portions of text in writing reports. Indeed, in orga
nizational structures where reports are passed from the 
lowest stratum to the highest level through a series of 
middle management filters, SHOEBOX offers a 
convenient way to extract data from an incoming 
report, add salient observations of your own, and pass 
the "new" report on to the next higher level. 

The items within the desk file can be placed in ascend
ing or descending order with the command ORDER. 
Among the arguments to this command is a sequence 
of {category code, sort key} pairs. If, for any item, the 
first pair cannot apply because the code and key do not 
co-occur in that item, the second pair is tried, and so on. 
This feature is useful, for example, if we wished to 
arrange a file of documents by author, or, if none, by 
editor. By employing ORDER several times, one can 
organize the items in a file say, first with respect to 
date; and within date, by author; and within author, by 
title. 

SHOEBOX 543 

Items can be discarded from the desk file with the 
command REMOVELINE(m n), where m and n are 
the line numbers delimiting the. unwanted passage. 
Alternatively, they can be shifted to the end of another 
file, say irving, with REMOVETO(irving m n). Or, they 
can be shifted to another position within the desk file, 
using l\10VELINE(k m n), where k denotes the line 
number before which the passages are to be inserted. 
Of course, if m = 1 and n = Last, the entire file is 
affected. 

Comments keyboarded on the display may be in
serted into the desk file with INSERTSCOPE(k); 
or they may actually replace specified lines in 
the desk file, using SUBSTITUTESCOPE(m n). 
Scope comments can also be appended to the end of 
any file, say arnold, with the command APPEND
SCOPETO( arnold). 

I nput/ Output 

A hard copy of irving can be printed off-line with the 
command PRINTF(irving); similarly, PUNCHF
(irving) punches irving onto cards. Other commands 
allow the reading and writing of files from and to 
seven- and nine-track tape or any OS sequential data 
set. For example, we have successfully passed files 
from SHOEBOX to IBlVI's Conversational Program
ming System (CPS) and vice versa; we also have 
passed files to a KWIC program. 

Housekeeping 

All files are automatically date-stamped by SHOE
BOX with the day/month/year that the file was last 
changed in any way. When a file is brought out for 
display, this information, together with the name and 
size of the file, is displayed on the response line. 

If the· user wishes to see all the file labels in his 
collection, he enters the command LISTF ( ). The 
argument within the parentheses determines the. file 
drawer; if there is no argument, all file labels for both 
public and private file drawers are displayed. 

For both training and system debugging purposes, 
a record is made of all commands and other material 
entered into the system at the display keyboard and 
all displayed responses by the system. The hour / 
minute/ second when each command was entered is 
also saved. This record-keeping function can be 
partially or totally deactivated at log-on time. Other
wise, the record accompanies the off-:-line printout for 
each user. 



544 Fall Joint Computer Conference, 1970 

HARDWARE AND SOFTWARE DETAILS 

SHOEBOX is implemented on the IBM 360 under 
OS/360 (PCP, MFT, or MVT) , in a 225K high- or 
low-speed partition, and with a private IBM 2316 disk 
pack. If SIMPLESEARCH and CSEARCH are not 
needed, it will operate in 140K. The system as pres
ently implemented will support up to eight IBM 
2260 Model 1 (12XSO) display stations in a local 
configuration supported by the Graphics Access 
Method (GAM). Budget considerations, however, 
have limited our work experience to four stations. These 
terminals can be located up to 2000 feet from the 
display controller. The transmission speed is quite 
fast: 2500 characters per second, or on the order of 
half a second to write the entire scope. 

SHOEBOX is written in TREET, a list processing 
language6 derived from, LISP; and the system is run 
under the TREET /360 operating system. The TREET 
filing system operates, using OS direct access techniques, 
by dividing a single OS sequential file into small in
dividual segments called pages, which are dynamically 
allocated and released. A SHOEBOX file is an ordered 
set of these pages. (The line numbers of the file are not 
stored with the file, but they are generated as required.) 
In this manner, modification of the file does not entail 
rewriting the entire file, but only the pages affected 
and the file directory. The directory is hash-coded, so 
that file access time is nearly independent of the 
number of files. 

The approximate capacity of the system is 100 to 
300 file labels per file drawer (depending on label length) 
with direct access to 2000 double-spaced typewritten 
pages of text per file drawer. The number of file drawers 
is dependent on the amount of space available on direct 
access storage devices. 

Initial response time to a request is on the order of a 
few seconds. Time to process completely the request is a 
function of whether other jobs are utilizing the central 
processor or the input/output equipment, whether we 
are given a partition in high- or low-speed core, and the 
complexity of the request. 

Because of the experimental nature of the project, 
plus the variety of accounting algorithms that we 
have been experimental guinea pigs to, we have been 
unable to compile meaningful operating cost figures for 
SHOEBOX. We hope to be able to do so in the near 
future. 

CURRENT DEVELOP1VIENT EFFORTS 

In the SHOEBOX system described here, searching 
within a line is carried out sequentially, character by 

character. An experimental system has been pro
grammed to test the potential savings of an index 
search. That is, for each file, an alphabetized list of its 
words was compiled, together with a set of pointers 
to their locations in the text. There are two advantages 
to searching the index instead of the text itself: (1) the 
time of search is more-or-Iess independent of the size of 
file, and (2) the search, being sentence-oriented, takes 
cognizance of natural text boundaries; e.g., a request 
for the phrase "fig newton" won't deliver the item 
containing the passage, "The Birge-Vieta method isn't 
worth a fig. Newton-Raphson isn't worth much either~" 
There are compensating difficulties: (1) what algorithm 
determines sentence boundaries (recall that a period 
has more than the terminal function)?, (2) how should 
right-anchored stems occurring in the search pre
scription be handled?, and (3) must the index be 
recompiled after every modification to the file? None
theless, our findings with this experimental program 
showed savings in search time of an order of magnitude. 
With this encouragement, we are in the midst of in
corporating a similar index search in SHOEBOX. 

For use in a community of research workers, we 
would like to implement a "mailbox" feature. At 
log-on, the individual's name would cause any messages 
left for him by others to appear on the display. A less 
intrusive alternative would be for a message like 
SOMETHING IN YOUR MAILBOX to appear. 

Other projects in the early design stages are (1) 
graded error messages, (2) structured file drawers, and 
(3) statistical capabilities. 

Under consideration is a facility for designating ORe 
member of a synonym set as having "print" status. 
This option would be especially welcome in composing 
reports: the author could keyboard his personal acro
nym or nickname for a wordy phrase or hard-to-spell 
proper noun, but the display and the file would contain 
the "official" forms. 

It is our intention to incorporate into SHOEBOX 
increasingly sophisticated linguistic techniques of the 
kind represented in SAFARI,7 a l\1ITRE text pro
cessing system in which the information content of 
English sentences is stored and retrieved directly. 

ACKNOWLEDGMENT 

In the age of big science, progress is a group effort. 
Henry Bayard, Carter Browne, Stanley Cohen, J e'anne 
Fleming, Louis Gross, Ted Haines, Lewis Norton, and 
Donald Walker have all contributed to the design, 
implementation, and testing of the system. We also are 
indebted to Thyllis Williams of Inforonics, Inc., for 
guidance in both design and testing. 



REFERENCES 

1 D E WALKER 
Computational linguistic techniques in an on-line system for 
textual analysis 
MTP-105 The MITRE Corporation July 1969 

2 D C ENGELBART W K ENGLISH 
A research center for augmenting human intellect 
AFIPS Conference Proceedings Fall Joint Computer 
Conference Vol 33 Part 1 pp 395-410 1968 

3 S CARMODY W GROSS T H NELSON 
D RICE A VAN DAM 
A hypertext editing system for the /360 
In M Faiman and J Nievergelt (ed) Pertinent Concepts in 
Computer Graphics 
University of Illinois Press pp 291-330 1969 

SHOEBOX 545 

4 W REITMAN R B ROBERTS R W SAUVAIN 
D D WHEELER W LINN 
AUTONOTE: A personal information storage and retrieval 
system 
Proceedings 24th National Conference of the ACM 
pp 67-75 1969 

5 R B MILLER 
Response time in man-computer conversational transactions 
AFIPS Conference Proceedings Fall Joint Computer 
Conference Vol 33 Part 1 pp 267-277 1968 

6 E CHAINES 
TREET, a list processing language and system 
MTP-104 The MITRE Corporation March 1969 

7 L M NORTON 
The SAFARI text processing system: IBM 360 programs 
MTP-103 The MITRE Corporation September 1968 





HELP-A question answering system* 

by ROGER ROBERTS 

University of California 
Berkeley, California 

INTRODUCTION 

HELP-A Question Answering System-enables a 
user, sitting at a console of a time-shared computer, to 
obtain information based on questions typed in. This 
information might concern the operating system itself, 
the format of commands to the user interface executive 
program, the use of a selected subsystem, or an area 
totally separate from the computer. The content of the 
data base in HELP is completely arbitrary, and de
termined by the creator of each individual HELP 
system. Questions are presented to HELP in standard 
English and elicit one or more separate responses, 
depending upon the nature of the question. If HELP 
cannot generate an appropriate response, a standard 
"I don't know" message is output. A second system, 
called QAS, was developed to enable a user to conve
niently generate a HELP program. This paper will discuss 
the structure of both programs. All of the work dis
cussed in this paper was performed on a modified 
SDS 930 computer, developed at Project Genie at the 
University of California, Berkeley. 

BASIC PHILOSOPHY 

One of the maj or considerations in the design of 
HELP was to produce a system with a fast response 
time for the majority of the questions it encountered. 
In other words, a system was desired which would 
require no more than one second between the time it 
was called to the time it was ready to accept a question, 
and, for 75 percent of all questions, would require no 
more than one second between the time a question was 
terminated and the time the printing of the answer 
began. It was felt that this constraint was necessary 
since HELP was to be an aid to users sitting at ter-

* This work was partially supported by Contract No. SD-185, 
Office of the Secretary of Defense, Advanced Research Projects 
Agency, Washington, D.C. 20325. 

547 

minals, in the process of using the system. Users would 
ask questions of HELP, in their course of work at a 
terminal, in the same maner as they would consult a 
reference manual. Therefore, if HELP was to be useful, 
it had to be easier and quicker to use than a manual. 

A further design consideration was that many differ
ent HELP systems would be constructed, each with its 
own data base and each by a different person. This 
implied that a "shell" would be designed, which 
contained all of the lOgic necessary for HELP, but with
out a data base. A working HELP system would then 
consist of this "shell" and an appropriate data base. 
Since many different people would be constructing 
HELP systems, the procedures for building a data base 
should be uncomplicated. 

The above considerations led to the following con
clusions. The analysis of the questions was to be kept 
as simple as possible. Complex syntactic analysis was 
ruled out since activation and response times had 
to be low and core space had to be limited. In addition, 
the relationship between the questions and the responses 
had to be straightforward, so as to facilitate the 
construc,tion of a data base. 

That a system could be designed with these con
straints was supported by work done prior to this paper. 
In this preliminary version of HELP,! it was observed 
that the meaning of most questions, of the type we 
would encounter, is independent of word order. This 
observation allowed for a design which only reacted to 
particular words in a question, called KEY WORDS, 
and ignored both the word order and the remaining 
words. Using this mode of analysis produced a question 
answering system which both conformed to the re
strictions stated above and correctly answered the 
questions put to it. 

STRUCTURE 

The primitive objects used by HELP are called 
KEY WORDS. These are words which have been 



548 Fall Joint Computer Conference, 1970 

defined previously, and only a member of this set of 
KEY WORDS will be considered in the formation of 
the answer. Certain sets of these KEY WORDS are 
singled out as defined KEY WORD LISTS, and these 
KEY WORD LISTS are used by HELP in determining 
what answer to give. The basic idea is to extract the 
KEY WORDS from the question, and from this set to 
determine what KEY WORD LISTS are present. 
For example, assume that the words "file", "open", and 
"input" have been defined as KEY WORDS and, in 
addition, no other words have this property. Then the 
question "What is a file?" would present to HELP the 
set of KEY WORDS "file", the question "How can I 
open a file?" the set "open, file", and the question 
"What is used to open a file for input?" the set "open, 
file, input". These sets of KEY WORDS are the only 
pieces of information which are extracted from the 
questions and, in fact, are unordered sets. "Which 
instruction is used to open an input file?" would 
generate the same set as above, namely "open, file, 
input". Notice also that all words not KEY WORDS 
are ignored, so the question "Input file open?" would 
have been just as meaningful to HELP. 

Now that we have these KEY WORDS, what do we 
do with them? As mentioned above, some sets· of KEY 
WORDS are defined to be KEY WORD LISTS, and 
these lists are used to determine what information 
should be given in response to a question. When creat
ing a data base for HELP (to be described below), a 
KEY WORD LIST is defined by specifying the 
KEY WORDS which comprise the list and the response 
to be generated when this list is recognized in a question. 
This link between a KEY WORD LIST and a response 
is the major mechanism which HELP uses to answer a 
question. To return to the above example, assume we 
have now defined the KEY WORD LIST "file" to 
have the response "A file is a collection of data .... " 
Also, assume we have linked the KEY WORD LIST 
"open file" to the response "The instructions to be used 
to open a file ... " and the KEY WORD LIST "open 
file input" to the response "To open a file for input 
use .... " Now, with these definitions, we would want 
the question "What is a file?" to elicit the first answer, 
the question "How do I open a file?" to elicit the second 
answer, the question "How do I open a file for input?" 
to elicit the third. For HELP to do this, another 
mechanism is required, one which can decide which 
KEY WORD LIST to extract from the set of KEY 
WORDS in the question. Without this additional 
mechanism, we would encounter a problem. For even 
though the word "file" is present in all three of the 
above questions and this word is a KEY WORD 
LIST itself, we obviously do not want the description 
of a file to be generated in response to the second two 

questions. These two questions are specific enough to 
preclude that answer. 

HELP decides which KEY WORD LIST to use by 
the following mechanism. The set of KEY WORDS in 
the question is searched to find the longest KEY 
WORD LIST, and the message associated with this 
KEY WORD LIST is used as the response. This 
operation allows HELP to give the answers described 
above. Assuming that the KEY WORD LIST of zero 
length is always defined, and is linked to an "I don't 
know" message, the only time we cannot find a longest 
KEY WORD LIST in the set of KEY WORDS is 
when we have two or more KEY WORD LISTS of 
maximal length. In this case, we generate the responses 
associated with all of the lists with this property. To 
continue our example, assume the KEY WORD LIST 
"close file" is also defined, and linked to the response 
"To close a file use .... " Now let us see what happens 
with the question "How does one open and close a 
file?" The set of KEY WORDS taken from the question 
is "open, close, file" . We first see if there is a defined 
KEY WORD LIST of length 3 (the order of the original 
set) . In this case, there is not. We will then find a 
KEY WORD LIST of length 2, say, "open file", and 
its response will be generated. We then find the other 
KEY WORD LIST of length 2: "close file", and its 
response is also generated. Now, since no other KEY 
WORD LISTS of length 2 exist, and we have found 
at least one of this length, we stop searching and con
sider the answering phase complete. Notice that if the 
question was "How do I open or close?" HELP would 
have output "I don't know", since out of the set "open, 
close" the only defined KEY WORD LIST is the 
default one of length zero. 

Even though the above mechanisms are uncom
plicated and make no use of word order, they allow 
HELP to answer questions with great accuracy, and 
little redundancy. The assumption that a longer list 
of KEY WORDS in a question (i.e., more modifiers), 
implies that a more specific answer is required seems to 
be quite adequate in determining which answer is 
desired. For an example of how a user of HELP can go 
from the general question to the more specific, see 
Figure 1. 

Also shown in this figure is a facility in HELP which 
will be described in greater detail below. It is the idea of 
a "text subroutine", and it both aids the writer of a data 
base and reduces the size of the HELP program. With 
this facility, answers to less specific questions can be 
built up out of answers to more specific ones. This is 
accomplished by having a response "call" another 
body of text, in much the same way as standard com
puter languages do. This means that body of text can ex
ist just once, but can be used by many different answers. 



The details of the mechanisms by which HELP 
attempts to answer a question are described below. 

GENERATING ANSWERS 

We first read in the question and partition it into 
words. A word, in this case, is defined to be a sequence of 
non-blank characters. We then look up each word in a 
hash table. If the word is found in this table (i.e., it it is a 
KEY WORD), we place its index in the table into 
a temporary buffer. If the word is not found, we perform 
some simple spelling transformations (e.g., saves-+ 
save, going-+go, file.-+file, etc.), and check the hash 
table again. If the word is still not found, it is completely 
disregarded. 

After the entire question has been reduced, the 
resulting set of numbers is sorted by value. If any of 
these numbers are duplicated in the list, all of the 
repetitions are removed, so that we get a strictly 
increasing ordered set of numbers. We now present 
this set to a data structure called the ANSWER 

Detin1t1ona 

KEY WORD LIST 

FILl 

OPEN INPUT FILl 

O~N otrrPUT FILl 

OPEN FILl 

CUlSE FILl 

BRS 15 

BRS 16 

DUAL FILl NtImER 

Q,uestion Phase 

?WHAT IS A FILl? 

RESPONSE 

Ml: A FILl IS A COLlECTION OF DATA. 

142: USE BRS 15 TO OPEN A FILl FOR INPUT. 

M3: USE BRS 16 TO OPEN A FILl FOR OtrrPl1l'. 

~: [M2] [M3] (WHERE [M) MEANS A "CALL" ON 

MESSAGE M). 

~ : USE BRS 17 TO CLOSE A FILl. 

M6: BRS 15 OPEN FILl FOR INPUT. (~) 

M7: BRS 16 OPEN FILl FOR OtrrPllr. (M8) 

M8: A=CONTROL WORD, X=DUAL FILE NUMBER. 

M9: A DUAL FILl NtMBER HAS THE COW.AND INPUT 

FILE IN THE rowER 12 BITS AND THE COMMAND 

OtrrPtrr FILE IN THE TOP 12 BITS. 

A FIlE IS A COLLECTION OF DATA. 

?HOW CAN I OreN A FILE? 

USE BRS 15 TO OPEN A FILE FOR INPUT. USE BRS 16 TO OPEN A FILE FOR 

OUTPtrr. 

?BRS 1,5? 

BRS 15 OPEN FILE FOR INPtrr. A=CONTROL WORD, X=DUAL FILE Nm4BER. 

?TELL ME ABOtrr A DUAL FILE NUMBER? 

A DUAL FILE NlMBER HAS THE COMolAND INPtrr FILE IN THE LOWER 12 BITS AND 

THE COMMAND otrrPtrr FILE IN THE TOP 12 BITS. 

Figure I-Definitions and output 

ROOT 
NODE 

HELP 549 

==> : POINTER TO RESPONSE 

X: "END" FLAG SET 

VALUE 

[J2Q 
L-UNK R-UNK 

n I < n2 < n3 < n4 
nl < n5 < nS < na 
n3 < n7 

DEFINED KEY WORD LlSTS={nl,n5},{nl ,ns}, {nl ,ns,na}, 

{n2} ,{n3,n7},{n41 

Figure 2-Answer lists 

LISTS, which contains all of the defined KEY WORD 
LISTS and pointers to their associated responses. 

The ANSWER LISTS structure is a binary tree, with 
each node consisting of three fields; a LEFT LINK, a 
RIGHT LINK, and a VALUE field. The VALUE 
field can contain either an index into the KEY WORD 
hash table, or a flag indicating that this node is an 
"end of list" node. The RIGHT LINK of a node is 
either null, or points to another node whose value 
field is greater than itself. The LEFT LINK of a node 
points to either a node whose value field is greater than 
itself, a node whose VALUE field has the "end" flag 
set, or a response (in the text storage table) (see Figure 
2). 

A KEY WORD LIST and the pointer to its as
sociated response exists in this structure as follows. 
If there are n members of the KEY WORD LIST, 
there are n + 1 nodes in the tree which describe it; one 
for each of the KEY WORDS, and one for the "end of 
list" node. Each of these nodes exists on a different 
level of the tree, where level has the following recursive 
definition. Level 1 is defined to be the set of those 
nodes which can be reached from the root node by 
following RIGHT links. For m> 0, level m+ 1 is the 



550 Fall Joint Computer Conference, 1970 

·CHOICE OF ___ I 1-----1 

MAPPING 
REGISTER 

MAPPING 
REGISTERS 

ADDRESS IN_ 
SUB-BLOCK 

INSTRUCTION 

Figure 3-Dictionary addressing 

DICTIONARY 

set of nodes which (a) are pointed to by LEFT links 
of level m nodes and, (b) which can be reached by fol
lowing RIGHT links from the nodes in (a). In other 
,vords, the first node in every KEY WORD LIST is in 
level 1, the second node is in level 2, etc. Now, for the 
KEY WORD LIST of n members, the first member is 
described by some node in level 1. The LEFT link of 
this node points to a node in level 2, and the second 
member of the KEY WORD LIST is in this set of 
level 2 nodes (i.e., start from this node and follow 
RIGHT links until the desired node is found). The 
LEFT link of this node just found will point to a node 
in level 3, etc. After descending n levels in this manner, 
the last node of the KEY WORD LIST will be en
countered. The LEFT link of this node will point to a 
node with the "end" flag set, and the LEFT link of this 
node will point to the response associated with the KEY 
WORD LIST. 

Since the nodes throughout the tree are ordered by 
value, the algorithm for deciding if a list of KEY 
WORDS is a defined KEY WORD LIST is quite 
simple, and requires very little time to compute. A 
failure exit is caused if and only if either a null pointer 
is encountered when traversing RIGHT links, or an 
"end" node is not encountered when the entry list is 
exhausted. 

If the KEY WORD LIST constructed from the 
question is, in fact, a pre-defined list, we will find it in 
the above structure and will reach an "end of list" node. 
This node contains an identification of the appropriate 
response to be generated. In this case, the question has 
been answered successfully, so we go back to listen for 
another question. However, let us assume that the 

KEY WORD LIST we generated from the question 
does not exist in the ANSWER LISTS structure. We 
then search for pre-defined lists among the subsets of the 
original list, beginning with the maximal proper ones. 
If at any point during this search we find a pre-defined 
list, we ouptut the response associated with it and with 
all such lists of the same order, and terminate the 
answering phase as above. In the event that no subset 
of the given list exists in the ANSWER LISTS, a 
standard "I don't know" response is generated, and 
we return again to listen for the next question. 

TEXT STORAGE 

Since the size of the HELP program was a con
sideration, we elected not to store the text of the 
responses literally. Instead, we utilize a dictionary and 
have the response which is stored in HELP be a se
quence of calls on that dictionary. Our dictionary can 
contain a maximun of 2048 (text) words, while the 
address field of the dictionary reference instruction 
only allows for specifying one of 256 words. Therefore 
to allow any word in the dictionary to be referenced, we 
separate the instruction operand address into two 
fields. One of these fields specifies one of four "mapping 
registers," while the other field designates one of 64 
words in a dictionary sub-block (see Figure 3). The 
four mapping registers are given initial values at 
the start of the text output phase, and instructions 
exist to change their contents when necessary. Ex
perience with several HELP programs has indicated 
that the map change instructions account for only 3 
percent of the total number of instructions in the text, 
so this device significantly reduces the size of the trans
formed text. 

In addition, we introduced the subroutine facility 
to allow a body of text to be associated with two or 
more responses, with virtually no increase in storage 
space. Consequently, the internal structure of the text 
which in output in response to a question is not a string 
of characters, but a sequence of instructions in a simple 
language (see Figure 4). As can be seen from this 
figure, these instructions can be divided into several 
classes (i.e., use word n from the dictionary, output a 
single character, end the message, call another body of 
text as a subroutine, etc.). We have found that trans
forming the text in this manner also considerably re
duces the space needed to store the responses. The 
SDS 930, for which this program was written, has a 
user address space of 16K 24 bit words. The entire 
HELP program resides in this space and can contain 
the equivalent of from 30 to 40 printed pages of text, 
enough to entirely describe the user interface of our time 
sharing system. 



ADDITIONAL STRUCTURE 

Since natural languages contain synonyms, a method 
of defining equivalences between words was built into 
HELP. This facility allows us to equate not only one 
word with another, but also sets of words with each 
other. When we say equate, we mean that HELP will 
respond with the same answer no matter which of the 
words of a synonym equivalence class is used. For ex
ample, we might cause "run" and "execute" to be 
synonyms, so that the two questions "how do I run a 
program?" and "how do I execute my program?" 
will elicit the same response. As another example, 
suppose we want the key word "help" to cause an 
explanation message to be generated. In addition, we 
want anyone of the words from the set: "exit, finished, 
goodbye, stop" to cause HELP to return to the TSS 
executive. As above, the KEY WORD LIST con
sisting of "help" would point to the desired message, 
and the words "finished", "goodbye", and "stop" 
would be equated to "exit". "exit" would, in turn, 
indicate to HELP to stop its execution (see below). 

TAG 

OZZ 

100 

101 

110 

III 

xxx xxx 

AXX XXX 

AXX XXX 

AXX XXX 

PQR XXX 

MEANING 

Dictionary entry preceeded by a blank.. ZZ = 

map to be used. Map contains high order 5 

bits of dictionary address, XXXXXX are low 

order 6 bits. 

Alpha. character or multiple blanks. 

A=l ==> preceed by blank.. 

X>5 : X + 33b=character . 

x<6: X=# of blanks. 

ASCII character or control. 

A=l ==> preceed by blank.. 

0<=X<=15 : X=character. 

16<=X<=22: X +lO=character. 

23<=X<=27: X+36=character. 

x=28: Text subroutine return. 

X=29: End partial message. 

X=30: suppress blank before next entry. 

X=31: CR, LF. 

Digit or common 2&3 letter words. 

A=l ==> preceed by blank. 

O<=X<=1,5 : MOPrBL+X=WORD address. 

16<=X<=25 : X=digit. 

26<=X<=31: MOPrBL+X-10=WORD address 

Control 

X=l: Text transfer. New address=(next 

entry (9 bits».FQR 

X=2: Text subroutine call 

x=4: Change map QR to field of next entry 

x=6: Subroutine call on undefined text 

Figure 4-Format of 9-bit instructions for text storage 

HELP 551 

A problem has now been created. If a user asks the very 
natural question "How do I stop HELP?" he will re
ceive the answer about how to use HELP in addition to 
terminating the program. Presumably this is not what 
he wanted. The solution to this problem is to define 
the KEY WORD LIST "exit help" to be a pseudo
synonym of the KEY WORD LIST "exit." Now, when 
the same question is asked, "stop" ,vill be reduced to 
"exit," "exit help" will be reduced to "exit," "exit" 
,vill terminate HELP, and no message ".ill be generated. 
In the sme way, many multi-word KEY WORD 
LISTS can be equated to one another, with the resulting 
desired reduction. 

The synonym facility is implemented by using the 
same ANSWER LISTS structure described above. 
In the case of a synonym, the terminal node of a 
KEY WORD LIST path in the tree indicates that the 
list in question is equated to a certain node in the tree, 
and does not point to a message. 

There exists another piece of machinery in HELP 
which has been quite useful. All of the responses which 
can be pointed to by KEY WORD LISTS do not have 
text associated with them. Some number of them (10 
in particular) indicate to HELP to perform some 
"special action." One special action is to terminate the 
program. So, as above, saying "goodbye" to HELP 
will cause the user to exit from HELP. Another special 
action is to commence execution of another HELP 
program, and have the ensuing questions directed to it, 
rather than to the original program. This facility is 
helpful for two reasons. First, the total amount of in
formation about the entire system is too large for one 
HELP data base. Even if the capacity of the data 
base were expanded, problems of ambiguity would 
arise owing to the context dependency of the questions. 
Second, since different areas of the system are main
tained by different people, it seemed advisable to have 
the HELP programs also maintained separately, so 
that one area could be modified without global re
percussions. With this mechanism, any HELP program 
can call any other HELP program. -A user therefore has 
immediate access to all information about our system, 
with very few contextual problems arising. 

As mentioned above, a question can elicit more than 
one response if it contains more than one KEY WORD 
LIST of the same length. If a user asks a question of 
this type, pressing a break key (rub out , in our case) 
during the output of any of the several messages will 
stop just that message. Output will then continue with 
the next message in the sequence. This feature has 
proved to be quite convenient, especially in the case of 
long, multi-part answers where the user only wants to 
see one part of each. 



552 Fall Joint Computer Conference, 1970 

CONSOLE 

TEXT 
FILE 

QAS 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Produces 

CONSOLE 

UNANSWERED 
QUESTIONS FILE 

Figure 5-QAS and HELP 

C01\1PACTING DATA 

As we have discussed earlier, an important criterion 
in the design of HELP was to keep its size small. Some 
of the methods used have already been presented 
(encoding the text into a sequence of interpreted 
instructions and mapping the dictionary references). 
There are also two more which will now be shown. The 
convention we made concerning the dictionary was 
that it would contain words of only two or more 
alphabetic characters. Now, in the SDS 940, all of the 
alphabetics have an internal representation of 32 or 
greater. Therefore, by subtracting 32 from the last 
letter of each word, we compacted the words as densely 
as possible and were still able to know the locations of 
the word boundaries. However, this scheme by itself 
would be quite inefficient, since half of the dictionary, 
on the average, would have to be counted through to 
find a word. Accordingly, we have a DICTIONARY 
ADDRESS TABLE of 64 entries, each of which points 
to the start of a 32 (text) word block. To locate a word 
in the dictionary, the high order 6 bits of the dictionary 
address are used to select one of the entries in the 
DICTIONARY ADDRESS TABLE. Starting from 
this location in the dictionary, the nth word we encoun
ter is the word we want, where n is the lower order 5 
bits of the dictionary address. In this manner, the 
dictionary is as compact as possible, and the time to 
find a word is not astronomical. 

The second method of reducing storage in HELP 

concerns the KEY WORD hash table. The algorithm 
which we use to construct a hash code from a word in 
the question guarantees that all words of less than 6 
letters will transform uniquely (we transform the 
word into base 26 representation). Also, since the hash 
code is 24 bits long, while the hash table has room for 
only 2 i 10 entries, the probability that two arbitrary 
words will have the same hash code is quite small. We 
therefore do not check to make sure that a word whose 
hash code we find in the table is, in fact, the word we 
want. We make the assumption that if we find a word's 
hash code, we have found the word. This obviously 
reduces storage, since we do not have to retain the words 
themselves. 

This last mechanism might seem strange, but we 
felt that since this was only a question answering 
facility and not, say, an assembler, we could exist with 
a small amount of inaccuracy. Our experience has 
shown that errors due to recognizing the wrong word 
almost never occur, and that when they do, only cause 
extra answers to be generated (due to recognizing an 
undefined word as a KEY WORD). 

CREATING A HELP PROGRAIVI 

We now describe the machinery by which a user may 
create a question answering (HELP) program. Each 
such program contains the code for execution and the 
data base, unique to it, which indicates KEY WORDS, 
text to be output, and the relationships between KEY 
WORD LISTS and that text. The means of defining 
these objects (i.e., creating a data base) is another 
program, denoted QAS, for Question Answering 
System. In QAS, a user can define KEY WORDS and 
KEY WORD LISTS, can define responses to be typed 
out, can associate these responses with KEY WORD 
LISTS, and can create his particular HELP program. 
He can also discover what objects have already been 
defined, what synonym relationships exist, the size 
of the various internal tables, etc. In other words, QAS 
is designed to allow a person to interactively construct a 
HELP data base, defining and redefining objects as he 
sees fit (see Figure 5). A brief description of some of the 
operations which can be performed in QAS is given 
below. 

1. Define a KEY WORD LIST and the named 
response which is associated with it. 

2. Define a named body of text. 
3. Define a KEY WORD LIST equivalence class. 
4. Define a KEY WORD LIST which will take one 

of the "special actions" described above. 
5. Edit a named response. 



6. Ask for the HELP program associated with 
QAS, to ask questions about QAS. 

7. Investigate the size of various tables. 
8. Redefine a KEY WORD LIST. 
9. Given a word, determine which KEY WORD 

LISTS it is a member of. 
10. Given a word, determine what synonym re

lationships exist between it and any other words. 
11. Given a list of words, determine which of its 

subsets are KEY WORD LISTS. 
12. Given the name of a message, determine which 

KEY WORD LISTS point to it. 
13. Take the input from a file, instead of from the 

console. 
14. Write the dictionary on a file. 
15. Create the HELP program. 

As indicated above, each body of text given to QAS 
must have a name attached. The pupose of this name is 
to allow for the subroutine facility described previously. 
The inclusion in a body of text of the name of another 
body of text will cause the second body of text to be 
inserted during message output. This second body of 
text can, in turn, "call" another, etc. An example of the 
input given to QAS can be seen in Figure 6. 

From Figure 6 we see that the structure of the input 
presented to QAS is in the form of "commands", 
followed by the arguments for the command. For 
example, the command, ANSWERS, haS' as its argu
ments a KEY WORD LIST, a text name, and a body 
of text. This command will, after receiving the argu
ments, define the KEY WORD LIST, compile the 
body of text into its internal form, associate the name 
given with the body of text, and cause the newly-defined 
KEY WORD LIST to point to this text. Another 
command, KILL KW LIST, will erase the pointer 
from the given list to a response or a synonym. This 
allows us to redefine a list if the original definition was 
faulty. 

Figure 6 also shows the power· of the subroutine 
facility. We can define the answers to specific questions 
by giving the text to be output. We can then build up 
the responses to the more general questions by utilizing 
calls on the more specific text. 

QAS has proved to be a very powerful tool for the 
creation of a HELP program. Using it, a person can 
construct a preliminary HELP for, say, our test editor 
in a few hours. Then, after other users have tried it and 
asked questions which the writer did not anticipate, 
QAS can be used again to modify the data base. To 
facilitate this procedure, the writer can tell QAS, during 
the creation of HELP, to have HELP write on a file 
all the questions it cannot answer. The wTiter can then 

SYNONYMS. 

INPUT 

READ 

NUMBER 

NO. 

NUMBER 

NO 

our PUT 

WRITE 

ANSWERS. 

FILE 

[FILE ] 

HELP 553 

A FILE IS A COLLECTION OF DATA. 

OPEN nlPUT FILE 

[OIF] 

BRS 15 IS USED TO OPEN A FIlE FOR mpl1r. 

OPEN OurPUT FILE 

rOOF] 

BRS 16 IS USED TO OPEN A FILE FOR ourPUT. 

OPEN FILE 

[OF] 

[OIF] rOOF] 

INPtJr NUMBER 

[ INNUM] 

BRS 36 IS SUED TO INPUT A NUMBER. 

Figure 6-Format of input to QAS 



554 Fall Joint Computer Conference, 1970 

4HELP. 
TERMINATE QUESTIONS wiTH A '1'. THIS VERSION OF HELP WILL ANSWER 

QUESTIONS ABOtJr MATERIAL IN R-2!. TO LEARN MORE ABOUT THE USE OF 

HELP, TYPE "HELP?". (11/'Zl/68) 

?HOW CAN I READ THE LENGTH OF A FIlE? 

USE BRS 143 WITH ATTRIBtJrE NtMBER 2 TO READ THE IENGTH OF A FIlE. 

?TELL ME ABOtJr BRS 143? 

BRS 143: READ STATUS. THE CALLING SEQUENCE IS: 

A: TABlE ADDRESS OR DATA (DEPENDS ON a,S). IF A TABlE ADDRESS, A is 

INCREMENTED TO POINT TO ONE PAST THE LAST WORD TRANSFERRED. 

X: THINGY NUMBER 

B: DECODES AS FOLLOWS 

BIT ~: ~ IF A HAS DATA, 1 IF A POINTS TO A TABLE 

BITS 1-11: 'TYPJo;' OF THINGY 

BITS 12-23: 'ATTRIBtJrE' 

'TYPE' IS 1 FOR A DRtJoi FILE, 2 FOR A JOB, FOR DETAILS SEE PAGE 9-2 

IN R-2L 

?WHAT IS A THINGY? 

A "THINGY", AS USED IN BRS 143 AND 144, IS EITHER A FIlE OR A JOB. 

?HOW CAN I OUTPtJr A STRING? 

USE BRS 35 TO OUTPUT A STRING. 

?MORE ON BRS 35? 

BRS 35: OtJrPUT STRING. X=FILE NUMBER, AB=STRING POINTER. 

?BRS 2 3? 

BRS 2: EXEC ONLY CLOSE SPECIFIED FILE 

A=FILE NUMBER. NON-EXEC IS BRS 2~. 

BRS 3 DOES NOT EXIST 

Figure 7-A session with HELP 

investigate this file occasionally to discover what he 
has overlooked. 

It is also possible to have HELP write on a file all 
of the questions which it receives. In this way, we can 
determine how much use a particular HELP system is 
getting, and how well it is doing. Our experience at 
Project Genie is that our efforts· in designing a simple 
question answering facility have been successful. 

HELP receives a great deal of use, generates useful 
answers, and, using QAS, can easily be updated to allow 
for modifications and oversights. Figure 7 gives an 
example of a short session with HELP. 

CONCLUDING COl\1MENTS 

The algorithm which we use to find KEY WORD 
LISTS from the set of KEY WORDS in a question has 
one drawback. If the number of KEY WORDS in the 
question is large, while the length of the longest KEY 
WORD LIST ill the set is small, the searching time is 
very long. This is due to the fact that, starting from the 
original set, we check every subset. We have never 
experienced a problem of this sort, since most of the 
questions presented to our HELP systems have three or 
less KEY WORDS. However, it is a possibility. To 
solve it, a test would have to be made before starting 
to check the subsets of a given order, to insure that the 
number of these subsets is less than some pre-de
termined maximum. If not, all of those subsets would 
not be tested. The calculations involved are trivial, and 
could be incorporated if necessary. 

ACKNOWLEDGl\1ENTS 

The author would like to acknowledge the help of both 
Bret Huggins and Butler Lampson. Mr. Lampson 
designed the initial structures of the ANSWER LISTS 
and the dictionary, and Mr. Huggins implemented 
them. In addition, both contributed many hours of 
their time to discussions during all phases of the 
design of HELP and QAS. 

REFERENCE 

1 C S CARR 
HELP-An on line computer information system 
Project Genie Document No P-4 January 19 1966 



CypherText: An extensible composing 
and typesetting language 

by c. G. IVIOORE and R. P. IVIANN 

The Cyphernetics Corporation 
Ann Arbor, Michigan 

INTRODUCTION 

CypherText is a programming language designed for 
text formatting and typesetting in a time-sharing 
environment. Text to be formatted or typeset is input 
on a terminal and may be output at the terminal or on 
various typesetting machines. 

Although a number of computer typesetting languages 
have been written for particular applications (such as 
newspaper work), few of these languages are adaptable 
for any other application.1, 2,3 This inflexibility has 
remained one of the most serious limitations of existing 
computer typesetting languages. 

CypherText, an extensible language, overcomes this 
problem of inflexibility to a great extent. Because 
CypherText is truly extensible, it is possible to tailor 
specific formatting capabilities to meet the needs of 
particular typesetting applications by predefining for
mats for each application. Both . large scale projects 
such as catalogs and parts lists, as welJ as smaller 
operations, such as job-shop typesetting, may now be 
accommodated within the scope of one language. 

By predefining form9,ts, a set of format definitions for 
a specific application may be "packaged" so that the 
definitions come "ready to use," i.e., the user does not 
have to know anything about how to make up format
ting definitions for himself. This "packaging" of 
formats has already been accomplished for architectural 
specifications, technical report writing, and job-shop 
typesetting applications. In the first two cases, the 
format definitions are so comprehensive that the user . 
almost never requires any of the unextended features 
of the language. In fact, most users are unaware of the 
"unpackaged" features because the packaged definitions 
meet all their formatting requirements. 

In addition to providing wide formatting flexibility, 
CypherText also provides flexibility in choosing type
setting devices on which the text is to be output. Other 
typesetting languages have typically been geared to one 

555 

or a few specific typesetting machines. CypherText, on 
the other hand, is "device independent": a "post
processing" feature allows users to set their text on 
many commercially available typesetting devices, 
including photocomposition devices, "hot lead" devices, 
and even typewriter-like terminals, with no change 
required in the input text. 

The extensibility of CypherText and the flexibility it 
offers derive from the structure of the language and the 
method of its use. 

THE STRUCTURE OF CYPHERTEXT 

The major structural features of CypherText are its 
command syntax, command definition capability, and 
string storage capability. 

Syntax 

One prerequisite of an extensible typesetting lan
guage is an unambiguous syntax. Every effort has been 
made to keep the CypherText syntax simple and 
consistent. 

CypherT ext input consists of the text to be typeset 
and the formatting instructions for the text. The 
formattjng instructions ("commands") are distinguished 
from the text by "command break characters." Though 
the command break character may be any character the 
user chooses, throughout this paper the slash U) will be 
used. The following fragment of input shows some text 
and one command: 

as shown on the following page/NEXTP AGEl 

In the above example, the text "as shown on the 
following page" would be set on a particular page, after 
which the command "NEXTPAGE" would cause any 
subsequent text to be set on the next page. 

More than one command may be placed within the 



556 Fall Joint Computer Conference, 1970 

break characters, provided that the individual com
mands are separated by semicolons, as in the following 
example: 

as shown on the following page./NEXTPAGE; 

CENTER/Chapter VI 

In this example, the two commands "NEXTP AGE" 
and "CENTER" are placed within the same set of 
slashes; "NEXTPAGE" causes a skip to the next page, 
after which "CENTER" causes the text "Chapter VI" 
to be centered at the top of the new page. 

Some commands require one or more modifiers 
(parameters) to fulfill their formatting functions. In 
these commands, the parameters are separated from the 
name of the command by a space, and multiple 
parameters are separated from each other by commas. 
For example, the command "SPACE" requires as a 
modifier the amount of vertical space to be left on a 
page, expressed in points. Thus, the command 

/SPACE 24/ 

causes a vertical spacing of 24 points. 
Among the commands requiring multiple parameters 

is "NEWTYPE", which has as modifiers the name, 
style, and point size of the type face to be set. Thus, 

/NEWTYPE TIMES ROMAN,8/ 

would cause a switch to 8 point Times Roman as the 
current type face. 

A list of the most commonly used CypherText 
commands and their functions is provided in Table 1. 

Command definition 

The capability of defining new commands is integral 
to the extensibility of CypherText and contributes 
greatly to its ease of use. 

New commands are created by combining a number 
of basic commands and assigning a name to the 
combination. The name is assigned by means of the 
"DEFINE" command. In the following example, a new 
command called "PT", requiring one parameter, 
"LINES", has been defined. The definition of the 
command appears between the quotation marks, and 
consists of three basic commands: SKIPIF, NEXT
PAGE, and ENDIF: 

/DEFINE PT(LINES), 

"SKIPIF<,72, LINES *12; 

NEXTPAGE;ENDIF" / 

Having defined the new command "PT(LINES)", it 
would be used by supplying a value for the parameter 

TABLE I -Commands 

DEFINE 
Used to define a new CypherText command. It gives a name to 
the command and indicates how the parameters are to be used. 

ENDIF 

(See SKIPIF) 

EVALUATE 

Evaluates an arithmetic expression and stores the value in a 
specified string name. 

INCLUDE 

Requests that the contents of some string (or combination of 
strings) be set as text at this point. 

Requests that a 'leader' of some particular character be used to 
fill out the current line of text. Used mostly in tables. 

MAP 

Gives a character whose occurrence is to be 'mapped' into some 
string. Every subsequent appearance of the mapped character 
will be treated as though the string of characters it is mapped 
into had occurred instead. 

NEXTPAGE 
NEXT PARAGRAPH 
NEXTFIELD 

Cause a new page, paragraph, or field (respectively) to be started 
at this point. 

OUTPUT 

Specifies the output device to be used for setting the text (for 
example, LINOFILM, PHOTON 713, terminal, etc.) 

PUSH 
POP 

Together, allow the current contents of some string to be saved, 
and then later recovered. 

SET 

Assigns a new value to some string. Corresponds to the use of 
the equal sign (=) or replacement operator in most programming 
languages. 

SKIPIF 

Allows commands and text to be skipped (or ignored) in the 
setting process, if a specified condition is met. No text will be 
set or commands processed until an ENDIF command is en
countered. 

SPACE 

Leaves a vertical space of the specified amount, on the page 
currently being composed, at the point the command occurs. 

USE 

Gives the name(s) of one or more files whose contents are to be 
included as input at this point. These files may include commands 
or text or both. 



"LINES". For example, the command 

IPT lSI 

would cause any text following the command to be set 
on the current page if more than 15 lines remain, or to 
be set on the next page if less than 15 lines remain. 

String storage 

The capability of assigning names to strings of 
characters and of storing the strings for future use is 
also crucial to the extensibility of CypherT ext. Strings 
are assigned names and stored for retrieval by means of 
the "SET" command. For example, the command 

ISET X, "NEXTPAGE" I 
would store the 8-character string "NEXTPAGE" 
under the name "X". 

Such stored strings may be used as commands, 
parameters to commands, or even as text to be set. For 
example, after the above command, the command "X" 
is equivalent to the command "NEXTPAGE." 

D sing stored strings as commands or as parameters 
to commands merely involves substituting the string 
name for the string. For example, the sequence 

ISET LINE, "12"1 

ISPACE LINEI 

stores the value "12" under the name "LINE", so that 
when "LINE" is used as a parameter to the "SPACE" 
command, a vertical spacing of 12 points is left on the 
page. 

D sing stored strings as text to be set involves the use 
of the "abbreviation character." Though this character 
may be any that the user chooses, in the fol1owing 
example the "at sign" (@) has been used. 

Commonly used words, phrases, or paragraphs may 
be assigned string names and stored; whenever the 
words, phrases, or paragraphs are to be used as text, 
only the string name need be used, preceded by the 
abbreviation character. For example, the command 

SET CT, "CypherText, 

an extensible language," 

would store the quoted text under the name "CT". 
Whenever the user wants to include the text "Cypher
Text, an extensible language," he has only to type in 
"@CT". In this case, 35 characters have been reduced 
to the 2-character abbreviation "CT". 

CypherText 557 

Stored strings may also be used in a way analogous to 
the use of variables in algebraic programming lan
guages. Thus, stored strings may be used in an arith
metic expression, as a parameter to a command. For 
example, the sequence 

ISET LINES, "12"1 

ISPACE 5*LINES/ 

causes a vertical space of 5 times the number of points 
specified in the string named "LINES" to be left on the 
current page. 

Reserved String N aInes 

1\1any of the formatting functions of CypherText are 
controlled by the use of "reserved string names". These 
are string names whose contents are constantly 
monitored by CypherText. Whenever the value of one 
of these reserved strings is changed, CypherT ext takes 
some special action. For example, the reserved string 
variable "LINELEADING" indicates the amount of 
space to be left between each line of the final text. 
Changing the value of this string will change the amount 
of space left between lines. Thus, the command 

ISET LINELEADING, "12" I 
indicates that from this point on, 12 points of space are 
to be left between each line in the output text. For 
typewriter-like terminals, this command is effectively a 
double-space command. As another example, the 
formatting of the top and bottom of each page is 
controlled by two reserved string names, "HEADER" 
and "TRAILER". Any combination of commands and 
text may be stored in these strings. Whenever Cypher
Text begins a new page of text, it examines the contents 
of these strings to determine what to place at the top 
and bottom of each page. For example, the command 

ISET HEADER,"/SPACE 36;CENTER;INCLUDE 

TTEXT; SPACE 36/"1 

stores in the reserved string "HEADER" a set of 
commands which will center at the top of each page the 
current contents of the string named "TTEXT", with 
36 points of space between this line and the top of the 
page, and 36 points of space between this line and the 
first line of text. Of course, the contents of the string 
"TTEXT" may be changed at any time, via the "SET" 
command. Thereafter, each page will have the new 
contents of "TTEXT" as a centered title. 



558 Fall Joint Computer Conference, 1970 

TABLE II-Reserved Variables 

FIELD 

Controls the number, width, and placement of columns on the 
page. Also controls the placement of text within the field: 
centered, justified, flush right, flush left. 

HEADER 

Controls the formatting of the top of each page. Title, if any, 
spacing, and so forth. 

HYPHENATION 

Controls automatic hyphenation, which is done only if the 
contents of this string name is "ON". 

INDENT 

Specifies the amount of the indentation at the beginning of each 
paragraph. 

JUSTIFICATION 
Controls the amount of 'filling' with spaces allowed to justify a 
line of text. 

LINELEADING 

Controls the amount of space to be left between lines. 

PAGEHEIGHT 

Controls the height of each page. 

PAGEWIDTH 

Controls the width of each page. 

PARAGRAPHLEADING 

Controls the space to be left between each paragraph. 

TRAILER 

Controls the formatting of the bottom of each page, as with 
HEADER, at the top. 

TYPEFACE 

Controls the current type face (TIMES, BODONI, etc.). 

TYPESIZE 

Controls the current type size. 

TYPESTYLE 

Controls the current type style (ITALIC, BOLD, etc.). 

A list of the most commonly used reserved string 
names and their functions is given in Table II. 

Defined String N allles 

"Defined string names" is another class of string 
names which has special meaning to CypherText. These 
are strings which the user may always assume to 
contain some particular piece of information. Whenever 
the user references one of the defined string names, 
CypherText determines the current value of that piece 
of information and supplies that value as the value of 
the string. For example, the defined string name 
"TOTALPAGES" always contains the number of pages 

set so far during a particular run. The value stored in 
"TOTALPAGES" may be conveniently used to set a 
page number on each page. 

Many of the defined string names are used primarily 
for testing certain conditions. The defined string name 
P AGELEFT contains the number of points (vertically) 
left on the current page, before it will be necessary to 
start a new page. Before beginning the setting of a table 
in his input text, a user may embed a conditional skip 
command ("SKIPIF") in his input which will test 
PAGELEFT to determine if there is enough room on 
the current page for the entire table. If there is not 
enough room, CypherT ext will start a new page; if there 
is enough room, the table will be set on the current page. 

A list of the most commonly used defined string names 
and their functions is given in Table III. 

l\1:any other features of CypherText, such as auto
matic justification and hyphenation, are not discussed 
here because they are available in other languages as 
well. 4,5,6 The primary emphasis here has been to 
illustrate the extensible features of CypherText, par
ticularly those features which differentiate it from other 
typesetting languages. 

USING CYPHERTEXT 

Using CypherText to transform original copy into 
finished text is a five step process: 

1. Embedding 
2. Inputting 
3. Proofing 
4. Postprocessing 
5. Typesetting 

Embedding is the insertion of CypherT ext commands 
into the original text. The commands may be written in 
by an editor for later inputting by a typist, or, in the 
case of experienced users, the commands may be 
embedded extemporaneously as the text is being input. 
The following example shows an original manuscript 
with the commands embedded by an editor: 

/~''l.-/ 
/~fA- /l1iJ.lIlYrICA-J {JOl-0J 0./ 
CYPHERTEXT: A DEt40NSTRATION ~ ~I 
/s~ /~; ~ATI;4feS, t(o/'1AIII,. /Cj ~. 
~CypherText enaoles you to transform unformatted rough copy 

into finished text by embedding CypherText commands in the 

rough copy. 

~The CypherText commands provide for all the formatting 

requirements of the printed page, including justification, 

hyphenati on, tabulation, I eaderi ng, and runarounds. 



In this example, the commands specify that the 
heading is to be centered and set in 12 point Helvetica 
Bold, while the two paragraphs are to be set in 10 point 
Times Roman. (Note that the command for starting a 
new paragraph has beeh abbreviated to "#".) 

After the commands have been inserted, the "em
bedded copy" is input into a general purpose time
sharing system on virtually any terminal input device. 

Several advantages derive from the fact that the copy 
is entered into a time-sharing environment: first, the 
copy may be stored on any of a number of direct-ac
cess devices, depending on factors of economy and con
venience; second, output from other programs in the 
time-sharing system may serve as input to CypherText; 
and third, the copy is always immediately accessible 
for updating. 

The following example shows how the embedded copy 
would appear on a terminal during inputting: 

/center/ 
/NE\lTYPE HElVETICI',80U' ;12/Cypt-lERTEXn: /& DEMONSTRATION 
/ space 12; tlEI'ITYPE TIMES, RfH,/&N, 10 ;'TEXT / 
*CypherText ena~les you to transforr' unformatted 

rough cory IntC' flnlshprl text t-y el"!t->etitiin,. 
CypherText co~rAntis in t"~ rou~h copy. 
*T~e CypherT~xt conrAn~s provlrle for all the 
for~attln~ r~culr0rnents of the prlnt~~ page, 
Includln~ justification, "ynt-enatlon, tabulation, 
leaderlng, ~n~ run~rou~r1s. 

READY 

After the copy has been input, immediate proofs may 
be obtained by having the system compose and print 
out the text at the terminal. Of course, the proof copy 
takes on the limitations of the terminal on which it is 

TABLE III - Defined Variables 

DATE 

Current data, in the form DAY-MONTH-YEAR. 

LINECHARACTERS 

Current number of characters set so far on this line. 

PAGED OWN 

How much text has been set on this page, i.e., how far 'down' 
the page text has been set. 

PAGELEFT 

How much space is left on the page, vertically, before it will be 
f.ull. 

PAGELINES 

How many lines have been set on the page currently being 
composed. 

TIME 

Current time of day, in the form HH:MM (24-hour time). 

TOTALPAGES 

Total number of pages set so far in this run. 

CypherText 559 

output. However, for many applications, the proof copy 
obtained at the terminal is satisfactory enough to serve 
as final output for reproduction by printing or other 
means. For these applications, where limited type 
variety and non-proportional spacing are of no concern, 
the proof copy is the end product of the CypherT ext 
process and the last two steps, postprocessing and 
typesetting, are omitted. 

Whether or not the proof copy is the final output, 
proof copy is useful for checking the formatting and for 
catching typographical errors. If errors are found, or if 
the formatting is to be changed, it is a simple matter to 
edit the input copy by using any of the text-editing 
facilities of the tjme-sharing system. After the copy is 
edited, further proofs may be output until the user is 
satisfied that the text is composed as desired. 

The following example shows proof copy obtained at 
a model 37 teletype terminal: 

CYPHERTEXT: A DEMONSTRATION 
CypherText enable. you to transform unformatted 

rough copy into finished text by embedding CypherText 
command. in the rough copy. 

The CypherT8xt command •. provide for a 11 the 
formatting requirements of the printed page, including justi
fication, ~phenation, tabulation, leadering, and runaround •• 

For those application~ where a variety of type faces 
and proportional spacing are important, the next step is 
to postprocess the input copy for setting on a particular 
typesetting device. Postprocessing is handled auto
matically by the system, producing a tape (paper or 
magnetic) to drive any of the most commonly used 
typesetting machines. 

To achieve complete typesetting flexibility, the 
CypherText language has been made as "device 
independent" as possible. This independence has been 
achieved by defining the input language independently 
of the characteristics of any specific typesetting device; 
the output is targeted to an idealized typesetting device 
(which does not actually exist). Producing output for an 
actual typesetting device is the function of the post
processing program, which translates the device inde
pendent output to the particularities of the desired 
typesetting machine. Translating the copy for type
setting on different machines requires only a change in 
the "OUTPUT" command, which takes one parameter, 
the. name of the desired typesetting machine. The 
"OUTPUT" command is also used for obtaining drafts 
at the terminal, typewriter-1ike devices being considered 
a special kind of typesetting machine. The device 
independent translators generally run in parallel with 
the CypherText language itself, as co-routines, effec
tively making the entire process a one-pass operation. 

The final step, typesetting, consists of running the 
postprocessed tape on a particular typesetting machine 
to obtain finished, typeset copy. The number of type 



560 Fall Joint Computer Conference, 1970 

faces and sizes, as well as the spacing characteristics, 
depend, of course, on the typesetting machine itself. The 
following example shows the sample text set on a 
Linofilm Quick: 

CYPHERTEXT: A DEMONSTRATION 

CypherText enables you to transform unformatted 
rough copy into finished text by embedding CypherText 
commands in the rough copy. 

The CypherText commands provide for all the 
formatting requirements of the printed page, including justi
fication, hyphenation, tabulation, leadering, and runarounds. 

Although CypherText can be used in any composing 
and typesetting application, it is especially suited for 
text requiring frequent revision, complicated or repeti
tive formatting, and high speed and accuracy. Despite 
the sophisticated capabilities of the language, experience 
has shown that both novices and trained editors alike 
can be taught to use CypherT ext easily and effectively 
in a broad range of composing and typesetting 
applications. 

APPENDIX A 

SYNTAX OF THE LANGUAGE 

Normally CyperText operates in "text mode", a 
mode in which the characters in the input stream are 
simply set according to whatever current formatting 
parameters are in effect. Commands which alter the 
formatting parameters may appear anywhere in the 
input text stream. These commands are bracketed by 
the current "command break character", which is 
normally a slash(j). One or more commands placed 
between command break characters in this manner is 
called a "command group", and must follow certain 
syntactical rules. 

The syntax of a command group is given below. 
Rigor in the formal sense has been sacrificed for 
readability. Such sacrifices are indicated by enclosing 
parentheses. In the definitions we use the convention 
that lower case character strings stand for a generic 
type. Upper case strings and punctuation characters not 
mentioned in these conventions must appear as shown. 
Square brackets surround optional material. Three dots 
fol1owing a syntactic unit indicate that it may be 
repeated an arbitrary number of times. The sequence 
, : =' is used to mean 'is defined as'. A vertical bar is 
used to indicate that one of the options in curly 
brackets should be chosen. Curly brackets are also used 
to group syntactic units for some purpose. The special 
generic name 'nullstring' and 'blankstring' stand for a 

string of no characters and a string of one or more blank 
characters, respectively. The generic name 'alpha
numericstring' stands for an arbitrary string of upper 
and lower case letters and numbers. The generic name 
'numericstring' stands for a string of digits, possibly 
with a leading plus or minus sign, and an optional 
embedded decimal point. 

commandgroup : = commandbreakcharacter 
commandstring 
commandbreakcharacter 

commandstring : = [commandelement;].·· 
commandelement 

commandelement : = {primitivecommand 1 

macrocommand 1 

stringname 1 nullstring} 
primitive command : = (one of the commands from 

Table I) blankstring param
eterlist 

macro command : = macroname blankstring 
parameterlist 

stringname : = alphanumericstring (of length less than 
64 characters, beginning with a 
letter, and which has previously 
appeared as the first parameter of a 
SET or EVALUATE command). 

macroname : = alphanumericstring (of length less than 
64 characters, beginning with a letter, 
and which has previously appeared 
as the first parameter of a DEFINE 
command). 

parameterlist : = [{ (parameterlist) 1 

simpleparameter} ,] • .• 
{ (parameterlist) 1 simpleparameter 
1 nullstring} 

simpleparameter : = {alphanumericstring 1 

stringexpression 1 

numericexpression} 
stringexpression : = {stringname 1 quotedstring} 

[& stringexpression] 
quotedstring : = "alphanumericstring" 1 

'alphanumericstring' } 
numeric expression : = {numericstring 1 stringname} 

[ arithmeticoperator 
numeric expression ] 

arithmeticoperator : = {+ I-I*I/} 

APPENDIX B 

Implementation details 

CypherText has been implemented for a PDP-10 
time-sharing system. It is written entirely in assembly 



language. This choice was dictated by the fact that the 
only other option available at the time was FORTRAN. 
FORTRAN was felt to be too awkward and inefficient 
to use as an implementation language for what is 
essentially a string-handling program. It should be 
noted that higher-level languages available on other 
computers (such as PL/1) would be unquestionably 
preferable for implementing this type of program. 

The programs, both first and second passes, are 
reentrant. In fact, the PDP-10 system allows the first 
pass to be shared simultaneously by a number of 
time-sharing system users. The first pass program 
occupies about 6500 (36-bit) words of memory for the 
code. A minimum of 6000 additional words are needed 
for working storage (page buffers, string storage, etc.). 

The size of the second pass programs, which are 
usually loaded with the first pass for a particular run, 
varies considerably with the type-setting device se
lected. All the current second pass programs are less 
than 2000 words long, including both code and working 
storage. 

The device independence of the PDP-10 input/ 
output support allows input text to be accepted from a 
variety of media. The same comment applies to system 
output. No scratch files are written by the system, but 
CypherText does access several support files in the 
course of a run, which must be stored on a random 
access device. 

CypherText 561 

The running time of the program varies with the 
number and complexity of the commands embedded in 
the text. For "straight matter", such as non-technical 
books, running time for first and second passes com
bined is about .3 seconds per 1000 characters. For very 
complicated work, such as some parts catalogs, run 
time may approach 2 seconds per 1000 characters. 
Unless final copy is being printed at the terminal, 
additional time will be needed on the type-setting 
device chosen to set the text. 

REFERENCES 

1 G M BERNS 
Description of FORM AT, a text processing language 
Comm of the ACM Vol 123 March 1969 pp 141-146 

2 TEXT360: Introduction and reference manual 
Form C35-0002 IBM Technical Publications Dept White 
Plains N Y March 1969 

3 Harris Composition System: Language manual 
Harris-Intertype Corp Cleveland Ohio March 1970 

4 Textran-2: User's manual 
Form T2-102-3 Alphanumeric Inc Lake Success N Y 1969 

5 J W SEYBOLD 
The market for computerized typesetting 
Printing Industries of America Washington D C 1969 

6 HYPHENATION360: Application description 
Form E20-2130 IBM Technical Publications Dept White 
Plains N Y 1969 





Integration of rapid access disk Illemories 
into real .. time processors 

by R. G. SPENCER 

Bell Telephone Laboratories, Incorporated 
Naperville, Illinois 

INTRODUCTION 

In large real-time systems such as telephone, traffic 
control, and process control, the required amount of 
high-speed random access memory becomes cost pro
hibitive. In these types of systems, much of the data 
stored in memory is accessed infrequently. For such 
low priority data, a rapid access disk or drum memory 
controller can be used to advan~age; such a controller 
is described in this paper. 

In a real-time processor, the multiprogram environ
ment generally consists of two types of programs. The 
first type is event-associated and is executed only 
when a specific event occurs. The second type is a 
routinely run program. The event-associated programs, 
typically the high runner programs, use the largest 
percentage of the processor real time. If the required 
response time for an event is greater than the average 
latency of a rotating memory, data pertinent to each 
event can be stored on a disk file. Upon demand, an 
autonomous disk controller delivers data to the system. 

A program requests a block of data from the con
troller, and instead of waiting for the disk controller 
to deliver the data, the program exits to an executive 
program. The executive program calls another program 
to be executed. When a disk task dispenser program 
finds a request for data completed, it returns control 
to the program requesting the data. With this mode 
of program flow, many disk requests for data can be 
operated concurrently. With :::t large queue of random 
requests, the disk controller can execute a job at most 
positions on the disk as it rotates. Thus, the throughput 
of the disk controller can approach the data rate of 
the disk. 

A disk controller system can serve as a memory for 
many other types of data. It can store the only copy of 
low priority or infrequently run programs. It can serve 
as a backup for main programs normally held in high-

563 

speed random access stores. This disk complex is also 
well-suited as a low-speed data buffering memory for 
data links or analysis information. 

The system 

In a real-time system, the processing capacity is 
usually limited by the amount of real time required to 
handle a given capacity. To maximize the capabilities 
of a system using a disk file controller, the operation of 
the disk as a memory should not require excessive real 
time. To satisfy this requirement, the controller runs 
autonomously from a large hardware queue in the 
controller. It further communicates directly with the 
random access memory on an interleaved bus cycle 
with the central processing unit (CPU). 

The basic cycle times of the CPU, random access 
memory, and disk file controller are the same. How
ever, the buses can be used twice every CPU cycle, 
since the disk file controller's cycle time is staggered 
one-half of a CPU cycle. During the first half of its 
cycle, the CPU uses the high-speed memory bus; the 
disk file controller is capable of using the same bus 
during the CPU's second half-cycle. The CPU pro
vides a path from the disk file controller to the high
speed memories as shown in Figure 1. 

Since the high-speed memory cycle time is twice the 
bus cycle time, the CPU and disk file controller can
not access the same high-speed memory during the 
same cycle. To make best use of the capabilities of the 
disk file controllers, several independent high-speed 
memories are used on the same bus. Although the 
controller can communicate with any memory, the 
desirable program system is designed so that the disk 
controller communicates most frequently with high
speed memories having low CPU occupancy. Because 
many independent sources compete for use of the 



564 Fall Joint Computer Conference, 1970 

DISK IEOUEST 
REGISTER (Dill 

IEOUIn I"'FEI 
IDII' 

'IOCIIIINO 
IN'OIMA"ON " 

'01 EACH 
IIOUIST 

, 
, , , 

, CPU 

OUEUE OF ,;! 
REOUESTS - _' ___ I 
LOCATION 

INFORMATION 

r--t-{-' "-'--r-, 
I I.. - ~ \ - J' .J I 
I I I I 

Figure l-Processor complex 

HIOH S'EED 
MEMOIIES 
ICOIE, 
SEMICONDUCTOI, 

ETCI 

high-speed memories, a priority-blockage circuit is 
incorporated in the CPU, Once each cycle, this circuit 
selects the highest priority controller or the CPU, The 
circuit grants the controller use of the bus, only if the 
controller accesses a memory different from that ac
cessed by the CPU during its first half-cycle, If the 
controller requests the same memory, it is blocked 
until the next cycle, when it tries again. A disk con
troller can be blocked for a limited number of contiguous 
cycles. The disk data rate and the CPU cycle time de
termine this limit. Before the next word overflows 
from the disk, the controller will be granted the use of 
the bus. 

In the simulation (see Simulation results), the system 
studied could be blocked for three contiguous cycles 
before the CPU need be interrupted to allow a disk 
controller access to the memory. In this simulation 
one word was read from disk every seven CPU cycles. 
Thus, up to two tracks could be read into the same 
high-speed memory used by the CPU, without causing 
the disk to overflow. In an actual operating system, 
the CPU never occupies one particular memory every 
cycle for long periods of time (excluding a program 
memory). 

Since the least reliable hardware in a processor is 
a disk file, it should be duplicated to decrease the down
time of the processor. Byphase-Iocking the disks (rota
tionally 180 degrees) with duplicate information, the 
average latency for the pair is half that of a single 
disk. If the rotation time of a disk is 40 milliseconds, a 
request submitted to that disk is returned in 20 milli-

seconds, on the average. If the same request is entered 
in both duplicate controllers, the first to reach the 
proper disk location completes the job, in an average 
of 10 milliseconds. With the duplicated and phase
locked disks each working independently, the average 
latency is thus reduced. The throughput is doubled, 
and the system reliability is greatly increased. 

As depicted in Figure 1, the system is expandable to 
meet any requirements. The number of disks per 
controller is variable as is the number of controllers 
and high-speed memories per system. 

The disk file controller 

Within a controller complex, each disk is electron
ically divided into a large number of pie-shaped sectors. 
Each disk face is further split into a number of radial 
tracks. Figure 2 shows a division consisting of 100 sec
tors and 100 tracks: 10,000 sector-track data records in 
all. Each data block has a distinct record address. The 
opposite disk face is similarly segmented into another 
10,000 addresses. Addressing to a word within the 
block is accomplished' by specifying a "starting" word 
within a sector-track. When multiple words are desired, 
a "number of words" is specified in the request. With 
this type of address scheme, request sizes range from 
one word to an entire disk face. 

Information concerning a request is placed in two 
queues as indicated in Figure 1. One entry is made in 
the disk request register (DRR), located in the con
troller hardware, specifying location information only 

SECTOR 
99 

Figure 2-Disk segmentation 



ORB: IN HIGH SPEED MEMORY 

COMPLETE DISK ADDRESS 

. OF WORDS & STARTING WOR 

LOCATION OF DATA 

STATUS OF REQUEST 

- - - - - - - - - - ':" REQUEST 

---------- M 

24 BITS-------.t 

ORR: IN EACH DISK 
CONTROllER 

Figure 3-Disk request buffer (DRB) and disk request 
register (D RR) organization 

(i.e., sector, disk, and face). Each slot in this queue is 
typically less than 12 bits in length since this hardware 
is moderately expensive. In this queue, the number of 
slots is expandable and depends on the throughput 
requirements of the disk controller. Each register po
sition in the DRR has a corresponding four words in 
high:speed memory (as shown in Figure 3), which 
speCIfy all the processing information for a job. The 
disk request buffer (DRB) has the complete disk record 
address, disk-face-sector-track, and starting word in 
the specified record. It also contains the number of 
words following the starting word to be delivered to 
the system and the location in high-speed memory in 
which the data is to be placed (read mode) or to be 
taken from (write mode). The last word in the DRB 
is reserved for the status of the job and a "done" in
dication which is set when a controller completes a 
job. 

The done indication in the fourth word of the DRB 
signals the two duplicate controllers to update the 
status of their respective DRRs. Requests shorter than 
Y2-disk revolution are placed in both controllers, which 
search their respective DRRs for jobs in the next sector 
on each disk. For example, if disk controller 0, in the 
jth position of its DRR, finds a job which matches the 
next sector on one of its disks, controller 0 will access 
the four words of the corresponding DRB to obtain 
the processing information. If the done indication is 
not set, controller 0 will complete the job as specified, 
zero the jth slot in its DRR, and write back a done 
indication to the fourth word of the DRB (in jth posi-

Integration of Rapid Access Disk Memory 565 

0t--_~ 

ORR 

TO PROCESSOR 

SEARCH 
SEQUENCER 

SECTOR 
CLOCKS 

Figure 4-Disk controller 

tion). One-half revolution later, when disk controller 
I finds the same job and obtains the fourth word of 
the DRB, it detects the done indication, zeros the 
jth position of its DRR, and continues searching for 
another job. 

A complete search of the DRR takes place each 
sector for jobs in the upcomming sectors on all disk 
faces within a controller. As shown in Figure 4 each 
disk controller has two independent circuits 'which 
allow two simultaneous operations in each controller. 
The sector information is derived from each disk's 
timing tracks and is registered in the search sequencer 
circuit. Using this information, the circuit searches all 
M positions of the DRR. Having found a job (address 
sector match), the search sequencer informs the proper 
face control circuit which executes the job. The search 
sequencer does not search for that face again until 
that face informs it of a job termination. In this mode 
of operation, if the request size is smaller than the 
number of words in a sector, the controller has the 
capability of processing 50 of the 100 sectors per revo
lution on two faces: a total of 100 jobs per revolution. 
Thus, a controller community (a controller pair with 
duplicated and phase-locked disks) has maximum 
capabilities of 200 jobs/revolution with average latency 
of one quarter of a revolution time. 

Simulator 

To understand and engineer the system more fully, 
a FORTRAN real-time simulator was written for use 



566 Fall Joint Computer Conference, 1970 

Q ... 
Z 
III 
:::I .... ... 
III 
on .... 
on ... 
:::I 

~ 
III 

0 
~ 
ID 
:IE 
:::I 
Z 

80 

60 

"i"I 

40 

20 -

~ ~ . 
1 T ., 0 

,u.+cr ",,+2cr ,u.+3cr 

20 40 60 80 100 
REQUEST DelAY TIME (MILLISECONDS) 

2 DISK CONTROLLERS 
1000 REQUESTS/SEC 
48 ORR s 
X = 10 ms 
..u. = 11.54 
CT = 9.61 

Figure 5-Distribution of returned requests 

on an IBM 360 model 67 computer. At this time, the 
simulated system includes "n" controller pairs with 
one CPU and one high-speed memory. The CPU occu
pies the high-speed memory, varying from 0 to 100 
percent of the time. The simulator incorporates all 
blockage and priority characteristics in the program. 
The throughput, request submission rate, and distri
bution of request sizes are all parameters of the pro
grams. The output of the simulation programs is a 
request delay distribution, the percent of CPU real
time blocked, DRR occupancy, and the number of 
jobs aborted because of disk da"ta overflow (a low 
priority controller repeatedly blocked by CPU and 
other controllers). 

Data pertinent to the simulation is listed below to 
clarify the forthcoming results: 

a. 24 bits/disk word 
b. 32 disk words/sector 
c. 100 sectors/disk revolution 
d. 35 milliseconds/disk revolution 
e. request size characteristics: 

1. maximum request size = 32 words 
2. minimum request size = 2 words 
3. average request size = 8 words 

f. simulation run time = 1 second of real time. 

The disk address for each request was randomly 
distributed. The number of requests submitted at each 

submission interval was uniformly distributed. The 
size of each request was drawn from a distribution 
with characteristics as shown in (e) above. Since write 
requests generally store data for later use, and since 
system response times are not critical factors, all 
requests asked for data reads from the disk. 

Simulation results 

In the delay time distribution shown in Figure 5, 
the average request delay was near the Pi-revolution 
time predicted. The largest percentage of requests 
is answered within the first half revolution time; re
quests for the same sector are dispersed over several 
revolutions. 

The next important characteristic is the amount of 
real time wasted by the CPU due to disk controller 
blockage. Note that in Figure 6, with the CPU using 
the high-speed memory 60 percent of the time, the disk 
system (delivering 100 requests/second) uses only 1.5 
percent of the CPU's real time. 

In Figure 7, the maximum and average occupancy 
curves of the DRR allow optimum design of the DRR 
size for a particular application. For a desired through
put of 1000 request/second, a 12-slot DRR would be 
desirable. With some degradation in delay charac
teristics, any size between 6 (average occupancy) and 
12 (maximum occupancy) would suffice. 

! 
~ 
u 
o .... • 
:::I e 
~ 

o 
Z 
III 
U 
III 
III 
IL 

2.5,-----~------~----~------__ --------_ 

2.0 -t-----lt-------+----

1.5 +----I-----I----I----~ 

1.0 +-----+-1 

0.5 +--__._-1-.1 

o 500 1,000 

2 CONTROLLERS 
--- 20% CPU HIGH 

SPEED MEMORY 
OCCUPANCY 

1,500 2,000 

REQUESTS SUBMJTTED PER SECOND 

Figure 6-Central processing unit (CPU) blockage 



>u 

50~----~~-----T------~------~------~ 

40+-------~----~------~~----T_~----_; 
2 CONTROLLER PAIRS 

MAXIMUM OCCUPANCY-

~ JO~------~----~-------r----~T_------_; 
A. 
= U 
U 
o 

: 20~------~-----4------~~----+--------1 
Q 

104-------~--~~------~~----T--------; 

o 500 1000 1500 2000 

REQUESTS SUBMITTED PER SECOND 

Figure 7-Disk request register (DRR) occupancy 

Integration of Rapid Access Disk Memory 567 

SUIVnVIARY 

This paper presents the design of a high throughput 
autonomous disk memory system. Through extensive 
use of hardware and software queues and direct main 
memory access, the disk controller delivers high 
volumes of data, requiring a small amount of the CPU's 
real-time capabilities. By the 180-degree phase locking 
of duplicate disk files, the latency of the memory system 
is reduced to half that of a single disk, while providing 
high system reliability. The computer simulation results 
show that the design criteria are indeed satisfied. 

ACKNOWLEDGIVIENTS 

The author wishes to acknowledge his indebtedness 
to the many members of the Indian Hill Switching 
Division of Bell Laboratories who have participated 
in the design of the disk controller. Deserving of 
particular mention are D. M. Collins and R. D. Royer 
for system and hardware design. Also, many thanks to 
S. G. Wasilewfor his design of the simulator. 





Management problems unique to 
on-line real-time systems 

by T. C. MALIA 

IBM Corporation 
Chicago, Illinois 
and 
G. W. DICKSON 

University of Minnesota 
Minneapolis, Minnesota 

INTRODUCTION 

In the latter 1950's, the SAGE air defense system 
began operating and thus became the first of the large 
real-time computing systems. Initially such systems 
were feasible for only military use or for a few very 
large commercial applications. Today this is no longer 
the case. Modern managers need better and more 
timely information to keep pace with the rate of 
change, the complexity and the competition within 
the business environment. Therefore, an increasing 
number of organizations will, of necessity, be designing 
and implementing on-line, real-time systems. To 
better prepare for this evolution, management must 
understand the unique problems such systems will 
cause; both in terms of th,e initial design and imple
mentation phase, and the potential effects such sys
tems will have on the organization. The purpose of 
this paper is to outline the particular problems that 
managers will have to deal with in an on-line, real-time 
(OLRT) environment. 

For the sake of clarity, several terms utilized through
out this paper require some discussion. These are: 
(1) on-line, (2) real-time, and (3) time-sharing. 

On-line refers to a system in which input data enter 
the computer directly from their point of origin and/or 
in which output data are transmitted directly to 
where they are used. 

An exact definition of real-time is difficult because 
this is a relational concept. What is real-time in one 
instance is not in another. Probably the most widely 
used definition is one that says such a system is one 
that receives data from remote terminals, processes 
them and returns the results sufficiently quickly to 

569 

affect the environment in which it is operating. A more 
operational definition is as follows: tit is the amount 
of time that the computer could suspend computation 
and then resume without changing any of the inputs 
or outputs in the system."1 The shorter t is, the more 
possible it becomes to class the system as real-time. 
For example, a one second interrupt in a missile 
launching is intollerable. The inputs to the system 
would have to be altered to account for the movement 
of the missile. On the other hand, a three hour delay 
in a payroll program would not usually require any 
such changes. Systems are usually not referred to as 
real-time unless t is at most a few seconds and more 
often a few milliseconds. One should note that it is 
possible to have an on-line system that is not real
time, but the reverse is not true. 

We include time-sharing systems as a subset of 
OLRT systems. These systems, which "simultane
ously" permit a number of users connected to the 
system by remote terminals to utilize the power of a 
central computer, not only share many of the problems 
associated with OLRT systems, but introduce addi
tional complicating factors. 

As noted earlier, the scope of this paper is manage
ment problems associated with OLRT systems. It 
will pertain to not only the managers directly respon
sible for the system design and implementation effort, 
but the top managers of the firm as well. Special 
emphasis will be placed upon OLRT systems which 
heavily emphasize human interaction such as informa
tion retrieval type systems (e.g., airline reservation 
systems) and on-line management information systems. 
Time-sharing systems will be covered implicitly where 
time-sharing problems are similar to OLRT system 



570 Fall Joint Computer Conference, 1970 

considerations and explicitly where time-sharing sys
tems pose unique problems. Many problems associated 
with OLRT systems are similar to those encountered 
in the design and implementation of any large com
puter system. In these instances, the paper will discuss 
only those additional complications which operating 
in an OLRT environment introduce. Finally, the 
paper will not discuss the myriad of technical factors 
involved in designing real-time systems, but it will 
refer to these factors because of the need for manage
ment to control and guide the effort involved in solving 
these problems. 

OVERVIEW 

Regardless of the type of OLRT system involved 
or the specific application, there are some general 
reasons why the design and implementation problems 
of a real-time system are more formidable than those 
encountered in batch processing systems. These 
reasons include: 

1. OLRT systems rank among the very largest 
computer systems ever conceived. This is 
usually due to the fact that such systems are 
assuming functions that in earlier systems were 
performed by human operators. In addition, 
these systems may, by virtue of their com
plexity and related expense, be applied to only 
the largest and most difficult problems. 

2. OLRT systems are more complex due to their 
size and type of application. It is very difficult 
to engineer, install and maintain a system 
with many simultaneous users. Also, the pro
gram required to poll and respond to these 
users will have much more involved logic than 
one written to control only one input device. 

3. OLRT systems are new. The science of OLRT 
applications was first developed for the SAGE 
application in the middle 1950's. The first 
commercial application was the SABRE system 
which was developed in the early 1960's. These 
systems are new in essentially two respects-the 
application and the hardware. Frequently the 
application of real-time systems is to an already 
existing problem. However, usually it is a 
problem that has not lent itself to computer 
solution before OLRT. Thus there are no 
previous attempts at computerization from 
which to learn. In the case of the system to 
monitor manned space flights, the designers 
were confronted with not only a pioneering 
attempt at computerizing the problem, but 

also the fact that the problem itself was entirely 
new. In addition, many of the pieces of hard
ware necessary to facilitate an OLRT system 
are new. Most OLRT installations may be 
somewhere between 5 and 100 percent new in an 
equipment sense. 

4. OLRT systems are more vital and thus dis
ruptive in the event of a malfunction. By 
definition, an extended interruption in an 
OLRT system will require changing the inputs 
or outputs of the system. Unfortunately, if 
the delay is extended, severe damage to the 
environment may occur before the corrections 
are made. The earlier reference to the real-time 
space flight monitoring system is a good exam
ple of an extremely vital application and one 
that could be seriously impaired by a failure 
of the system. In a batch processing environ
ment, a down system simply means that records 
will not be updated or reports generated for 
a few hours. The OLRT system's inability to 
function can have a very direct and costly 
impact on operations. These systems are 
adapted more to the immediate operations of 
an organization, rather than historical record 
keeping. In the case of the airlines reservation 
system, the failure of the system will seriously 
threaten a waste in the firm's vital seat inven
tory not to mention the impact upon customer 
satisfaction.2 

PROBLEMS IN THE APPLICATION OF OLRT 
SYSTEMS 

Management involvement 

The McKinsey Company's survey of computer 
installations showed that the one thing that the 
maj ority of successful installations had in common 
was the fact that the executive managers of the com
pany devoted time to the computer systems.3 This 
time was spent in reviewing the plans and programs 
for the computer systems effort and in following up 
on the results achieved. The involvement becomes 
even more crucial in the installation of an OLRT 
system. Management must insure that the tremendous 
resources involved in the design and implementation 
of such a system are. allocated in an optimum fashion. 
Thus management must not only plan for the system, 
but must also get involved in the planning of the 
system. In this planning process, managers should be 
very aware that such systems might cause extensive 
changes within the firm and should attempt to predict 



Management Problems Unique to On-Line Real-Time Systems 571 

the effects of these changes. Possible changes may 
include: (1) the eventual reduction in the power of 
middle managers, (2) a trend toward centralized 
decision making, or (3) the necessity of middle managers 
to work in a very restrictive and highly controlled 
atmosphere because of the information their superiors 
have. By being knowledgeable of these effects, top 
management can design their managerial philosophy, 
and the system itself, in such a way as to minimize 
the undesirable effects and to optimize the areas 
where good effects can be achieved. The persons within 
the company most affected by the new system must 
be integrated into the system design effort to gain 
their support and cooperation, which is essential if 
the system is to succeed. Throughout the company, 
top managers must prepare personnel for the effects 
of the change, thereby reducing the reluctance of 
people to comply with the system requirements. 
Executive management effort is also needed to coordi
nate the many parts of the system and to insure that 
the designers are given the cooperation the system's 
eventual success requires. 

The system design is far too crucial to leave in the 
hands of technicians. The system will change the 
work methods of humans and will be dependent upon 
humans for proper functioning. This human element 
is. extremely important and certainly should not be 
ignored. Another reason for the involvement of top 
management is' that extremely expensive trade-off 
decisions must be made regarding acceptable levels of 
system performance, reliability, and capability. For 
instance, top management should not allow systems 
people to make the decision to spend $1 million an
nually to improve the response of the system by five 
percent. These are decisions for top management to 
make, based on recommendations from technical 
and operating personnel. 

Personnel 

The first problem confronting the project manage
ment will be that of finding qualified personnel to 
work on the system. Because OLRT systems are so 
new, there are not many people available with related 
expertise or experience. Yet because of the size and 
nature of such projects, it will be necessary to acquire 
a large number of programmers and analysts. It will 
be necessary to train these people in the· new. terms, 
new techniques and new hardware, all of which must 
be understood and integrated. into the design effort. 
In an application where present operating procedures 
are being computerized, it would be well to have 
people with a knowledge of present operating proce-

dures as members of the proj ect team. The importance 
of this team can be shown by Martin's statement 
that "no single effort is going to have more effect on 
the success of the system than the recruiting of the 
best possible programming team4." 

System design 

General consideration 

The next problem facing project management is 
that of system design. This is unquestionably the 
most difficult, yet most crucial phase of the system's 
life. What is done in this stage will have a tremendous 
effect on later stages and on the success of the system 
as a whole. Essentially the objective of this design 
effort is to design a system that will best meet the 
needs of all the users. This must be accomplished 
within the constraints of reliability, design time and 
cost. 

The reason the design phase is so critical in an OLRT 
environment is that all parts of the system must be 
integrated, and the shortcomings of anyone part will 
degrade the total system. For instance, regardless of 
the quality of the balance of the system, if the users 
cannot operate the terminals, the entire system is 
essentially worthless. Or if one channel of the central 
computer becomes overloaded, the performance and 
thus the value of the entire system will be affected. 

The first step in the design effort is to determine 
precisely what the system is to do-what applications 
are going to be converted. It is necessary to fully 
understand the information handling requirements of 
these applications. Having determined the particular 
applications for the system, there are three general 
considerations which must be evaluated to narrow 
in on the specific system configuration. These con
siderations simply provide a framework within which 
the more specific details of the system can be analyzed 
and determined. The considerations include: 

System Availability-Is the extent to which the 
system must make itself available to its users. How 
many hours per day will the system be required? What 
are the requirements in the event of system failure? 
Can the users somehow continue to function off-line 
or can they put off their work for some period of 
time? Perhaps it is crucial that the system always pe 
available; but, what· cost is acceptable to achieve 
total· availability? These. considerations all entail the 
system's overall capacity for performing the applica,.. 
tion processing in a prompt and satisfactory way 
throughout the period· in which processing is required. 

System Variability-Involves determining the long.., 



572 Fall Joint Computer Conference, 1970 

term volatility of the applications both in terms of 
volume and changed requirements. It is difficult to 
predict this volatility. The existing system is so differ~nt 
from the future system, that it does not even provIde 
a good base from which to project an estimate. Most 
applications will require modifications and expansion 
that, where at all possible, should be anticipated and 
planned for when the system is designed. 

Communication Characteristics-Is related to the 
above two considerations and involves such questions 
as how geographically dispersed will the terminals be, 
or what speed of response will be required. Analysts 
must also determine if there are peaks or cycles, both 
in terms of, the volume of data transmitted and in 
terms of response time requirements. If such peaks 
exist, they present a dilemma to system designers, who 
must decide on the appropriate capability level for 
the system. If the system is designed with enough 
capacity to provide for the peaks, this capacity will 
not be utilized much of the time and will thus represent 
an unnecessary expense. On the other hand, if the 
system's capacity is far below that that the peaks 
demand, the syste,m may become so overloaded during 
periods of high activity that deteriorated performance 
renders it useless. Therefore, at some level, a com
promise must be made in terms of minimizing expenses 
while at the same time providing adequate system 
performance. 

The system design will probably be an iterative 
process in which it is recommended that durin~ t~e 
first phase the complexity of the design be held WIthIn 
manageable bounds. In later phases, the more sophisti
cated features can be added. The largest constraint 
will probably not be hardware considerations, but 
rather, the complex programming that will be neces
sary to achieve the desired results. It thus becomes 
important that the system design team be aware of 
the factors that contribute to the cost and complexity 
of the system in order that, where possible, these 
factors may be taken into consideration. 

There are several specific design factors which are 
pertinent in the design of an OLRT system. These 
factors are by no means autonomous and somehow 
must be integrated and balanced to optimize the 
system in terms of overall performance and cost. In 
addition, because this paper is primarily devoted to 
OLRT systems requiring human interaction, the 
aspects of man-machine interface are very important. 
This topic will be covered in depth in the last section 
of the paper. However, man-machine considerations 
will also be discussed where they specifically affect 
other facets of the system design. These other facets 
include such things as the design of, the data base, 
the terminals and' system scheduling all of which 

will be discussed independently. It is important to 
keep in mind, however, that they are all interrelated 
and that each affects the overall system design. 

Data base 

This design aspect entails the physical and 'logical 
organization of the data within the system. In an 
OLRT environment, data base design is particularly 
important due to the response time requirements and 
the typically large amount of data involved. . The 
general objective of the data base designers is to 
optimize the following interrelated features: (1) 
mInImIZe the access time to get information, (2) 
maximize the ability of the system to respond to 
questions both planned and unplanned, and (3) 
achieve the above two features with the least overall 
cost. Man-machine considerations will undoubtedly 
impact the acceptable limits for the first two objectives. 
In addition, for applications where the machines 
must interact with untrained users or must interact 
on a broad spectrum of topics, the data base designers 
might want to enable the user to converse with the 
system without having to translate his requirements 
into codes or very specific formats. However, while 
such free form formats will improve the user's ability 
to interact with the computer, it will significantly 
affect the system because of the need for special 
software to interpret the input. The design team must 
be acutely aware of the particular needs of those 
using the data base. It must plan for expected needs 
of these and future users and the expected increase 
in volume of additions/deletions and inquiries to the 
data base. There are several packaged data base 
management systems available (like TDMS, IDS, 
IMS) which designers would do well to investigate 
concerning the applicability of these systems to their 
needs. If such systems are appropriate, their imple
mentation will obviously eliminate a tremendous 
amount of programming. However, systems perform
ance should not be sacrificed to achieve such initial 
economy. Designers must devote special emphasis to 
the data base portion of the design process because 
of the tremendous effect this design can have on the 
performance of the total system and on the ability 
of humans to readily interact with the system. 

Scheduling 

This design problem is especially crucial in a time
sharing system but, depending on the applications 
involved, can be very important also for any OLRT 
system. The problem is that the scheduler must be 



Management Problems Unique to On-Line Real-Time Systems 573 

established beforehand to determine how the com
puter is to service the terminals and how it is to carry 
out the necessary computations. Essentially the 
objectives of the scheduler are to: 

1. Minimize the average response time and the 
number of users waiting. 

2. Recognize the users importance and the urgency 
of the request. 

3. Serve the users in a fair order and limit the 
length of the wait. 

Some of the possible scheduling methods include: (1) 
first come-first served, (2) round robin (the many 
users get small slices of time until their job is com
pleted), and (3) a priority system, where users get 
quantums of time depending on the size of their job, 
their priority level and system activity. The disad
vantage of the first come-first served method is that 
users with very short jobs have to wait as long as a 
person with a large job. The round robin method 
would resolve this problem by completing the short 
job in the first time slice and thus reducing waiting 
time. As a general rule, the round robin method is 
more beneficial than the first come-first served when 
the amount of computation required is uncertain.6 

Here again, the particular scheduler used will be 
affected by the requirements of the human users and 
the desired performance of the entire system. 

Data cOInInunications 

Due to the nature of OLRT systems, it is necessary 
to transmit data over communication lines. In the 
great majority of applications, this necessitates using 
common carrier's lines, which immediately poses a 
problem for managers-that of coordinating the 
design and compatability of the system with another 
vendor. New hardware is also introduced, whose 
capability and compatability must be understood 
and implemented. The problem is further complicated 
by the fact that these communication vendors have 
a whole new set of "buzz-words" like bauds and 
duplex lines which must be comprehended. Also, in 
order to design an economic and efficient communica~ 
tion network, it is crucial to understand the various 
rates and facilities offered by the common carriers. 

TerIninals 

The introduction of terminals poses problems similar 
to those in data communications. Here a third vendor 
may be introduced, further complicating- the coordina
tion and compatability problem. Essentially the 
selection of terminals involves, to one extent or another, 

three interrelated factors. These include: (1) the 
man-machine interface, (2) training of users, and (3) 
the physical design of the terminals. The first two of 
these factors will receive treatment later in the paper. 

Essentially the goal of the terminal designer is to 
design a terminal which will best enable the user to 
interact with it, will require a minimum amount of 
training, and will not have a significant detrimental 
effect on the cost or response performance of the 
system. That is obviously a large order. The trade-offs 
essentially involve the initial cost of the terminal 
and the ease of use of the terminal in a specific applica
tion. The initial cost may be reduced by utilizing an 
"off the shelf" all purpose terminal, which is tailored 
to meet the user's needs. It is usually the case, how
ever, that such terminals will involve extensive training 
for the users and will not achieve the ease of use level 
that is best if humans are to readily utilize the hard
ware. The other alternative is to utilize terminals 
that are specifically designed for the particular ap
plication. This will· make them easier to use and thus 
reduce training requirements, but it will increase the 
cost of the terminals. Some basic recommendations 
based on past experience are: 

1. Keyboards should be optimally designed to 
provide the user with a choice of relatively few 
options at any step in the solution process. 

2. Where feasible, the user should be provided 
with tags or plates which contain information 
familiar to the user and the coded representa
tion of that same information. These codes 
must be recognizable by the computer and 
easily scanned at the point of origin. 

3. In instances where the input data must be 
entered by typewriter type keyboards, it is 
essential to provide a means by which the 
user can visually verify and correct the data 
before it is entered into the processor. 

Also important in the physical design of terminals 
are security factors. Such things as whether audit 
purposes will require a hard copy of all input and 
output data, or whether the keyboard might have to 
be physically locked to prevent unauthorized users 
must be considered. The designers will also have to 
determine if they want the terminals to be able to 
perform some functions off-line in the event of system 
failure. 

Failure 

A very Important consideration throughout the 
design process is that of minimizing both the chance 



574 Fall Joint Computer Conference, 1970 

of the system malfunctioning and the overall effects 
of such a malfunction. It should be obvious that an 
OLRT system on which many people are relying for 
information has some very stringent reliability require
ments. In addition, because much, or in some cases 
all, of the information pertinent to a firm's operations, 
is contained in this system, its security requirements 
-in terms of information being available-are very 
high. The hardware reliability problem is usually 
solved by duplexing or duplicating the equipment. 
Depending on the need for reliability, the entire 
system may be duplexed or more simply, various 
modules may' ,be replicated. In an airline reservation 
system, for example, the entire CPU is duplexed to 
permit back-up. An example of a duplexed module 
is IBM's 2314 disc drives on which one spare drive 
is available in the event of failure. These precautions 
obviously greatly add to the cost of the system and 
thus reliability design involves some important trade
off decisions. Usually in cases where the CPU is du
plexed, the spare unit is kept busy doing batch process
ing, but is ready to be switched over in the event of a 
failure to the real-time system. The ability to process 
while serving as a back-up helps somewhat to alleviate 
the reliability expense. 

The reliability or security of the data base is also 
assured by duplication. This is usually accomplished 
by systematically storing a duplicate of every record 
in a file' in a slow and inexpensive storage ... device, 
usually magnetic tape. To complete these security 
precautions, it is necessary to maintain a record of 
transactions occurring between the transcriptions. In 
this way, if a disc is accidentally erased, the previous 
status of the file can be taken off a tape and the sub
sequent transactions affecting this file can be re
created from. the transaction record mentioned above, 
thus bringing the disc file up to its former status. 

Assurance of reliability is not as simple as duplexing 
operations. There are extremely complex software 
routines which must be written to detect pathological 
conditions. In such an event, the system automatically 
switches to another unit: or informs the operator that 
suchan operation is necessary. However, before the 
switch is enacted, the status of transactions within 
the failing system must be determined and transferred 
to a spare system or module. Often times OLRT 
systems are designed to "fail softly'''. This occurs in a 
situation where only one component. of the system 
fails. Rather than interrupting service entirely,. the 
system modifies its mode of operation and will con
tinue to carry out the critical jobs, but will give a 
degraded form of service. This is called "graceful 
degraqation", rather than total s);stem failure. 

In. the. event of total failure, the users should be 

notified immediately so that they can convert to 
bypass procedures. I t is important that system de
signers have such a set of procedures established so 
that users can continue to conduct their business. 
Terminal operators might function by utilizing operat
ing information which is periodically given to them 
or they might have a central office to phone to get 
critical information. Just as it is important to plan 
for failure, it is also important to plan methods to 
enable the computer system to update its records 
with the transactions that occurred while it was 
down. 

The duplication of data files is complicated in an 
environment in which they must constantly be available 
for update and inquiry. Here software must be written 
to momentarily lock-out-not permit access to-small 
portions of the data base and during this time, the 
data is copied and subsequent transactions monitored 
to facilitate re-creation if necessary. These procedures 
will minimize the effect of errors due to (1) electrical 
or mechanical failure of hardware . units, and (2) 
accidental erasure of . memory through hardware or 
software error. Another cause of failure-physical 
damage by disaster-must be planned for. In many 
installations, the tape copies of the data base are 
physically stored at another location to minimize the 
chances of destruction in event of disaster. Basic 
safety precautions i.e., fire door and alarms and 
moisture alarms, are of course, important to minimize 
the chances and effects of major disasters. Insurance 
is a must, but the amount must be evaluated based 
on cost and the probability of various types of disasters. 

Security 

The security of the system mentioned above per
tains to the security of the data once it is in the 
system. Also important, is the assurance of correctness 
of the data base. This assurance is especially critical 
in a real-time system because users. are relying on 
the information to make immediate decisions. If the 
data are in error, many potentially bad decisions may 
be made before the error is discovered. On the other 
hand, the data in the system are more difficult to check 
because they come in directly ·from many remote 
locations. Thus these inputs must be edited by pro
grams and any incorrect or unrecognizable data re
jected and the sender notified. 

I t is also essential that the data base and the trans
actions be auditable. CPA's, internal auditors and 
other audit agencies will want to review not only the 
files and the transactions, but· alsQ .the programs that 
are being used. The possibility of auditing around 



l\1anagement Problems Unique to On-Line Real-Time Systems 575 

the computer in such configurations is essentially nil. 
Therefore, the system must provide the necessary 
trails and documents to satisfy the auditor's require
ments. 

A final area of required security is that of insuring 
that the data base cannot be altered or addressed by 
unauthorized persons. This is especially important in 
time-sharing systems, where controls must be present 
to preserve the security of proprietary information. 
The problem is typically handled in two ways. First, 
terminals may require a special key or badge or code 
to activate them. Secondly, the system software may 
allow only input from certain terminals. Another 
feature like memory protect may be used to allow 
only certain portions of memory to be accessed from 
some terminals. 

It should now be obvious that there are a vast 
number of interrelated factors which will affect the 
design of an OLRT system. Essentially the problem 
confronting system designers is to tie all these factors 
together and devise a system which is an optimum 
compromise between financial practicality and operat
ing perfection. As of yet, there is no general mathe
matical procedure which can be followed to achieve 
this compromise. Such tools as simulation, however, 
'have proved very helpful. The problem with simulation 
is that much of the data needed for simulation are 
not available until the system to be simulated has 
been designed and put into operation. Therefore, the 
initial design may best be done by trial and error .and 
simulation used to refine the system. In this way the 
affects of any design changes can be investigated. On 
the other hand, if simulation is used early in the 
design phase, many of the facts will not yet be known 
and thus the designers must revert to judgment and 
intuition. Extreme caution must be utilized in this 
situation, to insure that the inputs are reliable or the 
GIGO (Garbage in-Garbage out) theorem will come 
into effect. Thus if properly utilized, the benefits of 
simulation will offset the time and expense necessary 
to design and utilize it. This technique will also require 
designers to take an organized approach to system 
study and will help to insure that no important factors 
have been overlooked. It is also a useful tool to assist 
designers to plan for future hardware needs. 

Hardware selection 

The selection of hardware to use in the real-time 
environment is, for the most part, a technical matter. 
There are some factors, however, for non-technical 
managers to be concerned about. The first of these is 
the ability of the hardware to expand. OLRT systems 

have a marked tendency to grow and thus it is im
portant that the selected system can expand in terms 
of number of communication channels, size of internal 
memory and capacity of file storage. The most im
portant criterion in this selection process should be 
that of reliability. In this respect" it is important to 
analyze not only the amount of downtime- on pro
jected systems but the type, duration, and'distribu
tion of periods of downtime. In an OLRT system, an 
extended period of downtime is much more critical 
than several short periods, although several brief 
failures would certainly lead designers to question the 
reliability of the system. 

Modularity is a factor which is pertinent to both 
the expandability and reliability of the system. If 
the entire system is composed of many connected 
modules, capacity can be added in small units so as 
to reduce costs for excessive capacity. In addition, 
because most failures in a real-time environment are 
in one component of the system, modularity can 
assure reliability at a much lower cost. For instance, 
20-30 percent redundancy in a modular system buys 
the same reliability that 100 percent redundancy 
buys in a non-modular system. 7 However, connecting 
the operations of these modules does put an added 
burden on the system's executive routines. 

The hardware selection should -also be based on the 
knowledge and experience of the vendor in real-time 
applications. A very important factor, in this respect, 
is the amount and quality of real-time software the 
vendor has available. The data communications 
software and a real-time operating system entail a 
very large and complicated programming effort. Thus 
it greatly reduces the work load on the system pro
grammers, if the vendor has such routines available. 
The routines should be of proven quality and should 
provide an adequate performance level to meet the 
application's specifications. 

Programming 

Programming is by no means a consideration sepa
rate from system design. As mentioned, the designers 
should clearly assess the programming complexity of 
their design considerations. Aside from the technical 
programming problems in an OLRT environment, 
such programming also requires additional managerial 
capabilities of those in charge of the department. 
These needs are brought about by the main difference 
between programming an OLRT system and a batch 
processing system of similar complexity. The difference 
is that the former must be a tightly integrated and 
controlled piece of teamwork. Programmers are by 



576 Fall Joint Computer Conference, 1970 

nature an independent, creative group of workers, 
most of whom feel they need freedom to work. The 
programming team manager must closely supervise 
their activities, must control their creativity and yet 
must motivate them to solve difficult problems. The 
programming job is often very frustrating because 
even very minute changes can necessitate extensive 
modifications of the work already completed. 

Aside from these behavioral problems, programmers 
in an OLRT environment are exposed to a wealth of 
technical problems which they must work with and 
resolve. These problems are essentially: 

1. The use of terminal devices requires the pro
grammers to learn their operating characteris
tics. Programmers must send and receive 
special command characters to utilize the 
remote terminals and to control such things 
as keyboard shifts, carriage return and message 
marks. 

2. The problem of errors is especially critical in 
a real-time environment. Data errors must be 
dealt with in such a way that erroneous data 
are not allowed to enter the system. Yet the 
program response time must stay within the 
time constraints. 

3. The programmer must adapt himself to the 
somewhat different characteristics of the com
puters used in OLRT configurations. 

4. The data that programmers work with will be 
unusual. It will have control characters im
bedded, and will often be represented by a 
code structure different than the one used 
internally by the computer. 

5. Programmers must be especially cognizant of 
testing, storage and timing considerations unique 
to terminal oriented systems. 

Programming managers can greatly alleviate their 
problems by dividing the entire system into semi
autonomous sub-systems. If the division is properly 
handled, the number of interactions between programs 
and programmers can be reduced. Once this is achieved, 
however, input/output formats among programs must 
be standardized and rigidly adhered to. A standard 
procedure should be established which programmers 
should follow if they believe a change in the system 
is necessary or desirable. No changes, however minute, 
should be allowed without following this procedure. A 
special control group may be established to coordinate 
and evaluate suggested changes in formats and to 
decide on changes and communicate these to the 
parties affected. 

Training of users 

Training of the user in a real-time environment is 
crucial for essentially two reasons. First, most of the 
raw data in the system are provided by personnel 
with other operating responsibilities. For instance, 
the airline clerk is concerned with selling tickets, the 
production worker is involved with his assembly 
work, and the bank teller has a line of people waiting 
to be served. Thus it is crucial that these people are 
trained to easily, yet accurately, input the data into 
the system. As noted earlier, the physical design of 
the terminals, combined with proper training, will 
affect the user's ability to achieve the desired ease 
of use. 

Secondly, one of the basic purposes of providing 
an 0 LRT system is to enable user personnel to extract 
meaningful, timely information. Obviously if they 
are not properly trained to utilize all the features, 
the system is not going to provide the service or have 
the effects which its designers intended. Along the 
same lines, it has been found that many times the 
reason why people do not utilize new equipment is 
that they are unsure of their ability to operate it. 
To solve these problems, many OLRT users have 
connected terminals to small test computers, to 
simulate the system, and to enable users to get experi
ence in the man-machine interaction environment. 
Another area where training is important is that of 
by-pass or off-line procedures when the system is 
down. Hopefully, the users will not have too much 
actual experience in this mode, so they will have to 
be periodically retrained on the proper procedures. 

System testing 

lVlany of the problems of OLRT system testing were 
alluded to in the section on programming. Essentially 
the complicating factor is the fact there are a large 
number of programs, software, and hardware features 
all interacting, plus an infinite combination of input/ 
output states. Thus it is difficult to systematically 
test all these interactions and combinations. In addi
tion, once an error condition exists, it is extremely 
difficult to go back and re-create the situation which 
caused the error. Despite these difficulties, the vitalness 
of the system to the firm's operations, requires that 
the system's reliability be fully tested-more so than 
other configurations. 

By far the most crucial element in OLRT system 
testing is to plan the system from the beginning so 
as to include all of the testing facilities which will be 
necessary. The hardware configuration should be 
planned in such a way as to isolate the causes of error. 
The preparation of testing facilities must be carefully 



Management Problems Unique to On-Line Real-Time Systems 577 

monitored to assure that they are finished and avail
able when the operational portions of the system 
are completed. Part of these testing facilities are 
programs to simulate the various portions of the 
system, such as the remote terminals. The more 
sophisticated these programs, the greater assurance 
designers will have of the reliability of the system. 
As an example of the amount of work involved in 
preparing these testing programs, Desmonde tells of 
an installation in which more than twice as much 
labor was expended in preparing utility programs 
and programs for testing and simulating the system, 
than was used in writing the operational programs. 8 

Robert Head outlines a recommended five step 
approach to the complete testing of OLRT systems. 9 

For the first step, the individual programs or packages 
of related programs are debugged and tested with 
simulated programs which duplicate more or less the 
functions of both the hardware and control programs 
with which the programs will be interacting. The 
second step is to test these programs or packages in 
conjunction with the control program. This satisfies 
the dual purpose of testing both the application pro
grams and the control program, if it was written or 
modified in-house. The third step is to supply simulated 
inputs from the multiplexor to determine the possi
bility of this device as a source of error. Also in this 
phase, the program packages are further combined 
into subsystems and the volume and variety of the 
input data is vastly increased to test the performance 
and overload characteristics of the sUbsystems. The 
fourth step is that of system testing. Here all the 
pieces are put together for a final integrated test of 
the entire system. Prior to this phase the terminals 
have been debugged from an equipment standpoint. 
They are now connected to the system in order to 
provide entries in a mix, a sequence, and a format 
and content that duplicates actual operating condi
tions. Also at this stage, the automatic switching and 
other "graceful degradation" software of the system 
should be checked. The final step has to do with 
evaluating not whether the system is capable of per
forming satisfactorily, but how well it is performing 
when measured against the functional or performance 
requirements. This acceptance testing should be an 
on-going process for the life of the system to ensure 
an efficient system organization and to provide suffi
cient lead time for system modifications necessitated 
by oversights in the initial design or . by load growth. 

Conversion 

The problems encountered in the conversion and 
implementation phase are not really too different 

from those in any large system conversion. One of 
the factors that makes this conversion crucial is that, 
unlike batch processing systems, once the cutover of 
a real-time system is accomplished, the user is fully 
committed, i.e., he has virtually no satisfactory way 
of turning back to his former system. For this reason 
and because of the huge sums of money involved and 
the typical disruptions such conversions cause, the 
implementation must be carefully planned and sched
uled and closely monitored. The SABRE system was 
implemented on a location by location basis and the 
designers recommend this procedure because it: (1) 
shortens the learning period at each location, (2) 
enables the firm to operate with only a small portion 
of its real-time functions undergoing a major change 
at anyone time, and (3) the remaining bugs in the system 
are eliminated before the entire company is relying 
on the system for its operation.10 

MAN-MACHINE INTERFACE 

The man-machine interface problem IS certainly 
pertinent in discussing the design of a computer 
system with which humans must interact. For this 
reason, the man-machine interaction issue has been 
discussed as a part of the design phase of an OLRT 
system. However, because of the complexity of the 
problem, the vastness of the questions involved and 
the extent of the still unexplored areas, this topic 
will be discussed in more detail in this section. The 
discussion will center upon what are the causes of 
the problem and some general rules that have been 
established to deal with the man-machine interface 
problem. 

Sackman gives an indication of the complexity of 
the problem by his statement that "the most difficult 
and vexing problems in an OLRT system are not in 
the maze of hardware or the intricacies of the software, 
they are in the enigmatic nature of the human users."ll 
This issue of man-machine interface is by no means 
a new one. For a long period of time, our society has 
had machines which are highly analogous to man's 
muscle and yet controlled by man's brains. In recent 
times, we have developed information processing 
machines that are in many ways functionally equiva
lent to man's brains. 

In an OLRT environment, users are interacting 
with the system in two different contexts. In the 
first, the information processing machine is inter
acting with man's muscle or essentially the machine 
is telling man what to do. Examples of such systems 
include: (1) the space program in which information 
is processed by machines and men are told which 



578 Fall Joint Computer Conference, 1970 

functions to carry out, and (2) airline ticket agents 
that are informed by the system whether or not to 
write a ticket for a specific flight. The second context 
is where the information processing machine is inter
acting with man's . brain. In this instance, the man
machine interface is extending and augmenting human 
thought. Here the ability to completely and readily 
communicate is much more crucial, yet much more 
difficult to achieve. 

The objective of those concerned with the man
machine problem is essentially to design a system 
that will most effectively take into account the limita
tions and talents of both man and machine. It is 
important to realize that the human factors are in 
certain respects diametrically opposed to those of 
the computer. The respective talents and limitations 
we must account for are the reliability, speed, and 
accuracy of the computer and the intelligence of man. 
Intelligence is the ability to learn or understand from 
experience and as a result the ability to respond 
favorably in a changing environment. Therefore, the 
system must not only utilize the talents of the com
ponents involved, but must also enable the human 
user to readily and comfortably interface with the 
machine to offset his limitations with the talents of 
the computer. This interface gives rise to many ques
tions such as: How fast a response from the computer 
does the user need for different types of tasks? How 
much variability in computer response time can the 
user tolerate? How concise or redundant should man
computer communications be? What are the optimal 
languages for man-computer communication? What 
sort of feedback should users receive from the com
puter for various classes of human and system errors? 
How can the system help the user when he gets into 
trouble? 

To answer these questions and to effect an inter
face, designers have essentially two variables with 
which to work-the system hardware and software. 
However, in dealing with these variables, designers 
must have some concept of what to expect of man. 
A knowledge of the underlying psychology and phys
iology of man is helpful in dealing with this problem. 

Some would argue that since man has great flexi
bility and can readily learn skills, he can ease the 
interface problem by adapting. The truth in this 
statement is not at all clear. Clearly there are some 
tasks man can never learn. He cannot for example 
reduce his reaction time below some limiting value 
on the order of 100 milliseconds. Some of the other 
limiting factors in a. man-machine interface include: 

1. The concept of information necessarily involves 
a choice of one from a set of alternatives. This 

necessity for discrimination however is far 
from the limiting factor. The ability of man to 
perceive changes is ever so much more acute 
than the ability to identify items in isolation. 
Professor George Miller has developed "the 
tale of seven plus or minus twO".12 This rule 
is that for most single perceptual dimensions, 
it is true that the average subject can perceive 
or can identify at most 7 ±2 stimuli presented 
on that dimension. Multidimensional displays 
can be used to improve this identity rate. 

2. The human reaction time limit mentioned 
earlier was for the most elementary tasks. 
For more difficult tasks, involving identifica
tion, reaction time increases linearly with the 
number of choices, unless the identified objects 
are drawn from a very familiar set such as 
letters or numerals. 

3. To maximize the information transmission 
speed across a man-machine interface, it is 
best to choose a large familiar alphabet. If 
this is done properly, rates up to 40 bits per 
second can be achieved. 

4. The rate of learning or the ability to identify 
from a set increases with the familiarity of 
the set. It is not always obvious from the 
physical dimensions of the stimulus what is 
familiar. However, objects or displays which 
are in habitual uSe often turn out to be good 
choices. Thus despite the fact that man is 
flexible, he is not infinitely so. Designers should 
take his limitations into account when designing 
systems. 

The essence of the man-machine interface is the 
dialogue which occurs between man and machine. 
This dialogue is very dependent on the language and 
hardware used, but also on the speed of response. 
Ideally the responRe should be rapid enough to not 
cause discomfort on the part of the user and to enable 
him to forget that he is sharing the system with any
one else. Thus the supervisor or executive is a critical 
factor for effective man-machine interaction. The 
executive or scheduler must strive to return an answer 
to short problems as quickly as the user can react. 
For longer' problems, where considerable computation 
is involved, the user is psychologically set. to endure 
delays. Therefore, the system should provide immediate 
turnaround for short jobs and push the congestion 
delays and thus variation in response time toward 
the "long-problem" end of the spectrum. Psycho
logically this makes the device appear more private 
and self-contained and lessens irritation due to delays. 

The man-machine dialogue also presents a language 



Management Problems Unique to On-Line Real-Time Systems 579 

barrier. Man's languages are imprecise and context 
orientated; computer languages are unambiguous 
with minimal context modification. Most users will 
generally be untrained in artificial languages precise 
enough to be interpreted unambiguously by com
puters. In addition, the computer processes information 
much faster than man can respond. Thus the interface 
requires translating and buffering so that the require
ments of both man and machine can be met. The 
translation can be facilitated by the development of 
problem-oriented or people-oriented languages which 
do not require specialized programming skills. 

Consoles must be designed to enhance the inter
action between man and machine. In deciding on the 
type of console, designers must determine the ad
vantages of the particular console with respect to 
ease of use, flexibility in format and content, and the 
achievement of man-machine symbiosis. Ease of use 
refers to the amount of special preparation required 
and will be affected by not only the console but also 
by the interface language used. Flexibility is simply 
the ability of the user to get what he wants in the 
form he wants. Finally, symbiosis relates to the ability 
of the user to hold a discourse with the machine. He 
must be able to talk back to it in his language in 
developing problem solutions. 

The interactive cathode ray tube consoles seem to 
best fulfill these requirements. Such terminals, often 
called graphic input/ output devices, should allow 
other than alphanumeric symbology. Some of the 
ones now in use provide capability for drawing, fol
lowing lines and curves, displaying shapes, and re
sponding by touch only. What is most important is 
that they facilitate information exchange between 
man and computer directly via graphics without the 
need for reducing all such exchange to words. 

CONCLUSION 

The essence of designing an OLRT system that meets 
the user's goals and that incorporates an effective 
man-machine interface is to achieve the proper balance 
between all the pertinent factors in the system. There 
are a multitude of considerations that must be inter
connected and blended in the proper proportion to 

realize the design goals. Control, coordination, and 
communication throughout the entire system design 
and implementation phase is thus extremely critical. 
But before this phase is initiated, designers must be 
fully educated on the various aspects of the system 
and must understand how these factors will interact 
to affect the eventual performance of the on-line, 
real-time system. The designers must not only face 
up to the technical problems involved but, even more 
importantly, must meet the behavioral problems 
stemming from the fact that OLRT systems involve 
human interaction. 

REFERENCES 

1 D KLAHR H J LEAVITT 
Tasks, organization structures, and computer programs 
The Impact of Computers on Management (C E Myers 
ed) The MIT Press Cambridge Massachusetts 1967 

2 R V HEAD 
Real-time business systems 
Holt, Rinehart, and Winston, Inc New York pp1-4 1964 

3 J GARRITY 
Top management and computer profits 
Harvard Business Review Volume 41 No 4 pp 6-13 
July-August 1963 

4 J MARTIN 
Programming real-time computer systems 
Prentice-Hall Inc Englewood Cliffs New Jersey p 368 1965 

5 R V HEAD 
pp 63-65 

6 W J KARPLUS (ed) 
On-line computing 
McGraw-Hill Book Company New Yorkp 891967 

7 Ibid 
p94 

8 W H DESMONDE 
Real-time data processing systems: introductory concepts 
Prentice-Hall Inc Englewood Cliffs New Jersey p 152 1964 

9 R V HEAD 
Testing real-time systems 
Datamation pp 42-48 July 1964 

10 R W PARKER 
The SABRE system 
Datamation p 52 September 1965 

11 H SACKMAN 
Computers, systems science, and evolving society 
John Wiley and Sons Inc New York p 79 1967 

12 G MILLER 
The magical number seven plus or minus two: some limits on 
our capacity for information processing 
Psychological Review Volume 63 pp 81-97 1956 





ECAM-Extended Communications 
Access Method for OS/360* 

by GERALD J. CLANCY, JR. 

Programming Sciences Corporation 
Natick, Massachusetts 

INTRODUCTION 

Installations utilizing OS /360 which wish to extend 
the operating system's use into a teleprocessing en
vironment all face a similar problem: How to prevent 
the significant waste of resources, particularly that 
of main storage, that inevitably accompanies a move 
from batch to on-line processing? QTAM organization 
normally utilizes one region (or partition) for its Mes
sage Control Program and one region (or partition) 
for each process, or application, program. Thus, the 
TP configuration becomes inordinately expensive due 
to resident core storage requirements, most particularly 
if the applications are low-volume oriented. An al
ternate approach, via the use of the BTAM facilities, 
requires much more extensive knowledge on the part 
of both system designers and programmers and may 
well generate more severe and complex problems. 

The Extended Communications Access Method 
(ECAM) was developed by Programming Sciences 
Corporation to meet this common problem and, ad
ditionally, to minimize the programmers' required 
knowledge of teleprocessing and to provide the instal
lation with dynamic operational control over its TP 
environment. 

MOTIVATION 

QTAM overview 

The Queued Telecommunications Access Method 
(QTAM)4,5 is part of the software communications 
support supplied by IBM under the MFT (Multi-

* This work was developed in part under contract to the United 
Aircraft Corporation. 

581 

programming With a Fixed Number of Tasks) and 
MVT (Multiprogramming With a Variable Number 
of Tasks) options of Operating System/360. It is similar 
to the other "queued" access methods, such as QSAM 
and QISAM, in that the application programmer is 
removed from the details of device dependencies. 
Under control of the QTAM Message Control Program 
(MCP), incoming messages are routed to specific in
put queues on direct access storage, as directed by 
message header information. To the application pro
grammer these input queues are very similar in ap
pearance to a QSAM sequential data set, with which 
the programmer is most likely already familiar. Even 
the accessing macros-OPEN, GET, PUT, CLOSE
are similar, differing only in minor detail. The only 
basic distinction which the programmer must take 
into account is the fact that the "end of data set" con
dition may only be a temporary one, occurring when
ever the program is active and a lull in incoming mes
sages for the application exists. 

When the programmer wishes to send a message to 
a terminal, he simply constructs the message in main 
storage, including a message prefix, and "puts" the 
message to his output "data set," which is referred to 
in QTAM as a "destination queue." The MCP retrieves 
outgoing messages in order from the destination queue 
and forwards them to the terminal. 

Systems considerations 

While QTAM eases the application programmers' 
transition from conventional batch data processing 
to on-line communications processing, the organiza
tion of QTAM raises numerous systems considerations 
for the installation, primary of which are the main 
storage requirements and the lack of a high-level 
language interface to QTAM. 



582 Fall Joint Computer Conference, 1970 

Main storage requirement 

A QTAM system is organized with the M CP residing 
in one partition (MFT) or region (MVT) and the ap
plication, or processing, programs in one or more other 
partitions or regions. There are at least three advantages 
to assigning each application its own partition or re
gion. First, the applications are protected from one 
another; second, the addition of a new application pro
gram or the deletion of an existing one in no way 
effects the operation of another application; and third, 
in the event that an application is abnormally ter
minated, the balance of the applications remain intact. 

The major disadvantages of assigning partitions or 
regions to applications on a one-to-one basis is that the 
main storage requirement can become prohibitive, 
perhaps requiring additional systems, and that ab
normal termination recovery is left to the o'perator 
rather than the system. The main storage requirement 
is particularly alarming in view of the fact that, in our 
experience, low-volume applications predominate in 
most QT AM installations, thus resulting in very in
efficient use of main storage. Consider for a moment 
the problem faced by an installation with five 40K 
applications, each of which handles 300 messages, on 
average, in an eight-hour, first-shift period. The total 
daily volume of 1500 messages can be handled with 
ease on a 360/50 or 360/65, with the bulk of CP time 
still available for background work. Yet, if each ap
plication is assigned its own partition or region, a total 
of 200K must be dedicated to the communications ap
plications. Double the number of applications or the 
size of the applications and a 512K system must be 
virtually dedicated after taking into account the 
residence requirements of the MCP and the Operating 
System/360. 

Even though CP time is available, it is conceivable 
that the residence requirements of the communications 
subsystem could severely inhibit the amount of back
ground work which could be executed. 

One alternative-assigning multiple applications to 
partitions or regions-therefore becomes attractive 
on the basis of more throughput per dollar expended 
for main storage. However, the questions of added 
application complexity, storage fragmentation of the 
parition or region, the effect of abnormal terminations 
on other applications and subsequent maintenance 
must be carefully weighed. It is precisely these con
siderations which were the prime motivation for the 
development of ECAM. 

Lack of HLL interface 

One additional installation concern is the lack of a 
high-level language interface to QT AM, which is sup-

ported only at the assembler level. This is of par
ticular concern to many commercial installations who 
have been accustomed to writing most of their batch 
applications in COBOL or a similar high-level lan
guage. The move to on-line processing may involve 
the hiring and/ or training of additional assembler
level programmers. In addition, the advantages of 
programming in the high-level language-decreased 
application development and debug time and cost
are lost to the installation. Such an interface is, there
fore, quite desirable. 

DESIGN OBJECTIVES 

The major design objectives of ECAM, then, were 
to provide: 

1. the capability for application programs to share a 
common main storage space in a manner trans
parent to the applications themselves; 

2. a high-level language interface to QT AM fa
cilities; 

3. automatic restart facilities in the event of ab
normal terminations due to specified conditions; 

4. the flexibility to reconfigure the application mix 
both statically and dynamically; and 

5. the capability to execute ECAM in multiple 
regions. 

In anticipation of the difficulties of debugging both 
ECAM and, subsequently, the applications in the 
on-line mode, it was also decided that ECAM would 
be able to simulate the telecommunications environ
ment in a manner that would be transparent to the 
applications and, for most purposes, to ECAM itself. 
This allowed most of the program checkout to be con
ducted in a batch mode and significantly reduced the 
test time which would have been required had testing 
been done via terminals. 

Constraints 

Two constraints were placed upon ECAM; no modi
fications were to be made to OS/360 and all ECAM 
code was to be totally re-entrant. Though several modi
fications were contemplated, the limited gains did not 
in our opinion warrant the risks inherent in performing 
such modifications. The requirement for invariant code 
was necessitated by the possibility that ECAM could be 
executed in several regions at once; this avoided the 
need to load more than one copy of the code. 

The choice of MVT, rather than MFT, for the 
ECAM operating environment was dictated by our 



desire to (1) dynamically manipulate application task 
priorities, (2) recover from abnormal terminations and 
(3) allow the asynchronous execution of the operator 
interface modules with the balance of ECAM. 

It was also our contention that the potentially sig
nificant main storage savings resulting from the use 
of ECAM could justify an installation's move from 
MFTtoMVT. 

STRUCTURAL CONSIDERATIONS 

The assumption that the main storage requirements 
of applications will frequently exceed region size was 
implicit to the design of ECAM. At first, we considered 
anticipating storage overrun by examining the main 
storage queues (PQEs, DQEs, SPQEs, etc.) of the 
OS/360 main storage supervisor, but this was rejected 
both because it would have made ECAM too sensi
tive to internal OS changes, and because it would have 
been a duplication of the OS effort. Instead, we decided 
to maintain a summary counter of the main storage 
in use by the ECAM complex at any given instant. 
This information, coupled with knowledge of the 
region size and the storage requirements of every ap
plication, parameters which are contained in ECAM 
control tables, enabled ECAM to avoid making re
quests (e.g., attach an application) which would ob
viously result in exceeding region size. However, this 
approach did not account for storage loss in the region 
due to fragmentation, thus making some abnormal 
terminations due to out-of-core conditions inevitable. 
It did, nevertheless, reduce their frequency to a more 
acceptable level. 

This inevitability of abnormal terminations and the 
necessity to recover from them dictated our design of 
the ECAM intertask relationships and led to a distinc
tion between task and queue priorities. Under MVT, 
the abnormal termination of any task also results in 
the abnormal termination of all of that task's subtasks 
as well. Thus, were ECAM to abnormally terminate 
when attempting to attach an application subtask 
(an implicit request for main storage), the entire 
ECAM complex would be terminated, including all 
currently executing application tasks, since the ECAM 
task is the highest-level task in the ECAM task hier
archy. In order to prevent this, the ECAM task always 
attaches an intermediate task (IT) whose sole functions 
are to attach and detach, when appropriate, the ap
plication subtask and to provide a two-way communi
cations path between ECAM and the application sub
subtasks. The code required for IT amounts to only 200 
bytes and, since the procedure itself is re-entrant, only 
one copy of the procedure is ever required, regardless of 

ECAM 583 

ECAM 

Figure l-ECAM task hierarchy 

the number of subtasks generated. The ECAM task 
hierarchy can then be represented by the tree structure 
shown in Figure 1. 

The structure illustrated has resulted from the arriv
al of two messages, one for processing by application 
Al and the other for processing by application A2• When 
a message is read from an input queue, it is examined 
to determine the name of the application which is to 
process it. ECAM then creates an intermediate sub
task and passes to that subtask both the name of 
the processing program which is to process the mes
sage and the location of the message. The IT task, 
in turn, creates the task for the application program 
and passes the message on to it for processing. ECAM 
then continues reading input queues until either region 
storage is saturated or the input queues are exhausted. 

Empty input queues 

In the instance when there are temporarily no more 
messages to be processed, ECAM sets a timer interval 
(the value of which can be altered by the installation) 
and enters a wait state for its duration. Though we 
would have preferred to wait on a list of events (the 
events being the arrival of additional messages to input 
queues), with anyone event satisfying the wait con
dition, the implementation of QTAM prevented this. 

QTAM provides the user with two options for the 



584 Fall Joint Computer Conference, 1970 

"no message" condition when requesting another 
message. The first option is to simply wait for a message 
to appear on the specific queue for which the request 
was directed. This alternative was unacceptable to us, 
since ECAM controls the reading of all queues and 
since the queue to which the next incoming message 
would be directed was not predictable. 

The second option provides for the transfer of control 
to a user exit routine on the "no message" condition, 
and it was this option which we chose to implement. 
The exit routine requests a message from the next 
input queue, again specifying the same exit routine, 
with the sequence repeated until all queues have been 
read without success. It is at this point that the timer 
interval is set. On its expiration, the entire process is 
repeated, including, if n.ecessary, the setting of another 
interval, until a message arrives at one or more of the 
input queues. The primary advantage of the algorithm 
is that it allows for background processing when the 
communications subsystem is idle. 

One additional problem was encountered here, al
though this time the situation was attributable to the 
OS implementation. OS/360 provides no means of 
passing input parameters to the timer exit routine in 
a re-entrant fashion. Thus, the timer exit routine itself 
had to establish address ability to the mainline ECAM 
control queues. This was accomplished by using the 
same searching technique as used by the OS super
visors, namely, by starting with the top of the OS task 
hierarchy (located via the "Old/New TCB" address 
vector in the Communications Vector Table) and 
searching for a Task Control Block (TCB) which points 
to a Program Control Block (PRB) containing the 
name "ECAMn". The n is used to distinguish between 
multiple instances of ECAM when the control program 
is being concurrently executed from several regions. 
When found, registers are loaded with the appropriate 
parameters from the register save area in the PTC. 
That the save area contains the correct parameters 
is guaranteed because ECAM never alters the general 
purpose registers containing them after initialization. 
The structure searched is illustrated in Figure 2. N or
mally, the first TCB encountered will be the correct 
one since the "Old" pointer represents the currently 
executing TCB, namely that for ECAM, which is 
executing the search. 

This search is the only OS-dependent routine in all 
of ECAM. However, its use was fully justified because 
the structure is basic to the design of the entire Task 
Supervisor of OS /MVT. Should the structure ever be 
altered so also will much, if not most, of the super
visor. As it happens, TCAM6, a new IBM access method 
to be released shortly, will eliminate the need for the 
timer exit routine. 

Task priority 

One of the reasons that MVT was chosen as the 
operating environment was so that ECAM could con
trol the assignment of task priorities within the com
munications subsystem. Exclusive of the QT AM Mes
sage Control Program, which runs in a separate region 
with the highest user priority in the system, there are 
three levels of priority within ECAM. The highest 
level is reserved for the exclusive use of the Operator 
Interface Task (OIT), the next lower level for the 
ECAM mainline task an.d all lower levels for applica
tion tasks. 

The OIT is the primary vehicle for effecting in
stallation control over the communications environ
ment. All operator-ECAM communication is per
formed via the primary operator's console, utilizing 
the Write-to-Operator and Write-to-Operator-with
Reply (WTO /WTOR) facilities of OS/360.3 The Opera
tor Interface Task was assigned the highest priority in 
ECAM complex to assure rapid response to installation 
requirements. The task consists of one overlay module 
with one 1158-byte root segment, which remains per
manently resident, and seven transient segments which 
average lI~O-bytes each. Only one transient is ever 
in main storage at any time and only when required. 
Their primary purpose is to interpret operator requests 
and schedule those requests for execution by ECAM. 

CVT 

~C_VT t---lf-/~ 
I 

rO_L_D_T_C_B_---t~ P RB 1 

NEW TCB 

~§ 
I 

,--T_C_B_2~ _____ ~ rRB:ame j 

Figure 2-Addressability search 



Application task priorities are assigned from an 
ascending relative scale of from 1 to 13 and can be 
assigned either staticalJy, prior to ECAM initializa
tion, or dynamically by the operator. The ECAM 
task is assigned priority level 14 and the Operator 
Interface Task is assigned priority level 15. All inter
mediate tasks are assigned the same priority as their 
related application task. 

Queue priority 

We felt it desirable to distinguish between task 
priority and queue priority. The former is normally 
assigned as a function of the I/O-boundness of a par
ticular task in relation to the other application tasks; 
i.e., for optimal throughput it is desirable to assign 
the highest priorities to those tasks which are I/O
bound and lower priorities to those which are more 
process-bound. However, the priority used for this 
purpose has no necessary relationship to the order in 
which input queues are serviced. Therefore, each input 
queue has associated with it a queue priority. Initially, 
it was intended to always return to the highest priority 
queue after servicing any lower priority queue, but 
this was rejected (prior to implementation) in favor of 
cyclic polling of the queues in order to e1iminate the 
possibility of not servicing one or more lower priority 
queues during periods of heavy message loading. 

Input queues are polled in their order of priority. 
Each queue is queried for the existence of a message 
and, if none exists or if the queue is "busy," i.e., a 
previous message from it is still in process, the queue 
is bypassed and the next lower priority queue is polled. 
If all the queues are either busy or empty,· the timer 
interval is set and, on its expiration, polling again 
commences with the highest priority queue. 

Assuming queue activity, as many application tasks 
are activated as possible to the saturation point of 
the region's main storage allottment. If and when this 
occurs, queue polling stops and special "quiesce" flags 
are set in control tables to indicate that a message has 
been read which cannot currently be processed. When 
one or more of the in-process tasks complete, the 
"waiting" message is then processed and the next 
lower priority queue read. 

ENVIRONMENTAL CONTROL 

One of the main objectives of ECAM was to provide 
as much flexibility as possible in controlling the com
munications environment. Five facilities have been 
provided which can be used both statically, prior to 
ECAM initialization, and dynamically, during execu-

ECAl\1: 585 

tion. These facilities are: 

-the ability to make application programs resi
dent or transient 

-the ability to activate or deactivate specific 
application processing 

-the ability to set and alter application task 
priority 

-the ability to set and alter input queue priority 
-the ability to multi-task a particular message 

type 

All five attributes-residence, state, task priority, 
queue priority and multi-tasking-can be predefined 
during ECAM generation, utilizing special macros 
provided with ECAM,t or dynamically, via the Opera
tor Interface Task. The time-of-day at which the com
mands are to take effect can also be specified by either 
means. A full description of the macros and the com
mand language, which conforms to the 08/360 operator 
command format, can be found in References 1 and 2. 

Residence attribute 

During ECAM initialization, the control tables 
which have been defined by the installation via the 
macro facility are loaded into main storage and the 
initial program attributes are examined. All programs 
which have been marked resident are loaded and 
permanent intermediate and application tasks are 
created for them, regardless of current input queue ac
tivity. Tasks for transient programs are created only 
when needed and detached (destroyed) when the 
storage they occupy is required by another transient 
program. Transients may subsequently be made resi
dent by the operator and resident programs can be 
made transient. 

It should be observed that the special case wherein 
all applications are resident is similar to the normal 
QTAl\1: organization without ECAM. The great dif
ference with ECAM, however, is the ability to dy
namically adapt the operating environment to the 
changing communication situation. For example, it 
is quite common to find several applications which 
have one or more abnormally high peak activity periods 
during the day. During such periods, which very often 
can be anticipated, the processing programs for those 
types of messages can be made resident, or given a 
higher priority, or both. This cannot be done if the 
applications run in separate regions in a normal QTAM 
environment. 



586 Fall Joint Computer Conference, 1970 

State attribute 

The state attribute provides the capability to shut 
down or turn on the processing of certain message 
types. There are several situations where this may be 
desirable: 

1. when there is no activity during periods of the 
day for these programs; and 

2. when the applications being shut down are of 
the data collection variety (i.e., requiring no 
response) and the main storage is needed to 
flatten out peak activity in other application 
areas. 

Task priority attribute 

In situations where the mix of application tasks 
which are active changes frequently in some definable 
pattern-such as a situation where applications A, 
Band C are active all day, but D and E are active 
only from 1 :00 to 5 :00 P.M.-it may be desirable to 
alter the priorities of some of the tasks to reflect the 
new I/O-process ratios. The change of priority is ef
fected by ECAM via the CHAP ( Change Priority) 
supervisor service call of OS/MVT.3 

Queue priority attribute 

As mentioned previously, this attribute determines 
the order in whicn the input queue is queried relative 
to all the other input queues. When a request is made 
to alter the priority of an input queue, the ECAM 
control table linkage is resorted to reflect the new pol
ling order. 

Multi-tasking attribute 

This feature provide~ the ability to concurrently 
process messages of the same type. Multiple tasks are 
created by ECAM for all applications with this attri
bute. Although not necessary, it is desirable to code the 
application in a re-entrant manner so that only one 
copy of the module is required. Serialization control 
is provided by ECAM on input queues containing seg
mented messages, but greater efficiency is possible if 
messages are not segmented. 

Other facilities 

Two other facilities were incorporated into the design 
ECAM. The first, the Test attribute, will be discussed 

under environment simulation later. The other feature 
is the capability of having ECAJ\1 control the opening 
and closing of the application's non-communications 
files as well as the communications input and output 
queues. This capability is particularly important for 
the transient appJications, since the OPEN and CLOSE 
functions for auxiliary disk and tape files can contrib
ute as much as one or two seconds to the total response 
time in inquiry/response applications. If these func
tions can be separated from the application itself, 
these files need only be opened when the application 
is activated and closed when deactivated-not every 
time the application is loaded into or leaves main 
storage. A secondary benefit may be a reduction in 
both disk arm contention. 

ABNORMAL TERMINATION RECOVERY 

There are two main classes of abnormal termina
tions which may occur: those which result from ECAM 
requests for more contiguous storage than· is currently 
available in the region, and those caused by the ap
plication programs themselves. 

Storage requests 

As was indicated earlier, terminations due to ex
cessive storage requests are expected by ECAM. The 
amount of available space left in the region is always 
known by ECAM and, therefore, a request which 
exceeds the total available at any instant is never 
made. However, we chose not to keep track of the 
fragmentation of the region, which is caused by ap
plications of varying sizes, since this is a normal OS/ 
360 function. 

Such terminations occur when the Intermediate 
Task attempts to attach the application subtask, and 
ECAM detects it from the condition code which is 
returned by the operating system to the "mother" 
task of the terminating subtask. In this case, ECAM 
is the "mother" task and the Intermediate Task is 
the abnormally terminated task. It should be noted 
that at this point a message has already been read 
into main storage. ECAM saves the location of the 
message and sets both a termination and quiesce flag, 
the former to indicate that the application for the 
message in question is the next to be executed when 
storage becomes available, and the latter to indicate 
that transient applications are to be removed from 
storage, one by one, as they complete processing of 
their current messages, until such time as enough 
storage becomes available. As each transient completes 
processing, it is detached and another attempt is made 



to attach the application which started it all. If an
other abnormal termination results, the entire process 
is repeated. Eventually, it is guaranteed that enough 
storage will become available, although it may be 
necessary to quiesce every transient. 

The installation can minimize the effect of frag
mentation by designing and coding applications of 
uniform size. If necessary, modules can be padded 
with blanks if they are under-sized, or link edited in 
overlay with equal-size segments. If this is not possible 
in all cases, application sizes should be in exact mul
tiples of each other, for example, 40K, SOK and 120K. 

A pplication terminations 

Some application terminations are inevitable and 
although most cannot be anticipated, some can. For 
those that can, ECAM allows the installation to specify 
for each application up to four abnormal condition 
codes, upon the occurrence of which the application 
will be restarted. Abnormal termination due to an 
"out-of-core" condition (CC = 80A) is automatically 
considered a restart condition. In all cases of abnormal 
termination, the operator is notified of the condition. 
Those applications which terminate due to non-re
startable conditions are flagged and made inactive. 
A subsequent request by the operator that day to re
activate the application will result in an "Not Re
startable" error message. 

ENVIRONMENT SIMULATION 

One of the great disadvantages of debugging in an 
on-line environment is that it requires input from a 
terminal, or set of terminals, which may be quite re
mote from the computer center. This cannot only be 
costly, but a very slow and painful process as well. In 
order to facilitate the development of application pro
grams, ECAM provides the installation with the ability 
to debug programs using sequential input from tape or 
disk, while checking out the EGAM interface as well. 
This state is communicated to ECAM by indicating, 
via the macros provided, that the program is in a Test 
rather than Production state. When the program is 
activated, ECAM opens a QSAM file rather than a 
QTAM input queue and a SYSOUT printer file for 
output messages. All of this is completely transparent 
to the application programs. Later, when the program
mer feels that the application is bug-free, all that is 
necessary to do to make it operational is to reset the 
Test/Production attribute flag. 

ECAM 587 

HIGH-LEVEL LANGUAGE INTERFACE 

ECAM was developed primarily for COBOL in
stallations. The move from a batch to an on-line opera
tion utilizing QTAM requires either that processing 
programs be written in assembly language or that 
COBOL interface modules be written in assembler 
language to provide the necessary QTAM I/O func
tions. ECAM provides these interface facilities. The 
standard OS/360 calling sequence is used so that the 
application can be written in any OS-supported lan
guage, including FORTRAN and PL/I. In addition, 
in order to facilitate the processing of messages by 
programs written in COBOL, the record/segment 
length field in message headers is converted from a 
binary toa decimal value on input and the reverse 
way on output. The specific interface is detailed in 
Reference 1. 

OPERATIONAL CHARACTERISTICS 

ECAM has been operational since early 1969 in a 
large aircraft industry installation, running in a 114K 
region on a 360 Model 50, using 2314 disk storage, 
which is shared by two CPU s. The number of pro
cessing programs has increased from the original 
three to ten, all of which are inquiry/response appli
cations, with nine programs averaging 40K in size and 
the tenth 80K. Approximately 4,000 messages are 
handled daily with a considerable amount of back
ground work, though background throughput is de
graded. Response times vary from 3 seconds or less 
to a worst case of several minutes. The average re
sponse time, however, is within 3-7 seconds for most 
applications. 

I t should be noted that in the absence of ECAM or 
some similar control program, the ten processing 
programs, currently running in 114K, would have 
normally required 440K of main storage were they to 
operate concurrently. The main storage overhead 
required for ECAM itself is approximately 12K, with 
no applications specified, and approximately 15K, with 
six applications being driven by six input queues. 

Future modifications are currently under considera
tion, but a careful analysis of ECAM behavior under 
varying conditions is necessary before they are im
plemented. Among those modifications under consider
ation are the implementation of a priority input queue 
polling sequence, the addition of a data base language 
facility and inter-region communications facilities. It is 
also anticipated that ECAM will be upgraded to operate 
in a TCAM environment. One primary advantage of 
doing so would be the elimination of the timer exit 
routine, as TeAM provides a multiple-wait facility. 



588 Fall Joint Computer Conference, 1970 

In conclusion, I must add that perhaps the greatest 
personal reward we had. in designing and implementing 
ECAM is that it did all it set out to do. There is little 
that is revolutionary about ECAM; it was designed 
to plug a known gap in communications processing 
and this it appears to have accomplished. It is to be 
hoped that "fourth generation" software will auto
matically provide most of these facilities. 

ACKNOWLEDGMENT 

Without the efforts and dedication of two colleagues, 
ECAM could not have been implemented. The author 
is indebted to Mr. Richard Dempsey, of Programming 
Sciences Corporation (PSC), for the implementation 
of the operator interface modules, some seven in all, 
and for the generation of the user macros. I must also 
thank Mr. Richard Loveland, also of PSC, for his 
evaluation studies and subsequent improvements to 
ECAM, as well as for his most welcome help in the 

generation of test data. To both, I must extend my 
gratitude for their aid in both the intermimable de
bugging process and in producing the documentation 
for the system, much of which was used as input to 
this paper. 

REFERENCES 

1 ECAM programmer's guide 
Programming Sciences Corporation 

2 ECAM operator's guide 
Programming Sciences Corporation 

3 Operating System/360 supervisor and data management 
services 
IBM Corporation Form no GC28-6646 

4 08/360 queued telecommunications access method message 
control program 
IBM Corporation Form no GC30-2005 

5 08/360 QTAM message processing program services 
IBM Corporation Form no GC30-2003 

6 08/360 planning for the telecommunications access method 
(TCAM) 
IBM Corporation Form no GC30-2020 



Programming in the medical 
real-time environment* 

by N. A. PALLEY, D. H. ERBECK and J. A .. TROTTER, JR. 

University of Southern California School of Medicine 
Los Angeles, California 

INTRODUCTION 

The Shock Research Unit (SRU) is a specialized clinical 
research facility developed for the triple purposes of 
rendering intensive care to seriously ill patients, study
ing underlying mechanisms of the disease process of 
circulatory shock, and developing new technologies for 
evaluating the status and treatment of seriously ill 
patients. 

A computer system for monitoring patients was de
veloped at the SRU in 1963.1 Based upon the experience 
with the initial system over a five year period, new 
specifications for a system were developed.2 This new 
system has been implemented and is now in routine 
use in the two bed Shock Research Unit at Hollywood 
Presbyterian Hospital in Los Angeles. Figure 1 shows 
one of the instrumented beds. The major goal of this 
research project is to automate the critical care environ
ment and, since the facility is supported by a federal 
research and development grant, patients are not 
charged for services. 

The computer must· simultaneously acquire data, 
control many processes in the ward and manage the 
retrieval and display of information on both the current 
and prior status of the patient. The adoption of the 
general purpose digital computer as an accepted tool 
in clinical-medical practice has lagged far behind the 
predictions of several years ago. Hospital information 
systems, including off-line analysis of patient data, still 
constitute the major applications of computers in clini
cal facilities.3 Most patient monitoring in the recently 
developed specialized Coronary Care and Intensive 

* The research programs of the Shock Research Unit are sup
ported by grants from the John A. Hartford Foundations, Inc., 
N ew York, and by the United States Public Health Service 
research grants HE 05570 and GM 16462 from the National 
Heart Institute and grant HS 00238 from the National Center 
for Health Services Research and Development. 

589 

Care Units, is performed by special purpose analog 
devices. 

As in many other computer applications areas, there 
is an ample selection of available digital hardware 
adequate to the patient monitoring task. Interface 
hardware including transducers, pre-processors, auto
mated chemical analyzers and display devices of the 
required capability and reliability are now becoming 
available. The software interface remains the major 
barrier to clinical acceptance of the digital computer. 
It is not the programmer who will utilize patient 
monitoring system, but the physician, nurse, and lab
oratory technician. They may not appreciate the com
puter system's complexity nor forgive its idiosyncracies.4 

A major effort ~t the Shock Research Unit has been 
to make the computer system transparent to the clinical 
staff and to the medically-trained occasional pro
grammer. In all interactions between the clinical staff 
and the computer system elaborate and unnatural 
coding schemes are avoided. All instructions, lists, and 
alternatives are displayed by the computer at the bed
side with computer jargon replaced by medical jargon. 
Often computer system efficiency must be traded for 
this improvement in the physician's or nurse's under
standing and acceptance of a procedure. 

General system description 

The primary monitoring functions are accomplished 
by analog transducers attached to the patient which 
directly sense physiological activity. 5 The resultant 
electrical signals such as ECG, arterial and venous 
pressure wave-forms, are amplified and displayed at the 
bedside on a multi-channel oscilloscope. Analog signal 
conditioners perform some pre-processing including the 
derivation of the heart rate and detection of the R-wave 
from the ECG signal, and of respiration rate from the 



590 Fall Joint Computer Conference, 1970 

Figure l-An instrumented bed in the Shock Ward showing the 
placement of displays and controls 

venous pressure signal. The outputs of these con
ditioners and amplifiers are passed to a multiplexer and 
A/D converter. In some cases, as in the reading of 
temperatures, a single point analog read suffices and the 
rugital processing consists in multiplying the converted 
voltage by the proper factor. The derivation of other 
parameters such as systolic and diastolic pressures, and 
left ventricular dp/dt involve more complex digital 
procedures. The output of laboratory test devices, now 
in various stages of automation, for the monitoring of 
blood chemistry values, such as P02, PC02 and pH, 
are also input as analog signals. Another category of 
monitoring functions includes cardiac output6 and blood 
volume determinations, the latter being calculated from 
the dilution of radio-active tracers in successive patient 
blood samples. 

Automatic monitoring programs are run at a fre
quency which is a property of the particular program 
and varies from once a minute for heart rate to once 
every 15 minutes for temperatures. Other programs, 
such as those involved in the determination of cardiac 
output, are called up by use of the keyboard as needed. 

Monitoring, analysis, and display of current patient 
parameters is in itself an important task. However, if 
this were the only function the system were called on 
to perform, a sufficient number of special purpose 
analog devices would serve as well. The ability to store 
the monitored data in highly structured form, to 
retrieve, manipulate and display the stored data in a 
variety of modes and post facto rearrangements pro
vides one of the justifications for the use of a digital 
system. 

An elaborate alarm system is under development 
which makes extensive use of the patient data file. 7 

The system employs multivariate statistical techniques 
. to. examine the simultaneous values of seven physio

logical variables and compares them to equivalent sets 
monitored 5, 15, 30 and 60 minutes previously. Esti
mates are calculated on the probability of occurrence 
of these sets of values and changes, and the system 
reports unusual changes to the ward staff. In addition, 
critical processes, such as the infusion of fluids and 
medication, may be automatically halted. 

The patient monitoring system, as implemented, uses 
an XDS Sigma 5 computer with a core memory size of 
24K, 32 bit words. This Elystem utilizes standard XDS 
peripherals including digital I/O, A/D converter, D/ A 
converter, a 3 million byte fixed head disk drive (RAD), 
2 seven track tape drives, line printer, card reader and 
5 keyboard displays. Other devices include an incre
mental plotter, storage oscilloscopes, and an alpha
numeric TV display system. Those devices which allow 
information to flow between the ward and the computer 
are shown schematically in Figure 2. 

Data are obtained from the analog and digital inputs, 
and from the keyboard displays. Once collected, pro
cessed and stored in a patient's file on the disk, they are 
retrieved and stored or displayed on a variety of devices 
serving distinct purposes. Depending upon the device, 
this is done either automatically (scheduled) or upon 
request. Most communication between the medical staff 
and the computer is conducted through the keyboard 
displays. From these devices the ward staff can start 
monitoring procedures, store textual data, can for 
computation and analysis of the patient data, and 

ANALOG DIGITAL 

INPUT'" SIGMA e ... INPUT 
OUTPUT'" PROCESSOR -'OUTPUT 

tll~~"\'" 
LI 

usc ..... lIN., 

Figure 2-Schematic diagram of the devices which provide 
communication between the· ward and the monitoring 

system 

R 



MENU 

~MTER 8EO NUMBER 

£MTER PROCRAM NUMBER 

il HEMODYNAMIC DATA SUMMARY 
21 tAROIAt OUTPUT LIST 
31 TEMPERATURE DATA SUMMARY 
41 URINE OUTPUT SUMMARY 
51 BROMSING PROGRAM 

61 MARO STATUS REPORT 
') PATIENT ADMISSION 
II HISTORY 
9) PHYSICAL EXAMINATION 

10) LIST O~ NURSES' NOTES 

11) LIST O~ LABORATORY STUDIES 
12) PATIENT OISCHARGE 
13) PROGNOSTIC INDEX 
141 PATIENT ~ILE PRINTOUT 
IS) TREND PLOT 

161 PATIENT ~ILE RETRIEVAL 
Figure 3-Keyboard display output showing the highest level list 

of available summaries and procedures 

retrieve information from old patient files. A special 
function key loads a program to display a list of the 
most commonly used programs, as shown in Figure 3. 
The user then responds with his choice. The program 
selected may display data from a file, or present the 
user with another list representing a lower level of 
choices. Selections from these lists are indicated by 
entering the item number. The physiological status of 
each patient is displayed above his bed on a large screen 
TV monitor driven by a character generator. This 
display includes the current values of the most im
portant monitored variables. 

SR U subsystem facilities 

The SRU Patient Monitor is a library of applications 
programs,written in FORTRAN, functioning within a 
comprehensive executive. The executive comprises the 

Programming in Medical Real Time Environment 591 

manufacturers real-time monitor, RBM* (Real-time 
Batch Monitor), and a subsystem which has been 
developed to provide dynamic scheduling and loading 
of program modules, flexible control of analog input, 
data management and a variety of interfaces to I/O 
devices. The primary requirements of a medical real
time system as they have been met by the SRU sub
system are discussed briefly below_ 

Progralll scheduling 

The subsystem includes a program scheduler which 
is capable of initializing tasks at timed intervals asyn-· 
chronously with other tasks and without operator inter
vention. Although this removes the responsibility for 
sequencing and program initiation from the applications 
programs, one applications program may start another 
as discussed below. The number of foreground processes 
which may be active simultaneously is limited only by 
the total core requirements of those programs, since 
the system program control tables may be set arbi
trarily large at system generation. The program sched
uler utilizes one of the Sigma hardware clocks and the 
interrupt structure which allows external interrupts to 
be triggered internally. 

Dynalllic relocation of prograllls 

Since the SRU Patient Monitor must be able to load 
program modules quickly and provide an efficient use 
of core memory, object code for each task is stored on 
the disk with all references satisfied, yet with the 
capability of being dynamicaJly loaded using a re
locating loader. There are no fixed partitions; rather, 
core is resegmented as each relocatable load module is 
found on the disk, and loaded into the first available 
space that will contain it. Applications programs, which 
may be as large as 4K words each, are not re-entrant; 
fresh copies are loaded as needed,. and remain in core 
until execution is completed, or until the program is 
released by the user in the case of interactive keyboard 
display programs. The relocating loader is effectively 
limited by I/O speed, since modules are stored in core 
image form, and need only to be relocated. There is a 
public library of FORTRAN systems routines to lessen 
the core requirements of individual modules and to 
speed their loading. 

* A second version of RBM has recently been released with a 
RAD editor which facilitates creation and maintenance of disk 
files. It also permits foreground tasks to be loaded and run in 
response to external interrupts. Conversion to the new monitor 
is in progress. 



592 Fall Joint Computer Conference, 1970 

Dynalllic user control of execution priority 

A variety of tasks must be concurrently served by 
the same supervisor. These vary widely in complexity 
and rate of execution, in dependence on I/O, and in 
relative importance to the welfare of the patient. The 
system allows the priority of execution of these tasks 
to be dynamically altered as a function of the type of 
processing, and as a function of the patient's condition 
as determined by analysis programs, or by clinical staff. 
Since dynamic priority reassignment is allowed without 
linking tasks to any particular interrupts, it is necessary 
to provide for the capability of queuing multiple pro
grams at each priority level. The four priority levels 
available to the applications programs are utilized to 
maximize I/O and computation overlap, and minimize 
keyboard display response time, while permitting timing 
to 1/500th second accuracy within programs for process 
conttol applications. 

Scheduling and interleaving of real-tillle I/O 

One of the major problems of real-time medical 
applications is the handling of long duration, low fre
quency analog input requests. The frequencies and 
duration of these inputs vary from signal to signal. A 
scheduling structure is provided for the concurrent 
input of analog data for multiple analysis programs 
and the processing of data. The analog scheduler sam
ples only those channels requested, rather than con
tinuously sampling all 96 analog input lines. Data is 
stored directly into the half-word buffer arrays defined 
by the program initiating the analog request. Pro
grams are inactive during analog input, keyboard dis
play I/O, and other special systems operations. The 
applications programmer may segment large tasks in 
order to minimize core requirements during analog 
sampling of long duration, using the RAD for tempo
rary storage of arrays. The analog scheduler uses dedi
cated clocks and interrupts for its operation. 

Data .Illanagelllent 

Patient management in the critical care environment 
requires on-line sequential and random access to large 
patient files containing textual and numeric information. 
The components and the organization of . these files 
vary with changes in the monitoring requirements. 
Consequently a method has been devised to associate 
a unique description (or outline) with each file which 
identifies the set of elements contained in that file. 
The outline assists in locating information whenever it 
is to be retrieved from the file. The patient file manage-

ment system serves to link the separate processes of 
data acquisition, data analysis, and data display, as 
wen as providing for permanent storage of all infor
mation collected. 

Systellls interface routines 

The use of a familiar higher level language simplifies 
the writing and modification of applications programs. 
Communication between the FORTRAN applications 
programs and system functions is provided by a set of 
system interface routines, the capabilities of which are 
detailed in Table I. They are written in assembly 
language, but are directly accessed through FORTRAN 
subroutine calling sequences in applications tasks. 

System parameters 

The XDS monitor occupies 5K words of core. Our 
schedulers, handlers, file management system, buffers 
(currently set for two beds, and five keyboard/ crt 
displays), special systems interface routines, and the 
FORTRAN public library require an additional 8K of 
the 24K words of core. Sufficient core (9K) is reserved 
for compiling and running background FORTRAN 
programs, so that program development and off-line 
statistical analysis can proceed during patient monitor
ing. However, background processing may be check
pointed during periods of heavy foreground use. Appli
cations programs have access to the background area 
plus an additional 2K. Applications programs are added 
to the library only after thorough testing, using re
corded physiological signals when necessary, so that 
program integrity is assured prior to actual use. Initial 
debugging of new programs and addition of the pro
grams to the library is carried out in the background 
mode, but monitoring must be discontinued while the 
updated library is actually being loaded onto the disk. 

Between ten and twenty percent of CPU time is 
consumed by the analog and execution schedulers, 
which run 500 times/second. The overhead applicable 
to a particular program depends on the priority level 
of that program, and upon the mix of analog input and 
computation time in simultaneously executing programs. 

A pplications programs 

The following description of the hemodynamic moni
toring programs, FUZ1 and HEMO, will be used to 
illustrate some of the unique capabilities afforded the 
FORTRAN application program by the SRU system. 



Programming in Medical Real Time Environment 593 

TABLE I -System Interface Routines 

SUBROUTINE NAME 

Function 

ANA 
Analog Input 

ANAOUT 
Analog Output 

AQUIT 
Analog Input halt 

CCIWR 
Status display write 

DELAY 
Precision delays 

DELETE 
Delete scheduled 

program 

DIGIN 
Digital Input 

DIGOUT 
Digital Output 

GETDAT 
Patient file data 
retrieval 

Parameters 

1) Interval between samples 
(in 1/500ths second) 

2) Number of samples 
3) Present sample index 
4) Wait/return code & buffer size 
5) Number of channels 
6) Array of channel numbers 
7) Input data buffer 
8) Return priority 

1) Output control 
2) Channel number 
3) Voltage 

1) Format statement number 
2) , ... , n) List of output variables 

1) Time delay in 1/500ths of a 
second 

1) Bed number 
2) Name of program to be deleted 
3) Error return 

1) File or bed number 
2) Array of words corresponding to 

digital input lines 

1) File or bed number 
2) Line number 
3) On/off code 

1) File or bed number 
2) Summary name 
3) Time desired or position code 
4) Number of values requested 

HEMO reads arterial, venous, and pulmonary arterial 
pressure waveform data, as well as the outputs of the 
electrocardiogram (ECG) preprocessor. 

From these primary signals, 15 measures are derived 
and stored in the patient file. Other programs retrieve 
and display this information automatically and on 
demand. This monitoring program normally runs once 
each five minutes (Normal mode) but optionally may 
be run once each minute (Acute mode) or be sup
pressed entirely (Wait mode) under bedside control. 

The hemodynamic program is quite large, and any 
combination of primary signals may not be available 
at the scheduled initiation of the program. Thus, in 
order to avoid loading the program unnecessarily, it is 

SUBROUTINE NAME 

Function 

IWAIT 
Wait for external 
interrupt 

Parameters 

5) Names of the values 
6) Array for Data 
7) Indicator for textual information 
8) Error return 
9) Intercalliocation pointer 

1) Number of interrupt to be armed 
2) Return priority 

KDRD 1) Format statement number 
Keyboard/display read 2) Parameter being read 

KDWR 1) Format statement number 
Keyboard/display write 2), ... J n) List of output variables 

PINIT 
Start program 

1) File or bed number 
2) Name of program to be started 
3) Time between executions (+), or 

interval before starting once ( -, 0) 
4) Multipurpose variable passed to 

program 

PRIOR 1) Desired priority 
Set program priority 

PUTDAT 1) File or bed number 
Store patient data 2) Summary name 

3) Time to be stored with data 
4) Number of values being stored 
5) Names of the values 
6) Values to be stored 
7) Indicator for textual summaries 
8) Error return 

TIME 1) Get/set indicator 
Get or set time 2) Time of Day 

TTWR 1) File or bed number 
Write on ward teletype 2) Format statement number 

3) , ... , n) List of output variables 

not started directly by the program scheduler (PSKED). 
Instead, a small trigger program, FUZl, the listing of 
which is shown in Figure 4, is scheduled to run once 
each minute. 

Applications programs as started by PSCHED 
are not assigned to an execution priority queue. 
They are assigned a priority by a call to the 
resident subroutine PRIOR which is included as one 
of the first executable statements in the program. The 
nominal availability of the primary signals and the 
N ormal/ Acute/Wait information is obtained from dig
ital inputs controlled by an array of switches at the 
bedside (the "status panel"). FUZI first reads the 
state of the switches into an array, S, through a call to 



594 Fall Joint Computer Conference, 1970 

5 
b 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 7 
25 
26 
27 20 
28 
29 
30 
31 
32 
33 1000 
34 
35 
36 30 
37 
38 
39 
40 
41 
42 60 
43 
44 35 
45 45 
46 
47 
48 46 
49 
50 
51 65 
52 
53 
54 
55 70 
56 
57 90 

SUBROUTINE FUZI (NBED. IDUM) 
IMPLICIT INTEGER (A- Z) 
DIMENSION 5(13). BUFF(5). IGl(6),IG2(3) 
EQUIVALENCE (ACU'rE, 5(2)), (WAIT, 5(3)), (AP, 5(4», (VP, 5(5» 
EQUIVALENCE (IG2, FG2), (MZ, ZM), (HR, 5(6» 
REAL FG2(3) 
REAL ZM 
LOGICAL ACUTE, WAIT, AP, VP, HR 
DATA MZ /-1073741824/ 
DATA IGI/'HR ','STATl', 'STAT2'/ 
lBED=NBED 
CALL PRIOR (2) 
NP=10 
LOCCT=O 
CALL DIGIN(IBED, 5) 
IF (WAIT) GO TO 7 
CALL DISAST(IBED, 1) 
IF (HR) GO TO 20 
IF (AP. OR· VP) GO TO 30 
FG2(1)=ZM 
FG2(2)=99999· 0 
FG2(3)=99999· 0 
GO TO 46 
CONTINUE 
CALL DISAST (lBED, 2) 
GO TO 90 
CALL TIME (I, MOM) 
IT=KHANF (IBED, 11) 
CALL ANA(lO, 10, II, I, I, IT, BUFF, 2) 
CTACH=O 
DO 1000 J=l, NP 
CTACH=CTACH+l2F(BUFF, J) 
CONTINUE 
CTACH=CTACH*24/16384 
IF(CTACH. GT. 150· OR· CTACH. LT· 35) GO TO 65 
IF(ACUTE) GO TO 35 
MOML=9 
CALL GETDAT(IBED, 'HEMO', MOML, I, IGl,lG2,IC, &35, LOCCT) 
IHR=FG2(1) 
IF(. NOT. HR • OR' FG2(l) • EQ. ZM) GO TO 60 
IF(lABS(IHR-CTACH)' GT' IHR/lO) GO TO 65 
IF(MOM-MOML • GE' 5) GO TO 70 
GO TO 90 
IF (AP. OR' VP) GO TO 70 
FG2(1 )=CTACH 
FG2(2)=99996.0 
FG2(3)=99966.0 
CALL TIME (I, MOM) 
CALL PUTDAT(IBED, 'HEMO', MOM, 3, IGl, IG2, IC, &90·) 
GO TO 90 
CONTINUE 
CALL DIGOUT(IBED, 5, l) 
CALL DELAY (1) 
CALL DIGOUT (IBED, 5,0) 
CALL PINIT (IBED, 'TIMO', 0, MOM) 
CALL PIN IT (IBED, 'HEMO', 0, CTACH) 
RETURN 

Figure 4-Listing of the applications program FUZl 

DIGIN, with the bed number and the array name as 
parameters, (Table I lists the calling parameters of all 
of the systems subroutines for reference throughout this 
section). If it is determined that the Wait button is 
on, the program exits after calling a subroutine DISAST, 
which, through a call to the system subroutine CCIWR, 
writes asterisks after the values of the variables on the 
status display indicating that they are not current. If 
Wait is not on, any asterisks previously written are 
erased. 

When ECG is available, the heart rate is determined 
directly by reading the cardio-tachometer output of 
the ECG preprocessor (Figure 4, line 29). System sub
routine AN A is used to obtain analog input. It stores 
the necessary information into a table used by the 
analog scheduler and optionally returns control to the 
application program as a function of the return param
eter. If this parameter is a + 1, ANA win fill the buffer 
specified with the number of points requested while 
allowing other programs to execute. If the parameter 

is negative, ANA will start to fin a buffer equal to the 
size of the parameter and return control to the appli·· 
cation program immediately to allow processing of the 
data. Where large volumes of digitized data are to be 
retained, it is possible for the program to essentiany 
double buffer this data and write it out on the disk. 
The analog scheduler is triggered by a clock interrupt, 
(presently set at·500 times per second), and the interval 
parameter specifies the number of 500ths of a second 
between analog reads. 

If the preprocessor indicates a heart rate of less than 
35 or greater than 150 beats per minute, an alarm is 
sounded in the ward, using a sequence of calls to 
DIGOUT (digital output) and DELAY. Then HEMO 
would be scheduled by a call to PINIT. If Acute is 
on, the logical array is checked further and if at least 
one primary signal is available, HEMO is started by 
the system subroutine PIN IT and the trigger program 
exists (Figure 4, line 56). 

Subroutine PINIT is used to schedule other programs 
from applications programs in execution. The calling 
sequence includes: the bed to be associated with the 
scheduled program, the name of the scheduled pro
gram, the desired interval between executions, and a 
parameter through which data may be passed to the 
scheduled program. A positive value for the executjon 
interval represents that interval in seconds. A zero or 
negative value specifies the delay (in seconds) prior to 
running the program once only. 

If no primary signals are available, according to the 

HEMO 

e·········· 
······· .. e 

tMC.uu.". .. ... -...-
Figure 5:-Diagram of data flow in the SRU Patient Monitoring 

System 



status panel, appropriate codes are stored in a hemo
dynamic summary of the list structured patient file 
which resides on the disk. To determine the presence 
and location of information in the patient file, each 
file is accompanied by an outline which is separate 
from but descriptive of the file. The flow of patient 
data is illustrated in Figure 5. This outline serves as a 
unique table of contents for the particular patient's 
data. The headings in the outline are the names of the 
summaries. The subheadings comprise the names of the 
individual items to be stored in the file under that 
summary. Figure 6 shows some of the summaries in a 
typical patient file, as represented in the hardcopy 

PATIENT # 1057 BED 1 ••••••• PATIENT' 1051 BED 1 ........ 
HEMODYNAMIC TIME 111/0530 

ARTER IAL PRESSURE (MMHG) 
SYSTOLIC 75 
MEAN 65 
DIASTOLIC 59 
DELTA SYSTOLIC 5 
MAXIMUM DPIDT -0 
hEAN DP lOT -0 
PUlSE DEfiCIT 0 

VENOUS PRESSURE (MMHG) 
hEAN 13 
DEL TA RESP -0 

PULMONARY ART PRESSURE CMMHG) 
SYSTOLIC -0 
h£AN -0 
DIASTOLIC -0 

ELECTROCARD I OGRAM 
HEART RATE 97 
MAX R-TO-R INTERVAL 64 
MIN R-TO-R INTERVAL 62 
"SO or R-TO-R INTERVALS 0.0 

RESPIRATION RATE 16 ........ 
TEMPERATURE (DEG C) TIME "./0530 

RECTAL 36.5 
LEfT TOE 31.9 
RIGHT TOE 22.9 
AMB lENT 22.7 ..•..... 

URINE OUTPUT (MU TIME 111/0531 
TOTAL OUTPUT 363.4 
LAST 5 MIN .7 
LAST 60 MIN 30.3 

•••••••• 
CARDIAC OUTPUT TIME 111/0526 

CARDIAC OUTPUT LlMIN 
BODY SURfACE AREA MSQ 
CARDIAC INDEX L/MIN/M 
APPEARANCE TIME SEC 
h£AN C IRC TIME SEC 
CENTRAL BLOOD VOLUME ... 
STROKE VOLUME "'-
HEART fORI< KGM/MIN 
RES 1 (MAP-CVP)/CO 
RES 2 MAPICO 

3.41 
2 
2.09 
8 

21 

_ ..... . 
HEMODYNAMI C TI ME 14/0544 

ARTERIAL PRESSURE (MMHG) 
SYSTOLIC 91 
h£AN 69 
DIASTOLIC 58 
DELTA SYSTOLIC 9 
MAXIMUM OP/OT -0 
h£AN OPIDT -0 
PULSE OEF I C IT 0 

VENOUS PRESSURE CMMHG) 
MEAN 6 
DEL TA RESP -0 

PULMONARY ART PRESSURE (MNHG) 
SYSTOLIC -0 
h£AN -0 
DIASTOLIC -0 

ELECTROCARO 10GRAM 
HEAR T RATE 109 
MAX R-TO-R INTERVAL 57 
MI N R-TO-R INTERVAL 55 
SO OF R-TO-R I IITERVAlS 0.0 

RESPIRATION RATE 17 . ...... . 
TEMPERATURE (oEG C) TIME ""0540 

RECTAL 36.5 
LEFT TOE 32.2 
RIGHT TOE 22.8 
AMB lENT 22.6 . ...... . 

UR I NE OUTPUT (MU TI ME 111/0546 
TOTAL OUTPUT 365.4 
LAST 5 104"" .6 
LAST 60 MIN 17.5 

Figure 6-Exatnple of hard-copy patient file output showing 
several summaries at two different times 

Programming in Medical Real Time Environment 595 

DATA FLOW 
FILE 

r MANAGEMENT 1 
ROUTINES . 

"----I 

APPLICATION 
PROGRAMS 

MONITORING 
DEVICES 

PATIENT 
FILE 

PATIENT 
OUTLINE 

Figure 7-Flow diagram of the applications program which 
monitors hemodynamic signals 

output. Data storage is accomplished by a call to the 
subroutine PUTDAT (Figure 4, line 49). Symbolic 
labels for the items to be stored are contained in an 
array which is an argument in the call, as is the array 
of corresponding values. The time of day, another 
parameter, serves as a sequencing element in each 
summary. 

If the Acute button were not on (Figure 4, line 36), 
indicating 5 minute monitoring, the most recent hemo
dynamic summary would be retrieved from the patient 
file through a call to GETDAT. The parameters in the 
call to GETDAT are all analogous to those in PUTDAT, 
except Time. This parameter may be an actual time of 
day, in which case the values of the most proximate 
instance of a summary are returned. Or it may be a 
code requesting an instance of a summary by its po
sition in the file, (e.g., the first, last, previous, or next 
instance). The current time of day, obtained by a call 
to the subroutine TIME, is used to calculate the 
elapsed time since the last HEMO instance. If this were 
greater than or equal to 5 minutes, the hemodynamic 
program would be scheduled; otherwise FUZI exits. 

Just prior to starting HEMO, the trigger program 
also starts a time code output program, TIMO. Using 
calls to TIME, DIGOUT and DELAY, this program 
generates a series of variable width pulses representing 
the binary coded decimal 24 hour time. This signal is 
recorded on a multi-channel analog tape recorder along 
with the primary physiological signals. 

HEMO proceeds as shown in Figure 7. The status 
panel is checked and the appropriate analog channels 



596 Fall Joint Computer Conference, 1970 

to be read are determined by reference to the bed 
number parameter with which the program was started. 
A call to DIGOUT, with a bed and line number, turns 
on a light at the bedside indicating the signal being 
monitored. The arterial pressure signal and the R-wave 
trigger output of the ECG preprocessor are sampled 
simultaneously for 10 seconds at the rate of 100 samples 
per second (the R-wave trigger generates a pulse corre
sponding to each heart beat found in the ECG signal). 
Data acquisition is accomplished by a single call to 
ANA which stores 2000 digitized points as 16 bit num
bers (half words), in the assigned buffer. On completion 
of the A/D conversion a second call to DIGOUT 
extinguishes the monitoring indicator light. The array 
containing the digitized ECG data is then scanned to 
locate the heart beats, the relative positions of which 
are stored in a table. The inability to detect a sufficient 
number of them in the 10 second sample, or the presence 
of excessive noise in the ECG signal causes the program 
to take an alternative path. 

Assuming a good ECG, the arterial pressure data 
points are then scanned with reference to the R-wave 
table. The maximum and minimum arterial pressure 
values detected between each pair of corresponding 
heart beats are stored. Anomalous arterial pulse beats 
are located on the basis of pulse height criteria and 
transient values which exceed physiological limits are 
eliminated. The remaining maxima and minima are 
averaged and temporarily stored as systolic and dia
stolic pressures. The entire arterial pressure data array 
is averaged to compute the mean arterial pressure. 
The maximum, minimum, average, and standard devi
ation of the intervals between heart beats is com
puted from the R-wave table. DIGIN is called again 
to read the "status panel". If any switch positions 
have been changed, the program exits. Otherwise an 
additional 10 second sample of AP and ECG is read 
and analyzed as above. The results of the two analyses 
are then compared; if the differences fall within pre
set limits, the second set of data is retained and the 
program continues; if not, a third set is read. The new 
data are either accepted as consistent or, ultimately, 
are stored in the patient file with a code indicating the 
inconsistency of the sequential samples. 

Venous and pulmonary arterial pressure signals are 
then sampled by another call to ANA. From these data, 
mean venous pressure, average pulse height, and sys
tolic, diastolicand mean pulmonary arterial pressures are 
computed. Throughout the program the values are as
sessed as to whether they lie within reasonable bound
aries. If not, or if the primary signal associated with 
that variable is unavailable, a value of -0.0 is as
signed and an appropriate missing value code is stored 
in a status word. All of the data, including the status 

word, are stored in the patient file associated with the 
bed number. The array of data is stored by a single call 
to PUTDAT ,as an instance of the summary named 
HEMO, identified by the current time of day. 

SUMMARY 

The HEMO program is one of 61 applications programs 
currently in the library. It is representative of the 
complexity of processing required in patient monitoring 
programs. Some examples of other applications pro
grams and their characteristics are shown in Table II. 

An additional dimension of complexity is contributed 
by the requirement of simultaneous monitoring of more 
than one patient. Thus several programs such as 
HEMO may be in various stages of execution con
currently. Some of these programs may be executed 
on a scheduled basis while others are executed upon 
request of the clinical staff, making it difficult to predict 
the demands to be placed upon any subsystem of the 
computer. Simultaneous collection of data from many 
analog devices, storage and retrieval of data from 
patient files, and display of information on patient 
status on a variety of devices with varying trans
mission rates is a common occurrence. Some of these 
tasks can be deferred or delayed in their execution, 
but others with crucial responsibilities, such as con
trolling the infusion of fluids and medications, cannot 
tolerate interference and may be required at any time. 

Unlike a process control situation where the responses 
of the monitored activity are well defined, patient 
monitoring relies significantly upon clinical intervention. 
Thus when programming a particular application mod
ule for such a system, the programmer cannot foresee 
the computer environment in which execution will 
occur. 

The extensions to the executive system and the inter
face routines described above free the applications pro
grammer from the logical complexity usually entailed 
in writing programs for such a multiprogramming 
environment. 

Since the patient monitoring system is simply a col
lection of independent applications programs, wherein 
the implications of concurrency are resolved dynami
cally, the expansion or modification of this library can 
be done with only minor regard for such concurrency. 
This is a feature which is pleasing to those who have 
experienced difficulty incorporating additional features 
into an operating real-time system. This openendedness 
becomes a necessary feature in the medical research 
environment where the system must often be reshaped 
to respond to changes in care methodology. Finally, 
the ability to write applications programs In 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Program 
Name 

FUZ1 

HEMO 

TEMP 

URIN 

PLT2 

MENU 

HEDS 

DFIL 

CARD 

LACT 

PUMP 

Programming in Medical Real Time Environment 597 

TABLE II-Characteristics of Selected Applications Programs 

Function 

Schedules execution 
ofHEMO 

Monitors hemodynamic 
signals 

Monitors patient 
temperatures 

Monitors urine output 

Writes 8 variable time-
trend plots on storage 
scopes 

Displays highest level 
list of user options 

Displays Hemodynamic 
variables 

Generates lineprinter 
listing of a patient file 

Monitoring and calcu-
lation for cardiac 
output procedure 

Determination of blood 
lactate 

Automatic control of 
pump operation 

Devices IFacilities used 
Primary Input 

Signals 

Patient file system(PFS), Cardiotachometer 
digital input (DI), 
digital output (DO), 
analog input (AI), 
program initiation (PI) 

PFS, DI, DO, AI Arterial pressure, 
venous pressure, 
pulmonary artery 
pressure, ECG 

PFS, DI, AI Thermistors 

PFS, AI, DI, DO Collector tube fluid 
column height 

Keyboard! display 
(KID), PFS, AO, DO 

KID, PI 

KID,PFS 

PFS, Lineprinter 

KID, AI, AO, DI, Densitometer 
DO, PI, PFS, storage 
scope, ext. interrupts 

KID, PFS, TTY, PI Laboratory determi-
nation entered 
through KID 

KID, DI, DO, AO, 
PI, PFS 

Data 
Sampling 

rate 
(samples I 

sec) 

50 

100 

10 

10 

10 

Execution 
Interval 

(minutes) 

1 

1-5 

15 

5 

Demand 

Demand 

Demand 

Demand 

Demand 

Demand 

Demand 

Derived Variables 

Systolic, diastolic, 
mean arterial, mean 
venous, and mean 
pulmonary artery 
pressures, heart rate, 
pulse deficits, heart 
rhythm, DPIDT etc. 

Rectal, left and right 
toe, and ambient 
temperatures 

Total output, 
output/5 min., 
output/60 min. 

Cardiac output, stroke 
volume, central blood 
volume, peripheral re-
sistance, heart work, 
appearance time, 
mean circulation time 

Lactate 



598 Fall Joint Computer Conference, 1970 

FORTRAN, aside from the obvious advantage of ease 
of documentation, encourages the clinician to partici
pate in the development of monitoring algorithms. 

ACKNOWLEDGMENTS 

The authors wish to express their appreciation to Max 
Harry Weil, M.D. and Herbert Shubin, M.D., Project 
Director and Co-Director for their support and en
couragement, and to David H. Stewart for his invalu
able suggestions. Particular thanks are due Miss Cecilia 
Pasos for her skill and patience in preparation of the 
manuscript. 

REFERENCES 

1 M A ROCKWELL H SHUBIN M H WElL 
Shock I I I: A computer system as an aid in the management 
of critically ill patients 
Communications of the ACM Vol 9 No 5 May 1966 

2 D H STEWART D HERBECK H SHUBIN 
Computer system for real-time monitoring and management 
of the critically ill 
AFIPS Conference Proceedings Vol 33 December 1968 

3 J P SINGER 
Computer based hospital information systems 
Datamation May 1969 

4 D H STEWART N PALLEY 
M onitm-ing and real-time evaluation of the critically ill 
Invited Paper-Journees Internationales d'Informatique 
Medicale Toulouse France March 1970 

5 H SHUBIN . M H WElL M A ROCKWELL 
A utomated measurement of arterial pressure in patients by 
use of a digital computer 
Medical & Biological Engineering Vol 5 pp 361-369 1967 

6 H SHUBIN M H WElL M A ROCKWELL 
A utomated measurement of cardiac output in patients by use 
of a digital computer 
Medical & Biological Engineering Vol 5 pp 353-360 1967 

7 S T SACKS N A PALLEY A A AFIFI 
H SHUBIN 
Concurrent statistical evaluation during patient monitoring 
AFIPS Conference Proceedings Vol 37 1970 



Decision making with computer graphics 
in an inventory control environment 

by J. S. PROKOP 

Office of the Secretary of Defense 
Washington, D.C. 
and 
F. P. BROOKS, JR. 

University of North Carolina 
Chapel Hill, North Carolina 

INTRODUCTION 

Computer-driven displays have long been thought to 
help decision making. But the justification for using 
these devices in decision-making has been long on 
intuition and short on quantitative analysis. To see if 
this intuition was right, we conducted an experiment. 

Eighteen interested and experienced decision-makers 
in the inventory control field met for twenty class hours 
of instruction in advanced inventory control techniques. 
Near the conclusion of the short course, we measured 
the participants' decision-making abiJity while using a 
computer-driven display device. This measurement was 
compared to their decision-making ability while using 
information presented to them on paper. 

To provide a vehicle for the investigation, a simulator 
was written to apply certain inventory control policies 
to a hypothetical inventory system handling 34 items. 
This inventory system faces a randomly derived set of 
orders, price changes, replenishment of stock and other 
transactions. The simulator has two sets of input 
parameters: one governs the distributions of transac
tions; the other establishes the management policy for 
inventory control. The simulator investigates twelve 
distinct policies at one time over a simulation cycle of 24 
months. 

Each participant was given, as examination problems, 
the statistics resulting from two different simulation 
runs. Each decision-maker, or decider, made a series of 
decisions; at the end of each simulation month, he 
ranked the twelve policies in order of desirability. Each 
decider used printer output on one problem and graphic 
display presentation on the other. 

The statistics from the simulation program were 

599 

displayed in a variety of formats on standard computer 
printer paper. The statistics included: 

(1) percent availability of stock, 
(2) number of purchase orders generated, 
(3) lost sales, 
(4) total dollar investment in inventory. 

The output was in the form of tabular listings and 
bar graphs. Also, for each problem, an IBM 2250 
cathode ray tube display unit was programmed to 
show the same data as appear on the printer output, in 
fundamentally the same listing and graphical formats. 
Thus the experiment did not attempt to establish the 
relative comprehensibility of listed versus plotted data. 
Instead it investigated the relative comprehensibility 
of printed versus display presentation of such data, both 
printed and plotted. The display unit was under the 
control of the decider, who was able to specify which of 
the twenty-four months and the kind of displayed data 
which he wanted to see. In both display and printer 
output cases, he was expected to start at the first month 
and proceed through the months in order, with freedom 
to review. 

The course participants were divided into two test 
groups, each group consisting of nine individuals chosen 
at random. Tests were made to answer: 

1. Are decisions made earlier? The simulated cal
endar month (out of the twenty-four months of 
simulation) in which the decider feels he has 
enough data to commit himself to a ranking for 
future action was tested. 

2. Are decisions made faster? The elapsed clock 
time to decide on a ranking of policies which the 
decider would be willing to commit himself to for 



600 Fall Joint Computer Conference, 1970 

future action was tested. The elapsed clock time 
to complete the remainder of the problem was 
also tested. After committing himself to a 
ranking, the participant continued the problem 
through the twenty-fourth month. 

3. Are decisions made more consistently? That is, 
does the decision made at the month of commit
ment agree better with that made at the 
twenty-fourth month, after all data are known? 

4. To what degree do the members of each group 
agree among themselves in regard to the 
rankings? 

In summary, the decider made two basic kinds of 
decisions. He decided on a ranking at each month in 
turn, and he decided whether or not to indicate at this 
month that he felt confident enough of his ranking to 
recommend that it be used for governing action. 

The resulting ordered lists of policy sets and the 
preparation times were analyzed in two basic ways. 
First, a 2 x 2 Latin square design with repeated 
measures was used in an analysis of variance. Rank 
order statistics were then used to test the consistency of 
each individual decision-maker and the concordance of a 
group of decision-makers. 

The statistical analysis of variance allocated the 
observed differences into (1) differences between graphic 
and printed data presentation (treatment), (2) differ
ences between· the first and second problems done by 
each participant (order), and (3) differences between 
the performance of the two groups the class was 
divided into. 

The ranking of the policies at the decision month and 
the ranking at the end of the entire twenty-four month 
simulation were compared by means of the Spearman 

uw .. :ww_WUt. < "00 I ~ "00 4- ~ "',000 I )0 11.001' I I 
:------ii--.. --~------------o------:----------o-----:--------0---: , ___________ 1 __________________ 1 ____________ 1 ____________ I 

I () I 0 lOt 0, 
1 ______ ------,-------------______ 1 ____________ 1 ______ -_, 
I I) I 0, I) I 1 I 
,---______ 1 ______ ------------,-----______ 1 ______ ------_, 
I 0 I 0 I 2 t 0 I 

,----=-------'------------------,-------------1--------1 I I) I 0 I I) I ) I 

:...:---------0---:-------0---1-------,---: ----------,-----: 
:--------5---:-----------,------: -------n---:----:-·---T---: 

l! 4t!-, to 1 100e , ______________ 1 ___________________ 1 ____________ , ______ -I 

CA'flGOftT 
1 , 
I . 

Losr SiLlS 
'.00 

••• .,11 
IH»,5111." 

.,25 .... 0.56 

"U,010.15 

. 
lnlL18ILr·, 99." 

99.21 

:!::! 

12 
TC'lTUIUII .. OPtf'P."S: 

:Eir"BIT 
:j::: 

CUIIULlTIfI! 10ft!!" or PlJJClln lC'fIOWS roft tIIt'l) POtTC't • S7 
cuftounn "lJftlllll If/I 'fIIlSACTl1JS (;1!W!IlTn OIlDI!I Tns POLlet· 

Figure I-Detailed listing of simulation results by 
policy within month 

LIlt '!'(I'! at " 
o 

·lBP.r"'~'T -.~- 11 --.... =: .. ~. -~-
i g~s . fi~n ==~i:5 :: 

_~_----=:;L _____ ~ __ -..JI;;. .. ~io&:;; .. ': .... ; ________ .... = .... __ 
.... ,.~ .n ..... .. .. , .... .. 
-.111 •• -...... .. ., .. ,. .•. 
... .a .... 
I::::::::: 

-.... .. 

I atU""AI 
ft •• " .... •• ,1... • ... --.&. ___ __IL_ _____ 

Figure 2-Sorted listing of simulation results by 
policies within month 

rank correlation coefficient. A Kendall's coefficient of 
concordance was computed to measure how wen the 
ran kings produced by each test group on each problem 
agreed among themselves. 

The results may be summarized as follows: 

1. The time to make a decision was decidedly 
reduced in favor of the display presentation. 

2. A decision could be made on the basis of less 
information by using the display device; that is, 
action decisions were made earlier in the 
simulated two years. 

3. More consistent decisions were arrived at by 
using this display' device. Even though action 
decisions were made earlier, with less informa
tion, using the display device, the decisions made 
matched better those made with all data 
available. 

THE PRESENTATION TO THE DECISION
MAKER 

The simulation statistics for one month are shown in 
Figures 1, 2, and 3. The total investment figure is scaled 
by 100,000. A total investment of $423,000 is, therefore, 
represented as $4.23 . 

Figure 2 is a table which is ordered by several of the 
statistics of interest. Figure 3 shows one statistic across 
al1 policies as a bar graph. The printed bar graphs are 
produced monthly for availability, value of lost sales, 
purchase order activity, and total investment. 



casU1.lTnl LOS! S.t~S 111 ne,.,.I"s", 12.000 

000000000000000000000001)"',111,',1111111,',1111122222222222 
OO',222lJ""5'6,1" ••• "OOO',22211'·'!tS""'7I •• "OOOl'2221) • 
• • 2 6 0 •• :I 6 0 •• :I , 0 II , :I 6 0 ... :I 6 0 III , :I 6 o. II :I II 0 " • 2 , 0 .... 2 6 O •• :I 6 0 •• l f 'l • jill 2 , ~ 

, ............ u .............................................................................................. . 

2 ............ 0 ...................... 0 ............................... . 

III .............................. UII ....................................... .. 

'S •••••• 0 ......................................................................................................... .. 

6 ................................................................... U ........................................ .. 

...................... 
fOttC1' " ...................................................................... . 

roue", '0 ..................................................................... .. 

PQl.Ie:, 1111 ..................................................................... .... 
roJ.le, 12",,"''''''''''''''''0'''''''''''''''''' 

Figure 3-Bar graph of simulation results by month 
across all policies 

Once the printer output was specified, these presenta
tions were mimicked on the IBM 2250 cathode ray tube. 

Some exploration of the power and utility of such a 
display device was made while maintaining similar 
presentation formats for sake of the experimental 
design. Figure 4 is the display device representation of 
Figure 2, for example, and shows some rearrangement 
of material due to display character and line number 
limitations. Figure 5 shows the first marked departure 
from the printer output of Figure 3. The layout is 
essentially the same, but the presentation is dynamic. 
A programmed timer advances all lines of the bar graph 
simultaneously at one second intervals. If the user 
specifies a month at which he wishes to examine the 
data, and then specifies the bar graph he wishes to see, 
the graph begins at month 1 and then advances at 
one-second intervals to the month requested. The user 
may alternatively specify half-second intervals. The 
movement of the bar graph gives a feeling for the 

Figure 4-Display of Figure 2 

Decision 'Making with Computer Graphics 601 

Figure 5-Display of Figure 3 

history and current derivative of the statistic under 
scrutiny. In addition to the movement of the bar graph, 
the symbols <, > and = are used on the display unit to 
indicate whether the value of a particular bar has 
increased, decreased or remained equal in comparison 
with the previous month. 

Figure 6 has no printed correspondent in this 
experiment. While the data for cost of lost sa~es, 

availability, total dollar investment and purchase actIOn 
activity are available as individual bar graphs as 
repres~nted by Figure 5, all four of these are available 

Figure 6-Quadrant graph of simulation results by month 
across all policies 



602 Fall Joint Computer Conference, 1970 

at the same time in the Quadrant Graph. All bars move 
under the same program timer control as the individual 
graphs. 

The user indicates by a ,Programmed Function 
Keyboard (PFKYto the computer what he wishes to see 
on the display device. The user is allowed to refer to any 
past month's data. He may not, however, move ahead in 
simulated time by more than one month at a time.' 

THE SUBJECTS OF THE EXPERIMENT 

The yxperiment was,designed to examine the decision
making processes of experienced, practical and interested 
professional administrators of inventory control. Hence 
the subjects were solicited carefully. A short course in 
advanced inventory.control techniques was designed as 
a graduate-level course which would attract only those 
who were interested in the subject matter and who were 
prepared to understand the material. The simulation 
model was the experimental vehicle and was used in 
examples and problems which were integrated into the 
course. The participants came to the course in statistical 
invenFory control for their own professional advance
ment, under the auspices of the firms for which they 
worked. The participants were not informed of the 
experiment which was being, conducted, and they 
received the full measure of instruction for which they 
came. 

We solicited participants from nearby manufacturing 
companies specifically for this short course. Candidates 
for the course had to have experience in inventory 
control and had to be in a decision-making position in 
the company. No company was allowed to sponsor more 
than two candidates. 

The participants attended the course for two hours 
every weekday morning for two weeks. The mornings 
were chosen specifically to ensure that the attendees 
would have the active support of their ~ponsoringfirms. 

The subjects were divided randomly into two groups 
of nine people each. After a substantial part of the 
course material had, been given, the participant~ were 
given either a problem book with twenty~four months 
of simulation output (Figures 1,2,and 3) or assigned to 
work a ,problem on the display unit at individual 
labor~tory sessions. The second problem was assigned 
later in a similar manner except the groups now used the 
presentation method that they had not used on the first 
problem. It was explained thateongestion on the display 
uiIit preclu4ed everyone working both problems in this 
way. There was no attempt made to identify individuals 
by group membership or emphasize this distinction. 

The participants were not graded on these problems 
and were encouraged to work them as part of the 

education process of the course to investigate some of 
the fundamental properties of the inventory control 
policies. Although all of the inventory control policies 
simulated for the two problems were discussed in class, 
the specific problem policies were not identified, in order 
to avoid obvious bias. The participants, then, were 
asked to make their judgment based solely on the 
simulation results. The two problems were of equivalent 
difficulty. 

An operational setting was postulated for the 
problem. Higher-level management had presented the 
participant with the output data for the set of twelve 
inventory control policies, and had requested a 
recommended ranking so that an implementation of 
policies could be decided upon. The participant was 
encouraged by management to present his recommended 
ranking as soon as possible, but cautioned that imple
mentation of the recommended policies could have 
serious repercussions in the firm, so his best professional 
judgment was required. Participants were reminded to 
keep accurate figures on elapsed time spent studying 
each month's data, and were also reminded to mark the 
decision month at which they would have presented that 
ranking as an action recommendation to higher level 
management. 

In such an experiment there are two possible 
approaches to the problem of evaluating the quality of 
the decisions made. The most commonly used approach 
is to furnish the subjects with the criteria which are to 
be used in evaluating the decisions. For example, in 
many cases the subjects are first given instruction, then 
tested to ascertain how well they perform as measured 
against the pre-established criteria. 

This method of measurement may be dependable 
when the material is objective and the criteria are easily 
established. In inventory control (and many other 
problems) the weightings to be used in reaching a 
decision, are highly individual. For example, one firm 
may emphasize high availability, whereas another may 
give heavy weight to low investment. When the 
experimental subjects are experienced in the field and 
have developed their own criteria for decisions, the 
method of measuring against instructor-set criteria is 
unsuitable. One cannot know the extent to which the 
subjects followed the instructor's criteria and the extent 
to which they followed their own. 

In this experiment we followed an alternative 
approach to the problem of evaluating the quality of 
decisions The. subjects were experienced in decision
making and were familiar with and interested in the 
substance of the course. Therefore, they were, given no 
weightings, no criteria of excellence by the instructor. 
Instead they were explicitly told to apply their own 
several diverse sets of criteria. The quality of their 



decisions was then measured by the consistency of each 
subject's own ranking at the month of commitment with 
the later ranking when full information was available. 

Although this second approach almost eliminates the 
meaningfulness of comparisons which show how well the 
subjects agree with each other, such measures were 
taken as a matter of interest. The use of self-con
sistency rather than artificial criteria does, however, 
improve the credibility of the other statistics. It also 
substantially improves the generalizability of the 
results, for it shows the effect on decision-makers when 
deciding by their own standards, rather than by those 
dictated by a ,simplified theoretical model. In subtance, 
one attempts thereby to examine the decision process as 
it works under operational, rather than classroom, 
constraints. 

THE DESIGN OF THE EXPERllVIENT 

Two main analyses were performed on the data: an 
analysis of variance of the Latin square design, and a 
computation of rank order statistics. 

In the Latin square design of this experiment" it 
should be noted that instead of experimenting on 
different subjects in each cell of the square, the same 
experiment group was involved in both cells of a row. In 
effect, each group acted as its own control group. 
Experiments in which the same subjects are used under 
all q treatments require q observations on each subject, 
and are called experiments with repeated measures. In this 
experiment q = 2 since we are dealing with two 
treatments and each subject is observed twice. 

The 2 x 2 Latin square with repeated measures of 
Table I was used to analyze the data for: 

1. Simulated calendar time to reach a decision 
(decision month), 

2. Actual elapsed time to complete the ran kings 
through the decision month, 

3. Actual elapsed time to complete the problem 
after the decision month, 

4. Correlation coefficients for the consistency of the 
committed decision with the final ranking, 

TABLE I-Latin Square Design 

Order 1 Order 2 

Group I 
(9 'Individuals) Display Printer 

Group II 
(9 Individuals) Printer Display 

Decision Making with Computer Graphics 603 

in order to produce an analysis of variance of these 
statistics. When we discu~s the effects of treatment in the 
following pages, we will be discussing whether the 
display device or the printer demonstrated more 
influence in our measurements. The effects of order will 
refer to the influence of the participants' doing the 
problems in the order given to them. 

The particular design was chosen in part to isolate 
that variation due to natural differences between the 
experimental groups. The separation of the source of 
variation due to group differences allows a better 
measure of' that variation due to the form of data 
presentation, which is the statistic of real interest. 

Since the values of the decision month are positive 
integers, they were, as is standard, transformed by 
taking the square root, to make the variances more 
homogeneous and at the same time to normalize the 
distribution. It is this square root value which is used 
in the analysis of variance computations, and reported 
in the results. 

It is of interest to compare the rank order of the 
inventory control policies at the decision month and the 
rank order at the twenty-fourth month for each 
individual. This comparison gives a measure of each 
individual's consistency between the ranking decision 
made at the decision month and that ranking decision 
made when full information was available. These two 
rankings for each participant are compared by means 
of a Spearman rank correlation coefficient (rs) test. Once 
computed, these values for rs are treated as data for 
analysis in the Latin square design previously discussed. 
Since the rs values are known to have a skewed distribu
tion, a standard transformation was made on each of the 
rs values in order to place the data on a symmetric scale, 
so as to normalize the distribution. 

In order to find the extent to which the members of 
each group ranked the policies the same way under the 
same conditions, Kendall's W coefficient of concordance 
was computed for each cell of the Latin square. From 
this, an average rs vaJue of Spearman's coefficient was 
computed for each of the four cells. This gave a measure 
of 'the homogeneity of decisions under the conditions 
of each cell. These values of average r 8 indicate a degree 
of concordance, or how well the group members agreed 
among themselves as to the rankings. In the interpreta
tion of the result of this computation it should be noted 
that this experimental group was not attempting to 
apply a common criterion of excellence in making their 
decisions. Individual best judgment and experience in 
the decision process guided the problem solution. The 
course which the subjects attended neither taught nor 
encouraged uniformity in decision-making or In 
performance goals. 

The difference between the two values of r8 just 



604 Fall Joint Computer Conference, 1970 

discussed is that the single value of average rs derived 
by way of Kendall's W statistic is a measure of agree
ment among al1 nine participants within a cell; whereas 
the individual values of r8 derived from Spearman's test 
are a measure of each person's consistency. 

RESULTS 

The data analyzed and the detailed results of the 
analyses are available from the authors. This section 
of the paper will highlight some of the results. 

The usual method in statistical hypotheses testing 
involves setting the significance level of the test in 
advance of obtaining the data. The convention used in 
the analysis of variance deviates somewhat from this 
formality. The value of F (the significance level of the 
variance under investigation) is reported to exceed a 
specified percentile by a comparison with tables of 
critical values. This allows each reader to establish his 
own significance level and to judge the results thereby. 
We will consider a conclusion to be more surely 
estabHshed if the probability of its truth is higher. This 
methodology does not allow a measure of the power of 
the test; however, the procedure is valid for estimating 
the probabilities of the observation in relationship to the 
assumed sampling distribution. In this investigation we 
would have been encouraged to find significance at the 
.05 level, and the significance levels actually attained 
are noted in this discussion. 

The decision month 

In this analysis of variance, we were principally 
interested in investigating the effect of the treatment on 
the subjects. Our first question was: How early in 
simulated time can a decision be made? 

We found that there was less than one percent 
probability that the observed differences between 
treatments were due to chance for this question. We can 
say with a high degree of assurance that the mean 
decision month arrived at by using the display unit was 
indeed less than that using the printer output. From 
another viewpoint, the participants on the average 
needed to look at less data with the display unit to make 
a committing decision than they did with the printer 
output. N o effect could be attributed to order. 

The time to make a decision 

The elapsed clock time for a participant to commit 
himself to a ranking was analyzed next. The mean time 
to decision using the display unit was, with great 

certainty (>.999), less than the mean time to decision 
using the printer output. This indicates that the amount 
of time spent in making a decision was significantly 
reduced in this experiment by using the display device, 
confirming the intuitive belief that a person can 
assimilate a large quantity of data and correlate these 
data by using display techniques, as opposed to printer 
output. The convenience of having virtually instan
taneous recall of data displays by using the Programmed 
Function Keyboard is certainly a consideration in the 
interpretation of the results. Pushing buttons is just 
inherently faster than paging through a book of data, 
however well arranged and indexed the book may be. 
However much or little this consideration affected the 
results, they show that data can be correlated faster and 
retained better from a properly programmed display 
unit. 

Unsolicited comment from individual participants 
supported this conjecture without exception. We 
observed that the dynamic graphs gave the participant 
a much better intuitive feel for the situation, and that he 
was more likely to retain this impression and not have 
to refer to past data repeatedly. A major help seems to 
have been the program control which always started 
the dynamic graphs at month 1 and brought them up to 
the current month in increments of one month per 
second. This forced a continual review of the history and 
derivative of the measure under consideration and 
undoubtedly reinforced past impressions. It was seldom 
that a participant asked that the graph be stopped at a 
month prior to his current month so that he could 
review the static situation as of that past instant. We 
noted when the experiment was well under way that the 
participants with more experience as inventory man
agers used the dynamic graphR extensively, where the 
less experienced participants relied on the tabular 
listings presented on the display unit. 

The time to finish the problem 

The analysis of variance of the total elapsed time to 
complete the problem after the decision month was 
examined. One would expect some speed-up by partici
pants after they had made their commitment decision, 
simply to get to the end to see how well they did. There 
is some evidence of this speed-up in the time data. How 
much of this is due to increased familiarity with the 
problem at hand and how much is due to impatience to 
get to the final result is difficult to say. The elapsed time 
after the decision month was tempered by the require
ment that the data be ranked at each month. From 
personal observation, the participants appeared to be 
conscientious about following the spirit and the letter 



of the instructions, but relieved that the big decision had 
been reached, and were in a hurry to finish the twenty
four months to check their final ranking against their 
decision month ranking. 

The order factor was significant at the .01 level, which 
is reasonable and consistent with our previous comments 
on the effects of order. In this test the treatment factor 
was completely without significance which is also a 
reasonable result in view of the observation concerning 
the impatience to finish the problem. 

Individual consistency in decisions 

The transformed Spearman rank correlation coeffi
cients, rs , were then subjected to an analysis of variance. 
We found a significance level of .05 for the treatment, 
and we obviously do not have the clear mandate that 
our other treatment factor statistics have given, but the 
evidence is that the mean correlation coefficient is 
higher using the display unit than using the printer 
output. The values of rs give a correspondence between 
the participant's ranking of the policies at the decision 
month and his ranking at the last month of the 
simulation data, month 24. This, then, is a measure of 
the consistency between these two rankings. It is also a 
measure of the participant's discrimination ability-that 
is his ability to decide whether he has enough informa
tion to commit himself to a ranking or not. A decision to 
commit too soon in relation to each individual's ability 
and ranking criteria would, in most cases, result in a 
poor correlation coefficient, whereas being overly 
cautious and waiting beyond the point where he had 
sufficient information could not be expected to ma
terially improve the correlation coefficient. Thus, we 
might say that one interpretation of a low rs would be 
that the participant committed himself too early. Other 
interpretations are, of course, that he simply used poor 
judgment in his ranking, or that he materially changed 
his ranking criteria after the decision month. Partici
pants were cautioned to use a consistent ranking schema 
throughout. As an extreme example, we pointed out to 
the class that to rank the policies based only on lost 
sales data through the decision month, then to abandon 
that schema and to rank the policies only on number of 
purchase orders generated would not be showing 
responsible judgment. On the basis of these comments, 
we -should be able to narrow our consideration of a 
principal cause of low rs to either too early commitment 
or poor ranking judgment at some point. Both of these 
essentially are measures of decision-making ability and 
we can accept either one or both as reasonable interpre
tations of a low correlation coefficient. Observe that the 
greater consistency observed for the display results is in 

Decision Making with Computer Graphics 605 

TABLE II-Values of Average rs Arranged in Latin Square for 
Final Month 

Order 1 Order 2 

Display Printer 
Group I .639 .856 

Printer Display 
Group II .485 .947 

spite of the earlier month of commitment. This earlier 
commitment would be expected to make consistency 
worse. 

For the transformed Spearman correlation coefficient, 
r s, the order factor was highly significant; the significance 
was at the .001 level. Thus we accept the hypothesis 
that maturation would appear to playa large role in the 
decision-making consistency that is being measured. 
That is, the ability to meaningfuHy rank a set of 
policies grows with practice. 

Group consistency in decisions 

The results of the decision process at the end of the 
twenty-fourth month, when the decider had full 
information available to him, were next examined for 
averagers • The resqlting average rs is represented in our 
usual Latin square format in Table II. Here the effect 
of Group II going from printer output at Order 1 to 
display unit output at Order 2 is pronounced. There was 
a moderate increase in the average rs for Group I going 
from display to printer output, which may be ascribed 
in part to maturation. However, the average rs almost 
doubling in Group II when going from printer output to 
display output may be more than can plausibly be 
ascribed to maturation alone. In the' case of these 
rankings at the twenty-fourth month, the values of 
average r s are a valid measure of concordance. Remem
ber that in the rankings at the twenty-fourth month, 
the deciders all had the same amount of information 
available to them, which would not have been the case 
for a decision month ranking. Additionally, the 
participants at this point were concerned only with the 
ranking process, and not the additional question of 
whether cr not to indicate a decision month. 

CONCLUSIONS AND REMARKS 

The strongest result statistical1y was that actual time 
to make a decision was reduced in favor of the display 
presentation. 



606 Fall Joint Computer Conference, 1970 

A second statistically significant result was that a 
decision could be made earlier,or on less complete data, 
by using the display unit. This is the most significant 
result economically. And a one percent result is very 
strong, statistically. 

The mean time over both problems to reach the 
decision month using the display device was 52 minutes. 
The mean time using printer output was 82 minutes. 
This result points to the use of a display presentation 
when economy of time or simply volume of printed 
output is a serious constraint on the system or the 
decision-maker. The mean decision month was 9.2 while 
using the display device and 11.3 for the printer output. 

While the two results reported above have the 
respectability of high statistical significance, the next 
results to be discussed· are at least as important in the 
evaluation of the experiment. These are the results 
which answer the question of whether a bf3tter decision 
can be made with a display device. We will claim that a 
decision at the month of commitment that is more 
consistent with the final decision is a better decision. 

The results from Kendall's W statistic and from 
Spearman's rank correlation statistic show that the 
subjects when using the display tended to make 
decisions more consistent with themselves, and even with 
their group. 

The economics of a system of display devices for 
decision-making will not be explored here, however, it is 
evident that the very specialized research equipment 
used for this experiment is both expensive and un
necessarily elaborate for an operational system. 

The minimum display unit for implementation of an 
information system of· this general type should have 
alphanumeric display capabilities and a programmed 
function keyborad, or equivalent means of easy display 
selection. The size of the display face is crucial to the 
extent that it must be able to contain enough material 
to be of interest and still allow character size and 
spacing to enhance readability. For instance, the IBM 
2250 used in this experiment has a display face twelve 
inches square with a maximum capability of fifty-two 
lines of seventy-four characters each. The information 
in the displays for this investigation is rather densely 
packed and is digestable only by someone sitting in the 
console chair immediately in front of the display face. 
A smaller display face would mean that displays would 
have to be segmented; the same information in smaller 
characters on a smaller display face would be the wrong 
compromise. With segmented displays, more pro
grammed function. keys would be needed and the 
problem of how to ask for a particular display becomes 
more complicated for the user. It is unfortunate that the 
great majority of available alphanumeric display units 
have small display faces--·eight inches by six inches 

appears to be a popular size. Other features of the IBM 
2250, such as an alphanumeric typewriter keyboard, 
line-drawing capability, and a light pen, are unnecessary 
for this application. 

In addition to the display device proper, this experi
ment used other system facilities. The display unit had 
a self-contained buffer of 8,192 characters. Of this, a 
maximum of 2,000 characters of buffer stora.ge were 
used at anyone time. The display program in the main 
storage of the IBM 360 Model 40 used approximately 
13,000 characters for program and 21,000 characters for 
tables. An additional 46,000 characters of disk storage 
were used for table overlays. 

The display system evidently achieved the objective 
of presenting a complex situation, which involved many 
inter-relationships, in a manner such that the key 
concepts and fundamental correlations were clearly 
understandable. The display Rystem appeared to facili
tate interpretation and extrapolation of the relevant 
data. The reduction of reaction time of top-level 
decision-makers in this environment is both an interest
ing result and an important objective of any executive 
display system. 

One point of great interest for further work would be 
the exploration of the differential cost or savings of 
decisions using display units and printer output. This is 
a rather difficult area to define, since dollar values and 
weightings must be assigned not only to the reduction 
in inventory valuation and the cost of lost sales, but also 
to the generated purchase actions, availability of 
material, timeliness of decision, system cost and other 
factors. 

Statistics on the frequency of use of the various 
displays should be collected, both automaticalJy and by 
experimenter observation. The correlation of the fre
quency of use by display type with the individual's 
consistency of decision would be most important for t.he 
design of extensions of this system. 

Whatever the extension of the experiment, there 
should be the capability for the decider to request a hard 
copy of any display he wishes. If line drawing capability 
is used, this, of course, implies the availability of the 
equivalent of a line plotter for hard copy output. This 
requirement is more operational than experimental. We 
have no doubt as to the utility of such a feature for the 
decider in an operational environment, and if a display 
unit has a line drawing capability, it should be used with 
this requirement in mind. 

SELECTED BIBLIOGRAPHY 

Computer characteristics quarterly (second quarter) 
Keydata and Adams Associates Inc Wat.prtown Massachusetts 
1968 



R G BROWN 
Statistical forecasting for inventory control 
McGraw-Hill Book Company New York 1959 
D S BURDICK T H NAYLOR 
Design of computer simulation experiments for industrial systems 
Communications of the ACM 9 May 1966 pp 329-339 
W G COCHRAN G M COX 
Experimental designs 
John Wiley & Sons, Inc New York 1962 
W L HAYS 
Statistics for psychologists 
Holt, Rinehart and Winston New York 1963 
IBM system/360 operating system graphic programming services 
for IBM 2250 display unit 
International Business Machines Corporation Form C27-6909-4 
December 1967 
IBM system/360 component description, IBM 2250 display unit 
model 1 
Form A27-2701-1 January 27 1967 
H R LUXENBERG R L KUEHN eds 
Display systems engineering 

Decision Making with Computer Graphics 607 

McGraw-Hill Book Company New York 1968 
T H NAYLOR J L BALINTFY D S BURDICK 
C KONG 
Computer simulation techniques 
John Wiley & Sons New York 1966 
K WERTH T H WONNACOTT 
Methods for analyzing data from computer simulation experiments 
Communications of the ACM 10 pp 703-710 November 1967 
G W PLOSSL 0 W WIGHT 
Production and inventory control 
Prentice-Hall Inc Englewood Cliffs NJ 1967 
H SACKMAN W J ERIKSON E E GRANT 
Exploratory experimental studies comparing online and offline 
programming performance 
Oommunications of the ACM 11 pp 3-11 January 1968 
R G D STEEL J H TORRIE 
Principles and procedures of statistics 
McGraw-Hill Book Company New York 1960 
B J WINER 
Statistical principles in experimental design 
McGraw-Hill Book Company New York 1962 





Concurrent statistical evaluation 
during patient monitoring* 

by s. T. SACKS, N. A. PALLEY and H. SHUBIN 

University of Southern California School of Medicine 
Los Angeles, California . 

and 

A. A. AFIFI 

University of California 
Los Angeles, California 

BACKGROUND 

The Shock Research Unit, a specialized clinical re
search facility, has been developed by the University 
of Southern California's School of Medicine for the 
purpose of rendering intensive care to seriously ill 
patients. Included is a medium-sized digital computer 
with a real-time system which monitors the critically 
ill patient. In addition, the system is being used to 
study the underlying mechanisms of the disease process 
and for developing new techniques of evaluating and 
treating seriously ill patients. 

The Shock Research Unit was started in 1962 and 
since that time approximately 1,000 patients have 
been treated at the unit. In mid-1963 a computer was 
obtained and a system developed for monitoring 
patients. 1 In 1968 the Shock Research Unit obtained 
a third generation computer and applications programs 
for a much-enlarged system of real-time monitoring 
were written. 2 

"The patient in circulatory shock is an example of 
the need for immediate response to clinical observa
tions. Low blood pressure and reduced blood flow are 
characteristic of the patient in shock. He may be
come stuporous or comatose due to the inadequate 
circulation to the brain. His kidney may cease to func
tion and his respiration may fail. 

* The research programs of the Shock Research Unit are sup
ported by grants from the John A. Hartford Foundation, Inc., 
New York, and by the United States Public Health Service 
research grants HE05570 and GM16462 from the National Heart 
Institute and grant HS00238 from the National Center for 
Health Services Research and Development. 

609 

Assessment of the circulatory and respiratory status 
of such a critically ill patient requires measuring a 
number of variables: arterial and venous pressure ; 
blood flow and volume; electrocardiogram; blood gases 
such as oxygen and carbon dioxide and blood con
stituents such as potassium. Repeated assessment of 
these variables is required since the critically ill pa
tient is not in a steady state, but may undergo rapid 
and often unpredictable changes in status". 3 A number 
of other patient monitoring facilities employing digital 
computers are currently in operation across the coun
try. Two such units engaged in the simultaneous 
monitoring of multiple variables are at the Pacific 
Medical Center4 in San Francisco and the Latter Day 
Saints Hospital5 in Salt Lake City. 

At the k.~lock Research Unit, a combination of 
sensors and transducers is used for measurement of 
vital signs and additional parameters of clinical im
portance, and the data is processed to derive numerical 
information helpful to the physician. Information 
which is supplied directly by sensors applied to the 
patient's body include eleven primary measurements 
and twenty-five parameters which are recorded and 
displayed with a frequency ranging from once a minute 
to once every twenty-four hours. All numeric and 
textual data are stored in an on-line patient file or
ganized by type of data and by time. The data may 
be retrieved by the user through a bedside K/D and 
by current scheduled applications programs. Given this 
large amount of sequential data, the physician must 
have some means of combining it into a meaningful 
evaluation of changes in the patient's status.6 All 
present commercially available patient monitoring 



610 Fall Joint Computer Conference, 1970 

systems depend on alarm limits which are manually 
set and may not be adaptable to the particular clinical 
situation. These alarms are based on absolute values 
of single variables and do not take into account re
lationships among variables. When these univariate 
alarm systems sound too frequently, the usual response 
of the person in charge is to set wider alarm limits. 
Such actions have no statistical basis and may be 
detrimental to patient care. 

The availability of an on-line computer monitoring 
system allows the examination of many variables si
multaneously as well as the observation of their inter
relationships. The purpose of this paper is to describe 
the development and application of an automated 
screening procedure for evaluating physiological data 
obtained from continuous monitoring of critically ill 
patients. Three criteria, motivated by clinical ex
perience, are used in the evaluation of the patient's 
data. The first is the absolute value of the monitored 
variables. These values contain the information neces
sary to determine the current status of the patient 
and to assure that the monitoring equipment is operat
ing properly. The monitoring interval then may be 
modified appropriately. However, in a dynamic system 
the information of interest to the clinical staff is con
tained in the sequential changes in the measured 
variables. These may reflect sudden, unexpected 
changes in status or the expected responses to treat
ment and constitute the second criterion. Variations 
are sometimes more meaningfully interpreted relative 
to the absolute values of the variables. The third 
criterion, therefore, is the proportionate change in the 
monitored variables. 

l\,:Iany of the variables which are routinely monitored 
in a critically ill patient are highly correlated and the 
clinical significance of a given measurement becomes 
more apparent when examined in the context of the 
remaining measurements. For example, Figure 1 illus
trates a scatter diagram of a typical random sample 
of simultaneously measured systolic (SP) and diastolic 
(DP) pressures. The data tend to accumulate in an 
elliptical region with the highest density near the cen
ter. While the vertical and horizontal dashed lines 
determine the 95 percent confidence intervals for SP 
and DP individually, the elliptical region includes the 
same region for the pair of measurements. Point A 
illustrates a measurement which lies within the in
dividual normal limits but exceeds the bivariate limits , 
because low systolic pressure is combined with high 
diastolic pressure. Thus normalcy is determined by 
knowing both distance and direction from the mean. 
The region inscribed by the ellipse may be expressed 
by the inequality 

O~~--------~------------o 50 100 

SYSTOLIC 
95% 

LIMITS 

DIASTOLIC PRESSURE mmHQ 

Figure I-Scatter diagram of a set of values of systolic and 
diastolic pressures indicating univariate and bivariate 95 

percent confidence regions 

where C is a constant and D2 is the l\1ahalanobis 
distance for the two variables SP and DP.7 This Ma
halanobis distance may be computed for any number 
of variables. If Y is a vector of r observations, Y is the 
mean vector, and S is the covariance matrix, then 

D2= (Y - Y)'S 1 (Y - Y). 

Because D2 incorporates interdependencies among 
the vft,riables, unusual combint1tions of variables or 
changes result in abnormally large D2 values, even 
though the variables or changes when regarded in
dividually may fall within normal limits. 

U sing data sampled from patients previously mon
itored in the Shock Research Unit, these ideas pro
vided the basis for a system to respond in real-time 
to changes in patient status. The responses of the 
system include: 

1. Informing medical personnel of unusual changes 
in the set of monitored variables. 

2. Selecting data for display. 
3. Selecting data for recording on a permanent 

file. 
4. Running of special analysis programs. 

These responses will be discussed in detail below. 

Development of method 

Forty-one patients were chosen randomly from the 
750 patients monitored in the SRU up to August, 1967. 



Only those patients who were observed for at least 
four hours were included. 

Seven variables were selected from the many which 
are routinely monitored: systolic pressure (SP) , dias
tolic pressure (D P), mean arterial pressure (MAP) , 
mean venous pressure (MVP), rectal temperature 
(RT) , heart rate (HR), and respiratory rate (RR). 
Each patient's record was examined and that four
hour period which had the least missing data was 
chosen. Measurements on sets of these variables were 
recorded on each patient at five-minute intervals over 
the selected four-hour period. Estimates for any mis
sing data, which accounted for less than 5 percent of 
the total data, were made by interpolating between 
the nearest recorded values before and after the mis
sing observation. From these absolute value sets the 
following were calculated: .5-, 10-, 15-, 30-, and 60-
minute changes, proportionate .5-, 10-, 15-, 30-, and 
60-minute changes. 

Figure 2 illustrates the successive changes in a 
single variable over time. It should be noted that this 
choice of intervals was made in order to account for 
both long-term and short-term variations. An example 
of the calculation of 5-minute changes and proportional 
changes in a set of variables is illustrated in Table I. 
The value of the IVIahalanobis D2 was calculated using 
the appropriate sample mean vector and covariance 
matrix for each vector of absolute values, x-minute 
changes and proportionate x-minute changes (x = .5, 
10, 15, 30, 60). In the remainder of this paper frequent 
reference will be made to these eleven types of mea
surements, namely, absolute values, the five x-minute 
changes, and the five x-minute proportionate changes. 

W 
...J 
m « 
0:: 

~ 

TIME COMPARISONS 

r'" -60 """~So 

MINUTES 

.......... ~ 

o 
VIIC,IIIUII1' •• 
AL.A •• 

Figure 2-X-minute changes in a given variable for 
x = 5, 10, 15, 30 and 60 

Concurrent Statistical Evaluation 611 

TABLE I-An Example of 5 Minute Changes and Proportional 
Changes in the 7 Variables Set 

Value at Value at 5-minute 5-minute 
Variable Time Time change at proportional 

Name t t-5 Time t change at Time t 

SP 122 122 0 O. = 0/122 
DP 80 87 -7 -0.088 = -7/80 . 
MAP 94 98 -4 -0.043 = -4/94 
MVP 1 1 0 O. = 0/1 
RT 37.7 37.8 ~0.1 o .003 = 0 . 1/37 . 7 
HR 98 100 -2 -0.020= -2/98 
RR 21 22 -1 -0.048 = -1/21 

D2 12.9 8.5 11.8 43.1 
Region B A B C 

This procedure yielded eleven distributions of D2. 
Percentiles necessary for setting monitoring limits 
were then calculated for each of these D2 distributions. 

In monitoring a critically ill patient, it is inevitable 
that, on occasion, values for one or more variables 
are missing. This may occur if a measurement is taken 
while a catheter is being flushed or if the EKG leads 
are accidentally disconnected or simply because moni
toring of all variables is not started simultaneously. 
A preliminary screening procedure will exclude such 
invalid measurements. Consequently, tables of D2 for 
incomplete vectors of observations are necessary. It 
is possible to empirically derive and store the 1309 
tables of D2 percentiles necessary to handle all com
binations of missing variables. Hmvever, in order to 
minimize storage requirements and allow the system 
to operate in real-time, ail alternative procedure was 
developed as follmvs. 

If the population mean vector and covariance matrix 
were used in computing D2, and if the observation 
vector were normally distributed, the distribution of 
D2 would be that of a Chi-square variable. Since the 
variables under consideration are not exactly normally 
distributed and sample estimates were used instead 
of population parameters, the empirical distribution 
ofD2 deviates from that of Chi-square. However, they 
do remain similar in shape. Thus it was hypothesized 
that the ratio of a percentile of the Chi-square distri
bution to the corresponding empirical percentile of 
D2 for a given type of measurement is independent 
of the number of components in the vector of measure
ments. That is, for absolute values, x-minute changes 
and proportionate x-minute changes, we assume that: 

pth percentile of D2 distribution based on l' components 

pth percentile of Chi-square distribution with r d. f. 



612 Fall Joint Computer Conference, 1970 

80th 95th 99th 

PERCENTIL'ES OF 02 

Figure 3-Monitoring regions with alarm limits based on the 
empirical distribution of D2 

pth percentile of D2 distribution based on 7 compo
nents 

pth percentile of Chi-square distribution with 7 d. f. 
for r= 2, ... ,6. 

From this assumption, approximate empirical per
centiles for the'D2 distribution based on any number 
of components were generated from the D2 distribution 
percentiles based on seven components. 

Each D2 distribution is divided into regions des
ignating the degree of normalcy of a set of measure
ments as shown in Figure 3. These limits are based 
on the empirical distributions of each set of values in 
the base sample. In the figure the limits are taken as 
the 80th, 9.5th, and 99th percentiles. Region A may be 
classified as the normal region, containing values 
which are expected to occur 80 percent of the time. 
Region B, the moderately abnormal region, con
tains the values expected to occur between the next 
20 percent to 5 percent of the time. Region C, the 
abnormal region, includes the 95th to 99th per
centiles, and Region D may be interpreted as the 
highly abnormal region since it contains the extreme 
values which would be expected to occur only one 
percent of the time. Sets of three limits are computed 
for 0, 1, ... ', 6 missing variables. The total number of 
tables to be stored is thus reduced from 1309 to 77, 
and with 3 limits per table, only 231 values are stored 
(11 change vectors X 3 region limits X 7 possible 
numbers of missing values). In addition eleven 7 X 7 
covariance matrices based on the sample data are 
stored. 

Note that the original choice of the three percentile 
limits is arbitrary and may be modified as experience 
is gained with the system. 

System algorithm 

The basic algorithm for this system comprises the 
following steps: 

1. Each five minutes, the most recent set of ob
servations is retrieved from the patient file. 

2. The patient file is searched sequentially for the 
measurements taken 5, 10, 15, 30 and 60 minutes 
previously and also for alarm information re
corded at those times. For those variables having 
a valid present and past value, changes and 
proportionate changes are computed. The ap
propriate stored covariance matrix, or a reduced 
matrix corresponding to the variables present 
in each change vector, is then used to calculate 
D2. In some cases all components necessary for 
computing D2 may be missing. 

3. For each of the computed D2 values, the ap
propriate set of three region limits is retrieved 
from the tabled values on the disc file. The index 
of the set of limits to be retrieved is determined 
by the change vector being considered (1, ... , 
11) and its dimension (1, ... , 7). 

4. Using the region limits, a cateogry is assigned 
to each of the available D2 values. 

5. The identity of the most extreme D2 and the 
category to which it is assigned are stored in 
the patient file. 

6. Appropriate system action is taken as described 
below. 

Uses of the system 

The action taken by the patient monitoring system 
in response to the computed D2 depends upon the 
most extreme category detected. Any D2 value falling 
in the B, C or D regions will result in a signal to the 
ward staff. The signal is coded to indicate the degree 
of abnormality. A red and a yellow signal light and a 
chime, under computer control, are mounted near the 
status display. The chime signals a D2 value detected 
in any of the three regions. In addition, the red light 
accompanies region D while the yellow light accom
panies region C. 

Some measurements such as heart rate and respira
tion rate, are usually read from the output of pre
processors which derive the information from the raw 
data. When an alarm occurs, the digital analysis pro
gram reads the original wave-form signal directly to 
verify the abnormal value encountered. The EKG 
analysis program, which may be run on demand, is 
also triggered in response to an alarm. 



In many cases, the cause of the alarm is immediately 
obvious by noting the values on the status display, 
as shown in Figure 4. If the physician wishes to know 
in detail the values causing an alarm, he may cal1 a 
program on the keyboard display which reports the 
current and previous values of the variables used in 
computing D2. As illustrated in Figure 5, this program 
indicates the time over which the extreme changes 
have taken place and the magnitude of the changes. 
The physician may then indicate the probable cause 
of the alarm. The cause may be a change in the normal 
course of the patient's progress or a specific treatment 
such as medication, fluid infusion, or adjustments 
made to the respirator. Changes from such causes, al
though resulting in an alarm, do not necessarily reflect 
emergent situations. In addition, the alarm may have 
been caused by an artifact in one of the monitored 
variables. This may occur if a catheter becomes clogged 
or is inadvertently flushed while the signal is being 
read or if EKG leads become dislodged. This infor
mation is stored in the patient file and at the same 
time the signal light is turned off. 

Summaries of alarm information are stored in the 
patient file. These summaries contain the following 
information: the time of the alarm, its category and 
the specific change or proportionate change causing 
the alarm. In addition, if the ward staff responded 
to the alarm through the keyboard display, the sum
mary will contain the time of the response and may 
thus contain a flag indicating that the cause of the 
alarm was an artifact and the particular variable or 

19.····0517 STATUS 

S .... ·S ..... DIA 
t'1AP 
'.}EN 
HF.:.···PDEF 
F.:E!::;P 

F.~ECT .····At·1El 
TOE L. .... F.~ 
UP5.····UR60 

DA\' /'T I t'lE 
[:1 
AT.···ll[:T 
RESIST 

HCT .... ·T1t·1E 
PH.····PC02 
P02.····SAT 

pl.} .····T I t'lE 
F.~Ct·1.····T I t'lE 
LAC/Tlt'lE 

BED 1 

64/37 
45 
6 
84/ 3 
17. 

34.6.····25.4 
24.8.····24.3 

6.····39 

19 .... ·0201 
1.9 
14/28 
1347 

29.····0210 
7.31.····51 

71...-'96 

5:::: ..... 0224 
22.····0224 
3.4.····0217 

BED 2 

96.····5:3 
72 
8 
98.···· 0 
22 

37.1.····25.4 
24.9.····25.3 

0 ..... 2:::: 

19.····0317 
1 .=, 

• I_I 

11.····25 
2227 

19.····0329 
7.49 ..... 24 
27:::: ..... 100 

29.····0346 
19 ..... 0346 
2.9.····0338 

Figure 4-Bedside status display showing values of the monitored 
variables for two patients 

Concurrent Statistical Evaluation 613 

.~ •• M S"MMAIY lED 1 

"Cu\-. AllH"1 I. 
•• \18 1234 

11M' Q' ALAIM: 04/0105 IE'IDM· C .LESS TNAM 5 'EICEMTJ 
SQuat, Q' AUIM: 5 IIINUTE CHAM'E • 

liME 0100 0105 DELTA 5 

\ SP 122 122 0 
: ::, .0 ., 7 
4 MW' '4 sa 4 
S IT I I 0 
I HI U • , 3' .t 0 I 

S. 100 • 
7 I. 22 21 .1 
CAUSE OF ALA •• : 0. U .. MO ••• I. TIEATIIENT. 2' AITI'AC1 ? 2 
VAIIAILE ? 2 'DP, 

01 UNKND_N OIJGJ. 
11 CATHETEI DAMPED 01 DISCD •• rCTED 
il 'LUSHJNG 
31 AIt'LJ'JUS 
41 OTHEI ELECTtONJCS 

CODE ? Z 

Figure 5-Keyboard/CRT display alarm summary showing 
that the set of 5-minute changes falls in monitoring region C. 
The attending physician indicated that the value for variable 2 
was an artifact caused by flushing 

variables involved. If the information was supplied 
by the physician, the clinical event related to the 
alarm condition is also coded. 

The alarm summaries are utilized by the patient 
monitoring system in a variety of ways. As indicated 
in Step 2 of the system algorithm, the patient file is 
searched so that changes may be computed. Sum
maries of alarms stored at the same time as any of 
the five previous sets of values are also retrieved. If 
the summary indicates that any value in the set used 
for calculating the D2 was the result of an artifact, 
that value is deleted from computation. This prevents 
a single artifact from causing several alarms as that set 
of values is successively retrieved 5, 10, 15, 30 and 
60 minutes later. 

During the patient's stay, the physician often re
views sets of data on the bedside keyboard display. 
Since on any display frame only six sets of simultaneous 
measurements may be viewed, as shown in Figure 6, 
it is desirable to eliminate redundant observations . 

This may be achieved by displaying only those sets 
of data falling in abnormal regions. In the same way 
the permanent hardcopy record, which is printed upon 
patient discharge, can be specified to contain only 
significant information. Under conditions of intensive 
monitoring where measurements are made every min
ute, this may represent a valuable reduction in the 
bulk of the hardcopy record to be reviewed. Those 
sets of variables containing values previously identified 
as artifacts may be deleted from both the keyboard 



614 Fall Joint Computer Conference, 1970 

MEMaDYNAIUC DATA SUIIIIAIIY lED 3 

~nnNT NAIIE- 'ICIll, UTHUR 
"OSPlTAl NUMBU_ 111171 
.au NUM'U - 1 G4a 

DAVitt"" DD,HH"" 10'2343 10/23.1 10/2353 .. was aN MUD 

svs M"HG 15,0 n,a n,a 
Oil ""HG MAP ""HG 

54,0 54,0 54,0 
VEitt ""HG 

70,0 70.0 70.0 
1,0 1,0 1,0 

Hit '''IN azo,o 120,0 117,1 Pit '''IN 
ItESP '''IN 

111,0 111,0 111,0 
11,0 1$,0 17,a 

10/2351 1110003 

14,0 !l4,a 
54,0 54,0 
n.o n.a 
1,0 7,0 

120,0 120,0 . 
111,0 111,0 
lI,a 17,0 

11 FIItST, 9) LATEST 
ENTEit caDE 4) 'REVIOUS, II '''LillIS,. DAY/TIIiE 

1110007 

91.0 
n.a 
51.a 
',a 

ua.a 
111,0 

15,0 

Figure 6-Hemodynamic data summary showing six sets of 
values of seven variables 

display presentation and the hardcopy output. This 
procedure is also used with the storage oscilloscope 
at the bedside which displays a trend plot of monitored 
variables. By referring to the alarm summaries the 
program which produced this display deletes invalid 
data points from the plot. 

In order to have the patient file accessible in case 
of system failure, teletypes, remote to the ward, pro
duce hardcopy output containing the latest measure
ments. While the status display is automatically up
dated every 30 seconds, the teletype, because of its 
low speed, cannot be updated at the same rate. In 
order to make efficient use of the teletypes and fulfill 
their function of preserving data of interest, the tele
type records are updated every half-hour or whenever 
abnormal values are encountered. 

SU:;\Il\IARY 

The alarm system described in this paper both depends 
on and augments the capabilities of the digitally con
trolled patient monitoring system. It utilizes multi
variate techniques to compute statistics which are 
sensitive to relationships among the monitored vari
ables. The degree of abnormality of a computed sta
tistic is evaluated in terms of empirical distributions. 
These distributions were derived from a population 
of critically ill patients similar to that being presently 
monitored by the system. The actions taken by the 
patient monitoring system in response to the alarm 
depend on the severity indicated by the alarm. The 
occurrence of the alarm and the cause, if known, be-

come part of the patient's file and are accessible to 
applications programs involved in data display. The 
stored summary of the alarm information assists the 
clinical staff in case review, and provides a basis for 
evaluating and modifying the alarm system itself. 
Such modifications might include the redefinition of 
the percentiles which define the alarm categories or 
even the number of such categories. Extensions of 
this alarm system might enable a small centrally lo
cated digital processor to evaluate sets of data from a 
number of analog monitoring modules at various bed
sides. 

ACKNOWLEDG1VIENT 

The authors would like to express their gratitude to 
Doctor l\1ax Harry Weil, Director of the Shock Re
search Unit, whose able guidance and support made 
this work possible. We would also like to thank Doctor 
William Rand who, during his employment at the 
Shock Research Unit, contributed greatly to the col
lection of the data in the preliminary discussions leading 
to the formulation of the system. Our thanks also go 
to l\1iss Cecilia Pasos for typing the manuscript. 

REFERENCES 

1 M A ROCKWELL H SHUBIN M H WElL 
Shock III: A computer system as an aid in the management 
oj critically ill patients 
Communications of the ACM Vol 9 No 5 May 1966 

2 D H STEWART D E ERBECK H SHUBIN 
A computer system jor real-time monitoring and management 
oj the critically ill 
AFIPS-Conference Proceedings Vol 33 December 1968 

3 IBID 
4 J J OSBORN J 0 BEAUMONT J C RAISON 

J RUSSELL F GERBODE 
Measurement and monitorjng oj acutely ill patients by digital 
computer 
Surgery Vol 64 pp 1057-1070 December 1968 

5 T A PRYOR H R WARNER 
Time-sharing in biomedical research 
Datamation Vol 12 pp 54-63 April 1966 

6 A A AFIFI W RAND H SHUBIN M H WElL 
A method jor evaluating changes in sets oj computer monitored 
physiological variables 
Submitted for publication 

7 T W ANDERSON 
Introduction to multivariate statistical analysis 
John Wiley and Sons New York 1958 



Associative capabilities for mass storage 
through array organization* 

by ARNOLD IVLPESKIN 

Brookhaven National Laboratory 
Upton, Long Island, N ew York 

THE ASSOCIATIVE MEMORY PROBLEM 

Since computers first came into wide usage, digital 
systems designers have been intrigued by the possibili
ties of associative or content addressable memories. 
The concept is quite easy to understand; whereas, in 
the conventional case, the address is furnished to the 
memory and the data stored at that location is the ex
pected result, in the associative reference, the data is 
furnished and the expected result is a list of all addresses 
which contain matching data. Up to now, however, the 
ph~sical systems which exhibit the requisite symmetry 
to realize this concept have been necessarily very costly 
because the commonly used, low cost, random access 
memories do not easily lend themselves to this new 
operation. Those digital systems designers who pre
dicted widespread use of associative memories by the 
late 1960's are found in retrospect to have seriously 
underestimated the difficulty in implementing thin 
magnetic film or superconducting memory systems, 
on which these forecasts heavily depended.l,2,S 

Logic designers and programmers have each been 
called upon to simulate the associative memory for 
specific applications, but implementation in logic has 
incurred an almost prohibitive cost-per-bit and soft
ware search subroutines expend equally unattractive 
lengths of time. 4 The advent of large scale integration 
and the rapidly decreasing cycle times of new computers 
promise to make either recourse somewhat more at
tractive but at this time associative capability is still 
unthinkable for anything but a small block of 
information. 

A CONTENT ADDRESSABLE N-CUBE 

One approach to this problem is to expand the as
sociative capability from a small block of data to a 

* Work performed under the auspices of the U.S. Atomic Energy 
Commision. 

615 

larger storage array. If the small block possesses the 
associative property but the large array does not a 
method of ,data base organization and array intercon
nection is possible so that the larger array begins to 
exhibit all the properties of the smaller one including 
reference speed and content addressability. A geometric 
interpretation of this approach is depicted in Figure 1. 

A cubic storage array is shown, only one plane of 
which has associative capability; this is the z = 0 plane. 
A match resulting from an association in this plane will 
define another plane, perpendicular to the first. As
suming that the memory reference requires that a 
second association be made on the data in this newly 
selected plane also, its contents may be loaded into the 
plane with the content addressable capabilities, wh.ile 
the original contents of that plane are temporarIly 
stored in the buffer of Figure 1. The association may 
then be completed and the array restored. For purposes 
of this discussion, it is assumed that the loading and 
unloading capability is implemented by adding to each 
bit the necessary hardware to make it a unidirectional 
fast shift register. 

It is then possible to select or "find" any given word 
in the cube in the time required to perform two associa
tive references and the requisite loading and restoring 
of the z=O plane. What this scheme accomplishes can 
be demonstrated by examining its cost-performance 
characteristics. Symbols will be defined in the following 
manner: 

w = word length: number of bits per dimension 

Ca = associative portion of cost per bit 

Cc = conventional portion of cost per bit 

ta = time duration of a t'wo-dimensional associative 
reference 

ts = time required to shift a bit "w" places. 

For use in approximation, the follo'wing relationships 



616 Fall Joint Computer Conference, 1970 

Z 

'I 

_ .............. PLANE 

/'ALSS~Xlj~T IVE 
PLANE 

~~------------x 

Figure I-A content addressable 3-cube 

are assumed to exist 

ta = (20/w) ts. 

These relationships state that the content-addressable 
and shift portion of the cost is ten times the cost of a 
conventional memory of the same size, and that the 
time required to do a memory reference in an IC mem
ory system is twenty times that of a one bit shift in 
logic of the same family. These constants vary with 
the technology and mode of implementation used, of 
course, but experience indicates that these are reason
able assumptions.4 What is most important, neverthe
less, is that these relationships are expressable by con
stants, and not what the specific values of these con
stants are. 

In two dimensions, then, 

total cost = (Ca +Cc)w2 

= 11w2Cc• 

With the three-dimensional scheme of Figure 1, there 
are now w3 bits, each of which may be thought of to 
have associative capability, but only one out of every 
w bits incurs the associative portion of the cost. This is 
accomplished at the expense of a reduction in the total 
speed of reference. Specifically, 

total cost = w3C c + w2C a 

= (w3+10w2)Cc 

duration = 2ta + 2ts 

=ta [2+ (w/lO)} 

There is no reason to stop at three dimensions, be-

cause as each new dimension is added: 

1. the associative capability increases expo
nentiallv: 

2. the conventional portioI,l of cost only follows 
exponentially; 

3. the associative portion of the cost does not 
increase; 

4. the duration of a reference increases linearly. 

Summarizing for an n-cube: 

N umber of associative elements = w n 

Total cost = (wn + 10w2) Cc 

Duration = (n-l)ta+2(n-2)ts 

=ta[(n-l) +w(n-2)/lO]. 

These relationships are summarized in Figure 2. 
Whether or not the n-cube is a practical design ap

proach is a difficult question to answer in view of the 
current flux in integrated circ.uit technology. IC's are 
becoming available which provide the associative, but 
not the shift capability. Providing a bussing structure 

10.000 

1.000 

,........, 
Cf) 

~ 
)( 

'--' 
(I) 
I-
iii 100 .., 
> 
i= c 
U 
0 
(I) 
(I) 

C 
IJ. 
0 
III: .., 
ID 
2 
:I 
Z 

10 

COST PERFORMANCE CHARACTERISTIC: 
DIMENSION v S. SIZE OF ASSOCIATIVE FIELD. 

o 2 4 
DIMENSION OF N - CI,./BE 



so that the information of each plane can find its way 
to the z = 0 or associative plane may add considerable 
overhead to the system. Also, the question of how to 
handle multiple matches in an early plane reference 
can only be addressed to the specific application for 
which the n-cube is being used. However, one can at
tempt to take advantage of the exponential capability 
increase vs. linear time duration increase with a two
dimensional associative array interfaced to a properly 
partitioned conventional random access storage bank. 

A PRACTICAL FOUR-DIMENSIONAL 
APPROACH 

Figure 3 shows a computer configuration featuring a 
large random access bank of core storage which can be 
referenced by one or more central processors through 
the mass storage controller. This configuration is 
typical of many large computer installations. Also 
connected to the mass storage unit is a small two-

1,000 

2 100 

10 

11-----------~~------~--~-------024 
DIMENSION OF N - CUBE 

Associative Capabilities 617 

dimensional content addressable memory, which inter
faces to the mass storage controller through its own 
transfer coupler, which in turn is controlled program
matically through the I/O interface of the computer. 

The two-dimensional content addressable memory 
(2DCAM) consists of sixty-four 64-bit words which 
maybe accessed either conventionally by address or 

COST PERFORMANCE CHARACTERISTIC: 
DIMENSION vs. RELATIVE REFERENCE TIME 

,...., 
~ 100 

6 

I 
"" ~ 
~ 
I&! 
~ 
i 10 
I 

o 2 4 
DIMENSION Of N - CUBE 

ACCESS TIME COMPARISON fOR LINEAR ANO N- CUBIC fILE SCANS. 

1.000 

100 

:..-...s LINEAR SCAN 

10 100 1.000 10.000 

NUMBER OF ASSOCIATIVE BITS [x 1O~ 

Figure 2-Cost-performance characteristics of a 
content-addressable N-cube for w = 64 bits per word 



618 Fall Joint Computer Conference, 1970 

COMPUTER 

MASS STORAGE 

------- -

VIRTUAL 
CAM 

Figure 3-Proposed 4D configuration 

~ 

DIMENSION 
4 

by content; that is, exhibiting the associative property. 
The field of association can be specified under program 
control by loading a mask register, thus increasing the 
2DCAM's versatility. This device may be built around 
integrated circuit content addressable memory modules, 
such as are becoming available in various logic families 
from several different manufacturers. I t is also im
portant to implement a burst load/unload capability 
for the entire 2DCAM, analogous to the perpendicular 
shift capability in the n-cube configuration. In the TTL 
or ECL logic family, storage cycle times of less than 100 
nanoseconds are now commonplace. 

The portion of the mass storage which is dedicated 
to the 2DCAM will for many applications, virtually 
exhibit the associative property itself. If the mass 
storage is partitioned as suggested in Figure 3, there 
will be four dimensions of associativity, each 64 bits 
long, or over 256 kilo-64-bit words capable of exhibiting 
the associative property in little more than the time 
required to load the 2DCAM twice. There will be one 
64 word block which can be thought of as the interfile 
index. It is the block in which the first association takes 
place and is thus analogous to the z = 0 plane of the n
cube. A match resulting from an association in this 
table will determine which one of sixty-four sectors of 
conventional storage contains the information that is 
ultimately sought. An index for that sector ifS then 
loaded into the 2DCAM and a subsequent afSfSoeiation 
is performed, this time to determine which 64 word block 
will be required for the final associative reference. 
Thus a partially ordered data field of 16 million bits 
has been scanned in the time required to load the 
2DCAM twice and perform a content addressable 
reference three times, which together would total an 
elapsed time of less than twenty rni(T()s(~t(Hlds. 

As is shown in the graph of Figure 2d, this method 
compares quite favorably to the time required to scan 
256,000 64-bit words programmatically, especially 
when it is realized that while the association takes place, 
the central processor is free to perform other tasks. 
Compared to the most advanced techniques of binary 
searching, the n-cube associative search over this data 
base can be performed approximately five times faster. 

THE BROOKHAVEN CONFIGURATION 

In the Central Scientific Computing Facility of 
Brookhaven National Laboratory, the computer of 
Figure 3 is one of Brookhaven's Control Data 6600 
processors. The mass storage system is a one-million 
word Extended Core Storage (ECS) , also a Control 
Data product. The ECS controller, designated the 6640, 
can service up to four 6000 series computers with a 
maximum throughput rate of 600 million bits per 
second.5 

The transfer coupler of Figure 3 is represented in the 
Brookhaven configuration primarily by a branch of the 
Laboratory's remote computer network, known as 
Brooknet, as shown in Figure 4. Brooknet can provide 
on-line service to eight remote areas, any of which can 
be up to 5,500 feet away from the central facility. Each 
remote area, in turn, may have eight or less remote 
computers on-line within a radius of 1000 feet from a 
remote Brooknet multiplexer. As shown in Figure 4, 
Brooknet provides selectable data paths for the remote 
from either the computer I/O interface or the ECS 
controller, to which Brooknet logically appears as a 
third 6600. The I/O interface is utilized for status and 
fixed format control messages and the ECS path is 
used for block data transfer of files. Because it can 
provide a high speed interface between a special pur-

Figure 4-Brooknet 

} 
FREE 
I MHZ 

SUB-CHANNELS 



pose device (such as the 2DCAM) and ECS, a Brook
net link meets all the requirements for a transfer 
p'oupler. That is, ECS would suffice as the large con
ventional storage, the 2DCAM would reside at the 
remote system, and the requisite swapping of the 64 
word blocks of information are performed as normal 
Brooknet data transfers just as if they were input or 
output files from a remote batch station. For this 
system, in order to maintain compatibility with the 
Control Data equipment, the word size must be sixty, 
rather than sixty-four bits long. 6 

The two-dimensional content addressable memory 
(2DCAM) designed for Brooknet has the block dia
gram of Figure 5. This device consists of sixty-four 60-
bit words, expandable to 256 60-bit words, which can 
perform associative or conventional meinory refer
ences. There are six functions defined for it: 

1. Load mask register; 
2. Write (conventional); 
3. Read (conventional) ; 
4. Associate and count matches; 
5. Associate and present addresses; 
6. M ultiload. 

The multiload function implements the burst loading 
feature required to perform successive associations 
efficiently. The entire memory can be loaded in 6.3 
microseconds. 

To render the 2DCAM hardware and software com
patible with Brooknet, a modest control computer is 
required to engage in the Brooknet dialogues, and two 
more pieces of interface equipment are needed for level 
conversion and logic translation. A 2DCAM system 

GO DATA-IN a GO DATA-'OUT LINES 

8 ADDRESS 
IN LINES 

t---- ASSOC. 
t---- MULTIPLE 

OUT OF RANGE 

8 ADDRESS 
OUT LINE 

Figure S-Content addressable memory block diagram 

Associative Capabilities 619 

I 
I 

BROOKNET: REMOTE 
EQUIPMENTI SYSTEM 

TO [MOn: REMOTE 
CONTROL COMPUTER COMPUTER 

• FACllITYL~APTER CONTROLl£R /' 

SMALL COMPUTER 
STORAGE BUSS 

I 20 CAM 
CONTROLLER I 

I I 

Figure 6-Remote system for 2 D CAM 

which is attachable to Brooknet appears in Figure 6. 
This configuration represents a departure from the 
initial intent of the Brooknet system, which was to 
extend the considerable resources of the 6600 computer 
to smaller remote processors for controlled periods of 
time. In this case, however, it is the remote which 
possesses the desired capability of which the central 
processors would like to avail themselves. 

APPLICATIONS 

The multidimensional approach presented can be 
adapted to many large computer installations provided 
that a mass core storage device is included. The Brook
haven configuration was offered as an example which 
utilizes facilities which were already available at that 
particular computing center. This scheme for providing 
content addressable capability has applications where
ever a conventional two-dimensional configuration was 
previously considered, provided that the decrease in 
speed incurred is not a severe restriction. 7 

By partitioning the associative field of the memory 
word into sections one can structure his data array so 
that multiple associations· are required, and thus take 
advantage of the multi-dimensional approach. For in
stance, if a word has an eighteen bit associative field, it 
can be partitioned into three 6-bit operands. A match 
in the first plane will define a new plane wherein the 
associative field of all words have the same first oper
and as produced the match. Now it is no longer neces
sary to scrutinize the first operand so the match opera
tion is performed on the second operand and so on 
until the unique word is found. Implementation of such 
a procedure presupposes a certain order of structuring 
when the data block was first introduced to the virtual 
CAM area. Self sorting may be accomplished by using 
part of the data word as the address and preserving 



620 Fall Joint Computer Conference, 1970 

the old address as a sequence number when first storing 
the data into the mass memory. Applications in pattern 
recognition, storage paging, and table look-up routines 
lend themselves to such structuring quite readily, and, 
if the application is such that the associative file must 
be loaded once and then referenced many ~imes, the 
presorting requirement does not introduce an objection
able amount of overhead at all. 8 Indeed, in the Illiac 3 
pattern recognition processor, the Iterative Array and 
Transfer Memory taken together achieved the n-cube 
effect in three dimensions.9 

The multidimensional approach appears particularly 
attractive to those applications which can be thought 
of as requiring a hierarchy of associations, such as 
finding a record in a complex paging scheme (i.e., a file 
within a page, a sector within a file, and a record within 
a sector) , or where the file itself is multidimensional in 
structure, such as for graphic or mechanical information 
where f(x, y, z) varies with time. In addition, new 
applications might open up where the amount of source 
information is so large that up to now consideration of 
a truly associative system would have been prohibi
tively expensive.4 ,lO 

CONCLUSION 

Despite some restrictions on its class of applications, 
the cost performance characteristics of this approach 
have been considered attractive enough to warrant 
implementation, especially in large multiprocessing 
systems where the structure of system tables and the 
traffic in file accessing represents a considerable portion 
of the processing time. The implications of large scale 
integration and emergence of more and more complex 
modules suggest that other capabilities besides content 
addressability may benefit from a similar appruach to 
effective utilization. 

This system is currently being implemented at 
Brookhaven National Laboratory. 

ACKNOWLEDGMENTS 

The author wishes to thank Dr. Y. Shimamoto of 
Brookhaven National Laboratory and Dr. J. Robertson 
of the University of Illinois for their .suggestions and 
encouragement. 

This system is currently being implemented by Niels 
Schumburg and Bernard Garfinkel of the Applied 
Mathematics Department engineering group at Brook
haven National Laboratory. 

REFERENCES 

1 W F CHOW 
Plated wire content-addressable memories with bit-steering 
technique 
IEEE Transactions on Electronic Computers Vol EC-16 
No 5 October 1967 

2 P M DAVIES 
A simplified superconductive associative memory 
Proceedings SJCC May 1962 

3 W L McDERMID H E PETERSEN 
A magnetic associative memory system 
IBM Journal of Research and Development January 1961 

4 ASPINALL KINNITMENT EDWARDS 
An integrated associative memory matrix 
IFIP Congress August 1968 

5 6400/6500/6600 Extended core storage system reference 
manual 
Control Data Corporation Publication No 60225100 1968 

6 K R FANNIN 
Brookhaven digital communications network 
AEC Computer Information Meeting Rice University 
Houston Texas April 7 1967 

7 DUGAN GREEN MINKEN SHINDLE 
A study of the utility of associative memory processors 
Proceedings-ACM National Meeting 1966 

8 R R SEEBER A B LINDQUIST 
Associative memory with ordered retrieval 
IBM Journal of Research and Development January 1962 

9 B H McCORMICK 
The Illinois pattern recognition computer-Illiac III 
IEEE Transactions on Electronic Computers Vol EC-12 
No 5 December 1963 

10 ASPINALL KINNITMENT EDWARDS 
Associative memories in large computer systems 
IFIP Congress August 1968 



Interrupt processing with queued 
content-addressable memories 

by JERRY D. ERWIN and E. DOUGLAS JENSEN 

Southern Methodist University 
Dallas, Texas 

INTRODUCTION 

One of the most significant problems in designing high 
performance computing systems is the complexity 
of the associated supervisory software. This is es
pecially true in multi-user environments: the software 
·overhead involved in user communications and re
source allocation normally absorbs a great percentage 
of the system's computing power. 

An often-proposed solution to this problem is to 
remove some of the time-consuming executive func
tions from the software and perform them in hardware. 
Numerous examples of this operation are visible 
throughout the history of computer development. 1 

These attempts have met with varying degrees of suc
cess because as the tasks to be transplanted become 
more and more comprehensive, it becomes less and 
less obvious exactly what sort of hardware structures 
are needed for their efficient implementation. 

One of the most vital ingredients in an on-line com
puter is a powerful and flexible priority interrupt 
system. l\10re than any other single feature, the inter
rupt structure determines the capability of the machine 
to respond quickly to both internal and external 
stimuli. Whether the computer is used for control 
or data processing, its effectiveness is frequently mea
sured by how rapidly it is able to react to conditions in 
the user environment. 

A fundamental characteristic of an interrupt system 
is how many interrupting sources it can handle. Few 
of today's computers are designed to accommodate 
interrupts from a large number (say hundreds) of 
devices, despite the growing requirements for such 
facilities. It is increasingly common to find cases where 
a machine's processing power is sufficient to satisfy 
a great many concurrent demands, but its interrupt 
system is incapable of supporting the corresponding 
volume of service requests. This limitation lies not 

621 

only in the hardware restrictions on the number of 
interrupt lines, but also in the software's inability to 
effectively deal with the interrupts it does get., It is 
apparent, . then, that in such cases a brute force ex
tension of current interrupt concepts is inadequate. 
Instead, a new approach needs to be formulated which 
provides improved performance from both hardware 
and software. 

It is well recognized that on-line computers generally 
cannot afford the inefficiencies inherent in scanned or 
multiplexed interrupt structures; a multi-level hier
archical system is preferable for such applications.2 

Frequently the on-line interrupts do not all have 
distinct priorities, so they can be separated into priority 
classes. Each class can then be assigned to some pri
ority level which is shared by all interrupts of that 
class. Unfortunately, most machines do not possess 
an efficient means of identifying different interrupt 
sources within a priority level, and so the user must 
either degrade his system performance or undergo 
the expense of additional priority level hardware. 

The assignment of priority levels to particular func
tions can be a complex task since the interrupt requests 
must be ordered on the basis of their interaction, not 
merely on their relative importance.2 However, it is 
difficult to accurately forecast the exact nature of these 
interactions in advance, especially since the context 
tends to vary widely during system operation. The 
resulting assignment compromises can be avoided 
by supplying the freedom to dynamically reallocate 
priority levels, a powerful tool which enables the execu
tive software to accurately establish the computer's 
response to changes in its environment. This capa
bility is currently approached through some com
bination of arm/disarm commands, program-generated 
interrupts, multiple level assignments, and hardware 
switching matrices. 

One of the disabilities of conventional priority 



622 Fall Joint Computer Conference, 1970 

Figure I-Queued CAM 

interrupt schemes is that if an interrupt at some level 
is waiting, or is being serviced, or is suspended due to 
higher priority requests, subsequent interrrupts at 
that same level will be ignored. It is obviously neces
sary for a system to be designed so that the time re
quired to respond to an interrupt is less than the 
average time between occurrences of that interrupt. 
But it is also highly desirable that the system not 
become saturated by occasional bursts of interrupts 
at any level. This tolerance to interrupt asynchronism 
greatly eases the problem of compatible priority as
signments, and lessens the risk of disrupted communi
cations between the machine and its environment. 

These considerations have all been successfully 
addressed in the design of a special purpose Interrupt 
Processor (IP). The IP functions as an autonomous 
element of medium to large scale on-line multiprocessing 
systems, and facilitates the computer's interaction 
with users, peripherals, and control interfaces. All 
of the functions associated with detecting, acknowl
edging, and scheduling interrupts have been incor
porated into the IP hardware, providing centralized 
routing of interrupts to all other processors. The 
remainder of the task assignment mechanism may be 
software in the destination processor3 ,4 or a hardware 
extension of the IP . .'i 

The IP monitors a large number of interrupt lines 
on which signals are automatically identified by source 
within software-defined priority levels. When inter
rupts are received they are organized and stored on 
the basis of priority and order of occurrence. This 

assures optimum priority response, and reduces su
pervisory software overhead leaving more processing 
power for the users. 

The IP is organized around a special unit called a 
queued content-addressable memory, which forms its 
primary storage and processing facility. 

THE QUEUED CONTENT-ADDRESSABLE 
l\1EMORY 

The concept of a queue is a familiar one to hardware 
and software designers alike. As modeled in software, 
queues are usually variable length, each new word 
being added directly behind the last one. Hardware 
queues, on the other hand, are fixed length as exem
plified by a special shift register in which every new 
entry is inserted at one end from where it moves up 
to the forward-most empty position. 

Content-addressable memories (CAM's) are also 
well-known, but not so widely found, due to technologi
cal limitations which are now being overcome. 

Queues and CAl\1's are not necessarily disjoint 
structures, but can be combined into one entity having 
both kinds of characteristics. As shown in Figure .1, 
this results in a wordwise 2-dimensional memory con
sisting of a CAM with a queue behind every word. To 
enter a new item into the memory, the fronts of the 
queues (i.e., the CAM words) are associatively searched 
for a current entry having a key that matches that of 
the new item. If there is none, the new word is placed 
directly in a vacant CAl\1 slot. If a word with a match
ing key is found in the front of some queue, the new 
item is entered into the rear of that queue and allowed 
to ripple forward. To read from the memory, the CAM 
is interrogated for a word with the desired key. If 
one is present, it appears on the output lines. If an 
entry is removed,the remaining words in the cor
responding queue all move forward one position, filling 
the vacated CAl\1 position. 

INTERRUPT PROCESSOR ORGANIZATION 

For purposes of discussion, it is assumed that the 
IP is part of a 32-bit computer, and that it interfaces 
with both the Central Processor (CP) and the main 
memory. Only one CP is mentioned, but the IP is 
readily adapted to multiple CP's in the fashion de
scribed in References 3 and 4, or 5. 

The basic Ip· configuration shown here provides for 
64 levels of priority with 16 hardware-identified sources 
per level, for a total of 1024 interrupts. This may be 



expanded in increments of 64 levels to a maximum of 
256 levels and 4096 interrupt sources. 

A block diagram of the IP is illustrated in Figure 2. 
The major components are a priority structure, a 
random access scratchpad, and a queued CA1\1. 

Priority logic 

A fully nested priority tree monitors the 64 to 256 
interrupt lines. This tree determines the order in which 
interrupts are accepted and stored for pror.essing, as 
contrasted with the program-controlled priority in 
which the stored interrupts are serviced by the CPo 

The priority logic incorporates a holding register 
that frees the device from having to maintain the 
interrupt signal. Also included is an arm register with 
a bit for each line which may be set and reset both 
unitarily and in groups. 

The highest priority line which is armed and active 
is encoded by the tree into an 8-bit binary number. 
This number is transferred to the Scratchpad Address 
Register (SAR) , and the corresponding 4-bit source 
identification code is stored in part of the queued CAlVI 
input data register. A latch is then set to return an 
acknowledge signal to the interrupting device. This 
latch also removes the interrupt line from the priority 
tree untiL the interrupt is reset by the device. 

Scratchpad 

The scratchpad is a high speed random access 
memory which contains one word for each of the 64 
to 256 interrupt lines. The words are 25 bits long and 
formatted as follows: 

I LEVEL POINTER 
o 8 24 

The 8-bit level field indicates the priority assigned to 
the associated interrupt line, and can be altered under 
program control. l\1ore than one interrupt line can be 
placed on the same level if desired, and under certain 
conditions the waiting requests from a given line may 
have more than one priority. 

The 16-bit pointer is used by the CP to form the 
address of the appropriate interrupt service routine. 
This frees the computer from having fixed interrupt 
entry locations in main memory. 

The E bit is both a unitary and group enable bit. 
Considered as part of a scratchpad word, it can be set 
or reset unitarily. However, the scratchpad is also 
sideways addressable in its least significant bit posi-

PRIORITY 
LOGIC 

Interrupt Processing 623 

QUEUED 
CAM 

Figure 2-Interrupt processor block diagram 

tion. Viewed together as a vertical word, the 64 to 256 
E bits are divided into 8-bit groups. Each group may 
be set to all ones or reset to all zeros according to the 
values of the corresponding bits in a 32-bit word sup
plied by a CP instruction. Interrupt requests received 
on a line which is armed but disabled will be accepted 
and queued up, but will not be processed until the line 
is enabled. 

Scratch pad read requests come from either the 
priority logic or the queued CAl\1, with preference given 
to the latter in the event of conflict. In all cases, the 
scratchpad is addressed byline number. 

There are two means of altering the scratchpad's 
contents (in addition to the sideways addressabi1ity 
of all the E bits). A single word may be replaced, or 
any. sequence of contiguous entries may be reloaded 
from an image in main memory. In either case, only 
one CP instruction execution is required. During block 
updates, the boundaries of the affected area are de
fined by a pair of 8-bit upper (ULR) and lower (LLR) 
limit registers. Once a transfer commences, the upper 
address remains fixed while the lower address is . in
cremented as each new word is written. A comparator 
not only detects the end of the operation but also moni
tors the scratchpad address register. All attempts by 
the priority logic and queued CAlVi to reference within 
the boundaries of the limit registers are subject to 
restrictions specified in the CP instruction which ini
tiated the scratchpad modification. The scratchpad 
may be copied into main memory without imposing 
access restrictions on the priority logic and queued 
CAl\1. 

Queued CAM 

The heart of the IP is a queued CAl\1, as illustrated 
in Figure 1. It contains at least eight words of content-



624 Fall Joint Computer Conference, 1970 

addressable memory, expandable in increments of 
four words to a maximum of 64. Every CAlVI word is 
backed up by an 8-word queue, each of which is in
dividually expandable to 32 words in groups of eight. 

Each CAl\1 word and its affiliated queue is dedicated 
to a particular interrupt level as long as that level is 
armed and has an active or waiting interrupt request. 
l\1ultiple interrupts on a single level, whether from the 
same or different sources, are lined up in the queue for 
that level in order of occurrence. Thus, the CAl\1 size 
represents the maximum possible number of simul
taneously active levels, and the length of a given queue 
represents the maximum possible number of simul
taneously active sources at that level. The relation
ships between these figures and the number of 
implemented interrupt levels are parameters depen
dent on the specific system application and performance 
requirements. 

Each queue entry is 21 bits wide with the following 
format: 

[ LEVEL I LINE 
o 8 16 20 

The priority level is obtained from the scratchpad; 
the line number and source identification (ID) are 
received from the priority logic. The F (Filled) bit is 
set if the word contains meaningful data, and is the 
mechanism by which entries are automatically shifted 
forward in the queue. When a word is accessed in the 
CAl\1, it may remain there or it may be deleted by 
resetting its F bit. 

The CAl\1 entries are 23 bits wide, as follows: 

I LINE 
o 2 10 18 22 

The R (Running) bit being set signifies that the 
service routine for this level has been activated in the 
CPo The E (Enable) bit in the CAM is updated as 
each new request enters the CAlVI and whenever its 
counterpart changes in the scratch pad. The other 
fields are the same as in the queue. 

Almost all searches in the CAM are conducted on 
the level field (or the combined E and level fields), 
which eliminates the possibility of multiple-matches 
since CAl\1 entries are uniquely allotted on the basis 
of priority level. The CAM may be interrogated by 
line number in order to clear the waiting interrupt 
requests generated by a particular line. It is possible 

to get multiple matches in this situation if the priority 
of the specified line has been recently changed. How
ever, the mUltiple matches are 6f no consequence since 
they are all simply cleared. When the CAM F bits are 
associatively tested to locate a vacant CAM word, 
the choice among multiple candidates is made by logic 
which selects the responding location having the 
highest conventional address. 

When the CAl\1 is interrogated on the juxtaposed 
E and level fields, what is sought is not an exact match 
as in other cases, but rather the word having the largest 
numerical value in those fields. This process is accom
plished in the fashion described in Reference 6. 

INTERRUPT PROCESSOR OPERATION 

IP operation can be divided into three independent 
phases: auxiliary functions such as changing the 
scratchpad contents (described earlier) or arming and 
enabling interrupts; inputting interrupts to the queued 
CAlVI; and outputting service requests to the CPo 

Arming and enabling interrupts 

Interrupts are armed and enabled by line number 
rather than level since priority levels are program
assigned. Interrupt lines may be armed, disarmed, 
enabled, and disabled both unitarily and in groups. 

Unitary arming and disarminv, is accomplished with 
the arm register in the priority logic. The arm register 
bits are individually addressable and may be altered 
by transmitting one or more words from main memory. 

The arm register can also be controlled in 8-line 
groups. Each 8-line group is represented by a single 
bit in a 8-bit (for the minimum 64-line configuration) 
to 32-bit (for the full 256 lines) control word. This 
allows all 32 8-line interrupt groups to be armed and/ 
or disarmed in any combination with a single CP 
instruction execution. 

Interrupts are enabled and disabled both unitarily 
and in groups through the scratchpad (and indirectly 
through the CAlVI). The scratchpad entry for each 
line includes an Enable (E) bit, so unitary enabling 
and disabling is performed by rewriting scratchpad 
words as described earlier. 

Since the scratchpad is also sideways addressable 
in its LSB position, all 32 8-line interrupt groups can 
be enabled and/or disabled in any combination with a 
Bingle CP instruction execution. 

The Enable (E) bit in the CAM is updated whenever 
its counterpart in the scratchpad is altered. If a word 
is changed in the scratchpad, its line and level fields 



are used to search the CAM for a corresponding entry. 
If one is found, its E bit is modified to agree with the 
new value of the scratchpad E bit. In the case of a 
group operation on the combined scratchpad E bits, 
all those levels in the groups affected by the instruc
tion would be subject to inspection. 

Since the IP components function autonomously, 
facilities are available to provide program control over 
the activity of those lines whose parameters are being 
altered in. the scratchpad and the arm register. The 
modifications (such as enable/ disable, arm/disarm, 
priority reassignment, or a new pointer) are immediate
ly reflected in any waiting requests. Alternatively 
these requests may be cleared, the modification taking 
effect only with subsequent new interrupts. The CP 
instructions which incur these changes include the 
capability to specify the following modes of operation: 

a. Normal operation-the queued CAlVI con
tinues to accept and process interrupt requests 
on all armed lines as usual. 

b. Clear affected entries-each line changed in the 
scratchpad or arm register is looked up in the 
CAM, and if found the corresponding queue is 
completely cleared. 

c. Hold all inputs-the queued CAlVI continues 
to process the waiting interrupt requests, but 
no new requests are accepted on any lines until 
all initiated changes have been completed. This 
is accomplished by inhibiting the priority logic 
response to interrupt signals. 

d. Hold affected inputs-the queued CAl\1 con
tinues to process the waiting interrupt requests, 
but no new requests are accepted on any lines 
for which changes have been initiated but not 
completed. A comparator on the scratchpad 
address register causes those lines which fall 
between the current values of the scratchpad 
upper and lower limit registers to be considered 
disarmed. 

e. Hold all outputs-the queued CAl\1 continues 
to accept new interrupt requests, but no further 
CP service notifications are made for any lines 
until all initiated changes have been completed. 

f. Hold affected outputs-the queued CAM con
tinues to accept new interrupt requests, but 
further CP service notifications are made for 
lines for which changes have been initiated but 
not completed. The scratchpad address register 
comparator inhibits the IP from signaling. the 
CP in response to interrupt requests on those 
lines which fall between the current values of 
the scratchpad upper and lower limit registers. 

Interrupt Processing 625 

Any request which is inhibited this way also 
blocks all lower priority requests. 

These CP instruction options are coded to allow 
combinations of input/ output modes. The "hold" 
modes are applicable principally to cases where the 
scratchpad is being loaded from an image in main 
memory, or where a group enable in the scratchpad 
causes several CAM updates. 
input/output modes. The "hold" modes are applicable 
principally to cases where the scratchpad is being 
loaded from an image in main memory, or where a 
group enable· in the scratchpad causes several CAl\1 
updates. 

Detecting and acknowledging interrupts 

When an interrupt signal is detected, it is loaded 
into the appropriate bit of the holding register. If the 
line is armed, it is gated to the priority tree where the 
highest priority line is encoded into an 8-bit scratchpad 
address. The source ID is stored in the queued CAl\{ 
input data register, an acknowledge signal is returned 
to the device, and the line is disconnected from the 
priority tree until the interrupt is reset. Since the 
scratchpad gives precedence to the queued CAl\{, the 
priority logic may have to wait one cycle for service. 
When access is granted, the program-assigned priority 
level is retrieved and included with the source ID and 
line number in the queued CAl\1 input data register. 

Storing and scheduling interrupts 

The word in the input data register is entered into 
the queued CAM by first associatively checking the 
level of the new interrupt request against those already 
there. If a match is found, this level is already as
signed to a word in the CAl\{, and the new request is 
loaded into the rear of the corresponding queue. If 
there is no match, the request is placed in a vacant 
CAM slot. The CAM is then associatively searched 
for maximum on the combined E and level fields. If 
the entry retrieved is enabled but inactive (i.e., E set 
and R reset), the CP is trapped to initiate the new 
routine. Otherwise, no further action is necessary. 

Any time that data entry is attempted and the CAM 
or queue is filled, a high priority executive trap occurs 
in the CP. The supervisory software then may arrange 
to simulate a portion of the queued CAM in main 
memory to handle the overflow at reduced rates, or 
it may decide to reduce the I/O traffic to within the 
queued CAlVI's hardware capabilities. 



626 Fall Joint Computer Conference, 1970 

Initiating CP service 

There are three conditions under which the IP 
notifies the CP to initiate the processing of an inter
rupt service routine. The first occurs when a new inter
rupt request being loaded into the CAM is both enabled 
and higher priority than the currently· active request. 
The second case is when the CP enables a level which 
is higher priority than the currently active level and 
which has a request pending in the CAlVI. Last is the 
completion of a higher priority interrupt routine when 
a lower priority request is enabled and waiting. 

When one of these events occurs, the relevant line 
number from the queued CAlVI is put in the scratchpad 
address register. When access is granted, the IP signals 
the CP, sending it the priority level, source ID, and 
service Toutine pointer. These parameters presume a 
software supervisor in the CP, but are rea,dily ex
tended to interface with hardware-resident schedulers. 5 

Terminating C P service 

When execution of an interrupt service routine is 
completed, the CP returns the priority level of that 
routine to the IP. The corresponding CAM: entry is 
deleted by resetting its F bit, allowing any pending 
request in the queue behind it to move into the va
cated position. The E bit of the new request is updated 
from the scratchpad, and a new associative search for 
the highest priority waiting request is then initiated 
as described earlier. 

Interrupt processor implementation 

The IP consists primarily of memories which are 
inherently regular and thus readily lend themselves 
to economical batch fabrication. Implementation is 
entirely feasible with the level of integration available 
today in TTL, and will be further facilitated by im
pending improvements in semiconductor technology. 

An lVISI 8-input priority encoder circuit simplifies 
the task of detecting and recognizing interrupts. Three 
levels of these encoders are cascaded to attain the maxi
mum 256-line fan-in. A high speed multiplexing scheme 
could be employed instead of the priority logic since 
both approaches establish a somewhat arbitrary order 
in which interrupts are accepted and stored. However, 
cost/performance tradeoffs favor the hierarchical 
technique with the logic functions currently available. 

The scratchpad is conveniently constructed from 
internally decoded ·64-word by 4-bit random access 
memory modules. The associated address, data, and 

limit registers, as well as the comparator, are also com
posed of standard MSI circuits. 

A substantial reduction in hardware was achieved 
by adapting the CAlVI to take advantage of an existing 
associative memory element. Six of these4-word by 
4-bit blocks are needed for every 4-word by· 23~bit 
CAM increment, plus some auxiliary logic to tie them 
together. The auxiliary logic would be included on 
the chip if a custom LSI circuit were fabricated for 
this application. 

The 8-word by 21-bit queue behind each CAlVI po
sition comprises sixteen 10-bit register packages plus 
a more general 8-bit register for the F·· bits. Again, the 
extra logic needed· could be integrated into a special 
queue module. 

Control and interface logic constitutes the remainder 
of the IP, or about 10 percent of the total hardware. 

A maximum 256-line configuration having a 32-
word CAlVI with 8-word queues consists of under 1500 
IC's. Maintaining the same relative sizes of the CAM 
and the queues, a minimum 64-line IP would include· 
only about 500 IC's. This suggests that even an ex
panded IP could be purchased for less than the price 
of a conventional I/O channel on many computers. 
The probable impact of eventual LSI implementation 
would be to reduce the chip count by at least an order 
of magnitude. 

INTERRUPT PROCESSOR PERFORMANCE 

There are four criteria commonly used to judge the 
performance of an interrupt system: reaction time, 
overhead, optimum priority response, and saturation.2 

Reaction time is the time between the occurrence of an 
external interrupt signal and the commencement of 
the first useful instruction in response to that signal. 
(This interrupt is understood to require that the CP 
pursue a higher priority task than is presently under 
way.) A maximum of 5.0 microseconds elapse in a 
256-line IP from the moment an interrupt occurs until 
the CP is notified. This period is nominally 2.5 micro
seconds but the higher figure arises from worst case 
synchronization of the . priority logic. Subsequent 
interrupts can be accepted by the IP every 1.4 micro
seconds· and can also be sent to the CP at the same 
speed. The remainder of the computer's reactio.n time 
will be contributed by status preservation activities 
in the CP. A contemporary machine having a multi
level priority structure may be able to alert the CP 
this quickly, but it cannot so easily divorce itself from 
the CP's participation. When the liabilities of con
ventional interrupt hardware are compensated for in 



the software, the supervisory bookkeeping can far 
outweigh the hardware delays. 

Similar considerations apply to the interrupt com
pletion procedure which is the second half of the inter
rupt system overhead. This overhead is defined as the 
difference between the time needed to completely 
process the incoming request and the execution time 
of all useful instructions. No more than 1.4 micro
seconds transpire when a 256-line IP terminates 
an interrupt, for a total IP overhead of 2.8 microseconds 
per complete interrupt cycle. Thus the IP can support a 
sustained throughput rate of almost 400,000 inter
rupts per second. Additional overhead factors in the 
machine are diminished by the power of the IP, but 
will be determined by the integrated hardware and 
software design of the CP's executive structure. 

The independence of the IP's input and output 
functions implies occasional conflicts in accessing 
the scratchpad. These are resolved in favor of the 
queued CAM but the priority logic will not have to 
wait more than one scratchpad cycle since the CAM: 
cannot supply consecutive CP service requests at 
the scratchpad cycle rate. In the worst case only one 
scratchpad cycle time (about 50 nanoseconds) is 
added to the IP input time. 

The priority logic and queued CAM must also con
tend with occasional scratchpad updates by the CP. 
This is the lowest priority scratchpad function unless 
the acting CP instruction specifies one of the hold 
modes during updating. However, some interference 
may be precipitated by examination/modification of 
the CAlVI E bits as a result of scratchpad E bit changes. 
This alteration occurs in one CAlVI cycle time (about 
100 nanoseconds) per affected entry. 

Optimum priority response is a measure of the extent 
to which the computer is always executing the most 
important task as determined by the environment. 
The utilization of an autonomous IP for centralized 
control of interrupts assures that the other system 
processors are always devoted to the highest priority 
jobs without diverting their efforts to evaluate and 
manipulate interrupts. 

To maintain accuracy in the priority scheduling, it 
is necessary that the lines which require very fast 
reaction time be attached to higher positions in the 
priority tree. Once in the queued CAl\1, all interrupts 

Interrupt Processing 627 

are served on the basis of their program-assigned 
priorities. 

Saturation occurs when the system cannot respond 
quickly enough to all of the interrupts causing some 
of them to be disregarded. Protection against this is 
inherently supplied by the queuing that occurs in the 
IP. 

CONCLUSION 

A unique Interrupt Processor has been described which 
uses hardware to perform many of the interrupt han
dling functions heretofore dealt with by software in 
large on-line multiuser systems. The operation of this 
unit has been described and a brief look at its imple
mentation and performance has been given. 

The most significant aspect of the IP is the queued 
content-addressable memory which provides an effi
cient interrupt organization and storage facility. This 
queued CAl\1 concept should also prove to be highly 
effective in many other hardware solutions to super
visory system problems normally handled by software. 

REFERENCES 

1 S ROSEN 
Hardware design reflecting software requirements 
Proc FJCC 1968 pp 1443-1449 

2 E R BORGERS ' 
Characterics of priority interrupts 
Datamation June 1965 pp 31-34 

3 R J GOUNTANIS and N L VISS 
A method of processor selection for interrupt handling in a 
multiprocessor system 
Proc IEEE December 1966 pp 1812-1819 

4 R J GOUNTANIS and N L VISS 
Methods of interrupt routing in a multiprocessor system 
IEEE Twin Cities Section November 1967 

5 B W LAMPSON 
A scheduling philosophy for multiprocessing systems 
CACM May 1968 pp 347-360 

6 M H LEWIN 
Retrieval of ordered lists from a content-addressed memory 
RCA Journal June 1962 pp 215-229 

7 J G BENNET 
Letter 
Datamation October 1965 p 13 

8 R V BOCK 
An interrupt control for the B5000 data processor system 
Proc FJCC 1963 pp 229-241 





A language-oriented computer design* 

by CLAY McFARLAND 

First Business Computing Corporation 
Dallas, Texas 

INTRODUCTION 

Learning to program in a general-purpose, high-level 
language is a formidable task for a person who simply 
wishes to use the computer to solve his problems. He 
must learn how to express his problems in algorithmic 
form in the language, the constraints and idiosyn
crasies of the language, and the mechanics of running 
a program on his computer. If he wishes his programs 
to be efficient, he must learn which constructions in the 
language use the machine effectively and which do not. 
This is complicated by the unpleasant fact that effec
tiveness in the language may not correspond to effec
tiveness in the machin~. A concise, well constructed 
statement may use much more machine time than an 
ungainly structure that does the same thing. 

Part of this learning process is quite beneficial; for 
example, being forced to state a problem precisely 
enough for a computer solution can cause a significant 
increase in understanding of the problem. System pro
grammers can ease the user's task by providing a 
language whose terminology is close to that of the types 
of problems to be solved, or by constructing a simple 
job-control language. Difficulties in using computers 
are often the result of either poor system design or a 
mismatch between the language and the computer 
being used. Thus, while it is the user's responsibility to 
produce good algorithms for solving his problem, he is 
entitled to assume that a good construction in the lan
guage he is using will produce an efficient program in 
the machine. 

Computer users can be roughly divided into four 
classes: 

1. Non-programmers 
2. Occasional users 

* A portion of this research was supported by Air Force Avionics 
Laboratory Contract F-33615-68-C-1682, at Texas Instruments, 
Inc., Dallas, Texas. 

629 

3. Professional programmers 
4. System implementors 

Historically, very little has been done to make the 
computer usable "by class 1 and class 2 users; question
naire programs and languages such as JOSS and a sub
set of APL are changing this to some degree. Computers 
and systems have traditionally been more or less 
optimized for the class 3 user, although this is prob
ably accidental in most cases. Historically, the only 
consistent optimization has been the minimization of 
machine hardware. 

Unfortunately, on most systems the class 4 user is 
forced to design his structures using bits and fields in 
machine words, and to design his systems to be written 
in assembly language. Special languages such as APL, 
LISP and the various compiler-writing languages have 
been developed for this user, but these languages have 
been designed for a narrow range of information struc
tures and a slightly wider class of problems. The only 
general-purpose languages that have met the needs of 
the sophisticate~ user are Burroughs extended ALGOL 
and PLjI. While it is feasible to write an operating 
system in PLjI, there has been a large loss in efficiency; 
this loss is justifiable only in a system of the order of 
magnitude of MULTICS, which simply could not have 
been written in assembly language. Systems written 
in extended ALGOL, on the other hand, are among the 
most efficient in existence. Table I shows the results 
of a comparison between the Burroughs B5500 and 
IBM 360 j 40 for an ordinary numerical problem. The 
test was run by W. M. McKeeman. The reason for this 
performance difference is straightforward: the structure 
of PLjI does not match the structure of either System 
360 or the GE 645, 'while the Burroughs machines 
faithfully mirror the structure of extended ALGOL. 

This last class of user is often producing systems that 
will be used by many other users of all classes. It is 
therefore of primary importance to optimize the ma
chine hardware for this user. To do this, the hardware, 



630 Fall Joint Computer Conference, 1970 

TABLE I-Operating System Comparison 
Burroughs B5500 vs IBM 360/40 

B5500 (ALGOL) 
360/40 (PL/I) 

B5500 
360/40 

Debug 

2 days 
2 months 

Memory Cycle 

6,us 
2.5,us 

Read 

< 1 sec. 
22 sec. 

operating system, and primary languages of a system 
should be designed as a unit. This implies that machine 
hardware should be designed to make it very easy to 
produce powerful programming languages, arid to allow 
the production of an operating system that presents a 
simple, understandable face to the user. The hardware
language-system combination should be designed to 
minimize the total cost of production of the application 
programs of the class 3 user; this cost includes pro
gramming time, machine time, and the cost to a project 
to any delays in debugging, etc. As a side effect, a 
system designed in this way will provide aid and com
fort to the class 1 and class 2 users by reducing the 
cost of their answers. 

The hardware in a total system design would have 
the following characteristics: 

1. Information structures used by class 3 and class 
4 users would be basic structures accessible to a 
machine language; operators normally used on 
these structures would be built in as machine 
instructions. 

2. Control flow and data access methods in the 
machine would be the same as in its basic lan
guages and its operating system. 

3. The system would perform implicit functions 
for users, but would avoid producing unexpected 
side effects. Further, any implicit functions could 
be overridden by the user. In other words, the 
system would appear simple to the casual user, 
and as complex as desired to the sophisticated 
user. 

The remainder of this paper will describe a language 
and computer structure designed to lfleet the criteria 
discussed above. The programming language for the 
system is called simply "the programming language" 
(TPL); the comput.er system is named the Hydra. 

Compile Link-Edit Run 

3 sec. none 7 sec. 
180 sec. 69 sec. 22 sec. 

Word Length Floating Multiply 

48 bits 30,us 
16 bits 80,us 

Both the computer and language are experimental and 
in a state of continual change. The system is described 
as it is conceived at this writing. 

TPL 

The aim of the TPL design is to produce a language 
that will be an aid to the programmer in thinking about 
his problem and the processes he is using to solve the 
problem. Our purposes are quite similar to those of the 
ELF project of Cheatham, Fischer and Jorrand. 3 How
ever, we are not constrained, as they were, by the neces
sity of producing a language compatible with current 
computing systems. Many of the constructs in TPL 
are the same as or similar to the corresponding BASEL 
(the base language of ELF) construct, but the parts of 
the languages that deal with their machine environment 
are quite different. The operator structure of TPL is a 
generalization and expansion of the Iverson notation 
data operators9 and the control operators of EULER18 
and Linear C.ll The data operators are essentially those 
in the appendix of A Programming Language, and the 
control operators have been extended to all compatible 
data structures. 

Several departures from the traditional structure of 
expression-oriented languages have been made. 

1. The go to operator has been eliminated. This 
should make programs easier to read and good 
programs easier to construct. Without the go to, 
labels are unnecessary, and without labels the 
syntactic type (statement) is unnecessary. 

2. The assignment expression has been restricted. 
An assignment can change the value of vari
ables defined in its block at its own level and no 
others. 

These t.wo changes have many good effects. Their 



only bad effect is making coroutines more difficult to 
construct (though possibly easier to understand after 
they are constructed). Although programming without 
go to's is unnatural when first tried, the resulting pro
grams are invariably superior in both structure and 
readability to conventional programs. 

3. A process is a basic data type, and includes the 
concepts of macros, subroutines, and procedures. 
Functionally, these structures differ only in 
binding their variables to a fixed reference at 
compile-time, load-time and run-time, respec
tively. The differences in binding time can be 
explicitly controlled by the programmer. Pro
cesses can be called implicitly, i.e., 

A+-B+C 

where B is type real and C is type process, would 
cause C to be executed and the value it returns 
checked for compatibility with B. If it were 
compatible, A would be marked defined, and as
signed the value and attributes of the result. If 
the value of C werE~ a process, it would be exe
cuted, and so on. 

4. The operator-operand structure of TPL is quite 
regular. Operators are valid only for strictly 
compatible data types (i.e., ">" and "<" are 
not defined for logical variables, true is not 
equivalent to the number 1, etc.), although ob
vious automatic conversions such as integer to 
real, real to complex, etc., are provided. If an 
expression is valid, it remains valid if variables 
of any structure class are replaced by 
A. A process, block, or expression whose value 

is a variable of the same type. 
B. An implicit process call, if a variable of type 

process is not compatible. 
C. A variable of a different structure class that 

is compatible mathematically with the ex
preSSlOn. 

The strict application of (3) and (4) create some 
collisions. For example, suppose we write 

a+-begin new c ... end 

and we want a to be type process, with the value given 
by the program on the right of the assignment. How
ever, the program will be executed and its value assigned 
to a. To allow the former option, we have added an 
operator, " ... ," which protects its operand from im
mediate execution. The statement 

a+-"begin new c, ... end" 

would produce the former result. 

Language-Oriented Computer Design 631 

Program structure 

The syntax for TPL is shown in the Appendix. In 
TPL, declarations are expressions to be evaluated at 
compile-time. A simple declaration, such as 

new b, 

establishes the scope of b as starting with the block 
containing the declaration; storage for b will be allo
cated when b is given a value, and freed when the block 
is no longer active. If a value or attributes are assigned 
to a variable, as 

new integer c+-6, 

storage is allocated for c when it is given a value (in 
this case, at compile-time), and freed when the main 
program of which c is a part is no longer active. 

Expressions that are not part of declarations are 
evaluated and replaced by their value as soon as their 
variables become fixed in value. If an expression's vari
ables are fixed at compile-time, the expression functions 
as a macro. The only explicit transfers of control in 
TPL are a repeat operator, which repeats the innermost 
block or compound expression in which it is imbedded, 
and an exit, which causes execution to resume at the 
first instruction past its block or compound statement. 
Every expression in TPL has a value, which is placed 
on top of a system-value stack. Operators manipulate 
the stack implicitly, and the top of the stack (the value 
of the last expression) can be referenced explicitly with 
the reserved identifier sysval. An expression can be 
terminated with a semicolon, colon, or period, which 
respectively throwaway, save, and execute the system
value. 

Figure 1 is an example of an ALGOL-like TPL pro
gram, the Euler precedence parse. This is an exact copy 
of the Euler algorithm as presented in Part I of (15), 
with precedence relations represented correctly as 
matrix· entries. The program in Figure 2 improves on 
the algorithm by producing a vector of character vec
tors, eliminating the necessity to scan both forward and 
backward for relations. The program in Figure 3 is the 
same as in Figure 2, but it uses the implicit TPL value 
stack to avoid explicit temporary storage. 

Data 

Each data item in a TPL program has a value and 
several attributes, including data type, structure class, 
defined, size, length, etc. The data types currently al-



632 Fall Joint Computer Conference, 1970 

begin new vector 5i new integer ii ji ki 

(1) 5~P[O]i i~Oi k~l; 

(2) While p[k] " '.L' do 

(3) 

(4) 

end 

(i~j~i + 1; s[i]~p[k]; k~k + Ii 

while m[s[i] : p[kl]= 3 do 

(while m[s[j-l]; s[j]]= 2 do j~j-li 

s[j]~leftpart (w(i-j+l)/S)i i~j; 

1. Initialize string indices 

2. until end symbol (L) increment pointers to 

s get next input symbol, increment input index. 

3. Perform the next statement only if sri] ~p[k] 

4. Back up j to last <., reduce resulting string, 

reset i. 
Relations in Figures 1,2,3 

are coded 

<. = 1 

~ = 2 

to> = 3 

Figure l-The EULER parsing algorithm 

lowed in TPL are: 

1. Logical 
2. Integer 
3. Real 
4. Character 
5. Reference 
6. Process 
7. Pattern 
8. Mixed. 

The first four types are conventional. A variable 
of type reference simply points to another variable. A 
variable of type process is a macro, subroutine, or pro
cedure. A variable of type pattern has attributes but no 
value, and is used in creating other similar structures. 
A mixed variable is a structure other than scalar where 
the elements may vary in type. These types may be 
expanded (although not necessarily in TPL itself) to 
include other types desired by the programmer. 

The structure classes currently allowed in TPL are: 

1. Scalar 
2. Vector 
3. Matrix 

4. Array 
5. Tree 
6. List 
7. Set. 

l\1: athematic ally , there is a lot of redundancy in 
this set of structures, but the redundancy mostly 
disappears when the machine and operating system 
in which the language is imbedded are considered. For 
example, a matrix may be sparse or triangular, and the 
storage allocation may differ for these special cases. 
A set is a collection of elements with no implication 
as to ordering or any other relationship between the 
members of the set. A set is stored in lexical order to 
make set operations more convenient. A tree is stored 
in end-order with an index, and storage allocation 
methods for a list have special provisions for self
containing lists, etc. 

Each variable has a definition attribute. A scalar 
may be defined or undefined; a variable with more than 
one element may also be partially defined. Other at
tributes are length of each element of a variable in 
units appropriate to the variable, size of each dimen
sion .of a variable, and various special attributes for 
variables of type process. 

(1) 

(2) 

(3) 

(4) 

begin ~ vector Si integer ii ki Xj 

end 

~ parse~"~ x~m[w(l)/s[i-l]: s[i]] of 

i+i + Ii 

s[i-l]+-s[.i-l], sri] j 

(s[i-l]+leftpart (s[i-l])j i+i-lj) 

end 

if x = 3 then repeati" 

S+P[O]i i+li k~lj 

While k<size p do 

(s~s, p[k]j parse. k+k+lj) 

1. parse is a case statement on the precedence 

relation code 

2. ~, leave symbol as a single vector element, 

increment pointer 

3. ~, concatenate symbol with previous vector 

element 

4. 0, s[i-l] can be replaced with its leftpart 

(the case is then repeated to compare s[i-2] 

and leftpart (s[i]). 

Figure 2-Modified EULER parsing algorithm 



. Attributes are manipulated both implicitly and 
explicitly. Any operation includes checking of its 
operands to insure that they are compatible with 
the operation, and any conversions that may be neces
sary. In 

a+-b+c 

where b is real, c is integer and a is undefined, the system 
will floatc, add the result to b, allocate storage for a, 
store the result of b+c in a, and set a to defined, real. 
If c were type logical, an exit would be taken to the 
currently active error procedure. At the system level, 
an error- and interrupt-handling procedure is prede
fined. The programmer can change this for any block 
by writing 

error+-thiserr 

and defining thiserr to be any error-handling mechan
ism he wishes. Error-handling procedures have access 
to all system parameters and to an error vector which 
indicates the error or errors that have occurred. The 
programmer can also directly access attributes by 
writing 

s'lze (a) (a structure containing an integer for 
each dimension of a), 

length (a[iD (an integer), 

defined (b) (a logical variable), etc. 

In general, an attribute for a structure will be a struc
ture of the same class (except for size, which is always 
a vector). If an attribute is uniform throughout a struc
ture, it will belong to the same class as the structure 
but will have only one element. 

Any attribute of any variable defined in an active 
block is available to the programmer, but the memory 
address of a variable is never available. If a block is 
not active, access to its variables can be allowed by 
setting up a chain of variables of type reference going 
up the program tree structure, and procedure calls 
going down the tree structure. Any block can reach 
any other block, but only through a strictly regulated 
transfer of information. This structure more or less 
forces operating systems written in TPL to be of the 
type proposed by Dijkstra.5 In fact, an operating 
system is being designed in conjunction with the 
language and machine, called the TPL-Hydra-Operat
ing System Environment (the THOSE mUltipro
gramming system). 

Some interesting games can be played with the defini
tion attribute. If a structure is partially-defined, it will 
have a map of identical structure to it containing the 

Language-Oriented Computer Design 633 

begin ~ t; x; y; k; 

(1) next+"y+if x = 3 then t e·lse (k+k+l; p[k])" 

(2) p[O]: k+l; x+l; 

~ k<size p do 

(3) ~ x+m[w(l)/sysval: next] of 

(4) y: 

(5) sysval, y: 

(6) t+leftpart(sysval) 

end 

end 

1. next gets the next test symbol and saves it 

in y 

2. Place p[Ol on top of stack, initizlize indices 

3. Find relation code of last element of vector 

on top of stack, save in x. 

4. Place symbol on top of stack 

5. Concatenate symbol with top of stack 

6. Save leftpart of string on top of stack in t, 

then pop stack. 

Figure 3-Modified EULER parsing algorithm using implicit stack 

definition status of each element. Consider the situa
tion where we are writing a program to define a struc
ture element by element, and we have several al
gorithms for defining elements. Each algorithm may 
be recursive or iterative, and may define some unknown 
number of elements on each pass. We can call each 
algorithm in succession, with the exit condition from 
the algorithm being a comparison between the number 
of defined elements before a pass and after a pass. 
This allows the programmer to say, in effect, "Do this 
until it doesn't do any more good." 

Any of the complex structures in TPL may contain 
any arbitrary collection of other structures as elements. 
It is possible, for example, to have a vector whose ele
ments are trees of processes. 

Operators 

The basic operator set of TPL is that contained in the 
Iverson notation.9 All the Iverson data operators 
are included, but the operators on the program stream 
are written quite differently. 

The inclusion of the process as a basic data type 
allows the Iverson data operators to be used for con-



634 Fall Joint Computer Conference, 1970 

trol operators. For example 

1. if u then b else c 
is equivalent to 

2. /c, u, b/ 
and 

3. case d of (Sl; S2; Sa; S4;) 
is equivalent to 

4. x [d], x = (S1, S2, Sa, S4). 

The more familiar operators were included for two 
reasons. First, the data structures must sometimes be 
expressed differently; in (1) band c could be vectors 
and u scalar boolean, while in (2) band c would have to 
be one-element vectors with vector components to 
be compatible with u being scalar boolean. Secondly, 
readability of programs is usually better with the con
trol operators written out, and many programmers 
will find this notation easier to think in than the more 
abstract Iverson forms. 

One departure from Iverson that must be allowed 
for is the incompatibility of integer and logical variables. 
The compatibility of integer and logical causes anom
alous results in Iverson, PL/I and other languages. 
As Cheatham noted, the PL/I expression 

7 <6<5 «/(7,6,5) in Iverson) 

has the value true (1 in Iverson), which is certainly 
not what one expects. In TPL, 7<6<5 will produce 
an error, since (7 <6) is logical and 5 is integer. How
ever, the epxression 

</(7,6,5) 

is defined. A reduction with a type-changing operator
operand combination such as a relational and integers 
is defined differently. For example, if R is any rela
tional and the vector to be reduced is not logical, 

R/(V1, V2, ... Vn ) = 

(V1RV2) J\ (V2RVa) J\ ... (Vn- 1RVn). 

This produces the value one expects, i.e., false for 
</(7,6,5). 

The Iverson principle of extending scalar operands 
to vectors and matrices, etc., is followed with respect 
to the control operators. In the expression 

if <expression-l>then <expression-2> else 
< expression-3 > 

< expression-I> may have any structure of booleans 
as a value. The structure of the values of < expression-
2> and' <expression-3> must be the same as that 
of < expression-1 >, (if < expression-1 > is not a 
scalar boolean), and the if operator is applied to cor
responding elements of the structures. 

In the expression 

case (index-valued-expression) of (expression-list) 

the expression operand may have any structure, and the 
value of the case is a structure of the same class as the 
(index-valued-expression), with the indices replaced by 
the corresponding members of the (expression list). 
Similarly, any structure class can be executed, so long as 
all elements of the structure that are actually executed 
are of type process. Likewise, for and while operators 
may have compatible structures as their operands. 

In all instances where these structures are composed 
of processes to be executed, there is a question of order 
of evaluation of the elements of the structure. The rules 
for each structure for evaluation order are as shown 
below. 

Structure 

vector 
matrix 

array 

tree 
list 
set 

Order of Evaluation 

left to right 
left to right on rows, top to bottom 

on columns, no other implied order 
(i.e., a12 and a21 have no implied 
order). 

low indices to high indices on each 
dimension, no further implied 
order. 

pre-order 
pre-order 
no implied order 

In all cases where there is no implied order, there is, 
of course, a further implication that the processes can 
be executed in parallel. 

THE HYDRA COMPUTER 

Introduction 

ALGOL-like languages have many features in com
mon which are not adequately supported by conven
tional hardware. Among these features are 

1. Run-time binding of variables, including dy
namic storage allocation. 



2. Procedure calls, particularly recursive calls and 
procedures which have variable-size arrays as 
formal parameters. 

3. Block structuring, which requires a subroutine 
call for begin and end statements on conventional 
machines. 

Since TPL allows the type and structure class of a 
variable to vary dynamically, it requires even more 
run-time checking than ALGOL or PL/I. The class of 
problems for which TPL would be an effective language 
is therefore quite small on a conventional. machine. In 
order to make TPL (and other ALGOL-lIke languages) 
effective, the host machine must be. designed to pro
vide hardware support for the features described above, 
as a minimum. 

Run-time binding of variables impiies the need for 
descriptor information associated with each variable. A 
variable's descriptors should be modified automatically 
by the system, and the descriptor information should 
be available to the programmer. For maximum ef
ficiency, descriptors should be kept in a fast register 
descriptor file while a variable is active. Descriptor 
manipulating routines can be hard-wired, as in the Bur
roughs B6500-7500 machines,2 or microprogrammed, as 
in the 360 implementation of Euler.17 Dynamic storage 
allocation should be done interpretively; producing the 
code in...,line, as is done in some PLjI implementations, 
slows down the compiler drastically. Storage allocation 
can be done much more efficiently in microcode than 
with higher-level machine instructions. It would seem 
that a system must have at least its basic allocation 
routines microcoded to be really efficient. 

Procedure calls can be handled quite easily with a 
hardware program stack, as in the Burroughs machines. 
The stack maintenance routines must be either hard
wired or microcoded ; machine instruction subroutines 
will lose most of the speed gained by putting the stack 
structure in hard ware. 

The necessity for subroutines to implement block 
structuring of programs is partially eliminated by the 
program stack. The remainder of the block mechanism 
is handled by coding each variable reference as a two
component address of the form 

(level, variable number). 

The level number is used to get a pointer into a de
scriptor file from an address table, as shown in Figure 4. 
The variable number is then used. as a displacement 
from. the pointer. 

Several other forms of hardware support for TPL 
are desirable. Run-time optimization of programs al-

Language-Oriented· Computer Design 635 

LEVEL 0 
1 0 DESCRIPTORS 

"'-
I 1 

, - LEVEL 1 
1 2 \0. 

r 

0 2 ............. LEVEL 2 

~ (ACTIVE) .. 
A DDRESS TABLE 

LEVEL 2 
(INACTIVE) 

DESCRIPTOR FILE 

Figure 4-Descriptor addressing 

lows programmers to express algorithms in a natural, 
readable manner and have them executed in an efficient 
manner. The producti()n of code from compilers is 
also much easier if run-time optimization is done. A 
hardware mechanism to allow user-defined structures 
and operators without machine-language subroutines 
is also desirable. This would be implemented most 
flexibly with a writeable control store, but it is feasible 
to consider· hard-wired extensions if an operator or 
structure is to be used often in a machine's job load. 
Finally, parallel . (or at least partially overlapped) 
operation of checking and operand location with nor
mal execution is desirable. This parallelism is particu
larly desirable since TPL contains many complex 
operators which will require long execution times. If 
the operations in a program are sufficiently complex, 
i,he operand checking and locating features may run 
With no overhead at all. 

Processor organization 

The Hydra computer has been designed to provide all 
of the hardware support features described in the last 
section. It is felt. that the projected relative costs for 
hardware and software during the next few years justify 
including all desirable software support features in the 
machine hardware. Another design feature is the maxi
mum use of microprogramming in the system. This was 
done for two reasons. First, microprogrammed as op
posed to hardwired implementation replaces random 
logic with more regular memory hardware structures. 
It appears that the greatest cost savings available from 
MSI and LSI techniques will result from the use of 
regular structures, such as memories. The cost and dif-



636 Fall Joint Computer Conference, 1970 

begin new ai b; a+Oi b+doiti 

a+a+xi 

end 

TPIJ program 

ha, b 
<1 load a load 0 + load b 

doit + i load a load a load x 

Hydra program 

Figure 5-Main memory program 

ficulty of producing random logic will remain high, even 
in LSI. Second, it is quite difficult to determine in ad
vance which operations will limit the speed of a system; 
the limiting factors will almost certainly be different de
pending on job mix. It seems a sensible design procedure 
to microprogram everything possible, and produce logic 
chips for the critical functions for each application. 

The logical structure of the Hydra consists of four 
separate functional units operating in parallel. Each in
struction is pipelined through the four units. The degree 
of parallelism required in any actual implementation 
would be a function of the relative time required for a 
logic state, a micro-memory access, and a main memory 
access. The four units of the Hydra are 

1. Instruction Acquisition Unit (IAU)-
Locates a program and its fixed variables and 
reads them into fast temporary storage. 

2. Program Stream Unit (PSU)-
Locates executable instructions and places them 
in a queue. It also performs some code optimiza
tion. 

3. Operand Acquisition Unit (OA U)-
Fetches the operands for each instruction. It 
also does type checking and initiates procedure 
calls. 

4. Execution Unit (EU)-
Performs the actual execution of operations, and 
stores the results in temporary storage. 

We will give a brief description of the construction 
and operation of each unit, and its relation to the TPL 

I language structure. 

Instruction acquisition unit 

A program in main memory has the structure shown 
in Figure 5. Instructions and their operands are kept 
in a reverse Polish string. Each instruction and pointer 
is one byte long (the size of a byte may vary in different 
implementations of the Hydra). The program is called 
by inserting its descriptor information into a set of 
hardware stacks which hold program parameters (the 
initial parameters for a program are kept in its descrip
tor entry), called the Status Stacks. The Instruction 
Acquisition Unit (IAU), Figure 6, then uses the Status 
Stack information to read the program into a fast 
memory for holding active programs, called the In
struction File (IF). The first item read is a pointer to 
the static-variable descriptor file entries for the pro
gram, which will usually be in main memory. The IA U 
uses this pointer to load the Static Variable Descriptor 
File entries for the program. 

The Hydra is effectively interpreting a TPL program 
with microcode. The IA U structure decreases the main 
memory bandwidth required for the interpretation 
process. 

Program stream unit 

The Program Stream Unit (PSU) , Figure 7, works 
on the IF representation of a program. Its output is a 
stream of executable instructions which are passed on 
to the Operand Acquisition Unit (OAU) through an 
Instruction Queue (IQ). 

INSTRUCTION 
FILE 

INSTRUCTION 
ACQUISITION 

CONTROL 
STORE 

STATUS 
STACKS 

FOR FIGURES 6, 7, 8, 11, 12 

~ CONTROL PATH 

==> DATA PATH 

~ DATA PATH TO MAIN MEMORY 

Figure 6-Instruction acquisition unit 

STATIC 
VARIABLE 

DESCRIPTOR 
FILE 



The first time a program is processed, the PSU will 
simply pass all instructions that are not the operands 
of a conditional operator into the queue. If a sequence 
of instructions is the operand of a conditional, the 
sequence is given a Temporary Descriptor File entry, 
and a pointer to this entry is placed in the queue. This 
scheme allows code that mayor may not be executed 
to be bypassed until its conditional is resolved, avoiding 
the necessity of stopping instruction lookahead or 
guessing the value of the conditional. 

The PSU also examines each operator to determine 
if the value of its result is fixed during this activation 
of the program. If the value after the operation is exe
cuted is variable, the operator is placed in a fast memory 
which holds the expressions in a program that can 
have variable values, called the Dynamic Instruction 
File (DIF); if the value is fixed the operator is dis
carded after being placed in the IQ. If an iteration or 
recursion occurs, the reduced program in the DIF will 
be executed. This process amounts to a run-time com
pilation of each program. This allows a better code 
optimization than is possible at compile-time, and also 
allows programmers to put computations where they 
occur logically in a program, without worrying about 
introducing inefficiency at run-time. 

The PSU provides hardware support for the run
time optimization described previously, and for the 
block structuring of TPL. 

Operand acquisition unit 

The OAU, Figure 8, removes instructions from the 
head of the IQ, and prepares them for the Execution 

INSTRUCTION 
FILE 

INSTRUCTION 
QUEUE 

STATUS 
STACKS 

PROGRAM 
STREAM 
CONTROL 

STORE 

Figure 7-Program stream control unit 

Language-Oriented Computer Design 637 

STATUS 
STACKS 

DESCRIPTOR 
FILES 

(STATIC, DYNAMIC, 
TEMPORARY) 

Figure 8-0perand acquisition unit 

Unit (EU). It locates operands, does type checking, 
executes procedure calls and load instructions, and 
maintains the descriptor files. 

Each load instruction is followed in the instruction 
stream by a pointer to the descriptor file entry for the 
variable to be loaded. A load is processed by placing its 
pointer on top of the System-Value Stack, and setting a 
code associated with the pointer to indicate which de
scriptor file the pointer refers to (this is determined by 
the kind of load instruction). 

An operator causes the OAU to build a vector for 
the Operation Unit, as shown in Figure 9. The operator 
is placed directly into the operation vector, and the 
type and length of the operands are obtained from the 
descriptor file entries for the operands. The operand 
entries are pointed to by the top n entries in the Sys
tem-ValueStack for an rz-ary operator. The types of the 
operands are checked for compatibility with each other 
and with the operation being performed. The result of 
the operation will be placed in temporary storage, with 
a pointer to a Temporary Descriptor File entry on top 
of the stack. The OA U creates the temporary descriptor 
entry, pops the operand pointers off the stack, and 
places the temporary pointer on the stack. It then 

OPERATOR TYPE LENGTH NUMBER OF OPERAND 1 
OPERANDS 

I OPERAND 21. . .1 OPERAND n I RESULT I 

Figure 9-Operation vector 



638 Fall Joint Computer Conference., 1970 

STACK IN 
THIS DIRECTION ! 

QUEUE IN 
THIS DIlU:CTION 

ACTIVE 
INSTRUCTION 

Figure lO-Instruction queue 

marks the vector ready for execution (the operation 
vector will be queued if necessary). 

If an execute jnstruction or an implicit procedure 
call appears, the OAU places the procedure's descriptor 
entries into the corresponding status stacks, and pushes 
the IQ stack. The Instruction Queue is a queue in one 
direction and a stack in another, as shown in Figure 10. 
Execution of the called procedure begins as soon as the 
IQ is pushed. A block end or an exit instruction causes 
the OAU to pop the status stacks pushed by the block 
(or procedure), and pop the IQ, thus restoring the previ
ous machine conditions. 

The OAU implements the self-describing data feature 
necessary to support dynamic binding of variables in 
TPL. 

Execution unit 

The EU, Figure 11, requests operands from main and 
temporary storage, breaks down complex operators 
not actually implemented in the Operation Unit, exe
cutes each instruction, allocates a block of temporary 
storage for the result and places the result in temporary 
storage. 

The EU resembles the central processor of a con
ventional computer, with all functions associated with 
operand location and instruction sequencing removed. 

The logical separation of the four Hydra units 
allows whatever parallel operation is necessary to be 
implemented, thus lowering the overhead associated 
with .the procedure-call oriented structure of TPL. 
This separation also makes extending the language 
easier; new structures and operators will require new 
microprograms only in the EU, and new codes for de
scriptor entries used by the OAU. 

SUMMARY 

It has been recognized for several years that, since 
pure hardware cost is a small percentage of the cost of 

ownership of a computer, improved hardware tech
nology should· be used to decrease costs other than 
hardware. There has been quite a bit of discussion about 
implementing software functions in hardware, but very 
few concrete proposals have been made on exactly how 
this should be done. Outside of specific applications, it 
is quite difficult to assign portions of a system to hard
ware or software. The Hydra has been designed with 
the idea of putting operations and structures normally 
used in operating systems into the basic machine hard
ware. This has been done by designing a language with 
data structures and operators suitable for writing 
operating systems, and then implementing the language 
structure as directly as possible in hardware. It should 
then be relatively easy to build software functions into 
hardware in specific instances. 

The Hydra processor design is currently being studied 
using a simulator being written in ALGOL-SIMULA 
for the Univac 1108. The simulator is necessary to 
answer questions such as: 

1. Should we add a control store to handle storage 
allocation and related activities? If not, how 
should these routines be divided among the 
present control stores? 

2. What are the optimum sizes for each of the 
fifteen memory units in terms of both per
formance and cost effectiveness? 

3. Would the activity balance in each unit be im
proved by relocating some functions (for ex
ample, the OAU might handle decomposition of 
complex operations instead of the ECU)? 

4. How does the Hydra's performance compare 
with 
a. conventional machines 
b. conventional machines with cache memory 

OPERATION 
VECTOR 

EXECUTION 
CONTROL 

STORE 

Figure ll-Executien unit 



c. Hydra-type machines with cache memory in
stead of memories with assigned functions? 

There are reasonably appealing intuitive answers to 
all these questions, but the simulation is vital for 
authoritative answers. Intuition has not proved very 
accurate when applied to very complex systems. 

Work is also proceeding on a TPL compiler for the 
PDP-lO. It is a reasonable assumption that there exist 
programs that require data structures that are suffi
ciently complex to allow TPL to be efficient on a con
ventional machine. Th~ PDP-lO rrPL will allow us to 
test this assumption and discover any hidden difficulties 
in using TPL. 

ACKNOWLEDGMENTS 

The author would like to credit the designers of the 
Burroughs B ~ 5000 machines2,8 for providing several 
of the ideas used in this system; the designers of the 
EULER,I8 PL/360,I6 Linear C,ll and LISplo languages 
and the Iverson notation for many interesting ideas; 
and to thank Bill McKeeman, Bob McClure, Tom 
Cheatham, Doug McIlroy, Dick Karpinski and Hi 
Young for many stimulating discussions which helped 
clarify some of the murkier portions of the design; and 
Cliff Hemming and Jerry Duval for their work on the 
simulation project. 

The author would particularly like to thank Session 

Figure 12-Hydra processor block diagram 

Language-Oriented Computer Design 639 

Chairman Dick Watson for many suggestions that im
proved the readability of the paper, and Barbara 
IVIcFarland for typing and illustrating the paper. 

REFERENCES 

1 T R BASHKOW A SASSON A KRONFELD 
System design of a FORTRAN machine 
IEEE Transactions on Electronic Computers Vol EC-16 
No 4 August 1967 

2 Burroughs B6500 reference manual 
Burroughs Corporation Detroit Michigan September 1969 

3 T E CHEATHAM JR A FISCHER P JORRAND 
On the basis for ELF-an extensible language facility 
Proceedings of the Fall Joint Computer Conference 1968 

4 T E CHEATHAM JR 
The introduction of definitional facilities into higher level 
programming languages 
Proceedings of the Fall Joint Computer Conference p 623 
1966 

5 E W DIJKSTRA 
The structure of the "THE" multiprogramming system 
Comm ACM 11/5 p 341 May 1968 

6 B A GALLER A J PERLIS 
Criteria for the design of programming languages 
Univ of Michigan Advanced Programming Short Course 
1966 

7 B A GALLER A J PERLIS 
A proposal for definitions in ALGOL 
Comm ACM 10/4 p 204 April 1967 

8 E A HAUCK B A DENT 
Burroughs B6500 / B7 500 stack mechanism -
AFIPS Conference Proceedings Vol 32 1968 SJCC 

9 :K ElVERSON 
A programming language 
Wiley 1962 

10 J McCARTHY 
Recursive functions of symbolic expressions and their 
computation by machine 
Comm ACM 3 4 April 1958 

11 R M McCLURE 
The Linear C language 
Unpublished technical memorandum Southern Methodist 
University Dallas Texas 1968 

12 W M McKEEMAN 
Language directed computer design 
Proceedings of the Fall Joint Computer Conference 1967 

13 W M McKEEMAN 
An approach to a computer language design 
Stanford University Report C5-48 1965 

14G H MEALY 
A nother look at data 
Proceedings of the Fall Joint Computer Conference p 525 
1967 

15 R F ROSIN 
Co.ntemporary concepts of microprogramming and emulation 
Computing Surveys 1/4 Dec 1969 

16 C STRACHEY 
Comments on "DL's" 
Comm ACM 9 3 pp 165-166 March 1966 



640 Fall Joint Computer Conference, 1970 

17 H WEBER 
A microprogrammed implementation of EULER on IBM 
System/360 Model 30 
Comm ACM 10/9 Sept 1967 

18 N WIRTH H WEBER 
EULER, a generalization of ALGOL, and its formal 
defim:tion 
Comm ACM 9/1 pp 13-23 Jan 19669/2 pp 89-99 Feb 1966 

19 N WIRTH 
PL/360, a programming language for 360 computers 
JACM 15/1 p 37 Jan 1968 

APPENDIX 

Syntaxjor TPL 

{program): : = {block) 
{block): :. = begin {block body) end 

{blockbody): : = {dec-list) {exp-list ) 
{dec-list): : = { declaration) I {dec-list) 

{ex-sep) {declaration) 
{declaration): : = new {dec-comp) I {declaration) 

{ex-sep) {dec-comp) 
{dec-comp): : = {attribute-list) {expressIon) 

{attribute-list): : = {nUll) I {attribute) I 
{attribute-list) {attribute) 

{attribute): : = real I integer I logical I 
character I reference I process I 
scalar I matrix I array I tensor I 
tree I list I set 

{exp-list):: = {expression) I {exp-list) 
{ex-sep) {expression) 

{expression):: = {control-expression) I 
{n-expression) I {assn-expr) 

{n-expression):: = {element) I {expression) 
{element) I {expression) 
{operator) 

{control-expression): : = {if -expr) I {case-expr) 
{for-expr) I {while-expr) 
{I -0 expr) I repeat I exit 

{assgn-expr): : = {expression)~{expression) 
{element): : = {variable) I {compound-expr) I 

{block) I ( {expression» 
{compound-expr): : = begin {exp-list) end 

{if-expr):: =if {expression) then 
{expression) else {expression) 

{case-expr): : = case {expression) of 
{case-list» 

{case-list): : = ( {expression) I {case-list) 
{expression) 

{for-expr):: = for {variable)~{expression) 
{for-compI) do {expression) 

{for-compl): : = {null) I step {expression) 
until {expression) 

{while-expr): : = while {expression) do 
(expression) 

·{null): : = 
{variable) is as usual 

{operator)::=+ I-I X 1+ Idivlreml 
AIVI11=1~1<1>1 
~1~liltI61~1 
abs I , I / (expression) : 
{expression): {expression) / I 
(operator )/[expression] I 
{operator) [expression] I 
I / {expression): {expression): 
(expression) \ 
I {operator). (operator) I 
[ (exp-list )] 

{ex-sep):: = ;/:/. 



Analog/hybrid-What it was, what it is, what it may be 

by ARTHUR 1. RUBIN 

Electronic Associates, Inc. 
Princeton, New Jersey 

THE ZEROTH GENERATION 

Introduction 

The history of the analog computer goes back to 
antiquity, where tax maps were first reported being used 
for assessments and surveying. However, I shall confine 
this paper to the analog computer as it evolved from 
World War II to the present time. For those interested 
in the history of the analog computer, from antiquity to 
World War II, I refer the reader to an excellent 
introductory article by J. Roedel, Reference 1. The 
"Palimpsest" in which Roedel's history of the analog 
computing art is included is in itself an excellent history 
of analog computers in the early days d~ting from 
World War II to about 1954. From page 4 of the 
Palimpsest, I would like to show a diagram of computing 
devices as visualized by George Philbrick for an article 
in Industrial Laboratories in lVlay, 1952. Of interest to 
us in this diagram on the analog side, is the separation, 
at the bottom, between fast and slow analog which I will 
discuss shortly. We will'also note the presence of hybrid 
at the very top, and this article was written in 1952! Of 
course, l\1r. Philbrick's "hybrid" was reserved for the 
use of the analog computer first to obtain a ball-park 
idea of a solution, then followed by a separate digital 
solution to obtain a more accurate answer to the same 
problem. I am certain that very few people thought of 
this as being hybrid computation at the time. However, 
consider this definition in the light of later work reported 
by Mark Connelly (Reference 2) in his use of a 
"skeleton" representation of a problem on the analog in 
conjunction with a more accurate representation of the 
problem on the digital. 

It is interesting to observe the basic operations as 
defined by Roedel in Reference 1. This is shown in 
Figure 2. Note that the early practitioners of the 
analog art considered differentiation to be a basic linear 
element for the fast speed computers and did not show 
potentiometers, since the latter must have been taken 

641 

for granted. Furthermore, an arbitrary function genera
tor was also not shown. Apparently, that device, which 
is necessary to make analog computation capable of 
solving any problem, was developed later or was 
considered an oddball, along with the comparator 
(which is really represented by the dry friction element, 
provided that the output of the dry· friction element is 

Figure I-Structure of computing devices as visualized in 1952 



642 Fall Joint Computer Conference, 1970 

BASIC LINEAR COMPUTING ELEMENTS 

SCHEMATIC DIAGRAM BLOCK DIAGRAM MATHEMATICAL OPERATION 

Rf 

~ 
el ~A ~ .. Rf R f 

el 
RZ ~Z 

eo. el-. eZ-
Rl RZ 

e Z ADDITION 

~ ei -f ~ .. Rf 
ei eo_-~i 

R. 
SCALE CHANGE 

I 

Cf 

~ e, D·· e o--

1

-fi dt -i CfR, 

INTEGRATION 

Rf 

~~ 1D ~ .. de· e, e, eo.R C·_1 

f I dt 

DIFFERENTIATION 

NON-LINEAR OPERATIONS 

MULTIPLIER 
e. 

ez 
=lM ~ .. eo· Ke,el 

-sf-
for -C< e i < C. 

---1" ~ .. eo- K_, 
LIMIT I e. e. 

I +C 
I 

for _,<-C, e,>C, -0- Con.tant 

#-
for -C<ei<C, 

e. -1' ~ .. -0· 0 

DEAD ZONE 
- C e. I 

" +C, I for -, <- C, e i> C, 
eo· Kei 

~ 
for -i>O, 

eo·+A 
OR Y FRICTION e i 

e. eo for e i< 0, -A I 

Amplifier -o--A 

ABSOLUTE VALUE + .. e i -1" ~ .. e o- Kleil 

Figure 2-Basic linear and nOll-linear analog operation and components 



Figure 3-Pullman-Standard Car Manufacturing Company's 
analog computer installation 

used to drive a switch or a gate connected to some other 
computing element). There was a great deal of emphasis 
in those days on the solution of linear differential 
equations, obviously because those required the simplest 
computing components. Perhaps also, because one could 

Figure 4-Computing equipment in a typical rack assembly 

Analog/Hybrid 643 

Figure 5-Boeing analog computer, courtesy of 
Boeing Airplane Co. 

obtain check solutions to such equations with pencil and 
paper, and computers, being relatively new, could not 
yet be trusted. 

Hardware 

The major manufacturers during this initial period 
were the Boeing Company which made the BEAC 
computer, the Berkeley Scientific Computing Company 
which made the EASE computer (Berkeley subse
quently became part of Beckman Instruments), the 
Goodyear Aircraft Company which made the GEDA, 
the IDA computer with which I am not familiar at all, 
the George A. Philbrick Research Company which 
made the GAP /R computer, and finally, there was the 
Reeves· Instrument Company which made the REAC 
computer. Some pictures of these early analog computers 
are shown in Figures 3 through 8. Figure 3 shows a 
GAP /R installation while Figure 4 shows a close-up of 
how those computing components were interconnected. 
You will note an absence of a patchboard. Can you 
imagine checking this one out today? 

Note the telephone jack panels on the Reeves 
computer and note also that the Berkeley and the 
Goodyear computers are the first ones with patch 
panels. These figures date from about '1952 or 1953. 
EAI, which was just beginning to build analog comput
ers, does not even show. The typical size of computers 
in those days ranged from about 20 amplifiers up to 80 



644 Fall Joint Computer Conference, 1970 

Figure 6-Goodyear GEDA computer installation, courtesy of 
Goodyear Aircraft Company, Akron, Ohio 

amplifiers, which was considered to be fairly large. One 
manager, in fact, was proud of the fact that he could 
expand his 80 amplifier installation to 160 without 
requiring any additional wiring. The accuracy of the 
components was of the order of one percent (and that 
applied to resistors and capacitors as well as to the 
electrical components). Overall solution accuracies on 
what was then considered medium size non-linear 
problems was of the order of five percent. One final point 
of interest is that several of these manufacturers, 
mainly Boeing, Goodyear, and Reeves were primarily 
aerospace/defense manufacturers who saw the obvious 

Figure 7-Berkeley EASE computer, courtesy of J. B. RAE, 
Los Angeles 

need for such devices in the design of their own equip
ment, whether it was airplanes, electronic gear such as 
radars, or control systems. Philbrick, on the other hand, 
and possibly also the Berkeley Company, concentrated 
from the very beginning on the process control 
applications. 

Applications 

The 2nd page of the table of contents of the 
Palimpsest is reproduced here in Figure 9 and shows the 
wide variety of applications that were actively in
vestigated in the early 1950's. You will note in parti~ular 
the beginnings of an analytical attack on our environ
mental problems in the papers on the freezing and 
thawing of soils as well as flood routing. The analog 
equipment, especially that which did not have patch 
panels was generally purchased for a particular problem 
or problem type. For example, the Pullman Car 
Company would buy one for solving their "transporta
tion equipment design" problem. An aircraft manu
facturer would buy a computer to study the control 
system of a particular airplane. There was an almost 
complete lack of user conveniences leading to the 
ridiculous situation of being able to obtain a complete, 
single solution to a complex set of differential equations 
in 5 milliseconds, but having to wait several days, at 
least, to change to another problem, due to the lack of a 
patch panel and other amenities, such as a readout 
system. This type of inaccessibility (to the Hnext" 

Figure 8-Reeves computer installation, courtesy Reeves 
Instrument Company 



problem) has been at the root core of the ailment in the 
analog field and has given the analog computer the 
reputation of being "inflexible." This ailment is still 
with us, albeit to a much smaller extent, and a cure is 
visible on the horizon, as we shaH see later. For further 
information on techniques and methods that were 
expounded in the early years of analog computation, the 
reader is referred to References 3, 4 and 5. This by and 
large represents the first generation analog; however, 
since I seem to have too many generations, as we shall 
see later, I will term this the heroic age, or the zeroth 
generation. This generation coexisted with the heroic 
age digitals, such as the ENIAC, EDVAC, the 
ORDV AC, l\1ANIAC, and the UNIVAC. 

THE FIRST GENERATION 

The next generation, here termed the first, more or 
less coincided withthe arrival of EAI on the scene, with 
its establishment of the firm need for a patch panel and 
an integrated set-up and readout console as part and 
parcel of the analog computer. In other words, human 
factors entered into the picture, also, this generation saw 
the arrival of the .01 percent component, such as resistors 
and capacitors, which allowed linear problems to be solved 
more accurately than the solutions could be dispJayed 
on a strip chart recorder, X - Y plotter, or oscilloscope. 
The credit for this shift in emphasis on more accuracy 
and more user conveniences must go to the manufac
turers who went against the ideas of some of the then 
old line users, who kept pointing to the problems that 
were being solved and observing that much of the input 
data was unknown perhaps even within a factor of two 
of the correct value. These old time analysts recognized 
that there was no need for obtaining very accurate 
solutions to such problems. However, they overlooked 
the crutch available to the insecure analyst if he can get 
a repeatable, accurate answer even though the model 
is not exact. This analyst then has fewer questions from 
his management, because when he goes back for reruns, 
he gets the same old answer to compare with at the same 
time, the solutions for the new set of parameter values. 
Thus, he and management both think they understand 
the problem. 

(Aside-I learned this trick early in the game. In 
order to convince my management and customers as to 
the validity or correctness of a set-up to a problem, I 
always went back to a "standard" solution, if a check 
solution was not available. And if the standard or check 
didn't repeat, then I would hopefully "tune-up" the 
equipment to produce a "replica" of the check solution. 
In some cases, I must confess, I may have "de-tuned" 
the equipment to produce the so-called "check".) 

Analog/Hybrid 645 

MODELLING of PHYSICAL PROCESSES ............................................................ 146 

The Electro-Analogue ........................................... ... J. M. L. Janssen and L. Ensing 147 

Discontinuous Low.Frequency Del.y Line with Continuously V.ri.ble Delay 
...................................................................................................... J. M. L. Janssen 162 

Bucket·Brigade Time Delay .............................................................. G. A. Philbrick 163 

Solving Process-Control Problems by Analog Computer ..................................... . 
............................................................................ R. J. Medkeff and H. Matthews 164 

ELECTRONIC ANALOG METHODS in DETAIL.............................................. 167 

Precision in High.speed Electronic Differenti.1 Analyzers ................................... . 
.......................................... . ............................. H. Bell, Jr., and V. C. Rideout 168 

An.log Computer Solution of • Nonlinear Differentiai Equation ....................... . 
............................................ . ......................... H. G. Markey and V. C. Rideout 177 

The Study of Oscill.tor Circuits by Analog Computer Methods ......................... . 
.................................................. H. Chang. R. C. Lathrop, and V. C. Rideout 184 

A Differe~ltial.An.lyzer Study of Certain Nonlinearly Damped Servo-
mechamsms ..................................................... R. C. Caldwetl and V. C. Rideout 193 

Appf~tiori of .n An.los Computer to Design Problems for Transponation 
EqUipment ...................................................... ............................................ J. Roedel 199 

ANALOG STUDIES of ELECTRIC POWER SYSTEM TRANSiENTS ........ 216 

Surge and Water. Hammer Problems ............................................... H. M. Paynter 217 

Methods and Results from MIT Studies in Unsteady Flow ........ H. M. Paynter 224 

The An.log in Governor Design ...................................................... H. M. Paynter 228 

Tie Line Power" Frequency Control........ . ................... H. M. Paynter 229 

Electronic Computer for Resolution of Steady - St.te Stability Problems and 
Panicularly for Automatic Control Studies ................................... .I. Obradovic 233 

How to Select Governor Parameters with Analog Computers ............................ . 
...... ..... .................................... ............ E. C. Koenig and W. C. Shultz 237 

COMPUTER TECHNIQUES in HyDROLOGy...................... ........................... 239 

Flood Routing by Admittances... . .................................... H. M. Paynter 240 

ANALOG SOLUTION of THERMAL PROBLEMS......................... 246 

Freezing and Thawing of SOils .................... H. P. Aldrich. Jr., an<l H. M. Paynter 247 

The Analogue Computer and Automatic Control Applications .... R. J. Bibbero 261 

Process Regulation with Analogue ControL .................................. R. J. Bibbero 264 

Continuous Electric Representation of Nonlinear Functions of n.Variables 
................................. . .. G. A. Philbrick 266 

Fir .. 1 IlrilitinK PH;; 
SnoolHl printinr.: 1'1'& 
rhirtl printing I'Jf,O 
Fourth printing 1965 

Figure 9-A portion of the table of contents of the Palimpsest 

Conveniences such as a digital volt meter readout of 
amplifiers and all other components via push-button 
selectors, servo set pots as well as experiments with 
quarter-square multipliers and time division multipliers 
were introduced. The second phase lasted roughly from 
1955 to 1960 and saw the rise of EAI from the position 
of young upstart to that of the major supplier of analog 
computing equipment. While EAI was rising, the 
period saw several companies such as Boeing, Goodyear, 
IDA (or perhaps Mid-Century) drop out of the industry. 
After these defections from the ranks of the manufac
turers, the field of slow speed analogs was split amongst 
EAI, Berkeley, which by this time had become merged 
with Beckman, and Reeves Instruments. The high speed 
analog now had two manufacturers, the old Philbrick 
Co. and a newcomer to the high speed camp, the GPS 
Company. This period saw the 31R and the 131R and to 
lesser extent, the Reeves' C400 gain wide distribution. 



646 Fall Joint Computer Conference, 1970 

1958 NATIONAL SIMIlLATION CONFERENCE 

Clymer, "Operational Analog Simulation of the Viration and Flutter of 

a Rectangular Multicellular Structure" 

Powell, "Distributed Parameter Vibration With Structural Damping and 

Noise Excitation" 

Ladd and Wolf, "A Non-Real-Time Simulation of SAGE Tracking and BOMARC 

Guidance" 

Miller and Enger, "Liquid Transfer and Storage System Simulation by Active 

Element Computers" 

Azgapetian, "Some .Aircraft Probl_ S1aJlated by "ean8 of Z-forms" 

Boxer, ''Z-forms, and the Digital St.ulation of Dynamics" 

Nemerever, "A New Technique in System Perfor_nce Evaluat ion" 

Gilbert, ''Linear System Approximation by Differential Analyzer Simulation 

of Orthonormal Approximating Functions" 

BrllllllDer, "Solutions of Convolution Integrals by Analog Computers" 

Rideout, "Some Applications of a High-Speed Analog Correlator" 

Rawdin, "A Time ~ltiplexing Technique" 

Heffron and Bristow, "A Method for Helicopter Rotor Performance SilllUlation" 

Bush and Orlando, "A Perturbation Technique for Analog Computers" 

The end of the period saw the introduction of the 231R 
computer, (See Figure 13) a machine which was to see 
much service in the '60s. 

Applications 

The applications of this era (the end of the first 
generation) perhaps are best described by scanning the 
list of titles of papers that were presented at the 1958 
Fall National Simulation Council Conference (Figure 
10). From the list of titles it is clear that the aerospace/ 
defense industry dominated applications, but there were 
a significant number of papers reporting new mathemat
ical techniques and even applications of digital 
computers to the field of simulation. New hardware 
circuits such as the card programmed diode function 
generator and a quarter square multiplier were first 
described. Also included were descriptions of a much 
later transistorized analog, a computer optimization 
study by analog computers, as well as discrete event 
simulation by digital computers. 

1958 NATIONAL SIMULATION CONFERENCE, continued 

Ehlers, "Standard Simulation Circuits" 

Gilbert, '"rhe Design of Position and Velocity Servos for Multiplying 

and Function Generation" 

Sinker, "The Card Programmed Diode Function Gener-ator" 

Shen, ''Multiplier Circuits Utilizing Squaring Property of a Triangular 

Wave" 

Pfeiffer, "A Four Quadrant Multiplier Using Triangular Waves, Diodes, 

Resistors, and Operational Amplifiers" 

Ehlers, ''General Purpose DC Analog Computer with Transistor Circuitry" 

Pritsker, Buskirk, and Wetherbee, "Simulation to Obtain Systems Measure 

of Air-Duel Environment" 

Billinghurst and Single, "Extending the bandwidth of Precision Analog 

Systems" 

Bekey and Whittier, ''Generalized Integration on the Analog Computer" 

Bruns, and Wilcher, '"rransistorized Relay Amplifier" 

Neshyba and Coffman, "Airborne Radar-Beacon Traffic Simulator" 

Munson and Rubin, Optimization by Random Search on the 'Analog Computer" 

Schwarm, "Computer Systems for Jet Transport Simulators" 

1958 NATIONAL SIMULATION CONFERENCE, continued 

Morrison, "APPR-I Simulator Description" 

Meilander and Hellman, "A Technique for Absolute Measurement of Analog 

Computer Capacitors" 

Gerlough, "A Comparison of Techniques for Simulating the Flow of Dis-

crete Objects" 

Figure 10-1958 National Simulation Conference 

THE SECOND GENERATION 

The next generation which I must here call the 
second, lasted roughly from 1960 to 1965. The size of the 
analog computer at the upper end was getting physically 
larger and larger, which by virtue of the vacuum created 
at the small end led to the design of a small desk-top 
computer, which was the logical outgrowth of the 
transitorization of analog components. The first tran
sitorized computers were of the small desk-top type and 
had a voltage range of plus or minus 10 volts. They 



coexisted with their big brothers, the 100 volt vacuum 
tube computer, during this period. Another hardware 
innovation sa \,. the combining of heretofore separate fast 
and so called slow analog into a single machine. This 
occurred in both the desk-top machines as well as the 
large 100 volt machines. This latter turn of events, was 
brought about by the introduction and the widespread 
use of quarter square multipliers, replacing the old slow 
servo and time division multipliers. At the same time, 
manufacturers introduced the fixed diode type of 
function generator for such analytical functions as sines 
and cosines of angles and exponential functions. The 
above developments, in conjunction with the introduc
tion of solid state highspeed switching made the high 
speed and the low speed analog in a single computer a 
practical reality. 

Two new companies were formed during this period 
that proved to be significant factors throughout the 
'60s. These were Comcor, Inc., which subsequently 
merged with Astrodata, and Applied Dynamics, Inc., 
which subsequently merged with Reliance Electric. 
These companies helped to fill the partial vacuum 
created by the withdrawal of GEDA from the field 
during the second generation and the subsequent rise 
and fall· of several other companies. During the same 
period (1960 to 1965), the Reeves Instruments Com
pany, which had been in the business of manufacturing 
analog computers from the very beginning, more or less 
indicated that it was finished with this activity. 

The second generation equipment brought to fruition 
the concept of patchable, parallel, digital logic as an 
integral part of the analog computer. At the same time, 
it should be noted that the first conference on the use of 
combined analog and digital computers in a single 
problem simultaneously, (the first conference on 
essentially hybrid applications) was held in 1960, 
Reference 12, which is why I chose 1960 as a key date 
for the second generation. 

Hybrid computation evolved along several different 
paths. In one path a "stand-alone digital," was placed 
next to a "stand-alone analog" with communication 
between the two allowed via logic lines, control lines, 
an AD (analog to digital) converter with a multiplexer, 
and several D / A (digital to analog) converters. Along 
another path a "logic computer" was developed by 
Electronic Associates which consisted of a number of 
parallel, patchable circulating (memory) delay lines, 
"and" gates, "or" gates, flipflops, four bit registers, 
shift registers, and one shots (mono-stables) to the point 
where, if a programmer were clever enough, he could 
devise and patch together his own special purpose 
digital computer. The logic computer ultimately got 
reduced to a reasonably small, manageable complement 
of logic functions (see Figure 14) on later analog 

Analog/Hybrid 647 

Index: Volume 4 

"'Ntol Comput~r 'ot~lt~en. OillUl1 Computer 
Control of. W I eMM/e,.nd. •. McChH.. .. '.n 

Counter·Current CrysrlUIUlton Process, 
A".'ol Simul,lion of .II. W. L God'r~.nd 
It. D. ~nh.m .. 

Differential Equ.tions. The OE5-', A New 0,.,1,1 
'.n 

Equlpotenti.! lines of. Potentill' f.eld, Plottlnl the. 
w. R. Lym.. . ...................... Feb. 81 

Fotly-Step Qu.ntinr. H. ~tA:s .nd C. M. C.lUwn . . Mlly )01 

26 HysteresiS, Use of tOBie.' EI~ts to Simul,te. 
C W. Schulte.. . ................... JuM 164 

Computer for Solvina. L Le'lfin.... . Apr 264 Imperfect Differenti'tor. A Note on the Simul'tlon 
Dilir.' Differenli., Amlyzer.nd .ts Apphc.tion IS. of the. A. Bridgem.n .. ..................... J.n. 

Hybrid Compuli"1 System (I~nl. TM '.r.II~, Muhiplier, A four-Qu.dr.m. W H. Alliston ....... ,.n. 

O. A. R.eich.rdt, M. W Hoyr..nd W T LH . Feb 104 Reticle Ev.lu.tion Studl~. A Mflhod for G~'.tin. 

Di~~!i~~~i.~ ~r~~r;:r~':.~u~;dtoUt ~nd Simul~ted T~rleu Use'd In, M. O. C.mp ........ Apr. 223 

L. T .v~rnin; . . J.n 21 S~mple·~nd·Hold CircUli, Hllh Sentitivity, 

Hybrid Computer, MAD.l~ ... ~ Prolnm for C. C. Willem5 ................. . 

DiSiul Simul~hon of ~. V. C .idroot and 
L T~vernjn; .. 

Hybrid Compul~lion, A Discunion of I«klTYn' .. 
'.n 

ApptOalch 10, It E. lord lind R. A. Ne5blf 

Hybrid C~mputins System EIetlK"flf, TM Parlillef 
Dilit~r Differenti .. l An.tlyzer .. nd .1 .. Apphe .. llon 

June 312 APACHE. It 0 'renn.n .. nd R. N. Lin~rpf 1-42 

~s ii, O. A. Reichilrdt, M. W. Hoyt. ~nd W T Lff . . Feb. 104 

Hybrid Sisnil' Processor, A Pu.lleI/Sequentilll, 
Stored Prolrilm,}. D. Crilndine.nd T C H •• ~n . . Jan 35 

l.suerre functions, Function GeMr.hon on .n 
An.log Computer UsinS <d'neralized. C H Bur,in. Mlr. 

Measuring Statistics from QUilntlzed Dilla, Hybrtd 
Computer Techntqufl for, C. A Korn . Apr. 229 

Nonstahonary R.ndom Processes, Generation of, 
R. E Sry.n.. . ... J.n. 

Numeriul M~lhod for Simu',Ition, A N~, 
M.Fcwvlef.. Mily 

Pontry'gin's MilJumum Principle to Solve OM
DimensiON' Oplimlz.tion Problems, With .nd 
without Constraints, on iln Ite,.tive ANlol 
Comp'ltt"'r, Usinl, H. L. Steinmetz .. tUM 382 

Pseudo-R.ndom Noi~, FJCPt"'rimt"'nls Usinl. 
It L H,Impton.. . . Apt 246 

Punched-C.,d Prolrammer, MACON: MAtriX 
CONnector, L. /. K.mm.. . .Mlly 332 

R,Indom Proces~, Cenefiltion of Nonst.tion"y, 

Let's fiCe .t, It 0 'renn.n.nd It. N. linftJ.,'~t ... Apt. 226 

PACTOLUS Prolr.m for S,mul.tion of Antt"'nN 
Servos, U~ of th~, N. B. Kurek ............... . J~ne 16S 

An.l08 D.tIi Procflsinl with. Hybrid Computer. 
W. C. McClintock... , ..... , ............... June 169 

Anlilos Ori~nted 'nput L..n8u'It"', A Compilet with 
.n, M. L. Sf~;n. /. Ros~,.nd O. S. P.tlc~f ......... Mar. 159 

Hum.n Intefilchon In S""U Groups, Computer 
Simul.tion of, J. T. Cull.horn and /. E. Cull.horn . . 'an 50 

Input liIn.u .... A Compiler with .n A",'08 
Oriented. M L. St~in, /. Rmt"', and D. B. P .. tk~t .... Mar 159 

LNrnlnl Control Systems. A Comput~r Simul.ted 
On-LIM Experinwnlln. /. O. Hill, C. J. McMurtry, 
.nd K S Fu ................................ ·.Feb 

R. E. Sry.n.. . ... Jan. 42 Notw eene,.tor. A Hybrid ANlol-Dilital 

River Kit.bmi, Flood Simul.tor for the. K Otobil. ps.udo·a.ndom, R. L. T. H.mpton ... . .... Mlr 179 

K. Shib.ir.ni, .nd H. Kuw.t.. . .. Feb 86 p.,.m~t.r Optimizer for ASTRAC II, A Hybrid 

Simul.lion, A New Numeric.l Method for. Ana'OI·0illt.l, a. A. Mitcht"'lI, Jt .............. June 199 

M. E. Fowler .. ....... Mly 324 P.rti.1 Differential <>per.tors, A New Method of 

Simulation of a Chemic.l Feedt"'t System, An.lrsis Ana'yzin. tht"' TruncAtion f"o, in the Finit~ 

.Ind. J. C. Vogt .•............. ..... . ....... Apr 2S6 Represent.tion Difference of, R. Vichrwveuky ... Mar. 190 

Simulation of. Spinning Rigid Body. Quaternion '~do· •• ndom Noi~ Genero1tor, A Hybrid 
P.rameters in the. E. E. L. Mirchell.nd ANto1,Oi1it.1. R. L T. H.mpron. , ............ Mar. 119 
A. E. Roger5 ......... , ..................... JUM 390 Tfilnsistors in Curr~t-Arylo. Computinl. 

State Vari.ble Techniques irr An.'08 Compuler t. P. Kefloot. . ..................... ,..... .. May 339 
Programming, AppliCiltion of. /. L. Holmmond, Ir . . Mily Trunation Error in the Finite Itepresentlltion 

St.tistics from Qu.ntized D.ta. Hybrid·Computer Difference of P.rtl.' t)iff~ti.1 Oper.tors, A New 
Techniques for Meuuring, C. A. Korn..... . ... Apr. 229 Method of Ana'yzinl the. R. Vichnfovets'y ...... . Mi:r. 190 

SIMULATION 

Figure ll-Index to Vol. 4 SIMULATION, June, 1965 

computers and became fully integrated with the analog 
computer instead of being a separate device. 

The largest analog computing consoles had upwards 
of 200 amplifiers in them. One example is the Applied 
Dynamics 256 (Figure 15) which had 256 amplifiers. 
There was a movement towards more "committed" 
amplifiers such as the class 0 type quarter square 
multiplier with many of the largest, most sophisticated 
users trending towards the class 0 resolver as well. This 
meant the computer was easier to use, but it became 
more expensive. 

The applications of analog during the period 1960-
1965 are more difficult to characterize since by this time 
the well known industry-wide Spring and Fall Joint 
Computer Conferences, which are sponsored by AFIPS, 
had replaced the old National Simulation Conferences. 
To help plug the information on applications gap, 
a significant event occurred during the second genera
tion, which was the launching and the publication of the 
new journal SIMULATION by Simulation Councils, 
Inc., under the editorship of John McLeod. The index 
of articles published in Volume 4 (June, 1965) is shown 
in Figure 11, as an example of the type of applications 



648 Fall Joint Computer Conference, 1970 

that were being done on these bigger, better and more 
powerful systems. It may be remarked in passing that 
even during this second generation period, indeed 
throughout the history of the analog, the analog has 
been used very much as it was originally used when there 
was no patchboard on the analog console. This method of 
use consists of committing the analog to a single 
problem, of very high priority, and tieing it up full time 
doing the same job over and over and over again, as 
exemplified by the.typical hardware or man-in-the-Ioop 
simulator. Very often when the project that required the 
simulator was completed or nowadays we would say 
cancelled, there was no further use or need for the analog 
computer, since no one else had been able to get at the 
machine during the "fat" days. Those analysts who had 
short duration, small problems, which can be considered 
to be ideal candidates for the analog computer, especially 
during the development or the "model" stage of the 
problem, were forced to go against their own wishes to 
the, by then, widely .available large, fast, digital 
computer of the 7090 class. These small, repetitive, 
studies went to digital not because the machine was fast, 
not because the digital was cheaper, not because it was 
better, not because it was more accurate, but simply 
because it was available! 

THE THIRD GENERATION 

The third generation has shown itself to be in 
existence from roughly 196,5 to the present time, 1970. 
The major hardware characteristic of this generation is 
the complete transitorization of the analog computer, 
for both the large scale 100 volt machine and the small 
scale 10 volt machine. A new scale machine evolved in 
between these two extremes, called the medium scale. 
A major hardware feature is the integral design of 
digital logic as part and parcel of most analog consoles, 

~ Typical Computer 

1962 231R (EAI) 

continued 

1964 231RV (EAI 

Beckman 

recorder now compatible with accuracy and re-

peatability of computer. More useful bandwidth. 

Electronic mode control of integrators, time

scale selection (6 decades) via push buttons, 

more accurate multipliers and sinusoid genera-

tors. Digital logic control capability - for 

the first time analog has a full 10KC bandwidth 

in all components, Variable breakpoint and po-

larity, card-programmed function generators. 

This allows instant set-up of DFGs (takes only 

one hour to turn around a problem). (Mostly 

pot set t ings time.) 

!!!!: Typical Computer 1966 Ci-5000 Fully tranSistorized, more accurate, more reliable 

1951 ClOO (Reeves) 20 amplifier computer; servo multipliers intro-

duction .of removable patchboard. 

1954 3lR (EAJ) 20 amplifier computer, expandable to 60; more 

accurate servo multipliers; integrated slaving 

system; .01% capacitors; .01% resistors, both 

temperature controlled. 

1956 l3lR (EAJ) Integrated readout; human engineered for faster, 

C400 (Reeves) easier programmer use; electronic time division 

multipliers; mechanical digital voltmeter; tube 

diode function generators. 

1959 231R (EAJ) 100 amplifier computer; modular concept patchboard; 

significant improvements in amplifier bandwidths 

providing faster response and switching ti~es; 

compressed time capability (some jobs can be run 

as fast as 10:1 real time instead of all at real 

time); faster potentiometer readout; electronic 

digital voltmeter; solid state diodes in function 

generator; repetitive operation capability. 

1962 Improved More accurate 1/4 square multiplier; electronic 

231R (EAI) sinusoidal generator; point storage via trans is-

tor circuit; card-set function generators; Mark 200 

ADI-4 

EAI 8800 

EAl 680 

~ Typical Computer 

1968 to ADl - Various 

Present EAI - Various 

analog cOlllputer - all gates (reset, hold, operate, 

are electronic) bandwidth up to and beyond 100 KC, 

reliability e.timated as 60,000 hours KrBF for 

_plif1ers vs. 5,000 hours measured on 231R-V. 

C_puters can have 300-400 a .. pl1fier. in one 

console. Analog directly controllable by .... 11 

digHal c_puter. Easy ... ting with digital for 

hybrid co.putation. Self-contained patchboard _ 

digHal logic (much, IlUch larger than in 23IR-V). 

Card-set DFGs progr_ble from a standard IBM 

card. 

Digital pots for microsecond (electronic gate) 

setup - or millisecond (reed relay setup), 

large scale use of MDACs in hybrid interface, 

software developed for autaaatic setup and 

checkout of hybrid analog computers. Direct 

digital/analog function generator (more accurate 

than card set diode function generator) com-

pletely controllable from digital computer. 

Figure 12-History of analog computer evolution since 1951 



Figure 13-231R computer, courtesy Electronic Associates, Inc. 

small and large, which has certainly made pure analog 
computation, if we include this digital logic, more 
powerful than it has ever been. Another hardware 
feature is the complete flexibility of the multi-time scale 
integration capability of the analog, wherein one can 
have a choice of fast, slow or in-between speeds of 
solution as well as the flexibility of using any integrating 
capacitor as an integrator gain. The most versatile 
machines have. a choice of 6 capacitors, giving the 
programmer a five-decade range of integrator gains or 
time scales. Examples of this class of computer are the 
Applied Dynamics AD/4 (Figure 16), the Electronic 
Associates, Inc. 8800 (Figure 17) . and the Comcor 
Ci-5000 (Figure 18). Note the two patchboards in each, 
one for digital logic, and one for analog components. 

This· period also saw a more intimate ·tie-in of the 
analog computer with a digital computer due to the 
development of such true hybrid devices as the lVIDAC 
(multiplying D/ A) and the "digital attenuator" or 
"digital potentiometer." So widely accepted has the 
hybrid aspect of analog computation become that it 
appears that close to half of the larger consoles that are 
being sold at the present time are going into hybrid 

Analog/Hybrid 649 

Figure 14-Digital expansion system by EAI (allows parallel 
patchable digital logic expansion to 10 volt systems, in a 

self-contained desk top frame . 

systems. This in turn has led to the need, and the 
development of software specifically designed to aid the 
hybrid programmer and operator. The large systems 
have grown larger and larger and now are truly pro
digious, consisting of 300, 400, even 500 amplifiers in a 

Figure 15-Applied Dynamics large scale 256 amplifier computer 



650 Fall Joint Computer Conference, 1970 

Figure 16-Applied Dynamics AD /4 analog computer 

single console. At the low end of the scale, the 10 volt 
desk-top computers have grown larger and larger until 
they are no longer desk-top and now are fully grown 
consoles consisting of several hundred amplifiers, as 
exemplified by the EAI 680 computer shown in 
Figure 19. 

The solid state revolution, which only overtook 
analog in the third generation has led to the concept of 
the class 0 type component or "blackbox" use of the 
analog components to help minimize patching and to 
make it easier for the more casual user of the machine to 
program, patch, and obtain solutions by himself. 
Another reason for this trend is that the solid state 
amplifiers are obviously less costly and more reliable 
than their vacuum tube predecessors. Analog speeds of 
solution which could be too fast to be absorbed by 
hUrhans, or recorded by devices, even back in the early 
50's, are even faster. Present day bandwidth ranges 
from a minimum of 100 KHz to over 1 MHz. Some of 
the other important equipment improvements are 
quarter square multiplier accuracy of close to 0.01 
percent and arbitrary function generation performed by 
a true hybrid device, the digitally controlled function 
generator (DCFG), which eliminates >spurious·· drifts, 
non-repeatability;, and difficulty in setup of the old 
diode function generator. These, together with the new 
digital potentiometer, a good hybrid interface with good 
software, and a well integrated system design, make it 
theoretically possible to setup and checkout an analog 
computer in a few seconcls. 

Some persons have been lmown to state the opinion 
that an analog computer of today is not much different 

than one of 10 years ago. A reading of this paper should 
dispel such a notion. To make clear the advances that 
have been made in the analog field, from post W orId 
War II to the present time, I have summarized in 
Figure 12 the major hardware improvements by year 
of general availability showing the typical computers 
incorporating the named improvements. It is obvious 
that these improvements have come at more frequent 
intervals than analog computer generations as I have 
defined them, and shows that major improvements have 
come along in the analog field at an average spacing of 
about 23-1 years. This interval of time is, interestingly 
enough, approximately equal to the half-life of a 
"generation" of analog computers. This fact might lead 
to the conclusion that one generation of computers 
cannot survive (or absorb) two sets of major hardware 
improvements, but that the manufacturers have been 
reasonably successful in extending the life of a generation 
of their computers through . at least one significant 
hardware evolution. Perhaps it is the ability to extend 
the life of a "generation" of analog computers, because 
of the nature of the organization of analog computers 
(parallel building blocks) which has led to the inaccurate 
observation that "analog computers of today are not 
much differen.t than they were 5 or 10 years ago." 

ANALOG/HYBRID TODAY 

We have now come to the point in analog/hybrid 
developments where not only do we have more raw 
computing speed than it is possible to take full ad
vantage of, for solutions, but we also have more speed 
in terms of setup and checkout than we have customers 

Figure 17-680 lOV computer with display wing 



who understand this type of computation. Or to put it 
another way, we've reached the stage in evolution where 
we can get a customer on, get his answers for him, and 
get him off, far faster than is justifiable based on the fact 
that we have a highly serial, slow input, mainly the 
input from a single man, to a very fast parallel console. 
We have almost reached the stage, as a matter of fact, 
where the slow recorders on the outputs from the analog 
are one of the limiting output factors. We've reached 
the point where we can make many, many solutions in 
a very short time. In other words, we are production 
oriented in terms of solution speed. At the same time, 
we have retained all of our man-machine interactive 
capabilities which everyone says is desirable in the 
engineering use of computers, but which obviously work 
against production. In fact, production capabilities are 
so great that I have estimated that for every hour of 
production running on our modern hybrid systems, the 
amount of post run data reduction of the results by a 
large fast, stand alone digital computer operating in a 
batch mode would be at least two and possibly as high 
as five hours depending on how much analysis is 
desired, or more realistically, how much the project can 
afford. 

The application of hybrid equipment is still heavily 
oriented toward the aerospace-defense industry where 
most of the large systems are installed. The chemical 
process industries have maintained some interest in 
these systems over the years, but not at an increasing 
rate. The education field has interest in the small and 
medium size systems. Nuclear and power technology 
have shown signs of increasing awareness of the 
':lap ability of hybrid systems for their highly complex 

Figure 18-Comcor Ci-5000 analog computer 

Analog/Hybrid 651 

Figure 19-8800 100V transitorized computer with display wing 

design, control, and training studies. Other popular 
applications are as an on-line testing device, such as 
measuring the amount of pollutants in an automobile 
engine exhaust (Reference 6); measuring the roundness 
of tires (Reference 7) in acting as an on-line predictor or 

/ 

ad;iptor-controller for a wide variety of processes 
(Reference 8), and for helping to control the quality of 
s~el (Reference 9). 
, So what is the hybrid/analog system of today? It is a 

highly efficient fast production device when the user or 
man is not allowed to intervene and interfere with its 
operation. This is in direct contradiction to its other 
main feature, that is, its ease of man-machine communi
cation which almost cries out for man's intervention. 
I would say that the analog/hybrid computer exhibits 
schizophrenic characteristics which may explain why 
not too many people understand it. It is almost 
impossible for a device to be responsive to man's 
intervention and at the same time to be highly produc
tive. At leaSt not the way the hybrid systems are 
configured today. It is this paradox that limits the 
expansion of· the analog/hybrid field. 

The analog hardware today is far more reliable than 
its early beginnings. The MTBF for a transistorized 
amplifier is somewhere between 30,000 hours and 
60,000 hours. The high quality, chopperless amplifier, a 
recent development, brings us back, almost full circle to 
the point where we were with the very first analog 
amplifiers, that is, a chopperless, unstabilized amplifier 
with a virtually instantaneous overload recovery. This 
is a feature that all users will appreciate. However, it has 
taken 2.5 to 30 years, an electronic revolution, and 3 or 4 
generations of computers to eliminate the drift and 



652 Fall Joint Computer Conference, 1970 

unreliability of the first unstabilized amplifiers, while 
retaining the desirable features of simplicity and quick 
overload recovery. 

The future 

The analog/hybrid computer could become more 
widespread in its use and acceptance by industry if it 
can eliminate its schizophrenia and solve its paradox. 
Hardware a;nd software ideas have been mentioned for 
doing just this, such as an automatically patched analog 
computer (Reference 10), coupled with a high level 
language for programming the machine in user oriented 
language, such as APSE and APACHE, all of which is 
made highly accessible and productive with many 
interactive graphics terminals (Reference 11) controlled 
and hybridized by one of those next generation, fast, 
cheap, can-do-anything digital computers that I keep 
hearing about. 

At the very least, it will continue to be used in those 
on-line experiments, those teaching-learning situations, 
those high frequency problems, that saturate large 
digitals, and by those specialists who are addicted to 
analog, as it has been used in the past. 

REFERENCES 

1 J ROEDEL 
An introduction to analog computers 
From A Palimpsest on the Electronic Analog Art ed by 
H M Paynter first printed by George A Philbrick 
Researchers Inc 1955 pp 27-47 

2 M CONNELLY 0 FEDOROFF 
A demonstration hybrid computer for real-time flight 
simulation 
February 1965 Report ESL-FR-218 Contract AF 
33(616)-8363 MIT Cambridge 39 Mass 

3 Project Cyclone-Symposium I, Reeves Instrument Corp 
under contract with the Special Devices Center of the 
Department of the Navy March 1951 

4 Project Cyclone-Symposium II Reeves Instrument Corp 
(Part II) under contract with the Special Devices Center 
of the Department of the Navy April 1952 

5 Project Typhoon-Symposium III on Simulation and 
Computing Techniques Bureau of Aeronautics and US 
Naval Air Development Center October 1953 

6 J P LANDAUER 
Hybrid computer real-time data processing for engine testing 
Electronic Associates Inc Market Development Report 
17.:.70 

7 J T MAGUIRE A J SCHNABOLK 
Sorting out the tires 
ELECTRONICS March 18 1968 

8 P ADAMS A SCHOOLEY 
Adaptive-predictive control of a batch reactor 
EAI applications Reference Library #6.2.2/a 

9 H J HENN J D SCHIMKETS T G JOHN 
Development and operation of a refining control system for 
stainless steels 
ASME Electric Furnace Conference Detroit Mich 
December 1969 

10 G HANNAUER 
Automatic patching for analog and hybrid computers 
SIMULATION Vol 12 #5 May 1969 pp 219-232 

11 R M HOWE R A MORAN 
Time sharing of hybrid computers using electronic patching 
Proc of 1970 Summer Computer Sim Conf Vol 1 pp 124-133 

12 Proc of Combined Analog/Digital Computer Systems 
Symposium sponsored by SCi and General Electric Company 
December 1960 Available from SARE 



The hologram tablet-A new 
graphic input device 

by lVIITSUHITO SAKAGUCHI and NOBUO NISHIDA 

Nippon Electric Company, Ltd. 
Kawasaki, Japan 

INTRODUCTION 

Graphic data tablets are input devices which digitize 
coordinate positions of topological patterns. 

The graphic data tablet is a powerful tool with 
respect to applications of man-machine communica
tions: 

1. Terminal for Computer Aided Instruction. The 
graphic data tablet plays a role as a selector of 
an item from an array of items which are 
displayed on a screen or printed on a paper, 
or as a highly versatile programmable keyboard. 

2. Terminal for Data Communications requesting 
information guidance or information retrieval 
by hand-written characters. 

3. Input terminal of pictorial informations for a 
graphic manipulation such as Computer Aided 
Design of integrated circuits. 

For the sake of applications, the graphic data 
tablet should satisfy the following conditions. 

1. Simple and easy to handle. 
2. Compact size and light weight. 
3. Easy to interface or connect to the associated 

computers. 
4. Low price. 

Conventional devices such as the RAND tablet! 
and the sylvania data tablet2 do not seem to satisfy 
conditions (2) and (4), because they emp16Y different 
hardwares for quantizing the coordinates and encoding 
the positions. 

Hologram tablet, shown in Figure 1, provides a 
new graphic input device in which the quantizing 
function and the encoding function are carried out in a 
single hologram plate which contains a two-dimensional 
array of small holograms recording the encoded position 
signals. 

653 

Immediate generation of encoded binary signal 
without complicated electronic means, which is achieved 
by use of holography, is the most important merit of 
the hologram tablet. This leads to the realization of 
high speed, high resolution, compact size and. low 
price. 

In the prototype device, the tracing speed 104 

positions per second and the resolution 2 lines/mm 
were obtained. 

Principle of the hologram tablet 

Holography3 is a two-step imaging process. One 
step is the recording of wavefronts of coherent light 
beam spatially modulated by an object in the form 
of interference pattern with a reference light beam, 
and the other is the reconstructing of the object 
image by illuminating the interference pattern (holo
gram) with a coherent beam. Hologram tablet was 
achieved by introducing a new function to hologram 

Figure l-Prototype device of the hologram tablet in operation 



654 Fall Joint Computer Conference, 1970 

HOLOGRAM PLATE 

PENCIL OF LASER BEAM 

ZERO ORDER DIFFRACTION BEAM 

LENS 

Figure 2-Schematic diagram of the hologram tablet 

memory4,5 in which small holograms of memory 
plane contain arbitrary informations. The location 
of a small hologram in the hologram memory is an 
area of "temporary residence" recording information. 

In a hologram tablet the location of a small holo
gram expresses the decoded signal of the position 
information recorded in the small hologram. The 
location of a small hologram and the information 
in a small hologram are connected each other by 
logical functions. Thus the area of a small hologram 
in the hologram tablet is considered to carry out the 
quantization or the smoothing of input patterns 
drawn by stylus. 

Figure 2 shows the principle of hologram tablet. 
The hologram tablet consists of a hologram plate 
containing small holograms recording the binary
coded position informations, a stylus emitting a pencil 
of laser beam and photodetectors to receive the laser 
beams diffracted from each of the small holograms. 
When the stylus moves on the hologram plate, the 
pencil of laser beam illuminates the small hologram 
just below the stylus and generates the first order 
diffraction beams expressing the binary-coded signals 
of coordinates X and Y indicated by the stylus, which 
are detected by photodetectors. The output.s from 
the photodetectors are fed to computer memories. 

Since the zero order diffraction beam traces the 
movements of the stylus, it is possible to take a hard 
copy 'of the trace of the input pattern on the photo
sensitive paper behind the hologram plate, or access 
simultaneously several hologram plates aligned in 
cascade. 

If there are 2n X 2m small holograms, then the 
position-code consists of (n+m) bits.' Thus (n+m) 
photodetectors should be prepared. 

Size of hologram plate and that of small hologram 
are determined by the dimensions of input patterns 
arid the quantization size,' respectively. The diameter 
of the pencil of laser beam should be small enough to 
smooth the meaningless movement of the stylus such 
as tremors in the small hologram. Each photodetector 

should have an area wide enough always to receive 
the reconstructed image beam whose position might 
undergo random fluctuation due to that of the inci
dent beam direction and aberrations of hologram 
plate. In ideal conditions the photodetector diameter 
Dp is given by 

where 

DH = 2SHWH , 

DH = small hologram diameter, 

F = distance from the hologram plate to the 
reconstructed image position, 

A = wavelength, 

SH = smoothing factor of the small hologram, 

SD = safety factor for the photodetector, 

W H = beam waist of the pencil of laser beam. 

Dp should be greater than 3.2 mmet> for the values 
utilized for the prototype device described below, and 

WRITING SURFACE 

HOLOGRAM PLATE 

MONITOR' 

OUTPUT INTERFACE 

Figure 3-System block diagram of the prototype device, "G" 
indicates a gate circuit. 



DH = 0.5 mm, F = 200 mm, A = 0.6328 Jotm, SH = 2, 
and SD = 5. 

Data input rate is restricted only by photodetector 
and amplifier response. 

System description 

A prototype hologram tablet was constructed in 
order to confirm the expected performance, particu
larly the accuracy of the code-generation and easy 
handling. 

The accuracy of the code-generation is determined by 

1. Overlap of position-coding masks at the time 
of constructing the hologram plate. 

2. Uniformity of the reconstructed image intensity 
over all of the small holograms in hologram 
plate. 

3. Fluctuation of the reconstructed image beams 
on photodetector surfaces. 

Handling of hologram tablet is affected by the 
smoothness of· the movement of stylus link and the 
flexibility of the optical guide guiding the pencil of 
laser beam. 

Figure 3 shows the system block diagram of a holo
gram tablet. The pencil of laser beam emitted from 
the light pen should be held normal to the hologram 
plate in order to let the reconstructed image beams 
fall correctly on the appropriate photodetectors. On 
the other hand the stylus combined with a ball-point 
pen to take hard copies of input patterns on the writing 
surface is required to be movable freely and easily. 
The ball-point pen and the light pen were connected 
tandem by a pantograph link in order to carry out 
the same movement with respect to the coordinates 
X and Y. The touch of the ball-point pen onto the 
writing surface was detected by a microswitch installed 
at the top of the pen point, and the signal from pen
touch detection circuit was used for the on-off control 
of the brightness of the monitor CRT. The laser 
beam with a spot size of 0.25 mme/> was guided from a 
compact He-Ne gas laser (size 300 mm x 50 mme/>, 
output 2 mW) to the light pen containing an optical 
guide. 

The bleached hologram plate contained 64 x 64 small 
holograms (each small hologram 0.5 x 0.5 mm2) , in 
each two pairs· of the Gray code of six bits and one 
sign bit were recorded. Each of the Gray codes of six 
bits indicated the coordinates X and Y of the small 
hologram in hologram plate. Thirteen solar cells 
(size 5 x 5 mm2) were placed at each of the recon
structed image positions (intervals 6;2 mm). Twelve 

The Hologram Tablet 655 

I M.n 

Figure 4-Photodetector and Amplifier circuit 

of the solar cells were used to receive the Gray coded 
image beams corresponding to the coordinates X 
and Y. Inspection of encoding operation was carried 
out by detecting the diffraction intensity of the sign 
bit by the thirteenth solar cell. Output in the sign bit 
controlled also the on-off of the monitor brightness. 
After the photo currents from the solar cells were 
amplified up to the logic level of DTL by the opera
tional amplifier circuits shown in Figure 4, the Gray 
to binary code-conversion was made in parallel. Each 
bit of the binary coded signal was compared with 
that of the previous signal stored in the register. When 
the mismatch of a single bit was found by mIsmatch 
detection circuits, the present binary coded signal 
was stored into the register and a pulse of 10 JotS width 
was generated to brighten the monitor. The operation 
was carried out in order to check the exact change 
of the Gray code and protect the screen of monitor 
CRT. The binary code stored in the register was 
changed into analog voltages by D-A converters and 
fed to Tektronix type 601 storage CRT in order to 
monitor the pen movement. Hologram plate and the 
light pen are the essential components of the hologram 
tablet. 

Hologram plate 

We have two methods to form the hologram plate, 
viz., serial-recording of each small hologram, and 
common-bits-recording in which each of the bits 
common to· all of the small holograms is recorded 
individually. We employed the latter to form hologram 
plate, because the method is similar to that making 
integrated circuits, and considerably economizes the 
labor to make hologram plate. 

A schematic diagram showing how to form holo
gram plate is given in Figure 5. We have employed 
the method of the image hologram. 6 The thirteen 
masks for the Gray code were prepared. Each of them 
consisted of transparent or opaque patterns expressing 
"Il! or "0", corresponding respectively to each of 
the bits common to all of the small holograms. 



656 Fall Joint Computer Conference, 1970 

Figure 5-Schematic diagram forming the hologram plate 

An imaging lens was set to form a magnified image 
of a mask for the Gray code on a photographic plate. 
When a collimated laser beam was used to illuminate 
the mask for the Gray code, the spatially modulated 
beams emerging from the mask (object beam) were 
converged at the rear focal point of the imaging lens 
and then imaged on the photographic plate. A plane 
wave laser beam (reference beam) was made to illumi
nate all over the photographic plate and then interfere 
with the object beam carrying the mask pattern for 
the Gray code. Recordings for different masks were 
made in a similar way, provided that the incident 
directions of the reference beam were shifted each 
time. 

The reconstructed images are the replicas of the 
object beams and converge on the array of the solar 
cells. The distance from hologram plate to the array 
of the solar cells is the same as that from the rear 
focal point of the imaging lens to photographic plate. 

The angular separation between the adjacent re
constructed image beams falling on the solar cells is 
equal to the angular shift imposed on the reference 
/Jeam at the time of recording. 

Figure 6 shows the hologram plate recorded on a 
Kodak 649-F plate and the Gray-coded images recon
structed from a small hologram of the hologram plate. 
The overlaps of the masks for the Gray code were 
achieved with an error less than ±0.05 mm. The 
hologram plate of higher resolution will be formed by 
utilizing the ability of holography to achieve high bit 
densities with a great spatial redundancy and lens
like nature. The transmittivity of the hologram plate 
was about 80 percent. The diffraction efficiency better 
than 0.1 percent was obtained for each reconstructed 
image. 

Light pen 

Figure 7 shows the construction of the light pen. It 
consists of a light focusing glass fiber named SELFOC,7 

Figure 6-Hologram plate and reconstructed images 

lens and a prism. We call it SELFOC light pen. SEL
Foe is a lens-like optical guide of glass fiber with a 
parabolic distribution of refractive indices. SELFOC 
has the following advantages as compared with a 
clad type optical fiber. 

1. Laser beam transmission without band-limita
tion and waveform distortion. 

2. Low-loss transmission and conservation of 
polarization plane of incident beam. 

LASER BEAM 
---r::=:::::::::::~ 

LENS 

Figure 7-Construction of the SELFOC light pen 



3. Realization of a lens with tiny aperture and 
that with an ultrashort focal length. 

4. Increased flexibility due to a small diameter. 

The refractive index n of the fiber in the radial 
direction is given by n = noCl-ar2/2), where no, r, 
and a are refractive index on the optic axis, distance 
from optic axis, and a constant, respectively. 

At present SELFOC optical fibers with diameters 
from 50 JLm to a few mm are available. Although a 
varies with fiber diameter, the difference between 
the refractive index on the optic axis and that at the 
periphery can be made O.l. 

The SELFOC optical fiber used in the SELFOC 
light pen was 50 cm long with a diameter of 0.2 mm. 
The coefficient a was 0.5 mm-2, and the transmission 
loss was less than 0.3 dB/m. The mode pattern of a 
laser beam after passing through the SELFOC light 
pen was scarcely deformed as shown in Figure 8. The 
SELFOC could be bent with a radius of curvature 
less than 10 cm without a noticeable deformation in 
pattern. The lens. on an end of the SELFOC light pen 
was used to collimate the emerging laser beam to a 
spot size of 0.25 mm</>. 

Performance 

A paper placed on the writing surface provided hard 
copies of input patterns written or drawn by a ball
point pen. Movements of ball-point pen were followed 
by the SELFOC light pen and were instantaneously 
encoded as reconstructed images from the hologram 
plate. The solar cells adequately covered the fluctua
tions of the reconstructed image beams caused by 
jolting of the SELFOC light pen and aberrations 
of the hologram plate. The signal-to-noise ratio of the 
Gray-coded images on the solar cells was greater than 

Figure 8-SELFOC light pen guiding a pencil of laser beam 

The Hologram Tablet 657 

Figure 9-Monitored characters drawn by the stylus on the 
hologram plate 

7 dB, even when the hologram plate was disturbed by 
dust and scratches. Since the output voltage of the 
amplifiers was higher than 3 volts, it was found possible 
to use a laser source with an output less than 2 mW. 
Data rate was limited by the frequency response of 
the solar cell and the amplifier, and was obtained up 
to 104 positions per second. 

Figure 9 gives an example of the monitored patterns 
displayed on the storage CRT. Deviations between 
the input patterns on paper and the displayed patterns 
on monitor CRT were within ±0.5 mm. This is con
sidered to be caused only by the essential disadvantage 
of the Gray code. 

The pantograph link and the SELFOC light pen 
could be moved lightly and freely making the handling 
of hologram tablet easy. Excellent stability was 
confirmed for a long period of operation. 

l\1ost part of the cost of a hologram tablet consists 
of that of laser source and SELFOC light pen. In 
the prototype device, a laser source of three hundred 
dollars and a SELFOC light pen constructed at the 
expense of one hundred dollars were used. However, 
the price would be reduced to half by mass production. 
If we consider the possibility that a hologram tablet 
with a larger capacity is constructed by using only 
hologram plate C the number of record of the masks 
for the Gray code is made to be equal to the encoded 
bit number), the encoded bit number of photo detectors 
and amplifiers, the cost will not increase to a great 
extent. 

CONCLUSION 

It has been confirmed that the hologram tablet has 
many advantages such as high data rate, high resolu
tion, compact size and low price. 



658 Fall Joint Computer Conference, 1970 

These advantages have been achieved by utilizing 
holographic techniques, and SELFOC. The essential 
components of hologram tablet are the hologram 
plate containing small holograms, each records the 
Gray-coded coordinate X and Y and the SELFOC 
light pen. The techniques in the hologram tablet can 
be utilized several ways such as the position control 
of NC and the feature extraction for pattern recogni
tions (using the smoothing function of small hologram 
in the characterized hologram plates). 

Although experiments were carried out with a 
prototype hologram tablet having 64 x 64 small 
holograms of 0~5 ·mm pitch, hologram tablets with 
much larger capacity and higher density could be 
constructed without great difficulty. The possibility 
that the increase in capacity and density will not 
bring a considerable rise in cost is to be found. 

Experiment of graphic manipulations with the 
hologram tablet connected to a computer system is 
in progress. 

ACKNOWLEDGMENTS 

The authors wish to thank Dr. T. Uchida and Dr. 
F. Saito for their helpful suggestions in this work. 

REFERENCES 

1 M R DAVIS T 0 ELLIS 
The rand tablet: A man-machine graphical communication 
device 
AFIPS Conference Proceedings Fall Joint Computer 
Conference Volume 26 pp 325-3311964 

2 J F TEIXEIRA R P SALLEN 
The sylvania data tablet: A new approach to graphic data 
input 
AFIPS Conference Proceedings Spring Joint Computer 
Conference Volume 30 pp 315-3211968 

3 E G RAMBERG' 
The hologram-properties and applications 
RCA rev Volume 27 pp 467-499 December 1966 

4 L K ANDERSON 
Holographic optical memory for bulk data storage 
Bell Lab Record Volume 46 pp 318-325 November 1968 

5 L F SHEW J G BLANCHARD 
A binary hologram digital memory 
IEEE J of QE Volume QE-5 pp 333-334 June 1969 

6 G B BRANDT 
Image plane holography 
Applied Optics Volume 8 pp 1421-1429 July 1969 

7 T UCHIDA M FURUKAWA I KITANO 
K KOIZUMI H MATSUMURA 
Optical characteristics of a light-jocusing fiber guide 
To be published in IEEE J of QE 



AMERICAN FEDERATION OF IN,FORMATION PROCESSING 
SOCIETIES (AFIPS) 

OFFICERS AND BOARD OF DIRECTORS OF AFIPS 

President 

Dr. Richard I. Tanaka 
California Computer Products, Inc. 

2411 W. LaPalma Avenue 
Anaheim, California 92803 

Secretary 

Mr. R. G. Canning 
Canning Publications, Inc. 

134 Escondido Avenue 
Vista, California 92083 

Executive Director 

Dr. Bruce Gilchrist 
AFIPS Headquarters 
210 Summit Avenue 

IVlontvaie, New Jersey 07645 

l\1r. Walter Carlson 
IBl\1 Corporation 

Armonk,. New York 

ACM Directors 

V ice President 

Mr. Keith W. Uncapher 
The RAND Corporation 

1700 IVlain Street 
Santa Monica, California 90406 

Treasurer 

Dr. Robert W. Rector 
Cognitive Systems, Inc. 

319 S. Robertson Boulevard 
Beverly Hills, California 90211 

Executive Secretary 

]Vlr. H. G. Asmus 
AFIPS Headquarters 
210 Summit Avenue 

lVlontvale, New Jersey 07645 

Dr. Ward Sangren 
521 University Hall 

2200 University Avenue 
Berkeley, California 

l\1r. Donn B. Parker 
Stanford Research Institute 

333 Ravenswood Avenue 
l\1enlo Park, California 94025 

l\1r. L. C. Hobbs 
Hobbs Associates, Inc. 

P.O. Box 686 
Corona del l\1ar, California 92625 

IEEE Directors 

Dr. Robert A. Kudlich 
Wayland Laboratory 
Raytheon Company 
Boston Post Road 

Wayland, l\1assachusetts 01778 

Dr. Edward J. McCluskey 
Department of Electrical Engineering 

Stanford University 
Palo Alto, California 94305 

Simulation Councils Director 

l\1r. James E. Wolle 
General Electric Company 
l\1issile & Space Division 

P.O. Box 8555 
Philadelphia, Pennsylvania 19101 

American Society for Information Director 

Mr. Herbert Koller 
ASIS 

2011 Eye Street, N.W. 
Washington, D.C. 20006 



Association for Computation Linguistics Director 

Dr. Donald E. Walker 
Head, Language and Text Processing 

The Mitre Corporation 
Bedford, Massachusetts 01730 

Society for Information Display Director 

Mr. William Bethke 
RADC-(EME, W. Bethke) 

Griffis Air Force Base 
New York, New York 13440 

A merican Institute of CPA's Director 

Mr. Noel Zakin 
l\1anager, Computer Technical Services 

AICPA 
666 Fifth Avenue 

New York, New York 10019 

American Institute of Aeronautics and Astronautics Director 

Dr. Eugene Levin 
Culler-Harrison Company 

745 Ward Drive 
Santa Barbara, California 93105 

Special Libraries Association Director 

Mr. Burton E. Lamkin 
Office of Education 

7th and D Streets, S.W. 
Washington, D.C. 20202 

Society for Industrial and Applied Mathematics Director 

Dr. D. L. Thomsen, Jr. 
IBl\1 Corporation 

Armonk, New York 10504 

American Statistical Association Direc;tor 

Dr. l\1artin Schatzoff 
Manager, Operations Research 

IBM Cambridge Scientific Center 
545 Technology Square 

Cambridge, Massachusetts 02139 

Instrument Society of A merica Director 

l\1r. Theodore J. Williams 
Purdue Laboratory for Applied Industrial Control 

Purdue University 
Lafayette, Indiana 47907 

JOINT COMPUTER CONFERENCE BOARD 

Dr. Richard 1. Tanaka-President 
California Computer Products, Inc. 

2411 W. LaPalma Avenue 
Anaheim, California 92803 

l\1r. Keith W. Uncapher-Vice President 
The RAND Corporation 

1700 Main Street 
Santa l\1onica, California 90406 

Dr. Robert W. Rector-Treasurer 
Cognitive Systems Inc. 
319 S. Robertson Blvd. 

Beverly Hills, California 90211 

l\1r. Richard B. Blue Sr.-ACl\1 
1320 Victoria Avenue 

Los Angeles, California 

l\1r. John E. Sherman-SCI 
Lockheed l\1issiles and Space Company 

Org. 19-30, Building 102 
P.O. Box 504 

Sunnyvale, California 

Dr. Robert A. Kudlich-IEEE 
Raytheon Co. Equipment Division 

Wayland Laboratory 
Boston Post Road 

Wayland, l\1assachusetts 01778 

JOINT COl\1PUTER CONFERENCE COlVIl\1ITTEE 

Dr. A. S. Hoagland, Chairman 
IBM Research Center 

P.O. Box 218 
Yorktown Heights, New York 10598 



JOINT COl\1PUTER CONFERENCE TECHNICAL PROGRAl\1 COl\1l\/IITTEE 

Mr. David Brown 
Stanford Research Institute 

333 Ravenswood Avenue 
1\1enlo Park, California 94025 

FUTURE JCC GENERAL CHAIRlV[EN 

1971 SJCC 

l\1r. Jack l\10shrnan 
RAl\1SCO 

6400 Goldboro Road 
Bethesda, l\1aryland 20034 

1971 FJCC 

l\1r. Ralph R. Wheeler 
Lockheed l\1issiles and Space Co. 

Dept. 19-31, Bldg. 151 
P.O. Box 504 

Sunnyvale, California 94088 . 



1970 FJeC STEERING COMMITTEE 

General Chairman 

Robert A. Sibley, Jr. 
University of Houston 

Vice Chairman 

Eugene H. Brock 
NASA-MSC 

Technical Program 

Larry E. Axsom-Chairman 
IBM Scientific Center 
Eugene Davis-Vice Chairman 
NASA-MSC 

Treasurer 

Geary Eppley 
Agency Records Control, Inc. 
Don L. Carmichael-Assistant 
Peat, Marwick, Mitchell & Co. 

Secretary 

Irma J. Morgan 
Phil co Ford Corporation 

Local Arrangements 

James N. Gay-Chairman 
Hybrid Systems, Inc. 
E. H. Hartung-Vice Chairman 
Gulf Oil Corporation 

Local A rrangements Coordinator 

Howard E. Reddy 
Pace l\1anagement Corporation 

Public Relations 

John Wilson-Chairman 
The Phillips Agency 
Larry Goldman-Vice Chairman 
Thomas J. Tierney and Associates 

Special Activities 

Joe B. Wyatt-Chairman 
University of Houston 
R. A. W esterhouse-Vice Chairman 
Computer Complex 

Registration 

Ed Mulvaney-Chairman 
Control Data Corporation 
Larry Byrne-Vice Chairman 
l\1ilchem, Inc. 

Publications 

R. S. Woodruff-Chairman 
Lockheed Electronics Co. 
Jury Lewisky-Vice Chairman 
Lockheed Electronics Co. 

Exhibits 

F. J. Kirkpatrick-Chairman 
Infotronics, Inc. 
Robert J. Mobilia-eVice Chairman 
Honeywell Computer Control 

SCi Representative 

J ames Van Artsdalen 
NASA-MSC 

A C M Representative 

l\IL Stuart Lynn 
IBl\1 Scientific Center 

IEEE Representative 

Curt F. Fey 
Xerox Data Systems 



SESSION CHAIRMAN, PANELISTS AND REVIEWERS 

Ed Battiste 
J. D. Baum 
Willard Bouricius 
Marc Connelly 
James R. Deline 
Dan Drew 
E. A. Feustel 
Karl Heinrichs 

R. P. Abbott 
C. T. Abraham 
R. M. Aiken 
G. Albers 
R. M. Alden 
R. P. Allen 
P. Altherton 
E. B. Altman 
L. K. Anderson 
T. C. Anderson 
F. Anzelmo 
A. Arakawa 
1\1. Arbab 
P. Armer 
G. N. Arnovick 
W. L. Ash 
M. M. Astrahan 
D. C. Augustin 
J. D. Aron 
H. L. Babin 
G. F. Badger, Jr. 
J. A. Baker 
D. L. Ball 
N. A. Ball 
1\/[. Ballot 
A. E. Barlmv 
B. B. Barnes 
B. H. Barnes 
R. M. Barnett 
1\1. N. Bartakke 
.T. Bartlett 
F. Bates 
R. V. Bayles 
.T. A. Bayless 
G. A. Bekey 
1\/[. J. Beniston 
R. Bennett 
P. T. Berning 
1\1. I. Bernstein 

SESSION CHAIRMEN 

R. A. Kaenel 
A.!, Katz 
Billy V. Koen 
Robert Korfhage 
Lenord Litman 
Michael A. Melkanoff 
Rudolph Motard 
R. R. l\l[untz 

REVIEWERS 

W. P. Bethke 
D. Bjorner 
D. V. Black 
J. A. Bloomfield 
D. Bobrow 
G. Boer 
1V1. .T. Bodoia 
G. R. Bolton 
H. Borko 
G. H. Born 
E. Bosch 
H. Bratman 
B. Brawn 
R. L. Brening 
R. D. Brennan 
N. D. Brewer 
J. D. Brooks 
B. W. Brown 
D. C. Brown 
J. R. Brmvn, Jr. 
K. Brown 
G. E. Bryan 
C. A. Caceres 
M. A. Calhoun 
E. D. Callender 
T. W. Calvert 
A. V. Campi 
R. H. Canaday 
D. G. Cantor 
D. W. Cardwell 
R. B. Carlson 
R. L. Carmichael 
C. C. Carroll 
W. C. Carter 
L. J. Chait in 
J. 1\1. Chambers 
R. C. Cheek 
.T. Chernak 
B. F. Cheyoleur 

Dick Nance 
C. V. Ramamoorthy 
James L. Raney 
S. Rosen 
Art 1. Rubin 
Sally Sedelow 
C. Ray Wallace 
Richard Watson 

C. K. Chow 
W. F. Chow 
W.Chu 
E. H. Clamons 
D. Climenson 
L. J. Clingman 
A. Clymer 
E. G. Coffman 
D. Cohen 
W. L. Colby 
L. S. Coles 
A. J. CoIl meyer 
S. Condon 
M. M. Conners 
R. L. Constable 
R. Constant 
A. E. Corduan 
W. A. Cornell 
1. W. Cotton 
R. Crandall 
D. E. Crawford 
B. Creasy 
A. J. Critchlow 
H. A. Crosby 
J. D. Crunkleton 
N. Cserhalmi 
C. Csuri 
A. G. Dale 
J. A. Daly 
D. A. Darms 
C. M. Davis 
R. J. P. DeFigueredo 
P. De Jong 
P. B. Denes 
P. J. Denning 
J. E. Dennis, Jr. 
H. Denslow 
E. Desautels 
J. Dierman 



H. Dinter D. R. Haring A. Kolk, Jr. 
D. L. Dittberner J. O. Harrison, Jr. H. G. Kolsky 
G. G. Dodd R. D. Hartwick J. Kopf 
T. L. Drake A. Hassitt P. R. Kosinski 
R. C. Dubes K. E. Haughton L. D. Kovach 
J. C. Duffendack J. F. Heafner J. H. Kuney 
M. A. Duggan M. F. Heilweil J. Kurtzberg 
A. I. Durney W. A. Helbig A. Kusahara 
T. J. Dylewski P. J. Hermann K. C. Kwan 
L. D. Earnest B. Herzog D. Laiti 
L. B. Edwin G. E. Heyliger B. W. Lampson 
H. S. Ed Tsou J. H. Hiestand R. C. Larkin 
R. F. Elfant A. N. Higgins D. J. Lasser 
W. J. Erikson R. H. Hill E. G. Lean 
E. R. Estes J. H. Hinrichs R. C. T. Lee 
S. E. Estes A. D. C. Holden W. T. Lee 
C. C. Farrington G. L. Hollander M. Lehman 
G. A. Fedde D. W. Holmes J. Lennie 
E. A .. Feustel R. L. Hooper A. S. Lett 
F. Field J. A. Howard J. M. Lewallen 
M. SJ Field D. K. Hsiao W. E. Lewis 
R. T. Filep B. Huberman W. W. Lichtenberger 
O. Firschein T. A. Humphrey H. P. Lie 
R. V. Fitzgerald E. Hunt C. R. Lindholm 
J. L. Flanagan P. J. Hurley R. Linebarger 
J. E. Foster M. R. Irwin T. P. Linville 
F. H. Fowler, Jr. R. A. Ito H. Lipton 
1V1. R. Fox L. Jacobs H. Liu 
C. V. Freiman E. A. Jacoby K. M. Lochner, Jr. 
P. J. Friedl L. F. Jarzomb E. S. Loebenstein 
J. Friedman R. E. Jeffries R. D. Lohman 
L. M: Fulton B. Johnson H. A. Long 
A. Futterweit W. L. Johnson R. G. Loomis 
R. L. Gamblin E. R. Jones D. L. Magill 
R. M. Gardner N. D. Jones W. Main 
G. E. Gareis E. C. Joseph C. M. Malone 
1V1. M. Gold J. R. Jump R. L. Mandell 
D. G. Gordon P. Kadakia 1\1. Marcotty 
D. F. Gorman R. Y. Kain I. Marshall 
J. A. Gosden V. A. Kaiser W. L. Martin 
M. H. Gotterer M. J. Kaitz R. L. Mattison 
E. M. Greenawalt J. F. Kalbach R. Mattson 
H. D. Greif E. Katell H. E. Maurer 
D. Gries S. M. Keathley L. H. Maxson 
D. W. Grissinger C. H. Kellogg C. H. Mays 
A. Guzman D. S. Kerr M. E. McCoy 
T. G. Hagan R. E. King R. McDowell 
1\1. J. Haims E. S. Kinney F. W. McFarlan 
J. E. S. Hale L. Kleinrock J. L. McKenney 
W. J. Hale A. Klinger P. T. McKiernan 
M. Halpern K. E. Knight R. S. 1\1cKnight 
M. H. Halstead P. Knowlton J. McLeod 
C. Hammer M. Kochen M. W. McMurran 
M. Hanan H. R. Koen L. P. McNamee 
F. M. Haney E. C. Koenig M. Meicler 
A. G. Hanlon J. S. Koford 1\1. A. 1\1elkanoff 



H. W. l\1ergler C. V. Page P. C. Sherertz 
J. C. 1\1ichener J. J. Pariser J. Shih 
B. J. 1\1ichielsen J. Pearl J. S. Shipman 
W. F. 1\1iller T. F. Penderghast D. L. Shirley 
H. D. l\1ills L. H. Peterson S. Shohara 
J. ),Iinker J. K. Picciano G. E. Short 
B. A. lHitchell M. W. Pirtle R. L. Shuey 
E. E. L. 1\1itchell W. J. Plath G. T. Shuster, Jr. 
B. l\1ittman A. V. Pohm 1. Shy 
J. O. l\10hn J. H. Pomevene E. H. Sibley 
1\1. l\10ntalbano J. A. Postley L. C. Silvern 
1\1. F. l\tloon A. W. Potts R. F. Simmons 
C. G. 1\100re R. C. Prather R. M. Simons 
D. W. 1\100re R. J. Preiss Q. W. Sinkins 
R. Ie 1\100re J. P. Pritchard, Jr. P. G. Skelly 
R. A. Moran J. S. Raby D. R. Slutz 
H. L. Morgan M. S. Radwin T. A. Smay 
L. W. 1\10rrison G. A. Rahe B. L. Smith 
l\1. S. S. 1\10rton C. V. Ramamoorthy L. M. Spandorfer 
G. J. 1\10shos L. C. Ray C. F. Spitzer 
J. H. Munson 1. Remson F. W. Springe 
J. K. l\1unson W. T. Rhodes T. B. Steel, Jr. 
A. W. 1\1uoio P. A. Richmond H. H. Steenbergen 
,J. J. l\,lurphy F. C. Rieman J. K. Stephens 
D. M. 1\1urray E. J. Roberts D. H. Stewart 
F. W. 1\1urray R. M. Rojko W. A. Sturm 
R. P. Myers J. Roseman R. K. Summit 
J. A. Narud C. A. Rosen A. Svoboda 
N. W. Naugle J. L. Rosenfeld P. A. Szego 
G. W. Nelson R. R. Rosin R. S. Taylor 
R. A. Nesbit D. L. Ross R. W. Taylor 
P. G. Neumann P. M. Rubin A. Tephtz 
F. Newman M. Rubinoff L. G. Tesler 
W. M. Newman F. Ruffino R. E. Thoman 
C. B. Newport R. L. Russo E. M. Thomas 
R. V. Niedrauer J. D. Sable M. D. Thompson 
R. N. Nilsen J. M. Salzer E. N. Timmreck 
N. J. Nilsson P. 1. Sampath A. A. Toda 
N. Nisenoff J. L. Sanborn F. M. Tonge 
J. D. Noe W. B. Sander G. R. Trimble, Jr. 
D. L. Noles L. Sashkin G. H. Turner, Jr. 
W. A. Notz P. Savage G. T. Uber 
J. A. O'Brien D. Savitt L. Uhr 
P. L. Odell D. B. Saylors W. R. Uttal 
K. O'Flaherty M. W. Schellhase W. Utz 
W. J. B. Oldham, Jr. W. E. Schiesser R. L. Van Tilburg 
1\1. J. O'Malley A. J. Schneider V. Vemuri 
J. T. O'Neil, Jr. V. B. Schneider S. J. Viglione 
L. S. Onyshkevych J. E. Schwenker R. Von Buelow 
C.Opaskar S. Y. Sedelon A. H. Vorhaus 
G. Oppenheimer W. A. Sedelon S. Waaben 
R. H. Orenstein T. K. Seehuus R. A. Wagner 
D. J. Orser W. D. Seider S. E. Wahlstrom 
E. E. Osborne A. B. Shafritz J. V. Wait 
J. T. Owens E. B. Shapiro P. D.Walker 
D. R. Paden J. E. Shemer C. J. Walter 



C. Walton R. C. Wilborn F. Worth 
G. Y. Wang L. C. Wilcox J. H. Worthington 
H. R. Warner M. Wild mann J. H. Wright 
K. Wasserman D. A. Willard K. R. Wright 
1\1:. C. Watson T. G. Williams S. L. Wright 
C. W. Watt T. J. Williams R. E. Wyllys 
A. L. Weihrer A. N. Wilson J. C. Wyman 
B. Weinberg C. A. Wilson J. W. Young 
M. N. Weindling D. E. Winer L. S. Young 
L. H. Weiner H. Wishner D. C. Zatyko 
C. Weissman R. P. Wishner N. S. Zinbel 
R. R. Wheeler E. W. Wolf A. S. Zukin 
G. Wiederhold J. E. Wolle 
R. L. 'Wigington R. C. Wood 

PANELISTS 

D. Beach R. Howe T. C. O'Sullivan 
U. N. Bhat H. R. Koller G. Salton 
C. R. Blair G. Korn J. H. Saltzer 
Jack Brooks R. Lawrence J. E. Sammet 
T. E. Cheatham, Jr. W. A. Leby L. L. Selwyn 
S. Crocker A. E. Lewis J. E. She mer 
P. J. Denning S. Levine T. B. Steel, Jr. 
D. S. Diamond J. Mauceri F. N. Trapnell 
A. Frederickson J. Minker D. H. Vanderbilt 
B. A. Galler H. S.McDonald V. N. Vaughan 
N. Gorchow C. B. Newport P. Wegner 
H. R. J. Grosch J. W. O'Byrne 
F. E. Heart J. F. Ossanna 



FJCC 1970 PRELIMINARY LIST OF EXHIBITORS 

Addison-Wesley Publishing Company 
Addmaster Corporation 
Addressograph Multigraph Corporation 
Advance Research, Inc. 
Advanced Information Systems, Inc. 
Advanced Memory Systems, Inc. 
Advanced Space Age Products, Inc. 
Advanced Terminals, Inc. 
AFIPS Press 
Airoyal lVUg. Co. 
Allen-Babcock Computing, Inc. 
Allied Computer Technology, Inc. 
American Data Systems 
American Elsevier Publishing Co., Inc. 
American Regitel 
American Telephone and Telegraph Co. 
AJVIP Incorporated 
Ampex Corp. 
Anderson Jacobson, Inc. 
Applied Computer Systems, Inc. 
Applied Digital Data Systems, Inc. 
Applied l\,fagnetics Corporation 
Association for Computing Machinery 
Atlantic Technology Corp. 
Atron Corp. 
Audio Devices, Inc. 
Auerbach Info., Inc. 
Auricord Div.--Scoville l\Hg., Co. 
Automata Corp. 
Auto-Trol Corp. 
Beehive l\,fedical Electronics Inc. 
The Bendix Corporation 
BIT, Inc. 
Boeing Computer Services 
Boole & Babbage, Inc. 
Bridge Data Products, Inc. 
Brogan Associates, Inc. 
Bryant Computer Products 
Bucode, Inc. 
The Bunker-Ramo Corporation 
Business Press International, Inc. (Information Week) 
California Computer Products, Inc. 
Call-A-Computer, Inc. 
Cambridge l\'Iemories, Inc. 
Canadian Government Exhibition Commission 
Centronics Data Computer Corp. 
Century Data Systems, Inc. 
Cincinnati l\1ilacron, Inc. 
Clare-Pendar Company 
Codex Corp. 
Cogar Corp. 
Collins Radio Company 
Colorado Instruments Inc. 

ComData Corporation 
Communitype Corporation 
Compat Corp. 
CompuCord, Inc. 
Computek, Inc. 
Computer Automation, Inc. 
Computer Communications, Inc. 
Computer Complex, Inc. 
Computer Design Publishing Corp. 
Computer Devices, Inc. 
Computer Micro-Image Systems, Inc. 
Computer Sciences Corporation 
Computer Synetics, Inc. 
Computer Terminal Corporation 
Computer Terminals of Minnesota 
Computer Transmission Corporation 
Computerworld 
Comress 
Consultants Associated, Inc. 
Control Data Corporation 
Control Devices, Inc. 
Courier Terminal Systems, Inc. 
CSPI (Computer Signal Processors, Inc.) 
Daedalus Computer Products, Inc. 
Data 100 Corporation 
Data Card Corporation 
Data Computer Systems, Inc. 
Data General Corp. 
Dataline Inc. 
Datamate Computer Systems, Inc. 
Datamation 
Datapac Incorporat~d 
Data Printer Corp. 
Data Processing Magazine (North American Pub. Co.) 
Data Product News 
Data Products Corporation 
Dataram Corporation 
Data Systems News/Newstape 
Datatype Corp. 
Datawest Corporation 
Datotek, Inc. 
Delta Data Systems Corporation 
Diablo Systems, Incorporated 
A. B. Dick Company 
DID, Data Input Devices, Inc. 
Digi-Data Corporation 
Digital Equipment Corporation 
Digital Information Devices, Inc. 
Digital Information Systems Corp. 
Digital Resources Corp. Hybrid Systems Div. 
Digital Scientific Corporation 
Digitronics Corporation 
Dresser Systems, Inc. 



Dylaflo Business Machines Corp. 
Eastman Kodak 
EDP News Service 
Edutronics Systems, International Inc. 
Eldorado Electrodata Corp. 
Electronic Arrays, Inc. (Systems Div) 
Electronic Arrays, Inc. (Components Div) 
Electronic Laboratries, Inc. 
Electronic Memories & Magnetics 
Electronic News-Fairchild Pubs. 
Engineered Data Peripherals Corp. 
Fabri-Tek, Inc. (Memory Products Div) 
Facit-Odhner, Inc. 
Ford Industries, Inc. 
Four-Phase Systems, Inc. 
General Electric Company (Bull Corp) 
General Electric Company (Scotia) 
General Instrument Corporation 
General Kinetics Incorporated 
Genisco Technology Corporation 
The Gerber Scientific Instrument Co. 
Gould Inc., Graphics Div. 
GRI Computer Corp. 
Hayden Publishing Company, Inc. 
Hazeltine Corp. 
Hetra, Inc. 
Hewlett-Packard 
Hitachi America, Ltd. 
Hi-Tek Corp. (Electronics Div) 
Honeywell Computer Control Div. 
Honeywell-EDP 
Houston Instrument 
Howard Industries 
IBM Corporation 
IDAK Corporation 
IEEE Computer Group 
IER Corp. 
Image Systems, Inc. 
Incoterm Corporation 
Inforex, Inc. 
Information Data Systems, Inc. 
Information Displays, Inc. 
Information International, Inc. 
Information Storage Systems, Inc. 
Infotronics Corp. 
Interactive Info Systems, Inc. 
Interdata 
International Computer Products, Inc. 
International Computers Ltd. 
International Data Corp. 
Kennedy Company 
Keymatic Data Systems Corp. 
Kongsberg Systems, Inc. 
Kybe Corporation 
Lenkurt Electric 
Licon Div. Illinois Tool Works, Inc .. 

Lipps., Inc. 
OEM Products, Automated Business Systems Div. 

Litton Industries 
Litton DATALOG Div. 
Lockheed Electronics, Data Products Div. 
Logicon, Inc. 
Lundy Electronics & Systems, Inc. 
M&M Computer Industries, Inc. 
The Macmillan Company 
Magnusonic Devices, Inc. 
MAl Equipment Corp. 
Marshall Data Systems, Div. of Marshall Ind. 
MCI 
Memorex 
Memory Systems, Inc. 
Memory Technology, Inc. 
Microform Data Systems, Inc. 
Micro Systems, Inc., A Microdata Subsidiary 
Milgo Electronic Corp., Int'l. Communications Corp. 
Mobark Instruments Corp. 
Modern Data 
Mohawk Data Sciences Corp. 
R. A. Morgan 
MSI Data 
NCR 
Nemonic Data Systems, Inc. 
Noller Control Systems 
N ortec Computer Devices, Inc. 
Nortronics Company, Inc. 
Novar 
Nuclear Data,! Inc. 
Numeridex Tape Systems, Inc. 
Odec Computer Systems, Inc. 
Omega-t Systems, Inc. 
Omnitec Corp. 
On Line Computer Corp. 
Optical Memory Systems 
Optel Corporation 
Path Computer Equipment, Inc. 
Penril Data Communications, Inc; 
Peripheral Equipment Corp. 
Peripheral Technology, Inc. 
Periphonics Corp. 
Photophysics, Inc. 
Plessey Electronics Corp. 
Prentice Electronics Corp. 
Prentice Hall, Inc. 
Princeton Electronic Products, Inc. 
Quantum Science Corp. 
Raytheon Computer 
RCA Memory Products Div. 
Realist Microform Products Div. 
Recortec, Inc. 
Redcor Corp. 
Remex Electronics, A Div. of Ex-CelI-O Corp. 
Research/Development l\1agazine 



RFL Industries, Inc. 
Royco Instruments, Inc. 
Sagetic Corporation 
Sangamo Electric Company 
Science Accessories Corporation 
Scientific Control Corporation 
Singer Company, Friden Div. 
Singer-Librascope 
Singer Micrographic Systems 
Singer Telesignal 
S.I.N.T.R.A. 
Sonex, Inc.-IjOnex Division 
Spartan Books 
Standard l\1emories, Inc. 
Storage Technology Corporation 
Sykes Datatronics 
Sylvania 
Syner-Data Inc. 
SYS Computer Corporation 
Stromberg Datagraphix, Inc. 
Tally Corporation 
TDK Electronics Corp. 
Technical Concepts, Inc. 
Tektronix, Inc. 
Teletype Corporation 
Telex Computer Products 
Tel-Tech Corp. 
Tennecomp Systems, Inc. 
Texas Instruments 
Timeplex, Inc. 

Time Share Peripherals Corp. 
Time-Zero Corporation 
Tops On-Line Services, Inc. 
Tracor Data Systems 
Treck PhotoGraphic Inc. 
Trio Laboratories, Inc. 
Typagraph Corporation 
Ultronic Systems Corp. 
United Business Communications, Inc. 
United Telecontrol 
Univac, Div. of Sperry Rand Corp. 
Universal Data Acquisition Co. 
Universal Graphics, Inc. 
Vanguard Data Systems, Inc. 
Varian Data Machines 
Varisystems Corporation 
Vermont ReEearch Corporation 
Versatec 
Viatron 
Video Systems Corporation 
Wabash Computer Corp., PI Div. 
Wang Computer Products, Inc. 
Wang Laboratories, Inc. 
Warner Electric 
Western Union 
Westinghouse Electric Corp. 
John Wiley & Sons, Inc. 
Xerox Corporation 
Xerox Data Systems 
Zeta Research, Inc. 



Abell, V. A., 89 
Abramson, N., 281 
Afifi, A. A., 609 
Allan, J. J., 257 
Allen, C. A., 53 
Alston-Garnjost, M., 45 
Andersen, S. R., 53 
Barton, M. E., 1 
Bavly, D. A., 417 
Beckermeyer, R. L., 315 
Beizer, B., 519 
Berge, T. D., 377 
Bjorner, D., 477 
Blizard, R. B., 503 
Bossen, D. C., 63 
Brooks, F. P., Jr., 599 
Brown, N. K., 399 
Bryant, P., 287 
Bussell, B., 525 
Carey, B., 387 
Carroll, J. M., 223 
Chen, C., 69 
Clancy, G. J., Jr., 581 
Collmeyer, A. J., 201 
Connor, C. L., 135 
Copp, D. H., 287 
Crawford, P. B., 515 
Crockett, E. D., 287 
Day, K. S., 129 
Dean, A. L., Jr., 169 
Dickinson, R. V., 181 
Dickinson, W. E., 287 
Dickson, G. W., 569 
Disparte, C. P., 79 
Dodds, W. R., 363 
Doherty, W. J., 97 
Down, N. J., 345 
Elshoff, J. L., 369 
Erbeck, D. H., 589 
Erwin, J. D., 621 
Farmer, D. E., 493 
Fink, R., 45 
Frandeen, J. W., 287 
Freed, R. N., 143 
Gates, H. M., 503 
Glantz, R. S., 535 
Granger, R. L., 407 
Heyliger, G. E., 275 
Howe, R. M., 377 
Hulina, P. T., 369 
Hurst, R. C., 297 
Irwin, M. R., 269 
Isberg, C. A., 287 

AUTHOR INDEX 

Jensen, E. D., 621 
Jorrand, P., 9 
Koga, Y., 69 
Koster, R. A., 525 
Lagowski, J. J., 257 
Larkin, D. C., 113 
Lee, C. E., 425 
Ling, H., 211 
Lum, V. Y., 211 
Lund, D., 53 
McDonald, J. W., 119 
McCuskey, W. A., 187 
McFarland, C., 629 
McLelland, P. M., 223 
Malia, T. C., 569 
Mallary, R., 451 
Mann, R. P., 555 
Markel, J. D., 387 
Martin, D. C., 241 
Meade, R. M., 33 
Mirabito, M. R., 345 
Moore, C. G., 555 
Moran, R. A., 377 
Morgan, M. G., 345 
Muller, M. T., 257 
N aemura, K., 69 
Newton, R. H., 325 
Nishida, N., 653 
O'Neill, L. A., 471 
Orr, W. K., 181 
Ossanna, J. F., 355 
Ostapko, D. L., 63 
Paige, M. R., 287 
Palley, N. A., 589, 609 
Patel, A. M., 63 
Penny, S. J., 45 
Peskin, A. M., 615 
Pitts, G. N., 515 
Prokop, J. S., 599 
Roberts, R., 547 
Robinson, G. S., 417 
Rosen, S., 89 
Rosenstein, A. B., 297 
Rubin, A. I., 641 
Sacks, S. T., 609 
Sakaguchi, M., 653 
Saltzer, J. H., 355 
Scherr, A. L., 113 
Schuman, S. A., 9 
Sedgewick, R., 119 
Senko, M. E., 211 
Shemer, J. E., 201 
Shivaram, M., 231 



Shubin, H., 609 
Siklossy, L., 251 
Spencer, R. G., 563 
Stevens, M. E., 159 
Stone, R., 119 
Storm, E. F., 21 
Stuehler, J. E., 461 
Tossman, B. E., 399 
Trautwein, W., 135 
Trimble, G. R., Jr., 417 
Trotter, J. A., Jr., 589 

Tu, G. K., 53 
Van Tassel, D., 445 
Vaughan, R. H., 21 
Vierling, J. S., 231 
Vonhof, P. W., 325 
Wagner, R. E., 89 
Walker, R. S., 425 
Wasserman, A. 1.,433 
Williams, C. E., 399 
Womack, B. F., 425 
Woodfill, M. C., 333 




















	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008a
	008b
	008c
	008d
	008e
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186a
	186b
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680

