
AFIPS
CONFERENCE
PROCEEDINGS

VOLUME 38

1971
SPRING JOINT

COMPUTER
CONFERENCE

May 18 - 20. 1971 '
Atlantic City. New Jersey

The ideas and opinions expressed herein are solely those of the authors and are not necessarily representative of or
endorsed by the 1971 Spring Joint Computer Conference Committee or the American Federation of Information
Processing Societies.

Library of Congress Catalog Card Number 55-44701
AFIPS PRESS

210 Summit Avenue
Montvale, New Jersey 07645

©1971 by the American Federation of Information Processing Societies, Montvale, New Jersey 07645. All rights
reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publisher.

Printed in the United States of America

Edited by Dr. Nathaniell\1acon, Technical Program Chairman

CONTENTS

COMPUTING MACHINES-MENACE OR MESSIAH?-PANEL
SESSION

(No papers in this volume)

IMAGE OF THE INDUSTRY-PANEL SESSION

(No papers in this volume)

THE NEW TECHNOLOGY-HARDWARE DESIGN AND
EVALUATION

The DINKIAC I-A pseudo-virtual-memoried mini-For stand-alone
interactive use .. .

A multi-channel CRC register
Features of an advanced front-end CPU
Interpreting the results of a hardware systems monitor

LAW ENFORCEMENT AND JUDICIAL ADMINISTRATION
PANEL SESSION (No papers in this volume)

APPLICATIONS REQUIRING MULTIPROCESSORS

4-way parallel processor partition of an atmospheric primitive-equation
prediction model.

An associative processor for air traffic control

COMPUTER AIDED MANAGEMENT OF EARTH RESOURCES
PANEL SESSION (No papers in this volume)

RESPONSIVE GOVERNMENT-PANEL SESSION

(No papers in this volume)

COMPUTERS IN TRANSPORT-FOR MANAGEMENT NEEDS
OR SUPPLIERS' DELIGHT?

A computer-aided traffic forecasting technique-The trans Hudson
model .. .

Computer graphics for transportation problems

Real time considerations for an airline

A computer simulation model of train operations in CTC territory

PRESENT AND FUTURE DATA NETWORKS-PANEL SESSION

(No papers in this volume)

1
11
15
23

39

49

61
77

83

93

R. W. Conn
A. M. Patel
R. B. Hibbs
J. S. Cockrum
E. D. Crockett

E. Morenoff
W. Beckett
P. G. Kesel
F. J. Winninghoff
P. M. Wolff
K. J. Thurber

E. J. Lessieu
D. Cohen
J. M. McQuillan
J. Loo
B. T. O'Donald
I. R. Whiteman
D. Borch

TERMINAL ORIENTED DISPLAYS

A general display terminal system

AIDS-Advanced interactive display system

CRT display system for industrial process

Computer generated closed circuit TV displays with remote terminal
control

COMPETITIVE EVALUATION OF INTERACTIVE SYSTEMS
PANEL SESSION (No papers in this volume)

COMPUTERS IN THE ELECTORAL PROCESS

The theory and practice of bipartisan constitutional computer-aided
redistricting.

"Second-generation" computer vote count systems-Assuming a pro-
fessional responsibility

MICROPROGRAMMING AND EMULATION

Evaluation of hardware-firmware-software trade-offs with mathe-
matical modeling .. .

System/370 integrated emulation under OS and DOS
A high-level microprogramming language (MPL)
A firmware APL time-sharing system

INTERACTIVE APPLICATIONS AND SYSTEMS

Designing a large scale on-line real-time system
PERT -A computer-aided game
Interactive problem-solving-An experimental study of "lockout"

effects .. .

TYMNET - A terminal-oriented communication network
Implementation of an interactive conference system , .. .

COMPUTATIONAL COMPLEXITY-PANEL SESSION

(No papers in this volume)

THE EVOLUTION OF COMPUTER ANIMATION-PANEL SESSION

(No papers in this volume)

SERVING USERS IN HIGHER EDUCATION

Who are the users?-An analysis of computer use in a university com-
puter center.

103

113

123

131

137

143

151

163
169
179

191
199

205

211
217

231

J. H. Botterill
G. F. Heyne
T. R. Stack
S. T. Walker
T. Konishe
N. Hamada
I. Yasuda

S. Winkler
G. W. Price

S. S. Nagel

C. H. Springer
M. R. Alkus

H. Barsamiam
A. DeCegama
G. R. Allred
R. H. Eckhouse, Jr.
R. Zaks
D. Steingart
J. Moore

S. Ishizaki
J. Richter-Nielsen

B. W. Boehm
M. J. Seven
R. A. Watson
L. R. Tymes
T. W. Hall

E. Hunt
G. piehr
D. Garnatz

INFORMATION AND DATA MANAGEMENT

An initial operational problem oriented medical record system-For
storage, manipulation and retrieval of medical data

Laboratory verification of patient identity

The data system environment simulator (DASYS)

Management information systems-What happens after implemen-
tation? .. .

A methodology for the design and optimization of information proces-
sing systems .. .

COMPUTER ASSISTED INSTRUCTION

Computer generated repeatable tests

R2-A natural language question-answering system

THE NEW TECHNOLOGY-STORAGE

Performance evaluation of direct access storage devices with a fixed
head per track.

Drum queueing model

Storage hierarchy systems
Optimal sizing, loading and re-loading in a multi-level memory hierarchy

system , ... ,

The TAB LON mass storage network " .,

TOPICS IN COMPUTER ARITHMETIC AND IN ARTIFICIAL
INTELLIGENCE

A structure for systems that plan abstractly
Unconventional superspeed computer systems
High speed division for binary computers
A unified algorithm for elementary functions
A software system for tracing numerical significance during computer

program execution

SOFTWARE LIABILITY AND RESPONSIBILITY-PANEL SESSION

(No papers in this volume)

VENTURE CAPITAL-FINANCING YOUNG COMPANIES
PANEL SESSION (No papers in this volume)

FROM THE USER'S VIEWPOINT-PANEL SESSION

(No papers in this volume)

239

265

271

277

283

295

303

309

319

325

337

345

357
365
373
379

387

J. R. Schultz
S. V. Cantrill
K. G. Morgan
S. Raymond
L. Chalmers
W. Steuber
L. E. DeCuir
R. W. Garrett

D. E. Thomas, Jr.

J. F. Nunamaker, Jr.

F. Prosser
D. D. Jensen
K. Biss
R. Chien
F. Stahl

T. Manocha
W. L. Martin
K. W. Stevens
G. P. Jain
S. R. Arora
H. Katzan, Jr.

S. R. Arora
A. Gallo
R. B. Gentile
J. R. Lucas, Jr.

W. W. Jacobs
T. C. Chen
H. Ling
S. Walther

H. S. Bright
B. A. Colhoun
F. B. Mallory

PERIPHERAL PROCESSING-PANEL SESSION

(No papers in this volume)

COMPUTER PICTORICS

Automated interpretation and editing of fuzzy line drawings
Computer graphics study of array response

Computer manipulation of digitized pictures

AN INTERNATIONAL VIEW-PANEL SESSION

(No papers in this volume)

SIMULATION OF COMPUTER SYSTEMS

The design of a meta-system
An interactive simulator generating system for small computers

APPLICATION OF COMPUTERS TO TRAINING-PANEL SESSION

(No papers in this volume)

THE NEW TECHNOLOGY-DIAGNOSTICS AND RECOVERY

Multiband automatic test equipment-A computer controlled check-out
system .. ,

Coding techniques for failure recovery in a distributive modular memory
organization .. .

Recovery through programming system/370
On automatic testing of one-line, real-time systems

THE NEW TECHNOLOGY-SYSTEMS SOFTWARE

PORTS-A method for dynamic interprogram communication and job
control

Automatic program segmentation based on boolean connectivity
Partial recompilation ... , .

PL/C-The design of a high-performance compiler for PL/I. , .

GPL/I-A PL/I extension for computer graphics , .
ETC-An extendible macro-based compiler

THE COMPUTER PROFESSIONAL AND THE CHANGING
JOB MARKET-PANEL SESSION

(No papers in this volume)

THE NEW TECHNOLOGY-FILE ORGANIZATION

A file organization method using multiple keys
Arranging frequency dependent data on sequential memories

Associative processing of line drawings

393
401

407

415
425

451

459

467
477

485
491
497

503

511
529

539
545

557

S. K. Chang
G. W. Byram
G. V. Olds
L. P. LaLumiere
N. Macon
M. E. Kiefer

A. S. Noetzel
J. L. Brame
C. V. Ramamoorthy

T. Kuroda
T. C. Bush

S. A. Szygenda
M. J. Flynn
D. L. Droulette
J. S. Gould

R. M. Balzer
E. W. Ver Hoef
R. B. Ayres
R. L. Derrenbacher
H. L. Morgan
R. A. Wagner
D. N. Smith
B. N. Dickman

M. L. O'Connell
C. V. Ramamoorthy
P. R. Blevins
N. J. Stillman
C. R. Defiore
P. B. Berra

THE NEW TECHNOLOGY-COMPUTER ARCHITECTURE

The hardware-implemented high-level machine language for symbol ...

SYMBOL-A major departure from classic software dominated von
Neumann computing systems

The physical attributes and testing aspects of the symbol system

SYMBOL-A large experimental system exploring major hardware
replacement of software

EDUCATIONAL REQUIREMENTS FOR SYSTEMS ANALYSTS

A semi-automatic relevancy generation technique for data processing
education and career development

An architectural framework for systems analysis and evaluation

COMPUTER ACQUISITION-PURCHASE OR LEASE
PANEL SESSION (No papers in this volume)

COMPUTATION, DECISION MAKING, AND THE
ENVIRONMENT-PANEL SESSION

(No papers in this volume)

563

575

589

601

617
629

G. D. Chesley
W. R. Smith

R. Rice
W. R. Smith
B. E. Cowart
R. Rice
S. F. Lundstrom

W. R. Smith
R. Rice
G. D. Chesley
T. A. Laliotis
S. F. Lundstrom
M. A. Calhoun
L. D. Gerould
T. G. Cook

J. D. Benenati
P. Freeman

The DINKIAC I-A pseudo-virtual-memoried mini-For
stand-alone interactive use

by RICHARD W. CONN

University of California
Berkeley, California

INTRODUCTION

The past three years have witnessed the development
and sale of a large and unanticipated number of small
general purpose digital computers. These machines
the mini-computers-originally intended for real-time
use in applications such as production control, now
serve many diverse functions, ranging all the way from
data buffers to the central processing units of small
time-sharing systems. One trade journal even reports a
sale to a home hobbyist claiming that initial costs are
comparable, and upkeep less, than for other "recrea
tional" equipment such as boats or sports-cars.

Several manufacturers have offered a basic machine
with four thousand eight or twelve bit words, and with
teletype I/O, for under ten thousand dollars.l,2 Because
of keen marketing competition and recent developments
in integrated circuit technology these prices are con
tinuously dropping. Memory costs, however, have not
kept pace with the decreased logic costs br0ll:ght about
by the new IC's. Before truly spectacular price drops
can be made the cost of memory must be reduced.

Memory in the above context evokes images of un
delayed random addressability by word, or, more
specifically, of magnetic cores. Yet if we consider com
puting systems generally, core memory represents but a
small percentage of a typical installation's total storage.
High core fabrication costs have led-in all but the
tiniest systems-to the utilization of memory hier
archies. Devices most commonly comprising these
hierarchies are, of course, the familiar magnetic cores,
drums, disks, and tapes.

The questions to be examined in this study are: How
cheaply can a machine adhering to storage hierarchy
principles be built? What will it look like? and What
good is it? To be in any position for viewing either of
the others we must first address ourselves to the ques
tion, "Wh,at will it look like?" To do this the design of
the Dinkiac, a machine meeting the implied constraints,

1

will be summarily described. Explicitly stated these
constraints include cheapness, component availability,
and completeness in the sense that the user will not be
required to purchase additional hardware. Once the
Dinkiac design has been outlined, its usefulness can
be assessed, its performance and architecture confirmed
by simulation; construction details and alternate
features may be presented, and its cost ascertained.

THE DINKIAC

Physically, the Dinkiac will appear as a typical
keyboard-cathode-ray-tube display terminal. It will
consist of a typewriter-like, 64 key, keyboard; a small
CRT with a display capability of up to 84 characters
presented in seven rows of twelve characters each; a
row of lamps and switches; a single track low quality
tape cassette recorder; four magneto strictive delay
lines-all packaged together with the necessary register
and logic components.

With its 16 bit word size the Dinkiac will appear to a
machine language programmer as one of the larger
minis. A word will represent data as either a single
fixed point binary fraction in two's complement form,
or as two eight bit character bytes, the last 6 bits of
each conforming to USASCII standards.

Each in~truction will comprise one full word in a
fixed format with the first four bits (0-3) for the opera
tion code; bit 4 a possible index register designator;
bit 5, an indirect bit; "bits 6 and 7, a page (delay line)
address; and the last eight bits (8-15), the address
within a page of one of 256 sixteen bit words.

Main memory will be made up of four magneto
strictive delay lines each storing 4096 bits. These lines
will have a bit rate of two megahertz for a maximum
access of a little over two milliseconds or an average
access of approximately a millisecond. Each of these
lines with a capacity of 256 words will be said to store

2 Spring Joint Computer Conference, 1971

a page of information. Processing may take place in
anyone of these lines concurrent with an exchange of
information between secondary storage and some other
line, not including the first, or page zero line. (Many
readers will challenge the wisdom of choosing delay
lines over shift registers. The latter has a speed ad
vantage as well as the greater potential for cost reduc
tion, matching decreases in the other IC's. There are,
however, no large cheap shift registers currently avail
able, and since it is our intention to show that a cheap
instrument can be immediately constructed from off
the-shelf components, we are forced to choose the
moderat~ly priced and readily available delay line.3

)

The previously noted cassette recorder will provide
secondary storage; a single tape retaining information
in one of 128 blocks of 256 words each. Bit storage and
retrieval rates will be around three kilohertz fixing
page transfers at around one and a half seconds. The
source and adequacy of these· speeds will be discussed
in the simulation section.

As originally conceived, the Dinkiac included hard
ware for automated page swapping, thus inspiring the
notion-echoed by the paper's title-of a virtual
memory machine; the virtual space being the size of
the tape or more accurately the number of tape blocks
times the number of words in a block, i.e., 32K Dinkiac
words. Memory addressing was to have employed a
page register-associative search scheme which operated
in the following manner: Three (because page zero is
not swappable) seven bit page address registers were
loaded under program control. An instruction pointing
to one of these registers (with the delay line address
bits) referred to the tape block indicated by that regis
ter's contents. The instruction's address field indicated
one of 256 words within the page. The requested page
mayor may not have been physically present in some
delay line. Three seven bit registers were to compare
their contents with that of the indicated page register
and, if found, switch in the associated line. Because of
the great disparity between word access and logic
switching time the hardware for this associative search
need not have been fast. If a specified page was not in
any of the delay lines it was to have been retrieved from
the cassette and stored in some line according to an
algorithm which first checked sequential delay lines_ to
find one in which the dirty bit had not been set. (The
dirty bit was set-by the memory store signal-for any
line which had been written into.) If all lines were
dirty one line was selected and written out before the
requested page was fetched. If program execution was
delayed awaiting the fetched page, the program counter
was stored and control transferred to a preset interrupt
location. The described addressing scheme is shown in
Figure 1.

Unfortunately this automation accounted for more
than 20 percent of the total logic costs. In addition the
primitive page swap algorithm may have proven un
satisfactory and required additional commands or even
a complex sequence initiated from a read-only memory.
In any event, the logic has been reduced to near mini
mum and any automated page swapping will now be
under software control.

It is assumed that this operating system software
will minimally include a keyboard input and display
program as well as a cassette directory and search
routine. Transfer instructions and busy flags will
facilitate its operation and attempts to execute instruc- .
tions from pages in the process of being swapped will
still effect a transfer of control to the interrupt location.
The inclusion of a fixed memory interrupt location is
the primary reason for not swapping delay line zero.

While the cassette's primary function is to provide
intermediate storage it also doubles as a cheap and
convenient source of input/output. Initial input, how
ever, is entered by way of the alphanumeric keyboard.
Depressing a key will enter an encoded character into
an eight bit keyboard buffer, turn off a console lamp,
and set a one bit flag register. This flag may be inter
rogated by a running program and is reset-along with
the lamp-by transferring the contents of the keyboard
buffet to the accumulator. Striking a key will not enter
a new character into the buffer while the flag is set.

Visual output is direct to a CRT from the first 42
word locations of the zero or non-transferable delay
line. These words are gated sequentially in pairs
(modulo 21) into a 32 bit output buffer on each cycle
through memory. The low order six bits in each of the
four bytes are, in turn, used as an input to a small
read-only memory. This memory in conjunction with
an appropriate counter and shift register provides
serial output for modulating the CRT's" Z" or intensity
input. These components together with a character,
line, and row counter, and two deflection amplifiers
and digital to analog converters, constitute the output
device. It should be noted that the memory itself pro-

Figure 1

vides for display buffering and that all information is
retained in character format. Scan conversion from the
32 bit buffer is performed as needed. Since it is possible
to change characters in the output portion of memory
before they have actually been displayed, it is antici
pated that display programming will be handled as a
function of the machine's interactive use. The most
obvious example is provided by the displaying of a key
board input message.

An operation panel located between the keyboard
and display tube includes 'power on' and 'interrupt'
toggles,' 'start' and 'go' buttons, a five position rotary
switch, and eighteen display lamps. The start button
clears all registers except the program counter-into
which the start address (64)10 is forced-and loads tape
block zero into delay line zero. Once block zero has
been read the machine will begin instruction readout
from the start location .. Depending upon the state of
the machine, depressing' go' will either initiate a read
of the next instruction-from the location currently
specified by the program counter-or begin the instruc
tion execution. The interrupt toggle will set or reset an
interrupt step mode flip-flop. When set, this flag will
force a machine halt after each instruction read and
after each instruction execute. If' go' is depressed while
halted following a read, the machine will proceed to
the execute. If it is depressed after the execute-and
without a reset from the toggle-the program counter
will be stored and the ne,xt instruction will be taken
from the interrupt location.

The interrupt arrangement permits program stepping
in one of two ways. For possible machine malfunction
or difficult logical sequences the display lamps may be
used in conjunction with the rotary switch to. inspect
the contents of the major processor registers. For more
routine debugging, the user may choose to enter a
subroutine which will convert and store relevant
registers for subsequent display on the CRT. This mode
will allow him to view, for example, the contents of the
accumulator and the program counter-in any format
he has chosen-at every other push of the' go' button.

Given the above design it should be helpful to briefly
consider a couple of the Dinkiac's unique operational
and programming aspects. First and most obvious is
the procedure imposed by keyboard limited input.
Since all programs must be typed-in, it is probable
that the typical user will be concerned only with con
versational routines such as JOSS, FOCAL, or conversa
tional BASIC. These processors should be structured
in such a way that an .anticipated routine will be
scheduled into a delay line and ready for use. For
example, an interactive algebraic processor could be
segmented such that routines for matching, scheduling,
and arithmetic operations are seldom or never swapped,

The DINKIAC I 3

while more complex numerical subroutines are arranged
in a hierarchy of priorities with the most common
(square root, sine, ...) at the top and those seldom
used (matrix operations, error exceptions and com
ments, ...) at the bottom. While the software designer
must try to segment these programs for the minimum
swapping delay, it should be borne in mind that in
conversational systems an occasional delay of several
seconds is no cause for concern.4 Balance between com
putation and user interaction is the significant factor.

It is hoped' that by now the reader-having con
sidered the design overview together with the cursory
remarks relating the machine with certain time
sharing concepts-will have acquired sufficient in
tuition to answer, for himself, the third of our ques
tions, "What good is it?" or more graciously put "What
market does the Dinkiac serve?" For our part we will
start with the statement that anyone now using a desk
calculator can-for the same price and without sacrifice
of calculator speeds or functions-enjoy the additional
benefits of a completely general purpose digital com
puter. Additionally, the machine will provide a single
user with a computing experience not unlike one he
would receive at a time-sharing terminal. That is, for
highly interactive work he can expect extremely fast
replies with respect to his own response time. For com
pute bound requests, such as compilations or iterative
numeric calculations, he should suffer no greater frus
tration than that engendered by a small well used
time-sharing system. It is accurate to add that for the
same jobs these periods of delay would compare favor
ably with a mini time-sharing system.

Because the tape cassette secondary storage will
double as a fast I/O device a library of special purpose
application cassettes can also be marketed. Examples
are: BASIC for the schools; 'desk calculator' for small
businesses; and, 'preparing your federal tax return'
for the 'home hobbyist.'

SIMULATION

Our concern with a computer simulation is twofold,
aiming first at determining the Dinkiac's gross architec
tural configuration, that is, the number and length of
its delay lines, and second, at obtaining some sense of
its overall performance. GPSS/360 (IBM's General
Purpose System Simulator for the 360 series) was chosen
for this task-both for its ease of use and its ready
a vailabili ty. 5

For a simulation to serve its intended purpose the
assumptions upon which it rests must be both valid
and appropriate. The assumptions underlying this
simulation are of two kinds, the first has to do with

4 Spsing Joint Computer Conference, 1971

hardware component speeds and may be based on· the
price quotes of a number of manufacturers, the second
requires a knowledge of program behavior and is far
more tenuous. An early discussion of equipment char
acteristics will provide a foundation for the subsequent
consideration of these less structured issues.

Magnetostrictive delay lines are offered in models
with delays of up to 10 milliseconds at the maximum
or 2MHz bit rate. Prices vary only slightly over the
range with the longest lines (in quantity lots) costing
less than 10 dollars more than the shortest. Since
prices are typically constant up to a delay of around
2.5ms, a 4K bit line costs no more than one with half
that capacity. Restricting the choice to sizes which
facilitate binary addressing, these delays and bit rates
imply that lines of up to 16K bits are feasible.

Because the Dinkiac is a single address machine all
non-jump instructions must be taken sequentially,
and if operands are positioned properly those with
fewer than 128 memory fetches will be executed at
delay line speed. (Switching time, even for slow transis
tor logic, can always be accomplished during the delay
line to register transfers and may therefore be com
pletely ignored.) A straight line program, then, will be
executed at about the product of the line speed times
the number of instructions. For the Dinkiac we have
described-with its 4K bit line-this would amount to
approximately 500 instructions/second while a 2K
line would double the rate and one with 16K bits would
cut it to a low of 125 instructions/second.

The tape cassette market is less stable than the
market for delay lines and one may find prices ranging
all the way from under thirty dollars to 100 times that
price. The machines.on the low end are intended for
audio use while those at the other are designed for the
reliable high-speed transfer of digital data. Advertised
speeds for the expensive instruments give writing rates
at under 10,000 bits/second with reading rates to
20,000. Experiments indicate that digital (square wave)
recording on cheap audio equipment can be successful
at speeds of two to two and one-half thousand bits
per second. Specifications from a number of manu
facturers marketing inexpensive recorders indicate that
for under 100 dollars one can conservatively assume
the following characteristics: (1) Read/write speed of
3.75 ips with a recording density of 800 bpi (bit serial
recording) for a transfer rate of 3000 bps; (2) Search
speed (fast forward and rewind) of 75 ips; (3) Start/
stop time of 60ms; and (4) Inter-record gap of Y2
inch.

The properties given above will be used in the simula
tion, and to reinforce their conservative character,
cassette page transfer times will always include time
for the transfer of a full half inch inter-record gap as

well as the times for both starting and stopping the
tape. This caution also allows for any timing oversight
arising from the recording technique, which we have
assumed will follow teletype signal transmission meth
ods, i.e., asynchronously, with a start pulse followed
by data followed by completion pulses. To time a 16K
block transfer, then, we will assume that 16,384 data
bits plus a 400 bit equivalent inter-record gap are
transferred at a rate of 3000 bps to which 120 ms,
start and stop time, are added. That is, block transfer
time = (((line size +400)/3000) +.120) seconds.

Tape search time will be based upon a full tape
capacity of half a million (219) information bits. (Later
we will include some results gathered when providing
for 256 blocks of the larger page sizes, i.e., for tapes of
220 and 221 bits.) Tape length, not including inter
record gaps, is approximately 655 inches-219 bits at
800 bpi. Total search time will be determined by
adding-to this length-a half inch for each record
and dividing by the 75 inches/second rate, or, total
search time = ((655+ (no. of blocks on tape/2)/75)
seconds.

We may now specifically formulate three questions
we wish our simulation to answer: (1) What is the
best page size? (2) How many lines are necessary for
satisfactory performance? and (3) How will the
Dinkiac compare with other machines? Given some
assumption regarding the number of jumps expected
during the execution of a program plus the anticipated
distance of the jumps-i.e., what percentage of jumps
will remain within 10 words of the current address, 20
words, etc.-it is possible to run simulations based
upon the given transfer rates to obtain meaningful
results for the first two of these questions. If, however,
we wish to relate the Diilkiac's performance to that of
other machines we will need some standard.

Fortunately, such a standard exists in terms of
average instruction time. Given anticipated percent
ages for each instruction type and applying these per
centages to the machine's actual instruction execution
times, we can determine the time required for an
'average' instruction. Gibson has provided us with a
set of such percentages by tracing 55 IBM-7090 pro
grams involving 250 million instructions. 6 The traced
programs were comprised of 30 FORTRAN source
programs, 5 machine-language programs, 10 assemblies,
and 10 compilations. Gibson's set of percentages,
called the Gibson mix, has been used in many machine
comparison studies. Because the Dinkiac has no floating
point hardware, approximate averages for subroutine
execution tirnes will be given for the floating point in
structions. The same will be done for multiplies and
divides. The Gibson mix programs were scientific and
give a conservative average with respect to a similar

mix proj ected from the data processing field. Figure 2
is a table of Dinkiac instructions, 'worst' case times,
and the loosely corresponding Gibson percentage.
Execution times are given as delay-line revolutions.

Because subroutines are included, a single Gibson
mix instruction must represent more than one of the
Dinkiac's. Specifically, 87 percent are one to one, 7.7
percent are ten to one, and 5.3 percent are twenty to
one. There are therefore 2.7 Dinkiac instructions to
each of Gibson's and the average execution time for
these 2.7 instructions is 8.6 revolutions. At 2.7 words
for a Gibson instruction, each line of the 256 words/
line machine we presented is capable of 'storing' 94.8
Gibson instructions. Similarly a 128 word line will con
tain 47.4 instructions, and so on. We haye greatly
simplified the remaining calculations by assuming a
Gibson instruction size of 2.5 words and line lengths
which are integral multiples of that number-forcing
the use of 125 for the 128 word line, 250 for the 256 word
line, etc.

Returning now to the still unspecified assumptions
regarding program behavior, we find the question of
jumps partially resolved by the Gibson mix. The mix
assigns a 16.6 percent likelihood to the 'Test and
Jump' instruction. We will assume that the jump is
taken half this number, or 8.3 percent. To this we must
assign some number of jumps to compensate for those
subroutine loops incurred by our superimposition of
the Gibson instructions over the Dinkiac's. Suppose 100
Gibson (270 Dinkiac) instructions are executed. Of
the 270 Dinkiac instructions, 8 will be for multiply and
divide, 69 for floating add and subtract, and 106 for
floating multiply and divide. Assuming a five instruc
tion loop for the first two instruction types and a ten
word loop for the last, we will arrive at 26 jump in
structions or slightly less than 10 percent of the in
structions executed. We may further assume that
these subroutines will be retained in the zero delay
line and that return jumps will be back to the lines
from which the subroutines are called. The model
reflects this analysis.

The question of how far each jump goes with respect
to' the current program address counter is not easily
answered and is closely allied to the question of how
often must a new page be fetched. Until some study is
made-similar tQ Gibson's but with just this aim-or,
until studies of time-sharing systems provide further
insight into page swapping behavior, no well-grounded
assumption can be made. We will postulate that of the
jumps taken-not including the 10 percent headed for
delay line zero-50 percent will remain in the line
they are at while the remaining half will go to the lines
following with percentages of 50 percent, 37.5 percent,
and 12.5 percent, respectively. Here the delay line

The DINKIAC I 5

sequencing is considered circular. This jump distance
assumption is, of course, inconsistent with the varying
line size and favors short lines. We will compensate for
this advantage "Qy ma,king a near worst case assumption
regarding page swapping, namely, that anew page be
fetched once for every straight line pass through the
memory.

We are now in a position to present details of the
model. Each GPSS 'transaction' will represent either
ten Gibson instructions or a signal to initiate the opera
tion of some given line or tape. Each delay line consists
of a holding 'queue' for the transactions, a memory
'facility' and a 'storage' capable of accommodating the
appropriate number of instructions for a specified line
size. To avoid simulating the simultaneous execution
of instructions in more than one line, only sufficient
transactions to queue up for a single line are generated
at anyone time. A transaction entering a facility (one
of the delay lines) from a queue 'seizes' that facility
precluding its use by any other transaction. An appro
priate number (25 for 10 Gibson instructions) of in
structions is 'entered' into the line storage and the total
storage entries compared with the line capacity. If the
storage is full, it is reset to zero; the facility is released;
a transaction is removed from the queue; and new
transactions are created for the next memory line. If
the storage is not full, 18;3 percent of the transactions
go to a jump instruction sequence where the clock is
advanced 10' jump' times and the transaction is entered
into holding buffers according to the previously dis
cussed jump distribution. In the 81.7 percent non-jump
cases, the clock is advanced by the time required for
ten line revolutions times a GPSS 'function' which
randomly chooses (on the basis of a given bias-in this
case the Gibson percentages) the number of revolutions.
The facility is then released to allow for another entry
from the queue; a transaction is removed from the
queue; and ten transactions (instructions) are
terminated.

Except in the case of the zero line, the completion of
each line triggers a set of tr~nsactions for the next in a
round-robin fashion with the last line triggering the
first. Thirty percent of the completions from the zero
line may additionally store a transaction in one of the
holding buffers to simulate the subroutine return jumps.
A counter at the end of the last line starts an end-of
job sequence which continues the program for only
those lines which have items in their holding buffers.
Completion of the last line also sends a transaction into
the tape queue. Transactions in the tape queue seize a
tape facility and then randomly' pre-empt' one, of the
swappable delay lines. A pre-empted line is held until
'returned' and is precluded from seizure or use by any
other transaction~ The tape and pre-empted line times

6 Spring Joint Computer Conference, 1971

INSTRUCTION

Load and Store
Add and Subtract
Logical

Multiply and Divide
(10 word subroutine)

Floating Point Mult. and Div.
(single precision)
(20 word subroutine)

Floating Add and Sub.
(single precision)
(10 word subroutine)

Shifts and Register

Test and Jump

Index
Search or Compare

TIME IN
REVOLUTIONS

(Worst case for
nonsubroutines)

1.5

50.

100.

25.

1.

.5

2.

Figure 2

GIBSON
PER

CENTAGE

38.9

.8

5.3

6.9

9.7

16.6

21.8

are advanced by one block transfer time and also,
when appropriate, by tape search time. Simulations
may be eit4er "non-predictable"-in which case time
to search half of the tape plus or minus any random
interval up to that same amount is always applied
or, they may be "predictable." In the predictable or
"75 percent predictable" runs it is assumed that the
tape will have been correctly pre positioned in all but
25 percent of the transfers. At the completion of these
tape advance times -the pre-empted line is returned
and the tape released. A general program flow is given
in Figure 3.

Two results quickly emerged from the simulations,
most apparent is the ruling out of either very short,
or very long lines. The second, while less glaring, verifies
the adequacy of a four line machine. It is tempting to
continue the simulations with a greater number of
storage lines-and when shift register prices fall this
may prove feasible. Meanwhile, price considerations
for this study dictate that the number be kept as small
as possible. Upper and lower performance bounds were
found by running the simulation with either no, or
with complete, tape buffering.

The number of instructions executed during anyone
simulation varies slightly due to the randomness of
the jumps. All runs, however, simulate the execution
of close to 12,300 instructions. Execution time varies
from a lower bound of two plus minutes (120,391 ms)
to an upper bound of almost 12 minutes (707,961 ms).
A table showing the total execution time in milliseconds
for thirty-one simulations is given in Figure 4. Figures
5 through 8 are graphs of the four general cases: four

lines both predictable and non-predictable and the
same for three lines. The dotted lines in Figures 5 and 6
are the results of allowing the number of tape informa
tion bits to double once for the 256 word block and
twice for the 512 word block. That is, to maintain the
tape block count at 256. Each graph includes upper
and lower bounds in addition to the simulation's finding
for the particular case. The graphs argue convincingly
for the 256 word page size, and yield insight into the
nature of the balance between instruction execution
and page transfer times.

DESIGN SPECIFICS AND OPTIONS

Sufficient detail to familiarize the reader with· the
Dinkiac's peculiarities was given in an earlier section.
Here we will add a few design particulars, as an aid to
cost estimation, and present some significant options.

The Dinkiac is designed around a five register bus
in a manner typical of the minis. Signals from decoded
instructions, together with outputs from a sequencer

IU~
AI.""""c,e.
1/11 ... _'1'
r. ,s
JlSoo k

"fa
6,,~ti

1& 1" ..

l'i."~
Ad." &.~

'0 TCoL. ... '
Ti;"'e~

J)15Tllltil.t;te. ..,.
a,.{'tuS

&.>TCa QtJ<ee
s.ei.L,wt.

Teno";"'a.'Tt..

'1&.$ Me..."MI~ _ ,".n.
.T ""'~

A.ol"'-lI'c.e.

M",-c4. 10 ~"''''fI
(c.I._I) r; J

DI.St-;tl&.,,~
.... i it.. 10 1;.

gU-t~ .. d

r~"";oM..t-e

".3' M"" ... t.<.. ,0 J--f
T, ~.s
D~".n.~ -t.
8 ... ~~

Te't"~-e.

Figure 3

CASE 128 Word 256 Word 512 Word
Page Page Page

Lower Bound 120,391 ms 234,921 ms 479,801 ms

4 lines, 219 bits 217,246 245,853 505,688
75 percent predictable

4 lines, 219 bits 440,482 324,034 506,057
non-predictable

4 lines, 256 pages 278,479 552,542
75 percent predictable

4 lines, 256 pages 454,316 695,778
non-predictable

4 lines, Upper Bound 285,037 331,847 549,388
75 percent predictable

4 lines, Upper Bound 602,615 472,056 586,818
non-predictable

3 lines, 219 bits 289,290 296,161 498,685
75 percent predictable

3 lines, 219 bits 547,898 402,066 532,240
non-predictable

3 lines, Upper Bound 372,937 364,044 583,955
75 perce:o.t predictable

3 lines, Upper Bound 707,961 559,366 681,738
non-predictable

Figure 4

and the storage completion lines, determine register
gating and the consequent bus information. The ma
chine's instruction set should prove helpful in conveying
an intuitive notion of its logical complexity, and is
given in Figure 9. Codes in that figure are in hexa
decimal unless otherwise shown. 'A' designates the ac
cumulator; 'GB' the carry bit; , M' the memory; , }J!J BR'
the memory buffer register; 'P' the program counter;

700.000 lIS

600,000

sao. 000

400,000

300,000

200,000

100,000

128 2S6 wordll
page lIize

Figure 5-Four line-75 percent predictable

The DINKIAC I 7

700,000 ..

600,000

300,000

100,000

128 2$6 512 vorde
page Bise

Figure 6-Four line-non-predictable

and, 'Y' a memory address. Dinkiac word size and
instruction format allow for the expansion and modifica
tion of this basic instruction set in many ways. For
example, an index register may be added, or shifts
modified to shift by some specified. amount. Multiply
and divide logic, too, could be included, and while
these instructions might violate the spirit of the ma
chine, they could easily be executed within a single
memory cycle.

As implied in the simulation section, the number of
delay lines can be increased with only a minor modifica
tion to the memory addressing scheme. In this case, the
storage lines would continue-as they are now-to be
synchronized with a single counter. Such a change
could be expected to improve performance by increasing
the data transfer-program execution overlap, but it
would not alter the sequential instruction time which
you may recall is roughly 500 instructions/second for
the 256 word/line machine. Recall also that the
two MHz bit rate allows for an information exchange
between the memory buffer register and the chosen
delay line in eight microseconds. This speed would
allow the execution of non-memory referencing instruc
tions from contiguous memory locations to proceed at
the rate of 125,000 per second for a phenomenal increase
of 250 times. A major factor contributing to the
Dinkiac's easy cirCl,lit realization, however, lies in the
difference between memory and switching speeds, and
it is this great disparity that allows us to almost dis
regard the latter. If we wish the increased speed with
out altering this principle-which also enables us to
purchase the cheapest logic components-we must
provide both double memory buffer registers and the
logic for their utilization. This type of speed-up must
be carefully priced and reviewed in the light of the
simulation results.

8 Spring Joint Computer Conference, 1971

'/00,000 ..

600,000

400,000

)00,000

200,000

100,000

2$6
page size

512 worde
128

Figure 7-Three line-75 percent predictable

COSTS AND CONCLU~IONS

While the probability is high that any manufacturer
seriously considering marketing such a device is already
in either the small machine, display terminal or some
related business-an instructive way to garner a sense
of cost is to consider a prototype builder with no such
association but who can avail himself of quantity
prices for off-the-shelf items. If we assume a two to
one gate to flip-flop ratio-not unrealistic for the pro
posed serial operation-meaningful logic costs can be
ascertained by a simple count of single bit storage
registers. Itemizing all registers-not integral with
some other priced item (as, for example, the delay line
input gates, ...)-we arrive at a count of less than 200.
This count is conservative, allowing bits for miscellane
ous control and making no attempt to share or minimize
the number or size of the registers.

A notion of dollar value can be ascribed to the count

700,000 -

600,000

soo,ooo

400,000

3CIO,000

200,000

100,000

l28 Sl2 word.

Figure 8-Three line-non-predictable

by using quantity prices for standard off-the-shelf TTL
gates from leading suppliers. Such an assignment comes
to $2.20 per bit where the flip-flop price is $1.60 and the
gate cost $.30. This approach is again conservative
taking into account no non-standard gates and using
no very slow, but adequate, logic. Computed in this
way the logic price to a backyard builder with connec
tions is $440.

Similarly pricing the other components puts the
delay line memory (four, 4096 bit lines) at $400 (in
large quantity); the cassette recorder at $100; the key
board at $75; the CRT and related components at
$175(the display generator including read-only mem
ory is available in lots of over 25 for less than $100);
a power supply at $120; and a crystal clock at $100.
The total, then, including logic is $1410. It is reason
able to expect that quantity costs to a manufacturer
including labor-would be a good deal less than this
amount. We may note in this respect that currently

STO Y
ADD Y
SUB Y
JMP Y
JAM Y
JAZ Y
JSP Y
LDA Y
AND Y
ISP Y
JCB Y

NOP
HLT
SNI
SNK
CLA
CMA
CLC
CMC
LAK
LAB
SHR
SHL
RTR
RTL
RLR
SCO Y

RCO

WCO

DINKIAC INSTRUCTIONS
Memory Reference

lxxx A~My

2xxx A+My~A

3xxx A-My~A

4xxx Y~P

5xxx Y~P, if A<O
6xxx Y~P, if A=O
7xxx P+l~My, Y +1~P
8xxx My~A

9xxx AI\My~A
A..u:x My+l-~My, if My=O then P+l~P
Cxxx Y~P, if CB =1

0000
0001
0002
0003
002-
003-
004-
005-
006-
007-
008-
009-
OOA
OOC-
001-
04xx

N on-Memory Reference

No Operation
Halt
P+1~P, if Interrupt Flag~1
P+l~P, if Keyboard Flag~l
O~A

2C(A)~A

O~CB

2C(CB)~CB

Keyboard Buffer~ A8- 15

MBR~A

Shift CB and A right 1
Shift. CB and A left 1
Rotate CB and A right 1
Rotate CB and A left 1
Rotate A, 8
If Cassette not Busy, P+l~P and Search
Cassette 0 for tape page xx.

0(lOxx)2-- If Cassette not Busy, P+1~P and Read
tape 0 into memory page xx (where xX=l,
2, or 3).

0(llxx)2-- If Cassette not Busy, P+1~P and Write
tape 0 from memory page xx (where xx = 1,
2, or 3).

Figure 9

advertised prices for display terminals are as low as
$1500, and include all Dinkiac components excepting
three delay lines (the displays have one), a cassette
recorder, and computer logic. This price, incidentally,
includes beautiful packaging. Suppose we add to the
$1500 the excluded items, priced as above, for a grand
total of $2340. There is nothing to indicate that a
Dinkiac cannot be profitably marketed for under
$3000.

This report has attempted to show that a general
purpose digital computer-suitable for a large class of
users, including those in small businesses and engineer
ing firms, schools, and even private homes-can be
built to market for a price near the low end of the desk
calculator range. A GPSS simulation has shown the
optimum memory length to be the one in which time
for the execution of a page of instructions is closely
matched with tape block transfer time, and has con
firmed the adequacy of four lines, even while assuming
highly unfavorable operating parameters. Additionally,
by modeling with" Gibson instructions," we were able

The DINKIAC I 9

to acknowledge that the Dinkiac-while short on
"bandwidth" in comparison with large machines-is
certainly adequate for its intended purpose.

REFERENCES

1 D J THEIS L C HOBBS
M ini-computer8 for real time applications
DATAMATION No 39 March 1969

2 J W COHEN
Mini-computers
MODERN DATA No 55 August 1969

3 J H EVELETH
A survey of ultrasonic delay lines operating below 100 Mc/s
IEEE Proc Vol 53 No 10 October 1965

4 R B MILLER
Response time in man-computer conversational transactions
AFIPS Conf Proc Vol 33 p 267 1968

5 G GORDON
A general purpose systems simulation program

,EJCC Proc p 87 1961
6 J J CLANCY

Notes on the 'bandwidth' of digital simulation
SIMULATION Vol 8 No 1 January 1967

A multi-channel CRC register

by ARVIND M. PATEL

IBM Laboratories
Poughkeepsie, New York

INTRODUCTION

The Cyclic Redundancy Check (CRC) is extremely
efficient and well suited for error detection in transmis
sion, retrieval or storage of variable length records of
binary data. The cyclic check is capable of detecting
nearly all patterns of error with almost negligible
amount of redundancy. For example, a 16-digit (2
bytes) CRC character will detect all error-bursts of
length 16 or less and better than 99.99 percent of all
other error-bursts in binary records of any length. For
average record length of 1000 bytes this amounts to less
than 0.2 percent redundancy. Peterson and Brown's
paper4 is an excellent exposition on the subject of error
detection with cyclic codes.

A linear feedback shift register is essentially the
only hardware needed for encoding and decoding
variable length binary data for error detection by means
of CRC character. The CRC character is generated by
serially shifting the binary information into the feed
back shift register as it is transmitted. The CRC char
acter is then transmitted on the same channel at the
end of the information sequence. At the receiver, the
received sequence is processed in the same manner.
The generated CRC character is compared with the
received check ch~racter for detection of any errors in
the received message. The number of digits in the CRC
character determines the checking capability of the
code and, in general, equals the number of stages of
the encoding and decoding shift register.

Oftentimes, the information is transmitted in parallel,
a byte at a time, on a multi-channel system. The mes
sage formats of serial and parallel systems are shown in
Figure 1. For the multi-channel system, one could pro
vide a separate CRC character for each channel using
one shift register per channel. This, however, increases
redundancy and cost. Furthermore, if serial and parallel
formats are used alternatively in various parts of the
total data processing system, it becomes imperative to

11

use compatible hardware which produces same CRC
check.

This paper presents a method of constructing a
multi-channel circuit that allows parallel-processing
of binary data in generating the Cyclic Redundancy
Check (CRC). The multi-channel circuit is designed
to be compatible with the conventional serial CRC
register. This new circuit has the following advantages
over the serial CRC register:

1. It allows parallel processing of f bits of data (a
byte). This eliminates the serializing and buffering
of data that is transmitted or received in the form
of a byte.

2. The processing speed is f times faster, with rela
tively small increase in hardware.

In the following section, a CRC register is described.
The serial and parallel (eight-channel) circuits are illus
trated using a practical example. In the section "Multi
Channel CRC Register," we develop the mathematics
for constructing a multi-channel CRC register. The
result on a parallel linear feedback shift register as a
GF(2) polynomial divider has been described by
Hsiao, et al./·2 but a parallel CRC register has not beer
constructed before in the form given in this paper.

CRC REGISTER

The Cyclic Redundancy Check (CRC) can be gen
erated using a GF (2) polynomial divider circuit.3 In
this circuit, to generate the check character, one shifts
the binary message sequence, followed by r (the degree
of the checking polynomial) zeros, into a polynomial
divider circuit. The need for shifting r zeros can be
eliminated4 by changing the input connections of the
conventional polynomial divider circuit. This modified
circuit is conventionally known as the CRe register.

12 Spring Joint Computer Conference, 1971

lIst byte I 2nd
byte I ----I kth byte I CRC bytes It One

I ~ Serial Information -----:;;.1 ~ Check ~ I ~4E- channel

.....
CD -- --

r'4E-parallei Information~ I Check

t ~ 8 Parallel
~ Channels

Figure I-Message formats for serial and parallel systems

Figure 2 gives the circuit connections of a serial CRC
register whose checking polynomial is 1 +X2+X15+X16.

This particular CRC register is used in the IBM 2701
system. For encoding, the binary message sequence is
entered serially at the high-order end of the feedback
shift register as shown in Figure 2 while the contents
of the shift register is shifted toward the high order
end. In this way, when the last bit of the message
sequence is entered, the contents of the shift register
represents the check character. In decoding, the re
ceived message bits are entered in the shift register in
the same manner as in encoding. Likewise, the received
check character is then shifted in. When the last bit
of the check character is entered, the contents of the
shift register represent the syndrome. A non-zero
syndrome indicates an error in the received data.

Table I is a complete state transition table of the
above process as a 16-bit binary message (namely,

Figure 2-Serial CRC register

1101011110010011) is processed in the CRC register
of Figure 2.

Figure 3 presents a multi-channel CRC register
that processes eight bits (byte) in parallel. A single
shift in this circuit with any eight-bit input sequence is
equivalent to eight consecutive shifts in the serial
circuit of Figure 2 with the same input sequence.

Table II is the state transition table of the multi
channel CRC register as the same binary message (in
the form of two bytes) is processed through it. Note
that the parallel circuit of Figure 3 produces the same
CRC character eight times faster than the serial circuit
in Figure 2.

MULTI-CHANNEL CRC REGISTER

In this section, we develop the mathematics for ob
taining a multi-channel CRC register that can process
f bits in parallel to generate the CRC character or the
syndrome. One shift in the parallel circliit is equivalent
to f shifts in the corresponding serial CRC register.
The number f is a positive integer, smaller than the
degree r of the checking polynomial.

G (x) denotes the checking polynomial, often called

TABLE I-State Transition Table for Serial CRC Register

Time Contents of Shift Register
t Input XO Xl X2 x3 X4 x5 x6 x7 x8 x9 xlO XU x12 X13 X14 X15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
2 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
4 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1
5 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1
6 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
7 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1
8 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0
9 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1

10 0 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1
11 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 1
12 1 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0
13 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0
14 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1
15 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0
16 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0

CRC 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0

A Multi-Channel eRC Register 13

TABLE II-State Transition Table for Parallel CRC Register

Time Number of Input
t the Shift 10 II 12 13 14 Is 16 17 XO

0 --------
8 1 1 1 0 1 0 1 1 1

16 2 1 0 0 1 0 0 1 1

CRC Character

the generator polynomial. We use the following
notation:

G(X) = Go + Glx +G2X2 + 00 ° +Grxr (1)

The state vector X t = [xo, Xl, ••• Xr-l]t denotes the
contents of the CRC register at time t. T denotes the
companion matrix of the polynomial G(x), correspond-
ing to the serial CRC register connections. Let Zt denote
the data bit entering the serial CRe register at time t.
Then the shifting operation of the serial eRe register
is given by the (mod-2) matrix equation

X t+! =XtTtJjztG

INPUT BINARY SEQUENCE: ZO,ZI,Z2,Z3,Z4,Z5'ZS,Z7

CHECKING POLYNOMIAL: l+"x2+XI5 +x lS

Figure 3-Eight-channel CRC register

(2)

0
0
1

1

Xl

0
1
0

0

Contents of Shift Register
X2 x3 X4 Xs x6 x7 x8 x9 xlO XU x12 X13 X14 x15

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 1 0 0 0 0 0 0

0 0 1 1 0 1 0 0 0 1 1 1 0

1 0 0 1 1 0 1 0 0 0 1 1 1 0

where G is the vector [Go, GI , G2 0 ° ° Gr- l], and T IS

given by:

T~ r:
1

1 1

1 (3)

l:o :~.J GI G2

Suppose that Zt, Zt+!, ... Zt+!-l are the f data bits (a
byte) entering successively into the serial CRC register
during the f consecutive shifting operations. The con
tents of the eRe register at the end of f shifts is de
noted by the vector X t+f . Using Equation 2 iteratively, ~

f times, one can obtain:

Xt+f=XtTftJjZtGTf-ItJjZt+!GTf-2tJj ° ° OZt+f_IG .(4)

Here Ti is the jth power of the matrix T. Let Zt denote
the input data sequence, as follows:

Let D denote the following partitioned matrix:

G

GT

D= (5)

GTf-1

Then, Equation 4 can be rewritten as:

Xt+f=XtTftJjZtD (6)

The sequential circuit realizing Equation 6 has the
property that with the input byte Z t (f bits in parallel) ,
it changes from state X t to X t+! in a single shift. This
is the equivalent operation to f shifts of the corre-

14 Spring Joint Computer Conference, 1971

TABLE III-Rows of The Matrix D

Number of
the Shift XO Xl X2 x3

0 G 1 0 1 0
1 GT 1 1 1 1
2 GT2 1 1 0 1
3 GT3 i 1 0 0
4 GT4 1 1 0 0
5 GT5 1 1 0 0
6 GT6 1 1 0 0
7 GT7 1 1 0 0

sponding serial CRC register with the same input
data entered serially.

Note that the matrix T can be partitioned as:

(7)

where 1m is the m X m identity matrix.
In general, it can be shown that Tf is equal to the

following partitioned matrix:

(8)

where D is given by Equation 5. One method of ob
taining the matrix D is illustrated in the following
Table III using the example given in the section "CRC
Register.' ,

Note that the vectors G, GT, GT2, ... GTf-1 represent
the contents of the serial CRC register as the vector G
is shifted f - 1 times. Table III lists these vectors for
the example in "CRC Register." The matrices D and
Tf can be obtained using Table III and Equations 5
and 8. Now the implementation of Equation 6 leads to
the parallel circuit.

The matrix Tf contains D as a sub-matrix. Hence,
proper partitioning of the state vector will result in
savings in hardware. We can partition the state vector
X t into two parts:

where
(9)

(10)

(11)

Using Equations 8 and 9, we can rewrite equation 6 as
follows:

(12)

X4

0
0
1
1
0
0
0
0

Contents of the Serial CRC Register
x5 x6 x7 x8 x9 xlO XU X12 XiS X14 XU

0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0' 1
1 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0 0 0 1

Implementation of Equation 12 directly gives the
parallel circuit of Figure 2 in the example.

CONCLUSION AND COMMENTS

It is shown that corresponding to any polynomial g(x)
of degree r, one can generate a parallel CRC register
that processes f bits in parallel (f:::; r). The hardware
is minimized by proper partitioning of the matrices in
the state transition equation for the parallel circuit.
For!> r, the theory of this paper can be applied without
any change, except that the partitioning will then be
applied to the D matrix rather· than to the Tf matrix.
This is obvious since D, in this case, contains Tf as
one of its partitions.

ACKNOWLEDGMENT

The problem was originally suggested by Mr. W. D.
Benedict and Dr. M. Y. Hsiao.

REFERENCES

1 M·Y HSIAO K Y SIR
Serial-to-parallel transformation of feedback shift register
circuits
IEEE Transactions on Electronic Computers Vol EC-13
pp 738-740 December 1964

2 M Y HSIAO
Theories and applications of parallel linear feedback shift
register
IBM TIt 1708 SDD Poughkeepsie March 1968

3 W W PETERSON
Error correcting codes
MIT Press 1961

4 W W PETERSON D T BROWN
Cyclic code.'3 for error detection
Proceedings of the IRE pp 228-235 January 1961

Features of an advanced front-end CPU

by RICHARD BARR HIBBS

The Bunker-Ramo Corporation
New York, New York

INTRODUCTION

A central processing unit to handle data communications
chores as a front-end computer has historically been
eIther a maxi-computer, overpowered for the intended
job, or a mini-computer, stripped of many instructions
and architectural features that now ease the program
ming burdens of commercial data processing. Front-end
CPU's are evolving into general-purpose machines in
their own right due to demands for more generalized
processing by the front-end, such as code conversion,
message text pre-editing, and local (i.e., not performed
by the host computer) message switching. Front-end
CPU's must be dual-purpose machines-a special
purpose input-output structure. to handle communica
tions efficiently, and a general-purpose data handling
structure to perform tasks such as described above.
Certain desirable features of a front-end CPU are
described informally in this paper, then the architecture
of a proposed front-end CPU which incorporates these
features is presented.

DESIRABLE FEATURES OF A
COMMUNICATIONS PROCESSOR

The more densely a program can be coded, the more
reliable it may be considered to be. That is, if the set of
machine operation codes include null codes, privileged
codes., context-sensitive~ codes, or codes which bypass
normal machine operation, then the set of codes is
inherently less reliable than a set which does not include
such codes.

The use of re-entrant coding techniques has a
beneficial side effect, the elimination of program code
which modifies other code Of. can itself be modified, and
reduces the frequency of instructions which can in
themselves, cycle indefinitely. Program modification is
probably the source of many "phantom clobberers"
found in any large software system.

15

In an environment where multiprogramming is the
exception rather than the rule, the added hardware
complexity required to implement an indexed base
displacement addressing scheme (a la 360) is question
able, but for the frequent use made of virtual tables.
Manipulation of data and control information main
tained in tabular form is required to implement
re-entrant coding techniques. To efficiently access table
structures, a variety of addressing schemes must be
available to the programmer.

Queueing of data and control information maintained
as elements in a linked list is the basic operation of
communications tasks. Low overhead queueing opera
tions on several common types of queues will eliminate
an often unwieldy set of system subroutines. The
addition of coroutines and subcoroutines to the types of
program elements handled by the program control
structure would add two very useful facilities to any
computer coded as independent modules, and would be
particularly valuable in a front-end. Extending the
control instruction repertoire beyond the familiar
"BRANCH ON CONDITION, "and "INCREMENT
(or DECREMENT) AND TEST FOR ZERO" is
needed to effectively make use of the new types of
program elements.

Rather than settling the question of word versus
byte-oriented computer organization, note that by
allowing partial-word operation on all data-ma
nipulating instructions, a considerable amount of
masking and shifting can be eliminated from operating
programs, although only limited flexibility is available
without creating difficult instruction coding problems.

As the internal circuitry of a CPU is far more reliable
in operation than the attached communications lines,
the extra memory cycle time and additional hardware
necessary to provide memory parity or error detection
and correction is unacceptable. Adva,nces in technology
coupled with the use of error-correcting codes may
change this point of view, however, in the near future.

The real power of a CPU is not measured by the

16 Spring Joint Computer Conference, 1971

i <»lIN' i
r ~~ ... I

))22 2 2
)210 98

1
1 24r 221 0

~ It! P_I_c_C~~~IR~I ____ D_~ ___ Am8 ____________ ~1

Figure 1-Processor state register (PSR)

instruction cycle time, but rather by the amount of
processing performed by each instruction and the num
ber of instructions necessary to perform a given
function.

Taking advantage of storage technology by buffering
main storage with high-speed local storage and placing
operating programs in read-only storage suggests a
return to Harvard-class computers with separate
addressing spaces for data and instructions. Immedi..,
ately, the possibility of executing data or operating on
instructions is completely eliminated, thus improving
the reliability of the software. Storage protection is
unimportant for the program store of a Harvard-class
machine, but is still important in protecting constant
areas in data storE(from accidental destruction. Both
read and write protection of data store are useful, almost
mandatory, and should be provided for.

Conventional input-output channels of large-scale
computers are constructed to provide an efficient,
general scheme for input-output. By specializing the
input-output channels to handle communications only,
and by integrating channel controls within the front-end,
the power of the front-end computer is extended and
directed at communications. Assuming only communi
cations lines and interprocessor channels are attached,
the lack of general facilities for input-output is not a
limitation of the processor.

GENERAL CP ARCHITECTURE

The communications processor (CP) is a muIti
accumulator, two's complement, fixed-point binary,
stored program digital computer with separate address
ing spaces for programs and data. CP control circuitry
. interfaces with operating programs through the pro-
cessor state register (PSR), a control register which is
the central element of the interrupt mechanism. All
input-output channels and their controls are func
tionally integrated within the CP itself to expedite
input-output operations by treating each device inter
face as an addressable extension of CP data memory.

CP program memory consists of up to 65,536 words of
44 bits each, with the first 2,560 words reserved for
interrupt processes. The operand address of all program
transfer of control, queue manipulation, and input-out
put instructions refer to locations in program memory.
Program memory is addressed consecutively from 0 to

the highest available address-an invalid address
generates an addressing error interrupt. The format and
interpretation of words contained in program memory is
described in the "Instruction Set" Section.

CP data memory, separately addressed from CP
program memory, contains up to 4,194,204 thirty-six
bit words. CP data memory is under control of a
protection lock assigned to each 2048 word module of
core and a protection key contained in the current PSR.
Storage addresses of data memory run from 0 to the
highest available address with invalid addresses
generating an addressing error interrupt. Locations 0 to
2048 are reserved as control words for input-output
channels.

The PSR consists of PRTY, KEY, T, P, CC, W, R
and INSTR ADDR fields, as shown in Figure 1. Only
the PRTY field may be modified by an operating
program without loading an entire new PSlR. The
PR TY field specifies the "level" at which the current
program is operating--O indicates non-interruptible,
critical processes and 15 indicates non-critical, com
pletely interruptible processes. With 16 priority levels
at which the CP can operate, the dispatching urgency of
interrupts can be dynamically altered. Every request
for interrupt is at a priority determined sometime before
the request is generated. All "program" interrupts have
a fixed priority of 1, 2, or 3. All input-output interrupts
have a priority specified by the START I/O instruction
which initiated the operation. When a request for
interrupt is presented whose priority is equal to or
greater (less numerically) than that specified by the
PRTY field, the interrupt request is granted, otherwise
the request is stacked by CP control for later servicing.

The KEY and T fields control access to CP data
storage. Data storage protection is always in effect.
When an instruction requires access to CP data storage,
the KEY is matched against the lock associated with
the memory module containing the desired address, with
access granted according to the match-up.

The CC field controls conditional transfer of control
instruction execution. The meanings of each bit are
defined according to the preceding instruction executed .
The CC field is reset following execution of all but
conditional transfer of control instructions. All condi
tional transfer of control instructions interrogate the CC
field according to the mask given by the Rl field of the
instruction in order to determine whether or not a
branch will be taken. Matching one bits in any bit
position causes the branch to be taken.

The INST ADDR field contains the address of the
next instruction to be executed. It is updated sequen
tially after execution of each instruction until a transfer
of control instruction takes a branch, when the branch
address becomes the next instruction address,

The Wand R bits define the operating states of the
CPo If W is set, the CP is in the wait state and no
instructions are executed. Input-out does not stop,
however, when in the wait state. The R bit specifies
which set of general registers is used by each instruction.

Two interchangeable sets of general purpose registers
exist within the CP. Each register is 36 bits wide and is
designated by a number from 0 to 15. Fifteen of the 16
registers may be used as accumulators, index registers,
or base registers. Resister zero may be used only as an
accumulator.

The P field describes the current type of program
element being executed. A main program or subroutine
is indicated by 00 or 01, the distinction between them
being almost impossible to determine as a return branch
from a subroutine takes exactly the same form as an
indirect branch within any program element. A
coroutine is indicated by 10 and a sub coroutine is
indicated by 11. If a program transfer of control
instruction is executed which is invalid for the current
type· of . element, a program linkage interrupt is
generated.

When an interrupt request is granted, an address
presented along with the request is used to specify the
address in program memory from which to fetch a new
PSR. The old PSR, having been saved in a pushdown
stack, may be made the current PSR in order to
re-enter the interrupted routine at the end of the
interrupt service by executing an UNCHAIN
instruction.

As each interrupt is identified with a distinctive new
PSR, no interrogation of devices, i.e., polling of inter
rupts, is required during interrupt service.

INSTRUCTION SET

Each CP instruction occupies one 44-bit word of CP
program memory in one of the formats shown in
Figure 2. Instructions operate between registers,
between storage and registers, or between storage
locations. In the register to register and storage to
register formats, three addresses are specified-two for
operands and one for the result. The result and one
operand are specified by the contents of the indicated
register. The other operand address refers either to CP
memory (storage to register format) or a general
register (register to register format). In the storage to
storage instruction format, a source and destination
address and a length code are specified. All references to
CP memory refer to CP data memory unless the
instruction is a control instruction (e.g., BRANCH ON
CONDITION, LOAD PSR, or PUSH).

Memory addresses of storage to register format

Features of an Advanced Front-End CPU 17

43
33 22

3615 12 1029 2625 22 10 19 1615 1211

1 llllDl~l·l 1"1_1 x I· I
I OPOODI DISPL

Storage to legist.. Fol"Mt

Regist .. to &.gist.. Forat

~_ .. __ J§li_.~~ 2827 1615 1211

~~~ ___ l_~_B1_1 ____ D_1 __ ---lI'---B2---lI ___ m _J 
storage to storage Foriat 

Figure 2-Communications processor (CP) instruction formats 

instructions are formed and interpreted according to 
the addressing mode (AM) field of the CP instruction. 
If AM is 00, the modifier (M), index (X), base (B), and 
displacement (DISPL) are taken as an absolute 16 or 
22-bit address and the addressing mode is called 
DIRECT. If either program or data memory contains 
fewer words than addressable by the full 16 or 22-bit 
value, any reference to an address lying outside the 
addressing space will generate an addressing interrupt. 

If AM is 01, the addressing mode is called INDEXED 
and the address is formed from two sums. The DISPL 
field is added to the contents of the register specified by 
the B field, unless the B field is zero. If the B field is 
zero, the value zero is used in forming the first sum. To 
the first sum, the contents of the register specified by the 
X field are added, unless the X field is zero. If the X 
field is zero, the value zero is used in forming the 
second sum. The second sum is used as the data or 
program memory address. The register specified by the 
B field is considered to contain a signed, 35-bit integer, 
even though the resulting sum will be truncated to a 16 
or 22-bit address. The register specified by the X field is 
considered to contain a signed, 17-bit integer. Addresses 
are formed in a 36-bit register in the CP control section, 
then truncated to the appropriate precision. 

The high-order 18 bits of the register specified by the 
X field are taken as a signed, 17 -bit modifier of the 
actual index, contained in the low-order 18 bits of the 
register, according to the M field of the instruction. If M 
is 00, the index is not modified. If Mis 01, the modifier 
is added to the index and the sum becomes the new 
index. If M is 10, the modifier is subtracted from the 
index and the difference becomes the new index. If M is 



18 Spring Joint Computer Conference, 1971 

AE& Jddt"line 
TL------~.~I ____ ~~=A~ ____ ~ 

ADJllISS or WA 

~ 1_1__ ~ __ I _ or IIDIRD a. 

-It.o}.! !Iil_____ J --:-l ADJllISS or IDCltIV. 

[-:{'!!p,1 xl _I jf 

'--Wl i·,-'_....,.-I --]---, 

~-----W--A------~ 

Figure 3-Communications processor (CP) addressing structure 

11, the index is multiplied by the modifier and the 
product becomes the new index. All index modification 
is performed after current instruction execution, before 
the next instruction is executed. 

If AM is 10, the addressing mode is called 

INDIRECT and the address is formed as described for 
the INDEXED mode but is not the address of data or a 
new program address, but the address of an indirect 
word. 'The indirect (I) bit of the indirect word specifies 
whether the address pointed to by the indirect word is 
the address of another indirect word or the address of 
data. If I is 0, the next word is data (or next instruction 
address). If I is 1, the next word is another indirect word. 
The M and X fields are interpreted for the indirect 
word just as they are interpreted for an instruction, 
with the contents of the register specified by the X field 
added to the ADDRESS portion of the indirect word. 
Multi-level indirection and indexing are thus possible. 

If AM is 11, the addressing mode is LOCATIVE, 
a combination of INDEXED and INDIRECT modes. 
The address is formed as described for the INDEXED 
mode, but is the address of a locative rather than that 
of data or a new program address. A locative is 
distinguishable as data, the address of data (beginning 
of an indirect chain), the address of another locative, or 
the address of the address of another locative (beginning 
of an indirect chain ending with a locative). For a 
transfer of program control instruction, LOCATIVE 
mode has the same interpretation as INDIRECT mode. 
The L field determines the interpretation of the locative. 
If L is 10, the locative contains the address of another 
locative. If L is 11, the locative begins an indirect chain 
terminated by another locative. The M and X fields are 
interpreted just as for the indirect word. 

If the resulting address addresses CP data memory, 
the protection KEY of the current PSR is compared to 
the storage lock for that segment of data memory. If 
they match, access is granted according to the tag bits 
which match between the PSR and the storage lock. One 
tag bit allows read access, and the other tag bit allows 
write access. When the key does not match the lock a 
protection interrupt is generated. The general CP 
addressing structure is illustrated by Figure 3. 

Storage-to-storage format instructions have fewer, 
but similar, fields than do storage-to-register format 
instructions. These are two address instructions, with 
the source address given by the sum of the D2 field and 
the contents of the register specified by B2 (unless zero) 
and the destination address given by the sum of the 
D1 field and the contents of the 9-bit characters of the 
fields involved in an operation are contained in the 
register specified by Rl. 

Program elements can be one of four types: main 
program or open subroutine, closed subroutine, co
routine, or subcoroutine. Program control is passed to 
the main program or passed within any of the elements 
by means of a BRANCH ON CONDITION or 
BRANCH ON INDEX instruction. The BRANCH ON 
CONDITION instruction substitutes a four bit mask 



for the Rl field which is compared to the four bit CC 
field of the current PSR. A match in any bit position 
causes the branch to be taken to the address in program 
memory given by the B, X, and DISPL fields in the 
mode specified by the AM field. Note that the R2 and 
PWD fields do not enter into the instruction execution. 

The BRANCH ON INDEX instruction affects the 
register specified by the X field. The X and M fields are 
not used in determining the branch address. The Rl 
field specifies a register containing the value to be 
compared to the index portion of the register specified 
by the X field. Only the low-o~der 18 bits of the Rl 
register are used in the comparison. The R2 field 
specifies a register containing a signed increment in bits 
0-18 which modifies the index register according to the 
M field when the branch is not taken. The M field is 
interpreted as before. The branch is taken whenever 
the specified test condition is met. The test conditions 
are: index high, index equal, and index low. Transfer of 
program control to a subroutine is made with a 
BRANCH AND LINK instruction. The register 
specified by the Rl field is taken as a four bit mask for 
comparison against the CC field of the current PSR, 
just as for the BRANCH ON CONDITION instruction. 
If any bits in the mask match the CC, the register 
specified by the R2 field is first loaded with the address 
of the next sequential instruction, then the branch is 
taken just as for the BRANCH ON CONDITION 
instruction. 

A coroutine is a program element defined by its entry 
locator, which specifies the address of the first instruc
tion to be executed upon entry to the coroutine. An 
INITIALIZE or LEAVE group instruction defines the 
contents of the entry locator, and an ENTER group 
instruction performs the co-transfer into the coroutine. 
INITIALIZE is a storage to storage format instruction 
that sets the entry locator for the named coroutine to 
the given address in CP program memory . LEAVE and 
ENTER group instructions are also storage to storage 
instructions which set the entry locator for the current 
routine to the address of the next sequential instruction 
then transfer indirect through the entry locator of the 
target routine (if a coroutine or sub coroutine) or branch 
to the target address (if a main program or subroutine). 

A sub coroutine , like a coroutine, is defined by its 
entry locator, and also by an exit locator. The entry 
locator may be defined by an INITIALIZE or a 
RETURN group instruction. Entry to a sub coroutine is 
made by executing a CALL group instruction, which 
sets the entry locator of the current module (if a 
coroutine or sub coroutine) to the next sequential 
instruction address and transfers control indirectly into 
the target subcoroutine through its entry locator, then 
sets the exit locator to the address of the next sequential 

Features of an Advanced Front-End CPU 19 

Figure 4-Coroutine and subcoroutine structure 

instruction following the CALL in the calling routine. 
When a RETURN instruction is executed, the entry 
locator of the current module is set to the next sequential 
instruction address and a branch is taken to the return 
point, indirectly through the exit locator. The entry and 
exit locators occupy contiguous locations of CP program 
memory. Figure 4 shows coroutine and subcoroutine 
structure. 

To provide low-overhead queueing operations, three 
types of queues are maintained by hardware: pushdown 
stacks, normal FIFO or head-tail queues, and double
ended head-tail queues. A pushdown stack is defined as 
a contiguous area of data memory with a locator word 
in program memory. The locator word consists of 
length, count, and pointer fields. The count is decre
mented by one for each element pushed down into the 
stack. The pointer initially contains the address of the 
first available element, and is incremented by the length 
field for each element added. Likewise, for each element 
removed, the pointer is decremented by the length field. 
If the count is zero then an attempt is made to add an 
item, and overflow condition exists and a stack overflow 
interrupt is generated. 

Normal and double-ended head-tail queues are defined 
as unbounded linked lists. Any head-tail queue may be 
either normal or double-ended, defined by the needs of 
the moment by the instruction executed to manipulate 
an element. All instructions affect the queue pointer 
words and the link word of the cell being manipulated. 



20 Spring Joint Computer Conference, 1971 

IJI) 

SJBTIAOf 

IIMIlU 

DIV'Im 

A1fD .. 
OODCIafCl 

LOAD JIUL!IPLI 

SlOB JIIl4'IPLI 

1ftaCIU.1UI 

LOAD &D1ItDS 

OOJIPAII IUIID 

WAD PSI 

" Ioop.u. AID 
v Ioop.u. oa 
@ 001na1d..a .. 
() Conttnt. ot 
HI Ift~TO Jddr ... 
~ Int .. ohaco 

(R1)- (M) ... (Rt) 

(R..i.~_ (R.1.)- (M) 

(Ri,R.1+1) ....... (~).(It'2.) 

(R.J,.)- (R'l,~ R1.+i)/(M) j (It~H~ _~w.u.J\:)E.~ 

(~J.)- (W\)"(~"2.') 

(Rl) ....... 01\, v (lt2.) 

(ru.)- (W\)~"(~1..) 

(R .. t) ... )R..1.)_ (M) ... ') ~tRl.-1t.l'HJ) 
(M1 • .. ) ~~-U~l.J ) _('1<1.) '" ,t.'t) 

(tv\) ~ (R..!.) 

(tll.)- M 

[(~)\J(~L)1: (ti) 

(P~) - (M) 

Figure 5-Representative CP instructions 

To put a cell on the tail of the queue,a PUT instruction 
is executed. A GET instruction removes a cell from the 
head of the queue. FETCH removes from the tail, and 
STORE adds to the head. Complete freedom in 
intermixing these instructions would allow, for example, 
a processing routine to· break off processing a message 
cell for a low-priority message by placing its pointer 
back on the head of the processing queue in order to 
respond to a request for processing of a high-priority 
message cell. 

Figure 5 describes the operation of representative 
instructions of the CP instruction set in shorthand 
notation. 

INPUT-OUTPUT 

Input-output is the reason for being of a front-end 
computer. A high-powered processor such as has been 
described here must be capable of sustaining high data 
transfer rates in comparison with processing speed or it 
will be severely mismatched to its task. In the CP 
input-output proceeds simultaneously with processing 
by allowing multiple access to data memory according 
to priority of input-output (determined by a START 
I/O instruction). The processor always has lower 
priority for data memory access than does input-output. 
By providing one memory port for each 2048 word 
module of data memory, the overall memory bandwidth 

is increased; unless, of course, the operating programs 
attempt to place all buffers in the same (few) modules. 

All control information for each device attached to 
the CP is contained in a line control word (LCW) 
maintained on a per-device basis in the first 2048 word 
module of CP data memory. When a START I/O 
instruction is executed, the control words are activated 
and a buffer address in data memory is provided, along 
with the appropriate protection key. Input-output then 
proceeds until an error occurs, the last data character 
is transferred into memory, or a HALT I/O instruction 
is executed for the device. Control information may be 
modified successfully whenever the control words are 
not active, thus allowing the operating programs to 
dynamically reconfigure the input-output to meet 
shifting demands. 

Each communications interface consists of receive and 
transmit circuitry sufficiently general to allow selection 
of functional characteristics by signals on the I/O 
control bus. In order to dynamically reconfigure the 
attached communications network, each unit must be 
capable of handling several code structures and 
transmission speeds. 

For a small number of combinations of code and 
speed, the communications interface for asynchronous 
transmissions is not overly complex. The advantage of 
being able to dynamically change operating character
istics of a line is apparent for a time-sharing service, 
which could use only as many line terminations as the 
number of simultaneous users to serve several types of 
terminals, rather than apportioning facilities according 
to projected loads from the different types of terminals 
which usually results in several unused lines when the 
system is heavily loaded. 

Synchronous transmissions, if they involve any kind 
of line discipline for transmission, are code-dependent; 
so the only kind of dynamic reconfiguration would be 
to change clock speeds for the line. This trick is now 
being used by at least one terminal manufacturer to 
overcome a noisy line-if too many errors occur at, say, 
4800 baud, the unit switches to a 2400 baud clock to 
improve transmission and reception. 

Characters are assembled/disassembled at individual 
line termination units (LTU) , buffered, then stored a 
word at a time in CP data memory. Memory words are 
left-justified with zero pad. Common controls direct the 
LTU to select a particular code structure/transmission 
speed, collect assembled words according to dispatching 
priority (specified by a START I/O instruction), and 
direct transfer between CP data memory and the 
LTU's. 

A complete interface is provided for a modem by 
each L TU, and provision is made for the addition of an 
Auto-Call Unit. All status-bearing and control leads 



present at the modem interface are represented by bits 
in the LCW, allowing an operating program having the 
proper protection key to actually control the L TU at 
the interface level. Additionally, for asynchronous lines, 
the state-of-the-stop-bit is reported/controllable, allow
ing detection and generation of open line conditions. 
See Figure 6 for the layout of the LCW. 

Syncronous LTU's would be constructed according to 
the requirements of the user, in order to provide 
hardware for handling of line discipline. Redundancy 
checking and message retransmission are handled more 
easily by hardware than software. 

As data can be manipulated easily in the CP as 
nine-bit bytes, character-by-character line service is not 
infeasible for applications requiring intimate inspection 
of message traffic. On the other hand, a complete 
message could be assembled in data memory before the 
L TU acknowledges reception. The ability to select 
between these methods of line service within the same 
unit indicates some of the power of the CP. 

First-generation computers had all input-output 
control integrated within the CPU for simplicity of 
construction. Later generations used special-purpose 
controllers to handle all input-output devices. Now, the 
newest round of computer announcements shows a 
return to integrated peripheral controllers as a cost 
saving and to upgrade performance of essential devices. 
A dedicated communications controller would utilize 
integrated device _control for both reasons. Similar 
communications input-output controllers have been 
built by at least one firm on an experimental basis, but 
initial efforts provided a costly design. It is not out of 
the question to expand such a controller to the capacity 
indicated here, nor to integrate it with the logic of a 
central processing unit. 

CONCLUSION 

A rather high-powered communications subsystem has 
been described in varying degrees of detail. Certain 
combinations of architectural features are unique in any 
digital computer, especially so in a front-end which is 
usually thought of as a small computer system. Many 
advanced programmers probably make use of data 
structures closely resembling locatives without realizing 
that a name exists for such a structure, just as many 

Features of an Advanced Front-End CPU 21 

:3 :3 
~. _1 029 ~222J ~----'-'----------'-'- --- -.---------.°

1 l my I gJ mAftFACI ADIIlISS 0' DATA IJ)CATOR 
~ BITS - .... _ .. J .. __ --.__ _ .. _._, .... _._ .. __ . __ ... ,.. __ ._ .. ____ .... _....J 

Figure 6-Line control word (LCW) layout 

utilize subcoroutines without knowing it. The revival of 
some first-generation architectural features coupled with 
the combination of more modern ones yields a machine 
whose applications could be greatly expended with only 
small conceptual changes. Still, the primary purpose in 
attempting the design of a novel central processor was 
to look for the new ways of handling familiar problems; 
and the design has fulfilled the author's intentions, 
raised many questions to be answered, and provided new 
techniques for discussion. The evolution of computer 
systems seems to indicate a collection of peripheral 
processors for a new configuratihn-the CP being such a 
proposed component. 

REFERENCES 

1 L L CONSTANTINE 
Integral hardware-software design 
Parts 8 and 9 Modern Data November 1968 and February 
1969 

2 RW COOK M J FLYNN 
System design of a dynamic microprocessor 
IEEE Transactions on Computers March 1970 

3 C J WALTER A B WALTER M J BOHL 
Impact of fourth generation software on hardware design 
Computer Group News March 1969 

4 E C JOSEPH 
Evolving digital computer system architecture 
Computer Group News March 1969 

5 H W LAWSON JR 
Programming-language-oriented instruction stream 
IEEE Transactions on Computers May 1969 

6 G D HORNBUCKLE E A ANCONA 
The LX-l microprocessor and its application to real-time 
signal processing 
IEEE Transactions on Computers August 1970 

7 E A HAUCK B A DENT 
Burroughs B6500 / B7 500 stack mechanism 
Proceedings Spring Joint Computer Conference 1968 

8 J G CLEARY 
Process handling on Burroughs B6500 
Proceedings Fourth Australian Computer Conference 1969 





Interpreting the results of a hardware systems monitor 

by J. S. COCKRUM and E. D. CROCKETT 

M emorex Corporation 
Santa Clara, California 

INTRODUCTION 

Hardware monitors are widely used to enable the data 
processing manager to effect cost reductions and im
prove the efficiency of his installation. Several papersl- 7 

have presented hardware monitors and system measure
ment, but have presented relatively little information 
regarding the interpretation of the monitoring results. 

A brief overview of hardware monitors and the neces
sity of system measurement is presented. A section 
deals with determining and measuring events-signifi
cant occurrences to a unit of work being processed by 
the system. A "performance optimization cycle" is de
veloped and actual results of a monitoring run are 
shown. 

The body of this report treats the heretofore ne
glected area of interpretation of the results. The stress 
is on providing quantitative measures to assure that an 
economic return on the computer system is obtained. 

The system performance profile is presented and the 
basic indicators in interpreting the profile are developed. 
Methods are given for corrective actions of system re
configuration, program change, data set reorganiza
tion, job scheduling and operator procedures. Predictive 
methods are developed whereby reconfigurations can 
be evaluated prior to their implementations. 

DESCRIPTION OF MONITOR 

A hardware monitor consists of sensors, control logic, 
accumulators, and a recording unit. The sensors are 
attached on the back panels of the computer system 
components-CPU, channels, disks, etc. The signals 
from registers, indicators and activity lines picked up 
by the sensors can be logically combined or entire 
registers can be compared at the control panel and then 
be routed to the accumulators for counting or timing 
events, e.g., CPU active, any channel busy, disk seek 
counts and times, etc. Typically, the contents of the 

23 

DEVICES 
CHANNEL 

COMPARE 
LOGIC CONTROL 

ACCUMULATORS 
COUNT 
TIME 

ACCUMULATOR 
DA~ CONTENTS 
REDUCTION ~ 

CPU 

~ROG~ '" ./ 

~ _ ~ ~ ANALYSIS 
~ COMPUTER SUMMARY L:Y ~L...-S_Y_S_T_EM_ .... ----~£> GRAPHS 

Figure I-Hardware monitor system 

accumulators are written periodically to a magnetic 
tape unit. The magnetic tape is batch processed by a 
data analysis program to produce a series of analysis, 
summary and graphic reports. Figure 1 shows a hard
ware monitoring system. 

NECESSITY OF MONITORING 

The complexity of the present computing systems 
has made monitoring a necessity for effective manage
ment. Effective management means optimizing the 
computer system performance for increased through
put, turn-around time, or a reduction in expenses; and 
predicting future computer system needs. A hardware 
monitor provides a tool to efficiently obtain these 
managemen t goals. It is easy to install and use, and 



24 Spring Joint Computer Conference, 1971 

measures simultaneous occurring events of hardware 
and software operations without any interference to the 
system being monitored. 

Computer system performance optimization 

A computer system can be optimized according to 
different strategies. The most common strategy is to 
optimize the system's throughput, i.e., the rate at which 
the workload can be handled by the system. Other 
strategies include optimizing turnaround time (delay 
between the presentation of the input to the system 
and the receipt of the output), availability (percentage 
of time during which the system is operating properly), 
job time (length of time the system takes to perform a 
single application), cost (the costs of the computer sys
tem used in processing the workload), etc. Often a com
bined optimation strategy will be followed, e.g., maxi
mize throughput for a given cost. Although a hardware 
monitor can be used for any optimization strategy, the 
concern in this paper will be for throughput and cost, 
since it is felt that these are the principal measures of 
economic return on a system. To this end, consideration 
will be given to system configuration including recon
figuration and additions/deletions of components, pro
grams, rotuines to be made resident/non-resident, data 
set allocation, job scheduling and operating procedures. 

The performance optimization cycle which will be 
developed consists of computer system measurement, 
evaluation, improvement and returning to new meas
urements to start a new cycle. 

Prediction of future needs 

From the records obtained in the performance op
timization cycle, not only is the current performance 
known, but also a historical base is constructed for 
predicting future needs. Based upon actual system 
measurements it is possible to predict and evaluate 
major changes in the capability of the system before 
their implementation. System changes of reconfigura
tion, addition/deletion of new devices and model 
changes can be simulated and analyzed. Accurate pre
diction of future needs dictates a continuing monitoring 
program. 

MONITORING EVENTS 

An event in a computer system is an occurrence of 
significance to a unit of work processed by the system. 
A hardware monitor can count or time the duration of 
events or combinations of events. 

It is necessary to identify the events upon which the 
system performance depends and quantitatively deter
mine their interdependency. The basic events monitored 
are components active, time spent performing various 
operations, storage utilized, resource contention, sys
tem resource overlapping, etc. 

Single sensor events 

The types of events which can be monitored in a 
computer system using a single sensor for each are such 
occurrences as: 

CENTRAL PROCESSOR UNIT 

1. CPU STOP or MANUAL 
2. CPUWAIT 
3. CPU RUN 
4. MULTIPLEX CHANNEL BUSY 
5. SELECTOR CHANNEL BUSY 
6. PROGRAM CHECK INTERRUPT 
7. I/O INTERRUPT 
8. ALLOW INTERRUPT CHANNEL 
9. PROBLEM STATE 

10. SUPERVISOR STATE 
11. INSTRUCTION FETCH 
12. EXTERNAL INTERRUPT 
13. CONSOLE BUSY 
14. STATUS OF THE SYSTEM IN RELATION 

TO A PARTICULAR PROGRAM (IBM PSW 
PROTECTION KEYS) 

DIRECT ACCESS STORAGE DEVICE 

1. CONTROL UNIT BUSY 
2. NUMBER OF SEEKS 
3. INTERRUPT PENDING 
4. READ BUSY 
5. WRITE BUSY 
6. DATA BUSY BY MODULE 
7. TOTAL SEEK TIME BY 1VIODULE 

CONTROL UNITS 

1. DEVICE BUSY 
2. REWINDING TAPES 
3. DATA TRANSFER 
4. POLL of TERMINALS 

UNIT RECORD EQUIPMENT 

1. LINES PRINTED 
2. CARDS READ 
3. DEVICE BUSY 
4. CARDS PUNCHED 



Interpreting Results of Hardware Systems Monitor 25 

JYI ultiple sensor events and comparators Examples of combination events are: 

Events which require multiple sensors and compara
tors are: 

1. CPU ACTIVE 
(CPU RUN /\-;::;C~P~U:-:;:W;::;-A-:-:;I=T:;-:/\:--:C=P=U:-:::-:=-:M::-:-A--=-N=U-=-cA--,-,,-L) 

2. ANY CHANNEL BUSY 

1. INSTRUCTION ADDRESSES 

2. REGISTER CONTENTS 

3. INTERFACE DATA 

4. PARTITION BOUNDARIES 

5. DATA SET BOUNDARIES 

Combination events 

(CHANNEL 1 BUSYVCHANNEL 2 
BUSY V ... V CHANNEL N BUSY) 

3. ANY CHANNEL BUSY ONLY 
(ANY CHANNEL BUSY /\ CPU WAIT) 

4. TOTAL SYSTEM TIME 
(CPU ACTIVE+SYSTEM WAIT) 

5. CPU-CHANNEL OVERLAP 
(CPU ACTIVE/\ANY CHANNEL BUSY) 

6. CHANNEL OVERLAP 
(CHANNEL 1 BUSY /\ CHANNEL 2 
BUSY A ... /\ CHANNEL N BUSY) 

7. SEEK ONLY 
Any number of combination events can be con

structed using the monitor and the data reduction 
program. 

(CPU WAIT /\ -:-A-=-=N=-=Y=--C=H-AC-::N-N-E-L-B-U-SY-/\ SUM 

OF SEEKS IN PROGRESS ON ALL 
MODULES) 

~~ASUHEO 1QI 611C SYST£M/3tC ~COEL 4~ A~C S( ANALYSIS 

------------------------------------------------------------------------------------------------------------------------
~ l ~ E ~ I C P MOL C G U E 

------------------------------------------------------------------------------------------------------------------------
SYSTE~ UTILIZATION MONITOR RECOROl~uS ~ER~ MADE eN lei 611J STARTING AT 8.~J. C.O 

CRIGl~Al SUM ~[CORCING I~TE~~Al a 1.t S£CCt;t5. 

SUM TAPE P~ASE SUMMARllED 3C S U ~ TAPE RECOROIS) I~TC EACH WCRK FILE RECORD. 

S U "- COUNTERS hill HE SUMMARllEU EVERY 1C lCORK FILE RECORDS. BEGI!l.NING AT 0.0 AND ENDING AT 9qq999.~ SEcc~rs. 

Cc\;NTEP It Tlf4E/E'vENT Ct:SCR I P TI (II BASE 10 

(I 0 T TGTAL ElAPSEC TI~E t 

1 1 T CP~ ACTIVE ~OOEL 50 G 

2 2 T FRC8lE~ STATE MUDEl 50 G 

3 3 T ElAPSEt TI~E ~ETER RUNNI~G ~OCEl 40 G 

4 It 1 SElECT(~ CHA~NEl 1 eusy MOCEl 50 G 

5 !> T SElECTCR C~A~NEl 2 eUSY MctEl 5C G 

6 6 T A~Y CHA~NEl BUSY ~CCEl 50 G 

1 1 T AIIIY CHA""!\iEl BUSY ~NO CPU WAIT "CCH 50 G 

8 e T CHA"'hEl 1 AND 2 OVERLAP ~CCEl 50 t 

~ 9 1 ,(314 8USY TG MCCEL 40 G 

H. A T 2H~ Bl;SY TC "GCEl 5':1 G 

II B T ~r:CEL ItC HAS 2314.MODEl 50 .A~rs G 

12 ( T ~CCEL 5~ HAS 2314.IICCEl 40 .A~TS G 

13 C T ~CCEL ItC ~SING 2314.MCCEl 5C ~AIT CNl Y G 

14 E T flCCEl 5C It. "ANUAl STATE G 

15 F T FRCBlt:" STATE AND ~OCEl 50 CPU ACTIVE C 

16 G 
------------------------------------------------------------------------------------------------------------------------G •••••••••••• SOFTWARE (lOCK •••••••••••• 

--------------------------------------------------------------------------------------------~---------------------------
11 H CO~TENTIC~ RATIO 8ETWE~ MCO~l 40 AND 5(; f 

18 I CPU ~AIT "Ct~l 5~ G 

19 J CP~ WAIT Ct.lY MeDEL 50 c 
211 K CPU ACTIVE CNlY "OCEl 5C G 

21 l filE'" ANY C"A~~fl BUSY MCCEl 50 M 

22 " 
",E", SYSTE~ TIME flCOEl 50 f 

23 N t.E" ANY CHAI\NEl BUSY ANC kAJT ~OCEL 50 '" 
24 G "E" "AIT MCCfl 5~ '" 
25 P INCREASE 11\ MODEL 5C SYSTEM T I"'E G 

I~TER~E[lATE SUMMARY "'Ill eE PRII\TED fVENY 5 I~TERVAl SU~~ARIES. 

Figure 2-Desci-iption of events monitored and combined 



26 Spring Joint Computer Conference, 1971 

MEASURED lei 6/70 SYSTEM/36C MODEL ItC ~~C so ANALYSIS 

FILE SUMMARY OVE~ PREVIO~S 300.0 SECC~OS. BEGI~~I~G _T 9. 5. 0.0 AND ENDING AT ~.lC. C.C 

COUNTER 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

10 

a 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
8 
C 
o 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
o 
P 

DESCRIPTION BOARD Ie c 

TOTAL ELAPSED TI~E 
CPU ACTIVE MODEL 50 
PK08lEM STATE HODEL 5~ 

JOB 10 24 

ELAPSED TIME METER RUNNING ~CDEl 40 
SELECTOR CHANNEL 1 BUSY MeDEL 50 
SELECTO~ CHANNEL 2 8USY ~CDEL 50 
ANY CHANNEL BUSY MODEL 5C 
ANY CHANNEL BUSY AND CPU WAIT MODEL 50 
CHANNEL 1 AND 2 OVERLAP MeDEL 50 
2314 BUSY TO MODEL 40 
2314 BUSY TO MODEL 50 
MODEL 40 HAS 2314,MODEl 50 WANTS 
MODEL 50 HAS 2314.MODEl 40 ~ANTS 
MODEL 40 USING 2314,MODEl 50 ~AIT ONly 
MODEL 5~ IN MAN~Al STATE 
PROBLEM STATE AND MODEL 50 CPU ACTIVE 
•••••••••••• SOFTWARE CLOCK •••••••••••• 
CONTENTION RATIO BET~EN MODEL ~o A~C 50 
CPU ~AIT MODEL 50 
CPU WAIT CNLY MtDEL 50 
CPU AC HVE ONL Y MODel 50 
NEW ANY C~ANNEl BUSY MeDEL 50 
NEW SYSTEM TI'E MODEL 50 
NE. ANY CHANNEL BUSY A~D ~AIT MODEL 50 
NEW NAIT MODEL 50 
INCREASE IN MODEL 50 SYSTE~ Tl~E 

COUNTE~ VALUE 

296.fj!J098G 
74.228995 

170.242988 
29f:.686C;8C 
119. ~8d992 

5.190000 
123.2411992 
101.813993 

1.326000 
21.121999 

119.437992 
5.n3000 

12."22999 
o.c 
0.0 
~.3e4999 

296.939850 
O.1t16111 

222.110855 
120.896862 

52.193996 
124.518991 
~98.269850 
103.143993 
224.040855 

1. :noooe 

PERCENT 

101'}.1)0 
25.GO 
57.3) 
99.98 
4(1.21 

1.75 
41.51 
34.29 
0.45 
7.11 

40.22 
1.99 
4.18 
0.0 
0.0 
3.16 

100.00 

BASE 

PCl CF CCUNTER 16 
PCT OF COUNTER ~6 
PCT OF COUNTER 16 
PCT OF COUNTER 16 
PCT OF COUNTER 16 
PCT UF COUNTER 16 
PCT OF COUNTER 16 
pc,t OF COUNTER 16 
PCT OF COUNTER 16 
PCT OF COUNTER 16 
PCT OF COUNTER 16 
PCT OF COUNTER 16 
PCT OF COUNTER 16 
PCT OF COUNTER 16 
PCT OF COUNTER 16 
PCT OF COUNTER 16 
PCT OF COUNTER 16 

75.00 PCT OF COUNTER 16 
40.71 PCT OF COUNTER 16 
17.18 PCT OF -COUNTER 16 
41.71 PCT OF COUNTER 22 

34.58 PCT OF COUNTER 22 
15.11 PCT OF COUNTER 22 
0.45 PCT OF COUNTER 16 

------------------------------------~------------------------------------------------------------------------------------

Figure 3-Interval summary of event activity 

~EAS~~EC III bIlL SYSTEM/3t( ~GUEL 4C A~C 5~ ANALYSIS 

•••••••••••••• ~.* •••• * ••••••••••••••••••••••••••••• *.# ••••••••••••••••••••••• * •••••••••••••••••••••••••••••••••••••••••••••••••••• 
I~TERMtCIA1E/F[~Al SU~MARY 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

~IL£ SU~MAHY OVE~ PREVIO~S 

1 
2 
3 
4 
5 
6 
7 
& 
<; 

H! 
11 
12 
13 
14 
15 
it: 
17 
18 
IG 
2" 
21 
22 
23 
24 
25 

10 

(. 

1 
2 
3 
4 
5 
6 
7 
Ii 
q 

A 
B 
C 
o 
E 
F 
G 
H 
1 
J 
K 
l. ,.. 
N 
o 
P 

CESCR IPll eN BCARC IC C 

TCTAL ELAPSED TI~E 
CPU ACTIVE ~OD~L 50 
pReBLEM STATE ~U~[L 5~ 

JCP. (0 24 

ELAPSEG TI"'( METER RU~~IIloG ~CCCl 4L 
SELECTOR (HANN~L 1 dUSY ~(DEL 50 
SELECTOR (H~NNEL 2 H~SY ~CCEL 5J 
ANY CHANNEL RtSY MeUEL 5C 
ANY C~ANNEL R~SY A~O CPL ~AIT MOCEL 50 
CHANNEL 1 AhU 2 UVERLAP ~CDEL 50 
2314 BUSY TO MCUEl 40 
2314 BUSY TO MODel 5C 
MODEL 40 HAS 2~14,MUCtL 5C ~A~TS 
MODEL 5C HAS 2314,MGOEL 4C ~ANTS 
MOUEL 4u LSING 2314,~COEL 5C wAIT CIIoLY 
MODEL 50 IN MA~UAL STATE 
PROBLEM STATE ANC MOCel 50 CPU ACTIIIE 
•••••••••••• SCFTwARE CLceK .* ...••..... 
CONTENTIC~ PATIO BET~E~ vCOEL 40 AIIoC 5( 
CPU ~AIT ~OC(L 5J 
CPU ftAIT ONLY ~CDEL s: 
CPU ACTIVE ONLY ~OOEL 5C 
NEw ANY (HAIIoNEL BUSY V.CDcL 50 
NEw SYSTEM TI~E ~OOEL 5C 
NEw ANy CHANNEL BuSY AND ~AIT ~OO[L 50 
NEw wAIT MODEL 50 
INCREASE IN MODEL 5(, SYSTF.~ TI~E 

CCUII:TER IIALUE 

2<;6<;.51219') 
e]I.4zl<;43 

1517. 76!>e<;1 
2 <; 13 • i_ 2 5 7 <; 9 

926.357'>36 
19.12b~<;<; 

<;41.':"9935 
714.257<;51 

~. 7nl'·1)0 
2l:<;.e<;7<;el 
<;24. VH<;3l: 

59.<;619<;6 
13<;.!:3799r, 

C.2HOv\J 

255.c'l5982 
2<;69.4')66<;'1 

0.429939 
21~8.\.la156 
1423.7118:)5 

H·3.<;E5<;58 
<;45.4B4935 

l<;13.241693 
71H.':42951 

2141.813156 
3.785000 

pt~CElIol t'ASE 

IUJ.C1 PCT CF CCLIIoTER 16 
28.0: PCT CF CC~~TE~ It 
53.13 PCT CF CCLII:TfR 16 
~q.l( PCT OF CCU~TER 16 
31.2C PCT GF CC~II:TER 16 
~.64 PCT Gf COLNTFR 16 

31.11 PCT CF CCUNTER It 
24.C5 PCT CF CCL~TER 16 
0.13 PCT Of CCUNTER 16 
Q.09 PCT LF CCL~TER 16 

31.13 PCT CF CCLNTtR Ib 
2.02 PCT CF CCU~TER 16 
4.11 PCT CF CCU~TER 16 
~.Cl PCT OF CC~~TER 16 
J.~ PCT CF CCU~TER 16 
~.59 PCT CF CCUNTER 16 

101.ryo PCT CF CCUNTER 16 

l2.~: PCT CF CC~IIoTER 16 
47.Q5 PCT CF CCUIIoTER 16 
2G.34 PCT CF CCLIIoTFR 16 
31.a~ PCT CF CCUNTER 22 

24.15 PCT UF CC~NTER 22 
72.C4 PCT OF CGUNTER l2 
0.13 PCT CF (CUNTER 16 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * •••••••••••••••••••••••••••• * •••••••••••••••••••••••••••• 
- INTER~ECIATE/FINAL SUM~ARY 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• *.* ••••••••••••••••••••••••••••••••••••••••••••••••••••••• * ••••• 

Figure 4-Final summary of event activity 



Interpreting Results of Hardware Systems Monitor 27 

STATISTICAL SU~MA~Y FaR lZ CHSERVATIONS, eEGI~~ING AT 

EACH C8SEPVATION REPRESENTS T~E ABSClUTE (~CREASE I~ COUNTEP VALUE SI~CE T~f PREVICLS OBSERVATION. 

C.CUI\TEH OE:SCRIPTION MINI"UI" ~AXIMUM MEAN S.D. 
a feTAL ElAPSEC T1~E 296.935980 2<;7.C.C9C;8( 1 CPU ACTIVE ~OOEL 5~ 296.<;538'06 ,!.(·I<l!:i7 

7.'196999 175.ItB<;se 2 PHClllt::'" STATE MUDH 5(. 71.("48828 4(..751117 
5.0~3:)("~J 2'.'0.61:'2<;8(, j HAPScO TIME ~ETEk RUNNI~G "COEl 4C 132.«;O5~24 t:C'.3!!3..-Q9 

42.151991 2'Ot.949S!!C 2')3.t:88'Ht: .. SE:LECTOP CHANtIIEl 1 BUSY !"COEl 50 13.9JI9CJ9 86.816(" 50 
') SUtCTO" CHANNEL 2 BUSY .. cDEl 50 

121.785<;<;<' f.!\).687244' 32.rn~61 0.0 
6 A~Y C~ANN[l eusy MeCEl 5'; 

(:.476COC 1.593911 2.542871 
13.901999 123.248<;«;2 7 A"" C~ANNH IlUS., ANC CPl. ... AIT MUCH 50 

H.<;l:51)t:( B.(·145Qt-
12.46!>9c 9 1,,2.35(.«;<;3 8 CI-<AN:'-iEl 1 A!'.ID 2 OVERLAP ~COEl 5(. c.o 6Z.t474«;l: 27.212'185 

1.326CO( 9 2314 fUSY TO IoI!)OEl 40 0.0 
r.313417 1.492C<37 

10 2.314 fiUSY TO M~Dt:l 50 
89.115«;«;4 ~4.6t:55el 32.211344 13.906999 121.835<;<;2 11 MCDEl 4(.. ~AS 2314,"OOH 51.) "'ANTS !!v.f'78161 H.alD,)31 u.:l 1<;.<;26«;«;<; 12 "!CC[L 5(' HAS 2314,IoIOOEL 4t: WAATS 5.{ .. q·~f!3 6.412J1:I5 

13 MCrlEl LSI'IIG 
O.D 41.016<;<;7 11.8eIlO!!3 l4.Ul1l6 4l. 2314.MOOEl 5(' WAIT (!\LY UeU e".536<;<;4 14 ~COtl 50 IN MANLAl STATE 11.207499 2t:.62«;H2 

15 PRllRlFM STATE 
c.o .) .c. (l.t J.( A~C MOI)El 5( CPU ACTIVE C.415)';~ 

16 •••••••••••• SCFhARE CLeCK •••••••••••• IH.e2C.C;«;I 21.33b6t:':' 35.(6')729 
11 ccrITt:'" T lCN I(AT 10 BEhEN 

196.93qd5J 2«;6.Q<;8C5f. 296.9"41<.'.' 11.~·lbr 'f6 nOEL 41l AIIC 50 v.1) 
16 CPU "AIT MOCEl 5C 

r..656P("'i ·::.3351H ',.211578 121.505862 2EI'!.<;41eS.: 19 c.PU .. HT CNlY ~UOH 5C h9.41)1!:!66 
225.8<;5871 4(.75:-71 .. 

2'; CPu ACT I V[ ONly MeDEl 2H.47t:851 163.24 P.3U 'it>.1lt>9>:il2 50 6.56 hI" J 132.226'7<; 1 21 ~FJ. ANY CrANNEl BuS" MOCH 50 
51. -13 .. b63 3":.229311 IJ.901QQ'l 1,4.578<;<; 1 1!2.2~1l61 l2 NE .. SYST[.14 TlIoI[ MCCEl 5C 296.9lQ8')0 298. 2f:98 Sf; 

3'3.267174 
23 1111''; AII;Y C.~ANNEL 8USY Atlle IIAIl plCCH 50 12.4659'19 

297.7~C2';'. ..:.4<;llc!J 
,4 NE .. 11111 T MOCEl 5(; 

1I.J.1439<;3 t2.<;6<''l<;t 21.S ,3<;2.7 121.50c :;,2 2eA.942esc 221;.211371 25 II\C~I::.lSE I~ ~UDEl ~o SYSUI" TIME 0.0 
4'.1r~("5 

1. 33lJOti:.. ·~.315'il'! ~.1.<'2~t..d 

Figure 5-Statistical summary of event activity 

8. CPU ACTIVE ONLY 
(CPU ACTIVE J\ -=-A-=-CN=Y=--:::::-CH===--:-A-=-=N=N=E=L=--=-B=U=-=S=Y) 

9. CPU ACTIVE DURING PROGRAM 
STATUS WORD (CPU ACTIVEJ\DECODE 
OF PSW) e.g., PROBLEM STATE, 
SUPERVISOR, PROGRAM, etc. 

10. I/O ACTIVE ONLY 
(CPU RUN J\CPU WAIT J\CPU MANUAL) 

11. SYSTEM WAIT 
(CPU RUN J\ CPU WAIT J\ CPU MANUAL) or 
(TOTAL SYSTEM TIME-CPU ACTIVE) 

12. SEEK WITHIN DATA SET 
(SEEKJ\ WITHIN DATA SET 
BOUNDARIES) 

13. INSTRUCTION WITHIN PARTITION 
(INSTRUCTION FETCH WITHIN 
PARTITION BOUNDARIES) 

The next section shows the results of system event 
monitoring. 

RESULTS 

Typical results obtained from monitoring the system 
events given in the previous section can be shown by 
reproducing actual output from a data reduction pro
gram. Figure 2 shows the description of the events 
monitored and combined. Figure 3 shows an interval 
summary of event activity. Figure 4 shows a final sum-

mary of the event activity. Figure 5 shows a statistical 
summary of the events. Graphic results are easily cor
related with various activities and give a clear picture 
of the sequence of events. Figures 6-10 show the histo
grams of CPU ACTIVE, SELECTOR CHANNEL 1 
BUSY, SELECTOR CHANNEL 2 BUSY, ANY 
CHANNEL BUSY ONLY, and CPU WAIT. 
The next section deals with the interpretation of these 
results. 

INTERPRETATION 

The areas which can be investigated to optimize 
throughput or cost of a computing system are. system 
configuration, programs, routines resident/non-resident, 
data set allocation, job scheduling and operation meth
ods. In a multi program environment, throughput is a 
measure of the time required to process a fixed amount 
of work or simply stated the number of jobs per day. A 
good assumption is that the CPU processing time is 
constant whether the jobs are run sequentially or multi
jobbed in an interweaving process. The improved 
throughput by multijobbing should come by over
lapping system resources, e.g., CPU activity on one job 
overlapped with I/O activity on another job. This in
creases the percentage of time the CPU is active to 
yield better system utilization. Unfortunately, the de
sired positive effects of multiprogramming are not 
always obtained, e.g., competition may exist between 
two different jobs for the same direct access device. It 



28 Spring Joint Computer Conference, 1971 

~EASUREO lCI ~/7C SYSTEH/360 MODEL 4C A~D 5G A~AlYSIS 

JCH SEeS. 

2 .. <)L.(' 
24 le~.~ 
24 ~1<;.C 
Zit ~o •• .J 
21t 45U.() 
24 54;;.(. 
24 t3C.C 
24 7l0.C 
24 81G.(. 
24 C;)(.O 
14 C;C;'J.Q 
24 1(80.0 
24 117C.C 
24 12t:C,.C 
24 135l'.C 
24 14411.,) 
24 153( .0 
.lit 1621 .. 0 
24 17H ... C 
21t 1800.~ 

24 lec;C.C 
21t 1 C>8C·.{I 
24 2(7(.0 
24 216r..C 
24 225,j.O 
Z'. 231tC.C 
24 243v.J 
(:It 25l0.C 
24 2t:l:.<. 
24 270C .0 
24 21C;C.C 
24 288(;.0 
24 2 H('. C 
l4 3Ct:~.C 
l4 315".C 
24 324".C 
24 333fi .(; 

24 H20.C 
24 3510.C 
24 3t:C;~.O 

JC8 SEes. 

ep~ AeTI~E MODEL 5C (BASEsG' 

J 10 20 3e 40 50 60 70 80 . 9Q 100 
x x x x x x x x x x x 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
11111111 • • 
111111111111111111111111 • • 
11111111111111111111111111111111111111111111 
111111111111111111111111111111. 
11111111111111111111111111111 • 
111111111111111111111111111111111 
111111111 • 
1111111111111111. • • 
111111111111111111111111111111111111111111111 
11111111111111111111111111111111 
1111111111111111111111111111 • 
11111111111111111111111111111111 
111111111111111 • 
1111111111111111111111 • • • 
11111111111111111111111111111111111111111111111111111111111 • • 
1111111111111111111111111111111111111111111111111111111111111111111111111 
1111111111111111111111111111111111111111111111111111111111111111111 
111111111111111111111111111 
1111111111111111111111 
1111111111111111111111 
111111111111111111111111 
111111111111111111111111 
111111111111111111111111 
11111111111111111111111111 
1111111111111111111111111 
111111111111111111111111 • 
111111111111111111111111111111111 • 
11111111111111111111111111111111111111111111 
11111111111111111111111111111111111 
11111111 • 
11111111111111111 
1111111111111 
111111111 • 
1111 
1 
11111 • 
111111111111111111 
111 
1 
1 • • • • • • • • • • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• x x x x x x ~ x x x ~ 

C 10 2C 3C 40 5'J 6C 7C 80 90 ICC' 

Figure 6-Histogram of CPU active 

Basic indicators 

TIME 

8.31.3(1.') 
A.33. 0.1. 
8.34.3":.0 
8.36. (i.0 
8.37.30.0 
8.39. c.e 
8.4C.30.0 
8.42. r.O 
8.43.30.C 
8.45. 0.0 
8.46.30.0 
8.48. 0.0 
8.4«;.3(..0 
8.51. l:.C 
1).52.Je.r. 
8.54. v.e 
8.55.30.0 
8.51. c.e 
d.5s.3e.O 
~. 0. ':'.0 
9. 1.3<-.\: 
9. 3. fJ.t:: 
~. 4.3e.1) 
s. 6. ,'1., 
9. 1.3(;.0 
C;. 9. I).:! 
9.1G.30.C 
9.12. ('.J 
9.13.)u.C 
~.15. C.lI 
9.16.31.1.' 
9.18. (...0 
C;.19.3.:.C 
9.21. C.C 
~.22.3C.C 
9.24. 0.(.0 
9.l5.3oJ.1J 
9.21. C.G 
9.28.3(.0 
9.3;.). ".C' 

TIME 

is crucial in any performance optimizing cycle that the 
system resources be overlapped for the job"stream and 
that competition for resources be eliminated. This can 
have far greater effects on throughput and cost than 
on increasing the speed/of the system components. In
deed, it is often possible to increase throughput while 
at the same time returning or delaying purchase of sys
tem components, or going to slower components. 

Some of the basic indicators to look for in interpreting 
a system performance profile are: 

System performance profile 

In order to look at the overlapping of system re
sources, a system performance profile which shows the 
activity of the CPU, channels and the amount of over
lapping between them is constructed as shown in Figure 
11. The system performance profile shows the overall 
system utilization. It may be immediately apparent 
that some of the system components are essentially 
unused. 

SMALL CHANNEL OVERLAP, 
CHANNEL IMBALANCE, 
HIGH CHANNEL UTILIZATION, 
LARGE WAIT ONLY, and 
LARGE CPU ACTIVE ONLY 

1. SMALL CHANNEL OVERLAP 

The' probable cause for small channel overlap 
when the channel utilization is high is poor device 
placement on the channels resulting in sequential 
operations. The control units and devices should 
be monitored and the job stream examined in 
order to determine the data sets used. The device 



Interpreting Results of Hardware Systems Monitor 29 

~EASUREO leI 61le SYSTE~/36C MUDEl 4C A~D 5~ ANALYSIS 

Jce 

24 
24 
24 
24 
<'4 
24 
24 
24 
24 
24 
24 
24 
24 
,4 
24 
24 
24 
l4 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 

JOIl 

SEes. 

'lO.D 
1%.( 
2 7l'. Q 

3t:('.G 
45C.C 
54().C 
0('.0 
72C.C 
81C.0 
C;CO.{l 
<;90.C 

1L80.0 
1170.1,) 
126v .O 
1351).0 
144".0 
1 ~ 30. ~ 
1620.0 
1110.0 
1800.0 
1a'lC.O 
1~80.0 

2C7C.C 
2160.C 
225C.J 
234\1.C 
2430.0 
2520.0 
2flO.O 
2100.0 
27%.0 
2880.0 
2<;7e.o 
3(6(,.0 
3150.0 
3240.0 
333\1.0 
342U.O 
3'HO.C 
3600.0 

SEes. 

.J 
x 

11.' 20 
X 

SElEeTC~ CHANNEL 1 BUSY ~CCEl 50 

3C 
X 

50 
J( 

60 
X 

(I!ASE=GI 

1C 
X 

'!(, 
x 

90 
X 

ICC 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
444444. • • 
444444444444444444444444444444. 
44444444444444444444444444444444444444 
4444444444444444444444444 
444444444444444444444444444 
444444444444444444444444444444444444 
444444444 • 
4444444444444444444444 
444444444444444444444444444444444444 
4444444444444444444444444444444444444 
44444444444444444444444444444444444444 
44444444444444444444444444444444444 
44444444444444444444. 
4444444444444444444444444444444444 • 
4444444444444444444444444444444444444444. 
4444444444444444444 • • • 
4444444444444444444444444444444444444444. 
4444444444444444444444444444444444444444. 
4444444444444444444444444444444 
44444444444444444444444444444444444 • 
444444444444444444444444444444444444444444444 
444444444444444444444444444444444444444444 
444444444444444444444444444444444444444 • 
44444444444444444444444444444444444444444 
44444444444444444444444444444444444444444 
4444444444444444444444444444444444444 • 
444444444444444444444444444444444444444444444 
44444444444444444444444444444444444444 • 
44444444444444444444444444444444444444444444444 
444444444444444 
444444444444444444444444444444444444 
4444444444444444444 • 
4444444 
4444444 
4 
4444 • • • • 
4444444444444444444444444444444444444444. 
44444 
4 
4 • • • • • • • • • • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
x x J( x x x x x x x x 
o Ie 20 30 40 50 60 1C 80 110 1CO 

Figure 7-Histogram of selector channell busy 

TI~E 

8.31.30.C 
8.33. O.G 
8.34.3G.0 
8.36. c.o 
8.31.30.0 
8.39. 0." 
8.4a.3o.c 
8.42. 0.0 
8.43.30.0 
8.45. c.o 
8.46.3e.c 
8.48. 0.0 
8.49.30.0 
8.51. 0.0 
8.52.30.0 
8.54. 0.0 
9.55.3C.0 
8.51. 0.0 
8.58.30.0 
s. v. c.o 
9. 1.30.0 
9. 3. 0.0 
9. 4.30.0 
9. 6. 0.0 
9. 1.30.0 
~. 9. 0.0 
9.10.30.0 
9.12. 0.0 
9.13.30.C 
9.15. 0.0 
9.16.30.0 
9.18. 0.0 
9.19.30.0 
9.21. 0.0 
9.22.30.0 
~.24. c.o 
9.25.30.0 
9.21. 0.0 
S.28.30.0 
9.30. 0.0 

TIME 

and data set information will provide sufficient 
data so that a rearrangement of devices and data 
sets to produce better balance can be achieved. A 
new system performance profile should be con
structed to verify the change. 

work .can be placed on one channel with little 
effect on the system throughput. 

A small channel overlap when the channel utiliza
tion is low, means that all the work can be put on 
one channel with little effect on the job stream 
processing time. 

3. HIGH CHANNEL UTILIZATION 

2. CHANNELIMBALANCE 

The system data sets should be examined. There 
may be a problem as to which routines are resident/ 
non-resident. A measurement should be made to 
determine transfer time of system routines relative 
to total device active time. If the transfer time is 
high, make all system routines non-resident and 
measure their activity to determine which routines 
to make resident/non-resident. 

If the channel utilization is high, but the channel 
load is not balanced, the device activity needs to 
be measured to determine device rearranging. A 
new system performance should be constructed to 
verify the results. 

Low channel utilization would indicate that all the 

Another possible cause is record blocking in data 
sets on direct access devices. Measure the I/O de
vice utilizations and examine the data sets on each 
device to locate ones in which a larger number of 
records could be placed in each block to increase 
the efficiency of access. 



30 Spring Joint Computer Conference, 1971 

SYSTEM/3t( ~OOEL 4C A~C 5C ANALYSIS 

SElEeT(R CHA~NEL 2 eusy ~OCEL 50 leASE"GI 

O· 10 2"· 3C 40 5 i.) b(' 7C ~~ 9':. Ie': 
Jce SEes. )( i x x x )( )( K X 'I 

~ ............................................................................... : ......... : ......... : 
24 9C.G 
24 le(.( 
24 27' ••. ) 
24 31:(, .~ 
24 45) .r 
24 'j4\.'. v 

24 ~3(101 

24 72\.. C 
24 '110 •• -
24 C;v1.C 
24 C;"I).~ 
24 1:8:).0 
24 l17J.O 
24 1260.(' 
24 13 5'J. 'J 
24 144::.(J 
24 153('.C 
24 1b2,).0 
24 17l().O 
24 181)',.0 
24 Ul9:::.C 
24 1«;8).0 
24 2(71).0 
24 2lt:G.C 
24 225:).0 
24 234:.C 
24 2431.0 
24 2520.0 
24 2HI).C 
24 27.)').C. 
24 219(,.0 
24 28ao.o 
24 2c;7C.': 
24 3((:C.C 
24 3l5u.O 
24 324(,.0 
24 3331.0 
24 3420.0 
24 3510.(; 
24 3bO(.(. 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
55';5555 
5 
5 
5 
5 
5 
55!:5 
55'S5 
':i 
5 
5 
5 
5 
55 
55555 
':i 
5 
5 
5 
5 
5 
':i 
5 
5 
5 
5 
5 

5 • • : : : • • • • • 
; ••••••••• : ••••••••• ; •••••••••••••••••• * ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

iI.31.3(,.~ 

e.3~. G.e 
!!.34.30.C 
'1.3b. ':. C 
'l.37.311.C 
A..39. (j.1 
13.4(·. 3C..C 
ij.42. c.,) 
'J.43.3C.C 
8.45. (!.C 
d.4b.30.~ 

8.48. (;.G 
iI.49.30.u 
3.51. C.V 
~.')2.3t.C 
.J.54. t.O 
8.55.3C.C 
11.57. t.:) 
'l.5R.3C'.O 
Ci. ":0. \.1. ') 

9. 1.3{.1l 
<i. 3. 0.\.1 
~. 4. ~I). 1 
9. 6. ~.C 
9. 1.3(;.0 
9. 9. l.~· 

9.10.'\(..C 
9.12. 'j.~ 

q.13.3(:.': 
9.15-• .:: • .; 
9.lf .. ](o.:> 

'i.l'l. 0.0 
9.1q030.~ 

Q.2l. v.J 
<; • .22.3".'; 
q.24. C • .,) 
<;.2'j.~t.o) 

9.21. li.') 
q.lR.3~.J 

<f. ~r •• (. J 

JOB SEes. x x x 1( x )( '( '( l( )( 

~ 1e 2~ 3~ 40 51) be 7( 8; cr lel 

Figure 8-Histogram of selector channel 2 busy 

4. LARGE WAIT ONLY 

If the profile shows a large amount of WAIT 
ONLY, measure the SEEK ONLY. A large portion 
of SEEK ONLY time of the WAITI\ANY 
CHANNEL BUSY time, means the system is 
waiting for seeks to complete. This indicates a poor 
data set placement. The direct access devices 
should be measured to find the cause of arm con
tention. The AVERAGE SEEK TIME can be 
determined by measuring the SEEK TIME and 
count of the NUMBER OF SEEKS on each de
vice. This information should be correlated with 
the console log to determine which programs and 
hence which data sets caused the arm contention. 
Measurements can also be made of SEEK 
WITHIN DATA SET to determine the number of 
seeks and the duration of seeks within each data 
set. Partitioned data sets can be examined to see 
if there is excessive arm movement between the 
sequential sets. SEEK TIME can be reduced by 

rearranging the data sets on the same pack or 
moving them to different disk packs. 

If the SEEK ONLY is insignificant, operation 
problems are indicated. Possible causes are difficult 
operator set up procedures, too few operators, poor 
job scheduling, etc. Measure the amount of NOT 
READY TIME which occurs on each device dur
ing the day. This can indicate operation problems 
or equipment malfunction. A large amount of 
WAIT ONLY TIME often occurs at shift changes. 

5. LARGE CPU ACTIVE ONLY 

A large CPU ACTIVE ONLY time .coupled with 
a low CPU-CHANNEL OVERLAP indicates the 
benefits of multiprogramming are not being ob
tained. Possible reasons are poor job scheduling 
(a balance is needed between CPU and I/O bound 
jobs); poor data set allocation (data set should 



Interpreting Results of Hardware Systems Monitor 31 

~EASUREO 101 b/7C SYSTEM/36~ ~OOEL 40 A~C 50 ANALYSIS 

Jce 

21t 
24 
24 
21t 
24 
l4 
24 
l4 
24 
24 
24 
24 
24 
24 
24 
24 
24 
21t 
74 
24 
24 
24 
24 
24 
24 
24 
21t 
21t 
24 
24 
21t 
21t 
24 
24 
24 
24 
24 
21t 
24 
24 

JOB 

ANY eHA~NEl PUSY AhO epu NAIT ~CCEl 5l CeASE-G. 

o 10 211 3C 40 50 60 70 80 9(l lC(, 
SEes. X X X X • X X X X X X Tl"'E •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * •••••••• 
9C.O 

ItlC.C1 
210.0 
36'.10(' 
45C.C 
5lte.v 
630.0 
72(;.1) 
tl10.0 
<;Ou.C 
C;90.Q 

lC8u.C 
1170.0 
1260.0 
1350.0 
144;;.0 
153~.C 
1620.C 
1710.C 
1800.0 
1890.0 
1 <;81.i.O 
21.10.(; 
2160.0 
225':>.0 
234u.O 
2430.0 
2520.C 
261V.O 
2700.0 
219C.C 
2880.0 
2HO.O 
3(60.0 
3150.(; 
3240.0 
3330.0 
342(.0 

711711. • 
77717777711111771771777 
711117777111171777717 
17171771777171 
7711177711717111 
71711717117111711117711117 
71111777 • • 
7711111171711111777 • 
71117111111171117177177711 
11711717711177771177111111177 • 
7111771777777717777177777777777 
111171171111177717177177171177. 
71117111777777711 • 
71171711777771777177777711117 • 
11711111717111177111. 
11717717111 • 
71777171717771177717. • 
77171777171111771717717171171171117 
11111717171171111171711711711 • 
11717777111111711177711171171 • 
77771717177111111711717777111771117171 
771111711771111111771171777111117117 
711117171711171111711111117177117 
1711177777771717717177171717111717 
11117777177777771177117117117711777 
1177171717171117111111111711111711 
7717777111717111111171777171711711 
11111711777777711111111777 • 
171111171111711171177171111117711711 
77171117771171 • • 
77711111111177171177771711171777 
77171177717777117 
171171 
717177 
7 
117 • • • 
777717777117117711717717777177717111 
7111 

351C.(; 7 . . . 

8.31.30.0 
8.33. C.O 
8.34.30.0 
11.36. ('.C; 
8.37.30.0 
8.39. v.1l 
8.4;). 3e. 0 
8.i.2. C.Ci 
8.43.3(.C 
8.45. o.t. 
8.46.30.0 
8.108. ~.o 
8.49.3~.0 
8.51. C.O 
8.52.3(.(, 
8.54. (;.0 
8.55.3(.'.0 
8.51. C.( 
8.58.3t.O 
<I. o ..... 0 
If. 1.3(1.0 
9. 3. (..0 
9. 4.30.0 
9. b. (\.0 
If. 1.30.0 
9. 9. C.c 
9.10.30.0 
9.12. 0.0 
9.13.30.0 
9.15. l.v 
C;.16.30.0 
9.18. C.o 
9.19.30.0 
9.21. 0.0 
9.21.30.0 
9.210. 0.0 
Cj.25.3t1.0 
9.27. 0.0 
C;.28.30.0 
9.30. 0.0 360(.C ! ......... ; ......•.. ; ......... ; ......... ; ......... ; ......... ; ......... ; ......... ~ ......... ; ......... ; 

SEes. x x x x x x x x x x x TIME 
o 10 2(; 3C 40 5C 6C 70 80 9C ICC 

Figure 9-Histogram of any channel busy only 

be on different channels so they do not have to be 
retrieved sequentially), or inefficiently written 
programs. Several of the production jobs which 
use a large part of the system resources should be 
selected and run stand alone in the system to 
create an individual job profile. These profiles show 
data set usage to make data set placement changes 
and processing phases which are CPU or I/O 
bound to enable efficient job scheduling. This will 
increase CPU utilization and system throughput. 

If the system performance still shows a large 
amount of CPU ACTIVE ONLY time, code op
timization of the programs which contribute most 
to the system load should be undertaken. Com
parators can be used to gather statistics of fre
quency distribution of instructions or set of in
structions, branches, iteration in data dependent 
loops, and percentage time in subroutines. From 
the statistics gathered, the programmer can see 
where efforts should be directed for code optimi
zation. 

Predictive methods for system reconfiguration 

It is possible to evaluate system configurations and 
calculate the effect on the job stream time resulting 
from that reconfiguration. The basic measured data is 
used in equations which define the new configurations 
to calculate a new job stream time. This new job stream 
time can be compared with the old job stream time 
from the measurement, to see if the change produced 
the desired effect. 

1. SYSTEM TIME EQUATION 

The time to process a job stream is composed of 
the overlapped and unoverlapped time of each of 
the units in the computing system. There are 
many alternate ways of expressing an equation for 
the system time. For example, the system time for 
the system profile of Figure 11 can be expressed 
by the sum of any of the nonoverlapping times 
which equal the total system time, e.g., SYSTEM 



32 Spring Joint Computer Conference, 1971 

~EASUREO leI 6110 SVSTEM/360 ~OOEL 40 A~D 5C ANALYSIS 

JOB 

24 
24 
24 
24 
24 
24 
24 
24 
l4 
24 
24 
24 
24 
24 
24 
l4 
24 
24 
l4 
24 
24 
24 
24 
24 
24 
24 
l4 
24 
24 
21t 
24 
24 
l4 
24 
24 
24 
~4 

24 
24 
24 

JCB 

SECS. 

90.0. 
180.0 
2111.0 
160.li 
45U.C 
540.<': 
E:3.:- .0 
721.: .\) 
8U.I .0 
<;'J(..O 
C;90.fJ 

1(;13\).0 
111~.': 
12b l).C 
135~ .0 
144';.0 
153J.U 
16l~.0 

1110.0 
180(.0 
1d90.0 
1 <;8'J.0 
2C70.0 
21b'J.0 
2l5f1.0 
2340.,) 
243\i.U 
2520.C 
261v.0 
27')0.0 
219(;.0 
l880.C 
2C;1J.O 
3C60.0 
3150.(; 
324<1.0 
333:).0 
342).0 
3511;).(' 
360fj.() 

SEes. 

C·p\. "A I' "(DEL 50 CBASE=G) 

v le 2C 30 40 5J 60 10 80 ~o lC~ 
x x x x x x x x x x x 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
1IIIIIIIll 11111111 1111111111111111111111111 III 11111111111111111111111 III lilt 111111 1111 111111 1 
11111111 11111111111111111 I 1111 I II 111111111 II II 11111111 n II II II I III I [J 11111111 
111111111111111111111l11l111l11l1l11l11l111l1l11l11l11l1l. • 
11111111111 I III 11111 II 1111 111111111111 III 111111111111111111111111111111 
II 11111111111111111111111111111111111 I 111111111111111 11111111111 I 1111111 
11111111111111111111111111 11111 II 11111111111 II 111111111111111111 1111 • • • 
1IIl1lIIllii 111111111111111111 III I 111111111 IIIIl II 11111 111111111 I 1111 I II I II I II IlIIIIII 111111 
11111111 111111111111111111 I II II II 111111111111111 II II 11111111 III I 11111111 I II 1111 I tI til 
IIJIIII1IlIIIIIIIIIIIlllltIlIIIIlIIlIlIIlIIIIlIlIIIIIIII. • 
111111.1111111 111111 II I I II I 1111111111 II II I I II 11111 I III II 11111111111111 • 
II II II II 11111111 I 1111 I II 1111 II II 11111 III 1111 II II 11111 1111 I II II 11111 II I III 
1111111 111111111111111 I 1111111 I II III II II I 1111111 I 11111 II II 1111111 1111 • • 
1111111111111111111111 I III II 111111111 III I 111111 III 1111 1111 II 11111 III I III I 11111 II III III 
11111111111 11111 I III 11111 I III II 1111111 111111 11111111 III 11111 I II I I II 111I I II II II I • 
1111 111111111111111 1111111111111111111111 I 
1111111111111111111111111111 • 
1111111111111111111111111111111111 ••• 
1111 II 11111111111111 II 1111 I II 1111111 II II II I I II III I II II II 11111 1111 I 1111 II II 
11111111 11111 III 11111 I I III 111111 II 11111 III 1111 III I II 1111 II 1111111111 I 1111111111 • 
1111111111 111111 III 1111111111111111111 II I I 1111111 II 1111 111111111111111111 II 1111 • 
111111111111111111 II 111111111111111111 II I 1111111 II 11111 III 111111 I III I II I III II 
11111111111111111111111111111111111111111111111111111111111111111111111111111 
1IIIIIIIllIIIll I 111111111 III I 111111111 II 1111 III 11111 II 1111 II 1111 II II III I III 1 I 
1111111111 1111111111111 1111111 J II 1111111111 II 1111111111 I II 11111 1 I III 1111 II I 
111 [ I1111111 [ III III J 111 III [[ 11111 11111 1111111111 II II 1111 II II 11111111 I 1111111 
I [ III [ I I II [ III 1111111111l11l1111l1l1111l111l1l1 II I 11111 11111 II III II I 11111[ II I 
1111111 11111111 1IIIIIIIIII1I1I11IIIlIIIIIIII [III II I II 111111111111111 
11I[1I11111l111111111l1IJIIIIIIIIIIIIJIIIIIJIIIIlIlIlIlII • 
I I I III 11111111 11111 I III II III I II II 11111111111111 1111111 II II 11111 I II. • • 
I [ 1111 1111111111 I 11111 [ 111111 I II III II I 111111111111111 II [ 11111111111111 11111111 [II I [ 11111111 [ [ 
I I [ [ 11111111111 I II II III III I II 1 I [II 111111111111 II 111111 111111111111111111 III [ 1 [ I 1I11 t 
111111111111 IlII II [II 1111 11111 I 1111 11111 1111111 III 1111111111 III I [ II I II II 1111111111 I II [ II • 
I [ II II II 1111111111 IIllll1 1 II II 11111111 II II III III 1111111 III 1111111111111 I 111111 111111 [ 1111111 
111 I II II II I II 1111 I III I II II II 11111111 II I 11111 IIUII 1111 I II III III 1111 II I 111111 II II 111111 II [ [ 1111111 • 
111111111111 11111111111 11111 II II I II 11111 111111 II 11111 11111111111111 II [ II II II 111111 II III flll 1111111111 
II III 1IIIIIllIII 111111 III I 1111 IIIIl 1111111111111 1111 11111111 I II I I II I II II I III II II 111111111 I JlIIII 
IlIlI1 11111111111111 II 1 II 111 II III II II II III II II II II II IIl1ll II 111111111 III 11111111 I II • 
II III I 1111111111111111111 I II I II 11 11111 III II 11111 1111 I 111111111 III II 1111 [ 1111 [ 1111 1111111 1111111111 • 
III III 11111111 II II 111111111111111 II 1111 II II II II 1111 III 1111111111 I 11111111 III 111111 1111 [ 11111111 111111 
11111 I I III J III II 1111111 II II 111111 11111 11111111 11111111 111111111 1111111 II I II III t 11111111111 [ I J I I II III. 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
x x x x x x x x x x x 
C le 20 3C 40 50 6C 1C 80 9J lee 

Figure 10-Histogram of CPU wait 

TIME=CPU ACTIVE ONLY TIME+ANY 
CHANNEL BUSY TIME+CPU WAIT ONLY 
TIME. The system time equation forms the basis 
for estimating the effect of all configuration 
changes. 

TOTAL 

CPU ACTIVE 

SYSTEM WAIT 

2. THROUGHPUT TIME REDUCTION CHANNEL 1 BUSY 

A change in the speed of a unit only affects the 
throughput by reducing the nonoverlapped time 
of that unit. This assumption is a good approxima
tion of the system behavior and will be used 
throughout the analysis to calculate the effect of 
configuration changes. The resulting reduction in 
the overlapped time does not affect the overall 
system time. The relationships of the components 
will vary but the sum of the times of the unaffected 
units will not change. As an example, the substitu
tion of a faster CPU will have the effect of reducing 
the total system time by the amount of time that 
the CPU ACTIVE ONLY TIME is reduced. In 

CHANNEL BUSY 

CHANNEL OVERLAP 

ANY CHANNEL BUSY 

CPU ACTIVE ONLY H 

CPU CHANNEL OVERLAP 

ANY CHANNEL BUSY ONLY 

WAIT ONLY 

ELAPSED TIME 

Figure II-System performance profile 

TIME 

E.31.3f).C 
jj.33. o.e 
8.34.3e.( 
13.36. v.e 
8.31.3(:.0 
B.39. :>.e 
8.4C.3e.c 
8.42. c.~ 
8.43.)0.0 
8.45. (:.0 
!J.46.1C'.C 
~.48 •. :.c 
8.49.3~.C 
@.!>1. C.c 
~.52.30.C 
8.54. o.c 
!!.55.3U.O 
A.51. t'.C 
8.58.3(.0 
9. ll. 0.0 
9. 1.3e.') 
9. 3. <..i.e 
9. 4.3l!.C 
9. 6. c.c 
q. 1. 3t'. C 
9. 9. (.e 
q.l : ... 3(.. C. 

9.12. v.i: 
9.13.30.(; 
9.1". {I.e 
<;.10.3(;.0 
<;.18. v.f 
~.19.3ri.(I 

".11. 1...(\ 
9.l2.30.0 
q.21t. 0.0 
".25.30.C 
9.21. l.e 
9.2b.3l.v 
S.3':·. v. C 

TI"'E 



order to calculate the effect of increasing the speed 
of a component, a measurement, must be made 
which isolates the nonoverlapped portion of that 
component. Thus, to calculate the effect of in
creasing the CPU speed one must make a measure
ment that will isolate the CPU ACTIVE ONLY 
TIME, and for increased device speed, the meas
urement must isolate ANY CHANNEL BUSY 
ONLY TIME. Improvement factors will be ap
plied to these nonoverlapped times and then added 
to the other times which make up the system time 
to calculate a new system time. 

C onjiguration change equations 

1. INCREASED CPU SPEED 

The CPU ACTIVE ONLY TIME, ANY CHAN
NEL BUSY TIME and WAIT ONLY TIME are 
measured. Then an improvement factor for the 
increase in the CPU speed is used to modify the 
system time equation. For a CPU which is twice 
as fast, the improvement factor is 2. The new 
system time is NEW SYSTEM TIME = CPU 
ACTIVE ONLY TIME/IMPROVEl\1ENT FAC
TOR+ANY CHANNEL BUSY TIME+CPU 
WAIT ONLY TIME. 

This new system time is the time to process 
the job stream that was measured by the monitor. 

2. INCREASED DEVICE SPEED 

The CPU ·ACTIVE TIME, ANY CHANNEL 
BUSY ONLY TIME and CPU WAIT ONLY 
TIME are measured. Then an improvement factor 
for the increased device speed is used, e.g., for 
direct access devices use the ratio of the new aver
age rotational delay divided by the old average 
rotational delay. Next calculate a new system time 
by the following equation: NEW SYSTEM 
TIME = CPU ACTIVE TIME+ANY CHAN
NEL BUSY ONLY TIME/IMPROVEMENT 
FACTOR+CPU WAIT ONLY TIME. 

3. INCREASED/DECREASED SEEK SPEEDS 

The CPU ACTIVE ONLY TIME, ANY CHAN
NEL BUSY TIME, SEEK ONLY TIME, and 
WAIT ONLY TIME are measured. Figure 12 
shows the measured times. An improvement factor 

Interpreting Results of Hardware Systems Monitor 33 

TOTAL SYSTEM 

CPU ACTIVE 

CPU WAIT 

ANY CHANNEL BUSY 

CPU ACTIVE ONLY 

SEEK ONLY I-----t 

WAIT ONLY 

TIME 

Figure 12-System profile including 1/0 measurement 

for the change in seek speed is used, e.g., the ratio 
of the new average seek time divided by the old 
average seek time. The new system time is given 
by the equation: NEW SYSTEM TIME = CPU 
ACTIVE ONLY TIME+ANY CHANNEL 
BUSY TIME+SEEK ONLY TIME/IMPROVE
MENT FACTOR+CPU WAIT ONLY TIME. 

4. SLOWER CPU 

The CPU ACTIVE TIME, ANY CHANNEL 
BUSY ONLY TIME and WAIT ONLY TIME 
are measured. An improvement factor is used for 
the decrease in CPU speed and the new system 
time is calculated by the equation: NEW SYSTEM 
TIME = CPU ACTIVE TIME/IMPROVE
MENT FACTOR+ANY CHANNEL BUSY 
ONLY TIME+WAIT ONLY TIME. 

Notice that this equation is not the same as for 
calculating the effect of substituting a faster CPU. 
In the case of the slower CPU, the assumption is 
made that the overlap between the CPU and the 
channels remain constant, instead of decreasing as 
in the faster CPU case. 

5. SLOWER I/O DEVICES 

The CPU ACTIVE ONLY TIME, ANY CHAN
NEL BUSY TIME and WAIT ONLY TIME are 
measured. An improvement factor for the decrease 
in device speed is used for calculating the new 
system time: NEW SYSTEM TIME=CPU 
ACTIVE ONLY TIME+ANY CHANNEL 
BUSY TIME/IMPROVEMENT FACTOR+ 
CPU WAIT ONLY TIME. 



34 Spring Joint Computer Conference, 1971 

TOTAL SYSTEM 

CPU ACTIVE ONLY 

CHANNEL 1 BUSY 

CHANNEL 2 BUSY 

CHANNEL OVERLAP 
(CHANNEL 1 BUSY AND 

CHANNEL 2 BUSY) 

CPU WAIT ONLY 

TIME 

Figure 13-:-System profile with channels measured separately 

This equation is not the same as for substituting 
faster I/O devices. For slower I/O devices, the 
overlap between the CPU and channels is assumed 
to remain constant instead of decreasing as in the 
faster I/O device case. 

6. ALL WORK ON ONE CHANNEL 

The CPU ACTIVE ONLY TIME, CHANNEL 1 
BUSY TIME, CHANNEL 2 BUSY TIME, ... , 
CHANNEL N BUSY TIME, and CPU WAIT 
ONLY TIME are measured. The system profile is 
shown in Figure 13. The equation for the new 
system time using only one channel is: NEW 
SYSTEM TIME=CPU ACTIVE ONLY 
TIME+sum of CHANNEL BUSY TIMES+ 
CPU WAIT ONLY TIME. 

7. CHANNEL BALANCING 

This calculation is composed of two parts: 

Part 1: Measure CPU ACTIVE TIME, 
DEVICE DATA BUSY TIMES, 
CHANNEL BUSY TIMES and CPU 
WAIT ONLY TIME. 

Part 2: Examine the DEVICE DATA BUSY 
TIMES and specify a new device allo
cation on the channels so that a better 
balance of the channels is achieved. 
Calculate a new ANY CHANNEL 
BUSY ONLY TIME. The new sys
tem time is given by: NEW SYSTEM 
TIME=CPU ACTIVE TIME+ 
NEW ANY CHANNEL BUSY 

ONLY TIME+CPU WAIT ONLY 
TIME. 

An example of channel balancing is 
given in the next section, Example 3. 

8. SEVERAL CHANGES IN A SINGLE RUN 

The new system time is equal to the sum of the 
nonoverlapped times + the largest values of the 
overlapped times. It is necessary to very carefully 
consider the overlapped areas and determine which 
area is least affected by the speed change. Using 
the system profile shown in Figure 14, what is the 
effect of increasing the speed of the CPU by 2, 
I/O devices by 1.5, and seek times on the new 
devices by 2.5? 

Each area of the system profile is examined to 
determine which values to use for the new system 
time. 

AREA 1 The CPU ACTIVE ONLY TIME be
comes CPU ACTIVE ONLY TIME/2. 

AREA 2 Since the CPU ACTIVE TIME will be 
decreased more than the ANY CHAN
NEL BUSY TIME, AREA 2 is changed 
to CPU ACTIVE TIME 1\ ANY CHAN
NEL BUSY TIME/1.5. 

AREA 3 The new SEEK ONLY TIME is SEEK 
ONLY TIME/2.5. 

TOTAL SYSTEM 

CPU ACTIVE 

CPU ACTIVE ONLY 

CPU ACTIVE AND 
ANY CHANNEL BUSY 

CPU WAIT 

SEEK ONLY 

ANY CHANNEL BUSY ONLY 

CPU WAIT ONLY 

ANY CHANNEL BUSY 

AREA 1 
t-----1 

AREA 2 
I 

TIME 

AREA 4 

.AREA 3 
1-----1 

I I 

AREA 5 
t--f 

Figure 14-System profile for multiple system changes 



Interpreting Results of Hardware Systems Monitor 35 

AREA 4 The ANY CHANNEL BUSY ONLY 
TIME becomes ANY CHANNEL BUSY 
ONLY TIME/1.5. 

AREA 5 The CPU WAIT ONLY TIME is un
changed. 

Thus, 

NEW SYSTEM TIME 

= CPU ACTIVE ONLY TIJ\tIE --------------+ 
2 

EXAMPLES 

CPU ACTIVE TIME/\ANY 
CHANNEL BUSY TIME + 

1.5 

SEEK ONLY TIJ\tIE -------+ 
2.5 

ANY CHANNEL BUSY ONLY TIME 
1.5 + 

CPU WAIT ONLY TIME. 

All examples will ,use the same configuration and be run for the same period of time (3600 seconds). 

Configuration 

I-CPU 
2-CHANNELS 
4-DIRECT ACCESS DEVICES ON EACH CHANNEL 

(D1, D2, D3, D4) on channell 
(D5, D6, D7, D8) on channel 2 

EXAMPLE 1 

Putting all of the channel work on one channel 

COUNTER DESCRIPTION SECONDS 

CO CPU ACTIV1~ 1200.00 
C1 CHANNEL 1 BUSY 900.00 
C2 CHANNEL 2 BUSY 60.00 
C3 ANY CHANNEL BUSY 945.00 
C4 ANY CHANNEL BUSY 1\ WAIT 630.00 
C16 ELAPSED TIME 3600.00 
C17 CO-(C3-C4) CPU ONLY 885.36 
C18 C16-CO-C4 WAIT ONLY 1769.64 

The NEW ANY CHANNEL BUSY is the sum of the channel activity 

C19 C1 +C2 NEW ANY CHANNEL BUSY 960.00 

PERCENT 

33.33 
25.00 

1.66 
26.25 
17.50 

100.00 
24.59 
49.15 

The NEW SYSTEM TIME is CPU ONLY + ANY CHANNEL BUSY + WAIT ONLY 

C20 
C21 

C17+C19+C18 
C20-C16 SYSTEM SLOW DOWN 

3615.00 
15.00 .41 

The above equation shows that there would be an increase in running time of 15 seconds by putting all work on one 
channel. The 15 seconds is exactly the amount of overlap that occurred when the work was on both channels. 



36 Spring Joint Computer Conference, 1971 

EXAMPLE 2 

Substituting a CPU that is twice as fast as the old CPU 

COUNTER DESCRIPTION 

CO CPU ACTIVE 
C1 CHANNEL 1 BUSY 
C2 CHANNEL 2 BUSY 
C3 ANY CHANNEL BUSY 
C4 ANY CHANNEL BUSY /\ WAIT 
C16 ELAPSED TIME 
C17 CO-(C3-C4) CPU ONLY 
C18 C16-CO-C4 WAIT ONLY 

SECONDS 

1200.00 
900.00 
60.00 

945.00 
630.00 

3600.00 
885.36 

1769-.64 

PERCENT 

33.33 
25.00 

1.66 
26.25 
17.50 

100.00 
24.59 
49.15 

The new system time is CPU ONLY/IMPROVEMENT FACTOR+ANY CHANNEL BUSY+WAITONLY 

C19 C17/2+C3+C18 3157.32 
C20 C16-C19 SYSTEM IMPROVEMENT 442.68 12.29 

TIME 

The above equation shows that there will be a decrease in running time of 442.68 seconds. 

COUNTER DESCRIPTION SECONDS PERCENT 

C21 C16/C19 RST 1.14 
C22 (CO-C17) /2 NEW CPU /\ CHANNEL 157.32 4.98 

OVERLAP 
C23 C19-CO/2 NEW WAIT TIlVIE 2557.32 80.99 
C24 CO/2 NEW CPU ACTIVE 600.00 19.00 

EXAMPLE 3 

Balancing Cha:p.nels 

COUNTER DESCRIPTION SECONDS PERCENT 

CO CPU ACTIVE 1200.00 33.33 
C1 CHANNEL 1 BUSY 900.00 25.00 
C2 CHANNEL 2 BUSY 60.00 1.66 
C3 ANY CHANNEL BUSY 945.00 26.25 
C4 ANY CHANNEL/\ WAIT 630.00 17.50 
C5 DEVICE 1 DATA BUSY 150.00 4.16 
C6 DEVICE 2 DATA BUSY 100.00 2.77 
C7 DEVICE 3 DATA BUSY 350.00 9.72 
C8 DEVICE 4 DATA BUSY 300.00 8.33 
C9 DEVICE 5 DATA BUSY 10.00 .27 
C10 DEVICE 6 DATA BUSY 30.00 .83 
C11 DEVICE 7 DATA BUSY 15.00 .41 
C12 DEVICE 8 DATA BUSY 5.00 .13 
C16 ELAPSED TIME 3600.00 100.00 

This measurement shows that channels 1 and 2 are not balanced with respect to utilization. An examination of the 
device utilizations shows that a better device allocation is: 

Channell should have devices 2,3,5, 7 for a channel utilization of 475 seconds. 

Channel 2 should have devices 1,4,6,8 for a channel utilization of 486 seconds. 



Interpreting Results of Hardware Systems Monitor 37 

N ext a new system time is computed 

COUNTER DESCRIPTION 

C17 C16-CO-C4 WAIT ONLY 
C18 C6+C7+C9+C11 NEW CHANNEL 1 

BUSY 
C19 C5+C8+C10+C12 NEW CHANNEL 2 

BUSY 

SECONDS 

1769.64 
475.00 

486.00 

PERCENT 

49.15 
13.19 

13.74 

Since there does not exist an ANY CHANNEL BUSY for the new device arrangement, it will be estimated by using 
probability theory. 

C20 C18VC19 869.04 24.89 

The new ANY CHANNEL BUSY ONLY is assumed to be proportional to the old ANY CHANNEL BUSY ONLY 
TIME 

COUNTER 

C21 

DESCRIPTION 

(C20jC3)*C4 

SECONDS 

597.64 

PERCENT 

The NEW SYSTEM TIME is CPU ACTIVE + ANY CHANNEL BUSY ONLY + WAIT ONLY 

C22 
C23 

CO+C21+C17 NEW SYSTEM TIME 
C16-C22 SYSTEM IMPROVEMENT 

TIME 

3567.68 
32.32 

The above equation shows that there will be a decrease in system time of 32.32 seconds. 

EXAMPLE 4 

Calculating a new system time when different types of devices are on the same channel. 

.89 

The basic configuration will be expanded to include tape as well as disks on channel 2. Then a new system time will 
be calculated for tapes that are twice as fast. Since tapes and disks exist on the same channel, the measurement 
should isolate the time that only the tape is operating so that the unit improvement factors can be applied. 

The following measurement is made: 

COUNTER DESCRIPTION SECONDS PERCENT 

CO CPU ACTIVE 1200.00 33.33 
C1 CHANNEL 1 BUSY 900.00 25.00 
C2 CHANNEL 2 BUSY 700.00 19.44 
C3 ANY CHANNEL BUSY 1424.88 39.58 
C4 ANY CHANNEL BUSY /\ WAIT 949.68 26.38 
C5 TAPES BUSY /\DISK ON 640.00 17.77 

CHANNEL 2 NOT BUSY 
C6 TAPES ONLY /\ WAIT 426.24 11.84 
C16 ELAPSED TIME 3600.00 100.00 
C17 C16-CO-C4 WAIT ONLY TIME 1450.32 40.28 



38 Spring Joint Computer Conference, 1971 

The NEW ANY CHANNEL BUSY ONLY is equal to ANY CHANNEL BUSY ONLY-TAPE ONLY/IM
PROVEMENT FACTOR. The NEW SYSTEM TIME is equal to CPU ACTIVE+NEW ANY CHANNEL BUSY 
ONLY + WAIT ONLY. 

C18 CO+C4-C6/2+CI7 NEW SYSTEM 
TIME 

3386.88 

C19 C16-C18 SYSTEM IMPROVEMENT 
TIME 

213.12 5.92 

Equation 19 shows that substituting a tape twice as fast will reduce the system time by 213.12 seconds. 

SUMMARY 

The paper has presented a description of hardware 
monitors, effective methods of optimizing installation 
throughput and costs, provision for a historical base 
for predicting future system needs, and significant 
events to measure. The interpretation of the monitoring 
results are discussed in detail. Consideration is given 
to system configuration, programs, routine resident/ 
non-resident, data set allocation, job scheduling and 
operation methods. Stress is placed on predicting im
provements based on actual systems measurements in 
order to optimize the system with the actual job stream. 
The performance optimization cycles and the interpre
tation of the system performance profile were developed. 

REFERENCES 

1 C T APPLE 
The program monitor-A dev.ice for program performance 
measurement 
ACM 20th Nat Conf 1965 pp 66-75 

2 P CALINGAERT 
System performance evaluation: Survey and appraisal 
Comm ACM 10 January 1967 pp 12-18 

3 G ESTRIN D HOPKINS B COGGAN 
S D CROCKER 
Snuper computer-A computer in instrumentation 
automation 
FJCC 1967 pp 645-656 

4 F D SCHULMAN 
Hardware measurement device for IBM System/360 time 
sharing evaluation 
Proc ACM Nat Meeting 1967 pp 103-109 

5 D J ROEK W C EMERSON 
A hardware instrumentation approach to evaluat1:on of a 
large scale system 
ACM Nat Conf 1969 pp 351-367 

6 A J BONNER 
Using system monitor output to improve performance 
IBM Systems Journal 8 1969 pp 290-298 

7 How to find bottlenecks in computer traffic 
Computer Decisions April 1970 



4-way parallel processor partition of an atmospheric 
primitive-equation prediction model 

by E. MORENOFF 

Ocean Data Systems, Inc. 
Rockville, Maryland 

and 

W. BECKETT, P. G. KESEL, F. J. WINNINGHOFF and P. M. WOLFF 

Fleet Numerical Weather Central 
Monterey, California 

INTRODUCTION 

A principal mission of the Fleet Numerical Weather 
Central is to provide, on an operational basis, numeri
cal meteorological and oceanogr:;tphic products peculiar 
to the needs of the Navy. Toward this end the FNWC 
is also charged with the development and test of numeri
cal techniques applicable to Navy environmental fore
casting problems. A recent achievement of this de
velopment program has been the design, development, 
and beginning in September 1970, operational use of 
the FNWC five-layer, baroclinic, atmospheric predic
tion model, based on the so-called" primitive-equa
tions," and herein defined as the Primitive Equation 
Model (PEM). 

The PEM was initially written as a single-processor 
version to be executed in one of the two FNWC com
puter systems. In this form the PEM was exercised as 
a research and development tool subject to improve
ment and revision to enhance the meteorological fore
casts being generated. 

The development reached a point in early 1970 where 
the PEM was skillfully simulating the essential three
dimensional, hemispheric distribution of the atmos
pheric-state parameters (winds, pressure, temperature, 
moisture, and precipitation). Its ability to predict the 
generation of new storms, moreover, was particularly 
encouraging. The FORTRAN coded program, however, 
required just over three hours to compute a set of 36 
hour predictions. To be of operational utility, it was 
clear that several types of speed-ups were in order. 

The principal effort in the development of the opera
tional version of the PEM was directed at partitioning 
the model to take advantage of all possible computa-

39 

tional parallelism to exploit the four powerful central 
processing units available in the FNWC computer in
stallation. Additional speed-ups involved machine lan
guage coding for routines in which the physics were 
considered firm, and the substitution of table look-up 
operations for manufacturer supplied algorithms. The 
resultant four-processor version of the PEM was con
sidered ready for final testing in August 1970, four 
months after work was initiated. 

The one-processor version of the PEM required 184 
minutes of elapsed time for the generation of 36-hour 
prognoses. The four-processor version, on the other 
hand, requires only one hour of elapsed time to produce 
the same results. 

This paper summarizes the principal factors involved 
in the successful operation of the 4-processor version of 
the PEM. Operating System modifications needed to 
establish 4-way inter-processor communications 
through Extended Core Storage (ECS) are described in 
the second section. The PEM structure is described in 
the third section. The partitions into which the PEM 
is divided are examined in the fourth section. The fifth 
section is devoted to the methods employed for syn
chronizing the execution of the partitions in each of the 
multiple processors and the model's mode of operation. 
The results of the PEM development and reduction to 
operational use are summarized in the last section. 

FNWC COMPUTER SYSTEMS 
COMMUNICATIONS 

The Fleet N umerical Weather Central operates two 
large-scale and two medium-scale computer systems as 



40 Spring Joint Computer Conference, 1971 

Ell .. _ S'''' 

••• 
Figure I-FNWC computer system configuration 

shown in Figure 1. The two CDC 2200 computer sys
tems communicate with each other through a random 
access drum. One of the CDC 3200 computers is linked 
to one of the CDC 6500 computers by a manufacturer
supplied satellite coupler. The two dual-processor CDC 
6500 computer systems are linked with each other 
through the one million words of Extended Core Stor
age (ECS). 

Normally, the ECS is operated in such a manner 
that 500,000 words are assigned to each of the two 
CDC 6500 computer systems with no inter-communica
tion permitted. A mechanism was developed by the 
FNWC technical staff allowing authorized programs in 
each of the four central processors of the two CDC 
computer systems to communicate with each other and, 
at the same time, be provided with software protection 
from interference by non-authorized programs. 

There are three classifications of ECS access, normal, 
master and slave, designated for each job in the sys
tem by an appropriate ECS access code and a pass key. 
For normal ECS access these fields are zero. If the ECS 
access code field designates a job as a master, then the 
associated pass key will be interpreted as the name of 
ECS block storage assigned to that job. A slave has no 
ECS assigned to it but is able to refer the ECS block 
named by its pass key. 

A master job in one of the CDC 6500's may have 
slave jobs in the other CDC 6500. A communication 
mechanism called lSI was established between the 
operating systems by FNWC technical staff to facili
tate implementation of the master-slave ECS access 
classification. lSI is a pair of bounce PP routines (one 
in each machine) which provide a software, full duplex 
block multi-plexing channel between the machines via 
ECS. Messages and/or blocks of data may be sent over 

this channel so that lSI may be used to call PPpro
grams in the other machine or to pass data such as 
tables or files between the machines. 

Obtaining a master/slave ECS access code is accom
plished by two PP programs: ECS and lEC. A job 
wishing to establish itself as a master first requests a 
block of ECS storage in the same manner of a normal 
access job. Once obtained, the labeling of this block of 
ECS storage is requested by calling the PP program 
ECS with the argument specifying the desired pass key 
and the access code for a master. The program ECS 
searches the resident control point exchange areas 
(CPEA) for a master with the same pass key. If one is 
found the requesting job is aborted even if the program 
ECS used lSI to call lEC in the other machine. lEC 
will perform a similar search of the CPEA in its own 
machine and return its findings to the program ECS 
via lSI. If the other machine is down, or if no matching 
key can be found, the label is established, otherwise the 
requesting job is aborted. Before returning control to 
the requesting job, the program ECS increments the 
ECS parity error flag and monitors via a special moni
tor function developed at FNWC. A non-zero value of 

~ 

this flag has the effect of preventing ECS storage moves 
in the half of ECS assigned to the particular machine. 

Similarly, a job wishing to establish itself as a slave 
calls the PP program ECS with the appropriate pass 
key and access code. ECS searches its own machine's 
CPEA for a master with a matching key. If none is 
found, lEC is called on the other machine via lSI and 
the search is repeated in the other CPEA. If still none 
is found, this fact is indicated to the requesting job. If 
a match should exist in either machine, the original 
ECS will have the address (ECRA) and field links 
(ECFL) of the requesting job saved in its CPEA and 
will be given the ECRA and ECFL of the matching 
master. 

Modifications made to the ECS storage move pro
gram allow ECS storage moves in a machine with no 
master present. Modifications to the end of job pro
cessor reset the ECRA and ECFL of slaves to their 
values and decrement the ECS parity error flag in the 
monitor when a master terminates. 

ATMOSPHERIC PREDICTION MODEL 
STRUCTURE 

Several developmental variations of a five-layer baro
clinic atmospheric prediction model, based on integra
tions of the so-called primitive equations, were designed 
and developed by Kesel and Winninghoff1 in the 1969-
1970 period at FNWC Monterey. 

The governing equations are written in flux form in a 



manner similar to Smagorinsky et al., 2 and Arakawa. 3 

The corresponding difference equations are based on 
the Arakawa technique. This type of scheme precludes 
nonlinear computational instability by requiring that 
the flux terms conserve the square of an advected pa
rameter, assuming continuous time derivatives. Total 
energy is conserved because of requirements placed 
upon the vertical differencing; specifically, the special 
form of the hydrostatic equation. Total mass is con
served, when integrated over the entire domain. Linear 
instability is avoided by meeting the Courant-Fried
richs-Lewy criterion. 

The Phillips4 sigma coordinate system is employed 
in which pressure, P, is normalized with the underlying 
terrain pressure, 7r. At levels where sigma equals 0.9, 
0.7, 0.5, 0.3, and 0.1, the horizontal wind components, 
u and v, the temperature, T, and the height, Z, are 
carried. The moisture variable, q, is carried at the 
lowest three of these levels. Vertical velocity,w == - if, 
is carried at the layer interfaces, and calculated diag
nostically from the continuity equation. See Figure 2. 

The Clarke-Berkovsky mountains are used in con
junction with a Kurihara 5 form of the pressure-force 
terms in the momentum equations to reduce stationary 
"noise" patterns over high, irregular terrain. 

The Richtmyer centered time-differencing method is 
used with a ten-minute time step, but integrations are 
recycled every six hours with a Matsuno (Euler back
ward) step to greatly reduce solution separation. The 
mesh length of the grid is 381 kilometers at 60 North. 
The earth is mapped onto a polar stereographic projec":' 
tion for the Northern Hemisphere. In the calculation 
of map factor and the Coriolis parameter, the sine of 
the latitude is not permitted to take on values less than 
that value corresponding to 23 degrees North. 

Lateral diffusion is applied at all levels (sparingly) 
in order to redistribute high frequency components in 
the mass and motion fields. Surface stress is computed 
at the lowest layer only. 

A considerable part of the heating "package" is 
fashioned after Mintz and Arakawa,6 as described by 
Langlois and K wok. 7 The albedo is determined as a 
function of the mean monthly temperature at the 
earth's surface. A Smagorinsky parameterization of 
cloudiness is used at one layer (sigma equals 0.7), but 
based on the relative humidity for the layer between 
0.7 and 0.4. Dry convective adjustment precludes hy
drostatic instability. Moisture and heat are redistrib
uted in the lowest three layers by use of an Arakawa
Mintz small-scale convection parameterization 
technique. Small-scale convective precipitation occurs 
in two of thf;f three types of convection so simulated. 
Evaporation and large-scale condensation are the main 
source-sink terms in the moisture conservation equa-

4-Way Parallel Processor Partition 41 

'aria~les SISM. 

________________ 0.0 

1,',T,1 ---- -------
1.2 

• -------- --1,',T,1 __ --- u 

• ------ -- ----0.& 

1",T,l" __ - -- -----• __ ..--- U -----1",T,l" __ -- --

• 
1",T,l" 

Figure 2-Diagram of levels and variables 

tion. Evaporation over land is based on a Bowen ratio, 
using data from Budyko. 

In the computation of sensible heat flux over water, 
the FNWC-produced sea surface temperature distri
bution is held constant in time. Over land, the required 
surface temperature is obtained from a heat balance 
equation. Both long- and short-wave radiative fluxes 
are computed for two gross layers (sigma = 1.0 to 0.6 
and from 0.6 to 0.2). The rates for the upper gross 
layer are assigned to the upper three computational 
levels. Those rates for the lower gross layer are assigned 
to the lower two computational levels. 

The type of lateral boundary conditions which led to 
the over-all best results is a constant-flux restoration 
technique devised by Kesel and Winninghoff, and imple
mented in January 1970, 

The technique was designed to accomplish the follow
ing objectives: 

a. To eliminate the necessity of altering the initial 
mass structure of the tropical-subtropical atmos
phere as is the case when cyclic continuity is 
used. 

b. To eliminate the problems associated with the 
imposition of rigid, slippery, insulated-wall 
boundary conditions; particularly those· con
cerning the false reflection of the computational 
mode at outflow boundaries. 

c. To preserve the perturbation component in the 



42 Spring Joint Computer Conference, 1971 

aforementioned areas in the prognostic period 
(although no dynamic prediction is attempted 
south of 4 North the output is much more 
meteorological than fields which have been fat
tened as required by cyclic continuity). 

The procedure is as follows: All of the distributions 
of temperature, moisture, wind, and terrain pressure 
are preserved at initial time. A field of restoration co
efficients which vary continuously from unity at and 
south of 4 North to zero at and north of 17 North is 
computed. At the end of each ten minute integration 
step the new values of the state variables are restored 
back toward their initial values (in the area south of 
17 North) according to the amount specified by the 
field of restoration coefficients. The net effect of this 
procedure is to produce a fully dynamic forecast north 
of 17 North, a persistence forecast south of 4 North, 
and a blend in between. The mathematical-physical 
effect is that the region acts as an energy sponge for 
externally (outwardly) propagating inertio-gravity 
oscillations. 

The basic inputs associated with the initialization 
procedure are the virtual temperature analyses for the 
Northern Hemisphere at 12 constant pressure levels 
distributed from 1000 MBS to 50 MBS, height analyses 
at seven of these pressure levels, moisture analyses at 
four levels from the surface up to 500 MBS. In addition, 
the terrain height, sea level pressure and sea surface 
temperature analyses are used. 

Several types of wind initialization have been tried: 
geostrophic winds (using constant Coriolis parameter) ; 
linear balance winds; full balance winds; winds obtained 
by use of an iterative technique. Aside from geostrophic 
winds the quickest to compute is the set of non-diver
gent winds derived from solution of the so called linear 
balance equation. These are entirely satisfactory for 
short-range forecasts (up to three days). 

The degree of prediction skill currently being ob
served from the tests is very gratifying. It is clear that 
little or nothing is known about the initial specification 
of these parameters over large areas of the Northern 
Hemisphere, particularly over oceans and at high 
altitudes. 

As noted at the start of the section, the equations 
are written in flux form and an Arakawa-type conserva
tive differencing scheme is employed. No attempt will 
be made to exhibit herein a complete set of the corre
sponding difference equations, since it is well beyond 
the scope of this paper to do so. Rather, it will suffice 
to show the main continuous equation forms (using 
only symbols such as H, Q, and F, to denote all of the 
diabatic heating effects, moisture source and sink terms, 
and surface stress, respectively). 

There are five prognostic equations, one of which 
must be integrated prior to parallel integration of the 
remaining four. These are the continuity equation, the 
east-west momentum equation, the thermodynamic 
energy equation, and the moisture conservation equa
tion. Heights (geopotentials) are computed diagnos
tically from the hydrostatic equation (the scaled 
vertical equation of motion). Vertical velocities are 
calculated from a form of the continuity equation. The 
pressure-force terms are shown in their original forms. 
[The pressure surfaces are actually synthesized" locally" 
about each point, by means of the. hypsometric con
version of pressure changes to geopotential changes; 
and geopotential differences are computed on these 
pressure surfaces.] This Kurihara-type modification 
tends to reduce inconsistent truncation error when 
differencing the terrain pressure (which remains fixed 
in any column) and geopotentials of sigma surfaces 
(the "smoothness" of which varies with height). 

A. East-West Momentum Equation 

a7rU = _m.J~(UU7r)+~(UV7r)}+~ 
at lax m ay m au 

B. North-South Momentum Equation 

a7rV = _ m2{~(UV7r) +~(VV7r)}+~ at ax m ay m au 

C. Thermodynamic Energy Equation 

a7rT = _ mJ ~(7rUT) +~(7rVT\} at -lax m ay m-} 

RT{ [a7r (a7r a7r)]} +- -W7r+U -+m u-+ v-Cpu at ax ay 

D. Moisture Conservation Equation 

where Q=moisture source/sink term 



E. Continuity Equation 

;11r = _mJ~(U1r)+~(V1r)}+1raw at -lax m ay m au 
F. Hydrostatic Equation 

afj> RT 

au u 

PARTITIONING THE MODEL 

The PEM may be considered in three distinct sec
tions: the data input and initialization section; the 
integration section repeated in each forecast time step; 
and the output section. Each sixth time step, the basic 
integration section is modified to take into considera
tion the effects of diabatic heating. This includes in
coming solar radiation, outgoing terrestrial radiation, 
sensible heat exchange at the air-earth interface, and 
evaporation, Condensation processes, in contrast, are 
considered every time-step. Each thirty-sixth time 
step, the results of the preceding forecast hours are 
output and the integrations reiterated. 

,...1 

Figure 3--Overall model partition structure 

4-W ay Parallel Processor Partition 43 

The basic structure of the PEM, as represented by 
the governing set of difference equations and the 
method of their solution, is naturally suited for parti
tioning for parallel operation and concurrent execution 
in multiple processors. The particular partitioning im
plemented was selected in order to insure approximately 
equal elapsed time for the execution of concurrently 
operating partitions. Four-way partitions were princi
pally employed, although both three-way and two-way 
partitions were introduced where appropriate. 

The basic partition of the model was based on the 
observation that during each time step in the forecast 
process the momentum equations in the east-west and 
north-south directions, the thermodynamic energy 
equation, and the moisture equation could each be exe
cuted concurrently in each of four different processors. 
By virtue of the centered time-differencing method, the 
forcing functions to be evaluated in the solution of 
each of these equations require data generated during 
the preceding time step and accessed on a read only 
basis during the current time step. Hence parallel pro
cessing could be achieved by providing separate tem
porarylocations for storage of intermediate results 
during execution of a time step by each processor and 
by providing a mechanism to insure that each processor 
is at the same time step in the solution of its assigned 
equation and, where required, at the same level within 
that time step. 

With this four-way partitioning within the basic time 
step as a starting point, additional possibilities for 
simultaneity in the model's operation were observed 
and further partitions developed. For example,prior 
to the execution of the four-way partitioning within 
each time step a three-way partition was implemented 
which allowed the continuity equation to be solved for 
the interface vertical velocities and the local change of 
lower boundary pressure at the same time that geo
potential-field correction terms are generated. The 
model's initialization section was similarly partitioned 
three ways and the output section two ways. Finally, 
the heating effects computations were implemented as 
a three-way partition. 

The four-way, three-way and two-way partitions 
were packaged and compiled as four separate programs, 
one for each of the four FNWC processors. The overall 
structure of the partitioned model is illustrated in 
Figure 3. Following completion of the output section 
at time step (36), the integration sequence is recycled 
from time step (1) as shown. 

Processor 1 is designated as the "master" processor 
and Processors 2, 3, and 4 as the" slave" processors, 
both in the sense described in the inter-computer com
munications section and in the sense that each time step 
is initiated by command from Processor 1 and termi-



44 Spring Joint Computer Conference, 1971 

'-1 '- 2 ...... 

Figure 4-Typical time step partition structure 

nated by Processor 1 acknowledgment of a " complete" 
signal emanating from each of Processors 2, 3, and 4. 
At the completion of each step, results from the com
putations of that time step are transferred from tem
porary to permanent locations in storage and the next 
time step initiated. Once again, the transfer is initiated 
by command from Processor 1 and terminated by Pro
cessor 1 acknowledgment of a transfer complete signal 
received from Processors 2, 3, and 4. 

The structure of a typical time step partition is 
illustrated in Figure 4. At the start of the time step a 
three-way split is initiated by Processor 1 during which 
timePllocessor 1 integrates the continuity equation to 
obtain vertical velocities and Processors 2 and 3 com
pute the ten pressure-force-term geopotential correction 
fields in the east-west and north-south directions, re
spectively. At this time Processor 4 is not executing a 
portion of the model and may either be idling or operat
ing on an independent program in a multi .. programmed 
mode. The completion of the assigned· tasks by Pro
cessors 2 and 3 are signaled to Processor 1 which then 
initiates the basic four-way split. The variables u, v, T 
and e represent the new values of the variables obtained 

through integration of the east-west and north-south 
oriented momentum equations, the thermodynamic 
energy equation and the moisture conservation equa
tion, respectively. The variable L represents the com
putation of the effects of the large scale condensation 
process. 

Once the computations of the Ui, Vi and Ti (i= 1, 2, 
3, 4, 5) are initiated in Processors 1, 2, and 3, respec
tively, they proceed independently of one another to 
the end of the time step. Each "i" value represents 
another layer in the five-layer atmospheric model. 

An added consideration is introduced into the com
putations of PrQcessor 4, however~ Before the effects of 
the large scale condensation process can be computed 
for a layer, both the Thermodynamic Energy equation 
and the Moisture Conservation equation must be solved 
at that layer. Hence, a level of control is required to 
synchronize the execution of Processor 4 with Processor 
3 within the individual time step computations. Fur
ther, the Dry Convective Adjustment computation in 
Processor 4 requires the completion of all five layers 
of the Thermodynamic Energy equation before it can 
be initiated so that a second level of intra-step control 
is required. At the conclusion of the Dry Convective 
Adjustment computation, the Hydrostatic equation is 
integrated in Processor 4 to obtain the new geopotential 
fields. The time step is concluded with the transfer of 
intermediate time step results from temporary to 
permanent storage. 

The basic time-step partition structure is modified 
each sixth time step to include the effects of adiabatic 
heating. The heating section was implemented as a 
three-way partition illustrated in Figure 5. Additional 
intra-step level control is required to synchronize the 
execution of each of the partitions as shown in the 
figure.N ote that the heating partition in Processor 3 is 
itself divided to allow as great a degree of simultaneity 
as possible with the execution of partitions in Processors 
1 and 2. 

The output section, executed each thirty-sixth time 
step (at the completion of six forecast hours), is parti
tioned as shown in Figure 6. The output section parti
tions were placed in Processors 3 and7 4 principally for 
central memory space considerations, more central 
memory being available in these processors than in 
Processors 1 and 2. The basic. function of each output 
partition is co-ordinate transformation of the forecast 
variables and conversion to forms suitable for the user 
community. 

Each output partition is initiated by command from 
Processor 1. ProcesSor 4 may immediately begin pro
cessing of the east-west and north-south momentum 
equation variables but must wait on the transformation 
of the Phi. fields until Processor 3 has completed the 



Preprocessor program. A three-way partition was not 
implemented since the Preprocessor must be completed 
prior to the transformation of the Thermodynamic 
energy equation and moisture conservation equation 
variables. 

To increase total system reliability a checkpoint re
start procedure was designed and coded. At each out
put step (6, 12, 18, ... , 72 hours) all of those data fields 
required to restart the PEM are duplicated from their 
permanent ECS locations onto a magnetic tape by 
Processor 1, at the same time that Processors 3 and 4 
are processing the output forecast fields. The essential 
difference between these two data sets is that the re
start fields contain the variables on sigma surfaces as 
opposed to the pressure surface distributions required 
by the consumers. 

The "restart" procedure itself requires less than a 
minute. If the prediction model run is terminated for 
any type of failure (hardware, software, electric power, 
bad input data, etc.), the restart capability ensures 
that the real time loss will be less than ten minutes. 

In addition to the four processor version of the At
mospheric Prediction Model a two-processor version 
was also implemented. The primary motivation for the 
second implementation was to provide a back-up capa
bility with graceful degradation which could be oper
ated in the event one or two of the central processing 
units were down for extended periods. The two-pro-

Pnc_ 1 '1IC1SSIr 2 

Figure 5-Influence of heating on time step computation 

4-W ay Parallel Processor Partition 45 

.... : .n.s 1'1 _at. tIIll 1.".1 , .. lis .. • fl'lSSR SIIfICts. 

Figure 6-0utput partition structure 

cessor version will also be used as the vehicle for further 
research· and development efforts to improve the mete
orological and numerical aspects of the model, and the 
quality (skill) of the resultant forecasts. 

PARTITION SYNCHRONIZATION AND 
EXECUTION 

The parallel execution of the multiple partitions is 
realizable because it is possible to postulate a mecha
nism by which the operation of each partition in each 
of the multiple processors can be exactly synchronized. 
This mechanism is an adaptation to the requirements 
of the PEM and the characteristics of the FNWC 
computer installation of a general program linkage 
mechanism known as the Buffer File Mode of Oper
ation. 8,9,10 

Implicit in the Buffer File Mode of Operation is the 
concentration of all inter-program communications 
through Buffer Files. A Buffer File is a set of fixed 
length blocks organized in a ring structure and placed 
in each data path from one program to another. The 
program generating the data to be passed places the 
data into the· Buffer File once its operations on that 
data have been completed. The program to receive the 
data finds the data to be operated on in the Buffer 
File. 

The flow of data through the Buffer File is unidirec
tional; that is, one program may only write data to the 
Buffer File and the other may only read data from the 



46 Spring Joint Computer Conference, 1971 

Buffer File. Pointers are maintained which indicate 
which blocks in the Buffer File have last been written 
into and read from by the two programs involved in 
the data transfer. The Buffer File Mode of Operation 
can be used to synchronize the operation of otherwise 
asynchronously operating programs in the same or 
different processors by either of two methods. 

In the first instance, program synchronization is 
effected by regulating the streaming of data through 
the Buffer File from one program to another. The pro
gram writing data to a Buffer File cannot proceed be
yond the point in its execution when it is necessary to 
place data into the Buffer File and there is no room for 
additional data in the Buffer File. Similarly, a program 
reading data from the Buffer File cannot proceed be
yond the point· in its execution when it requires data 
from the Buffer File and there is no additional data in 
the Buffer File. The execution of a program, either 
waiting for additional data in its input Buffer File or 
for additional space in its output Buffer File, is tem
porarily delayed, and thereby brought into synchroni
zation with the execution of the other program. 

In the second instance, program synchronization is 
effected by conveying" change of state" or" condition" 
information from one program to the other. The Buffer 
File block size is chosen on the basis of the quantity of 
information to be passed between programs. The in
ternal state change of a program is noted as a block of 
data in that program's output Buffer File. The fact 
that there has been a change in state of the program 
can readily be sensed by the other program which then 
can read the block of data from the Buffer File. The 
second program can determine the nature of the change 
in state of the first program by examination of the data 
in the block it has read from the Buffer File. 

The bi-directional transfer of the program state in
formation is realized by the introduction of Buffer File 
pairs. The first Buffer File can only be read from by the 
first program and written to by the second program, 
while the second can only be read from by the second 
program and written to by the first program. This 
method of exchanging state information between 
programs not only provides a mechanism for synchro
nizing the execution of two otherwise asynchronously 
executed programs, but also eliminates the internal 
program housekeeping which would normally be needed 
to coordinate the accesses and the sequences of such 
accesses of the programs to the program state infor-
mation. ' 

The PEM synchronization mechanism, referred to 
herein as the Partition Synchronization Mechanism 
(PSM), is based on the latter alternative. The applica
tion of the PSM to the multi-processor FNWC com-

puter environment requires the Buffer Files to reside 
in some random access storage device jointly accessible 
by each of the processors. The device which satisfies 
this requirement is the ECS, operated in the manner 
previously described. 

A pair of Buffer Files is assigned between each two 
partitions for which bi-directional transfer of state in
formation is required. Hence in the typical time step 
partition structure illustrated in Figure 4 and amplified 
in Figure 5, Buffer File pairs are assigned between 
partitions resident in Processors 1 and 2, 1 and 3, 1 and 
4, ·2 and 4, and 3 and 4. 

The nature of the change of state information to be 
passed between any pair of partitions in the PEM is 
whether or not one partition has reached a point in its 
execution where sufficient data has been developed to 
allow the other partition to initiate or continue its own 
execution. This can be represented as a single "GO-NO 
GO" flag to be sensed by the second partition. Hence, 
in the PEM the Buffer File recirculating ring structure 
reduced to a simple single one word block maintained 
in ECS. 

Referring to Figure 3, it can be seen that the issuance 
of a "GO-NO GO" signal by a partition is equivalent to 
either a command to "split" the straight line execution 
of the model into multiple partitionS' or to "join" the 
execution of the multiple partitions into a lesser num
ber of partitions. A five character Buffer File naming 
convention was established to facilitate identification 
of which process was involved. 

The first two characters of the name serve to identify 
whether the Buffer File is associated with an inter-step 
or inter-level signal; the former is designated by the 
characters" IS" and the latter by the characters" IL". 
The third character specifies whether a split (" S") or a 
join (" J") is being signaled. The fourth and fifth char
acters specify the Processors in which the partitions 
writing and reading the Buffer File are located respec
tively. Hence Buffer File ISS12 is used by the partition 
resident to Processor 1 to split its operation by initi-:
ating execution in Processor 2 in going from one time 
step to another. 

When the PEM is to be executed the four programs 
of which it is comprised are loaded, one into each of 
the four Processors. The programs in Processors 2, 3, 
and 4 are immediately halted upon initiation and man
ually delayed until the program in Pr<;>cessor 1, the 
master Processor, has been assigned the necessary ECS 
for the model's execution and has initialized all Buffer 
Files to reflect a NO GO condition. Processors 2, 3 and 
4 are then permitted to enter a programmed loop in 
which each periodically tests a Buffer File to determine 
when it may initiate processing of its first partition. 



While in this programmed loop the slave Processors 
may either be engaged in the execution of unrelated 
programs or simply remain in a local counting loop. 

Upon completion of the data input phase of its opera
tion, Processor 1 removes the hold on the execution of 
Processors 2 and 3 which then proceed with the initiali
zation phase while Processor 4 remains at the hold 
condition. At the completion of its portion of the initiali
zation phase, Processor 1 holds until receipt of a GO 
signal from Processors 2 and 3, signifying the comple
tion of their assigned partitions. Processors 2 and 3 
again enter a hold status after providing the GO signal 
to Processor 1. Finally, Processor 1 initiates the itera
tive integration section by signaling the GO condition 
for Processors 2, 3 and 4. At the completion of the exe
cution of the partitions in Processors 2, 3 and 4 the 
master Processor is notified via the appropriate Buffer 
Files and each once more enters the hold condition and 
remains there until Processor 1, having verified that 
each partition has been completed, signals the transfer 
of the time step results from temporary to permanent 
storage. This process then continues to repeat itself, 
modified as previously described in each sixth and 
thirty-sixth time step. 

Inter-level holds and go's are generally implemented 
in the same manner as the inter-step holds and go's 
described in the preceding paragraph. There is one ex
ception, however. In the partition executed in Processor 
4 in the iterative integration section, a separate Buffer 
File is provided to control the initiation of the execution 
of the large scale condensation effects computation at 
each of levels 1, 2 and 3. The separate Buffer file at 
each level is predicated on the need to allow the parti
tion in Processor 3 to proceed on with its execution 
after signaling the start of execution of Processor 4 at 
each level without waiting for an acknowledgment of 
completion of that level by Processor 4. 

This emphasizes a particularly important aspect of 
the operation of the PEM. The execution of the parti
tions in the different processors cannot get out of syn
chronization with one another. Each is always working 
on the same time step at the same time. If the parti
tion in one of the Processors is delayed, for example, 
while that Processor solves a higher priority problem, 
then all the Processors at the completion of the process
ing of their partitions will hold until the delayed Pro
cessor" catches-up." The execution of the partitions will 
not fall out of synchronization. 

CONCLUSIONS 

The Atmospheric Prediction Model developed at 
FNWC was partitioned to be operated in a 4-Processor 

4-W ay Parallel Processor Partition 47 

and a 2-Processor configuration, in addition to the 1-
Processor configuration for which it was initially de
signed. The 4-Processor version is currently in opera
tional use atFNWC while the 2-Processor version 
provides a back-up capability in the event of equipment 
malfunction and a new research and development tool. 

A Partition Synchronization Mechanism was de
veloped for purposes of synchronizing the execution of 
the partitions being executed in each of the multiple 
processors. The nature of PSM is such as to insure that 
each partition is always operating on data in the same 
time step. The ability to guarantee this synchronization 
implies it is possible to allow other independent jobs 
to co-exist and share what computer resources are 
available with the -Partitioned Atmospheric Prediction 
Model. 

The PSM fully utilizes modifications to the operating 
systems of each of the two CDC 6500 dual processor 
computers to allow programs in each of the four pro
cessors to communicate with each other using ECS. In 
addition to the intercomputer communications the 
FNWC operating system modifications insure software 
protection from interference by non-authorized pro
grams. 

As a consequence of employing the 4-Processor ver
sion of the Atmospheric Prediction Model, the same 
meteorological products were generated in 60 minutes 
rather than the 184 minutes required of the I-Processor 
version. This reduction in time allowed the incorpora
tion of a new and more powerful output section and the 
extension of the basic forecast period from 36 hours to 
72 hours. The 72 hour forecast is produced in an elapsed 
time of 2-hours. 

The next step in the evolution of the FNWC PEM 
involves expanding grid size from 63 X 63 points to 
89 X 89 points. To accommodate the additional central 
memory and processing requirements required of such 
a shift in grid size, partitioning of the horizontal do
main rather than the computational burden is under 
consideration. It is estimated that partitioning the 
horizontal domain will reduce overall central- memory 
requirements by one-half and allow the 72 hour fore
cast on the expanded grid to be performed in only 
four hours as opposed to the five and one-third hours 
required by the current partitioning method. The re
sults of these new efforts will be reported on in a later 
paper. 

REFERENCES 

1 P G KESEL F J WINNINGHOFF 
Development of a multi-processor primitive equation 
atmospheric prediction model 



48 Spring Joint Computer Conference, 1971 

Fleet Numerical Weather Central Monterey California 
Unpublished manuscript 1970 

2 J SMAGORINSKY S MANAGE 
L L HOLLOWAY JR 
Numerical results from a 9-level general circulation model of 
the atmosphere 
Monthly Weather Review Vol 93 No 12 pp 727-768 1965 

3 A ARAKAWA 
Computational design for long term numerical integration of 
the equations of fluid motion: Two dimensional incompressible 
flow 
Journal of Computer Physics Vol 1 pp 119-143 1966 

4 N. A PHILLIPS 
A coordinate system having 80me special advantages for 
numerical forecasting 
Journal of Meteorology Vol 14 1957 

5 Y KURIHARA 
Note on finite difference expression for the hydrostatic relation 
and pressure gradiant force 
Monthly Weather Review Vol 96 No 9 1968 

6 A ARAKAWA A KATAYAMA Y MINTZ 
Numerical simulation of the general circulation of the 

atmosphere 
Proceedings of WMO /IUGG Symposium of NWP Tokyo 
1968 

7 W E LANGLOIS H C W KWOK 
Description of the Mintz-Arakawa numerical general 
circulation model 
UCLA Dept of Meteorology Technical Report No 3 1969 

8 E MORENOFF J B McLEAN 
Job linkages and program strings 
Rome Air Development Center Technical Report TR-66-71 
1966 

9 E MORENOFF J B McLEAN 
Inter-program communications, program string structures and 
buffer files 
Proceedings of the AFIPS Spring Joint Computer 
Conference Thompson Books pp 175-183 1967 

10 E MORENOFF 
The table driven augmented programming environment: A 
general purpose user-oriented program for extending the 
capabilities of operating systems 
Rome Air Development Center Technical Report 
TR-69-108 1969 



An associative processor for air traffic control 

by KENNETH JAMES THURBER 

Honeywell Systems and Research Center 
St. Paul, Minnesota 

INTRODUCTION 

In recent years associative memories have been receiv
ing an increasing amount of attention.1- 3 At the same 
time multiprocessor and parallel processing systems 
have been under study to solve very large problems.4-5 
An associative processor is one form of a parallel pro
cessor that seems able to provide a cost effective solu
tion to many problems such as the air traffic control 
(ATC) problem. 

In general, an associative processor (AP) consists of 
an associative memory (AM) with arithmetic capability 
on a per word basis. Usually, the arithmetic logic is a 
serial adder and the associative processor can thus 
perform arithmetic operations on the data stored in it 
on a bit serial basis in parallel over all words. 

The two main types of associative processors are a 
distributed-logic type and bit-slice type (non-distrib
uted logic). The most significant difference in the two 
types is that the distributed-logic associative processor 
has logic at every bit position, while the bit-slice as
sociative processor has logic only on a per-word basis. 
The differences in features of these two approaches are 
summarized in Table I. 

The distributed-logic associative processor has sig
nificant speed advantages for the equality search and 

TABLE I-Summary of the method of operation of distributed 
and bit-slice associative processors 

Operations Distributed Logic Bit-Slice 

EOII:l1itv Search Parallf'l-Bv-Bit ':;prial-Rv-Bit 

Other Search 
ODe rations Serial-By-Bit Serial-Bv - Bit 

Arithmetic Operations Serial-By-Bit ~erial-By-Bit 

Word Write Parallel-By - Bi t erial-By-Bit 

Word Read Parallel-By-Bit erIal-By-Bit 

49 

read/write operations since these operations are per
formed simultaneously over all bits of every word. On 
the other hand the bit-slice processor may have a speed 
advantage for processing operations because it will 
usually be able to perform bit-slice read and write 
operations faster than the distributed-logic processor. 
Thus for a specific problem, the faster of the two ap
proaches will depend on the mix of operations required. 

The design of an associative processor that combines 
the best features of the above approaches and can be 
applied effectively to problems such as air traffic con
trol is given in this paper. This system has the flexi-

HOST 
(General Purpose 
Sequential Computer) 

4~ 

,~ 

I/O Interface and 
Controller 

4 ~ 

~ , 
I/O 

Interface Parallel 
(Associative) ... • Processor - ... 

Figure 1 (a)-Block diagram of the overall computing system 



50 Spring Joint Computer Conference, 1971 

[10 Interface 

Controller 

Word 1 

Word 

Word 3 

Assoclatite 
Memory • 

• (Part A) 

Word N 

To General Purpose Computer 

Register 
(one bit per word) 

Data Flip Flop 
(used as data register 
for bit slice processor) 

• 
• 
• 

Word Select Register 
(one bit per word) 

Figure l(b)-Block diagram of the associative processing system 

bility to solve the problems that associative processors 
can solve and do it in a more effective manner than 
any other processor using the same operation speeds. 

SYSTEM DESCRIPTION 

There is a large class of problems to which a parallel 
processor can be applied. However, even this class of 
problems requires both types of processing; i.e., 
sequential and parallel. Figure l(a) shows a general 
block diagram of a parallel processing system. (For the 
purposes of this paper, the parallel processor is an asso
ciative processor.) The system consists of a host 
(sequential computer), a control unit for the asso
ciative processor (and interface beween the controller 
and host), the associative processor, and the interface 
between the associative processor and its controller. 
'The interface unit to the associative processor is there 
because generally the associaitve processor and host are 
incompatible. For example, in a bit slice type associative 
processor I/O is accomplished bit serial, whereas, in the 
host sequential computer I/O is usually accomplished in 
word parallel. This represents a basic limitation to the 
overall system! This paper presents a design of an asso
ciative processor that does not have this limitation and 

which has the interface unit built into the system as an 
integral part of the associative processor. 

The overall system is shown in the block diagram in 
Figure 1 (b). The system consists of the following parts: 

1. A hybrid associative processor (AP) 
2. A microprogrammed controller, and 
3. The input output interface. 

The input output interface is designed to interface 
the processor with the host computer. The interface 
contains registers and gating (such as shown in Figure 
2) that perform the following functions: voltage level 
translations, acceptance of a word from the host 
processor, routing the word to its appropriate destina
tion (controller or associative processor), and acceptance 
of a word from the distributed logic portion of the 
associative processor and transmission of desired 

ToAP* 

From HOST From A 
or o>ntroller 

Input Indicator 
Fiip Flop 

To HOST 

outputLator

l 
Flip Flop 

Toggle Regis ter (Manual Controls) 

Indicator Register 

Gatigg to Cogtroner or A P 

':'AP Means Associative Processor 

Figure 2-Block Diagram of the I/O Interface 



portions of this data to the host processor, a host word 
~ta time. 

The microprogrammed controller (Figure 3) accepts 
instructions from the HOST and then performs the func
tions called for by the HOST. The controller's memory 
consists of ROM and RAM. The section of ROM 
stores the (microinstructions for less-than-search, etc., 
and the remaining ROM stores constants and other 
necessary fixed data for the system. The controller also 
has read/write memory for storing the programs that 
can be called by the HOST. These programs are written 
with instructions that are either microinstructions or 
machine instructions such as equality search, etc. The 
instructions the HOST sends to the controller activates 
the programs. This arrangement enables easy design 
of the software since, the micro-programs, the programs, 
and HOST / AP interaction software can be written 
almost independently after they have been defined. 
The block diagram of the controller is shown in Figure 3. 

The associative processor is shown in Figure 4. It 
consists of two different parts which share the adders 
and results. registers. One part is a distributed logic 
associative memory. The memory has the advantage 
of being able to read and write words in word-parallel 
form thus eliminating the input/output bottleneck that 
will occur if only serial-by-bit read/write capabilities 
are present. The other portion of the processor is a 
RAM oriented in such a manner that it can do a bit
slice read and write. With the addition of the per-word 
arithmetic hardware this memory has the fast bit
slice capabilities that we desire for arithmetic opera
tions. This combination gives us the advantages of both 

Search Results 
Register Status 

Input Datp /Tnstructions 

Memory 
Control 
Signal 

Output Data 

Memory Muk and 
Arrument Re.iatera 

Figure 3-Block Diagram of the Controller for the Associative 
Processor 

Associative Processor for Air Traffic Control 51 

A bit slice of Part A. 
Tht" bit slice- is addresse 
oy means of the Mask 
Register. 

One bit of as~odative 
memory contains both 
storage and tagh' 
('apabilit~-. 

*: S~~i~t~!:::c~a~ii~eO~~;::::::;;:u~:n~~~~:::rr~ :::~ !~: ~:~ A. 
select register. and a word from Part B (one bit of many unique RAM 
wnrds t!sed to form a word for Part B). 

One bit of RAM 
contains only stora~e 
capahiHt·;. 

Figure 4-Block Diagram of the Associative Processor 

types of associative processors; i.e., all-parallel equality 
search and read/write features of the distributed logic 
approach along with the high speed arithmetic capa
bilities of a non-distributed logic approach. 

The operation of the processor requires that the 
RAM operate as follows. The RAM can be thought of 
as being rotated 90° from its normal position. When an 
address is placed on the input lines to the decoder a 
"RAM" word is selected, but because of the orienta
tion of the RAM this "RAM" word is a bit slice (a 
single bit of all data words) to the AP. This bit slice 
can then be read out into the registers or adders. In 
addition this bit slice can be gated by the word select 
register if a subset of words is to be selected. (See the 
Appendix for a description of an associative memory 
and its associated registers.) To perform an associative 
search is very simple. If the bit slice is being compared 
to a one, it is just read out. If the equality search is on 
zero the bit slice is read and every bit complimented. , 
This procedure then yields a 1 in the search results 
register in every matching bit position. This method 
allows the bit slice portion of the AP to be implemented 
using standard off the shelf RAM and conventional 
IC logic. 

PROCESSOR CAPABILITIES 

Table II is a comparison of typical associative pro
cessor speeds available. The distributed logic system 
speeds are based upon the Honeywell semiconductor 
associative memory. A description of the Honeywell 
associative memory can be found in Reference 1. The 
bit slice (non-distributed) processor speeds are based 
upon a bipolar RAM implementation and are what 
can be achieved with current TTL technology.6 The 
bit slice processor uses the decoder as a mask register 



52 Spring Joint Computer Conference, 1971 

TABLE II-Typical operation speeds for the distributed, 
bit-slice, and hybrid associative processors 

Bit Slice Read 

Bit S1i('t" Write 2oon8 

Not • .,.i able 
Parallel Maskable Equality Search (lOOns Ibit) 

Equality Search 

Parallel Word Read 

Add Rit Slice to Bit SUee 
and Store in a Bit Slice 

Multiple Match Resolve 

300ns 

lOOns/word 

lOOn. 

lOOns/bit 

Not available 
(lOOns/bit/word) 

(lOOns/bit/word) 

20o,.s 

100 .. 

100na/bit 

toone ~ot aV~~la~le 
word (lOOns/bit/word) 

lOOns 

400ns 

IOOna 

and a single flip flop to hold data since it operates in a 
bit serial fashion. Data will be shifted into the flip flop 
serially while the decoder address is changed. The 
speed of the parts is shown in Table II. 

The hybrid processor has certain features that can 
be used to advantage. The two parts of the system have 
complimentary properties! 

High speed I/O can be obtained from the hybrid. 
No data has to be taken from the bit slice part in a bit 
serial manner. For example if 50 words of 20 bits were 
to be read from the processor the output time is 5 JLS 

(11 JLs) if the words were in the distributed logic por
tion (bit slice portion). (The extra 6 JLS are consumed 
by reading 20 bit slices from the RAM and storing in 
the AM portion.) Compare this to a bit slice processor 
that required 100 JLS (20X50X100ns) for the same 
I/O. For most applications this processor has been 
found to have an I/O rate 10 times that of a bit slice 
processor and 72 that of a distributed logic processor. 
In addition, consider the speed of arithmetic multipli
cation. Multiplication (assume 20 bit operands and 40 
bit result) in the distributed logic processor requires 
about 360 JLS ((20)2(.9) or n 2 bits slice addition opera
tions) compared to 160 JLS for a bit slice processor. The 
worst case in the hybrid processor would be when both 
20 bit operands were in the AM and the result was to 
be stored in the AM. A worst case algorithm would 
read 40 bits into the RAM, multiply, and store the 40 
bits in the AM. This would require 188 JLS. 

The arithmetic multiply is nearly twice as fast as the 
distributed logic processor and about the same speed 
as the bit slice processor. 

Arithmetic addition speeds are not significantly en
hanced by this processor and are the same as for a bit 
slice or· distributed logic processor depending upon 
where the operands are stored and the result is to be 
stored. 

Table III is a table summarizing the results of com
paring the three processor types. The characteristics of 
the hybrid processor may be described as faster and 

more flexible than either of the two standard imple
mentations of associative processors. The values in 
Table III are for typical operations for problems that 
have been studied. The hybrid processor combines the 
best of both standard processing approaches and this 
can be seen in the table. For most associative processing 
applications, the hybrid approach should be far superior 
when compared to either of the other two approaches. 

DESCRIPTION OF THE AIR TRAFFIC 
CONTROL PROBLEM 

Three areas of the air traffic control problem will be 
discussed in this paper. These are tracking, conflict 
detection, and display processing. For the ATC appli
cation the AP size will be 512 words of 104 bits of dis
tributed logic memory and 128 bits of a bit slice type 
memory. One track will be assigned to each 232 bit 
word. The controller will require about 2000 words of 
read/write memory, 500 words of ROM for micropro
grams," and 2500 words of ROM for system constants. 

This processor has been sized to accommodate 512 
tracks in the terminal area (64 mile radius). In the 
terminal area the general purpose computer to which 
the processor interfaces would probably be the ARTS 
III (HOST). 

Tracking 

The tracking function has three main subfunctions 
that it must perform. These are: correlation of target 
reports, positional correction of correlated tracks (cor
rection); and positional prediction (prediction) for all 
tracks. 

The correlation function includes the following 
operations: 

1. Obtaining target reports from the HOST. 
2. Range and azimuth correlation of target reports 

against all tracks stored in the associative pro
cessor (AP). 

3. Tagging the target report for prediction and/or 
correction. 

4. Storing the target report in the track file. 

TABLE III-Summary of the computational capabilities of the 
distributed, bit-slice, and hybrid associative processors 

Dh=trihutf:'d t ojit:k liitSlkt' fI~·brid 

EQualit\" Sear('ht's to units /s('~'()nd 7 

110 20 units/sePlmd 

Arithmt:'tk t unitts("("Clnd 3 unit~ {s('("und 2-3 unit~/st><,ond 

Bit Sli("t> Pru('t'"sl-iing I unit/l-it>('Clnd :l unit~'s .. n>nd 2 - 3 units I second 



BEGIN 

E .-____ ~~ __ ~ B 

increase >-----....... firmness of 
traC'k 

t~g track for 
update 
calculation 

store target 
report 
information in 
track .. 

Figure 5(a)-Path taken by a target report that correlates 
uniquely with a track in the associative processor (track file) 

Associative Processor for Air Traffic Control 53 

tag track for 

,...----------1 prediction 

de('reas~ 

firmness of 
tile traC'k 

obtain new 
-<,Il for the 
traC'k 

tag track for 
. update 

--4--+-4 C'alculation 

establish 
---+-1 turning tracks 

t re!.:ipon:- p 

YES 

establish a new 
track with this 
target report 

increase the 
firn'ness of 
the track 

Figure 5(b)-Path taken to establish a new track or a turning 
track 

Figure 5 is a flow chart for this portion (correlation) 
of the air traffic control function. The correlation func
tion will be done as target reports are available from 
the HOST. The correlation function will be performed 
once for each target report; i.e., once for each track in 
the system. Therefore for 256 tracks, the function will 
be called 256 times every four seconds (one radar scan), 
etc. 

When actually performing the functions on all tracks, 
the tracks to be corrected will be corrected, and then 
all tracks will be predicted to their next position. 

All tracks correlated during the last Va second will be 
updated, therefore groups of tracks will be updated 
eight times per second or thirty-two times per scan (4 
seconds for a complete radar scan). To correct the 
tracks position, four equations must be solved. 

These are: 

(1) 



54 Spsing Joint Computer Conference, 1971 

decrease bin 
)--....oI~size and set 

1=1 

Figure 5(c)-Path taken by a target that correlates with more 
than one track 

(Yc)n= (Yp)n+a(YR - Yp)n 

(Xc)n = (Xc)n-l +{3/t(XR - Xp)n 

CYc)n= (Yc)n-l+{3/t(YR - Yp)n 

(2) 

(3) 

(4) 

where Xc means X corrected; X R means X reported 
by radar return; X p means X predicted; and a and {3 

are constants determined by the tracks past history or 
firmness. 

The prediction equations are as follows: 

where 

and 

(X p) n = (Xm) n-l + (Xc) n-1T 

(Yp)n = (Y m)n-l +(Yc)n-1T 

(Ym)n-l=(Yc)n-l or (Yp)n-l 

(1) 

(2) 

The turning track equation is given by the following 
formula: 

where, 

N=time 

V = velocity 

R = rate of turn 

A similar equation can be derived for Y values. After 
the prediction calculation, the turning tracks will be 
calculated. 

Conflict detection 

Figure 6 is a flow chart for. a conflict detection scheme. 
This algorithm uses X, Y oriented rectangles to do gross 
filtering of the data. The remaining tracks that are 
potential conflicts are then subjected to a detailed cal-. 
culation involving the law of cosines to determine if the 
circular shapes overlap. Any conflicts are then out
putted to the HOST for conflict resolution and false 
alarm checking. 

Figure 7 (a) shows the ideal conflict detection areas. 
The circle around the airplane is an area of immediate 
danger. The larger area is an area of potential future 
danger. In order to effectively process a conflict algo
rithm a search is made over rectangular areas surround
ing the shapes. This is shown in Figure 7 (b). Figure 
7 (c) shows the basic philosophy behind the conflict 
equation. It is desired to know if any circles overlap, 
however, this is a very hard search to accomplish. Re
finements and approximations to this criteria designed 

increase the 
bin size 

establish 
turning 
tracks 

Figure 5(d)-Path that establishes turning tracks for target 
reports that correlated with more than one track 



Enter 

*Tt.is assumed that the HOST contains a 
Conflict Resolution Routine and all the 
AP must do is identify conflicts and pass 
them to the HOST via this subroutine. 

Figure 6-0verall conflict detection algorithm 

Figure 7(a)-The privileged airspace around an aircraft 

Associative Processor for Air Traffic Control 55 

"I.arge Squar-.," 

"Small CIrcle" 

Figure 7(b)-Confiict areas for the conflict detection algorithm 

to shape the search areas more like those shown in 
Figure 7(a) have been considered but are beyond the 
scope of this paper. 

Figure 7(c) shows the equation that is derived from 
the conflict detection function. This equation is just 
the Law of Cosines applied to the conflict detection 
problem to determine if the circular shapes overlap. To 
avoid a possible conflict the following must be true: 
[p2+p2i-2ppi cos(O-Oi)]-[(R+Ri)2]>O. This equa
tion must be true for all aircraft being compared to the 
aircraft being processed. 

Display processing 

The display processing function will send the display 
data to the HOST after filtering the data. It is assumed 
that there is reserved storage in the HOST that con
tains the detailed filter information for each display 
(i.e., for each display there is a node of data containing 
the X, Y, Z limits that the display is controlling) and 
information to assemble the display data in the HOST 
refresh memory. 

It is assumed that the display data are read out to the 
HOST, the display data assembled, and the display 
data entered into the refresh memory. This is done 
twice_ a second; i.e., the complete display routine is 
processed twice a second. The HOST will receive the 



56 Spring Joint Computer Conference, 1971 

K.._ ...... ..z.. ... y 

e· 
___ ... _ ..... 1 Y 

__ S>R+R
i ---- ............. 

S> R· 
_ 1 

- .... ..... -

Figure 7(c)-Derivation of the conflict detection equation and 
one of its possible refinements 

GPID field of the· word, X position, Y position, and 
altitude and thus can assemble the full and partial data 
blocks, along with the tabular list information as each 
track is sent to the appropriate display refresh memory. 
In order to perform this function the HOST needs a 
table of information of each track stored in its memory. 
This function is performed quite fast since it is all 
searches and reading. All of the detailed display 
information that does not change very fast is kept in the 
HOST and can be identified by use of the GPID field 

that is sent over with the positional information. The 
algorithm for this function is given in Figure 8. 

Definition and allocation of memory fields 

The Associative Processor contains the following 
fields: 

• Xc-corrected X position 
• Yc-corrected Y position 
• Z-altitude if the plane has a beacon transponder 

otherwise zero 
• BC-Beacon transponder code otherwise zero 
• GPID-A code that identifies this track uniquely. 

Allows the HOST to identify each track 
• Firm-the firmness of the track (essentially a 

measure of the consistency of correlation of the 
track) 

• a-atracking coefficient for the X positional values 
derived from a least squares fit tracking algorithm 

ENTER 

I ~ I 

Function 
{'ontrolled B.,
Hand Off 
Read Out 
Accepted B~
Tabular 

This algorithm requires 
that 10 bit slices be 
temporarily available. 

Figure 8-Display filtering algorithm 



• {j-a tracking coefficient for the Y positional values 
derived from a least squares fit tracking algorithm 

• Temp-temporary storage fields 
• CB-controlled by field. The number in this field 

designates the display that is controlling this track 
• AB-accepted by field. The number in this desig

nates the display that has accepted the track if it 
was being handed off from one display to another. 

• HO-hand off to. This field designates the display 
the track is being handed off to. 

• RO-read out by. This field designates the num
ber of the display reading out tracks other than 
those under its control. 

• TAB-Tabular~this field designates the number 
of the display on whose tabular list this track 
appears 

• Update Flag-Designates tracks that correlated 
but have to have their positions corrected and 
predicted. 

• Conflict Detection Flag-designates tracks that 
need a conflict detection check 

• X p-Predicted X position 
• Y p-Predicted Y position 
• Op-predicted azimuth 
• PP-Predicted p position 
• Xc-corrected X velocity 
• Yc-corrected Y velocity 

Figure 9 shows the manner in which the fields of 
each word have been allocated. When the system is 
first initialized, there will be a momentary bottleneck 
because a lot of data will have to be put into the RAM; 
however, this bottleneck should be less than a bit slice 
processor. After this initialization has been accom
plished the number of changes in the information in the 
RAM will be small. The fields were distributed between 
the AM and. the RAM in order to minimize output 
from the RAM. None of the fields in the RAM portion 
of the system are read out and sent to the HOST. They 
are either fields that change slowly and have to be 
written into the memory from data received from the 
HOST (CB, AB, HO, RO, TAB) or fields that are cal
culated and never have to be read out to be sent to the 
HOST (Flags, X p, Y p, Op, Pp, Xc, Yc). 

In the associative memory, we have the data which 
require that a quick output capability be available. 
Data fields that we would like to be able to read out in 
word parallel, such as Xc, Yc, Z, BC and GPID have 
been included in the AM. Also, data fields that ~eed a 
word parallel read and write capability, such as Firm
ness Factor (FIRM), (x, and {j, have been included in 
the AM. This organization gives as the best speed solu
tion to the input problem by overcoming the bit serial 
input output problems of the non-distributed logic ap-

Associative Processor for Air Traffic Control 57 

proach and the slow bit slice read of the distributed 
logic approach. 

Timing and I/O Data Estimates 

The following timing and I/O estimates were made 
assuming that (1) 512 tracks are contained in the as
sociative processor; (2) 128 tracks must be correlated 
per second (512 tracks per radar scan); (3) the updating 
routine is processed eight times a second; (4) the con
flict detection algorithm is processed on each track two 
times per scan (that is 256 conflict detection checks are 
made every second); (5) all display information is up
dated twice per second; and (6) a software organiza
tion as discussed in the next section is used. 

In order to time the conflict detection algorithm it 
was assumed that the maximum number of responses 
to the XYZ filtering was 6 for the small square and 45 
for the large square. Because of the accuracy required 
it was decided that the trignometric functions would 
be done fastest by table look from the ROM in the 
controller. 

Under the above assumptions it is estimated that 
with the speeds in Table II, the performance of the air 
traffic control problem for 512 tracks will utilize 50 
percent of the processors capability. The 50 percent 
use includes all overhead and bookkeeping functions. 
Comparable 'estimates were made for a bit slice pro
cessor and a distributed logic processor. Using the speeds 
given in Table II, both of these processor require ap
proximately 65 percent of the processor's capabilities. 
Therefore, the hybrid processor can handle approxi
mately 30 percent more processing than either of the 
other two processors. 

Input to the AP and its controller is estimated at 
1200 words per second. Output to the ARTS III is 
estimated at 30,000 words per second. Therefore an 
approximate total of 31,000 words of I/O per second 
are anticipated for worst case operation. In the air 
traffic control problem as formulated here, I/O does not 
seem to present a major problem. 

Software organization 

A very simple organization of the AP and interface 
is assumed. The HOST can transmit only data or one 
of four instructions to the AP. The instructions are as 
follows: 

• Correlate (number of tracks) 
• Update 
• Conflict Detection Probe (number of tracks) 
• Display 



58 Spring Joint Computer Conference, 1971 

12 12 8 15 10 4 6 31 

34 

Temp 

4 4 

CB AB 

104 Bit AM 

4 4 4 1 1 12 12 12 12 12 12 

HO RO TAE Xp Yp fl P Dp Xc Yc 

~, 
~ 

l'pdate Flag Conflict DetectIon Flag 

128 Bit Bipolar RAM 
(1 hit of 128 different RAM words used as 
a 128 hit Associative Processor word) 

Figure 9-Allocation of fields in the memory word 

The AP only transmits the results of the performance 
of the above functions to the HOST. The programs for 
the instructions are stored in the 2000 word read/write 
memory in the AP controller. These programs are 
written in terms of the AP's macroinstructions (multi
ply, add, less than search, etc.) which in turn call for the 
execution of the appropriate microprogram to be exe
cuted from the controller's ROM. The microprograms 
are written in terms of the basic machine instructions 
such as equality search, bit slice read, word read, etc. 

CONCLUSION 

A new type of an associative processor has been de
signed. This processor combines the best properties of 
the bit slice and distributed logic associative processors. 
The processor provides the flexibility that will enable 
it to out perform either of the other two processors on 
most applications. In typical applications, the processor 
can handle 30 percent more processing then either of the 
other two types of processors. 

In general, the processor has the I/O and equality 
search capabilities of a distributed logic associative 
processor combined with the bit slice and arithmetic 
processing capabilities of a bit slice processor, thus 
making it more effective than any other associative 
processor. This processor overcomes the main draw
back of current associative processors, i.e., I/O 
problems. 

The processor was applied to the air traffic problem. 
It was sized for 512 tracks which corresponds to a 1975 
traffic load for most terminal areas with a 64 mile 

radius. A microprogrammed controller was used to 
provide future flexibility. The processor was about 50 
percent loaded (for 512 tracks) considering overhead 
functions. This processor can provide a viable solution 
for the ATC problem. 

The air traffic control system used memory speeds 
that are available from current MOS associative mem
ories and off the shelf bipolar RAM's. The processor is 
built from a combination of a distributed logic associa
tive memory and a bipolar RAM. The processor has 
one word per track (104 bits AM and 128 bits RAM 
per word) or 512 words of memory. Each word has a 
serial adder plus associated registers. Several tables 
(ROM) are needed because certain functions will be 
performed by table look up. 

ACKNOWLEDGMENT 

The author wishes to thank L. D. Wald and D. C. 
Gunderson for their assistance and pateienc in helping 
the author gain an understanding of associative tech
niques. Thanks are also given L. D. Wald for the de
tails .of the control unit for the associative processor. 
The author wishes to thank the following personnel of 
the FAA for their help in understanding the air 
traffic control problem: Lawrence Shoemaker, James 
Dugan, John Harrocks, and Jack Buck. 

REFERENCES 

1 L D WALD 
M OS associative memories 
The Electronic Engineer August 1970 pp 54-56 

2 L D WALD 
A n associative memory using large scale integration 
National Aerospace Electronics Conference Dayton Ohio 
May 1970 

3 A G HANLON 
Content-addressable and associative memory systems-A 
survey 
IEEETEC Volume EC-15 No 4 1966 pp 509-521 

4 J A GITHENS 
A fully parallel computer for radar data processing 
National Aerospace Electronics Conference Dayton Ohio 
May 1970 

5 J C MURTHA 
Parallel processing techniques in avionics 
National Aerospace Electronics Conference Dayton Ohio 
May 1970 

6 J W BREMER 
A survey of mainframe semiconductor memories 
Computer Design May 1970 pp 63-73 

7 R E LYONS 
The application of associative processing to air traffic control 
1er Symposium International Sur La Re'gulation du 
Trafic, Trafic Ae'rien Versailles June 1970 pp 6A-31 to 
6A-40 



8 J A RUDOLPH et al 
With associative memory, speed is no barrier 
Electronics June 22 1970 

9 N A BLAKE J C NELSON 
A projection of future A TC data processing requirements 
Proceedings of the IEEE March 1970 

APPENDIX-DESCRIPTION OF AN 
ASSOCIATIVE MEMORY 

An associative memory (AM) is a device that com
bines logic at each bit position along with storage 
capacity. A n word AM with p bits per word can store 
n binary words of p bits. In addition, certain logic 
operations can be performed on the words stored in the 
AM. In particular, search operations can be performed 
simultaneously, over all words. These operations can 
identify words in the memory that are related to the 
externally supplied test word. For this reason AM's 
are sometimes referred to a content addressable mem
ories (CAM). The types of operations that can be per
formed are: 

• Fully parallel maskable equality search 
• Bit serial inequality searches 
• Bit serial incrementation of fields 
• Bit serial maximum (minimum) search (identifies 

the maximum or minimum stored word) 

A brief example is given to illustrate the use of an 
associative memory. An eight-word associative memory, 
with four three-bit fields, is shown in Figure 10. In 
addition to the memory that stores the words, an AM 
must have a search register for storage of the word to 
be compared with the stored words, a mask register to 
designate which of the bit positions of the search word 
are to be included in the search operation, a results 
register for storing the results of the search, and a word 
select register to select the words to be searched over. 
For the example, word seven has not been selected as 
shown by the contents of the word select register in 
Figure 10. In Figure 10, the contents of the mask regis
ter show that only the first field of the search register 
is to be included in the search. An equality search 
operation in the above associative memory will result 
in the simultaneous comparison of the contents of the 

Associative Processor for Air Traffic Control 59 

WORD 1 

WORD 2 

WORD 3 

WORD 4 

WORD 5 

• WORD 6 

WORD 7 

WORDS 

FIELD 

010 1110 

111 I 000 

110 III 

011 111 

010 110 

101 110 

110 000 

010 110 

010 110 

111 111 

I 000 

I 000 

101 

101 

101 

101 

001 

000 

010 

011 

I 000 

I 000 

110 

110 

III 

101 

001 

010 

110 

110 

Data Register 

Mask Register 

Register 
Select 
Register 

Figure lo-An associative memory 

first field of the search register with the contents of the 
corresponding field of all stored words. It can be noted 
that only stored words three and six satisfy the search 
and are therefore identified by l's in the results register 
after the search. Word seven would have satisfied the 
search; however, it was not in the set of words desig
nated for performance of the search by the word select 
register. 

In many associative memory applications, such a 
search operation would normally be followed by a read
out operation (whereby the identified words are se
quentially read out) or another search operation (in 
which case the search results register would be trans
ferred into the word select register). One notes that a 
series of searches can be performed and the results 
ANDed together if the results in the search results 
register are used as new contents of the word select 
register. 

A multiple match resolver (MMR) is also an integral 
part of the memory. This is indicated by the arrow in 
Figure 10. The MMR indicates the "first match" III 

the memory if there were any matches. 





A computer aided traffic forecasting technique-The trans
Hudson model 

by EUGENE J. LESSIEU 

The Port of New York Authority 
New York, New York 

INTRODUCTION 

The transportation problems of the N ew York Metro
politan region are many and diverse and there are 
several major governmental agencies concerned with 
and working towards solutions to these problems. 
Among these problems is that of planning, providing 
and maintaining transportation facilities across the 
Hudson River between the states of N ew York and 
New Jersey. Although the trips across t~e river con
stitute only a small part of the total- regional travel, 
they amount to over one million trips a day. 

Over the past years, the Port Authority has collected 
and analyzed much data on the volume of traffic 
crossing the river by all modes. It has also conducted 
origin and destination surveys to study many of the 
characteristics of this trans-Hudson traffic. Through 
the years, the region has grown, the data have become 
more voluminous, and the analysis more complex. It 
was becoming more difficult to do comprehensive 
research and analysis with the data and it was ap
parent that some sort of formalized information 
system was necessary to research the trend changes 
in the volume and the pattern changes in the 0 and 
D. 

The purpose of traffic research is primarily for fore
casting. If one understands the reasons for traffic 
changes as they occur, then one can more reliably pre
dict future traffic changes based on these reasons. 
Traffic may shift to a new facility because it makes 
travel faster. Traffic may grow at one facility and not 
at another because it is a lower cost facility, or because 
rapid development is taking place in the market area 
of one facility and none in the other. 

With this in the background, the Port Authority 
embarked on the development of a system of traffic 
data handling that would be aimed at researching 

61 

traffic patterns and their influences, and forecasting 
traffic based on this research program. Because of the 
large amount of data available and complex research 
techniques applicable only to computer solution, the 
use of a high speed computer as a tool was mandatory. 

REVIEW OF AVAILABLE TOOLS 

There have been many urban transportation studies 
in the past decade. Techniques have varied but in 
most cases new methods are built upon old ones. When 
the Port Authority decided to embark on the trans
Hudson study, it was natural to review all existing 
processes. It was discovered that the focus of most 
other studies was generally to depict and forecast all 
traffic patterns in an entire region with perhaps a 
special focus on the Central Business Districts (CBD). 
With the Port Authority's major focus being on only 
the Hudson River Crossings, it was decided that much 
of the theory and many of the techniques applied were 
inappropriate for our problem. 

There are many theories of movement; gravity model, 
intervening opportunity, etc. Most of these however, 
are strongest in describing the phenomenon that most 
trips are short trips-as distances increase between 
zones less trips occur. In the traffic that crosses the 
river, there are few short trips. Most of the trips across 
the river are major trips-not simply going dowp- the
street for a quick shopping trip (which by the way 
makes up a considerable part of the region's total 
travel). The feeling was that if we were to isolate these 
major trips from total trips we would have to have addi
tional theories and a different system from that used 
by others. 

With regard to techniques, most of the other studies' 
end product was a traffic assignment on each link 



62 Spring Joint Computer Conference, 1971 

(representing a transportation system segment) of a 
multi-link network (sometimes thousands). With only 
the few links that cross the Hudson River of interest 
to us, many' of the efficiencies of the existing techniques 
would be wasted on our problem. 

There was, however, one technique which ·we con
sidered indispensable and that was the general net
work tracing and least-path calculating process. There 
were several programs available that used the Moore's 
algorithm or some adaptation thereof, that we could 
count on using. 

There was available in house a computer, magnetic 
tapes containing all the trip data from our 0 and D 
surveys, and the rudiments of a computerized data 
bank. This bank had a data matrix of 180 X 180 cells 
with space for 50 pieces of information in each cell. 
There were programs available to put the 0 and D 
data and other data into the bank. There were programs 
to modify the data once in the bank, and there were 
programs to extract and manipulate the data so that 
they could be fed into other standard analytical pro
grams. We decided to use this data bank and modify 
it to our needs. 

Of equal importance to us was our finding that an 
existing multiple regression program was available 
that would accept our data in both size and format, 
had the flexibility to manipulate the data easily and 
produced printed results sufficient for analysis. 

It seemed, then, that we had sufficient tools to put a 
whole system together and that we could start, get 
results, and improve the system as we went along. 
Some interesting comments regarding this assumption 
are related later in the paper. 

DESIGN OF THE RESEARCH AND 
FORECASTING SYSTEM 

Knowing the tools available, the system was designed 
around them. It was necessary, of course, to review 
and organize the input data and to specify the output 
requirements. Further demands on the system were 
that there had to be a complementary flow of data 
through the system for research and testing and fore
casting, and the system should be designed to provide 
for continuous use and change as later data become 
available. 

Our output requirements were specified, of course, by 
the job we set out to do-forecast trips across the 
Hudson River by facility. Exactly which process to 
use to get down to the level of facility traffic forecasting 
was considered in depth. Standard metropolitan 
transportation studies had usually developed the 

system by a three stage-process-(I) Trip generation 
or interchange; (2) Modal split and (3) Traffic assign
ment. Trip interchange concerns the total number of 
person trips between zones. Modal split describes the 
process of determining what share of the total trips 
will be made by each mode. Traffic assignment is the 
term used to describe which route or which specific 
transportation facility will be used once the mode of 
travel is chosen. 

As mentioned earlier, we had collected a great deal 
of origin-destination data on the various modes of 
transportation across the river. After a long study of 
trip data it was decided that, in order to get an ex
plainable group of trips, the trips should be segregated 
into several sets. First, peak period travel and off peak 
travel were known to exl¥bit entirely different char
acteristics particularly with regard to modal choice, 
but also with regard to associating travel times and 
costs to the trips since congestion is greater in the peak. 
The second separation deemed necessary was a classi
fication by residence, since trips from A to B would 

Figure I-Hudson River crossings 



have different modal choice and different trip gener
ating characteristics depending on whether the home 
based end were A or B. 

To describe mode and facility classification of these 
trips, a little geography of this region is necessary. The 
map shows the river crossings available. There were 
seven vehicular crossings: The Tappan Zee Bridge, 
George Washington Bridge, Lincoln Tunnel, Holland 
Tunnel and three Staten Island bridges. There were 
three rail facilities: PATH downtown (to Hudson 
Terminal) , PATH uptown and the Pennsylvania Rail 
tunnel. There were two railroad passenger ferries and 
there were two locations where major flows of inter
state buses occurred. 

Because of space limitations in the data banks and 
because analysis of the system revealed that specific 
definition of some crossings was unnecessary for our 
future forecasting requirements, it was decided to 
collapse the crossings into the following mode and 
facility groups: 

Auto mode-Tappan Zee Bridge 
George Washington Bridge 
Lincoln Tunnel 
Holland Tunnel 
three Staten Island Bridges 

Bus mode-Po A. Bus Terminal (at Lincoln Tunnel) 
George Washington Bridge Bus Station 

Rail mode-Penn Station 
PATH downtown (Hudson Terminal) 
PATH uptown 
CNJ ferry 

Traffic using the other ferry (Erie Lackawanna Rail 
passenger ferry) was included with the PATH down
town traffic because the two crossings were parallel and 
served an identical market and it was known that the 
ferry service was soon to be eliminated. 

Up to now, we have eleven facilities within three 
modes and four classifications of trips (Peak, Off-peak, 
residence east, residence west). In order to get data to 
explain why trips might be made over one facility or 
another or one mode versus another, travel network 
characteristics data had to be collected. The items of 
data we felt would be important, could be collected, 
and could be forecasted were travel time, travel cost 
and number of transfers. 

The trip interchange part of the forecasting problem 
is probably the most difficult in deciding what informa
tion is needed to study trip interchange characteristics 
and attempt to forecast future trip volumes. Many 
variables can be included in the study part of it in 
developine: relationships that explain differences in 

Computer Aided Traffic Forecasting Technique 63 

trip making. But it must be remembered that only 
those explanatory variables that themselves can be 
forecast can be used to explain trips if one wishes to 
forecast as well as explain. With these restrictions we 
chose population, employment and area (so that 
densities could be used) and some description of 
proximity. It was the latter item that established the 
basis for the construction of the master program that. 
ties together the entire forecasting system. 

The data needed to cover the complete range of 
studies and models planned had to be placed in a data 
bank so that it was readily accessible for both develop
ing the models and using them for forecasting. A data 
bank is nothing more than an arrangement of informa
tion stored (on tape) in some meaningful indexed form. 
In the system developed, the index was geographical 
zones. 

The data bank programs that had already been de
veloped had space for a 180 X 180 zone classification, 
but we used only part of this. We classified 100 zones 
west of. the Hudson as "i" zones and 80 zones east of 
the river as "j" zones. The reference index then con
tained 8,000 i - j cells that could be referenced by an 
i - j number. A map of these zones is shown in Figure 2. 

Within each of the cells we had space for 50 different 
data items. With reference to the earlier description of 
data it can be seen that we had eleven facilities and 
four classifications of trips (residence east, residence 
west, peak and off-peak). We also had time, cost and 
transfer data for each of the facilities and population 
and employment, and area data for each of the zones. 

Summing these up: 

5 auto facilities X2 network variables = 10 
6 transit facilities X3 network variables = 18 

11 facilitiesXtrips for 2 residence classes =22 
4 demographic variables = 4 

space for new facilities in forecast years = 10 
64 

It can be seen that the 50 data item spaces of a single 
bank were easily exceeded, and it was necessary to 
devise a method to utilize more than one bank. Such a 
method was developed which in essence, simply keyed 
to the fact that a single bank was only critical when 
using it as input to the forecasting system. In the model 
development stages, separate banks could be used for 
each of the models-assignment, modal split and trip 
interchange. A listing of the data in the various banks 
developed is shown in Figure 3. 

Considering the data bank limitations and the fact 
that peak and off-peak traffic differ in many respects, 



64 Spring Joint Computer Conference, 1971 

Figure 2-Port Authority analysis zones 

it was naturally decided to approach the peak and off
peak as two separate and distinct efforts, and to fore
cast each time period independently. A set of banks of 
similar format but with entirely different data is used 
for the off-peak. The only similarities between the 
peak and off-peak is the process used and the demo
graphic data. 

From inspection of the data bank listing it can be 
seen that the first :nata Bank (1964 I) contains the 
most fine grained data; facility network data and 
facility trips. This bank is used for developing the 
assignment model. A secondary Data Bank (1964 II) 
was developed (it could have been placed in the same 
bank except for lack of space) by collapsing the facility 
network data to mode network data through the con
cept of weighted average of the facility network data 
using the existing trips as the weighing factor .. The 
second bank also contains weighted average total net
work data developed by a similar concept of using the 
existing modal trips as weighing factors. This bank is 
used for developing the modal split and trip inter-

change models and therefore also contains population, 
employment, area data. 

For testing the models a data bank similar to Data 
Bank I is used since the fine grain facility detail is 
necessary. Modal total trips are also in this bank 
(1964 M) so that the assignment and modal split 
models can be tested on some existing base total. 
Forecasting is done with a similar Bank (1985 M) which 
contains estimated future network characteristics and 
zone populations and employments. 

The process is more fully explained under the dis
cussion of the master program. 

FLOW OF INFORMATION THROUGH THE 
SYSTEM 

Figure 4 shows how the basic data is gathered and 
made use of within the system. The source data has 
been discussed in general earlier. 

Item # 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

A = auto 
B = bus 
R = rail 

AA = avg. auto 
AB z avg. bus 
AR • avg. rail 

19641 1964II 

Atl (GWB) AAt 
At2 (LT) AAe 
At3 (Irr) AVE a 
At4 (SIB) AVWe 
At5 (TZB) ABt 

ABe 
Ad (GWB) AVia 
Ac2 (LT) BVWe 
Ac3 (Irr) ARt 
Ac4 (SIB) ARe 
Ac5 (TZB) RYE 
AVI (GWB) RVW 
AV2 (LT) Pi 
AV3 (Irr) Ei 
AV4 (SIB) Area i 
AV5 (TZB) 
Btl (GWB) Pj 
Bt2 (PABT) Ej 
Bcl (GWB) Area j 
Bc2 (PABT) 
BVI (GWB) PC 
BV2 (PABT) ABF 
Rtl (P. Sta) ARF 
Rt2 (Irr) 

Rt4 (PUP) 

Rt6 (CNJ) 
ReI (P. Sta) 
Rc2 (Irr) 

Re4 (PUP) 

Re6 (CNJ) 
RVl {Po Sta} 
RV2 (Irr) 

RV4 (PUP) 

RV6 (CNJ) 

BFI (GWB) 
BF2 (PABT) 
RFI (p Sta) 
RF2 (Irr) 

RF4 (PUP) 

RF6 (CNJ) 

t = travel time 
c - travel cost 
V = trip volume 
F = transfers 
P = population 
E = employment 

1964M 1985M 
Atl Atl 
At2 At2 
At3 At3 
At4 At4 
At5 At5 

At6 (new) 
ACI ACI 
Ac2 AC2 
Ac3 Ac3 
Ac4 Ac4 
Ac5 Ac5 

Ac6 (new) 
Pi Pi 
E1 Ei 
Area i Area I 
Pi Pi 
Btl Btl 
Bt2 Bt2 
Bcl Bel 
Bc2 1102 
Ej Ej 
Area j Area j 
Rtl Rtl 
Rt2 Rt2 

Rt3 (new) 
Rt4 Rt4 
PC PC 
Rt6 
ReI ReI 
Re2 Re2 

Rc3 (new) 
Rc4 Re4 

Re6 
AVE a reserve;r 
AVWe for 
BVEa output 
BVWe 1 RVEa 
RVWe 

BFI BFl 
BF2 BF2 
RFI RFl 
RF2 RF2 

RF3 (new) 
RF4 RF4 

RF6 

PC = parking cost 
i = zones west of river 
j = zones east of river 

Ea = resi!lence east 
We = residence west 

Figure 3-Data bank formats 



The determination of the proper values to be placed 
in the data bank merits some attention. Auto trip data 
were taken from the continuous sample origin-destina
tion surveys taken at the Port Authority's facilities 
and the Tappan Zee Bridge. Bus trip data were based 
on origin-destination surveys taken at the two bus 
terminals. Rail trip data, including the PATH system 
were synthesized from a PATH origin-destination 
survey, origin-destination surveys of those rail lines 
involved in the Aldene Plan (Central Railroad of New 
Jersey; Pennsylvania Railroad-Shore Branch), from 
various railroad conductor counts, and from the Man
hattan Journey-to-Work Surveys taken in 1961-1962. 

For auto times and costs, it was necessary to build 
peak and off-peak link and node networks. Travel time 
for each facility was calculated along the minimum 
time path with all of the other trans-Hudson facilities 
removed from the system. Travel distances were found 
by skimming over those paths. Costs were based on 
over-the-road costs of 2.8¢ per passenger mile, plus 
tolls and average parking costs. The 2.8¢ figure was 
developed by an independent study and was based on 
out-of-pocket vehicle costs divided by average vehicle 
occupancy. 

The bus and rail time, cost, and transfer matrices 
were developed by adding rows and columns for what 
might be called a common point network. Travel times, 
were determined from each zone west of the Hudson 
to a Manhattan terminal (Penn Station for example). 
Then travel times were determined from that terminal 
to each zone east of the Hudson. The same was done 
for costs and transfers. This depicted, quite naturally, 
how a bus or rail trip is made, and it was necessary only 
to add the rows and columns to determine the full i - j 
matrix of all time, cost, and transfer data. 

Population, employment and area data were ex
tracted and updated from Federal and State Census 
Data. 

It is interesting from an information handling aspect, 
to describe some of the trials and tribulations of 
manipulating the various pieces of input data from 
their original form to a finally completed data bank. 

First, a guiding decision was made in the develop
ment stages that all attempts would be made to use 
"in house" computer services. The Port Authority 
had for internal use both an IBM 7070 and an IBM 
360-40. A data bank had already been built for some 
similar work using the 7070. We had also done some 
earlier work on the auto networks using the Control 
Data Corporation's Tran-Plan Programs and some 
further work using the Bureau of Public Roads Trans
portation Planning programs run on an IBM 7094. 

To make a long story short, we decided to utilize 
as many of the existing programs as possible to build 

Computer Aided Traffic Forecasting Technique 65 

Figure 4-Model development process 

the data bank. The auto network data was run on the 
CDC 3600 and converted on the 3600 to input com
patible for the 7070 programs. The bus and rail net
work data was constructed from punch cards on the 
IBM 7094 with the BPRprogram and converted to 
the input format with that same CDC 3600 program. 
The trip data was transferred to the desired input 
format from its original state by an IBM 360 program 
and converted to proper input format for the data 
bank, with the IBM 7070. The population, employment 
and area data was directly input to the bank from 
punched cards. 

The data extract program was written originally for 
the 7070 and we used it in the early stages to extract 
data compatible for input to a known regression pro
gram run on an IBM 7094. 

In the course of the work all new programs were 
written for use on the IBM 360. Further, all the pro
grams originally written for the 7070 were rewritten 
for the IBM 360 and made more flexible in the process. 
We also hunted up regression programs and altered 



66 Spring Joint Computer Comerence, 1971 

them for our needs, so that regressions too could be 
run on the IBM 360. During the progress of the work, 
the Port Authority in-house computer was changed 
to an IBM 360-75 and all programs were modified where 
necessary to operate on it. 

As is the case with all information handling systems, 
errors can be expected in processing data from one 
stage to another. It is necessary then to have some 
means of correcting the errors. A flexible data bank 
update program was developed to accomplish this. 
Since the amount of data in the bank is so large, the 
program not only provides for correcting individual 
pieces of data, but also provides for massive changes 
with a few simple instructions. If, for example, it was 
discovered that the bus travel time on the west side 
of the river was five minutes too short from one zone 
it would mean that travel time from that zone to all 
zones on the other side would be wrong. Correcting 
this can be done with three punched cards. This up
data program is also used extensively to create forecast 
year network data and to change this data to describe 

_ many different alternate transportation systems for 
study. 

Once the data is in the data banks and verified as 
correct, it is necessary to extract this data, in certain 
pre-determined groups and in certain formats in order 
to perform the regressions to develop the models. For 
each of the models, the data is extracted in a different 
form. 

For the assignment model, we used a rating system 
for each of the facilities and a rating had to be calcu
lated and placed on the extract tape along with the time, 
cost and transfer difference for each of the facilities. 
The modal split being done in two stages required two 
separate extracts. Further, a classification system was 
used in the Bus vs. Rail modal split and each class 
required a separate data extract. The trip interchange 
also used a classification system that required many 
separate extracts to properly group the necessary data. 

Since multiple regression programs vary greatly as 
to their capacity and flexibility, it is necessary to 
formulate the data in the extract stage so that it can 
be easily used by the regression program. We have 
used a number of regression programs, none of which 
we can get to work on our own computers with the 
fiexibilitywe would like. Both the extracting of data 
and the preparation of the instruction to the regression 
program are tedious jobs. They require rigorous- at
tention to detail. Ratios cannot be calculated by divid
ing by zero; natural logs cannot be taken of negative 
numbers, etc. 

Model development also is not a simple undertaking. 
If a hypothesis is stated such that trips = k+a popula
tion+b employment+c travel time, and the regression 

shows that this is not a linear relationship then other 
forms of the variables might be tried such as logs, ratios, 
powers, etc. If this shows a poor fit then data might 
be reclassified so that different groups will be included. 
If this proves negative, then new variables have to be 
sought to try to explain the variation in trips. The latter 
approach also presents problems for, as explained 
earlier, every explanatory variable used for forecasting 
must be forecastable itself. This means that each 
search for a new variable must be thorough to the 
point of satisfying this condition. 

A brief description of the models that have been 
developed to date and the theory behind their develop
ment is contained in the following section. 

Assignment models 

The assignment technique employed is based on the 
concept that each crossing facility within a mode of 
travel competes with all others for the trips to be 
made within that mode between each origin-destina
tion pair. While it is true that there is also competition 
between modes, as well as between facilities within a 
mode, considerable literature is in existence that indi
cates there are different factors that govern choice of 
mode. These factors might not easily be handled in an 
allocation method that does not specifically identify 
the mode. The technique considered for allocation 
within mode does not necessarily identify the facility, 
per se, in its concept. 

The assignment model is based on a rating system 
first introduced by Cherniack. The concept assumes 
that the traveler compares the travel time, travel cost, 
and, in the case of bus and rail, the numbers of transfers 
for the alternatives he can choose from. In evaluating 
the alternatives, the traveler perceives the fastest 
facility and compares that time to the times of the 
other facilities; he perceives the least expensive facility 
and compares that cost to the costs of the other facili
ties; he perceives the most convenient alternative and 
compares it to the others; or, more realistically, he 
perceives some combination of all factors. He then 
rates the alternate facilities and gives the highest 
rating to the one that he perceives to have the best 
combination of time, cost, and convenience and a less€r 
rating to those he perceives to not have these advant
ages. Conversely, if the use of each facility is based on 
the cumulative rating of all users, then each facility 
could be given a rating based on its traffic volume 
compared with the traffic volume of all other competing 
facilities. The facility with the highest volume gets the 
highest rating and others, comparatively lower ratings. 

Using multiple regression techniques the relationship 



between these three factors and the comparative usage 
of the facilities was explored for each mode. The func
tion considered can be expressed as follows: 

R1 = T11TH = f (tl- ts, c1- ee, F1- Ff) where, 
R1 = rating of facility 1; the ratio of trips via facility 

1, T1, to trips via facility most heavily used, TH. 
tl = door to door travel time via facility 1, 
ts = door to door travel time via the fastest facility 

e1 = travel cost via facility 1, 
ee=travel cost via the least expensive facility, 
Ff = number of transfers via the facility with the 

fewest transfers, 
F1 = number of transfers via facility 1 

The R value or rating will equal 1.0 if the facility 
in question is the most heavily used and will be less 
than 1.0 for all lesser used facilities. Also, the differ
ences will equal zero if the facility in question is the 
best for the particular transportation variable. The 
ratings and the differences (to be known as t:.t, t:.e, t:.F, 
for time, cost, and transfer differences, respectively) 

PEAK COMBINED CBD & NON-CBD 

CI 

~ .50~-+--+-~..c---i 
-c( 
a: 

6C~2 
6C= 5 

61- -6C~10 

5 10 15 20 2.5 5 7.5 
6C (CENTS) At (MINUTES) 

R •• -.12"506' - .0""'AC-I.27723 

Figure 5-Auto assignment models 

10 

Computer Aided Traffic Forecasting Technique 67 

PEAK CBD 
r---~--~--'---' ~--~--~--~--~ 

R •• -.2"1I716t -.OI'UII6C + .0115"1 

.---__ ~--~--_r_-PE-A...,K NON.--C=B:.:D~ __ --,-__ -. __ ___, 

.---__ ~--~--~~OF-F...,-PEAKrC~B~D_r--~--_.--___, 

~ ~ 5 10 
AC(CENTS) At (MI NUTES) 

R •• - 3231106·t-Otl356C -.27"55 

Figure 6-Bus assignment models 

are calculated for each facility within each ongm
destination pair for each mode. Thus, for the auto
mobile allocation model, where five auto crossings are 
considered, each origin-destination pair can theo
retically contribute five data points. In this study, each 
origin-destination pair contributed fewer since only 
those facilities that were within twenty minutes of the 
fastest were deemed worth considering. Needless to 
say, few if any trips were found in that excluded 
category. 

When using the model to forecast facility usage, it is 
not necessary to find the most heavily used facility. 
The rating for each facility, being the dependent 
variable, is determined by the time, cost, and transfer 
differences. The share of the total traffic for each facility 
is the ratio of its rating to the sum of all the ratings. 
Graphs of the models are shown in Figures 5, 6 and 7. 

Modal split models 

Having studied many approaches to modal split as 
well as having tried a few ourselves, it was decided to 



68 Spring Joint Computer Conference, 1971 

C) 
z 

1.00 

.7~ 

~ .5 0 

a: 

~~ 
~ 

.2 

...At-
0 

PEAK ceD ~:::'='---r--'-"" 

t-.4?" 

I-I t§~~~!!!!!!!!~-~ /}; 
10 15 20 1-2 C 2.~ 5 7.5 10-

2 

R -.351147AI-.080836<:-1.3I11AI' - .0211114 
AC (CENTS) =. PEAK NON-CBO At(MINUTES) 

C) 
z 

1.00 

.75 

1\ 

.2 5\ 
\,~ 

~ .50 
a: 

0 

Figure 7-Rail assignment models 

attempt to develop the modal split models in two 
stages-first, would be a split between the two forms 
of public transport, bus and rail; then a split between 
public transport and auto. The reason this approach was 
taken was that the motivations for using auto or public 
transport seemed to us entirely different from a choice 
between two different means of public transport. The 
regression runs at least partially proved us correct. 

The bus versus rail model was derived by regressions 
using travel time, travel costs and number of transfers. 
Early attempts at deriving meaningful models indicated 
that' we were not explaining nearly enough of the 
variation with just those variables. It was then decided 
to investigate some sort of service index. Considering 
the problems of forecasting an exact service index we 
chose instead to classify areas according to a frequency 
of service ratio. In that way, we could be reasonably 
sure we could approximate this classification for fore
casting purposes. The bus vs. rail models were subse
quently grouped into four groups and modeled sepa
rately. These groups were bus predominant, competi-

tive, rail predominant and PATH areas. Each zone was 
classified into one of these groups based on the ratio of 
service frequency of bus and rail. The latter group was 
separated out because PATH was a rail service that 
had a frequency of service more like a bus service, and 
did not fit within the definition of the classification 
index. 

Trial runs of the early bus vs. rail models indicated 
that certain zones on the trip destination end, particu
larly The Manhattan CBD, were being systematically 
over or under estimated. A search for reasons indicated 
that the Lower Manhattan area-the focus of most of 
the N J rail service-exhibited entirely different char
acteristics than the remainder of the CBD. When we 
separated this area and ran separate models) the ex
planation of the variation was much higher and con
versely the reactions to the remaining variables were 
much lower. 

The following were the equations finally derived for 
the bus versus rail modal split: 

Bus zones-

MODAL SPLIT MODELS 
Bus vs. Rail 

B/B+R= .80+.00373 (tr-tb)+.337 (Cr-Cb) 
(R=.55) 

Competitive zones-
B/B+R=.231+.0064 (tr-tb)+.522 (Cr-Cb) 

downtown (R = .41) 

B/B+R=.436+.0139 (tr-tb)+.65 (Cr-Cb) 
other CBD (R=.73) 

Rail zones-

B/B+R= .261+.1705 (tr/tb)+.1868 (Cr/Cb) 
downtown (R = .36) 

B/B+R=.928+.745 (tr/tb)+.4829 (Cr/Cb)+.038 
(Fr-Fb) (R=.65) 

PATH zones-

B/B+R=.220+.0055 (tr-tb)+1.01 (Cr-Cb)+.097 
(Fr-Fb) (R=.94) 

B/B+R = ratio of bus trips to total transit trips 

tr = rail travel time (minutes) 
tb = bus travel time 

Cr = rail travel cost (dollars) 
Cb = bus travel cost 
Fr = number of rail transfers 
Fb=number of bus transfers 
R = multiple correlation coefficient 



The second stage of the modal split process was the 
auto versus public transit split. In the earliest attempts 
at deriving this set of models, we had assumed that 

) 

since the percentage auto usage to the CBD was much 
lower than to the remaining areas east of the river, 
we would try to derive a separate model for the CBD. 
The vari~bles included in the trials were employment 
density east of the river, population density west of 
the river, travel time difference or ratios, travel cost 
differences or ratios and parking costs. 

The resultant regression equations explained very 
little of the variation in the percent auto, however, the 
analysis of the results compared to existing trip patterns 
showed that where bus was the predominant public 
transit mode, there was a larger percentage of auto 
trips than where rail was the predominant transit mode. 
This finding indicated that while the choice between 
bus and rail might be a different one from the choice 

.10,....---.,-------------1"---, 

.4l----+-----t-----:;iIr--t"---: 

.3l----+----I-~~-_::; 

-10 0 +10 +20 +30 

buS time ",ail time 

Figure 8-Bus vs rail modal split CBD destinations 

Computer Aided Traffic Forecasting Technique 69 

between auto and public transit, there also appears to 
be a difference in the choice of auto versus bus and 
auto versus rail. Rather than establish three sets of 
equations (auto vs. bus, auto vs. rail and bus vs. rail), 
which would have to be normalized to sum to 100 per
cent, it was decided to try the percent bus of total 
public transit as a variable in the auto vs. public transit 
modal and still depict the difference in choice between 
auto and the two public transit modes. When the per
cent bus was entered as a variable, the regression 
equation proved to be dominated by this variable, but 
still did not explain enough of the variation in percent 
auto in the CBD. Similar trials with non-CBD traffic 
only had even less explanation. 

Observation of the range of values of the inde
pendent variables led us to discover that while the 
range of values of many of the variables did not ex
plain the large difference between percent auto to 
CBD and to the non-CBD, two of the variables, em
ployment density and parking cost, did seem to be 
highly correlated with the percent auto if the CBD 
and non-CBD trips were combined. A regression run 
using all the observations showed a relatively high 
degree of explanation. It did not seem to go far enough 
towards explaining differences between percent auto 
within the CBD and those within the non-CBD. In 
order to correct this, the finding that the percent bus 
variable was highly explanatory, in the CBD, was com
bined with the general equation derived for both CBD 
and non-CBD observations, and the model proved 
reasonably successful in depicting the general pattern 
of auto as a percent of total traffic. 

The model as finally established was: 

AI A +B+R= .65 - .091 In (Ejl Aj) - .033 In (Pil Ai) 
- .0068 In (PC) +.1279 In (tplta) +.175 (BIB+R) 

Multiple correlation coefficient = .76 
Where EjlAj=Employment density of east of 

Hudson zones 
Pil Ai = Population density of west of 

Hudson zones 
PC = Parking cost 

tplta=ratio of transit travel time to auto 
travel time 

BIB+R=ratio of bus trips to total transit 
trips. 

In = natural log 

A graph of the model is shown in Figure 9. It was 
developed using the (Ejl Aj) variable as the basic 
variable and shows the effect of the other variables as 
they extend to their maximum value range. For ex
ample, if a zone interchange were between a zone with 



70 Spring Joint Computer Conference, 1971 

m~--~----'----'-----r-'---'----'----'----I 

90'~--+ 

non 
cac 

10M 
cac rang. 01 E;/Aj 

1 

Ej /Ai employment density (1.000/sq. mi) 

Figure 9-Auto vs public transit modal split 

(EJ/ Aj) of 300,000 jobs per square mile and one of 
the highest (Pi/Ai) zones it would have 13-11=2 
percent auto. Including the remaining variables would 
drop it below 0 percent if it had the highest parking 
cost, raise it back up by 4 percent if it had a high 
(tp/ta) ratio and raise it an additional 17.5 percent if 
all the transit trips were by bus. That zonal interchange 
would then be predicted to have about 20 percent of 
its trips by auto. 

Also shown on the graph is the range of values for 
(EJ/ Aj). It can be seen why that variable explains so 
well the percent auto since the CBD employment 
density is so much higher than that of the other areas. 

Trip interchange models 

In this model we were attempting to develop relation
ships that describe total trips between a zone on one 
side of the river and a zone on the other side. Previous 
studies in this subject have concentrated more. on a 
concept of trip generation and trip attraction where 
the trips from the sending zones are estimated sepa
rately from the trips to the receiving zones and then a 
balancing of trip interchanges is made. This process 

lends itself to a gravity concept that postulates that 
trips are generated by population, attracted by em
ployment and vary by some function of the distance 
between zones. The function is usually a decay function 
and short trips predominate in the model description 
of trip patterns-which is quite true to life. 

The trans-Hudson trip market is only a very small 
portion of all trips taken in the region and it is a portion 
that includes mostly longer trips, Therefore for our 
approach we tried to go directly to trip interchange 
and we developed a method that is based on segregation 
of geographic areas on each side of the river that, by 
earlier study, exhibited different trip patterns. 

The general theory behind this approach to trip 
interchange is that communities change as they age, 
and there are several directions of change that they 
can take. This can best be explained by discussing the 
types of areas we used for our classification systems. 
There were 5 separate area types west of the Hudson; 
(2) urban core: old densely developed areas near the 
river, (4) urban self-sufficient: also older areas but 
further from the river with more or less their own eco
nomic base, (6) stable suburban: old areas originally 
developed as bedroom communities with little economic 
base of their own, (5) mid-suburban: newer areas fast
growing in the recent years with a mixed orientation, 
(1) emerging suburban: sparcely settled areas now with 
growth expected in the future. Further, there were 3 
separate area types east of the Hudson: (3) Manhattan 
CBD, (7) urban areas-includes most other New York 
City zones, (8) suburban areas-New York suburban 
counties. 

From our past studies it has been shown that each 
of these interchange groups exhibited different char
acteristics as to trips interchanged with zones on the 
other side of the river as well as different socio-economic 
and demographic characteristics. 

Further analysis of the characteristics of these areas 
indicated that they could be classified into separate 
groups by study of economic and demographic data 
relating to each of the zones. The classification of these 
areas is presently done with a non-rigorous method of 
observation, but we have just begun using the statistical 
technique of descriminant analysis for a more precise 
classification system and it seems to be working well. 
It has proved our original classification to be accurate 
in most cases and has given us further insight to trouble
some zones. 

While the models we have developed so far still have 
many shortcomings, they appear to verify the general 
theory and the variables used are logical ones. It can 
be seen from the list of equations that are now being 
used that the effect of the predominant trip-producing 
variable (population) varies considerably between area 



type groupings. Further the gravity theory of trips 
varying with distance between zones (represented by 
travel time) is maintained with the inclusion of the 
time variable. The CBD models are shown in a graph 
form in Figure 10. The scales of the graphs should be 
noted since the lines plotted indicate the range of the 
population and trips within each of the area types. The 
slope of the lines indicates the effect of population on 
trips and the brackets at the end of each line indicate 
the range of the effect of employment on trips. It can 
be seen that Area Type 4 zones produce a small amount 
of trips per capita and do not react very much to em
ployment attractions on the east side of the river. 
These are the "self contained areas." Area Type 6 
zones, on the other hand, have higher trips per capita 

Table I-Trip Interchange Models 

CBD Zones 
Area Types 

2-3 Tij = -125 +2.36 Pi +3.16 Ej - .487 tij (R= .65) 
4-3 Tij = +5+.307 Pi+.514 Ej -.059 tij (R=.71) 
5-3 Tij = -159 +44.3 In Pi + .596 Ej - .059 tij - 25 (R=.71) 

(Ei/Pi) 
6-3 Tij = -60+.197 Pi + 1.509 Ej - .131 tij (R= .75) 
1-3 Tij = -3+.682 Pi+.338 Ej -.037 tij (R= .69) 

Non CBD Zones 
2-7 Tij = -10.4+.124 Pi+.108 Ej+1.12 (R= .66) 

(Ej/Aj) 
4-7 Tij =5.0+.118 Pi+.076 Ej+.48 (Ej/Aj) (R= .74) 

-.028 Atij 
1-7 Tij =191+6.66 In Pi+3.60 Ln Ej-0.50 (R= .74) 

In (Ejl Aj) -33.57ln Atij 
5-7 Tij =167+8.79 In Pi +7.93 In (Ej/Aj)-3.59 (R= .69) 

In (Eil Ai) -32.9 In Atij 
6-7 Tij =250+13.24 In Pi+8.17]n (Ej/Aj) (R=.76) 

-48.2 In Atij 
2-8 Tij = 33 +4.22 In Pi - 6.5 In tij (R= .46) 
4-8 Tij =15+3.82 In Pi+1.25 In Ej+1.87 (R= .58) 

In (Ej/Aj)-4.74ln tij 
1-8 Tij =13+1.9ln Pi +.4 In Ej -2.66ln tij (R= .44) 
5-8 Tij =67 -6.11 In (Eil Ai) +7.53 In (Ej/Pj) (R= .60) 

-8.2ln tij 
6-8 Tij =2.3+16.2 In Pi+11.2In (Pi/Ai)+30.7 (R= .63) 

In (Ej/Pj)-6.4ln tij 

Tij =total trips between i zone and j zone 
Pi = population (000) in i zone 
Ei = employment (000) in i zone 
Ai = area (square miles) of i zone 
Pj =population (000) in j zone 
Ej = employment (000) in j zone 
Aj =Area (square miles) of j zone 
tij =weighted average travel time from ito j 

Atij =weighted average auto time from i to j 
In = natural logarithm 
R = multiple correlation coefficient 

Computer Aided Traffic Forecasting Technique 71 

:r 

1200 

1 

... 

200 

-

TRIP INTERCMANIlE MODELS 
AREA TYPES 1, 5, IS TO CaD 

400'1----~-- ... - -_. --.-.---+--.-+------f 

~I---~--~---+---+--~. 

.Mllx...E.i. 

TRIP INTERCHANGE MODES \ 
AREA TYPES 2,410 caD I 

I 
_ ,."!IEI 

~ 
~ 

p," t ./ 

V 
V • ... lInEj 

AVO;' 

-~ AREATy~4 

50 100 150 200 250 
POPU'alion I (.OOO's) 

Figure 10-Trip interchange models 

-( . , 

and much higher attraction to employment. These are 
the stable suburban, or bedroom communities. The 
highest trip producers are the Area Type 2 zones which 
are closest to the river. The trip values for the graphs 
were calculated using the average travel time for each 
area type. 

Improvements in the models are currently being 
sought through investigations of additional explanatory 
variables such as competitive employment opportuni
ties on the same side of the river and employment 
classification. Further investigations are also being 
made with different forms of the dependent variable. 

With models being developed for the purpose of 
forecasting, some method must be utilized to judge 
their forecasting quality. One method is to carefully 
inspect the way that the models perform in reprQducing 
the basic traffic patterns from which they were de
veloped. The process we developed for this is best 
described by discussing the master program. 



72 Spring Joint Computer Conference, 1971 

CALCULATE 
FACILITY VOLUMES 

EAST &: WEST 
USING EXISTING 
MODE VOLUMES 
EAST f: WEST 

*"odel 
01 
Trana 
Hud_ 
Em~lcal 
R.lllllonllhipa 
Ha.lng 
~"Ina 
D.atlnatlona 

CALCULATE 
AVERAGE TIME 

A. B. R 
AVERAGE COST 

A. B, R 
AVERAGE TRANSFER 

B. R 

Figure 11-Trans-Hudson model-Motherhood Program 

MASTER DATA PROGRAM-"MOTHERHOOD" 

A system designed for forecasting must have some 
method of utilizing the developed models to produce a 
listing of the forecasted trips in the desired detail. The 
design of the forecasting program was, of course, con
trolled by the concept of the entire system. 

The program developed has been named "Mother
hood." This is an acronym representing "Model of 
of Trans-Hudson Emperical Relationships Having 
Origins or Destinations." It was dreamed up for us by 
one of those fellows who has nothing better to do with 
his spare time other than dream up acronyms. It has 
done well by us since who, in the long run, can criticize 
Motherhood. It has also created some interesting dia
logue with the programmers who run the system, since 
many of them are young girls. 

Figure 11 is a block diagram of the information flow 
in the "Motherhood" program. It is indexed by the 
numbers in circles for easy reference. 

The program is designed to accommodate each of 
the several model stages (assignment, modal split and 
trip interchange) separately or combined. The thread 
of continuity in the combined operation is the network 
data. The program takes the basic facility network data 
from the data banks, uses it for the assignment model 
and then reduces the facility data to mode and total 
travel data for the modal split and trip interchange 
models in much the same fashion as was done to build 
Data Bank II for development of the models. 

Starting with the input in the data bank where travel 
times and costs are referenced to a specific facility the 
program calculates (box 2) the percent of each mode's 
total traffic that will be assigned to each facility within 
that mode. A separate equation (model) is used to 
calculate the percentages within each mode. The pro
gram 'then uses these percentages to calculate (box 5) 
the weighted average time and cost of each mode. It is 
these mode averages that are then considered as input 
to the modal split models. The modal split models (box 
6) operate in two stages. First, the percent split be
tween bus and rail is calculated from a model (or set of 
models) then the weighted average time and cost of 
public transport is calculated and a percent split is 
calculated between public transport and auto. The last 
step is then to calculate a single weighted average time 
and cost (box 9) so that it can be used as input to the 
trip interchange model (box 10). It can be seen that 
the eleven times and costs in the data bank (one for 
each of the facilities) are now transferred to a single 
time and cost (representing a weighted average of all 
facilities) by flow through the program. The trip inter
change model using this averaged value of time or cost 
then calculates total trips between zones. The program, 
having previously calculated and saved the percent 
split value on modes and facilities, simply uses these 

: ... :: : ... : ··r· : ... : ::: .. ::::. : ... : : ... : : ... : : ... : . ... . . .. ......... . . . ... . . . ..... . . . . ... ... . .. . 

l' ••• 
. C ••• 

". t lit 
'''1 c-., I 

1 1 
I-~~-I 

II 
II 

CJ 

THIS fIt-t4 MJN IS A COfiIPLETf REPOiJtT WITH fAC Ate .. PIltJNT Dun. 

IE~UlTS AilE SASFD Ott 6 AUTO, l aus- litO ], ",IL FACILITIES. 

Figure 12-Print out example 



Computer Aided Traffic Forecasting Technique 73 

JOB AI64 Jftlq FACILITY VOLUMES F + W FOR OPTION 1 85 COMP 8582 1 8586 2 858T 2 

85 PfA~ 8ASE Tq CPRR + lMtNI 8582T12, 8586T14, 8O:;810Tll TAPE NO.5332 9/11/70 

J 

All 
!II 2 
"1 3 
IH 4 
1111 5 

At " 
Al 7 

'" " ~1 q 
Al II) 

"1 l' e" 12 
Al 11 
"1 14 
Al 1 '5 
"1 16 q, 17 
PI 18 
"I lQ 
Al ,(\ 

SUI' TOTAL 
2') 

Al 21 
Al 21 
"I '3 
Al 24 
en '5 
III 26 
AI '7 

"1 '" 
II 1 2Q 
A 1 ~r'I 

Al 3' 
Al J" A, 'B 
'q 14 
A' 3"i 
Al 36 
AI 'H 
Al 3-
01 39 
III 4(' 
Al 41 
PI 4'It, 41 
"I 44 
'" 4'5 

"' 41'1 
fll 47 q, 4' 
!I, 4" 
AI 0:;0 
PI 51 

_LL MnoFS ----------------- AUTO -----------______ _ 
GR. TOT TOT GW8 LT HT SI8 TZ NEW 

174 62 60 0 0 r'I (I 2 
]n6 III 110 n n r 0 1 

32 17 16 0 0 0 0 1 
22 13 11 ~ 0 (I n 2 
14 19 18 I) non 1 
27 17 13 0 n 0 0 4 
76 45 42 1 n n 0 1 
'57 )7 28 0 r) 0 0 8 
,,9 loS 41 t I) 0 0 1 
60 14 '6 I) 0 0 0 1 
Aft 4' 1,. J 0 0 (I 1 
75 3'5 '6 Ion 0 7 
6It 31 26 3 0 0 n 1 
61 31 14 1 (\ 0 n 7 

1 HI 61 55 3 n (' I) 2 
106 '54 42 1 n (\ r'I 12 
121 70 67 I) I) (' 0 2 
14' 69 '51 1 (\ (' n 15 
155 A6 "3 0 I) (\ 0 3 
III "3 4,. 0 n (\ (\ 15 

00 

117 
Qf:. 

III 
I"n 

'i7 
")6<) 

In'n 
3'13 
11, 
1'46 
341 

" " 16 
4 
1 

17 
12 
1"6 
'? 
26 
H 
21 
22 
16 

04'5 

76 
6'5 

7' 
81 Q, 
79 
91 
Itl 
oq 
Q1 
5'5 

r;69 
I n ,)1 
'Al 
III 
116 
341 

l:
I 

t2 
3 
1 

13 
9 

12 
2(' 
1<) 
24 
18 
1<) 
1'5 

tt3' 
74 
'51 
75 
67 
89 
'HI 
74 
1('1 

2 
(\ 

,(\ 
(' 

f\ 

o 
n 
(' 

n 
4 
1 
9 
2 
(\ 

9 
2 
3 

15 
14 
17 
13 

1 
o 

17 
I) 

I) 

') 

n 
n 
n 
I) 
(\ 

') 

n 
o 
t) 

I) 

" ., 
n 
o ., 
n 
I) 

r'I 

" n 

" I) 

I) 
r'I 

n 
I) 

n 
I) 

I) 

I) 

f\ 
I) 

I) 

n 
n 
n 
n 

" " n 
I) 
(\ 

o 
t) 

I) 

o 
o 
I) 

" o 
n 
n 

" o 
n 
o 

" o 
o 
I) 

(I D 96 
(' n 2 
o 0 14 
o n 4 
(\ n 14 
(\ n 3 
o 0 21 
(' 0 19 
o 0 53 
o n 97 
o n 93 
o 0 35 
o 0 569 
(\ 4~3 6no 
(I 48 335 
o 0 III 
o n 136 
(\ n 341 
(\ 0 2 
n n 1 
o t) 3 
n I) 1 
('I n 0 
('104 
C 0 7 
o ') 10 
(' I) 5 
(\ 0 5 
007 
(1)5 

(' 0 18 
o 0 14 

--------- BUS 
TOT GIIRS 

29 27 
50 46 

9 8 
5 4 
IJ 7 
6 5 

14 13 
10 9 
20 17 
13 11 
23 21 
22 18 
21 15 
lIJ 15 
5f! 46 
109 39 
52 41 
68 58 
70 !tB 
51 52 

600 526 
39 lCJ 
29 2CJ 
33 H 
27 17 
27 27 
20 20 
25 25 
13 13 
12 12 

7 7 
2 2 
o 0 
o 0 
I) 0 
o 0 
o 0 
o I) 

2 1 
1 1 
3 3 
1 1 
1 1 
3 3 
2 2 
~ ? 
9 CJ 
7 7 
9 It 
4 4 
3 3 
1 1 

PART 
2 0 
3 I) 

1 0 
1 0 
I 0 
o 0 
1 0 
2 0 
3 0 
2 0 
2 0 
It 0 
6 0 
3 0 

12 0 
10 0 

5 0 
10 0 

1 0 
5 I) 

74 0 
o 0 
o 0 
o 0 
o 0 
o 0 
I) 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
1 n 
o 0 
o 0 
o 0 

---~---~------- RAil ---------------TOT 
83 

143 
6 
4 
7 
4 

11 
10 
24 
12 
15 
19 
12 
12 
o 
2 
o 
5 
o 
3 

378 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
n 
o 
o 
o 
o 
o 
o 
o 
o 
1 
o 
o 
1 
1 
1 
3 
1 
1 
o 
o 
o 

PRR HTR PUPR 
o 82 0 
o 139 3 
042 
031 
o 0 1 
004 
0017 
o 0 10 
o 0 24 
o 0 12 
o 0 15 
o 0 19 
o 0 12 
01)12 
000 
002 
o 0 0 
014 
000 
003 

o 231 147 
000 
000 
000 
000 
000 
000 
o 0 0 
000 
000 
000 
000 
000 
000 
000 
000 

-0 0 0 
000 
000 
000 
000 
000 
o 0 0 
010 
010 
000 
030 
000 
o 0 1 
000 
000 
000 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
I) 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

Figure 13-Print out example 

percentages to distribute the total trip volume into 
trip volumes by mode and facility. 

You can note also on the diagram that there are 
optional routes through the program. These are for 
model testing purposes so that each of the models can 
be tested and calibrated separately. A test of the assign
ment model can be made by running the program with 
option 1 on (box 3) where we can take the given number 
of trips on each mode and simply assign them to facili
ties. In order to test the modal split model, the program 
must have both the assignment model and the modal 
split models in so that the weighted averages of the 
times and costs can be made to input data in the modal 
split models. And lastly, a test of the trip interchange 
model must be made with all three models (box 2, box 
6 and box 10) in the program, so that the average times 

and costs can be calculated by the two previous models 
as input to the trip interchange model. 

There are several print options in the program. The 
major option is a facility print or mode print where 
residence east trips and residence west trips are sepa
rated (see Figures 12, 13 and 14). These options are 
used so that the analyst may review the forecast in 
the manner most appropriate to his investigation. The 
residence split being most important in the trip inter
change review and the facility print most important in 
the assignment and in the review of performance of the 
overall system. 

Additional print options are available that collapse 
and sum the trip forecasts. The basic print is in an i - j 
format, i.e., each cell is printed. One summation is by 
county groups, another sum is by rail corridor groups 



74 Spring Joint Computer Conference, 1971 

J(l" AI64 J019 MODE VOlUMFS EAST AND WEST FOR OPTION 2 85 COMP 8582 1 8586 2 858T 2 

lie; PEAK RASE T9 (PRR + IMIN. 8582H2. 8586Tl4. 85810TI1 TAPE NO.5332 9/11110 

J --------- AUTO --------- ---------- BUS ---~----- --------- RAil ---------
GP.. TOT Tt:'IT. F T'H. W TOTAl EAST WEST TOTAL EAST WEST TOTAL EAST WEST 

111 174 , 177. 62 1 61 29 1 18 83 0 83 
Al ~O6 2 304 113 1 In 50 1 49 143 0 143 
111 1 l=' =' Vl 11 1 16 9 1 8 6 0 6 
A' 4 22 7 71) 13 1 13 5 1 4 4 0 4 
AI 5 ~4 2 37 19 1 18 8 1 1 1 0 1 
Al 6 17 1 25 17 1 16 6 1 5 4 0 4 

'II 1 11> 7. 74 45 1 44 14 1 13 11 0 11 
81 A 51 7. 56 'H 1 16 10 1 10 10 0 10 
III 9 119 1 'H 45 1 44 20 1 19 14 0 24 
"l 1" 6(\ 1 513 14 1 33 13 1 12 12 0 12 
Al It pn 2 111 42 1 41 23 1 22 15 0 15 
''1 12 75 2 13 15 1 14 22 1 11 19 0 19' 
AI .3 '.4 ? 62 31 1 30 21 1 20 12 0 12 
II; 14 61 2 61 33 1 32 18 1 11 12 0 12 
"1 I'> 11" 1 116 61 1 60 58 1 51 0 0 0 
ql 16 '''6 2 It'.'4 54 1 53 49 1 48 2 0 2 
lit 17 122 , 121) 70 1 69 52 1 51 0 0 0 
"I 18 14' 2 lion 69 1 68 68 1 61 5 0 5 

'" 19 155 2 153 "6 1 85 70 1 68 0 0 0 
"1 I n 123 1 121 63 1 62 57 1 56 3 0 3 
S .. ~ TOTAL 

20 10 24 38 1885 945 18 927 600 20 580 378 0 378 
81 21 115 4 III 76 2 74 39 2 31 0 0 0 
Al 72 ()I. 1 ell 65 1 63 29 2 21 0 0 0 

"1 73 1tl 4 In7 78 2 16 33 2 31 0 0 0 
AI 74 11)8 " 105 PI 1 AI) 21 2 25 0 0 0 
III 25 1 =,n 4 116 92 2 90 21 2 26 0 0 0 
Al ='6 qo 2 96 79 1 7fl 20 1 18 0 0 0 
AI ,7 117 4 In 93 2 91 25 2 23 0 0 0 
81 ,,~ 01> 3 94 113 1 82 13 1 11 0 0 0 

"' 29 111 7. 108 99 1 9A 12 1 10 0 0 0 
"1 3 n lOt' 2 911 en 1 92 1 1 6 0 0 0 
Al 31 '57 ') 55 '55 1 '54 2 1 1 0 0 0 
111 37 56 0 1 568 569 1 568 0 0 0 0 0 0 
Al 33 tnf\l 1 10n2 In03 1 1002 0 0 0 0 0 0 
01 34 ~A3 1 387 3e3 1 382 0 0 0 0 0 0 
Al .15 131 7. 129 131 2 129 0 ( 0 0 0 0 
Al 36 13" 7. 134 136 2 134 0 0 0 0 0 0 
Al 37 341 1 l4t) 341 1 341) 0 0 0 0 0 0 
111 31' A 2 6 6 1 5 2 1 1 0 0 0 
III ~9 ;» 1 1 1 1 1 1 1 0 0 0 0 
At Ion 16 2 14 12 1 11 3 1 2 1 0 1 
Al 41 4 2 2 3 1 7. 1 1 0 0 0 0 
III 47 I 1 0 1 1 0 1 1 0 0 0 0 
lit 43 11 2 15 13 1 12· 3 1 2 1 0 1 
Al 44 12 2 11) 9 1 IJ 2 1 1 1 0 1 
III 45 16 3 13 12 1 11 3 1 1 1 0 1 
At 46 37 1 31 20 1 20 q 1 8 3 0 3 
At 41 76 , 23 19 2 17 1 2 5 1 0 1 
RT 48 '3 1 31 24 1 2? q 1 7 1 0 1 
1'1 49 21 'I lq 113 1 17 It 1 3 0 0 0 
Al 50 21 =' 19 lq 1 lR 3 1 2 () 0 0 
III 51 16 2 14 15 1 14 1 1 0 I) 0 0 

Figure 14-Print out example 

and the last sum is by area type groups. An additional 
feature is built into· the program that converts auto 
passenger trips to auto trips so that analysis can be 
made on a vehicular basis. 

Another feature of the master program is that it can 
be used to read and print out the data within any of 
the data banks. This is a necessary procedure when one 
considers the massive amount of data in the banks and 
the necessity of maintaining accuracy when changes 
are made. 

Perhaps the most important feature of the master 
program is that the model sections (boxes 2, 6 and 10) 
are completely flexible. They are branches within the 
master program and can be changed simply by re
writing the FORTRAN statements within each branch. 
This allows the user to change the entire model or 

parts of it. It allows us to use the master program for 
the peak and off-peak models with equal ease simply by 
replacing the model sections of the program. Of great 
importance is the fact that this master program can be 
used to test models developed at a later time based on 
some new data and new research. 

CURRENT USE OF THE SYSTEM 

The peak period models have already been developed 
to a point where we· think they can be used for fore
casting. The basic models were derived from 1964 data 
and they were tested by running them through the 
"Motherhood" program. Because a multiple regression 
program does not provide one with a perfect fit of the 



data, the test runs provide for analysis of the output. 
These analyses point to areas where additional vari
ables could be used, where network errors might have 
been made, and where certain phenomenon simply can
not be explained adequately. Correcting for these items 
is called calibration. 

The 1964 models were calibrated in several stages. 
First, the assignment models were run and calibrated. 
Then the assignment models were used along with trial 
modal split models and the two stage runs were cali
brated. Finally, the calibrated assignment and modal 
split models were run with the trip interchange models 
in the full three stage run. This way, the entire set of 
models could be considered calibrated to reproduce the 
1964 data in the same procss that the 1985 forecast 
runs would be made. 

Many data summaries were made to make sure that 
traffic patterns derived from the models were reasonably 
in line with those found in the original trip data. Areas 
that were checked were those where specific transporta
tion improvements were to be made or where alternate 
systems were to be tested. The following table shows 
some of the calibrated data summaries made on the 1964 
trial runs. 

For the forecast year 1985 an initial transportation 
network had to be constructed. The network data was 
derived by an analysis of the plans and programs of all 
the transportation agencies in the region. The time, cost 
and transfer effect of new or improved facilities that 
would be in place and operating by 1985 were coded 
into the networks to depict a base network. These in-

TABLE II-1964 Peak Period Trans-Hudson Model Calibration 
Facility Comparisons 

Actual 

Grand Total 159 438 
Auto 45 909 

GWB 23 560 
LT 11 159 
HT 3 214 
SIB 2 770 
TZ 5 205 

Bus 58 845 
GWB 11 268 
PABT 47 577 

Rail 54 684 
PS 7 593 
HT 26 060 
PUP 13 153 
CNJ 7 878 

Assignment 
Model Only 

159 398 
45 909 
23 675 
11 677 
3 269 
2 540 
4 749 

58 833 
10 270 
48 563 
54 658 
7449 

25 652 
12 885 
8 671 

Assignment 
and Modal 

Split 
Models 

159 394 
46 199 
22 847 
12 618 
3 474 
2 534 
4 726 

58 142 
10 860 
47 282 
55 056 
7 543 

25 282 
13 521 
8 712 

Assignment 
Modal Split 

and Trip 
Interchange 

Models' 

158 659 
46 230 
23 091 
12 466 
3 586 
2 672 
4 416 

57 195 
10 765 
46 430 
55 235 
7 504 

25 199 
13 954 
8 578 

Computer Aided Traffic Forecasting Technique 75 

cluded new highways, improved rail service and some 
improved bus service resulting from new highways. 

Additional data necessary to run a 1985 trial forecast 
was the forecasted independent variable data-popula
tion, employment, area types for the trip interchange 
model, and service classification for the rail vs. bus part 
of the modal split model. 

Trial forecasts for a basic assumed transportation 
system have been run and are being analyzed. Several 
alternate systems have also been coded into the network 
and run and we are analyzing the reaction to the changes 
caused by the various alternates. Further work in this 
area includes reassessing the 1985 population and em
ployment forecasts based on later census data. 

The off-peak models based on 1964 data are still 
under development. Because off-peak traffic exhibits a 
great amount of variation, it is difficult to "zero in" on 
what causes the variation. First, the market is split, 
being part work oriented travel and part non-work. 
Another problem is that 21 hours of traffic are included 
in the data some hours of which may differ from others. 
Still another is that public transport usage is extremely 
variegated in this off-peak market perhaps being in
fluenced by income in some areas or by entertainment 
centers in other areas, etc. Unfortunately, few of these 
types of influences can be accurately forecast. 

While we are working on the off peak models, we con
tinue to search for more usable explanatory variables 
for the peak models. In this assignment model, we had 
difficulty duplicating representative patterns for users 
of the two bus terminals and we are working on a 
variable that will attempt to define more clearly the 
difference in access to the different bus routes on the 
New Jersey side. This same variable and one· like it for 
access to the rail service might help explain more of 
the variation in the bus vs. rail Modal Split models. 
We are also experimenting with variables that might 
better describe the differences in distribution on the 
New York side, particularly in the CBD. We are now 
using travel time, cost and number of transfers involved 
in the entire trip, and it seems as though these variables 
do not focus strongly enough on the attractiveness of a 
trip that requires no additional mode for distribution 
from the terminal to the final destination. 

In the trip interchange model we are currently using 
total trips as the dependent variable but we are trying 
other forms such as trips per capita. We are also intro
ducing new variables such as competing employment 
opportunities within 20 minutes of the origin zone and 
managerial and professional employment. We must be 
careful with the latter since it may be difficult to 
forecast. 

Earlier in the paper it was stated that one of the aims 
of the system was to allow for updating and using new 



76 Spring Joint Computer Conference, 1971 

data. In meeting this requirement, we are now building 
a new data bank to represent the base year 1,968. 

The trip data for that year is available from numerous 
o and D surveys. Auto data comes from the continuous 
o and D sample and 0 and D surveys were taken that 
year at the two bus terminals, on the Penn Central 
Railroad and on the PATH system. Only minor adjust
ments to the original trip data programs are necessary 
to format these data for use in the model systems. 

Population data for 1968 will be estimated from the 
1970 census of population and employment data will be 
extracted from continuous sources of employment data 
available from N ew York and New Jersey State 
agencies. 

The travel time, costs, transfers and other network 

variables will be updated from sources of permanent 
records available such as service schedules, fare tariffs 
and sample travel time runs. With the utility available 
from the battery of programs that have been written 
and from the design of the systems we now have a 
capability long sought after in urban transportation 
studies. We can update on a short time cycle so that 
we can integrate time series analysis with the new fore
casting system. We can now derive new models with a 
1968 base and compare them with those derived from 
the 1964 base. We can attempt to forecast 1968 from 
the 1964 models and analyze the differences from actual 
performance. With this technique we hope to have 
greater insight to the causes of traffic pattern changes 
both for short run analysis and long range forecasting. 



Computer graphics for transportation problems* 

by DAN COHEN and JOHN M. McQUILLAN 

Harvard University 
Cambridge, Massachusetts 

INTRODUCTION 

The central problem in designing transportation systems 
and networks is determining the optimal control tech
niques for given transportation facilities. For example 
it is essential to find the best strategy for handling th~ 
traffic in a given airspace, in a given highway system 

. ' or m a network of city streets. The other side of the 
problem is to determine for given or predicted traffic 
conditions, the optimal transportation facilities. Urban 
planners must solve these problems when designing new 
developments; similarly it is important to determine 
how many airways and airports will be required to 
handle the air traffic in the 80's. From the answers to 
such questions one can decide how to allocate funds, 
for example, to improve the radar systems to allow 
smaller separation or to put more navigation aids in 
order to increase the number of airways. 

It is not just a mere coincidence that in many lan
guages the word "see" and "understand" are synonyms. 
In many cases to see is to understand, and this is what 
computer graphics is all about. 

Computer graphics is used mainly as an interface 
between the man and the machine. Problems which 

)nherently require display of output or have graphically 
oriented input are the clearest beneficiaries of computer 
graphics. Graphical output gives the ability to display 
arbitrary shapes quickly. Graphical input provides the 
ability to define shapes and the ability to identify 
things naturally by pointing to them. Transportation 
systems are often best represented graphically. For 
these reasons we have found that the application of 
computer graphics techniques to the solution of trans
portation problems is most fruitful. 

In this paper we discuss the philosophy behind our 
approach, and illustrate it with examples taken from 

* This research was supported in part by ARPA Contract 
F 19628-68-C-0379. 

77 

specific programs. A ten minute film will be shown to 
demonstrate the application of interactive computer 
graphics for urban traffic problems. 

COMPUTER APPROACHES FOR 
TRANSPORTATION SYSTEMS 

It is often the case that practical problems deal with 
system behavior, rather than behavior of a single 
particle or a single element. Describing and dealing 
~th syst~ms is manyfold more complex than working 
WIth. a smgle element. Often one can describe very 
preCIsely the exact mathematics which govern the be
havior of a single element. However, it is very seldom 
that one can find equations which describe a system 
completely, and still be consistent with the behavior of 
each of its elements. 

Si~ula~ion of urban traffic, or air traffic, are examples 
of thIS dIfficulty. One can describe very precisely the 
motion of a single car or of a single airplane. If the 
motion of the car is unrestricted, then its behavior is 
simple to explain. When more than one element is 
introduced into the system, the interaction between 
them adds a new dimension to the problem. The com
plexity of the interactions might grow as the square of 
the number of objects in the interaction. In general, 
one can solve situations where few vehicles are involved. 
H~wever, any practical problem involves too many 
objects for a human being to solve without a computer. 

In many transportation problems, there is a system 
of many particles moving concurrently in the same 
space, obeying some interaction restrictions. These re
strictions are usually in the form 'of separation criteria 
(for cars, airplanes, ships, etc.), staying in some cor
ridors (like highwayst airways, etc.) sharing some navi
gation facilities and so on. Such system problems lend 
themselves very well to computer use. In order to solve 
these transportation systems on a computer, one can 



78 Spring Joint Computer Conference, 1971 

use simulation techniques, rather than integrating equa
tions into system-behavior. A computer can perform 
the tedious job of simulation particle by particle and 
make local decisions about each of the particles. In 
some systems these decisions are based only on local 
information, as observed by each particle. In other 
systems these decisions may depend on global infor
mation about the state of the system. 

If the behavior of each individual particle is non
deterministic and some distribution and probabilities 
are involved in the description of each particle, then 
the behavior of the entire system is non-deterministic; 
in order to simulate it properly one has to simulate the 
distributions. These non-deterministic simulations have 
to be repeated many times in order to average the 
behavior and the distribution to get meaningful results. 
Clearly, it is appropriate to use a computer for such 
simulations. 

Computer graphics lends itself very well to this kind 
of simulation. After every updating cycle, one can 
display the state of the system. For example, if one 
simulates the air traffic in a given space based on some 
known rules, one would like to observe the dynamics of 
the system changes. The visual display of this infor
mation, at a rate meaningful for the viewer, might 
introduce new understanding of the behavior of the 
system. In the case of traffic simulation, whether it is 
urban traffic or air traffic, one can learn a great deal 
by viewing the intermediate steps through which the 
system is going. 

For example, one might observe that due to some 
latency in traffic lights, some cars happen to jam an 
intersection, which in turn might cause a total break
down of the traffic flow. If the eonditions of cause and 
effect are not known in advance, global measures are 
not enough to explain this kind of behavior. The only 
way to understand the system is by viewing it, and 
recognizing its behavior patterns. These patterns, which 
are not known before they are observed, rely very 
highly on the intelligence of the human being and his 
ability to recognize patterns. If the behavior patterns 
are already known, one might assign the computer to 
look for them, measure them, and report them. This 
can be done off-line (batch processing, for example) 
and interactive graphics is not needed for it. However, 
in many cases the internal behavior patterns are not 
known and one has no idea what to look for, and 
cannot assign the computer to search for and measure 
them. The dynamic graphic simulation allows one to 
see and recognize behavior patterns which he never 
expected to find, and watch them develop. This recog
nition leads to an improved understanding of the 
system. 

INTERACTIVE COMPUTER GRAPHICS FOR 
SIMULATION PROBLEMS 

Under many circumstances, the best use of a com
puter simulation is an interactive one. There may be 
so many variables that the only way to understand 
their interdependence is to study the problem in real
time simulation, seeing how it is affected by various 
changes. There may be such uncertainty in the model 
itself that the parameters should be altered as the 
simulation proceeds. Using this approach, one can 
quickly gain a good understanding of the model's 
strengths and weaknesses, its suitability to certain situ
ations, and its sensitivity to incremental changes of 
many kinds. Such an intuitive appraisal of a model is 
frequently more valuable than extensive numerical 
evaluations. The conditions of a smoothly flowing 
dialogue are decidedly more conducive to thought than 
the use of a computer merely as a calculating machine. 

We felt that an interactive system would be desirable 
in view of the nature of problems in traffic flow. They 
are infinite in variety, yet they can be formulated 
intuitively. We have daily experience with many of 
these problems, and we know how traffic behaves 
under many conditions. Since these perceptions are 
often difficult to include in a precise model, it is to our 
advantage to exercise a model in an interactive way, 
and supply it with our reactions as the simulation takes 
place. We are then employing the computer where it 
is most useful in the problem-solving process. 

Interaction with a computer simulation becomes 
much easier for a man, as well as a more valuable 
technique, when results are supplied quickly and clearly 
in picture form. Pictures carry immediate meaning; 
details and patterns can be recognized easily, and 
factors of cause and effect are evident. When he changes 
the conditions of the problem, he gets meaningful re
sults right away and is therefore in an excellent position 
for further interaction. He may continuously change 
the parameters and see the sensitivity of the system to 
these incremental differences. This kind of continuous 
dialogue, uninterrupted by technical details, is a power
ful and valuable method of investigation. A man is 
thus able, with computer assistance for computation 
and communication, to solve many problems beyond 
the scope of a man alone or an off-line computer 
program. 

Just as graphical output is the natural form for the 
machine-to-man communication, graphical input is the 
natural form for the man-to-machine communication. 
Many transportation problems require a specification 
of a map and associated parameters. This can be done 
initially in a digital form; however, it is much more 



convenient and natural to input this information graphi
cally,by using stylus-like devices. Furthermore, during 
run-time the need often arises to identify particular 
objects, which may be in motion. It is most natural 
and efficient for a man to do so simply by pointing at 
them with his stylus. 

It is most important to provide the transportation
engineer with natural means for communicating with 
the computer. He should be able to concentrate solely 
on solving the specific transportation problem, rather 
than concerning himself with the details of computer 
operations. 

AN EXAMPLE OF URBAN TRAFFIC 

Mr. John M. McQuillan, then a senior at Harvard 
College, cop.structed a program to simulate urban 
traffic, based on the principles of interactive graphics 
discussed above. The user of the program begins by 
specifying the street map to be considered. This is 
accomplished by means of a stylus and a tablet. The 
user specifies the position of the streets, their direction 
and number of lanes, and the program draws in the 
streets and the intersections for him. He defines whether 
an intersection is controlled by a traffic signal, a stop 
sign, a yield sign, and so on. These symbols are drawn 
for him automatically. This definition process is inter
active, allowing the user to edit the map at any time. 
He may reposition portions of the map, delete and add 
sections as he wishes. After the street map is drawn, 
the user can specify automatic settings for the traffic 
signals. He does this by drawing a bar graph of the 
times during a fixed-length cycle when the light is to 
be green and when it is to be red. He also has the 
facility of assigning the same setting to other signals, 
or the same setting with a fixed delay time. He may 
also specify that certain signals are to be given the 
same settings and then perform the above operations 
on groups of signals rather than single ones. In this 
way, it is relatively easy to construct a strategy of 
traffic signal settings for a complex network of inter
sections. 

Next, the user directs the program to enter the 
simulation phase. In this stage, one CRT shows the 
street map, with cars travelling through it, obeying the 
traffic laws and signal settings. Each car moves through 
the streets, turns, pauses, switches lanes, etc., according 
to information based on the surroundings. This is illus
trated in Figure 1. Meanwhile, another CRT shows 
the automatic signal settings in a form of bar graphs. 
A cursor moves along these bar graphs, indicating the 
signal changes as they happen. This is illustrated in 
Figure 2. At the same time, a third CRT shows a 

Computer Graphics for Transportation Problems 79 

STAAT I I 
••••• f) 

MAP 

L 
AUTO 

-----.,1 :..... - -I 
~o . 

___ ..J • •• '. G <1 G!:-""::<J:----

•....................•... .g.............. • ........................... . 

I 
PflfIC 

1"" 
QI 

. -

R G GO 

Figure I-Urban traffic simulation-Cars move in all directions 
through a user-specified street map. Traffic lights at the inter
sections are represented by the letters Rand G. Words at the 

edges of the picture are control functions 

control panel with bar graphs which govern several 
parameters. These parameters include traffic density in 
each direction and some other characteristics. As the 
simulation proceeds the user may change any param
eter merely by pointing to the bar graph with his 
stylus. This control panel is illustrated in Figure 3. 
In addition, this third CRT displays instantaneous and 
cumulative statistics, such as number of cars inside the 
map, average speed and so on. 

The program is designed so that it is natural to use 
interactively. After specifying one map, the user can 
try different signal settings under different traffic con
ditions to find appropriate means of control. He sees 
the effects of these changes in real time, as traffic flows 
through the network. He may return to draw in a new 
map and alter his strategies further, all in an inter
active manner. We have found this approach to be a 
very valuable one in formulating and solving problems 
in urban traffic. 

AN EXAMPLE OF AIR TRAFFIC 

The air traffic control problem is a unique problem 
in the sense that it involves a very complex system of 
many airplanes sharing the same air space concurrently. 
In order to describe the system of the air traffic, one 
needs a dynamic tool which enables him to describe in 



80 Spring Joint Computer Conference, 1971 

: .................. ~ ................... . 

::\:: L: 
:~ ~ ::::: :::::~ 
I~ I:: I::: 

~ I [~~: 
II ~ ~ •••••• 

r 1 
". ! 
-I 1 
t! 
H i 
.~ : 
I:. 1 .... • 
E 1 .... • 
o 1 .. · .. 
( : .... . 
l:! i .... · 
:~ ! .... . 

....... ... 

...... ! 

• • y 

~ r······~~~~~~···r~~~··············· 
.'. i······ ! ... 
N E...... . .. : 
r. ~ •••••• • •• ~ 
n : ......: ••• 

l i ...... i'" 

~ ! :::::: ::::~: I :: 
:: I:::::: ::: I 

Figure 2-Signal settings for traffic simulation-This is a display 
of the time settings of the traffic signals (letters on the graphs 
identify individual signals). For each traffic light, a bar graph 
represents those times that the light is green and the absence of 
a bar indicates when it is red, during a lOO-second cycle. The 
vertical bar is a cursor which moves across the graphs in real time 

real-time the current positions of many airplanes which 
move in different directions at the same time. There is 
no way but graphically to describe the state of the 
system at any time. In real life the way the air traffic 
system is described is by graphical means, the radar 
which is used by the controllers. The control information 
which is issued is in the form of instructions to the air
planes telling them positioning and timing information, 
issuing "vectors," instructions for turning, and so on. 
Because of the nature of the problem, it is desirable to 
have facilities that enable one to communicate with 
the system graphically for input control information 
and to receive the state of the system at any point. 
For example, a controller should be able to define a 
route for an airplane merely by drawing the route on 
the face of a scope rather than verbally describing it. 
Collision hazards should be represented to the controller 
by showing him two airplanes whose routes tend to 
merge, and perhaps flashing some warning lights to 
attract his attention to this fact. The interaction be
tween the controllers and the real airplanes should 
benefit from the use of the graphics as well. The con
troller should be able to point to an airplane rather than 
calling it verbally. This assumes, of course, that the 
system behind the graphics is aware of which airplane 
is where, and can automatically issue some communi-

cation to this airplane upon graphical request of the 
operator. In order to demonstrate these ideas and to 
provide a training environment, a computer program 
was developed in our laboratory. 

In the first phase of the program, which was written 
by Mr. Geoffrey A. Modest, then a junior at Harvard 
College, one can define the map of the area in which 
he wants to operate, and assign it any arbitrary shape. 
One can define the shape and the position of the air
ports to be included in this area. One can define the 
"Victor" and the "Jet" airways intersecting this area, 
and can define standard holding patterns. Navigation 
aids can be introduced into the map in the shape of 
triangles and squares. This definition state is, of course, 
interactive. One can change his mind during the defi
nition stage or later by editing the map, changing it, 
deleting obsolete objects, and adding new features to it. 

After the definition phase, the operation phase be
gins. This section was written by Mr. W. B. Barker, 
a graduate student at Harvard University. This oper
ation phase requires two people to operate it. One 
simulates the air traffic controller and the other one 
simulates concurrently all the pilots of all the airplanes 
in the area. The "pilot" can issue routing instructions 

START t1AP AUTO 

ii ~--------""'I 2(1~3 

.CARS.····t1 I t'i S ~------------41 2S'3 

.5 :.:1 

SPEED 

.-, 
c. 

Sl·JITCH 

CF.~088 

E I E;8 

W 1 .......................................... ' .. ~~4 ........ . 
~-----~I :~:~3 .... 

Ii? CARS 3?~ MOUING S2 AU TIME 

PANIC GO 

Figure 3-Control panel for traffic simulation-This display 
provides graphical output and input of traffic density, speed, 
and driver characteristics. Not only do the graphs show the 
current value of each parameter, but they may be changed, 
merely by pointing to an endpoint arid moving it to a new 
position. Statistics describing traffic flow are displayed dynami-

cally at the bottom of the picture 



to each airplane in graphical form. The routing in
struction may have the form of "climb and maintain 
flight level 200," and "follow victor 20, turn to victor 
16 at station x," etc. The "controller" can see on his 
scope the position of each airplane and can interrogate 
these airplanes graphically, requiring information about 
altitude, speed, identification, and so on. Ideally, the 
controller should be able to express instructions to the 
airplanes graphically. However, in order to simulate 
closely today's systems, the program does not auto
matically carry the graphical instructions of the "con
troller" to the airplanes, but the "controller" has to 
issue them verbally, as if he were talking on radio to 
the pilot. The "pilot" then can apply these instructions 
to the airplanes, exactly according to the "controller's" 
instructions, or he may deviate from them. This way 
the "pilot" can simulate misunderstandings between 
the air traffic control and the pilot in the air. The 
only way that the "controller" can find about these 
misunderstandings is by noticing, on his "radar," that 
some airplanes do not follow the instructions that he 
had issued before. All communication with the airplanes 
either by the "pilot" or the "controller" is very natural. 
In order to specify an airplane all they have to do is to 
"touch" the airplane on the scope with a stylus. All 
control information is requested graphically, and the 
flight paths of the aircraft on the radar screen provide 
the necessary feedback. 

FUTURE APPLICATIONS OF COMPUTER 
GRAPHICS IN TRANSPORTATION 

We hope that the programs we have developed will 
be prototypes for future practical systems. Many 
different aspects of transportation problems could bene
fit from the introduction of computer graphics tools. 
Initially, we have been concerned with the design 
problems that city planners and others face, and the 
resource allocation and management questions that 
arise in the creation or expansion of transportation 
facilities. It is a tremendous saving in time and money 
for the design engineer to be able to experiment with 
alternate approaches by computer simulation rather 
than by actual experiment. 

Computer Graphics for Transportation Problems 81 

Just as major costs can be avoided by graphics 
simulation in the planning of a new airport or highway, 
minor modifications to existing facilities can be ac
complished with far greater ease. Here too, the ad
vantages of different approaches can be evaluated. care
fully ahead of time. The manager can get a clear picture 
of the effectiveness of various proposals from the simu
lation, and weigh this against other factors of cost and 
feasibility. Indeed, he need not wait until he is forced 
to expand or alter the available facilities before he 
turns to a computer graphics simulation. He could keep 
an up-to-date model of his facilities for computer use, 
and periodically test this model under varying con
ditions. In this way, problem areas may be diagnosed 
before they become dangerous or expensive, or both. 
Computer simulation is obviously superior to actual 
measurements and experiments in examining future 
loads on a transportation system. The air traffic control 
program can simulate anything from private planes to 
SSTs not yet developed. Of course, the manager could 
also concentrate on getting the best performance out of 
the existing facilities. Using the computer graphics 
method, he can satisfy himself that a certain system 
of routing and control is optimal before he tries it out. 
It should be noted that the practical experiences of 
the people using the graphics system can be continu
ously applied in a feedback loop to improve the quality 
of the computer simulation. 

Another aspect of a highly interactive graphics sys
tem is its suitability for educational use. Traffic engi
neers can receive a great depth of training from a 
realistic simulator. Air traffic controllers can learn about 
many emergency situations and alternate strategies to 
employ. Watching a dynamic model of a transportation 
system is an excellent way to learn about its behavior 
and how to control it effectively. Not only is it a good 
introduction to a particular situation, but it provides 
a means of studying subtle problems that may other
wise be impossible to observe. This power comes from 
the man's ability to control the scale and focus and 
speed of the simulation interactively, as it proceeds, 
ignoring routine patterns, and closely examining critical 
decision areas. 

For educational use, design analysis, and practical 
decision-making, the interactive graphical simulation 
promises to be a useful tool in the field of transportation. 





Real time considerations for an airline 

by JOHN LOO} B. T. O'DONALD and I. R. WHITEMAN 

Eastern A irlines, Inc. 
Miami, Florida 

INTRODUCTION 

In the 60's the airlines developed and became the recog
nized leaders of real time applications of the computer. 
These applications have been primarily commercial in 
nature and characterized by small amounts of pro
cessing on large amounts of data. In the 70's the direc
tion and effort will be expanded to include large scale 
sophisticated mathematical models within the 
processing. 

In no industry are the problems of scheduling as 
omnipresent as within transportation and particularly 
within the airlines. In particular the crew scheduling 
problem has been solved many times using many 
varied techniques. It has never, however, been com
pletely solved to the satisfaction of all airlines, and 
certainly not to the degree of rigor that the term solu
tion would imply to a mathematician. The solutions 
as they exist, today represent a varied collection of 
heuristic approaches to large problems and rigorous 
approaches to restricted problems. 

The problem is a commercial one and constitutes a 
real time application yet today the solutions remain 
cumbersome and slow. The real time response to these 
large computational problems awaits the development 
of more suitable heuristics and computers with larger 
capacities and higher speeds. Large scale combinatorial 
problems depend upon a step by step analysis and 
nano second speeds are just too slow for the number of 
steps invplved. 

REAL TIME APPLICATIONS 

The prime impetus to the real time system has been 
the passenger reservations system. Today there is no 
commercial airline that does hot live off of this system. 
It is a random request system accessible from a large 
number of users located at any of a large number of 
stations. The response time of the system is measured 

83 

in terms of an unbroken conversation between the 
prospective customer and the ticket agent. 

Development of the communication peripherals 
have opened the doors to a number of computer systems 
which possess obvious import to the airlines. Some of 
the more important at Eastern Airlines include: 

Baggage Tracing-This system is so successful that 
Eastern Airlines handles this function for some 34 
other carriers. This also includes a claims central file 
geared to detect repetitive and possibly fraudulent 
claims. 

Flight Watch-This system collects and displays to 
dispatchers the position and movement of every flight. 

Crew Management-This system collects and dis
plays the activities and events in· the histories of crew 
members. Of partiCUlar interest at any time is their 
eligibility to fly. 

In general the characteristics of these information 
systems are relatively straightforward. In most cases 
the information deals with inventory. Is some in
ventory available? Where is the inventory located? 
The software is not complicated because of the opera
tions performed upon the raw data, but because of the 
communications and the security aspects of the data. 
The consequences associated with loss of files and with 
not being able to access those files in a fast moving 
environment are obvious. 

Of those real time systems which have come into 
being some possess structured mathematical models 
One such is Computer Flight Planning. In producing 
flight plans, the system takes into consideration the 
following: (1) altitudes, (2) equipment types, (3) fuel 
flows, (4) gross weights, (5) Mach numbers, (6) sched
uled flight times, and (7) weather data. The vagaries 
of the weather necessitate real time. Any flight plan 
which does not meet the performance specifications of 
the equipment manufacturer is rejected by the com
puter. In addition, plans which do not allow the flight 
to arrive on time are rejected unless no plans meet the 
scheduled time. Under those circumstances those plans 



84 Spring Joint Computer Conference, 1971 

FEDERAL AIR REGULATIONS 

• No duty during any rest period 
• Do not exceed 30 flying hours in any 7 days 
• No more than 8 scheduled hours in any 24 hours 

without at least 16 hours rest after flying 8 hours 
• Deadheading is not considered a rest 
• Minimum of 24 hours of consecutive rest during 

any 7 days 

ADDITIONAL FACTORS 

• Elapsed time 
• Absolute time 
• The airport-Rest facilities 
• The proximity of airports 
• Geography-Customs and clearances 
• Connections 

PAIRING PAYMENT 

• i-Flying time 
• d-Duty time 
• e-Ela psed time 
• t-Tour guarantee 
• h-Deadheading 
Pairing Payment = p( i, d, e, t, h) 

Figure 1-The factors of scheduling 

which come closest to meeting the scheduled arrival 
time are selected. 

Yet awaiting introduction to the real time system is 
the crew scheduling problem. The problem is repre
sentative of a class of combinatorial problems in which 
elements of a set are to be ordered or grouped according 
to some criterion. It is characterized by a large number 
of possible solutions and is marked by factorial growth 
in the amount of computation required to carry out 
that enumeration as problem size increases. The ap
proach taken by most airlines is that of integer pro
gramming with 0-1 variables. In contrast, the approach 
taken by Eastern, the CREATION program is heu
ristic. The problem is commercially important. The 
costs associated with flying the flight schedule are 
difficult to assess. It is necessary to take into account 
the flight schedule in its entirety. At first thought it 
would appear that the cost of manning the flights 
would be a linear combination of the number of flight 
hours and the unit costs of flying the various types of 
aircraft. But there is more to it than just that! There 
are credits which are applicable to the pairings formed 
and these cannot be determined without completion of 
the allocation in its entirety. These non-productive 

costs are appreciable and constitute a major cost of 
manning the flights. 

The flight schedule is constantly changing and at 
any time there are many flight schedules under in
vestigation. Formulation of· the allocation involves 
specification of the flight schedule and continual liaison 
between the participating operational groups. The 
needs and the time responses of each· of these partici
pating groups vary at each stage of development and 
present a formidable real time application. 

THE CREW SCHEDULING PROBLEM 

The crew schedule is the assemblage of all pairings 
which satisfy the flight schedule. The pairings are the 
trips flown by. the crews from the time they depart 
their home base until the time they return home. 
These pairs must be formulated such that they satisfy 
governmental regulations and contractual require
ments. Collectively the allocation should be executed 
at least cost to the airline. 

There are many factors which must be taken into 
account in the formation of the pairings as set forth in 
Figure 1. These are worthy of mention, not because 
they present an insurmountable challenge, but because 
together they are indicative of the detail which must 
be written into the program. 

The schedule and time are synonymous. The hours 
governing the actions of the crew are completely pre
scribed by the Federal Air Regulations. The principles 
of safety dictate that the crew not be scheduled for 
excessively long periods of duty and flying and that the 
periods of rest are ade'quate and sufficient. No pairing, 
no assignment of flying, is acceptable if it does not 
satisfy these requirements. 

Additional requirements are set forth in the contract. 
The schedule is predicated upon elapsed time, but it is 
also affected by absolute time. The amounts of permis
sible duty depend upon the time of day with fewer 
hours allowable over the evening hours. When periods 
of rest are prescribed there must be adequate rest 
facilities available. Some airports possess suitable 
rooms, some do not. If facilities are not adequate, 
sufficient additional time must be allotted to travel to 
proper quarters. 

The proximity of some airports, from the viewpoint 
of scheduling, means they may be treated as one, as 
co-terminals. It is possible to fly into one airport and 
depart the other. If the pairing includes such an arrival 
and departure, sufficient time must be provided to allow 
for transportation between the airports. 

Scheduling depends upon t,he geography flown. 
Flights which return from outside of the continental 
United States must return through customs and an 



additional time must be provided to permit this clear
ance. In the case of connecting flights there must be 
sufficient time provided to make the connection. And 
so it goes. Each station, each condition, each special 
facility, each time zone must be uniquely identified 
within the program in order to assemble a pairing 
which satisfies all requirements, a legal pairing. 

Rules and regulations set forth the requirements 
governing the formulation of the pairing. There are 
other contractual specifications which set forth how 
the crew is to be paid. The costs associated with the 
allocation of flying depend upon the actual amount of 
flying and the non-productive time associated with 
trips flown. At the end of the pairing the pilot has ac
cumulated an amount of flying time and credits of 
different forms. In a sense, from the time the pilot 
starts a trip until the time the trip is completed, a 
number of clocks are kept in terms of these respective 
credits. These assure him of some minimum amount of 
flying for the pairing, a credit for the time he is away 
from home, and if he is required in the course of his 
duty to fly as a passenger, a credit for deadheading. 
Pay for the pairing is a complex formulation which 
involves all of these factors. 

These are some of the considerations which must be 
taken into account in the formation and evaluation of 
the single pairing. There are yet others which come into 
play in the formation of the allocation. For the pairings 
to be manned there must be a sufficient number of 
trained personnel to fly the scheduled pairings at each 
of the designated domiciles. In the Eastern system there 
are currently 6 domiciles. These are the only locations 
from which crews can be scheduled to fly and these are 
the 6 clu,ster areas in which crews live. Each of these 
domiciles service some number of different types of air
craft, but not necessarily all of them. In general each 
type of aircraft is serviced by 2 to 5 domiciles. An allo
cation to be acceptable must have the assignment of 
flying in consonance with the domicile apportionment. 

These then are the considerations which must be 
taken into account in the formation of an allocation. 
As arduous and as complex as the associated book
keeping may be the heart of the problem is to secure 
that allocation which can be executed at least cost, 
with a minimum of nonproductive time to the airline. 

The size and scope of the crew allocation problem 
can be seen in the detailed considerations which go into 
the formulation of the single pairing, in the many ways 
in which a pairing can be formed, in the balance of 
manpower requirements among the domiciles, and in 
the many, many alternative solutions to the final alloca
tion. The number of possible ways of formulation is 
indeed so large that it is simply not possible to investi
gate the entire space of solutions. 

Real Time Considerations for an Airline 85 

THE CREATION PROGRAM 

The CREATION program is heuristic and assembles 
allocations through use of controlled Monte Carlo 
selections. Within the computer emphasis is upon the 
allocation in its entirety. At computer speeds thousands 
of allocations are generated and studied to arrive at 
the least cost solution. 

Input specifications 

All data required for the CREATION program are 
specified in the input. No data are included in the 
program. A typical data set is shown in Figures 2, 3 
and 4. The largest portion of the input consists of the 
flight segments; there must be an entry for every 
flight flown. 

A review of the input shows the detail previously 
described concerning the formation of the pairings. 
Information must be provided concerning the equip
ment, the allocation of manpower between the con
tributing domiciles, description concerning the co
terminals and the stations. The controls governing the 
computer run must be specified as well as all of the 
parameters as specified in the contract. The types of 
output can be elected. 

The program 

The CREATION program is shown in Figure 5. 
The program is heuristic and follows the pattern pur
sued by the equipment specialist who forms the alloca
tion manually. The procedure is a sequential one. 
Starting with some flight, additional segments are 
attempted. If the flight departs the previous arrival 
site and if it is legal it is added to the sequence. If not 
another is attempted. This process is continued until 
the trip finally returns home and can then be con
sidered a complete pairing. 

Early in the processing of an allocation there are 
many degrees of freedom available in the formation of a 
pairing. As the allocation builds up the degrees of 
freedom decrease· until at the end there may be only 
one way, if any at all, of putting the last pairing to
gether. In the process of putting the allocation together 
it is necessary to honor the domicile apportionment and 
to observe all of the legality checks. 

The equipment specialist attempting a solution may 
pursue several courses. Upon completion of an alloca
tion and noting its quality, he may break up some of 
the pairings and then reassemble in an effort to im
prove upon the allocation. He may feel that it is worth
while to preserve some and to recombine others in a 



86 Spring Joint Computer Conference, 1971 

kUII: Ot:~CR.PTWI't 

REC.ORD 
COOl: 

00 CREATI~ 1 IJYNA ... C TEST PtiASt: TlST hU~dlR 1,O~ 

EQulPMEfn [lAra 

RECORD 
CODE 

10 

PII."[ 
EQUIPMENT' 

DCa 

E~UIPME~T LNE 
TYP'E COllE 

oed 011 

FQ\JIPM(NT TWO 
TYP[ C.Cu£ 

EQUIPlltE:hT Tt4REf 
TYPE CODE 

ALLOlATION DATA 

RECORt) 
CODE 

EQUIPMfNT 
TYPE 

CITY/STA Allut ~ITY/STA AllOt CITY/STA AllOC CITY/STA AllOC ClrYISTA ALlOC ~IJY/SJA ALlOC 
NASfE: , NA-'f: , . I>4A"E , NAME , NAME • NAlti , 

20 oca NYC 040. FU 060. 

CO-TtRMINAl DATA 

RECORD City CD-TERMINALS A TU d A TO C 8 TO C 
CODE NAME STA A STA B STA , OUTY OfH TRAN DUTY O/H TICA .... DUTY O/H TRAN 

3:) CtH OIeU "0.- 01:"~ 00:18 02:00 
3\) FLA MIA Fll vl :00 .)0:19 01: 31l 
30 NYC JFK *="'R lGA l.:30 OO:!6 02: 3,) "o:~s 00112 01:)\) 01:15 00:14 02:'00 
3u WAS DCA BAl lAD OU1~ 0(,: Zu :>Z:JO 01:0)0 00:20 ,)1:30 01:45 oo:~o ijj:30 

STATION DATA 

REC!)RD STATION CO"4VERSllIl'f EXT fNS IUN TO It.Tl PRI:-ClfARAhCE CUSTOMS coot ~M.E FACTUR fIJP GMT 8Ht:AK TlM£ CO~E TIME TIMe 

40 ABE + US:Uli ut. vO uo 00 00 00 
~u 4bY + 05:110 Oi; 01) 00 au 00 00 
~o AeA + YO :Ou 0(, 00 00 U ClO 15 
ft.O AGS + ,,5:00 0\1 JCI ''0 00 DO OU 
ft." All + OS:Ju Ou uti 00 00 00 00 
~o AVP + (l'):"u urI 00 DU 0" ~C; 0:) It' SAL • Vi:()(; \.IV l'O 

u\) "" 
DO flO 

~O ADA + ~~:"o oJ VO 00 00 (10 ::'5 

Figure 2-Input audit listing 

more favorable fashion. The effects can not be deter
mined without trial. He can pursue this action time 
and time again. After some succession of such attempts 
the equipment specialist may feel that the overall com
bination has been exhausted. He may elect to start the 
allocation from scratch if he feels that there is little to 
be gained through minor perturbations of the origi
nating allocation. 

The equivalences of all' of these actions can be seen 
in the flow chart. Prepass indicates the formation of 
an allocation from scratch. Postpass indicates the 
reduction of the previous allocation in accordance with 
prescribed selection criteria; All pairing is based upon 
random selection from the remaining unassigned 
flights. 

As each allocation is generated, its Figure Of Merit 
is compared with those of the allocations previously 
generated. If it is not considered to be a good candidate, 
it is discarded. If it is considered to be a good candidate, 
it is saved and the worst of those previously saved is 
discarded. Throughout the processing some fixed 
number of allocations is preserved representing the 
best of the allocations generated. Final selection of the 
best allocation is made from that reservoir. 

The outputs 

There are a number of different outputs available 
from the CREATION program. The basic output is, 



Real Time Considerations for an Airline 87 

;(lJl'o ~v: .. fI'Ul S 

HeaRD NSR. .Jf "11130(. ,-,f i!~E::'t(up IoAI\PPM 1J1lM('ILE CODE PREPASSb MAX. "ill.Y U/H .. A IT Din rlY POSTP.\S~tS THo(t:SHt'L'J S(fo Tr41'oi. HUM ~/.St TlM£ TI .. t 
50 \JJJ10 liOlvv Owl-J vii42vtd3& 1 vV:'h 1::: :::J:J uJ:Cl {Jl:3tJ 

Ci.lNlI<Ae T ;)t.TA 

RECCRD AwAY Mh; JulY Ct(f:D IT 111(; :Jt:AuHtAl) CODE DAY NIGHT 
lJUR 

PAY !JUlY FOR PAY f-(:(( PAY fUR PAY FOP MINIMU~ 

bO 01 :.,,0 03:0(, lIl:;>\J Jl:1t5 "1:00 0&:30 00:30 Ol:O~ ')4: :;0 

Ii ECORD CRIH rEBR IEF "U.MAl COTH" STAPT SlA'H CUDE TIME TlM( MIN dlol.lt. MIN MAX flY ~AX ~lY 06 TIME: DB TlM[ NIGHT JAY ExT u.o. lURN LIMIT PERIOD 
61 01: ')0 00:15 ub:-,O 1i :0(- 22:uO 05:5~ O .. :OJ 01:0.:1 ~~:JO 2~:OO 

RECOPO F I~S T DUTY P[RllJO St:ClINLJ UUTY PER 1 t.:1i CODE START "110 NITti 
TfllRt, iJUTY PEP. IJl' FOURTH JlJTY PtRIUC START fl;l' wITH START Nu fflTrt SfAKT T1p.tE BI<t:4K 614t:AK Ti"'f BREAK BREAK TI~t 

NU .ITIt 
tsREAK aREAK TIME :lKtAIl. iSREAK 

62 05:Ji.) ,i,3:uO 13:uO 1-' :01 &Z:30 13:v-) J d:Ol 11: 3'J &/.:jO 23:01 1.):3" 11:3;,1 

OUTPUT CQf\tTROl5 

RECORD PRINT 
CODE FOR 

1 2 

CUNTROl 
FI"'U~E 
3 4 5 

PthHASS 
PRINT 

CO!'4T"Ol 

ST4. T RfPORT 
AllUC PRINT 

Cu~TK(jl 

~AXIMUM UROINATt 
fUR FIIIUtlE 

3 .. 

\/AltJE 

5 
80 1 

HeORD EFHCT I V[ DAY 
COL>E OF THE WEEK 

81 "I( 

t:fFE::' TIVf OUt. 
"'u DAY Yf,. 

10 -LS 

OISCONTlN"t: tJAT€ 
)<!u D.\Y YR 

Figure 3-Input audit listing 

of course, the best allocation. The other outputs are 
optional and relate to the characteristics of all alloca
tions generated within the run. And, of course, there 
are numbers of various sorts for the convenience of the 
concerned operating groups. 

In Figure 6 is shown a sample printout of a portion 
of an allocation. All pairings are represented in this 
common format. Basically the information consists of 
an identification, a listing of all segments which make 
up the pairing, departure and arrival data, and a break
out of the respective times and credits. The total pay 
time and the specific credit, if there is one, are shown. 

A typical pairing is ALLNO=l PR NO=12. This 
pairing departs JFK and is completed in the co-terminal 
EWR. This pairing extends over two days with a duty 
break in MIA. The amount of flying is 13: 32. Note 

that the time away is 42: 00. There is an away credit 
of 1 hour of flying for 3 hours away. This indicates a 
payment of 14:00, and hence the credit of 28 minutes. 
In Figure 7 is shown a summary sheet of the pertinent 
statistics governing the best allocations. 

Timing considerations 

The CREATION program runs on an IBM 360/65. 
The amount of time required to generate an allocation 
depends upon the size and characteristics of the fleet. 
It can be noted that the number of pairings in an alloca
tion may be in the hundreds and the number of alloca
tions attempted in an effort to secure a feasible least 
cost solution may be in the thousands. A thorough 
study can involve hours of machine time. 



88 Spring Joint Computer Conference, 1971 

CARD EIJu IP~t:NT Jt:PAr<Tl'4G Af!I<!Vl~~ fll&HT NU'4Bt:R FLI(;HT TURNS TfJ 
. UMBER TYPE: STATUJ'" TI "4, STATILiN T I '1~ NU"'I!E~ elf' S Tu~S TIME FLIGHT 

14 DCd All 600 ell 6 .. 6 tit! 0 4t> 03 

21 :lee ATl Id25 EWK 212A 82 , a6 911 
b3 I ~ T E f! ME f' IA H: STUPS !<;28 .l.-i<0U :'Jl5 
38 oed All 1J('O LAX 111e. cH () .... 6 84 
lit DCS All 1845 LAX lOJI IJ{ C. 41b ill',) 

29 oed ATL 2V"iS LAX 2211 1$'1 0 416 8l 
36 DCS ATL 2055 Meo 2211 8 .. 0 1H- 699 
19 DCS ATl l .. u5 ""CO 1520 12!> I) 115 &7 
32 DC8 All Zv55 r.41A 2233 245 0 .. 38 12 

2 oe6 ATl Z{;55 MIA 2,33 i245 C. U8 1It1t18 
50 Des BOA 1420 JFK 152(. tHO l' luO 17 
26 OCd dDL Z320 JFK 4 @ 521 0 44 33 
51 DCb duL 900 SJU l.!>:>'t 941 1 425 92·4 
c.6 IN TERMEIJlA H STOPS .. \Jul 1-BAL 1040 
31 DC8 CLl sao All 901 83 (: 101 tl3 
5d DC8 DT .. llOu MI/. 1341 9S3 C 2lt1 953 
Sit OC8 o Till 1100 ~IA 134! !9B (j 241 1953 
2t! DC8 Eo wR 1630 All 1'1511 89 1 238 89 
b4 INTERMEDUTE STOPS J.7 5iJ 4-f<()U lq't~ 

3 1)(.8 EliiR 830 :~1A 105:) 1 0 225 b 

40 DC8 f .. R 2330 SJU 403 917 0 3H ~4.b 

00 UC8 E lOR 121~ SJU 16';1 901 C. 33c. 94c. 
51 Dca JFK 1ilOC bUt. .I.2~o 801 C. 15b d1U 

1 0(.8 JFt< 720 BUl 800 ~28 0 40 9 .. 1 
12 OC8 JFK 14 00 "11t. lc.35 2! {. od5 28 
16 Des JFK .. 700 MIA ,;3~ n (, a5 'thl 
24 OC8 JFK 1100 MIA 133; 33 a l35 l4 
10 DCd JFt< 21JU MIA l33'" 40:.. 0 235 't .. 
4't !)c~ JI"K 73:) SJlJ 11'>6 923 () 326 n2 
ct1 DC8 JFK 1 II;:' SJU ?30 Q 927 0 .Be; nd 

. '52 ')(,8 JFr<. lv30 SJU ~5jtJ 9d'> 0 338 9S.t: 
12 D<'B JFK LO~''> YUL 21~~ 924 G !23 9t15 
is 0(8 LAX 1020 All i.71t- ~l r. 356 82 
)5 DCB LAX 1300 All 1956 H ... lJ 356 04 

9 ;)~tl LAX nov All 5Ju ~3 J 4UO d3 
H ~('d ~CO lo2t1 .HL 17 .. 5 tl7 0 117 d7 
20 DC8 Me:.) 22~'J ,,"II A o!334 694 " 44 '115 
31 uC~ '11.\ .I.1 .. b AJL it"'" 246 (j ill d8St; 
40 u(.!1 '4It. J. tl55 (;T" 21H ')~.: ~ 142 ~53 
r;] ur;8 "'I~ iH5'> 1,,1 .. 213 7 lC;!I~ (J 242 lSS.) 
1 1 UCd ~IA 1£3.> ("''' 14% b ;) 12C 89 
11 ')Ctl "111\ 100) J~t< 12::5 li (.; U5 c!1 
<'l :)( d ~IA 1'>0) JF I( i Cll'> 2 .. C U", 401 

Figure 4-A listing of accepted segment records 

THE CONTRIBUTIONS AND TIME RESPONSES 
OF THE CREATION SYSTEM 

There are a number of distinct types of requests 
that must be satisfied by the CREATION program 
from the time a flight schedule is initiated until the 
time that the flight schedule is finally implemented. 
The detail of information and accuracy of information, 
and the time response in which the response must be 
made, continually change over the course of the de
velopment of the flight schedule. These changes are 
dictated by the degree of interaction between the par
ticipating groups concerned with formulation of the 
flight schedule. 

During the course of development there are four 
primary groups concerned with production of the ulti
mate schedule. Fundamental responsibility falls within 
the Flight Schedule group; theirs is the need of formu
lating the best schedule from the viewpoint of the 
traveling public and the operations of the airlines. 
And for the flights to be flown there must be an airplane 
available for every scheduled flight; these considera- Figure 5-Creation flow chart 

LOCAL 
~£P-MIN 

3bO 
ilOS 

000 
1J. 25 
H55 
llS5 

O4S 
,2 ~5 
.. 25' 

deO 
140u 

540 

'tou 
b60 
b60 
990 

510 
1410 

13S 
6uO 
4 .. 0 
840 

4020 
bbO 

1260 
450 

Hlu 
63u 

12u5 
blO 
78(1 

u.!u 
.. 88 

4J7J 
1ua 

IDS 
1135 

7'>J 
"OJ 
90v 



Real Time Considerations for an Airline 89 

lCl.l4L S~HED Of-ILY StHEO A~AY OUTY ~ 
eM. TIMl ~ 5E~ AJJ f.T. LAY 

,,;Vl'< 
cr~ uuTY F~OM AWAY TOUR C KUUTE 

QUAL f~EQ EQ~IP FlT ~L F~ TO aEP AR~ T F.T. NITl SEQ TUT ('UTv CRELJIT ~ASE C~EOIT tREOIT R 

SEQ /liP ALL~U = 1 PP ~o 11 

08Ul 0027 0 JFK MIA J.7Jv l'n, 0 '- 35 2 ':5 JfK MIA 
0801 1410 MIA PliL ;:ZJu \Jv15 L ... 15 .. 0;0 .03 l'~ ~ 30 S "'6 MIA PHl 
Od01 1043 PHL HI t. 18l.Y ~U3, 0 2 15 1 ,5 
0601 0400 ~IA JfK 220v Oul5 ~ 2 25 1 2~ I. 40 7 20 It 40 

32 40 
LINES 1 23 c; )0 9 40 10 5J TOT 
FLOAT OATES 12.7l 1 23 CR - - - - - - - - - - - - - - - - - - - - - - - - - ------ - - - - -

SE~ NR ALum :: 1 .,~ Nu 12 

08'll 0528 JFK BOL 072~ 0600 U 4v 6 t'O JFK BOl 
0801 0947 L BOl SJU 09Ju ).504 • 4 25 .. 36 aUL SJU 
DdOl 0952 SJU MIA 164C 1805 0 ~ 25 7 30 20 :;0 12 OJ 1 30 !)J~ MIA 
0801 0951 0 MIA SJU 1456 ),017 0 2 22 1 j8 
OttOI 0960 0 SJU E",I( ~955 2235 (., 3 40 28 6 J2 .1.(. 25 6 1v !)JU EWR 

COTERMINAL 1 30 
4t UO 

LINES 26 13- 3£ U 40 l4 01) TOT 
FLL1AT OATES 3.34 2a CR - - - - - - - - - - - - - - - - - - - - - - - - - - - ------

SEQ NR AlLNU :: 1 ~I< NU :: 11 

U8U.i. 1)927 OS JFK SJU 1.83J 2309 U 3 3~ ! .2l JFK SJU 
080i 0928 SJU JFK 0030 0301 0 3 31 7 10 <i 4" 7 Hi 

c, 4b 
LINES 7 10 TOT 1 Iv 
FLOAT DATES 1: - - - - - - ------- - - - ------ - - - - - - - - - - - - -SEU NR AlLNO :: 1 I'R NO = 14 

Lo801 09135 L JFK SJU lu30 !SOd Il 3 38 1 L2 JH<. SJU 
0801 u921t 0 SJU JFK Ib30 j,913 u 3 43 7 iJ. 9 56 7 21 

9 50 
II NES 7 .n TUT 1 21 
flUAT 'lATES % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -------

SHl NR AlLNO = 1 PR NU 15 

0801 0007 8 EwR HI A liS30 lu55 U 2 25 ?5 LWR MIA 
0801 0006 l HI A h,R il3u .. 1t5tJ v t. 20 .. 45 7 35 4 45 

7 35 
LINES 4 4~ TUT It 45 
FlllAT OATES ~ 

Figure 6-Bid information sheet 

tions are treated by the non-manpower groups. On the 
manpower side, there is the allocations group concerned 
with the development of the most efficient allocation. 
And there is the manpower group with the respon
sibility of assuring that there is sufficient trained man
power available to fly the flights. 

There is a great deal of interaction among these 
participating groups. Each would be pleased if the 
schedule could be altered to accommodate his own 
specific needs. Each interact with each other through 
the flight schedule, and through additional interactions 
as in the case of manpower requirements defined in the 
domicile apportionment. 

The total cost of manpower depends upon training 
and transfers of crews at the respective domiciles and 
the costs of credits. Both of these steady state and 
transient costs are related to domicile apportionment. 
Each change to the flight schedule can produce far 

reaching consequences to the participating groups and 
may require a complete analysis of the allocation 
process. 

The allocation can be sensitive to the alteration of 
but one minute in one flight. Of course, it is possible 
that a flight can be advanced or delayed a number of 
minutes and that no change at all will result. But it is 
also possible that the change may result in the breaking 
of a pair which will result in the breaking of another 
until every pair is affected and altered. 

The closeness of the relationship of the quality of the 
flight sched,ule to the allocation, to the non-manpower 
requirements, and to the manpower requirements 
means that each step along t!te way in the formulation 
of a new schedule different requirements for informa
tion are created which must be satisfied within some 
permissible time response. 

Figure 8 shows a simplified flow chart of the stages 



90 Spring Joint Computer Conference, 1971 

tiA s~ 

IJIIA 

oASE: ': .. UIP 

:-lIA ud01 
:J:H,,~ 

0d03 

NY( Odvl 
OR02 
Otl03 

T't PE 
(!"UIP 

08:J1. 

08.)2 

08,)3 

,'';'1 L Y 

Hd l~ 
.:.7 ~4 

d~ ~~ 

0 0\ 

LiAIl'( 

tI~ lQ 
1o:i4 52 
117 07 

SLHEDULE 
J/H 
tRt:'Ll T 
fer Al 
l. LkfDI T 
.. U/H LHOlT 

~CHt:nUL C 
ll/H 
I...REU IT 
TOTAL 
'C C ~fOl T 

" OIH (REDI T 

S{H cUULE 
U/h 
C~EDlT 
T("1TAl 
l tF<~UI T 
'¥, O/H CREDIT 

~ .. v' 

11d l~ 
47 '-4 
oj j5 

1 L y A V 

Su'~ 

'H 1'1 
itl .. 5L 
11"1 07 

li'-lIJRS F";" 
"'Or..TI1 

2,7t! 3:' 
5U 3~ 

o~3 Jl. 
j ,665 4~ 

.3 j. ,) 
l.t! 

1, .... S 1.9 
~5 11 

51.t5 ~" 
j, U 19 2:. 

22.3 
1.0 

1. ,1l'~ 22 

o~o .. 3 
2,746 05 

[j.~ 

~, r. 

111 j 5 
'II .:." 
~t) :~ 

f ~ A ~ 

MuN 

Sd 1-1 
J.~4 ')~ 

111 ('7 

(. I( 

rUr _i ,- T-Il; ,pi I ),\ T 

lb :c; .. 1" I ~ l1et J.~ l.Ui 1 ') i.&.it 1:> 
~I , .. 'll 2 .. '11 .;: .. 'II I. .. <II 14 
~d .", b!:S !~ t-.~ 35 iil .,<; d-i j; 

L S ~ f F l I G t1 T •• L U r{ ~ 

TIJt .. tC T r'.J .. ~ 1 :)~ r 

be 19 hi l~ i!J l'i .,j l. 'I H~ l'l 
1 v:. ;z .. ul.o '>2 iC" :.2 ,.)4 5t! 104 ,~ 
117 vi ",17 J7 111 i.JI 1J.7 vI 111 01 

E: 0 , T S u ~ M A K y 

u,",n TiJU" Ih.,..y 
L~([J IT (.ttfOIT Ci..F.uIT 

c.t J£> 3J3 ,,1 ~~4 J9 

~.; 11. oj Joo.4 

ll. .. 1 .. 

.2. 12.9 ~.t 

",11 4d lIb 11. lJl 44 

Figure 7-Summary of Hight hours 

taken in the formulation of a new schedule. During all 
of these stages the Allocations group makes some con
tribution to the formulation and ultimately it generates 
the final allocation which becomes the basis for assign
ment of crews to the pairings. 

The first step is shown in Stage 1, in which scheduled 
development originates at the uppermost levels of the 
planning division. The principal concern at this time 

. is to provide an air transportation service pattern 
which meets the needs of the traveling and shipping 
pUblic. Some of the detailed considerations are certificate 
requirements, market research forecasts, political and 
civic pressures, competitors' schedules, equipment 
availability and support capacity; i.e., terminal and 
ground handling facilities. Considerations must be 

given to aircraft procurement and to the size of the 
pilot pool. 

During this stage the schedule is but loosely defined. 
What is known is the number of flights, where they 
fly, the number of hours to be flown, and some idea of 
the equipments to be flown. Less well defined is the 
departure time to the hour and the minute and the 
arrival time to the hour and the minute. Yet in the 
allocation process it is precisely this detailed informa
tion that is required. 

At this stage of development the requirements im
posed upon the Allocations group are for estimates 
concerning the approximate amounts of non-productive 
time generated by the proposed schedule. Generation 
of the initial allocation is more a matter of extrapolating 



from overall statistical characteristics as opposed to 
the generation from the detailed flight specifications. 
Consistent with the availability of schedule decisions, 
the need for information response may be measured in 
weeks or months. 

In Stage 2 the objectives of the airline have been 
reasonably formulated in terms of the flights, the 
number of equipments flown and the numbers of pilots. 
It is at this stage that work proceeds to put together a 
schedule which satisfies these objectives. At this time 
the emphasis is upon a real detailed schedule, one with 
realistic departure times and arrival times flown by 
specific aircraft. 

The objective at this time is a real schedule which 
can be released to the operational groups approxi
mately 6 months prior to the effective date of the 
schedule.. Prior to the release of this advance schedule, 
whatever is formulated is extremely fluid, and little 
reliance can be placed upon any of the portions which 
make up the preliminary estimates. Without some 
degree of solidification, there is little that can be ac
complished definitively by the Allocations group. 
Again participation by the Allocations group is con
fined to generalized projections based upon the best 
though insufficient information available. The time 
frame for response by the group is not unlike that of 
Stage 1 and is measured in terms of weeks and months. 

Stages 3 and 4 mark the availability of the advance 
schedule. For the first time the operational groups 
have made available to them a reasonably fixed 
schedule that they consider from a detailed point of 
view. The two stages are marked by the release for 
publication date. When this time is reached the schedule 
is deemed fixed. It is during these two stages that the 
contributions of the Allocations group become most 
meaningful though in different ways. 

In Stage 3 the operational groups examine every 
detail of each flight in terms of the specific demands 
imposed upon them. During this time the pace of inter
change of information between all of the operational 
groups and the flight schedulers increases dramatically. 
There is a constant demand for minute changes to the 
schedule to bring about important efficiencies to specific 
groups. Tentative changes must be released as soon 
as possible to determine if there are adverse effects upon 
the other participating groups. The result is that 
changes are released daily. 

It is during Stage 3 that the need for detailed in
formation from the Allocations group increases im
measurably. It is at this time that the final schedule 
begins to take shape and begins to solidify. Each change 
to the flight schedule must be judged in terms of how 
it affects the allocation. The evaluation cannot be made 
in terms of the flights considered by themselves. It is 

Real Time Considerations for an Airline 91 

STAGE Z 
Fulw'e Scbedule 

Developnenl 

Non-Manpower 
Groups 

FlIabi 
Schedules 

Allocation 

Maapower 

1 Year 

Release 
PubUcatioa. Alloc. 

Releaae Rele...: 

STAGE 3 

Operational Scbedule I . Clwlpa 

Figure 8-Flight schedule development 

possible that a change may affect the allocation. But 
it also may be such that it will break a pairing and that 
the effect will cascade through the allocation in its 
entirety. With changes taking place daily it is essential 
that it be possible to generate the allocation daily. 

During this Stage 3 the need of the Allocations group 
is not merely to respond to the demands and changes 
imposed by the other operational groups. The group 
itself is the source of changes to the schedule. The 
schedule must be evaluated in terms of how changes 
can be secured which can bring about important reduc
tions to the allocation. It is perhaps at this stage that 
the most important economies can be introduced to 
the allocation through changes made to the flight 
schedule. 

It is during this stage that the tempo of response 
increases tremendously and the time frame of manage
ment response changes from weeks to a day to day 
response. I t is this stage that makes mandatory 
computer speeds to permit response in the time frame 
of management. It is during this stage that there is 
need for numbers of short bursts upon the computer 
to evaluate the constantly changing schedule. The 
emphasis is upon accurate assessments of the effect 
of the individual changes upon the allocation. The 
need is for rapid evaluation of not only what is good, 
but the detection of what is bad in time to permit 
corrective action in reduction of the overall cost· of 
the final emerging allocation. 

Once Stage 3 is closed, as the schedule is released to 
pUblication approximately 3 months before the effec
tive date, there is little that can be done to introduce 
changes to the schedule. At this time the viewpoint of 
the Allocations group again takes on a new outlook. 
The objective is to secure the best allocation possible 
for the now fixed schedule. 

In Stage 4 the time response is not so short. The 
schedule is relatively fixed and the Allocations group 
is not deluged with a constant flow of changes. Whereas 



92 Spring Joint Computer Conference, 1971 

the emphasis in the preceding stage was to identify 
pairings which were poor, and to introduce changes to 
the schedule to ameliorate these bad conditions, the 
emphasis now is to secure the very best allocation con
sistent with the now fixed schedule. It is during this 
stage the final allocation is formulated and comes into 
being. Each and every pairing is completely specified. 

In Stage 5 the allocation is released to the crew bases. 
At these locations the actual assignments of the specific 
crews to fly the pairings are made. During this stage 
the schedule and its implementation is firmly com
mitted and there is little further participation required 
from the Allocations group. 

THE FUTURE 

A problem basic to the airlines is the generation of 
schedules. Flight schedules are in a constant state of 
flux to accommodate the changing patterns of passenger 
traffic, the changes of seasons, and the acquisition and 
retirement of equipment. The problem is compounded 
due to schedules being predicated upon schedules. The 
schedules that the crews fly depend upon the flight 

schedule, the schedules that the equipment fly depend 
upon the flight schedule, and both crew and equipment 
schedules depend upon each other. 

At present every major carrier is attempting to solve 
the crew scheduling problem. At best, satisfactory and 
sufficient solutions are 2 to 3 years away. There are 
other problems which are composites of the allocation. 
These involve domicile apportionment and contractual 
studies. Whereas the generation of the allocation in
volves hours of machine time these problems involve 
shifts of machine time. Inclusion of these problem sets 
into the real time network requires better problem 
solving capability. The difficulty is not in the processing 
of information from terminal to computer and from 
computer to terminal. The bind is within the computer 
itself. 

What is required are computers with larger capacities 
and higher speeds complemented by the development 
of better heuristics. Combinatorial problems confined 
to step by step solutions are so large that increases in 
speed and capacity alone are not sufficient. Algorithms 
must be developed which cut across customary methods 
of solution. Until that time the management informa
tion real time system will be sluggish at best. 



A computer simulation model of train operations in CTC 
territory 

by DAVID T. BORCH 

CP Rail 
Montreal, Quebec, Canada 

CENTRALIZED TRAFFIC CONTROL (CTC) is 
a system which controls the movement of trains. One 
train dispatcher, located at a central point, can 
manipulate the position of track switches and the 
indication of track signals through the use of a series of 
push buttons. It is the position of the track switches and 
the signal indications which govern the progress of the 
trains through the CTC system. A schematic of a section 
of single track with a siding and a section of double track 
is shown in Exhibit I. The CTC Simulation is a model of 
the train movements through a CTC system. 

The design of the computer program commenced in 
1961, and up to its latest application was still being 
fine-tuned. The simulation was programmed for an 
IBM 7080 computer in Autocoder language with one 
Fortran subroutine. The running time varies with the 
number of trains and the length of territory being 

simulated. The computer running time- to produce the 
attached output was approximately twenty minutes. 

The input to this program is comprised of three types: 

1. Track Profile Record-for a section of track up 
to one mile in length, this record contains the 
resistance due to grade and curvature (in lbs./ 
tons) in each direction and the track speed limit 
for freight and passenger trains in each direction, 

2. Signal Block Record-contains the mileage of 
the signal at the beginning of the signal block, 
the length of the signal block, the mileage of spur 
tracks, and a code describing the type of the 
signal block, 

3. Train Data Records-(a) contains the number of 
diesel locomotives, the dispatching priority code, 
the departure mileage and time, the arrival 

01 02 02 

"GNAL BLOCK TY~ r--- "'UBLE tRACk ~ 
~ I ~ I~ 01 01 06 

01 , 01 o~: 01 : 01 : 06 ~,oo 

"GNAL ""'AT~ 
A SIGNAL BLOCK is the section of track .between two signals 

Exhibit I 

93 



94 Spring Joint Computer Conference, 1971 

E> I \ / \ 
TRAIN 1 SIDING A SIDING B TRAIN 2 

Delay to TRAIN 1 if meet takes place at siding A = 15 minutes 

Delay to TRAIN 2 if meet takes place at siding B = 18 minutes 

Exhibit II 

mileage, the gross weight of the train, the horse
power, and the schedule or standard running time 
of the train over the territory being simulated, 

(b) contains the scheduled, 
or work stop, delay information, such as mileage 
and duration of the delay, any change in the consist 
of the train (adding or deleting cars and diesel 
locomotives), and whether the delay is clearing 
or non-clearing. 

The inputs for the Track Profile and the Signal Block 
Records are obtained from Engineering drawings. The 
input for the Train Data Records is obtained from 
dispatcher train sheets, existing train schedules, and 
Transportation planning personnel. 

Appendix I contains the generalized logic diagram of 
the simulation. After the Track Profile and Signal Block 
Records have been edited and stored in the computer 
memory, a reservoir of the first sixteen trains, in 
chronological order, is created. Throughout the simula
tion, this reservoir of trains is scanned, and the train 
with the lowest clock time is selected and progressed 
through the system to its next event or decision point. 
As the trains move through the system, the information 
describing each train is actually moved from signal block 
to signal block in the computer memory. The simulator 
treats each signal location as a decision or event point, 
where the relative position of each train can be evaluated 
in order to determine whether they should stop, 
proceed, slow down, or enter a siding. 

If the selected train is originating, or returning from a 
clearing work stop, the simulator must decide whether 

to allow the train to enter the system. In real life, a train 
dispatcher must scan the track in the vicinity of the 
train to determine if the track is clear before deciding 
whether to permit the train to enter the system. This is 
precisely what the simulator does. If the track is clear, 
the simulator places the train in the signal block and 
calculates the time it will take the train to move to the 
next signal location. This time is then added to the train 
clock time and the train returned to the reservoir. If the 
track is not clear, the train is not placed in the signal 
block. One minute is added to the train clock time before 
the train is returned to the reservoir. 

When the selected train is one that has arrived at its 
terminating point, a statistical record is created for that 
train and the train is removed from the system. The 
signals for that signal block are reset to clear. A new 
train is then added to the reservoir. 

When the selected train is one that has arrived at a 
scheduled or work stop delay point, the duration of the 
train's delay is added to the train clock time. A work 
stop may be of two types-clearing and non-clearing. 
A clearing work stop is one in which the train leaves the 
CTC system, whereas a non-clearing work stop is one in 
which the train remains in the CTC system. Therefore, 
if the train has a clearing work stop, the simulator 
removes the train from the CTC system, cancels all 
meets and passes for that train, resets to clear the 
signals for the signal block the train is in, and returns 
the train to the reservoir. If the train has a non-clearing 
work stop, the simulator returns the train to the 
reservoir. 

Before moving a train to the end of a signal block, the 



Computer Simulation Model 95 

l'& Iti't+l" H-ttItH+W,]" ::,' .. 1: i ;1:: ."': ~+ .. , j:,',:.i1.~, '" ,,'j, I II', i 
II , ;;; ,' .. it" , I 'I '" ' ' 

Exhibit III 

simulator must first determine if the train terminates in 
this signal block or has a work stop in the signal block. 
If either of the above is the case, the time for the train to 
move to the terminating or work stop point from its 
present location is calculated. Otherwise, the time for 
the train to move to the next signal location from its 
present location is calculated. Appendix II is the logic 
diagram for the routine which calculates the train 
running time over a specified distance. The dynamic 
characteristics of the train are developed by the 
Newtonian force equation F = MA, where F, the net 
force available for acceleration, and M, the mass of the 
train, are known and A, the acceleration, is calculated. 
The net force is the algebraic sum of the forces acting on 

the train, that is, the 'pulling' force or 'tractive effort' of 
, the diesel locomotives minus the 'retarding' forces or the 
train resistance due to grade, curvature, flange and 
bearing friction, and still air resistance. The train is 
progressed in small increments of distance of between 
100 and 260 feet until the train has travelled the 
required distance. The times for the train to move over 
all the small distance increments are summed and 
added to the train clock time. The train is then returned 
to the reservoir. 

When the train has reached the end of a signal block, 
and hence, is about to enter the next signal block, the 
simulator must first evaluate the position of the train 
relative to other trains in the vicinity of this train. All 



96 Spring Joint Computer Conference, 1971 

EXHIBIT IVa ... ___ . ___ . ______________ -=-2 
C TC S I M l l • TIC N CAN A C I A N PAC I F I C 

S TAT I ! TIC • t ~!' C ~ T 

PE~loe JAN 1 TO JAN 3. 1971 

38 TRAINS PER CAY PLUS 2 LCCAl S~ITCHI~ OFfiCE OF THE CHIEf ENGINEER 

, .. A I ~ toe DEPAPTURE POWER Ne TONS ELAPSEC "'E 
UN CC RtN 01 
HR fllN .... Mil' 

DEL A, T 
WI( SIP CNFlCT 
H~ 'Ito H .. PIN 

" E NO AVG 
.1 S ... T'P ClS eF TI'E IN OF TOTAL Of SPD 

CStS DV .... 'Jill ~IP CARS HR MIN eNFLCT 

lell. F E 08 
ICt. F I 04 
2C12. , E 08 
lell) F ( 06 
2e14. F E 08 
1C1J. F C 06 
I~OI' , A 03 
2'12' F F O. 
2Ff4 C F F 0' 
1(1' i F ( 06 
1£~1 D F F 02 
·IOC.. F E 08 
2e02. P A 03 
li.l) F Q 06 
2(01. F E O' 
lCl" F C 06 
2elC·' f E O' 
lG.3' F Q 04 
IFj.3'---' . D 06 
'2~1!6 C f F O. 
IGU 0 F F 08 
2eOl D , C 06 

i ii"U-lI-··, D 06 

I-:~::; :.- ~.~! 
2t02. f 8 06 
,.68. F B 03-
·2G£4. F F 06 , 1t4" C ·_·F·-- II ·-06 

~. ~~a-:--;-··~ :: 
I 2e14 D F E 88 

H
COl 0 F ( 06 

2182 1I F F 02 
2CO'--. -F-- ( 06 

. 2&~1. F F 03 
:·-H~--i·-06 

I len., F E 08 
: 2.61. f B 03 

20R_' __ F ___ E __ 08 

01 16]0 24000 114 e4ft! 4 3C 3 5;1 33 15 02 17 2 31.8 
OLH.J.O_J)~e.o.t 100 03tOC 1 J( 1 25 05 I 30.3 
01 Ie 00 24000 i14 04695 4 3C 4 10 20 15 14 29 5 30.1 
01 Ie 15 18000 114 15990 4 45 4 31 08 15 15 30 4 -27.2 
01 19 15 24000 114 04e.5 4 3C 4 Ie 12 15 Z2 31 5 29.2 
01 19 l' 18000 114 15'ge 4 45 4 22 23 15 15 4 28.8 
01 21 05 05000 012 01200 3 4C 3 41 07- e2 26 28 4 33.2 
OL...HJQ.._~.o.t... U4 0469L._ 4 1'- 4 .. 45 15-_ _u. __ ~_-A...__IjOlAZ __ ..... 5'_____'2u6......,.4'__ ______ _ 
01 21 45 24000 114 046.5 4 3C 4 05 25 15 10 25 5 30.8 
01 21 15 18000 114 159.C 4 45 4 52 01- 15 31 46 5 25.8 
01 22 30 06000 019 02365 4 1C 4 11 11 2. 28 5 29 •• 
01 ~3 30 24000 114 046" 4 3C 4 11 19 15 13 28 5 .30.0 .. 
02 01 15 05000 012 0120e 3 4C 3 ~1 03 11 04 15 ~ 34.1 
02 00]0 18000 .IlL 159_~ __ ~_~L __ ..1 _OJ .ll-; .. _._ .. _.1l! __ ---:l4U16L...-~L_...JoQuJ~ _ _',iL__..&2.:1.4 .... ,"'--______ _ 
02 01 30 24000 114 04695 4 3( 4 21 10 15 23 38 4 29.0 
02 01 30 18000 114 159fC 4 45 4 54 09- 15 __ 1..2 41 S 2.5 .• 6 
02 02.., 24000 114 04695 4 3C 3 56 34 15 15 5 31.9 
02 02]0 12000 114 10452 4 45 4 34 11 15 ... ___ H__ 29 5 _ .21.~ __ . 
02 04 00 18000 114 159.0 4 45 4 37 08 15 15 30 5 21.2 
02 04 eo 240eo 114 04t9~ 4 3C 4 5,7 .. ___ ._~1- __ ~1 .... 5t_ ___ l---'01tl01L__ .... 1_1.L5L__~5----J2""LII • ..::J4'---______ _ 
02 05 15 240oii--IT"---0 ... 695--~c-4-iG .. 20 15 14 29 5 30.1 
02 05 40 18000 114 1599C 4 45 4 '8 13- 15 .11.. __ . .52. __ 5 ... H...3... __ _ 
iii 06 40 18000 114 15990 4 45 4 23 22 15 02 11 4 28.1 

'02 06 30 24000 114 04n! 4 3C 4 ~ 05- 1$.n __ . 52 5 . __ n.I..~ ____ "':" ____ . 
02-09 15 06800 lCO e635C 1 3C 2 01 31- 09 09 3 21.3 
02 01 45 18000 114 0.172! 4 15 4 .. 1L-. _-l0,a5-c... __ ~1~5~-........l1~5L---..... 3!11QL-_-l6---~2.z'.a;.Q~-_-----
02 08 15 09000 114 07150 4 OC 4 211 28- 15 20 35 6 28.1 
02 09 00 18000 114 04!Of 4 3C 4 ~5 lJ- 15 ~I.l 03 S __ 26.4 
02-1i 00 18000 114 0772C. 4- 15 4 05 10 15 15 5 30.8 
02 09 30 18000 114 1599Cl 4_ 45 5 3.!5 50- 15 1 13 _ _1 21. .6. _ 22.~ 
02-10 20 -- 18000 114 15990 4 45 5 00 15- 15 31 52 1 25.1 
02 11 30 2"000 11" 04f:9f 4 3C ~ .. L ____ .u ___ __A.Uz-__ ... J.A.l ___ ..a.36 ___ ......Ii6L__'2L:9r.. .... 3'--______ ---' 
02 11 20 18000 114 15990 4 45 4 39 06 15 18 33 5 27.0 
02 13 15 06000 lC8 03090 4 3Cl 4 20 10 2.5_ ._2.5. __ --' __ ...29--0_ . _____ ._. 
02--13-·00--18000 114 159ge 4 455 01 23- 15 44 59 6 24.5 
02 13 40 09000 lllt 04fOl 4 3C 4 3'1 01- 36 .. 36 __ ._ .. .5. .. __ 2L2. ___ .. __ .. __ .. 
02 14-15-18000 085 1009! -. 4 -15 4 44 29- 15 31 46 6 26.5 
02 15 15 24000 114 0ltt95 It 3C 4 12 18 15 15 30 5 29.9 
02 14 50 0'9000 114 07150 4 00 4 4'8 48----~1c;;:5'----~3~9'-----~5;!!!4L---!5~-~2~6 ..... 2!--------

.JtL!'!'~Q __ 2ltctQO ~ 14. ~~.E'f ___ ._4._ 3C 4 1'6 lit 15 20 35 4 .. 2.9.4 _ 

------- .-_.-. ----- .. - •.. _._. _._-_._.-
38 TRAINS PER DAV PLUS 2 LOC~l S~ITtHE~ OffICE Of THE CHIEF ENGINEER 

PERFOR~ANCE SUMMARV OF JNDIV1DUAL TRAINS 

, R A I to ~C DEPARTURE peWER NO TDNS EUPSEC TItlE 
'HJN CC R\N 01 
HR MIN HR , .. " 

TIflE 
uveD 
HII I'1N 

DEL A V T 
WI( STP CNflCT 
HI 'I'" HR 'I,.. 

M E NO AVG 
_toiJ: "8 TVP CLS ef T IPf . IN OF 

CSLSDYHR ·tlJN-· tl/P CARS 
TOTAL OF SPD 

HR MIN (NFlCT 
---"- _._-

UII • F 06 114 1599C D 02 16 50 18000 4 45 It 22 23 15 15 5 28.8 
·:~G2 c F f 01 g~ III gD Z!ggll lU --'l.UH..... § 31: ~ . . D! 21 15_. ____ .12.-._...21 6 ,0 1 

I 2A:91 )I F I 04 02 20 ]0 06800 lCO 03eco 1 3C 1 42 12- 16 16 2 25.2 
._.2Cll 0 f _to 06 ....0.2 U.U 18000 114 15990 "- 45 4 37 08 15 15 30 6 27.2 .3e04 · F E 08 02 19 15 24000 114 04695 4 30 4 14 16 15 18 33 6 29.7 
~ .. ICna a F C_ oe --'l2_l! 15 18000 lilt 15«i9C "- 45 " 4'6 el- lS 25 ItO 4 26.4 

lCOI • P A 0] 02 21 05 05000 012 0120e 3 4C 3 21 19 02 02 5 31.5 
'fOI2 • F f 08 O~ 2C 30 24000 Hit _._Cl'te_fi! 4 3~ . ~.-.,,' 15- 15. __ . __ ._~'---...l 03 5 26.4 
leI.5 , F C ii' 02 21 15 18008 114 15990 4 45 4 2. 16 15 08 23 It 28.0 
!H't , F F 08 02 21 45 24000 114 OItU! It 3C .. 5;1 21- 15 00 1 15 6 25.4 ·'Baa 8 ··-F F· 02 02 2230 06000 019 0236! 4 3C 4 31 01- 44 44 5 27.8 
!CC6 i F E 08 <tl 23 30 24000 114 04695 4 3C 4 01 24 15 10 25 5 30.6 -3G02 -C P ·A· 03 03 01 15 05000 012 01200 3 Ite 3 52 12- 18 lit 32 5 32.5 
IGBI e F 12 06 !n g~ 19 18g0G .U~_ .. Ut!L_~U_. , 08 23.-:- .. _ .. 15._._ .H. _.L...JHL- " 245 '3C08 F E 08 0301 30 24000 114 04t9! 4 3C 4 12 18 15 15 30 It 29.9 2ell II F t. 06 03 01 30 18000 114 1599C 4 45 4 54 09- 15 32 41 5 25.6 !CU • , E 08 03 02 45 24000 114 04695 4 3C 3 59 31 15 02 17 It 31.5 
IGI3 )I F D 04 03 02 30 . 12000 lllt 10452 4 45 4 54 09- 15 37 52 5 25.6 !E!6 . · F F 08 03 04 00 24000 114 04U! 4 3C 4 11 19 15 16 31 2 30.0 
Zn3 • F D Q6 03 04 cg UCHl..G....._U~ ..ill.K.... ___ !' __ ~5 4 2C 25 _1.5. _ ..... ____ ... 15 4 29 0 

-- _ ... - -101 57 AV~GES 06 18088 1(5 08584 It 3C 4 28 02 13 23 31 4.9 28.4 

AVERAGE DELAV PER TRAIN PHR cet\FLlCT IS -.-- 4.71 "INures 
------------_. 

Exhibit IVa 



Computer Simulation Model 97 

EXHIBIT IVb .. C , C S I M l l , T I () N CAN A Il I A N PAC I F I C 

S TAT I S , I C A l- It I P C R , 

, CP It'll SWeCIYISIDN PERlOt JAN 1 TO JAN 3 • 1971 

.MlFCSAl U: --- 01 __ ~~ 38 TRAINS PER CAY PLUS 2 lOtAl S"ITCHIIR IlfflCf OF THE CHIEf ENGINEER 

-_._--_ .. 
II PERFOR"ANCE SU""ARV. AYEItAGIi BY CLASSifICATION 

ellIS'S IlESCltIPTICN Nil POWER NC TONS EUP5EIl HIIE Tlflle II E lAY T I , E NO AVG AYG DLY 
I!F Cf IN OF RUN CC RllN 01 SA~ED WIC STP CNflCT TOTAL Of SPD PER ,.,.IN lRNS· HIP CARS .. It "IN Hit lIN HII fllN Hit "UI HIl ItIN .. It "IN CNFLCT CNFLCT 

---~--~-- .. - ... --
A FAST PASSE~GER. EXP. OO~ 05000 012 01200 3 ~C ! 3CJ 01 08 11 19 5 3~.5 2.~ 

I "ST FREIGHT 005 JIt~OO 1C8 Onf~ 4 C~ 4 29 20- 15 21 36 6 28.1 3.8 
--~-.- -" .. _---

C PIGGYUCK 013 18000 114 15~9C 4 4! 4 50 05- 15 28 43 5 26.1 5.6 
--- _ ... _-------

D THRCUGH FRUGHT 008 16500 114 146C6 4 45 4 41 04 15 20 35 5 27.0 4.1 

E RCC PASSEftGEIt 015 21t000 lilt C4695 It 3C 4 11 19 15 15 30 5 30.0 3.2 

I' -tCIi-~Pii i CRITYfRl!IGHT 012 11750 lC8 0412! 4 3C 4 31 Ol- IO 36 46 5 27.9 7.5 

G HCAl PAS9Et.GEIl 

" 'CRIC TR~S.WCItK-GA~GS 

-l---silClaf~RUN TIiAiNS 003 06800 lCO 04!11 1 3C 1 It] 13- 08 08 2 25.6 4.2 

.. ,ji'elij'U'Ul T!tAUS 

Exhibit IVb 

the possible types of signal blocks are shown in Exhibit I 
and are described below: 

1. 01-intermediate signal block, 
2. 02-appro~ch signal block to a siding or to 

double track, 
3. 03-siding signal block, 
4. 04-mainline signal block adjacent to a siding 

signal block, 
5. 06-first signal block on double track. 

If the train is about to move from one intermediate 
block (01) .to another intermediate block (01), or from 
an approach block (02) to an intermediate block (01), or 
from the first block of double track (06) to an inter
mediate block on double track (01) the simulator checks 
to see if this next signal block is occupied by another 
train. If this next signal block is occupied by another 
train, the signal will be set to prevent the train from 
entering the next signal block. If the next signal block is 
unoccupied, the second next signal block ahead is 
checked. If it is occupied, the signal will be set to 
restrict the train to enter the signal block at a speed of 
30 m.p.h. If the second next signal block ahead is 
unoccupied, the signal will be clear, and the train can 
enter the signal block at speed limit. 

If the train is about to move from an intermediate 
block (01) to an approach block (02), the simulator 
scans the track up to and including the first signal block 
ahead of the next siding. If another train going in the 
same direction is detected, the simulator determines 
whether this other train should be passed, and, if so, at 
which siding the pass should be executed. Signals and 
switches are set accordingly. Otherwise, the simulator 
scans the track up to the third siding ahead to detect 
if there is another train coming in the opposite direction. 
If so, the siding at which a meet must take place is 
determined; as well as which train will go into the siding. 
In determining at which siding meets will take place, 
the simulator always attempts to minimize the delay. 
However, the decision as to which siding will be used 
could be modified according to: 

1. the location and duration of any work stops that 
either train may have, 

2. the amount of delay time that either train has 
accumulated prior to this meet, 

3. the relative priorities of the two trains. 

Exhibit II is a hypothetical example of how the siding 
for a meet is chosen. If the two trains are of equal 
priority and neither has work stops nor has accumu-

2 



98 Spring Joint Computer Conference, 1971 

EXHIBIT IVe 2 
C T C S I M ~ l A TIC N C A ~ A CIA N PAC I F I C 

S TAT 1 S TIC • ~ R I feR T 

A CF R'll SW~CIVISION PER lOt JAN 1 TO JAN 3, 1971 

PRtlPCSAl ~O ~~______ 38 TRAINS PER CAY PLUS 2 LOCAL SlinCHER CFf ICE OF THE cHIn -.BILG.lfIIEEIl-__ _ 

f-------------------------- --------- ----- ----_ .. _----._
III PERFORMANCE SU'M.RY IV S101~'S 

___ 1 31 
3 31 
1 34 
1 OCJ 

___ 1 112 
53 

-'1_4 ___ 4C. 
36 
11 

1.85 29 59 
_ ~ .. 15 _______________ 34_ 

l.t8 1 32 

TOTAL 
Hit MIN 

1 31 
3 31 
1 ,. 
I 09 
1 III 

51 
4" 
36 

I II 
I 28 

34 
I ]I 

18 
14 

8 
9 

13 
7 
7 

11 
11 

6 _ 
12 

11.7 
6·7 
8.6 
6....11. ________ _ 
4.1 
5....1 _________ _ 
5.1 6., 
5.4 

_____ 5.~ 

1.15 - - --- ----- ----.. 
___ 5.1 _____ 51 10 

7.1 
5.8 

1.16 2 03 2 03 11 11.2 

------~-~-~~-~--

C) ... 2. _______ ~.&..I _______________ _ 

Exhibit IVe 

lated delay in excess of thirty minutes, then the meet 
would take place at siding A. However, if train 1 had 
accumulated more than thirty minutes delay, then the 
meet would take place at siding B. 

If the train is about to move from an intermediate 
block (01) to the last block of double track (06), the 
simulator scans each signal block ahead up to the next 
siding. If a train is detected coming in the opposite 
direction, the signal at the end of the 06 signal block is 
set to prevent the train from entering the approach 
block (02). Otherwise, the train is given clear signals. 

If th~ train is about to move from an approach block 
(02) into a siding block (03), the signal is set to reduce 
the train speed to 15 m.p.h. If the train has a meet or a 
pass at this siding and if the other train is already at the 
siding, the meet or pass is cancelled. 

If the train is about to move from an approach block 
(02) into a main line block adjacent to a siding block 
(04) and if the train does not have a meet or pass at this 
siding, the train is given a clear signal. Otherwise, the 
signal is set to restrict the train speed to 30 m.p.h. If the 
other train is already at the siding, the meet or pass is 
cancelled. 

If the train is about to move from an approach block 
(02) into the first block of double track (06), and has a 
meet set up in the (06) block, the meet is cancelled. 

If the train is about to move from a siding block (03), 
or from the main line block adjacent to a siding block 

(04), or from the last block of double track (06) into an 
approach block (02), the simulator checks whether the 
train has a meet or pass in this block. If so, and if the 
other train is not yet at the siding, or on the double 
track, the signal is set to prevent the train from entering 
the next block. Otherwise the meet or pass is cancelled. 
Then the simulator scans the track ahead up to the next 
siding. If a train is detected coming in the opposite 
direction, the signal is set to prevent the train from 
entering the next signal block. Otherwise, the train is 
given a clear signal. 

The simulator has now evaluated the position of the 
train relative to other trains and has set the signal for 
the next signal block accordingly. If the signal indication 
is set to prevent the train from entering the next signal 
block, one minute is added to the train clock time and 
the train is returned to the reservoir without being 
moved into the next signal block. Otherwise, the time 
for the train to move into the next signal block is 
calculated and added to the train clock time. The train 
is then moved into the next signal block and returned to 
the reservoir. The simulator processes each train in the 
above manner until all trains have reached their 
terminating point. 

The simulator produces three types of output: 

1. a time-distance graph, 
2. statistical reports, 



Computer Simulation Model 99 

__ ~~~ __ ~~~~~~~-=~ ______ ~~~~~~~~~ __ ~~ ________ ~mmMYl~U~I~Y. ________________________________________ ~3~ 
( eTC S I M U l A T I 0 I~ INTERVALS OF FREE - TIME 

I JUN 2 

I MILEAGE 
FRO~ TO 

1971 

INTERVAL DURATN 
FROM TO HR MIN 

INTERVAL DURATN INTERVAL DURATN 
FROM TO HR MIN FROM TO HR MIN 

, BAST TDMIlfAL 
t-=~------=------------- -

1.'51- 2.93 

INTERVAL- DURATN 
FROM TO HR MIN 

INTERVAL DURATN 
FROM TO HR MIN 

INTERVAL 
FROM TO 

DURA TN 
HR MIN 

! • 1359-1452 0 53 • 1500-1508 0 08 • 1518-1534 0 16 • [541 [553 0 [2 • [&03-[&51. • 

r----------o;::~~8.:;li!=~~~~ ~ ~! -: ~~~~};i~-~-k}_: ~~~}:~~~i--g~u-:-~~~~:~~~~--~ !~ ; 2040-=-20-=-4-=-8=-----=---'---'-_.--=-~=__=~_'__ _ _'____'___. ___ ___i 

! 4.34- 5.75 

ll-------

* 
* 
* 

5.75- 7~17 * 2319-0044 1 25 * 0101-0129 0 28 * 0137-0204 0 27 * 0212-0244 0 32 • 0251-0414 1 23 • 0422-0434 0 12 • 
- * 0437-0~26 0 51 * 0533-0004 0 31 • 0612-0&41 0 29 • 0711-0800 0 49 • 0808-0836 0 Z8 • 0841-091z 0 31 • 
: * 0920-1004 U 44 * 1012-1050 0 38 * 1058-1134 0 30 • 1142-1359 2 17 .• 1407-1443 0 36 • 1451-1514 0 23 • : 
:--------*T53j.::r664--031-. f61o-1704---0-54-.--rlCi-=-f829--117-'-fs·n"':f843-006--.-U51:;'1929-----038. 1937-200-'--0 29.----· 

-----~:~~~!:=~~~t_{ !_~---:J()~~~~_~- ~_'!. _!~Ob_:_21!!_~.: ~~ __ ...!...~!~?_-21_?~_'!~1 • 2137-22~_~_.!??.!_3 _ _:~?_~_~,~.!... ____ : 

1.11 6.92 S * 22~3-aV45 1 52 * 0051-0419 3 28 * 0426-0659 2 33 • 0106-1510 6 04 • 1516-1834 3 18 • 
SIDDlG 1 

7.17- 8.92 M * 2314-0049 1 -~5 * 0056-0125 0 29 * 0131-0209 0 38 * 0216-0248 0 32 • 0255-0431 1 36 • 0434-0525 0 51 • 
SIDDlG 1 * -0530-'::06\)<}-- 0 39 * 0616-0631 0 21 - -.--0642-=015-1 1 15 • 0802-0839 0 n • 08"5-0909 0 24 • 0915-1001- 0 -46 • • 1007-1047 0 40 .. 1053-1131 0 38 .. 1130-1404 2 28 • 1411-1440 o 29 • 1445-1522 0 31 • 1528-1607 0 39 • -----

'" 1614-1109 0 5:> '" 1116-1640 1 24 '" 1845 1934 o 4') '" 1941-2003 5 22 • zoos-zozo 0 Iz • 20z6=2103 0 31 • 
* 2l0'i-2121 0 12 * 2124-l134 o 10 .. 2141-2202 o 21 .. 2208-2247 0 39 • 2253-2314 0 21 • ---- _._-_ ... --_ .. __ . __ . _. _. ------ - ---------~ 

8.92- 10.32 * 2316-0042 1 26 * 0047-0053 0 06 .. 0059-0123 o 24 • 0121-0213 0 46 • 0219-0252 0 33 • 0258-0424 1 26 • 
* 0437-,)512 I) 45 * 0527-06T3 0- 4b - *0619-0635 0 16 • 0639-()104 o 25 • 0709-0754 "0--"5--. 0759-0842 0 43 --.-----
* 0<34!l-090b 0 HI * 0911-0958 o 47 • 1003-11)43 0 40 • 1,)49-1128 0 39 • 1133-1408 2 35 • 141+-1437 0 23 • 
* 1442 15013 'J 26 * f5T3-f525 0 12 • 1531-1611 0 40 '" 1617-1113 0 56 • 1119=1837 1 18 • 1841-1938 0 51 • 
* 1944-2000 (J 16 * 2e05-l01S 0 13 * 2022-2107 0 45 * 2112-2124 0.12 • 2126-2138 0 12 • 214+-2200 0 16 • 
* 1204-225G U 4(, * 2256-2312 0 16 .--. - ... --- ---

10.3l- 11.72 * 2319-(,040 1 21 ,. 0044-0056 0 12 --.-olbT:";Oll,j (j 19 * 0125-0216 • J 51 .. 0221-0255 0 34 • 0300-0426 1 26 • 
* 0429-0435 ,) 00 * 0440-0520 0 40 • 0524-')616 0 52 • 0622-0632 0 10 • 0637-0706 0 29 • 0712-0752 0 40 • 
'" 1)]')(,-0845 l) 49 '" 0850=090z 0 12 '" 0909-0956 o 41 '" 1000-103 I 0 37 • 104S-UZS b n • un-nu Z 40 • 
* 1416-1434 .J hi * 144v-1506 a 26 * 1510-152d 0 10 • 1533-1614 o 41 • 1619-1116 0 51 • 1721-1833 1 12 • ~ ----

* 1!l4u-l.14:> ;J O'j * 185')-1941 0 51 ·-1946-1953 0 12 * 2002-2015 0 13 * l020-2110 0 50 • 2115-2126 0 11 -. - --
* 212';-2141 () 12 * 2146-2157 0 11 * 2202-2253 0 51 * 2258-2309 0 11 * -- ---- -

Exhibit Va 

3. reports listing and summarIzmg the intervals 
that each signal block is unoccupied. 

Exhibits III, IV, and V are samples of these outputs. 

On the time-distance graph, time is represented on 
the horizontal axis, and distance on the vertical axis. 
The sidings are represented as the horizontal lines on 
the graph. The trace of the train is indicated as it 
traverses the territory, showing the location of any work 
stops, meets and passes that the train had en route. 
A similar graph is produced by the CTC system, which 
makes the simulation graph easily understood by 
operating personnel in the evaluation of the simulation 
output. 

The statistical reports are comprised of three tables. 

The first (Exhibit IVa) tabulates the performance of 
each individual train in terms of its elapsed running 
time, which is compared to the standard or scheduled 
running time, the amount of delay due to work stops, 
meets, and passes, the number of conflicts (meets and 
passes), and the average speed. These results are then 
averaged to give general performance indicators for the 
simulation. The second table (Exhibit IVb) gives the 
same general information as the first table, but averaged 
for various classes of trains. This report is useful in 
determining the performance of each class of train. The 
third table (Exhibit IV c) summarizes the performance 
of each siding in terms of the delay due to work stops 
and conflicts, the-number of conflicts at each siding, and 
the average delay per conflict. This report is very useful 
when evaluating alternative siding configurations. 

The third type of output is the report listing and 



100 Spring Joint Computer Conference, 1971 

r-~~~ __ ~~~~~~~ __ ~ ____ ~~~~~~~~~~~~~~~~ ____ ~prn~I~B~IT~V~, ______________________________________ ~3~ 
eTC S I M U l A T I 0 N SUMMARY OF FREE - TIME I~TERVAlS 

JUN 2 19n 

I N T E R V A l S o F F R E E - TIM E 
TOTAL LESS 

3-3.§"$ 3.5=4"$ IND OveR 1.5-2 HRS 2~2.5 HRS 2.5-3 HRS MILEAGE FREE TiME NuHnER OF THAN I HR 1-1.5 HRS " HRS 

N_t:l_~"I_N __ Nt:I_ "_"IN NO HR._":.::.I::.:N-=----__ _ FROM ___ !O _____ -'i~ __ "'_~ INTEWAtS ___ NQ..._~~~O HR MIN NU HR MIN NO HR MIN NO HR HIN -----_. __ ._-- -- -

_EAST TERMIIIAL"'--__ _ ------------------.-.------~-----

1.51- 2.93 20 16 29 24 13 41 4 4 45 1 50 ••••••• ••••••• ••••••• .••••••• • ...... 

2.93- 4.34 19 01 34 30 13 25 3 3 39 1 57 ••••••• ••••••• ••••• •• ••••••• ..... •• 

4.34- 5.75 18 29 34 30 12 34 3 3 49 ••••••• 1 2 06 ••••••• ••••••• ••••••• ••••• •• 

5.75- 7.17 . 19 40 31 27 13 18 3 ,. 05 ••••••• 1 2 17 *...... ....... ....... ... ... . 
, __ ~t"7-_ 8.92 S 19 15 

SIDIIIG 1 
5 ••• •••• ••••••• 1 52 ••••••• 1 2 33 2 6 ~ ••• _._._._-__ ----'1=----=1=----::0-=-" ___ --' 

7.17- 8.92 H 21 16 
J!IllIIG 1 

29 24 12 58 2 2 39 2 3 11 1 2 28 ••• •• •• ••••• •• ••••• •• ..... •• 

3 4 10 ••• •••• _._ •• _._._._. __ --=1-----.:2=------=3:.::5 __ ._._._ •• _._. __ •• _._._._ .. __ ._ .. _ .. __ .. ___ _ 8.92- 10.32 21 02 32 28 14 17 
r 
I 10.32- 11.72 21 01 34 30 14 22 3 3 59 ••••••• ••••••• 1 2 40 ••••••• ....... ..... •• 

11.72- 13.12 20 59 

13.12- 14.52 20 31 

14.52- 16.27 S 25 15 
SIDDle; 2 

34 

29 

9 

25 

30 14 30 3 3 4.3 ••••••• ••••••• 1 2 46 ••••••• ......- ....._-

22 11 08 6 6 31 ••••••• ••••••• 1 2 52 ••••••• ••••••• ..... __ 

2 ° 52 2 2 25 ••••••• 1 2 20 ••••••• ••••••• ••••••• " 19 SI 

17 10 12 8 01 iii it i. .i. i. it ii. if it j 04 ii ••• Ii i ...... · ! 14.52- 16.27 M 21 23 
SIDDG2 ---------------------------~---------------------------4 
~.27- 17.51 .20 38 

~.51- 18.75 21 00 

30 24 12 13 

30 14 41 

5 5 21 ••••••• ••••••• *.. *. •• 1 3 04 ••••••• • ...... 

34 3 3 15 **..... ••••••• ••• ** *. 1 3 04 ••••••• ....._. 

f--1---=-1:..::8-=-_-=-75"-------=1:..::9-=-.-=-99-=----_-=-2-=-0--=5-=8 ____ --=--34--=---_--=3=---:1=----=1-=--5_3"--9 ___ 2=----=2=----::15=--_*_*_._._._*_. __ •• * ••• * *** •• *. 1 3 04 ••••••• • •• _ .. __ -_. ___ -1 

1---=1:.::9__=_.-=-99-~~2~I__=_.~23:::-._~21~----=:0=__=8~ __ -=-34~_-----.:3~1:.__.::1-=-5----'5=--:0=--_...:2=__-=2:...-=.14--=---_._*._._._._* __ ._._. ••.•• .*..... 1 3 04 ••••••• • .. -.. --•• -----1 

21.23- 22.41 20 32 30 21 15 16 2 2 11 **..... ..* ••• * ••••••• 3 05 ••••••• • ..... -

22.41- 24.34 S 23 41 
SIDIIIG 3 

5 ••• •••• ••••••• ••••••• ••• •• •• 2 5 14 ....... 3 53 2 l"'-----.:"-=-O ___ ---l 

~~~~~~-~22~~1~9~.---~34~-~3~0~1~5-5~1~--3~----=:3~11~~.~.-._._*_._. __ ._._._ •• ____ ._. __ ._._._._._. __ • __ -=---=3--=-05:::-._ •• _----'. __ ._... • ...... 

25.11- 27.01 22 23 35 31 15 58 3 3 19 ••••••• • •••• *. • •••••• 3 061..

21.01- 28.1t4 22 09 35 31 15 1t6 3 3 18 ••••••• ••••••• •••• •••

Exhibit Vb

summarizing the intervals of time that each signal block
is unoccupied. These reports are used to estimate the
amount of track maintenance that could be performed
with various train densities and schedules.

Initially, the simulation was used mainly to evaluate
various siding configurations for proposed CTC installa
tions. More recently, the simulation was used extensively
to determine the effects of large increases in the density
of trains through an existing CTC system, and, what

effects capital improvements would have. The time
distance graph was very useful in helping operating
personnel visualize the projected train operations up to
ten years in the future.

In terms of future requirements for simulation models
of this type, computer aided dispatching and dispatcher
training simulation models are only two of the possi
bilities. In both these cases, visual display systems will
play a key role.

Appendix I

Computer Simulation Model 101

Set signal to
prevent train
from entering
next signal
block

Scan the track
ahead up to the
first signal
block after the
first siding

Set signal to
restrict train
to 30 m.p.h.

Determine
whether trains

yes should pass and
~:""';";;--I--t if so where.

Scan the track
up to the
third siding
ahead

yes

Set signals
accord ingly

Determine
where trains
will meet and

~--~whlch train will
go into the
sidin

yes
Set signal to
reduce train

>---........ ~ speed to 30

Scan track up
to the first
siding

m.p.h.

Set signals to
yes stop train at

end of double
track

Clear signal
for train

Set signals
accord ingly

Computer Simulation Model 102 A

Appendix II

102 Spring Joint Computer Conference, 1971

Set signal to
reduce train
speed to
15 m.p.h.

Clear signal

for train

Set signal to
reduce train
speed to

30 m.p.h.

yes Cancel the
meet

Cancel the
meet or pass

Set signals to
prevent tra.n
from entering
the next signal
block

Appendix I-Continued

Cancel the
meet or pass

Scan the track
up to the next

siding

Clear signal
for train

A general display terminal system

by J. H. BOTTERILL and G. F. HEYNE

IBM General Systems Division
Rochester, Minnesota

INTRODUCTION

Large multiprocessing computer systems using large
capacity, high-speed direct-access storage have become
very common. Likewise, high speed display terminals
are becoming increasingly popular, especially in special
applications such as airline reservations systems. Dis
play terminals offer an even greater potential in making
available the resources of the large computer system
and its data base to the majority of computer users in
their office area. A generalized display capability of
this type is superior to a terminal system tied to the
relatively slow typewriter terminals, cards, or to a
data base which is incompatible with non-terminal
facilities.

Multiple Terminal Monitor Task (MTMT) described
in this paper is a display terminal system which ex
tends to the individual users in their local areas the
advantages of display access to a centralized computing
system with its common pool of direct-access storage
and high computing power. The terminal user is pro
vided immediate access to his source programs, data,
and job-control statements resident on direct-access
storage. Records may be viewed, changed, added, or
deleted freely and rapidly. In addition, the user may
set up and submit background jobs or request com
monly needed data management services. This system
was designed and written to run under OS/360 MVT
(Multiprogramming with a Variable Number of Tasks).
A further description of the individual services is
given in the Appendix.

This paper presents the design objectives for MTMT
and how we attempted to meet them. First, we describe
the overall system design and control, and secondly,
the approach taken to several of the most important
services. These objectives could be used for any display
terminal system design.

103

OBJECTIVES

The way programmers, engineers, and administra
tive personnel used our computing facilities indicated
that all three would greatly benefit from a terminal
system. The programmer needed to conveniently
modify his programs and execute them so that he
could debug them more rapidly. The engineer needed
to execute application programs, like Electronic Circuit
Analysis Programs (ECAP), to solve his problems
without· having to learn programming or to commute
to the computing center. The administrative personnel
needed rapid, easy-to-use data retrieval and update
capabilities on a real-time basis. Consequently, we
decided to provide data retrieval, data updating, and
job submission services along with the ability to add
application-oriented support. These services had to be
compatible with standard data sets or files for ease of
conversion to the system and compatibility with cur
rently provided programs.

The terminal system could not be a dedicated system
since it was necessary to satisfy large production re
quirements on the same computer. We could not
tolerate frequent interruptions in the production
throughput caused by terminal system failures, and
terminal down time would severely reduce the terminal
system's value as an immediate data base access
facility. Therefore, the terminal system had to be
reliable and resilient, and had to possess a recovery
capability that would protect the user from loss of
data, loss of changes to data, or loss of other previously
accomplished work. The system also needed to provide
a convenient hardoopy capability so that users could
print or punch copies of their data sets for backup or
record purposes. All the above objectives had to be
met without modification to the Operating System.
Otherwise the future of the system would be in jeopardy

104 Spring Joint Computer Conference, 1971

Figure I-IBM 2260 Display Station

at each Operating System release change, plus, the cost
of release change modifications would be prohibitive.

Finally, the terminal selected had to be a low cost
unit which could handle large quantities of information.
To provide the data transfer speed desired-yet not
require extensive user training and user familiarity
with the system to make it functional-we used the
IBM 2260 Display Station (Figure 1). Cables allowed
placing the terminals withinYs mile of the computer
center and avoided the reliability and speed problems
of telephone lines. With this display, 960 characters of
12 lines by 80 characters could be displayed quietly
and quickly. The 12 lines permitted a display of an
area of data to be changed, a group of records describing
a machine part, a logical group of instructions (Figure
2), or an option list from which the user could select
his next operation (Figure 3). Thus, option displays

T'Ol 5 I •• • EDIT MTMT22fiO. SAMPLEOl

OPEN FILUTEMPS) RECORD INPUT;

OPEN FILE(TEMPU RECORD INPUT;

ON ENOFILE (TEMPl) GO TO 052;

ON ENDF I LE (TEMP2) GO TO 053;

ON ENDFILE (TEMP3) GO TO OS,,;

ON ENOF I LE (TEMP ..) GO TO LOOPC ;

ON ENDPAGUSYSPRINT> PUT SKIP LIST ('DATA CONTINUED');

PUT PAGE LIST('CUSTOMERS WHOSE TOTAL CLAIMS) TOTAL PREMIUMS');

PUT SlCIP;

LOOPB: READ FI LE(TEMPl) INTO (CARD);

Figure 2-Sample MTMT edit display

001010000

001020000

001030000

00 0000

001050000

0"60000

001070000

001080000

001090000

00500000

and self-tutorial information could be used to make all
services conveniently available and avoid an extensive
command language.

With the objectives set and the type of display
terminal selected, we found it necessary to design and
implement our own system, since our needs were not
met by any available system. The following sections
describe the system developed to meet these objectives.

INTERNAL PHILOSOPHY

System

Tasking structure

The needed reliability and fail-soft capability was
provided by using the multi-tasking facilities of the
Operating System. A separate task was created to
control each terminal. This controlling task is referred
to as the "terminal driver." All services requested from
a terminal are attached, using OS/360 multitasking
capabilities, as sub-tasks of that terminal's terminal
driver.

If a service fails, the terminal driver can detect the
failure, notify the user, and allow him to continue his
session. Each terminal driver is attached by the system
driver, whose job is to monitor all terminals attached
to the system. If a failure occurs at the terminal driver
task level, the system driver is in the position to detect
the abnormal termination and reattach the terminal
driver, thus putting the terminal back in operation at
the sign-on display.

At initialization, the system driver attaches a termi
nal driver for each terminal and control is turned over
to these terminal drivers as shown in Figure 4. There
after, the system driver has only two functions: (1) to
reattach a terminal driver if it abnormally terminates,
and (2) to respond to system operator requests (for
example, specify number of active terminals, halt job
submission, or halt a particular terminal).

T'Ol MULTIPLE TERMINAL MONITOR TASK OPTION MENU

SELECT IIY NUMBER ONE OF THE OPTIONS Bnow OR SUPPLY PROGRAM NAME AS APPROPRIATE

O. LOGOFF. 1. BACKGROUND .JOB STATUS OPTIONS.

1. ADDITIONAL TERMINAL SERVICES. I. REQUEST HARD-COPY OUTPUT.

2. DISPLAY SEQUENTIAL DATA.

3. EDIT SEQUENTIAL CARD IMAGES •

... DATA DEFINITION AND RESOURCE OPTIONS.

5. INPUT SEQUENTIAL CARD IMAGES.

5. INITIATE A BACKGROUND oIOB.

I S THE OPTI ON OR PROGRAM CHOSEN.

___ (ADDITIONAL SPECIFICATIONS)
••• PARAMETERS

Figure 3-MTMT option menu

The terminal drivers, meanwhile, completely control
the activity on their respective terminals by controlling
user sign-on, displaying menus of services, and then
attaching service modules. When a service module is
attached by the terminal driver as the result of a
request from the option menu, the service module is
given control of all displays for that terminal until the
user requests the service to complete. At this time the
terminal driver has the option menu displayed.

Overall system status flags and information are kept
in a common area in the system driver. The address of
this common area is passed to each terminal driver.
Each terminal driver has a common area which con
tains all the information pertinent to the terminal and
the address of the system driver common area. The
address of the terminal's common area is passed to all
the modules that are attached or linked by the terminal
driver. Therefore, MTMT is built around two basic
common areas-a system common area and a terminal
common area-each of which is accessible to each
module in the system.

Interface with operating system.

Multiple Terminal Monitor Task is a long-running
job which does not require modification of the Operating
System code. However, MTMT needs two capabilities
not normally granted to background jobs. First, it
needs to be able to dynamically change the unit address
field in the Task Input/Output Table (TIOT) for a
given Data Definition (DD) statement. This allows
DD statements to be swapped to point to any data set
on any permanently-mounted, direct-access volume.
Thus, data sets on any permanently-mounted volume
may be viewed or updated.

Secondly, MTMT must be able to issue operator
commands to the Operating System such as start
reader (S RDR). Both of these additional capabilities
are provided by an MTMT Supervisor Call Routine
(SYC).

A second SYC (which is optional) will allow the user
to run background jobs that communicate back to the
terminal from which they are submitted. Each such
background job formats its own displays and accepts
input conforming to its own standards. This second
SYC is not needed unless the batch conversation
capability is desired.

Since MTMT does not depend on modification of
the Operating System, it is very release independent.
The only areas where MTMT is subject to release de
pendence are in the format of the OS internal tables it
reads, and the input parameters for macros and SYCs.
Operating System changes in these areas seldom affect

A General Display Terminal System 105

A_
--,----,------ --- - ------,- ---,----
r _.1. --, r - .1. -, .-----L--, r-.1. -, r _l._,
I~II~I 1_11_1
IDr_II~1 1_11_1
1 1 I 1 I 1 1 I
L ___ J L ___ J L ___ ...J L ___ ...I

Figure 4-MTMT tasking structure

MTMT because such changes usually pertain to new
fields or parameters, rather than to existing ones.

Core use philosophy

MTMT is designed to require only a small region of
core. This allows normal batch processing capability on
the same machine. These batch processing regions
are then used by MTMT to execute compilers and
assemblers for the terminal user, as well as other types
of OS/360 jobs. By eliminating the need to execute
compilers and assemblers in the MTMT region, the
terminal system can better manage its region and re
quire a smaller amount of core, but still provide the
full services of OS /360. This control is gained by having
all modules that run in the region hold to certain core
use conventions. In general, modules are kept smaller
than 4K bytes. Modules are made reenterable so that
no more than one copy of a given program is in core
at a time. Reenterability requires each load module to
obtain a work area (dynamic area) each time it is
called. All request dependent pointers, parameter lists,
I/O buffers, and tables are kept in this work area and
the module itself remains unchanged.

Dynamic areas from lK to 4K are acquired from a
pool of 4K pages in subpool 0 of the MTMT region.
This pool of 4K pages is reserved during initialization
and is managed by paging routines which keep only
currently-active pages in core. When an MTMT
service needs a page owned by a module which is
waiting for a reply from the terminal, the page is
written (rolled) to disk or drum and assigned to the
requesting module. When the rolled page is again
needed, it is rolled back into the same area of core for
use by the proper routine. A page will not be rolled
unless its area is required by another routine. In gen
eral, the modules supporting a terminal need only one
4K page. No more than two pages are ever needed for

106 Spring Joint Computer Conference, 1971

TermiNI
Driver

<D (!)
Display
Module

0 WRITE -&.vice
WAIT

Modul.

CD
(!) READ (fu"l

<D -----
Write and Wait

t

/' ::!Pt ~,,"
Handler ./"'/ Interrupt

,"
READ (shortl
POST

LEGEND:
_ Direct transfer of control

- - - - Indirect transfer of control

Figure 5-1/0 sequence of events

a terminal. Therefore, if the paging algorithm is used,
two 4K pages will support 4 to 5 active terminals. To
provide good response time, approximately one more
4K page is needed for each additional two active
terminals.

If an installation can justify the extra core, the
paging algorithm can be nullified, thus keeping the
dynamic areas in core and improving response time.
If. this is done, between one and two 4K blocks of core
are needed for each terminal that may be active at a
given time.

Requests for dynamic areas of less than lK are
handled by standard OS GETMAIN-FREEMAIN
macros. Core fragmentation is minimized by having
many modules request the same amount of core for
their dynamic areas. If a dynamic area of greater than
72 bytes is needed, the request is given in multiples of
128 bytes from subpool 20. If a dynamic area of 72
bytes or less is needed, 72 bytes are requested from sub
pool O. This increases the likelihood that the requested
amount of core will have been freed by another module.

Interrupt handling and graphic I/O

To standardize the display I/O handling and better
facilitate maintenance and modification, the respon
sibility for graphic I/O is handled by a common I/O
module rather than by each MTMT module that
requires a display. Furthermore, one I/O routine was
created to handle each supported device. This keeps
core requirements for a given installation at a minimum

and simplifies the addition of support for new devices.
(To facilitate discussion, this group of I/O modules
will be referred to as "DISP.")

The graphic I/O is handled by standard OS support.
The Graphic Access Method (GAM) is used for all
local graphic I/O operations, while Basic Telecom
munication Access Method (BTAM) is used for remote
terminals.

A Data Control Block (DCB) forms the link between
DISP and the actual terminal. To eliminate delays
caused by sharing a DCB, one DCB is provided for
each local terminal. This complements the I-sec screen
write time for local terminals. A local terminal's DCB
is stored in its common area. For remote terminals, it
is necessary to have one DCB per line. These DeB's
are stored in an area GETMAIN ed specifically for that
purpose.

Due to the multiple usage of the DCB, remote termi
nal users causing interrupts at approximately the same
time will notice a definite wait before their interrupts
are processed. With a 2400-BAUD line, it takes approxi
mately 4 [ec to completely rewrite a 960-character
display. This means that 3 or 4 terminals should be the
maximum on a line to prevent unusually long waits
while processing interrupts.

The terminal user directs the conversation with
MTMT. The terminal task writes a display, becomes
inactive, and remains so until the user gives an inter
rupt. The interrupt is detected and routed to the termi
nal interrupt handler by the GAM basic attention
handler. If the user gives additional interrupts before a
reply to his. initial request is received, the additional
interrupts will be ignored. The request is serviced and a
display is returned. The user once again has control.
No new activity is initiated until the user requests it.

The following list, which refers to Figure 5, gives
the sequence of events for local terminal I/O activity
when a service module is invoked.

1. The service module is invoked by the terminal
driver.

2. The service module links to DISP with a display
request.

3. DISP writes the 960-character display and then
waits for user interaction.

4. The user makes the appropriate modifications
to the display and gives an interrupt, causing
the MTMT interrupt handler to be invoked.

5. The MTMT interrupt handler issues a read from
the Start symbol (~) to the End of Message
symbol (-) or up to 80 characters. DISP is then
posted complete.

6. DISP determines if the data read by the MTMT
interrupt handler is sufficient or if the full

screen of 960 characters is needed. If a full dis
play reply is needed, the 960 characters are read
back into the storage area provided by the
service module.

7. Return is to the service module. Operations 2
through 7 act like a loop until the user has com
pleted the service.

8. The service module returns to the terminal
driver.

The Start symbol (~) is used on the screen before
control information to minimize the number of full
screen reads. The response time for a short read is
significantly faster than for a full screen read. This is
especially true for remote terminals.

Handling interrupts for the remote terminals is
different from that used by local terminals as the inter
rupts are synchronous and are handled in DISP. Each
remote terminal has a polling list located in its common
area. While the remote terminal is inactive, it will be
polled every 30 sec for the detection of an interrupt.
Once a user has signed on to a terminal, his terminal is
polled every 1.5 sec when DISP expects an interrupt
from the user. Polling is controlled by DISP instead of
by an automatic BTAM polling list so that the remote
terminal is polled only when necessary. This decreases
overhead and improves response time.

After an interrupt is detected, a short read takes
place in DISP instead of in the interrupt handling
routine. A buffer area of 960 bytes plus control char
acters is needed for the short read in BTAM. A short
read ends with the End of Message (-) character.
This could mean a read of all 960 characters on the
screen. After the read, control is passed synchronously
to the interrupt handling routine to determine whether
the terminal user has requested a special action.

The main difference between local and remote termi
nal interrupt handling is that the local terminals rely
on an asynchronous basic attention handler which
invokes a user interrupt handling routine. For remote
interrupt handling, DISP polls the terminal in a speci
fied interval and gives synchronous control to the
interrupt handling routine.

Services

This section gives a general description of how we
met our initial objectives in several of our services.
This includes preventing the loss of user data or
changes to his data, submitting jobs to the Operating
System, and communicating with background programs
by using an sve for inter-region communication.

A General Display Terminal System 107

Data editing

In data editing, the user must be protected from
losing his data or any of the changes made to that
data during his terminal session. This was accomplished
as follows: when a user requests the Edit service for
data set modification or key entry, the user's data set
is copied into an MTMT system file reserved for that
terminal on a high-speed direct-access device. This is
referred to as the intermediate file because any changes
requested by the user are made to this copy of his data
set, rather than to the original data set. The original
data set is not used for the data update process. After
the user has completed his changes and wants the up
dated copy to replace the original copy, the original
data set is opened and the updated copy is written
over the original. At any time during the Edit session
the intermediate file for that terminal contains the
most recent form of the data set being updated and the
original data set remains intact. If a system failure
occurs, nothing is lost. When the system is again active,
the user can request the updated intermediate file copy
for further updating and/ or replacement into his
original data set.

ReInote job ell try

Multiple Terminal Monitor Task provides a complete
remote job entry capability. This allows the user to
submit to the system any type of job where the data
for that job is on-line. Jobs may be submitted by
specifying either a system cataloged procedure or a
private data set containing job control statements. If a
cataloged procedure is used, overrides or additional job
control information may be specified to modify the
standard procedure to meet the individual's needs. The
same result can be achieved by using a private data
set since the data set can be modified prior to the sub
mission of the remote job.

Either of the above methods allows the user to
specify the destination of his output. Under normal
batch processing, the output goes to the printer, but
by modifying the job control statements the user can
request that the output be written into a private data
set. This allows the user to view the output at the dis
play terminal immediately after the run has completed.
If a user wants a hardcopy of the results, the data set
can be printed by selecting the print-punch option.

Whenever submission of a remote job is requested, a
temporary data set is allocated for the job control
statements. When a cataloged procedure is requested,
the appropriate JOB card, the statement requesting
the cataloged procedure, and any overrides are written

108 Spring Joint Computer Conference, 1971

TIOO DISPLAY ACTIVE TIMEa lS.U.OS" DATE: 70.170

MASTER SCHEDULER 01 1,0 ... ,571 121:
SYSMTMT MTMT JI 91S,011 2001t INIT
SYSRDR RDR 01 710,211 11K INIT

WTR ODE 00 710,15& 201t
WTR DOl 00 190,171 201t

INITC Tl70lS1' 00 1&9,19& nOIt INITC

FREE SPACE 52&,"1 11K

TO'01517 ASSM STEPI 00 50.,952 lSllt INITD
Tl50lS22 UPDTE TRYITl 00 150,201 l20K INITA

FREE SPACE 227,nl nit
IN III "sun 00 0 Olt INITI

Figure 6-Display active of jobs in the system

into the temporary data set. A reader is used to transfer
the job in the temporary data set into the system job
queue. Once the job is on the queue, the temporary
data set is scratched. The reader is started by using
the standard operator start reader (S RDR) command
to the Operating System through the use of the MTMT
SVC. The same procedure of allocating a data set,
starting a reader, and scratching the data set is used
when a user requests a hardcopy (print or punch) of a
specified data set.

Displays 'are provided for all the system job queues
and for the active jobs in the system (Figure 6). This
allows the user to trace the progress of his job. If the
job control statements are in error, the user is given
the opportunity to scan the statements, find his error,
and resubmit the corrected remote job without having
to wait for his job to be returned to finq the problem.

If terminal job submission is' heavy or the input
queues become full, the system readers started by
MTMT may cause a problem. For such an installation,
an in-core reader is provided which remains in core
and services both the card reader for batch job input
and an MTMT intermediate queue. If this in-core
reader is used, remote jobs are placed directly on the
intermediate queue and the reader transfers the jobs
to the system input queue from the card reader and
the MTMT queue according to a ratio dynamically
supplied by the operator.

Background job conversation

After the initial version of MTMT was operating,
we realized, that a better method was needed for de
bugging succeeding versions of the terminal system
modules. Stand-alone time was prohibitive both in
cost and in terms of available time. A method was
needed to execute the test modules during prime time
without affecting the operational version of the terminal
system or requiring additional hardware. If test modules

were executed in the terminal region, the operational
modules or their storage areas would be susceptible
to being overwritten. This danger did not exist if the
test modules were run in a background region' because
of OS protection keys. The use of a background region
also eliminated the possibility of MTMT region frag
mentation caused by test programs.

An SVC was developed to use the enqueue/dequeue
(ENQ/DEQ) facilities of OS/360 to allow inter-region
communication. The SVC provides the ability to move
a block of data from one region to another and posts an
Event Control Block (ECB) in the receiving region to
indicate that a message was sent.

At MTMT initi~lization an enqueue is issued for
each terminal. The enqueue list contains the ECB
address and the address of the buffer set up to receive
the message. The terminal number is used as part of
the enqueue name to distinguish between terminals.
Through a simple call to a communication module,
the background program sends a message to the termi
nal from which it was submitted. The communication
module passes a list to the SVC containing the enqueue
name corresponding to the receiving terminal's enqueue,
the address of the message, and the message length.
The SVC, in turn, scans the outstanding queue control
blocks to find a matching name. Upon finding a match,
it extracts the receive area address and the ECB address
from the queue control block. It then transmits the
data across the region boundary and posts the receiver's
ECB. The SVC does not transmit messages longer than
the length specified by the receiver.

DISP checks this ECB before each display is gen
erated. If the ECB has been posted, an asterisk is
placed in the upper left-hand corner of the display to
notify the user that his program is ready to com
municate. He can then select the conversation option
to receive the display generated by the background
job. The user enters the information requested by the
display and gives an interrupt.

The display is sent back via the inter-region com
munication SVC to the waiting background job.
MTMT resets its ENQ and ECB for that terminal and
the conversation can continue until the background
job is terminated.

This conversation facility has not only been used for
testing the MTMT releases since the original version,
but has proved extremely useful for users. However,
it was necessary to limit the duration of these conversa
tional sessions since the background job controlling the
conversation remains in core throughout the conversa
tion, and thus can affect the turnaround time of other
background jobs. Application programs have been
written by users to communicate with the terminal to
meet their individual needs.

PERFORMANCE

A terminal user becomes frustrated if the response
to his request takes more than a few seconds. Therefore,
response time is one of the prime considerations in
designing any display terminal system in a multipro
cessing environment. Our definition of response time is
the elapsed time between the time when the MTMT
interrupt handler receives control and the time when
t.he next display is sent to the terminal.

To find out exactly how long users had to wait for
responses, we monitored all requests for three weeks.
These response time statistics, shown graphically in
Figure 7, were gathered under the following conditions:

• The computer was an IBM System 360/Mode165
under OS/MVT with a million bytes of core.

• The active jobs during this period were the
l\1aster Scheduler, MTMT, 2 writers, a reader,
and 4 initiators processing batch jobs. \

• Only the peak load period (7: 30 am to 4: 30 pm)
was used.

• The paging algorithm was used which rolls in and
out to disk the dynamic areas of the load modules.

MTMT was run in 200K of core with an average of
15 of the 27 local IBM 2260 terminals active at any
given time. Note that the MTMT processing time for
an interrupt is the same for both local and remote
terminals. If remote terminals were used, only the tele
processing I/O time would increase. The bar graph in
Figure 7 shows the number of responses during 132
hours of prime shift operation. The average response
time for all terminals at anyone time with the above
interaction of jobs was 2.46 sec. Of the total responses,
approximately 90 percent were less than 5 sec.

The number of terminals active at anyone time
affects the user response time. The following listing
illustrates this point:

Number of terminals active
1-4 5-9 10-14 15-19 20-24

Average response (seconds)
1.11 1.39 1.96 2.55 3.02

Measurements taken on our system showed that
l\1TMT used 2.0 percent of the time the processor
was active, and 1.5 percent of the time the multiplexor
channel was busy transferring data or instructions. This
amounts to 1.3 percent of the total processor capacity,
and 0.05 percent of the total multiplexor capacity.
These figures substantiate our experience and indicate
that MTMT does not degrade the performance of the
entire system to any noticeable extent.

A General Display Terminal System 109

60

55

45

~ 40

I 35
c
8. 30
C
0: 25

20

15

10

5

o

Total Responses
Percentage

0-.5

89,156
28.82

.5-1 1-5 5-10

Time (sec)

38,379147,802 19,947
12.41 47.78 6.45

Figure 7-Response time

CONCLUSIONS

10-30 >30

12,607 1,440
4.08 0.46

The initial objectives for developing a general purpose
display system have been exceeded in the implementa
tion of MTMT. Through the use of the multitasking
facilities of OS MVT, each display terminal operates
independently and reliably. The services of OS/360
are provided in a convenient form in the local work
areas.

Because standard data sets are used and accessed,
MTMT is completely compatible with other Operating
System facilities. Data bases and programs can be
easily updated through MTMT. Programs can then
be submitted to the OS through the complete remote
job entry capability. We provided the use of standard
compilers and assemblers without requiring a large
terminal-dedicated region. This allows running normal
production programs concurrent with supporting the
terminals. By using an SVC to allow the dynamic
specification of the volume to be accessed, we avoided
modifying the Operating System. This bought Oper
ating System release independence and ease of installa
tion and maintenance. The convenience and practicality
of the terminal system is reflected by the fact that over
60 percent of the jobs at our installation are setup and
initiated from MTMT terminals. All the programming
for the IBM System/3 Operating System was performed
using the services of MTMT. In addition, engineers
found MTMT useful for running their circuit analysis,
part design, and computational programs.

110 Spring Joint Computer Conference, 1971

The option menu concept, along with the standard
ized procedures throughout the services, have made
the system easy to learn. The modularity of services
facilitates adding special applications which use the
submodules of MTMT. The success of MTMT, , in the
three years of operation, has proven that displays are
not only the" way of the future, but also the way of the
present.

ACKNOWLEDGMENTS

The authors express their appreciation to W 0 Evans,
R J Hedger, and D H McNeil, IBM GSD Rochester
Development Laboratory, for their help in designing
and implementing MTM'r; and to R F Godfrey, IBM
Poughkeepsie, for the inter-region communication SVC.

REFERENCE

1 J H BOTTERILL W 0 EVANS G F HEYNE
D H McNEIL
Multiple Terminal Monitor Task (MTMT)
IBM Type III Program 360D.05.1.013 for the IBM 2260
Display Station Rochester Minnesota March 10 1969
172 pp

APPENDIX-MTMT SERVICES

MTMT supplies the services of OS/360 MVT to
users at local and remote IBM 2260 Display Stations.
Up to thirty-two terminals may be active simultane
ously while normal batch job processing runs con
currently. The MTMT system options may be sum
marized as follows:

1. Display sequential data-A data set containing
EBCDIC records of fixed, variable, or unde
fined type may be viewed 10 records at a time.
Scanning for desired text and multiple paging,
both forward and backward, are options avail
able to the user. These data sets may contain
job output ora terminal-maintained data base.

2. Edit sequential card images-A data set con
taining EBCDIC records having fixed format,
80-byte logical records (blocked or unblocked)
may be viewed 10 records at a time. Card images
in this data set may be changed or deleted and
new card images may be added. The user can
scan for a sequence of characters and page for
ward and backward through his data set.

3. Remote job entry-The user may submit a
background job from the terminal by specifying
a user defined or standard cataloged procedure.
A hardcopy (print or punch) option for any
sequential or partitioned data set on-line is
available.

4. Key entry into OS card image data set-The
Edit intermediate file is blanked and card
images can be entered directly. The options of
Edit are available to the user as he enters his
data or program.

5. Data management services
Allocation of data sets-Direct-access data sets
may be allocated, deleted, cataloged, or un
cataloged. The unused space on a direct-access
volume may be determined.
Move or copy OS data sets-This option provides
the ability to move or copy sequential data sets
or members of partitioned data sets on direct
access storage to either sequential or partitioned
data sets.
Data sets status and attributes-The attributes
and allocation characteristics of a sequential or
partitioned data set on direct-access storage may
be obtained.

6. Console operator services
Display active-The job name, subtask count,
core location in decimal, region size, and initiator
in control of job are shown for each job in the
system. Free areas are also displayed.
Display queues-All input and output queues in
the system can be displayed. The job name,
priority, and position in queue are shown for
each job.
Display job control statements-For each job in
the queue, the job control and system statements
can be scanned.
Enter system commands-Jobs can be cancelled,
moved to another queue, or have their priorities
changed by the system operator.
Terminal status-This is a display of all terminals
on-line and the service in use at each terminal.

7. Background job conversation-A background
job submitted from the terminal may exchange
display loads of data with the user at the 2260
through inter-region communication.

8. Execution of well-behaved user written programs
in the MTlYIT region-Subsystems using MTMT
modules have been written to perform special
types of data retrieval and updating. The- sub
systems run under the control of MTMT; there-

fore, the user has all of the MTMT serVIces
available to him.

MTMT requires the current release of 08/360 MVT
on a System/360 Model 40 or larger. MTMT core
requirements depend upon the number of terminals
active and the modules permanently resident in the
Link Pack Area. A general guideline for the core re-

A General Display Terminal System 111

quirements of an MTMT region capable of supporting
local 2260 display stations is:

2 terminals- 64K
8 terminals-110K

16 terminals-160K
24 terminals-200K
32 terminals-240K

AIDS-Advanced Interactive Display System

by T. R. STACK and S. T. WALKER

National Security Agency
Fort George G. Meade, Maryland

INTRODUCTION

Faced with the problem of developing a multiterminal
interactive graphics display system, analysis of past
experience l led to three specific problem areas which
must be addressed in order to build a workable system.
Not necessarily in order of importance or complexity
these areas are (1) the difficulty in specifying interaction
between the user and the computer, (2) the complexity
of handling large quantities of graphic data and its
interrelationship with the display hardware, and (3) the
need to get away from assembly (or assembly type)
languages so that one need not be a senior systems
programmer in order to write a. graphics program.

In past systems, the primary concern h3s been the
handling of display images. The specification of
interaction between the user and the computer has
appeared of secondary importance if it was addressed at
all. Unfortunately, a human being sitting in front of an
array of keys, buttons, knobs, pens (both light and
tablets) along with sets of lights, noise makers and the
display itself cannot be programmed quite as cleanly as
a card reader or magnetic tape handler. Experience has
shown that attempts to control all the interactive
devices available on most display systems leads to
several months of "call-back debugging" to handle those
unforeseen situations where "that key was supposed to
be disabled."

The problem of handling graphical data has led many
people to the conclusion that some form of data structure
is required to facilitate efficient utilization of the
display.2 Closely related to this problem is the develop
ment of a true compiler-based language to support
graphics efforts. To get valid applications for graphics
systems, people who understand the application must
write the programs. As long as systems programmers
must be employed to write application programs,
graphics will remain in the experimental, almost useful
state. Current languages, either assembly or pseudo-

113

compiler, are either so complex or unnatural that
applications programmers are driven away.

A detailed analysis of these problems evolved into a
design for a multiterminal interactive graphics display
system supported by a compiler level language. This
design brings together a number of concepts which have
been used before and several new proposals. It is not
intended to be the answer to everyone's problem, but
from our experience it is a significant advance over what
is generally available.

The system environment consists of an SEL 840MP
processing unit with 64K of 24 bit core memory,
movable head disk, multiple magnetic tape units, a card
reader, a line printer and three modified SEL 816A
graphics consoles. Interaction devices provided at each
console are light pen, three shaft encoders, a bank of
function switches with lamps independently program
mable and an ASCII compatible keyboard. In addition
to the user controlled interaction devices the system
provides the application programmer with two special
interaction aids. A clock pulse occurring at one second
intervals is available to any interactive program. The
application programmer should treat this interaction
aid as an asynchronous "interrupt" since his program
response is subject to system loading at execution time.
The precise time of day is available should exact time be
necessary to the application. The second special
interaction aid is a program-to-program communication
package. . In essence one program may transmit a
message to another, provided the latter has been
enabled to accept the message. We feel this notify
interaction capability is extremely powerful in a
command and control environment.

To the system, jobs are classified either batch or
interactive. Further, interactive jobs may be either
graphics or non-graphics in nature. Batch jobs are the
type most commonly supported· by standard operating
systems. An interactive job is one generated by the
AIDS compiler and must contain at least one interaction

114 Spring Joint Computer Conference, 1971

specification. A non-graphics interactive job is one
which employs either the clock or notify capability.
A number of non-graphics interactive jobs concurrent
in a system provide considerable enrichment. Allocation
of memory and files as well as execution priority are
based on job classification.

Before describing the fundamental concepts employed
by AIDS, the distinction between users, programmers,
and systems development types must be pointed out.
A user is the ultimate consumer of a graphics system and
is expected to know the application being run on the
display but understand nothing of the workings of the
display itself. A programmer is a person well versed in
the application· and possessing reasonable knowledge
about the graphics system and language. He should
know only the compiler language (to require him to
learn assembly language would reduce his effectiveness
in his application specialty) and cannot be expected to
understand or perform "tricks" with the display.
A systems type is one who has very limited knowledge
of the applications being developed but is thoroughly
familiar with the details of the display system.

It is the user's responsibility to utilize the display
system effectively. The programmer must develop
programs which allow the user to concentrate on his
application and to develop confidence that the machine
is helping rather than opposing him. Ideally, after
sitting at the console and logging on, the user should
forget that he is directing a computer and be led in a
natural way through his application with all his con
centration and effort being directed at that application.
The systems developer must devise a reliable operating
system offering in "a reasonable manner" all of the
capabilities of the hardware being used. To the extent
that he succeeds, the programmer and user will be able
to perform their jobs better.

This short divergence probably has validity in many
areas, but when considered with the present state of
graphics development it has particular truth. The
complexities of graphic systems have caused the
systems developers to concentrate on devising reliable,
capable operating systems which unfortunately don't
offer these capabilities in what programmers consider
"a reasonable manner." Thus, most programmers are
reluctant (at best) to undertake graphics programs and
those that do, are so enmeshed in the system that they
lose their close contact with the application they're
programming. Ultimately the user suffers from lack of
good application programs a:nd develops the idea that
graphics is just a cute toy.

AIDS LANGUAGE AND SYSTEM:
DESCRIPTION

The AIDS system deals with each of the three
problem areas mentioned above. The Interactive

Operating System provides a simple means of organizing
and specifying user interaction at the terminal. The
Graphic Structure Commands allow orderly develop
ment of complex display structures. The AIDS
Pre-Compiler removes the programmer from assembly
language problems while providing valuable bookkeep
ing and error detection functions.

The interactive specification problem

The major contribution of the AIDS development is a
simplified means of specifying user-computer inter
action. With the WHEN Interactive Specification
Statement, the programmer details precisely what
interactive devices should be enabled, when, and what is
to be done if one of these is activated. The system3 was
devised from analysis of the way a programmer designs
the proposed user interaction with the computer.
Consider a user at a graphics console. Before any
pictures appear on the screen or lights flash etc., the
program passes through an initialization phase. A
picture is presented, certain of the interactive devices
are enabled for the user's choice, and the program then
pauses waiting for the user to decide what to do.
Selecting one of the enabled devices causes a burst of
computer activity, perhaps changing a picture, perhaps
enabling a different set of devices, but eventually
resulting in another pause where the user must make a
selection. Looking at the interactive program as a
whole, the process appears as a series of interrelated
pauses and bursts of activity which can be described in
a state table type notation. In the Appendix, Figure 4,
states are represented by circles and conditions active in
a state are represented by lines proceeding from one
state to another. The conditions are written in quotes
along with the responses to each condition (see
example, Figure 4). This state table development is the
process which a programmer, consciously or not, goes
through in designing his application program. The
extent to which the transitions between states are made
in a natural way determines the effectiveness of the
program to the user.

In the past, the specification and processing of all
interactive devices, was handled entirely by the
programmer, allowing uncertainty to develop as to
which devices are active. AIDS uses the WHEN
statement as an extension of the state table to specify
interaction. The operating system then performs all
enabling and disabling functions. For each condition in
each state, a WHEN statement is written detailing the
state, condition (interactive device), and the responses
(what to do if that device is activated by the user). The
program which results consists of a main program
handling initialization of the necessary pictures, tables,

etc., followed by a series of statements derived from the
state table and detailing what the programmer wishes
to do.

Given this unusual program form, the AIDS pre
compiler maps each WHEN statement into a form
usable by the operating system. In this way the system
developer has provided a buffer between the com
plexities of his system and the desired simplicity which
the programmer demands. The programmer has an
easily analyzed and well organized specification of his
thoughts which can readily be revised or expanded and
the user has a far better chance of developing confidence
in the equipment since there are fewer chances that it
will fail to do what he commands.

Description of WHEN statements

The following is a summary of interactive control
statements associated with the AIDS Operating
System.

WHEN IN STATE n, IF condition a,
THEN ... response ...

This is the fundamental statement which is written
directly from the programmer's state table. The
pre-compiler offers considerable flexibility in that the
programmer can make his statements as wordy or
concise as he wishes, offering a self-documenting, easily
readable program or a tight, easily coded form for
quick preparation of test routines. The simplest form
of the statement is:

WHEN n, condition a, ... response ...

Where . . . "n" is a positive integer corresponding to
the arbitrary number assigned to each state in the state
table. If a condition is active in a number of states,
a list of the states can be given in place of the single
state number. If a condition is active in all states, (an
emergency panic button, for example) it can be declared
to be in state "0" and will be active at all times.

... a condition may be any of the interactive devices
available on the terminal being used, or the clock or
notify as mentioned earlier. Here again a long form of
the condition is available for the finished documented
program, but a short, easy to use form will also be
recognized.

. .. a response can consist of any single AIDS or
Fortran statement or any sequence of statements
excluding another WHEN statement. Since any state
ment can be included in a response translating the
programmer's state table into AIDS code is quite
simple. Anything that can be done in the main program
can also be done in a response.

AIDS 115

ENABLE STATE n

This statement causes a particular state to be
activated (i.e., the conditions specified in WHEN
statements containing this state will now be searched
for by the operating system). No further action is
required by the programmer to activate interactive
devices. Whenever he wished to enable a new set of
devices, he enables another state.

WAIT

This statement needs background explanation. All of
the routines which we developed for this system are
written as reentrant code so that one copy will suffice
for all terminals. However, the Fortran library is not
reentrant and the code produced by the compiler has the
same flaw. A serious problem develops if one allows the
main program to be interrupted. If the response calls a
library routine which the main program was in the
process of executing, the main program's return will be
destroyed along with any temporary storage locations.
The WAIT statement was instituted to relieve this
problem.

The ENABLE statement activates the conditions
associated with a state but the main program will not
be interrupted by satisfaction of a condition until a
WAIT statement has been encountered. The effect of the
WAIT command is to indicate that unless the user
satisfies an enabled condition, the program needs no
more CPU time. At the beginning of each time slice
normally allocated to this program a check of the inter
active devices is made, if no conditions were met, the
time is allocated to another program. The program is
reactivated as soon as an enabled condition is satisfied.

ENDWAIT

This statement is available in case the programmer
would like to reactivate the main program to do more
than its initialization role. An ENDW AIT statement
executed in a response will cause the main program to
restart following the WAIT statement at which it is
currently stopped. In our experience this feature is a
valuable one for developing parallel processes.

CHECK

The combination of WAIT-ENDWAIT doesn't quite
complete the picture. WAIT causes the program to
relinquish control and needs an ENDW AIT to restart
it. There are times in a long calculation process where
the programmer would like to see if any conditions have

116 - Spring Joint Computer Conference, 1971

Figure 1

been satisfied without stopping the main program.
CHECK provides this capability. Upon executing a
CHECK the system will determine if any responses
remain to be satisfied. If any exist they will be executed
and then the main program continued; if not, the main
program is continued immediately.

Graphical data management problem

In deciding to provide a means of graphical structure
manipulation for AIDS, several considerations were
involved. First, the programmer had to be relieved of
the tedious problems of constructing display instruction
files, and yet any capability which he had before must
be available in the new system. Next, something more
than the display subroutine capability offered by many
hardware systems and echoed without improvement by
software systems must be provided. Some reasonable
means of building and organizing files in a logical and
concise manner was needed. Third, a capability to link
non-graphical data to the display structure must be
available so that, for example, by selecting a circuit
element on the screen with a light pen the programmer
could easily determine the notation, component value,
and other non-graphical data for that element.

The basic form of the graphical data structure which
we chose is a variation on the GRIN Graphical Structure
as described by Christensen.4 The elements of the
structure described there. satisfy most of the require
ments mentioned above and offer the most natural, easy
to use yet powerful structure which we had encountered.
The basic elements which will be described here are
directly related to the GRIN system and many of the
operations which our system provides are similar to
GRIN commands; however, we made no attempt to
duplicate the elaborate -dual processor (GE635 and
PDP-9) program ex~cution, or memory management
schemes which are part of the GRIN design. In addition
a major difference between systems is the executabl~
data structure which we implemented as opposed to the
interpretive structure developed for GRIN. Their
design has a PDP-9 dedicated to each display which
they calculate is idle much of the time and therefore

should be used if possible to speed display execution.
The PDP-9 is used to interpret everything except the
actual display code. In our design the main CPU is time
sliced between three displays and several "background"
jobs and isn't available for file interpretation forcing us
to devise an executable data structure.

Description of AIDS graphical data structure

The basic elements of the graphical data structure are
the SET, INSTANCE, IMAGE, and LABEL blocks.
An IMAGE is a collection of points, lines, and/or
characters which is considered to be the most basic form
of display entity. It is the only element which contains
displayable code. An INSTANCE defines the occurrence
of an IMAGE. Each time an image is displayed on the
screen it is specified and positioned by means of an
INSTANCE. A SET is a collection of INSTANCES
whose occurrence can again be defined by another
INSTANCE. An elaborate "tree-like" structure of
these basic elements can be developed describing many
applications in an organized manner and allowing quick
retrieval of information at any level of the structure.

A trivial example of the structure and a convenient
way of diagramming it (as specified by Christensen) is
given here. Consider the picture of a house in Figure 1.
The typical non-structured display file for this picture
might describe each element in a sequence of instructions
or subroutines containing instructions. Figure 2 shows a
possible AIDS data structure representation of this
picture which is not significantly improved over the
subroutine description method. However, Figure 3
illustrates a much more complicated representation of
the picture organized by the programmer according to
his particular need to retrieve specific information at the
various data structure levels. Note on the diagrams the
representation of IMAGES as rectangles containing a
drawing of what the IMAGE will produce on the screen,
INSTANCES as lines connecting SETS with IMAGES
or other SETS (an INSTANCE defines the occurrence
of a SET or IMAGE) and SETS as circles which collect
together INSTANCES at various levels. The illustrated

IMAGE
TREE

IMAGE
WINDOW

Figure 2

IMAGE
DOOR

structure shown in Figure 3 is exaggerated but for many
complex applications this type of multi-level structure
is vital.

The LABEL block is used to store non-graphical data
associated with any graphical element. It could be
attached to each of the INSTANCES defining occur
rences of the IMAGE WINDOW in Figure 3, stating
the sash dimensions of each window. The organization
of data within a LABEL block is entirely up to the
programmer, the system provides a means of entering
and retrieving data and of associating the block with
any graphical element. As a follow-on to the AIDS
system, a list processing capability could be imple
mented to improve the handling of these blocks.
Examples of AIDS Structure Manipulation Statements
are given in the next section.

Compiler level language requirement

The pre-compiler idea has been used on a number of
systems and we feel it is a valuable tool in providing the
flexibility which an interactive graphics programming
system requires. An alternative is to write a complete
compiler and unless significant resources are available
this approach should be undertaken with considerable
caution. Fortran is a good computational language but
is not well suited to either interactive specification or
graphical manipulation, therefore we decided to main
tain the algebraic qualities of Fortran and let the
pre-compiler handle all interactive and graphic state
ments. Examples of the AIDS statements as given here
and in the Appendix exhibit little similarity to Fortran
and in particular are designed to be readable by a
non-programmer.

We have already discussed the Interactive Specifica
tion Statement. The pre-compiler extracts the necessary
information from these commands and passes it to the
operating system. The Fortran compiler was not

Windows

Door

Figure 3

AIDS 117

modified to handle interactive capabilities. The follow
ing examples show how the AIDS graphic structure
manipulation statements are constructed. First the SET,
INSTANCE, and IMAGE associations are specified by:

SET ALPHA . CONTAINS. INSTANCE BETA
INSTANCE BETA . DEFINES. IlVIAGE GAMMA

where ALPHA, BETA, and GAMMA are graphic
elements declared at the beginning of the program. The
descriptors SET, INSTANCE, and Il\l[AGE are
optional; the verbs . CONTAINS. and . DEFINES.
determine the nature of the association and the
pre-compiler further checks to be sure the elements on
each side of the verbs are of the proper type. This is a
valuable service which the pre-compiler furnishes since
a type error undetected here can cause multiple errors
later. A picture can be specified as a series of individual
statements or as a concatenation in one single statement.
Thus the structure in Figure 2 can be specified as:

*
*
*
*
*
*
*

SET PICTURE . CONTAINS. INSTANCE A
.DEFINES. IMAGE TREE
.AND. INSTANCE B
. DEFINES. IMAGE
HOUSE
.AND. C(l) .DEFINES.
WINDOW

Building graphical data within an IMAGE is done
with the INSERT command. The following are typical
examples:

INSERT INTO IMAGE PICTURE: A LINE
FROM 100, 200, TO X, Y

INSERT INTO PICTURE: TEXT *THIS IS
AN EXAMPLE*

INSERT: FORMAT 100 AT IX, IY/(ARRAY
(I), I = 1, 25)

Other capabilities include:

Detaching any element from another
Clearing or copying an IMAGE
Positioning or determining the position of an

INSTANCE
Entering and Fetching Data from a LABEL Block

and associating it with any graphic element
Showing (causing to be displayed) any SET and all

structure below that SET
Destroying any element not currently needed to

conserve core

118 Spring Joint Computer Conference, 1971

Many of the functions of the AIDS pre-compiler
could have been bypassed by allowing simple calls to be
added to the Fortran input deck. However, the inter
active specification tables, the structure generation
statements, the compile time diagnostics, and the ease
of compiler maintenance make the pre-compiler concept
attractive.

CONCLUSIONS

The principal programmer complaint at the present time
is the slow response time. Some of this can be attributed
to the generalization of the system functions and to the
currently untuned status of the overall system. Another
complaint concerns the lack of editing facilities at the
image level. Sufficient "handles" have been designed
into the system to address this problem but as yet no
effort has been made to specify the functions. A possible
weakness concerns the fact that the system provides no
queuing of interrupts with associated user control of
priorities. 5

On the positive side, a number of programmers with
limited experience have been writing reasonably com
plex interactive graphics applications in a matter of
days rather than the weeks previously required.

REFERENCES

1 N A BALL H Q FOSTER W H LONG
I E SUTHERLAND R L WIGINGTON
A shared memory computer display system
IEEE Transactions on Electronic Computers Vol EC15
No 5 October 1966

2 I E SUTHERLAND
Sketchpad: A man-machine graphicatcommunicationssystem
Proceedings of the 1963 Spring Joint Computer Conference

3 S T WALKER
A study of a graphic display computer-Time sharing link
Masters Thesis Electrical Engineering Department
University of Maryland College Park June 1968

4 C CHRISTENSEN E N PINSON
Multi-function graphics for a large computer system
Proceedings of Fall Joint Computer Conference 1967

5 R G LOOMIS
A design study on graphics support in a fortran environment
Proceedings of Third Annual SHARE Design Automation
Workshop New Orleans La May 1966

6 W M NEWMAN
A system for interactive graphical programming
Proceedings of the 1968 Spring Joint Computer Conference

7 W M NEWMAN
A high-level programming system for a remote time-shared
graphics terminal
Pertinent Concepts in Computer Graphics Univ of Illinois
Press 1969

8 R L WIGINGTON
Graphics and speech computer input and output for
communications with humans
Computer Graphics Utility /Production/ Art Thompson
Book Company

APPENDIX

As an example of an AIDS program, we have
selected a problem that everyone is familiar with: (1)
draw an object on the screen, (2) position it wherever
desired, and (3) be able to delete it from the screen.
Figure 4 illustrates the State Diagram of the action
which this . program is to perform. Table I lists the
Interaction· Requirements which are derived from the
State Diagram. With the help of these figures, the
WHEN Interactive statements needed for this program
are easily written. Figure 5 illustrates the display
element structure which is developed by the program.

Initially all display data elements which are going to
be used in the program must be declared. There will be
one SET, four individual INSTANCES and one array
of 20 INSTANCES, and a similar number of IMAGES.
In addition certain Fortran variables are declared Type
INTEGER. The first relational statement creates an
occurrence (INSTANCE CROSS) of the IMAGE
TRACK. The next two INSERT commands create a

current curve

Figure 4

Figure 5

HKNOBl"KNOB2"
Update
Cross

"LPH"
Position CROSS
at INSTANCE
Penned

STATE

1

1
1

Draw Function
2

2

2

')

lVlove Function
3
3

3

Erase Function
4
0

AIDS 119

TABLE I-Interaction Requirements for the Example

CONDITION

DRAW Light Button

MOVE Light Button
ERASE Light Button

Button 1 L

KNOB1 or KNOB2

Button 2 L

Button 3 L

KNOB 1 or KNOB 2
LPWLB
(Light Pen Hit with
Light Buttons)

Button 4 L

NLB
Button 24 L

RESPONSE

Add an INSTANCE and IMAGE to the display. Position the
Tracking Cross at 500,500 on the screen and enable State 2.
Enable Light Pen for selection of object to move and enable State 3.
Enable the Light Pen for selection of object to be erased. * Enable
State 4.

Get starting point of curve to be drawn from KNOB 1 and KNOB 2;
OLDX=KNOB1; OLDY=KNOB2.
Position Tracking Cross according to current counts of KNOB1 and
KNOB2; CURX=KNOBl; CURY=KNOB2.
Add a line segment to the current IMAGE from OLDX, OLDY to
CURX, CURY; OLDX=CURX, OLDY=CURY.
Curve drawing is complete. Remove Tracking Cross from screen.
Set up for next IlVIAGE. Enable State 1.

Same as KNOB1 or KNOB2 in State 2.
Determine position of object penned. Position tracking cross at this
location. Set KNOB1, KNOB2 to same X and Y values.

Place object to be moved at current X,.Y position of cursor.
Remove cursor from screen and enable State 1.

Erase object selected.
End wait mode. Job is complete.

* Note: User may not erase the Light Buttons 'MOVE,' 'DRAW' or 'ERASE,' however, movement of these
Light Buttons is allowed.

cross in IMAGE TRACK, the occurrence of which is
positioned at 500,500 by the POSITION command.
The next six commands similarly create occurrences of
the words DRAW, MOVE and ERASE. The Fortran
variable I, used to control allocation of images created
by the DRAW function, is set to 1. The next command
causes SET PICTURE to be displayed. You will note
that nothing will appear on the screen since nothing is
yet attached to PICTURE and SETS contain no
display 'ink.' Enable State 1 causes the system to
activate those interactive devices defined in State 1. All
other devices are inactive and will not burden the
system with wasted interrupt processing. The WAIT
command notifies the system that the main program no
longer needs the CPU. As soon as a ~ondition is met for
the current state the program will be given CPU time
and execution will begin at the first command of the
response corresponding to the condition met.

There are three active conditions in State 1: LB
DRAW, LB l\iOVE, LB ERASE. LB is an AIDS
mnemonic for Light Button. LB DRAW notifies the

system that INSTANCE 'DRAW' is alight button and
that whenever State 1 is enabled, the system should
display this Light Button. Thus when State 1 is enabled
the words DRAW, MOVE, and ERASE will appear in
the upper right corner of the screen. Further selection
of one of these Light Buttons will cause the correspond
ing response to be executed.

Selecting Light Button 'DRAW' causes INSTANCE
CROSS to appear on the screen and INSTANCE
BRANCH (I) to be attached to PICTURE. Only the
cross will be seen since no ink has been inserted into
LEAF (I). Next State 2 is enabled, the KNOB counts
for KNOB 1 and KNOB 2 are initialized to 500,500 and
the response is complete. Selecting Light Button
'MOVE' turns on the Light Pen for Set Picture and
enables State 3.

In States 2 and 3 rotation of either KNOB 1 or
KNOB 2 will update CURX and CURY with the
counts at KNOB 1 and KNOB 2 respectively.

Conditions of the form "if button n L" cause the
system to tum on the lamp associated with button n

120 Spring Joint Computer Conference, 1971

TABLE II-DRAW-1VIOVE-ERASE Program

PROGRAM DRAW
C THIS IS AN AIDS PROGRAJH WHICH ALLOWS ONE TO DRAW FIGURES,
C MOVE THEM, AND DELETE THElVI FROM THE SCREEN
C DECLARATION STATEMENTS

SET PICTURE
INSTANCE CROSS, DRAW, MOVE, ERASE, BRANCH (20)
IMAGE TRACK, DRAWL, MOVEL, ERASEL, LEAF (20)
INTEGER OLDX, OLDY, CURX, CURY

C INITIALIZATION
INSTANCE CROSS. DEFINES. IMAGE TRACK
INSERT INTO IMAGE TRACK: A LINE FROlVI -10,0, TO +10,0
INSERT: LINE 0, -10,0,+ 10
POSITION INSTANCE CROSS, AT 500,500
INSERT DRAWL: TEXT *DRAW*, 900,900
INSERT l\t10VEL: TEXT /MOVE/, 900,850
INSERT ERASEL: TEXT XERASEX, 900,800
INSTANCE DRAW. DEFINES. Il\t1AGE DRAWL
l\t10VE. DEFINES. l\t10VEL
ERASE. DEFINES. ERASEL
1=1
SHOW SET PICTURE
ENABLE STATE 1

C ALL CONDITIONS IN STATE 1 ARE NOW ENABLED
WAIT
STOP

C INTERACTION STATElVIENTS
C DRAW FUNCTION

WHEN IN STATE 1, IF LB DRAW, THEN
SET PICTURE. CONTAINS. INSTANCE CROSS

. AND. INSTANCE BRANCH (I)

. DEFINES. LEAF (I)
ENABLE STATE 2
PUT 500,500 IN KNBCNT
ENDRESPONSE

C UPDATE TRACKING CROSS
WHEN IN STATES 2,3, IF KNOB1/KNOB 2, THEN
GET KNBCNT INTO CURX, CURY
POSITION INSTANCE CROSS AT CURX, CURY
ENDRESPONSE

C SETUP STARTING POINT OF LINE
WHEN IN STATE 2, IF I3UTTON 1 L, THEN
GET KNBCNT INTO OLDX, OLDY;

C ADD A LINE SEGMENT FROM LAST ENDPOINT
WHEN IN STATE 2, IF BUTTON 2 L, THEN
INSERT INTO IMAGE LEAF (I): A LINE FROM OLDX, OLDY, TO CURX, CURY
OIJDX=CURX
OLDY=CURY;

C CURVE COMPLETE, GO BACK TO INITIAL STATE
WHEN IN STATE 2, IF BUTTON 3 L, THEN
DETACH CROSS
1=1+1
ENABLE STATE 1;

TABLE II-(Continued)

C MOVE FUNCTION
WHEN IN STATE 1, IF LB MOVE, THEN
SETUP SET PICTURE: PENON
ENABLE STATE 3;

C LIGHT PEN ENABLED, NOW SELECT OBJECT TO lVIOVE
WHEN 3, IF LPH,
GET INSPEN INTO DUMMY
GET INSPOS OF INSTANCE DUMMY INTO X, Y
PUT X, Y INTO KNBCNT
POSITION CROSS, AT X, Y
SET (PICTURE. CONTAINS. INSTANCE CROSS;

C CROSS MOVED TO DESIRED LOCATION, NOW MOVE OBJECT
WHEN 3, IF BUTTON 4 L,
POSITION DUMMY AT CURX, CURY
ENABLE STATE 1
DETACH CROSS;

C ERASE FUNCTION
WHEN 1, LB ERASE, SETUP SET PICTURE: PENON
ENABLE STATE 4;

C CHOSE OBJECT TO BE DELETED
WHEN 4, NLB,
GET INSPEN INTO DUMMY
DESTROY DUMMY
GET IMGPEN INTO DUMMY
DESTROY DUMMY
ENABLE STATE 1;

C PANIC BUTTON
WHEN IN STATE £1, IF BUTTON 24 L, THEN ENDWAIT;
END

AIDS 121

when that state is enabled as well as specify an inter
action requirement.

is enabled but Light Buttons are not to be displayed so
they will not inadvertently be erased.

"DETACH CROSS" removes the cursor from the
screen.

Condition LPH in State 3 specifies that Light Buttons
should be treated as normal display entities. That is, the
Light Buttons as well as the constructed display objects
may be moved with the move function.

Condition NLB in State 4 specified that the light pen

Destroy DUJ\1:MY frees up the memory occupied by
object DUMMY.

Finally the State 0 response specifies that the main
program is to continue. The main program will execute
the Fortran STOP function. A condition in State 0 is
active in all states and so button 24 defines our panic
mode exit.

CRT display system for industrial process

by T. KONISHI and N. HAMADA

Hitachi Research Laboratory of Hitachi, Ltd.
Hitachi, Ibaraki, Japan

and

I. YASUDA

Ohmika Works of Hitachi, Ltd.
Hitachi, Ibaraki, Japan

INTRODUCTION

Recently, in such industrial fields as steel mills, power
stations, chemical plants, the use of computer control
system is promoted more and more for improving
productivity. For the efficient use of the computer
control system various information generated in the
form of characters, graphs, etc., must. be accurately
communicated with higher response between man and
machine.

As for the data input to the computer, punched cards
or punched tapes prepared by a puncher are transferred
to the memory in the computer through a card reader or
tape reader. In this case however, it is usually necessary
to verify mispunches by another puncher or to detect
rejects, and it is always difficult to change the informa
tion on the punched card or tape. Thus, this method
expends additional man-hours.

Various output information from the control com
puter such as process condition and operation program
are usually displayed on the panel which incorporates
lamps or numeric display tubes. These methods,
unfortunately, allow little flexibility for changing the
displayed format or contents, and with a scale-up of the
system, it proves difficult to display in a limited area.

For these reasons the development of such a new
display system has become essential that can simplify
input/output information needed for controlling indus
trial plants. There are already many kinds of CRT
(Cathode-Ray Tube) displaysl-3 developed as periph
erals for supporting business computers, that can

123

satisfy such requirements to some extent. These
displays, however, are not always suitable to the
industrial application with limited ambient temperature
or reliability.

In some of these CRT displays a special deflection
method or a special CRT4-6 are used, but these,
consequently, mean the cost-up by the deflection
circuits, and complexity of the control circuit, or
maintenance. Further, although they might be used in
an individual purpose, they are not always suitable
when incorporated in various wide computer control
application systems.

In consideration of survey results of users' require
ment and also the shortcomings of conventional CRT
as experienced when employed in actual industrial
processes, we have developed a unique industrial
process CRT display system by using standard tele
vision equipment. This compact display system can be
produced at low cost, promising higher flexibility, easy
maintainability, and higher reliability.

This device offers an easy man-to-machine communi
cation in computer control systems requiring efficient
construction over a wide field of applications. 7 Such
applications include the indication of each function of a
mill line in steelmaking, the display of the operating
state of many tracks in a railway marshalling yard, the
display of circuit breaker operation at a power system
substation, and so on.

This report concerns itself with the construction, per
formance, operational principle, special features, test
result of the model, etc., relating to this new CRT
display system.

124 Spring Joint Computer Conference, 1971

Color TV Vie ...

COIMMI.icatian -COMPUte,

Balie Unit, Unit. Li.. HITN: 72SO

(~II~~~ ~)

Figure 1-CRT display system

CONSTRUCTION AND PERFORMANCE OF
THE CRT DISPLAY SYSTEM

A block diagram of the CRT display system is shown
in Figure 1. It consists of a common basic unit, and of
the optional units that can be selected according to the
application.

Basic unit

A basic unit consists of a keyboard, basic control
circuits, and a viewer using monochrome_or color CRT.

The keyboard includes character keys composed of
alphanumeric and special letter, cursor keys which
control cursor position, special keys used to write
simple diagrams by combining a special pattern, color
keys used to select a color from among seven, and control
keys used to select such modes as "transmit," "receive,"
"write," or "print." For example, when an operator
wishes to display characters on the viewer, he depresses
the mode control key to "write" and after setting the
cursor on the viewer by the cursor key at the desired
initial position from which the display should begin, he
selects a desired color by color key, then he may begin
depressing the character keys.

The basic control unit consists of a display control
circuit, a character control circuit, an interface circuit
etc., and it treats several signals for displaying on the
viewer as explained later. As the viewer, a commercially
produced monochrome or color TV set is employed.

Optional units

Several optional units are available for displaying
characters other than those on the standard keyboard,
patterns or marks, or for displaying the same contents

on plural displays and for communicating with the
computer or file memories and others.

(a) Optional units for displaying trend graphs or special
patterns. The trend graph unit is used to display
physical quantity that changes with time, just like
a pen recorder.

The special pattern unit is used for the display of
histograms, work programs, skeltons of power distribu
tion systems, etc.

(b) Interface units for the viewer.

When the same contents are displayed on several sets
of viewers, a multiplexer specified for monochrome or
color TV will be used. When the viewer is located
remotely, and within the maximum distance of 2 km,
a line buffer unit will be used.

(c) Interface units for input/output optional units.

Interface units are used when the previously described
basic unit or optional units are connected to other
input/ output optional parts.

The CPU (central processing unit) interface, used
when the display device is connected with a control
computer (e.q. the HITAC-7250, HIDIC-500, HIDIC-
100 or HIDIC-50, cassette controller), operates as a
peripheral device. A cassette tape recorder, disk
memory, or core memory is used as a file memory. As
shown in Table I, the cassette tape recorder has the
maximum value of memory capacity and the core
memory has the maximum value of operation speed. An
optimum selection among them will be made according
to the application fields.

The communication controller is used when the
display device is connected with a control computer
through a communications network such as a telephone
line. As an example of a communications controller,
a DC communication system of 2,400 Baud has been

Devices

Cassette Tape

Recorder

Disc

Memory

Core

Memory

TABLE I-Characteristics of Memories

Use
Condition

On'line

On line

On line

Memor;; Capacity

200 Frame/l Tape

50 Framel1 Disc.

10 PrsIne/4 Ii: word

Speed

1-10 min/I Frame

20 mall Frame

1 mall Frame

Price Ratio

1 - 0.1

R.fr •• h _y

Synchronoua Signala

Figure 2-Block diagram of display principle

developed and is in actual use as a management
information system at Hitachi Works.

The printer control unit is used when the hard copy
of the characters displayed on the viewer is required.

OPERATIONAL PRINCIPLE

Since a commercially produced standard TV receiver
is used as the viewer, the operational principle of the
display is almost the same as those of USA and Japanese
Standard Television systems. Thus, a character is
displayed as a set of bright (5 X 7) dots, on a CRT
surface by giving a· brightness control to the raster
scanning electron beam having a horizontal synchronous
frequency of 15.75 kHz and a vertical synchronous
frequency of 60 Hz.

Display oj characters and special patterns

Figure 2 shows a block diagram of the display
principle. When the alphanumeric letter A, B and a
special patter_n r key is pushed down in that order, the

14 Ra.ter. j:
(a) per Line 8

10
12
/4

No.1 Ra.ter -

T
(It) No.2 7alter

. I

No./4 RCllter

8 Dot Timing Example of
per Character Special Pattern

I
'246824682468

I
I

[I

~
n

I-.s,..j'!
Far Charac-'- For Character
ter Space

}
RGiter. for
Character.

}
Ra.ter. for

Line Space

Figure 3-Example of characters and special pattern display,
and their brightness control signals

CRT Display System 125

Horizontal Synchronouo Signol

--~--
2 3 6 7 8 13

A Li .. for Charact.r Lin. Spac.

t-------A Lin. ---------1

A Fram. (16.7 mo)

Figure 4-Example of TV drive signals

keyboard will generate 8-bit code signals (the alpha
numeric code is ASCII and the special pattern code is
prepared exclusively for this device) which correspond
with each character accordingly. Those codes are stored
in a memory in the basic controller; therefore memory
capacity is made to equal the maximum number of
characters displayed on the viewer, and a storing
position can be appointed by an underline (a cursor)
displayed on the CRT viewer. The change of the cursor
position is easy and arbitrary by cursor control keys.

If a character key is pushed, and the character is
displayed above the cursor, the cu~sor moves auto
matically to the next position simultaneously. The
memory has a capacity able to store the corresponding
number of codes to that of the displayed characters on a
viewer field (e.g., storing capacity of 40 characters X 13
lines = 520 characters).

When the electron beam of the viewer (TV) is
scanned by the timing control circuit signal, the refresh
memory sends out the stored code corresponding to the
character control circuit.

By these transmitted codes and the signals showing
the position of the scanning line given from the timing
control circuit, the character control circuit generates a
brightness control signal necessary for forming the
characters or patterns.

As shown in Figure 3(a), the unit size of one character
and a special pattern is determined by 8 dots timing in
the horizontal direction and 14 scanning lines in the
vertical direction. Thus, the unit size of a character is

TABLE II-Special Features of Color Code Storage Method

Soft-

Memory

Constru,ction

Color Control

Circuit

Interface to

CPU

Interface to

Keyboard

Character

construction

Data

Same as monochrome TV

It is necessary to use a"'l 8-bit color decoder and 'an

encoder for color R, G a.."ld B ..

Same CE as monochrome TV

Same as monochrome TV

For color code a character space occurs every color

change

Data making is facilitated by using one byte per

Making character.

126 Spring Joint Computer Conference, 1971

Line dot space

Char()ct~r dot area

Figure 5-Special patterns for graph display

displayed in a method whereby brightness is controlled
in a fixed position of an 8 X 14-dots matrix. The unit
size of a special pattern has a usable limit in all 8 X 14
dots of a matrix, but a character has a usable range of
5 X 7 dots of a matrix. For this reason, when A, Band r
are displayed, the control signal for each raster becomes
as shown in Figure 3 (b) .

The brightness control signal, and the horizontal and
vertical synchronous signals are mixed to form the video
signal of a standard TV system at the driving unit, and
the viewer's CRT is driven by this video signal. Figure 4
is an example of such a driving signal.

Color display

For displaying colored characters, the specified color
code must be stored in the memory. In this case, a color
code storage method in which no extension of the
memory format is necessary is adopted.

In this storage method, the remaining codes as spared
from assigning a character or a special pattern is
allocated for each color of, for example, red, green, blue
and so on totaling 7 colors, and color identification of

It)

_ Plty.I •• 1 Quoallty (t)

h ~ h

~~l~~~;~~:~~~~?~~l~~7{tt~~~~1 : .. :;o __ w.

-- - - ~ - - - - --
-_-_L __ -_--=-=-=- AJ .. - t .. - t .. -,

- ... ------
-. .F_=':-':-':-_='= Ali· II - Ii-,

1-- - ---- • A I (Con.lanl)
~~~~~~~~------~~----

10): Tr .. t ........ 
I,,: ,,_llIIotl<l pl •••• i.. II •• 

Ie): Gropll III.ploy !IoF ,"",In... COIIIroI _lboII 

Figure 6-Graph display method 

, -0.1.2.---.25 _r at 

fr ••• <l1.I.i ... 

t .. - Plty.l.ol q .... llly 

Ii - TI .... 

character is made from a color, code using one character 
space at the head of the character codes. In this way, 
the memory stores the color code and the character code 
in series. This color code storing method offers the 
special features as shown in Table II. 

Trend graph display 

The deflection method of a CRT electron beam is 
divided into the two main classes of random positioning 
and raster scanning. With raster scanning, as a com
mercial standard TV set can be used, the cost of its CRT 
control circuit is much cheaper compared with the case 
of random positioning. But it was very difficult to 
display a continuous curve, and its programming was 
very troublesome. However we have succeeded in 
solving these problems and developed a new graphic 
display method by raster scanning as described 
subsequently. 

(a) Principle of trend graph display. 

The displaying of graphs by raster scanning will be 
divided into two categories. That is a curve approxima
tion method and a piecewise linear approximation 
method. In the former, the error of approximation can 
be made as small as the viewer's resolution. 

However, it is not advantageous from the viewpoint 
of cost as it needs a large memory capacity with the 
increase of the number of line elements. Therefore a 
piecewise linear approximation is selected. 

The piecewise linear approximation method is further 
classified into a dotted pattern or a brightness line 
method. In the dotted pattern method a curve is 
displayed by combining several special patterns as 
shown in Figure 5. The principle of operation of this 
method is identical to that in the special pattern as 
explained in the character displaying. Although this 
method is superior in histogram display etc., it requires, 
as its drawback, a large number of patterns for display
ing a curve. 

In the brightness line methods, when displaying a 
curve designated as (a) in Figure 6 by a broken line 

Brigltl.... collfrol 

signClI 

Figure 7-Analog method of trend graph display 



approximation, either method by analog or digital 
display can be selected. As shown in Figure 7, an analog 
displaying method of a trend graph is constructed by 
utilizing a digital-to-analog converter, multiplier, and 
voltage comparater. 

Its operational principle is that voltage of a saw
toothed wave generator corresponding to a value of 
Aqi/ Ati is added to vertical deflection voltage corre
sponding to qi - 1 (for an explanation of the symbols, 
see Figure 6) by the operational amplifier, and its output 
and horizontal deflection voltage proportionate to the 
present position of the electron beam are compared in 
the voltage comparater, and in coinciding timing, a 
brightness control signal is given to the CRT. Through 
these operations, the points marked with block dots on 
the line (b) in Figure 6 are brightened. 

The digital method is practically the same in basic 
principle as the previously described analog method, 
except that operations of addition and comparison are 
effected by the digital value. That is, by adding an 
analog value corresponding to Aqi/ p to the final value 
of the last position, the bright spot is moved. By this 
method, the graph is displayed as shown in Figure 6(c). 

(b) Comparison of display methods. 

As a criterion of comparison, it is assumed that the 
memory capacity for the graph display area is as large 
as that of the character display area (40 characters 
X 13 lines), and the number of patterns is 32. Especially, 
in the case of the brightness line method, it is assumed 
that a division unit of time axis has 7 rasters (p = 7), 
the resolution of spot position in the horizontal 
direction is half dot timing (n = 640) for a character 
dot, and a maximum value of Aqo is 255 dots (8 bits). 

A comparison between these graph approximation 

TABLE III-Comparison of Several Graph 
Approximation Methods 

Graph Xe.o17 capacity 10. of division. 
Control circuits =~:d..mat:l.on (bit) 

Pattem ten_ration .. x~x r. .lead/Vrite circuit De8ic:nable in 
P q P Pattem decision graph tom 
(1IlS) •• 16<. 

Patte:m. seneratipD 
" '20 

Anal .. 2(;xr.> Read/Vr:lte circuit 'l'nmd sraph 

_bod ...... ori«in 
(ftL) 416· voltage adder cd 0.5 only on uppn 

Brightness c~tor 

Sow-toothed vave 

... rator 

_tal ;x r. lead/Vrite cil'C\lit 

(ftL) 208 0.25 

horisontal poeition 

.ote, • Bu.ber of rastera/Diaplay.t traMe rp: lumber of b~ ts detel'llined by a pattern 

II lfuaber of vertical d1.v1aiona!DJ.eplayed. truea r.: BUllb_r of bite of 1-1) converter 

p lIuaber or raat.ra/Unit divisione I'd I Ifuaber of dota detera1nlDc br1«htn ••• 

q Position resolution/Unit lenctb of • :raeter control incre.ent 

CRT Display System 127 

Figure 8-Block diagram of character and graph display 
of model group 

methods obtained under these assumptions is shown in 
Table III. As the result, it was found that the digital 
method was most advantageous for its lower cost, and 
it was adopted. This method, however, has some limit 
in displaying the curve (i.e., an origin must be in the 
upper, left corner; the vertical direction must be 
selected in time axis and the total number of piecewise 
lines must be under 26). However, a unit length of 
each axis can be selected or changed by the software. 

Thus far, operational principles of the character 
displaying, the color displaying and the trend graph 
displaying were described; however, further descriptions 
in these regards will be omitted. 

OUTLINE OF MODEL SET 

The block diagram of a model device is shown in 
Figure 8. This device is able to display characters, trend 
graphs, and their scales on the viewer of a monochrome 
or color TV receiver. In this chapter the control circuit 
of the trend graph displays will be given further 
explanation. As ilhistrated by using Figure 6 in the 
previous chapter, when a curve is approximated by 
broken lines, the vertical axis (time axis) is equally 
divided as a unit of p-rasters, and unit time t i+l - ti or 
a section is assigned to a piecewise line. In a section, 
a horizontal component of a piecewise line (for example 
qoqi) is equally divided by the number of p, so that a 
line element of constant length of (ql - qo)/p is dis
played while each raster is moving along a line (b) in 
Figure 6 in a former section. In the model device, the 
number of raster p is selected as p = 7 in order to limit 
the memory capacity. A memory capacity to accommo
date the same word number as a divided number of time 
axis is necessary and in this case the memory capacity is 
26 words. The data format of a word is constructed as 
shown in Figure 9, and the length of the line component 



128 Spring Joint Computer Conference, 1971 

25 ------------- 2° 

B INC 

B Display in "1" 

Nondisplay in "0" 

s Negative slcpe in "I" 

Positive sh,'·pe in "0 " 

INC Code indicating the increment 

Fi 9 ure 9 Data format of 

graph display 

Figure 9-Data format of graph display 

is indicated by the INC part. This memory is termed as 
"graph memory." 

Circuit construction of the trend graph display is 
shown in Figure 10. As clear from the figure the 
hardwares consist of several circuits such as (1) a graph 
memory having a capacity of 26 words whereby the 
length of divided line elements in every piecewise line is 
stored; (2) a start and stop register that sets a start and 
stop point of the brightened line on the raster; (3) an 
arithmetic gate that calculates traveling distance of the 
brightened spot for every raster; (4) an increment 
counter, for coding the position of the brightened spot 
with digitals; (5) a coinciding circuit that effects 
coincidence between data of the start and the stop 
resistor and of the increment counter; (6) a brightness 

From 
CPU 

Graph Oi 'pla, 

Signal 

--.. Data 

__ • Cafttral Signa' 

Figure lO-Circuit construction of graph display 

Raet.,. 

',-- r h" ""1 'I-----~--;--- -- -- ---.- ----
"-- ----~-- ---- - - -- ----! __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Di.pla, 

',-
'1'--

r
i == I 

Di.pla, 0'0' 

Figure ll-Example of group display 

a,oa 

controller that generates the brightness control signal 
from the coincidence detecters; and (7) a timing 
controller that generates the timing and control signals. 

Nextly, the function of the trend graph display 
circuit will be explained. In the example of a trend graph 
display shown in Figure 11, data with a length of line 
increment llq = llqi, llq' = llq'i (i = 1, 2, .... , 7) and 
so on are fed to the graph memory. By the control of the 
timing circuit, the contents of the memory is read out 
and calculations of qi = qi - 1 + il.q, qi+l = qi + il.; 
and so on are carried out in the arithmetic gate, and 
their results are stored in the start and the stop register 
respectively. As soon as a brightened spot of raster fl 

enters the graph display area, the increment counter 
starts counting, and when the contents of the counter 
coincides with the start register (qi), the brightness 
control signal is generated from the brightness con
troller. This signal output is kept to generate until the 
contents of the counter coincide with the stop register 
(qi + llq). Just before the scanning spot moves to the 
next raster, r2, contents of the start register are replaced 
by ql, and contents of the stop register are replaced by 
ql + il.q by transfer control between both registers (as 
shown in the upper column of Table IV). 

When the slope of broken lines is in the negative sign 
with the time axis as a base, or in the case of reverse 
slope as llq'i as shown in Figure 11, information will be 
transferred between the two registers as shown in the 
lower side in Table IV. 

Since the model device uses 6 bits for an appointment 
of the length of increment lines, the slope of the 

TABLE IV-Transfer Control Between Registers According 
to Slope of lPtcrement 

Slope of 

Increment 
Contents of Start Regist&r 

(Stop Register) 

(start Registu) - (Increment) 

Contents of Stop Regist&r 

(stop Regist&r) + (Increment) 

(start Register) 



piecewise line can be selected for an angle of 0 or ±63 
against the vertical axis. 

TESTED RESULTS 

Some examples of character display are shown in 
Figure 12 (A) , and the trend graph display is shown in 
Figure 12(B). The test model performed reliably at an 
ambient temperature from 0 to 50°C with the source 
voltage of 100V, + 10 percent, -15 percent. 

SPECIAL FEATURES OF THE DISPLAY 
DEVICE 

The newly developed display system offers the 
following special features: 

(1) Higher reliability and simpler maintenance 

Because the composing elements are carefully se
lected, this device can be used under severe conditions 
as familiarly encountered in usual electronic devices for 
industrial use, and this can operate normally even at 
ambient temperatures from 0 to 50°C and with voltage 
variance of 100V, + 10 percent, - 15 percent. 

Ies and LSls are used in the logic elements, in the 
character generator and in the main memory, and an 
all-solid-state transistor TV receiver is used as the 
viewer. 

(2) Higher flexibility 

The basic units such as keyboard, control unit, 
display unit, source unit, etc., of the device are designed 

Figure 12 (A)-Character display 

CRT Display System 129 

Figure 12 (B)-Trend graph display 

as blocks and are incorporated into each standard unit 
of specific performance. These are easily expandable to 
meet various application requirements such as changes 
or additions of the characters, colors, trend graph 
performances, and such as enlargements of the display 
units and the printer units or such as an installation of 
long-distance transmission system between the control 
unit and the viewer unit, and so on. 

(3) Lower cost 

As the result of the development of a new control 
method, a commercially produced low-priced TV set 
can be used for the viewer. The use of IC or LSI has 
enabled the reduction of the component parts, as well as 
the easy manufacture and inspection since the control 
circuits were assembled into each unit of its specific 
performance. By optimum selection of options from 
many available here, a display system with a high 
performance per cost can be achieved. 

EXAMPLES OF APPLICATION 

As shown in Table V, this display system is enjoying 
many practical applications, and in the future, we 
anticipate its use in every industrial field. 

CONCLUSION 

This report has described a newly developed industrial 
process display system, and explains the construction 



130 Spring Joint Computer Conference, 1971 

Application 

maJd,ng 

system 

systera 

syste:n 

Management 

TABLE V-Examples of Industrial Applications 

Objective 

(and system construction) 

Kanagement inforaation systea 

of vide flange mill 

(H-8400x2+H-500cBTctr+CBTs) 

Economic load dispatch and 

monitoring of automatic 

Performance 

1. "cnitering of process 

2. Display of operation procedure 

,. Inquiry system 

4. Data setting or adjustment 

Optional unit 

(1) Trend grapb (2l Continuoua colo. 
(, Jllultiple:zer tor color 
(4 Blink 
(5) Line buffer 
(6) Control electronics 

1. Table display·ot predictive load (7) Double display 

dispatch slatem 2. Data setting or adjustment (8) Special pattem 

(

Telemetert-Data. exchange controlle) Monitoring use 

+B-7250<::::::~::tOring) ~: ::~::; :::~::::n~:: 
lfiniaturizstion of monitor panel 1. Constant lIlonitOring of substation (2), (,), (4), (6). 

for concentrated control of system (7), (8) 

substations 2. Flicker of condition change of 

circuit breakers 

SUpervisory control of terminal 1. Monitoring of distribut.ed (,), (6), (8) 
substation 

2. Display of trouble 

1. Data displ..,. (3), (4), (6), 

2. Diagram (floll chart. block (9) Printer 

I/O use of DDC' system \. 

( Process+H_1OO+CRrd:rt-CRl' ) 

diagram, graph) display (10) Alarm 

Wan/machine interface 1. Information retrieval (S). 

of management information 2. Control of work progress (11) Communication 

system ,. Xanagement of personnel inventory 

and performance of the system as well as the operational 
principle and special features of character display, color 
display, and trend graph display. 

From the test results of the prototype model, it has 

been proved that this device can operate normally as 
expected and demonstrate its every unique performance. 

Presently, this type of display system is produced in 
quantity and is employed in various industrial fields. 

REFERENCES 

1 The computer display review 
Adams Associates Vol 1 August 1966 

2 H S CORBIN 
A survey of CRT display consoles 
Control Engineering Vol 12 No 12 pp 77-83 December 1965 

3 D J THEIS L C HOBBS 
Low-cost remote CRT terminals 
Datamation Vol 14 No 6 pp 22-29 June 1968 

4 S H BOYD 
Digital-to-visible character generator 
Electrotechnology Vol 75 No 1 pp 77-84 January 1965 

5 H L MORGAN 
A n inexpensive character generator 
Electronic Design Vol 15 No 17 pp 242-244 August 1967 

6 F W KIME A H SMITH 
Data display system works in microseconds 
Electronics Vol 36 No 48 pp 26-29 November 1963 

7 R L ARONSON 
CRT terminals make versatile control computer interface 
Control Enginering Vol 17 No 4 pp 66-69 April 1970 



Computer generated closed circuit TV displays with remote 
terminal control 

by STANLEY WINKLER* and GEORGE W. PRICE 

Executive Office of the President, Office of Emergency Preparedness 
Washington, D.C. 

INTRODUCTION 

In a large interactive computer system, most users with 
remote terminals will have a primary interest in their 
own specific queries. These same users may also have a 
common interest in or requirement for general informa
tion which is being concurrently processed. While they 
can individually query the computer from their own 
terminals, this procedure can be time consuming and 
inefficient, particularly if the time of availability of the 
general information is not known in advance. The 
suggestion to explore the use of closed circuit TV was a 
natural one since a closed circuit TV system was 
available. 

The use of closed circuit TV offered a number of 
advantages. A TV display is easy to use, and each 
monitor can be viewed by a group rather than by only a 
single individual. The inherent familiarity with TV 
made user acceptance almost automatic. There were 
cost advantages not only because the system was 
available but also because TV monitors and their 
maintenance are relatively inexpensive. 

There were two disadvantages which initially caused 
some concern. The first was the read-only nature of 
closed circuit TV. This was overcome pragmatically by 
allowing TV viewers to interact with the system by 
telephoning any questions to the Display Control 
Operator who could obtain and input the repli~s to these 
queries for subsequent display and also by co-locating 
the TV displays with a remote interactive terminal 
wherever possible. The second disadvaqtage was the 
possible exclusion of remote users who did not have 
access to the closed circuit TV. This generated the 
requirement that general information, such as that 
displayed on the TV monitors, should be able to be 
directed to any, or all, remote terminals. 

* Now with the Systems Development Division, IBM Corpora
tion, Gaithersburg, Maryland. 

131 

The system described in this paper was developed 
within the constraints imposed by the equipment 
available for the terminals and by the characteristics of 
the available computer. The design was intended to 
satisfy an operational need, but the resulting system 
contains considerable generality and flexibility. In the 
second section, we state the design philosophy underly
ing the development; in the third section, the system is 
described; in the fourth section, the software, a display 
sub-program, callable from any main program, is 
discussed; in the fifth section, the performance of the 
system is briefly outlined; and in the last section, brief 
mention is made of possible improvements and future 
developments. 

Subsequent to the completion of the work described 
in this paper, our attention was called to the work of 
Bond, et aI., at the Carnegie-Mellon University.1 They 
describe an interactive graphic monitor program for use 
in a batch processing computer system with remote 
entry. Their system, although considerably different 
from our system, is nonetheless of general interest. 

DESIGN PHILOSOPHY 

The system was developed over a four month period 
to meet a specific operational need. This schedule 
dictated that only currently available equipment would 
be used, since hardware development or modification 
was not feasible in the time available. We wanted to 
display, on an available closed circuit TV system, a 
combination of pre-stored data, results of computations 
and data inserted from a remote terminal. 

The system had to be simple to operate. and 
convenient to use. A permanent record of each display 
was required, as well as the ability to review each display 
prior to placing it on the closed circuit TV. The length 
of time during which a display remained visual was to be 
under the control of the Display Control Operator who 



132 Spring JointComputer Conference, 1971 

was to have the option of aborting any display, either 
prior to its appearance on the TV circuit or at any time 
after it was displayed. 

It was important that the desired information be 
displayed in a timely fashion and that the design of the 
system should not limit the number of closed circuit TV 
monitors. Desirable features of the system included the 
capability to replace only a portion of a display as well 
as the capability to display a fixed pattern or table with 
changeable data. Some form of emphasis at the option 
of the Display Control Operator was considered useful. 

It was desired to write the handler for the displays in 
such a manner that any user program written in 
FORTRAN, COBOL or any other higher-level language, 
could supply results of computations, data and informa
tion for the display. Finally, it seemed desirable to 
write the program in a modular fashion in order to 
facilitate the introduction of additional features or 
improvements suggested by experience in actual 
operation. 

SYSTEM DESCRIPTION 

The system was developed for implementation on the 
Office of Emergency Preparedness' UNIVAC 1108 
digital computer. The computer has four banks (262,000 
words) of main high-speed core storage. The operating 
system used on the 1108 is EXEC 8 which has the 
capability of operating in real time and demand modes 
as well as in remote batch and local batch modes. The 
OEP computer system currently handles up to 15 or 
20 low-speed remote terminals (e.g., teletype) in an 
interactive demand mode as well as a number of 
high-speed terminals (operating at 2400 or 4800 baud). 
The low-speed remote terminals are connected to the 
computer by voice telephone links interfaced with 
acoustically coupled modems and the high-speed termi
nals use standard data sets. 

The teletype was selected as the display control 
terminal because it combined the advantages of low cost 
and ready availability, and met the requirement of 
providing a hard copy of each display shown on the 
closed circuit TV monitors. The teletype was connected 
to the compvter in the usual way through a telephone 
line. Although the operator at the Display Control 
teletype would manage the information to be displayed, 
the main program, which generates the displayable 
material, could be initiated from any remote terminal, 
low speed or high speed. 

The video signal necessary to drive the closed circuit 
TV system is tapped off the Computer Communication 
Inc. CC30 cathode ray tube display terminal. This 
terminal consists of a Sony TV set, a keyboard, a buffer 
memory, and associated power supplies. The eCI 

terminal is directly coupled to the computer through a 
1600 baud line. The signal. is transmitted to the TV 
studio where the video distribution to the closed circuit 
TV monitors is made. 

The actual distance from the eCI terminal to the TV 
studio was about 75 feet, but transmission over 
distances of several hundred feet is feasible using 
RG 59/U coaxial cable. Four lines connect the CCI 
terminal to the studio. The first line carries the video 
signal, already mentioned; the second and third lines 
are for the vertical and horizontal drive pulses; and the 
fourth line, which is optional, is a standard twisted pair 
of wires for voice communication. With this voice 
circuit, the operator at the Display Control terminal 
can provide "live" voice narration or pre-recorded audio 
tape messages for any display. A diagram of the system 
is shown in Figure 1. 

The fact that the CCI terminal contained a TV 
receiver as its display element, made it relatively simple 
to obtain the useful video signals required. The display 
consisted entirely of alphanumeric information. The 
quality of the display was very satisfactory and the 
picture obtained on the closed circuit TV monitors was 
also of very good quality. Figure 2a is a photograph of 
the eCI terminal equipment including a display on the 
cathode-ray tube, and Figure 2b is a photograph of the 
same display on the closed circuit TV monitor. The 
picture of the TV monitor screen was taken using a 
4 second shutter speed. The normal TV set jitter is 
clearly visible, but has no effect on the legibility of the 
display. 

Although the keyboard of the CeI terminal could 
have been used to introduce data into the closed circuit 
TV display, it was not actually used in our system since 

Horizontal Drive 

Twisted Pair for Voice Communication 

Figure 1-The display system 



Figure 2(a)-CCI terminal equipment with computer generated 
display on TV set ' 

it would have bypassed the Display Control teletype 
and not have furnished the required hard copy. The last 
two lines on the face of the cathode-ray tube of the CCI 
terminal were not used for the computer generated 
display in order to allow for variances in the picture size 
on the TV monitors. Probably one line would be 
sufficient protection, and the other line could be used 
for special one-line messages. 

The only significant difficulty encountered in develop
ing this system was in achieving hardware compatibility. 
Some experimentation and adjustment was required to 

Figure 2(b)-Photo of computer generated display as seen on 
closed circuit TV monitor 

Computer Generated Closed Circuit TV Displays 133 

~ 

r-------------- _______ ~ 
I NORMAL CONNE'CTON I 

:~~- ~: 
Ill~~n, 
L!L - ~ - -- - - __________ ~:_ J 

.. II 

I: 
l~, 

PIN CONNE'CTONS AND FUNCTIONS 

~ PIN NO. PIN NO. 

1 1 

~ =:::><:::= ~ 
Data tprminal rf'ady supplif's propf'r l€'vel Clear To St"nd 

Data Spt Ready 
Signal Ground 

4 4 

!.j [ 
to pins S, 6 and 8. Transmit from onE' 

terminal bf'comE"s rE'C£'ivf' at thE' othfi'r terminal Data Carrier DE'tector 

Data Terminal RE'ady 

Figure 3-Circuit to bypass data set 

obtain proper synchronization of signals between the 
CCI terminal and the TV studio. The direct coupling of 
the CCI terminal to the 1108 computer required 
bypassing the normal data set interface. This was 
accomplished by designing a data set bypass circuit. 
The circuit diagram is shown in Figure 3. 

A minor, but important, problem was the format of 
the data to be displayed. Any of the programs written 
for the 1108 computer can be used to provide data for 
display on the CCI terminal. Most of these programs 
are written to furnish an edited output of 120 to 132 
characters per line. The line length is 72 characters on a 
teletype and 40 characters on the CCI terminal. For a 
suitable display on the TV monitors available to us, the 
data had to be reformatted to fit on 20 lines of 36 
characters each. The number of lines and the line length 
will vary somewhat among closed circuit TV systems. 

THE DISPLAY SUB-PROGRAM 

The sub-program is written in assembler language 
and contains approximately 500 lines of code. The 
system requires that a main program, before it may call 
the display sub-program, initialize the data or informa
tion to be displayed. This output data is stored in a 
buffer containing a maximum of 720 characters, for
matted in 20 lines of 36 characters each, and must be in 
FIELDATA computer code (octal). Since the CCI 
terminal requires ASCII code, the sub-program contains 
a FIELDATA to ASCII conversion table. The main 
program is any user program modified by adding an 
option to permit bypassing the old output instructions 
and substituting for them the display sub-program 
output instructions. Except for formatting, these output 



134 Spring Joint Computer Conference, 1971 

Figure 4-Flow diagram of display sub-program 

instructions are essentially the same for all main 
programs. A flow diagram of the display sub-program is 
shown in Figure 4. 

In the sub-program there are a number of external 
calls or functions which enable the operator to control 
the system and exercise the various options available 
within the system. The first of these calls is OPEN, 
which performs the initialization of the CCI terminal 
display and the initialization of the auxiliary teletype 
(aux TTY), if this feature is included. The OPEN call 
also establishes the entry of the system into the real 
time mode in the computer. The call, CLOSE, takes the 
system out of the real time mode and terminates the 
CCI terminal as well as the auxiliary teletype. Thus the 
CCI terminal and hence the closed-circuit TV displays 
operate in the real time mode. The control teletype 
operates in the customary demand mode. 

The OUT, or output, call is the one which determines 
whether the information on the control teletype will be 
transmitted to the closed circuit TV monitors or not. 
If the output is requested (approved) by the Display 
Control Operator, then the information is displayed on 
the CCI terminal display, sent to the auxiliary 
teletype, if required,and the appropriate video signals 
are transmitted to the TV master control for distribution 
to the monitors. 

The call, BLINK, provides the means to cause each 
new display to turn on and off for a fixed number of 
blinks when the display first appears. This method is 
used to call attention to the fact that a new set of data 
or information is being displayed. Blinking can also be 
omitted at the discretion of the operator. The TIMER 
call permits the automatic sequencing of a series of 

displays with a predetermined time delay in milliseconds 
between each individual display. It is also possible to 
retain each display on the TV screens until the next 
display is available, or, after a pre-set time, to remove 
the display and allow the screens to remain dark until 
the next display. 

Another function, currently available, enables the 
operator to add information to an existing display or to 
remove a portion of the data on a display. This feature 
was developed to permit the display of tabulated data 
with the capability of updating data while retaining the 
tabular format. 

The simple and modular character of the sub-program 
allows easy modification and straightforward addition 
of desired features. The approach adopted here was to 
retain an essential simplicity and to add only such 
features as experience in operational use clearly showed 
to be desirable. 

PERFORMANCE 

The system operates interactively permitting data or 
information displays to be prepared and selected for 
viewing on closed circuit TV as requested and is under 
the full control of an operator. A main program which 
either contains or generates the data to be displayed 
must be initiated and accessible to either a teletype 
(control TTY) or a remote batch terminal. The main 
program retains complete control over the operation of 
the system and performs "all data handling and compu
tations. Any data verification or modification must 
occur within the main program. The display sub
program only activates the display on command. In the 
operational system we developed, control is exercised 
with a display control teletype. This teletype could be 
located anywhere, and is acoustically coupled to the 
computer by a regular telephone. The data and control 
flow within the system is shown schematically in 
Figure 5. 

The operation of the system is straightforward. 
A request for data from the main program is made at 
the display control teletype. The main program then 
enters the requested data, which must be a single screen 
or page of data, into the output buffer. At the same 
time, the data is transmitted to the control teletype 
where the data can be reviewed. At the control teletype, 
the operator can make a decision either to display or 
reject the data sent for review. A "go" decision is made 
by typing G and a "no-go" decision by" typing X. 
A "go" instruction from the teletype transfers control 
of the data to the display sub-program which then 
clears out the previous display and initiates the real 
time mode display of the data on the CCI terminal. 



Simultaneously, the video signal from the Sony TV set 
in the CCI terminal is transmitted to the TV studio and 
from there distribution is made to the TV monitors in 
the closed circuit TV system. Television broadcast of 
the data could be accomplished in a similar way. 

In addition to accepting or rejecting, for display, the 
data from the main program, the operator at the control 
teletype can insert an addition to a display or originate 
an entire message for display. If auxiliary teletypes are 
permitted access to the system, the request (an OPEN 
call) from the control teletype (for data) also activates 
the auxiliary teletypes. The display sub-program then 
continues to poll the auxiliary teletypes for an input or 
request and acts on any inputs or requests received. The 
polling continues until a CLOSE call terminates the 
connection to the auxiliary teletypes. The auxiliary 
teletypes may request transmission of the current and 
subsequent displays, or request the discontinuance of 
the displays. They may also transmit messages for 
display. 

The system described here was tested operationally 
over a 12 hour period in a dynamic situation during 
which information was continuously received and data 
values were rapidly changing. Ten TV monitors and 
four auxiliary teletypes were used. A fixed schedule for 
the display of general information was established, in 
this case, the first ten minutes of each hour. Each of the 
ten groups (one for each monitor) had a five minute 
time slice during which their special data requests were 
displayed. Interruptions to display messages were made 
at the discretion of the Display Control Operator. Each 
group had direct telephone access to either the Display 
Control Operator or an auxiliary teletype and could 
easily submit a request for data or information update. 
The test successfully demonstrated the capabilities of 
the system, satisfying the requirements of the user 
groups. 

FUTURE DEVELOPMENTS AND 
IMPROVEMENTS 

A number of improvements to the system have been 
considered and, should the need arise, would be incorpo
rated into the system at a future date. Among the more 
significant new developments are the ability to include 
graphic material in addition to the alphanumeric, the 
use of overlays which can be selectively introduced and 
removed, and the introduction of special messages from 
any telephone. It also seems worthwhile to have the 
capability to que~e a series of displays and then be able 
to select any of them in an arbitrary order. 

Computer Generated Closed Circuit TV Displays 135 

MAIN Request for Data CONTROL 
PROGRAM TTY 

Data for Review 

OUTPUT 

BUFFER GO/NO-GO Decision 

t A ux TTY Input 

DISPLAY AUXILIARY 

SUB-PROGRAM Sub-program Response TTY 

CCI CLOSED 
TERMINAL CIRCUIT 

4-Wire TV 

Connection 

Figure 5-How the system works 

The addition of a graphic capability would permit 
the introduction of maps and the presentation of output 
data in the form of curves, and would remove much of 
the present limitations on the type of information to be 
displayed. It would also exploit the ability of a TV 
monitor to present actual pictures together with data 
and text. It seems easy enough to introduce pictures or 
even live action using a standard closed circuit TV 
camera. However, formatting the data and text to 
appear properly with the picture has not yet been 
worked out. 

ACKNOWLEDGMENTS 

We want to express our appreciation to all of our 
colleagues who assisted and encouraged this effort. In 
particular we want to mention Richard Vaughan whose 
help was essential in developing the connection to the 
main program and to James Johnson for his help with 
the equipment. 

REFERENCE 

1 A H BOND J RIGHTNOUR L SCOLES 
An interactive graphical display monitor in a batch-processing 
environment with remote entry 
Comm ACM Vol 12 No 11 pp 595-603 607 1969 





The theory and practice of bipartisan constitutional 
computer-aided redistricting 

by STUART S. NAGEL* 

Yale Law School 
New Haven, Connecticut 

THE THEORY 

The theory behind bipartisan constitutional com
puter-aided redistricting essentially consists of three 
normative criteria which any systematic legislative re
districting scheme probably ought to seek to achieve. 
First, the redistricting system ought to be feasible such 
that it keeps computer time and other costs down to a 
minimum. Second,. the system ought to provide legis
lative districts that will be approximately equal in 
population per representative so as to satisfy the 
Supreme Court's equality criterion, and the districts 
should be so shaped as to satisfy other legal require
ments that relate to contiguity. Third, the system 
sho~Ild consider the impact of the resulting districting 
on Incumbents and on party balance so as to minimize 
the unhappiness which redistricting might otherwise 
produce for political leaders and for diverse political 
viewpoints. 

These three criteria are summarized in the title of 
this paper. The adjective "computer-aided" refers to 
computer feasibility. It also emphasizes that the com
puter aids in redistricting like an elaborate desk calcu
lator and does not do the redistricting itself. The 
adjective "constitutional" refers to the federal and 
state legal requirements with regard to equality and 
contiguity. The adjective "bipartisan" refers to pro
moting mutual party interests rather than ignoring the 
partisan impact that all redistricting inevitably has. l 

Computers can usefully supplement traditional hand 
methods of redistricting. This is so because the com
puter when adequately instructed has great (1) accu
racy, (2) speed, (3) versatility to satisfy many criteria 
simultaneously including legal and political criteria 
(4) ability to break deadlocks by facilitating politicai 
compromises, (5) ability to minimize disruption to 

* On leave from University of Illinois 

137 

incumbents, (6) inexpensiveness relative to the quality 
of the results, and (7) flexibility to allow for local vari
ations and special considerations. The key questions in 
this paper relate to what criteria should the computer 
instructions seek to satisfy and to what extent have 
various redistricting programs addressed themselves to 
those criteria. 

Satisfying computer feasibility 

A logical approach to computer-aided redistricting 
if one had unlimited computer time and funds available 
might be to (1) establish an overall criterion of good
ness; (2) have the computer generate every possible 
combination of precincts or census tracts into a given 
number of districts in the area to be redistricted; and 
then (3) apply the optimizing criterion to each of the 
districting patterns in order to determine which dis
tricting pattern maximizes the criterion. 

Assuming agreement could be obtained among law
yers and politicians on a composite optimizing criterion, 
such an approach would lack computer feasibility. 
With any realistic number of precincts or census tracts 
larger than 40, the number of different districting 
patterns into which they could be made quickly be
comes astronomical and infeasible to handle.2 

A simple alternative to trying all possible combi
nations is to (1) start with the. prevailing districting 
pattern; (2) move each precinct or census tract from 
the district that it is in into every other district· 
(3) each time a move is made check to see if the dis~ 
tr~cti~g has been improved in light of the optimizing 
cnterlOn; and (4) each time an improvement is made 
use that districting pattern as the one to be improved 
upon until no further improvements can be made.3 

This method can avoid making a high percentage of 
moves that would be made in the all-combinations 
method by inserting into the computer program certain 



138 Spring Joint Computer Conference, 1971 

prerequisites that must be met before a move can even 
be checked against the optimizing criterion. For ex
ample, no move of a precinct from its present district 
to another district will be made if the move will cause 
either the district to which the precinct is moved or 
the district from which the precinct is moved to become 
non-contiguous, such that one could not go from any 
point in the district to any other point in the district 
without leaving the district. Likewise, no precinct will 
be moved from its present district if it is the only 
precinct or unit within the present district thereby 
destroying the district and decreasing the number of 
districts. In addition, the district from which a precinct 
is moved must be different from the district to which 
the precinct is moved. 

The above system of moving each precinct from its 
present district to every other district in order to obtain 
successive improvements can also be supplemented by 
simultaneously trading a precinct from one district for 
a precinct from another district. Every pair of precincts 
gets an opportunity to be involved in such a trade 
provided the above-mentioned prerequisites with regard 
to contiguity, multiple-precinct districts, and diverse 
districts are met. When a trade is attempted, the 
resulting redistricting combination is checked against 
the legal and political optimizing criterion to see if an 
improvement has been made just as in the single pre
cinct moving approach. 

Alternatives to the moving-and-trading approach 
other than the all-combinations approach include such 
techniques as the pie-slices approach of Myron Hale,4 
the diminishing-halves approach of Edward Forrest,5 
and the transportation algorithm of Weaver and Hess.6 

A comparative analysis by Michael Strumwasser em
phasizing the computer feasibility aspects of these 
alternative approaches concluded: "The generalized 
swapping algorithms (moving-and-trading), following 
closely the human approach to such a problem, offer 
a better solution than either geometric allocation (the 
pie-slices and diminishing-halves approach) or mathe
matical programming (the transportation algorithm). 
While the latter two approaches are aesthetically satis
fying, the simplifying assumptions are violated in 
practice."7 

One additional aspect of computer feasibility relates 
to the use of optical input and output. Edward Forrest 
has advocated the use of optical scanners to read 
maps as input into the computer,8 but this clearly 
seems to be less economically feasible than relying on 
the Census -Bureau tapes which provide (for each 
census tract or enumeration district) information on 
population, longitude, latitude, and other miscellaneous 
information. Additional clerical work, however, is 
needed (1) to show what precincts touch each other 

precinct and if desired (2) to convert census tract 
boundaries and information into political precincts. 
Forrest also recommends maps as output, but the cost 
would be far higher than an output which says District 
1 consists of Precincts A, B, and C, and District 2 
consists of Precincts D and E, and so on. From that 
verbal information, one can easily draw district lines 
on a precinct map showing what precincts are joined 
together in the same district. 9 

Satisfying the legal requirements 

The legal requirements which any computer-aided 
redistricting scheme should satisfy consist of equal 
population per district and generally contiguity within 
each of the districts. 

Equality of population can be measured in a variety 
of ways. The crudest way, although sometimes quite 
dramatic, is to present the ratio between the most 
populous single-member district and the least populous 
single-member district in the area being redistricted. 
This simple approach obviously ignores all the infor
mation available about the population of the non
extreme districts. At the most complex end of a con
tinuum of equality measures would be such esoteric 
figures as the squared geometric meanlO or the inverse 
coefficient of variation.ll These complex measures have 
no legal standing in that they have never been cited 
as appropriate for measuring equality in a published 
court decision or a statute.12 

The most favorably cited measure of equality in the 
literature is to (1) divide the total population of the 
state or area to be districted by the number of districts 
or seats in the legislature in order to determine the ideal 
population per district or per representative P and 
(2) determine by what percentage the population of 
each actual district deviates from this ideal population. 

If the percentage deviation from ideal for any district 
is more than a few percentage points, then the dis
tricting probably represents a violation of the equal 
protection clause of the Constitution and the demo
cratic notion of one man, one vote. Thus in the most 
recent Supreme Court case dealing with the equality 
standard, Missouri's congressional districting was de
clared unconstitutional even though no district deviated 
from the ideal by more than 3.13 percent. Justice 
Brennan delivering the opinion of the Court stated 
that the "standard requires that the State make a 
good-faith effort to achieve precise mathematical 
equality."14 

It should be noted that no matter how low the 
average deviation is if there is even one district that 
has a substantial percentage deviation from the ideal, 



Bipartisan Constitutional Computer-Aided Redistricting 139 

the whole districting will probably be held unconsti
tutional. This must be recognized in writing the opti
mizing criterion even though mathematicians find it 
more aesthetic to minimize or maximize averages.IS 

Contiguity of districts is the second legal require
ment. It is usually stated as a requirement in state 
constitutions .or state statutes, or prevails as a matter 
of custom with minor exceptions, although it is not a 
U.S. Supreme Court requirement. A district is con
tiguous if one can go from any point in the district to 
any other point without leaving the district. I6 Con
tiguity is sought for many purposes including the pur
pose of (1) simplifying redistricting by eliminating 
many alternative combinations of precincts, (2) en
abling legislators to have easier access to their con
stituents, (3) decreasing partisan gerrymandering, (4) 
encouraging people of similar interests to be together 
in the same district, and (5) making districting patterns 
more understandable and more aesthetically appealing. 

A district can be contiguous and not compact, and 
likewise it can be compact and not contiguous. Com
pactness can either mean being geographically like a 
circle or a square,H or it can mean having its people 
clustered close together regardless of the shape of the 
perimeter of the district. I8 Compactness is not a legal 
requirement. In fact the Supreme Court recently said 
"A State's preference for pleasingly shaped districts 
can hardly justify population variances."19 Likewise the 
Court disparaged the value of population compactness 
as well as geographical compactness by saying "to 
accept population variances, large or small, in order to 
create districts with specific interest orientations is 
antithetical to the basic premise of the constitutional 
command to provide equal representation for equal 
numbers of people.' '20 

In spite of the importance the Supreme Court has 
given to equality and the non-importance it has given 
to compactness and in spite of the importance the 
states have given to contiguity, a number of redis
tricting programs heavily emphasize compactness at 
the expense of equality and do not at all guarantee 
contiguity. 21 

Satisfying the political requirements 

It can be demonstrated that if the precincts, census 
tracts, or other building blocks out of which districts 
are made are small enough, then virtually perfect 
equality can be provided and still allow room for taking 
political interests into consideration. Given this leeway, 
it seems reasonable to expect the politicians to want 
computer-aided redistricting to (1) minimize disruption 

to incumbents, and to (2) facilitate political compro
mIses. 

Disruption to incumbents can be legally minimized 
by the following techniques: (1) the prevailing district
ing plan can be used as a starting point rather than 
starting from an undistricted map of the state; (2) dis
tricts that already come sufficiently close to the ideal 
population can be removed from the redistricting; 
(3) one can select building blocks from which districts 
are built with the knowledge that these units will not 
be broken into smaller pieces; (4) no move will be 
consummated if the new districting is merely equal in 
value to the previous one rather than an improvement 
as measured by the optimizing criterion; (5) redistrict
ing can be done to satisfy the equality requirement and 
then district lines can be drawn· so as to make the 
number of districts dominated by the Democrats or 
Republicans as equal as possible to the number before 
the redistricting. 

Political compromises can be facilitated in various 
ways if the computer redistricting scheme inputs infor
mation on the number of Democrats and Republicans 
in each precinct or building block. For example, the 
computer can quickly show the Democrats and Re
publicans ·what is the maximum number of districts 
which they could each dominate given the Court's 
equality requirements and the partisan information. 
From these outermost positions, both sides can work in 
toward a compromise. Once the equality requirement 
has been met, the computer simply shifts from an 
equality optimizing criterion to a Democratic or a 
RepUblican optimizing criterion in order to reveal those 
outermost positions.22 

Some compromises might require that districts in 
certain sections of the state be drawn to favor the 
Republicans up to a specified point and that districts 
in other sections be drawn to favor the Democrats up 
to a point while providing court-required equality. The 
computer can aid in this kind of politically-oriented 
redistricting, but only if it has been programmed to 
provide for such a political option. 

An option can also be exercised within the computer 
program to make the percent of districts dominated by 
the Democrats (or Republicans) as close as possible to 
the percent of Democrats (or RepUblicans) in the state. 
Doing so provides a kind of proportional representation 
without the complicated voting procedures which are 
usually associated with proportional representation.23 

Finally, the computer also facilitates political com
promises by quickly providing information on the 
partisan composition of the districts in various tentative 
redistricting plans.23a 

In the most recent relevant Supreme Court decision 
with regard to political considerations, the Court said, 



140 Spring Joint Computer Conference, 1971 

"Problems created by partisan politics cannot justify 
an apportionment which does not otherwise pass consti
tutional muster."24 The implication is that if the re
apportionment otherwise passes constitutional muster, 
then problems created by partisan politics and legis
lative interplay can be legitimately considered. 25 

In some states or areas, an additional political 
requirement for redistricting might relate to minimizing 
the negative reaction of minority ethnic groups like 
blacks or Spanish-speaking Americans. Just as the 
computer can attempt to provide proportional repre
sentation to the Democrats and Republicans, it can 
also attempt to provide proportional representation to 
minority ethnic groups by seeking to have the per
centage of districts which they dominate equal to their 
percentage of the population within the state. 

William Below and Michael Strumwasser have pre
pared computer programs that do seek to minimize 
disruption to incumbents and facilitate political com
promises.26 Other programs, however, have lacked any 
attempt to consider their partisan effects although some 
have been labeled non-partisan. Labeling a redistricting 
program non-partisan does not make it non-partisan 
if the results change the partisan balance of power as 
they are likely to do. The non-partisan label has merely 
meant that the computer program so labeled ignores 
the partisan effects of its work, and thus cannot facili
tate political compromises or minimize political dis
ruptionY Robert Dixon in his comparative analysis of 
alternative computer approaches particularly empha
sizes the importance of political sophistication and 
understanding the political impact of computer-aided 
redistricting.28 

THE PRACTICE 

A computer program that was written in 1964 to 
satisfy the requirements of computer feasibility, consti
tutionality, and bipartisanship has thus far had some 
limited applications which might be worth reporting. 
Further applications are anticipated after the 1971 
state legislatures convene and. decide on the general 
procedures they intend to follow in redistricting the 50 
states for congressional and state legislative purposes. 

The first application of the bipartisan constitutional 
program consisted of experimental runs made to convert 
90 downstate Illinois counties from 21 districts down 
to 18 districts.29 Using counties rather than precincts 
or census tracts as the building blocks out of which to 
make districts greatly limited the flexibility to ma
neuver. Under current constitutional standards units 
smaller than counties would be a court-ordered require
ment.30 Nevertheless the redistricting was able to con-

vert the original 21 districts, in which 8 violated the 
Illinois constitutional requirement of no more than 20 
percent deviation, into 18 contiguous districts in which 
none violated the Illinois constitutional requirement. 
This conversion took only 81 seconds of computer 
running time. 

After meeting the Illinois constitutional requirement, 
the program generated various politically-oriented dis
tricting patterns. They ranged from a pattern in which 
the Democrats obtained a majority in only 22 percent 
of the 18 districts, up to a pattern in which the Demo
crats obtained a majority in 39 percent of the districts. 
This ability to provide alternative political patterns 
could have facilitated the Republicans making some 
concessions in the downstate area in return for related 
concessions by the Democrats in the Chicago area. 
Instead both parties moved so slowly trying to develop 
political compromises that the constitutional deadline 
passed and an at-large election had to be held to choose 
the state legislature. 

The next application of the bipartisan constitutional 
program was by William Below working for the Cali
fornia Assembly Committee on Elections and Ap
portionment in 1965.31 According to his report, "The 
program was applied to Assembly districts in Los 
Angeles, Orange, San Francisco, and Santa Clara 
counties. In San Francisco, the use of the program 
served only to verify that a particular set of goals was 
not obtainable. In each of the other counties, plans 
were produced which the committee staff considered 
good enough to submit to committee members and the 
affected incumbents. Three out of the thirty-one dis
tricts in Los Angeles (those which underwent the 
greatest change), were included in the assembly bill 
almost exactly as the program produced them. The 
plans for Orange and Santa Clara Counties were slightly 
changed on the advice of the incumbents. "32 

Below also reports that ";Members of the committee 
staff with no data processing experience became pro
ficient at specifying the initial plans, weights, and 
desired proportions necessary to use the program. "33 
Below's version of the program added increased flexi
bility by (1) allowing different political goals for each 
district rather than just having an overall political 
goal for the area to be redistricted, (2) interspersing 
moving and trading rather than doing all the trading 
after completing all the moving, (3) developing tech
niques for translating census areas into political areas, 
(4) simplifying the information inputed to preserve 
contiguity, and by (5) translating the program into the 
Fortran programming language. 

The third application of the bipartisan constitutional 
program was by C-E-I-R, Inc., for the Illinois Re
publican Party in 1965. Norman Larsen, who handled 



Bipartisan Constitutional Computer-Aided Redistricting 141 

the application for C-E-I-R, reported that the poli
ticians were more interested in being quickly and accu
rately provided with useful information on the char
acteristics of the districts in a variety of tentative 
redistricting plans than they were in having the com
puter produce an optimum output.34 The Republican 
Party was the minority party in the Illinois legislature 
at that time, and its districting patterns were less 
influential on the final result than the Democratic 
districting patterns. Nevertheless the Republican Party 
leaders did buy $31,000 of computer redistricting con
sulting services, and they appeared to be satisfied with 
what they obtained. 

Like Below in California, Larsen in Illinois made 
various changes in the program to take into consider
ation the fact that thousands of townships and other 
units were used to create the districts rather than a 
mere 90 counties as in the original example. The 
contiguity checks in particular were streamlined. Con
tinuous intermediate output was generated to allow a 
monitoring of convergence toward an optimum. Time 
saving conditions were also introduced to eliminate 
various kinds of moves that were not likely to lead to 
an improvement. 

The experience received in applying the program in 
California for a bipartisan state legislative committee 
and the experience in Illinois for the minority political 
party showed that the bipartisan constitutional com
puter-aided redistricting approach is feasible from the 
three viewpoints of computer technology, law, and 
political realism. The approach would clearly be less 
meaningful if it failed to satisfy fully these three es
sential criteria. It is anticipated that other versions of 
this basic program and approach will be developed and 
applied to the 1971 redistricting which is about to get 
under way across the country. 

REFERENCES 

1 A computer program that seeks to achieve all three of these 
criteria and their sub-criteria simultaneously is described in: 
NAGEL 
Simplified bipartisan computer redistricting 
17 Stanford Law Review 8631965 

2 This was the finding of Garfinkel and N emhauser as 
described in the masters thesis of: 
M STRUMW ASSER 
A quantitative analysis of political redistricting 
UCLA School of Business Administration 1970 

3 The essence of this precinct moving system was first 
developed by: 
H KAISER 
,An objective method for establishing legislative districts 
10 Midwest Journal of Political Science 200 1966 

4 M HALE 
Representation and reapportionment 

Dept of Political Science Ohio State University 1965 
See also: 
MHALE 
Computer methods of districting 
In Reapportioning Legislatures H Hamilton ed 
Charles Merill 1966 

5 E FORREST 
Apportionment by computer 
4 American Behavioral Scientist 23 1964 

6 J B WEAVER S W HESS 
A procedure for nonpartisan districting: Development of 
computer techniques 
73 Yale Law Journal 288 1963 
A revised version of their approach is described in: 
CROND INC 
REDIST: Program description and user manual 
National Municipal League 1967 

7 M STRUMW ASSER 
Op cit Ref 2 at p 19 
See Also: 
RISE INC 
Proposal for the reapportionment of the California Assembly 
March 1970 
Available from 417 South Hill Street Los Angeles California 
Because the Hess and Weaver approach begins from many 
starting points rather than from the existing districting 
pattern, their approach can produce many equally equal 
plans which further decreases the feasibility of their 
approach. 

8 E FORREST 
Electronic reapportionment mapping 
Data Processing Magazine July 1965 

9 Providing a map as output does not seem worth the extra 
cost over providing words as output. Along related lines, 
however, providing a system whereby one can move 
population units through a computerized typewriter and 
receive immediate feedback may be quite useful to politi
cians who want to do their own districting, but who want 
the computer to provide information on the alternatives 
they suggest rather than have the computer suggest alter 
natives. See: 
C STEVENS 
On the screen: Computer aided districting 
Conflicts Among Possible Criteria for Rational Districting 
40-49 National Municipal League 1969 

10 H F KAISER 
A measure of the population quality of legislative 
apportionment 
62 American Political Science Review p 208 1968 

11 G SCHUBERT C PRESS 
M easun"ng malapportionment 
58 American Political Science Review p 302 1964 

12 G BAKER 
Implementing one man, one vote: Population equality and 
other evolving standards in lower courts 
Conflicts Among Possible Criteria for Rational Districting 
p 24-39 32 National Municipal League 1969 

13 Where there are multi-member districts involving different 
numbers of representatives in a state, the courts talk in 
terms of population per representative rather than popu
lation per district. Someday, however, the courts may rec
ognize that one voter who is a member of the majority 
interest group in a district with two representatives and 2000 
people has more political power than one voter in a dis-



142 Spring Joint Computer Conference, 1971 

trict with one representative and 1000 people, since the 
first voter can determine who two representatives will be. 
J BANZHAF III 
Multi-member electoral districts-Do they violate the "One 
man, One vote" principle 
75 Yale Law Journal p 1309 1966 

14 KIRKPATRICK v PREISLER 
394 lJ S 526 530 1969 
Although Kirkpatrick dealt with congressional districting, 
its standards would probably equally apply to state legis
lative districting. In fact the equal protection clause which 
applies to state districts, more specifically requires equality 
than Article I of the Constitution which applies to con
gressional districts. 

15 The programs developed by Bill Below and Henry Kaiser 
only optimize averages rather than force outliers under a 
maximum cut-off. 
W BELOW 
The computer as an aid to legislative reapportionment 
An ALI-ABA course of Study on Computers in Redistricting 
American Law Institute 1965 
H KAISER 
Op Cit Ref 3 

16 For two intra-district units to touch or be contiguous they 
must share part of a common line no matter how small, not 
merely a common point. Legal boundaries of land areas 
adjacent to bodies of water normally extend over a portion 
of the water at least for the purpose of court and police 
jurisdiction if not for the purpose of ownership, and these 
extended boundaries should be used in determining con
tiguity not the shoreline. 

17 E C REOCK 
Measuring compactness as a requirement of legislative 
apportionment 
5 Midwest Journal of Political Science 70 1961 

18 WEAVER HESS 
Op Cit Ref 6 

19 KIRKPATRICK v PREISLER 
394 lJ S 526 536 1969 

20 Ibid p 533 
21 WEAVER HESS 

Op Cit Ref 6 
FORREST 
Op Cit Ref 5 
The Kaiser program also lacks a guarantee of contiguity: 
KAISER 
Op Cit Ref 3 

22 For a discussion of the computer programming that is 
involved in both the equality optimizing criterion and the 
various political optimizing criteria, see: 
NAGEL 
Op Cit Ref 1 

23 James Weaver impliedly defines "non-partisan" as provid
ing proportional representation by stating, "A procedure 
blind to politics should provide a random opportunity for 
changes in the party in power, hopefully approximating the 
partisan ratio in the area." 
J WEAVER 
Fair and Equal districts: A how-to-do-it manual on computer 
use 
p 3 National Municipal League 1970 

The Weaver-Hess program, however, makes no attempt to 
provide proportional representation (i.e., to approximate 
the partisan ratio) other than by blind hope. 

23a An additional option can easily be added to the program 
whereby the computer seeks to maximize the number of 
districts in which neither the Democrats nor the 
Republicians have more than 53 percent of the two-party 
vote. This would please political scientists who feel 
competitive districts make for more responsible repre
sentatives, but might displease politicians who prefer 
greater margins of safety. 

24 KIRKPATRICK v PREISLER 
394 lJS 526 533 1969 

25 Thus far, the Supreme Court has refused to declare political 
line drawing unconstitutional where equality was provided, 
WMCA v Lomenzo, 382 lJ.S. 4 (1965). Someday, however, 
the Supreme Court might say that the equal protection 
clause is prima facie violated if the districting plan gives 
the minority party a substantially lower percentage of the 
districts than the percentage of minority party members 
in the state. This would be the case, for example, if the 
minority party constitutes 40 percent of the people in the 
state, but the lines are drawn so that the minority party 
dominates only 15 percent of the districts. 

26 W BELOW 
Op Cit Ref 1 
M STRlJMW ASSER 
Op Cit Ref 2 
Both of these programs are based on the Nagel program, 
Op Cit Ref 1 

27 This is true of the programs of Weaver-Hess, Op Cit Ref 6; 
Forrest, Op Cit Ref 5; Hale, Op Cit Ref 4; and Kaiser, 
Op Cit Ref 3. It is also true of the more obscure programs of 
C HARRIS 
A scientific method of districting 
9 Behavioral Science p 219 1964 
J THORESON J LIITTSCHW AGER 
Computers in behavioral science: Legislative districting by 
computer simulation 
12 Behavioral Science p 237 1967 

28 R DIXON 
Democratic representation: Reapportionment in law and 
politics 
pp 527-35 Oxford lJniversity Press 1968 

29 NAGEL 
Op Cit Ref 1 

30 KIRKPATRICK v PREISLER 
The court said "we do not find legally acceptable the 
argument that variances are justified if they necessarily 
result from a State's attempt to avoid fragmenting political 
subdivisions by drawing congressional district lines along 
existing county, municipal, or other political subdivision 
boundaries." 394 lJ.S. 526,533, 1969. 

31 BELOW 
Op Cit Ref 1 
Information on the California application also comes from 
1965 correspondence between William Below and this writer 

32 Ibid P 7 
33 Ibid 
34 In a report from Norman Larsen to Jack Moshman of 

C-E-I-R, Inc. dated Nov 1 1965 



"Second generation" computer vote count systems
Assuming a professional responsibility 

by COLBY H. SPRINGER and MICHAEL R. ALKUS 

Systems Research Inc. 
Los Angeles, California 

In recent years, the costs of holding an election have 
increased substantially. Not only are more voters being 
added to the registration rolls, but rising numbers of 
candidates and issues have bloated ballot 'sizes in city, 
county, and state elections. Not surprisingly, the most 
promising solution to the growing vote tabulation 
problem has seemed to lie in the application of automatic 
data processing technology. Few would disagree that 
computers should be able to perform the vote counting 
task more economically and efficiently than any of the 
other systems which have been designed for 'that 
purpose. Because vote counting appeared to 'be a 
relatively simple tabulation process, it seemed to be an 
ideal example of the kind of job computers do best: 
counting quickly, cheaply, and accurately. 

In terms of the number of elections successfully 
completed, computer vote counting systems have turned 
in a satisfactory record. Both major punched card voting 
equipment manufacturers have "run" hundreds of 
elections. The exceptions, however, have been notable. 
Fresno, California, has experienced consistently late 
counts; Los Angeles suffered nationwide publicity with 
its own tardy returns; and Detroit endured two late 
counts after a history of successful elections with 
lever-type voting machines. It has been the latter 
cases-the only two large-scale applications of computer 
vote counting systems-which have resulted in wide
spread questioning of the ,concept of computerized 
elections by the public. 

There appear to be three reasons for the failures. 
First, punched card'ballots are themselves susceptible to 
damage from handling. Second, centralized elections of 
any kind-particularly those involving the introduction 
of a new technology-require precise planning and good 
management. Third, the manufacturers' computer 
software systems have contained major design weak
nesses~ Although any of these problem areas might 
result in delays in any election, the duration of such a 

143 

delay is magnified in a large election because of the 
sheer volume of the processing task. 

Several election delays have resulted from punched 
card damage. In the Flint, Michigan, 1970 general 
election, cards soaked in heavy rains failed to feed--even 
after being baked in the high school oven. Similarly, 

Figure I-A typical punched card voting machine in use. 
The stylus is used to pUl1ch through a mask and 

template to the ballot inserted below 



144 Spring Joint Computer Conference, 1971 

Figure 2-The punched card is inserted in a ballot envelope. 
The attached stub is then removed and given the 

voter as a receipt 

punched card ballots in Detroit, after being stored in an 
uncontrolled environment for several rainy days before 
the election, failed to feed because of edge softness. The 
Los Angeles County audit team suggested consideration 
of alternate media, but concluded that the economy of 
punched cards makes them the only medium currently 
practical. 1 

Reports from both Los Angeles County and the City 
of Detroit 1970 primary electIons pointed to specific 
planning and management weaknesses as one cause of 
election failures. These experiences indicated that 
probl~~s in t:ansportation, ballot protection during 
transIt, InSpectIOn, and the performance of inexperienced 
personnel were related to inadequate preparation for the 
massive demands posed by the sheer logistics of these 
op,erations. Further, management can be hampered by 
election laws written for paper ballots. Although most 
punched card voting machine manufacturers include 
some management services as part of their support 
package, legal requirements demand that election 
officials remain in control of election night operations. 
This fact alone can result in situations where decisions 
must be made by election officials who do not have a 

complete understanding of the underlying data pro
cessing system. In one case-Detroit-contractor 
personnel were precluded by legal interpretation from 
being present at the counting sites. On the other hand . ' countIes with strong data processing management a 
history of successful data processing applications, ~nd 
close coordination between data processing and election 
officials have had good elections. One of many good 
examples is California's Santa Clara County. 

In the Los Angeles example, a massive planning and 
management effort (mounted after long delays had been 
experienced in the June, 1970 primary) produced a 
general election count without significant delays. 2 

Previous planning oversights were avoided by transfer
ring major responsibilities to the County Administrator's 
Office supplemented by a significant amount of outside 
consulting talent. According to one report, the extra 
effort raised the cost of the November election to more 
than $2.00 per ballot. 

But another basic contributor to the major election 
system failures has been the computer software design 
itself. This paper focuses on such system weaknesses and 
suggests major design changes. It identifies the need and 
·suggests improvements for design and programming 
standards, auditing procedures, and support 
documentation. 

CURRENT DESIGN 

It was the issue of security that first brought attention 
to the weaknesses of computer vote count systems. Our 
original research efforts focused on the possibility of 
deliberate program modification as a potential security 
threat. * This preliminary research, including the con
struction and analysis of a model vote count system, 
uncovered several potentially disastrous weaknesses. 
The November, 1969 Intellectron reporV identified the 
following: 

• The manufacturer-supplied operating system was 
vulnerable to modification and would permit 
changes without requiring access to the user
developed vote tabulation programs. 

• Detection of a vote bias routine-one which would 
change the ballot image-would be difficult during 
production without destroying the election results. 
Furthermore, such a routine could be written 

* This and subsequent investigations were directed toward the 
IBM Votomatic System as implemented in Los Angeles County. 
~ll commercially marketed punched card voting systems currently 
ill use are forms of V otomatic. Although IBM has not released a 
list of the firms now marketing these systems seven have been 
identified. ' 



without altering linkage editor totals or core-image 
length. 

• A valid "logic and accuracy test" would require 
either a sophisticated computer program or pro
hibitive amounts of computer time-perhaps 
several times as much as that required for the actual 
vote count itself. 

• Many techniques of computer vote fraud require 
the access of only one person and, at most, an 
operator and a programmer. 

• None of these techniques would be detected by a 
casual 0 bserver, even if he had an extensive 
background in data processing. 

These findings indicated that the possibilities for 
system failures-not only due to fraud, but to un
intentional error as well-had been seriously under
estimated by their designers.4 The subsequent elections 
proved the prediction to be correct. 5,6,7 

The analysis of these problems in the Votomatic 
system may, however, prove valuable in constructing 
"second generation" vote count systems. While such a 
detailed analysis of current systems has not been made, 
it is now possible to identify some of the factors which 
should be included in future systems. 

At least part of the problem derives from a basic 
misconception on the part of some of the users and 
systems developers themselves. Although the job may 
seem to be relatively uncomplicated, in fact, the 
challenges offered to a conscientious designer are 
anything but trivial. First, the accuracy attained by 
such a system must be absolute and unquestionable. If 
the slightest doubt as to the reliability of the resu~ts is 
tolerated, one of the prime goals of the system-main
tenance of public confidence in the sanctity of the 
ballot-is forfeit. 

Second, the system must operate under the most 
exacting timing requirements. In the short period 
between the determination of candidates and issues and 
election night, ballots must be designed, printed, and 
distributed; workers must be recruited, trained, 
organized; and program modifications must be com
pleted, tested, and certified. The system must deliver 
results promptly and reliably on election night-and it 
must do so the first time. 

Third, the system must be extraordinarily secure. 
Computerization means centralization: where counting 
was once conducted by precinct workers scattered 
throughout many locations, a computerized system 
necessitates consolidation of election night activities, 
and a corresponding threat to security. Centralization 
of counting processes reduces the obstacles to a 
would-be vote embezzler-where previously he would 

"Second Generation" Computer Vote Count Systems 145 

have had to bribe or coerce large numbers of election 
workers, under the new systems he need only alter the 
central counting mechanism. For this reason, that 
mechanism must contain adequate multiple safeguards. 

Last, because of the high stakes involved in election 
tabulation, the entire vote counting process must be 
reconstructible. Although extensive audit proce-dures 
are not normally provided in non-financial systems, 
audit trails are needed here on several grounds. One 
clear reason is that the threat of deliberate tampering is 
reduced when audit procedures increase the likelihood 
of such activity being discovered. Another is that 
accidental error is less likely to escape unno~iced, and 
the program fault which allowed it to go uncorrected, 
when control totals are automatically compared during 
the course of tabulation. Perhaps most importantly, 
thorough audit procedures can answer challenges to the 
validity of results, and thus act to maintain public 
credibility. 

Clearly, the system which fulfills all of these require
ments performs far more than a simple tabulation task. 
And yet, in spite of the obvious need for the safeguards 
and redundancies required by any high-security 
system, few of those now used in vote counting contain 
even one of the performance characteristics described 
above. The system outlined in this paper is designed to 
meet the special demands which the past several years 
have shown to be made of such systems. The technology 
is now present to implement the system described for 
small- and medium-sized elections; and it is reasonable 
to believe that a rigorous research effort could yield one 
capable of handling very large elections, as well. 

DESIGN CONCEPTS 

A vote tabulation system must be designed to satisfy 
three criteria: assurance of ballot security; performance 
of tabulation functions at minimum cost; and prompt 
issuance of election results. 

Of these criteria, security is clearly the most critical. 
An electronic vote tabulation system must provide 
special safeguards against both accidental and inten
tional alteration of the results. These safeguards can be 
provided by internal audit procedures, by full opera
tional testing of all peripheral (as well as the main 
counting) programs, and by external inspectors and 
observers. A system can be designed to take advantage 
of the high speeds of third generation computers to 
provide more thorough reports, more complete auditing 
than is currently available, and to allow independent 
inspection of any of its procedures or results. 

A system properly designed to reduce the cost of 
ballot preparation and vote tabulation can achieve 



146 Spring Joint Computer Conference, 1971 

economies unavailable through any other tabulation 
method. A well-planned system can reduce the costs of 
tabulation until they become a small fraction of the 
overall expense of conducting an election, and without 
compromising security. Similarly, the introduction of 
computers to the ballot preparation stage can offer 
significant savings and increase the reliability of 
pre-election activities. 

SYSTEM CHARACTERISTICS 

A vote tabulation system includes the computer 
tabulation and auditing programs and documentation, 
and a planning guide. A specific "second generation" 
system described below would offer a series of computer 
programs for the preparation, tabulation, and audit of 
an election. It is significantly more extensive than 
current systems, since ballot design and auditing aids 
are included-although both features have been recom
mended to improve security and reduce potential errors, 
neither has yet been incorporated in an operational 
system. The introduction of computer techniques early 
in the process would offer significant economies and a 
higher degree of security than is possible when computers 
are used only in the tabulation process.* 

A specific system design best illustrates the features 
requisite to this type of computer program. The design 
suggested below is the result of a preliminary research 
project conducted to provide such an illustration. 
The programs have not been tested. 

Ballot preparation 

Recent experiences have shown that the preparation 
of ballots is a crucial step which, if performed im
properly, can prevent the rest of the system from 
functioning as intended. Further, the communication of 
ballot formats to the tabulation program has often been 
difficult, creating errors in the actual vote count. These 
difficulties can be a voided by using the computer to 
prepare the ballot assemblies, sample ballots and other 
reports, and having the ballot preparation program 
itself communicate format to the tabulation program. 

In the proposed system, the ballot assembly program 
receives as input appropriate precinct data, the political 
units in whose borders each precinct lies, the candidates, 
the offices for which the candidates are running, and the 
rules by which candidates' names are rotated on the 

* This specific change has been strongly recommended by the 
audit teams for both the Detroit and Los Angeles elections, See 
References 1 and 2. 

ballot. The program then produces the design of the 
actual pages to be placed in the voting machine as well 
as the ballot assemblies for all precincts. 

The same program can produce the sample ballots to 
be mailed to voters, and proof sheets for comparison 
with ballot assemblies distributed to the precinct. 8 

Other reports generated by the program include ballot 
layout summaries for candidates, parties, election 
officials, and impartial observers. This innovation is 
included to assure candidates that the precinct com
ponents of their vote have been correctly identified for 
their office. 

Internal checks in this program assure completeness 
and consistency of the output. 

The ballot preparation program also produces 
machine-readable tables representing the ballot patterns 
for each precinct. These tables are read directly into the 
computer on election night by the ballot tabulation 
program. 

Ballot tabulation 

Ballot tabulation programs and procedures are 
designed to provide speedy reporting of election results 
with a complete audit trail and documented reconstruc
tion of the count. 

The first phase in ballot tabulation is media conver
sion. The ballots, having been delivered to the computa
tion center, are unpacked, scanned for physical damage 
(e.g., hanging chad) and read into a computer which 
copies them onto magnetic tape. While the ballots could 
be read directly into the ballot tabulation program in 
card form, media conversion permits preliminary audit 
checks and produces a magnetic tape which can be used 
by later programs for generating various reports. The 
program includes a restart capability so that a core 
dump can be taken during the counting process. 
Furthermore, special provisions are made for recovering 
from card jams-a problem which often plagues such 
systems. The special cards used by most voting systems 
are particularly susceptible to card jams in high speed 
card readers. Because of equipment design character
istics, it is often difficult to determine which card caused 
the jam, and to identify the last card to be read. 
Consequently, votes may be counted twice-or not 
counted at all-during recovery from a card jam. To 
prevent such occurrences, the media conversion program 
is designed to restart without duplication every time a 
card jam occurs. Restart points are frequently printed 
out on the console, so that, following any card jam, the 
data stream may be reinitiated from the last ballot 
whose proper reading is confirmed. 

The second phase of the tabulation process is the 



"Second Generation" Computer Vote Count Systems 147 

Figure 3-A common difficulty with the punched card as a ballot 
medium is the incomplete punch. The resultant hanging 
chad must be removed by inspectors on election night 

actual vote counting and report generation. The vote 
tabulation program receives the magnetic tape contain
ing the card images of the ballots and the pattern tables 
indicating ballot formats as generated by the ballot 
preparation program. The tabulation program reads the 
ballots and totals them by precinct and by office. 
Intermediate totals are maintained (1) on a direct access 
disk file, (2) on a sequential access tape file, and (3) in an 
intermediate totals report produced on the printer. The 
program prints out restart points so that an observer 
may call for the count to be stopped while a core dump 
is taken. This dump can be compared with one taken 
before the start of processing to verify the security of 
the vote count program itself. Once the dump has been 
taken, the program can be restarted at the point where 
counting was interrupted. In addition to displaying the 
contents of core memory, all data on disk files and 
intermediate counters can also be printed out. 

In addition to the reports listing the results of the 
election by office and by precinct, the election night vote 
tabulation program leaves numerous independent audit 
trails. These trails--on the disk pack, on the tapes 

produced by the vote count program, and on in
dependent tapes produced by the media conversion 
program--are all retained and used in the audit 
programs after the election count. 

Audit 

Additional programs are provided to form an audit 
of the election. This audit insures that all ballots 
(including those held at supply centers as well as those 
actually distributed) have been accounted for, and that all 
intermediate totals produced in the various stages of the 
tabulation process balance. In addition, quality control 
totals of undervotes, overvotes, and mutilations are 
maintained to insure that results satisfy certain minimal 
reasonability requirements. The audit programs also 
provide a report noting all disqualified and unmarked 
ballots in each race. 

Recount system 

In addition to the audit prepared and run by election 
officials, the system makes provision for recounts 
performed for or by candidates, parties, or impartial 
observers. Three kinds of checks may be performed at 
the option of the party requesting the recount. 

A manual recount simply allows the parties involved 
or election officials to retabulate the votes by counting 
holes on the cards-themselves or their printed images. 

A machine card recount provides for recounting from 
the cards themselves (rather than tape-resident card 
images) by computer program. 

A tape recount is done by computer on the actual tape 
used in the tabulation program. 

A recount using a distributed copy of the card image 
tape can be run on any computer using any program 
chosen by the challenger. 

HARDWARE AND SOFTWARE 
CHARACTERISTICS 

The technical design of the system represents a 
departure from previous electronic vote tabulation 
systems. Previous systems have employed low-level, 
machine-oriented programming languages in an effort to 
maximize computational efficiency. Leaving aside the 
judgment about the wisdom of that decision for large 
municipalities, it appears clear that for smaller elections, 
computational efficiency is not of prime importance. 
Clarity, security, and ease of modification are much 
more vital to the design of such a vote tabulation 



148 Spring Joint Computer Conference, 1971 

system. Consequently, all programming should be done 
in a high-level, user-oriented· programming language, 
such as COBOL, or preferablyPL/l. While these 
languages do not generate the most efficient machine 
code, a knowledge~ble programmer with no previous 
familiarity with the program would be able to under
stand the functioning of an intelligently-organized and 
well-commented PL/l vote tabulation program. 

This choice offers several advantages. First, the 
program could receive wide distribution to all interested 
parties who could then verify its accuracy to their own 
satisfaction without actually running the program. 
Second, modifications to the program to accommodate 
different equipment, different recording requirements, 
or different organizational features of an election 
would be made much easier using a high-level language 
and modular program construction. 

SOFTWARE 

The system design identified in preliminary research 
which would fill the requirements of such a system 
included eleven specific programs. They were; 

• Ballot Assembly Preparation Program 

• Assembly Audit Report Program 

• Media Conversion Program (card to tape) 

• Logic and Accuracy Test Program 
• Vote Tabulation Program 

• Inspector Audit Program A (for media conversion 
program) 

• Inspector Audit Program B (for vote tabulation 
program) 

• Ballot Inventory Reconciliation Report Program 

• Ballot Image Print Program 

• Core Dump Comparison Program 

• Election Results Analysis Report Program 

The system, unlike present systems, is heavily oriented 
toward audit and proof programs designed to check each 
operation through an independent program. The system 
uses the computer throughout the election process from 
ballot design through a· quality control analysis of the 
counted ballots. 

CONCLUSION 

Regardless of what system is used, computers will 
continue to be employed in the tabulation of election 
returns. If insecure, poorly-documented and hastily-

modified programs are used, the scare headlines, public 
investigations, and official indignation we have already 
witnessed will continue to be aimed at the computer 
profession, and we need only await the first major 
election scandal for the threat of government regulation 
to become a reality.* 

At issue is the larger question of professional 
responsibility. At present, no mechanism exists for the 
self-regulation of the industry, and no universal code of 
'good practices' has been defined. Iil a highly sensitive, 
highly visible system like vote counting, this oversight 
stands as an invitation to disaster. Even if we will not, 
the public will hold the profession accountable for its 
responsibility to society. If members of the profession 
are to undertake responsible assignments, those who 
assume these assignments must be held accountable for 
their work. 

The vote count system described here is offered as an 
example of the kind of design approach which assumes 
social responsibility as a basic design requirement. It 
may not perform the vote counting task more quickly or 
inexpensively than do present systems, but does address 
the larger-and potentially vital-issues of security and 
credibility. 

It is hoped that the kinds of problems it treats will be 
met by future vote counting system designs, and that 
the same kinds of issues will be recognized wherever 
they occur in the computer industry. 

REFERENCES 

1 H H ISAACS ET AL 
Final report County of Los Angeles votomatic computer 
system audit 
.Isaacs Associates Inc Los Angeles California Volume II 
p 10 1970 

2 ECONOMICS RESEARCH ASSOCIATES 
Evaluation of planning and performance for the November 
1970 general election 
Economics Research Associates Los Angeles California 
pp 11-1 V 1-2 _ 

3 J FARMER C H SPRINGER R STANTON 
M J STRUMWASSER 
Vulnerabilities of present computer vote count systems to 
computer fraud 
Intellectron International Inc Van N uys California 
November 1969 

4 R L PATRICK A DAHL 
V oting systems 
Datamation May 1970 

* Eleven states have already forbidden the use of the computer in 
election tabulation. The California legislature is investigating the 
licensing of computer programmers and operators. 



5 And the winner is ... '! Computer is the loser in Michigan 
election 

Wall Street Journal August 6 1970 

6 Primary highlighted by discrepancies, irregularities 

Computer W orId October 7 1970 

"Second Generation" Computer Vote Count Systems 149 

7 State, local probes ordered into ballot mixups, delays 
Los Angeles Times June 4 1970 

8 ECONOMICS RESEARCH ASSOCIATES 
Report to the Los Angeles County election security committee 
Economics Research Associates Los Angeles California 
August 1970 





Evaluation of hardware-firmware-software trade-offs with 

mathematical modeling 

by H. BARSAMIAN and A. DeCEGAMA 

The National Cash Register Company 
Hawthorne, California 

INTRODUCTION 

The 70's are expected to become the beginning of the 
era of intellectual maturity of the information pro
cessing systems. Until now the main challenge was the 
adaptation of problems to the computers. The new 
challenge is the adaptation of computers to the 
problems. 

Presently the engineering know-how and the state-of
the-art of the technology have reached a stage where 
the design of a" good" computer is no longer a mystery. 
However, the understanding and the efficient utiliza
tion of computers in terms of cost/performance/user 
need is far from satisfactory. The deficiencies in present 
computing systems are due mainly to the neglect of 
comprehensive disciplines and formal techniques for the 
integral design, analysis and evaluation of computer 
systems and user tasks. As a result, the computer user 
usually pays more than he should and/or gets less than 
he needs. To bridge the gap between designing a" good" 
computer and its efficient utilization, a major reorienta
tion in the design and evaluation philosophy of informa
tion processing systems should take place. With opti
mum cost/performance indices as the ultimate goal, the 
main design guideline must be systems adaptation to 
user problems through tailored computer hardware and 
software. 

From the user's standpoint, this is the ideal approach. 
For the computer manufacturer however, this approach 
has constituted a cascade of technological, design, 
manufacturing and maintenance problems which have 
compounded to produce almost prohibitive systems 
costs. These costs impact negatively on potential users, 
frequently surpassing the "psychological barrier" of 
the buyers, particularly in the commercial market. 
Recent technological advances, specifically semicon
ductor LSI technology, seem to promise a positive 
solution to most of the manufacturer's problems 

151 

indicated above. LSI technology has the potential vI 
bringing the practical capabilities of the computer 
manufacturer closer to the needs of the user. However, 
the satisfaction of the user's needs in terIl!s of cost / 
performance efficiency of. their computing installations 
continues to be a fundamental and complicated task. 
The specifics of user applications, as well as the func
tional and control characteristics of the entire com
puting system are highly interrelated. They need to be 
analyzed systematically and evaluated quantitatively 
as characteristics of a consolidated information pro
cessing system. 

This paper emphasizes the necessity of employing the 
integral hardward-software approach for design and 
evaluation of computing systems. Three relevant 
topics are discussed: 

1. Formulation of the task and the strategy for 
designing more efficient computing systems 
through hardware-firmware-software trade-offs. 

2. The analytical tool applied for quantitative 
evaluation and optimization of these systems, 
namely the mathematical modeling techniques. 

3. An example of the implementation of the pro
posed methodology. 

HARDW ARE-FIRMW ARE-SOFTWARE 
TRADE-OFFS 

Task formulation 

The analysis of. contemporary computing systems of 
conventional architecture (the overwhelming majority 
of present general purpose computers) reveals that 
performance inefficiencies are caused mainly by three 



152 Spring Joint Computer Conference, 1971 

principal factors: 

1. Excessively complex, costly and often poorly 
designed software-caused by the neglect of 
comprehensive scientific disciplines in the design 
of both systems and applications software. As a 
result, the quality of the computer software 
depends heavily upon the subjective human 
factors of the designer. 

2. The logical primitiveness of the computer 
hardware. A typical" general purpose" computer 
has only the adder as its sole decision-making 
mechanism. All other system components, e.g., 
memories, transmission channels and peripherals, 
do not have any intellectual capabilities. It is 
the burden, then, of the software to schedule and 
control the functions of these components, as 
well as perform all kinds of data manipulations 
in the CPU (factually in the adder). 

3. The large gap between machine and program
ming languages. Software interpreters or com
pilers perform the enormous task of language 
translation and program conversion from the pro
cedure oriented source languages to the object 
machine codes. As a result, a significant portion of 
computer power in terms of time and space (as 
much as 70 percent) may be spent for program 
compilation. The user, whose only interest is 
the solution of his problems, pays for this 
wasted computer power. 

Thus, the epicenter of problems seems to be related 
to the hardware-software ratio used for performing 
processing functions within the computing system. 
Computing systems with improved cost/performance 
efficiency can be designed by redistributing the pro
cessing functions performed in the hardware and 
software. Such a redistribution must be balanced and 
evaluated quantitatively within the range of the 
optimum values of two target functions: cost and 
throughput (response time for on-line or real-time 
systems) for the whole computing system. Accordingly, 
an overall system design and evaluation strategy can 
be postulated: 

1. Delegate more computational procedures and 
algorithmic functions to the computer hardware 
(both in the main-frame and the peripherals) by 
hardware-firm ware-software trade-offs (HFS). 
These trade-offs must be aimed toward the 
following goals: 
(a) Simplify the structure and the design of the 

software systems. 

(b) Allow more space and time for the executive 
and user programs within the given system 
configuration. 

( c) Narrow the gap between the machine and 
source programming languages by incor
porating more procedural contents and 
functional complexity into the primitives of 
the machine language; thus, allowing the 
computers to be driven primarily by input 
data rather than by programs. 

2. Apply analytical techniques for evaluation and 
optimization of proposed system architectures. 
A mathematical model with acceptable accuracy, 
rather than a simulation model, appears to be a 
suitable and efficient tool for the fulfillment 
of these tasks. Two peculiarities of the mathe
matical model must be underlined: 
(a) The mathematical model considers the com

puting system as a complex stochastic 
model of queueing, resource sharing, sched
uling and allocation processes. 

(b) The parameters of the computing system as 
well as the characteristics of the processing 
environment and the user requirements are 
considered as interrelated control and/or 
state variables of the model. 

The strategy 

Actually the HFS trade-o:ffs are an economical 
problem facing the computer architect. Theoretically, 
any computable problem can be solved on a single bit 
adder operating with an infinitely long serial memory 
(Turing-type machine). However, any realistic com
puter architecture of mini-, midi-, or super-scale is the 
result of a compromise made between the computational 
speed (or the throughput) and the practicality of the 
systems cost. The criteria for this compromise are: 
(1) the satisfaction within a reasonable elapsed time of 
the computational needs of a certain class of users, 
(2) suitable man-machine communication features, 
i.e., programming and operating aids, and (3) an 
acceptable price/performance ratio. Thus, the speed
cost trade-off is the creed of the· computer designer. 

Contemporary computing systems can be considered 
as a superposition of physical and logical media. The 
physical medium (the hardware) is the host environ
ment where the logic (the software) resides and carries 
out the information processing task. Although com
pletely different by their physical and technological 
nature, the computer hardware and the software 
consitute together an indivisible architectural assembly 
designated to solve user problems. Thus, the computer 



Evaluation of Hardware-Firmware-Software Trade-Offs 153 

system is an integral hardware-software system and 
speed-cost trade-offs must be optimized for the integral 
system, not for the hardware and the software sepa
rately. Although this may seem to be a trivial definition, 
its implications constitute a fundamental impact on the 
design and evaluation efficiency of computer systems. 

In the process of computer design, the distribution 
of processing functions to be performed in the hardware 
and the software as constituents of an integral system 
architecture is subject to the same speed-cost trade-off 
rules. Traditionally the computer architect solved this 
dilemma based on engineering intution, experience and 
some superficial figures of cost and performance, 
assessing mainly isolated physical characteristics such 
as the CPU hardwarE\ cost, the add time and/or 
memory cycle time. Applying these and like criteria for 
the evaluation of computer systems performance is 
analogous to applying Newton's classical theory to 
quantum mechanics, i.e., adopting a static view of a 
multidimensional and highly dynamic process. The 
parameters mentioned above are necessary but no 
longer adequate in the performance evaluation of 
present (and future) computing systems for the 
following reasons: 

1. The CPU hardware cost, specifically in this era of 
batch fabricated components technology, con
stitutes a very small percent of the total system 
cost (approximately 3 percent). 

2. The add time, as any other machine instruction 
execution time, cannot by itself indicate system 
performance since most programming is done 
in higher level languages. 

3. Faster memories (even if program codes are well 
optimized) do not directly benefit the user 
because they store more than just the user 
programs. Moreover, if the computing system 
is I/O bound, often the case in business applica
tions, then the fast memory becomes an ex
pensive luxury for the user. 

The inadequacies of other static parameters
memory capacity, I/O transfer rate, machine word 
length, etc.-as system performance criteria are also 
obvious. 

Program execution times or the number of programs 
executed per unit time, however, do reflect all the 
architectural and combined functional characteristics 
of the computer system. Thus, during the computer's 
architectural design period, the ideal speed-cost trade
offs should be evaluated and optimized on the execut
able program level rather than on the machine in
struction level. In the case of general purpose com
puters, however, this is an enormously difficult if not 

impossible task. Such an approach seems to be more 
practicable on the next lower level of functional 
complexity i.e., on the level of independent processing 
sequences, algorithmic functions, routines or macros, 
which represent functional building blocks for both the 
user and executive programs (compilers, operating 
systems, utilities). Search, insertion and file retrieval, 
sorting, table reference and inversion, scanning (in 
compilers), stack manipulations, floating point and 
variable field arithmetic, trigonometric and tran
scendent functions, I/O interface control, links, error 
recovery, interrupt handling and reentry are repre
sentative sources of such functions. It is suggested 
that the procedure of dividing the computer's processing 
tasks into independent or semi-independent functional 
building blocks may be called ALGORITHMIC 
PARTITIONING. 

The execution path of an algorithmic partition 
utilizes more of the various system resources and 
exercises. their functional capabilities to a greater 
extent. Therefore, more optimized speed-cost trade-offs 
are achievable at this level of functional complexity than 
at the traditionally considered machine instruction 
level. Through algorithmic partitioning a noticeable 
software-hardware interface can be drawn, which is the 
necessary condition and the basic platform for efficient 
HFS trade-offs. 

Microprogramming: the vehicle for implementation 
of H F S trade-offs 

Microprogramming was first introduced in the 
early 50's as the "best way to design a computer."5 
Microprogramming, virtually, is a control discipline 
which allows the design of instruction execution flows 
and the functional sequencing of digital processors in a 
more systematic way. Microprogrammed interpreters 
can be designed for algorithmic partitions performing 
orderly structured processing functions. These inter
preters, composed of micro-instructions and stored in 
special read-only (ROM) or read-write (RWM) control 
stores, are called firmware. 

In choosing an approach for the implementation of 
HFS trade-offs, the following factors must be taken 
into consideration: 

a. The importance of computer emulation, which 
requires the availability of additional (non
pre designed) primitive functions at the lowest 
possible logical level of processor's hardware. 

b. The trend toward increasing the intellectual 
capabilities of computer hardware, which neces
sitiates the control of more complex data 
manipulation schemes and increased number of 
information flow paths. 



154 Spring Joint Computer Conference, 1971 

Microprogramming is the most efficient technique 
for achieving such capabilities. Also, microprogramming 
offers more economical design of modern processors due 
to the availability of inexpensive and fast LSI semi
conductor control memories for storing the coded 
control sequences (microprograms), and to the suit
ability of ordered and repetitive memory structures 
(rather than non-standard logic networks) to LSI 
implementation. These factors suggest that through 
microprogramming, optimum cost/performance and 
functionally flexible HFS trade-offs can be attained. 

Although the implementation details of micro
programmed processors are outside of the scope of this 
paper, two aspects of control store organization, 
pertinent to HFS trade-offs, must be discussed: static 
versus dynamic and centralized versus distributed 
microprogramming. 

One of the major benefits of using microprogram
ming as a control discipline is the possibility of tailoring 
a great number of primitive function combinations to 
facilitate the execution of programs and to allow more 
efficient emulation of different machines or languages. 
The use of a ROM of limited capacity for the control 
store, static microprogramming, considerably dimin
ishes the functional flexibility of the microprocessor. 
Any microprogram modification after the original 
design and the micro coding is completed can be done 
only in an off-line fashion. The alternative is to provide 
a very large capacity of ROM which can accommodate 
all the possible combinations of primitive functions and 
allow microprogram switching. The estimates show 
that, in this case, an astronomically high number of 
bits are required for the control store and obviously 
such an approach is not practical. The use of a RWM 
for the control store will allow dynamic microprogram 
alterations under supervisory control. The micro
programs now can be treated as user programs, subject 
to online editing and modifications, reloading and swap
ping, thus allowing some kind of multi-microprogram
ming capabiltities. This appears to be a highly desirable 
feature for multi-purpose emulation. Dynamic micro
programming is beneficial to the computer designer and 
the user. It permits accomplishment of a more flexible, 
more error free and more easily maintainable logic 
design, while the user gets a potentially more powerful 
processor within the given physical constraints and 
costs. 

In a conventional microprogrammed processor a 
single control store is designated for all microprograms. 
The use of multiple control stores designated for 
separate microroutines or group of microroutines is 
another way to achieve optimum design and perform
ance. Such an approach is feasible, specifically, with the 
LSI technology since the cost-capacity relationship of 

semiconductor memories is a nearly linear function. 
An efficient decentralization of the control medium can 
be accomplished with microroutines that are function 
and time exclusive. Additional factors to be con
sidered are interface characteristics, registers, and other 
architectural features of the processor. The main ad
vantages of distributed microprogramming are the 
achievement of a more compressed microcode, and its 
suitability for parallel execution or pipelining of 
different microroutines stored in physically separate 
control stores. Also, distributed microprogramming 
permits a higher degree of firmware maintainability 
and diagnosibility. 

HFS trade-offs for algorithmic partitions imple
mented with dynamic and distributed microprogram
ming positively impact the overall computer system 
architecture by providing the following characteristics: 

a. The realization of modularized and simplified 
design, maintenance and debugging of major 
software systems, e.g., compilers and operating 
systems. 

b. Machine language which is more procedure 
oriented and less sensitive to the computer's 
hardware design specifics (it appears as machine
independent intermediate type language). 

c. Better utilization of the available hardware and 
a more faceless logical structure due to the 
dynamic alterability of microinstructions. Thus, 
versatile and efficient emulation can be per
formed. 

The justification of HFS trade-offs from the com
puter engineering and manufacturing standpoint is 
rationalized not only by the prospect of lowering 
production costs (mainly due to the advances of LSI 
technology) but also by substantially increasing systems 
throughput. The use of more complex machine instruc
tion sets and increased numbers of processing and 
algorithmic functions performed in hardware-firmware 
will result in increased availabilty of memory space, 
fewer references to the slower main memories, and 
diminished systems interrupt overhead-hence, faster 
program generation and execution speeds. 

These facts lead to rather an interesting conclusion, 
which at first seems controversial. All other conditons 
being equal, the HFS trade-offs allow the attainment 
of required systems throughput by using slower, and 
consequently cheaper, logic circuits, and main memories. 
Thus, "the faster, the better" approach for selecting the 
logic circuits appears not to be the axiomatic guideline 
for achieving increased performance of a computing 
system. The present circuit speeds have nearly reached 
their physical limits. Therefore, harmony between the 



Evaluation of Hardware-Firmware-Software Trade-Offs 155 

execution speeds of decentralized microprocessors (the 
result of JIFS trade-offs) and the speeds of their 
communications interfaces must be the prime con
sideration for improved performance in computing 
systems. 

Thus, it seems apparent that through HFS trade-offs 
optimum integral hardware-software systems can be 
designed. Using firmware with its algorithmic contents 
and two logical interfaces-an interpretive interface 
with the software and an executive interface with the 
hardware-as a buffering medium, the ratio of hard
ware and software functions can be balanced. As 
mentioned earlier, this ratio has an overwhelming 
impact on the cost/performance index of a computing 
system, therefore, its quantitative evaluation and 
optimization are tasks of paramount importance. 

THE MATHEMATICAL MODEL 

The Mathematical Model (MAMO) used for the 
evaluation of HFS trade-offs constitutes a recent 
development in the evaluation and optimization of 
computer systems.1 It can predict and optimize the 
performance of priority-partitioned multi-processing 
multi-programming systems by taking into account 
diverse environmental conditions, hardware configura
tions and characteristics as well as system control 
policies. The MAMO solves a system of non-linear 
equ~tions correlating these parameters and obtains the 
desired quantitative results in a relatively short time. 

In contrasting the MAMO with simulation models, 
factors such as complexity and cost of development, 
computer time and space requirements, accuracy and 
efficiency in obtaining the desired results must be 
considered. The development of a realistic MAMO is a 
difficult and costly undertaking. The difficulty stems 
from the fact that the available mathematical tech
niques cannot provide a sufficiently accurate solution 
to the complex probabilistics problems characterizing 
computer systems. Therefore, in order to formulate a 
MAMO useful for practical purposes, numerous approx
imations must be made. These approximations require 
extensive testings by simulation models as well as a 
thorough understanding of the stochastic processes 
involved. The high development cost of a MAMO is 
due to the fact that its formulation and verification 
require the development, maintenance and application 
of highly sophisticated simulation models which would 
reflect real computing systems as closely as possible. 

However, once a satisfactory MAMO is developed and 
verified, the higher degree of operational capabilities 
and efficiency afforded by MAMO, as compared to a 
simulation model, compensates for the efforts and 
resources invested. 

For the studies described in Reference 1, an experi
mental task was formulated for a hypothetical multi
programming system. The simulation model of this 
task run on an IBM 360/65 required five to six hours of 
computer time and approximately 250K words of 
space; whereas, the mathematical model of the same 
task processed on a UNIVAC 1108 system required 
only 10 seconds of machine time and 32K words of 
space. 

The superiority of MAMO is more apparent in 
performance optimization tasks. A simulation model 
produces optimized results by analyzing the values of 
control variables and target functions accumulated by 
numerous simulation runs. Cons'equently, the validity 
and the accuracy of the results are simply proportional 
to the number of simulation runs for the given task. 
By virtue of its nature, the MAMO solves the optimiza
tion task through a set of non-linear equations, by 
manipulation of the state and control variables char
acterizing the computer system being studied. The 
optimization process consists of the search for a set of 
nominal control variables on the multi-dimensional 
performance space which provides an extremum value 
(maximum or minimum) for the selected target func
tion. In a mUlti-programming system having three 
partitions of programs, the optimum performance 
will be influenced by more than 30 variables (see Ap
pendix). The number of simulation runs, then, would be 
over 230 and would require thousands of hours of 
machine time (as estimated for a 360/65 system). On a 
UNIVAC 1108 system, the MAMO used less than one 
hour of computer time to solve such an optimization 
task. 

Thus, it seems that simulation models should be 
used mainly as tools for developing and verifying 
mathematical models of computer systems. However, 
for complicated service disciplines and for some of the 
processes in computing systems which cannot be 
properly formulated mathematically, simulation tech
niques can be used advantageously by incorporating 
them into mathematical models. In general, studies of 
computer system performance evaluation and optimiza
tion are more economical and practical when con
ducted by mathematical models. 

Figure 1 is the simplified block diagram of the 
MAMO.1 The computer system's performance and 
cost are functions of three groups of variables: 

1. Environmental parameters defining the computer 
system under study, mainly the physical char
acteristics of programs and equipment; 

2. system control variables which can be varied by 
the MAMO to obtain optimum cost/perform-



156 Spring Joint Computer Conference, 1971 

r SYSTEM CONTROL I I STATE VARIABLES I 

I 

I Et\VIRONMENT 1 

Pl-.RFORMAt\CE I I COST I 

Figure 1-Mathematical model block diagram 

ance balance (memory partition sizes, CPU 
quantum size, page sizes, etc.), and 

3. state variables (CPU utilization/priority, prob
abilities of interrupts/priority, probabilities of 
coinpilation interrupts/priority) which influence 
the two main evaluation criteria-cost and 
performance. 

The optimization procedure, shown by the feedback 
path in Figure 1, uses a direct search technique to 
define the optimum set of control variables. This 
means that the MAMO uses the interim solutions of 
each step to choose the direction of the next step 
toward the optimum. As a result of this optimization 
process, the MAMO can calculate the maximum values 
of the following target functions: 

• Throughput for a given cost with or without 
constraints on response time, 

• quality of service (minimum average response time) 
for a given throughput and cost, 

• uniformity of service (minimum variance of 
response time) for a given cost, throughput and 
average response time, 

and, also, the minimum value of the cost to achieve a 
given throughput and quality of service. 

The formulation of the MAMO 

The formulation of the MAMO requires an in-depth 
analysis of a complex queueing system in which several 

service processes are taking place· simultaneously. The 
study of this queueing system is purposeful to the 
determination of the . service times required by each 
program as a function of CPU time and I/O service 
requirements. Thus, two queueing systems must be con
sidered: the queues of programs attempting to receive 
service from the CPU and the main memory, and the 
queues of I/O requests made by the programs. The 
I/O request queues must be analyzed based on the 
existing queues formed at each of the controllers of the 
file system, e.g., drum, disk, tape. The MAMO is a set 
of non-linear equations which constitutes the mathe
matical expressions of these two interrelated queueing 
systems. The solution of this system of equations must 
satisfy the condition that the utilization factor of all 
system components-CPU, main memory, I/O con
trollers and devices-must remain less than one. 

The design of the MAMO is based on the assumption 
that the time periods between consecutive CPU 
interrupts should follow an exponential density func
tion rather closely. The occurrence of CPU interrupts 
in a multi-programming system can be co;nsidered the 
result of the superposition of many random and in
dependent events (paging, I/O file accesses, ends of 
programs, new arrivals, quantizing, etc.). Then the 
Pooled Output Theorem would seem to indicate that 
the distribution of inter-interrupt times is asymptot
ically exponential. The only question is whether known 
results of queueing theory involving exactly exponential 
density functions of times between events can be 
applied to the different service systems constituted by 
the I/O devices, CPU's and memories. 

In order to apply known queueing theory results for 
the design of the MAMO, two factors must be verified: 

1. Is the assumption on the distribution of inter
interrupt times valid? 

2. Is the deviation from the exact exponential 
distribution tolerable? 

The detailed simulation of many different systems 
indicates that, indeed, the results of queueing theory 
were applicable to the design of the MAMO. It is 
believed that this conclusion opens new avenues in the 
development of practically applicable mathematical 
models for complex computing systems. 

The detailed description of the MAMO is out of the 
scope of this paper and is provided in Reference 1. 

EVALUATION OF THE FIRMWARE SORT 
PROCESSOR WITH THE MATHEMATICAL 
MODEL 

To obtain a reasonable justification for any HFS 
trade-off a conclusive cost-performance evaluation 



Evaluation of Hardware-Firmware-Software Trade-Offs 157 

must be carried out. The evaluation of the HFS 
trade-offs and their effect on the performance of 
the whole computing system is a task of dynamic 
nature. The characteristics and the performance of the 
routines or algorithmic partitions subject of HFS 
trade-offs must be analyzed and evaluated under the 
actual conditions of the computational environment, 
taking into account the following major factors: 

1. The computer time spent to perform the object 
routine in software, 

2. the memory space occupied by the object 
software routine, 

3. the user's processing environment characterized 
by well-defined (measured and/ or calculated) 
input, state and control parameters. 
(Detailed listings of these parameters are pro
vided in the Appendix.) 

The objectives of the task are to determine and 
evaluate the dynamic values of the increased avail
ability of computer time and memory space due to the 
hardware-firmware implementation of the object soft
ware routine. 

The MAMO described briefly in the previous section 
was applied to the performance evaluation of a firm
ware Sort Processor (SP).2 The SP is a functionally 
autonomous microprogrammed proceS30r dedicated 
exclusively to sorting, thereby relieving the computer's 
CPU of this function. It can easily be integrated into 
any general purpose computer system and will behave 
as an intelligent peripheral controller (Figure 2). As 
such, the SP represents a typical example of an HFS 
trade-off. (See Reference 2 for detailed description of 
the SP.) 

The evaluation of the SP is conducted by comparing 
the performance of the host computer system executing 
a sort with conventional software routines against its 
performance of the same function with the SP. The 
host computer systems studied, represent third genera
tion, business oriented small and medium class systems 
with multi-programming capabilities. They are assumed 
to operate in a typical business environment of the 
following average values of major characteristics: 

• program size (code): 20,000 bytes 
• defined data space for execution; 30,000 bytes 
• CPU time required by a program: 60 seconds 
• CPU time between data file references: 1.25 seconds 
• CPU time between jump instructions: 50 micro

seconds 
• CPU time between data references: 13 micro

seconds 
• percentage of CPU time in execution of sort 

routine; S = 20 percent 

MAIN MEMORY 

START -
SORT CENTRAL 

PROCESSOR PROCESSOR 
INTERRUPT --

,. 
MASS MEMORY 

Figure 2-Computer system configuration with sort processor 

• percentage of CPU time in execution of library 
subroutines: L = 30 percent 

• probability of executing the sort routine from the 
library of subroutines: P s = 67 percent 

• probability of requiring I/O access per subroutine 
call :40 percent. 
(Note: S =LXPs) The sort routine has been 
assumed to occupy 6 KB of main memory space. 

The influence on maximum system throughput of the 
amount of processing done by the SP is shown in Figure 
3 for one system studied and two different memory 
sizes. The limitation in performance that can be 
observed from the leveling off of the curves is due to a 
main memory bottleneck for the smaller memory 
system and to a disk system bottleneck for the larger 
memory system. However, in both cases, the through
put of the computer system with the firmware SP 
was improved. (In Figure 3, zero percent indicates no 
hardware-firmware implementation of the sort routine.) 

Table I summarizes the results obtained for different 
types and classes of host computers operating in batch 
mode. Main memory sizes (256 KB) and the sorting 
workload (20 percent) are the same for all four systems. 



158 Spring Joint Computer Conference, 1971 

TABLE I-Computer Performance Evaluation with the Sort 
Processor in a Business Environment of Batch Programs 

SYSTEM Bl Cl B2 C2 

Throughput increase 13.2 20 9.85 14.4 
(percent) 

Cost/Program decrease 11.6 15 8.5 11.8 
(percent) 

Average service time/pro- 9.9 15.5 5 10.3 
gram decrease (percent) 

NOTE: Main memory size =256 kilobytes, percentage of sort 
routine usage =20 percent 

Throughput in Table I indicates the maximum program 
arrival rate that the system can handle; this rate is 
also equal to the maximum service rate that can be 
sustained by the system. The service rate is given by 
the ratio N pm/Tel, where N pm is the average number 
of programs in memory and Tel is the average service 
time/program. In evaluating the influence of the SP 
on throughput it should be noted that Tel = Tcl + Til, 

where Tcl is the average CPU time required/program 
and Til is the average interrupt time/program. 

The SP will affect N pm and Tel. N pm will be slightly 
greater with the SP due to the increased availability of 
memory space, while Til will decrease dueto the smaller 
number of I/O interrupts required per program. The 
use of the SP diminishes the occurrence of two types 
of interrupts: paging activity interrupts and, more 
importantly, the I/O interrupts needed to transfer 
the sort routine into the main memory. Thus} the 
efficiency of the SP depends on the value of Q defined 
for a system without SP as follows: 

Q number of sort routine calls 
total number of interrupts 

A higher value of this ratio yields more throughput 
increase for a host system having an SP. 

The improvement in cost per program (C) is defined 
as C = (Eo/Po) - (Es/P s) where Eo and Es are the 
computer system costs per unit of time without and 
with an SP, respectively. Po and P s are corresponding 
throughput values. 

For further analysis and evaluation of the SP, the 
following characteristics of the host computer systems 
studied must be stated: 

a. The main memory of system C2 is the fastest, 
followed by systems C1, B1 and B2, respectively. 

b. Systems C1 and B1 have similar secondary 

storage configurations as do systems C2 and 
B2, the latter systems being more powerful. 

Accordingly, based on the results of Table I, the 
following conclusions are valid, provided that all 
environmental conditions are equal: the performance 
improvement with SP is greater for, 

• systems having faster main memories with similar 
secondary storage characteristics. (This conclusion 
is confirmed also by the results shown in Figure 4.) 

• systems having slower secondary storages with 
similar main memory characteristics. 

The increased availability of main memories for 
user programs-due to the release of the space tra
ditionally required by the sort routine-results in less 
paging activity for all systems with SP. Therefore, the 
percentage of performance improvement is greater for 
computer systems with slower secondary storage due 
to the decreased utilization of slower I/O devices for 
paging. 

Thus, Table I indicates that substantial cost/ 
performance improvements, i.e., increased throughput, 

PROGRAMS/HOUR 

22 

MM = 512KB 

21 

20 

MM = 256KB 

19 

18 

17 

NOTE: MAIN ME MOR Y = MM 

KILOBYTES = KB 

16 

o 
SORT USAGE (%) 

Figure 3-Throughput versus the percentage of sort usage 
(Batch programs) 



Evaluation of Hardware-Firmware-Software Trade-Offs 159 

decreased service time, and lower costs per program, are 
achievable for various computer system configurations 
with SP. The utilization of the computer equipment, 
i.e., CPUs, main memories, I/O controllers and second
ary storage units, is also higher. 

Similar results have been obtained for systems with 
on-line programs only and for systems with on-line 
and background batch programs (see Appendix for 
on-line program characteristics). The effect of main 
memory size on the performance of an on-line system 
having the program characteristics listed in the Ap
pendix is shown in Figure 5. It appears that the par
ticular system studied was I/O bound, and increasing 
the size of the main memory more than a certain 
value does not result in improved performance. How
ever, whether the system is I/O bound or not, the 
addition of the SP results in a marked improvement of 
computer system throughput. 

Finally, the results of the study as shown in the 
preceding table and figures demonstrate, 

19 

l5 

II 

19 

1. the capabilities of the MAMO in producing 
quantitative results about system performance, 

PROGRAMS/HOUR 

SOR TING WITH SOFTWARE 

16 L-______ ~.~6 __ ~.~8 __ Tl.~0 __ ~1.~l_5~1~.-5~1~.7-5--_r---

MAIN MEMORY CYCLE TIME IN MICROSECONDS 

FIGURE 4. THROUGHPUT VS. MAIN MEMORY CYCLE TIME. (BATCH 

PROGRAMS); MAIN MEMORY SIZE = 256 KILOBYTES, 

SORT USAGE = lO% 

Figure 4-Throughput versus main memory cycle time 
(Batch programs) 

300 

ll5 

PROGRAMS/ HOUR 

SOR TING WITH SP 

SOR TING WITH SOFTWARE 

128 256 384 512 

MAIN MEMORY CAPACITY IN KILOBYTES 

Figure 5-Throughput versus main memory size 
(On-line programs) 

2. the usefulness of the lVIAMO for making decisions 
on new system architectures and HFS trade-offs, 

3. the power of the Sort Processor for substantially 
improving the cost/performance index of com
puting systems. 

It is clear that through the' combined application of 
mathematical modeling and HFS techniques new and 
better computer systems can be built. 

SUMMARY 

In the era of LSI and increased computer usage, the 
importance of designing new computer architectures 
with optimum hardware/software balance has been 
discussed. Algorithmic partitioning is suggested as the 
proper vehicle to accomplish the hardware-firmware
software trade-offs. Carefully selected algorithmic 
partitions, traditionally performed by software routines, 
are implemented by microprogrammed hardware inter
preters stored in distributed writable control stores. 
Selection and cost/performance evaluations of algo
rithmic partitions for hardware-firmware-software 
trade-offs are accomplished by applying a realistic 
Mathematical Model of multiprogramming and multi
processing computer systems. The possible computer 



160 Spring Joint Computer Conference, 1971 

architectures are evaluated under diverse environ
mental conditions. 

As an example of this system design philosophy, a 
recently developed Mathematical Modell has been 
applied to the cost/performance evaluation of a 
firmware Sort Processor.2 The results obtained indicate 
that more efficient computer systems can be designed 
by means of increasing the logical complexity of the 
hardware and by extensive use of microprogramming 
techniques. The results also show the great analytical 
power and practical utility of mathematical models 
for performance evaluation and optimization of 
computer systems. It is believed that the system design 
philosophy set forth in this paper will be prevalent 
in the years to come. 

ACKNOWLEDGMENTS 

The cooperation and encouragement offered by the 
NCR-DPD Research Department has been instru
mental in the preparation of this paper. 

The authors wish to express their appreciation to 
Mr. A. G. Hanlon and Mrs. V. J. Miller for their 
valuable suggestions and editorial efforts. 

Mmes. A. Peralta's and E. Mackay's contributions 
in typing this paper deserve a full-hearted thanks 
from the authors. 

REFERENCES 

1 A DeCEGAMA 
Performance optimization of multiprogramming systems 
Doctoral Dissertation Computer Science Department 
Carnegie-Mellon University Pittsburgh Pa April 1970 

2 H BARSAMIAN 
Firmware sort proccssor with LSI components 
AFIPS Conference Proceedings Spring Joint Computer 
Conference Volume 361970 

3 C F WOOD 
Recent developments in dir:-ect search techniques 
Research Report 62-159-522-R1 Westinghouse Research 
Laboratories Pittsburgh Pa 

4 A L SCHERR 
Analysis of storage performance and dynamic relocation 
techniques 
IBM Research Report TR-OO-1494 September 1966 

5 M V WILKES 
The best way to dcsign an automatic calculation machine 
Manchester University Computer Inaugural Conference 
Proceeding p 16 1951 

6 R F ROSIN 
Con.temporary concepts of microprogramming and emulation 
Computing Surveys December 1969 

7 A OPLER 
Fourth generation software 
Datamation January 1967 

8 L L CONSTANTINE 
Integral hardware/software design 
Modern Data April 1968-February 1969 

9 R W COOK M J FLYNN 
System design of a dynamic microproccssor 
IEEE Transactions on Computers March 1970 

10 H W LAWSON 
Programming language-oriented instruction streams 
IEEE Transactions C-17 pp 476-485 1968 

APPENDIX 

Parameters defining machine space requirements 

Operating system space 
Number of compilers 
Number of compiler code segments/compiler 
Sizes of compiler segments 
Number of data segments/compiler 
Sizes of data segments/compiler 
Number of library subroutines 
Sizes of library subroutines 
Distributions of program sizes 
Distributions of data space/program 

Parameters defining machine time requirements 

Distributions of CPU time/program 
Distributions of input times (card-reader, teletype, 

console, etc.) 
Distributions of output times (printer, teletype, 

console, etc.) 
Compilation/execution time ratios 
Probabilities of a source card error 
Probabilities of a compilation error 
Distribution of CPU times between files accesses 

during compilation 
Distribution of operator times to make files accessible 

to the programs 
Probabilities of execution error 
Probabilities of-using data files by programs 
Distribution of CPU times between data file accesses 
Probabilities of using serial files by programs 
Probabilities of serial file accesses versus random 

file accesses 
Probabilities of disk random file accesses versus 

drum random file accesses 
Probabilities of accessing print files (spooling) 

versus data files 
Distribution of interrupt overhead times 

Parameters that influence both time and space requirements 

Distribution of inter-arrival times 
Distribution of amounts of source data 



Evaluation of Hardware-Firmware-Software Trade-Offs 161 

Distribution of number of interactions for con
versational programs 

Peak number of conversational users 
Distribution of CPU times between jump instructions 

(compilers and programs) 
Probabilities of jumping to a new compiler segment 

during compilation 
Probabilities that a jump instruction is a library call 
Distribution of CPU times between data references 

(compilers and programs) 
Probabilities of data segment swap per I/O access 
Distribution of jump distances 
Distribution of data access distances 
Main memory address generation rate by CPU 

(code and data) 
Distribution of program file sizes 
Distribution of data per file access 
Distribution of dump data 
Tape start-up time 
Tape transfer time 
Disk rotational speed 
Disk seek time 
Disk transfer time 
Drum rotational speed 
Drum seek time 
Drum transfer rate 
Size of the routine or program subject to HFS trade 

off 
Frequency of usage of the routine or program subject 

to HFS trade off 
Hardware/software execution speed ratio of the 

routine subject to HFS trade off 
Access times of the different memory hierarchies 
Amount of data/access for the d'fferent memory 

hierarchies 
CPU speed 
Hardware costs 

Control variables influencing optimum system performance 

Number of CPU's 
Cache capacity 
Total amount of memory (ma:n memory and bulk 
. memory) for non-partitioned systems 

Partition sizes (main memory and bulk memory) for 
a partitioned system 

Number of disk and drum controllers 
Number of spindles/controller 
Number of tape controllers 
Number of tapes/controller 
Proportion of data files kept directly accessible to the 

programs as opposed to the files requiring manual 
intervention by the operator 

Maximum data segment size (for each priority i) 
Maximum program segment size (for each priority i) 
Maximum amount of main memory space allowed 

for data (for each priority i) 
Maximum amount of main memory space allowed 

for instructions (for each priority i) 
Input buffer sizes (for each priority i) 
Output buffer sizes (for each priority i) 
Compiler buffer sizes (for each priority i) 
Print buffer sizes (for each priority i) 
Probabilities of finding a system routine or a user 

data segrp.ent in each level of secondary storage 
CPU quantum size (for each priority i) 
Number of printers for priority i 
Number of card readers for priority i 

Major characteristics of programs in on-line mode 
(average values) 

Program size (code) = 30,000 bytes 
Defined data space for execution = 10,000 bytes 
CPU time required by a program = 60 milliseconds 
CPU time between data file references = 4 milli-

seconds 
CPU time between jump instructions = 50 micro

seconds 
CPU time between data references = 10 microseconds 
Percentage of CPU time spent in execution of the 

sort routine = 12 percent 
Percentage of CPU time spent in execution of 

library subroutines = 30 percent 
Probability of execution of the sort routine = 40 

percent 
Probability of requiring I/O access/subroutine call = 

40 percent 





System/370 integrated emulation under OS and DOS 

by GARY R. ALLRED 

International Business Machines Corporation 
Kingston, N ew York 

INTRODUCTION 

The purpose of this paper is to discuss the design and 
development of integrated emulators for the IBM 
System/370. Specifically, emulation of IBM 1400 and 
7000 series systems on the IBM System/370 Models 
145, 155 and 165, integrated under an Operating Sys
tem. While the author acknowledges the development 
and presence of emulation outside of IBM, it is not the 
intent of this article to conduct a comparative survey 
of all emulator products. Rather, the discussion will be 
restricted to the design and development considerations 
involved in producing the System/370 integrated 
emulators. 

EMULATOR HISTORY 

The System/370 integrated emulators are evolu
tionary products of earlier IBM emulators on System/ 
360. Before discussing the design and functional char
acteristics of the System/370 emulators, a review of 
emulation as it existed prior to System/370 is presented 
in order to form a base of comparison for the new 
system. 

Three methods are employed by the emulators to 
effect the execution of prior systems programs on the 
new system and are referred to throughout this article: 

1. Interpretation/execution via hardware (referred 
to as emulation). 

2. Interpretation/execution via software routine 
(referred to as simulation). 

3. A combination of the above (referred to as 
emulation). 

In System/360, emulation was composed of three 
distinct design types: 

1. Hardware: Some emulators, such as the IBM 

163 

1401 emulator on System/360 Model 30, were 
exclusively implemented by hardware. The Model 
30 became, in effect, a 1401, with the appropriate 
registers, addressing, I and E-time execution, 
etc., handled by the hardware. While perform
ance and operating characteristics were quite 
good, the system was dedicated to a specific 
mode of operation, i.e., either emulation or 
"native" mode. The resultant loading and re
loading necessary to attain the desired mode of 
operation imposed unproductive overhead on the 
user. 

2. Hardware/Software: Other emulators, such as 
the IBM 7000 series emulators on System/360 
Model 65, were comprised of both hardware and 
software. By adding software, the emulator 
offered more flexibility in device support and 
operational characteristics, while at the same 
time retained the desirable performance attri
butes of hardware execution. (Pure software 
implementation would become total simulation, 
with the obvious degradation of performance.) 
These emulators required a total dedication to 
the system of a specific operating mode--emula
tion or native, with the unproductive overhead 
of loading and reloading. This overhead was 
more noticeable when the native mode operation 
involved an operating system. Additionally, 
terminal applications were not possible because 
of the necessity to "shut down" the operating 
system for emulator loading. 

3. Hardware/Software/Operating System: Two 
programs, Compatibility Operating System 
(COS)/30 and COS/40 were developed by IBM 
which integrated the 1401 emulator on System/ 
360 Models 30 and 40 under DOS. At first consid
ered to be interim programs, these programs, be
cause of their wide acceptance and usage, were 
subsequently upgraded through hardware and 
software refinements and renamed Compati-



164 Spring Joint Computer Conference, 1971 

bility System (CS)/30 and CS/40. For the first 
time, 1401 jobs and System/360 native-mode 
jobs could be run concurrently in a limited multi
programming environment. (Limited multipro
gramming in the sense that there were certain 
restrictions on the Foreground/Background allo
cation of jobs under DOS.) Single job stream 
input was also possible. Overall system thruput 
was significantly improved by eliminating the 
need to reload the system between emulator and 
System/360 jobs. 

In addition to the CS emulators, there were other 
applications such as Hypervisors and "hook loaders," 
which, to a lesser degree, provided a single operating 
environment by eliminating the need to re-IPL be
tween emulator and System/360 jobs. Hypervisors en
abled two emulators to run concurrently or, an emu
lator to run with a System/360 job. 

The Hypervisor concept was relatively simple. It con
sisted of an addendum to the emulator program and a 
hardware modification on a Model 65 having a com
patibility feature. The hardware modification divided 
the Model 65 into two partitions, each addressable from 
O-n. The program addendum, having overlaid the sys
tem Program Status Words (PSW) with its own, be
came the interrupt handler for the entire system. After 
determining which partition had initiated the event 
causing the interrupt, control was transferred accord
ingly. The Hypervisor required dedicated I/O devices 
for each partition and, because of this, the I/O con
figurations were usually quite large, and, therefore, 
prohibitive to the majority of users. 

Hook loaders, developed by individual installations, 
effected a "roll-in/roll-out" of the emulator or System/ 
360 job. The decision to swap operating modes could 
be interrupt driven or initiated by the operator. The 
basic attribute of this application was to eliminate the 
need for IPL when changing operating modes. 

DESIGN CONSIDERATIONS AND 
OBJECTIVES 

At the time they were initially released, the System/ 
360 emulators were considered to be short term pro
grams. They were intended to provide the user with 
the facility to grow from a second generation system 
to the improved facilities of System/360 with little or 
no reprogramming. To this end, they served their pur
pose very well. Their predicted demise however, did 
not take place as expected. Emulation usage continued 
at a high rate, with installation resources directed at 

new applications rather than conversion of existing 
applications. 

Clearly, as system and customer applications became 
more complex, the need for expanded emulator support 
became more evident. Early in the planning cycle of 
System/370, IBM began a design study to determine 
the most efficient architecture for emulators on Sys
tem/370. Based on an analysis of existing and projected 
future operating environments, feedback from user 
groups, and the experience gained to date with emula
tion, the following key design points were establishe4 
as objectives for System/370 emulators: 

1. Emulators must be fully integrated with the 
operating system and run as a problem program. 

2. Complete multiprogramming facilities must be 
available including multiprogramming of 
emulators. 

3. Device independence, with all device allocation 
performed by the operating system. 

4. Data compatibility with the operating system. 
5. A single jobstream environment. 
6. A common, modular architecture for improved 

maintenance and portability. 
7. An improved hardware feature design with emu

lator mode restrictions eliminated and all feature 
operations interruptible. 

MODELING 

While the COS/CS emulators had proved the basic 
feasibility of integrating an emulator as a problem pro
gram under an operating system, in this case DOS, 
extending this feasibility to include a large scale, com
plex system with the full multiprogramming facilities 
of OS/360 remained to be proven. Therefore, it was 
decided that a model should be built which would inte
grate a large scale system into OS/360. 

The system selected was the 7094 Emulator on Sys
tem/360 Model 65. The 7094 and the 7094 Operating 
System (IBSYS) represented the most complex and 
sophisticated second generation system available. If 
this system could be successfully integrated with OS/ 
360, the design and technology could certainly be ap
plied to smaller, less complex systems. 

The OS/360 option selected was MFT II. This sys
tem, with its fixed partition requirement, could be more 
easily adapted to the 7094 Emulator design which also 
included fixed locations and addressing. 

This particular feasibility study proved to be an ex
cellent subject for modeling. The goals were well de
fined, the emulator itself was relatively self contained, 
and the design alternatives were varied enough to make 



multiple design evaluations necessary. Modeling was 
primarily concerned with the assessment of four major 
areas: input/output techniques, operation under an 
operating system, hardware design/requirements, and 
operating system interfaces. There were a number of 
key recommendations and resolutions achieved in these 
areas as the result of modeling. 

Input/output techniques 

• To provide the most efficient means of I/O Simu
lation, an emulator access method with standard 
interfaces to the operating system was developed. 
OS /360 Basic Sequential Access Method (BSAM) 
was used for tape operations and Queued Sequen
tial Access Method (QSAM) for support of Unit 
Record devices. Basic Direct Access Method 
(BDAM) support was later added for those sys
tems that support disk. This access method was 
subsequently expanded to be usable by any Sys
tem/370 emulator, regardless of the emulated 
system. This access method is currently used by 
the 1400 and 7000 series emulators on System/370. 

• To solve the problem of prohibitively long tape 
records (32K maximum), and some file formats 
which were unacceptable to OS /360, a tape pre
processor program was developed to format second
generation tapes into a spanned variable length 
record format. A post-processor was also developed 
to convert these tapes back to their original format, 
if desired. 

• To enable selective processing for Operating Sys
tem error recovery procedures, parity switching 
and density switching modifications were made to 
the data management facilities of 08/360. 

Operation under an operating system 

• Whereas the stand alone emulators had used privi
leged instructions at will, this could not be done 
if the emulator was to run as a problem program 
under the operating system. Those routines re
quiring privileged Op-Codes were either replaced 
by operating system routines or redesigned to use 
only standard Op-Codes. 
To achieve a common, portable architecture, emu
lator routines were standardized as emulator de
pendent and operating system dependent modules. 

Hardware design/requirements 

The need to operate in emulator mode should be 
eliminated. The emulator program should be trans
parent to the operating system. 

System/370 Integrated Emulation 165 

• There should be no fixed addresses and the emu
lator including the target memory, should be re
locatable. 

• Emulator Op-Codes should be standardized. 
• Emulator Op-Codes should be interruptible and 

capable of retry. (In emulation, it is possible to 
remain in E-time simulation for an unusually long 
period of time, relative to normal 8ystem/370 
E-time. Therefore, the hardware feature, must be 
fully interruptible if functions requiring the im
mediate dispatch of asynchronous interrupts are 
to be supported.) 

• Hardware/Software communication should be 
done via General Purpose Registers and Floating 
Point Registers rather than through special hard
ware registers and/or fixed tables. This is required 
if emulators are to be multiprogrammed. 

Operating system interfaces 

• Three standard interfaces were defined. These in
terfaces are emulator and operating system de
pendent. 
1. An interface was established between the com

patibility feature and the emulator modules 
which performed CPU simulation, I/O simula
tion and Operator Services. 

2. A second interface was established between the 
CPU, I/O and Operator Service modules and 
the emulator access method. 

3. A third interface was established between the 
emulator access method and the operating 
system 

• By implementing the emulator to these standard 
defined interfaces, the goal of a common, modular 
design with the inherent facility of portability was 
realized. 

In summary, the modeling effort successfully demon
strated the feasibility of large scale integrated emula
tion, while at the same time meeting all of the design 
and performance objectives. The architecture which 
evolved from the model was used by the 08 /M85 /7094 
emulator and was released in early 1970. This archi
tecture, with further refinements, is used by all of the 
8ystem/370 emulators: 

Models 145 and 155 

DOS /1401-1440-1460 
DOS/1410-7010 
OS/1401-1440-1460 
08/1410-7010 

Model 165 

OS/7074 
OS/7080 
OS/7094 



166 Spring Joint Computer Conference, 1971 

These systems represent the most advanced emulators 
ever offered in the IBM product line, combining the 
powerful new System/370, its high performance I/O 
devices, the multiprogramming facilities of Operating 
System (OS) /360 and Disk Operating System (DOS) / 
360, and an improved technology in emulator design. 

SYSTEM REQUIREMENTS AND FEATURES 

On the Model 155 there are four emulator combina
tion, available. The 1401/1440/1460 Emulator under 
both DOS and OS and the 1410/7010 Emulators under 
DOS and OS. These are four separate programs, each 
with an individual program number. The compatibility 
feature on System/370 Model 155 is an integrated 
feature which provides the facility to emulate the 
1401/1440/1460/ and 1410/7010. These emulators can 
be multiprogrammed in any combination. 

On the model 165-7074, 7080 and 7094 emulators 
are provided. These emulators run under OS/360 and 
can be multiprogrammed. Each emulator consists of a 
compatibility feature and a corresponding emulator 
program that has a unique feature and program num
ber. Only one feature can be installed in the system at 
one time. 

The System/370 emulators have a number of require
ments, considerations and support functions in 
common: 

Minimum Requirements 

• Compatibility Feature 
• A sufficient number of System/370 I/O devices to 

correspond to the devices on the system being 
emulated, plus the devices required by the Oper
ating System. 

• Sufficient System/370 processor storage for: (1) 
the version of the operating system being used 
(MFT, MVT or DOS), (2) emulator functions 
needed for the system being emulated, and (3) the 
program being executed. 

Additional Features 

• Two tape formatting programs are provided: (1) 
to convert 1400/7000 series tape files to Operating 
System (spanned variable length) format for more 
efficient data handling by the emulator, and, (2) 
to convert output records in spanned variable 
length format to original 1400/7000 series format. 

• A disk formatting program is provided to assist in 
converting 1400/7010 disk files to the standard 
Operating System format. 

Data File Restrictions: 

• 1400 /7000 series tape files must be converted if 
record lengths exceed 32,755 bytes or, if data is in 
mixed densities. 

• All 1400/7010 disk files must be converted. 

COMPATIBILITY FEATURES 

The Compatibility Features on System/370 Models 
155 and 165 are under microprogram control. The 
feature on the Model 155 is an installed resident fea
ture, whereas on the Model 165 it is loaded into "Writ
able Control Storage" via the console file. 

The compatibility feature is, in effect, a number of 
special instructions added to the base System/370. 
These special instructions are used by the emulator 
program to emulate target machine operations. The 
selection of operations to be performed by the special 
instructions is based on an analysis of the target ma
chine operations relative to complexity and frequency 
of use. 

The most significant special instruction (since it is 
used once for each target machine instruction executed) 
is called DO INTERPRETIVE LOOP or simply, DIL 
(Figure 1). The DIL instruction replaces with a single 
instruction the subroutine that a pure software sub-

S/370 I-FETCH 
AND EXECUTION 

EMULATOR 
ACCESS 
METHOD 

OSOATAMGMT 

ISAM, 
QSAM, 
lOAM 

IF OIL OPERATOR SERVICES 
TRAP PENDING VO COMPLETION 

INTERRUPT GENERATION 
UNUSUAL CONDITION 

Figure I---Dverview of emula.tor instruction execution 



routine would use to: 

1. Access the simulated instruction counter (I C) . 
2. Convert the IC to a System/370 address in the 

simula ted target machine storage which con
tains the instruction to be interpreted. 

3. Fetch the instruction. 
4. Update and restore the simulated IC. 
5. Perform any indexing required for the subject 

instruction. 
6. Convert the effective address obtained to the 

System/370 address in the simulated target 
machine storage which contains the subject 
operand. 

7. Interpret the instruction Op-Code and branch 
to the appropriate simulator routine which will 
simulate the instruction. 

INPUT/OUTPUT DEVICE CORRESPONDENCE 

Expanded support of I/O devices is provided with 
the System/370 integrated emulators. The OS Emu
lators employ the QSAM, BSAM and BDAM facilities 
of OS /360 Data Management, and offer device inde
pendence within the support capabilities of these access 
methods. The DOS emulators provide device inde
pendence only for Unit Record devices. 

DISTRIBUTION 

DOS 

The DOS emulators for 1400/7010 are distributed as 
components of DOS. Standard DOS system generation 
procedures are followed in generating an emulator 
system. 

OS 

The OS emulators for System/370 Models 155 and 
165 are distributed independently of OS/360. Inde
pendent distribution was chosen inasmuch as the emu
lator modules would be superfluous to System/360 users 
and take up unnecessary space on the distributed sys
tem libraries. 

SUPPLEMENTAL PROGRAMS 

Tape formatting programs 

Two tape formatting programs are distributed with 
the emulator program. The Preprocessor program con-

System/370 Integrated Emulation 167 

verts tapes in original 1400/7000 series format to 
spanned variaole-Iength record format. Any 1400/7000 
series tape containing records longer than 32,755 char
acters must be preprocessed. Preprocessing of other 
tapes is optional, although greater buffering efficiency 
can be obtained because the emulator is intended to 
normally operate with a spanned variable-length 
format. 

The post-processor program converts tape data sets 
from spanned variable-length format to 1400/7000 
series format. The programs support tapes at 200, 556, 
800 and 1600 BPI density and handle mixed density 
tapes. The programs support even, odd and mixed 
parity tapes. 

Disk formatting program 

A disk formatting program is provided to assist in 
converting 1400 disk files to a format acceptable to the 
emulator program. The disk formatting program runs 
as a problem program under the operating system. The 
program creates a data set composed of control in
formation and of blank records whose size and number 
are determined by the device being emulated. 

COMMUNICATING WITH THE EMULATOR 
PROGRAM 

A full range of operator services are provided for 
operator communication with the emulator program. 
1400/7000 series console operations are simulated 
through commands entered by the operator. 

In an integrated, multiprogramming environment, 
the operating characteristics are expected to initially be 
more difficult for the operator. However, every effort 
has been made to ease the transition from stand-alone 
to integrated operation. Messages from the emulator 
program are identified by a unique message ID, in
cluding a sequentially-incremented message number 
and the job name of the program being emulated. The 
user has the option of including multiple console sup
port and directing emulation messages to the second 
console. 

SUMMARY 

The System/370 integrated emulators have signifi
cantly extended the technology of emulation. They 
bring to the user an improved, more efficient operating 
environment for emulator and native mode System/370 
jobs, while at the same time providing a nondisruptive 
growth path for today's System/360 user. 



168 Spring Joint Computer Conference, 1971 

REFERENCE MATERIAL 

System/370 Emulators-8RL Publications 
Emulating the IBM 1401,1440,1460 on the IBM System/370 
Model8145 and 155 Using DOS/360- '/I.GC33-2004 
Emulating the IBM 1410 and 7010 on the IBM System/370 
Model8145 and 155 Using DOS/360- '/I. GC33-2005. 
Emulating the IBM 1401,1440,1460 on the IBM System/370 
Model8145 and 155 Using OS/360- '/I. GC27-6945. 
Emulating the IBM 1410 and 7010 on the IBM System/370 
Model8145 and 155 Using OS/360- '/I.GC27-6946 
Emulating the IBM 7070/7071,. on the IBM System/370 

Model 165 Using OS/360- '/I.GC27-69J,8 
Emulating the IBM 7080 on the IBM System/370 Model 165 
Using 08/360- '/I.GC27-6952 
Emulating the IBM 709, 7090, 7094, 709411 on the IBM 
System/370 Model 165 Using OS/360- '/I.GC27-6951 

Hypervisor Documentation 
Hypervisor for Running 7074 Emulation as an OS/360 Task
'/I. 360D-05.2.005 

Double 7074 Emulation on a System/360 Model 65- '/I. 360D-
05.2.008 

Hypervisor RPQ's 
Shared Storage RPQ for a 8ystem/360 Model 65- '/I.E 880801 
Shared Storage RPQ for a 8ystem/360 Model 50- '/I.E 56222 



A high-level microprogramming language (MPL) 

by R. H. ECKHOUSE, JR. 

S.U.N.Y. at Buffalo 
Amherst, New York 

INTRODUCTION 

As late as 1967, a prominent researcher reported to his 
organization! that he believed a successful higher-level 
microprogramming language seemed unlikely. At the 
same time, other members of the same organization 
were describing what they termed etA Microprogram 
Compiler".2 Meanwhile, other hardware and software 
designers, equally oblivious of each other, were gener
ating useful and powerful higher-level languages to 
assist them in their work. As the reader will see, the 
stage had been set for the development of a higher-level, 
machine-independent language to be used for the task 
of writing microprograms. 

The research here reported describes a micropro
gramming language, called MPL, and includes several 
aspects of the development and use of such a language. 
The objectives for the language, the advantages and 
disadvantages, the work which has preceded the de
velopment, and the importance and relevance of de
veloping such a language are considered. Finally, we 
shall consider this current research, showing some pre
liminary but very promising results. 

HIGHER-LEVEL LANGUAGES FOR 
MICROPROGRAMMING 

The area of microprogramming has opened new possi
bilities for both software and hardware designers be
cause microprogramming has, to a certain extent, 
blurred the once clear separation of level between the 
two. In microprogrammable machines we find hard
ware circuits that incorporate read-only or read/write 
memory which can determine both the computer's ac
tions and its language. It is therefore beneficial to con
sider the needs of both the. hardware designer and the 
software designer in the development of a micropro
gramming language. 

169 

Objectives 

The hardware designer (the traditional micropro
grammer) needs the ability to express the relevant 
behavior and structural properties of the system. The 
software designer needs the flexibility of a programming 
system which allows him to describe the procedures by 
which a machine can execute a desired function. In 
combining both of these needs, as microprogramming 
does, we find that a suitable microprogramming lan
guage must be one that is high-level, procedural, de
scriptive, flexible, and possibly machine-independent. 

Advantages 

A high-level microprogramming language will free 
the users from such non-essential considerations as 
table layouts, register assignments, and trivial book
keeping details. The language will have the obvious 
benefits of improved programmer productivity, greater 
program flexibility, better documentation, and more 
transferability. By providing the necessary tools for the 
hardware designer, the software designer, and the 
machine user, this language can be part of a larger sys
tem which is viable for all phases of system design: 
description, simulation, interpretation, and code gen
eration. 

Disadvantages 

The seemingly obvious (and traditional) disadvan
tages of utilizing a higher-level language for micropro
gramming are loss of efficiency, inflexibility, and high 
cost. The critics cite the need for a high degree of 
machine usage, tight code and maximum utilization of 
every bit in a microinstruction as the major factors for 
ruling out the use of such a language. "Basically, a com
piler would generally be forced to compete with a 
microprogrammer who can justifiably spend many 



170 Spring Joint Computer Conference, 1971 

hours trying to squeeze a cycle out of his code and who 
may make changes in the data path to do SO".1 

In light of the larger aspects of microprogramming, 
the above criticisms seem much less tenable. First, the 
current users of machines which can be micropro
grammed are not only their hardware designers. These 
users do not wish to exercise the microprocessor to its 
fullest extent if this leads to "tricky" code, or code that 
is difficult to write, debug, and test. Instead, these 
users wish to be able to write their own emulation or 
application software and be able to use higher-level 
languages with all of their benefits. 

The second point is that there exist scant measure
ment standards for determining efficiency, flexibility, 
and cost of the presently used methods. Manufacturers, 
when asked questions concerning hardware utilization, 
concurrency, and efficiency, tend to state that "the 
total core size of the microprogram is only X", or "our 
machine has achieved the desired speed Y", leaving us 
puzzled and unenlightened. 

The real costs and savings inherent in a micropro
grammable machine should not be measured in terms 
of raw speed or core size alone but must be concerned 
with the unique flexibility that such a machine offers. 
When we discover bugs in the virtual system, we know 
that it is clearly less costly to write and implement new 
microroutines in a microprogrammable machine than 
to rewire a non-microprogrammable machine. And 
when we desire to add new features such as virtual 
instructions or hardware I/O options, it is again less 
costly to do so to a microprogrammable machine. Thus 
it would seem that if a higher-level language can aid 
this process by further reducing the cost of writing 
microroutines, then clearly such an approach is viable 
and well worthwhile. The reader is referred to the work 
of Corbat03 for additional discussion of the approach. 

A suitable language 

In developing a suitable language for writing micro
programs, the language developer should ask himself if 
his language would be new, better, more enlighted or 
useful than some existing, well known language. In
stead of adding to the proliferation of languages, it 
would be well worthwhile to utilize some existing lan
guage, with extentions if necessary, as the basis for the 
development. Fortunately, an appropriate, hjgher-Ievel 
language does exist and can be used to not only write 
microprograms, but also be used to describe, simulate, 
and design hardware. 

A small dialect of PL/I, akin to XPL, represents a 
suitably modified language amenable to microprogram
ming. This paper will report on the on-going effort of 

the design and use of this dialect, the author's higher
level language for writing microprograms called MPL. 
Another dialect of PL/I described in CASD4 has al
ready been used to aid in the design of computers (both 
microprogrammable and not). Thus, the use of a higher
level language has already been demonstrated to be a 
viable technique for the design, description, and simu
lation of computer systems, and need not be treated 
further in this paper. 

Importance and relevance 

In the process of developing a microprogramming 
language such as MPL we must be concerned with the 
relevance of the language. We must find out how effec
tively the language may be used, and how capable it is 
in meeting the needs of the user. Thus, performance is 
a criterion of acceptance and we must be able to demon
strate the ease of producing a meaningful high-level 
program which can be suitably translated into efficient 
microcode. 

BACKGROUND 

Previous work in developing higher-level languages 
for software and hardware designers is rather extensive. 
Unfortunately neither side has been concerned with the 
other, and we find few attempts to reconcile the two. 
APL is one exception, and its proponents have cata
gorized it as a universal, systematic language which is 
satisfactory for all areas of application. 5 Papers have 
been written to show how APL can be used to describe 
hardware, to formulate problems, and to design sys
tems. Another exception, previously discussed, is 
CASD.4 However, the CASD project has since been dis
banded, and no attempt has been made to write the 
microcode translator discussed in the report of that 
project. 

Systems programming languages 

For all of its contributions and contributors, APL 
does not adequately describe systems programming or 
microprogramming problems (e.g., timing, asynchron
icity, and multiprogramming) without additional ex
planations in English. In addition, only a subset of 
APL has been implemented and the whole language 
remains significant but unimplemented. 

Other contributions to higher-level, systems pro
gramming languages have included EPL, ESPOL, 
SYMPL, and IMP. These languages possess block 
structure, compound statements, and logical connec-



tives which make the job of system design much easier. 
The MULTICS project3 and the development of the 
B5500, with its unconventional "machine language," 
have demonstrated the successful utilization of higher
level languages to operating systems design. 

Hardware design languages 

Recent papers by hardware designers seem to indi
cate a strong trend toward the use of higher-level, 
machine-independent languages for hardware design. 
The objectives of these papers appear to be: 

(1) To describe digital machines 
(a) Their logic 
(b) Their timing and sequencing 

(2) To simulate digital machines 
(a) Verify new designs 
(b) Verify new features 

(3) To have machine translatable, formal, hardware 
description languages 
(a) Supporting (1) and (2) above 
(b) To simplify machine design 

The objectives have been met to various degrees as 
evidenced by the work of Metze and Seshu,6 Chu, 7, 8 

Darringer,9 Schlaeppi,lO Schorr,ll Proctor,12 Gorman 
and Anderson,13 and Zucker.14 Much of their work 
seems amenable in its application to microprogramming, 
and all of it represents the application of an existing 
higher-level language structure (FORTRAN or 
ALGOL) to the hardware specification and design 
problem. 

Microprogramming languages 

The first evidence of a language structure for writing 
microprograms appears to be in the work of Husson 
et a1. 2 The authors present their views on the more 
general concepts for designing a microprogram com
piler but they do not have the experience of a working 
compiler. They discuss a compiler-language which is 
high-level, procedural, descriptive, and machine-inde
pendent. They suggest that such a language will require 
an intermediary language (some form of an UN COL) 
which will allow for the successful generation of a simu
lator and a machine-dependent interpretation of the 
microcode. 

The authors go on to suggest that there should be 
compatability between adjacent, architecturally simi
lar processors or classes of machines. Thus, the com
piler-language must permit hierarchical descriptions of 
the particular machine class. 

MPL 171 

Universal languages 

Many of the problems encountered by the hardware 
and software designers which concern machine-inde
pendence are discussed in papers on SLANG15 and 
UNCOL.16,17 The SLANG system is concerned with the 
basic question, "Is it possible to describe in a machine
independent language processes which in themselves are 
machine-dependent?" In the papers addressing the 
UNCOL concept, we find the discussion on whether or 
not there exists some intermediate language(s) between 
any problem-oriented language and any machine lan
guage, and whether or not the separation of machine
independent aspects of a procedure oriented language 
from the machine-dependent aspect is feasible. 

THE LANGUAGE AND ITS TRANSLATOR 

The choice of a higher-level, machine-independent 
language for this research required consideration of 
several aspects in its development. Some of these as
pects and the conclusions to which their consideration 
lead included: 

(1) A survey of a representative sample of micro
programmable machines, i.e., how machine
independent or widely applicable is the proposed 
language? 

(2) What is the syntax of the language? What are 
its syntactic elements and how do they relate to 
microprogramming? 

(3) What is the objective of the language? Is it ease 
of translation into efficient microcode, or is it ease 
of describing application problems which can be 
converted into microcode? 

(4) How is translation into microcode performed? If 
the language is machine-independent, at what 
stage in its translation is machine-dependence 
introduced? At what stage do we tailor the 
code toward the particular microprogrammable 
machine? 

(5) How do we evaluate the code produced? How do 
we know it is correct or good? Is it "concise"? 

What follows are answers to these questions, and an 
analysis of the effects these answers had in dictating 
the ultimate results. 

M icroprogrammable hardware 

The objective in surveying current hardware was to 
attempt to classify the similarities and differences in 
the various microprogrammable machines. As expected, 



172 Spring Joint Computer Conference, 1971 

the architectural differences are not overwhelming, and 
in many cases are manifest more in terms of the "state 
of the art" technology, than in differences in type of 
instruction set, testable conditions, types of addressing, 
etc. Indeed, all of the machines can be classified as 
classical, Von Neumann in nature with only minor 
perturbations. 

Syntax 

The literature abounds with various languages for 
writing systems programs (MOL-360, BCPL, PL/360, 
etc.) and for describing and simulating hardware 
(LOTIS, CASD, Computer Compiler, etc.). In all 
cases, the syntax is simple and easily translatable into 
hardware implementable semantics. Such an approach 
was taken in specifying the PL/I -like syntax of MPL. 

Procedures and declarations 

As in PL/I, the basic building block of MPL is the 
procedure. The concepts of local and global, scope of 
names, etc., have been preserved and represent the 
block structure of the language. 

Declarations of the various data items (including 
registers, central memory, and events) give the attri
butes of the items. By use of the PL/I "DEFINE" 
syntax, register data items are subdivided into their 
principal parts (i.e., we may declare a virtual 2n-bit 
register and then define its true constituent n-bit 
parts). 

Data itelDs 

There are basically six types of data items. First, 
there are the machine registers, both true and virtual. 
Second, there is central and micro memory. Third, there 
is both local and auxilary storage which can be similar 
to the register data type or the central memory data 
type, depending on its implementation in the actual 
microprogrammable machine. Fourth, there are 
"events," unlike events in PL/I, which correspond to 
testable machine conditions (carry, overflow, etc.). 
Fifth, there are constants of the type decimal (e.g., 2), 
binary (e.g., 101IB), and hexadecimal (e.g., OFX). The 
traditional enclosing quotes around binary and hexa
decimal constants may be dropped as long as the con
stant begins with a digit and ends with a B or X. There 
are also label constants and symbol constants (or literal 
constants ala XPL). Finally, there are variables which 
will take on constant values~ 

StatelDents 

Assignment statements have been modified in MPL 
to allow concatenated items to appear on either side of 
the equal sign. Thus, the concatenation of two registers 
Rl and R2 becomes Rl/ /R2. This newly defined, 
double length register can be used logically as if it 
actually existed such as: 

Rl/ /R2=Rl/ /R2+2; 

Additional binary and logical operators have been 
added or modified in MPL and include: 

a .RSH. b Shift a right b places 
a .LSH. b Shift a left b places 
a /\ b a and b 
a V b a or b 
a fit b a exclusive-or b 

Finally, the IF statement is able to test an EVENT 
previously declared. Thus, a convenient means exists 
for a transfer on carry, overflow, etc. 

Objectives of the language 

With microprogrammable machines, two emulation 
objectives are commonly identified. First, the hard
ware may be used to emulate a particular system (S/360 
on the IBM 2025, 1130 on the Meta IV). Second, the 
microprogrammable hardware may be used to emulate 
a particular environment (SNOBOL4, a banking sys
tem, etc.). Traditionally, the former objective requires 
tight microcoding with efficiency of the produced micro
code the end goal. The latter objective requires a good 
run-time environment which can support, through 
emulated primitives, those features peculiar to the ap
plication environment. 

The first objective generally requires an efficient 
translator, with various techniques of optimization, 
including the use of an intermediate language.1s The 
second generally does not require an intermediate lan
guage, since in most cases the primary language can be 
directly translated into the emulated primitives imple
mented on the host machine. 

Translation procedure 

In this research the use of an intermediate language 
called SML has greatly facilitated the translation pro
cess from a higher-level machine-independent language 
into microcode. The basis for'this intermediate language 
can be found in an early paper by Melvin Conway on 



MPL-to-SML 
Dictionary Produced 

SML-to-Virtual 
Object Code 

Virtual Object Code 
to Object Code 

Figure I-Organization of the translator 

the use of an UNCOL.19 SML-to-microcode translators 
have been written for the INTERDATA 3, and are 
capable of producing "compact" code (see Appendix 
A). In addition, the translation algorithm for convert
ing the MPL code into microcode allows for multiple 
precision data manipulations, a feature very common 
to emulator programs. The result is that the process of 
emulating a 2n-bit word machine on an n-bit micro
programmable machine is easily done at the highest 
level (MPL level) in a most natural fashion. 

The general organization of the translator is shown 
in Figure 1. Source code is initially translated into 
SML in phase 1. At the same time, a dictionary is 
constructed for later use in phase 3. Items entered into 
the dictionary include real and virtual registers, testable 
conditions, literals, and other items DECLAREd. Al
though the SML produced is machine-independent, the 
dictionary is not in that it relates virtual data items to 
their real equivalents. 

Phase 2 of the translator produces virtual object 
code from the SML input. The code is virtual in the 
sense that the operands of machine instructions may be 
virtual data items (concatenated registers, multiple 
precision data items, literals, etc.) and need not be of 
equal widths. 

The conversion from virtual object code to object 
code is resolved in phase 3. Operands of unequal or 
virtual nature must be converted to true machine in
structions. Literals, immediate operands, virtual and 
concatenated registers must be looked up in the diction
ary in order that their virtual representations may be 
replaced by their object representations. 

In general, phase 3 will cause additional lines of 
object code to be generated. This code results from the 
conversion of virtual operands into true operands. 

MPL 173 

Preliminary evaluation and future work 

The current translators from SlVIL to microcode are 
written in SNOBOL4. They are capable of producing 
microcoded routines from SML which closely resembles 
the same code supplied by the manufacturer (see Ap
pendix A). The whole process of coding the emulation 
routines has been made considerably easier by using 
MPL, and removes much of the busy work required 
in writing microprograms from the programmer's 
shoulders. 

There are certain drawbacks, however, in using any 
systems languages such as MPL. In particular, when 
one allows the use of every facility at the highest level, 
conflicts may arise (such as that which can occur in any 
high-level language where assembler code may be gen
erated in-line), and indiscriminate use of those facilities 
may lead to reasonable but unexpected results. This 
seems a small price to pay in terms of the original 0 b
jectives set forth in the section on microprogramming 
languages. . 

The original objectives of a high-level, procedural, 
descriptive, flexible, and possibly machine-independent 
language for writing microprograms have been met so 
far. The entire process from the higher-level language 
to the microcode has been considered, and the feasi
bility seems clear. As Husson points out in his book,2 

. the value of this project is in its use for: 

(1) Designing 
(2) Debugging 
(3) Translating 

In each case, the programs must be organized, written, 
tested, and debugged. At each level, the organization 
and flexibility provided are enough to justify the exist
ence of MPL. 

Future work will concern itself with further refine
ments to the language, and with its application to a 
multiple data-path machine such as the IBM 2050. 
Techniques for both local and global optimization of 
the code produced will also be considered. 

APPENDIX A 

Figure 2 is a portion of the INTERDATA 3 emulator 
written in MPL. The emulated environment is that of 
a simplified 360, and Figure 2 shows part of the initial
izing routine (to fetch the PSW) and the instruction 
fetch and decode routines. 

In the outer procedure "INITIAL", we find the ex-



174 Spring Joint Computer Conference, 1971 

INTf·ROUAJI PHOCt,UlJHf. (JPTlONS(I·'AHI) , 

CM (0132761) BIT It,,). 

MAk tilT 116) • 

MAM l'qT (H) UEFTIIIFU >1 Ail "USITTO"l II) • 
MAL HIT (H) UEFINFU ouR PUSJT"" .... ('I), 

MOk HIT , 16), 

MOH ''II (H) ')EFlNFU ",fIR "USITrON Ii) , 
MOL AyT (H) OEFINfU >1nR .. OS IT rON 1'1). 

LOCCNT tilT 1161, 

INITIALI 
I. FilCH IHf LOCATlOIll COIJIIITFH A.,O PUT IT INTO 1>'1 AN" HI ., 
IIAH .. LOCCNT! 
MOH .. CM (I~ARI, 
HOIIHI .. MORI 
Ge rO uISPLYI I- GU C .. E,.K 0 ....... ONSOLF. .. ETT , '~~S ., 

PHASElt PilCCEUUREI 
I. rl~SIIWCTTU'j FI:.TCH, LOC CNTp IJPnAIE " 0 .. coo. DFC"OE ., 

ARFOR", 

OECODE r 
SUPRElr 

MAil .. RUIIRI, 
MOR • CMI"I/lR)I 
HOIIHI a ROIIAI."I 
H411.0 .. 1011)111 
H1 .. H'IoRSH,)1 
Ak '" IRJ.LSH,llVlI 
H2,OFR .. R4,PSH,4 
IF CARRY THEN GO TO 
H6 .. AR"11 
H5 .. 01 

,. I""ST.WCTlO" AnO.lESS ., 

I. TIIICRF'Mt.NT lOCATIO" COU·,·TF.A .1 
I. GET OP "'OnE ., 

,. RIGId JUSTIFY AI/"'I .1 
I. lEFT SHTFT R~/XZ ., 

I. INrO AH ~IT~ LC;H SFT .1 
RJlFOPMI 

IF SNGL veATN THEN GO TO c;uPOpTi 
H3 .. H4""FXI I. t4AC;r< UP ,.onE ., 

I. MULTIPLY .• y 1 ., AR a R3. IR3.1. SH.) II 
uFR .. RCI 
IF U<UF THE'" r,O TO III FbI 

FLSI:. IF HILSFvCAHRY TI1I:.N 60 TO TqOtltll I 

£,,1.1 PHASE) 1 

. 
ENO INTEHOAIAJI 

INtTIali INIn.u 
,. FETCH TH~ lOCUtON COUNTt.1t aND PUT IT INTO In aND Itl ., 
.. att '" lOCCH T; I'l or.t:NT ••• " 

lUlO.OI 
'1It.I,MA •• t 

IIIJtt = C","a~l; (c ..... " 
XIIt£.Oli 

(HOP.'." 
X(l.O.OI 
(tt ••• ·.,,1t1l. 

GO TO OISPl. YI ,. GO CHECK ON CONSOLE Sf'TTINGS" I'OISPLY.' ... 
XI.lIMPI: 

p"aSElI PItOCEOUttE; ~H.SFlI 
,. INSTIIUGTION F£TCH, lOC CNTtt UPO.TE A C~ COO", DECODE ., 

... " = 1I0"ttll ,. INSTRUCnON 'OOtt£SS" Itt.".t.'." 
xnO.DI 
Itt"."'RI: 

14011 = CNI"A'l" I'CH ••• " 
XlltE·m: 

~O"ttl = IIOIIIIUZI ,. INCttE""NT lOC'TIIIN f'IIUNTFtt., '.11".1.'." (·Z.'.U 
X 1.001 
(-••• tt"'.l11 

"""R3 = "DRI ,. GET OP CODE" IlII)tt ..... 
XllOADI 
( •••• tt .. "1t31: 

"1 = 113."SH.~1 ,. RIGHT .lUSTIFY tttlNl" 1.3.'." 
.·3, •• 1. 
XfttIGNTSHIFTJ 
' ••• ,.7) t 

.~ = I"3.lSOi.1I v1l ,. lEFT SHIn PUXz., lO~."'1 
'-1, •• 1) 
Xll£FTS"IFTJ ,,, ... , .... 
1'1."11 
XllIIt' 
tlP._, .... : 

IIZ.0Ftt = 11".115"." I' tNTO .tt lilT" lO;ll S£T'I ''''.'.'' 

IF cattilY THe:N GO TO .>iFn .... ; 

'· ... , •• 1. 
X'lfIG"TSHIFTJ 
I •••• lIFttl 
IIt ••• ·ZII 

' ... IfF"""._." 
n.l~-bN-C'~YlI 

,. tt£G-.EG Fo ... n·, *lPFOttNI 
I ••••• " 
'·1 .... 11 
XUNnI 
IIt ••• *611 

Figure 2-An example using the PL/I-like syntax 

115 = 0; (·11,'.01 
KllOaU) 
Itt_O,MI; 

DECOO£I IF SNGl .. ClTN 'THEN GO TO SUPOttTl orCOOEI 
('SOPO.T ." 0) 
K(JUltP-ON-SN(;U' 
JlIJONP-ON-CaTN) r 

SUPttE TI 113 = R"A OFX; 

OFIt = 1t21 

IF TRUE THEN GO TO Ill£GI 

,. "'SK f'p eOOE·' SUPIPETI 
(ltlt, .... 

,. "Ul TTPl Y 8Y 3 ., 

I·".X ••• 1I 
X ClNO) 
IIt.0."311 

(1t3,'." 
(·t.aUI 
JlllEFTSNIFTI 
1" ••••• 01 
1"3.'.11 
XI.DOI 
n.o.'ltl; 

IOZ.'.OI 
XllOaOJ 
1".O."FItII 

ElS£ IF F'lSl'wC.III1Y THEN GO TO TROU"L: 
1·lll£G.a.O) 
XI.lUNP-ON-TRUE) 
I 'TROUAt.,'. 01 
x (JUNP-ON-.ll.SEI 
XIJO"P-O .... C."ItYlI 

Figure 3-PL/i-like code translated into SML 

INITIAL 

PHASE 1 

RRFORM 

DE<DDE 

SUP RET 

L 
C 
L 
L 
L 
C 
L 
A 
L 
L 
L 
L 
L 
o 
L 
L 
L 
L 
L 
B 
N 
L 
T 
B 
T 
B 
L 
N 
L 
A 
L 
B 
B 
B 

MAR, .LOCCNT 
MR 
RO//R1,MDR 
RAR,·DISPL~ 
MAR,RO//R1 
MR 
AR,·2 
RO/ /R1 ,RO/ /R1 
Ril//R3,MDR 
AR,R3,SR+NC 
AR,AR,SR+NC 
R7,AR,SR+NC 
AR,R3,SL+NC 
AR,·1 
AR,RiI,SR+NC 
AR,AR,SR+NC 
AR,AR,SR+NC 
DFR,AR,SR+NC 
R2,DFR 
C,RXFORM 
R6,·1 
RS,·O 
SNGL 
G,SUPORT 
CATN 
G,SUPORT 
AR,·OFX 
R3,R4 
AR,R3,SL+NC 
AR,R3 
DFR,R2 
G,ILLEG 
L,TROUBL 
C,TROUBL 

Figure 4-Second phase of the translation 



INITIAL 

PHASE 1 

RRFORM 

DECODE 

SUP RET 

L 
L 
C 
L 
L 
L 
L 
L 
L 
C 
L 
A 
A 
L 
L 
L 
L 
L 
L 
o 
L 
L 
L 
L 
L 
B 
N 
L 
T 
B 
T 
B 
L 
N 
L 
A 
L 
B 
B 
B 

MAL ,=L (LOCCNT) 
MAli ,=H (LOCCNT) 
MR 
R1,MDL 
RO,MDH 
RAL ,=L (DISPLY) 
RAH,=H(DISPLY) 
MAL,R1 
MAH,RO 
MR 
AR,X'02 • 
R1 ,R1 ,CO 
RO,RO,CI 
R3,MDL 
RlI,MDH 
AR,R3,SR+NC 
AR,AR,SR+NC 
R7,AR,SR+NC 
AR,R3,SL+NC 
AR,X'01 ' 
AR,RlI,SR+NC 
AR,AR,SR+NC 
AR,AR,SR+NC 
DFR,AR,SR+NC 
R2,DFR 
C,RXFORM 
R6 ,X' 0 1 ' 
RS,X'OO' 
SNGL 
G,SUPORT 
CATN 
G,SUPORT 
AR,X'OF' 
R3,RlI 
AR,R3,SL+NC 
AR,R3 
DFR,R2 
G,ILLEG 
L,TROUBL 
C,TROUBL 

Figure 5-Third phase of the translation 

pected sequence: 

(1) Put address into memory address register 
(2) Read central memory 
(3), Copy data out of memory data register 

common to emulator programs. The concatenation of 
RO and R1 occurs because central memory is actually 
16-bits wide, and reads and writes require double length 
registers for both addressing and data handling. 

MPL 175 

The inner procedure "PHASE 1" represents the in
struction fetch, location counter update, and op-code 
format recognizer routines. In it can be found two fea
tures not normally found in PL/I. First, the binary 
operators .RSH. and .LSH. have been added to repre
sent right-shift and left-shift respectively. Additional 
operators such as exclusive-or have also been included 
in the syntax since they occur frequently in the in
struction sets of microprogrammable machines. 

Second, the occurrence of the "events" CARRY, 
SNGL, CATN, TRUE, etc., in the IF statements are 
taken to imply that special conditions within the ma
chine can be tested directly. The actual relationship of 
the event to the physical hardware is specified in the 
DECLARE statement. 

Figure 3 shows the same code as Figure 2, but the 
translation into SML can be found interspersed on the 
right-hand side of the figure. Operations are denoted 
by an "X" followed by parentheses enclosing the name 
of the operation. Arguments needed for operations 
must first be loaded into argument or A-registers. Re
sults of operations are placed in result or R-registers. 
Temporary or T -registers are available for intermediate 
results. Finally, literals are indicated by preceding 
their names (values) by an asterisk. 

Figure 4 represents the output of phase two of the 
translator. This is the traditional and more difficult 
code emission phase of the translation process. The re
sults are not true INTERDATA code, however, and 
must go through another phase to relate the actual 
facilities and data-path widths to the virtual facilities 
and data paths which the programmer assumes. 

Figure 5 is the output of the third phase of the 
translator. The code produced here is actual INTER
DATA code in assembler format. The output has re
quired a dictionary to relate the virtual and physical 
registers, data-paths, etc., to each other. Construction 
of such a dictionary is accomplished in the MPL to 
SML phase of the translation, and is facilitated by the 
declarations in the MPL code. 

APPENDIXB 

The INTERDATA 3 is a very fast, simple and un
complicated machine. Control instructions reside in a 
Read-Only-Memory (ROM) that is 16-bits wide. Thus, 
the microinstructions of the machine are 16-bits long. 
However, the data paths are only 8-bits wide. 

Microinstructions for the INTERDATA are some
what similar to the instructions for a two address 
(register-to-register) machine with an accumulator 
(AR). The instruction types include: 

L Load 
A Add 

X Exclusive Or 
B Branch On Condition 



176 Spring Joint Computer Conference, 1971 

T Test S Subtract 
NAnd 
o Or 

C Command 
D Do 

The four formats for the ten instructions of the machine 
are: 

I op I destination I source I modifiers 

for op codes A,S,N,O,X,L 

I op I destination I data j 
for immediate instruction forms as above 

I op. I test or command 

for test or command instructions 

op CVGL 1 

for branch instructions where: 

C=carry 
V=overflow 

address 

G = greater than zero 
L = less than zero 

Thus an add instruction might look like: 

A MAH,Rl 

where the contents of the source register Rl are added 
to the contents of the accumulator AR and the result 
is stored in the destination register MAH. 

Modifiers for the various instruction types include: 

NA AR is not added to the source register. 
SR Shift the contents of the source register 

right one bit and then perform the oper
ation. 

SL Shift left as above. 
cr If the carry flip-flop is on, add a one to this 

instruction. 
CO Set the carry flip-flop if a carry is gener

ated out of the most significant bit. 
NC No carry. 

The assembler allows literals to be specified as hexa
decimal constants and labels. Since labels may be 16-bit 
values, their high and low parts are specified by pre
fixing the literal by an H or L respectively. 

REFERENCES 

~IP~171, (18),p.402 
1 S G TUCKER 

Microprogram control 
IBM Systems Journal Volume 6 pp 222-241 1967 

2 S S HUSSON 
Microprogramming: Principles and practices 
Prentice-Hall Engelwood Cliffs New Jersey pp 125-143 1970 

3 F J CORBATO 
PLjI as a tool for systems programming 
MIT Project MAC Memorandum M-378 1968 

4 E D CROCKETT et al 
Computer-aided system design 
AFIPS Conference Proceedings Fall Joint Computer 
Conference 1970 

5 K ElVERSON 
Programming notation in systems design 
IBM Systems Journal Volume 2 pp 117-128 1963 

6 G METZE S SESHU 
A proposal for a computer compiler 
AFIPS Conference Proceedings Spring Joint Computer 
Conference pp 253-263 1966 

7 XCHU 
An ALGOL-like computer design language 
Communications of the ACM Volume 8 pp 607-615 1965 

8 Y CHU 
A higher-order language for describing microprogrammed 
cOmputers 
University of Maryland Computer Science Center 
Technical Report 68-78 College Park Maryland 1968 

9 J A DARRINGER 
The description, simulation, and automatic implementation 
of digiatal computer processors 
Ph D Thesis Carnegie-Mellon University Pittsburgh 
Pennsylvania 1969 

10 H P SCHLAEPPI 
A formal language for describing machine . logic, timing, and 
sequencing (LOTI S) 
IEEE Transactions on Electronic Computers Volume 
EC-13 pp 439-448 1964 

11 H SCHORR 
Computer-aided digital system design and analysis using a 
register transfer language 
IEEE Transactions on Electronic Computers Volume 
EC-13 pp 730-737 1964 

12 R M PROCTOR 
A logic de.3ign translator experiment demonstrating 
relationships of languages to systems and logic design 
IEEE Transactions on Electronic Computers Volume 
EC-13 pp 422-430 1964 

13 D F GORMAN J P ANDERSON 
A logic design translator 
AFIPS Conference Proceedings Fall Joint Computer 
Conference pp 251-261 1962 

14 M S ZUCKER 
LOCS: An EDP machine logic and control simulator 



IEEE Transactions on Electronic Computers Volume 
EC-14 pp 403-416 1965 

15 R A SIBLEY 
The SLANG system 
Communications of the ACM Volume 4 pp 75-84 1961 

16 P R BAGLEY 
Principles and problems of a universal computer-oriented 
language 
Computer Journal Volume 4 pp 305-312 1962 

MPL 177 

17 T B STEEL 
A first version of U NCOL 
Proceedings of the Western Joint Computer Conference 
pp 371-378 1961 

18 D J FRAILEY 
Expression optimatiml using unary complement operators 
SIGPLAN Notices Volume 5 pp 67-851970 

19 M E CONWAY 
Proposal fOr an U NCOL 
Communications of the ACM Volume 1 pp 5-81958 





A firmware APL time-sharing system 

by RODNAY ZAKS,* DAVID STEINGART,* and JEFFREY MOORE** 

University of California 
Berkely, California 

INTRODUCTION 

Incremental advances in technological design often re
sult in qualitative advances in utilization of technology. 
The recent introduction of low-cost, microprogrammed 
computers makes it feasible to dedicate highly sophisti
cated and powerful computation systems where previ
ously the needed performance could not be economically 
justified. Historically, the contribution made by the 
computing sciences to the behavioral sciences has been 
limited largely to statistical analysis precisely because 
sufficiently sophisticated computing equipment was 
available only outside the experimental situation. In
expensive time.;..sharing systems have recently made it 
possible to integrate the computer in a novel way as a 
tool for conducting experiments to measure human be
havior in laboratory situations. A detailed presentation 
of computerized control of social science experimenta
tion is presented later. However, many aspects of the 
system are of general interest because they exploit the 
possibilities of a newly available computer generation. 

Iverson's APL language has been found to be very 
effective in complex decision-making simulations, and 
the source language for the interpreter to be described 
is a home-grown dialect of APL. It is in the nature of 
interpreters that relatively complex operations are per
formed by single operators, thus making the ratio of 
primitive executions to operand fetches higher than in 
any other mode of computation. This is especially true 
in APL, where most bookkeeping is internal to particu
lar operators, and a single APL operator may replace 
a FOR block in ALGOL, for example. This high ratio 
places a premium on the ability of microprogrammed 
processors to execute highly complex instruction se
quences drawing instructions from a very fast control 
memory instead of from much slower core memory. 

In the new generation of microprogrammable com-

* Department of Computer Science 
** School of Business Administration 

179 

puters the microinstructions are powerful enough and 
the control memories large and fast enough to permit 
an on-line interpreter and monitor to be implemented 
in microcode. If a sufficient number of fast hardware 
registers is available, core memory serves only for 
storage of source strings and operands. The speed ad
vantages of such a mode of execution are obvious. 

SYSTEM ARCHITECTURE*** 

META-APL is a multi-processor system for APL 
time-sharing. One processor ("the language processor") 
is microprogrammed to interpret APL statements and 
provide some monitor functions, while a second one 
(the "Interface processor") handles all input-output, 
scheduling and provides preprocessing capabilities: 
formatting, file editing, conversion from external APL 
to internal APL. Editing capabilities are also provided 
offline by the display stations. In the language pro
cessor's control memory reside the APL interpreter and 
the executive. In the Interface processor's reside the 
monitor and the translator. 

An APL statement is thus typed and edited at a dis
play station, then shipped to the Interface processor 
which translates and normalizes this external APL 
string to "internal APL," a string of tokens whose left 
part is a descripto~ and right part an alphanumeric 
value or i.d. number corresponding to an entry in the 
user tables (see appendix A). External APL may be 
reconstructed directly from internal APL and internal 
tables, so that the external string is discarded and only 
its internal form is stored. This internal APL string is 
shipped to the language processor's memory: the APL 
processor will now execute this string at the user's re
quest. 

*** The concepts presented here are being implemented under 
the auspices of the Center for Research in Management Science. 
Research on the final configuration is continuing at the Center 
and the views expressed in this paper represent the ideas of the 
authors. 



180 Spring Joint Computer Conference, 1971 

16 CII'f
a1splq 
atatlO11s 

Figure 1-The Meta-APL time-sharing system (projected) 

The variable's i.d. numbers ("OC#") are assigned by 
the system on a first-come-first-served basis and are 
used for all further internal references to the variable. 
This OC# is the index which will be used from now on 
to reference the variable within the OAT (Operand 
Address Table) of the language processor. The set of 
internal APL strings constitutes the "program strings." 

Microprogramming encourages complex interpreta
tion because the time spent interpreting a given bit or 
string of bits is negligible. We have taken advantage of 
this ability to allow short descriptors to replace "dead
data" wherever possible so as to minimize the inert-data 
flow and maximize the active-data flow. All external 
program symbols are translated to tokens internally
however, as we have previously mentioned, the gram
mar and semantics of the internal notation are iso
morphic to the external symbolic. 

APL PROCESSOR: HARDWARE 

The laboratory requirements called for a very fast 
APL processor capable of executing at least sixteen 
independent or intercommunicating experimental pro
grams, each program responding in real time to textual 
and analog input from the subject of the experiment. 

Once the possibilities of a microprogrammed inter
preter became apparent, the search for a machine 
centered on those with extensive microprogramming 
facilities. Of these the Digital Scientific Meta-4 was 
chosen by the Center for Research in Management 
Science for its fast instruction cycle, extensive register 
complement, and capable instruction set. 

The processor fetches 32-bit instruction from a read
only memory on an average of every 90 nsec. Instruc-

tions fetch operands from thirty-one 16-bit-registers 
through two buses and deposit results through a third 
into any register. Most instructions may thus address 
three registers independently-there are no accumu
lators as such. Up to 65K of 750 nsec cycle core may be 
accessed through two of the registers on the buses, 
10 through another pair, and sixty-four words of 40 
nsec scratch pad memory through yet another pair. 
These registers are addressed as any others and the 
external communications are initiated by appropriate 
bits present in all microinstructions. 

Triple addressing and a well-rationalized register 
structure promote compact coding. The entire APL 
interpreter and executive reside in under 2,000 words 
of read-only memory. 

Although special multiply and divide step micro
instructions are implemented in the hardware of the 
Meta-4, the arithmetic capability of the processor is not 
on a par with the parsing, stack management, and other 
nonarithmetic capabilities of the interpreter. Adding 
a pair of 32-bit floating operands takes about 5 p.sec, 
a very respectable figure for a processor of this size and 
more than adequate for the laboratory environment. 
A floating multiply or divide takes 20-25 J,Lsec. 

On the other hand, a pass through the decision tree 
of the parser takes 1-2 J,Lsec, and as will be seen from the 
descriptor codes this tree is fairly deep. This speed is a 
consequence of the facility to test any bit or byte in any 
register and execute a branch in 120 nsec, or mask a 
register in less than 90 nsec. 

APL PROCESSOR: MEMORY 

The experimental situation demands that response 
time of the computer system to external communica
tion be imperceptible. We were forced by this considera
tion to make all active programs resident in core, and 

Figure 2-The APL processor 



in order to maximize the utilization of the available 
address space of 65K, several designs evolved. 

1. Through a hardware map, the virtual address 
space of 65K is mapped into 256K core. 

2. Since many of the APL operators are imple
mented in core, and since the experimental 
situation normally requires many identical en
vironments (programs with respect to the com
puter), all program strings are accessible con
currently to all processes or users. 

3. Through dynamic mapping of the available 
physical memory space, individual processes may 
be allocated pages as needed, and pages are 
released to free space when no longer occupied 
by a process. Optimal use is made of the waxing 
and waning of individual processes. 

The entire virtual memory space is divided into three 
contiguous areas: system tables; system and user pro
gram strings, processes work space. Within the processes 
work space, memory is allocated to the stack and 
management table (MT) for each process. The stack 
and MT start in separate pages, the stack from the 
bottom and the MT from the top, and these two are 
mapped as the bottom and top pages of the virtual 
work space, regardless of their physical location. As the 
process grows during execution, pages are allocated to 
it from free space within the process work space and 
are mapped as contiguous memory to the existing stack 
andMT. 

The specifics of the memory and map design were 
constrained primarily by available hardware. The com
puter used has a 16-bit address field-65K is the maxi
mum direct address space but not adequate for 40 plus 
processes. Mapping by hardware 256K into 65K elimi
nates the need for carrying two-word addresses inside 
the computer. Pages are 512 words long, 128 pages in 
the 65K virtual space, 512 pages in the real space, 
keeping fragmentation to a minimum. 

The map is a hardware unit built integrally with the 
memory interface. The core cycle is 750 nsec, the map 
adds 80-100 nsec to this time. 

The map incorporates a 128-word, 12-bit, 40 nsec 
random access memory which is loaded every time a 
user is activated. The data comprising the user page 
map are obtained from a linear scan of the general 
system memory map. 

Each word in the map contains three fields. 

• In the n-th word in the hardware map, the right
hand seven bits contain the physical address of 
the page whose virtual address is n. 

I 
1 

Optional 
bonk 3 

Firmware APL Time-Sharing System 

Set sv1tch 

ea4/vrlte 

Pap , • 
(bit. 1-6)-. 

OptlO1lal 

1-" 

'i-
I 
I 
1 
1 OptiOllal 
1 _1 

1 
1 
I 
I 

Word , 
-(bit8 1-15) 

Data 

Core -. 

181 

Processor 

Core .emory 

I I 

1 
I 
I I I 

~~_1~~':l L ____ ..J L ____ J 

To I/o proce8sor 

Figure 3-The hardware map 

• The two bits adjacent to this field (bits 7, 8) map 
the 65K space into 256K (i.e., bank select). 

• The three remaining have control functions and 
are returned in about 100 nsec to the status register 
associated with the memory address register. These 
bits are thus interpreted by the microprogram and 
any actions necessary are taken before the memory 
returns data 350 nsec later, 450 nsec after the 
initiation of the read (or write). 

• The first bit, when set, causes an automatic write 
abort, thereby providing read-only protection of a 
given page. 

• The second bit, when set, indicates a page fault. 
When detected in the status register, a special 
routine is executed which allocates a new page to 
the user. 

• The third bit indicates that a page is under the 
control of the interface processor and prevents the 
APL processor from modifying or reading that 
page. 

In general, the program string area is protected by 
the read-only bit; it may be modified only by the inter
face processor. All free storage in the processes work 
space, and all virtual pages not allocated to the process 
activated at a given time are protected by the page 
fault bit. Thus, when a process references outside its 
unprotected area, the request is interpreted as a request 
for additional storage. When the interface processor is 



182 Spring Joint Computer Conference, 1971 

modifying either program strings or input-output buf
fers, those areas are protected by the read-write abort 
bit. ' 

The map may be bypassed by setting the appropriate 
bits in the map access register. This is to permit loading 
of the map to proceed simultaneously with core fetches, 
while the map's memory settles down, and to avoid the 
bootstrapping necessary if the map always intervened 
in the addressing of core. 

The system memory map, stored in the top section 
of the user's virtual storage establishes the system-wide 
mapping from physical to virtual pages. Each of the 
128 entries, one per physical block contains the owner's 
ID number (or zero) and the corresponding virtual 
location within its storage. Free pages are chained with 
terminal pointers in CPU registers. The overhead in
curred in a page fault or page release is thus minimum 
(3 psec). 

APL PROCESSOR: INTERPRETER SOURCE 

The APL interpreter accepts strings of tokens resi
dent in the program strings area of core. The transla
tion from symbolic source to token source is performed 
externally to the APL processor by an interface pro
cessor. The translation process is a one-pass assembly 
with fix-ups at the end of the pass for forward-defined 
symbols. The translation preserves the isomorphism 
between internal and external source and is naturally 
a bidirectional procedure-external source may be re
generated from internal source and a symbol table. 

Meta-APL closely resembles standard APL with 
some restrictions and extensions. The only major re
striction is that arrays may have at most two dimen
sions-a concession toward terseness of the indexing 
routines. There are two significant extensions. 

Functions 

Functions may have parameters, which are called 
by name, in addition to arguments. This is to facilitate 
the development of a "procedure library" akin to that 
available in ALGOL or FORTRAN. Parameters elimi
nate the naming problem inherent in shared code. 

The BNF of a Meta-APL function call: 

(FUNCTION CALL):= {{ARGUMENT)} 
(FUNCTION NAME) 
{( (PARAMETER LIST»} 
{ (ARGUMENT)} 

(PARAMETER LIST):= (VARIABLE NAME) I 
(PARAMETER LIST), 
(VARIABLE NAME) 

""The variables specified as parameters may either be 
local to the calling function or global. The mechanics of 
the function call will be described later, as this is one 
of the aspects of this implementation which is particu
larly smooth. 

Processes 

The other significant extension in Meta-APL is the 
facility of one program to create and communicate 
with concurrently executing daugliter programs, all of 
which are called processes. Briefly, a process is each 
executing sequence represented by a stack and manage
ment table in the "processes work space." Any process 
can create a subprocess and communicate with it 
through a parameter list, although only from global 
level to global level. The latter restriction is necessary 
because processes are asynchronous and the only level 
of a program guaranteed to exist and be accessible at 
any time is the global level (of both mother and daugh
ter processes). 

The activation of a new program, 

$NUprog{Pl, P2, P3, ... , Pn} PROGRAM NAME 

establishes a communication mechanism, the "umbilic~l 
cord" between calling program A and called program 
AA. AA constitutes a new process and will run in 
parallel with all other processes of the system. The 
cord however, establishes a special relationship between 
AA and A: 

-the cord may be severed by either A or AA, causing 
the death of the tree of processes (if any) whose 
rootisAA. 

-the parameter list of the $NUprog command estab
lishes the communication channel for transmitting 
values between A and AA. All these parameters 
may thus be referenced by either .process A or 
process AA and will cause the appropriate changes 
in the other process. To prevent critical races, two 
commands have been introduced. 

$WA (WAITFOR) which dismisses the program 
until some condition holds true. 

$CH (CHECK) which returns 1 if the variable has 
already been assigned a value by the program, 4> other
wise. It expects a logical argument. Thus $WA ($CH 
VI V $CH V2) will hang program A until either VI or 
V2 have been evaluated by program AA on the other 
side of the umbilical cord. It will then resume pro
cessing. 

Among the parameters that may be passed ar~ 10 
device descriptors. Hence, a mother process can tem-



porarily assign to daughters any 10 device assigned to 
her. This is to facilitate use of simple reentrant 10 
communications routines to control multi-terminal in
teractive experiments under the control of one mother 
process. The mother may identify daughters executing 
the same program string by assigning them distinct 
variables as parameters. 

The usual characteristics of well ordering apply to 
process tree structures. 

The BNF of Meta-APL is included as an appendix. 

THE DESCRIPTOR MECHANISM 

The formats of the internal tokens are as follows: 
numerical scalar quantities are all represented in float
ing point and fixed only for internal use. The left-most 
one bit identifies the two words of a floating operand: 
the I-bit descriptor allows maximum data transit. 

Operand calls 

Variables are identified by descriptors called operand 
calls (after Burroughs). The i.d. field of the OC locates 
an entry in the Operand Address Table (OAT) which 
gives the current relative address of the variable in the 
stack, or specifies that a given variable is a parameter or 
undefined. 

Another bit specifies the domain of the variable, 
local or global. Unlike ALGOL, there is one global 
block in Meta-APL. The possible addressing is indi
cated graphically. 

When a process is created or a function is called, a 
block of storage is allocated to the Management Table 
to store the stack addresses of all the variables of that 
block-the block known as the Operand Address Table 
(OAT). The i.d. field of the OC is an index to the OAT. 
When an OC is encountered as the argument of an 
operator, the address of the variable is obtained in or 
through the OAT. If the variable is local to the current 
block and defined, the current stack address is found 
in the appropriate location of the local OAT. If the 
variable is global, as specified by the domain bit, the 
global level OAT is accessed. In either case, if the 
variable is undefined, a zero will be found in the OAT 
entry for that variable, and an error message will re
sult. If the variable is a parameter, an operand call to 
either the calling or global level will be found in the 
OAT. In the case of a function, this OC points to either 
the calling block OAT or the global OAT and the ad
dress/zero/parameter OC will be found there. If the 
OC was found in the global OAT, it is a parameter from 
the mother process as described above. 

Firmware APL Time-Sharing System 183 

arame P ter p f'r0lll mother process 

Mother's name ~ 

k: 0Cp ~ para-{ 
meter 
list 

Global OAT 

i:", v +--

Function name 

., ., 
- OCi 8 e » Po 

.-i ,.. 
~ 

!i l! 
~ t ~ 'C ... 

> !J ~ ., l: ., ,.. 
8 ~ ,.. 
~ ., ., 

~. 

... 
OCi-global - 01 i > ., & ., ., 

() .. 
St.ack 

~ 
., 
8 

OCj-local f----- ~ 
OCk-global 

v: V 

Figure 4-Stack addressing mechanism 

Obviously, parameters may be linked through every 
level of process and function. 

Operators 

Operators are represented by such word descriptors 
containing tag bits, identification bits, and some re
dundant function bits specifying particular operations 
to the interpreter (marking the stack, initiating execu
tion, terminating execution). 

During parsing, operators are placed on an Operator 
Push Down List created for every block immediately 
below the OAT for that block. During the execution 
phase, operators are popped off the OPDL and decoded 
first for executive action (special bits) and number of 
arguments. The addresses of the actual operands are 
calculated as explained under Variables and those ad
dresses passed to the operator front end. This routine 
analyzes the operands for conformability, moves them 
in some cases, and calls the operator routine to calcu
late results, either once for scalars, or many times as it 
indexes through vector operands. 



184 Spring Joint Computer Conference, 1971 

The operator front end represents most of the com
plexity of the execution phase since the variety of APL 
operands is so great. 

Function call 

The mechanism of function call uses the OPDL. If a 
function descriptor is encountered during the parse, it 
is pushed onto the OPDL and three zeroed words are 
left after it for storage of the dynamic history pointers. 
The specifications of the function are looked up in the 
function table and one additional zeroed word is left 
for each variable which appears in the function header 
before the function name, i.e., A~B FOO ... would re
sult in two spaces zeroed one for A, one for B. 

Then, as the parse continues, if a left brace is en
countered (as in A~B FOO{P1, ••• , Pn}C), parameter 
OCs PI through Pn are pushed onto the OPDL until 
the right brace is encountered. The number of param
eters (n) is entered, the function descriptor duplicated, 
and parsing proceeds on its merry way. 

During execution the last entered function descriptor 

(a) Eltternal APL A F1JNCTN {Pl,P2,P3} B 

(b) Internal APL (program string) 

(c) OPDL after parse ot the function call 

(d) The function as stored 

A 

FCALLI < ID > 

{ 

PI 

P2 

P3 

} 

B 

FCALLi < m > 

11", par,arg,val 

PI 

PZ , 
P3 

FCALLI < ID > Top ot OPDL 

~
m > Function table entry 

", ar ar 

1 Function code 
~ (internal APL) 

Figure 5-Function call 

OAT (n) { 

OPDL (n) { 

OAT (n + 1) 

OPDL 

Function descriptor 

Function heading 

PP (n) 

SA (n) 

MT (n) 

C-explicit result address 

A-argument stack address 

Parameter Pl 

Parameter Pn 

B-argument stack address 

Local variables o~ the t'unction 

Figure 6--Management table after activation of 
C~A FOO (PI, P2, .•. , Pn) B 

is popped. This initiates the function call. First, the 
number n above is compared with the number of param
eters specified in the function header. Then the address 
for arguments Band C are entered (these are the cur
rent top two elements of the stack). The current stack 
pointer, MT pointer, and program string pointer are 
saved in the appropriate locations and x words after 
the C argument are zeroed to accommodate the x new 
variables to be defined in the new function; (x was ob
tained from the function string header). 

At this point, control is passed to the function pro
gram string with the new OAT already formatted. 

The purpose of the preceding description is to indi
cate the kind of manipulation which is cheap in time 
and instructions in a microprogrammed interpreter. 
The function call routine takes under fifty instructions 
and takes about 10 psec to execute (plus .9 x psec to 
zero x locations). 

Other descriptor types: 



Firmware APL Time-Sharing System 185 

8lMBOL 
~ 

II ~INARY OCTAL DESCRIPTION 

-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A , ~ x P 0 N E N T < M A ,----- Arithmetic Exponent=<1-7> 2' s complement 

If T 1 8 8 . A > ------ MBntissa=<8-3l> +first bit is sign(f=+,l=-) 

OC 1-4 1 , • D T < V A R I D , > 14---- Operand call Domain: l-global, • local 
Trace: l=on, f=off 
Variable LD. 1=<6-15> 

V 5-8 , , • L Y L E 11 G T H > 1.---- Vector Y length up to 11 bits 

X L . E 11 G . T . H > X*y must be < 16 bits 

N U M B E R 0 F W 0 R D 8 > fOllowed by X elements and Y elements 
L=f=double words 

l=half-words 

PH 9 , • 1 - - - - - - - - - - - - 11---- Phantom 

OP 
1 __ 4] , 1 , T R M D E < 0 P E R A > 12---- Operator TR=trace 

M=mark stack ]+ 
D=dyadic=l, monadic=' 
E=execution delimiter: ])1 
Opera is the operator code(l bit tells 

scalar operator) 

8m 42-4'i~ , 1 1 D D - - - - - - - - - - 13---- Segment- DD=~'=function call: bits 6-l5-I.D.II 
operator goes ~l=empty marker (NOOP for parser) 
to OPDL l'=program call 

ll=beginning of line + line number 

10 46-4SP. 1 1 1 F F - - - - - - - - - - 17---- 10 descriptor FF=.f=output program# 
goes to stack ~l=input 

1f=unused 
ll=unused 

5' ll- l , 1 - - - - - - - - - - - - 15---- Unused 

RET 51 11 1 1 , - - - - - - - - - - - - 16---- End of function definition=RETURN 

Figure 7-The descriptors 

A TIME-SHARING SYSTEM FOR BEHAVIORAL 
SCIENCE EXPERIMENTATION 

Historically, the contribution made by the computing 
sciences in the behavioral-science area has been limited 
almost exclusively to the utilization of computational 
resources for statistical analysis of social-science data 
and simulation studies. The advantages offered by the 
computer technology in other areas have until very 
recently been lost to the behavioral sciences. The advent 
of reliable and economical time-sharing systems has 
opened new vistas to the research horizons of a social
science experimenter. The use of time-sharing systems 
in programmed learning for teaching and other educa
tional purposes has been well documented. The objec
tive of this paper is to outline a science whereby the 
process-control technology combined with time-sharing 
can be used in a novel way as a tool for conducting 
experiments to measure human behavior in laboratory 
situations. Traditionally, attempts to monitor human 
behavior in decision-making situations have had less 
than desirable results, due primarily to the extreme 
difficulty in maintaining control over the course of the 
experiment. That is, subjects of a behavioral-science 
experiment often do not behave in a manner which is 
conducive to exercise of experimental control so that 

certain variables can be measured in a controlled en
vironment. To meet the challenge of properly control
ling experiments in the social sciences, a laboratory 
for that purpose was created by a grant from the 
National Science Foundation in the early 1960s. * The 
intent was to utiliZe computerized time-sharing with 
special-purpose hardware, combined with a suitable 
cubicle arrangement so that subjects participating in, 
for example, economic-gaming situations could have 
their decisions monitored anQ. recorded by the time
shared computer. The idea was to have the experi
menter model his economic game by writing his mathe
matical model as a computer program. At run-time, the 
resulting program serves as the executive controlling 
subject input from the time-sharing terminal. In this 
fashion, the computer serves two functions: to provide 
the medium whereby the experimenter may mathe
matically express his experimental design and to serve 
as the data-collection and process-control device during 
a time-shared experiment in which subjects at the 
terminals are communicating with the computer. 

The requirements placed upon a time-sharing system 

* A C HOGGATT J ESHERICK J T WHEELER "A Labora
tory to Facilitate Computer Controlled Behavioral Experiments," 
Administrative Science Quarterly, Vol. 14, No.2, June 1969. 



186 Spring Joint Computer Conference, 1971 

when it is utilized for computer-controlled experiments 
differ markedly from those placed upon a conventional 
time-sharing system. The actual implementation of the 
model itself requires a general-purpose computational 
capability combined with the usual string-handling 
capabilities found on any general-purpose time-sharing 
system; and hence, these are a minimal requirement of 
any experimental-control computer. The features which 
most notably distinguish a time.;.shared computer sys
tem when used for experiments are as follows: (1) Re
sponse of the processor to input from the remote termi
nals must be virtually instantaneous, that is, in experi
mental situations the usual delay of one or more seconds 
by the time-shared processor after user input is pro
hibitively long. In some measurement situations, in 
order not to introduce an additional and uncontrolled 
variation in his behavior, such as might be caused by 
even minor frustration with the responsiveness of the 
time-sharing system, feedback of a response to a sub
ject's input on a time-shared terminal must be less than 
approximately five hundred milliseconds. In other less 
rigorous experimental situations in which rapid feed
back is important, the relatively lengthy response time 
of most time-sharing systems has also introduced sig
nificant variation in subject behavior. (2) The measure
ment of human behavior is a costly and time-consuming 
process, and hence the successful completion of an 
economic-gaming experiment requires the utmost in 
reliability of the time-sharing system. Even minor sys
tem fall-downs are usually intolerable to the experi
mental design; for they, at the very least, introduce 
possible lost data, i.e., lost observations on subject be
havior or time delays in the operation of the experiment. 
A system crash normally causes the experimenter to 
terminate the experiment and dismiss the subjects and 
can even force cancellation or modification of an entire 
sequence of experiments if the system fall-downoc
curred at a particularly crucial point in the experimental 
design. For these reasons, the existence of an on-site 
time-sharing system is crucial to providing reliable 
service to experimenters. Only through on-site installa
tions can control be exercised over the reliability of the 
hardware and of the system software. (3) the necessity 
of an on-site installation, combined with the meagre 
finances of most researchers in the behavioral sciences, 
requires that concessions be made in the design of hard
ware and software to provide economical service. His
torically, these concessions have been the development 
of a language tailored to the needs of those program
ming experimental-gaming situations and the develop
ment of a single-language time-sharing system for that 
purpose. Further, the cost of extremely reliable mass
storage devices has prohibited their use thus far. (4) In 
addition to meeting the above constraints of fast time-

shared operation on a small computing system, the 
language utilized by the system must (a) have provision 
for the usual computational requirements of a behav
ioral-science experiment. For example, the experimental 
program normally modeled in gaming situations requires 
that the language have facilities for matrix manipula
tions and elementary string operations. (b) The language 
must be relatively easy for novice programmers to 
learn and use;· that is, behavioral scientists with little 
or no background in the computing sciences must 
readily comprehend the language. (c) The program 
should be self documenting, i.e., the language in which 
the model is programmed must be general enough so 
that the code is virtually machine independent. (d) The 
language must allow a limited real-time report of sub
ject performance to the experimenter. The experimenter 
must be able to sample a subject's performance while 
the experiment is in progress; further, he must do so 
without the subject's recognizing that his performance 
is being monitored. (e) The language must enable the 
experimenter easily to exercise control over segments 
of an in-progress experiment. Very frequently, in the 
course of an experiment, the need arises for the experi
menter to modify the nature of the experiment itself 
or to communicate with the subject by sending messages 
to him. This requirement and the previous one translate 
into the necessity of allowing a controlled amount of 
interaction between the time-shared terminals used by 
the subjects and the terminal used by the experimenter. 
(f) The language must permit a controlled amount of 
subject-to-subject interaction for bargaining and other 
small-group experiments. Again, this translates into a 
need for some degree of interaction among the users of 
the time-sharing system. (g) The system must store all 
relevant information on subject behavior in machine
readable form for subsequent data analysis. Data on 
subject behavior is usually analyzed statistically at the 
conclusion of the experiment, often on another com-

System. -.p cootrol. 

Processor ... ps 

Figure 8-A time-shared array of language processors 



puter and the need for any keypunching is eliminated 
if all information can be recorded on a peripheral device 
in machine-readable form. (h) The language must inter
face the experiment to a variety of special-purpose 
input-output peripherals, such as galvanic skin re
sponse and other analogue equipment, video displays, 
sense switches and pulse relays for slide projectors, re
ward machines and the like. (i) A final requirement of 
the experimental-control "language is the need for re
entrancy. Reentrant coding permits the use of shared 
functions among users of the time-sharing system, 
thereby conserving core. 

AN ARRAY OF LANGUAGE PROCESSORS 
(ALPS) 

The Meta-APL Time-Sharing system which has been 
described represents a conceptual prototype for a time
shared array of language processors. (See Figure 8) 
The ALPS consist of an array of independent dedicated 
language processors which communicate with the out:.. 
side world and/or each other exclusively through core 
memory. These processors are completely independent, 
and could indeed be different machines. The physical 
memory consists of core memory plus secondary storage 
and is divided in 4K blocks allocated to the various 
processors through the system map. These blocks ap
pear to each processor through the "system map as a 
continuous memory which is in turn paged via the 
processor maps. 

Let us consider the successive transformations of an 

Figure 9-Memory mappings 

I 
T Virtual-

block "'-!: . 
k 

Firmware APL Time-Sharing System 187 

I Virtual _Ill I Word Iw J 
j 

• I 1 
I 2 
I J l'bplcal. I Word Iw J .. 

n+l "I-Ip 
I 
I 
I 
I 

Procesl101' ~ I? I ~:r vith1D J 
j. 

I ~ Proee.1OI' 11 area 

1 ! 
I Word Ir J 

I 
Il'bplcal I 

~ 
Jdule lit 

I 

I 
Proeea..,..12 ........ 

I 
I 

I 
I 
I 

I It Processor 15 ........ I 
I 

\'o"_17...a.u ellt SyBtea _ 

Figure lO-General address computation 

address issued by a language processor (Figure 9). The 
logical page number field of the address is used to access 
a location in the processor map whose contents repre
sent the physical page number and are substituted in 
the page field of the address. The reconstituted address 
is then interpreted by the system map in a different 
way: an initial field of shorter length than the page 
number represents the virtual module number and is 
used to access a location within the system map which 
substitutes automatically its contents (physical module 
number) for the original field. 

This physical module number is then used to access 
a memory module while the rest of the address specifies 
a word within the module. 

Note that if no processor is expected to monopolize 
all of core memory, there will be many more physical 
memory modules than virtual ones for each processor. 

The physical module number field will then be much 
larger than the original virtual module number so that 
the size of physical memory which can be accessed by 
any" one processor over a period of time"" can be much 
larger than its 'maximum addressing capability, as de
fined by the length of its instruction address field. 

A user logging in on one of the ALPS terminals ob
tains the attention of the corresponding I/O processor 
and communicates with it via the system-wide com
mand language. Once input has been completed a lan
guage processor is flagged by having the user's string 



188 Spring Joint Computer Conference, 1971 

assigned to its portion of the system map. Switching 
between languages is handled as a transfer within the 
system's virtual memory and therefore implemented as 
a mere· system map modification. For this reason, all 
map handling routines are common to all processors, 
including I/O processors. Map protection is provided 
by hardware lock-out. 

Finally, the modularity of the system provides a high 
degree of reliability. Core modules can be added or re
moved by merely marking their locations within the 
system map as full or empty. The same holds for the 
languages processors; to each of them corresponds a 
system map block containing one word per core module 
that may be allocated to it up to the maximum size of 
the processor's storage compatible with its addressing 
capabilities. Furthermore, each language processor say 
#n-l might have access to an interpreter for language 
n written in language n-l (mod the number of language 
processors), so that, should processor n be removed, 
processor n-l could still interpret language n, the pen
al ty being in this case a lower speed in execution. 

Similarly, the number of I/O processors can be ad
justed to the needs for input-output choices, terminals, 
or secondary storage choices. 

It should be noted that although the system is asyn
chronous and modular, the modules, memory as well as 
processors need not be identical. In fact, it seems highly 
desirable to use different processor architectures to 
interpret the various languages. 

In summary, the essential features of the ALPS 
time-sharing system are: 

-automatic address translation via a multilevel 
hardware mapping system; each user and each 
processor operates in its own virtual storage. 

-the type, architecture, and characteristics of each 
processor are optimized for the computer language 
that it interprets, allowing for maximum techno
logical efficiency for the language considered. 

This is essentially a low-cost system since each pro
cessor has to worry about a single language, and the 
overhead for language swapping is reduced to merely 
switching the user to a different processor, allowing a 
smaller low-cost processor to operate efficiently in this 
environment. 

ACKNOWLEDGMENTS 

The authors are indebted to Messrs. A. C. Hoggatt and 
F. E. Balderston, who encouraged the development of 
the APL system. Appreciation is due to Mr. M. B. 
Garman for editorial suggestions and stimulating dis
cussions, to Messrs. E. A. Stohr and Simcha Sadan for 
their work on APL operators, and to Mr. R. Rawson 
for his effort on the temporary 10 processor. We are 
also grateful to Mrs. I. Workman for her very careful 
drawings and typing. 

APPENDIX-SIMPLIFIED BNF META-APL EXTERNL SYNTAX 

Notes: (1) { ... } denotes 0 or 1 times .... () are symbols of Meta-APL. 
(2) Lower-case letters are used for comments to avoid lengthy repetitions. 
(3) cr denotes a carriage-return. 
(4) PROGRAM in BNF is equivalent to PROCESS in the text. 

Group 1 

(FUNCTION BLOCK) 
(PROGRAM BLOCK) 
(PROGRAM DEFINITION) 
(PROGRAM NAME) 
(PROGRAM) 

(STATEMENT) 
(STATEMENT LINE) 

(SYSTEM COMMAND) 
(BRANCH) 
(IMMEDIATE) 
(SPECIFICATION) 

::= (FUNCTION DEFINITION) (STATEMENTS) V 
::= {(PROGRAM DEFINITION)} (PROGRAM) 
::= (PROGRAM NAME) {«PARAMETER LIST»} 
::= (NAME) 
::= (STATEMENT) I (PROGRAM) (STATEMENT) 

I (PROGRAM) (FUNCTION BLOCK) 
::= {(LABEL)} (STATEMENT LINE) cr 
::=(BRANCH) I (SPECIFICATION) I (SYSTEM COMMAND) 

I (IMMEDIATE) 
:: = (see system commands) 
::=-7 (EXPRESSION) 
::= (EXPRESSION) cr I (EXPRESSION); (IMMEDIATE) 
::= (VARIABLE)+-(EXPRESSION) cr I (OUTPUT SYMBOL) 
+-(EXPRESSION) 



Group 2 

(NUl\tIBER) 
(DECIMAL FORM) 
(INTEGER) 
(DIGIT) 
(EXPONENTIAL FORM) 
(VECTOR) 

(SCALAR VECTOR) 
(SPACES) 
(SPACE) 
(EMPTY VECTOR) 
(CHARACTER VECTOR) 
(CHARACTER STRING) 
(CHARACTER) 
(NAME) 
(ALPHANUMERIC STRING) 

(ALPHANUMERIC) 
(NUMERICAL TYPE) 
(LOGICAL) 
(LABEL) 
(IOSYMBOL) 
(OUTPUT SYMBOL) 
(INPUT SYMBOL) 
(DEVICE ID) 

Group 3 

(SCALAR OPERATOR) 
(MONADIC OPERATOR) 

(DYADIC OPERATOR) 

(MONADIC SCALOP) 
(DYADIC SCALOP) 

(EXTENDED SCALAR OPERATOR) 

(MONADIC EXTENDED SCALOP) 

(DYADIC EXTENDED SCALOP) 

(COORD) 
(MIXED OPERATOR) 
(MONADIC MIXEDOP) 
(DYADIC MIXEDOP) 

Firmware APL Time-Sharing System 189 

::= (DECIMAL FORM) I (EXPONENTIAL FORM) 
::= {(INTEGER)} . {(INTEGER)} I (INTEGER) 
::= (DIGIT) I (INTEGER) (DIGIT) 
::=0 11 ! 2 13 14 I 5 16 I 7 18 19 
::= (DECIMAL FORM) E (INTEGER) 
::= (SCALAR VECTOR) I (CHARACTER VECTOR) 

I (EMPTY VECTOR) 
::= (NUMBER) I (SCALAR VECTOR) (SPACES) (NUMBER) 
::= (SPACE) I (SPACES) (SPACE) 
::= (one blank) 
::=" I 1.0 I p (SCALAR) 
:: =' (CHARACTER STRING )' 
:: = (CHARACTER) I (CHARACTER STRING) (CHARACTER) 
::= (LETTER) I (DIGIT) I (SYMBOL) , 
::= (LETTER) I (LETTER) (ALPHANUMERIC STRING) 
::= (ALPHANUMERIC) I (ALPHANUMERIC STRING) 

(ALPHANUMERIC) 
::= (LETTER) I (DIGIT) 
::= (NUMBER) / (VECTOR) 
::=011 
::= (NAME): 
::= (INPUT SYMBOL) I (OUTPUT SYMBOL) 
::=0 I (DEVICE ID) 
:: = 0 I quote-quad 
: : = (undefined as yet) 

::= (MONADIC SCALOP) I (DYADIC SCALOP) 
::= (MONADIC SCALOP) I (MONADIC MIXEDOP) 

I (MONADIC EXTENDED SCALOP) 
::= (DYADIC SCALOP) I (DYADIC MIXEDOP) 

I (DYADIC EXTENDED SCALOP) 
: : = + I - I X / + I r I L I * /log I I I ! I ? / 0 I I'-' 
::= (MONADIC SCALOP) /A I V I nand / nor I < I :::; I 

I ~ I $> I $~ 
::= (MONADIC EXTENDED SCALOP) 

I (DYADIC EXTENDED SCALOP) 
::= (SCALAR OPERATOR) / 

I (SCALAR OPERATOR) /[COORD] 
I (DYADIC SCALOP). (DYADIC SCALOP) 
10. (DYADIC SCALOP) 

::=112 
::= (DYADIC MIXEDOP) (MONADIC MIXEDOP) 
:: = pi, II'-' I q, I transpose/grade-up/grade-down I V I d 
: : = pi, I (. I q, I transpose I / I \ I i I ! I e I ! I T I 



190 Spring Joint Computer Conference, 1971 

Group 4 

(EXPRESSION) 

(MONADIC EXPRESSION) 

(DYADIC EXPRESSION) 

(RELOP) 
(FUNCTION NAME) 
(0-ARG FUNCTION) 
(l-ARG FUNCTION) 

(2-ARG FUNCTION) 

(FUNCTION DEFINITION) 

(VARIABLE NAME) 
(VARIABLE) 
(INDEXED VARIABLE) 
(PARAMETER LIST) 

(LOCAL VARIABLES) 

(PARAMETER NAME) 
(LETTER) 

(SYMBOL) 

::= (NUMERICAL TYPE) I (VARIABLE) I (INPUT SYMBOL) 
I (MONADIC EXPRESSION) I (DYADIC EXPRESSION) 
I (MONADIC EXPRESSION) I (0-ARG FUNCTION) 

::= (MONADIC OPERATOR) (EXPRESSION) 
I (l-ARG FUNCTION) 

::= (EXPRESSION) (DYADIC OPERATOR) (EXPRESSION) 
I (ALPHANUMERIC STRING) (RELOP) 

(ALPHANUMERIC STRING) 
I (LOGICAL) (RELOP) (LOGICAL) I (2-ARG FUNCTION) 

::= < I ::; I = I 2 I > I =/= 
::= (NAME) 
::= (FUNCTION NAME) {({PARAMETER LIST»} 
::= (FUNCTION NAME) {({PARAMETER LIST»} 

(EXPRESSION) 
::= (EXPRESSION) (FUNCTION NAME) 

{ ( (PARAMETER LIST»} (EXPRESSION) 
::=V{ {VARIABLE NAME)}f-{ (VARIABLE NAME)} 

(FUNCTION NAME) {( (PARAMETER LIST»} 
(VARIABLE NAME) {(LOCAL VARIABLES)} 

I V{ (VARIABLE NAME)}f-{FUNCTION NAME) 
{«PARAMETER LIST»} {(VARIABLE NAME)} 
{ (LOCAL VARIABLES)} 

::= (NAME) 
:: = (VARIABLE NAME) I (INDEXED VARIABLE) 
::= (NAME) [(EXPRESSION) {;{EXPRESSION)}] 
::= (PARAMETER NAME) I (PARAMETER LIST) 

, (PARAMETER NAME) 
::= ; (VARIABLE NAME) 

I (LOCAL VARIABLE) ; (VARIABLE NAME) 
::= (VARIABLE NAME) 
::=A I B I C I DIE I FIG I H I I I J I K I LIM 

INIOIPIQIRISITIUIVIWIXIYIZ 
::=] I [I f-I ~ I + I X 1/ I \ I, I· I .. I-I < 

I> 1=/= I::; 121 = 1)1(1 V 1/\ lei :111T 
I-I t Ii 1,1"-'lol?ILI rl-I*lpIU 
I n I a I c I ~ I + I w I 0-1 0 

\ V I A I' \ ( I) 



Designing a large-scale on-line real-time system 

by SUMIO ISHIZAKI 

The Fuji Bank, Limited 
Tokyo,Japan 

OBJECTIVES AND BACKGROUND OF TOTAL 
BANKING SYSTEM 

The Fuji Bank, Ltd., now employs a computerized 
total banking system. The objective of the system and 
the main fields of application are described below. * 

Major business activities covered by the system 

Data processing 

All kinds of deposit accounts, loans, domestic re
mittances, foreign exchange, stock transfer, manage
ment of portfolio, calculation of depreciation on 
furnishings and equipment, payroll, etc. ** 

Managem.ent inform.ation system. 

(a) Organization of Various Data Filing and Retrieval 
Systems. 
• Customers information files 

individual customers 
corporate customers 

• Management reports file 
• Corporate accounts file 
• Personnel information file 

(b) Management Science 
• Forecasting macro-economic activities 
• Forecasting deposits 

* Fuji Bank has 3 million ordinary deposit accounts for which 
passbooks are used and on which interest is paid. In addition to 
ordinary deposits and withdrawals, these accounts are used for 
the payment of all kinds of bills (telephone, electricity, gas and 
water), for the settlement of credit card balances and other 
automatic transfers. Ordinary deposits account for 53 percent of 
all individual deposits. 
** In Japan, instead of mailing checks, remittances are usually 
sent by teletype or by a computer message switching system. 

191 

• Estimation of market share 
• Selection of branch sites 
• Study of personnel requirements 
• Financial analysis of corporate customers 

Autom.ated custom.er services 

• Services to correspondent banks 
• Billing services for professionals, credit cards, 

electricity, rent for living quarters, pension 
funds, hospital fees, etc. 

• Collection of tuition fees 
• Scoring of school entrance examinations 
• Repayments to scholarship funds 
• Inventory analysis and control, etc. 

Objectives of total banking system 

Fuji Bank has invested over $30 million in computeri
zation for three major objectives. 

Cost saving 

Cost reduction is the first objective of computeriza
tion. Most important is the saving in personnel ex
penses. The imbalance in Japan's labor market has 
been getting worse from year to year. Last spring, the 
number of high school graduates intending to take up 
jobs was only 657,000 against 4,701,000 openings, so 
that only 14 percent of demand could be met; 

The increase in the volume of business would have 
required the addition of 2,000 new employees to the 
staff of Fuji Bank over the next six years if computeri
zation had remained within the limits of an off-line 
system. In view of the conditions in the labor market, 
it would have been nearly impossible to recruit 2,000 
new employees in addition to the 1,500 needed each 
year for filling the vacancies created by retirement. 



192 Spring Joint Computer Conference, 1971 

(ComputcrSick) 

TelkrTcrmin:d 

Figure 1-Layout. of multi-processor system 

By installing an on-line real-time system for all major 
business operations, even the growing workload can be 
handled with the present number of employees in the 
next six years, thus saving not only personnel costs 
but also the additional office space which would have 
been required. 

Better IDanageIDent 

The following advantages are gained by large-scale 
computerization: 

(a) Greater accuracy in office work 
Prevention of errors and unauthorized payments 

(b) Greater speed in office work 
Increase in labor productivity 

( c) Better management reports 
Management reports whose preparation by hand 
would simply be impossible can be compiled 
quickly and exactly. 

(d) New personnel management 
Computerization relieves the staff of monotonous 
or "mechanical" routine work. An on-line system 
fitted with various subordinate checking systems 
significantly decreases the errors in clerical work; 
even inexperienced operators quickly become ex
perienced and the burden on the supervisory 
staff is reduced. 

CustoIDer services 

(a) The principle of accurate and fast data processing 
can be applied to customer services. 
An on-line real-time system not only reduces the 
possibility of faulty or unauthorized operations 

but also reduces the customers' waiting time be
cause all major banking operations, including 
ledger retrieval, can be computerized. 

(b) Through computerization, central control of all 
deposit ledgers is achieved so that customers 
can be allowed to use anyone of the 206 branches 
of Fuji Bank in Japan for unlimited deposits and 
withdrawals. 

(c) Customers of the 206 branches can use any 
branch for making remittances to customers of 
other branches and remittances can be effected 
within seconds. 

(d) Organization of new customer services: The 
growth of banking activities involves new bank 
services such as consumer credits, payroll de
posits, the credit card business and automatic 
debiting of public charges (telephone, electricity, 
gas and water) whose increasing volume could 
hardly be handled without computers. As a 
matter of fact, many of the new services have 
been developed in response to computerization. 

(e) In this sense, the automated business procedures 
described above can be regarded as computer
related customer services. 

OUTLINE OF TOTAL BANKING SERVICES 

The following discussion will focus on the role of 
the on-line real-time system within the total banking 
system. 

Nationwide network 

The .Fuji Bank System, the largest private system 
in operation, consists of a network of about 1,000 on
line teller terminals in the Bank's 206 branches linked 
by a data communication network comprising 516 lines 
with a capacity of 1,200 or 200 bits per second. 

System configuration 

The main computer of the system consists of four 
UNIVAC 1108 multi-processors installed at the com
puter centers located in Tokyo and Osaka, two units 
at each center (Figure 1). The system further includes 
two units IBM 360, three units UNIVAC 418, two 
units NCR Century, three units UNIVAC 9300 and 
other for batch processing. 

Configuration of the computers 

Various 110 units such as 23 FH 1782 magnetic 
drums, 5 Fastrand II drums, 9 FH 432 drums, 17 



standard communication subsystems and 28 VIII C
magnetic tape units are connected with the UNIVAC 
1108 multi-processors and moreover connected with 
processors of different systems acting as back-ups in 
case of failure. 

CHARACTERISTICS OF SYSTEMS DESIGN 

The objective of the systems design was to determine 
among the possible alternatives a systems capability 
which would meet the requirements of maximum per
formance and lowest cost. 

Diversified apPlicationSl (systems economy 
and voluminous data compromise and efficiency 
processing (high traffic (quick response) 
rate) 

Variety of applications 

Scope of application 

The present system is used for all major banking 
operations including all kinds of deposits (checking 
accounts, ordinary deposits, time deposits, deposits at 
notice, savings accounts, special deposits for tax pay
ment), domestic remittances and preparation of balance 
sheets for all branch offices. 

Com.bination of inquiry and answer system. and 
m.essage switching system. 

In the actual use of the installation, an organic 
combination of several systems with different modes or 
operations, e.g., the inquiry-and-answer system and 
the message switching system, will be necessary. Below 
are a few examples of such combinations: 

(a) For funds paid in through the remittance system 
from a distant location, the computer retrieves 
the account of the payee and automatically 
makes the entry into the customer's ledger. 

(b) Another example is the so-called network service 
which allows deposits and withdrawals at any of 
the Bank's 206 branch offices. This system relies 
on separate data files at each of the two com
puter centers in Tokyo and Osaka. If a customer 
of a branch in Tokyo withdraws money at a 
branch in Osaka, the Osaka computer must also 
retrieve and update the data file of the Tokyo 
Center. The procedure involves the following 
steps which are taken automatically and almost 

Designing a Large-Scale On-line Real-Time System 193 

instantaneously: Osaka branch (deposit 
section)pOsaka Computer (deposit sectionp 
remittance section)pTokyo Computer (remit
tance sectionpdeposit section). This case illus
trates the assimilation of deposits and remit
tances. 

Sim.ultaneous real-tim.e processing and batch 
processing 

Another feature of the system is the possibility of 
providing access to the computer file used for real-time 
processing also for batch processing. This has improved 
the perfonnance of the system and opened the way to 
multi-programming including both real-time and batch 
programs. Practically, the system allows the automatic 
posting of salaries or stock dividends in customers' ac
counts, debiting customers with electricity, gas, water 
and telephone charges and credit card purchases, 
debiting of large batches of checks returned from the 
clearinghouse, and dispatch of accumulated items to a 
branch office which had been closed on account of a 
local holiday. This can be done not only before or after 
business hours but also at other times. 

Handling of com.plex office work 

Although used for a great variety of applications, the 
operation of the terminals has been standardized as 
much as possible. As mentioned above, the applications 
include the handling of several types of deposits, such 
as checking accounts, ordinary and time deposits, 
transfer from one account to another, remote processing 
of files and other on-line as well as off-line operations. 

Efficiency and economy through order-made system 

Efficiency and economy have been the ultimate ob
jectives in having the entire system, from the system 
design to the terminals, made to the Bank's specifica
tions. In this way, the system can handle greatly 
diversified operations (in addition to all kinds of de
posits and domestic remittances, foreign exchange and 
loans) all involving a high traffic rate. 

Term.inals 

In view of the variety of applications and the large 
volume of transactions, two types of terminals have 
been adopted. The first is the deposit terminal designed 
for processing fixed-length messages with the emphasis 



194 Spring Joint Computer Conference, 1971 

on efficiency. The other is the remittance terminal built 
for processing variable-length messages with the em
phasis on flexibility. But the remittance terminal can 
also be used for handling deposits and, by shifting the 
connector, can serve as a transmitter as well as a re
ceiver, depending on the conditions at a particular time. 

The total number of terminals required for the system 
amounts to about 1,000 units so that a reduction in the 
unit costs of the terminals results in substantial savings. 
The deposit terminal, called Fujisaver, costs $5,000, the 
remittance terminal, named Fujityper, $3,000. The 
Fujisaver, in particular, possesses several noteworthy 
features. It simultaneously imprints the passbook, the 
journal and a slip; its panel of indicator lamps (Figure 
2) shows the condition of the system and, if necessary, 
the machine locks until the required corrective action 
is taken. 

Supervisory program. 

While the overhead load of the operating system 
(EXEC 8) has been reduced, the programming burden 
of the user has been lessened by incorporating a super
visory program into the system, thus improving its 
performance (Figures 3 and 4). 

Project m.anagem.ent 

UNIVAC undertook the development of the com
puters and Oki Electric Co. the development of the 
terminals while Fuji Bank assumed responsibility for 
the user program. Fuji Bank was also in charge of the 
overall management of the project whose completion 
required about six years, due to the size of the project 
and the necessity of developing entirely new banking 
terminals. 

Peak workload processing techniques 

Com.puter Load Distribution 

Since the system was to cover about 6 millionac
counts and· an average of 650,000 transactions a day 
was foreseen, the load was distributed between two 
computer centers, Tokyo and Osaka, each equipped 
with a UNIVAC 1108 multi-processor system. A further 
reason for this arrangement was the high cost in Japan 
of long-distance communication lines used exclusively 
for data transmission. 

Load distribution related to term.inals 
~ 

In order to avoid too frequent interruptions of the 
computers ordinarily doing batch processing, both 
deposit and remittance terminals have been equipped 
with buffer memories (576 characters) so that transmis·
sion is in block units. 

Developm.en t of supervisory program. 

In addition to the standard operating system, the 
above-mentioned supervisory program has been de
veloped which exercises activity control over the real
time program as well as input/output control. 

Reduction of access frequency to random. 
access file 

Most of the deposit ledgers are recorded on the 23 
high-speed magnetic drums with an average access time 
of 17 ms., but in view of the extremely high traffic rates, 
the access frequency to the random access file should 
be reduced as much as possible. Each magnetic drum 
contains the ledgers of the customers of about 11 
branches. For the retrieval of an account, the location 
of the drum unit is ascertained from the code number of 
the branch recorded on the magnetic core and the 
table showing the corresponding drum unit. The code 
number of the account is divided by the number of 
blocks per drum and the account is located by trans
ferring the remaining "nth" block to the magnetic 
core. This procedure speeds up the operation (Figure 5). 

For time deposits, the drum number is identical 
with the number of the deposit certificate which makes 
direct addressing possible and speeds up the operation. 

Balance between real-tim.e and batch 
processing 

In order to achieve the twin objectives of lessening 
the load at peak hours and, at the same time, increasing 

Test Off line On line Reentry 

Hold Account X Total Ready Account # Error 

Overdraft Mis ope ration Turn 
Busy Page 

Excessive Passbook Journal 
No 

Amount Set? Response 

Figure 2-Fujisaver-Indicator lamp arrangement 



Higher performance 

~ 

Operating Super'ltisory User 

System. ( ) 
Program. Program. 

(EXEC 8) ) ( 

65 KW 4KW 130KW 

E~ing 

Figure 3-Program configuration 

efficiency, the proportion of real-time to batch pro
cessing has been fixed with great care for each specific 
operation. 

PrograIllIlling by Asse:mbler Language 

A compiler is more advantageous for programming 
and program maintenance but for the most efficient 
handling of a large random access file by "bit" units 
and for increasing throughput at peak hours, an assem
bler proved much more efficient. Hence, the entire 
program amounting to over 50,000 steps has been 
coded by an assembler. 

Traffic sllnulation 

The results of a traffic simulation for which a GPSS 
II was used are shown in Figure 6. The simulation 
proved that despite a heavy future increase in the data 
volume the life cycle of the system can be prolonged 
considerably by adding more magnetic drums such as 
FH 1782 or Fastrand II or their control units. 

~-"'-'-"'=="=-;;Cr:o:;;:IIUn~u;:;n;;i:1- For Output Control 
of Deposit Accounts 

face 

Figure 4-Block diagram of supervisory program 

Designing a Large-Scale On-line Real-Time System 195 

I Branch # Item # Account # I 

Table on core for 
obtaining drum unit # 

Branch #. Drum Unit # 

Master data file 

(Item. # x 2 x 108 + Account #) 

# of blocks 
remainder "n" 

Transfer "nth" 
data block onto 

Figure 5-Master data retrieval sequence 

Techniques for economizing memory capacity 

Main Illelllory unit 

In order to reduce the demands on the main memory 
unit and simplify program maintenance, the common 
parts of different items have been consolidated as 
much as possible and brought together in a subroutine. 

Within the limits of the queuing time resulting from 
the traffic volume, program overlay has been attempted 
for the FH 432 magnetic drums with an average access 
time of 4.25 ms. 

RandoIll access file 

Similar to the main memory unit, a master file system 
consolidating the common items of the random access 
file has been adopted. All items subject to frequent 
change with regard to overflow, item length and data 
numbers are recorded in the slave file. A continuous 
chaining of the two files is possible through the link 
address. All items are recorded and processed by" bit" 
lnitS. 

For the master file, one FH 1782 magnetic drum 
contains the records of 11 branch offices and up to 
299,915 accounts. For retrieval, each magnetic drum 
has been divided into 3,157 blocks; this number corre
sponds to the number of items and accounts divided 
by a multiple of 11. Each block consists of 95 accounts, 
a number fixed by taking into consideration the buffer 
capa,city of the core memory and the frequency of 
access to the drum. The starting position of block No. 0 



196 Spring Joint Computer Conference, 1971 

! .: .: 
gi g: 

!~]~ 
.: l]S iis 1:1: 

Similar precautions have been taken for the terminals. 
By shoring up the functions of oil-line processing, pass
book entries can be made and operational errors or 
over-payment prevented even if a failure occurs in the 

~.:~ computer or the- transmission lines. 
FBl182 
Ina-II 

.... 32 
d..,...q 
nU2 
dn..-D 

processo 
VIII-C 
.. snetie 
tape-S 
VUI-C 
ugnet.lc 

t ... -E 1:-----:-:1o~--,2::::-0-~30;;-------;;40;---.:7S0--;;6;;-O --;;;:--=80--;9"'0 -=100;;-

,. rate of use per I/O !:!;:~=!~: ! ~:~:!~ :~::; 2 exc:han&e 

FH432Q: exchange drum 
FH4J2D: dummy write drum 
FR-Il-TR: trans'lctio"n & other drums 
FR-Il-S: regular Master 
VllIC-S: depOsit 8-C 
VlIIC-E: exeh'Jonge 8-C 

Figure 6-Work volume and rate of use per I/O 

has been staggered by 287 blocks for each branch so as 
to average the number of accounts in each block. 

Prevention of failure 

In order to reduce as much as possible loss of time 
from failure and to expedite recovery, arrangements 
have been made in three fields, namely, hardware, 
software and business procedures. 

Hardware 

The central processors of the multi-processor system 
back each other up so that even in case the I/O Con
troller breaks down, either Processor No. 1 or Processor 
No. 2 can step into the breach. One of the four memory 
banks of the main memory is usually assigned to batch 
processing but if one of the other three banks fails, the 
batch processing can be suspended at once and the 
bank switched to the operating system or the real-time 
program. The standard communication subsystems, 
and the equipment ordinarily used for batch processing, 
such as various magnetic drums, magnetic tapes and 
printers, are also connected with different systems and 
can be switched immediately to real-time processing if 
an accident occurs. 

The data communication network comprises different 
systems for deposits and remittances which lessens the 
probability that both operations will be interrupted at 
the same time. In case the equipment at a branch office 
gets out of order, a neighboring branch office can take 
over transmission and reception of messages according 
to a prearranged plan. ' 

Software 

Quick recovery 

Since the system handles more than half the Bank's 
daily business, it is very important to keep interrup
tions due to breakdowns to a minimum. No matter 
when the failure occurs, a comprehensive and in
stantaneous check must be possible to ascertain exactly 
how far the operation had proceeded and at what point 
the process came to an end so that the trouble can be 
corrected not only as quickly as possible but also with
out missing a single input or repeating the same input. 

To this end, all transactions are recorded in strict 
chronological sequence and full detail on both magnetic 
drums and magnetic tape. If a failure occurs, the drum 
master file is checked against the transaction file and in 
case of discrepancies, the master file can be corrected 
immediately. In most cases, the system can be repaired 
and restarted in 10-20 minutes. 

Prevention of complete breakdown by partial failure 

Because so many different applications are linked to 
the same nationwide network, care has been taken lest 
a failure in one part of the system affect the entire 
network. (a) Recovery during continuing real-time 
processing. 

Repairs can be made while real-time processing con
tinues so that the entire operation need not be shut 
down on account of the breakdown of a single unit. 
If, e.g., one of the magnetic drums gets out of order, 
the files of the branches recorded on this particular 
drum will be transferred to a spare drum, reproducing 

o. 
1. 

2. 

3. 

4. 

Bit 35 34 33 32 31 302928 27.26 25 2423 22 21 20 19 18 17 16 
15 14 13 12 il 10 9 8 7 6 5 4 3 2 1 

Branch No. I Item I Account No. 

Balance r Valid 

Accumulated Interest I All Branch 

Unposted interest at the /0/]/ Date of Transfer 
closing of accounts (year month day) 

Link address or Columns for Various Codes T Parity 

Figure 7-Layout of deposit master file 



the balances brought forward from the previous day 
and all transactions from the beginning of the day until 
the time of the failure from the magnetic tape. This 
makes it unnecessary to wait for the physical repair 
of the faulty drum. The arrangement that all transac
tions are recorded both on magnetic tape and on mag
netic drums which forms part of the supervisory pro
gram, makes this recovery procedure possible. 

(b) Since different applications are handled by real
time processing, care must be taken in the pro
gramming that trouble in one business routine 
will not adversely affect otliers. In and by them
selves, the different business activities are inde
pendent of each other but actually there is a 
great deal of interaction. For instance, a remit
tance sent through the remittance system is 
automatically debited to the deposit account of 
the payor and credited to the account of the 
payee so that the transaction necessarily involves 
the deposit files. Special techniques, therefore, 
are required to prevent a breakdown in one sector 
from shutting down others. 

(c) Since remittances and the so-called network 
service necessitate a constant exchange of mes
sages between the Tokyo and Osaka computer 
centers, the failure of one computer should not 
influence the other. If money is transferred from 
a branch within the limits of the Tokyo Center 
to a branch belonging to the Osaka Center, a 
breakdown of the Osaka computer should not 
cause the transfer to go astray or the same sum 
to be transferred twice. The prevention of such 
accidents must be planned in the program. 

Assimilation of ordinary operations and recovery 
process 

There is much to be gained from making the recovery 
process for correcting breakdowns as similar as possible 
to the ordinary processing procedure. First, such an 
arrangement will economize the capacity of the expen
sive main memory and facilitate program maintenance 
in case the system or the program is modified. Secondly, 
it will make the recovery process easier for the computer 
operators as well as the operators of the branch termi
nals. It is of particular value for the Osaka Center 
which has no programmers. 

Office routine 

Care has been taken to prevent the disruption of the 
everyday office work even for the short time it takes 

Designing a Large-Scale On-line Real-Time System 197 

y 
Verifier " 

Eye 

Withdrawal 

Slip 

S. Ishizaki 

Figure 8-Signature verification system 

to correct a failure. For ordinary deposits, a list of un
posted items is prepared during the night-compilation 
of the list takes about four hours-and distributed to 
all tellers before nine o'clock the next morning. A similar 
list is prepared for current deposits showing outstanding 
balances after debiting public charges or checks re
turned during the night from the clearinghouse. In this 
way, the tellers can comply with demands for payment 
even if the computer or the communication lines are 
out of order. 

A utomation of related operations 

For the best performance of the on-line system, it is 
also necessary to improve the functions of related 
operations. The real-time system has reduced to nearly 
zero the time needed for retrieving the ledger from the 
files, but it is only in the case of deposits that no further 
search is required. For withdrawals, it is also necessary 
to check the signature file and this prolongs the time 
the customer must be kept waiting. In 1963, therefore, 
Fuji Bank, in cooperation with Canon Inc., began the 
development of a signature verification system. The 
signature inscribed in the passbook is covered with a 
black vinyl seal so that it is invisible to the naked eye 
and can only be read through a newly developed 
verifying machine. Thus, the customer's signature can 
be verified at the same time that he presents his pass
book. (Figure 8). 

FUTURE DEVELOPMENTS 

Total banking system and MIS 

By transforming daily operations into a real-time 
system, an accurate and up-to-date customers informa-



198 Spring Joint Computer Conference, 1971 

tion file can be prepared. But the information obtained 
througp on-line processing consists mainly of statistical 
data related to deposits and withdrawals. For a really 
useful customers information file, a consolidated file 
would have to be prepared which would also include 
descriptive data such as the extent to which the cus
tomer uses automatic debiting of public charges, con
sumer loans, rental safes or credit cards, information 
on the customer's occupation, family status, income, 
relations with other banks, codes of business clients 
and code of the bank officer in charge of the account. 
The system would also have to provide for fast and 
simple retrieval. But the number of deposit accounts 
alone covered by the present system amounts to six 
million and the addition of even a single item would 
require an enormous investment for input and mainte
nance. The inputs, therefore, have to be selected with 
great care after examining repeatedly how often the 
information will be used. At present, the number of 
accounts covered by the customers information file is 
gradually being expanded. In the future, when the file 

will also cover potential customers, it may play an 
important role in assessing market potential. 

By organizing various data banks and combining 
them with IR or management science techniques, the 
system could be expanded into a complete MIS, our 
goal after the installation of the on-line system. 

Common Data Transmission System for All Banks 

The second phase in the development of the on-line 
systems of individual banks would be the organization 
of a common data transmission system linking all 87 
Japanese banks. Such a system would require the in
stallation of huge computers able to process 700,000-
1,350,000 transactions a day. The system would have 
to be able to effect an exchange between input/output 
messages of different formats. The year 1973 has been 
set as target date for the implementation of this system 
which, if completed, would represent one of the world's 
most extensive data communication systems. 



PERT-A computer-aided game 

by J. A. RICHTER-NIELSEN 

Technical University of Denmark 
DK 2800 Lyngby, Denmark 

INTRODUCTION 

PERT networks in the education of electric power 
engineers is only a tool among a host of more important 
tools. Thus, the time allotted for the training of' the 
students must be cut down to an absolute minimum. 
To introduce experience in an effective manner and to 
arouse the interest of the students a computer-aided 
PERT game seems to be the ideal educational approach. 
The purpose of this game is to give the students an in
troduction into the subject area so that later they can, 
on their own, use the more advanced literature and 
specialize in that subject. In this paper an educational 
tool will be described which, through its effective lay
out and direct appeal to the special knowledge already 
acquired by the students, promotes the wanted motiva
tion and engagement. 

Accordingly, the educational tool is presented in the 
form of a realistic project with aspects of competition. 
It was initiated by a Master Thesisl at the Technical 
University of Denmark in 1968 and has in a developed 
form been used in the past years as a part of the educa
tion. The administration of the game is completely 
documented in a User's Manual,2 an Operator's Guide,3 
and the original thesis. 

Headed by four lectures about the theories in modern 
network planning and control methods, the students 
plan and follow up a constructional problem or project 
with a time consumption of two periods of each four 
hours. The constructional problem or project presented 
in this paper does often occur in the electric power 
industry, and it is simulated on the IBM 1800 computer 
installed in the department. 

Two major advantages are fulfilled by the tool: 
It is designed to handle projects so complicated that 

it becomes impossible for the students to get a compre
hensive view and therefore giving them a feeling of being 
in the world of reality. On the other hand, the project 
is made so simple that the instructor can control the 
learning process. The experience has shown us that 

199 

projects, with a complexity corresponding to the use of 
about 70 activities, are relevant. 

The computer program used by the tool is so designed 
that it allows a very high degree of flexibility. Any in
structor with special industrial knowledge can develop 
a new data set for the program within 2-3 days and, 
thereby, interchange the whole project with an other 
of a similar realistic nature. Such an interchange does 
not call for special knowledge of programming. 

WHY A GAME? 

The purpose of the computer-aided PERT game is, 
through the planning and organization of a project, to 
train the participants in the possibilities of varying the 
construction time and project composition. At the same 
time as these possibilities there are constraints, expressing 
the causal relationship of the project and the resources 
available for its completion. They must be incorporated 
in order to obtain, within a fixed finishing date, the 
minimum constructional cost. 

The aspect of competition is obtained by having up 
to 9 teams, each trying to build up a network in its 
optimal configuration, to prevent unforeseen occur
rences, and to minimize the total cost. All this has to 
be done under the constraints to the time and resources. 
In addition to this, it is calculated, depending upon the 
total duration of the project, whether a penalty shall 
come into action or not. 

The fact that we can accept it as a game is then in
volved in the following two parts: 

1. The instructor can, directly by inspection of the 
total cost for each group, point out the winner. 

2 .. The unforeseen occurrences happen for each 
group as a function of the delayed time with 
respect to the fixed finishing date. This is quite 



200 Spring Joint Computer Conference, 1971 

1----------------------------------------------------------------------------------------------------------------------1 
I I 
I REPORT UATE 311 8/1971 CAP E R T S I M FINAL DECISION PERIOU 2 SURT KEy ••••• SLACK I 
I I 
1----------------------------------------------------------------------------------------------------------------------1 
I I 
I STARTING ENDING ACTIVITY DESCRIPTION ACTUAL EXPECTED LATEST SCHEDULE I 
I I 
I EVENT EVENT DATE DATE DATE DATE SLA"CK I 
I I 

1----------------------------------------------------------------------------------------------------------------------1 
I I 
I BK EE 5 190 DAYS 150 DAYS 240 DAYS 92500 $ -100 6/ 9/1972 5/30/1972 -1.42 I 
I I 
I EE FB 28 2 DAYS 2 DAYS 2 DAYS 300 $ 000 6/11/1972 6/ 1/1972 -1.42 I 
I I 
I Fti BI 2 DAYS 2 DAYS 2 DAYS 1000 $ 400 6/13/1972 6/ 3/1972 -1.42 I 
I I 
I GD HC 27 13 DAYS 10 DAYS 19 DAYS 3000 $ -200 6/26/1972 6/16/1972 -1.42 I 

"I I 
I HI HC 48 13 DAYS 12 DAYS 19 DAYS 5200 $ -200 6/26/1972 6/16/1972 -1.42 I 
I I 
I HC HD 58 4 DAYS 3 DAYS 4 DAYS 1500 $ 500 6/30/1972 6/20/1972 -1.42 I 
I I 
I HD HE 21 DAYS DAYS 2 DAYS 400 $ 400 71 1/1972 6/2111972 -1.42 I 
I I 
I AE HF 42 200 DAYS DAYS 300 DAYS 000 $ 000 7/ 4/1972 6/2411972 -1.42 I 
I I 
I HE HF tiO 3 DAYS 3 DAYS 5 DAYS 700 $ 200 7/ 4/1972 6/24/1972 -1.42 I 
I I 
I HF HG 49 3 DAYS 3 DAYS 3 DAYS 300 $ 000 7/ 7/1972 6/27/1972 06/27/1972 -1.42 I 
I I 
I GA HC ~7 12 DAYS 7 DAYS 12 DAYS 21000 $ -800 6/2511972 6/16/1972 -1.28 I 
I I 
I HH EG 9~ lR8 DAYS 150 DAYS 240 DAYS 19200 $ -100 6/ 7/1972 5/30/1972 -1.14 I 
I I 
I EG FB 4 2 DAYS 2 DAYS 2 DAYS 300 $ 000 6/ 911972 6/ 1/1972 -1.14 I 
I I 
I AA AH 63 15 DAYS 14 DAYS 15 DAYS 000 $ 000 9/15/1971 9/12/1971 -0.42 I 

I 
FD HI 97 31 DAYS 30 DAYS 31 DAYS 6800 $ -100 3/ 9/1972 6/ 3/1972 12.28 I 

I 
BB BG 70 6 DAYS 6 DAYS 6 DAYS 000 $ 000 12/ 7/1971 3/ 6/1972 12.71 I 

I 
HG BH 20 25 DAYS 21 DAYS 25 DAYS 12500 $ -200 1/ 111972 3/31/1972 12.71 I 

I 
BH BC 3 14 DAYS 14 DAYS 14 DAYS 000 $ 000 1/15/1972 4/14/1972 12.71 I 

I 
HB EC 32 90 DAYS 65 DAYS 90 DAYS 12000 $ -100 3/ 1/1972 5/30/1972 12.85 I 

I 
EC FB 74 2 DAYS 2 DAYS 2 DAYS 300 $ 000 3/ 3/1972 61 1/1972 12.85 I 

I 
AJ FE 16 102 DAYS 90 DAYS 102 DAYS 10700 $ -100 2/ 9/1972 5/30/1972 15.71 1 

I 
F~ BI 25 4 DAYS 5 DAYS 5 DAYS 1000 $ 000 2/13/1972 6/ 3/1972 15.71 I 

I 
BB FH 51 56 DAYS 22 DAYS 222 DAYS 7200 $ 000 1126/1972 6/ 5/1972 18.57 I 

I 
BJ FD 89 2 DAYS 2 DAYS 2 DAYS 000 $ 000 12/ 5/1971 5/ 311972 21.28 I 

I I I 
1----------------------------------------------------------------------------------------------------------------------1 
I I 
I START .END. ACTUEL LOWER TIME UPPER ACTUEL DICOST 1/ EXPECTED LATEST SCHEDULE I 
1 CODE I 
I EVENT EVENT TIME LIMIT TIME LIMIT COST DITIMEI DATE DATE DATE SLACK I 
I I 

1----------------------------------------------------------------------------------------------------------------------1 

Figure I-The starting situation of the project 

similar to the traditional aspect of throwing a 
die. But here we have weighted the die in such 
a manner, that the unforeseen occurrences de
pend on the size of the negative slack, i.e., upon 
the skill of the players. 

HOW TO PLAY THE GAME 

N one of the participants need to have a special knowl
edge of programming. They are divided into groups each 
having a User's Manual containing the start inform a-



tion. This includes a description of the assumption for 
the start of the project (e.g., an approval to build 
the station from the board of preservation of natural 
beauty), a list of activities (e.g., fitting up 60 kV out
door plant), an enlistment (Figure 1) regarding the 
starting situation of the project, where the activities 
as shown on the list are sorted after increasing slack. 
Furthermore, the cost data (Figure 2) which in matrices 
and graphs show the marginal cost of each activity as a 
function of time, is included. Finally, the rules for 
punching the data cards as well as a list of error mes
sages are given. 

The two periods of four hours fit well with the game. 
The first period is used to construct the network and to 
get it tested as indicated by the control routine as men
tioned in a later section. The second period of four 
hours is used to carry out the decisions for the execution 
of the project, the consequences of which are simulated 
by the computer. 

Two types of decisions are possible during the 
execution. 

Total >;QS_i i'I" I C,moCioo 0' "'''0' bqmrt =oo<di ... '0 'p",ial 
I d.emands by the customer. (Internal code: 96) • 

10000 - I i ~~tal cost depicted as a function of the elapsed 

I IT "m'. iT rI: -rt-tIT: I T- I - - I 
--8- -~-t-t-r-+-. .-=-+-=+I--j------1 -+ _ I i /-- I --t--- +- --- ---+_ 

I i I I, i! i 
5000--+--- t- - - - r -+ ' 

--[-1-- --- ! --+--+--t--i-+--l 
'-I-f -+-f-+ 1-1-f-: ' il-·- f-·! -+-t -+-

--- -'-t- - - -- ---+ --~--t--+---+----+----+---+--------l 
, I , 

10 20 Time in days. 30 

Absolute cost matrix: 

11 13 15 17 19 21 23 25 21 

4500 5200 5100 6100 6400 6100 6900 1100 1200 

Differential cost matrix: 

To (days 1 9 11 13 15 17 19 21 23 25 21 

1 0 1500 2100 3400 3900 4300 4600 4900 5100 5300 5400 

F 9 -1500 0 1200 1900 2400 2Boo 3100 3400 3600 3Boo 3900 

r 11 -2100 -1200 0 100 1200 1600 1900 2200 2400 2600 2100 

0 13 -3400 -1900 -100 0 500 900 1200 1500 1100 1900 2000 

m 15 -3900 -2400 -1200 -100 0 400 100 1000 1200 1400 1500 

17 -4300 -2Boo -1600 -900 -400 0 300 600 Boo 1000 1100 

d 19 -4600 -3100 -1900 -1200 -100 -300 0 300 500 100 Boo 

a 21 -4900 -3400 -2200 -1500 -1000 -600 -300 0 200 400 500 

y 23 -5100 -3600 -2400 -1700 -1200 -800 -500 -200 0 200 300 

s 25 -5300 -3800 -2600 -1900 -1400 -1000 -100 -400 -200 0 100 

21 -5400 -3900 -2100 -2000 -1500 -1100 -800 -500 -300 -100 0 

Figure 2-Cost data for one activity 

PERT 201 

A trial decision by which the participants can see the 
change in cost and the new slack for each activity as a 
result of suggested time alterations and length of the 
decision period. The project itself will remain in the old 
status. 

A final decision by which the project is updated with 
the number of days given by the decision period. The 
status of the project is changed and there remains no 
possibility of changing the decision already made. 

Each final decision, therefore, can be based upon an 
economical calculation involving the marginal cost for 
each activity carrie_d out in a trial decision. A cost print
out (Figure 3) will in both cases give the new status. 
No guess is necessary and the group can in fact plan 
and control the project. 

Another feature of importance is the following. As 
described later, it is possible to change the network for 
the not finished part of the project during the game with 
the purpose of obtaining a more optimal network. 

The computer program is equipped with test for 
input data and on the network, so that errors recorded 
can be corrected by the users without assistance from 
the instructor, just by making use of the corresponding 
error messages and the User's Manual. The topology 
cards and the time altering cards can optionally be 
introduced either over a terminal (1816 printer key
board) or via the card reader. 

The experience gained with the use of the game indi
cates that half a dozen final decisions are the· educa
tional optimal number. 

A TYPICAL PROJECT 

The project used for this presentation is a closed 
design project.4 It is stated in terms of the engineering 
reality obtained by a simplification of the building of an 
open air transformer station for 60/10 kV on a turn
key contract with penalty for late delivery. Each ele
ment in the project is related to physical, realistic situa
tions, because all data as well as unforeseen occurrences 
are selected from the pool of statistical information be
longing to a big Danish company. The simplified project 
is large enough to give the students the impression that 
they are working with a genuine problem in the en
gineering design. The proj ect is split up into 72 activi
ties placed in an activity file. 

Each item in the activity file contains start node, and 
termination node, code number, minimum, normal, and 
maximum duration, and upper and lower limits for the 
permissible duration caused by resource adjustment. 
Furthermore, in each of these items the most reasonable 
duration, two elements for identification of the cost 
function, and a verbal description of the activities are 
given. 



202 Spring Joint Computer Conference, 1971 

1----------------------------------------------------------1----------------------------------------------------------1 
I I I 
I GROUP 'J DECISION PERIOD I FINAL DECISION I 
I I I 
1-------------------1-------------------1------------------1-------------------1-------------------1------------------1 
I I I I I I I 
I ACTIVITY I PREVIOUS I PIU:VIOUS I NEW TIME I CHANGE IN I NEW COST I 
I I I 1 I I I 
1 EVENTS I TIME I COST I I COST I I 
I I I I I I I 
1-------------------1-------------------1-----------------~I-------------------I-------------------I------------------1 

I I I 1 I I I 
I BBEE I 205DAYS I 91200 $ 1 190DAYS 1 1300 $ 1 92500 $ 1 
I I I 1 I 1 I 
I BBEF I 91DAYS I 20200 $ I 105DAYS I -1700 $ I 18500 $ I 
I I I 1 I I I 
I BBEC I 75DAYS I 13800 $ I 90DAYS I -1800 $ I 12000 $ I 
I I I I I I I 
1 GAHC I 9DAYS I 24600 $ I 12DAYS I -3600 $ I 21000 $ I 
I I I I I I I 
1 HI1HC I 30DAYS I 11800 $ 1 37DAYS I -1500 $ I 10300 $ 1 
1 I I 1 I I 1 
I 8CHC I 50DAYS I 41600 $ I 63DAYS I -4700 $ I 36900 $ I 
I 1 I I I 1 1 
1 BBBC I 55DAYS I 124400 $ I 60DAYS I -4900 $ I 119500 $ I 
I I I I I I I 
I AJCF I 1210AYS I 14000 $ I 140DAYS I -1100 $ I 12900 $ I 
I I I I I I I 
I AJCD I 120DAYS I 21400 $ I 1500AYS 1 -1100 $ I. 20300 $ 1 
I I 1 1 I I I 
1 AJFF I 1650AYS I 13200 $ 1 1900AYS I -1200 $ I 12000 $ I 
I I I I I I I 
1-------------------1-------------------1------------------1-------------------1-------------------1------------------1 
I I 1 
I TOTAL CHANGE IN COST IS -20300 $ I PREVIOUS TOTAL COST WAS 915400 $ I 
I I I 
1-----------------------------1----------------------------1-----------------------------1----------------------------1 

I I 
I NEW TOTAL CUS T IS 895100 $ I 
I I 
1----------------------------------------------------------1 

Figure 3-Cost print-out according to final decision 

A test file with one item per activity is used for the 
investigation of logical and correct build-up of the net
work. Each item in this test file contains the code num
bers of all direct predecessors in the optimal network. 

A text file, explaining the cause and effect of the un
foreseen occurrences, is given. 

The total duration, optimal cost, and the penalty 
fines, are specially codified. 

Total exchange of data for a project with 72 activities 
and 22 unforeseen occurrences necessitates only the 
punching of 72 + 72 + 22 X 6 + 1 = 277 cards in order to 
establish the required data files. Thus,. the earlier men
tioned great flexibility is substituting one project with 
another. 

CONSTRAINTS ON THE COMPUTER 
PROGRAM 

The basic idea behind the construction of the com
puter program was that, by using networks with a 
number of activities smaller than 100, the requirement 
of available core storage is satisfied by almost any com
puter configuration. Furthermore, the computing tech
nique used is kept at a non-sophisticated level in order to 
make it possible for any programmer to easily make 
changes. Of course, this does increase the computer 

time a little but, from the scope of the educational tool, 
this is of no importance at all. 

The program, therefore, fulfills the following 
specifications: 

a. Information, giving exact description of the speci
fied project is placed on easily exchangeable data 
files on a disk. 

b. The partners in the group must individually build 
up the relevant network from the given list of 
activities. Before the project is simulated on the 
computer, an analysis and control test are per
formed of the proposed network with regard to a 
logical and correct setup. 

c. During the simulation. of the project, the length 
of the decision intervals or the interval to the 
next· date of followup, must be estimated by the 
user. This flexibility is introduced in order to make 
it possible for him to adjust his decision-making to 
the complexity of the subnetwork considered. 

d. Delays, caused by unforeseen occurrences, are 
incorporated in the program as a function of the 
skill of the participants in order to simulate reality. 

e. It is possible to introduce alterations in the net
work after each follow-up of the network. Obvi
ously, such alterations will influence the remaining 



period of the project. It should be added, that any 
alteration of this kind automatically results in a 
new test for a logical and correct setup. 

THE STRUCTURE OF THE COMPUTER 
PROGRAM 

A control system on a higher level establishes the 
necessary files and interconnects the eighteen sub
routines by means of a conventional overlay structure. 

The subroutines are grouped according to their vari
-ous functions as follows: 

a. A file part establishing the interconnection be
tween the various teams and their corresponding 
data areas. 

b. A control part reading the so-called topology cards, 
that is the cards describing the structure of the 
network. By means of these cards the program 
checks the network in order to evade loops, and 
multiple start nodes, and terminating nodes. Also, 
a node file and an arc file are formed. Finally, the 
network is checked to see that it is logically 
consistent and physically correct. 

c. A cost part which, after registration of the time 
alteration cards, calculates the economical conse
quences of such changes. 

d. An occurrence part calculates, based upon the 
node file and arc file, if those activities where the 
unforeseen occurrences may take place are finished 
within the decision period in question. Whether 
unforeseen occurrences actually shall take place, 
is decided by a so-called time criterion. This time 
criterion is based upon the idea that teams, who 
by bad planning have obtained too great negative 
slacks, should be punished. This part also includes 
the print routine for description of the unforeseen 
occurrences. 

·e. A time calculation part, which for each activity 
determines latest time of starting and earliest time 
of finishing. Furthermore, in this part a sorting 
according to slack and printing after increasing 
slack is carried out. In case of unfinished activities 
the list of sorted activities includes, in addition to 
start and finishing node markings, the following 
information: the actual time; the minimum and 
maximum times; the actual price; the differential 
price change (by 1 day's extension of the activity); 
the expected date; the latest date and the planned 
date; and the slack. For finished activities this 
list includes only, in addition to start and finishing 
node marking, the verbal description and the 
actual time for the termination. 

PERT 203 

f. A follow-up part that stores all relevant data for 
the respective teams and prepares a graphical 
description for comparison of the status of the 
teams, i.e. , a time-cost graph. This can be 
plotted on request. 

The computer program is coded in IBM 1130/1800 
Basic FORTRAN IV. The utilized over-lay structure 
is arranged to keep the number of disk operations in 
combination with the handling of the files at a mini
mum. The subroutines are collected in main groups cor
responding to full utilization of the core storage avail
able. The present upper limit for the complexity of the 
project is set by the size of the data areas. Currently 
they are designed to handle up to 100 activities, and a 
maximum number of parallel paths not exceeding 400. 
Experience has shown that these limits are insignificant 
from an educational viewpoint. Comparing this com
puter program with commercial systems, it must be 
remembered that the above-mentioned parts: a, b 
(partly), d, and f (partly) are established primarily for 
educational purposes. That is, these parts are of no use 
in practical PERT planning programs. The turn
around time to verify optimal network is 5.5 min. and 
the time for an updating maximum 7.8 min. For non
optimal networks the turn-around time is considerably 
shorter. 

CONCLUSION 

In the past many brilliant professional PERT educa
tional systems have been developed. But most of these, 
operating on a theoretical level, are highly generalized 
and seem to neglect to give the students an introduc
tion to PERT and its applications except from the 
narrow viewpoint of purely mathematical algorithms. 
The am;ual planning and control of a given project must 
also be perceived as an integral part of PERT as a design 
tool. In the education one must incorporate heuristic 
elements in order to establish the vital link between 
mathematical models and reality. The computer-aided 
PERT game described in this paper is different. It 
handles realistic projects and takes into account un
predictable changes from the reality. Thus, it empha
sizes that, although various aspects of engineering 
design may be reduced to formal disciplines, design will 
remain an art which can be mastered only by actual 
practice. 

REFERENCES 

1 J A RICHTER-NIELSEN 
CAPERTSIM-1800 



204 Spring Joint Computer Conference, 1971 

Master Thesis 1969 Electric Power Engineering 
Department Technical University of Denmark 

2 J A RICHTER-NIELSEN 
CAPERTSIM-1800 User's manual 
Electric Power Engineering Department Technical 
University of Denmark 1969 

3 J A RICHTER-NIELSEN 
CAPERTSIM-1800 Operator's guide 

Electric Power Engineering Department Technical 
Univ~rsity of Denmark 1970 

4 0 I FRANKSEN 
Closed and open design projects in the education of 
engineers 
IEEE Transactions on Power Apparatus and· Systems 
No 3 March 1965 



Interactive problem-solving -An experimental study of 
"lockout" effects 

by B. W. BOEHM, M. J. SEVEN, and R. A. WATSON 

The RAND Corporation 
Santa Monica, California 

THE NEED FOR QUANTITATIVE 
MAN-COMPUTER DATA 

One danger inherent in computer system design and 
management is an ever-present temptation to consider 
computer system performance as an end in itself, 
rather than as a means to better serve people. Such 
"performance improvement" methods as universal use 
of one language, large blocking of data input and output, 
and intricately designed code and procedures can 
increase machine productivity. However, it costs users 
an abnormally high effort to achieve any results. On the 
other hand, text editors, extended debugging aids, and 
conversational programming systems tend to reduce 
user-time investments at the expense of machine 
efficiency. 

In general, then, there is a tradeoff between machine 
efficiency and user time invested. Philosophical argu
ments will yield to factual analysis of this tradeoff only 
when the effects on both the humans and machines can 
be quantitatively measured and related to overall goals. 
In an attempt to contribute to the currently scant store 
of quantitative information on man-computer problem
solving processes,t and to evaluate available experi
mental techniques in the area, we designed and 
implemented an exploratory controlled experiment in 
man-computer problemsolving.t 

CHOICE OF EXPERIMENT 

We structured this experiment to test Gold's 
hypothesis2 that restricting one's access to the computer 

* RAND consultant, Professor of Psychology, Harvey Mudd 
College. 
t Sackmanl has provided an excellent review of results to date. 
t The Appendix describes some of the rationale leading to the 
structure of this experiment, beginning with an attempt to define 
a reasonably measurable and human-oriented computer system 
performance criterion called the "Productive Thought Ratio." 

205 

for a period of time after the presentation of current 
results (" lockout" period), might improve performance 
by inducing the user to concentrate more on problem
solving strategy than on tactics. 

Figure 1 shows that the lockout requires the user to 
spend a certain amount of what is generally called 
"think time." 

The general problem-solving situation required the 
subject to solve a geographical area servicing problem 
with the aid of JOSS, RAND'S interactive computer 
system.3 Subjects were allowed two hours to solve the 
problem, but the problem was open-ended to the extent 
that a range of solutions existed. A protocol of each 
subject's performance was generated from automatic 
recordings within the JOSS system, written records kept 
by an observer, and audio tape recordings of the 
subject's vocalizations. The resulting data were analyzed 
using analysis of variance and regression techniques. 

THE TEST PROBLEM 

Each subject was given a map showing a grid of 
surface streets, two freeways, and contour lines that 
indicated the frequencies of emergencies per day per 
intersection throughout the area (Figure 2). Transit 
times between intersections were defined as two minutes 
on North-South surface streets, three minutes on 
East-West surface streets, and one minute on freeways. 
A time penalty of one minute was assessed for entering 
or leaving the freeway at any intersection. 

The subject's task was to specify three surface 
intersections at which to locate three emergency 
hospitals, and to specify a set of decision rules regarding 
when and when not to use the freeways. His goal was to 
minimize the average response time per emergency for 
the entire area, taking into account the different 
accident densities. His solution was subject to the 
constraint that the maximum one-way response time to 



206 Spring Joint Computer Conference, 1971 

User submits request 
to computer 

/

comPleted reque.st returned 
to user 

/

user allowed to submit 
. next request 

(
User submits 
next request 

I I I I. Time 
~~ 

Turnaround !ime, ~ckout period 
response time ~ 

"Think time" 

Figure I-Sequence of events for submitting a trial solution 

any given location be no more than 12 minutes. It was 
made clear that the number of ambulances was un
limited; scheduling and ambulance turn-around time 
were not factors. 

The JOSS system was pre-programmed to provide the 
subject, on demand, with an evaluation of the effective
ness of his location and decision-rule inputs, and with 
certain other feedback relating to the problem. Hospital 
locations were specified in X, Y coordinates shown on 
the map. Variables used in the decision rule were 
specified so that the subject could refer to specific 
hospitals (i = 1, 2 or 3), hospital locations (x, y), or 
emergency locations (v, w) in terms understood by the 
special program. As a result of an evaluation computa-

wory 

J 3m;, 6 7 8 
8 

TB 
2 min 

6 

7 

1 min< 

1 // 

/ V 
6 

L 
7 

/' 

/' 
,,/'" 

5 

// 2 
5 

---// --I--
/' r--- I 4 

1 

..,....-

1/ / 
..,....--

r---/ 
3 

/ ,,/ 1--'-- --1-_ ....... 
/ ~ ,.--, 4 '. I 15\ \ I / 

l I { 
.! 

I \ \ 

I -- _/ 

\ \ I 
4 

Transit times between intersections 
t mi n on freewoy 

6 7 

2 min on north-south surface streets 
3 min on east_est surface street 

Tim~ to both .enter (1 min) a~ leave ( 1 min) freeway system from 
surface streets: 2 min 

\ 
8 

Figure 2-Problem map, on-line experiment 

3 

2 

vcr x 

tion ("Do part 1."), the program provided (1) the 
average response time per emergency, and (2) the 
maximum response time to any emergency. If requested, 
the program also provided various types of information 
matrices: 

1. A matrix showing millimum response time to 
each intersection from any of the three hospitals 
("Do part 210."); 

2. Three individual matrices showing response 
times to each intersection from each of the three 
hospitals ("Do part 220."); 

3. An individual matrix showing response times 
from each hospital specified ("Do part 221 for 
i = -."). The use of the special program was 
illustrated with a reproduction of an actual JOSS 
record of three" trials" (Figure 3). 

TREATMENT GROUPS 

The primary experimental treatment was provided 
by programming the JOSS system to lock the subject 
out of the system for a specified length of time after each 

Example: Using the JOSS program 

Y(2)=3 
X(3)=5 
Y(3) =6 

~ W:!} Hospital locations 

100.1 Set z = 1 if v =2 or w =6. - a decision rule 
200 Do port 210. - a print option 
Do port 1. 

Average - 5.40496 
Maximum =16 

654 3 234 5 
10 6 4 5 2 4 7 10 Shortest response times 

16 7 10 7 4 7 10 13 ) 
14 6 8 5 2 5 8 11 

8 6 2 5 4 2 5 8 to intersections 
65033036 
86255258 

10 7 4 7 7 4 7 10 

Y(3) =7 • 
200 Do port 221 for i =3. 
Do port 1. 

Average - 5.44628 
Maximum = 14 

14 9 8 5 2 5 8 11 
12 8 6 3 0 3 6 9 
87654567 

16 8 10 7 4 7 10 13 
18 9 12 9 6 9 12 15 
20 10 14 11 8 11 14 17 
22 11 16 13 10 13 16 19 
24 12 18 15 12 15 18 21 

Y(3)=8 
100.2 Set %=1 if w=5. 
200 Do port 210. 
Do port 1. 

Average = 5.89256 
Maximum= 14 

~1H n.i:i) 
862 552 5 8 
650 3 3 0 3 6 
8~255258 

10 7 4 7 7 4 710 

Response times from 
hospital 3 

Shortest response times 

You supply these 

Program types out these 

You supply revisions 

Program responds 

You supply revisions 

Program responds 

Figure 3-Sample JOSS printout 



trial, i.e., after a current set of results had been 
presented to him. Lockout conditions were different for 
each of five groups of subjects, and included both fixed 
and variable intervals. 

The subjects, primarily graduate students at RAND 
for the summer, were divided into the following five 
groups: 

o-No lockout; free access to console; 
5-Five-minute lockout period; 
8-Eight-minute lockout period; 
V-Variable lockout period (5-min mean) ; 
c-Choice; subjects were instructed to "lock them

selves out" as much as possible, but otherwise had 
free access to console. 

On the basis of a questionnaire, subjects were ranked 
from 1 to 20 with respect to computing and operations 
research experience. The experimental groups were 
balanced in regard to experience. 

BASIC RESULTS 

The primary measure of a subject's performance was 
the minimum average emergency response time he 
could achieve during the two-hour period. For analysis 
purposes, this performance was transformed into a 
percentage of optimal performance. Figure 4 shows the 
resulting performance of each individual, organized with 
respect to experimental group and presented with group 
averages. In. this case, the group with a moderate 
lockout period (5 min) performed better than both the 
group with free access (0 min) and the group with a 
relatively severe lockout period (8 min). The variable 
lockout group performed almost as well as Group 5, 
and the "choice" group almost as well as Group o. 
(However, Group C achieved this performance with 
half as many computer trials as Group 0.) 

The numbers next to each data point in Figure 4 
indicate the subject's experience ranking, "1" being 
highest. It is evident that performance strongly 
correlates with experience. This comparison is high
lighted in Figure 5, which plots each subject's perform
ance rank versus his experience rank. The associated 
symbol identifies the subject's group. Most subjects fall 
quite close to the equivalence line bisecting the figure. 
However, the less experienced members of Groups 5 and 
V generally performed better than their experience 
might predict. The more experienced members of 
Group 8 and the less experienced members of Groups 0 
and C generally performed worse than their experience 
might predict. Analysis of variance calculations 
indicates that lockout is significant at the 0.025 level, 
experience significant at the 0.005 level, and the 

100 

95 

90 

85 

80 

75 

60 

55 

Interactive Problem Solving 

7 

2 r 18 

/Ls 

/Lv 
9 
17 

10 

JLc 

13 

11 

20 

Note: Numben next to each data point 
are the subject's experience ranking, 
with -1- being the mast experienCed 

3 

8 

/Lc 

12 

16 

207 

o~----~----~----~------~----~----~ o v 5 
Groups 

8 c 

Figure 4-Quality-of-solution scores attained by the subjects 

interaction between lockout and experience significant 
at the 0.10 level. 

Over 40 other performance measures were collected 
and analyzed along with considerable anecdotal data of 
interest, detailed in Reference 4. Significant further 
results demonstrate that: 

1. The subjects with free access (Group 0) average 
twice as much computer usage as groups with 
restricted access. 

2. Group 0 subjects show no relative economies of 
their own time in attaining their high perform
ance levels; however, Group 5 subjects do. 

3. In general, subjects express dissatisfaction with 
restricted access, even in the groups with high 
performance. 

TENTATIVE CONCLUSIONS 

Perhaps the most impressive aspect of the experiment 
was the subjects' tremendous variability in problem-



208 Spring Joint Computer Conference, 1971 

c: o 
] 
·6 
c: o 
~ c: 
~ 

20------------------~~--~r---~ 

18 

2 4 6 8 10 12 14 16 
'-ank on experience 

Figure 5-Rank on experience compared with rank on criterion 
measure 

solving approaches. It is difficult to imagine anyone 
ever formulating a single model of man-computer 
problem solving that would fit even our small group of 
subjects, which included some whose performances were 
so irregular that they had to be dropped from the 
analysis. For example, one subject promptly began by 
dumping our JOSS control program; after two hours, 
his only result was a set of undebugged modifications of 
this program. Another preferred to work almost 
completely by hand, saying "he didn't trust computers," 
and never achieved a feasible solution. 

However, with respect to the large majority of 
problem solvers who achieved feasible solutions in the 
experiment, the results of this small exploratory study 
raise some interesting questions regarding popular 
beliefs about man-machine problem solving. Our evi
dence suggests that, at least in this experimental 
context, users tend to become dissatisfied if mild 
restraint is placed on their free interaction with the 
computer. They also tend to problem solve more 
effectively, using less computer time and less of their 
own time in the process. Such shibboleths as "faster is 
better" and "more computer time means less human 
time" may at times serve the computer salesman more 
than the consumer. The results also cast doubt on the 
validity of user acceptance as a general index of system 
effectiveness. The user may want what inconveniences 
him least in the short run, or he may want what he has 
been led to believe he should want, but the general 
efficacy of such desires cannot be taken for granted. 

Definitive answers to questions relating to the nature 
of relevant parameters of problem solving systems are 
of more than academic value. For example, under some 
circumstances, organizations under pressure to expand 
their hardware inventory to. meet increased demand 
might find it far more productive to keep the system 
they have and introduce some form of constraint (e.g., 
an accounting system) that will encourage more 
judicious and creative use of the existing computational 
capabilities. However, without more information and 
better understanding, it would be a mistake to conclude 
that either approach is the "right" one. The only 
general conclusions that can be reached on the basis of 
the present work are that the relationships involved in 
man-machine problem solving are neither obvious nor 
simple, and that there is reason to believe that further 
investigation could have practical significance. 

MAN-COMPUTER EXPERIMENTS-FUTURE 
PLANS 

We are currently testing the same problem on 
another group of subjects, under lockout conditions 0 
and 5, to determine whether the initial results are 
confirmed by: a larger sample. Also, because earlier 
subjects indicated in their debriefings that a graphic 
display capability could have helped them, and since 
RAND has an interactive Conversational Programming 
System (CPS) working on both typewriter and graphic 
consoles, we are considering a modification of the 
current experiment to test the relative efficacy of 
typewriter and graphic terminals in this context. 

However, before plunging into another experiment 
we feel it important to devote more thought to two 
fundamental questions: 

1. The classification of problem characteristics and 
problem solving activities, at least in the neigh
borhood of our current study. 

2. Determination of better measures of human 
problem solving experience, attitudes, and 
capability. 

Without solid foundations in these areas, future studies 
will progress no further in operational utility than the 
one reported here: provocative, useful as a cautionary 
indicator, but hardly a predictor for any operational 
situation. 

REFERENCES 

1 H SACKMAN 
Experimental investigation of user performance in time-shared 
computing systems: Retrospect~ prospect, and the public 
interest 
System Development Corporation SP-2846 1961 



2 M M GOLD 
Methodology for evaluating time-shared computer usage 
PhD dissertation Massachusetts Institute of Technology 
1967 

3 C L BAKER 
JOSS: Introduction to a helpful assistant 
The RAND Corporation RM-5058-PR August 1966 

4 M J SEVEN B W BOEHM R A WATSON 
Problem-solving with an interactive computer: A study of 
user behavior 
The RAND Corporation R-513-NASA In process 

APPENDIX-TOWARD A PERFORMANCE 
CRITERION FOR MAN-COMPUTER 
SYSTEMS: THE PRODUCTIVE THOUGHT 
RATIO 

The following approach guided our research efforts in 
the analysis of man-computer systems: 

1. Formulate a performance criterion for man
computer systems that appears reasonably 
discriminating and measurable. 

2. Investigate the implications of using this 
criterion operationally. 

3. Identify the resulting key problems and experi
ment for insight into them. 

FORMULATE A PERFORMANCE CRITERION 

Current performance criteria for such computer 
systems as throughput, component utilization efficiency, 
and turnaround or response time, tend to concentrate 
on the servicing of individual computer run requests 
rather than on the project advancement for which a 
given run is being made. Computer systems optimized 
witli respect to the above criteria tend to emphasize 
machine efficiency at the expense of such amenities as 
ease of learning, programming, debugging, or modifying 
programs, which tend to increase human efficiency. 

Suppose, however, that one could characterize the 
computer support of various types of projects (e.g., an 

A 1)'11 I Pt • I 0 bv '09 I P,oduco;on/ modificOo;on 
_ ••••• ~ ••• _ •• _.~~:.~......... • •• e •• ~.. •• • •• • __ •• _ ••••• _ _ •• __ 

Using batch system A 

\ I / 
_ ••••• --••••• _ •• -.-............... _ ........ - _ •• _e •• - Using batch system B 

/ I \ 

=~·~=~1~=:=··=.=:2-··-·-·"'~'~~-' Using interactive system a 

__ Time spent thinking about the problem, Tl 
u ............. •• Time spent thinking about the program, T 2 

(blank) Time spent waiting for computer output, T 3 

Figure 6-Time series characterization of a computer-supported 
project 

Interactive Problem-Solving 209 

engineering research and development project) as time 
series of individual computer run requests (Figure 6), 
and that one could separate the time spent on the 
project into three activities, essentially mutually 
exclusive: 

T 1 : Time spent thinking about the project; 
T 2 : Time spent thinking about the programs sup

porting the project; 
T 3: Time spent waiting for the computer to 

respond.t 

Then consider the following performance criterion, the 
productive thought ratio (P. T .R.) : 

Tl 
P.T.R. = -----

Tl + T2 + T3 

A computing system that maximizes the P. T .R. (over 
some mix of projects) will not only try to increase 
machine efficiency (by decreasing T 3), but also human 
efficiency by decreasing T2 through reducing the time 
spent learning languages, programming, debugging, 
and modifying programs).t Also, with the time series 
characterization of a project, the P.T.R. is a reasonably 
measurable quantity; it requires the currently available 
machine measurements plus an approximate breakdown 
of how people use their time. 

INVESTIGATE OPERATIONAL IMPLICATIONS; 
IDENTIFY KEY PROBLEMS 

Suppose the manager of a computer system received 
the following statement: 

"This month our P.T.R. was 0.37. Last 
month it was 0.29." 

What would this statement tell him? 

1. Nothing, unless he was sure the variation was not 
attributable to changes in workload. To eliminate 
this difficulty, some means must be found to 

t Such a characterization is appropriate for a computer service 
facility and the maintenance aspects of a real-time control system. 
It is less appropriate for the operating aspects of a real-time 
control system, which are better judged directly with respect to 
the objectives of the system. 
t The P.T.R. is intended to function best in evaluating changes 
relative t.() an existing operation. Its current form does not exclude 
extreme cases that produce unwarrantedly good results. For 
example, not using a computer yields T2=Ta=O and P.T.R. =1, 
an "optimal" solution. These could be fixed by adding more 
terms, but this would obscure the subsequent discussion of more 
fundamental difficulties. 



210 Spring Joint Computer Conference, 1971 

normalize the P.T.R. with respect to workload. 
One possibility would be to measure it only with 
respect to standard project types (large event 
simulations, small scientific investigations, multi
tape data analyses, etc.), under the assumption 
that the projects within each type are relatively 
homogeneous. At present, no solid data are 
available to test this assumption, which suggests 
one potential research area: the collection of 
detailed case histories of several projects within 
one of the above standard project types, and 
their characterization and comparison in terms 
of such schemes as Figure 6. 

2. Very little, without some correlation between 
thinking time and insight. This correlation can 
vary markedly for different systems, particularly 
in such areas as computer graphics.t However, 
some properly instrumented experiments in 
man-computer problemsolving could shed some 
light on the question. This became one of our 
experimental design considerations. 

3. Nothing, if based on bad measurements. How 
capable and how motivated are people to 
separate their time accurately into categories T 1, 

T 2, and T 3? Our experimental observations and 
debriefing forms were structured to pick up such 
information. As one example of the results, we 
found that some of the subjects' estimates of 
time spent waiting for the computer to respond 
(T 3) were underestimated or overestimated by a 
factor of at least two, though on the average the 
agreement with observations was fairly close. 

4. Very little, if a significant number of users are 
productively using their computer wait time (T3) 
on one project to advance another project (time
sharing themselves). This a venue leads to a host 
of fundamental questions involving human 
thinking and problem solving processes, generally 

t In practice, of course, measures of effectiveness must also be 
balanced with measures of cost. 

couched in such elusive terms as "concentra
tion," "subconscious," "motivation," etc. At 
this early stage the most definitive statements 
possible are: 

• The P. T .R. is not a sufficiently delicate 
metric to illuminate this phenomenon, and 
at best its use must be restricted to "dedi
cated" activities. 

• To make any headway with the fundamental 
questions above, one needs a larger problem
solving data base. Our increased apprecia
tion of this need strengthened the case for 
performing experiments to gather more 
data. 

• Such phenomena as "lockout" cannot be 
neatly fitted into the categories T 1, T 2, and 
T 3; our considerations of the possible effects 
of lockout led to the major hypotheses to be 
tested via controlled experiment. 

5. Probably about as much as can any other general 
man-computer performance criterion at this time. 
The significance of the above discussion lies in 
its general applicability and most of these 
enumerated P. T .R. difficulties arise with altern
ative criteria that attempt to assess the com
puter's contribution to human performance over 
a wide spectrum of activities. As the spectrum of 
activities is narrowed, ways can be found around 
some of the difficulties (e.g., workload variation), 
but others will remain quite thorny (e.g., 
accuracy of measurements and value of results).t 
However, the potential payoffs of even partial 
insights in this area are sufficient to warrant an 
increased level of activity in gathering and 
analyzing man-computer performance data. 

t Some care must also be taken to avoid criteria that over
emphasize the machine-like aspects of human performance (e.g., 
number of designs tried in a day). 



TYMNET*-A terminal oriented communication network 

by LA ROY TYMES 

Tymshare, Inc. 
Cupertino, California 

INTRODUCTION 

The past few years have seen many applications of the 
mini-computer in digital communications. They have 
been used as interfaces to larger computers. They have 
been used as terminal drivers and data multiplexors.l 
They have been used to connect computer centers for 
intercomputer communication.2,3 TYMNET* is a com
munication net that encompasses all of these features 
at relatively low cost. 

Although the net is very general purpose, it has been 
specifically oriented around the needs of the full duplex 
terminal in the ten to thirty character per second range. 
The terminal, connected to an acoustic coupler, inter
acts with a program in a timeshared computer on a 
character-by-character basis. The goal is to make this 
interaction as intimate as possible, even though the 
terminal and program are often thousands of miles 
apart. 

THE HARDWARE 

The net consists of Varian 620i's interconnected by 
2400 and 4800 bit per second synchronous full duplex 

'private leased lines. The 620i is a 16 bit machine with 
three working registers and a 1.8 microsecond cycle 
time. They are standard, off the shelf machines with 
8K memory. Their only options are power failsafe and 
a primitive interrupt. The clocks from the synchronous 
modems interrupt the 620 for every bit to and from 
the synchronous modems. Some machines have a syn
chronous modem interface designed and built by 
Tymshare to assemble and disassemble 16 bit words, 
thus reducing the number of interrupts by a factor of 
16. 

* Trademark, Tymshare, Inc. 

211 

The 620's are divided into two types, called base and 
remote (see Figure 1). The purpose of the base is to 
interface the net to the host, or timeshared computer. 
An assumption, which has proved to be valid, is that 
the base is usually up even if the host is down. There
fore, the base is useful as a node in the net even when 
it is not serving its host. 

The remote drives the terminals. The typical remote 
is connected to up to 31 asynchronous full duplex 
modems. The data rate varies from 110 to 300 baud. 
Some remotes output to hard wired terminals at 600 
and 1200 baud. 

The remote can output on two wires and input on 
three wires on each modem for passing data and control 
information. On outputting a 16 bit word, the remote 
sets the voltage on 16 wires. On inputting a 16 bit 
word, the remote reads the voltages on 16 wires. The 
hardware understands the relationship between zeroes, 
ones, and RS232 voltage levels, and nothing more. In 
particular, it knows nothing about baud rate, character 
rate, or any other terminal characteristic. Serialization 
and deserialization of characters is done entirely with a 
software routine which is executed 1200 times a second. 
This simple hardware gives. maximum reliability and 
flexibility at minimum cost. 

When a user calls in to our system, he types a char
acter to identify his terminal type. The remote analyzes 
this character to determine the baud rate, character 
rate,' carriage return delay time, and other parameters. 
It then assigns two routines to this port, one for input 
and one for output (some terminals use a slower char
acter rate for the keyboard than the printer). These 
routines handle all idiosyncracies of the terminal, in
cluding conversion to and from ASCII if the terminal is 
non-ASCII. Thus it is an easy matter to accommodate 
new terminal types as they become available. 

If the remote has more than 8K of memory it may 
also have a printer, magnetic tape unit, and other 
equipment attached to it. The hardware interface is 
always the most primitive that will work. 



212 Spring Joint Computer Conference, 1971 

D host 

0 b.ase 

6 remote 

Figure I-A small network showing the relationships between 
host, base, and remote 

THE CIRCUIT 

The nodes of the net are interconnected by full duplex 
synchronous private leased lines at 2400 and 4800 bits 
per second. The data is sent over these lines in the form 
of physical records. A physical record consists of a 16 
bit header followed by several logical records followed 
by 32 bits of checksum. Errors are corrected by retrans
mission. When the error rate is nominal (less than 10 
incorrect checksums per minute) about 240 data char
acters per second are passed on a 2400 bit per second 
line, or enough to handle 40 interactive terminals. 

Inside each node there are a large number of char
acter buffers, each one assigned to some routine which 
processes characters found in that buffer. Placing a 
character into a buffer is sufficient to insure that the 
appropriate routine will process that character at the 
appropriate time. In particular, some buffers are as
signed to the physical record maker and placing a 
character into such a buffer will cause it to be assembled 
into a physical record with a particular virtual channel 
number. 

Associated with each synchronous line is a permuter 
table (see Figure 2). This table is a list of pointers to 

pairs of buffers. The nth entry in the table corresponds 
to virtual channel n for that line. There is a matching 
permuter table in the node at the other end of that line. 

We are now ready to trace the path of a character 
through the net. When the user strikes a key on a 
terminal, the terminal serializes the character and 
feeds it into an acoustic coupler. The coupler sends it 
over a telephone line to an asynchronous modem. The 
remote assembles the character and places it into 
the buffer assigned to virtual channel 2 and informs 
the physical record maker that something is ready for 
channel 2. The physical record maker looks up the 
second entry in the permuter table to find which buffer 
has the character. It then builds the record (possibly 
containing data for other channels as well).. When 
this record arrives in the next node (the base in this 
example) it is torn down. Since the character came in 
on channel 2, the second entry in the permuter table 
for this line is checked to see where to put the char
acter. In this case it goes into port 1 of the host. 

I am now ready to define a circuit. A circuit is a full 
duplex character path through the net. It is described 
by entries in permuter tables. There are two buffers in 
each node per circuit, one buffer for each direction of 
character flow. Some readers will recognize this as a 
permutation switching network. 5, 6 

A word about the efficiency is in order. Each logical 
record begins with one character to specify size and 
another character to specify virtual channel number. 
If data characters are sent in to the host one at a time 
as rapidly as a person types, there are two characters 
of overhead for every data character, plus the header 
and checksums of the· physical record. 

Several observations are appropriate here. First, the 
remote normally handles . echoing on full duplex 
terminals. Second, while there are hundreds of termi
nals in use at any given instant, there are only 15 or 
20 host computers clustered into three computer 
centers. Third, although the capacity of the synchron
ous lines is symmetric, the data flow into the host com-

Figure 2-A circuit passing through two nodes between terminal 
and host. Two buffers are used in each node, one buffer for each 
direction of character flow. In this example, a teletype on remote 

port 2 uses virtual channel 2 to reach host port 1 



puters is only a small fraction of the outbound data 
flow. Fourth, computer programs do not usually 
output characters one at a time: the mean is about 
40. Thus, on the inbound stream, we are "inefficient", 
but it does not matter. On the outbound stream the 
overhead (which includes rate control and network 
control, see below) is about 20%. 

Another problem is how does one control the rate at 
which characters flow. A computer program can easily 
output at 1000 characters per second, whereas a termi
nal may consume them at only 10 per second. The 
buffering capacity of the intermediate nodes is finite 
and will be exhausted unless backpressure can be gen
erated to shut off the program. 

A circuit can be low speed, meaning it can handle 
terminals up to 30 characters per second, or high speed, 
for 120 character per second links. Most circuits are 
low speed because they require less buffering. High 
speed circuits use high speed virtual channels, and low 
speed circuits use low speed channels. The distinction 
is noted by a bit in the permutation table. 

Whenever node A sends characters to node B on 
channel n, it subtracts the number of characters sent 
from a counter associated with channel n. When that 
counter goes to zero, no more characters will be sent 
on that channel. Twice a second node B will send one 
bit per channel back to node A saying whether it has 
less than 32 characters (128 on a high speed channel) 
in the receiving buffer for that channel. If node B has 
less than 32 characters, node A will reset its counter to 
32 (128 for high speed channels). This tends to put a 
vague upper bound on the number of characters a node 
will buffer for any given circuit. Thus, backpressure is 
cascaded back to the source. 

The circuit may be regarded as a pair of pipes con
necting two points. In each pipe the characters always 
flow in one direction, and they never get out of order. 
All interaction between terminal and program is 
through these pipes. All entities in these pipes are eight 
bit bytes, but they are not all data characters. 

There are several special control characters to allow 
the program to control echoing modes and other 
properties of the circuit. All are encoded as eight bit 
bytes. Since a data character may be any eight bit 
byte, it could look like a control character. If it does, 
it is preceded in the pipes by an escape character 
which warns all appropriate machinery that the 
succeeding character is a data character, whichever 
it may look like. 

Another special character is used to precede, or 
prefix, an eight bit parameter modifier. The parameter 
modifier is used to allow a user program to change one 
of 16 four bit fields describing the terminal in the 
remote. This allows the user program to alter such 

TYMNET 213 

terminal characteristics as input baud rate, output 
baud rate, and the parameters in the formula to 
compute carriage return delay time. It can also control 
such things as whether an incoming line feed is echoed 
as a line feed or (more commonly) as a line feed, 
carriage return, and rubout. 

The remote normally handles all echoing for full 
duplex terminals, but there are times when this is un
desirable or impossible. For instance, if the terminal is 
listing output from the program and the user types 
ahead, the remote cannot echo the characters or they 
would be mixed up with the output text. (Everyone 
types ahead on full duplex terminals. One does not 
realize how natural and convenient this is until one 
switches to half duplex after using full duplex for several 
weeks.) The remote stops echoing and sends a special 
character to the base to say that the terminal is in de
ferred echo mode. All echoing is now done from the 
host by a strategy that guarantees that the characters 
will come out in the right order. It is undesirable to 
stay in deferred echo mode because the echoing is so 
slow. It may take over a second for a character to make 
a round trip through the net if there are many nodes 
involved. 

Before the remote can return this terminal to im
mediate echo, it must make sure that doing so will not 
cause characters to be echoed out of order. That is, it 
must make sure that the host has caught up with the 
input character stream and echoed all echoable char
acters. This condition is met if both pipes are empty 
and the program is dismissed waiting for an input 
character. 

To test for this state, the remote places a green ball 
in the inbound pipe. When the green ball reaches the 
base, it waits until the program is dismissed waiting 
for an input character and the character buffers in the 
host associated with that program are empty. It then 
enters the outbound pipe and returns to the remote, 
possibly following some data characters. If it reaches 
the end of the pipe before any more data characters 
were sent in to the base, the terminal returns to im
mediate echo mode. If more unechoed data characters 
have been sent in during this time, then it is not safe 
to return to immediate echo because character echoes 
may follow the green ball. 

A green ball can obviously take an arbitrarily long 
time to complete this trip. Once the remote has sent in 
another unechoed data character, it knows that the 
information that the green ball would convey if it re
turned is obsolete. That is, the pipes are not necessarily 
clear. Before the remote can make another attempt to 
get the terminal out of deferred echo mode, the old 
green ball must be flushed out. The remote places a red 
ball in the inbound pipe. The .red ball simply goes to 



214 Spring Joint Computer Conference, 1971 

the base and returns, destroying any green ball it en
counters. 

This same machinery is used to find out when it is 
time to unlock the keyboard of an LB.M. 2741. This is 
interesting because it allows the remote to completely 
shield an ASCII, full duplex oriented host from the 
awkward operating characteristics of that unfortunate 
terminal. 

When an outbound pipe is full of characters, it 
may take several seconds to type out. Sometimes a 
program wishes to clear this pipe quickly, as when 
it realizes that the output is not wanted by the user. 
To clear the pipe, the host releases a character gobbler. 
The character gobbler races through the pipe at top 
speed, gobbling all characters ahead of it. When it 
gets to the end of the pipe, it annihilates itself. 

Even more potent than the character gobbler is 
the circuit zapper. When a circuit is no longer needed, 
its buffer pairs and permuter table entries must be re
leased quickly and cleanly. There should be no left 
over characters wandering aimlessly about the net. 
When the user logs off and hangs up his phone, or 
when the host decides to release a circuit, a circuit 
zapper is released. As ·it moves through the· circuit, 
it clears all buffer pairs and leaves a trail of null per
muter table entries behind it. When a circuit is zapped, 
it is cQmpletely erased. There are no remnants of it 
to pollute the net. 

THE SUPERVISOR 

The supervisor is a program that runs under time
sharing on an XDS 940 .. Its purpose is to build circuits, 
perform diagnostics, keep statistics, and handle all 
other matters of global importance to the network. 
There are normally several supervisors running at any 
moment to provide backup in case of failure, but only 
one is in control of the network. This one is called the 
supervisor in active mode, or Sam, for short. Sam has 
in its memory a detailed representation of the network. 
In particular, it has a copy of all the permuter tables. 

Every node in the network has a leprechaun. The 
purpose of the leprechauns is to issue high priority 
diagnostics, pass login information to Sam, and obey 
all commands from Sam, such as commands to change 
permuter tables. Every link has one full duplex super
visory channel for lepr~chaun communication. In every 
node, one link is called upstream, or toward Sam. Some 
nodes also have a downstr~am link. Messages moving 
on these links go upstream or downstream. If a lepre
chaun wishes to send a message to Sam, it places the 
message in the upstream link and the message perco
lates up to Sam. If Sam wishes to send a message to a 

leprechaun, Sam sets up a downstream path and sends 
the message down that path. Thus the leprechaun is a 
very simple creature with no global knowledge of the 
net. In fact, it takes less than 300 words of code. 

Circuit building is Sam's primary function, and can 
be illustrated by several examples. Suppose a user calls 
a remote and identifies his terminal. The next thing he 
types is usually his name and password. A leprechaun 
in the remote sends these characters to Sam. Any fur
ther characters typed by the user remain in a buffer in 
the remote until a circuit is built. Sam hashes the user's 
name into the MUD (master user directory) to find 
out, among other things, which host has this user's 
files. The user himself may not know this since an opera
tor may have moved them the night before. Sam then 
checks to see if that host is up and has an available 
port. The next step is to select the nodes and links 
through which to construct the circuit. Since the repre
sentation of the network is a multilinked list of node 
descripters, and since each link is tagged as being in the 
direction of a particular host or not in that direction, 
this is a trivial process requiring less than a millisecond 
of compute time. The only optimi~ation done is to avoid 
links which are heavily loaded or which have high error 
rates. An unused virtual channel on each link is assigned 
to this circuit. 

The user's name is now passed on to the host. The 
host hashes the name into the L UD (local user direc
tory) to find the user's file directory, billing account, 
and so on. The final step is to send commands to the 
leprechauns in all the nodes affected to make the ap
propriate entries in their permuter tables. 

The circuit just described is called a normal circuit. 
It is the only kind most programs use. Some programs 
use an auxiliary circuit to connect to things other than 
terminals. Suppose a program in host A wants informa
tion from the files of host B. It makes a supervisor 
request to construct an auxiliary circuit between its 
port on host A and a port on host B. The port on host A 
is multiplexed between the normal circuit and the 
auxiliary circuit, but only the program and Sam know 
this. Neither host knows that this is happening. Host B 
thinks the auxiliary circuit is a normal circuit with a 
terminal at the other end. The program in host A can 
interact with the program in host B just as a user 
would. In particular, the two programs can exchange 
data. Since the data rate is limited to about 150 char
acters per second, it is not a good way to move large 
files, but that is not an important restriction. Of course, 
the program in host B can acquire still another auxiliary 
circuit to host C. 

Another use of the auxiliary circuit is attaching a 
program to some peripheral device, like a printer. The 
program supplies the logical name for the device, which 



is unique for every device. Sam locates the device (its 
location may change from day to day) and makes the 
connection. A potential use of auxiliary circuits, not 
yet implemented, is remote dialout. The program sup
plies the telephone number. Sam selects a node with a 
remote dialout unit on it which is inside or close to a 
toll-free dialing area for that number and makes the 
connection. 

Another type of circuit building occurs when a node 
or link goes down. Sam will reroute all affected circuits 
for which an alternate route exists. 

A critical situation is created when Sam goes down. 
Without Sam, no new circuits can be built and no new 
users can be accommodated. A new Sam must be cre
ated quickly. 

There are normally many supervisors running besides 
the supervisor in active mode. They receive a message 
from Sam at least once a minute. Should these messages 
stop, they automatically begin to take over the net. 

The network takeover involves three things. First, 
one supervisor must be chosen to be the new Sam. 
Second, this supervisor must construct an up-to-date 
representation of the net in its own memory. Third, it 
must win the allegiance of all the leprechauns. 

The supervisor runs in a host, and the host is con
nected to a base. The supervisor wins the allegiance of 
the leprechaun in that base by causing the upstream 
direction to point into the host. Once that is done, the 
supervisor can find out all it wants to know about the 
base by asking the leprechaun. It then commands the 
leprechaun to send a takeover message down all of its 
supervisory channels. When a takeover message arrives 
in a node from a particular link, that link becomes the 
upstream direction. The leprechaun identifies itself on 
the new upstream link and the supervisor proceeds to 
find out what it needs to know to build its internal 
network representation. The supervisor continues node 
by node, level by level, until there are no more unknown 
links. When this is done, the upstream direction has 
been defined for all leprechauns, the internal network 
representation is complete, and the supervisor becomes 
the new Sam. 

In the process of taking over the net, a supervisor 
creates a steadily growing sphere of influence. Should 
this sphere of influence intersect that of another super
visor, a leprechaun in the intersection of the two 
spheres switches allegiance. Just before switching alle
giance, it sends a message in the old upstream direction 
saying which supervisor is taking over. Thus, when 
supervisor A steals a node from supervisor B, supervisor 
B discovers that supervisor A is trying to take over the 
net. 

The supervisors are arranged in a pecking order. If 
an inferior supervisor steals a node from a superior 

TYMNET 215 

supervisor, the superior supervisor will take it right 
back. If a superior supervisor takes a node from an in
ferior supervisor, the inferior supervisor becomes qui
escent. 

Several points are worth stressing here. First, a lepre
chaun has no global knowledge. This means that the 
software in a given node can be treated as an independ
ent module which obeys certain conventions. This 
enormously simplifies the debugging and minimizes the 
danger of a bug in one node clobbering another node. 

Second, the supervisor has no a priori knowledge of 
the net when it begins to take over. This makes it 
convenient to make alterations to the net. The super
visor simply adapts itself to whatever configuration is 
presented to it. 

Third, the process is entirely automatic. The conse
quences of such a complex process being dependent on 
human operators are too horrible to contemplate. 

-Fourth, all global information is available in one 
single spot. This greatly facilitates diagnostics, record 
keeping, and debugging. 

Fifth, the most complex routines, those of the super
visor, run under timesharing. The advantages of de
bugging under timesharing are difficult to exaggerate. 

THE FUTURE 

Technology of the type described in this paper is in a 
rapid state of flux. The price-performance ratio of mini
computers is improving, terminals are proliferating, 
and commercial timesharing is becoming a big business. 
Therefore, the threat of obsolescence becomes a major 
design consideration. Before one can intelligently dis
cuss the threat of obsolescence, two general questions 
must be answered. First, what are the long-range ob
jectives of the network? Second, in what directions is 
technology most likely to change? 

Much research is currently being done on high speed 
graphics terminals, sophisticated text handling termi
nals, and on the problems of moving large masses of 
data quickly. These projects are glamorous. I concede 
that they are useful. But they are expensive, and there
fore of limited use. I feel that, given the current market 
and technology, the greatest social and commercial 
potential lay with the low cost keyboard terminal. 

I would like to make the timeshared computer avail
able to anyone who wants it .. In order to do this, the 
cost must be low enough so that everyone can afford it. 
Thus, although the network is very general purpose, its 
performance has been optimized around the needs of 
the simple low speed terminal with an attempt to serve 
the greatest number with the fewest dollars. 

In what directions is technology moving? First of all, 



216 Spring Joint Computer Conference, 1971 

the variety of terminals is increasing. Since all terminal 
drivers are implemented entirely in software, it is easy 
to design a new one and'make it available to all nodes 
of the net on short notice. 

Second, the output character rates of "low cost 
terminals" are increasing. Keyboard CRT terminals 
come down in price every year and hard copy terminals 
are getting faster. I predict that in two or three years 
an acoustic coupler that operates at 1200 baud in one 
direction and 150 baud in the other will be in common 
use. Our algorithm for serializing and deserializing char
acters in software is well suited to outputting at 1200 
baud and inputting at a much slower rate. 

Third, the cost of moving data over long distance 
phone lines will come down, but at a slow rate compared 
to other aspects of the technology. 9600 bits per second 
is about it for voice grade lines, and although wide
spread availability of digital (rather than analogue) 
"voice grade lines" may be just around the corner on 
the telephone companies' time scale, it is an eternity 
away on the timesharing industry's time scale. This is 
already the dominating cost of the net, and the net is 
designed to optimize this resource. 

Fourth, the speed of the minicomputer will continue 
to increase dramatically. In a system so totally com
mitted to a software solution to all problems, the raw 
speed of the computer is obviously crucial. The re
cently available Varian 620f costs less than the 620i, 
yet it is more than twice as fast. Still" faster computers 
will be available when we need them. Since the special 

hardware is so primitive, and since the software in any 
node is only about 4000 instructions, it is easy to switch 
to another computer. Since any node can be treated as 
an independent module following well· defined conven
tions, it is easy to phase in new hardware and software 
(possibly not well debugged) one node at a time. 

Finally, the future is guaranteed to have some sur
prises. One can never be absolutely certain how the 
future will turn out, and the only hedge against uncer
tainty is flexibility. Quite possibly the Tymnet of 1984 
will be quite different from the Tymnet of today, but 
it is hoped that the evolution will be relatively painless. 

REFERENCES 

1 H B BURNER R MILLION 0 W RICHARD 
J S SOBOLEWSKI 
The use of a small computer as a terminal controller for a 
large comput'ing system 
Proceedings of AFIPS SJCC 1969 

2 L ROBERTS 
Computer network development to achieve resource sharing 
Proceedings of AFIPS SJCC 1970 

3 S CARR S CROCKER V CERF 
Host-Host communications protocol in the ARPA network 
Proceedings of AFIPS SJCC 1970 

4 K THURBER 
Programmahle indexing networks 
Proceedings of AFIPS SJCC 1970 

5 A WAKSMAN 
A permutation network 
Journal of the ACM Vol 15 pp 159-163 January 1968 



Implementation of an interactive conference system 

by THOMAS W.HALL 

Language and Systems Development, Inc. 
Silver Spring, Maryland 

INTRODUCTION 

This paper discusses a specific type of decision making 
through the use of a timesharing computer facility. 
The technique is variously called "conferencing" or 
"Delphi conferencing."* In conferencing, a computer 
would serve as a data collection and routing device 
which enables a geographically scattered group of 
€xperts on some subject (the conferees) to conduct 
remotely those discussions and/or referendums that 
might occur at a conventional, face-to-face conference. 
A computerized conference system must then handle 
the mechanics of running such a remote conference. 
Conference systems have been studied recently and 
advantages of this type of system have been dis
cussed :** for instance, the remote accessibility itself; 
the possible anonymity of the respondents as a control 
over personality factors; and the capability of par
ticipating in the conference at one's convenience 
rather than at a precise time. The purpose of this 
paper is to present aspects of implementing a con
ference system. These aspects are of three types: 
functional (conferee oriented); control (conference 
chairman oriented); and implementation (program 
requirements to provide control and functional capa
bilities). Following this discussion of these three aspects, 
some features ·of an actual conference system imple
mentation are reviewed. 

FUNCTIONAL ASPECTS 

The functional aspects of a conference system consist 
of what the user of the system can actually do. The 

* The term "Delphi" refers generally to non-face-to-face inter
actions. The users involved in the exercise described in (2) 
correctly applied the name "Delphi Conference" to the exercise 
and this appellation has survived. 
** See "Delphi Conferencing" (TM 125) by Dr. Murray Turoff 
of Systems Evaluation Division, Office of Emergency Prepared
ness, Washington, D.C. 

217 

user of a conference system-denoted a "respondent"
requires: 

L The ability to access a data base available to all 
the respondents. This data base is a representa
tion of the activities of a conference-consisting 
principally of the texts of the things being pre
sented for consideration by the respondents. 

2. The ability to contribute to the activities of the 
conference in prescribed ways-expressing opin
ions, proposing new topics for consideration, 
and recording quantitative judgments on topics, 
e.g., by voting yes or no on a proposal. 

In moving from these requirements to actually 
implementing a conference system, we see that what 
distinguishes an implementation of a conference system 
from a user's point of view is then: 

1. How accurately the system's data base structure 
can mimic the conference situation the user 
needs; and 

2. What the limits on his use of the system are
exactly what he can and cannot do. 

From this point, it is possible to proceed to imple
ment an almost endless variety of conference systems. 
What follows in this paper is a description of a system 
that has been implemented. Access to a prototype of 
this system was made available to a group of re
spondents-the subject being the conference itself. As a 
result of this experiment, the following functional 
system was designed and implemented. 

Access 

To participate in a conference, a respondent must 
first contact the computer. This normally entails using 
a remote device such as a Teletype(R) to call the phone 
number tying into the computer's timesharing system. 



218 Spring Joint Computer Conference, 1971 

Next, the user has to provide the identification and 
accounting information the monitor system needs to 
allow him to sign on. Then the user has to indicate 
that he wishes to use the conference system rather 
than some other program. (The accessing procedure up 
to this point has been known to intimidate some first
time computer users, but it is just a fixed sequence of 
things to do ritualistically.) When the conference 
system is finally reached it takes control from then on. 
The conference system asks for a short code word which 
the respondent has been given by whoever arranged the 
conference. This code first of all allows the conference 
system to tell which conference the user is participating 
in-the system is capable of conducting several con
ferences at once,each with its own data base. The code 
also uniquely identifies the respondent within the con
ference so that his activities can be accounted for 
separately from all other respondents. Finally, this 
unique identification allows the system to give different 
privileges to different users. A given respondent may 
have any or all of the following privileges: 

1. viewing the items, messages and votes (see the 
following pages for definition of these quantities;) 

2. voting on items; 
3. adding items or adding messages. 

Interaction 

When the conferencing system accepts the user's 
code, it offers the user his· choice of seeing an abstract 
of the subject of the conference, or of using a tutorial 
program explaining the system, or of proceeding to the 
heart of the interaction. When he has proceeded to the 
main interaction, he is given the choice of: 

1. viewing summary information; 
2. viewing items or messages; 
3. voting on items; 
4. adding items or messages (or amending those 

he has already added.) 

Items, messages, and votes are the basic types of data 
handled by the conference: 

1. Items are blocks of concise textual data which 
are to be presented to the respondents for their 
consideration and evaluation. Four types of 
items are recognized: 

a. Proposals-proposed actions or policies of 
which the respondents are asked to judge the 
desirability; 

b. Comments-discussion points which may be 
evaluated by the respondents for their 
importance; 

c. Facts-quantitative points of information 
which may be of interest in the discussion
respondents may evaluate facts on their 
pertinence to the subject of the conference; 

d. Estimates-requests for numeric estimates 
from the respondents-again the respondents 
may vote on the relevance of such estimates. 

As noted, proposals, comments, facts, and estimates are 
evaluated by respondents according to the primary 
criteria of desirability, importance, pertinence, and 
relevance, respectively. Additionally, items can be 
graded by the respondents on secondary criteria-for 
example: agreement with a comment, feasibility of a 
proposal, confidence in an estimate, or impact of a fact. 
Items can optionally be associated with one another, 
linking together items on the same subject. 

2. Messages are blocks of textual data which are not 
voted on by respondents and may be used for such 
purposes as pure discussion or to make comments 
about or clarifications of items. Messages may 
optionally be linked or associated with items, 
also. 

3. Votes are the responses of the conference users 
to the items of the conference. Votes on the 
primary and secondary criteria are recorded on a 
scale of 1 to 5, with the exact vote distribution 
being made available to the respondents only 
after fifty percent of the vote is in and. only 
after the respondent who requests to see the 
votes has himself already voted. User responses 
to estimate items are also part of the voting; the 
number, average, and standard deviations of 
the estimates being recorded, along with the 
number of estimates above the mean-a rough 
measure of skewness. As a result of the re
spondents' votes, items are segregated according 
to those which have been accepted, those which 
have been rejected, and those which are still 
pending. 

The process of adding items and evaluating those which 
other respondents have added constitutes the essential 
user interaction. 

CONTROL ASPECTS 

The control aspects of a conference system consist 
of the overall control mechanisms for a conference. In 



the line of controlling a conference, the following 
capabilities must be examined: 

1. organizing a conference; 
2. exercising dynamic control over the proceedings 

of the conference; 
3. examining the results of the conference; 
4. disbanding the conference at its conclusion. 

Again in our particular implementation, these capa
bilities appear in concrete form. Instead of identifying 
himself to the conference system as a regular user, one 
can take the role of a conference chairman or "monitor." 
Obviously, the effort of finding people to participate 
in the conference and the task of guiding the conference 
proceedings along a coherent path still tax the human 
resources of the conference monitor. The conference 
system only takes care of the mechanics. 

Setting up a conference 

A user first creates the conference of which he is to be 
the monitor. In doing so, he establishes a monitor code or 
"key" which is required before he or anyone else can 
act as the monitor for that particular conference. 
Creating a conference entails: 

1. establishing a list of respondents-supplying 
code words for their access to the system and 
indicating which permissions (votes, adding 
items, etc.,) are accorded to each respondent; 

2. providing the abstract of the conference's 
subject; 

3. possibly providing an initial set of items for the 
consideration of the respondents. 

Modifying the conference 

Occasionally during the life of a conference, the 
monitor may have to intervene in one of the following 
ways: 

1. to alter or completely purge inappropriate items 
or messages or to rearrange the association 
links between items into a more correlated 
structure; 

2. to change the list of respondents-·adding new 
ones or deleting old ones; 

3. to communicate important information to the 
respondents in the form of a "monitor message" 
which is' presented to each respondent the next 
time he uses the system. 

Implementation of Interactive Conference System 219 

Analyzing the conference 

In addition to the vote totals made available to the 
respondents, the monitor of a conference can view the 
individual voting records of the respondents and can 
summarize the voting of various groups of respondents. 

Deleting the conference 

At the conclusion of a conference, the monitor 
directs the conference system to eliminate the con
ference from the computer system-reclaiming what
ever storage the conference utilized. 

IMPLEMENTATION ASPECTS 

So far, this paper has discussed what a particular 
conference system does. This is a major part of imple
menting the abstract idea of a conference system-the 
designing part. Now, we turn to the actual realiz&tion 
of the design-making a working system to run a 
conference in the manner previously described. This 
part of the job-which is the part usually thought of as 
implementation-involves several areas of general 
concern which can be considered independently of a 
particular system. 

Hardware and monitor systems 

The nature of a conferencing situation as described 
up to this point makes evident some initial require
ments. 

1. Communications 

To serve its intended purpose, the conference system 
must be convenient to geographically scattered users. 
Optimally, the system should accept interaction with 
the user from whatever remote device he finds most 
accessible. In practical terms this is best accomplished 
by such means as a dial-up Teletype arrangement as 
used by most commercial timesharing services. Where 
possible, higher speed devices including graphics 
display terminals, should be accommodated by the 
system for the user's convenience. 

2. Operation under a Timesharing System 

At anyone time, the conference system may be in 
use by no respondents or by several. In any case, the 
vast majority of the computer's time would be spent 



220 Spring Joint Computer Conference, 1971 

idle if it had to run only this one system. This problem 
and many others are solved by writing the conference 
system as a subsystem of a standard timesharing 
system. This subjects the user to variations in response 
time due to totally unrelated uses of the timesharing 
computer, but this disadvantage is insignificant 
compared to the advantages. With a standard time
sharing system, the desired communications capabilities 
should be already included; the job of dividing time 
between respondents becomes the monitor system's 
task instead of the conference system's; and the power 
and flexibility of the timesharing system's software 
become available. 

Required features 

Having made the decision to operate the conference 
system under a timesharing monitor, one must require 
the monitor system to allow all the operations abso
lutely essential to the running of a conference. 

1. Common Access 

First of all, the respondents must be able to run the 
program or programs constituting the conference 
system. If possible, the conference system might be 
placed among the standard components of the monitor 
system to make access to it as easy and natural as 
possible. Ideally, the conference system should be a 
re-entrant program so that several respondents could 
be served by the single copy of the conferencing 
program. Second, the monitor system must allow the 
concurrent use of a common area of mass storage 
(a file) by several respondents. Access to this area must 
be direct in the sense that what a user writes there can 
immediately be read by another user-i.e., all users 
agree as to what is in the file at any given time. This 
essentially requires unbuffered input/output to be 
used. In addition to providing common access to a 
file, the monitor system must also be able to limit it 
as noted in the next point. 

2. Exclusive Access 

When two or more user programs in a timesharing 
situation independently desire to change the contents 
of a common file, some means must be used to insure 
that their attempted changes do not interfere with one 
another. This is done in practice by guaranteeing one 
user program at a time exlcusive access to the area he 
wishes to change. Three techniques are available for this 

purpose: first, a program might arrange to raise its 
priority sufficiently to guarantee that it can get done 
what it wants to get done without interruptions; second, 
the program might request the monitor system to 
temporarily grant it exclusive use of the entire file; 
and, third, the program might ask the monitor to grant 
it exclusive use of just the portion of the file that had to 
be modified. Any or all of these features may be 
available for use in a given timesharing system. 

Programming Systems 

In actually programming a conference system, one 
must choose a language and programming system which 
offers access to all the required features mentioned 
previously. It is of no use if the monitor system offers 
exclusive access to common files if the language chosen 
for the conference system cannot make . use of this 
feature. It is sufficient to choose a language which can 
communicate with the presumably omnipotent assem
bly language. It is not completely unreasonable to 
write the conference system entirely in the assembly 
language, but use of a higher level language suggests 
itself for several reasons: 

1. Availablity 

Oddly enough, many timesharing systems offer the 
remote user no access to assembly language program
ming. The philosophy behind this seems to be twofold: 
first, the timesharing user is not seen as requiring any 
of the features available only in assembly language; and, 
second, access to all the features open to assembly 
language programs may be hazardous to the stability 
of the system. Conversely, higher level languages such 
as BASIC and FORTRAN are made commonly 
available. 

2. Programming Ease 

Unless the programmer(s) assigned to code a con
ferencing system are of the extremely rare breed of 
systems programmers who prefer assembly language 
coding, the time required for implementing a conference 
system in an appropriate higher level language should be 
considerably less. Also, mistakes in higher level language 
coding are apt to be less troublesome-either because 
fewer mistakes are made or because they are more 
easily found and corrected with the help of the diag
nostic aids accompanying more advanced programming 
systems. 



3. Use of Packaged Features 

In using a high level language, one can often make use 
of powerful features built into the language which would 
be difficult to rival in assembly language. The most 
important of these are the input/output operations 
which are often the most difficult part of assembly 
language level programming to master. Also, the 
higher level language should offer capabilities for 
manipulating string data and for data formatting 
chores. 

4. Efficiency 

Clearly, the execution of a conference system 
carefully written in assembly language would be more 
efficient in terms of computer usage than that of one 
written in a higher level language. However, this would 
appear to be of negligible interest for two reasons: 
first, the saving in effort of implementing a system 
in a higher level language should counterbalance the 
execution differences; and, second, the nature of a 
conference system is such as to make it entirely input/ 
output oriented or "I/O bound," waiting for the user's 
input nearly continuously. This means that the response 
time for a user-which is the most important feature of 
such an interactive system-will not be appreciably 
affected by the inefficiencies in computing due to the 
higher level language. It also means that the dollar 
cost due to use of the computer's processor will probably 
be smaller than the cost of calling up the computer in 
the first place. 

FEATURES OF AN ACTUAL IMPLEMENTATION 

To explore the requirements for implementing a 
conference system further and to show how the re
quired features come into use in practice, the techniques 
used in an actual implementation of a conference 
system * should be examined. 

Choice of computers 

All the features necessary for implementation of a 
conference system are readily available on the UNIVAC 

* Implementation of the conference system described was done 
by the author for Language and Systems Development, Inc., 
8121 Georgia Avenue, Silver Spring, Maryland, 20910. The work 
was partially supported by the Department of the Army, Corps 
of Engineers (Contract DACA31-70-C-0088). 

Implementation of Interactive Conference System 221 

1108** system operating under the standard UNIVAC 
monitor system, Exec 8. The important features of 
the Exec 8 system for this purpose are : its timesharing 
capabilities-allowing remote users access to the full 
resources of the system, including the assembly lan
guage; and its flexible file handling capabilities. 

Programming language 

On the UNIVAC 1108 used, an extended version of 
the BASIC language, XBASIC, *** was available for 
use. The theoretical justifications for writing a user 
conference system in a higher level language, or a user 
programming system centered around such a language, 
have already been stated. Writing the conference 
system in XBASIC made available the powerful 
features of the XBASIC language, such as string, 
vector, and data file manipulation capabilities. Even 
more significantly, using the XBASIC system made 
writing the conference system much easier. In fact, the 
f3ystem was developed entirely from remote terminals
a rather remarkable occurrence: using one remote user 
oriented system (XBASIC) to develop another (the 
conference system). One final consideration in using 
XBASIC was that XBASIC is not a completely static 
system-if new features were seen to be necessary 
for such tasks as writing a conference system, they 
could have been added to the language readily to pro
duce a better programming language at the same time. 
As a result of the conference system project, a re
entrant version of XBASIC specifically streamlined 
for running other user systems was created. 

Data structures 

1. Files 

The data base for each conference (there can be up 
to 26 active simultaneously) is stored on two. random 
access mass storage files. Names for these files are 
generated by the conference system and all control 
of these files is done internally by the system without 
the user's having to know anything about Exec 8 file 
handling. This internal allocation, use and release of 
files under program control without. bothering the user 
with facility assignment or "data definition" control 

** UNIVAC is a registered trademark of the Sperry Rand 
Corporation. 
*** XBASIC is a proprietary processor developed by Language 
and Systems Development, Inc. See "XBASIC for the Univac 
1100 Series Computers," Language and Systems Development, 
Inc. (1969) 



222 Spring Joint Computer Conference, 1971 

cards is extremely desirable in a user oriented system. 
Two files are used by the conference to conserve 
storage. Since Exec 8 offers dynamically expanding 
files, the conference system only uses the space in these 
files as it needs to, using them as two pushdown lists. 
The two files are automatically placed by the conference 
system on the best (fastest) type of mass storage 
available at the time-ranging from 4.3 millisecond 
average access time for. the fastest to 92 milliseconds 
average time for the slowest. 

2. Data Items 

The storage used for the conference system's files is ac
tually only randomly accessible down to 28 word blocks. 
This presents the challenge of fitting the required data 
efficiently into convenient multiples of 28 word blocks. In 
most cases, this proved fairly easy. The primary simplify
ing assumption permitting the use of fixed size blocks of 
storage is that textual items have a maximum length 
(360 characters.) This is acutally a requirement imposed 
in the design of the system to force brevity on the 
respondents, not a requirement imposed by the imple
menting programmer. 

(For sample data block formats, see Figure 1.) 

W<IlD 
o 

2 

3 

• 
5 

6 

7 

8 

9 

10 

11 

12 

13 

1. 
15 

16 

17 

18 

19 

20 

21 

22 

2S 

2. 
26 

26 

27 

ltoea IMIber 

# of 1 ToWa GD pr~ 80. 

lot 2 _wa _ prbary ao. 

I of 3 Towa · · · 
lof • ToWa · · · 
# of 5 ToWa · · · 
lof 'no judplllDt Tot.a' 

(UD1I8ed) 

(lIDua.d) 

I of 1 ToWa. aeo_d&17 ao. 

lof 2 _wa. · · 
lof 3 ToWa. · · I of • To1;ea. · · # of 6 __ a. · · lof aeoODd&J7 no jud~. 

'r)'pe of aeoGDd&J'7 aoal. 
"'411' of .atS-wa __ 

Voter blt flaca. 1 it ToWd 

S_ of •• t:iaawa 

Sua of aquarea of .attaw. 

I of .attawa &heft -
Hlr;heat .at:iaaw 

Lonat eat:iaaw 

(bit flass OGDt. tr. 17) * of TOW olwlpa. prtar:r * of TOW olwlpa. H00Dd&J7 

I of ohancea fl'. no Judr;. . . (tor seoOll4 nal.) 

V01'IJrG UCORD 

WCIlD 

o 
1 

60 

61 

62 

sa .. 
66 

66 

67 

88 

89 

70 
71 

'72 

<_u .. d) 

'fext 

of 

It_ 

Itea n\la1ler 

TYPe of 1 tea 

(lIDund) 

8.00114&17 loal. type 
!law aDd 10m. aDw ... d 

(_ .. d) 

loftS-a .1 .... d 

Au1;hor'. oode 

LoWr bound for .at:iaat.a 

1Jpper bOUlld fOr .at1l!lUu. 
Sta1;ua ot 110_ 

A .. ool.1;1GD liDk 

(_aed) 

Figure I-Sample data block formats 

n&Ul'" 2. Prograa Dl'1'1a1_ 

LageM. 

IHIT -- oootrols aco .. a to the a;yetea 

EXPlAllf -- pr~lde. an .xplanation of the e;ystea 

IIlNITOR -- .uper'l'i.e. &oti'l'1tl •• ot the oonf.r.no. aoD1tor 

AlIALYZE -- prOTid.. reports GIl. the oooter.no. prooeed1D«. 

1I0TlIFY -- allow. the 1II0nltor to lIIoc11t;y the ooot .... no. 

FULL -- provldes the _iD user iDt.ractlO1l tor filII reapoadenta 

VOTE __ us.r lnte ... otloo tor _ who oan 0111y TOW and .,1_ 1~ 

ADD -_ us.r lnteractlon for tho ... who oan OIll;y &dd or '1'1_ 110 •• 

VIEW -- us"r interactlon for those who oan 0Il17 _toh 

SUIOIARY -_ pr~lde. .-..y lntoraatlon to the us.ra 

Figure 2-Program divisions 

3. Program Structures 

All together, the conference system requires some
what more than 2000 lines of XBASIC program to 
function. However, only segments of the system are 
actually required· by a user at anyone time. To keep 
the respondents from tying up core storage with unused 
portions of the system, there are actually several 
programs comprising the system. When the user re
quests a feature of the system implemented by a 
program other than the one he is currently executing, 
the current program· deactivates itself and calls in the 
new program (program "chaining"). The various pro
grams are organized so as to minimize the number of 
chaining operations required. As an additional feature 
of the system, a respondent who is not entitled to vote 
is chained to an interaction program which does not 
contain code to perform voting-saving some amount 
of memory space. 

(For organization of the program chains, see Figure 2.) 

Control mechanisms 

1. User Directives 

The user directs the conference system by making 
choices at various junctures in the logic of the system. 



The system indicates what the available choices are 
(or can be asked to skip the 'explanations for experi
enced users) and then requests the user's decision in the 
form of a numeric choice. The system does recognize 
such things as "YES" and "NO" choices; but for the 
more complicated multiple-choice decisions, making 
numeric choices is the best method in the long run
being faster to type with less chance of error than 
attempting to use keywords. Input is taken by the 
system in string form and decoded by the program so 
that it can recognize errors and act on them without 
SUbjecting the user to the monitor system's error mes
sages about such things as improper numeric formats. 

2. Common File Management 

The careful control of access to the common data 
file of a conference is extremely important in the 
implementation of the conference system. The problem 
is complicated by the way items are stored in the files. 
To keep an upper bound on the amount of file storage 
used by a conference, only the fifty most recent items 
are kept available. The items are stored in the file in a 
circular manner-the fifty-first item is written into the 
area formerly used by the first item. The conversion 
from external numbers of items to their internal 
positions in the file is handled fairly easily with modular 
arithmetic. The trouble comes when the user asks for 
the first ~tem as it is being outdated and replaced by the 
fifty-first. Other conflicts arise with two users attempt
ing to update the vote totals at one time or two users 
attempting to add an item at the same time. 

As indicated in the section on Functional Aspects, 
several methods are available for resolving conflicts in 
use of common files. In the Exec 8 system, one can 
either ask for exclusive rights to a file-if someone 
else is using it, the request is rejected and must be 
repeated; or one can ask for exclusive use of a small 
block of the file, "locking" it-if someone else attempts 
to leference this block, his request is automatically 
delayed until the lock is removed. This second method is 
by far the better-it offers much finer control over the 
file's use; and it turns out to be over thirty times faster 
to use, due to the way Exec 8 operates. The feature of 
locking and unlocking portions of the file is used to 
direct ~ccess to the cqmmon file via a method which 
could be called "key block" control. For example: 
to add aI). item, a user's conference program must lock 
the key block necessary for this function-namely the di
rectory block containing a pointer to the next available 
place in the file. The user then adds his item, updates the 
directory block and unlocks it. During this time, other 
users can be accessing other portions of the file freely. 

Implementation of Interactive Conference System 223 

Obviously, the more key blocks are locked and the 
longer they are locked, the slower the system will 
respond to other users. Several devices 'are used to 
circumvent this: 

a. The functions of key blocks are distinct so that, 
for example, a user adding an item only locks out 
other users attempting to do the same thing. 

b. All preparations for changing the file are made 
before the locking is done; then the file is 
changed as rapidly as possible and unlocked. 
The principal rule here is to never have a key 
block locked while waiting for input from a 
respondent. 

c. Control of key blocks is not required by all 
operations which just read information. 

Note that (c) implies that the problem of attempting to 
read an item which has just been outdated has not yet 
been resolved. This problem is handled by having each 
item or similar type of record explicitly contain the 
external item number to which it corresponds. When 
the system reads an item, it checks to be sure that the 
item number in the data read matches the one it was 
expecting-if the check fails, the system knows the 
desired item has been outdated and tells the user so. 
Happily, this checking also protects the conference 
system against failures of the computer system. If the 
computer stops after an item has been changed but 
before the changes are made in the key directory blocks, 
the check for outdated items should discover the 
discrepancy. 

EXAMPLES OF INTERACTION 

The following pages are copies of actual sessions 
using the conference system. In these examples, the 
information in lower case letters or following question 
marks represents input supplied by the user. All of the 
details of the interaction and the meanings of some 
of the choices offered by the system are not discussed 
in this paper. The examples are presented only to give 
the reader the flavor of the interaction. 

The first example covers the setting up of a conference 
(in this case with only one respondent-the creator of 
the conference). The second explores the entering of an 
item into the conference, voting on the item, and seeing 
the results of the voting. The final example shows the 
monitor having the results of the conference printed 
(the results being very sparse in this case). 

The remote device used for the interaction was a 
Teletype Model 37. The cooperation of the Teletype 
Corporation in adapting this device for use with the 
computer system was greatly appreciated. 



224 Spring Joint Computer Conference, 1971 

DELPHI CONFEREOCE SYSTEM AT 14183e ON 12317e 
PLEASE TYPE YOUR CODE? monitor 

DO YOU WISH TO: 
SET UP A CONFERE ~E ( 1 ) 
DELETE A CONFERENCE (2) 
MODIFY A CONFERENCE (3) 
ANALYZE A CONFERENCE (4) 
RETURN TO MAIN SYSTEM (+) 
TERMIt-"ATE (-) 

MONITOR CHOICE:? 1 
BY WHAT CODE SHOULD YOU BE Kl«>WN (5 SYMBOLS)? twh 
ALL YOUR CODES SHOULD BEGIN WITH TFF LETTER A 
YOUR CODE IS AUTOMATICALLY ATWH 
TYPF CODES FOR OTHER PARTICIPANTS. 
WHEN ASKED 'VERIFIED?', HIT ONLY RETURN KEY IF 01<, ANY SYMBOL IF NOT. 
WHEN ASKED 'CODE :?' AND YOU EAVE NO ft!ORE CODES. HIT JUST THE RETURN KFY. 
BUT FIRST, SUPPLY I NFOR"t.~TION FOR YOURSEI,F: 
~HAT CLASSIFICATION CODE? 11 
LIST PERMISSIONS: VOTE (1 ) ,ADD ITEM(2) ,ADD MESSAGE (3) :?1,2,3 
HIT RETURN IF FULL EXPLANATION IS TO BE GIVEN WHEN TPIS 
CODE FI RST LOGS IN. TYPE A NY SYM BeL I F NOT.? no 
TYPE At-Y TWO LINES OF INFO. FOR FUTURE REFERNCE: 
? this is alphabetic information to identify this respondent. 
? 
VERIFY: CODE= ATWH PERMISSIONS: 

1 2 3 
CLASSIFICATION= 11 
THIS IS AI,PHA 'PETIC INFORMATIO~ ro IDENTIFY THIS RESPONDEf\I-,:'. 

VERIFIED? 
CODE:? 
IS THE 'WAIT' CHOICE ALLOWED. RE.TURN=YES, ANY SYMPOL=t-.-o? no 
THE SYSTEM WII,L KEEP A BACKUP TAPE ASSOCIATED WITH THIS CONFF·REN:'F. 
SUPPLY A TAPE REEL NAME TO BE USED FOR THIS PURPOSE. IF YOU DO FOT 
HAVE A TAPE ALREADY, HIT JUST THE RETURN KEY A~~ THIS SYSTEM 
WILL REQUEST ONE FROM THE OPERATOR. 'rAPE NUMBER:? none 
TYPE FOUR LINES OF SUBJECT DEFINITION. 
FOR THE FIFTH LINE, TYPE YOUR NAME At-:"D HOW '1"0 REACE YOU. 
? this is a demonstart ration conference. 
? it has no real subjeCt: 
? 
? 
? this would be the monitor's name and phone num1:'t:_ .. 
THIS IS A DEMONSTRATION CONFERENCE. 
IT HAS NO REAL SUBJECT. 

THIS WOULD BE THE MONITOR'S NAME A~~ PHO~~ ~~MPEF. 
VERIFIED? 
DO YOU WA~~ A 'MO~~TOR MESSAGE' NOW. 
HIT RETURN IF YES, AN'{ SYMBOL IF NO.? no 
CONFERENCE SUCCESSFULLY CREATED. 
MONI~OR CHOICE:? + 



Implementation of Interactive Conference System 225 

DELPHI CONFERENCE SYSTEM AT 14S6~3 ON 123171 
PLEASE TYPE YOUR CODE? atwh 
DO YOU WISH 

AN EXPlANATION (1) 
SUBJECT DEFINI'J.'ION (2) 
LON:; FORM (3) 
SHORT FORM (4) 

CHOICE? 3 

00 YOU WISH TO: 
VIE~ SUMMARIES (1 ) 
VIEW ITEMS (2) 
VIEW MFSSAGES (3) 
VIEW VOTES (4) 
VIEW A ND VOTE 0 N ITEMS ( 5 ) 
VOTE (6) 
ADD A N ITEM OR MESSAGE (7) 
MODIFY AN ITEM (8) 
WAIT (9) 

MODE CHOICE:? 7 
ITEM OR MESSAGE MUST FIT IN SIX LINES OF 61 CHARACTERS. 
HIT RETURN KEY WJIiN EACH LINE IS COMPl.ETED lAND WAIT 
FOR THE QUESTION MARK BEFORE BEGIN'IN3 NEW LINES. 
YOU MUST SUPPLY SIX LINES EVEN IF TF~Y ARE PUT IN 
ElAM< BY HITTIlG THE RETURN KEY AT THE EEGINt-.."'IN:; OF THE LIt-."E. 

ADD ITEM OR MESSAGE IN NEXT SIX LINES. END OF LINE IS HERE * 
? this is a test item for demonstration purposes only. 
? treat this item as an estimate. when asked for your 
? estimate, supply an arbitrary number within the given 
? limits. 
? 
? 

THIS IS A TEST ITEM FOR DEMONSTRATION PURPOSES ONLY. 
TREAT THIS ITEM AS AN ESTIMATE. ~lIEN ASKED FOR YOUR 
ESTlf'lATE, SUPPLY AN ARBITRARY NUMBER WITHIN THE GIVEN 
LIMITS. 

IS THE ABOVE CORRECT AS STATED: 
YES(1), NO(2), OR NULLIFY(.) 
CONTI~~ CHOICE:? yes 
INDICATE ASSOCIATION WITH EXISTING ITEM (NOT 
MESSAGE) BY SUPPLYING EXISTING ITEM ~~MBER. 
IF NO ASSOCIATION, E~~ER ZERo(e). 
ASSOCIATION CHOICE? 8 
I NDICATE TYPE: 

PROPOSAL (1) 
COMMENT (2) 
FACT (3) 
ESTIMA TE ( 4 ) 
MESSAGE (5) 

TYPE CHOICE:? 4 



226 Spring Joint Computer Conference, 1971 

WHAT IS THE LOWER BOUMD FOR ES'lIMATES? ~ 
WHAT IS THE UPPER BOUND? 1"~ 
INDICATE SECO~~ARY EVALUATION SCALE: 

NO SECOt-..1> SCALE ( ., ) 
CONFIDENCE (1 ) 
AGREEME m' ( 2 ) 
FEASIBILITY (3) 
IMPACT (4) 
PROBABILITY (5) 
ARBITRARY (6) 

SCALE CHOICE:? e 
TYPE: E SEC. SCALE: NO~~ ITEM >~ 
LB: ~ UB: 1~' 
ARE YOU SATISFIED WITH THE ABOVE CHOICES: 
YES(1). NO(2). OF ~~LLIFY(+). 
CONTI~~E CHOICE:? 1 
ITEft1 OR M.ESSAGE ENTERED: 1 2317" AT 15t122 
3E: 
THIS IS A TEST I,)'EM F'OR DEMONSTRATION PURPOSES ONl.y. 
TREAT THIS ITEM AS AN ESTIMATE. WHEN ASKED FOF YOUR 
ESTIMATE. SUPPLY AN ARBITRARY NUMBER WITEIN THE GIVEN 
LIMITS. . 
1(3 
DO YOU WISH TO ADD OR MODIFY ANOTHER ITEM OR MESSAGE 
YES(1) OR NO (2). 
CO~~INUE CHOICE:? 2 
DC YOU WISH TO: 

VIEW SUMMARIES (1) 
VIEW ITFJ.tS ( 2 ) 
VIEW MESSAGES (3) 
VIEW VOTES (4) 
VIEW AND VOTE ON ITEMS (5) 
VOTE (6) 
ADD AN ITEM OR MESSAGE (7) 
MODIFY AN ITEM (8) 
WAIT (9) 

MODE CHOICE:? 5 
DO YOU WISH ITEMS PRESENTED BY: 

LIST ORDER (1) 
SItiGLY BY NUMBER (2) 
ASSOCIATIO~~ (3) 
THOSE NEW OR MODIFIED (4) 
THOSE ACCEPTED (5) 
THOSE SIGNIFICAr.."'l' (6) 
THOSE PENDING (7) 
THOSE INSIGNIFICA~1T (8) 
THOSE REJECTED (9) 

ORDER CHOICE:? 2 
ITEM:? 3 



Implementation of Interactive Conference System 227 

3E: 
THIS IS A TEST ITEM FOR DEMONSTRATION PURPOSES ONLY. 
TREAT THIS ITEM AS AN ESTIMATE. ~iJiEN ASKED FOR YOUR 
ESTIMATE. SUPPLY AN ARBITRARY ~l{JM.BER WITHIN THE GIVEN 
LIMITS. 
1(3 
YOU HAVE NOT YET VOTED ON THIS ITEM. 
PER: LAST VOTE: e PRESEt..1I!' CHOICE:? 3 
ESTIMATE BETWEEN e AND 1 ~e 
R> LAST CHOICE. PRESENT CHOICE:? 63 
ITEM:? 3 

3E: 
THIS IS A TEST ITEM FOR DEMONSTRATICN PURPOSES O~"l.Y. 
TREAT THIS ITEM AS AN ESTIMATE. WB""E N ASKED FOR YOUR 
ESTIMATE. SUPPLY AN ARBITRARY ~~MBER WITHIN THE ~IVEN 
LIMITS. 
1(3 
CODE: (1) (2) ( 3) ( 4) ( 5 ) ( 6) A VE 

PE R : e ~ 1 It I e 3 •• 
N : 1 A : 63 • ~ fJ AA: " 

SD: .11 LE: 63.e~ HE: 
PER: LAST VOTE: 3 PRESE~~ CHOICE:? 1 
ESTIMATE BE'lWEEN ~ AND 1 ~e 
LAST CHOICE: 63 PRESE~~ CHOICE:? 6S 

63.~e 

(NOTE: THAT VOTE CHAJ\GES THE ITEM'S STATUS.) 
ITEM:? + 
DO YOU WISH TO: 

VIEW SUMMARIES 
VIEW ITEMS 
VIEW MESSAGES 
VIEW VOTES 
VIEW AND VOTE ON ITEMS 
VOTE 
ADD AN ITEM OR MESSAGE 
MODI FY A N ITEM 
WAIT 

~ODE CHOICE:? 1 

ACTIVITY SUMMARY 

THERE ARE ~~ MESSAGES. 
ITEMS: 1 TO 3 

~1~ 
(3 ) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

TYPES: P: fJ C: 1 F: e E: 2 
STATUS: A: 1 S: e P: 2 I: I R: 

ACTIVE VOTERS 
ACTIVE VIEWERS 
TOTAL LOGINS 
TOTAL VOTES 
TOTAL VOTE CHANGES 
VOTE CHA~X;FS FROM NO JUDGEMENr 
NO JUDGEMENTS 

DO YOU WISH: 
ASSOCIATION MAP (1 ) 
ITEM SU~~ARY (2) 
YOUR VOTE SU~~RY (3) 
PETURN TO MODE CHOICE(.) 

SUMMARY CHOICE:? -

I PURGED 
1 
f) 

7 
1 
2 
e 
~ 



228 Spring Joint Computer Conference, 1971 

DELPHI CONFERE~~E SYSTEM AT 15123t ON 12317e 
PLEASE TYPE YOUR CODE? monitor 

00 YOU WISH TO: 
SET UP A CONFEPENCE (1) 
DELETE A CONFERENCE (2) 
MOtIFY A CONFEREN:E (3) 
A NALY ZE A CO NFE RE ~-rcE ( 4 ) 
RETURN TO MAI~ SYSTEM (+) 
TERMINATE (-) 

MONITOR CHOICE:? 4 
WHAT IS YOUR MONITOR CODE? atwh 

ANALYSIS OF DELPHI CONFERENCE l-1Jfo1FER 1 
DO YOU WISH INFORMATION ABOUT EACF RESPONDENT TO BE PFINTED. 
YES(1) OR NO(2):? 1 
WHAT ARE THE LIMITS ON FIRST DIGIT OF CLASSIFICATIO~ CODE: 
TYPE LB,UB:? 1 ,9 
WHAT ARE THE LIMITS FOR THE SECOND DIGIT:? 1,9 

CODE: ATWH -- VOTIN3 RESPONDENT 
I NFORMATION SUPPLIED BY MONIT'OR: 
THIS IS ALPHABETIC I NFORMATION TO IDENTIFY THIS RESPC~"DEt.:"'T. 
NUMBER OF LOGINS= 7 
PERMISSIONS = 7 (PACKED FORMAT) 

ITEM NUMBER 1 VOTIN:; RECORD: 
HAS NOT VOTED ON THIS ITEM. 

ITEM NUMBER 2 VOTI r-..~ RECORD: 
HAS ooT VOTED ON THIS ITEM.. 

ITEM NUMBER 3 VOTIN3 RECORD: 
LAST VOTE ON SCALE 1 = 1 
LAST VOTE ON SCALE 2 = ~ 
R). VOTE CHANGES ON PES = 2 
R). VOTE CHAroES ON SES = ~ 
NUMBER OF CHAroES FROM NJ = e 
LAST ESTIMATE = 65 

TOTAL A VERAGES FOR THIS 
NUMBER OF CODES COUt-."l'ED 
TOTAL LOGINS = 
VOTE eHA f.{;E SON SE S = 
VOTE CHAN3ES ON PES = 
VOTE CHAN3ES FROM NJ = 

GROUP: 
= 1 

7 
2 
~ 
e 

ITEM AVE. ON PES AVE. ON SES 
3 1 .tl ~~ SES 

******** END OF SU~~RY ********** 

TIME: 1 .522 



ACKNOWLEDGMENTS 

This paper is an outgrowth of work done on the subject 
of conference systems by Dr. Murray TurofI of the 
Systems Evaluation Division, Office of Emergency 
Preparedness, Washington, D.C. The author worked 
with Dr. TurofI in this area during the year of 1970. 
The design of the user's interaction with the conference 

Implementation of Interactive Conference System 229 

system cited in the paper is due to Dr. TurofI-the 
expansion of the design into a complete conference 
system and the implementation of this system being the 
author's concern. 

The cooperation of the author's associates at Lan
guage and Systems Development, Inc., should also be 
acknowledged-their ideas on systems programming 
being, as always, useful. 





Who are the users?-An analysis of computer use in a 
university computer center* 

by EARL HUNT, GEORGE DIEHR and DAVID GARNATZ 

University of Washington 
Seattle, Washington 

INTRODUCTION 

This is a study of how the users of the University of 
Washington computing center exercise its machinery. 
Our hope is to make an undramatic but useful contri
bution to knowledge. In a simpler day the distinction 
was made between "scientific" and "business" com
puting. Undoubtedly this contrast is still useful for 
many purposes, but finer distinctions are needed. We 
shall present statistics showing that, within a com
munity which contains not a single "business" user, 
there are distinct groups with quite different machine 
requirements. Of course, nobody who is aware of mod
ern computing would seriously dispute this. Our con
tribution is to provide statistics on the relative size of 
the different groups. We also· offer this report as an 
example of methodology. The usefulness of our numbers 
to another center will depend upon the extent to which 
the other center is like ours. The ways in which we 
acquired and analyzed our statistics would be useful 
more generally. 

From the viewpoint of the Computer Center, _ a 
knowledge of user characteristics is important in plan
ning. In the particular center we studied, and others 
like it, there will probably be no major change in the 
types of computing done over the next five years (un
less qualitatively different equipment capabilities are 
provided), but there will be a steady increase in the 
number of users. The characteristics of this increasing 
population must be known in order to anticipate bottle
necks and to plan for orderly expansion. Users also 
need to know something about themselves~ Time is ex
pensive, so computer use must be estimated as ac
curately as possible in budget preparation. In the days 
before multiprogramming, one simply rented the entire 
computer configuration for a few seconds, even if only 

* This research was supported by the Institutional Research 
Fund of the University of Washington, Seattle, Washington. 

231 

half of it was used. Today charges are based upon use 
of memory size, processor time, and peripherals. To 
make accurate estimates of his needs, the user must 
ask "What resources do people like me actually utilize?" 
Consider the problem of the instructor trying to esti
mate the cost of a course in programming. What he 
knows is that he will have n students, k problems, and 
that the problems will take an average of m runs to 
solve. These runs vary greatly as the students progress 
from incompetence with control cards to an ability to 
write infinite loops. To estimate the cost of computing, 
the instructor needs statistics about how student jobs 
perform. The research scientist who has not yet settled 
on his batch of production programs (and who may 
never find them) is in a similar situation. He knows 
how many people he has on his project and knows how 
often they submit programs. He also knows that the 
programs vary greatly as he and his associates go 
through cycles of planning, debugging, production 
modification, and reprogramming. To estimate his 
budget he needs applicable averages. 

As our final justification, we point to an application 
of user statistics within Computer Science. The use of 
models to predict system performance has become in
creasingly popular in system evaluation. Basically, the 
idea is to view a computing configuration as a job shop 
servicing jobs drawn at random from a population of 
users, and then to analyze a model of such a service. 
In order to make the model anything more than an 
exercise in mathematics, however, one must show a 
correspondence between it and reality. Here we present 
some statistics which can be appealed to in justifying 
a model of the user. 

THE UNIVERSITY AND THE CENTER 

Some words about the setting of our study are in 
order. The University of Washington is a large state 



232 Spring Joint Computer Conference, 1971 

university with about 33,000 students, 20 percent of 
them in graduate or professional schools, and a faculty 
of roughly 2,500. The University computer center pro
vides general support for this community. Specialized 
research computing capabilities needed for process con
trol or real time applications are provided by dedicated 
installations scattered throughout the campus. We did 
not study these. The University's administrative data 
processing is done on a dedicated Burroughs B5500 
computer, and hence is also not included in this study. 

The center's "scientific" computer is a Control Data 
6400 system with 65,000 sixty bit words. It is used in 
batch mode under control of the SCOPE 3 operating 
system. Systems and. library applications programs 
reside on a 132 M character CDC 6638 disk, which is 
also available for user temporary files. Every time that 
a job requires service from the operating system an 
appropriate message is recorded on the DAYFILE, a 
log maintained by the SCOPE system. To obtain our 
data we sampled several copies of the DAYFILE, re
cording the following information. 

1. Job identification: The code used in job identifi
cation distinguishes between graduates, under
graduates, and faculty, and between jobs associ
ated with classwork and jobs associated with 
research projects. The technique of financial 
control in the system discourages the use of class 
-numbers for research jobs and vice versa. 

2. Central processor time used 
3. Peripheral processor time used 
4. Priority of job at time it is run (O-low priority 

to 7-high priority) 
5. Number of tape drives charged for 
6. Charges assigned 
7. Whether the job is a FORTRAN or non

FORTRAN 
8. Number of lines printed 
9. Number of cards read 

10. Amount of centrat memory used, expressed as a 
percentage of 32 K words. 

. Three different statistical techniques were used. One 
was a simple summary of the statistical characteristics 
of each of the nine measurements of the aggregate 
sample, obtained by plotting a histogram and preparing 
tables of measures of the central tendencies and dis
persion statistics, using BMD01D program to do this. 
The correlations between the different measures were 
computed using the BMD03M program (Dixon, 1965). 
This program provided correlation matrices and a factor 
analysis using the variance maximization criterion 
(Harman, 1960) to define orthogonal factors. Finally, 
a cluster analysis (Diehr, 1969) was performed to see 

TABLE I-Descriptive Statistics for 1588 Jobs Submitted to 
CDC 6400 

Measure 

Cards read 
Lines printed 
CPU time (sec.) 
PPU time (sec.) 
Central memory 
Tape drives charged 
Cost to user 
Percent jobs using Fortran 

Mean 

224 
760 

11.0 
11.9 
55.8 

.28 
1.44 

.54 

Standard 
Deviation 

495 
1260 

41 
35 
25.4 

.55 
4.10 

.50 

if the jobs analyzed fell into groups of similar jobs. 
The cluster analysis algorithm used grouped the ob
servations into a fixed number of groups called clusters, 
such that the sum of squared distances from observa
tions to their cluster means was minimized. The algo
rithm will be described in detail in a moment. 

DESCRIPTIVE STATISTICS RESULTS 

Table I presents descriptive statistics for 1588 jobs 
selected from first shifts. * We shall discuss this sample 
extensively. Similar analysis of second shift data and 
data from a different time of the year produced very 
similar results. Therefore, virtually all of our remarks 
will be concerned with an analysis of these jobs. 

Whether Table I presents a true or false picture of 
the user community depends on the purpose for which 
the examination is conducted. It shows what sort of 
use is made of computing by the "average" user. This 
hypothetical individual submits what most people in
tuitively familiar with the center would consider a 
medium-sized job, reading about 200 cards, printing 
700 to 800 lines (about eight pages plus system output), 
and using around eleven seconds each of cpu and ppu 
time. Slightly -more than half of the jobs execute a 
Fortran compilation. Like the man with 2.4 children, 
the average user is not the typical user! Frequency 
plots of the variables CARDS READ, LINES 
PRINTED, CP TIME, PP TIME, and COST showed 
that the distributions were positively skewed with 
means in regions of very low density, suggesting that 
(a) mean values were not good descriptors of the popu-

* In obtaining the 1588 teaching and research jobs we also en
countered on DAYFILE logs a record of 364 miscellaneous jobs. 
These included jobs generated-ny- the computer center itself, 
administrative work for some reason not done on the B5500, 
and an occasional commercial user. Because this group of jobs 
was so heterogeneous it was not further included in the analysis. 



lation and (b) that the observations were exponentially 
distributed. If the second conclusion had been correct, 
logarithmic transformations of the indicated variables 
would have produced symmetric distributions. In fact, 
they did not. This is illustrated in Figure 1, which is a 
frequency histogram for the logarithm of CP time. (The 
other four variables listed above were similarly dis
tributed, while MEMORY USE was symmetric origi
nally and TAPE DRIVES CHARGED and FOR
TRAN use are discrete.) Both the mean value of the 
transformed CP time and the logarithmic value of the 
mean of the untransformed time are shown. It can be 
seen that neither figure is an accurate descriptor. The 
frequency distributions were positively skewed even 
after the transformation and, in some cases, appeared 
to be bimodal. This strongly suggests that instead of 
regarding jobs as being generated by a single process, 
the jobs should be thought of as being a mixture of two 
or more populations which individually might be satis
factorily characterized by standard descriptors of cen
tral tendency and dispersion. 

'0 
> .. 
.!! 
.5 
.5 

400-

300-

200-

100-

B A 

-00 -I. -A I I .2 .8 1.4 2.0 2.5 

Lower Bound of loglO CP time 
Pt A is mean of row CP time 
Pt B is mean of log CP time 

Figure I-Frequency histogram of IOglO CP time 

Who are the Users? 233 

TABLE II-Mean Values of Each Measurement, for Total 
Sample, Research, and Instructional J6b Numbers 

Overall Research Instructional 
Variable Mean Job Mean Job Mean 

Cards read 224 490 95 
Lines printed 760 1430 442 
CPU time 11.0 26 3.8 
PPU time 11.9 22 7.1 
Central memory 55.8 66.0 51.0 
Tape drives .28 .4 .22 
Cost 1.44 3.40 .48 
Percent jobs using Fortran .54 .73 .44 
Priority of run .016 .04 .004 
Number of jobs 1588 527 1061 

To investigate this hypothesis, we first divided the 
sample into two groups, jobs associated with research 
projects and jobs associated with instruction. It was 
immediately clear that this was, indeed, a reasonable 
distinction. Table II shows the means on each measure 
for the sample as a whole and by subgroups. On the 
average, the difference between subgroup means ex
ceeds one standard deviation about the sample mean, 
thus clearly supporting the hypothesis that there are 
two distinct subgroups. 

One is tempted to say, "Of course, why bother to 
measure such an obvious thing?" We would expect to 
find differences between instructional and research 
work, although our intuition is not very good at pre
dicting the fine detail of these differences. We also 
found, however, that this simple division is not 
enough-averages do not describe the typical research 
or instructional job eithed Examination of the histo
grams within classes based on the research-instruction 
distinction again showed distributions similar to Figure 
1. We therefore eschewed our intuition and turned to 
an "automatic" method of dividing jobs into homoge
neous groups, using cluster analysis. 

CLUSTER ANALYSIS RESULTS 

The purpose of a cluster analysis is to group observa
tions into k subclasses such that, in some sense, the 
differences between members of the same class is small 
relative to the differences between members of different 
classes. The particular cluster analysis technique we 
used regards each observation as a point in n dimen
sional Euclidean space. Observations are assigned to a 
predetermined number of groups (clusters) in such a 
way that the sum of squares of the distances of points 
to their cluster mean point is minimized. Thus the 
cluster analysis is bound to produce groups for which 



234 Spring Joint Computer Conference, 1971 

TABLE III-Mean Values for Measures-Two Clusters 
Compared to Research and Instructional Jobs 

Variable Group 

Cluster 1 Instruction Cluster 2 Research 

Log cards read 3.9 3.8 5.4 5.6 
Log lines printed 5.6 5.5 6.3 6.5 
Log CP time -.09 -.5 1.9 2.3 
Log PP time 1.6 1.5 2.4 2.5 
Memory use 51 48 67 70 
Tape drives .22 .19 .40 .44 
Log cost -2.0 -2.1 .53 .50 
Percent Fortran use .44 .44 .74 .72 

central tendency measures are reasonable descriptors, 
while the standard deviation within a cluster indicates 
how much variation there is about the mean point. The 
algorithm begins with all observations in a single cluster 
around the population mean point. A second cluster is 
initiated whose first member is the observation furthest 
away from the center point. An iteration phase follows, 
in which each observation is assigned to one or the 
other cluster by making the choice which minimizes 
the sum of squares about cluster points. The cluster 
mean point is adjusted as the observation is grouped. 
The iteration is continued until no further adjustments 
are made. A new cluster is then initiated by choosing 
as its first member that observation which is furthest 
from the mean point of the cluster to which it is now 
assigned. The iteration is then repeated. The entire 
process is continued until the predetermined number 
of clusters is obtained. 

While a stable partition represents a local minimum 
by the sum of squares criterion, it is not necessarily a 
global minimum. Extensive experimentation with this 
algorithm in comparison to several other clustering 
methods has indicated that it consistently finds good 
clusters (Diehr, 1969). Our only reservation is that be
cause a minimum variance criterion is being used, one 
wants to avoid situations in which the means and vari
ances of the partitions are correlated. Fortunately, this 
can be achieved by using logarithmic transformations 
of highly skewed variables (in this case CARDS READ, 
LINES PRINTED, CP TIME, PP TIME, and 
COST). Accordingly these variables were included after 
a logarithmic transformation. The variables MEMORY 
USE, TAPE USE, and FORTRAN USE were included 
but not transformed. 

If the research-instructional distinction is a valid one, 
then a clustering into two classes should recreate it. 
This· is, indeed, what happens. Table III shows the 
means and standard deviations for two clusters, eom-

pared to the breakdown of jobs by research or instruc
tional sources. Table IV shows a cross classification of 
jobs both by their origin and the cluster into which 
they fall. Almost 90 percent of the instructional jobs 
fall into the first cluster, while about 75 percent of the 
research jobs fall into the second cluster. 

While this confirms our faith in the research-instruc
tion distinction, it still leaves us with too gross an 
analysis. Clusterings into from two to six groups pro
vided a significant insight into the data. Let us describe 
the results of these successive clusterings briefly. 

Three groups: The data was partitioned into small, 
medium, and large resource use groups. The small job 
group is largely classwork jobs, the large usage group 
largely research jobs, and the medium usage group 
made up of half research-half classwork jobs. There is 
no indication of sub...:.populations which have heavy I/O 
use but light processor use (i.e., no "scientific business" 
breakdown) . 

Four groups: The data was partitioned into two 
groups of jobs with small resource use; differentiated 
only by use or non-use of the FORTRAN compiler. 
The other two groups were jobs with medium to large 
system resource use and "aborted" jobs. The medium
large usage group is similar to the medium-large usage 
group found for two clusters. The group of aborted 
jobs tends to be small in terms of I/O requirements, and 
had virtually no CP use. 

Five groups: This clustering separated a group of 
large jobs using tape drives from the four groups de
scribed above. 

Sl·X groups: This is perhaps the most interesting clus
tering. Two levels of system resource use were un
covered, with three types of jobs within each level. 
There were three types of small jobs; 408 FORTRAN 
and 472 non-FORTRAN jobs, and 89 aborted jobs. 
The small job groups were primarily instructional, and 
included jobs using a BASIC interpreter. The aborted 
jobs were almost all terminated due to control card er
rors. It is interesting to note that such errors apparently 
occur on about 5 percent of the jobs submitted. 

The medium to large job groups included 181 medium
sized jobs using tape drives, 293 medium to large jobs 
which did not use tapes, and 148 very large jobs. 

TABLE IV-Cross Classification of Jobs by Cluster and 
Administrative Source 

Administrative Source 
Instruction Research 

1 884 144 
Cluster 

2 187 373 



We feel that the most interesting contrasts are be
tween (a) the population statistics, (b) the statistics for 
the two-cluster (research-instruction) partition, and 
(c) the finer data of the six group clustering. Figure 2 is 
a graphic summary of what one sees if jobs are regarded 
as coming from one, two, or six populations. In this 
figure each cluster is represented as a rectangle. The 
following information is coded in the figure: 

2 
~ 
~ 

2 
l 
~ 

c 
! 

1. The area of the rectangle drawn for the group is 
proportional to the number of jobs within it. 

2. The shading indicates the number of research 
jobs-i.e., a completely shaded rectangle would 
represent a group containing only research jobs, 
while an unshaded rectangle would represent a 
group of instructional jobs. 

3. The horizontal axis shows the average number 
of standard deviations between a group mean 
and the population mean on each of the resource 
variables. Thus the "partition" consisting of all 
1588 jobs has its rectangle centered at 0.0 on the 
horizontal axis, while clusters containing large 
resource use jobs are centered to the right of this 
point, and those containing small jobs are cen
tered to the left. 

4. The vertical axis indicates the number of groups 
(1, 2, and 6) on which the partition is based and, 
within the region for a given number of groups, 
the fraction of FORTRAN jobs. Thus one can 
determine that the 1028 "small" jobs in the two 
groups clustering contained approximately· 45 
percent FORTRAN jobs, while the "medium
large" jobs were 75 percent FORTRAN by ex
amining the vertical position of the appropriate 
rectangles. 

.5 

0 

.5 

0 

~ .5 

~ 0 

-1.0 0.0 1.0 Ava. Resource Ute. 

Figure 2-Graphic summary of six cluster result-see text for 
explanation of code 

Who are the Users? 235 

TABLE V-Correlations Between Variables Based on 1588 Cases 

Variable 

1. Log cards read 
2. Log lines printed 
3. Log CP time 
4. Log PP time 
5. Memory use 
6. Tape drives 
7. Log cost 

1 2 3 4 5 6 7 

1.00 .42 .51 .39 .36 .02 .62 
1.00 .46 .39 .22 .10 .50 

1.00 .53 .46 .16 .75 
1.00 .18 .41 .71 

1.00 .10 .43 
1.00 .31 

1.00 

5. The.length of the rectangl,e indicates the average 
variation on the system use variables, with 0.8 
std. dev. used as a basis. Thus, it is evident that 
for six groups the "small-non-FORTRAN" jobs 
had a slightly greater variation on the average 
than the "small-FORTRAN" jobs. The length 
of the rectangles also shows that the "med-non
tape" jobs are better defined than either the 
"med-tape" jobs or the "large" jobs. 

CORRELATION ANALYSIS 

The cluster and descriptive analyses dealt with the 
relations between jobs. Another way to analyze our 
statistics is to look at the relationship between vari
ables. The table of correlation coefficients for all vari
ables was computed and factor analyzed. The analysis 
was performed separately for the different classes of 
user and for all cases together. Since there was no sub
stantial difference in either the correlation or factor 
matrixes, only the overall picture will be discussed. 

Before performing the correlation analysis a certain 
amount of data editing was done. The distinction be
tween FORTRAN and non-FORTRAN jobs and the 
priority measures were dropped, and' a logarithmic 
transformation was performed on all other variables. 
The logarithmic transformation was used because all 
variables were either exponentially distributed or had 
a number of cases with extreme values. High or low 
correlation coefficients based on untransformed data, 
then, might be produced by only a few cases. The use of 
the logarithmic transformation greatly reduces the 
chance of this occurring. 

The correlations between the variables are shown in 
Table V. The table of untransformed variables presents 
SUbstantially the same appearance except that the ex
treme values are somewhat higher. The picture of cor
relations is not immediately clear. It becomes so, how
ever, when one looks at Table VI, which shows the 



236 Spring Joint Computer Conference, 1971 

TABLE VI-Factor Loadings for Variables on First 3 Factors 

Factor 

Variable 1 2 3 

Log cards read .72 .35 . 12 
Log lines printed .65 .14 .45 
Log CP time .84 .13 -.07 
Log PP time .76 -.40 .18 
Memory use .55 .34 -.71 
Tape drives .35 -.83 -.26 
Log cost .92 -.05 .02 

Cumulative % variance 50 66 77 

factor loadings for each of the variables on each possible 
factor*. Only the first three factors will be discussed. 
These account for better than 75 percent of the total 
variance. The first, and by far the largest (50 percent) 
factor can be thought of as a "standard job" factor. It 
accounts for half or more of the variance in cards read, 
lines printed, and central and peripheral processor time. 
Our interpretation is that this factor is produced by the 
correlated variation in the measures used by most jobs. 
The second factor is essentially a "tape request" factor 
(note the high loading of "requests"), and reflects a 
difference between jobs that do or do not use tapes. 
The third factor has its heaviest loading on memory 
use. It reflects variation in memory use by some jobs 
that lie outside of the normal spectrum of computing 
(i.e., outside the range covered by factor 1). This is 
probably caused by (a) jobs that have control card 
errors and hence use little memory and (b) a few re
search jobs that utilize memory heavily. 

* Since factor analysis may not be familiar to all readers, we 
shall explain a way to interpret its results. For further details 
see Harman (1960) or Morrison (1965). 

Suppose each job were plotted as a point in 7 dimensional space. 
Since most measures are exponential, conversion to a logarithmic 
scale ensures that the swarm of points will be roughly a hyper
ellipse. The factors can be thought of as the axes of the hyper
ellipse. The first factor is the major axis, the second factor the 
next longest axis, etc. The 'percent variance extracted' by each 
factor is the percent of variance in distances from the centroid 
of the ellipse associated with projections on the factor in question. 
The loading of a variable on a factor can be interpreted in the 
following way. Suppose each point is plotted on a chart of vari
ables against factor. Note that these will not generally be orthog
onal axes. The square of the loading of the variable on the factor 
is the fraction of variance in the variable associated with variance 
in the factor. Alternately, the loading can be thought of as the 
correlation between the variable and a hypothetical pure test 
of the factor. 

In general, the factor analysis supports the other 
statistics we have gathered. An interesting point is the 
low loading for memory use on factor 1, which indicates 
that most jobs have a uniform memory requirement. 
This could be quite important in designing memory 
allocation algorithms in multi-programming systems . 

SPECIFIC QUESTIONS 

The statistical analysis raised a number of non
statistical questions about jobs, and particularly about ' 
jobs that were not typical of their administrative cate
gory. To answer these a special cross tabulation pro
gram was written, modeled after a more extensive in
formation retrieval system designed by Finke (1970) 
and used to sort jobs in various ways. Some of the 
specific questions and their answers were as follows: 

Q.1. How does the use of FORTRAN or BASIC af
fect instructional jobs? 

A. BASIC jobs use less processor time than FOR
TRAN but, on the average, much more memory 
than the average for instructional jobs. Research 
jobs virtually never use BASIC except for rela
tively small jobs. 

Q.2. What percent of memory is used by the "aver
age" job? 

A. Better than half the teaching jobs use less than 
16K words. The comparable "break even" point 
for research jobs is 24K. Twelve percent of the 
research jobs use more than 32K words, while 
less than two percent of instructional jobs do. 
Furthermore, most of the long instructional jobs 
are generated by a few individuals (i.e., are 
multiple jobs with the same user I.D.). 

Q.3. How many runs are compiler runs of any sort? 
What compilers were used? 

A. About two-thirds of the jobs call for at least one 
compilation. In 1588 runs the FORTRAN com
piler was called 849 times, BASIC 249 times, 
SNOBOL once, SIMSCRIPT 13 times,. the 
COMPASS assembler twice (by the same job 
number) and COBOL and ALGOL never. (Ex
cellent COBOL and ALGOL systems are avail
able on the University's B5500, so this may be 
misleading.) Only three center supported "pack
ages" were used: the BMD statistical programs, 
the SMIS package, and a SORT-MERGE sys
tem, for a total of 69 runs. One wonders two 
things: how much effort are users devoting to 
duplicating library programs and how much effort 
should a computer center devote to maintaining 
such programs? 



CONCLUSIONS 

Our specific conclusions are that the University of 
Washington Computer Center users create jobs that 
fall into four groups, some with important subgroups, 
producing the six groups graphed in Figure 2. The four 
major groups are aborted jobs, small jobs (with sub
groups FORTRAN and non-FORTRAN), medium
sized jobs (with subgroups tape and non-tape jobs), and 
large jobs. Small jobs are primarily due to classroom 
work, middle and large jobs are associated with re
search work. The principal ways in which jobs differ 
from each other is in the amount of processor time used 
and the amount of input. These statistics, which are 
not terribly startling, are of direct use to the University 
of Washington and are of indirect use to any institution 
which is willing to assume it is like Washington. 

Should our analysis be used generally even though 
our particular results are not general? To answer this, 
we will point out two courses of action which are avail
able to the University of Washington now that it has 
these statistics, but which might not have been avail
able (or at least, would have been available only by 
trusting the Computer Center Director's intuition) 
without the analysis. 

At most universities computer use of education is 
supported by intramural funds, while a substantial part 
of the research computing support is extramural. Un
derstandably, granting agencies (notably the United 
States Government) insist that the same algorithm be 
used to allot charges to all users. The argument is that 
the cost of a computation should be determined by the 
nature of the computation and not by who makes it. 
While seemingly fair, this can be frustrating to an in
stitution which wishes to encourage educational 
use of computing, but needs to capture all funds that 
are available for research computing. More generally, 
there are a number of situations in which a computer 
center may wish to encourage or discourage certain 
classes of user, while still retaining the principle that 
the same charge will be levied for the same service. 
The solution proposed is to establish a charging algo
rithm which is sensitive to the varying characteristics 
of jobs from different user sources. For example, if the 
University. of Washington were to place a very low 
charge for the first 200 cards read and the first 10 sec
onds each of CP and PP time, and charge considerably 
for system utilization beyond these limits, then the 
educational users would pay proportionately less and 
the research users proportionately more of the total bill. 
Charges would still be non-discriminatory in the sense 
that identical jobs receive identical bills. Note also, how 
our statistical analysis dictates the type of charging 
algorithm. From the correlational analysis we know 

Who are the Users? 237 

that the only way of differentially effecting user charges 
is to manipulate the number of cards read and the 
processor time charges. From the descriptive statistics 
and the cluster analysis we can predict how a given 
manipulation will affect different sections of the user 
community. 

Very much the same reasoning can be used in plan
ning for new equipment acquisition. Obviously equip
ment additions aid in computing either because they 
facilitate the running of all jobs equally (in which case 
the aim is to increase throughput uniformly) or be
cause they aid in processing of certain types of jobs. 
The computer center director rightly looks at equip
ment in terms of how it affects bottlenecks in his 
throughput or in his capability to do certain types of 
computation. From the University administrators' 
view, however money into the computing center is a 
means toward the end of achieving some ed uca tional or 
scholarly goal, such as increased production of engineer
ing B.S.'s or support of a Geophysics research program. 
We can use a statistical analysis of user characteristics 
to reconcile these points of view. Taking an obvious 
example from our data, if the University of Washington 
decides to put x dollars into support of computing for 
education, the money should not be spent buying tape 
drives. To take a more subtle case, suppose we were 
faced with a choice of obtaining a medium-sized com
puter or expanding the CDC 6400 system to a CDC 
6500 or CDC 6600 computer. The appropriate course 
of action might be determined by the purpose for which 
the money is intended, to facilitate educational or re
search use. Without these statistics, we do not see how 
the management goals of the institution and the techni
cal goals of the Computer Center can be coordinated. 

Our results also are of interest to two groups of people 
outside of our own institution; those interested in re
search on computing systems and those involved in 
selling computers to universities. We feel that we have 
clearly shown that a simple model of a single process 
for generating statistical characteristics of user jobs
such as those assumed to estimate the performance of 
system algorithms-is not appropriate. A model of a 
university computing community must be based on 
sub-models for quite different populations. The busi
ness-scientific distinction is decidedly not appropriate. 

We close with some remarks on the methods we have 
used. Two of our techniques, descriptive statistics and 
correlational analysis, are conventional statistical meth,;,. 
ods. Indeed, the programs we used, BMD03M and 
BMDOID, are part of the most widely supported ap
plications package in programming! There is no reason 
why everyone with a computer of any size could not 
perform these analyses on his job stream. We feel, how
ever, that the clearest picture of our users was obtained 



238 Spring Joint Computer Conference, 1971 

by the less conventional cluster analysis. We recom
mend that this technique be used more widely to 
analyze computer use. We hope it will aid in identifying 
the characteristics of existential, rather than postu
lated, computer users. 

REFERENCES 

1 W DIXON ed 
Biomedical computer programs 
Health Sciences Computing Facility UCLA 1965 

2 H HARMAN 
Modern factor analysis 
U Chicago Press 1960 

3 D F Morrison 
Multivariate Statistical Methods. N ew York: 
McGraw-Hill, 1965 

4 G DIEHR 
An investigation of computational algorithms for 
aggregation problems 
Western Management Science Institute UCLA Working 
Paper 155 1969 

5 J FINKE 
A users guide to the operation of an information storage and 
retrieval system on the B5500 Computer 
Technical Report No. 70-1-3 
Computer Science Univ of Washington 



An initial operational problem oriented medical record 
system-For storage, manipulation and retrieval of medical 
data* 

by JAN R. SCHULTZ, STEPHEN V. CANTRILL and KEITH G. IVIORGAN 

University of Vermont 
Burlington, Vermont 

INTRODUCTION 

The ultimate role of the computer in the delivery of 
health services has yet to be defined. There may be pro
found implications in terms of quality of medical care, 
efficiency, economics of care, and medical research. 
Final judgments as to advisability and economic feasi
bility await the implementation of prototype total 
medical information systems and further technical de
velopments directed toward lowering the high cost of 
currently developing systems. Development of less ex
pensive hardware and real-time application of the 
present hardware and software must go on in parallel. 
We have been involved in the latter, and an experi
mental time-shared medical information system has 
been developed for storing and retrieving the total 
medical record, including both the narrative and the 
numeric data. This development has integrated the 
Problem Oriented Medical Record, a means of organiz
ing medical data around a patient's problems, with a 
touch sensitive cathode ray tube terminal that allows 
structured input (with additional keyboard entry capa
bility) by directly interfaced medical users (in particu
lar the physician and the nurse). 

A total of 85 general medical patient records have 
been kept on the system as of December, 1970. The 
system handles all aspects of medical record keeping
from the Past Medical History and Systems Review 
collected directly from the patient to complete Progress 
Notes and flowsheets, all recorded in a problem-ori-

* This research was done under a research grant from the De
partment of Health, Education, and Welfare, Health Services 
and Mental Health Administration, National Center for Health 
Services Research and Development, PHS 1 RIB HS 00175-01, 
entitled "The Automation of a Problem Oriented Medical Rec
ord," Co-Principal Investigators Lawrence L. Weed, M. D. 
and Jan R. Schultz. 

239 

ented manner. It allows the direct inputting of data by 
the information originator and the retrieval of data in 
various medically relevant forms. 

THE PHILOSOPHICAL BASIS FOR THE SYSTEM 

The system is based on a medical philosophy requir
ing- data in the medical record to be problem oriented 
and not source oriented.1 •

2 Data are collected, filed and 
identified in a problem oriented record with respect to 
a given problem and not to the source of the data as in 
the traditional source oriented record. 

The problem oriented medical record requires a sys
tematic approach to treatme,nt of the patient. This 
systematic approach is defined by the four phases of 
medical action: data base collection, problem formula
tion, plan definition and follow-up. A brief explanation 
of the four phases will outline the basic requirements 
for this system (see Figure 1) : 

. . . . . . . . . . .. . . . . . . . . . 
, I. E S TA III I S HME NT 0 F, 

A DATA BASE. 

....................... 

.11. FORMULATION OF 
ALL PROBLEMSI 

,- - - - - - - - - -. ,- - - - - - - - -, 
HISTORY. • -.-> I PROBLEM LIST. • 
PHYSICAL EXAM. a 
ADM. LAB. WORK. 

1 ••••••••••••••••••• 1 

/ . . . . . . . . . . . . . . . . . . . . . / 
a III. PLANS FOR EACHa <-/ 
a PROBLEMa a 
1- - - - - - - - - -, 

I ••••••••••••••••••••• I 

/ 

....................... 
IIV. FOLLOW-UP ON EACH. 
, PRO BUM, 
1- - - - - - - - - - -I 

COLLECTION 0 F 
FURTHER DA TA. 

a __ a> , PROCRESS NOTES. 

TREATMENT. , 
EDUCA TlON 0 F PA T., 

I ••••• •••••••••••••• I 

Figure 1 

, 
, TITLED I NUMBERED 

BY PROBLEM. 
I ••••••••••••••••••••• 



240 Spsing Joint Computer Conference, 1971 

During the first phase of medical action the patient's 
complete data base is collected. This includes a branch
ing questionnaire Past Medical History and Systems 
Review taken directly by the patient, a Physical Ex
amination entered by the physician and otlier medical 
personnel, the Present Illness structured from choices 
(to be discussed later) and entered by the physician, 
and certain admission laboratory orders generated by 
the physician. 

After a complete data base is collected the physician 
studies it and formulates a list of all the patient's 
problems. This is the second phase of medical action. 
The problem list includes medical, social, psychiatric 
and demographic problems. Each problem is defined 
at the level the physician understands it. A problem can 
be a "diagnostic entity," a physiologic finding, a 
physical finding, an abnormal laboratory finding, or a 
symptom. The problem list is a dynamic index to all 
the patient's plans and progress notes since it can be 
used to follow the course of the problem(s). 

After a complete problem list is formulated, the 
physician must define an initial plan for each problem. 
This is the third phase of medical action. The plans are 
divided into plans for more information, plans for treat
ment and contingency plans. With plans for more in
formation it is possible to: (1) rule out different prob
lems by ordering certain tests or procedures, (2) get 
laboratory tests for management, and (3) get more 
data base information. Under plans for treatment: a 
drug, diet, activity, procedure, or patient education 
can be prescribed. Contingency plans are possible future 
plans to be carried out if certain contingencies are 
satisfied. 

The fourth phase of medical action is writing progress 
notes for each problem. The progress notes for each 
problem are divided into: Symptomatic, Objective 
(laboratory, x-ray and other reports), Treatment Given, 
Assessment and Follow-up Plans (similar in content to 
the Initial Plans) sections. The progress notes allow 
medical personnel to act as a guidance system and 
follow the course of each problem, collecting more data 
base, reformulating and updating problems and re
specifying the plans, each action dependent upon the 
course of the patient's problems. 

The Problem Oriented Medical Record has been 
used in paper form for the past fourteen years. It has 
proved a working record system on paper and was 
demonstrated practical long before computerization 
was ever considered. Its dynamic structure, non-source 
orientation and medically relevant labeling of .all data, 
however, facilitates computerization. Computerization 
augments its medical capabilities by making it pos
sible to retrieve all data on one problem in sequence 
and by allowing data to be organized separate from its 

source in the record. This ability is recognized as having 
significant medical implications,3,4 for it allows the 
physician to follow the course of a problem in parallel 
with the patient's other problems or as a separate 
problem (i.e., retrieving information chronologically vs. 
retrieving all data on one problem). The computer en
ables rapid audit of all the patients with similar prob
lems as well as the ability to audit a physician's logic 
and thoroughness on one specific patient, and will allow 
the development of research files. 

As previously written: 

"We should not assess a physician's effective
ness by the amount of time he spends with pa
tients or the sophistication of his specialized 
techniques. Rather we should judge him on the 
completeness and accuracy of the data base he 
creates as he starts his work, the speed and econ
omy with which he obtains patient data, the ade
quacy of his formulation of all the problems, the 
intelligence he demonstrates as he carefully treats 
and follows each problem, and the total quantity 
of acceptable care he is able to deliver."! 

Our experience with this system indicates that com
puterization does facilitate such an assessment. 

At the time this proj ect began, and the system was 
specified, other operating systems (of which we had 
knowledge) were few. 5 ,6 After an analysis of these sys
tems our group decided that we would try to build the 
necessary medical application programs using as a basis 
system software developed by another group. To quote 
R. W. Hamming; 

"Indeed, one of my mqjor complaints about the 
computer field is that whereas Newton could say, 
, If I have seen a little further than others it is be
cause I have stood on the shoulders of giants,' I 
am forced to say,' Today we stand on each other's 
feet.' Perhaps the central problem we face in all of 
computer science is how we are to get to the situa
tion where we build on top of the work of others 
rather than redoing so much of it in a trivially 
different way. Science is supposed to be cumula
tive, not almost. endless duplication of the same 
kind of things."7 

This would serve two purposes: It would divide the 
total work task naturally into more manageable units, . 
and it would force our group to learn completely the 
system we were to build upon, thus allowing the basic 
system software to be utilized as a tool in the accom-



Initial Operational Problem Oriented Medical Record System 241 

plishment of our medical goals. We built upon the sys
tem being developed by Medical Systems Research 
Laboratory of Control Data Corporation. The hardware 
developments of Dr. Robert Masters (the Digiscribe) 
and the software developments of Mr. Harlan Fretheim 
(the Executive, the Human Interface Program and 
SETRAN) have been fundamental to our own progress. 

THE BASIC SYSTEM SOFTWARE DEVELOPED 
BY MEDICAL SYSTEMS RESEARCH 
LABORATORY OF CONTROL DATA 
CORPORATION 

Directly interfacing busy medical personnel to the 
computer system required the development of an effec
tive facile interface. The Digiscribe terminal with its 
associated software is such an interface. Displayed on 
the cathode ray tube is an array of choices from which 
the user can make a selection by touching the screen 
with his finger. The user's selection is input to the 
computer system in the form of a character so that for 
each of twenty different positions on the cathode ray 
tube screen a different character is generated. A system 
programS accepts as input the user selection and on the 
basis of it appropriate branching takes place and new 
information is displayed. Included in the information 
used by the program that interprets the selection (the 
Human Interface Program) is a push-down list of frame 
numbers waiting to be displayed, branching informa
tion and certain internal parameters (not seen by the 
user at the terminal) which can be associated with each 
choice displayed on the screen. In addition to text, 
branching information and internal parameters, a pro
gram ca1l9 can be associated with any selection. This 
allows a certain amount of open endedness and pro
vides the means for calling and executing application 
programs. 

The selections made by the medical user at the 
terminal are concatenated" by the Human Interface 
Program to form "paragraphs" of information. The 
paragraph is the basic unit of information generated in 
the system. (The Storage and Retrieval programs 
manipulate paragraphs of information.) Associated with 
each paragraph is the Selection Parameter List which 
includes for each choice made by the user the frame 
number, the choice number within that frame, and any 
internal parameters associated with the choice. The 
internal parameters can be used to code selections so 
programs can interpret compact codes rather than 
alphanumeric data. The internal parameters are identi
fied by a single letter (e.g., "F" type internal parameters 
specify format codes which will be explained in detail 
below). Using the Selection Parameter List our pro-

'3463 

--------------------------------------------------
ONSETa * 

GRADUAL (INSIDIOUS). 

SUDDEN (ABRUPT). 

COULDN'T DETERMINE. 

DIDN'T DETERMINE. 

DISPLAY IN 'HIP' 

Rlfl46l ,3463AC M 
ONSETa * 
,.... .".. x •• , , " .. ,,,,2 

GRADUAL (INSIDIOUS). 
-'3463 '3434 x." g 

SUDDEN (A BRUPT). 
-'3463 '3434 x... . 

COULDN'T DETERMINE. 
-,3463 " •• , x... . 
DIDN'T DETERNINE. 
-,3463 ,.~" x... . 

SAME DISPLAY IN 'SETRAN' 

Figure 2 

grams can analyze the input data without having to 
search the generated English text. 

The user generated paragraphs and associated Selec
tion Parameter Lists, are the coupling mechanism be
tween the Human Interface Program and our appli
cation programs which store, retrieve, and manipulate 
the patient records and other files. 

A language was developed as part of the basic system 
called SETRAN (Selection Element TRANslator)10 
which makes possible the programming of the branch
ing logic displays and alteration of already entered dis
plays using the keyboard on the terminal. See Figure 2 
for an example of a frame as displayed in the Human 
Interface Program and in SETRAN. It has been pos
sible to train physicians and other personnel in this 
language and development of new displays has pro
ceeded without a computer person acting as an inter
mediary. Allowing medical personnel, with almost no 
computer science training a direct means of developing 
and altering basic system displays is fundamental dur
ing the development phase of systems such as these. 
The massive number of such displays required for such 
a system (currently over 16,000 displays have been 
developed by the PROMIS group) and the necessity 
for a tight feedback-loop during the developmental 
phase of the displays require such tools. Once systems 
such as this are beyond the developmental phase, ac
cess to such programs must be carefully controlled. 

The operating system supports multiple terminals 



242 Spring Joint Computer Conference, 1971 

'IO'UA' OIUHTlD 

MUICAl IICOID 

'AliENT STlUCTURED AND UST flUS 

STOlE 'IOGRAA'$ 

ISTlUCTUIU AND LIST fILES' 

IMASS STORAGE RESIDENTI 

.. ,~ Jt:fh ~~" I~~~ 
'RI~T£D MEDICAL OUTPU 

SURAN 'ROGRAM 

ISYSTIM DEYUO'A'ENI ONLY' 

I 
I 

I 
I 
I 
I 
I 

__ J 

Figure 3-EXPLANATORY LEGEND 

The "HUMAN INTERFACE PROGRAM (HIP)" displays 
medical content from the "FRAME DISPLAY DICTIONARY" 
to the user in a branching logic fashion. Most of the entries in the 
"FRAME DISPLAY DICTIONARY" were created by system 
development personnel at some time in the past by using the 
"SETRAN PROGRAM." 

As the user makes a series of choices at the terminal, "HIP" 
creates a "SELECTION PARAMETER LIST AND PARA
GRAPH SEGMENTS" which represent the history of choices 
made by the user. 

At appropriate times in the series of displays seen by the user, 
dependent. upon pathway, "HIP" calls the "STORE PRO
GRAMS" and the "RETRIEVE PROGRAMS." 

The "STORE PROGRAMS," by processing the "SELEC
TION PARAMETER LIST AND PARAGRAPH SEG
MENTS" for the specific user, can update the mass storage 
resident "PROBLEM ORIENTED MEDICAL RECORD 
PATIENT STRUCTURED AND LIST FILES." 

If the "STORE TRANSLATED" module) 'of the "STORE 
PROGRAMS" is used (e.g., for processing patient histories), 
reference will be made to the "TRANSLATION DICTION
ARY" which was created in the past by system development 
personnel using the "DETRAN PROGRAM." 

The "RETRIEVE PROGRAM (STRUCTURED FILE)" 
processes the user's retrieval request as specified in his associated 
"SELECTION PARAMETER LIST AND PARAGRAPH 
SEGMENTS" retrieving any specified part of a patient's medical 
record. 

Output by the "FORMAT ROUTINE" from the "RE
TRIEV AL PROGRAM (STRUCTURED FILE)" can be either 
to "PRINTED MEDICAL OUTPUT" (hardcopy) or directly 
to the user's cathode ray tube terminal via the "FRAME DIS
PLAY DICTIONARY" and "HIP." 

The "RETRIEVE PROGRAM (LIST FILE)" may be called 

in the process of the user making choices at the terminal. It 
produces output directly to the user's terminal. 

All of the above processes take place unknown to the user 
but are a direct response to his choices at the terminal in either 
storing in or retrieving information from the Computerized 
Problem Oriented Medical Record. 

allowing a rapid response to user interaction (a user 
familiar with the frame content can make selections 
faster than one per second) and supports application 
programs operating in a multi-level, multi-program
mingmode. 

The frames, application programs, medical files and 
station associated variables are disk resident. Most 
selections made by a user require four disk accesses (in 
the current version of the system) and the variables 
associated with a station are core resident only while 
the selection for that station is being processed. 

There are four main classes of application programs. 
The two highest level classes are interactive with the 
user and require immediate execution. The Selectible 
Element Translator is of this type and allows the on
line entering and changing of frame content and branch
ing (by appropriate personnel, not all users). 

The second level class of programs is executed while 
the user is at the terminal, but these programs may take 
longer to run than the ones executed immediately. An 
example of this type is the program which retrieves 
from the patient records to the cathode ray tube 
terminal. 

The lowest level of application programs is executed 
sequentially by priority level in the background after 
a user has signed off the terminal. These include the 
programs which store into the patient records and re
trieve patient records to the line printer. 

AN APPROACH TO THE COMPUTERIZATION 
OF THE ME])[CAL RECORD 

Our approach to the computerization of the medical 
record involves many elements. The Problem Oriented 
Medical Record represents the medical "foundation" 
upon which the total system rests. The Human Inter
face Program, the Selection Element TRANslator, the 
system executive and the hardware" drivers" represent 
the computer software "foundation." The other ele
ments to our approach will be discussed in this section. 

The information generated by having the medical 
personnel (or the patient himself) go through the 
branching displays is English narrative. Although the 
number of selections presented on each display is small 
(averaging 8 selections) the number of paths through 



Initial Operational Problem Oriented Medical Record System 243 

these selections is quite large. There are currently over 
16,000 displays in the system. Approximately 12,000 
of these are branching displays, the remainder are 
solely for information, e.g., before any drug can be 
ordered a sequence of displays requests the physician 
to: (1) CHECK THE PROBLEM LIST FOR: fol
lowed by a list of problems (2) SIDE EFFECTS TO 
WATCH FOR: (3) DRUG AND TEST INTERAC
TIONS: (4) TEST INTERFERENCE: (5) USUAL 
DOSAGE: followed by optional (6) MECHANISM 
OF ACTION: (7) METABOLISM AND EXCRE
TION:. 

Structured 'branching logic displays allow the medi
cal user to operate from a body of knowledge broader 
than can be kept in his own memory. This body of 
kllowledge as represented in the library of displaysll.12 

is capable of being updated in an organized and sys
tematic way, so that it can always reflect the most 
current and sophisticated medical thinking. The sys
tem is dynamic and since data can be typed into indi
vidual patient's records supplementing the structured 
displays, it would be possible to analyze this typed in 
data to update the library of displays (if the typed in 
data indicate a deficiency in the branching displays 
and not in the physician using the displays). Once 
systems similar to the one described here are in daily 
operation, the organized and systematic updating of 
the library of displays will have to be centralized in an 
organization with this sole responsibility and authority. 

The generation of English is the result of a user mak
ing selections from structured, branching-logic dis
plays. These selections must then be transformed by a 
program into an internal form for storage in a patient's 
file. The program that does the transformation of the 
selections into an internal form is generalized; it is in
dependent of the specific content contained in the 
selections. It stores data in an internal form, inde
pendent of the output devices ultimately used to dis
play the data. The retrieval routines that allow the 
stored data to be manipulated and displayed in various 
forms will also be discussed in more detail. (See Fig
ure 3). 

The displays necessary for the generation of each 
section of the Problem Oriented Medical Record are 
specified by a "meta-structure" for each section. The 
"meta-structure" specifies the branching logic of the 
content displays. 1 There are structured approaches to 
Present Illness, Problem Lists, Drug Sequences, and 
Progress Notes. For example, the Present Illness meta
structure would include, for each body system, a list 
of the symptoms particular to that system and for each 
symptom, a list of its characteristics. In the Psychiatry 
system, for example, if Headache were selected from 
the frame of the list of possible symptoms, the physician 

would be asked to describe characteristics of this 
headache: 

HEA DA CHE 

ONSET/COIwll4ENCED 

I NTENS I TY AT WORST 

AI'iOUNT AT wO RS T 

QUAL I TY 

TIME RELATIONSHIP 

2413S 

LOCATION 

RADIATION 

RELIEVED/NOT RELIEVED BY 

EPISODES 

,.iA DE WO RSE BY 

ASSOCIATED WITH 

II CHOICES CONT 

__ ----..11 
24226 ~ 

HEADACHE 

-------_._._--------------------------------------
COURSE OVERALLs II RETURN TO PREVo PAGE 

II TURN PACE 

If "MADE WORSE BY" were chosen by the physi
cian, a frame containing the following selections ap
pears: 

24J. 74 
HEADACHE 

--------------------------------------------------
PiADE WORSE BV, * NOISE, 

ORAL CONTRACEPTI VES, PHVS. EXERTION, 

ALCOHOL, POSITION, 

CERTAIN FOODS (TYPE IN) NOTHING IN PARTICULAR. 

TENSION/ANXIETV, DIDN'T DETER"'lINE. 

FA TI GUE, II TURN PAGE 

This technique allows a complete English narrative 
description of HEADACHE to be generated: 

~EADACHES: 
ONSET: GRADUAL (INSIDIOUS). 
COMMENCED: 3 WEEKS AGO. 
SEVERITY AT WORST: SEVERE, CANNOT CONTINUE USUAL ACTIVITY. 
QUALITY: DULL. DEEP, PRESSING/BAND-LIKE, 
TIME OF DAY: NOCTURNAL: PREVENTS SLEEP, COURSE' OCCURS IN 

EPISODES 
WHICH ARE: FREQUENT 
EACH EPISODE OCCURS: SEVERAL X/WEEK EACH EPISODE LASTS: 

HOURS. 
LOCATION/SPREAD: VERTEX, PARIETAL, OCCIPITAL, BILATERAL 
RELIEVED BY: NOTHING. • 
MADE WORSE BY: NOTHING IN PARTICULAR. 
ASSOCIATED WITH: SOMNOLENCE/TORPOR: DIFFICULTY W/MEMORY, 

KNOWN CONVULSIVE DISORDER 
ASSOCIATED WITH: ~CONCURRENT RX WITH 

DILANTIN,ZARONTIN,MEBARA ~ 
OVERALL COURSE: UNCHANGED. 



244 Spring Joint Computer Conference, 1971 

All programs that interpret input data can assume a 
standard form and structure guaranteed by how the 
branching logic displays are programmed. Contained 
in the Selection Parameter List for each paragraph are 
the internal parameters which define the type of data 
and what the program should do with it. The programs 
also receive information which further describes the 
paragraph as a unit. This information was defined by 
selections as the user went through the displays. As
sociated with each paragraph is a paragraph label which 
further describes the paragraph on two levels: Informa
tion Type 1 (IT1) defines the major section in a record 
to which this paragraph belongs (e.g., Physical Exami
nation, Progress Notes, Problem List, Past Medical 
History and Systems Review, etc.); Information Type 2 
(IT2) defines the subsection within the major section 
(e.g., Skin Examination in the Physical Examination, 
Symptomatically in the Progress Notes, etc.). All para
graphs which contain problem oriented data have asso
ciated with the label the applicable problem number. 
Also associated with the paragraph label is information 
indicating whether this paragraph contains either nar
rative or numeric information. The date, time, user and 
patient numbers are also associated. This data deter
mines where the paragraph is to be stored in a specific 
patient's record. 

Structured displays and the internal parameters 
linked to selections (and collected in the Selection 
Parameter List) both imply a closed system. The closed 
system enforces the organized entry of information in a 
well-defined syntax. Via the structured displays, the 
user is aware of data relationships that normally are 
imbedded in the data interpreting programs. The data 
is so entered that it has an inherent structure-not to 
be found when data is entered free form. This structure 
holds even if the data entered via selections from the 
structured displays are supplemented by typed-in in
formation. Much simpler data interpreting programs 
are required for such structured data with the associ
ated Selection Parameter List then for purely free 
formed input. 

In addition, the user of structured displays can oper
ate on recognition rather than recall. He has available, 
at the time he needs it, the organized knowledge of his 
profession. This knowledge can be systematically up
dated with a thoroughness that is impossible on an 
individual basis. 

In summary, the necessary elements in our approach 
to a computerized system to store and retrieve Problem 
Oriented Medical Records include a medically relevant 
organization of the data in the medical record, an effec
tive interface between the medical user and the com
puter system, a means of structuring the medical con
tent material on frames using meta-structures, programs 

to transform selections into a manipulatable internal 
form, programs to retrieve the stored data in various 
forms, and a "closed" system. 

FILE STRUCTURES FOR MEDICAL RECORDS 

Our files may be characterized in terms of (1) main
tenance and (2) structure. In terms of maintenance: 
Will this file handle information that can be both in
serted and deleted (purgable) or only inserted (non
purgable)? An example of a file into which information 
will only be inserted and never purged is the patient's 
problem-oriented medical record. A list of all the pa
tients on a ward is an example of a file that will be 
added to and deleted from on a regular basis as patients 
are admitted and discharged from the ward. In terms 
of structure : We define a file of homogeneous elements 
(a file which contains a specific subset of the IT1, 
IT2's) as a list file; e.g., the list of patients on a specific 
ward, or the list of problems on a specific patient,. or 
the list of current drug/diet/activities for a speCIfic 
patient. A file of heterogeneous elements (all IT1, IT2's) 
we call a structured file, for example, the patient's 
Problem Oriented Medical Record. 

There are then a total of four types of files that we 
envision possible within the system: (1) a list file that 
cannot be purged; files of this type will ultimately be 
used for research retrieval capabilities; (2) a list file 
that can be purged; (3) a structured file that cannot 
be purged, and (4) a structured file that can be purged 
and which may in the future be used for the most cur
rent progress note. This progress note could be purgable 
since it might be possible, for example, to condense 
many vital sign values to one value and a range. For 
the current implementation of the system it has been 
necessary to utilize list files that are purgable and 
structured files that cannot be purged. Further expan
sion and sophistication of the current system will re
quire the other two types of files to be developed and 
utilized. The two file types currently used will be de
scribed in more detail. 

NON-PURGABLE STRUCTURED FILES-THE 
PATIENT'S PROBLEM ORIENTED 
MEDICAL RECORD 

An individual patient's file requires a structure that 
facilitates the storage and retrieval of its data while 
minimizing the number of mass storage accesses. This 
file (a non-purgable file with heterogeneous elements) 
consists of a "Table of Contents" and a variable num-



Initial Operational Problem Oriented Medical Record System 245 

ber of "Items." The Table of Contents is an index to 
all the data in an individual patient's file and is ad
dressable as a function of the patient's system I.D. 
number. The Table of Contents contains a variable 
length list of Item Pointers (see Figure 4). Each Item 
Pointer includes Information Type 1, the storage date 
and time, and the Item number containing the paragraph 
(5). If the Information Type 1 is problem oriented 
then there is also an array of bits that represent the 
presence of that problem number in the Item. This 
feature allows the rapid sequential retrieval of all the 
data on one problem by indicating whether the Item 
contains paragraphs on the problem number. 

The Item is the depository of the narrative (e.g., 
Present Illness) and numeric (e.g., Blood Pressure) 
paragraphs. It contains the paragraphs generated by 
the user at the terminal and transformed by the 
STORE program into the internal form. (A description 
of this internal form is given later in this paper.) For 
each paragraph in the Item there is a corresponding 
paragraph pointer also in the Item. This paragraph 
pointer contains Information Type 1 and 2, problem 
number, date, time, user number and the relative ad
dress of the paragraph in this Item. 

To access any specific paragraph of information in 
an Item a search through the paragraph pointers, which 
are sorted and linked together, is required. No search
ing of actual narrative data is necessary for the retrieval 
of any narrative paragraph contained in an individual 
Item, as the paragraph pointers completely define the 
contents of each narrative paragraph at the level the 
medical user needs to differentiate the data. 

This type of file structure allows the retrieval of 
specific paragraphs of data in a minimum number of 
mass storage accesses ( two accesses), if we assume the 
Table of Contents does not overflow. Since the Table 
of Contents (core resident in one access) contains Item 
Pointers for each Information Type in the patient's 
file, searching it gives the Item number(s) of the re
quested data. The necessary Item(s) can then be 
brought into core in one access per Item. 

INTERNAL REPRESENTATION OF 
NARRATIVE AND NUMERIC DATA 
WITHIN THE PATIENT'S PROBLEM
ORIENTED MEDICAL RECORD 

Each paragraph generated by the user to be stored 
into a patient's record can contain either narrative or 
numeric information. The STORE program and appro
priate subroutines are used to transform each para
graph into a standard internal form which consists of 

TAtl(Of(o.un.TS 
noCi 

.( 

D'::'Fl:: ... ,ut 

O.tt.li .. 
,fLn"fI,ul 

2:, ... , ....... , .. , ... " 

:=:\J.-----I 

flU; SflUCTU.1OF A'ATII:.U' 
nOIUMOIII.neIlllItCAlltC ... 
AST.UCTUln_OtI-,..u.llffIU 

Figure 4 

strings of eight bit characters. The paragraph, for nar
rative data, represents the smallest unit of information 
the physician or other medical personnel can ever re
quest on an individual patient. For numeric data, the 
numeric block-which specifies one numeric value-is 
necessary, as the physician requires time ordered 
graphs of various physiologic parameters and thus the 
retrieval of individual numeric blocks is required. It is 
possible to store a variable number of numeric blocks 
in one paragraph. In both cases the data are accessible 
at the level the medical personnel are most accustomed 
to working with it. This internal representation allows 
the rearrangement of data for various retrieval require
ments that are impossible with a manual paper record 
system. 

If the paragraph contains narrative data, a STORE 
routine interprets" F" type internal parameters in the 
Selection Parameter List as format codes. These format 
codes are associated with certain selections. They are 
used to define the internal form in which the data will 
be stored. This internal form in turn defines the output 
format of the paragraph and specifies the relationship 
between the selection with the" F" internal parameter 
and those selections following. The selection with the 
"F" internal parameter is treated as a "title" and the 
selections until the next "F" internal parameter are 
"data" (See diagram below). Specifically, the format 
code defines the indentation level of the title (level 0 is 
the least indentation, level 3 is the greatest amount) 
and whether there are carriage returns before and/or 
after the title. With this information it is possible to 
output the narrative using an interpretive output sub
routine called FORMAT. The format codes and the 
internal form are output device independent. 

Since SETRAN (Selection Element TRANslator) 
allows internal parameters to be associated with any 



246 Spring Joint Computer Conference, 1971 

choice, the individual who writes the frame can specify 
or change the output format. Such flexibility is an im
portant feature in a system like ours as it allows the 
individual writing the frame content material to spec
ify, at the same time, the output format of the in
formation. Changes of output format are also greatly 
facilitated as they only require a rewriting, using 
SETRAN, of the" F" internal parameters on the frame. 
(Any information previously generated from these 
frames is not reformatted.) 

Internally a paragraph of narrative data is of the 
following form: 

(Format Code) (Title Narrative) (Data Narrative) .. . 
(Format Code) (Title Narrative) (Data Narrative) .. . 
(Format Code) (Title Narrative) (Data Narrative) 
(Terminating Format Code) 

For example: 

(CR, LEVEL 0, CR) (SOCIAL PROFILE:) 

( 
( 

( 

LEVEL 1 
LEVEL 1 

LEVEL 1 

LEVEL 1 

LEVEL 1 

LEVEL 1 

LEVEL 1 

LEVEL 1 

) (ADULT FEMALE. AGE 69.) 
) (BORN IN VERMONT; 

RURAL AREA. LIVED IN 
AREA OF CURRENT 
RESIDENCE FOR >39 
YEARS.) 

) (LAST COMPLETED 
GRADE: JUNIOR 
COLLEGE. WOULD NOT 
LIKE FURTHER 
EDUCATION OR 
TRAINING.) 

) (MARRIED. DOES NOT 
LIVE W /HUSBAND. 
LIVES ALONE. COOKS 
OWN MEALS. WIDOWED 
FOR >1 YEAR.) 

) (NOT SATISFIED 
W /PRESENT LIVING 
CONDITIONS.) 

) (UNEMPLOYED FOR 
MORE THAN 2 YEARS. 
DOES NON-STRENUOUS 
LABOR. GETS DAILY 
EXERCISE. PRESENT 
HEALTH CONDITIONS 
INTERFERE W /WORK.) 

) (SUPPORTED MAINLY BY 
SELF.) 

) (DOES NOT DRINK 
ALCOHOL.) 

LEVEL 1 ) (EATS 2 OR MORE 
MEALS/DAY; MEAT OR 
EGGS WITH 1 OR MORE 
OF THEM.) 

LEVEL 2 ) (22 POS, 12 NEG, 0 DNK, 
ODNU.) 

(TERMINATION CODE) 

A printout on the line printer of this paragraph would 
result in the following: 

SOCIAL PROFILE: 

ADULT fEMALE. AGE 69. 
BORN IN VEI-IMONH RURAL AREA. LIVED IN AREA Of CURRENT 

RESIDENCE FOR > 39 YEARS. 
LAST COMPLETED GRADE: .JUNIOR COLLEGE. WOULD NOT LIKE fURTHER 

EDUCATION OR TRAINING. . 
MARRIED. OOES NOT LIVE W/ HUSBANO. LIVES ALONE. COOKS OWN 

MEALS. WIOOWEO FOR >1· YEAR. 
NOT SATISFIEO ,1/ PRESENT LIVING CONDITIONS. 
UNEMPLOYED FOR MORE THAN 2 YE.ARS. DOES NON-STRENUOUS LABOR. 

GETS OAILY EXERCISE. PRESENT HEALTH CONOITIONS 
INTERFERE W/WORK. 

SUPPORTEO MAINLY 8Y SELF. 
DOES NOT ORINK ALCOHOL. 
EATS 2 OR MORE MEALS/OAY' MEAT OR EGGS WITH 1 OR MORE Of THEM. 

22 POSt 12 NEG. 0 ONK. 0 ONU. 

On the cathode ray tube it appears as: 

SOCIAL PROFILEa 

ADUL T FEMLE. AGE ". 
BORN IN VERNONT, RURAL AREA. LIVED IN AREA 

OF C·URRENT RESIDENCE FOR> '9 VEARS. 
LAST COMPLETED G~DE. JUNIOR COLLEGE. WOULD 

NOT LIKE FURTHER EDUCATION OR TRAIN'NG. 
t4ARRIED. DOES NOT LIVE WI HUSBAND. LIVES 

ALONE. COOKS OWN MEALS. WIDOwED FOR >1 
VEAR. 

NOT SATIS',ED WI PRESENT LIVING CONDITIONS. 
UNEMPLOVED FOR NORE THAN 2 VEAlS. DOES 

NON-STI.NUOU' LAtOI. GITS DAILV IXIICIIE. 
PRESENT HEALTH COIl1TIOII I.TEI'EI£ 
WlVOtl. 

SUPPORTED. ~IILV IV IlL'. 
DOIS MOT 9f II ALCOHOL. 
EATS 2 OR MORE MEALS/DAV. MEAT OR EGGS WITH 1 

OR NORE OF THEN. 
22 POSt 12 NEG, • DNK, • DNU. 

The title and data narrative are both of variable length. 
If the paragraph contains numeric data, then the 

STORE-NUMERIC routine interprets "N" type 
internal parameters in the Selection Parameter List as 
numeric codes. The numeric codes associate specific 
medical data with the internal structure of the numeric 
blocks. The numeric blocks each contain numeric values 
or objective text; this could represent a blood pressure, 
a clinical chemistry value, or any other type of objec
tive information that must be manipulated internally 
in the system. The numeric codes are used to associate 



Initial Operational Problem Oriented Medical Record System 247 

a type code (i.e., a number that represents the type of 
data contained in the block and is the means of identi
fying all numeric data within the system), a time, a 
date, a title, a numeric value, and objective text with 
the numeric block structure. For example, a tempera
ture numeric block could contain: type code = 30 ; 
time = 14:35; date = Feb. 23, 1970; title=TEMP; 
numeric value =38; number descriptor=C. Medical per
sonnel writing frames can define and change the "N" 
type internal parameters using SETRAN. (Previously 
stored numeric blocks are not affected.) 

The overall philosophy upon which the system was 
built required enough flexibility to allow the medical 
user, * after a minimal training period on the system, 
to change all system variables specifying the output 
format (and thus the internal form of the data) and 
those internal parameters that depend upon medical 
knowledge of various physiological parameters. Medi
cal personnel associated with our project can directly 
develop many of the system content frames and can 
change the specification of how the data will be stored 
internally by changing internal parameters entered 
with the frame content material. Such changes require 
no modifications to our programs. 

PURGABLE LIST FILES-PATIENT, WARD 
AND MESSAGE FILES 

There are two different types of purgable list files
the message files and the intermediate selectable list 
files. 

To facilitate the closed nature of the system it must 
be possible to present previously entered dynamic data 
to the user on displays for selection (e.g., a list of a 
patient's current active problems). The intermediate 
selectable list files perform this function. This ability to· 
display lists for selection was necessary for us to develop 
because the basic system software (Control Data sup
plied) allows only for the creation of static displays 
(via the Selection Element TRANslator) from the key
board and no ability to dynamically display various 
lists for selection. Because of time requirements in the 
displaying of lists, the data to be displayed come from 
this" intermediate" file rather than from scanning the 
entire patient's file each time a list is to be created for 
a user. 

The files are directly accessible on the basis of either 
the patient's system I.D. number (patient list files) 

* "Medical user" refers to medical personnel in the PRO MIS 
Laboratory contributing to system development and not to the 
physician on the ward who does not need to know any of this 
material to function adequately and who in fact would never be 
allowed access to SETRAN. 

or ward number (ward list files). For each patient 
there are two classes of file entries: patient problem 
list entries and patient order entries. For each ward, the 
ward file consists of entries of the patients currently on 
that ward with additional information such as the 
status of each of their problems. 

Two examples follow: To enter data on a patient, the 
patient must be identified. This could be done by hav
ing the user key-in certain identification information 
which then would be scanned, verified and used to ac
cess the patient's record. The identification. is more 
easily achieved, if the user knows the ward on which the 
patient is staying, by allowing the user to select the 
desired patient from a dynamic list of patients on a 
given ward. The selection, constructed from information 
in the patient's record (including his name, age, sex, 
and unit number) has associated with it internal pa
rameters that define this patient's system I. D. number. 
This allows the STORE or the retrieval programs to 
directly address the patient's Table of Contents. An
other example, which has been very convenient for the 
nurses in reporting the administration of a, drug on a 
patient, is a list of the current drugs that the patient 
is receiving. 

The "message" file is not a pure "selectable" file 
since its entries are not used as part of the displays in 
the system. Its contents are copies of all the additions 
to the patient order files. In the future these could be 
sorted and printed out at the proper location in the 
hospital (e.g., laboratory, pharmacy, x-ray). However, 
this processing of the message files has not currently 
been implemented. 

THE STORE PROGRAM FOR THE PATIENT'S 
STRUCTURED FILE 

The STORE program stores all narrative and nu
meric data into the patient's problem oriented medical 
record (structured non-purgable file). It is executed 
after the user at the terminal has confirmed as valid all 
generated paragraphs. No data are stored until after 
this final verification procedure. The STORE program 
receives as input the paragraphs and their associated 
Selection Parameter Lists. A Paragraph Index is built 
for all the paragraphs input to the program. Each 
paragraph's identifying data: Information Type 1 and 
2, problem number, storage mode, date, time, user 
number, and patient number are put in a Paragraph 
Index Element. After the Paragraph Index is built, it is 
sorted by patient number, date, time, Information 
Type 1, problem number, Information Type 2. This 
represents the order that the paragraphs are stored in 
the patient's file (for normal retrieval). 

For each Paragraph Index Element the storage mode 



248 Spsing Joint Computer Conference, 1971 

defines which of these STORE routines is executed: 

STORE-DIRECT is executed if the paragraph con
tains the narrative to be stored in the record. (This is 
the narrative shown on the top of the display as selec
tions are made.) STORE-DIRECT interprets the "F" 
internal parameters in the Selection Parameter List as 
format codes and combines them with the selections to 
form the narrative data in its internal form. 

STORE-NUMERIC is executed if the paragraph 
contains numeric blocks to be stored into the Item. 
STORE-NUMERIC interprets the "N" parameters 
in the Selection Parameter List along with the narra
tive in the paragraph to build the numeric blocks in 
their internal form. 

STORE-TRANSLATED is executed if the para
graph is the result of a questionnaire. The paragraph 
does not contain narrative selections but the Selection 
Parameter List contains a record of the selections made 
on each frame. These paragraphs are formed when 
"YES" or "NO" questions are answered and the re
sponse must be translated into English narrative. The 
Selection Parameter List is interpreted and an "S" in
ternal parameter associated with any selection signals 
a dictionary look-up using the frame and the choice 
number to define the dictionary element. The diction
ary elements are concatenated according to rules de
fined in the dictionary and the resultant data are stored 
in the internal form for narrative data. Used in con
junction with STORE-TRANSLATED is a program
ming language similar to the Selection Element 
TRAN slator. This program, the Dictionary Element 
TRANslator, DETRAN, is used to define the narrative 
to be associated with any choice, the rules to specify 
the concatenation of titles with subsequent dictionary 
elements, and the format codes necessary to specify the 
output format. Using STORE-TRANSLATED and 
Dictionary Element TRANslator it has been possible 
to give a patient a questionnaire in Spanish and have 
the narrative output in English. 

THE STORE PROGRAM FOR THE LIST FILES 

The STORE LIST program checks all newly input 
paragraphs to the patient's record and determines if 
they should be used in updating the various intermedi
ate selectable list files for that patient, the ward which 
he is currently on, or the message file. 

This program (in its usual mode) takes as input, the 
paragraphs just stored into a patient's record. This in
cludes both narrative (e.g., problem statement) and 
numeric (e.g., order) paragraphs. From information in 
these paragraphs, the program may add, delete or alter 
entries in the appropriate (patient, ward, and message) 
list files. For example, if a new order is written for a 

patient, that order's" text" along with the order prob
lem number, the type code, the frequency and the 
number of times for administration, will comprise an 
entry which will be added to that patient's intermedi
ate selectable list file. The entries added to the file are 
sorted, using one or more elements of the entry as sort
keys, depending upon the entry type (e.g., problem list 
entry, order entry, ward entry, etc.). 

Although this program is usually called by the 
STORE program, it can be called independently of the 
STORE program, too. For example, a single patient's 
intermediate selectable list files can be rebuilt by com
pletely scanning all entries in the patient's record. 

RETRIEVAL PROGRAM8-RETRIEV AL OF DATA 
FROM THE PATIENT'S STRUCTURED FILE 

The retrieval programs working on structured files 
are of two types: The first type retireves both narrative 
and numeric data in the form of a narrative report; 
the second forms a- time ordered "flowsheet" of various 
physiological parameters, clinical chemistry results and 
drugs administered. Both are strictly for the retrieval of 
data on a single patient. 

Each retrieval program can display the retrieved in
formation on either the cathode ray tube terminal or 
the high speed printer. Input to the retrieval programs 
is a paragraph which represents the retrieval request, 
that is, the complete specification of the data to be 
retrieved. Included with this paragraph is a string of 
internal parameters in the Selection Parameter List. 
The user is not aware of these parameters, he need only 
select the patient and the sections of the record desired 
(for example, Progress Notes on all active problems, 
History and Systems Review, or complete record 
grouped by major sections, i.e., at IT1 level). The 
retrieval program interprets the parameter string 
(which is well formed due to the structure of the 
retrieval frames). 

Because each user must identify himself when he 
signs on, it is possible to allow him access to only cer
tain displays in the system. Using this approach it is 
possible to limit an individual's access to information 
within the system by -allowing him to formulate only 
certain retrieval requests. 

A retrieval may require one or more retrieval cycles 
depending on the number of major record sections 
(IT1's) included in the request and the degree of group
ing required in each major section. For each retrieval 
cycle required, the retrieval routine scans the Item 
pointers in the patient's Table of Contents to deter
mine which Items contain paragraphs satisfying this 
retrieval cycle~ The Items are then brought into core 
in the order specified by the applicable Item pointers 
in the Table of Contents. For each Item the paragraph 



Initial Operational Problem Oriented Medical Record System 249 

pointers are scanned, and for each paragraph pointer 
satisfying the current retrieval cycle request, the FOR
MAT routine is called to output the paragraph. The 
address of this paragraph is given to the FORMAT 
routine along with certain control information requested 
by FORMAT. The FORMAT routine interprets the 
paragraph looking for format codes and outputs it, 
continuing until terminated by the FORMAT termina
tion code, then returning to the retrieval program. Once 
control is returned from FORMAT, the retrieval routine 
searches the Itell} for the next proper paragraph pointer 
and continues feeding FORMAT until the list of para
graph pointers is exhausted. The retrieval program re
turns to the Item list, continuing until the Item list is 
exhausted. 

A flowsheet is a time ordered table of multiple medi
cal parameters. Sound interpretation of data involving 
clinical findings, vital signs, laboratory ¥alues, medica
tions, and intakes and outputs requires organization of 
the data to clearly reveal temporal relationships and 
clarify the inter-relationships of crucial data. A user 
requests a flowsheet by selecting the patient, the medi
cal parameters to be included on the flowsheet and the 
output device (printer or cathode ray tube). (See the 
flowsheet included in the annotated record.) 

RETRIEVAL OF DATA FROM THE 
INTERMEDIATE SELECTABLE LIST FILES 

Although technically a retrieval from the Intermedi
ate Selectable List Files, the creation and presentation 
of Selectable Lists for the user is done in the context 
of his storing (or retrieving) other information to (or 
from) the patient's record. For example, to write a Prog
ress Note about a specific problem on the patient's 
Problem List, the user must specify on which problem 
h~ is entering data. This is done by showing him, in 
dIsplay form, the list of the patient's Current Problems 
and having him select the proper one. It should be 
noted that all information in the Selectable List was 
previously generated and stored by a user. 

Input to this program includes the number (type) of 
Selectable List the user is to see. This number points 
to an entry in a table which then drives the creation of 
the frames in the display dictionary containing proper 
contents from the appropriate Intermediate Selectable 
List File. The user is then automatically shown the 
first display containing the list of elements. If more 
than. one display is necessary, the additional displays 
are h~ed to the first display. The selection of the ap
proprIate element in the list is then made under the 
Human Interface Program. 

The complex of the Intermediate Selectable List 
Files with Store List and the subsequent creation of 
Selectable Lists allows information previously entered 

into the system to govern the storage and retrieval of 
other patient information, facilitating a closed system. 

AN ANNOTATED EXAMPLE OF AN ACTUAL 
RECORD GENERATED ON THE SYSTEM 

The following is an actual record from one of the 
patients on the computerized ward. This is a complete 
"cycled" record; i.e., data that have been added to a 
section are output chronologically within that section 
(e.g., page 6 includes the PMH & SR additions entered 
to the G. U. IRenal and Neurology sections by the 
physician after reading the history). This printed out
put serves as the" paper" chart and is kept in the chart 
rack where the traditional paper record was kept. In 
this way a back-up record is always available, and at
tendings or consultants can utilize this paper record as 
well as the cathode ray tube. terminal. This printed 

. output is never written on and a new copy (or any 
updates) is printed daily. 

The annotations associated with each page will help 
explain how the record is constructed, its relationship 
to the data as they are stored in the patient's structured 
non-purgable file, and the user's relationship to various 
aspects of the data as additional information is added 
to the record. In the annotations, the following abbrevi
ations are used in specifying the different storage modes 
(SM): 

SM = D Store Directly from selections or from 
keyboard. 

SM = T Store Translated by a dictionary lookup 
based upon the frame number and the 
choice number. 

SM = N Store Numeric from selections in an in
ternal form which allows multiple numeric 
blocks within one paragraph (may include 
typed in information). 

The purpose of duplication of the first page of the 
case is to show the layout and then the content on the 
same page. It would be helpful to refer to the Explana
tory Legend for Figure 3 before proceeding. The 
blacked out spaces throughout the case are names which 
have been covered to protect the confidentiality of the 
patient. 

ANNOTATED EXAMPLES OF THE 
SELECTABLE LIST FILES ASSOCIATED 
WITH THE PRECEDING RECORD 

The following pages are copies as they appear on the 
cathode ray tube screen of the Selectable List on the 
same patient whose record has just been presented. 



250 Spring Joint Computer Conference, 1971 

l.ILUIIIN[C'SI CIIIIIHOSIS' 

3.EI)( .... PITTING. 5[CIIIID.IIY TO • ..oT SP£CI'I(O 

... IWL ..... RTlCULaR DIS' INVOLVING. IIfIISTlCARPALS liT. IIN[(. LT. 

2. '!'IIh identification data is contained in the 
patient's Table of Contents and h part of 
the header on each page to uniquely identify 
the output. Note that the n_ has been 
blocked out. S(CONO.IIY TO. 

5.HYPEllTENSI0N. "'0 

6.-~UIIOLITHI.SIS. M'O. 

T.PLEUII.L 'LUIOI '011 PLEUIIAL IIUCTI~"'~-", 

I.LOW HE .. UOCIIITlIIGII 

L--_____ ... -- cTOTAL PIIOI LlSb 

I.ALCOHOLISM. C-IC • 

l.IL.E_C·SI CI_IS' 

3.(1)( .... PITTING. 5[CONOAIIY TO • ..oT SP£CI,.[O 

.131 II 

15.34 

U'31 II 

11.55 II 

1. '!'lIe centered titles are output whenever a 
new section (Information Type One--ITl) is 
output. They are not stored in the record 
but are supplied by the retrieval prQ9r ..... 

4. The aubtitles are output whenever a new sub
section Unformation Type Two--IT2) is out
put. (See page 2 of record.) 

5. The user nWllber, ti_, and date are displayed 
at the start of the paragraph or paragraphs 
to which they apply, whenever they change. 

NOTE: When the user n..mer, the tt- or the 
date do not change, they are not output. 

".IWLA .... IITICULAII DIS. INVOLVING' IIfIIST/CARPALS liT. IIN[(. LT. The date, U .... , and user nWllber are posi
tioned on the right to avoid distraction" 
fr_ the .edical content. S(CONO.IIY TO' 

S.MYPERTENSION. M'O 

6.UIIOLITMI.SIS. 
-~UIIOLITMIASIS. MID. 

6. All typed in data entered froe the keyboard 
are denoted by the "@" signs surrounding 
the data. 

J.PLEUIIAL 'LUIO' "'" PLEUR.L II[ACTI~_--

I'LOW HEMATOCIIIT/IIGII 

NOTE: All material printed here (exclusive of 
certain titles) wa. retrieved by the RETRIEVE 

(UfR .... 1 -- SN .. 12110/70 101511 PA6f l~pr09raJII frOlll the patient's record. All of this 
S""OLD'" 5"3-507-1 '" .. 9 information was stored into the patient's record 

by the STORE progrillll. 

CACTIVE PROB LIST~ 

I.ALCOHOLlS ... CHIIONIC • 

Z.ILAENNEC·SI CIRRHOSIS: 

3.EDE"'Ao PI TTING. SECONDARY TOI NOT SPEClrtED 

~NOTE: The "ACTIVE PROBLEM LIST" is a subset of 
the "TOTAL PROBLEM LIST", consistinCj of the last 
statement of each of the patient's active prob-
lems. 

1"'001"1 11155 11/)9170 

... INf'LA"'. ARTICULAR DISI INVOLVING: IIRISTICARPALS RT. KNEE. LT. 
SECONDARY TO. 

For the problem list, the SM=D, ITI-prob. 
list. IT2=body system under which problem is 
defined (this cannot be determined from the 
printout). The IT2 is known to the system, 
being associated with each problem when dis
vlayed on the list of the patient's problems 
by the VISUAL LIST prograJII before the user 
writes a problem oriented note. The IT2 is 

5.HYPERTENSION. "10 

6.-~UROLlTHIASIS. H/O. 

7.PLEURAL 'LUID' .oR PLEURAL REACTIONil 

8.LOII WE"'ATOCRIT 1"68 

I.ALCONOLISM. CHRONIC. 

2.ILAENNEC·SI CIRR"OSISI 

<TOTAL PROB LIST> 

3.EDE"' •• PITTING. SECONDARY TOI NOT SPfClnED 

9'31 11/20170 

15134 

22'32 11125170 

used to determine the Cjroup of tests and 
symptoms from which the user can choose in 
writing an INITIAL PLAN Or PROGRESS NOTE. 
For example, if the user selected "Low hemat
ocrit/HGB" writing a progress note, then the 
system would autOlllatically display the 
HEMATOPOETIC progress note displays. 

~NOTE: The "TOTAL PROBLEM LIST" is the "ACTIVE 
PROBLEM LIST" plus all problells that have been 
resolved/inactivated Or cc.bined. Here the 
COIIplete history of the probl_ can be seen, 
c.t. problem I'. The "--) " on the "ACTIVE" 

11155 11/19170 

... INI'LA"'. ARTICULAR 0151 INVOLVINGI IIRISTICARPALS RT. IlNEE. LT. 
SECO...oARY TOI 

list indicates the problea was restated (up
dated); on the "TOTAL" list, we see the original 
definition of the problell as well • 

5."YPERTENSION. "10 

6.UROLITHUSIS. 
-~UROLITHIASIS. M/O. 

T.PLEURAL fLUIDI .oR PLEURAL REACTlONlll 

8.LOII HEMlTOCRITI'HGB 

PATIENTI 
'RIENDI 
WRIEIIIII 

<1Hf'ORMANTS~ 

<CHIEf COMPLAINT> 

9131 11120170 

15134 

liZ! 3l 11I2SI70 

~ NOTE: All sections, "INFORMANTS" through 
"PHYSICAL DATA BASE BY SYSTEM- are all .part 

171.5 II 1191'10 of the DATA BASE part of the record (Box I 
in the C phase. of ~ical action) and are 
not problell oriented. 

----------------------------
.ALCOHOLISM ANO ARTHRITIS. 

IMOOI .. / 171.5 11/19nO 



Initial Operational Problem Oriented Medical Record System 251 

IlTER.i!1 -- S"' .. 12110170 10158 PAGf i! 
SBHOLD2 5"3-507-8 II .. 9 

<PUIE",T PROFILE' ~ NOTE. This entire "PATIENT P·ROFILE" section 

IMD01 .. 1 18155 11/19170 
IIPT. IS A 49 YEAR OlD IIIHITE IIIIDOIllED MACHI"'IST 111140 HAS 

ALLEGEDL Y BEEIII OUT Of' IIIORI( SINCE MID-SUMM£R. ALTHOUGH 
'iE CLAIMS TO HAVE BEEN OUT Of' IIIORI( OIiIL Y fOR THE PAST 
TIllO IIIEEI(S. HE HAS IIHfII AN ALCOHOlIC SlfilCE HIS TEfNS. 
CHRO .. ICALLY. BUT RECENTLY (OVER THE PAST fEIil MONTHS I 
HAS ALLEGEDLY IIilCREASED HIS INTAllf CONSIDERABLY. fOR 
TIlE PAST 2-4 IIIHIIS HE HAS BEEN DOING MOST Of HIS 
DNINI<ING AT HOME. SIIilCE THf HARTENDERS IN HIS AREA 
.. AVE RECOGNIZED THE SERIOUSlllfSS Of HIS PNOBLEM AIilD 
HAVE REfUSED TO SERVE HIM. ACCORDING TO HIS fHIE .. n. HE 
HAS BEE .. SPENDING A GREAT DEAL OF TIME AT HOM[ Ifil BED 
A .. D HAS HAD. fROM TlHE TO TI"'E SOME STRANGE 10[AS. fOR 
EXAMPLE. HE AT ONE TIME STATED THAT HE IIIAS GOING TO 
fJ .. O HIS wIfE (DEAD fOR ABOUT TWO YEARSI. ALSO HE 
CLAIMED TO HAVE HAD A .. APPLICATION I .. AT IIIEfllS SCHOOL. 
SOMETHlfIIG IIIHICH IS ALLEGEDLY fALSE •• 

<PRES ILL - fIIEW PROB> 

SX:4.~---------------------------------------------------
ORI",I(I"G PROBLEM 

O .. SET: GRA~UAL IIf11SIDIOUSI. 
COHME"'CEOI 30 YEARS AGO. 
SEVERITY AT WORST: SEV[RE. 

1"'00141 18:0;5 II/l'U70 

AMOUNT AT IIIORST: ."4-5 SHOTS AfilD A FElli BOHLES OF REER" • 
FRIEND RfLATES THAT HE I)lH"'IIS UP TO 3-4 SI~ PACI(S PfR 
DAY.II COURSE HAS BEf" COfllTl .. UOUS SINCE OIilSET. 

ASS.WI IIOE .. IES HAVING HAD DTtS OR CONVULSIONS. DE .. IES 
BLEEOING PROI:ILEH." 

OVERALL COURSE: GETTING IIIORSE. 
PATlE .. T'S ATTITUDE: DOfS NOT UfilDERSTAND. IS I"'DIFfERE"'T. 

UNREALISTIC. DOES fIIOT ACCEPT STATEMENT OF PROBLEM. 
JOINT PAlfil 

ONSET: SUDDEN (ABRUPTI. 
COOfMEIoICEDI I III~EI(S AGO. 
ANTECEOEIiIT TO ONSET: _CLAIMS BITTEN BY SPIDER ON RIGHT 

IIRIST. NOT REOUHIING RII. 
A"OUIIIT AT IIIORSTI CAN'T CONT. USUAL. ACTI GOES TO BED. STAYS 

1tOH£ fROM IIORI(I CAN'T DO PHYSICAL IIIORII. 
QUALITYI A DUll ACIIE CONTINUOUS SINCE OIiISET: 
LOCATIONI NUL. TlPLE JOlliITS ASSYM",ETRICAL: IIIRIST (SI. RIG'iT. 

I(NEE (51. LEFT. 
RELIEVED BY: NOTHING • 
.. ADE IIIORSE BYI NOTHING IN PARTICULAR. 
ASSOCIJTED IfITHI COULON'T DETERMINE. 
OVERALL COURSE: UIIICHANGED. 
PATIENT'S ATTITUDE: ODES NOT UNDERSTAND. ACCEPTS STAlEMENf 

OF pROBLEM. 
EDEMAI 

OIiISET I GRADUAL (INSIDIOUS). 

•

• Cill'4IiPIIUiTt.IRliliiZEIiD.POMH IITI':II.21 -- SN 4 17/10170 10:5/1 PAGE 
SI!HOLD2 S43-507-8 H .. 9 

,OMHE",CED: I IIIfEKS AGO. 
SEVERITY AT 1iI0RSH HODEPATf. QUALITY: PITTING. 
:)15TRI9U1I0N: LOCALIZEO. 
L\lCATION: fEET ONLY. BILATERAL. COURSE HAS BEfN CONTiNUOUS 

SINCE ONSET. 
~ELlEvED /lY: NOTHING. 
,"JT RfLlEVfD BY: ANYTHING. 
"AOE WORSE BY: NOTHING IN PARTICULAR. 
ASSOCIATED wIT": COULON" DETERMI"IE. 
ovERALL COURSE: SUBSIDING. 
PATIENT'S ATTITUDf: DOES NOT UNDERSTAND. ACCEPTS STATEMfNT 

Of PROBl EIoO. 

~HISTORY ~ LAB OATA BASE> 

IMD;>I2I 15114 11119170 
PATl£NT ADMINISTERED HISTORy fOLLOIIIS: 

114001'+1 1I11SS 
, .. II "lOT ENTERED BY PH 

was typed in by the physician using the "KEY" 
(type-in) program. This section of the record 
is one of the few areas which is not structured, 
allowing only typed-in information. 

This is a subtitle. 

This demonstrates the _ta-structure approach 
in handling SY.ptOlllS. 

NOTE: Example of indentation levels of FORMAT 
routine as used by RETRIEVE to the printer: "SX" 
is at level 0: "DRINKING PROBLEM" at level I. 
"ONSET", "COMMENCED", etc. at level 2. These 
codes are stored with the paraqraphs of data 
by the STORE program-since they will be needed 
every ti_ that this data is retrieved from the 
record. 

NOTE: Because of the specified mode of retrieval 
("cycled"), each body system contains all HISTORY 
, LAB DATA BASE material entered under that body 
system in a cumUlative manner, regardless of the 
time of entry or the aspect of the HISTORY , LAB 
DATA BASE (e.g. LAB order, patient IIX). This 
ability of the RETRIEVE program allows an inte
grative association of subject-related infor
mation which is entered in a temporally unre
lated manner. This is facilitated by the STORE 
program storing the information in such a way 
that this and other associations (e.g. flow
sheets output by RETRIEVE-FLOWSHEET) are 
possible. This section of the record 
is "cycled" on each body system and may contain 
patient entered HISTORY (SM=T) ,physician entered 
/IISTORY (SM=D) and/or physician entered LAB 
orders and reports (SM=Nl. This demonstrates 
that one body system under this ITl can contain 
all modes of storage (see GENITO-URINARY/RENAL, 
below) • 

r:;O~ .• E: The sections of 1:he HISTORY W.hiCh are not 
COr.STlTUTlOIilAL SUMMARY/GENERAL: IMD2121 15: 14 ........ tyo('d in have been produced by the patient 

ADULT MALE. sitting at a terminal answering questions. The 
"'0 wEIGHT LOSS. PECE'o!TL Y LOST APPE TI Tf. ...OT FEH ING TlRFO. responses arc translated and stored by the STORE 

"'OT HAVING fEVER. program (SM=T), utilizing the translation 
1"'00141 18: 55 dict10nary created by the DETRAN program. The 

-"DRUGS - HIGH BLOOD PRESSURE PILL 1-2 PER DAY DEPEND IlliG Gill Thr Ll.D. code (MD2l2) in th1s case refers to the 
WAY HE fELT- 1nd1vidual who "tarted the patient on the h1story. 

SOCIAL PROf"lLE: 
11010;>1.21 15114 ::OTE: Typed in sections of the HISTORY are 

ADULT MALE. AGE 49. corrections or additions made by the physician 
90R'I 1"1 VERMONT! TOWill or LESS THAlli 5.000 PfOPlf. LIVED I'" APEA after r('ading the patient generated HISTORY 

Of CURRENT RESIDENCE rON ALL t)f LIFE. (SM=D) • 
LAST COMPLETED GRADE: lOTI'. Wt)UlD ,"OT L1H fURTHER EDUCATlOIII 

OR TRAINING. 
'4APRlfD. DOES IIIOT LIVE WI WIH. LIVES ALONl. (OOIlS OW ... 

HEALS~ IIIIOOWED fOR >1 YEAR. 
SATISIFIED WI PRESENT LlVIIIG CONDITIONS. 
SE~VEO IN AC1HED fOPCES. 
PIlESENTlY EMPLOYED. SATISF"lED WITH PPES!':NT JOH. DOfS WO"K 

SITTING DOIilN. GETS DAILY EXERCISE. 
SuPPORTED "A)NL Y BY SELf. 
:>RINI(5 "ANY O'HN/(S/DAY. SOMETIMES: MISSES WORK ON MONDAf 

MOR .. INGSI TAKES A DRIIII/( IN THE MOl'''IIN(,. HOSPITALllEO 
DUE TO DPINKING. 

EATS;> OP MORE MEALS/DAY I MEAT OR EGGS WITH I OR MORE OF THEM. 
26 POSt 16 NEG. 0 ONK. 0 D'IU ... ,. ... ________________ _ 

P,fECTlOUS DISEASE: 
~AS HAD CHICKEN pox. RUBELLA. PUBEOLA. HEPUITIS. MU"PS. 

TYP'i/)IO. WHOOPING COUGH. 
1 POSt I NEG. 0 ONK. 0 ONU. 

I ..... JIIII ZAT IONS: 

NOTE. The larger patient generated HISTORY 
sections are followed by a summary of the number 
of POSitive, NEGative, Do Not Know, and Do Not 
Understand responses to -that section of the
patient administered HISTORY. 



252 Spring Joint Computer Conference, 1971 

•
-.-iCiiOM.PiiUii'IiEiiRliiZiiEiiiD.POMRts", UTER.ll -- SIll 4 luuno 10158 PAGE 4 BHOLDZ 543-501-8 M 49 

INJECTIONS IN PAST F'IVE YEARSa INf'LUENZAI SMALL POX 
IVACCINATlON) I TYPHOIOI OP'. 

IN PAST TEN yEARS ftAS "AD POLIO SHOTS. 
5 POSt 0 NEG. 0 DNKt 0 GNU. 

FAMILY IIISTORUGENETICI 
HYPERTENSION- F'ATHER. STROKE- rantER. HYPERTENSION- IIOTHF.:R. 

It[ART OISEASE- FATHER. T .B.- SISTER. 
FATHER DIED AT AGE AGED 50 TO 59. MOTHER DIED AT AGE 60 TO 69. 

PATERNAL GRANOF'ATHER DIED AT AGE UNKNOVN. IIOT KIIOWIiI 
IF' PATERNAL GRANOIIOTHER LIVING. MATERNAL GRANOF'ATIt[R 
DIED AT AGE NOT KIIOWIiI. MATEIINAL GRANDMOTHER OlEO AT 
AGE NOT I(NOVN. 

16 POSt 6 NEG. I ONK. 0 ONU. 

DEAN-ALLERGY I 
OfTEN WORKED AROUND CHEMICALS. SOLVENTS. OR CLEANING F'LUIDS. 

I POS. 6 NEG. 0 DNK. 0 DNU. 

EYE. EAR. IIOSE. THROATI 
IlEARS OR HAS 1I0Rte GLASSES. ./0 GLASSES HAS TROUBLE SEEING UP 

CLOSE. VISION SATISF'ACTORY III GLASSES. 
3 POS. 17 NEG. 0 DNK. 0 DNU. 

MUCH LOUD NOlst: IN PLACE OF' EMPLOYNENT. 
HAS SHOT A GUN A GREAT DEAL. 

I POS. 14 NEG. 0 ONK. 0 GNU. 

DENTAL' 
11/0 DE"T~ X-ItAYS. 
EATS MUCH 8READ. POTATO[S OR .... CARONI. SOMETIMES EATS RAil 

VEGETABLfS. 
8RUSHES TEETH 11/ TOOTHBRUSH ONCE A DAY. 

4 POS. II NEG. 0 DNK. 0 GNU. 

It[ .... TOPOUICI 
o ~OS. II NEG. o DNK. • GNU. 

NOTE: ~eN are LAB order. under the ax • LAB 
DATA IlASE (11'1) Nc:tion ( .... ). TIle .. are _ch 
.tored .. n_ric: block. in tile patient'. record 
by the S'I'ORE progr_. After each addition to a 
patient'. record, the S'I'ORE progr_ call. 
STORE-LIST which then proc:e •••• · _ .ntrie. 
to the patient'. record (by _iog a lIB'faIZVE 
routine) • 'I'he new entrie. in thi. c:_, would 
be plac:ed on a U.t of thb patient'. _t
.tanding lab. order.' .. e the lbt. on page. "7."8 
for ex.-ple.). 

"'0014/ 17'05 n_ric: block. by the S'I'ORE progr_ ( .... ). 

~~I RAT[ ........ ------------------- ~::e (:::r:r a~::. r;r.~~ L~c::~~jPo:-~
1IO'l'E: Tbe.e are the reported value. for the 
previ_. two lab. order., al~ .tored .. 

/MDlll/ 8145 II/ZOn _Utandiog lab. orden for tbb patient 
11IHPF' CIIC' HeT C.) 39. NGII CGetS.1 11.5. wee: ... 0 • IIBC 01,.F' SEG/ a. _truc:ted by 8'rOIIE-LIS'l'. Tbe Nt of 

54 •• IdfG/ I.' LMCI 3lSi MOMI 10.1 EOSI I.' 8AS/ I.' di.play. c:ontainift9 the appropriate c:hoice. 
PLATELfTS for reportiog the value 18 .'-n to the _r 

3 ..... / .. UNCORII .29MM/" COIIII • SED IfATf vllen he ~ .. the order to report. ~i. 

ttGI 
He' 

1110014/ Z1I51 II/Z3/1. ..t of d18play. i. pre-defined for eac:b 
order at the tt.e it i. ordered by _ of 

1I.4GetS. HGe 
361 HeT 

-.- par_ter. wbic:b caaM tile pla_nt of a 
.pec:1fic: value in a 8p8c:1fic: field in tile 
n_ric: block for tIIet order. In _t c: .... , 

;..~:-i~:!t:.::n a= =-~~ v!t=-~::; 
RESPIRATORY! 

-- CSW'!J
Z

" P=~~~E;;~~S;;_8 S: :9IUIO/70 10151 

CONTACT 11/ PfRSON II' T .1 •• 
SMOKfS CIGARETTESI I PACK/DAY F'OR 31-40 YfARS. 

5 POSe IS NEG. I DNK. 0 ONU. 

CIlEST X-RU CPA. 

PAGE 5 

actual report of tan prec:eed. the _ of the 
ta.t (e.g. 8ed. rata report). After the .. 
re.ulta have been .tored in the patient'. 
rec:ord by nou, noU-LI8T will proe:e •• 
the .. _ric: block., r_iog tile -CIIC" and 
-SllD.ItA.,." order. f~ tile li8t of ouUtandiog 
order ••• inc:e unl ... otherw18 •• pecified, lab. 
order. are ...... to be .-ted _ly _. 

/CCOI5/ 015B 11122/70 
cOONE> CHEST X-RAY CPA' ..,A AND LAT CHfST •• A NORMAL CARDUC ..-IIO'1'E: Thb dellOn.trate. that .. teri.l c:an be 

SILHOUETTE ••• LUNG F'lELDS •• CLEAR EXCEPT F'OR A RT. typed in (using the KEY progr_) vllen reportiog 
PLEURAL ANGLE 8LUNTING IIHICII liAS NOT PRESENT IN 19611. a te.t result that 18 .tored a. a D_ric: block 
THIS MAY REPRESENT OLD PLEURAL RUCTION F'RDII A by the STORE pr09r- (QIaoIl). 
PREVIOUS ILLNESS BUT COULD REPRESENT A NEil PROCESS. 
F'LUOftOSCOPIC EXAM AfCOMMfNOED •• 

8REAST: 

o POSe 4 NEG. 0 ONK. 0 GNU. 

CARDIOVASCULARI 
PAINLESS SWELLING F'REOU[NT Ih 80TH FEET OR ANKLfS WHICH GO£S 

DOliN OVERNIGHT. 
HAS TAKEN HYPER TENS I WE IIfDS 
TOLD HAS HAD HIGH 8LOOD PRESSURE. 

5 POS. 11 NEG. 1 ONK. 0 DNU. 

EI(G 
/CCOI5/ 17' Z8 IU13/70 

cOON[> EKG IIRHYTHMaSINUSA 'V RATES-ABOUT 90. PR INTaO.16. ORS 
INT-0.08. OTC-Nt. AXIS-RLO. INTfRPRETATlON-SINUS 
RHYTHM. PVC IS ARE PRESENT. POOR R IIAVf UNTIL V3 •• 

GASTROINTESTINAL I 

11/0 ESOPHAGEAL X-RAYS. 
H/O STOMACH X-RAYS. 
11/0 LIVER DISEASE. JAUNDICE. 
H/O GALL 8LADOfR X-RA'S. 
H/O X-RAYS OF' BOWfL. 
11/0 HEMORRHOIDS. 

7 POS. 19 NEG. 0 ONK. 0 ONU. 

MUSCULD-Sl(fLETAL I 
H/O SHDULDfR TROUBLE. 

1 POSt 1. MfG. 0 ONK. 0 DNU. 

ENDOCRINE' 
MORE CLOTHES IIORN IN COLD WEATHER THAN IEF'ORE. 
LOIIUT WfIGHT AS AOUL T 1I0-110 LIS 
GAfATfST WEIGHT AS ADULT 161-170 LIS CAT AGE 1'-30 •• 

4 POSe 16 NEG. 1 ONK. 1 DNU. 

I HR. p.e. GLUC 

hA 
I( 



Initial Operational Problem Oriented Medical Record System 253 

C02 
CL 

POMR C ITER.ll -- SN 4 12110.170 
SBHOLD2 543-507-8 M 49 

10159 PAGE 6 

IMD2121 8145 1I1l0.l70 
135 MEQ/L NA 
3.5 MEQ/L K 
27 MEQ/L C02 
95 MEQ/L CL 
112 MGIIOO ML 2 HR. p.C. GLUC lINOT STATED ON LAB SLIP WHETHER 2 

HR PC" 

GENI TO-URINARY IRENAL I 
15114 11/19nO 

URINE HAS BEEN BLOODY OR COFFEE COLORED. 
TOLD HAD KIDNEY OR BLADDER STONES. STONES PASSED WI URINE. 
TOLD HAD KIDNEY OR BLADDER INFECTION 
DOES NOT HAVE ANY SEX PROBLEMS. 
HAS NOT BEEN CIRCUHSIIED. 

6 POSt 18 NEG. 2 DNK. 0 DNU. 

BUN 
ROUTINE URINE 
QUAL. VORL 

IMD0141 17105 

181S5 
IIHAD KIDNEY OR BLADDER STONES SOME TIME AROUND 1942. NON£ 

SINCE. STATES 'THE DRS. "DISSOLVED" THE STONES WITH A 
SPECIAL LIQUID (OR. '. NO GU SYMPTOMS 
RECENTLY/" 

IND2121 8145 lIllOnO 
ROUTINE URINE YEL. CLR. SPGR: 1.005. PH 5. PROT NEG. CHO NEG. AC. 

NEG. SEDI SP. wBe: fEW./HPf. 
3 MGII00 ML 8UN 

NEGA TI VE. QUAL. VORL 

S. CREATININE 

1.0 MG/IOO ML S. CREATININE 

NEUROLOGY' 

ICC025/ 15151 

INDOI4/ ZII51 111l3nO 

ICCOZ5/ 16131 111Z4no 

IM02121 15114 11/19/70 
TROUBLE HOVING ARMS ANO L.EGS ON BOTH SIDES. 
NUMBNESS OR TINGLING OF ARMS. HANDS. LEGS OR FEET PRESENT FOR 

SEVERAL WEEKS. 
5 PDS. 18 NEG. 0 DNK. 0 DNU. 

IMOOl41 18155 
IIOIFFICULTY MOVING THE LEFT LEG IS BECAUSE Of THE PAIN 

ASSOCIATED WITH THE ARTHRITIS IN THE LEFT KNEE. DENIES 
NUMBNESS OR TINGLlMG IN THE ARMS AND LEGS." 

PSYCHIATRY. 

DECREASED INTEREST OR ENJOYMENT IN SEX. 
Z POSt 34 NEG. 0 DNK. 0 ONU. 

-- frU"!!';; P::~~~E:4~~5;;_8 s: :9121lOno 10159 

SUMMARY STATlSTlCSI 
INTERVIEw COMPL.ETEO. 
TOTALS. 

PAGE: 7 

IMOZIZ/ 15114 

lOS POS.Z67 NEG. 8 ONK. 0 GNU ........... --------__ _ 
NOTE: These are the totals for the patient 
adainistered HIS'l'ORY sectiona as stored in 
the patient's record by the STORE prOCJr_ 
(SM-T) • <PHYSICAL DATA BAS[ IY SYSTEM> 

IMOZIZI 15103 11/19170 

VITAL SIGNSI 
TEMP. OIlAL(OEGR£ES CII 36.1 
PULSE. RAOIALI 10/MIN. RHYTHM NOT NOTED. 
R[SPIRATIONSI ZO/MIN. 

~ NOTE: These vital si9nS _re entered as aoon 
as the patient arrived on the ward. 

BP. LT ARH. SITTINGI 1 62/90 14M HG. VPI NOT EVALUATED. 
WEIGHT. LII I 25. HEIGHT/LENGTHI NOT M£AS. 

IMOOllo1 11105 

VITAl SIGNSI TEMPI NOT TAKEN. 
PULS[. RADULI 1 08/MIN. REGULAR. 
RESPIRATIONSI 20lMIN, 

~ NOTE: These vital si9ns and the rest of the 
physical ex __ re entered by the physician 

IP. itT ARM. SUPINEI 170.1105 MM MG, 
BP. LT ARM. SUPINEI 170/105 MM MG. 
aP. itT AItM. STANDINGI 1 70/10 .. MM MG • 
.IVP. 0 CM AIDy[ STERNAL ANGLE AT .. 5 DEGREES ELEV. 

DETERMINED. HEIGHT/LENGTHI NIT M£AS. 

GE:N£RAL APPEAItANCE 1 

WEIGHTI NOT 

THE PATIENT IS A CHRONICALLY ILL. NORMALLY NOURISHED. MIDDlE 
AGE:D (APPEARS STATED AGEl. CAUCASIAN MALEI RESPONSIVE 
COOPERATIVE. AND CAN CARE FOR SELF. 

CURRENTLY REQUIRESI ND AIDS. PT IS ANXIOUS. 

SKINI NORMAL. 

HEAD I NORMAL. 

EYESI 
[yE NOVEM£NTSI [yE MOVEMENTS NORMAL. 
PUPllSI ROUHO. EQUAL ... MN. ESTIMATED. REACT TO LIGHT ~ ACCON •• 
FUNDUS I 

811AT. NORMAL. 

EARS I 
EXTERNAL CANALI llLAT. NORMAL. 
TYMPANIC MEMBRANEI IILATI NORMAL COLOR. MID POSITION. LIGHT 

R£'lEX NORMAL. 
HEARINGI NORMAL lILAT. 

NOSE ~ NASOPHARYNU NORMAL. 

OROPHARYNX I 
TONGUEI lILAT. ~OARSE TREMOR. GENERAlIZEOII 
T[[THI 

GE:N[RAlL YI "ANY AISENT. 

followift9 the nor.al patient work-up on the 
ward. 



254 Spring Joint Computer Conference, 1971 

1--lfilolptIUllfIRflfEIDIIPOMR (ITER.21 -- SN 4 12110170 
•• 1.1 •• I ••• • SBHOl02 543-507-8 14 49 

NECI(: 
THYROIDI NORMAL SIZED. SYMMETRICAL, 

lYMPH NOOESI NONE PALPABLE. 

CHEST AND LUNGS: 
RESPIRATION: NORMAL. 
INSPECTION: NORMAL. 
PALPATION: NORMAL. 
PERCUSSIOtof: RESONANT THROUGHOUT' 
AUSCUL TATION: 
NORMAL BREATH SOUNOSI BILU. ENTIRE CHEST, 

CARDIOVASCULAR: 
ARTERIAL PULSESI ALL NORMAL. 

10159 PAGE 8 

JUGULAR VENOUS PULSE: VEtofOUS PRESSURE: ·0 CM ABOVE STERNAL ANGLE 
AT itS DEGREES ELEVATION. 

PALPATION: 
APEX BEATI LOCALIZED AT MCl Itof ItTH ICS. 

AUSCULTATION: NORMAL. 

ABDOMEN: INSPECTION NORMAL. PERCUSSIOtof NORMAL. AUSCUlTATION 
NORMAL. 

RECTAL! 
NORMAL. 
STOOL ABSENT. 

EXTREMITIES' 
JOINTS. 

WRIST: RT: SWELLING/ENLARGEMENT: OVEN ENTIRE JOINT, MAINlY 
SOf'T TISSUE. RUBBERY, TENDER. IiOT. 

JOINTS: 
KNEE. LTI PAIN ON MOTION: ACTIVE" PASSIVE. CONSTANT. 

INf'lAMMATION W/O SWELL.' OVER ENTIRE JOINT. 

EXTREMITIES' 
lOWER LEG' 3. PITTING EDEMA. ANKLES. BILAT. RT • l T. 

BACK/FLANK/SPINE , 
PALP/PERCUSSION PAIN: BILAT. son TISSUE' FLANf(. 

COSTOVERTEBRAL ANGLE, MILO. BILAY. SOFT TISSUEI MILO. 

MALE GENITALIA' 
PUBIC HAIR. FEMALE ESCUTCHEON. 

NEUROLOGIC EXAMI 
ItEtofTAL STATUS' FUlLY RESPONSIVE. DAY OF WEEK. DATE Of' MONTIi. 

FUlLY COOPERATIVE. 
ACTIVITY" B(HAVIOR. NORMAL MOTOR ACTIVITY. AflLE TO CAliF FOR 

SELr. NORMAL BElfAVIOR. 
APrEARANCE I UNtfEMPTo SLOPPY. 
MEMoRY.INTELl •• PARIETAL: REMOTE MOO. IMPAIRED. NORMAL 

-- ['Emilia r~:~o~~~E:;~~5;;_8 S: :91Ul0170 

INTELLIGENCE. ABLE TO ABSTRACT. 
FUIilO or KNOWLEDGE: SlIGHTLV DErICIENT. 
SPEECH: NORMAL. 
CIILCULATIONS: DOES SERIAL 7'S. 

10159 PAGE 

INSIGHT .. JUDGEMENT: UNDERSTANDS ILLNESS. JUDGEMENT NORMAL. 
14000 .. AFFECT: WITHDRAWN. FLAT. 
THOUGHT CONTENT: NORMAL. 

CRANIAL NERVES: 
II IIIOT TESTED. 
lI: ACUITV NOT TESTED. COLOR VISION NOT TESTED. VISUAL 

rIELDS NORMAL TO CONFRONTATION. FUIilOI NORMAL. 
III.IV.VI: RECORDED UNDER EYE EXAM 
V: "ASTlCATlON IIilTACT. SENSATION INTACT. 
VII: MOTOR INTACT. TASTE NOT TESTED. 
Villi HEARING ""ORMAL. CALORICS NOT TESTED. 
IX.x: NORMAL. 
XI: ~RMAL. 
XII: TREMOR. BILAT. 

MOTOR: (RT HANOEOI 
STRENGTH: NORMAL. 
BULK: 

ATROPIIV. SLIGIiTI BILAT 
TO"lE: NORMAL. 
COORDINATION: NORMAL. 
GAIT. STANCE: VEERS. TO LT. 
ABNORMAL MOVEMfNTS: TREMOR. ENTIRE BODV. AT REST. 

REFLEXES: CONTINUOUS. MODERATE 16-9/SECI. COARSE. 

OTR'S: 
BICEPS JERK: BILAT. Z" 
TRICEPS JERK: BILATo Z" 
KNEE JERK: BILAT. Z •• 
ANKLE JERK: BILAT. O. 

PLANTAR RESPONSE: RT FLEXOR. LT FLEXOR. 
ABOOMI"IAL PRESENT RILAT. 

SE"ISORYI COOPERATION GOOD. 
SUPERFICIAL PAIN: NORMAL. 
TOUCII: NOAMAL. 
VIBRATION: MOOERATELV DECREASED AT SIOEI LF.G. 
VIBRATION: SLIGHTLY DECREASED LT 510El HG. 

<GEN WARD INFO> 

PLN-G[N IUIAD: 

PT.ACl: uP WI ASSISTANCE .. AS TOL." 

~ NOTE: "GENERAL WARD INFORMATION" contains 
inf0l1!'ation ne:essary for general ward/hotel 
funct10ns. Th1S section is not problem 
oriented. 11400141 191Ze 11/19170 

VISITING REGULAP. 
HOUSE DIET. FLUIDS AD LIB. 
CHLOAAL IIVORITE 1000MG PRN Xl. p.O. 

::i~II~F ~~~Nf.SU SUSP. lOML PAN Xlo p.O. 

T[MP OBIt 

~ NOTE: Theaeare actual orders which are stored 
in the patient' s record as nu.eric blocks by 
STORE (SM-NI. Similar to the method mentioned 
aItOve. these are added to a list of this patient'. 
outstanding orders by STORE-LIST. (Note these 
on page ('7 on the patient Non-Rx order Hst.1 



Initial Operational Problem Oriented Medical Record System~- 255 

PULSE OIH 
RESP OIH 
BP 01" 

UBJI 

UTER.ll -- SN 10 IUlO170 10159 PAGE 10 
SBHOLD2 543-501-1 .. 49 

'UNOlV ZZl04 
CHLORAL HYDRATE 1000". 

31.6'C TEMP OIH 

~ 
'US010' 1107 lInono 

NOTE: This is the execution of the -CHLORAL 
HYDRATE- ordered u.ediately above. This 
execution was specified by the Unit Nurse 
(UN02 .. ) by choosinq the order frOll the out
standinq list of orders displayed by the 
VISUAL LIST proqram from the list created 

II 'MIN PUlSE OIH 
20'''IN RESP OIH 

I1oUl00 8P OIH ."'KEN AT 1100 AM •• 

160'110 8P oeH 
8"MIN PULSE OIH 
lO'MIN RESP 08H 

37.3'C TEMP OIH "PM TEMP RECORDED LATE. 
84'MIN PULSE OIH .IP" RECORDED LATE_ 
20,n1N RESP 01" .. PM RECORDED LATE. 

37.2'C TEMP OIH 
8B 'MIN PULSE OIH 
20'MIN RESP O8H 

150/100 BP OIH 
I"MIN PULSE OIH 
lO'MIN RESP OIH 

17B'110 8P OIH 
81o'MIN PULSE OIH 
2UNIN RESP O8H 

37'C TEMP Q8H 
.. 'MIN PULSE alH 
lO,nlN RESP oeH 

123 LIS WEIGHT GOO 

190'112 BP OIH 
I"MIN PULSE aIM 
20/MIN RESP O8H 

36.I'C TEMP"" 
II ,nlN PUlSE OIM 
28/n1N RESP oeH 

138'90 BP aIM 
14,n1N PUlSE OIH 
20'MIN RESP oeH 

J60/90 BP OIH 
.. UnIN PULSE 08" 
lZ'MIN RESP"" 

'UN020' 10158 

21111 

'US0101 9116 lInlno 

'UNOlJ' 9'56 

IUNOZ51 15156 

'USOIOI 16104 

IUN014' 6139 UnU70 

'UNOI5' 7&101 

IUS010' 1146 

'UNO lJ, 1 .. SO 

'UNOZS' 15.43 

by STORE-LIST. Note that the entire order 
is not shown, but rather is truncated with 
a - * -• This was done to l8ake the record 
easier to read; the entire order is always 
available in the record. The order is 
assWlled to be ,executed as stated unless 
otherwise stated (c. f. blood pressure (BP) 
entered by UN020 at 10:58). Since this 
order was specified to be executed only 
once (-Xl-), the order is removed froa the 
list of outstandinq orders when the nwaeric 
block reflectinq the execution (stored by 
STORE, SM2N) is processed by STORE-LIST. 

--COMPUTERIZED poaR IITER.2) -- SN 4 12/10/70 11100 PAGE 11 
III I I SBHOlDl 543-507-1 .. 49 

37.4·C TEMP OIH 
88 'MIN PUlSE 08H 
lO'MIN RESP OIH 

37 .1'5 TEMP OIH 
108 'MIN PULSE 08H 
20'MIN RfSP OIH 

160'90 BP 08H 

<DONE> PT.AST: UP W, ASSISTA. 

37.2'5 TEMP OIH 
100 '"IN PULSE 08H 
20'MIN RESP 08H 

9UMIN PULSE Q8H 
2 O'MIN RESP QIH 
180'100 8P OIH 

92'MIN PULSE OIH 
2 O'MIN RESP QIH 
16UlOO 8P OIH 

36.9·S TEMP 08H 
92 'MIN PULSE 08H 
lO'MIN RESP Q8H 

~2'MIN PULSE 08H 
20'MIN RESP 08H 
160/98 8P 08H 

37.2·S TEMP 08H 
88 'MIN PULSE OIH 
20'MIN RESP OIH .THIS IS A 4:00PM TPR._ 

76'MIN PULSE 08H 
2 O'MIN RESP 08H 
166/104 BP OIH 

104'MIN PUlSE QIH 
20/MIN RESP Q8H 
IlO'90 8P 08H .TAKEN AT 1100 PM •• 

80/NIN PULSE OIH 
170'100 8P OIH 
lOIMIN RESP OIH 

36.5'5 TEMP OIH 
12 IMIN PULSE OIH 
20/MIN RESP OIH 

14/MIN PULSE OIH 

IUSOI01 15154 

7133 11.123/70 

IUN02U 9149 

14111 

IUSOI01 16105 

IUN0171 11'25 

IUSOIO' 19:]6 

7157 11/24110 

IUN0221 10 '34 

IUSOIOI 18117 

IUN0201 11145 

23110 

IUNOl51 7138 l11l5/10 

IUSOI0/ 1119 

/UNOZU 11140 



256 Spring Joint Computer Conlerence, 1971 

'ITER.2) -- SN 4 I2IIOllO 11100 PAGE 12 

20/1lliN RESP oaM 
150/90 8P oaM 

SlMOl02 543-S07-a 14 49 

36.I I C TEMP oaM 
81t IMIN PULSE oaH 
20/MIN RESP OIH 

81t/MIN PULSE OIH 
I 6/MIN RESP OIH 
156/116 8P oaH .AT 4100 PM •• 

96/MIN PULSE OIH 
2 OIMIN RESP OIH 
1821100 8P 01" 

120 L8S IlEIGHT 000 

37. I C TEMP OIH 
881I11IN PULSE OIlH 
20/M I N RESP oaH 

681MIN PULSE oaH 
2 OIMIN RESP.OIH 
188/120 8P oaH 

92/IilIN PULSE 08H 
20/MIN RESP oaM 
160/100 8P oaH 

37. I C TEMP oaH 
96/14IN PULSE oaH 
21t1MIN RESP 08H 

81t/MIN PULSE 08H 
18/MIN • RESP 08H 
161t/98 8P 08H 

IUS0101 16109 

IUN0201 17136 

21:56 

IUNOlt31 6139 11126170 

IUSOIOI 7159 

IUN0201 13137 

IUN021t1 15152 

IUN0171 151S1t 

IUN021t1 191"5 

IUN0171 20115 
ltNEOLOIO 60 Cc.S GIVEN P.o. FOR IVP PREPII/tlNOIItI 0116 ~ NOTE: This is an execution of an order which 

11127170 is part of a preparation reg~mine fC!r another 
order. For cases such as thl.s, we l.nstruct 
the nurse to type-in (using KEY) the order as 
it was executed under the proper problem or 
under "GENERAL WARD" if they do not know the 
problem number. This should have been entered 
unde"r problem IS (HYPERTENSION. H/O), for 
which the IVP was ordered. 

150/92 8P 08H 
80/MIN PULSE 08M 
18/MIN RESP 08H 

36.8 1 C TEMP 08H 
88 IMIN PULSE 08H 
20/MIN RESP Q8H 

1621110 8P 08H 
PLN-GEN "'ROI 

IU50101 711t5 

IUN0221 7148 

IMDOl41 14121 
DISCHARGE PT. "'lTM FIIIENO. VALUA8LES. VIA AMBULATORY. 

O!lJ: 
IUS0101 16106 

37.2'C TEMP OIlH 

t'l*PUT£.n~D POMIt tlTfR 2) - SN 4 IlIl"" Ill" PAGE]3 NOTE: The reJIainder of thh printed recora 
--58HOl02 543-S07-a .. 49 consists of all of the data in aequence on 

•••••••••• • each of the probl_a on the "TOTAL PROBLEM LIST", 
96 IMIN PULSf: 08H beginning with proble. n. All inforaation on 
2011111N RESP 08H a single problea is not atored physically 

IUNOI71 161 .. 5 together by the STORE progr_ in the patient'a 
"'T. DISCMARGED AT 5110 P .... lilT" PRESCIIIPTJ~.11 record, but rather is phyaically atored in a 

chronological faahion vith pointera to each 
ePLANS - INnlAL» paragraph (identified by ITl, IT2, Date, Tt.., 

---------------------------- and Proble .. f) ao .any different aaaociative 
modea of retrieval are _de poaaible, e.g. 

1.ALCOtiOlISM. CHRONIC. RETRIEVE data aa it vaa chronologically entered, 
PLliI-R/OI RETRIEVE data grouped by probl_, RETRIEVE tt.. 

IM001 .. 1 19121 11/19170 ordered lht of physiologic par_tera (FLOW-
RIO _IMP£NOING OT·S. SHEET), etc. The ca.plexibility and flexibility 

PLN-DDAI of the atored patient data is not obvious to 
... ARALDEHYDE. 7.SML 114" PRN SlANDING ... OR AGnATI~ P'O'l l11Ost users. The RETRIEVE progr_, in the 
~HLORAL HYORATElil IGM OMS PAN STANDING P.O. "cycled" IIOde apecified here, goaa through the 

PLN-PROI . record and bring. together all inforaation on 
IIPADOED SID£ I:A~~. V~=D I~o::. kAOt: "A~Y. "AVE SYRING( lilT" :~~hp~~~:!.,~ ~l!n;~~~!x. -=S o:n a tt!~bl-

problem. ePROG NOT[S:. 
----------------------------

"GTE: Theae drug ordera, after being atored in 
1.ALCOHOLISM. CHRONIC. the record by STORE (SM-N), vill be added to 

QX-GIVEN: the patient'a Uat of outatanding ordera by 
IUN0251 20111 ll/19170 STORE-LIST. Note that the drug _a _re PADDED Slot: RAILS. PAt 

.S'ZOPM. PARALDEHYOt: 7.5ML O4H* 
S~: 

typed in. This indicatea that the druga given 

=l 
were not On the liat of pre-defined drugs for 
that problea ata~nt. Since theae are 

,MDO ... , 9131 ll120170 standing ordera, they can atill be aeen on the 
.SPENT "AIR NIGHT.II Uat of outatanding ax ordera on page ,61. 08JI 
.APPEARS LESS SHAKY THAN LAST NIGHT. PA~AlO[HYo[ IIORKING IIELL. 

OIIIENTIED UC[PT ,.OR OAY OIF MONTH. THINKING STILL t!OTE: Here are executions of two of the ordera 
~O.ED HneVER.. fr_ above. Note they are truacated with a IIII-GIVENI 

PADDED SlOE "AILS. PA* 

CHLORAL HYDAAT[ IG .. 0* 
SA: 

.I .... ROVING. APPETITE RETURNING •• 
OVERALL COURSE: GETTING KTTER. 

PLN-DDU 
lITttU"INf. SING I/OAY Xlt S.D. I .... 

IUN.211 10 I SI 

IUN0171 2Z118 

'MO' 1'" 91"6 11121170 

• THERAGRAN ..... lCAP. 110AY STANDING. 5.0. P.O. 
"x-GIVENI 

CHLORAL HYDRATE IGM 0* 
OIiJI 

el1/20170 2 HR PC-lit MGS •• 
~jI-61VENt 

IUNtIlI 22116 

1((125' Ilia 1.,22171 

IUNtl31 11113 

"." for eaae in reading the record. Note alao 
that the PARALDEHYDE vaa not executed .. 
ordered but rather vaa given at 5:20 p ••• 



Initial Operational Problem Oriented Medical Record System 257 

IITEA.ll -- SN 4 IUIOnO 11100 PAGE 14 
SBHOL02 543-S01-8 .. 49 

THEAAGAA",-M ICAP. 110-
TlIIAMINE SONG 1I0AY II

Sill 

"EELING 8ETTEA, EATlNG •• 
08J: 

11'100141 10126 

'IlTLE TAEMOA, CALM. ONLY REQUIRED INITIAL DOSE Of 
PARALDEHYDE ON ADMISSION, NONE SINCE •• 

PLIll-OBI 
IISOC UL SEAVICE CONSULT. 

PLN-DOAI 
~ NOTE, Here is another order in the form of • 

request for a SOCIAL SERVICE CONSULT. 
12141 

jlTHIAMlME.50NG STAT III ONLY, 1.1'1. 
IU-GIVENI 

IUNOl71 ZZIIS 
CHLORAL HYDRATE IGM Q

THEAAGAAN-M ICAP. 110-

CHLOAAL HYDRATE IGM Q. 

IUNOlll 10113 1l/?J/70 

IUNOI71 2310! 

CON REPLY: 

OBJI 

AGAEE 'III PAOBLEM AS rORMULATEO. 
AGq[E 'III PLANS AS rOAMULA 
AGREE 'III PROBLEM AS rORMULATED. 
AGREE 'III PLANS AS rOAI'IULA 

IMDllOI 9111 IIIZ4I10 

IIONOAS • .aN 

ME TO 
AND HOSPITAL. MR 

KNO'IIN PATIENT ,.ORM TIME AND ICNO'IIS HIS 
STORY OUIlE 'IIEll. MA AND OTHER MEMBERS 

Of' HIS AGENCY ifILL OfrER MEL • IIHILE IN 
HOSPITAL AND ArTER DISCHARGE. MA. HAS EIIPRESSEO 
CONCERItf AND QUESTIONS Ir PAlJE"'T ElENT TO 
HANDLE HIS PEASONAl Ar""IAS ArTEA DISCHAAGE rROM THE 

IIII ........... -~~ 
IUNOlJl 10lZ2 

THERAGRAN-M lCAP. 110-
CON REPLYI 

08JI 

AGAEE 'III PROBLEM AS rORMULATED. 
AGREE 'III PLANS AS rORMULA 

IM03201 IZI17 

"'LANI I. 'IIllL ACT AS LIASON BnwEEN O.E.O. ALCOHOLISM PROGRAM AND 
Mf'U SUf'f'. 2. If' OUR DEPARTMENT CAN BE Of HELP IN SOME 

OBJI 
Nn' UBS [" ; P U! "DI,[ fAil IIA. 

IUlf0201 18145 
IIPATIENT APPURS SOME'IIHAT CONFUSED THIS EVENINGII 

PAGE IS 

All-GIVEN: 
IUN0241 Ul40 

CHLOAAl HYDAUE IGM Q
SlI: 

08J: 

ASMT: 

11400141 9139 11/25110 

tllN SPEAK~~~A~I!~l:;aa. add ~:~::~~ :~~A~~S:~T~~~~\H£ 

ilS • 

QUESTION or MENTAL DETEAIOAU 10'" IN THE PATJ£NT. THEY 
If AVE SUGGESTED THoU HE HAS RECOM£ SDMrll"AT DULL 
HENULL Y AND oU TIMES SUMS TO "AVE rAlSE IDEAS SUCH 
AS SUGGESTING T"AT HE HAS AN APPLICATION IN rOR WORK 
U THE ilF:EKS SCHOOL OR THINKING THAT HIS wirE IS STILL 
ALIVE (TIfIS liAS SEVE~AL WfEIIS AGO) •• 

.,ATlENT NOTED 8Y surr TO lIE ACTING STRANGE AND CONf"USEO AT 
TIMES. rOR EUMPlE. YESTERDAY HE ASIIED ONE Of THE 
NURSES SEVERAL TIMES ABOUT A U(, THoU HE THOUGHT If AS 
SuPPOSED TO ~E 0111 THE DOOR. ALSO. PATIENT IS VERY SlOil 
WHEN ASKfO TO NAME THE OoUE I NEVERTHELESS, HE USUALLY 
MANAGES TO GET AT LEAST THE Y[AII AND MONT .. CORRECT. 
OIlIENT£O TO. PLACE AI40 NAME._ 

~THERE IS A QUESTION or ORGANIC 8RAIN SYNDROME SECONDARY TO 
CHRONIC ALCOHOl IS" HfAE._ 

PLIV-PIlOI •••••• !lPS'fCHOMETAIC TESTlNG- TO 8E DONE TODAY BY OR. GIlOUP-
HAVE CALLED. 

IUNOISI 12:06 
T"ERAGAAN-M ICAP. 110-

CON REPLY: 

Sill 

AGREE ill PR08lEN AS rORMUlATEO. 
AGAEE WI PLANS AS rOAMULAJED. 

11'103201 17:011 

IISOCIAl SERVICE NOT£! AEeE I VED CAll 
PROGRAM SHOAT n..r Ar.o 
"I HAVE TALliED WI TH DR 
IIOULD LJ"E TO SEE PT. 
DISCHAAGE HOME. DA • .11\10 I 80TH rEn THAT PT. SMOULO 
NOT GO DIRECTLY HOME rROM 04£OICAL UNIT, AS It[ IIILl GO 
8AC" TO /)LD PATTERN. DR..-D S NOT WAIVT V.S.H. 
ADMISSION ... J TOLD MR. THAT I WOUlD PASS ntis 
INfO. ON TO MEDICAL STA • DID QUESTION If HAT OTHER 
PLA'" THEY MIGHT HAVE IN MIND Ir OUA PSYCHIATRIC UNIT 
COULD NOT TAKE PT. MR.- DID ... OT "AVE ANY ANStlER AT 
THIS TIME. MA._ HAS REQUESTED THAT I CALL "1M 

- 1IIIIIiIiIIIIii-~~::is~~ 
~·.SUPEAVISOR-""UIJ 

A .. -GIIIENI . 

IUff'Z.' 22113 
CHlORAL HYDRATE 1611 Q- 1tI00l41 2ZUII 

NOTE, This is the reply to the request for a 
SOCIAL SERVICE CONSULT entered by the consultant. 
There are a few duplicate entries and errors in 
using the type-in progr_ (KEY). 

OTE: Additional inforaation froB consultant. 



258 Spring Joint Computer Conference, 1971 

OR..I: 

ASHU 

C ITER.21 -- SN 10 12110170 11100 PAGE 16 
SBHOI.D2 5103-501-8 M 109 

IMPROVING OVERALL. 

IIOR. _ HAS SEEN THE PATIENT AND THE PSYCHOMETRIC TESTS 
HAVE BEEN ADMINISTERED. THE PRELIMINARY RESULTS 
SUGGEST THAT THERE IS SOME INTELLECTUAL IMPAIAMENh 
PERHAPS MORE THAN COULD III' EIIPLAINED MERELY BY AC,E. 
BUT THAT THE DEFECT IS NOT SEVERE ENOUGIi THAT IT SEEMS 
TO BE IN K[£PING IIIITH THE rRIENDS' AND RELATIVES 
CONCERNS. fULL REPORT TO FOLlOIII.~ 

~NO'1'I::: This status is reflected in the selectable 
list (sec pag.' ,,5) of the patient's problem in 
t"rms of being al..ole to look at all problems or 
thos" that are GETTIllG WOR~I::. It is also pos
"ible to look at lists of patients on a ward 
with prol..olems in a certain subspeciallty,problems 
getting worse or prol..olems in a certain sub
speciality 'letting worse. 

ilf'EEl THAT PATIENT IS sn8lE ENOUGH fOR DISCHARGE. liE IiAVE REACH1'O ~:jOTl;: Assessment of a problem is always typed 
THE POINT or M ~ .. u M M H SP A NUIU. lULL BE in. 
fOllOIllED BY MR. flCf 
Of ECONO'41C OPP • • 

RII-GIVEN: 
;'UN02S;' 10:01 1l;'?6;'70 

THERAGRAIII-M lCAP. 110-
IUNonl 21 H.9 

CHLORAL HYDRATE lGM 0-

THEIIAGRAN-M lCAP. 110-
IMPROVING OVERAll. 

;'UNOlS;' 10:00 11/27110 
;'''001'';' 131?Z 

OB.)I 
IIt4AVE CAllED DR. IIIHO f'fElS THAT PATIENT CAN BE 

DISCHAIIGEO. HE STATES THAl "I' HAS QUESTlOIIIEO "H£THER 
TIiE PATIENT HIGHT BE OISPlAYIIIIC, SIGIIIS OF' EAPLY Pleps 
DISEASE. BUT SEEMS SATlSfYEO 'IIITH OUr< PSYCHOI..OGICAL 
EVAlUATlOIli. HE "AS ASI<EO THAT THr PATIENT iiI' SEIliT HOMl 
ON Pot[NOAARilITAl. rOil HI' FEELS TI'AT wHE .. HE GETS HOME 
HE IIlll PIIOR.BlY BE OUITE ANXIOUS.~ 

PLN-PAT ED: 
PT."ILL BE TOLD: NATUIIE Of THE PIIOlllf'" PROBAlllf COURSE 11;'1111. 

THEAAPY PRESCRI8EO. ~S£NT HOM[ ON PHE .. 08ARRITAL 1"> MG. 
Olotl 

COlli REPlYI 
;'H03201 1111l? 

AGAEE WI PR08LEM AS FORMULATED. 
AGIIEE ,,;' PlaNS AS rOIlHUlATEO. 

511: 

~SOCUL SEPVICE NOT~~ ~~{ll 2l "10: T~l~~~~S:T~P~~!:~I!!.rOA 
.w.&iSTILL [JIPR[S5[O CONCERN RfGAROING fUTURE Of 
~T. HE fEELS THAT PATIENT STIll .. EEOS "ORE III fOR 
ETOH PRIOII TO GOING HOOlE. BUT pn1£IIIT OO(S NOT IIIISH TO 
GO TO H.lf W.Y.OR "APLE LEAf rAA" rOIl 
ALCOHOL ICS. "II TO rOLlOIi PT. AT HOME .fTER "ru 
OISCHAr<GLoUIDay. URTIiEII aCTIVITy rl1004 OUA 
OE'A"Tlctw".,aTHIS TIME. CASE l/JaCTlV[ as Of THIS 
DATE. !II 

OISCUSSIO"lIASMNT: 1I0UTLOOl( IS GUARDED rOR PSYCHO-SOCIAL RII Of 
PUlfNT AT THIS TIME. MII._HOPES THAT HE IIIILL III' 
ABLE TO GET PT. INVOLVEO oiTTHT.,.. PROGR.II. BuT IS rAR 
fROM SURf If' IT IIIILl 1II0RI<. HE fEARS THAT PT. IIILL 
PElUAN TO OLD PATTERN •• 

" 5.'!UDJ'lQ POMA IITU.21 -- SfII 10 lU10170 UIOO PAJI1 II '_11....... SlHOl02 5103-507-1 M 109 

•••••••••• AtSII SOCIAL IIOIIK SuPEIIVISOR- ..,.,. 

ePl. ... S - INITI.L~ ----------------------------
l.ILAEotN£C·SI CIRRHOSISI 

PllII-;)BI 

SEII.8IL. TID 
S.PROT.ElECTR. 
SGPT 
.LI{.P 
PliO T. 

1110'1101 1.'Z8 11/1917. 

ePilOG NOTES~ ----------------------------
2.CLAEotN£C'SI CIRRHOSIS' 

08..11 

'OTlO.7NG. DilliNG. SrA.Bll. TID kESS , ..... o~~C~~ 151S1 
13 UNITS. ALI{.P 
12.1 SEC.' ~50. Of CONTIIOL. PAO'. 1l12.2 SEC •• 

50.0. 6.2. 110.6._110.6. 110.6. S.PltOT .ElECTII. I .'Lit. 2::~~ U2 •• 8. 
.c;. jI'OTAl PII0'.6.2 6MU 

10 UNHS. SGP' 
.~ 

.$NTI .ALII.L1NE PMOS. "3 II.THEA TH.N 13 .S IIECOItO[I} •• 

krT·S SlIGG[ST MINIM.l. If • NY'DYSf UNCTION AT PIIt'j[,,',~ 

cPlANS - I"ITUL~ ----------------------------
3:~::~~: PITTING. SECONDAIIY 'Or NO' SPtClf lEO 

RIO .~CONO.RY '0 HEall' DISUSE. 
"/0 .SECONDAIIY '0 RENaL OIS'''SE_ 
RIO ~COND"RY '0 lIEN.\. DISE"S£_ 

.... VE UA, BUN. PEP OROEllfotl 
11/0 .SECOND""Y '0 LIVER DISEASE .. 

kf'T'S DADEIlfDll 
1110 .".'''''"ISll 

cPItCIG HOJ(S~ 

111001101 19128 11/1917. 

---------------------------
3;~~~::;. PilliNG. SECOND"AY TO. fIOT Sl'tCrfltO 

~Le:vATE LfGS. JOBST S'OCICIIIIGSIl IICIO,., 'II', 1111.'" 

NOTE: Another entry by the consultant. 

:.01'1:: Since the lnfonution in the patient' 5 

record (as stored by the STORE program) cannot 
1><> deleted, any _istue. in entering information 
must be corrected by entering and noting the 
correct infor.atlon. In this case. th~ alkalinL 
~~:~~:~;~e value vas originally entered in-



Initial Operational Problem Oriented Medical Record System 259 

11101 PAGE III 

OBJI 
17142 11124110 

IIfDEMA OF' ANKLES CLEAR ING. 
"SMTI 

• , IIfTlOLOGY OF' EDEM" SOMEWHAT UNCLE .. R WITH SERUM PROT. OF 6.2 
"NO ESSENTI"llYNL. CHEST F'lLM. LOW BUN. ESSENTI"LLY 
NL. LFT·S. IN VIEW OF RE III IIETIOLOGY OF' EDEM .. SOMEWH .. T 
UNCLE .. R SINCE LFT'S. BUN. CHEST F'ILM .. LL ESSENTIALLY 
WNL. SERU .. PROTEIN OF 6.1 GMS. HOWEVER EOE"''' CLEARING 
AT PRESENT. AND "LSO EVIDENCE OF "'HHRITIS L "NKLE. 
PROB"8L Y DUE TO SPR"IN. 

<PL .. NS - INIT UL> 

4.INFL ....... RTlCUL .. R DISI INVOLVING: WRIST/C .. RP"LS RT. KNEE. LT. 
SECOND .. RY TOI 

PLN-R/OI 
/MD011o/ 191Z8 11/19110 

RI'O .,. ... 
LATEX nx. 

RI'O IIRF. 
"SLT 

RI'O ~OUT. 
URIC "C. 

RI'O IIINF'ECTIOUS COOU8T IN VIEW OF' ABSENCE OF' F'EVERIII 
RI'O IIlRAUN .... 

X-R"YI WRIST. RT. 
X-R .. VI KNEE LT. 

<PROG NOTES> 

4.INF'L"M ... RTICUL .. R 0151 INVOLVINGI WRIST/CARP"LS RT. KNEE. LT. 
SECONDARY TO. 

PLN-D8: 
/"'0014/ ZIIZ2 11/19110 

NLOOD CULTURES TO BE COLLECTEO- THREE SETS TOTAL (ONES AT AM 
DRAwING. ONE AT IP" DRAWING. ONE .. T .... DRAWING SAT .111 

CONTINGENCVI 'IF OTHER STuDIES NEGATIVEII 
CONTINGENCYI .IF' OTHER STUDIES NEG .. TIVE WILL ASPIRATE LEfT KNEE 

JOINTII 
PLN-PRO' 

IIHOT PACKS TO LEFT KNEE. RIGHT WRIST FOR 20 "IN. PERIOD~ TID •• 
RX-GIVENI 

/UN020/ 10'58 11/20110 
<NONE> HOT PACKS TO LEn KNE- IIPT. REF'USED HOT PACKS THIS "M.II 

I'UN0251' 21117 
HOT PACKS TO LEfT KNE

D8J' 
I'CC0251' ZZ.SZ 

5.0 MG/I00 Ml URIC AC. 
0158 11/2Z/70 

<DONE> X-RAY I WRIST, RT. IIAP AN~ LAT VIEWS DEMONSTRATE SMALL 

-- sg=Ul"IZ'B POMR IITER.ZI -- SN 4 121'10110 1110. PAGE 19 
••••••••••• SBHOLDZ 543-507-8 M 49 

CYSTIC AREAS Of' THE CARPAL BONES AND POSSIBL Y SOME 
SCLEROTIC REACTION. THERE IS ALSO OVERLYING SOF'T 
TISSUE SWELLING AND THE PICTURE WOULD BE COMP"TIBLE 
WITH RHEUMATOID ARTHRI Tl S. POSSIBLY GOUT •• 

<DONE> II-RAYI KNEE LT. Ill. KNEE DEMONSTRATES A SM"LL F'USION IN 
THE SUPRAPATELLAR IIURS .. AND POSSIBLY POSTERIORLY. 
THERE IS M"INTENANCE ON THE .. RTICUL"TING SURFACES .. NO 
NO SUGGESTION OF' CYC; TIC CH .. NGES. THERE IS HOWEVER 
SMALL LINE .. R STREAK OF'CALCIF'lCATION OF SOFT TISSUE 
WHICH COULD REPRESENT SOME C"LCIFIC .. TlON OF THE 
POPLI TEAL ARTERY. • 

NEGATIVE. lATEII FIX. 
REACTIVE. ASL T 1140 TODD UNITS •• 

SX: 

JOINT PAIN GETTING BETTER. 
/"'0014/ 10126 

08JI 

"'IGHT WRIST STIll SLIGHTLY SWOLLEN. HEAT DIFFERENCE NOT SO 
.... RKED. NOT SO TENDER •• 

EXAM Of' KNEE (511 LEF'T. SWElLING: UNCI1ANGED. 
ASMT. 

ItwRIST FILM ON RIGHT wOULD BE CONSISTENT WInt EITHER GOUT OR A ... 
lATEX F'U. NEG. BUT THIS DOESNtJ RULE OUT RA. URIC 
ACID NORMAL - DOUBT GOuT AS ETIOLOGY. CONDITION 
IMPROVING AT PRESENT. MAKIIliG INFECTIOUS PROCESS 
UNliKELY. "UST STILL CONSIDER TI1 .. T PATIENT MAY WELL 
H"VE HEREl Y INJURED THESE JOINTS WHILE IN AN ALCOHOLIC 
STUPOR. II 

RII-GIVENI 

HOT P"CKS TO LEF'T KNEe 

HOT PACKS TO lEFT KNEe 
OBJI 

/UN025/ ZI.44 

/UNOZU 14'17 11/23110 

/MD014/ 17.4Z 111'2"110 
IIWRIST ANO KNEE MUCH BETTER. NOW COlo4PLAINS OF SORENESS l ANKLE. 

EDEM" PRESENT ON BOTH ANKLES HAS CLEARED.II 
"S"U 

.SUSPECT THAT THESE JOINT P"INS RELATED TO TRAU .... TlC LESIONS _ 
PATIENT ACTUALLY DESCRIBES SPR"INING L KNEE AND ANKLE 
AT S .. ME TIME WHEN HE F'EEL OOWN.II 

RX-GIVENI 

HOT PACKS TO LEfT KNEe 
IMPROVING OVERALL. 

SJII 
JOINT PAIN SUBSIDING. 

ASHT' 

/UN020/ .8'45 
/MOO.4/ 9'01 11126/70 

1tN0RMAL URIC aCID. ABSENCE Of' FEVER. LOW ASOT, NEG. LATEX FIX. , 
GRADUAL SUBSIOANC£ OF SYMPTOMS ALL IN FAVOR OF 
TR"UMATIC ETIOLOGY, BUT CORRECTED SED RATE Z9. RA 
STILL CANNOT lIE RULED OUT.. 10'\Z 11/271'70 

IMPROVING OVERALL. 
SJII 



260 Spring Joint Computer Conference, 1971 

.-.-.C.O.MIPUITIEIRIUIEIDIPOMR (ITER.2) -- SN It 12110170 • ..II SBHOLD2 51t3-507-8 M 1t9 
11101 PAGE 20 

JOINT PAIN SUBSIDING. 
JOINT SIIELLING SUBSIDING. 

08J: 
_CAN D£TECT LITTLE DIFFERENCE IN TEMP BETIIEEN IIRISTS ANO KNEES. 

ASMTI 

SIIELLING HAS SUBSIDED. AND PATIENT IIALKS ALMOST 
IIITHOUT LIMP." 

"JOINT INFLAMMATION SUBSIDINGI TRAUMA 8EST BET AS TO ETIOLOGY ... 

S.HYPERTENSION. HIO 
OBJI 

~ NOTE: Initial plans should have been specified 
for this problem. 

10126 11122110 
"ADMISSION K BORDERLINE LOll." 

ASMTI 
tlHAS BEEN ON "HIGH BLOOD PRESSURE PILL" IIHICH UNOOUBTEOLY EXPLAINS 

HIS LOll K." 
PLN-D81 

NA 
K 

OBJI 

lit 1 MEO/L NA 
3.6 MEO/L K 

Ice0251 11128 11123170 

IMDOllt1 1111t2 11/21t170 
.. PRESSURE STAYING UP RANGING lIt0-190/90-110. ON REPEAT LYTES 

YESTERDAY K STILL LOll NAIK - lltll3.6 .. 
ASMT: 

IINEED TO RIO HYPEReORTICISM" 
PLN-DBI 

.. AM AND PM CORTISOL LEVELS .. 
STAyING SAME, OVERALL. 

OBJI 

9101 11126170 

.. REMAINING HYPERTENSIVE IIlTH A DIASTOLIC Of A80UT 100 .. 
ASMT: 

illfEEL PUIENT NEEDS HYPERTENSIVE 1I0RK-UP • H8P HAS NOT R£SOLVED 
IIITH BED REST. LOll K IS SOMEIIHAT SUGGESTIVE Of" CONN'S 
DISUSE. BUT VALUE IS STILL IINL. AND URINE PH IS ACID 
(USUALLY ALKALINE IN CONN'S)" 

PLN-OB: 
URINE VMA 

PLN-R/OI 
RIO .. RENAL ARTERY LESIONtI 

HYPERTENSIVE IVP 
RIO IIPHEO." 

OBJ: 
IUN0151 llt111 

URINE VMA IIZIt HOUR URINE STARTED U 11130 AMII 
IUN0241 22114 

STAYING SAME OVERALL. 
OBJI 

'TAP IIUER ENEMA rOR IVP PREP. OK. BROWN LIO RETURNY 

,/MDU41 13122 11/2U10 
STAYING SAME OVERALL. 

11 •• r:58~ (ITER.2) -- SN 10 12110/10 11101 PAGE 21 
SBHOLD2 5103-507-8 M 49 

STAYING SAME OVERALL. 
08JI 

'HYPERTENSIVE IVP READ AS NEGATIVE IN CONF'ERENCE TODAY. 24 HOUR 
URINE F'OR VMA PENDING' 

PL~;~:;L~D~E TOLDI NATURE OF' THE PR08LEM. 'WILL LET DR • ••••• 
DECIDE ON THE THEAAPY F'OR THE HYPEATENSIONI IN 
GENERAL. A THIAZIOE MIGHT nRST BE INDICATED. THIS 
ALONG WITH THE PHEN08ARBITAL. AND A LOW SALT DIET 
MIGHT WELL CONTROL THE HBP F'AlRLY NICELY. If" NOT 
RESERPINE MIGHT BE ADDED~ PT. WILL BE ADVISED TO ADO 
NO SALT TO F'OOO.' 

OBJI 
,M021U 21129 

<DONE> AM AND PM CORTISOL LEe 'AT AM 10 MCG AND AT 1 PM 9 MC~ 
,CC020.1 11137 11.130/10 

<DONE> HyPERTENSIVE IvP "HyPERTENSIVE IVP PROB. WNL WITH THE 
POSSIBILI fY Of' SOM£. OEGREE OF' LOWER OBSTRUCTIVE 
UROPATHy., 

6.->UAOLITHIASIS. H'O. 
PLN-DB.I 

SER CA 
SER P 

6.->UROLITHUSIS. H'O. 
OBJI 

<PLANS - INITIAL> 

<PROG NOTES> 

9.2 MG'100 ML SEA eA '5P. GR. 1.02".' 
4. 1 MG'100 ML SEA P 

<PLANS - INITIAL> 

7.PLEURAL F'LuIDI 'OR PLEuRAL REACTI~ 
PLN-DBI 

ItCHEST F'LUOROtt 

ePAOG NOTES> 

1.PLEURAL F'LUIDI tlOR PLEURAL REACTIONtt 
OeJl 

'MD01".1 19:28 11119/10 

/Ce025' 22152 11.120/10 

'"0014' 15131 11.120170 

.ICC025' 16131 11/24/10 
<DONE> CHEST fLUORO 'SUPPLEMENTED BY A RT LATERAL DECUBITUS F"JLM 

AND THEAE IS NO F'LUIO IN TH£ AT. CHEST, ONLY SOME 



Initial Operational Prob~em Oriented Medical Record System 261 

IITER.Z) -- SN 4 IUlOno 11101 PAGE ZZ 
SBHOl.DZ S43-507-8 M 49 

BLUNTING Of' THE COSTOPHRENIC ANGLE •• 
IMOGl41 1714Z 

litHEST F'LUORO. ANO LL DECU8TUS REVEAL THAT THE lI-RAY rINOINGS 
IlERE THOS[ OF' AN OLD PLEURAL SCAR- NO F'LUIO. 

'.LOW HEIIIATOCRIT/HGR ZlilB ll/l5/70 :-IOTE: Initial plans should have been specified 

OBJ: 

OBJ: 

STAyiNG SAME OVERALL. 

_REPEAT HB/HCT 11.4/36 IN A PATIENT WITH PAST HlI OF' "lIEVE'S 
SYNOROME".HAS COME DOWN F'ORM IZ.9 137 ON AOMISSION._ 

Z3101 
STAYING SAME OVERALL. 

lION REVIEW OF' THE INITIAL SMEAR IT APPEARS NORMOCNRONIC. 
NORMOCYTIC TO ME._ 

~ for this problem. 

PLN-R/O: 
RIO 1161 LOS~ 

STOOL HEMATEST->CHART 1I3 

-- RETRIEVAL RE1iJEST --

~ :-IOTE: Since the resul ts for this order were 
not recorded. it remains an outstanding order. 
as seen on the selectable list on page .. 'I. 

FRINTER. ENTIRE. CYCLED -40- :'OTE: At the end of each retrieval is the 
complete statement of the ret rieval request. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ This det ines clearly what the output 

represents as there are many different 
retrieval requests possible. 

THE PATIENT'S PROBLEM LIST IN 
SELECTABLE FORM 

J.. ALCOHOL ISM, CHRONIC. 

2. (LAENNEC'S) CIRRHOSIS: 

1111" 7' 

U/l"7. 

The first list is the patient's Problem List. This is 
used to define which problem a Progress Note is to be 
written on or to define a specific problem for the re
trieval of all data in sequence on one problem. The 
physician or nurse selects the specific problem and then 
proceeds to enter the data. The last two lists (for 
therapy and non-therapy orders) are used to indicate 
when something has been given and to allow the entry 
of laboratory and x-ray results. 

~ 3. EOE~. ',TT,NG. SECONDARY TO, NOT "E*U/1"7. 

Associated with each patient's computer-based record 
are these three Intermediate Selectable List Files. They 
contain copies of information also contained in the 
record. (Compare the Problem List of the printed 
record with the one on· the screen and the Plans for 
problem # 8 in the printed record with the General 
Ward and non-therapy order list in selectable form on 
the cathode ray tube.) The data are stored redundantly 
in the lists to facilitate speedy retrieval. 

-... It. INFLAto. ARTICULAR 01 S: INVOLVINGI WR'*J.1IJ."7 • 

s. HYPERTENSION. HlO U/J."7. 

6. -)UROLITHIASIS. HlO. U/211/7, 

7. PLEURAL FLUIOI OR PLEURAL REACTION J.1I211/7. 

8. LOW HEMATOCRI T/Hce U/2S/7" 

• RETURN • eEG I NHI NG 0' LIST 

L.. ___ These problem statements have been truncated 
to fit on one choice line. (NOTE: The printed 
record contains the total problem statement) 

-



262 Spring Joint Computer Conference, 1971 

THE PATIENT'S GENERAL WARD AND 
NON-THERAPY ORDER LIST IN 
SELECTABLE FORM ON THE CATHODE 
RAY TUBE SCREEN 

NOTE: The problem titles and specific orders have 
been truncated. In case of ambiguity, it is possible to 
see the complete problem statement and/or the com
plete orders by referring back to the printed record or 
by a specific retrieval to the cathode ray tube terminal. 

J.... '1)16-1 5'J-5'1-8 M ~, 
EXECUTE OIOEII ----------------

PT.ACTI U, WI ASSlITA.ct AS TOL. 

VlSITI.G InULAI. 

U./1911, 

U/UI1, 

NOun DIIT. nUllS AD LII. U/L"1, 

hlU OF *GUSIA SUSP. J,M&. 'I" U, '.0. U/1911, 

WEIGHT QOO 1111"1' 

TEM' UH U/UI7. 

'ULSE UH 1.1/19/ l' 

• UTUR. 

In, UH 

., U" 

• LIST CONTINUED 

11/1"1 • 

DISCHARGE ,T. WIT" FIIUD, VALUAlLES, VIA*11/2111, 

••••• - 1. ALCOHOLISM. C. 

SOCIAL SEIVICE COISULT 

••••• - J. EDE*, "TTII· 

HA vr Ui\, IUN, n, OIOUro 

LFT'S olDun 

..... - •• INFLAM. ARTIC* 

• 'REVIOUS"'GE 

BLOOD CUL TUIES TO IE 

••••• - 8. LOW "E*TOCII* 

STOOL HENUEST-)CHA IT x) 

• 'REVIOUS MGE 

11/2211' 

1111"1. 

1111911' 

• LIST CONTINUED 

11/2511' 

.- IEGII.IING 0' LIST 

THE PATIENT'S THERAPY ORDER LIST IN 
SELECTABLE FORM 

NOTE: The problem titles and specific orders have 
been truncated yet a complete copy of everything is 
contained in the record in case of any ambiguities. 

3"0' SB376-L S43-5'7-8 M 49 

---------------- EXECUTE ORDERI ----------------

••••• - L. ALCOHOLISM, c* 

PARALDEHYDE 7.5ML Q.4H PRN STANDING, FOR A*U/L9/7g 

CHLORAL HYDRATE lGM Q.HS PR.N STANDING P.0.*11/L9/7' 

THERAGRAN-M lCAP. L/DAY STANDING, 5.0. P.*U/21/7' 

THIAMINE S~/>iG STAT XL ONLY, I.k. U/22/70 

PADDED SIDE RAILS, PADDE.D TONGUE BLADE HA*U/L9/7, 

PSYCHOp,ETR I C TESTI NG- TO BE DONE TEDAY BY*U/2S/70 

••••• - 3. EDEMA, PITTIN* 

• RETURN • LI Sf CONTI NUED --.... - ... 

__ ------.' I 
3~.'l 58376-1 S43-S07-8 ~ 49 I~ 

ELEVATE LEGS, JOBST STOCKINGS U/1917. 

.. II. - 4. I NFLAM. A RTIC* 

HOT PACKS TO LEFT KNEE, RIGHT WRIST FOR 2*11/L9/7~ 

• PREVIOUS PAGE .- BEGINNING OF LIST 

UTERATION '2) --- SN 3 
S8HOLD2 543-507-1 M 49 

SGPT SER.8IL. U PRO T. 
1970 0 

11/19 <0> 
19'21 

ALK.P 

11120 
15151 

TOTlO.7NG .. 0 12.1 5£C.' >501 13 UNIT 

10 UNIT 
22152 s • 

IRIMG" OF" CONTROL. S. 

"INTERI 11 INCH VIDE HEPATIC PARA~TERS' ALL 'OR PRE5£NT 
ADMISSION 

NOTE: This is' a flowsheet on all the hepatic parameters 
for the patient. Note that the (0) is when the 
treatment was ordered. The followinq paqes contain 
a flowsheet of all the vital siqns on the patient. 
For both flowsheets, the information displayed can 
be seen in narrative form in the P%eoedinq %ecord. 

CONCLUSION 

An experimental time-shared medical information 
system has been developed upon the organizing prin
ciple of the Problem Oriented Medical Record. The 
boundaries of the system are defined by the content 
of the patient's Problem Oriented Medical Record 
and all the information that is a natural extension of 
that document, e.g., the billing, the pharmacy, lab
oratory and X-ray data, the admitting office informa
tion, etc. 



Initial Operational Problem Oriented Medical Record System 263 

(ITERATION '21 --- 5N 3 PAGE 
SBHOlD2 543-507-8 M 49 

TEMP PUlSE RE5P 8P 
1970 .----- ------ ------- ------ ------ -----------------------------------
11/19 <0> <0> <0> co> 
19128 

11120 37.6'C 88 I 201 
8107 MIN MIN 

10:58 
1421 
Ito 

881 
MIN 

201 1601 
17:10 MIN 110 

37.3'C 841 201 
21: 17 MIN MIN ------ ------ ------- ------ ------ --------------------------------_.-
11121 37.2'C 88 I 201 
9:16 MIN MIN 

9156 

15156 

881 
MIN 

201 1501 
MIN 100 

221 1781 
MIN 110 

37'C 841 201 
16:010 MIN MIN 

11122 
7141 

881 
MIN 

201 190' 
MIN 112 

36.8'C 88 , 20' 
8:46 MIN MIN 

10:50 

15:43 

84' 
MIN 

921 
MIN 

20' 138' 
MIN 90 

221 160' 
MIN 90 

37.4'C 88 I 201 
15:510 MIN MIN 

11123 37.JtC 108 I 201 
7:33 MIN MIN 

9:49 

1970 

1601 
90 

T (ITERATION '2) --- 5N 3 
8HOlD2 543-507-8 14 49 

TEMP PULSE RESP 8P 

PAGE 2 

------ ;;:;:~ ;;;-;-- ;;;--- ------ ---------------------------------_. 
16:05 MIN MIN ------ ------ ;;;---- ;-;;-- ;;;;-- ---------------------------------_. 
18:25 MIN MIN 100 ------ ------ ;;;---- ;-;;-- ;;;;-- ---------------------------------_. 
19136 MIN MIN 100 

-ii;;; ;~:9:~ 92-;--- 20;--- ------ ----------------------------------. 
7157 MIN MIN 

------ ------ ;;;---- ;;;--- ;;;;-- ---------------------------------_. 
10:34 MIN MIN 98 

------ ;;:;:~ ;;-;--- ;;;--- ------ ----------------------------------. 
18: 17 MIN MIN 

------ ------ ;;;---- ;-;;-- ;;;;-- ---------------------------------_. 
181105 MIN MIN 104 ------ ------ ;;;;--- ;;;--- ;;;;-- ---------------------------------_. 
23110 MIN MIN 90 

-;;;;~ ------ ;;;---- ;;;--- ;;;;-- ---------------------------------_. 
7:38 MIN MIN 100 ------ ;;:;:~ ;;-;--- ;;;--- ------ ---------------------------------_. 
8119 MIN "IN ------ ------ ;;;---- ;;;--- ;~;;-- ---------------------------------_. 

13140 MIN MIN 90 ------ ;;:;:~ ;;-;--- ;;;--- ------ ----------------------------------. 
16109 MIN MIN ------ ------ ;;;---- ;-;;-- ;;;;-- ---------------------------------_. 
17:36 MIN "IN 116 ------ ------ ;;;---- ;-;;-- ;;;;-- ---------------------------------_. 
21156 MIN ",IN 100 

-ii;;; ;;::~- ;;;---- ;;;--- ------ ----------------------------------. 
7:59 MIN MIN ------ ------ ;;;---- ;-;;-- ;;;;-- ---------------------------------_. 

13137 MIN MIN 120 

1970 

15152 

(ITERATION '21 --- SN 3 
SBHOlD2 543-507-8 M 49 

TEMP PULSE RE5P BP 

.21 
MIN 

20' 160/ 
MIN 100 

37.'C ", 24' 
15154 MIN MIN 

PAGE 3 

------. ------ ------- ------ ------ -----------------------------------
810' 11/ 164' 

19145 MIN MIN 9. 

11/27 
0116 

801 
MIN 

11/ 150' 
MIN 92 

36."C 88 ;' 20' 
7145 MIN MIN ------. ------ ----~-- ------ ------ ----------------------------------
7148 

37.2'C " I 201 

162.1 
110 

16106 MIN MtN 

PRINT~RI 8 lI~-INCH WIt)[ VITAL SIGNSI All VITAlSIGNS (NURSES). 
·PRESENT AbMI5SION. 

- -- - ----. ---------- ------ - ---- .. - -- - -

The principle focus of our effort has been to directly 
interface the patient, the physician, and the nurse 
with the computer in a manner that allows the input 
and retrieval of all medical information normally 
generated by them for the medical record. The subsequent 
computer interfaces of the same medical information 
via message switching with the business office for 
billing, the pharmacy, the laboratories, admitting office, 
etc., in a meaningful problem oriented fashion are 
planned but not yet implemented. 

Now that the physician-nurse component has been 
effectively integrated into a computerized system, 
final assembly of all the components is possible. In 
this regard, as Jay Forrester found in management 
and engineering, we are finding in medicine through 
the Computerized Problem Oriented Record and its 
many extensions that the amplification and interactions 
among the components of the system may at times be 
more important than the components themselves. 
We are now prepared to develop a model whereby the 
ultimate role of the computer in the delivery of health 
services can be defined. 

ACKNOWLEDGMENT 

We would like to acknowledge the medical philosophi
cal leadership and clinical expertise of Lawrence L. 
Weed, M. D.; the clinical experience and expertise of 
Laura B. Weed, M. D. for the massive effort of develop
ing the bulk of the medical content material (in the 
branching structured logic displays) in the system; the 
development of the drug displays by George E. Nelson, 
M. D.; the early computer software specification efforts 
of Mrs. Lee Stein; the medical superstructure specifica-



264 Spring Joint Computer Conference, 1971 

tion efforts of Charles Burger, M. D.; and the efforts, 
as represented by the actual patient record, of the 
house staff and nurses at the Medical Center Hospital, 
Burlington, Vermont. Important contributions have 
also been made by many other people whom we wish 

. to thank for their efforts. The authors would like to 
state explicitly that the computer software described 
in the paper wo:uld be but a skeleton without the medi
cal content material contained in the branching dis
plays. 

REFERENCES 

1 L L WEED 
Medical records, medical education and patient care 
Case Western Reserve University Press Cleveland Ohio 
1969 

2LLWEED 
Medical records that guide and teach 
New England Journal of Medicine Volume 278 pp 593-600 
652-657 1968 

3 M D BOGDON OFF 
Clinical science 
Archives of Internal Medicine Volume 123 p 203 February 
1969 

4 R M GURFIELD J C CLAYTON JR 
Analytic hospital planning: A pilot study of resource 
allocation using mathematical programming in a cardiac unit 
RAND Corporation RM-5893-RC April 1969 

5 MASSACHUSETTS GENERAL HOSPITAL 
Memorandum nine 
Hospital Computer Project (Status Report) February 1966 

6 C M CAMPBELL 
Akron speeds information system slowly 
Modern Hospital Volume 104 p 118 April 1965 

7 R WHAMMING 
One man's view of computer science 
Journal of the Association for Computing Machinery 
Volume 16 pp 3-12 January 1969 

8 CONTROL DATA CORPORATION 
SHORT operating system program rules reference manual 
Publication Number 60259600 April 1968 

9 CONTROL DATA CORPORATION 
SHORT operating system basic formats reference manual 
Publication Number 60259700 February 1969 

10 CONTROL DATA CORPORATION 
SETRAN selectable element translator reference manual 
Publication Number 60249400 May 1968 

11 L L WEED 
Technology is a link not a barrier for doctor and patient 
Modern Hospital pp 80-83 February 1970 

12 L L WEED et al 
The problem oriented medical record-Computer aspects 
(A supplement to Medical Records, Medical Education and 
Patient Care) 
Dempco Reproduction Service Cleveland Ohio 1969 



Laboratory verification of patient identity 

by SAMUEL RAYMOND, LESLIE CHALMERS and WALTER STEUBER 

Hospital oj the University oj Pennsylvania 
Philadelphia, Pennsylvania 

In considering the installation of a computer-based 
laboratory report system, what are the legal and pro
fessional responsibilities created by such systems? 
Computer-generated reports and records are acceptable, 
legally, in place of the original handwritten laboratory 
request form, but there is nevertheless an increased 
legal duty, as well as a strong professional respon
sibility, to see to it that the computer record is correct 
in every detail. By adoption of proper verification pro
cedures, similar in principle to quality control pro
cedures now regarded as essential in every laboratory, 
a computer-based record system can be made much 
more accurate and reliable and far more accessible 
than the usual manual methods of record-keeping. 
And this can be done without substantially increasing 
the burden of laboratory work. 

Preliminary studies of laboratory requests coming 
into our laboratory before installation of a computerized 
report system showed that over 20 percent of the re
quests carried patient identification data unacceptable 
by objective standards of verifiability: this means that 
patient information was incomplete, so that it could 
not be verified, or wrong, so that verification would 
lead to the wrong patient. And in a manual system, 
there appeared to be no practical way to improve the 
data. In studying other laboratories we found no reason 
to believe that our experience was unusual. 

Our manual system involved returning the original 
request to the referring physician or other source, with 
the laboratory report transcribed on to it. This placed 
the identity of laboratory data in the hands of ward 
clerks and others outside the control of the laboratory; 
and for a significant fraction of the laboratory work, 
left the laboratory without any valid record of the 
work done on the patient for whom it was done. This 
was clearly an unsatisfactory state of affairs, although 
one which was hidden until we began our preliminary 
analyses for the computer system. 

265 

The problem of errors in data input was, in fact, by 
far the most serious one encountered in the development 
of our computer report system, and one which was 
essentially out of control until the completion of the 
work described in this paper. Beyond a few references 
to slang expressions (GIGO) this is a topic that is dis
cussed very little in the published literature. A recent 
well-documented monograph,! for example, contains 
no reference to this topic in index, bibliography, or 
text. Yet our experience has been that every source 
of raw data, and every transcription step in the data 
processing operation, carries an error rate of one to 
two percent. Furthermore, unless these errors are 
sought for and corrected, they are additive. Since 
there may be ten or more identifiable steps involved 
in ordering a laboratory test on a specific patient, 
errors accumulate until finally as many as 20 percent 
of the requests received in the laboratory are unac
ceptable in some particular of patient or specimen 
identification. That has in fact been our experience 
over the last four years, and there has been no signifi
cant downward trend in the 20 percent figures during 
this time. 

Part of the reason for this has been the policy, which 
we adopted at the beginning of our data processing 
development, of not attempting to make any change 
in the procedures of data processing used outside the 
laboratory. Although the problem can, and perhaps 
should, be considered in its entirety as embracing the 
whole hospital, to do so immediately involves admis
sions policy, patient accounting practices, the medical 
record room, in fact almost every aspect of hospital 
operation. Faced with that much, we decided it would 
be better to solve some small definable segment of the 
problem, and the boundaries of the laboratory seemed 
a convenient place to draw the line. 

In our system, consequently, the hospital staff are 
still free to make occasional errors in preparing a re-



266 Spring Joint Computer Conference, 1971 

quest for laboratory service; we have accepted for 
ourselves the responsibility for finding and correcting 
all errors before sending out our reports. 

The principal object in our error-correcting system 
is to make sure that laboratory results get back to the 
correct patient, and to keep one patient from getting 
another's results. To perform and report an extra or 
unordered test-this cannot do very much harm; at 
most it may result in an extra charge on the patient's 
bill. To miss doing a test which was ordered-this is a 
situation which very quickly corrects itself by way of 
an indignant phone call from the physician who ordered 
the test. But to report results to the wrong patient
this is the ultimate disaster. Such a mistake could be, 
quite literally, fatal. It could cause a wrong diagnosis 
to be made or a wrong treatment to be given. Even if 
the physician receiving the report recognizes that the 
results reported do not apply to his patient, he will 
inevitably place all his reports in the suspect category, 
and will lose all confidence in the computer report 
system. And of course, there is the question of legal 
liability for negligent errors. 

Our system, therefore, is designed to assure us of 
100 percent correctness in the patient identification, 
and to provide us with an exact record of every input, 
a separate record of every wrong input, and every step 
taken to correct the input. The system requirement is 
satisfied only if there is verification of every input in 
two independent traces from the original source of the 
data. This includes both data from outside the labo
ratory, specifically patient identification, and data 
generated inside the laboratory, specifically the labo
ratory result. 

Even within the laboratory itself, where the data 
processing procedures are under our direct supervision, 
there seems to be no possibility of eliminating errors 
completely: no degree of motivation or discipline that 
can be applied will suffice. Outside the laboratory, 
where conditions are completely beyond our control, 
not even an attempt can be made. This is a fact of life 
which justifies the policy decision referred to above. 
Our objective, then, is to catch the errors and to correct 
them before the reports leave the iaboratory. 

Before developing the details of our system it is 
useful to introduce three terms which may well have 
been applied by others earlier in this field; they have 
certainly clarified our thinking and our system. 

A udit trail is a printed record, with necessary an
notations, of every record entered into the computer, 
any errors which were found, and the actions taken to 
correct them. The tendency, all too human, to bury 
the error once it has been corrected must be strongly 
resisted. The audit trail is an essential part of the 

system; it has both prospective and retrospective func
tions. It is a necessary record for every input, as from 
this record alone can one identify later-discovered errors 
and can know how and where to correct them. It identi
fies problem areas in the input procedure in the same 
way that a quality control chart gives warning of pro
cedural error in the laboratory. With the audit trail, 
any error which does get through the check system, 
but is later brought to the attention of our staff, can 
be identified as to occurrence and responsibility. The 
identification of the source of the error has proved 
essential in developing psychological defenses within 
our staff against repetition of the error at a later time. 
The varieties of error are infinite. 

Checking and validation: To distinguish between 
these processes, which are essentially different, is to 
provide a logical basis for the design of an error-proof 
input system. Checking is an entirely mechanical 
process, although it may be very complex. It can be 
carried Qut by computer, only providing that a set of 
logical decision rules can be given. Validation is a 
human process, involving human judgment, which 
changes as each new experience is assimilated. Checking 
is always catching up to validation, as the judgment is 
analyzed and formulated into logical rules, which can 
be programmed into the computer. Validation is always 
ahead of checking, as judgment is always being in
creased by experience. 

Checking should be done only by the computer. To 
give this task to a human is wasteful and inefficient 
and in the end impossible, because, when boredom and 
fatigue set in, the rate of human error increases faster 
than the check errors caught. The computer can per
form with unrelenting accuracy any checks of any com
plexity, once the decision tables are specified with 
logical precision. 

The computer can never replace professional 
judgment. 

A necessary condition of the validation process is 
that the information to be validated must be meaning
ful. That is to say, the data must not only have meaning 
in themselves, but they must be presented to the mind 
in a form which conveys meaning to the validator. It 
follows that a mere list of numbers cannot be validated 
(Figure 1); the validation in this case consists of noting 
that two numbers do not match. Did you, as a careful 
reader, pick up this point? 

One final feature which we believe contributes sub
stantially to the efficiency and completeness of our 
system: each step is conceptually separate and distinct 
from the others. This is a principle taught by experience 
in programming a computer. In practice, it means that 
we demand of computer or of operator only one type 



of checking or validation at a time. It enables us to see, 
not only that a given step depends on the successful 
completion of a precedent step, but, more importantly, 
that in many places, the system allows of parallel 
paths through to the final error-corrected report. 

In summary, our system is built upon the following 
rules: 

1. The computer is always right. 

2. The input is wrong until confirmed by checking 
or validation. 

3. Checking is done by computer. 

4. Validation must be meaningful. 

5. Two independent sources are required for check
ing or validation. 

6. One thing at a time. 

With a basis thus established, we are now ready 
for the development of a system for controlling input 
errors. In accordance with standard literary conven
tions of scientific publication,2 we shall omit any 
description of the initial fumblings, outright mistakes, 
false trails, and utter disasters which we encountered 
during the first three years of this project. Starting 
from scratch, our system has now been in full successful 
operation for nearly a year. We shall describe it as an 
orderly logical progression of ideas and events. Like 
most successful systems, it looks very easy now. Had 
we known just how to do it, it would have taken us 
three months instead of three years. 

In describing our input validation system, the 
following outline will be useful: 

1. Enter census information 

* 2. Verify census file 

3. Enter test requests 

4. Print work documents for laboratory 

* 5. Verify 

6. Keypunch lab results 

* 7 . Verify test runs 

8. Print patient reports 

* 9. Validate reports. 

As this outline shows, most of the steps in our overall 
procedure can be carried out in parallel. While we 
insist that every entry of data into the system be inde
pendently verified, we also recognize that most of the 
information is correct as it goes in. Therefore, we go 
ahead and use the input in our laboratory system before 

Laboratory Verification of Patient Identity 267 

ACCESSION CENSUS REQUEST 
NUMBER NUMBER NUMBER 

801 312486 312486 
802 236925 236925 
803 318470 381470 
804 334862 334862 

Figure I-Validity check of patient identification numbers 

it has been verified or corrected, but always under 
conditions which do not permit the release of unverified 
or uncorrected data, and which do permit the exact and 
secure correction of any errors before they can possibly 
damage the system. 

The system starts with the control of patient identifi
cation information, which includes name, hospital unit 
record number, date of admission, hospital location, 
age and genetic data, physician, and hospital service 
assigned. The nominal source of this information is 
the patient himself, but in accordance with our prin
ciple of independ~nt verification, we require two inde
pendent traces back to the original source. Fortunately, 
the hospital operating system does provide two: one 
from admission desk through hospital accounting office 
to patient census, and one from admission desk through 
the patient's chart and his charge plate. * From the 
first of these we receive a punched-card deck on Mon
day containing a complete record on each patient in: 
the house, and update decks each day containing pa
tient admissions, transfers, and discharges. From the 
second we receive an imprinted laboratory request 
slip. 

Although the data entry starts with the patient at 
the admission desk, the error entry may begin long 
before, when a patient number, properly belonging to 
one patient, is improperly assigned to another. Under 
an old system, formerly used in this hospital, this 
particular error was to be corrected if, and as soon as, 
it was discovered. A new commercial accounting 
system** recently installed by the hospital has the 
astonishing feature of forbidding any correction of this 
error. Our experience to date has been too short to 
demonstrate what effect this rule will have on our 
system, but it is evident that it will make some of the 
medical records actively misleading for retrospective 
studies. 

* Our hospital uses a charge plate imprinter system with embossed 
plastic plates like credit cards, but without machine-readable 
features. 
** SRAS, supplied by International Business Machines Corp. 



268 Spring Joint Computer Conference, 1971 

ACCESSION 
NUMBER 

801 
802 
803 
804 

CENSUS 
NAME 

TARBELLSUSA 
GRICE GEORGE 
QUIGLEY RALP 

REQUEST 
NAME 

TARBELL SUSAN A. 
GRICEG.D. 
JAFFE CHARLES 
EATON ANDREW 

Figure 2-Validity check of patient names 

In any case, we accept the census and update decks 
as input data requiring correction. Our experience has 
been that one to two percent of the records in each new 
deck are in error. This is substantially lower than the 
error rate which would be expected on the basis of the 
number of steps intervening between the data source 
and the final record, indicating that substantial efforts 
at error correction are being made all along the line. 
Nevertheless, we make a final purge. 

We maintain, in our computer, a file of patient 
identification comprising the current house list plus 
records of all patients who were in the house at any 
time in the last two weeks. t This file contains about 
2000 names. Our first operation is to combine the 
current file with the new deck, sort it, and delete all 
duplicate records from the internal computer file. The 
cards containing the duplicate records are also ejected 
from the card file by the computer. An audit trail is 
generated by printing all the records deleted. This is, 
of course, a checking operation, not a validating one, 
and requires only a minute or two of computing and 
printing time each day. 

The duplicate list printed usually contains less than 
twenty names. These are subjected to a validation by 
the computer staff. This process may include anything 
from correction of an obvious misspelling of a patient 
name to a direct inspection of the original admitting 
record, according to the judgment of the operator. 
Most discrepancies are cleared up by a telephone call. 
The corrected records are re-entered and the process 
is repeated. Usually the first repetition confirms the 
accuracy of the corrected census. 

It is important to keep in mind just what the ac
curacy of the corrected census comprises. We have, in 
effect, a census file in which we· are certain that each 
patient has been assigned a unique hospital unit 
record number. Each patient record has been compared 
with every other record, both current and recent past 
admissions. Every discrepancy has been removed, 
except one. The exception is the patient who has the 
same unit record number as some other patient who had 
been admitted at some more distant past time. This 

t We would like to go back further, but our file space is limited 
and the indicated interval covers a sufficiently high fraction of 
our needs. 

exception makes the record doubtful, to that extent, 
for retrospective studies. It could be removed by en
larging our file storage to cover all past admissions, 
but this does not seem worthwhile. Even with this 
exception, we are sure that no laboratory results can 
be sent to the wrong patient under the control of a 
wrong patient number. 

The next major operation in our system is to enter 
the laboratory test requests into the computer. The 
laboratory receives requests in the form of the usual 
3-part request form, on which the patient identifica
tion is imprinted from the charge plate and the tests 
selected are indicated by handwritten marks. The 
request is assigned an accession number, and 6-digit 
patient number, the particular tests required, and the 
accession number are transcribed by key-punching on 
a punch-card * which is used to enter the request into 
the computer. Note that this is the minimal information 
which must be entered: the accession number, the 
patient identification number, and the test requested. 
If everyone of these passes the tests which are now to 
be applied, the request is accepted without further 
entry; if anyone fails, corrections must be made and 
additional information must be supplied. 

As the test requests are entered into the computer, 
an audit list is printed, showing the accession number 
and the patient number. At the same time, the patient 
number is checked against the census file, and if the 
patient number is found in the file the corresponding 
name is printed also; if the patient number is not found, 
no name is printed (Fig. 2). Usually two to ten percent 
of the entries are missing a name. These are filled in, 
often by calling the source of the specimen, so that each 
entry in the entire entry list has an associated name. 
The list is then validated by direct comparison of the 
list, name-by-name, with the names on the request 
slips. This process is not as burdensome or as time ... con
suming as it sounds, because the validation is comparing 
two lists of meaningful names (most names convey some 
sense of familiarity to a literate person, and even the 
unusual name is meaningful ipso facto) and the two 
lists are in the same order. The validation is highly 
significant, since the computer-generated name list 
comes from the census file, while the name on the re
quest slip comes from the patient's hospital chart or 
charge plate, or-in a fair proportion of the cases-as a 
handwritten entry on the request slip. Judgment is 
required to decide when the two apparently similar 
names are to be accepted as identical. 

Note that this process does not require any operator 
checking or verifying of the six-digit patient number, 

* The mechanics of this transcription will be described in a 
separate report. 



since the validation could fail to turn up an error only 
in the unlucky coincidence that (1) an incorrect patient 
number exactly matched a patient number in the census 
file, and (2) the name in the file, in turn, was identical 
with the name of the actual patient. Since the patient 
number is six digits, the chance of the first is on the 
order of one in a million, and considering the statistical 
distribution of names, the chance of the second must 
be one in a thousand: the combined chance of one in a 
billion is acceptable. At least, this mischance has not 
shown up yet. 

At this point we can be certain that within the above 
probability, each test request is correctly and un
ambiguously matched with some individual patient 
in the hospital, and that the three-digit accession num
ber or the six-digit patient identification number, either 
one, will unambiguously lead us to the correct inpatient. 

As the requests accumulate in the day's run, and 
interspersed with the above-described verifying activi
ties, we also print, by computer, a series of test check
lists of accession numbers arranged by the laboratory 
work-station which is to handle them. Also, laboratory 
personnel have been carrying forward preliminary 
processing on the specimens received. The test check
list is compared, by laboratory personnel, with the 
specimens being processed, and any discrepancies are 
reported to the computer staff for correction as neces
sary. This is the first of several verifications made 
of the tests ordered on each request. The source docu
ment for this information is the test request itself, 
supplemented by telephone calls from the patient 
areas, adding to, altering, or cancelling the list of tests 
requested. Because very little machine checking is 
possible, and a great deal of human checking and 

033 1376703 RAY6 GOLONER EUG 
376703 RAY6 GOLDNER EUG 563 l4 02 W M 

034 1376704 RAY6 DUBROW SOL 
376704 RAY6 OUBROW SOL 622 58 05 W M 

038 2336838 WO N MOLOEN MARGA 
336838 WD N MOLDEN MARG 028 36 28 N F 

041 1317132 MAL4 RAYNOR JOHN 
317132 MAL4 RAYNOR JOHN 799 61 01 W M 

043 1366042 GISS DEEGAN EDWIN 
366042 i GISS DEEGAN EOWI 725 53 03 W M 

052 1329766 NEUR THOMAS JESSI 
329766 NEUR THOMAS JESS 028 51 20 N F 

•••• CENSUS ENTRY HAS THE SAME NUMBER BUT NOT THE SAME NAME •••• 
055 1346710 MAL4 FREIDMAN LEO 

34671,0 MAL4 FRIEDMAN LE .3. 55 01 W M 

057 1178790 WHI7 LEHR ETHEL 

Figure 3-Audit trail: duplicate census entries 

Laboratory Verification of Patient Identity 269 

12/03170 
Ace PATIENT NAME 
•• 
3,16 
317 FELDMAN EVA 
31/1 UR8AN MITCH 
319 POMANO PASCA 
320 FREEMAN SOP 
321 MARTIN PERCU 
322 CALA8 ALLEN 
323 SYLVIA 8EARM 
324 VA NKOUWEN8ER 
325 WOODARD MIN 
326 8ASC~' SADIE 
327 HENRy RALPH 
328 KROUSE lEONA 
j29 TARASON EVA 
• •• 

DATf l':l./, 

NUMBER 

376739 
365248 
376713 
000000 
374916 
000000 
000000 
000000 
316664 
115048 
113689 
000000 
000000 
000000 

CLASS 

1 
1 

!- 'Sc.&..~t- "I 6W~s 
1 
4 
4 
3 
1 
2 
1 
4 
4 
3 

t.t,~ "to ~...:."' , -.4-:"",,,,,,. 
TIw. ~~..lMI~ ... "" 

........ w..... ~ t&...... s.-& -.... 

Figure 4-Audit trail: verification of patient identity 

human verification is required, more human effort, 
perhaps, is expended in keeping this list correct than 
in getting the patient identification correct. We regard 
this as principally a public relations effort, since an 
extra test or a missing test on a patient's specimen 
cannot have very serious consequences. Nevertheless, 
we do what we can. 

All the while, preparations are being made for 
printing the daily worksheets for the laboratory per
sonnel, one of the two main tasks of our computer 
system. These worksheets carry complete information 
about every patient specimen-name, number, hospital 
location, hospital service assigned, doctor code, age, 
sex, and genetic information. We expect the laboratory 
personnel who are professionally trained at all levels 
from staff physician to technician, to notice this in
formation, to take a personal interest in the people 
for whom they are helping to provide medical care, and 
to notify the computer staff of any technical or data 
processing discrepancies they may pick up. It is largely 
due to their alert interest that the last one-tenth percent 
of errors is corrected which make the difference be
tween success and failure. 

Among the subsidiary but useful records which the 
system generates in this period, which occupies the 
first two or three hours of the working day, are the 
master accession list, arranged in numerical accession 
order, and the alphabetic list of patients. Both of these 
carry the complete lists of tests entered for each patient. 
The alphabetic list is highly useful in answering tele
phone inquiries from the house staff who want to know 
if they "forgot to order" and like excuses. The pro
vision of this service by the computer has undoubtedly 
reduced the number of "stat" requests received during 
the day. 

Enough has been said already to illustrate our gen
eral approach to input, so that only a brief summary of 
our input verification of results is necessary. Here we 



270 Spring Joint Computer Conlerence, 1971 

have two distinct problems: (a) the correct transcrip
tion of the results from laboratory to computer and 
(b) the medical significance of the results as reported. 

(a) As to the first, we have had no direct personal 
experience yet with direct on-line acquisition of data 
from the laboratory analyzers. Our observation of such 
systems installed in other laboratories leads us to be
lieve that on-line direct data acquisition. will raise 
just as many problems as it solves. In our system, the 
laboratory technician key-punches her own results 
direct from her original record. The key-punched cards 
are checked by another technician or operator. After 

I 

the key-punched results are entered, the computer 
prints a reconstruction of the laboratory record, which 
is used for a second check against the original record. 
This reconstruction not only affords a second check on 
the numerical results reported, but especially calls 
attention to (1) extra results reported which were ap
parently not called for on the original test requests, 
and (2) results missing on tests which were originally 
entered into the computer. 

(b) Still more important, however, and one of the 
principal benefits to be sought from a computer-based 
report system, is a professional evaluation of the medi
cal validity of the laboratory results reported. In the 
days before the overwhelming expansion of volume in 
the laboratory work, every result reported from our 
laboratory was personally examined by the chief of 
the laboratory. This protected the laboratory from 
many embarrassing mistakes and made the results, 
even with the crude and unspecific tests of those days, 
more significant medically in many cases than the ex
cessive number of tests which are indiscriminately 
reported today. It is now humanly impossible for the 
chief, or even any reasonable number of assistants, to 
examine attentively and with judgment all the re
sults which are reported on hospital patients today. 
We need some sifting procedure to separate the labo
ratory results which are obviously reasonable, or for 
which no informed judgment is possible, from those 
which require and would benefit from the attention of 
an experienced clinical pathologist. No one, for example, 
can make anything out of a single blood sugar deter
mination on a patient for whom no previous laboratory 
work has been reported. There is no value in taking up 
the time and attention of the professional staff on such 
a report. If, however, the computer is programmed to 
bring together all the patient's results and to print 
out, for human attention, the blood sugar which is 
dubious when compared to other values for that pa
tient, much valuable time could be saved for more 
productive use. We are just beginning to see the bene
fits of this approach; it does not properly belong in a 
discussion of input error checking. 

The cost. The elaborate scheme proposed above for 
human and machine verification of computer data may 
seem all out of proportion to the benefits it produces. 
We do not deem it so, even though we cannot estimate 
either the cost of one negligent error in a laboratory 
or the added cost of preventing it. But more than this, 
the verification procedure actually costs us very little. 
We have run our computerized report system for 
several years with 98 percent accuracy and some
occasionally extreme-dissatisfaction on the part of 
the final users of it, i.e., the medical staff. We now run 
at better than 99.9 percent accuracy in patient identifi
cation with no increase in costs. The explanation is 
that in any clinical laboratory system there are periods 
of great activity and periods of comparative quiet; 
the human effort required by the above system of 
verification can easily fit into the quiet periods. The 
procedures usually need not be carried out a predeter
mined time, either in relation to the clock or in relation 
to the system procedures, so long as they are completed 
before the first external report is generated. The 
verification procedures are each one simple in them
selves, and they use printed lists and batches of source 
documents which are in simple orderly relationship to 
each other, so that there is not a lot of frantic back
and-forth searching involved. Each error that is de
tected can be pinpointed as to source, occurrence, and 
effect, and the fear of unknown and unknowable 
responsibilities has been dissipated. The staff has con
fidence in the system. It is this fact alone which makes 
our system a practicable one. 

In recent months, following circulation of this paper 
in preliminary form, the level of input accuracy has 
risen appreciably. Post hoc ergo propter hoc. We have 
noticed that when the input is 100 percent accurate, 
our verification system reduces to nothing more than 
reading each laboratory request slip twice: once when 
it is transcribed for keypunching and again with the 
validation list produced by computer. This does not 
seem unduly burdensome. In pharmacy practice, each 
prescription is read tl,lree times-once when picking up 
the stock bottle, second when counting out the pills, 
and third when returning the stock bottle to the shelf. 
We should do no less than twice in laboratory 
processing. 

REFERENCES 

1 DAB LINDBERG 
The computer and medical care 
C C Thomas Springfield 

2 J D WATSON 
The double helix 
Atheneum N Y 1968 



The data system environment simulator (DASYS)* 

by LAURENCE E. DeCUIR and ROBERT W. GARRETT 

System Development Corporation 
Santa Monica, California 

INTRODUCTION 

For the past nine years, SDC has been Integration 
Contractor to one of the largest satellite tracking, 
commanding and control networks in the nation. 

During this period the software portion of the total 
system has increased in both dollars and development 
time. Software is now a major element in the over-all 
system cost. 

One of the prime factors complicating this situation is 
the typical requirement to implement such software on a 
hardware system that is in a parallel state of develop
ment. A second is the use of actual mission supporting 
system hardware for development and integration of 
new software capabilities. The nature of this problem 
differs from that of initial over-all system development 
since the hardware already exists in developed form. 
However, the interference between normal operations of 
support hardware and software development can cause 
major disruptions to both efforts. 

Past attempts to alleviate this problem have included 
a variety of approaches utilizing software only, hardware 
only, or a combination of the two to simulate system 
functions in a non-operational environment. Although 
the results of these efforts have been good, they have 
also been piecemeal, and the time required in the 
operational environment has still been painfully large. 

The support role and configuration 

The mission of the organization for which SDC is 
Integration Contractor is to acquire, track, command, 
monitor and recover spacecraft in a multiple satellite 
environment. 

The organization utilizes a very large, extremely 
complex computer-based general purpose command and 
control system. The system consists of a central 

* © Copyright System Development Corporation 1970. 

271 

computer complex with associated command functions 
and a number of tracking stations located throughout 
the world. An elaborate communications network 
connects the stations with the central computer 
complex. 

The general purpose portion of the system provides 
acquisition data to the various tracking stations, 
acquires the satellite as it passes over, collects telemetry 
data, transmits commands to the satellite, and provides 
tracking data used to update the ephemeris for future 
acquisitions. 

The system provides the eyes, ears" nervous system, 
and muscle to the over-all process. 

Each tracking station has one operational computer. 
This computer handles the tracking, commanding, and 
telemetry data. It is tied to a buffer computer in the 
central computer complex, which can be automatically 
switched from station to station as it follows the 
orbiting satellite. Orbit ephemeris computations, acqui
sition predictions, command generation, and other 
associated functions are performed on off-line computers 
using data from the buffers. Acquisition and command 
data are transmitted through the buffers to the tracking 
stations. 

Because of the size and complexity of the computer 
programs that make up the system, the organization 
employs a number of separate firms for software 
development. SDC has contracted to integrate the 
resulting computer program system. 

SDC's integration role 

A software system is a host of computer programs: 
each performs one aspect of a complex job, each must be 
coordinated and compatible with the others. A system 
must be complete and must effectively fulfill the 
requirements for which it was designed and built. To say 
that a system is complete and effective means that all of 
its parts fit together, that they cover all of the tasks 



272 Spring Joint Computer Conference, 1971 

necessary to do the total job, .that the parts and the 
system have been tested and proved reliable, and that 
personnel have been trained to operate the system and 
keep it running. The process of making a system 
complete and assuring its quality is called integration. 

To comprehend how sizable the integration effort can 
be, one need only consider the following: 

• There are currently five system program models in 
various stages of work, and there have been as 
many as seven. Two are operational, one is in the 
final phase of validation testing prior to installation, 
one is being coded, and one is in design. 

• Each program model consists of approximately 
1,600,000 instructions. New models are introduced 
based on changing requirements. 

• Change control (design changes and program 
changes resulting from detected errors) must be 
maintained for each model. A typical program 
model has dozens of design changes and hundreds 
of discrepancy correcting changes made during its 
dynamic operational life. 

• The system uses three different computers. Conver
sion to new configurations requires retraining of 
personnel. 

• Interface requirements must be specified for each 
model. New or modified simulation techniques and 
tools, so vital in the validation testing activity, 
must be developed continually. 

• Training of operations personnel and on-going 
support must be provided for continuity and 
feedback. 

The scope of SDC's integration effort varies slightly 
depending on the schedule for each program model, but 
in order to provide continuous quality control and 
assurance, a level of effort concept is clearly mandatory. 
A discussion of problems encountered in software 
development in the live environment follows. 

OPERATIONAL PROBLEMS 

The software developer has a great deal of confidence 
in his ability to cope with problems which occur in a 
closed computer and computer peripheral environment. 
When this environment is extended to include complex, 
real-time asynchronous acting and geographically re
mote system elements, his confidence and ability are 
significantly reduced. 

In any network-wide test condition which is set up to 
exercise software much of the system technical perform
ance is invisible to, and beyond the control of, the 
software developer or integrator. He will be uncertain as 

to the actual system element status and will generally 
rely on a telephone network for some of the information 
transfer and control. The setup of his test condition will 
require scheduling which impacts on normal system 
operations. Test personnel availability and travel to 
scattered locations are also some significant problem 
areas. This type of operation may also require extended 
time at remote locations to run tests, analyze results, 
and factor system changes back into the software under 
development. 

The use of live vehicles in a system test environment 
is designed to provide conditions as close to operational 
as possible; however, even the best of these tests are 
often analyzed on a statistical basis in an attempt to get 
the most information out of a very expensive set of test 
conditions, but here again compromises are made to hold 
the cost and time involved to reasonable values. 

In general it can be said that a command and control 
system involving real-time operational software must be 
tested or demonstrated in an environment as close to 
operational as possible prior to final acceptance. 
However, these tests or demonstrations are very 
difficult and costly to design, set up, staff, and control. 
These problems make it very desirable to reduce as 
much as possible the system time required for these 
activities in the operational environment. 

After careful evaluation of the cost and utility of 
providing a complete data environment functional 
simulation system (test bed) to minimize the problems, 
SDC built the Station Ground Environment Simulator 
(STAGES) for the Air Force. The system consisted of 
interfacing hardware, a simulation computer and the 
simulation system software. An updated version of 
STAGES is being Installed now. 

The Data System Environment Simulator (DASYS) 
represents a refinement and expansion of the STAGES 
system on a custom basis to accommodate any simula
tion requirements. 

ALTERN ATIVES 

The ground rules established for the design and 
development of the software test bed are: 

1. That the total support environment be available 
(includes telemetry plus tracking and command), 

2. That a direct operator interface be provided 
through the Operator Console, 

3. That the operational computer process be as close 
to real-time as possible, 

4. That software being tested be in the exact 
deliverable condition (no octals required to 
accommodate test bed peculiarities), 



5. That dynamic control of every bit of each word 
passing through the computer interface be 
available, 

6. That recording capability of the operations be 
available for analysis, 

7. That environment modification require a mini
mum of software changes. 

Two alternatives for a software test bed were 
considered by the Air Force before selection of SDC's 
DASYS approach. 

1. That the functional support environment be 
provided to the real-time computer by means of 
digital simulation (the DASYS approach), 

2. That the configuration consist of all support 
components of the actual tracking station. 

I 

The advantages of Software Checkout by simulating 
the functional support environment are: 

1. Complete real-time environment is provided for 
testing, using dynamic inputs, 

2. Implementation and operation costs are signifi
cantly less than in a facility using real hardware, 

3. The user controls the test environment; there is 
no requirement for a larger complement of 
support personnel or extensive communication 
systems, 

4. Versatility is provided by simulation rather than 
actual components. This allows: 
(a) Practically unlimited computer provided 

data input parameter control 
(b) Experimentation with alternatives 
(c) Automatic or manual control of environment 
(d) Operation and control by user with minimal 

support, 
5. Computer time, calendar time, and cost for 

program checkout are reduced, 
6. There is ability to repeat specific tests for each 

program model and automate comparison of 
results, 

7. The system can be readily modified to reflect new 
interface characteristics, 

8. Non-interference between hardware and software 
subsystem checkout processes is guaranteed 
through final acceptance, 

9. Real-time dynamic and post-test analysis of all 
computer/hardware interface is available, 

10. Real-time program checkout is conducted inde
pendent of operational system availability, 

11. Simulation of hardware anomalies and future 
hardware capabilities is available prior to 

\ equipment availability, 

DASYS 273 

12. Software checkout and integration support are 
the sole roles, 

13. Additional applications areas are available for: 
(a) Mission rehearsal 
(b) Operator training under nominal and 

anomalous real-time conditions 
( c) Data system test and exercise. 

The only disadvantages of simulating the support 
environment are: 

1. Inability to investigate hardware-specific prob
lems, 

2. No checkout of hardware diagnostic types of 
programs. 

The .advantages inherent in the actual tracking 
station configuration were: 

1. The system could be used to accept, check out, 
and integrate hardware to be installed in the 
tracking stations, 

2. Hardware modifications could be tried and tested 
in a non-operational environment, 

3. Hardware diagnostics and other supporting 
programs could be checked out on a non-inter
ference basis, 

4. The equipment components could be used as a 
training aid for both hardware operators and 
maintenance personnel, 

5. The system would provide a limited operational 
software checkout capability on operational 
computers. 

The fact that only a limited checkout capability 
existed in the duplicated tracking station test bed 
(alternative 2) plus the disadvantages listed below were 
the reasons for not taking this approach. The disad
vantages are: 

1. The configuration resembles a tracking station to 
such an extent that many of the disadvantages of 
site use for software checkout also apply to the 
test bed. 
(a) Full-scale preventive maintenance is re

quired for configuration components because 
real, rather than simulated, hardware is 
used. 

(b) All engineering changes apply to the com
ponents, the same as they would to the 
tracking stations. This increases system costs 
and interferes with software checkout .. 

(c) Extra manning is required for monitoring 
and operating the components that have no 
real bearing on the software subsystem test. 



274 Spring Joint Computer Conference, 1971 

Figure 1-Data system environment simulator 

2. The primary role of the test bed would be 
hardware support. The amount of software 
checkout time required would all but eliminate 
this role. 

3. Parameter control is severely limited. 
4. No capability exists to: 

(a) Checkout completely controlled error condi
tions for any vehicle command functions 

(b) Run with multiple controlled environment 
(c) Repeat tests under manual control. 

5. The absence of system-oriented hardware/soft
ware technical interface personnel hinders resolu
tion of problems. 

The first alternative was chosen as being the best and 
most economical solution for developing the software 
test bed. The entire data system functional environment 
would be provided by a relatively small simulation 
computer. 

THE DATA SYSTEM ENVIRONMENT 
SIMULATOR (DASYS) 

There were two approaches available for the design of 
DASYS. First, the simulation computer could be large 
enough and fast enough to provide information to the 
operational computer, in real-time or near real-time. 
This would require the simulation computer to be 
several times larger than the operational computer and 
the test programs would have to be essentially real-time 
programs. This approach-although used by several 
government agencies-did not offer any savings over the 
conventional method of program testing and evaluation; 
in fact, the cost of the simulation computer and the 
cost of writing the real-time programs for this system 
would cause it to be more expensive than using the 
actual tracking station. 

The second approach was to use a relatively small 
simulation computer, operating in nonreal-time, and to 

modify the operational computer to make it operate as 
if it were in real-time. This is accomplished by stopping 
the clock in the operational computer while the 
simulation computer processes the next input stream. 
Thus, the operational computer is operating in 
segmented real-time. 

General description 

The Data System Environment Simulator consists of 
a small simulation computer with associated peripherals 
plus simulation software and interfacing hardware 
(Figure 1). In this system, user operational controls and 
displays are included in the interfacing hardware. 

The interfacing hardware in the system provides all 
of the externally genera ted signals and data to the 
operational computer including user controls in the same 
manner that the live environment does when interacting 
with a live moving vehicle. 

Since the simulation computer must complete its 
functions without compromising the timing integrity of 
the operational computer, the operational computer 
clock may be stopped before the next input from the 
simulation computer. This permits operational computer 
transactions to be performed as if the operational 
computer were operating in a continuous time mode, and 
allows the simulation computer to run in nonreal-time. 
Thus, the environment simulation is not time 
constrained by the simulation computer. 

One part of the simulation system "drives" the 
environment by functionally simulating data, equip
ment responses, and operator interactions to whatever 
level is required for the purpose at hand. Operations in 
real-time, delayed time, and accelerated time are all 
possible. During software tests, data rates and com
plexity may be varied over ranges that are much broader 
than those in actual operations. 

Another part of the simulation system records the 
results of each run, so that the software's interaction 
with its environment may be analyzed in detail after the 
simulation run. The required analytic tools may be run 
on the simulation computer. 

The user can operate the system in any of three ways: 
thereis manual control of the system using the hardware 
alone, automatic control using previously generated 
tapes, and semi-automatic control using tapes and 
manual intervention with the hardware. 

The capability to simulate a data system environment 
is defined generically as data system environment 
simulation. The parameters of an operational system 
which must be considered are operational computer I/O 
channels, word size, and environment functional 
responses at the computer I/O channels. 



Interfacing hardware 

The interfacing hardware consists of electronic 
equipment that connects the simulation computer to the 
operational computer. The hardware complements the 
simulation computer by providing functions not feasibly 
provided by software either in cycle time or economy. It 
also provides monitoring functions of the data exchange 
occurring at the operational computer interface by 
providing all intelligence with time tagging in micro
seconds for recording on magnetic tape. No modification 
has to be made to the operational computer data 
channels due to the matched interface logic provided by 
the hardware. 

General functions provided are: master timing, 
operational clock control, data recording and time 
tagging, s:mulation computer interface, controls and 
indicators, and environmental functions which can. be 
hardwired. 

Operational controls and displays are provided to the 
user through the interfacing hardware to allow recording 
of user-generated inputs or inputs from the simulation 
computer. 

Simulation computer 

The simulation computer configuration includes 
appropriate peripherals to provide the programmed 
functional environment and control signals through the 
interfacing hardware to the operational computer. The 
simulation computer is smaller than the operational 
computer but will transfer data in and out of the 
interfacing hardware at a rate fast enough to cause the 
simulated environment to respond to the operational 
computer stimulus in near real-time. The ratio of 
operating time to real-time will normally be of the order 
of 1.5 : 1. The simulation computer configuration can 
perform utility and off-line functions for the operational 
computer when the required peripherals are included in 
the system. 

Simulation software 

The software operating in the simulation computer 
will provide nominal environmental inputs and responses 
to the operational computer unless a specific anomalous 
condition is programmed into the system. This computer 
will generally input varying environmental parameters 
from exercise-specific, system parameter tapes contain
ing data such as track, telemetry and operator inputs, 
command responses, and communication data. These 
data will be output to the operational computer with 
timing integrity. Anomalies can be entered manually 

DASYS 275 

from a card reader or keyboard, or automatically from 
a tape. 

The software can cause the printout of selected 
time-tagged operational computer interface data (during 
an exercise or after an exercise) from the recording tape 
which has been written by the simulation computer. 

Summary 

Using DASYS, a programmer can checkout opera
tional programs in a real-time environment without 
disrupting system operations or having to involve 
others. There is considerable versatility in the way he 
can use both hardware and software. DASYS also 
permits experimentation with alternative programming 
approaches and determination of the exact time-tagged 
operational implication of each. There can be manual 
control capability of the system, using the simulator 
hardware alone, or the user can operate from a pre
viously generated environment tape that provides 
automatic control. This real-time simulation is also 
practical for mission rehearsals, system tests, and 
operator training. 

DASYS can handle functional simulation require
ments for nearly all system elements-sensors, command 
equipment, telemetry receivers, radars, system operator 
consoles, timing systems, alarms, and displays. Func
tional simulation of hardware being developed and 
objects being or to be supported, sensed, or directed by 
the software system being tested can also be provided. 
It makes little difference whether these objects are 
satellites, missiles, aircraft, railroads, or items being run 
through processing plants. 

COST EFFECTIVENESS 

The process of developing, testing, and integrating 
large computer programs includes detecting and correct
ing program system errors. This points to a very 
significant way of measuring the effectiveness of any 
means to accomplish these tasks. 

The parameters involved are numbers of errors, time 
between locating and correcting errors, and cost to spend 
system time in locating and correcting errors. Additional 
considerations include errors remaining in the system, 
level of confidence, system performance parameters 
control, and availability of test environment. 

The measurement of progress in development of 
computer programs has been the subject of much study 
and analysis. The detection and correction of an error 
constitutes a step in this process. Measures of program 
status can be related to the rate at which new errors 



276 Spring Joint Computer Conference, 1971 

I.EYEL 
OF --

UIIT - 0 EMOR DETECTION POStIBILITIES 

~ 
I 
I 
I 
I 
I 

~~----------~-------------------A 

OL---+~------------+tl----------------------7t2 

Figure 2-Level of confidence chart 

come to light. The lower the error detection rate, the 
closer the system is to the error-free asymptote. 

Figure 2 portrays the method in which software is 
normally tested and accepted. The vertical axis 
represents the level of confidence represented as per
centage. The top horizontal line represents the limit or 
100 percent level of confidence while the horizontal 
dashed line represents an acceptance level of confidence. 
When the acceptance level is reached the program or 
system is usually declared operational and turned over 
to the maintenance programmers. The horizontal axis 
represents time from the start of system testing. 

The slope of Curves A, B, C, D, and E represents the 
error detection possibilities. Therefore, any curve with 
zero slope has zero error detection possibilities. Curve A 
represents the assembly and testing cycle. The initial 
error rate is steep since the program is assembled and 
cycled for the first time but levels off very fast as the 
limitation of this procedure is reached. 

Curve B starts (point 1)when Curve A approaches its 
limitation and represents the system where the environ
ment is simulated by hardware, function generators, and 
special purpose simulators. The error detection rate will 
immediately go up since the capability of simulating 

various subsystems of the live environment has been 
introduced. Again the cumulative number of errors 
detected and corrected cannot exceed the capability of 
the facility and it is necessary to go to the next facility. 
This system is limited primarily by the inability to test 
the total system and the limitations of special purpose 
hardware, generally analog, which cannot be controlled 
to the desired precision. 

Curve C represents final testing in the live environ
ment. It is a step curve since testing is limited by 
hardware status, scheduled support of operations, and 
the inability to repeat the exact set of conditions to test 
corrections. The length of the horizontal segments of 
this curve will vary depending on the above factors. The 
system is accepted when it reaches the acceptance line 
of the chart (~). 

Curve D represents the error detection possibilities of 
using a simulation computer operating in nonreal-time. 
Due to the fact that it can exercise the entire system 
and repeat the exact conditions as many times as 
necessary, it has steep error detection capability up 
through the acceptance level. Realizing that no one 
would accept a system that had not operated satis
factorily in the live environment, the acceptance test on 
the operational system could be accomplished at time t1• 

Curve E represents a simulation computer operating 
in real-time. The only reason it does not have as high a 
confidence level as Curve D is that at some time in the 
testing, the capability of the computer· to continue to 
provide real-time input to the operational computer 
would be exceeded. Larger and larger systems could be 
installed to eliminate this problem, but the hardware 
and software costs would be prohibitive. 

There have been no statistics gathered as to how 
great a savings in time and money can be realized 
through use of the Data System Environment Simulator. 
It is estimated that the time savings (t2-t1) could be 
as much as 70 percent and that the dollar savings could 
easily be 50 percent or more. 



Management information systems-What happens after 
implementation? 

by D. E. THOMAS, JR. 

Western Electric Company, Incorporated 
Greensboro, North Carolina 

INTRODUCTION 

One of the greatest challenges facing the modern busi
ness firm is the development of means to efficiently and 
prudently harness computer technology, and make it 
produce. Classical computer production has been di
rected toward making existing tasks more efficient. A 
typical indicator of this direction has been the automa
tion of clerical accounting and payroll systems. Recent 
computer production, however, is becoming increasingly 
orient.ed toward automation of the decision making 
processes themselves (the "what if" question). This 
latter trend has forced the development of large, fast 
memory, tremendous on-line storage capabilities, pow
erful operating systems,- and generalized, easy retrieval 
programming languages. 

Furthermore, it is recognized that these hardware 
and software capabilities alone may not be sufficient 
to provide the desired results. The operating environ
ment must also undergo change. As the complexity and 
importance of automated information continues to 
grow, the role of the classical, job-shop service organiza
tion must be abandoned. A vital, dynamic support 
group of Production System Analysts must be substi-' 
tutedwhich will be responsible for the management 
and control of this computer based "information 
utility." 

USE OF MANAGEMENT INFORMATION 
SYSTEMS 

One means by which many firms utilize computing 
capability is through the development and implementa
tion of management information systems (MIS). MIS 
attempts to solve the information problem by providing 
relevant information in the right form to the right 
person at the right time.3 

Appropriately, MIS has been defined as "an acces-

277 

sible and rapid conveyor belt for appropriate high 
quality information from its generator to its user."3 

The information system should provide not only a 
confrontation between the user and information, but 
also, the interaction required for relevant and timely 
decision making. The heart of an effective MIS is a 
carefully conceived, designed and executed data base. 
By fully utilizing MIS, it can become "an intelligence 
amplifier" and the computer can become an extension 
of the manager's memory. Ultimately, the computer 
should free him from routine tasks, providing more 
time to devote to the creative aspects of his job.! 

TECHNOLOGY NOW AVAILABLE 

The technology for MIS is available now for most 
companies: 

-Computers have large memory capacities and 
great speed. 

-Memory is now economical. 
-Multiprogramming and multiprocessing systems 

have been developed. 
-On-line storage in tremendous quantities is now 

available. 
-Programming languages specifically designed for 

quick and variable retrieval are available. 

Yet, in a recent poll, the users of MIS from 655 firms 
(73 percent of those responding) stated that their com
panies had not used computers to maximum advantage 
in meeting management's information needs.2 

WHY IS MIS NOT WORKING? 

What is the problem? What then remains for MIS 
to be widely and effectively utilized by managers as a 



278 Spring Joint Computer Conference, 1971 

partner in the management of their business? Except 
for the continued improvements in hardware and soft
ware technology that will occur, the problems' of MIS 
are primarily problems of how to manage the tech
nology existent. Many reasons may be advanced to 
account for this mismanagement of MIS and computer 
technology: 

• Difficulty in finding and training EDP personnel. 
• Insufficient participation of management in sup

porting computer application development. 
• "Communications g,ap" between systems personnel 

and management. 
• Improper location of the EDP function within the 

organizational structure. 
• Lack of involvement of user organizations in com

puter decisions. 

Each of these is valid and each must be solved if 
MIS is to efficiently perform as a "conveyor belt" of 
information. However, too often, a well conceived, well
designed, and well-programmed information system 
will fail because it is mismanaged after production 
implementation. There has been little attention devoted 
to how an information system should function after it 
has been conceived, designed, programmed, and imple
mented. How should the system be operated? What 
should be the user involvement? Development per
sonnel involvement? These questions must be answered 
with workable solutions dependent upon the system 
functions, company policy, and company goals present. 

CLASSICAL OPERATION OF INFORMATION 
SYSTEMS 

The classical modes of operation of computer systems 
are: (1) The design organization, which included sys
tem analysts and programmers, continued to be re
sponsible for the execution of the system, (2) the user 
was educated to a degree whereby he could, at least 
mechanically, exercise the system to produce what he 
needed, or (3) the Data Center operation personnel 
were held responsible for the execution of the system, 
this responsibility either being exercised by computer 
operators or control clerks. 

The first of these modes of operation, execution by 
the design organization, is inefficient because human 
resources will not be effectively utilized. An unbalanced 
work load would exist, whereby some people would 
spend most of their time on production runs whereas 
others would spend only a small amount of time. Fur
thermore, trained systems analysts and programmers 
should be utilized as systems analysts and programmers 

and not performing in a repetitive, production en
vironment. 

Development organizations would find it difficult to 
provide the necessary SUbsystem interface because they 
would not be aware of activity in those subsystems in 
which they had not been involved during the develop
ment stages. For example, subsystems of a total system 
may be developed by different programming groups, 
relatively independent of each other. In summary then, 
the management and control of production information 
systems should be recognized as a full-time job, and 
programmers and systems analysts would not, and 
should not be expected to, devote this required effort. 

The second possible mode of operation emphasized 
the development organization designing and program
ming a system and educating the user to submit his 
own work to the data center. This was a mechanical 
process for the user because he neither had the time nor 
interest to learn enough to solve any EDP problems or 
effect any system improvements. Consequently, the 
development organization was responsible for solving 
all problems. Furthermore, the system was infrequently 
analyzed to determine if it was continuing to meet user 
needs and, as a result of this, the user frequently be
came disenchanted with the information system. An
other drawback to this type of operation was that sys
tems could not be designed with more than one direct 
source of input to or disposition of output from the data 
base. Data collection and document distribution or
ganizations were formed to exercise this interface with 
the data base for these areas in which volume demanded 
it. 

The most serious drawback, however, was that the 
user of a subsystem would be naturally concerned only 
with a subset of the total system, that subset being the 
subsystem which produces the information he needs. 
If his reports are validly produced, he does not care 
that he has entered "garbage" into the data base that 
some other user might inherit. The Data Center, fur
thermore, because it has no control over what it does 
or when it does it, will not be in control of its operation 
and, hence, the operation of the center might tend to 
be wasteful and inefficient. This is particularly true in 
the multi-programming environment where much effi
ciency can be gained by careful scheduling of various 
job mixes. 

The third mode of operation, 'the use of computer 
operators or control clerks to set up and run what was 
requested by the users, was deficient for some of the 
same reasons mentioned above-(l) The management 
and control of a system required an indepth knowledge 
of that system; it is not a part-time job, (2) interfaces 
between subsystems must be timely and accurately 
made to generate meaningful output, and (3) input 



data control and computer job control must be exercised 
by the same group for greatest efficiency. This mode of 
operation, while it provided the data center with some 
control over its operation, was primarily mechanical 
with problem solving and system improvement by de
velopment personnel. 

ADVANTAGES OF PRODUCTION SYSTEMS 
ANALYST GROUP 

The incorporation of a strong support group solely 
dedicated to managing production information sys
tems will solve many of these traditional operating 
problems. This group of Production System Analysts 
provides the following advantages: 

1. Development personnel can devote full time to 
development effort. 

2. User devotes full time to improving accuracy 
and timeliness of data content. 

3. Operations-computer operators and control 
clerks-devote full time to improving the effi
ciency of the computer. 

4. Central point of coordination for data and file 
maintenance is established. 

5. System is constantly analyzed for improvement, 
ensuring that it meets user's everchanging needs. 
Development and maintenance effort is re
quested as required. 

6. Quick and efficient processing of data into the 
base and the resultant generation of documents, 
interconnecting dependent information subsys
tems as necessary, is effected. 

PROBLEM OF STAFFING 

Proper staffing of this group is perhaps the greatest 
problem encountered. The types and levels of personnel 
required for this group, in that the function had no 
precedent, has been largely experimental, but is now 
stabilizing itself. One key element is becoming increas
ingly dominant-the group should be more user
oriented than EDP-oriented. The members of the 
group, furthermore, must be highly motivated for they 
are the only bridge between company needs and the 
computer. It is recognized that many of the tasks per
formed by the group can be done by non-professional 
personnel if they are provided adequate documentation 
and guidance. However, the need for some professionals 
as group leaders is clearly noted, with each being re
sponsible for several systems or subsystems. He then 
has the responsibility of directing the activities of the 
personnel assigned to him. The direction of future 

Management Information Systems 279 

staffing and organization will depend upon the specific 
requirements to efficiently operate and manage the 
individual information systems. Each system, depend
ing upon its importance, requirements, and complexity, 
is treated differently, with some systems requiring more 
or less support than others. The number of non-pro
fessional personnel and the strategic placement of the 
professional personnel needs to be continuously re
analyzed as new systems are implemented. 

FUNCTIONS 

The primary function of the Production Systems 
Analyst group is to manage the company data base. 
This broad function is interpreted to include data verifi
cation, file updating, information retrieval, file storage, 
and quality control. 

Generally, all functions and activities can be grouped 
into three categories-preprocessing tasks, postprocess
ing tasks, and coordinating tasks. 

PREPROCESSING TASKS 

Preprocessing tasks consist of: 

• Input data collection and verification. 
• Tabulation coordination. 
• Job setup. 

The group provides a focal point toward which flows 
all data to be entered into the data base. Th~ analyst 
is expected to act as a screen for all input data, sifting 
out that which is incomplete, not in the proper format, 
or unusable. Unusable data may, for example, be in the 
form of an 1-0 error on a tape, mispunched data cards, 
or unreadable data sheets. When input data problems 
are encountered, the analyst is expected to initiate cor
rective actions which will expediently result in correct 
data for input into the base. While he is expected to 
be a data expert insofar as format, he is also expected 
to be able to recognize invalid content in many in
stances. The criteria of content expertise varies with 
the system, but in general, where constraints can be 
placed on data variability, he should provide a proper 
screen. 

Tabulation coordination includes, when necessary, 
the preparation and transmission of hardcopy data to 
the keypunch room, requesting of data card listings, 
input tape dumps and other associated activities of the 
computer room, and verifying the results of these ac
tivities. If a problem is encountered by the keypunch 
or computer room in a job, it is resolved, not by these 
operator groups contacting the user, but by the analyst 



280 Spring Joint Computer Conference, 1971 

exammmg the problem and determining a solution, 
which may include user involvement. 

Job setup requires a considerable portion of a typical 
Production Systems Analyst's time. It includes the 
determination of correct files and programs to utiliZe, 
preparation of computer operator instructions, and 
modification of control cards (both program control 
and job control). Often an analyst must obtain file 
information such as information content, file numbers, 
and file names from other personnel. This coordination 
of system dependencies is vital to successful data base 
management. 

The analyst is required to know capabilities of and 
be able to correctly execute all programs in those sys
tems for which he is responsible. Computer operators 
turn to him for the resolution of all problems with the 
requested work, rather than the user or the develop
ment organization. He is expected to analyze job fail
ures and actively seek the correct solution. He may 
request the user to submit correct data; he may correct 
a control card error; or he may determine that there 
may be a program error. In this last case, the·develop
ment or maintenance organization is notified of the 
problem and is provided the hardcopy documentation 
required for their analysis. Note that the Production 
Analyst does not make any program modification him
self, this task being reserved for development and/or 
maintenance organizations. After a program correction 
has been made and tested by development, the Produc
tion Analyst will instate the new issue of the program 
into the production cycle as soon as possible. The 
Production Management group, however, writes utility 
programs to perform functions such as data listings, 
tape copies, and data reformatting. Also, they are ex
pected to be experts in the preparation of Job Control 
Language (JCL) statements and the modification of 
these control cards as necessary to exercise a series of 
programs. The analyst is thus given considerable lati
tude to modify runs as the user's needs change, as the 
computer operating system changes, or to enable the 
system to be operated more efficiently. Development 
support should be required only when a source program 
needs to be modified. 

POSTPROCESSING TASKS 

Postprocessing tasks consist of: 

• Job checkout. 
• Tabulation coordination. 
• Document review and distribution. 
• Updating of production records. 

The task of job checkout includes the analysis of 
both job control (JCL) messages and user written, 
program generated diagnostic messages. JCL messages 
are analyzed for each job to ensure that proper and 
orderly execution of each program has transpired. As 
discussed previously, jf any failures are encountered, 
the Production Analyst is expected to actively seek 
resolution, involving the user, computer operations, or 
the development group as necessary. The analyst re
quires an excellent ability to read core dumps. He is also 
responsible for notifying the user of any program diag
nostics so that he may take corrective action. This type 
of diagnostic is typical of data validation and update 
programs, and the information usually must be quickly 
conveyed to the user. 

Tabulation coordination includes the transmission of 
written instructions to computer tab operations in the 
data center regarding decollating, bursting, card inter
preting and other similar activities. 

Document review includes verification of (1) correct 
printing, (2) correct heading and format, (3) correct 
number of copies, (4) correct paper size and type, and 
(5) a reasonable content. Note that the user must 
certify that the content of all documents is correct, but 
nevertheless, the Production Systems Analyst is ex
pected to measure the content of a document within 
the framework of the input data used to generate it 
prior to distributing to the user. This document review, 
furthermore, is not intended to be a substitute for the 
normal quality control procedures of the computer 
operations group. 

Record keeping usually includes (1) a log of file 
names and numbers, (2) contractual documents gen
erated, (3) date and time of runs, (4) run flowcharts, 
and (5) a log of problems encountered and resolutions 
enacted. These records become important in determin
ing future schedules and usage forecasts but, more im
portantly, are critical if reruns are necessary. The con
tents of a data base may number several hundred reels 
of tape. Without correct file information, incorrect runs 
may be made or part of the data base may be accidently 
scratched. The maintenance of meaningful production 
run information, in summary, is possibly the most im
portant function of this control group. 

COORDINATING TASKS 

Coordinating tasks consist of: 

• Scheduling keypunch and computer resources. 
• Forecasting keypunch and computer usage . 
• Production planning. 
• Establishing and properly storing system data 

bases, 



As opposed to preprocessing and postprocessing tasks 
which are easily definable, coordinating tasks are not 
so easily categorized. These tasks are performed pri
marily by Information Systems professionals within the 
group. 

These persons are responsible for working jointly 
with the users and the computer and keypunch sec
tions to establish schedules which will first, meet the 
needs of the business, and second, optimize the use 
of the data center's productive resources. Schedules 
must be constantly analyzed for effectiveness in regard 
to both objectives above and modifications negotiated 
when needed. Forecasting of resource usage is also a 
responsibility of this group, in that the user is almost 
always too far removed from the data processing func
tion itself to accurately forecast computer and key
punch usage. However, the analyst must obtain from 
the user some indication of what his projected level of 
activity (relative to past activity) is to be before he can 
project computer and keypunch resources required. 
This method of forecasting has been demonstrated to 
be extremely accurate. 

Production planning activities include a continuing 
analysis to (1) improve the operation of the system, 
and (2) better meet user requirements. This analysis 
may include recommendations to the development or
ganization for new programs or to the maintenance 
organization for modifications to existing programs. It 
may include the development of a new data transmittal 
form and subsequent instruction may be necessary to 
the keypunch section for efficient encoding of the data. 

The data base organization, including filing and 
labeling procedure, must be developed. Record keeping 
procedures must be devised uniquely for each system 
emphasizing that information which is necessary and 
practical. 

The needs and requirements of the user must be fre
quently analyzed to ensure the continued relevancy of 
the entire system. An outdated system or subsystem is 
an expensive process. Mter a system has been in pro-

Management Information Systems 281 

duction for years, the development organization will 
not and should not be responsible for this analysis. 

CONCLUSION 

As stated in the introduction, a great challenge facing 
the modern business firm is development of means to 
harness computer technology to provide the right in
formation to the right people at the right time. One 
tool which has received considerable attention in the 
past few years and which is now practical with the 
stabilization of third generation technology is an Inte
grate~ Management Information System. Nevertheless, 
as eVIdenced by a recent poll in which seventy-three 
percent of those responding indicated that their com
panies were not using computers to maximum advan
tage, this tool, Management Information Systems is 
not working in many instances. Valid reasons for ~his 
lack of success are available as previously discussed. 
However, it is this writer's contention that many sys
tems do not develop to their potential not because of . . ' 
Ill-conceived design or poor programming, but rather, 
because of mismanagement of the system after imple
mentation. While it may not eliminate all the problems 
in a system, the recognition that Management Informa
tion Systems must be managed and controlled will cer
tainly provide many solutions. 

BIBLIOGRAPHY 

1 ANON 
Management and the information revolution 
Administrative Management pp 26-28 January 1970 

2 J H BARNETT 
Information systems: Overcoming the barriers to successful 
utilization 
Management Review pp 9-14 September 1969 

3 J H NORTON 
Information systems: Some basic considerations 
Management Review pp 2-8 September 1969 





A methodology for the design and optimization of 
information processing systems* 

by J. F. NUNAMAKER, JR. 

Purdue University 
Lafayette, Indiana 

INTRODUCTION 

The design of an Information Processing System (IPS) 
can be divided into two major problems: 

1. What are the requirements of an information 
system, e.g., what outputs should be produced? 

2. What is the best way to produce the required 
outputs, on time, given the requirements de
veloped in I? 

This paper is concerned with the second problem. How
ever, the methodology developed to solve the second 
problem provides cost information that can be used by 
the problem definer to assist him with the determination 
of the requirements. One approach to determining the 
requirements of an information system involves com
paring the information value of a report with the cost 
of produoing the report. ** 

Considerable time and money are expended in sys
tem design and programming when a firm acquires, 
leases or in any way uses a computer. With each new 
system the task of getting the system operational 
seems to take longer and becomes more costly than the 
time before. A methodology for analyzing and designing 
Information Processing Systems is needed if we are to 
keep from getting further behind. 

The general purpose of this paper is to continue the 
formalization of the process for designing Information 
Processing Systems and to improve it by increased 
application of operations research techniques and by 
more use of the computer itself. 

* The work described in this paper was sponsored in part by the 
ISDOS (Information Systems Design and Optimization System) 
Project, a University of Michigan Research Program directed by 
Professor Daniel Teichroew and by a Krannert Research Grant at 
Purdue University. 
** The value of a report is often arrived at by a process of 
"guesstimation" and it is difficult to accurately measure the value. 

283 

SODA (Systems Optimization and Design Algo
rithm) is presented as a methodology for automating 
the system design functions. The objective of SODA 
is to generate a complete systems design starting from 
a statement of the processing requirements. 

INFORMATION PROCESSING SYSTEMS 

An Information Processing System is here defined as 
a set of personnel, hardware, software packages, com
puter programs and procedures that have been as
sembled and structured so that the whole set accom
plishes some given data processing requirements in ac
cordance with some given performance criterion. 

An important aspect of this definition is that it in-. 
eludes an explicit statement of the "performance cri
terion'} by which perfo~mance of the system is meas
ured. A consequence of including performance measures 
is that the emphasis is focused on the overall per
formance of the system rather than on anyone part. 
The study of large scale IPS is in essence a study of 
the performance of the total system: hardware, soft
ware and other procedures. 

One characteristic of an IPS is that data files are 
stored on auxiliary memories and it takes a number of 
interrelated computer programs to meet the specific 
requirements of the problem definer. The large number 
of interrelated programs distinguishes the problem that 
is described here from that aspect of Computer Science 
which is concerned with individual programs. These 
systems almost always depend on a large. amount of 
data, now frequently called a data base. A duality 
exists between the programs and the data, and the 
structure of each is quite important. 1 ,2 

The selection of expensive hardware for a given set 
of requirements is frequently involved and often the 
expenses increase significantly since the requirements 
of the system are continuously changing. 



284 Spring Joint Computer Conference, 1971 

The 
Organization 

And 
Environment 

Problem 
Definer 

Figure 1-The systems design process 

Specifications 
For 

Constructions 

What is needed is a flexible systems design process 
that can accommodate changing requirements. 

THE IPS DESIGN PROCESS 

The IPS design process has a number of similarities 
to any physical design process, such as a production 
plant or a bridge. In each case there must be an initial 
recognition of a need. Next, preliminary studies are 
conducted in which major alternatives are considered, 
the technical feasibility determined and costs of al
ternatives estimated. If a decision to proceed is made, 
the requirements must be stated in sufficient detail for 
designing the system. The design phase consists of pre
paring a set of specifications (blueprints) which are 
detailed enough for the construction phase. 

The major functional activities and decision points 
in the design process of IPS are shown in Figure 1. 
The design process is initiated through the statement 
of requirements from "Problem Definers." After the 
requirements have been documented, the systems ana
lysts consider the equipment available and any con
straints (such as the existing system) on the design 
activity. The design phase consists of producing the 

. specifications for the four major parts of the system: 

-Hardware and software packages that will be 
used 

-Programs to be written 
-System Scheduler, schedule for sequencing the 

running of the programs 
-Data Organization, specifications of file struc

ture and how the files will be stored in hardware 
memories 

Beneath the surface similarities between the design 

process of physical structures and IPS there are some 
differences in emphasis. Typically, more attention is 
given to the planning and generating alternative de
signs in developing a production facility than in de
velopment of an IPS. This is probably true because 
there are more external constraints associated with the 
design of a new facility, e.g., architects, contractors, 
equipment suppliers, and governmental zoning' com
missions. In the design and implementation of the In
formation Processing System, the requirements for the 
formalization of the design functions are not so appar
ent, hence there is a tendency to do some of the design 
work concurrently with construction of the system. 
This practice often leads to problems. 

External constraints, similar to those involved in the 
physical design process, can be created to formalize the 
requirements of the Information Processing Depart
ment (IPD) through the use of information budgets.3 

The information budget will directly involve manage
ment in the operation of the IPD and force more at
tention to be given to the IPS design. 

CURRENT PRACTICE IN SYSTEMS DESIGN 

While some' formal techniq~es have been proposed 
and the computer is sometimes used for calculating 
estimated processing time, most of the systems design 
is done in an ad hoc basis. The need for formal analysis 
techniques, of course, has long been recognized.1,2,4,5 

Information Processing Department managers gen
erally recognize a distinction between systems analysts 
and programmers. The systems analyst is usually re
sponsible for systems design. In most cases he has had 
no formal education or training for systems design and 
has obtained his knowledge by experience. He uses 
little in the way of tools other than graphical com
munication devices such as flow charts and decision 
tables. 

Complicating the problems of inexperience and lack 
of training of the systems analyst is the fact that IPS 
problems must be subdivided to reduce the task for a 
systems analyst to a reasonable size and this intro
duces the problem of coordination of the many systems 
analysts on the project. In addition it involves the co
ordination of problem definers, systems analysts and 
programmers. 

The systems design is carried out by one or more 
analysts who obtain the statement of requirements 
from those who specify what processing is to be done 
and what output is needed. The analysts specify pro
grams and file design in sufficient detail so that pro
grammers can write the programs and the files can be 
constructed. 



Methodology for Design and Optimization of Information Processing Systems 285 

There is considerable difference of opinion on how 
much detail of the systems design should be docu
mented and how much other communication between 
systems analysts and programmers should be allowed. 
Despite all these problems, information processing sys
tems are being designed. 

There are, however, some major undesirable features 
of the present procedures for systems design. These are: 

1. The performance criteria and the requirements 
of the IPS are not stated explicitly. 

2. Programs become the only up-to-date docu
mentation. 

3. Accommodation of changes to the IPS is ex
pensive. 

4. The design process takes too long. 
5. Construction of the system frequently starts be

fore the system is completely designed in an 
effort to save time. 

6. Few alternatives are examined in the design 
phase. 

7. The systems do not work correctly. 
8. They are costly to design. 
9. Procedures become inefficient as changes in the 

IPS occur. 

Optimization has not been completely overlooked in 
the design and implementation of Information Pro
cessing Systems, but any such effort has been applied 
to the evaluation and selection of equipment usually 
for a specified application. This should not be surprising 
since the commitment for computing system hardware 
represents a sizable outlay. Since a contract is to be 
considered, it represents a decision point in which 
management becomes directly involved. Because of 
this, care is given to the consideration of alternatives 
to assure the "best decision'" is made-perhaps too 
much care, in relationship to the return that can be 
expected from review focused only on this decision 
point. 

The difficulties both of time lag and problem ex-, 
pression summarized above are familiar to anyone who 
has been involved in management of a large scale In
formation Processing System department. In addition 
to these existing difficulties, the design problem will 
become even more difficult in the future. The hardware 
is already able to accommodate more powerful soft
ware systems than are available. Moreover, attempts 
to develop sophisticated software systems have been 
very expensive. 

The first three points listed above are related to the 
deficiencies in problem definition and documentation. 
Points four and five are concerned with the time re
quired to carry out the systems design and the sixth 

point relates to the lack of optimal use of resources. 
Points seven, eight and nine are concerned with the 
r~alization that the systems often do not work properly. 
They are very costly and become inefficient over time. 

THE IPS DESIGN PROBLEM 

It is becoming more and more apparent that the 
drawbacks listed in the previous section are likely to 
become more of a problem in the future. The design of 
IPS to handle more complex requirements cannot be 
achieved without unrealistic expenditures of effort. The 
number of analysts, designers and programmers re
quired to handle these more complex requirements are 
not likely to be available. 

There are basically four ways to improve the 
situation: 

1. Education to increase the number of personnel 
and improve their quality. 

2. Improvement of manual system design tools, 
techniques, and procedures. 

3. Use of generalized rather than tailor-made 
software. 

4. Automation of the system design process. 

Most attention has been devoted to the first three 
approaches. The SODA methodology concentrates on 
the fourth approach and rests on the premise that 
specifications for the IPS can be generated directly 
from a statement of user requirements for a limited 
class of processing requirements. The specifications 
must be detailed enough to verify feasibility and to 
evaluate the performance of the proposed system but 
not more detailed than enough to specify construction 
because producing "too detailed specifications" are 
costly and they may have to be changed in any case. 
Also, "too detailed specifications" are embedded in 
processing procedures which tend to bind the design 
unnecessarily, at too early a stage and with negative 
payoff. 

Since the purpose of the IPS is to produce outputs, 
it must respond to changing inputs. One of the design 
problems is to decide what changes should be accom
modated with what degree of ease. Certain components 
are easier to change than others, e.g., it is easier to 
change a program than to change the operation per
formed in the hardware. It is easier to change the data 
in a file than it is to change the structure of the file. 

The systems design decision hierarchy consists of 
certain decisions which constrain later activities. For 
example: 

1. Selecting a hardware configuration constrains 



286 Spring Joint Computer Conference, 1971 

everything that follows to what can be accom
plished with the selected hardware. 

2. Selecting the size of the main memory, number 
and type of input and output units and auxiliary 
memory constrains still further what can be ac
complished. 

3. Selecting an operating system determines what 
processing organization is possible. 

4. Selecting compilers and utility programs con
strains what the programmer can do for himself. 
The programmer, when he writes a particular 
program module, is constrained by the data or
ganization, the input and output formats and 
the software and hardware on which the pro
gram is run. 

The purpose of our discussion of design is to identify 
the design decisions that are made at any point, to 
enumerate the decisions that are possible, and to de
velop methods for: 

1. Determining when (in the design process) the 
decisions should be made. 

2. What is the optimal or suboptimal decision in a 
particular case. 

Currently each organization tends to develop its own 
procedures with very little evaluation of methods de
veloped elsewhere. IPS design can benefit by the syn
thesis .of the available knowledge and practical know
how, and by the development of more powerful analyti
cal methods to replace the current ad hoc methods. 

In the course of the evaluation of computers and their 
use as information processing devices a variety of tools 
have been developed to aid the analyst in making the 
necessary design decisions and in facilitating the con
struction of these systems. Steiger6 describes some of 
the steps in systems design and it is clear that as these 
aids have become more sophisticated the computer is 
being used more and more extensively in the design 
process. For example, there are commercial computer 
systems simulation packages7 ,g,9 available for use in the 
evaluation of computer system performance. 

However, most of the use of the computer has been 
in the construction phase, i.e., in the generation of 
computer code from source language statements. These 
source language statements could only be prepared 
once the system had been designed, i.e., once the analyst 
had decided what hardware would be used, how data 
would be organized and stored in the hardware, how 
the processing would be combined into programs, and 
how these programs would be organized, i.e., in what 
order the programs would be run to accomplish the 
total processing requirements. It is exactly these deci-

sions which have a major influence on the performance 
of the system, i.e., how much computer hardware and 
how much time are needed to satisfy a given set of 
processing requirements. 

SODA 

It is with respect to systems design decisions that 
much work needs to be done and SODA is presented as 
a methodology for the design and optimization of IPS. 
The existing systems simulators7,g,9 assume as given a 
systems design, i.e., a description of each program, 
schedule for a set of runs and structure of the data 
files. SODA is intended to specify a systems design 
from a statement of the requirements and to generate 
the set of programs and data files. 

SODA consists of a number of sub-models that are 
solved using mathematical programming, graph theory 
and heuristic procedures. Since the overall design 
problem is very large, it is convenient to view the 
algorithm as a multilevel decision model with the deci
sion variable of one level becoming a constraint at the 
next level and so on. The partitioning of the problem 
into a multilevel structure implies that a different set 
of decision variables are required for each level of the 
algorithm. 

The decision making structure of SODA is described 
by (1) specification of the inputs and outputs, (2) 
specification of decision variables and determination of 
feasible alternatives, (3) selection of an objective func
tion, (4) expression of objectives as a function of deci
sion variables, (5) explicit statement of constraints 
which limit the value of the decision variable and (6) 
solution, i.e., determination of the values of the decision 
variables. 

SODA is a set of computer programs which begins 
with the initial statement of requirements (i.e., what 
the system is to do) and proceeds through the design 
and specification of the system. SODA is not concerned 
with the determination of which requirements are to be 
stated. The assumption is made that the problem de
finer (PD) can accurately identify his requirements. 
The major components of SODA are: 

Problem Statement Language (P SL ) 

SODA/PSL is a technique for stating the require
ments of the IPS independent of processing procedures. 
It also provides the capability for easily handling 
changes in requirements. 

Problem Statement Analyzer (PSA) 

SODA/PSA is a program for analyzing the statement 
of the problem and organizing the information required 



Methodology for Design and Optimization of Information Processing Systems 287 

in SODA/ ALT and SODA/OPT. This program also 
provides feedback information to the problem definer to 
assist him in achieving a better problem statement. 

Generation of Alternative Designs (ALT) 

SODA/ AL T is a procedure for the selection of a 
CPU and core size and the specification of alternative 
designs of program structure and file structure. 

Optimization and Performance Evaluation (OPT) 

SODA/OPT is a procedure for the selection of auxil
iary memory devices and the optimization and per
formance evaluation of alternative designs. 

Refer to Figure 2 for an overview of SODA. 
The output of SODA is (1) a list specifying which of 

the available computing resources will be used, (2) 
specifications of the programs generated, (3) specifica
tions of the file structure and the devices on which they 
will be stored, and (4) a schedule of the sequence in 
which the programs must be run to accomplish all the 
requirements. 

SODA selects a set of hardware, generates a set of 
programs and files that satisfy timing requirements, 
core memory and storage constraints such that the 
hardware cost of the system is minimized. 

SODA is limited to the design of uni-programmed 
batch systems, sequential auxiliary storage organiza
tion, the specification of linear data structures, and the 
selection of a single CPU. The model is deterministic. 

The problem statement technique is intended to handle 
"report oriented" data processing systems. Refer to 
Figure 3 for the interaction of the levels of SODA. 

The overall structure of SODAI ALT and SODA/ 
OPT is given in Figure 4 which describes the decision 
variables, objective function, alternatives, constraints 
and solution techniques for each level in a summary 
form. 

PROBLEM STATEMENT LANGUAGE 

It is assumed that someone called a Problem Definer 
(PD) is familiar with the operation of the organization 
and has the necessary training to describe the processing 
requirements of the organization. The Problem Definer 
states his data processing requirements in a problem 
statement (PS) according to SODA/PSL and the re
quirements are input to SODA/PSA in the form of a 
subset of a PS called a Problem Statement Unit 
(PSU). A PSU consists of three major categories: the 
data description, processing requirements and opera
tional requirements. The data description is defined by 
Elementary Data Sets (eds) and Data Sets (ds). The 
processing requirements consist essentially of a set of 
formulas called Processes (pr). The operational re
quirements consist of information on volumes, fre
quency of output and timing of input and output. 

An eds consists of a Data Name (dn), Data Value 
(dv) , Descriptor Name (sn) and Descriptor Value (sv). 

The sales of model X in the north region is an ex
ample of an eds. 

Data 
Name 

Descriptor 
Value 

Descriptor 
Name 

Data 
Value 

(in the) NORTH REGION (is) 500 

A Data Set is the set of all eds with the same dn. The sales of model X in all regions of the country is an example 
of a Data Set. 

Data Descriptor Descriptor Data 
Name Value 

SALES - MODEL_X (in the) NORTH 
SALES - MODEL_X (in the) SOUTH 
SALES_ MODEL_X (in the) EAST 
SALES _MODEL_X (in the) WEST 

There are four types of Data Sets and SODA makes 
use of the Data Set type in the file structure algorithm. 
An Input Data Set is any input data to the IPS. A 
Storage Data Set is that data which is stored in the 
IPS. A Terminal Data Set consists of output reports 
or forms and is not retained in permanent storage in 

Name Value 

REGION (is) 500 
REGION (is) 600 
REGION (is) 300 
REGION (is) 400 

the IPS. A Computed Data Set is the output of a 
Process that is neither a Storage nor a Terminal Data 
Set. 

A Data Set may have up to three Descriptor Pairs 
to uniquely identify a Data Value. The set of Descrip
tor Pairs is referred to as an Identifier and a Descriptor 



288 Spring Joint Computer Conference, 1971 

Statement 
of 

Requirement . 
in 

SODA/PSL 

Data 
Descripticp 

Processil\i.' 
Requirem~nls 

Operational 
Requirements 

The 
Organization 

The 
Problem 
Definer 

Alternatives Tentatively 
Selected: 

Compbte specifications 
of ~lected Alternatives 
- Hardware Selected 
- Detailed Design of Pro-

gram and File Structure 
- Operating Schedule 
- Expected System Per-

formance Reporta 

Figure 2-S0DA: Systems Optimization and Design Algorithm 

Pair consists of a Descriptor Name and Descriptor 
Value. 

Let idk be the kth Identifier where dn[id] is a short
hand notation for writing (dn, sn), (sv, dv). 

Example: The GROSS_PAY of 5 employees each 

SODA/PSA 

Is the Problem Statement consistent? 

y 
SODA/ALT 

L Select the minimum rental cost CPU I-------------\Next 

I .i"s~u~e ~fi~~ c~,,! ~t !."~~~e~ __ 

:: _ C!!.m~U: ~!'p!:'oc,!.8s.!!.'lt .!im..!' _ _ _ __ 

Is the processing time for each time 
period ~ time available in the time 
period? 

y 

L Select the minimum rental cost core 
2 size not yet considered for the CPU 

L Consolidate Data Sets into Files such that 
4 the maximum number of I/o for any 

PM is a minimum for all feasible designs 

SODA/OPT 

L2 Select an auxiliary memory configuratioo 

Can blocking factors be adjusted? 

N 

i-__________ -1
Next 

r---H-a-v-e-al-I-cor-e-a-lloe~:ti-O-n-S-bee-n·------'N I/O or Process Bound 

evaluated? 

y 

Evaluate performance. 
Is the IPS Design feasible for 
this CPU and Core? 

y 

Has the minimum cost IPS Design been 
found (branch and Bound procedure)? 

Figure 3-Interaction of the levels of SODA 

identified by the Identifier consisting of a single De
'scriptor EMPLOYEE_NUMBER is written as 

(GROSS_PAY [idl ]) and is equivalent to: 
(GROSS_PAY, snl), 

where: 

snl = EMPLOYEE_NUMBER 
SVl = 17 dVl = $263 

svs=21 dvs=$300 

A Process is the smallest unit of processing require
ment that may be grouped, but never subdivided by 
SODA. A Process produces a Data Set and is a well 
defined assignment type statement. There are four 
types of Processes defined in SODAjPSL. They are: 
(1) COMPUTE, (2) SUM, (3) IF and (4) GROUP. 

The Compute Process is a variation of the familiar 
assignment statement found in FORTRAN, ALGOL 
or COBOL. 

An example of the COMPUTE Process is: 

NET_PAY [idl]=COMPUTE GROSS_PAY [idl ] 

- DEDUCTIONS [idl ] 

This expression consists of three Data Sets, NET 
PAY [idl], GROSS_PAY [id!], DEDUCTIONS [idl] 
and all are identified by idl (EMPLOYEE_NUM
BER). It is implied that whenever the statement is to 
be executed it is executed for all valid Descriptor pairs. 
The number of Descriptor pairs and the number of 

~ Decision 

~ 
Objective Alternatives ~ Optimization 

Techni9,ues 
SODA/ALT 

CPU Select the list of avail- Time avail- search for ordered 
minimwn rental able CPU able for CPU classes 
cost CPU class classes processing 

Core Size Select the list of avail- -Times search of ordered 
minimum rental able core avail ab Ie for core sizes 
cost core size sizes processing 

-CPU class 

Program Select the set feasible -Core Size Network analysis 
Module of modules with grouping available and branch and bOlBld 

the minimum arranged in for oodules search over feasible 
transport vol- tree struc- alternatives 

ture 

Data Select Files feasible -Program Network analysis 
Structures such that the grouping Modules and branch and 

maxiurum num- arranged in bowd search over 
her of I/O for tree struc- feasible alternatives 
any module is 
a minimum 

SODA/OPT 

Storage Minimize the I char /b lock -Program Non -linear program-
Structure noober of inter to upper limi t Modules ming model 

b lock gaps for -Data 
tape or the m.un- structure 
ber of accesse.<; 
for a disk 

2. Number Minimize the list of avail- -CPU and Integer Program-
and type variable reading able devices Core Size ming Model 
of auxil- and writing time -Program 
iary Modules 
memories -Storage 

structures 
-Data 
structure 

Figure 4-Decision levels ()f SODA/ ALT and SODA/OPT 



Methodology for Design and Optimization of Information Processing Systems 289 

each type of arithmetic operation (e.g., multiplication, 
addition) is used by SODA/ ALT for the purpose of 
estimating running times. The number of each type of 
arithmetic operation is obtained from the list of 
Processes. 

The SUM Process is an expression that makes it 
convenient to sum over two or three Descriptor Names 
and the associated Descriptor Values. For example, 
one could sum labor cost by employee numbers and 
department numbers. The IF Process is a conditional 
expression. The GROUP Process groups Data Sets 
that are required to represent output reports. The four 
types of Processes enables SODA/PSA to construct 
precedence graphs of the Processes and Data Sets that 
are necessary for the Program and File Structure 
Algorithms. 

The time and volume characteristics of the IPS are 
also described in the problem statement. Time require
ments are specified by stating absolute time deadlines, 
i.e., paychecks must be produced by 4: 00 PM on Fri
day. The statement of the time requirements for the 
output reports of the IPS is expressed by a Need Vec
tor. The Data Set volumes are computed from the 
volumes stated for each eds. All time and volume in
formation is expressed in units specified by the problem 
definer. 

The structure of a Problem Statement in SODA/ 
PSL consists of: 

Problem Statement Name 
List of Identifiers 
List of Descriptors 

Descriptor Name 
The Number of Descriptor Values for each 

Descriptor Name 
List of Data Sets 

Data Name 
Volume of Data Set 
Type of Data Set 

List of PSU 
Contents of each PSU 

PSUNumber 
PSUName 
Need Vector 
List of Processes 
END ofPSU 

END OF PROBLEM STATEMENT 

SODA/PSL is a non-procedural Problem Statement 
Language in the sense that the PD writes a PSU with
out imposing any procedural ordering on the Processes. 
The precedence relationships of the Processes are in
ferred by SODA/PSA. 

The PS must contain sufficient detail so that systems 
analysts and programmers could use it (if necessary) to 
design and implement the Information Processing Sys
tem with no additional information. 

PROBLEM STATEMENT ANALYZER 

The problem statement analyzer (SODA/PSA) ac
cepts the requirements stated in SODA/PSL, analyzes 
them and provides the problem definer diagnostics for 
debugging his problem statements and reports. SODA/ 
PSA also produces a number of networks which record 
the interrelationships of Processes and data and passes 
the networks on to SODA/ALT. 

Each type of input and output is specified in terms 
of the data involved, the transformation needed to 
produce output from input and stored data. Time and 
volume requirements are also stated. SODA/PSA 
analyzes the statement of the problem to determine 
whether the required output can be produced from the 
available inputs. The PS stored in machine readable 
form is processed by SODA/PSA which: 

1. checks for consistency in the PS and checks 
syntax in accordance with SODA/PSL; i.e., 
verifies that the PS satisfies SODA/PSL rules 
and is consistent, unambiguous, and complete. 

2. prepares summary analyses and error comments 
to aid the problem definer in correcting, modify
ing and extending his PS, and 

3. prepares data to pass the PS on to SODA/ALT. 
4. prepares a number of matrices that express the 

interrelationship of Processes and Data Sets. 

There are a number of papers that discuss the use of 
graphs and their associated matrices for the analysis 
of program and data structure.1,2,lO,1l,12,13 

SODA/PSA follows the papers of Borje Langefors1,2 
and Raymond B. Briggs. lO Langefors discusses the use 
of matrix algebra and graph theory to represent the 
processing units and data units in an IPS. Langefors' 
work differs from others using graph theory for this 
purpose in that it includes a performance criteria to be 
optimized. 

Briggs added to the matrix definitions of Langefors 
and provided the necessary structure to develop a 
Program and File Structure Algorithm. 

The problem statement is defined in SODA/PSA 
as the set of Processes required, the set of Data Sets 
needed by each Process and the precedence relation
ships of the Processes (pr) and Data Sets (ds). 

SODA/PSA generates the P, p* and E matrices for 
each PSU and for the entire IPS. 



290 Spring Joint Computer Conference, 1971 

P-Precedence Matrix: Data Sets 
pij= 1 if dSi is a direct precedent of dsj, 
pij=O otherwise. 

P*-Precedence Matrix: Processes. 
P* ij = 1 if pr i is a direct precedent of prj, 
p* ij = 0 otherwise. 

The precedence matrices are checked for consistency 
using Marimont's procedure.14 

E-Incidence Matrix: Processes and Data Sets 

eij= 1 if dSj is an input to pri 
eij= -1 if dSj is an output ofpri 
eiJ = 0 if there is no incidence bet ween ds j and pr i 

Let Vj be the volume of ds;, li be the number of in
puts and outputs for each Process and mj be the multi
plicity of Data Set transport for ds j • Let mj represent 
the number of times dS j is an input or output of a set 
of Processes. 

k 

li= L 1 eij I; i=l, 2, ... n. 
j=1 

n 

mj= L 1 eij l;j=l, 2, ... k. 
i=l 

The transport vo:ume for dS j is 

The transport volume for the set of Data Sets is 

k 

TV= Lmj"vj. 
j=1 

Transport volume is used as a criterion to evaluate 
alternative program and data designs and is discussed 
in the next section. 

Let dSj be represented by a 0 and pri be represented 
by a O. An example of an incidence graph and the 
associated incidence matrix is given in Figure 5. 

The R, R* and M matrices are generated for the 
entire set of Processes*. 

R-Reachability Matrix: Processes. 

The R matrix is used to check precedence violations 
in the grouping procedure of SODA/ALT. 

R = (P*) V (P*) 2V . .. V (P*) q-t, 

where q is the index of the nilpotent matrix P*. 

r ij = 1 if pr i has any precedence relationship with pr;, 
r ij = 0 otherwise. 

R*-Partial Reachability Matrix: Processes. 

The associated incidence matrix is: 

Data Sets 

a b c d e 1. 
1 

A -1 0 0 3 

Processes B 0 -1 0 0 2 

C 0 0 -1 3 

mj 1 2 3 

Vj 20 20 20 20 20 

tVj 20 40 60 20 20 

The transport volume for the Data Sets (TV) in this 

example is 160 lDlits. 

Figure 5-Incidence graph and matrix 

The R* matrix is used to calculate the M matrix. 

R* = (P*)2V (P*)3V . .... V (P*) q-l. 

r*ij= 1 if pri has a higher (2 or more) order prece
dence with prj, 

r* ij = 0 otherwise. 

It was shown by BriggslO that by using a theorem 
proved by Warshall15 that Rand R* can be constructed 
without first computing successive powers of P*. 

M -Feasible Process Grouping Matrix: Processes. 

If mij= -1 there exists higher (2 or more) order 
relationships between pri and prj and pri cannot be 
combined with prj. If mij=O there is no precedence 
ordering and pr i can be combined with prj. This indi
cates a feasible but not necessarily profitable grouping. 
If mij = 1 there is a direct precedent relationship and 
pri can and should be combined with prj since this 
indicates a feasible and profitable grouping. If mij = 2 
there is an immediate reduction in logical input/output 
requirements when pri and prj are grouped. 

mij = -1 if r* ij or r* ji = 1. 
mij=O if r*ii=O and r*ji=O and P*ij=O and P*ji=O; 

except when p* il = 1 and p* jl = 1 or p* li = 1 and 
P*lj=1. 

mij = 1 if r* ij = 0 and r* ji = 0 and p* ij = 1 or p* ji = 1. 
mij=2 if r*ij=O and r*ji=O and p*il=l and p*jl=l 

or p*li=l and P*lj=1. 

* A procedure is discussed briefly in the next section for parti
tioning the entire set of Processes into smaller groups when the 
number of Processes is very large. 



Methodology for Design and Optimization of Information Processing Systems 291 

prl has a first order precedence or succedent relation
ship with pri and prj. 

A list of all feasible pairs for grouping of Processes 
is constructed from the M Matrix and passed to 
SODA/ALT. 

GENERATION OF ALTERNATIVES 

The information system design phase begins after 
the requirements have been stated, verified and ana
lyzed in SODA/PSA. SODA/ ALT accepts as input, the 
output of SODA/PSA and a statement of the available 
computing resources, hardware and utility programs. 
The hardware alternatives are ordered in a tree struc
ture as shown in Figure 6. 

A feasible CPU and core size are specified using a 
heuristic timing procedure. An ordered search of differ
ent CPU's is made in an attempt to find the minimum 
CPU assuming an infinite core memory with no auxil
iary memory and all Processes and Data Sets in real 
core. The premise is that if a CPU cannot perform 
adequately under these "ideal" conditions it cannot 
possibly be adequate with limited core constraints. 

The processing time for each time period (i.e., a 
week) is computed. If this is less than the actual time 
available to do this, then a lower bound of CPU capa
bility is found. If not, the next CPU is tried. If it 
appears that some shifting of load from one or more 
time periods (i.e., week 1) to other time periods (i.e., 
week 3) could solve the problem, then the problem 
definer is advised about it and given a chance to "level" 
the requirements. 

CPU 

Core 
Size 

Auxiliary 
Memory 
Configurations 

Figure 6-Hardware alternatives 

Having found a CPU that will perform adequately 
under infinite core assumptions, an ordered search 
(starting with the smallest core size) is made of avail
able core sizes for this CPU. 

Using as constraints CPU and core size, a graph 
theoretic model generates alternative Program Module 
and File Designs. A Program Module (pm) is a set of 
Processes grouped together by SODA/ALT. A File ( f) 
is one or more Data Sets that are grouped together. 
From the Matrix of feasible groupings (M) a list of 
feasible (profitable) groupings of Processes is obtained. 
The list of feasible groupings is partitioned into 3 cases 
to reduce the number of alternative program designs 
that must be evaluated. The cases separate output re
ports into classifications of due dates for reports. The 
cases are then divided into subcases. (A subcase is a 
group of Processes that has no Process precedence link 
to other subcases.) For each subcase, feasible Program 
Modules of size 3, 4, ... N are generated where N is the 
number of Processes in the partitioned list (or subcase) . 

It is known that by grouping Processes into a com
posite process called a Program Module, the multiple 
input and output of Data Sets can be reduced. Such 
grouping of processes, however, requires additional 
main memory for the Program Modules. In generating 
an efficient design, it is necessary to decrease the trans
port volume (total number of characters read in and 
written out of main memory) in order to reduce the 
processing time. If Data Set volumes remain constant, 
in order to decrease the transport volume, the multi
plicity (the number of times a Data Set is input and 
output) of Data Set transport must be decreased. After 
the Program Modules are specified the Data Sets are 
consolidated into Files for the purpose of reducing the 
number of input/output Files required and· for better 
utilization of storage in auxiliary memory. Process 
grouping is shown to correspond to a grouping of rows 
of the incidence matrix, and data set consolidation is 
shown to correspond to a grouping of columns. 

Program Module and File Design is concerned with 
the reduction of processing time and can be summarized 
by the two methods by which the processing time can 
be reduced. SODA/ALT determines: 

1. which operations (Processes) will be grouped 
into Program Modules 

a. Group Processes which will eliminate the 
writing out and reading in of a Data Set. For 
instance Figure 7 a. 

b. Group Processes which require the same Data 
Sets. For instance Figure 7b. 

The objective is to reduce total transport volume 
and thus total processing time. 



292 Spring Joint Computer Conference, 1971 

The transport volume of dsa is eliminated when 

prA and prB are grouped. 

(b) 

The transport volume is reduced when prA and prB 
are grouped since dsc is read only once. 

01---·~ 

and it may be profitable to also group dS a and dsb • 

Figure 7-Methods for reducing processing time 

2. which Data Sets will be grouped into Files ( f) 

a. organize the data: structure of the Files so 
that data which are needed together are close 
together in order to reduce searching time. 

b. organize the data structure of the Files such 
that fewer logical input/output devices are 
needed. 

The following matrices are used in SODA/ ALT to 
generate alternative Program Module and File Designs. 

S-Program Module Selection Matrix: Program 
Modules and Processes. 

The S matrixre presents the alternative grouping 
of Processes. " 

Sij= 1 if prj is a member of pmi, 
Sij = 0 otherwise. 

E'-Incidence Matrix: Program Modules and Data 
Sets. 

The S matrix is multiplied by the E matrix to pro
duce the new incidence matrix E', where E' = 
SAE. 

The Boolean matrix operators "A" and "V" for 
Process grouping follows the rules of Boolean Algebra 
with the following exceptions for the Boolean addition 
operator. 

OV-l=-1 

1 V-I = 0 if the output dSj is used only by the pmi 
with which it is grouped and dS j is not a Terminal 
ds or Storage ds. 

1 V -1 = 1 if the output dS j is required in a Process 
that is a member of another Program Module or 
is a Terminal ds or Storage ds. 

D-Feasible Data Set Grouping Matrix: Data Sets. 

dij = 1 if e'ij", and e'ij{J = 1 or e'ij", = -1 and e'ij{J = - 1 
and dsj", and dSj{J are the same data types and 
have a common descriptor or if dSi anddsj are 
input Data Sets and have a common descriptor. 

dij = 0 otherwise. 

ds j", and dSj{J are two data sets required by pmi. The 
same data type for dSja and dSj{J refers to the classifica
tion of Input ds, Computed ds, Storage ds and Terminal 
ds. The test for a common Descriptor Name is intended 
to link Data Sets together that have a relationship 
other than common input or common output of a 
Program Module. 

G-File Selection Matrix: Data Sets and Files. 

The G matrix represents the alternative grouping 
of Data Sets. 

gij= 1 if dSi is a member offj, 

g ij = 0 otherwise. 

E"-Incidence Matrix: Program Modules and Files. 
The E' matrix is multiplied (as described earlier) 

by the G matrix to produce the incidence matrix 
E" of Program Modules and Files, where 

E"=E'AG. 

The selection procedure for program design is orga
nized as a tree structure with all feasible alternatives 
ordered in terms of core memory requirements and 
transport volume. The procedure for File design is or
ganized by descriptors (keys) and the number of input/ 
outputs Files required for each Program Module. 

If software modules such as sort modules are re
quired to process Files they are inserted in the IPS 
Design. 

The next step is to look for design improvements and 
to select a specific number and type of auxiliary mem
ory units. 



Methodology for Design and Optimization of Information Processing Systems 293 

OPTIMIZATION AND PERFORMANCE 
EVALUATION 

The optimization and performance evaluation phase 
generates a storage structure and scheduler, selects 
auxiliary memory devices, and searches for ways to 
improve the IPS design. SODA/OPT may return con
trol to SODA/ ALT to select another CPU, core size 
or to select another set of Program Modules and Files. 

SODA/OPT selects the minimum cost hardware con
figuration that is capable of processing the stated re
quirements in the time available. This phase consists 
of a number of mathematical programming models and 
timing routines that are used to (1) optimize the block
ing factors for all Files, (2) evaluate alternative de
signs; i.e., specify the number and type of auxiliary 
memory devices, (3) assign Files to memory devices 
and (4) generate an operating schedule for running 
program Modules. These sub-models follow the work 
of Schneidewind16 and Thiess.I7 Refer to McCuskey18 
for another approach to the design of data organization. 

In SODA/OPT the performance criterion is opti
mized within the constraint set by the capability of the 
hardware and by the processing requirements. SODA/ 
OPT produces a report describing the system and 
stating its predicted performance. On the basis of this, 
the Problem Definer may decide to change his PS, or 
accept the design; SODA/OPT then provides detailed 
specifications for the construction of the system. 

The output of SODA/OPT is: 

1. A list specifying which of the available comput
ing resources will be used. 

2. A list of the Program Modules specifying the 
input, output and computations to be performed 
in each. 

3. A list of Files to be maintained specifying their 
format and manner in which they will be stored. 
Assignment of Files to memory devices. 

4. A statement of the sequence and manner in 
which the Program Modules must be run to ac
complish all the requirements. 

,IMPLEMENTATION 

SODA has been written for the Univac 1108 in 
FORTRAN at Case Western Reserve University;19 the 
program has also been implemented on the IBM 
360/67 at the University of Michigan by Professor 
Daniel Teichroew. The program is currently being 
modified and rewritten for the CDC 6500 at Purdue 
University.20 

The Case version of SODA has the following draw-

back: If there are two feasible solutions 

(1) Small CPU, large core 
(2) Larger CPU, smaller core 

such that (2) is cheaper, then the algorithm would not 
find (2). The assumption is made (the Case version) 
on the ordering of the hard ware tree that this situation 
(2) would not occur. This was done in order to simplify 
the search procedure and to reduce the size of the large 
combinatorial problem involved. A branch and bound 
procedure is being implemented in the Purdue version 
so that alternative (2) would be found. The Case 
version also does not automatically evaluate all Pro
gram Module and File Designs. A partial set of Pro
gram Modules and File designs (r""V50,000) is generated. 
A smaller number of designs (r""V200 for the Company 
Y example) must be selected manually and then input 
to SODA to be evaluated. Procedures have been de
veloped20 to eliminate the need for man-machine inter
action in SODA/ ALT and the procedures are being 
implemented in the Purdue version. 

The program has been run using an example problem 
called Company "Y." The example consists of 117 
Processes and 180 Data Sets. Approximately 30 runs 
were required to debug the problem statement for 
CompanyY. 

A single run for SODA/PSA takes about 120 seconds 
of execution on the UNIVAC 1108. The total time re
quired for the Company Y example is difficult to esti
mate since the SODA program was not run from be
ginning to end at one time; many of the submodels 
were run, then a data file passed to the next submodel 
and so on. 

A series of hypothetical computers is described in the 
hardware file. The hardware file consists of 3 CPU's 
with 5 core options for each CPU. The auxiliary mem
ory option consists of two types of tape drives and two 
types of disk units. 

ACKNOWLEDGMENTS 

The author is indebted to Mr. Hasan Sayani, Mr. Carl 
Singer and Dr. Daniel Teichroew of the University of 
Michigan for their contribution to the development of 
SODA. 

REFERENCES 

1 B LANGEFORS 
Some approaches to the theory of information systems 
BIT 3 4 1963 



294 Spring Joint Computer Conference, 1971 

2 B LANGEFORS 
Information system design computations using generalized 
matrix algebra 
BIT 5 2 1965 

3 J F NUNAMAKER JR A B WHINSTON 
Computing center as a profit center 
Computer Sciences Department TR52 Purdue University 
Lafayette Indiana January 1971 

4 L LOMBARDI 
Theory of files 
Proceedings of the Eastern JCC 1960 

5 D TEICHROEW 
ISDOS-A research project to develop methodology for the 
automatic design and construction of information processing 
systems 
ISDOS Working Paper Number 1 Case Institute of 
Technology August 1967 

6 W STEIGER 
Survey of basic processing function: Literature and related 
topics and (2) Derivation of primitives for data processing 
ISDOS Working Paper Number 11 Case Institute of 
Technology May 1968 

7 D J HERMAN F H IHRER 
The use of a computer to evaluate computers 
AFIPS Conference Proceedings Spring Joint Computer 
Conference Volume 25 pp 383-395 1964 

8 L R HUES MANN R P GOLDBERG 
Evaluating computer systems through simulation 
The Computer Journal Volume 10 Number 2 August 1967 

9 Digest of the second conference on applications of simulation 
Sponsored by SHAREjACMjIEEEjSCI New York 
December 1968 

10 R B BRIGGS 
A mathematical model for the design of information 
management systems 
MS Thesis Division of Natural Science University of 
Pittsburgh 1966 

11 T C LOWE 
Analysis of boolean program models for time shared paged 

environments 
Communications of the ACM Volume 12 Number 4 April 
1969 

12 T C LOWE 
A utomatic segmentation of cyclic program structures based on 
connectivity and processor timing 
Communications of the ACM Volume 12 Number 1 
January 1970 

13 C V RAMAMOORTHY 
Analysis of graphs by connectivity considerations 
Journal of the Association for Computing Machinery 
Volume 13 Number 2 April 1966 

14 R B MARIMONT 
A new method oj checking the consistency of precedence 
matrices 
Journal of the ACM Volume 6 Number 2 April 1959 

15 S W ARSHALL 
A theorem on boolean matrices 
Journal of the ACM Volume 9 Number 1 January 1962 

16 N F SCHNEIDEWIND 
Analytical model for the design and selection of electronic 
digital computing systems 
DBA Dissertation University of Southern California 1965 

17 H E THIESS 
Mathematical programming techniques for optimal computer 
use 
Proceedings ACM 20th National Conference 1965 

18 W A McCUSKEY 
On automatic design of data organization 
AFIPS Conference Proceedings Fall Joint Computer 
Conference Volume 37 1970 

19 J F NUNAMAKER JR 
On the design and optimization of information processing 
systems 
PhD Dissertation Case Western Reserve University 1969 

20 J F NUNAMAKER JR 
SODA: Systems Optimization and Design Algorithm 
Computer Sciences Department TR51 Purdue University 
Lafayette Indiana January 1971 



Computer generated repeatable tests 

by FRANKLIN PROSSER 

Indiana University 
Bloomington, Indiana 

and 

DONALD D. JENSEN 

University of Nebraska 
Lincoln, Nebraska 

INTRODUCTION 

While we wait for Computer-Assisted Instruction to 
revolutionize teaching practices, a number of more 
tractable computer techniques are proving useful in 
dealing with large university classes. One of these, the 
use of Computer Generated Repeatable Tests (CGRT), 
is the topic of this paper. The concept of repeatable 
testing has intrigued teachers for years. The idea is to 
have the flexibility in class examination procedures to 
test a student repeatedly over a section of material, and 
at the student's own pace. The implementation of such 
a plan involves producing, administering, and grading 
large numbers of different tests over the same material. 
In classes of moderate or large size, the mechanics of 
such procedures has defeated even the most dedicated 
instructors. The present computer augmented pro
cedure-a result of collaboration between a psychology 
professor (DDJ) and a computer professional-·over
comes the difficulties by fully automating the prepara
tion and grading of individualized tests. Before 
discussing the technical details of the CGRT process, 
we will briefly give the rationale behind repeatable 
testing. 

THE PROBLEM 

Large classes are becoming an increasingly important 
part of American higher education. This trend is 
disturbing because available evidence indicates that the 
conventional large lecture class is an unsatisfactory 
educational system, one that is disliked by students and 
considered educationally ineffective by professors. The 
difficulties with large classes appear to stem from the 

295 

inflexibility of many of the educational activities in the 
classes, and from the fact that the student's performance 
is monitored infrequently and often inadequately. The 
student has only a passive role in a large lecture section; 
the lecturer lectures and the student (at best) listens. 
Opportunities for the student to creatively display 
knowledge of the subject matter are limited, since the 
time required to grade essay exams or individual 
projects dictates that these be given very infrequently, 
if at all. Often the only measures of the student's 
knowledge of course material are the examinations he 
takes infrequently during the course. 

Of the several inadequacies of large class instruction, 
the examination procedures are perhaps most serious'y 
deficient. The typical examination administered to a 
large class consists of objective questions of the true
false and multiple choice types. It is administered at 
one fixed time only. Several days elapse before informa
tion on the results is available to the students, and often 
the only information provided to the student is the total 
score, which is of little use to him in guiding his study. 
Such exams commonly are given infrequently and 
therefore cover an extensive amount of material. 

There are several objectionable consequences of these 
procedures. First, the conventional large class examina
tion is not adequate to motivate routine study. The 
infrequency of testing gives rise to the well known "loaf 
and cram" pattern of study. Second, conventional 
infrequent exams provoke excessive anxiety in the 
student. The exam covers a large amount of course 
material and accounts for a substantial part of a 
student's grade. A student who is not well up on his 
reading or is just not well will be very anxious about his 
performance on the exam; further, a poor performance 
may cause him to despair and abandon meaningful 



296 Spring Joint Computer Conference, 1971 

study in the course. Third, students exposed to multiple 
choice test questions become testwise. Unless test 
items are extremely well formulated, students develop 
the ability to recognize answers from among the choices, 
and they are thus not required to recall course material 
in order to construct a response to the question. 
Unfortunately, this recognition ability is not likely to 
result in a significant increase in active vocabulary or 
intellectual competence. Fourth, the necessity of writing 
new test questions semester after semester means that 
only in rare instances does the instructor have a prior1~ 
objective evidence that each exam question validly 
discriminates between good and bad student 
performance. 

A SOLUTION 

The goal is to find a practical and economic way to 
overcome the principal deficiencies of conventional 
examinations for large classes. This necessitates using 
only those facilities readily available at most academic 
institutions. There are three flmdamental ways in which 
the Computer Generated Repeatable Testing method 
departs from a conventional approach. First, students 
may be examined more frequently. This encourages 
students to keep up with their course work and allows 
them to evaluate their performance frequently. Second, 
the tests provide immediate feedback to the student. 
When a student turns in his answer sheet, he keeps his 
test questions and receives a matching list of correct 
answers to the items on the test along with study aids 
such as textbook page references. 

Third, and most important, examinations have been 
made repeatable. The digital computer is used to 
generate individualized repeatable tests. Large numbers 
of unique but equivalent tests are generated by a 
computer program which takes stratified random 
samples from an item pool and prints out questions and 
answers in a format appropriate to test taking and 
machine or hand grading. Since the instructor may 
prepare large quantities of individualized tests, he may 
allow the student to take tests over an examination 
unit as often and whenever the student desires. Students 
are free to take a test and find out thereby what they 
have not mastered, review that material, and try again. 
In this way they can work up to a high level of pro
ficiency in the content of the course. 

Conventional examinations provide only a single 
opportunity to show knowledge, and diagnostic informa
tion cannot be used to improve one's grade. Our method 
of computer generated repeatable examinations en
courages the student to use diagnostic information and 
to restudy material he has not initially mastered, and it 

thereby decreases the student's aversion of the examina
tion process while maintaining appropriate denmnds for 
the mastery of the course content. The technique of 
repeatable testing, of allowing more than one chance to 
demonstrate competence with material, is an exceedingly 
attractive instructional procedure. In a single stroke it 
releases the professor from his conflict between being 
excessively demanding and transmitting important 
information; he can expect and demand that the student 
master the material because the student can work up to 
mastery through a series of study sessions and examina
tions. Similarly it releases the student from his conflict 
between fear and fatigue; he has the opportunity to set 
a humane pace of study for himseH, because if that pace 
is insufficient to obtain a satisfying grade on the first 
test over a unit of material, he can increase his pace in 
order to succeed on subsequent tests covering that 
material. Work rather than worry is elicited from the 
student. 

One should not consider the CGRT system to be a 
kind of Computer-Assisted Instruction, l since students 
are not in interaction with a computer. It resembles 
more what Cooley and Glaser2 have termed "computer
managed instruction" since the computer is used to 
facilitate instructional examination processes. We 
strongly point out that CGRT does not suffer from the 
present serious technological and economic disadvan
tages of Computer-Assisted Instruction, but neverthe
less shares many of its educational advantages. 

THE CGRT PROCESS 

The Computer Generated Repeatable Testing process 
typically consists of four steps: (1) developing pools of 
test items, (2) producing tests, (3) administering the 
tests, and (4) scoring the tests. The second and fourth 
steps are managed by computer, while the execution of 
the first and third steps is strongly influenced by the 
computerized nature of the process. 

Developing test item pools 

For each exam, the course instructor develops a pool 
of items (test questions) which forms the data base from 
which tests are prepared. This is a rather formidable 
step. Our experience indicates that one should have 
about six to ten items in the pool for each question on an 
exam to assure adequate variation on the individual 
tests. An instructor planning to give eight exams of 
twenty questions each should construct about fifteen 
hundred individual items for his course. This work, 
which is every bit as tedious and time consuming as it 
sounds, should be done prior to the first semester in 



which repeatable testing is to be used in the course. 
Fortunately, the item pools, once developed, are rather 
permanent, especially for the basic college under
graduate courses that are the most likely candidates for 
this computerized testing scheme. Only relatively minor 
alterations to the item pools are needed to accommodate 
other instructors, changes of texts, etc., that may occur 
in subsequent semesters. Further, textbook publishers 
often have compendiums of test questions for their 
popular texts. Reusing test questions semester after 
semester, or even making the entire item pool available 
to students, is not a disadvantage under our procedure, 
and in fact is likely to be distinctly advantageous! 

Since items will ultimately appear on computer 
generated tests, the form of the items must conform to 
the requirements of present computer printing tech
nology. Normally, items may consist of upper-case 
letters, numbers, and the usual special characters 
available on modern high-speed line printers. Diagrams, 
pictures, and other graphic aids usually cannot be 
printed directly, although the instructor may easily 
include these by. providing the student with a supple
mentary sheet of diagrams to accompany the tests. 

If the tests are to be graded manually, technology 
imposes no limitation on the structure of the answer to 
an item. The test questions may elicit objective or 
subjective responses from the student. On the other 
hand, if the instructor wishes to use mechanical grading 
techniques, he must provide for a single-character 
response for each item, because of restrictions imposed 
by the optical mark sense form readers usually available 
in universities. While this requirement may appear to be 
a severe limitation, it in fact allows considerable 
freedom in the form of objective test items. True-false 
and multiple choice items call for single character 
responses. Key-word, fill-in, and other forms resulting in 
a definite numeric or symbolic answer may easily be 
reduced to a single character response using the following 
convention: In such a question the form of the answer 
is indicated by a series of dots which includes one 
asterisk. The student will construct his symbolic or 
numeric answer to the question, and will record as his 
response on his mark sense form the single character 
selected by the position of the asterisk in the string of 
dots. For example, .. * . means code the third letter or 
digit of the answer, * ... means the first letter or digit, 
and so forth. The notation. * .. appearing in a fill-in-the
blank que~tion calling for the answer "INTEGRAL" 
would require the student to mark the "N" space on his 
answer sheet. Students describe such alphabetically or 
numerically coded items as being hard but fair. The 
student cannot answer such an item unless he has 
mastered the basic concepts and vocabulary. Recall is 
emphasized; simple recognition is subordinated. 

Computer Generated Repeatable Tests 297 

In addition to the question part of an item, which the 
student sees when he takes a test, each item also has an 
answer part to allow machine grading and to provide 
information to the student after testing. The answer 
part of an item may contain, in addition to an answer 
character, any relevant information, such as the full 
symbolic or numeric answer, textbook page references, 
and other diagnostic aids for the student. 

After the instructor has developed a section of his 
test item pool, he will have it punched onto punch cards 
or entered into an appropriate editable data file system. 
To facilitate the selection of items for an individual test 
and to maintain order among the large item pools the 
instructor classifies his items into sets, the items within 
a set are given distinct unit numbers, and cards or lines 
for the question part and the answer part of each item 
are numbered serially. Usually a set will consist of those 
items that test similar material. The use of set numbers 
is explained in the next section. 

Producing tests 

The individualized tests are generated on a 'digital 
computer using a computer program GENERATOR. 
This program, which is described in more detail in a 
later section, reads the item pool for a particular exam, 
checks the input data for proper sequencing and correct 
format, reads information describing the tests to be 
generated (number of tests, number of questions per 
test, etc.), generates and prints the individual tests, and 
punches a small answer summary deck for use in 
mechanized grading. The appearance of the tests is 
similar to the photo-reduced sample in Figure 1. Each 
test is individually numbered and has questions on the 
left part of the line printer page and answers on the 
right. The item identification numbers for each question 
appear in the answer part for reference. The instructor 
will of course separate the answer part from the question 
part prior to giving a test to the student. 

The computer program selects items for a test by 
randomly choosing an item from each set. The order of 
choosing sets is also randomized. No item is used more 
than once per test. The digital computer is vital to test 
production, since the random item selection, formatting, 
and printing of large numbers of individualized tests is 
beyond the capacity of nonautomated operations. In 
the sample test in Figure 1 each item is assigned equal 
weight. The instructor may also assign weights (point 
values) to sets of items, thus allowing him to emphasize 
particular topics or award points based on the difficulty 
of items. 

The computer time required to generate the tests is 
very small; the time required to print tests is, however, 



298 Spring Joint Computer Conference, 1971 

EXAM NUMBER 03. FORM Nl~BE~ 0104 
CGRT SAMPLE TESr ••• ECONO~ICS E201 DArA 

QUESrlON 1 

EXAM NUMBER 03. FCR~ NlJMBEFI 0704 
CGRT SAMPLE TEST ••• ECONO~ICS E201 DATA 

QUESTION SFT0430. I TFI'02 
WHAT ANTITRUST LAW FIRST EXEMPTED LABOFI UNIONS FROM P~OSECUTION AS 
CONSPIRACIES IN RESTRAINf CF r~ADE •••••••••• A •••••• CLAY'ON ACT Cl914) P. 

500 
----------------------------------------------------------------------------------------------------------------------- QUESTION 2 SET0401. IfEI'06 QUEST ION 2 

fRUE-FAlSE. COMMERCIAL BANKS PREFER TER'" LOANS OF SEVERAL YEARS 
OURATION RATHER THAN SEAS(~AL LCA~S WHICH ARE PAID CfF IN A SHORT F P. 18 

~~!~~~~-~~~~-:------------------------------------------------------------------------~-----------------------------
QUESTION 3 
CORPORATE BONOS WHOSE INTEREST IS PAYAeLE ONLY IF EARNINGS ARE 
LARGE ENOUGH ARE CALLEO ••••• 8CNDS. 

QUESTION 3 SE r042? I Tffl04 

C •. * •• INCOME P. 85 

~~~~~~~---~---------------------------~----------------------------------------~~;~~~~;---~----~;~~;;~:-;~;;~;--------
THE TRUE ADDITIONAL BlRDEN CF MONOPOLY IS THE CONTRIVED DIVERGENCE
BETWEEN ••••• AND MARGINAL COST. . ___________ ~_:~:::_~~~~~ __ ~:_~~~ _________________ _

--- - - QUESTION 5 SETC407. ITEI'09 QUESTION 5
THE FEOERAL CORPORATE INCCME TAX IS BASED ON A FIRM'S (A, G~OSS
RECEIPTS (BI DIVIDENDS eCI CASH RECEIPTS COl RETAINED EARNINGS E P. 8~

~~-~~~!~~---QUESTION 6 QUESTION 6 SE TOIt11. lfEf'O~
THE SHUTOO* POINT OF LCNG-~U~ NC-PROFU CCMFETITIVE EQUILIBRIUM OCCURS

(A' AT MINIMUM L~NG-RUN AVERAGE CCST cet AT MINIMUM LONG-~UN A~ERAGE
VARIABLE COST eCI WHERE PRICE IS EQUAL rc MARGINAL COST COl AT
MINIMUM LONG-RUN MARGINAL C(SI (El ~(~E (F THE ABOVE 8 P. 1t5e

~~~~~~---;--------------------------------------------------------------------~~;;;~~;---~----~;~~~~~:-;~;;~~--------
WHICH Of THE COST CUR\lES SUJPES SfEADILY CCIoII\WARD ON A GRAPH RELATING 
COST AND OUTPUT. (AI TOTAL CCST (81 ~ARIABLE COST ctl FIXED cosr (D' 

AVERAGE VARIABlE COSI eEl A~ERAGE FI~EO ccsr __________________ ~ __ ~:_~~~ _____________________________ _ 

-------------------------------------------------------------- QUESTION 8 SE'0~?'8. ITEI'03 QUES liON· 8 
AN OLIGOPOLISTIC MARKEr SlllAIIC~ CONSISTll\G Cf rwo SELLERS IS KNOWN AS 

~~~~~~~~::--------------------------------------------------------------------~-:~:::-~~~~~-~:-~!~----------------
QUESTION 9 QUESflON 9 Sf TCltC9. I TE"04
A SCHEDULE RELATING A fIR"'S TOTAL CCST TC OUTPUT IS THE RESULT Of CAl
PRICES Of FACTOR INPlTS (BI ENGINEERING TECHhOLOGY (CI ECONOMIC

DECISIONS MINIMIZING EXPENSE FOR EACH LEVEL OF ourpUT (01 ALL OF (HE 0 P. ~~3
ABOVE (EI NONE OF 'HE A8C~E ___ _

--------~-- ~UES'ION 10 SFTO~21t. ITE"02 QUESJlON 10
THE LOWESf AGGREGATE DOLLAR E~PEhSE NEEDEC TC PRODUCE EACH LEVEL Of T •••••••••• fOTAL COS, P. 455

~~~~~~-~~-~~~~~~-::~::-:::::-------------------------------------------------------------------------------------------
END OF TEST FCRM NUMBER 0701t END OF EXAM 03. fO~M NUMBER 0701t 

Figure I-Sample individualized computer generated test with answers attached 

substantial. Typical times on the Indiana IT niversity 
CDC 3600 computer system are about four minutes of 
computer time (of which about 20 seconds are for item 
selection) to generate 1,000 three-page tests, and about 
three hours of printer time to print them. As we show 
later, the total cost per test is about 5¢. This compares 
!well with the 5¢ cost per test for conventional exams 
using standard office facilities! 

To avoid grief caused by possible computer delays 
and human errors, an instructor should submit his test 
production runs to the computing facility well in 
advance of his need. With many hundreds of students 
eager and ready to be examined on the course material, 
the instructor should risk· no delays in preparing the 
tests. He need take no special precautions against 
pilfering of tests or even of listings of entire test item 
pools. The tests are individualized, and the item pools 

are large enough that the memorIZIng of the whole 
question pool is not a fruitful approach. (Indeed, as we 
implied earlier, a potentially useful study aid is to make 
the entire pool of test questions and answers available 
to the students prior to examination times). 

Administering the tests 

The instructor decides for himself how and when to 
test his students. He may give tests in class or at other 
scheduled times; or, more flexibly, he may allow his 
students to choose their own times for testingl A 
combination of in-class testing followed by opportunities 
for student-scheduled retesting appears to be useful. 
Such options depend on the instructor's preference and 
the availability of testing room space and personnel. 



A student taking a test usually obtains an individual
ized test (with answer part removed) and a mark sense 
form and special pencil. He takes a seat in the testing 
area and immediately enters on his mark sense form his 
student identification number (social security number 
or other agreed-upon identifier), the exam number, and 
his individual test number. The student then marks his 
answers on his test, and for each question enters the 
appropriate single-character response on his mark sense 
form. After completing a test, the student exchanges his 
mark sense form for the answer part of his individual 
test. The mark sense form is kept by the proctor for 
later grading. The student, having the correct answers 
in hand, can immediately determine his errors, and is 
stimulated to improve his knowledge of weak areas. 
Since the tests are individualized, the student may 
repeat the examination at later times, within the 
constraints imposed by the instructor. 

Scoring tests 

The instructor and his assistants may of course grade 
tests manually if they desire. However, computerized 
grading of the individualized tests is usually desirable, 
and may be performed using the information on the 
student's mark sense forms. Since the student has 
received the answer part of his test in exchange for his 
filled in mark sense form, there is no necessity for undue 
haste in grading the tests. The instructor or his assistant 
will, whenever convenient, have the information on the 
mark sense forms transformed to punch cards on an 
optical mark sense form reader. This step is required to 
obtain a form of input acceptable to the typical 
academic computing facility; one can bypass this step 
if optical mark sense form reading equipment is attached 
directly to his institution's computing equipment. 

Scoring of the student responses for an exam is done 
by computer using a program GRADER. Input to this 
program is the answer summary deck punched by 
program GENERATOR when the tests were prepared, 
and the student response cards derived from the mark 
sense forms. Output of this program is a roster of 
student ID's and test scores and a punch card deck of 
the high score for each student for this exam. 

Most academic institutions have available cumulative 
grading computer programs. These permit exam grades 
to be accumulated, and aid in the eventual preparation 
of final grades by generating score distributions and 
other statistics. The card deck prepared by GRADER 
is for use with such cumulative grading systems. 

As a followup of test scoring, we are developing an 
item analysis procedure for CGRT. Since the item pools 
tend to be reused many times, such an item analysis will 

Computer Generated Repeatable Tests 299 

aid in the detection of defective test items and will 
assist the instructor in polishing his item pool. 

THE COMPUTING PROCESSES 

The test producing program GENERATOR and the 
scoring program GRADER are written in Fortran. 
Virtually all academic computing centers have well
maintained Fortran compilers that produce a fairly good 
quality of object code. We have several versions of the 
CGRT programs: well-documented ANSI Fortran 
versions designed to run on all commonly-available 
computers, and specialized versions of GENERATOR 
for the CDC 3600 and for the CDC 6600. The specialized 
versions utilize CDC extensions of ANSI Fortran to 
decrease the execution time dramatically by bypassing 
the repetitive processing of format statements during 
test printing. Since GENERATOR is completely 
output-bound, we anticipate that many potential users 
of the ANSI Fortran version would wish to discuss 
modification of the program with their systems people 
to take advantage of local extensions to Fortran output 
facilities. 

GENERATOR reads the test item pool, checks each 
record for consistency of identification information, and 
creates a condensed file of the test item questions and 
answers, partially formatted for output. This item file is 
kept in primary storage. A directory of the origins of sets 
and individual items is formed to provide rapid retrieval 
of item information for test printing. GENERATOR 
then reads directives for test production: an arbitrary 
header line for all tests, an exam number, the number of 
individualized tests wanted, the number of items 
(questions) on each test, the test number of the first test 
(others are numbered sequentially from the starting 
number), and possibly other data to select additional 
options. A file is written for punching which records the 
set number, item number, and answer character of all 
test items. This deck, which is typically about 25 cards, 
is used by GRADER to regenerate the sequence of items 
and answers in a given test. 

Then for each test, the program selects question items 
and writes the test onto an output file. For each test, 
a pseudo-random number generator is initialized with a 
unique but reproducible number. Using the "random" 
but reproducible sequence of numbers from the random 
number routine, GENERATOR determines the order 
of questions on a test by random selection without 
replacement of sets followed by random selection 
without replacement of an item from each set until the 
requisite number of questions is chosen. If an item from 
each set is used and questions remain to be chosen, the 
process repeats. When selection is complete, the question 



300 Spring Joint Computer Conference, 1971 

TABLE I-Cost Analysis of CGRTa 

ITEM COST 

Punch cards for item pools $ .40 
(One-time expense)b 

Punch cards for student responses: 1000 cards 1.00 
Printer paper; 3000 sheets 8.30 
Mark sense forms: 1000 forms 8.80 
Keypunching services for item pool punching 6.50 

(one-time expense)b 
Computer charges for test production and 16.70 

grading: about 5 minutes @ $200 per hour" 
High speed line printer and controller rental 6.00 to $12.00 

and maintenance: @ $1800 per monthd 

Total expenses $47.70 to $53.70 

AVERAGE COST PER TEST: 4.8¢ to 5.4¢ 

a for 1000 three-page tests. 
b prorated over four semesters. 
C Indiana University CDC 3600 system. 
d CDC 512 printer system. 

and answer text for each selected item is formatted and 
written. Program control then returns to prepare the 
next test. 

G ENERATO R also has several optional facilities, 
such as multiple copies of tests, an answer summary for 
the instructor, and a method of assigning point values to 
items to allow weighting of the items during scoring. 

Since the amount of output is substantial and 
on-line secondary storage is limited, most people will 
find it convenient to write the tests as blocked records 
on a magnetic tape. The computer center staff may then 
print the tape at a convenient time. 

GRADER accepts as input the item pool answer 
summary deck punched by GENERATOR and the 
student responses punched from mark sense forms. To 
grade a student's response to a particular test, 
GRADER uses the same item selection algorithm as 
GENERATOR to recreate the same sequence of items 
and answer characters. The student's score is formed as 
the sum of the values of each correctly answered item. 
The score, the test number, and the student's ID 
number are saved. When all student responses have 
been graded, GRADER sorts the ID's and test scores, 
and a roster is produced showing for each student his 
scores, highest first, and the test numbers. As a final 
step, a punch card summary of the roster is prepared for 
use in possible later cumulative grading operations. 

THE ECONOMICS OF CGRT 

At first glance a procedure that uses a computer for 
test preparation and for printing of individualized tests 

appears economically unsound. This is very definitely 
not the case. In Tables I and II, which are cost analyses 
for the preparation, printing, and scoring of 1000 
three-page tests, we have attempted to itemize expenses 
in a similar manner for both CGRT and the conven
tional method. Therefore, the cost of a computer line 
printer and associated equipment has been treated as a 
separate entry, rather than included in general com
puter charges. vVe have assumed that such expenses as 
the initial keypunching of item pools are distributed 
over four semesters. 

The analyses show that both CGRT and conven
tionally prepared tests cost about 5¢ per test. While the 
estimate for conventional exams is fairly accurate, 
changing some of the assumptions in the CGRT 
analysis may alter the estimate by perhaps up to two 
cents per test. Also, under repeatable testing, students 
tend to take more than one repeatable test over each 
examination unit. In any event, the cost of repeatable 
tests is in the same range as conventional tests. More 
important, the expenses of the CGRT process are a very 
minor item in the cost of educating the student, 
amounting to $.50 to $1.50 per student per course. This 
is inexpensive education! 

SUMMARY 

Computer Generated Repeatable Testing works. It has 
been used in numerous courses for nearly three years at 
Indiana University, and it is also in use at the University 
of Nebraska, Illinois Institute of Technology, Indiana 
University-Purdue University at Indianapolis, and 

TABLE II-Cost Analysis of Conventionally Prepared Tests.a 

ITEM 

Paper: 3000 sheets 
Mark sense forms: 1000 forms 
Punch cards for student responses: 1000 cards 
Clerical services @ $4.00 per hour:b 

Typing: 1Y2 hours 
Multilithing: 2 hours 
Collating and stapling: 4Y2 hours 

Computer charges for grading: about 1 
minute @ $200 per houre 

Total expenses 

AVERAGE COST PER TEST: 5.1¢ 

a for 1000 three-page tests. 
b estimates supplied by Indiana University 

Chemistry Department. 
e Indiana University CDC 3600 system. 

COST 

$ 6.00 
8.80 
1.00 

6.00 
8.00 

18.00 
3.30 

$51.10 



other places. The method has been enthusiastically 
used by instructors of undergraduate courses in such 
varied disciplines as psychology, chemistry, computer 
science, economics, English, speech therapy, home 
economics, accounting, and education. 

In general, students have been highly satisfied with 
the repeatable testing method. Their mood is one of 
alertness rather than anxiety. They are relaxed during 
examinations, and their morale is good. The under
graduate counselling units of Indiana University have 
received numerous student comments favorable to 
CGRT. 

An unexpected result in some of the CGRT courses 
has been the students' excellent performance on 
technical material not discussed in class. Repeatable 
examinations appear to provide a stimulus and a way to 
master material typically neglected by students in 
conventional courses. Although we have only a little 
data taken under properly controlled conditions, 
indications from several common achievement tests 
given at Indiana University are that overall student 
achievement in repeatably tested sections is higher than 

Computer Generated Repeatable Tests 301 

in conventionally tested sections of the same course.3 

All available evidence suggests that a system of 
frequent and repeatable examinations provide an 
excellent atmosphere for scholarly activities of beginning 
students. 

We hope that many readers will wish to try CGRT or 
suggest its use to their non-computer-oriented col
leagues. The computer programs and ample documen
tation are available from Franklin Prosser. 

REFERENCES 

1 P SUPPES M MORNINGSTAR 
Computer-assisted instruction 
Science Volume 166 pp 343-3501969 

2 W C COOLEY R GLASER 
The computer and individualized instruction 
Science Volume 166 pp 574-5821969 

3 D JENSEN F PROSSER 
Computer-generated, repeatable examinations and large class 
instruction 
Presented at Midwestern Psychological Association Meeting 
Chicago Illinois 1969 





R2-A natural language question-answering system* 

by K. BISS, R. CHIEN and F. STAHL 

University of Illinois at Urbana-Champaign 
Urbana, Illinois 

INTRODUCTION 

A large number of systems involving computers require 
a high degree of man-machine interaction. In these 
systems the capability of the computer to process 
natural language information would be extremely use
ful as that eliminates the need for the user to learn 
various formal languages for the purpose of interaction. 

In view of the fact that computational costs are de
creasing while programming costs are increasing rapidly, 
computers with natural language processing capabili
ties will become practical for many applications. A good 
way to study natural language man-machine communi
cation is through the development, of question-answer
ing systems; for it is in these systems that a well-defined 
natural language discourse takes place. 

Research aimed at developing intelligent question
answering systems has been carried on for over a 
decade. For information concerning these systems we 
refer the reader to Simmons.13 ,14 Of the more advanced 
question-answering systems Green and Raphael6 ,7 

have developed a very powerful deductive procedure 
and Simmons, et aI.I2,15 introduced an extremely at
tractive representation scheme. 

Reported in this paper is an intelligent natural 
language question-answering system called the R2 sys
tem. The system introduces a variety of new techniques 
and encompasses the features found in previous sys
tems. It accepts a wide range of input sentences in 
English and deduces answers to input questions based 
upon available information. The data base chosen to 
demonstrate the capabilities of the system is the Illinois 
Drivers Manual, Rules of the Road, which consists of 
about 2000 English sentences. 

This particular data base was chosen because its 

* This work was supported by the Office of Education under 
Contract No. OE C-1-7-071213-4557 and by the Joint Services 
Electronics Program (U.S. Army, U.S. Navy, and U.S. Air 
Force) under contract DAAB-07-67C-0199. 

303 

contents are representative of the type of facts that 
one normally encounters. In addition, the number of 
facts associated with traffic laws is large enough not to 
be considered trivial as verified by the fact that it is 
larger than any other data base currently being used 
for natural language question-answering systems; yet 
it is small enough to be handled adequately by our 
present computer configuration. 

The internal representation in the R2 system is 
based upon a high-order logical calculus that permits 
the expression of wide range of natural language in
formation. Input to the system undergoes syntactic 
and semantic analysis in order to be transformed into 
the internal representation scheme. A recursive goal
oriented theorem-proving algorithm is used to deduce 
answers to questions posed to the system. 

In the second section we comment on some natural 
language question-answering systems by pointing out 
some of the features found in these systems. In the third 
section is described the R2 system and the high-order 
calculus that is used for the internal representation of 
natural language information. Finally, an example 
showing the processing of a typical question is pre
sented. 

COMMENTS ON SOME NATURAL LANGUAGE 
QUESTION-ANSWERING SYSTEMS 

Generally, natural language question-answering sys
tems use some formal internal representation for facts 
and questions in order to facilitate deductive manipu
lations. In a number of earlier systems the representa
tion was based upon some type of limited relational 
calculi, as for example Raphael's SIR,9 and Black's 
SQA.5 

Green and Raphael6 , 7 subsequently developed a sys
tem that offered the full expressiveness of the first
order predicate calculus for the representation of natural 
language information. The deductive procedure of this 



304 Spring Joint Computer Conference, 1971 

system was based on an automatic theorem-proving 
algorithm that was first described by RobinsonlO and 
improved upon by Wos, et al.I6 ,17,18,19 and others.l,2,8 

The use of first-order predicate calculus as a formal 
language for the representation of natural language 
information when used in conjunction with automatic 
theorem-proving procedures is a. significant improve
ment over previous schemes. However, the first-order 
predicate calculus cannot be used to express relation
ships between relations, or allow variables to range over 
relations as well as objects. 

For example, suppose it is necessary to put into the 
first-order language the sentences 

John crossed.the street after the light changed. (1) 

or 

A car must always yield to a pedestrian. (2) 

In (1) we are unable to put the sentence into the first
order language because we have a relation, namely 
after, whose arguments are forced to be relations , 
namely crossed and changed, rather than some indi
viduals. In (2) we cannot put the sentence into the 
first-order language because we are faced with the 
quantification of a variable which ranges over situa
tions not individuals. That is, the sentence states that 
for all possible situations a certain condition holds (i.e., 
that a car must yield to a pedestrian). 

Simmons, et al. 12 ,15 developed a system that used 
nested binary relations for the formal representation of 
natural language information. The relations they used 
were of the form (aRb) where a and b could in turn be 
nested binary relations and R could represent a com
plex relationship. Note that this scheme overcomes the 
representational problems mentioned above for the 
first-order predicate calculus. However, the system 
still lacks the capability to handle either negation or 
quantification. 

The R2 question-answering system uses a high-order 
formal language for the internal representation of in
formation and a recursive theorem-proving procedure 
for performing the necessary deducive operations. This . 
system can represent relations between relations and 
quantification of variables ranging over rather complex 
structures. In addition, the goal-oriented theorem
proving procedure performs sophisticated logical de
duction through the use of contextual information. In 
the section that follows a description of the R2 system 
is given. 

THE R2 NATURAL LANGUAGE QUESTION
ANSWERING SYSTEM 

An intelligent natural language question-answering 
system must be capable of performing sophisticated 

linguistic processing of input information in order to 
arrive at a well-structured internal representation upon 
which extensive logical processing can be performed. 
That is, any high quality natural language question
answering system must have: 

1. an internal data structure sufficiently rich to 
represent the subtle semantic differences found 
in natural language information; 

2. a method of transforming natural language into 
that structure; and 

3. a strong deduction algorithm for manipulating 
the information in that structure. 

The R2 question-answering system has been designed 
to encompass these features. A parser and a semantic 
converter are used to transform natural language in
formation into the high-order language. A deduction 
algorithm manipulates the facts represented in the 
high-order language to synthesize the necessary in
formation for the answering of questions posed to the 
system. 

The parser (or syntactic analyzer) breaks down a 
sentence to show the structural relationships among 
the parts of the sentence. The parsing indicates what 
words modify other words (and which words they 
modify) ; what are the subject, object, and predicate of 
the sentence, etc. This type of information is essential 

-to any system that utilizes natural language in an 
intelligent manner. If, for example, a sentence relating 
to some action is given, then it is necessary to differ
entiate between that which is performing the action, 
and that upon which the action is being performed. The 
syntactic analysis of that sentence indicates this type 
of information. 

The semantic converter accepts the syntactically 
parsed statements (i.e., facts and questions) and deter
mines if these parsings are semantically well formed. 
If the statement is well formed, it is converted into the 
high-order language, and if it is not, then it is returned 
to the parser. 

The deducer receives its information from the se
mantic converter expressed in the high-order language. 
Included in this information is a formal statement of 
the question that the system is attempting to, answer. 
Through a recursive goal-oriented deductive procedure 
the necessary implicit information is generated. This 
new information is then used to answer the question. 

The high-order language 

The high-order language used in the R2 system con
tains simple objects like car, driveway, pedestrian; more 



complex objects like green car, or a car in a driveway; 
relations like 'a car yields to a pedestrian'; relations 
between relations like 'John crossed the street after the 
light changed'; and variables that range over these 
various entities. 

Simple type objects like car, driveway, and pedestrian 
are represented by character strings identical to their 
orthographic representation. The more complex objects 
tha,t are modified in some way like green car and a car 
in a driveway are represented as the unary relations 
green(car) and (in(driveway))(car), respectively, where 
the modifier becomes the relation symbol and the object 
becomes the argument of that relation. Of course, a 
modifier may also modify an object that is already 
modified. Thus, a green car in a driveway would become 
(in ( driveway)) (green ( car)). 

In order to appreciate this formalism think of green 
as a function whose value is equal to its argument with 
the additional property of being green. Thus, anything 
that applies to the object car, without qualification, 
also applies to tp.e modified object green(car). 

A relation like 'a car yields to a pedestrian' is repre
sented as an n-ary relation symbol followed by the 
appropriate arguments. In this case, the relation is 
binary and would be represented as 

yield (car, pedestrian). 

In general, an n-ary relation may take as arguments 
any objects, relations, or variables (so long as they 
make sense in the domain of discourse being considered). 
These nested relations may be connected with the 
logical symbols A, V, r...J, and --+ as in other logical 
languages, and quantification may occur over any 
variables appearing in these expressions. For a formal 
definition of this language see Biss, et aJ.3 

Using this language we can now represent the sen
tences which we could not handle previously. Thus, the 
sentence 

John crossed the street after the light changed 

would become 

after(cross(John, street), change (light)) 

where after is, in this example, a binary relation relating 
cross and change. In the same manner, the sentence 

A car must always yield to a pedestrian 

would become 

Vy(y--+must(yield( car, pedestrian))) 

where y is a variable that ranges over structures such as 

(in ( driveway) ( car) 

R2 305 

or 

(in( crosswalk)) (drunk(pedestrian»). 

Question-answering in the R2 system 

To best illustrate the performance of the R2 system 
let us look at an example. Suppose the system receives 
the question: 

Do cars always have to yield to pedestrians? (3) 

and it has at its disposal the facts: 

Pedestrians not in a crosswalk must yield to cars. (4) 

And 

If x must yield to y 

then y does not have to yiel~ to x. (5) 

from the data base already stored in the formal 
language. 

Mter the question has entered the system it is trans
formed into the internal formal language and is posed 
as a theorem for the system to prove. If the theorem is 
proven, the answer to the question is yes; if the negation 
of the theorem is proven, the answer is no. 

The parser starts the transformation process by 
noting that in (3) cars is the subject, yield the verb, 
pedestrian the object, always an adverb modifying the 
main verb, have to is an auxiliary, etc. The grammar 
used for the syntactic analysis is a modified context
free immediate constituent phrase-structure grammar .10 

The form of the output from the parser is 

PREDICATE (modifiers ) (SUBJECT (modifiers ), 

OBJECT (modifiers) ) 

Thus, the subject and the object of the sentence are 
the arguments of the predicate. 

The syntactic information is given to the semantic 
converter which then puts the sentence into the high
order language, as in (6). (Notice that the question 
word do is dropped). 

always(have to(yield(car, pedestrian)) (6) 

This statement is now taken to be the theorem to be 
proven. At this point the expression have to is replaced 
by must in order to normalize the text. Thus we have: 

always (m\lst (yield (car, pedestrian»)). (7) 

The converter must now check to make sure that (7) 
does not conflict with what is known about the real 
world. This is done by using both the semantic rules 



306 Spring Joint Computer Conference, 1971 

Figure 1 

for this domain: 

yield(traffic, traffic) 

must(n-ary relation) 

always(n-ary relation) 

(8) 

(9) 

(10) 

and the tree of Figure 1 as the axioms of a system which 
must prove the well-formedness of (7). 

The tree in Figure 1 gives the information that cars 
and trucks are motor vehicles, which are vehicles, which 
are traffic; and that pedestrians are traffic. . 

From (10) the converter knows that in order for (7) 
to be considered well formed it must be shown that 

must(yield(car, pedestrians» (11) 

is a well-formed n-ary relation. But, from (9) we know 
that (11) is a well formed unary relation if 

yield ( car, pedestrian) (12) 

is a well-formed n-ary relation. From (8) we know that 
(12) is a well-formed binary relation if it can be shown 
that car is a type of traffic and pedestrian is also a type 
of traffic. But from the tree in Figure 1· it is known that 
both cars and pedestrians are traffic, and, therefore, the 
yield relation is well formed, consequently (11) is well 
formed. Thus, (7) is well formed and the semantic con
verter concludes that what it was given makes sense in 
the real world. 

The last task that the semantic converter must per
form is that of replacing always in (7) with a quantifier. 
Thus (7) would become 

Vy(y~must{yield(car, pedestrian») (13) 

where y is a variable ranging over situations. The 
formula in (13) states that under all situations cars 
must yield to pedestrians, which is just what (7) says. 

But (13) implies 

VxIVx2(must(yield(xl(car), x2(pedestrian»» (14) 

where Xl is a variable ranging over situations on car, 
and X2 is a variable ranging over situations on 
pedestrian. 

The deducer receives (14) and tries to prove that it 
is a theorem. The theorem is proven by contradiction 
using a recursive goal-oriented theorem-proving pro
cedure. That is, an attempt will be made to show that 
the negation of (14) contradicts the information which 
the system has. In this particular case the system has 
(4) and (5) stored in the high-order language as: 

must (yield ((not (in (crosswalk) » (pedestrian), car» (15) 

and 

VxVy[must(yield(x, y) )~I'-Imust(yield(y, x»] (16) 

respectively. 
At first, the deducer tries to prove that (14) is true 

by showing that (17) contradicts the relevant axioms, 
namely (15) and (16) in this case. 

~VxIVx2(must(yield(xl( car), x2(pedestrian»» (17) 

The system will, of course, not be able to prove (14) 
since it is not true, as can be seen by looking at (15). 
Thus, the system eventually tries to prove that (14) 
is false, i.e., that (17) is a theorem. In order to prove 
that (17) is a theorem, we try to prove that its negation 
(14) contradicts the axioms (15) and (16). Now, (16) 
is rewritten as 

I'-Imust(yield(x, y» V I'-Imust(yield(y, x» (18) 

since A~B is equivalent to ~A VB, where universal 
quantification has been made implicit. Then, 

I'-Imust(yield(x2(pedestrian), xI(car») (19) 

follows from (14) and (18) by recursively applying the 
high-order resolution on them. Now, (19) resolves with 
(15) if we let x2==not(in(crosswalk» and xI==0 (the 
empty substitution), generating a contradiction. Thus, 
(17) which means 

cars do not always have to yield to pedestrians 

is true. Therefore, the answer to the question 

Do cars always have to yield to pedestrians? 

IS no. 

Each step of the deduction may, as in this example, 
appear as merely the matching of two identical terms 



or the instantiation of some variable. It should be 
noted that the theorem-proving procedure can handle 
much more complex deductions than this. Specifically, 
the procedure recursively attempts to perform deduc
tion at every level of nesting. For a more detailed de
scription of this procedure along with other examples 
involving more complex deductions see Biss, et al. 4 

Now that the basic procedure has been illustrated 
for questions of the yes/no type; we can consider the 
questions of the form 

~x,y(x)? 

i.e., 'Is there an x such that ,y(x) is true?' where y;(x) 
is any statement involving the variable x. The deduc
tion algorithm attempts to produce a substitution 
instance p such that y;(p) is true. 

Suppose we ask under what conditions must a 
pedestrian yield to a car? 

which is represented formally as 

~x(x~must(yield (pedestrian, car))) 

or equivalently as 

~Xl~X2 (must (yield (Xl (pedestrian), X2( car) ) ) ) . (20) 

The result of the deduction procedure is that the nega
tion of (20) contradicts the axioms. Therefore, the an
swer to the question is the substitution instance that 
was used for the variables in order to arrive at the 
contradictions. That is, the answer is 

when 

Xl = not (in ( crosswalk)) 

x2=0 

or equivalently 

when pedestrian not in the crosswalk. 

CONCLUSION 

The R2 system described in this paper exhibits a num
ber of advanced features not found in existing natural 
language question-answering systems. It is based upon 
a high-order logical calculus that allows the embedding 
of relations, and quantification over rather complex 
structures thus permitting the expression of a wide 
range of natural language information. 

Two factors, the ease of transforming natural lan
guage information into the high-order representation, 

R2 307 

and the existence of a high-powered recursive deduction 
algorithm, have made R2 a very powerful system in
deed. The techniques developed for the system are 
directly applicable to many other factual English data 
bases without modification. These techniques may also 
be applied to other areas that might involve automated 
natural language processing, such as: computer-aided 
instruction, management information systems, or docu
ment retrieval systems. 

REFERENCES 

1 R ANDERSON W W BLEDSOE 
A linear format for resolution with merging and a new 
technique for establishing completeness 
Journal of the ACM Vol 17 No 3 pp 525-534 July 1970 

2 P B ANDREWS 
Resolution and merging 
Journal of the ACM Vol 15 No 3 pp 367-381 July 1968 

3 K 0 BISS R T CHIEN F A STAHL 
A data structure for cognitive information retrieval 
Coordinated Science Laboratory University of Illinois 
Urbana Illinois 1970 

4 K 0 BISS R T CHIEN F A STAHL 
Logical deduction in the R2 question-answ3Ting system 
Coordinated Science Laboratory University of Illinois 
Urbana Illinois 1971 (to appear) 

5 F S BLACK 
A deductive question-answering system 
Semantic Information Processing (ed M Minsky) MIT 
Press Cambridge Mass pp 354-402 1968 

6 C C GREEN 
Theorem-proving by resolution as a basis for question
answering systems 
Machine Intelligence 4 (eds B. Meltzer and D Michie) 
Edinburgh Univ Press Edinburgh pp 151-170 1969 

7 C C GREEN B RAPHAEL 
The. use of theorem-proV1:ng techniques in question-answering 
systems 
Proceedings of the ACM National Conference pp 169-181 
1968 

8 D W LOVELAND 
A linear format for resolution 
University of Pittsburgh Dept of Computer Science 1968 

9 B RAPHAEL 
A computer program for semantic information retrieval 
Sematic Information Processing (ed M Minsky) MIT 
Press Cambridge Mass pp 33-145 1968 

10 J A ROBINSON 
A machine-oriented logic based on the resolution principle 
Journal of the ACM Vol 12 No 1 pp 23-41 January 1965 

11 J A SCHULTZ W T BIELBY 
An algorithm for the syntactic analysis in the R2 information 
system 
Coordinated Science Laboratory University of Illinois 
Urbana Illinois 1970 

12 R M SCHWARCZ J F BURGER R F SIMMONS 
A deductive question-answerer for natural language inference 
Communications of the ACM Vol 13 No 3 pp 167-183 
March 1970 



308 Spring Joint Computer Conference, 1971 

13 R F SIMMONS 
Answering English questions by computer: A survey 
Communications of the ACM Vol 8 No 1 pp 53-69 January 
1965 

14 R F SIMMONS 
Natural language question-answering systems: 1969 
Communications of the ACM Vol 13 No 1 pp 15-36 January 
1970 

15 R F SIMMONS J F BURGER R M SCHW ARCZ 
A computational model of verbal understanding 
Proceedings of the Fall Joint Computer Conference Spartan 
Books pp 441-4561968 

16 L WOS G A ROBINSON D F CARSON 
Some theorem-proving strategies and their implementation 

Argonne National Laboratory Technical Memorandum No 
72 Argonne Illinois 1964 

17 L WOS G A ROBINSON D F CARSON 
The unit preference strategy in theorem-proving 
Proceedings of the Fall Joint Computer Conference Vol 26 
pp 615-621 Spartan Books 1964 

18 L WOS G A ROBINSON D F CARSON 
EjficilfTtCy and completeness of the set of support strategy in 
theorem-proving 
Journal of the ACM Vol 12 No 4 pp 536-541 October 1965 

19 L WOS G A ROBINSON D F CARSON 
L SHALLA 
The concept of demodulation in theorem-proving 
Journal of the ACM Vol 14 No 4 pp 698-709 October 1967 



Performance evaluation of direct access storage devices with 
a fixed head per track 

by TRILOK MANOCHA, WILLIAM L. MARTIN and KARL W. STEVENS 

International B~ines8 Machines Corporation 
Kingston, New York 

INTRODUCTION 

Computer designers agree that the slow response of in
put and output devices is the most critical factor limit
ing the performance of a computer system. When a 
program requests an access to one of these devices, the 
request is put on a queue. The members of the queue 
are usually serviced on a first-come-first-served basis 
or on the basis of preassigned priorities. Devices with 
large capacity are able to store a number of data sets 
belonging to various programs in a multi-programming 
environment. This usually leads to a queue build-:up 
for these devices, thereby creating a bottleneck in the 
system. 

This paper treats devices of the type commonly 
used for most computer systems. They are rotating 
direct-access devices with a fixed head/track. Each 
track is divided into a number of blocks of data called 
sectors. Each member of the queue requests one of the 
blocks of data from the device. The transmission of 
data occurs when the required sector comes under the 
fixed read/write head. 

One of the methods of reducing the bottleneck is to 
provide the device a capability to examine the queue. 
The device can then select the particular request that 
requires the minimum wait-time before its correspond
ing sector comes under the head. When the request is 
selected, the Central Processing Unit promptly initiates 
the selected request. 

The queueing procedure is accomplished most effec
tively by a hardware queuer which automatically 
stacks the requests. The hardware limitations will allow 
only a fixed number of requests to be placed on this 
queue. Any additional requests will be handled by 
the software and added to the hardware queue as the 
earlier requests in the existing queue are satisfied. 

Due to this procedure, the two parameters that 
affect the performance of the device most are queue 

309 

size and the number of sectors per track. The most 
important assumption made is that each member of 
the queue has an equal probability of requesting any 
one of the sectors on a track. 

Figure 1 illustrates the device structure. It shows 
that each track contains N sectors and a read/write· 
head. The sector positions are aligned in such a man
ner that all sectors with the same sector number 
come under the fixed heads at the same time. Each 
member of the queue has a sector number associated 
with it. Though the head or track number is also needed 
to locate the actual block of data, we assume that the 
head-switching time is small enough to be neglected. 
In this way, if sector X on track Y is being transmitted 
and if a request in the queue requires sector X + 1 on 
track Z, then the next sector transmitted will be sector 
X + 1 from track Z. The switching of heads from Y to 
Z is done in negligible time. 

THE STATE MATRIX 

The integers at the left of the rows in Figure 2 repre
sent the queue length for the device; those on top of the 
columns represent the number of distinct sector num
bers associated with the members of the queue. 

Figure 2 is designated as the state-matrix X, where 
X ij represents the state of the device. In state X ij there 
are j distinct sector numbers associated with i members 
of the queue. Each element X ij, of the state-matrix 
represents the probability of the device being in state 
Xij. 

It is advantageous to consider the queue as consisting 
of small groups of members, where each group contains 
requests with the same sector number. Within each 
group, there is a particular request that will be satis
fied before the other members of the group. This may 
be due to a first-come-first-served basis or a preassigned 
priority scheme. This particular request is called the 



310 Spring Joint Computer Conference, 1971 

\ , , , 
" " 

FIXED READ/WRITE HEADS 

" 
..... -........... _--- ....... 

Figure I-Device structure with distribution of tracks and sectors 

representative element of the group and is the one in 
contention with representative elements from other 
groups in the queue. The number of distinct sector 
numbers associated with the members of the queue is 
equal to the number of representative elements in the 
queue. 

Let us, at this stage, calculate the elements of the 
matrix if four random requests are introduced in the 
queue of a device with N sectors/track. We assume that 
N is greater than or equal to four. 

When the first request is introduced, it is a repre
sentative request with probability 1. Therefore, element 
Xu is equal to l. 

Clearly, the device cannot exist in states X 12 ) X 13, or 
X 14 since there cannot be more than one representative 
element in a queue of only one element. Therefore, 
elements X 12, X 13 and X 14 are equal to zero. 

When the second request is introduced in the queue, 
the probability that it will occur for the same sector as 
the previous request is liN. The probability that it 
will occur for a different sector is (N -1) IN. Therefore, 
elements X21 and X22 are 1/ Nand (N - 1) / N respec
tively. Since the device cannot exist in states X 23 and 
X 24, elements X23 and X24 are equal to zero. 

It is easy to see that all elements Xii where j> i will 
be zero since there cannot be more than i representative 
elements in a queue of i members. 

When a third request is introduced, the probability 
that the device will jump to state X 31 from state X21 is 
liN. Since the probability of the device being in state 
X 21 is liN, element X31 = 11N2. 

State X 32 can be reached from either of two previous 
states, state X 21 or state X 22 . 

If the device is in state X 21, which means that both 
requests exist for the same sector, the probability that 
the third request occurs for a different sector is 
(N -l)IN. Therefore, the probability of reaching state 
X 32 from state X 21 is (N -1) / N. Or, the probability of 
reaching state X 32 via state X 21, is (liN) (N -l/N) = 
(N -1)IN2. 

If the device is in state X 22, the probability that the 
device will jump to state X 32, via state X 22, is 
((N-1)/N) (2/N). Total probability of reaching 
state X 32 is (N -1)IN2+2(N -1)IN2=3(N -1)/N2. 

State X33 can be reached only from state X 22. Since 
in state X 22, the two requests occur for different sectors, 
the probability of the third request occurring for a 
different sector is (N - 2) IN. 

The probability of reaching state X33 is 

((N -2)IN) ((N -l)/N) = (N -1) (N -2)IN2. 

When the fourth request is introduced, the device 
jumps to the states in the fourth row of the matrix. 

The probability of reaching state X 41 from state X 31 
is liN. Since the probability of being in state X31 is 
11N2, element X41 = 11N3. 

The device queue has two representative elements 
among the four members of the queue when the device 
is in state X 42• This also means that there are two groups 
in the queue. There are two possible ways in which the 
four members can be distributed among the two groups. 
Three members in the first group and one member in 
the second group is a valid configuration. Similarly, 
two members in each group is also valid. 

I I I I I I I I 
I I 2 I 3-.J---.J ___ .l ___ L __ .J_--1.-N 

I I I I I I I I 

I 

---
2 

--
3 
I 

--t-
I 
I 
I -, 
I 
I 

_.J_ 
I 
I 
I 

-...f-
I 
I 
t 

--t-
I 
M 

---

Figure 2-The state-matrix X 

I 
I 
I 



Performance Evaluation of Direct Access Storage Devices 311 

It is convenient at this point to break up state X 42 

into two substates. Substate X 421 requires a three-one 
combination for the membership of the groups and sub
state X 422 requires a two-two combination for the mem
bership of the groups. 

Substate X 421 can be reached from state X 31 with 
probability (N -l)/N. 

Subs tate X 421 can be reached from state X 32 with 
probability liN. 

Therefore, the probability of reaching substate X 421 

= X31 0 (N - 1) / N + X32 01/ N = X421 

= (N -1)/N3+3(N -1)/N3=4(N -1)/N3. 

Substate X 422 can be reached from state X 32 with 
probability liN. 

Since substate X 422 can be reached only from state 
X 32, element X422 

Total probability of reaching state X 42 = X421+X422 = 
7(N-l)/N3. 

State X 43 can be reached from state X 32 or from state 
X 33. The probability of reaching state X 43 if the device 
was in state X32=(N-2)/N. From state X 33, the 
probability of reaching state X43 - 3/N. 

Therefore, element X43 = X32 0 (N - 2) / N + X33 0 3/ N. 

=3(N-l) (N -2)/N3+3(N -1) (N -2)/N3 

=6(N -1) (N -2)/N3 

State X 44 can be reached only from state X a3• The 
probability of reaching state X44 is Xaa o (N -3)/N. 

= (N -1) (N -2) (N -3)/Na. 
I 

For the particular case when there are six sectors/ 
track, the state matrix is shown in Figure 3. 

It follows that the number of rows in the state-matrix 
is equal to the queue length. The number of columns is 
equal to the queue length if the number of sectors/ 
track is greater than the queue length. Otherwise, the 
number of columns is equal to the number of sectors/ 
track. 

When a request is removed from the queue, one of 
the groups loses a member. If the device was in state 
Xij, it will jump to one of the states in the (i -l)th 
row. If the group that lost its representative element 
contains another meIt1rber such that a new representa
tive element can be created, the jump is to state X(i-l)j. 

If the group contains no other member, the total num
ber of representative elements in the queue is decreased 
by one and the jump is to state X(i-l)j-l. 

The new values of the elements of the (i - 1) th row 
can be calculated if the probabilities of the jumps from 
the ith row are known. If state X(i-l)j-l can be reached 

I 2 3 4 

I I 0 0 0 

2 1/6 5/6 0 0 

3 1/36 15/36 20/36 0 

4 1/216 35/216 120/216 60/216 

Figure 3-The state-matrix for the case of six sectors and 
a queue length of four 

from state Xi (j-l) with probability A and from state 
Xi,j with probability B, then the new value of X(i-j)j-l = 

~ A 0 Xi (j-l) + B· Xi,j. 
At this stage, if another request is introduced in the 

queue, the elements of the ith row can be calculated 
from the elements of the (i - 1) th row by a procedure 
similar to the one used when four random requests are 
introduced in the queue. 

When the device operates with a constant queue 
length, a new request is added to the queue when an 
existing request gets satisfied. The device will con
stantly be moving from the states of the Qth row to the 
states of the (Q - 1) th row and back. The move from 
the Qth row to the ( Q - 1) th row will occur when a 
request gets satisfied and the move back to the Qth 
row will occur when the new request joins the queue. 

If the probabilities associated with these jumps are 
known, we can write an equation of the form 

where Xi/ is the value of Xij after one request has been 
satisfied and another added to the queue. This enables 
us to define an iterative procedure to calculate the ele
ments of the Qth row after a large number of requests 
have been satisfied and an equally large number of 
requests added to the queue. To begin the iterative 
procedure, we need to know the initial values of the 
elements of the Qth row and the values of Cis and 
Dis. By performing enough iterations, we can calculate 



312 . Spring Joint Computer Conference, 1971 

the steady-state values of the elements of the Qth row, 
if such a state exists. 

The procedure mentioned in this paper will be useful 
if a steady-state exists and if it is independent of the 
initial conditions. We shall soon see that both these 
requirements are satisfied. 

STEADY-STATE SOLUTION 

We shall calculate the steady-state values for the 
special case of a device with six sectors/track and a 
constant queue of four members. After that, we shall 
describe a general procedure for obtaining the steady
state solution. 

Let A represent the probability of being in state 
X 41, Bl the probability of being in subs tate X 42\ B2 
the probability of being in substate X 422 , C the prob
ability of being in state X 43, and D the probability of 
being in state X 44• 

Let the initial values of A, Bl, B2, C and D be 7216, 

2%16, 1%16, 129-216 and 6%16, respectively. 
The next step is to calculate the new values of A, 

Bl, B2, C and D after one request is satisfied and a 
new one joins the queue. These new values will be 
represented here by a superscripted asterisk. 

If the device was in state X 41 , it will necessarily jump 
to state X 31 when a request is satisfied. 

The probability of jumping back to X 41 when a new 
request joins the queue = %. 

The probability of reaching state X 41 along the path 
X 41-7X31-7X41 -,-- A/6. If the device was in substate 
X 421, the probability that the sector for the group con
taining three requests will occur before the sector for 
the group containing one request is Y2. 

Therefore, the probability that the device will jump 
to state X 31 is Y2 and the probability that it will jump 
to state X 32 is also Y2. 

Probability of the device reaching state X 41 along 
the path X421-7X31-7X41 = (BlXY2X%). 

A*= (A/6) +(BlXY2X%). 

Substate X 421 can be reached along five different 
paths. These paths and the probabilities associated 
with them are: 

l. X41-7X31-7X421 (AX%) 

2. X 421-7X31-7X421 (BlXY2X%) 

3. X421-7X32-7X421 (BIXY2X%) 

4. X422-7X32-7X421 (B2X%) 

5. X43-7X32-7X421 (CX%X%) 

Path 4 has probability B2 X 7i because if the device was 

in state X 421 and a request is satisfied, it must neces
sarily jump to state X 32• When a new request is intro
duced, the probability of jumping to substate X 421 is %. 

For path 5, the value is (CX%X%) because state 
X43 represents a 2-1-1 combination and if a request is 
satisfied, the probability that the sector had only one 
request is %. Therefore, the probability of jumping to 
state X 32 is % and the probability of jumping to state 
X33 is %. 

Bl*= (AX%)+(B1 XY2X%)+(BIXY2X%) 

+(B2X%)+(CX%X%). 

Substate X 422 can be reached by three different 
paths: 

1. X421-7X32-7X422 with prob. (Bl XY2X%) 

2. X 422-7X32-7X422 with prob. (B2XIX%) 

3. X 43-7X32-7X422 with prob. (CX%X%) 

B*= (BlXY2X%)+(B2XlX%) +(CX%X%) 

The paths to reach state X43 are: 

1. X 421-7X32-7X43 with prob. (BlXY2X~~) 

2. X 422-7X32-7X43 with prob. (B2X%) 

3. X 43-7X32-7X43 with prob. (CX%X%) 

4. X43-7X 33-7X43 with prob. (CX%X%) 

5. X 44-7X33-7X43 with prob. (DXlXY2) 

C*= (BlXY2X%)+ (B2X%) +(CX%X%) 

+ (CX~X%) + (DXY2) 

Similarly, state X 44 can be reached by the following 
two paths: 

X 43-7X33-7X44 

X 44-7X33-7X44 

with prob. 

with prob. 

D*= (CX%XY2)+(DXY2) 

(CX%XY2) 

(DXY2) 

A *, Bl *, B2*, C*, D* represent the new values of A, 
Bl, B2, C and D after one request has been satisfied 
and a new one joins the queue. 

The second Citeration will represent the situation 
after two requests have been satisfied, the third after 
three and so on. 

A PL/I program carried out 100 iterations and it 
was found that after ten iterations, the change in the 
values A, B, C and D was only beyond the sixth place 
of decimal. 

To show that the convergence to a steady-state solu
tion is independent of the initial conditions, the pro
gram was run with initial condition A = Bl = B2 = C = 0, 
D=1. 



Performance Evaluation of Direct Access Storage Devices 313 

In this case, the steady-state was reached after 15 
iterations. 

The transient values and the duration of the tran
sients is a function of the initial conditions. 

The steady-state values were: 

A =0.017857, 

C = 0.535714, 

B = B1 + B2 = 0.267857, 

D = 0.179571. 

A general algorithm for obtaining the steady-state 
solution will now be described. 

A GENERAL ALGORITHM FOR DETERMINING 
STEADY-STATE VALUES 

Let there be N sectors/track and Q members in the 
queue. The state-matrix will contain Q rows. Figure 4 
shows the last two rows of the matrix. If N is greater 
than Q, the matrix contains Q columns. Otherwise, the 
number of columns in the matrix is equal to N. 

For each element XQj of the Qth row, we want to 
determine the values of C i and D i such that 

XQ/=XQj·Ci+Di 

If the device is in state X ij, there are j groups in a 
queue of i members and each group contains at least 
one member. Each state Xii is divided into M ii sub
states where M ii is obtained as follows: 

Let (Y1, Y2, ••• ,Yi ) be an unorderedj-tuple such 
that 

i 

E Yp=i and Yp>O 
P=l 

Then Mii is the number of distinctj-tuples. 
Each substate represents a combination by which 

the i members distribute themselves among j groups. 
Since the j-tuple was unordered, groups A, B, C con
taining a, b, c members respectively are represented by 
the same substate as groups A, B, C containing b, a, C 

members respectively. 
Let the kth substate of state Xii be represented by 

X il, and the probability of the device existing in sub
state Xil be Xi/. The calculation of Cis and D/s is 
done on a substate level such that we are effectively 
calculating Cl's and Dl's. 

Consider state X Qi. We need to determine C i and D i 
such that 

However we shall determine all C l's and D/'s such 
that 

J-I J J+I L 

, 
Q-I M(Q_l)j_t I M(Q-Uj 

Q 

I I r" if\ 

M Q(j-U1 ! 1&1 9 "-, MQ(j+!) 
, , T 

Figure 4-The last two rows of the state-matrix 

and 
MQj 

X Q/= EXQl* 
k=l 

To determine all paths by which substate XQl can 
be reached when a request is satisfied and another 
added to the queue, we shall focus our attention on 
states X QU- 1), XQj, X QU+1}, X(Q-l)i-l and X(Q-l)i. Each 
substate of states X QU- 1), XQi, X QU+1) may begin a 
path leading to substate X Q/. 

We shall first consider the sub states of the state 
X QU- 1). The device can jump to substates of state 
X(Q-l)i-l when a request is satisfied. 

Let Pijklmn be the probability of jumping from sub
state Xil to substate XZmn. 

For the Zth substate of X QU-l) the probability of 
reaching substate XQl is given by 

M(Q-l)j-l 

E PQU_1)Z(Q-l)(j-l)Y .P(Q_l)(j_l)yQjk·XQU_l)Z 

Y=l 

where qQ(j_l)ZQjk is the total probability of reaching 
XQl from state X QU- 1). Therefore, the probability of 
reaching X Ql from state X QU-l) 

MQU-l) 

E qQU-l) Z
Qjk=,"Y1 

Z=l 

The above equation covers all paths from state 
X QU-l) to substate X Ql since all these paths must go 
through the state X(Q-l)j-l. 

Substate XQl can also be reached by paths origi
nating from the substates of state X Qj. The first set 
of paths is via state X(Q-l)U-l) and the second set is 
via state X(Q-l)j 

M(Q-l)j-l 

~qQjZQjk= E PQjZ(Q-l)(j-l)y·p(Q_l)(j_l)yQjk 

Y=l 

M(Q-l)j 

·XQjz+ E PQjZ(Q-l)jY ·P(Q_l)jyQjk·XQjZ 

Y=l 

Therefore, the probability of reaching substate X Ql 



314 Spring Joint Computer Conference, 1971 

from state )(Qj 

MQj 

= L qQjZQjk='Y2 

Z=1 

For the paths originating from substate )( QU+1) z, 

M(Q-l)j 

QQU+1)ZQjk= L P QU+ 1)Z(Q-l)jY ·P(Q_1)jyQjk·)(QU+1/ 

Y=1 

Total probability of reaching subs tate )( Ql from state 
)(QU+1) 

MQU+1) 

L q QU+l)ZQjk = 'Y3 
Z=1 

Therefore, the total probability of reaching sub
state )( Ql after one request is satisfied and a new 
request added to the queue is xQl*=rl+r2+r3' 

By 'putting in the appropriate expression for rl, r2 
and r3 we can get xQ/ in the form xQl·Cl+Dl. How
ever, it is easier to calculate the r's separately and then 
add them to obtain xQ/. 

Similarly, expressions are obtained for all the sub
states in the Qth row. The iterations are performed on 
the probabilities associated with the substates. 

When the steady-state is achieved, the values of 
xQ/s are obtained for the different values of j. 

MQj 

)(Qj= L )(Qt 
k=l 

X Q1, X Q2, ••• , X QL are the steady-state values that 
we need, to calculate the performance of the device. 
In practice we find that unless the queue length is very 
large, there are very few substates associated with 
each state. For a queue length of four, only state )(42 

contained two substates. The substates for the other 
states were the states themselves. For a queue length 
of six, states )(62 and )(63 will contain three substates 
each while state )(64 contains two substates. The rest 
of the states do not have any substates besides 
themselves. 

It is unlikely that the hardware queuer will handle 
a very large queue during normal device operation. In 
any case, a simple program should be able to evaluate 
the steady-state values. 

The next step is to determine the data rate of the 
device from the steady-state values. 

DETERMINATION OF DATA RATE 

An analysis is developed to correlate the steady
state solution obtained from the state matrix to the 
data rate of the device. 

Let us consider a device with N sectors and a queue 
length of Q. 

The state matrix provides the steady-state values of 
XQ1, XQ2, ••• , XQL where L is equal to Q if the number 
of sectors is greater than the queue length. Otherwise, 
L is equal to the number of sectors. 

The average number of sectors that the head will 
skip before it finds one for which a request exists will 
be determined. 

XQ1 is the probability that all requests exist for the 
same sector. When a request is satisfied and a new one 
joins the queue, the head will wait till the sector for 
the new request comes up. In the worst case, it will 
have to wait for N -1 sectors to transfer the closest 
request if the new request occurs for the same sector 
as the rest of the members of the queue. Since the new 
request can exist for any sector with equal probability, 
the average number of sectors skipped before reading/ 
writing occurs is (N -1)/2. 

Consider the significance of element XQ2 of the state
matrix. If the two sectors for which the requests exist 
are 8 1 and 8 2 and a request "for 8 1 is satisfied, the head 
will either wait for sector 8 2 or the sector 8 NEW for 
which the new request exists. The decision will depend 
on the distance of 8 2 and 8 N EW from 8 1 in the direction 
of rotation. The sector closest to 8 1 is satisfied first. 

For the sector (81+ 1) which is the sector immedi
ately after 8 1, the interval between the present position 
of the head and the last time it passed this sector is 
(N -1) sectors. For sector (81+2), this interval is 
(N - 2) sectors and so on. 

Since (81 + 1) has been exposed to new requests for 
the longest period, it has the highest probability of 
being the second distinct sector number. This means 
that the probability of sector (81+ 1) being 8 2 is greater 
than the probability of (81+2) being 8 2• Similarly, the 
probability of (81+2) being 8 2 is greater than the prob
ability of (81+3) being 8 2• 

By the above approximation in which the probability 
of a sector (81 +)() being 8 2 is directly proportional to 
(N -)(): 

prob (81+)(1) being 82 = N_-_)(_1 

prob (81+)(2) being 82 N -)(2 

Therefore, probabilities of sectors (81 + 1), (81 + 2) , 
. . . (81 - 1) being 8 2 are in the ratio N - 1: N - 2 : 
N-3 ... : 1 

If SUM = (N '-:"1) / (Y -1) Y, then the probability 
that sector (81 + 1) is the second distinct sector = 
(N -1) /SUM. Also, the probability that sector 
(81+2) is the second distinct sector = (N -2)/SUM 
and so on. 

Therefore, the representative request for the second 
distinct sector is 'biased' towards the sectors close to 



Performance Evaluation of Direct Access Storage Devices 315 

8 1• When the new random request joins the queue, the 
situation is such that a 'random' and a 'biased' request 
are in contention to be satisfied first. 

Extending the argument further, there are, two 
'biased' requests and one random request when a 
request is satisfied in state X Q3 and a new one joins 
the queue. 

In general, the device in state X QK has (K -1) 
'biased' requests and one random request in contention 
when it satisfies a request and a new one joins the queue. 
The head will not have to skip any sectors before 
reading/writing if anyone of these requests exists for 
the sector immediately following the one for which the 
request was satisfied. 

Probability that there is no request for the next 
sector 

= (SUM - (N -1») (N -1) = ' 
SUM N Po 

Probability the head skips zero sectors=Po=I-Po'. 
Let 8 be the sector which contained data for the request 
satisfied. 

WHEN R~LEASED 

SEIZE DEVICE FOR 
TIME NEEDED TO 

TRANSMIT A SECTOR 

GENERATE A TRANSACTION 
WHEN BEGINNING OF A 
SECTOR COMES UNDER 

THE HEAD 

ASSIGN SECTOR NUMBER 
TO A TRANSACTION PARAMETER 

NO 

INTERROGATE DEVICE QUEUE 

RELEASE FIRST 
MEMBER OF QUEUE 

SATISFYING EQUALITY 

DESTROY TRANSATION 

Figure 5-Simplified block diagram of the simulation program 
in GPSS/360 

The head will skip one sector if no request exists for 
(8+ 1) and a request exists for (8+2). 

Given no request for (8 + 1), probability that there 
is no. request for 8+2 

= (SUM-(N-I)-(N-2») (N-2) = PI'. 
SUM-(N-I) N-3 

Given no request for (8 + 1), the probability of at 
least one request for 8 + 2 

Probability that the head skips one sector to satisfy 
the next request 

= Po' (1- PI') =P1 

Similarly, the probability of skipping M sectors is 
PM and 

If the device was in state X QU when it satisfied a 
request, there are (U - 1) biased representative requests 
and one random request in contention. In this situation, 
the average number of sectors skipped 

(N-l)-(U-l) 

L i·Pi=Au ...... (1) 
i=o 

The upper limit of i in the summation is equal to 
(N -1) - (U -1) because there are (U -1) distinct 
sectors that have representative requests associated 
with them. In this case, the maximum number of 
sectors that may be skipped is equal to (N -1) -
(U -1) 

The average number of sectors skipped A SK1P and 

Q 

A SK1P = L xQu·A u if N>Q and 
U=l 

N 

= L xQu·A u if N 5:.Q. 
U=l 

In the above formula, the xQU's are obtained from the 
state-matrix X and the Au's are calculated from (1). 

Data Rate of the device = Dmax/ (ASK1P + 1) where 
Dmax is the maximum data rate of the device or the 
rate at which it transmits data while reading or writing 
records. 

Another way of expressing performance of the device 
is in terms of percent utilization. 

P U iI"· 100 
ercent t lzatlOn = A 

SKIP+I 

Data Rate. (100) 

Dmax 



316 Spring Joint Computer Conference, 1971 

QUEUE SECTORS - 7 SECTORS -10 SECTORS-20 

LENGTH BY BY BY BY BY ~"::TIOfj ANALYSIS ~LATIOII MALYSIS islMULATIOfj ANALYSIS 

2 41.1 41.0 31.4 30.5 17.6 17.2 

3 50.9 50.1 40.6 39.7 24.3 24.0 

4 58.8 57.2 47.8 46.7 30.5 2'.5 

5 62.6 63.6 52.7 52.3 34.7 34.4 

6 66.1 66.7 H.' H.7 38.8 38.7 

Figure 6-Table of device utilization for various combinations of 
sector numbers and queue length 

PROGRAM FOR DATA RATE EVALUATION 

An experimental program was written in PLj1 for 
the evaluation of data rates. The program performs a 
hundred iterations to obtain a steady-state solution 
and the program is valid only for the case of a new 
request joining the queue when another request is 
satisfied so that the queue length remains constant. 

_____ 1_ BY ANALYSIS 

II II II .. BY SIMULATION 

FOR 
20 

SECTORS 

FOR FOR 
10 7 

SECTORS SECTORS 

10 20 30 ~ 50 60 70 
PERCENT UTIUZATION ---•• 

Figure 7-Comparison of results obtained by analysis and those 
obtained by simulation 

SIMULATION 

The operation of the device and its queue was simu
lated in GPSSj360 for various combinations of queue 
length and numbers of sectors. The random assignment 
of sector numbers was done by the use of the random 
number generator of GPSSj360. Figure 5 shows a 
block diagram of the simulation program. 

RESULTS 

The results obtained by analysis and by simulation 
for the percent utilization of the device are shown in 
the form of a table in Figure 6, and in the form of a 
graph in Figure 7. 

A vg. Data Rate 

DISCUSSION 

% Utilization 
(100) X (Max. Data Rate of the Device) 

% Util. 
100·Dmax 

The results obtained from the program can be used 
very effectively for data-rate evaluation even when 
the queue does not remain constant over a long period. 
It was mentioned that the steady-state solution is 
reached very rapidly, especially if the initial conditions 
are provided by the arrival of a cluster of random 
requests. 

1 
I 
i 
o 

tnJz tn 

t---.-.. 
Figure 8-Variation of queue length with time 



Performance Evaluation of Direct Access Storage Devices 317 

Since there is a rapid approach to the steady-state, 
the data rate for any queue pattern can be determined 
by considering the data rates at various sampled values 
of the queue length, as shown in Figure 8. 

Let DRi be the data rate for queue length Qi. If 
DRi=f(Qi) is given by the program, then, for the 
example considered above, a good approximation for 
the data rate can be obtained by applying the relation 

Data Rate~ ~ DR, I n 

If the sampling interval is not constant, a proper 
weighting factor will have to be used. 

The concept of an average queue and its relationship 
to data rate has significance, only if the function f 
which relates DR=f(Q) is linear. 

Since this is not the case except in distinct regions 
of the curve, the relationship between average queue 
and data rate can be very misleading. 

CONCLUSIONS 

The state-matrix method provides an easy and logical 
approach to the problem of performance evaluation. 

The only assumption made while arriving at the steady
state solution is that the requests are random when 
they join the queue. Certain added approximations 
were made for the correlation between the steady
state solution and the device data-rate in order to 
simplify the analysis. The very close correlation be
tween the results obtained by the state-matrix method 
and those obtained by simulation provides substantial 
justification for these approximations. 

This method also provides insight into the transient 
behavior of the queue and its dependence on initial 
conditions. 

REFERENCES 

1 W FELLER 
An introduction to probability theory and its applications 
John Wiley and Sons Inc Third edition 1968 New York 
New York 

2 J ABATE H DUBNER 
Optimizing the performance of a drum-like storage 
IEEE Transactions on Computers Vol C-18 No 9 pp 
992-997 November 1969 





Drum queueing model 

by S. R. ARORA 

University of M1:nnesota and Univac Division, Sperry Rand Corporation 
Minneapolis, Minnesota 

and 

G. P. JAIN 

Univac Division, Sperry Rand Corporation 
Minneapolis, Minnesota 

INTRODUCTION 

This paper deals with the analysis of queues at drums 
in a computer system. For this analysis the computer 
system may be viewed as being composed of two units; 
(1) central processing unit and (2) the auxiliary stor
age devices (drum subsystem). Requests for the drum 
subsystem originate from the central processing unit 
(CPU). In a multiprogramming environment, a num
ber of jobs are concurrently active in the system. Each 
job may be either waiting or being serviced by one of 
these units. I/O requests generated by CPU may com
pete for the services provided by a single drum sub
system. Concurrent requests by the CPU cause queues 
in front of a drum subsystem. Queuing conflicts cause 
delays in servicing a request and reduce maximum 
throughput capability of the system. These conflicts 
may be reduced by applying one or more of the fonow
ing techniques. 

1. Increasing the number of channels to a sub-
system. 

2. Varying the number of devices to a subsystem. 
3. Increasing the speed of a subsystem. 
4. Better file organization. 

etc. 

The purpose of this study is to develop a model for 
obtaining expressions for average queue size and aver
age waiting time for various request rates and sub
system configurations. This problem is of great interest 
to the system designers. The proposed model will aid 
in determining the number of channels and also the 
number of drums within a drum subsystem of an 
otpimally balanced system. 

319 

MATH. MODEL 

The model considers a drum subsystem with n drums, 
equipped with m transfer channels (Figure 1). Re
quests for the drum subsystem originate from the cen
tral processing unit. A request is always for a particular 
drum. The servicing of a request requires the avail
ability of both the specific drum needed by the request 
and anyone of the ,transfer channels. The following 
assumptions are made in this model. 

ASSUMPTIONS 

1. Requests follow a uniform distribution over the 
n drum units. 

2. Both the drum and the channel are considered 
busy during the service time of the request. 

3. Requests on any drum are serviced on a first
come-first-served basis. 

4. Arrivals of requests follow a Poisson Process 
with a rate AK, where index K represents the 
state of the system. The state of the system is 
defined by the number of outstanding requests 
present in the drum system. 

5. Service time of any request follows a negative 
exponential distribution with an average service 
time of 1/p.. 

In order to determine the average queue size and the 
average waiting time, we need to know the stationary 
distribution of the number of pending requests in the 
drum system. Let PK denote the stationary probability 
of having K requests in the system. From standard 
results on queuing with Poisson arrivals at rate AK and 



320 Spring Joint Computer Conference, 1971 

CENTRAL PROCESSING 

UNIT 

"'V 

Drum 

Queue 

1 m 

GJ GJ 
I 

I 
-1 , 

~ - - - - Drum -I 
:J 

I 2 

: -- - -I 
Drum 

/- -- -: 

, n 

Figure 1 

negative exponential service times at rate J.i.K, corre
sponding to the state K, the expression* for PK is given 
by 

AO Al AK-I 
PK=-X- ... X--po (1) 

J.i.1 J.i.2 J.i.K 

Different arrival patterns can be interesting. Two 
arrival patterns are considered in this paper. The first 
arrival pattern considered is given by 

{

A for K < Kmax. 
AK= 

o K~Kmax. 

(2) 

where Kmax is a specified constant. Kmax represents the 
number of concurrently active jobs in the system. 
When all the jobs are held over for I/O the CPU is 
idle and stops generating further requests. However, if 
the pending jobs for I/O are less than K max, the CPU 
continues to generate further requests at a rate of A. 

In order to compute the values of PK from equation 
(1), we need to know AK and J.i.K. Equation (2) specifies 
AK. We now need to develop an expression for the service 
rate J.i.K. 

J.i.K is dependent upon K, m and n. The maximum 
number of requests that can be serviced is given by 
the number of requests for distinctive drums within 
this set. The number of channels further limit the 
maximum number or requests that can be serviced at 
any time. The minimum of the distinctive requests 
and number of channels will determine the number of 
requests that can be serviced at any time. Let G(n, K) 
denote the number of distinct drums needed for K re
quests. The range of G (n, K) is from 1 to minimum 
(n, K). 

The problem of finding the distribution** of G(n, K) 
is very similar to the well known problem of distributing 
K balls randomly in n boxes and finding the distribution 
for the number of boxes which are occupied by one or 
more balls. Distribution of G (n, K) is given by 

P[G(n, K) =gJ 

=( n )t (-1)'(~)( 1 n-!+ir (3) 
n-g J-O J 

As pointed out earlier, the number of requests that 
can be serviced at any given time is also restricted by 
m, the number of channels. For G(n, K) equal to g, the 
minimum of m and g will give the number of requests 

* Elements of Queuing Theory with Applications by T. Satty, 
p-87, McGraw-Hill, 1961. 
** An Introduction to Probability Theory and Its Applications, 
William Feller, p.-92, John Wiley & Sons, Inc., 1964. 



that can be serviced. Define S (m, n/ K) as the mini
mum value of m and g. 

SCm, n/K) =min(m, g) 

S (m, n/ K) represents the number of requests that can 
be serviced simultaneously, when K requests are in the 
system. Since G (n, K) is a random variable, S (m, n/ K) 
is also a random variable. For abbreviation, we will 
denote SCm, n/K) by SK. Probability of a request 
being completed from the drum system during time 
t and t+..1t, when there are K units in the system is 
given by SKp,..1t. Probability of completing more than 
one service during time t and t+ ~t is a function in
volving terms of second and higher order of ..1t, which 
is represented in the conventional notation of 0 (~t) . 

There can be K units in the system at time t+ ~t in 
any of the following ways. 

(i) there were K units in the syste,m at time t and 
no arrival or departure took place during time 
t and t+..1t. 

(ii) there were K -1 units at time t and one arrival 
and no departure took place during time t and 
t+~t 

(iii) there were K + 1 units at time t and no arrival 
and one departure took place during time t and 
t+..1t 

All other cases involve more than one transition, 
which involves second and higher order terms of ~t. 

PK(t+..1t) =PK(t) XProb [no arrival, no departure dur
ing (t, t+..1t) ] 
+PK-l(t) XProb [one arrival, no departure 
during (t, t+~t) ] 
+PK+IXProb [no arrival, one departure 
during (t, t+~t) ] 
+O(~t) 

The probability of one arrival during (t, t+..1t) is 
X..1t and the probability of no arrival during (t, t+..1t) is 
(l-X..1t). The probability of one departure during 
(t, t+..1t) is a random variable and is given by SKP,..1t. 
The probability of no departure during (t, t+ ~t) is 
(l-SKp,~t). 

Kolmogorov equations linking the state probabilities 
for times t and t+..1t are given by 

PK(t+..1t) = L: PK(t) (1-X~t) (1- SKP,~t)cp(SK) 
SK 

+PK-l(t)X~t 

+ L: PK+1(t) SK+IP,..1tcfJ(SK) +O(~t) 
SK 

for K~l (4) 

Drum Queueing Model 321 

and 

po (t+ ..1t) = Po (t) (1- X..1t) +Pl (t) Slp,..1t+O (..1t) 

for K=O 

where cp(SK) denotes the density function of SK and 
SK+l. 

The stationary probabilities are obtained from equa
tion (4) by transposing PK(t) to the left hand side, 
dividing throughout by ..1t, taking the limit ..1t~O and 
equating the first derivative of PK (t) to zero. Equation 
(4) reduces to 

{X+Z(m, n, K)P,}PK=XPK-l+Z(m, n, K+1)P,PK+1 

for K~l 
and 

Xpo=Z(m, n, l)P,Pl for K=O (5) 

where Z (m, n, K) denotes the expected value of 
S{m, n/K) 

Z(m, n, K) = E SCm, n/K) (6) 
g 

Z (m, n/ K) represents the average number of requests 
that can be serviced when there are K requests in the 
system. Solving equation (5) recursively we obtain 

where 

and 

K 

( ) (X) poem, n) 
PK m, n = - . K 

P, II Z(m, n,j) 

K 

j=1 

X 
-=p 
P, 

II Z(m, n,j) =YK 
;=1 

(7) 

(8) 

PK(m, n) denotes the stationary probability of having 
K requests in the system. 

The expected service rate when there are K requests 
in the system is given by Z(m, n, K)p" which is identi
cal to the service rate p,K in equation (1). 
Since 

poem, n) +Pl(m, n) + ... +PKmax(m, n) = 1 (9) 

We obtain by substituting (8) in (9) 

( )[ p pKmax] 
Po m,n 1+-+···+-- =1 

Yl YKmax 
(10) 

/ 



322 Spring Joint Computer Conference, 1971 

or Let this probability be denoted by q(r/K) , where 

1 
poem, n) = -------

1+~+.' .+pKmax 

Yl YKmax 

Substituting (11) In (8) we obtain 

PK(m, n) =------

. 1+~+ .. . +pKmax 

Yl YKmax 

(11) 

(12) 

This gives the distribution of the number of requests 
in the system. The drum system becomes a bottleneck 
when the number of requests in the system reach K max, 
as this is the time, according to our assumptions, when 
the CPU stops sending any further requests until the 
time when the state of the system falls below Kmax. 
The quantity PKmax(m, n) will, consequently, give the 
probability with which the drum system becomes a 
bottleneck. 

AVERAGE QUEUE SIZE 

Expression for the average queue size of waiting re
quests is the difference between the expected number 
of requests in the system and the number of requests 
receiving service. 

Kmax 
Average queue size = :E KPK (m, n) 

k=O 

Kmax 
-:E Z(m, n, K)PK(m, n) 

k=O 

AVERAGE WAITING TIME 

(13) 

In order to find the average waiting time we have to 
consider the average time required to clear the number 
of requests on each drum individually. 

Consider the Kth request in the system. Let this re
quest befor a drum which has (r-1) requests already 
ahead of this request. In order to find the average 
waiting time of a new request we have to find the time 
it takes to clear (r-1) requests which are ahead of 
this request. 

With the new request the total number of requests 
in the system are K and the number of requests for 
one particular drum are r. The probability of having 

, r requests for a particular drum given that there are 
K requests in the system follow a binomial distribution. 

q(r/K) =CX;)t:lr~ (14) 

From equation (6) we know z(m, n/K) represents 
the average number of requests that can be serviced 
when there are K requests for n drums in the system. 
Therefore [z(m, n/K) J/n gives the average number of 
requests that can be serviced from an individual drum 
in 1/~ time . 

The time to service r requests will be n/[z(m, n/K) J 
(r/~) . 

The average waiting time (AWT) of the Kth re
quest will be given by (the service time of r requests
service time of rth request for this drum) . 
Thus 

KmaX[ K n r ] 
AWT= Eo r~ z(m, n/K) ~ q(r/K)PK(m, n) 

1 
--(l-po(m, n)) (15) 
~ 

Another arrival pattern of interest is where the request 
rate AK gradually goes down as the queue gets larger. 

{

A for K=O 
AK A/Ka for O<K <Kmax 

o K~Kmax 

The probabilities PK(n, m) for this is given by 

(
A)K poem, n) PK (n, m) == - --"'K=--~-'----'--'---

~ II [Z(m, n,j)Jja 
j=l 

where 

(8a) 

By substituting (8a) in (9) we obtain 

[ 
p pKmax] 

poem, n) 1+,+' "+-,-- =1 
Y 1 Y Kmax 

1 
po (m, n) = -------- (11a) 

1 +~+ ... + pKmax 
y'l y'Kmax 

Substituting (lla) In (8a) we obtain 

PK(m, n) = --------

1 +4+ ... + p~max 
Y 1 Y Kmax 

(12a) 



Drum Queueing Model 323 

TABLE I 

No. of X/m m=l m=2 m=4 
drums =p AQS AWT AQS AWT AQS AWT 

n 

2 .3 .13 11. 7 .03 2.0 
4 .13 11.7 .02 .9 .01 
6 .13 11. 7 .01 .7 .01 
8 .13 11. 7 .01 .5 .006 

10 .13 11. 7 .01 .3 .004 

2 .5 .50 45.4 .11 5.9 
4 .50 45.4 .06 3.0 .04 
6 .50 45.4 .05 2.3 .02 
8 .50 45.4 .04 2.1 .02 

10 .50 45.4 .04 2.0 .01 

2 .7 1.62 147.4 .24 12.5 
4 1.62 147.4 .15 7.0 .08 
6 1.62 147.4 .13 5.9 .05 
8 1.62 147.4 .12 5.5 .04 

10 1.62 147.4 .12 5.2 .03 

2 .9 5.53 502.9 .45 23.1 
4 5.53 502.9 .31 14.4 .14 
6 5.53 502.9 .28 12.7 .08 
8 5.53 502.9 .26 12.0 .06 

10 5.53 502.9 .25 11.7 .05 

2 l.1 12.3 1117.9 .81 39.8 
4 12.3 1117.9 .59 27.2 .22 
6 12.3 1117.9 .54 24.9 .13 
8 12.3 1117.9 .52 23.9 .10 

10 12.3 1117.9 .51 23.2 .08 

2 l.3 15.75 1433.0 1.4 67.3 
4 15.75 1433.0 1.1 50.3 .32 
6 15.75 1433.0 1.0 47.2 .19 
8 15.75 1433.0 1.0 46.0 .14 

10 15.75 1433.0 1.0 45.0 .11 

Formulas for Average Queue Size and Average Wait
ing Time are given by equations (13) and (15) re
spectively. 

ANALYSIS 

Theoretically, if the requests are generated faster 
than these can be serviced the queue may approach 
infinity but in a computer system the number of re
quests that can be made to the drum subsystem are 
restricted. The number of requests are limited by the 
number of active jobs and the amount of parallel I/O 
activity within each job. For this hypothetical example 
it is assumed that JL=.OII and the maximum number 

.7 

.4 

.3 

.2 

1.8 
1.1 

.8 

.6 

3.4 
2.0 
1.4 
1.1 

5.7 
3.2 
2.3 
1.7 

8.4 
4.7 
3.6 
2.6 

11.9 
6.6 
5.2 
3.4 

X/m m=l m=2 m=4 
=p AQS AWT AQS AWT AQS AWT 

1.5 17.00 1545.8 2.46 116.0 
17.00 1545.8 2.06 94.0 .46 15.9 
17.00 1545.8 1.98 90.9 .27 8.8 
17.00 1545.8 1.95 88.6 .20 6.3 
17.00 1545.8 1.93 87.5 .16 4.9 

1.7 17.6 1597 4.36 201.5 
17.6 1597 3.88 176.5 .62 20.7 
17.6 1597 3.80 172.2 .37 11.4 
17.6 1597 3.76 171.1 .28 8.2 
17.6 1597 3.74 170.5 .23 6.4 

1.9 17.9 1626 7.24 331.0 
17.9 1626 6.80 309.0 .83 26.5 
17.9 1626 6.73 306.0 .50 14.7 
17.9 1626 6.70 305.0 .38 10.5 
17.9 1626 6.68 304.5 .32 8.8 

2.1 10.3 471.6 
10.1 460.2 1.09 33.2 
10.0 458.0 .66 18.6 
10.0 457.2 .52 13.7 
10.0 456.8 .44 11.0 

3.5 16.67 757 
16.67 757 6.00 145 
16.67 757 4.59 107 
16.67 757 4.23 96 
16.67 757 4.06 93 

4.1 17.05 774 
17.05 774 9.5 221 
17.05 774 8.4 192 
17.05 774 8.2 187 
17.05 774 8.1 184 

of requests (K) in the system are 20, i.e., for K =20 
the system stops generating any more requests. It is 
further assumed that the system is generating requests 
at the rate of A. 

Table I presents the mean queue distribution and 
waiting time distribution for various combinations of 
subsystem request rates, and subsystem configurations 
when the CPU request rates remain independent of 
queue length. 

Some of these results are presented in Figures 2,3 and 4. 
One can observe from Figure 1 that in a single chan

nel system the queue size and the waiting time are not 
affected by change in the number of drums on a sub
system. But as p approaches 1 the queue size and the 
waiting time get extremely large. 



324 Spring Joint Computer Conference, 1971 

20 

15 

10 

o 

;:;INGLE cmNNEL 
Queue Size and waiting 
TillIe rllllBin 88IIItI for 
all values of n. 

----

( j>= Request Rate/ Service Rate) 

Figure 2 

1250 

1000 

750 

500 

250 

Addition of drums to a dual channel system reduces 
both the queue size and the waiting time but for more 
than four drums to a system the queue size and waiting 
time do not change significantly. (See Figures 2 and 
3.) 

Another observation which can be made from Table 
I is that the addition of an extra channel to a single 
channel system doubles the throughput rate. Also, the 
queue size is slightly decreased. 

SUMMARY 

Many systems and processes in use today are quite 
complex. Queuing problems occur from time to time 

5.0 

4.0 ~!'=1.? 
IlJAL qIANNEL 

3.0 

2.5 

~--.P"1.5 2.0 

1. 

1 •. ~ 1'=1.3 --.--
.~ 

--.---- ~= 1.1 

----.--- 1"= .9 ---------.~-- /-l = .7 

.5 

2 4 6 8 10 

Number of Drume 

Figure 3 

! 

6oo.j. 
i 

550+ 

500+ 

----------- --.---- jl~.l 

I 
450 

400 

! 350 

.! 300 
E-< 

! 250 ..., 
..-4 ---P=1.7 
:J .. 200 toO 

r: .. :c 150 -'---~ -. - -----;:>=1.5 

100 

,0 t 
''--------_____ -----P-1.3 
__ -- Jl=I.1 
-~-----.--------- P=.9 
-------po .7 

2 4 6 -8 10 

NUMBER OF DRUMS 

Figure 4 

when there are sufficient requests or severe irregularity 
in the system. Multiprogramming environment may 
place a heavy load on the auxiliary storage devices 
and thus cause queues. Therefore it is important to 
design an auxiliary storage system for the desired re
sponse time. 

Standard queuing formulas cannot be used to find 
the queue size and waiting times for a drum system 
because in a drum system the queue size is restricted 
and the request rate goes down as the queue gets 
larger. With these two unique features in mind an 
analytical queuing model is developed to provide esti
mates of queue size and waiting times. The output of 
this model enables the system designer to identify 
drum system limiting factors and allow the determina
tion of system sensitivities. 



Storage hierarchy systems 

by HARRY KATZAN, JR. 

Pratt Institute 
Brooklyn, New York 

INTRODUCTION 

The announcement by IBM on June 30, 1970 of Sys
tem/370 models 155 and 165 with buffer/core storage 
facilities revived an interest in storage hierarchy sys
tems that was created initially by the System/360 
models 85 and 195. However, the notion of a storage 
hierarchy is not new and has been used previously with 
regard to storage management by an operating system1,2 

and for efficient use of mass storage devices. In fact, 
storage hierarchy, in one form or another, has been 
used in a variety of systems. The purpose of this paper 
is to survey the various storage hierarchy systems. As 
sU,ch, the paper presents a state-of-the-art analysis of 
this important area of computer science. 

The material is covered from three pomts of view. 
The first is addressable storage and includes buffer/core 
systems and large capacity storage (LCS). Also in
cluded in the LCS discussion are storage management 
in an LCS environment and the special case where LCS 
is not directly addressable and must be accessed through 
a computer instruction or storage channel. The second 
topic involves storage management and relates to the 
manner in which addressable storage is managed by an 
operating system. Covered here are overlay schemes, 
relocation methods, and virtual memory. The concepts 
are applied to multiprogramming and time-sharing 
environments. The final section presents a brief dis
cussion of data organization and management. Included 
here is a discussion of hierarchical data manag~ment, 
data base organization, and the migration of infre
quently used information. 

STORAGE HIERARCHY CONCEPTS 

The purpose of a storage system is to hold informa
tion, but the simplicity of the concept ends there. A 
variety of storage mechanisms exists ranging from high
speed circuitry to low-speed tape or cards. Each type, 

325 

obviously, has a relative cost/performance index that 
is used to correlate a storage medium with the function 
it is to perform. In many cases, it is necessary to syn
thesize a storage system from two or more types of 
storage to meet cost objectives and functional require
ments. The most simple example of the latter concept 
is the conventional computing system, depicted in Fig
ure 1, with a relatively small high-speed core storage 
for programs and data and mass storage consisting of 
direct-access devices such as magnetic disk or mag
netic drum for storing large amounts of information 
for relatively short periods of time and for use as an 
overflow device for high-speed core storage. In this 
case, back-up storage usually consists of tape or cards. 
The concepts have been extended, obviously, in the 
high-performance computing systems of today. 

The notion of storage hierarchy is important for the 
following reasons: 

1. It has been possible to speed up the functioning 
of the arithmetic and logical units of a computer 
to such an extent that performance is dependent 
upon storage speeds. 

2. High speed computer storage is particularly cost 
sensitive. 

3. Programmers are frequently required to prepare 
programs for computers with storage that is 
considerably smaller in size than that which is 
actually needed. Thus, programs must be struc
tured accordingly, a process that limits the 
functional effectiveness of the programmers and 
the computing system. 

4. Most installations have accumulated and con
tinue to accumulate large amounts of infor
mation. 

The purpose of a storage hierarchy system is to increase 
the overall functional effectiveness of a computing sys
tem. In this context, functional effectiveness can take 



326 Spring Joint Computer Conference, 1971 

Backup Stomge 

Input and Output 

Figure I-Storage hierarchy of a conventional computing system 
(simplified) 

one of several forms: 

1. Increasing the performance of the central pro-, 
cessing unit. 

2. Increasing total system throughput. 
3. Providing the user with a functional capability 

that is otherwise not inherent in the individual 
components themselves. (For example, a virtual 
memory provides a single-level store larger than 
actual high-speed storage.) 

4. Making large amounts of data available within 
reasonably short periods of time. 

In all cases, the objective of a storage hierarchy system 
is to maximize the frequency that the faster device is 
referenced so that access speeds approach those of the 
faster devices at a cost that approaches the slower de
vices. A storage hierarchy system is usually character
ized as follows: 

1. Fast and slow storage devices are organized into 
blocks (of information). 

2. The first reference to a particular block requires 
that the entire block is fetched from the slow 
device and stored in the fast device. Subsequent 
fetches to that block require only that fast stor
age be accessed. 

3. The fast storage (usually referred to as a buffer) 
is capable of storing several blocks which are 
replaced on a dynamic basis using an appropriate 
replacement algorithm. 

Because storage devices have radically different char-

acteristics and the expected pattern of storage refer
ences is difficult to determine beforehand, the methods 
for designing an optimum hierarchy are not well-defined 
and often require simulation and empirical analyses. 
Gecsei, Slutz, and Traiger3 have described the evalua
tion of a variety of replacement algorithms for buffer / 
core storage hierarchy systems. Denning27 surveys re
placement techniques for virtual memory and paging. 

ADDRESSABLE STORAGE 

Historical perspective 

One of the problems in designing a high speed com
puting system is that core storage is slower than the 
arithmetic and logical units because of the memory 
paradox, depicted in Figure 2. Although attempts have 
been made in the past to compensate for the difference 
in CPU and storage access time by overlap, local stor
age buffering, and interleaving, the results were only 
partially successful and demanded that changes be 
made to the architecture of the conventional comput
ing system. The first attempt was in the IBM System/ 
360 Model 85 (see Liptay4). The Model 85 uses a small 
fast storage buffer integrated into the CPU called the 
cache*. The cache is not addressable by a program and 
is transparent to the programmer. The cache is used to 

Large 

Capacity 

Small 

Cycle time 
Access time 

Slow 

Fast 

--------

Physical size 

Physical size 
Figure 2-The classical memory paradox 

* In computing, a buffer is used frequently to interface two 
components that operate at different speeds. The most familiar 
example is the I/O buffer used by many programming systems to 
compensate for relatively slow I/O speeds. 



hold sectors of main storage that are being used and is 
maintained dynamically by the CPU. 

In the Model 85, the cache and main storage are di
vided into sectors, each containing a fixed number of 
storage blocks. When a block of storage is referenced 
for the first time by the CPU, it is moved to the cache. 
Subsequent references to that block are made to the 
cache without having to access the slower main storage. 
Figure 3 depicts a schematic of the Model 85. Detailed 
information on the Model 85 and the cache organiza
tion is available from Liptay4 and Conti, Gibson, and 
Pitkowsky.5 The concept was successful and was used 
with the Systemj360 Model 1956,7 and the Systemj370 
Models 1558 and 165. 9 The bufftr system used with the 
Model 165 is described in the next section as a concrete 
exam pIe of the organization and maintenance of a 
buffer j core storage system. 

Organization and maintenance of a buffer j core system 

The buffer j core storage system in the IBM Systemj 
370 Model 165 contains an 8K high-speed buffer stor
age unit ** to increase internal performance. Data flow 
in the Model 165 is depicted in Figure 4 with a relative 
access time of 9 to 1 in favor of the buffer over core 
storage. The CPU can obtain eight bytes from the buffer 
in 160 nanoseconds compared with a time of 1.44 
microseconds when the same amount of data must be 
obtained from core storage. 

When a request for data is made by the CPU, the 
buffer storage control (Figure 5) searches an address 
array of the buffer's contents to determine if the data 

Main Storage 

1 r 
Storage 
Control Cache 
Unit 

r---------- j 

I I 
I Input/output units I 
1_ _ _ _ _ _ _ _ ___ .1 

CPU 

Figure 3-Schematic of the Model 85 

Channels 

** An additional 8K (bytes) of buffer storage can be included 
with an optional buffer expansion feature. 

Storage Hierarchy Systems 327 

Main StoNge 
Channels 

Logical 
Memory 

Logical 
8 Bytes Memory 

8 
8 Bytes Bytes 

Buffer 
CPU Storage 

Logical 
Memory 

8 Bytes 

Logical 
Memory 

Figure 4-Data flow in the Model 165 

requested is in the buffer. If it is, the data is sent to 
the CPU without a core storage reference. If the re
quested data is not in the buffer, it is obtained from 
core storage and sent to the CPU. The data is also 
assigned a buffer location and stored in the buffer. 
When data is stored by the CPU, both the buffer and 
core storage are updated if the corresponding location 
contains data that is currently in the buffer. The data 
channels always reference core storage. However, if a 
data channel stores data in a core storage location that 
contains data in the buffer, then the buffer is also up
dated accordingly. 

The buffer and core storage are both divided into 
blocks of 32 bytes, as shown in Figure 6. The 8K buffer 
contains 64 columns, each containing 4 blocks-a total 
of 256 distinct blocks of information. (The 16K buffer 
contains 128 columns and 4 rows for a total of 512 
blocks.) Each buffer block contains 32 consecutive bytes 
from core storage, which is also regarded (logically) as 
containing 64 (or 128) columns with the number of 
blocks in each column being dependent upon the size 
of the core storage. Any of the blocks in a core storage 
column can be placed in one of the four blocks in the 
corresponding buffer column: 

The buffer storage is managed with an address array 
(Figure 6) and a replacement array, which is described 
later. An element of the address array consists of the 14 
low order bits of the core storage address. of the 32 
bytes of data contained in the corresponding position 
in buffer storage. When the CPU references core stor
age, the address array is used to determine if the re
quested data is in the buffer. 



328 Spring Joint Computer Conference, 1971 

Main Stomge 

Logical Logical Logical Logical 
Memory Memory Memory Memory 

I I 
Channel.s 

Stomge Control. Unil 

\ ~ I Main Storaqe Oontrot 

0- 1 t 
Olannel Buffer 

~ Buffer Storage 

§51 
Control Control 

Olannel Buffer 
Buffer Storage 
Storaqe 

Instruction Execution 
unit Unit 

CPU 

Figure 5-Mode1165 storage hierarchy system 

The System/370 computer computes a 32-bit effec
tive address* but uses only the low-order 24 bits of it, 
denoted by bits 8 through 31 in Figure 7. Bits 8 through 
21 are used for comparison with address array entries; 
bits 21-26 (20-26 with a 16K buffer) are used to select 
a column of the address array; bits 27 and 28 are used 
to address a double-word (i.e., 8 bytes) within a block; 
and bits 29-31 are used for displacement within a double 
word. Thus, an effective address is compared with at 
most four address array~ entries; therefore, a column 
(of 32-byte blocks) of core storage contends for a posi
tion in a 4-row column of the buffer. 

Each column in the buffer is associated with a 4-entry 
replacement array which controls buffer replacement 
activity. When a buffer block is referenced, it is put at 
the top of the list for its particular column. When a 
block must be reassigned, the entry at the bottom of 
the list is selected for replacement. 

The buffer storage system operates as follows: 

1. When the CPU requests a unit of data, bits 21-26 

* That is, base plus index plus displacement. 

of the effective address are used to select a 
(buffer) column of the address array. 

2. Bits 8-21 of the effective address are compared 
with each of the four entries in that column of 
the address array. 

3. If an equal compare is made, a buffer address 
(Figure 8) is calculated from the address com
pare and the selected bits of the effective ad
dress; the double-word indicated by bits 27 and 
28 of the effective address is sent to the CPU. 
Core storage is not referenced and the referenced 
buffer block is put at the top of its column ac
tivity list in the replacement array. 

4. If the block addressed is not found in the cor
responding column of the address array, then 
the data is fetched from core storage, sent to the 
CPU, and stored in the buffer for future data 
requests. The buffer block on the bottom of the 

Block 

o 

3 

Column 

Block 

o 

Column 

Block 

n 

Column 

14-bit 
address 

32 bytes 

32 bytes 

Address Al"l'aY 

14-bit 
address 

Buffer Storage (3K) 

32 bytes 

Main Storage 

32 bytes 

( 

( 

I 

Y 

) 

) { 

, 

256 Block 
Address 
Registers 

63 

256 
Blocks 

63 

Addresses 

0-2047 

2048-4096 

etc. 

I 

t··±±:J1B 
63 

Figure 6-Buffer storage organization (SK) 



replacement array activity list for that column 
is assigned the new block of data. 

Clearly, the net result of a buffer/core system is to 
reduce the number of references to core storage making 
the CPU less dependent upon storage access times. 
Thus core storage can be larger even though increased , . 
size implies longer cables and a greater access tlIDe. 
Other benefits also exist. The time spent in error check
ing circuitry and CPU degradation due to core storage 
cycle stealing from the CPU by high priority data 
channels become less critical. 

Large capacity storage 

Large capacity storage* (LCS) is high speed ad
dressable bulk storage. LCS is usually combined with 
CPU main storage to form a hierarchy of storage di
rectly addressable by the CPU. Addresses in LCS are 
regarded as an extension to main storage-·although 
the cycle time of LCS is considerably greater. For ex
ample, an LCS with a memory cycle time of 8 micro
seconds is not unusual. However; interleaving is fre
quently used to reduce the effective cycle time. The 
CPU can fetch instructions or data directly from LCS, 
but performance is degraded when executing out of 
LCS. For some applications, it is efficient to move in
formation from LCS to main storage before it is used. 
In other cases, the overhead of moving the information 
is not justified. 

LCS has been used in a variety of interesting ways. 
Lauer10 describes the use of LCS at Carnegie-Mellon 
University as a swapping device, instead of drUID, for 
their 360/67 time-sharing system. The use of LCS was 
motivated for three reasons: (1) the effective rate at 
which the system can deliver pages is increased; (2) 
response-time is decreased since LCS has no rotational 
delay; and (3) less main core is needed for system opera
tion. For this application, a storage channel, which 
behaves exactly like an I/O data channel, was used and 

A 
B c D 

I I I I I 
8 

A - Addr"1!SB compare 
B - Reference buffer column 
C - Reference double word 
D - Re ference byte wi thin double word 

21 26 27 28 29 

Figure 7-Main storage address 

* Also known as large core storage. 

31 

Storage Hierarchy Systems 329 

c 
A 

r I I I I I 
o 1 3 8 9 10 

A - Row in buffer column (results from address compare) 
B - Buffer colUmn 
C - Reference double word 

Figure 8-BufIer storage address 

permitted CPU processing and core-to-core transfers 
to take place simultaneously. Lauer also points out the 
possibility of executing out of LCS directly by setting 
page tables to refer directly to LCS. 

Freemanll relates an equally interesting technique 
used at the Triangle Universities Computation Center. 
At TUCC on a 360/75 system, LCS is used for check
point/restarts, for a technique called "hyperdisk," and 
for a variety of other useful functions. Using LCS for 
checkpoints increased the frequency with which they 
could be taken and provided added reliability features. 
Freeman also found that on a 360/75 system, only 
LCS was a sufficiently fast "source and sink" for 
system I/O to give satisfactory CPU utilization. Hyper
disk-i.e., a combination of LCS and disk for overfiow
effectively allowed system-type programs such as com
pilers, assemblers, and access routines to reside in core 
storage instead of being divided into multi-overlay 
structures. 

Fikes Lauer and Varehal2 describe extensions to the , , 
Carnegie-Mellon time-sharing system that effectively 
combine a storage hierarchy of main storage, LCS, disk, 
and data cell. The C-MU system is further character
ized by two levels of executable storage and an in
creased number of direct data paths from direct-access 
storage to the CPU. In general, the overhead problem 
in their system is attacked in the following way. 
LCS is used as a swapping device and an extension 
of executable core. Associated with each page of virtual 
memory is an indicator denoting whether that page is 
to be accessed by the CPU while residing in main stor
age or while residing in LCS. Pages that are executed 
in LCS use a disk as a swapping device and migrate 
back and forth between LCS and disk. Pages that are 
executed in main storage used LCS as a swapping device 
and migrate back and forth between main storage and 
LCS. The criteria used for determining where a page is 
executed is relatively simple (partly because of con
straints on the implementation effort). All shared pages 
are executed out of main storage and all non-shared 
pages are executed out of LCS. In a university en-



330 Spring Joint Computer Conference, 1971 

vironment of small jobs with much assembly and com
pilation, this effectively amounts to executing system 
code out of main storage and user code out of LCS. 
It is also reported that Chen and Hsieh 13 have developed 
a more optimal algorithm for making the allocation 
between main storage and LCS. 

Not all large capacity storage systems need be di
rectly addressable or accessible by a storage channel. 
The CDC 7600,14,15 for example, includes a small core 
memory (SCM) and a large core memory (LCM) which 
functions as a storage hierarchy system for programs 
and data. SCM is used for I/O buffers, for system over
lays and tables, and for user programs. LCM is used 
for permanent system residence, for job swapping, and 
for input and output files. Only programs in SCM can 
be executed by the CPU and information is moved be
tween SCM and LCM with block transfer instructions. 

Buffer/core summary 

Collectively, buffer/core systems and large capacity 
storage serve the same basic purpose-i.e., to increase 
the frequency with which accesses are made to the fast 
storage in a storage hierarchy system. Internal CPU 
performance is the key issue and in most cases, the 
hierarchy of storage is transparent to the applications 
programmer. The methodology seeks to optimize the 
overall functioning of the system, within cost/perform
ance constraints, by applying a functional organization 
to the hierarchies of storage, taking into consideration 
the manner in which information is accessed in a gen
eral-purpose computing system. 

STORAGE MANAGEMENT 

The over.lay problem 

The effective utilization of main storage is important 
from the standpoint of program development and for 
computer system performance. Inefficiencies in both 
categories have characteristically been resolved with 
the reply, "If we had more core, we could solve the 
problem." Although the solution is indeed partly cor
rect, equally significant improvements have been made 
through advanced storage management techniques. 

For the programmer, the problem becomes significant 
when his program is too large for available main stor
age. The main storage limit may be a physical hardware 
constraint or may be a logical constraint imposed to 
increase the level of multiprogramming (see Johnson 
and MartinsonI6). A program overlay scheme is fre
quently used (see Lanzano17) in which main storage is 

shared by a hierarchy of program segments. Figure 9 
depicts a program tree and a storage trace for a simple 
overlay. 

Overlay facilities are perhaps the most elementary 
form of storage hierarchy for programs and are some
times used to make addressable storage appear larger 
than physical or logical storage by storing unused pro
gram segments on auxiliary storage such as tape or 
disk. Several obvious disadvantages exist: 

1. Relocation and linking are usually performed 
before execution is begun. 

2. Overlay deck setup requires that the program
mer overtly specify the segments that are over
laid. 

3. Programs cannot be relocated-as is frequently 
required in multiprogramming or time-sharing 
systems. 

4. Storage. utilization is inefficient in that enough 
space must be allocated for the largest core load 
at any point in time (see Figure 9). 

Although program overlay techniques are in wide
spread use today, they severely limit the programmer 
and the designers of general-purpose operating systems 
and impose unnecessary throughput limits on comput
ing systems. The reader has probably guessed what is 
considered to be the state-of-the-art solution to many 
of the above problems-virtual memory. However, the 
concept first went through several stages of evolution. 

Storage 
Space 
Used 

(A) ProqrUl tree. 

~ 

r-- I--
C F C F 
~ 

D ---- I-- D 

B E B E II 

A 

(B) Storage trace. 

Figure 9-Simple overlay system 

, 



Virtual memory 

Because of time-sharing operational considerations, 
the need for relocatability was as important in the 
evolution of virtual memory as was the overlay prob
lem. The first evolutionary step was the relocation 
register used by Kinslow18 at IBM and by Corbato,19 
et al., with the CTSS system at M.LT. With the reloca
tion register method (Figure 10), the user's program is 
loaded into main storage and the address at which it is 
loaded is placed in the relocation register. During exe
cution, the contents of the relocation register are added 
to each effective address to arrive at the appropriate 
main storage location. Although use of a relocation 
register helps solve the relocation problem, it does not 
solve the overlay problem since the user's program must 
still reside entirely in main storage. 

The next step in the development of a virtual mem
ory system was to consider main storage as a collection 
of fixed-size pages, such as 4096 bytes as used in TSSj 
36020 or 1024 words as used in MULTICS.21 The user 
is permitted to construct his program as though he has 
a large address space; however, each effective address 
referenced by the system goes through an address 
mapping, as shown in Figures 11 and 12 (see Randell 
and Kuehner22). In most cases, only high order bits of 
an address need be translated and addresses within a 
page can go unchanged. This technique allows pages 
from different programs to reside in main storage while 
unused pages are stored on a direct-access device or in 
large capacity storage. Pages can easily be relocated 
by adjusting entries in a table of addresses, called a 
page table. The advantages of virtual memory are obvi-

User's 
Program 

I 

Relocation 
Register 

Main 
Storage 

I 

-
I Effective 
1 Address 

a I 

a~-----I 

It 

+ 

L/////////77 
Main 
Storage 
Address 

Figure 10-Use of a relocation register 

Storage Hierarchy Systems 331 

Logical address space 

Physical address space 

Figure 11-Address mapping 

ous (see Johnson and Martinson16): 

1. Adjacent virtual memory pages need not occupy 
adjacent main storage areas. 

2. Not all of a user's program need be in storage 
simultaneously and can be retrieved when needed 
(called demand paging). 

3. The user is permitted a large address space for 
programs and for data. 

4. The operating system can manage storage dy
namically. 

The final step in the evolution of virtual memory 
achieves efficiency and versatility in storage manage
ment by defining two-level page tables and by seg
menting a symbolic address into segment number, page 
number, and displacement within a page (see Dennis23 

and Arden, et al. 24). Two-level page tables (see Figures 
13 and 14) decrease page table size and allow programs 
to be shared by defining a shared segment of pages. 
The process of moving pages in and out of main storage 
is known as paging and has also been described by 
Flores25 and Oppenheimer and Weizer. 26 Virtual mem
ory and paging has been the subject of much analysis; 
Denning27 gives a good summary of research in that 
area. 

Thus, virtual memory provides a storage hierarchy 
system described as follows: 

1. A large address space as seen by the programmer 
for the preparation and execution of programs. 

2. Main storage containing the needed pages for 
one or more programs being multiprogrammed. 

3. An auxiliary paging device such as drum for pro
gram residence. 

4. A backup paging device to which infrequently 
used pages can be migrated from drum storage. 



332 Spring Joint Computer Conference, 1971 

Table 
of 
Page 
Addresses 

n m Virtual memory address 

t 
n 

m 

Main storage Address 

Figure 12-Address translation (one level page tables) 

The virtual memory storage hierarchy is depi cted in 
Figure 15. 

Uses of virtual memory 

Unlike buffer/core systems, virtual memory storage 
hierarchy systems need not be transparent to the user. 
Virtual memory has also been used* with small com
puters (see Christensen and Hause28) to give the pro
grammer a large address space through a combinatIon 
of main storage and direct access storage devices. In 
this instance, the user is provided with expanded 
functional capability at the cost of reduced throughput 
and a moresophisticated operating system. 

Virtual memory has also been used to increase system 
throughput by improving upon conventional storage 
management techniques. The Boeing Company has 
modified 08/360 to utilize the virtual memory features 
of the IBM 360/67. The methodology involves over
committing main storage by declaring more job parti
tions than the computing system can support and by 
mapping those partitions through the dynamic address 
translation feature of the Model 6729,30 onto main 
storage and magnetic drum. The implementation, 
called 08/67 and depicted in Figure 16, increases 
performance because of the ability of the system to 
assign unused main storage to other virtual partitions 
when small programs are executing. 

DATA ORGANIZATION AND MANAGEMENT 

Hierarchy systems for data organization and manage
ment require a unique mixture of hardware features, 
software facilities, and user applications and, at this 
point in time, are not as well-defined as those previ
ously surveyed in this paper. However, the basic objec-

* That is, in addition to the classical virtual memory systems 
such as TSS/360 or MULTICS that permit virtual memory 
addresses up to the addressing capability of the hardware. 

tive is the same-to increase the frequency with which 
needed information can be retrieved from the faster 
device of a storage hierarchy. Hierarchical data organi
zation also provides for efficiency of storage by reducing 
the amount of redundant information. 

Hierarchical data management 

The subject of hierarchical data management has 
been studied from different points of view by different 
authors. Opler31 was concerned with the general storage 
assignment problem and defined four attributes of 
direct-access device types: flow rate, capacity, waiting 
time, and access time. On the basis of these attributes, 
he developed a hierarchy of main storage, large ca
pacity storage, drum, disk, and magnetic strip trans
port systems and discussed the problems of effectively 
using these devices. This was the first definitive de
scription of hierarchical data management systems. 

In another important paper, Madnick and Alsop32 
discuss the levels of hierarchy in a modular file option. 
In this approach, the file is considered the most im
portant unit of organization and emphasis is placed 
upon the logical file system as seen by the user. Mad
nick and Alsop define six hierarchical levels as follows: 

1. Input/output control system, 
2. Device strategy modules, 
3. File organization strategy modules, 
4. Basic file system, 

Virtual 
MelllOzy 

Segment 
Table Page 

Tables 

D 

Figure 13-Two level page tables 

Main 
Storage 



virtual MelllOry Address 

Segment Table 
Register 

Length 

Page Table 
Origin 

Physical 
Page in 
Main storage 

Main Storage Address 

Figure 14-Segmen ted addressing 

5. Logical file system, and 
6. Access methods and user interface. 

At the opposite extreme to file structures are data 
management systems33,34 in which emphasis is placed 
on the access of individual data items. Dodd35 surveys 
systems of this sort and describes structural relation
ships between discrete data. 

Data base organization 

Inefficiencies in both the storage and retrieval of in
formation led several researchers (see, for example, 
Mealy36 and Chapin37) to explore the applications of 

/ "-

'l: "- ..... 

Lr-------- --.~~ 

Paging 
~ 

j/ 

Virtual MelllOry 
(As seen by the 
user) 

~ 
~---

/ Main Storage 
/ (Contains only 

needed pages) 

)~D 
Paging Device 

pagetj M~I'-; 
-c--- ,-I . [) 

secondary 
Paging Device 

Figure 15-Virtual memory storage hierarchy 

" 

/ 

" 
" 

Storage Hierarchy Systems 333 

~,<-.aD D) 
Paging Device 

Figure 16-Virtual memory partitioning in 08/67 
(conceptual overview) 

data and to recognize the distinction between data ac
cess and data organization. This work combined with 
the increased information needs of our society (see 
Aron38) eventually led to the data base technology and 
data structures that we know today. 

Presently, it is customary to distinguish between 
data structure and storage structure (Figure 17) in 
which information is meaning assigned to data and re
corded on a storage device. Logical data, as viewed by 
the user, is used independently of its physical storage
which can be organized to facilitate access and 'conserve 
space. Thus, the logical data structures depicted in 
Figure 18 can be stored as the hierarchical data struc
ture, shown in Figure 19. Although the examples are 
indeed oversimplified, they are indicative of the kind 
of information systems that are required for the inter
rogation and maintenance of large centralized informa
tion files. The advantages of hierarchical data struc
tures can be listed as follows :39 

1. Elimination of redundant data. 
2. Use of the same data by all users of the system 

(consistency) . 
3. Program independence from physical storage 

devices. 

As such, hierarchical data structures are essential for 
effective data base technology. The design and struc
ture of data base systems are also described by Blier 
andVorhaus40 and the CODASYL data base reports.41 



334 Spring Joint Computer Conference, 1971 

Data ~ 
Structures l Data 

r-- Storage 
Structures 

Figure I7-Distinction between information, data, and storage 

Data set migration and backup storage 

No survey of storage hierarchy systems would be 
complete without mention of the migration of data sets 
(files) from secondary or on-line storage to backup 

Dept. 

Dep artment File 

I J 
Name Name N 

Employee File 

Name 9 
I I 

Exper. II Educ. Exper. Educ. 

Name 
Pa yroll File 

I 
I I 

Address Pay 
Data 

Figure I8-Logical data structures 

storage. The problem is particularly significant in a 
utility-class time sharing system such as TSS/360 or 
MULTICS in which file storage is considered to be 
on-line (or public) and may be viewed as infinite in 
extent by the user. Obviously, on-line stor:1ge is not 
infinite and information stored therein must be man
aged carefully. Files that are no longer needed must be 
purged from the system and infrequently used informa
tion must be moved to backup storage-a process fre
quently referred to as data migration. 

The MULTICS system at M.LT. (see Daley and 
Neumann42) combines a file backup system with a 
weekly dumping procedure that effectively migrates 
infrequently used information. First, a copy of all files 
created or modified by a user during a terminal session 
are duplicated on magnetic tape when he signs off. 
These tapes, termed incremental dump tapes, are re
placed periodically and provide a means of reconstruct
ing file storage in case of catastrophic system failure. 
Another tape dump is made periodically of files used in 
that period. The latter process facilitates the recon
struction of on-line storage and provides a means of 
eliminating unused files. A file directory entry remains 
in the system indefinitely unless it is explicitly deleted 
by the user. When a user desires to retrieve a file from 
backup storage, the correct set of dump tapes are re
trieved and mounted as requested by the file retrieval 
procedure in MULTICS. 

The expanded use of on-line storage in the TSS /360 
system at IBM Research created a need for a storage 
hierarchy of on-line direct-access volumes, off-line direct 
access volumes, and tape volumes. (see Considine and 
Weis43). The authors developed a set of migration com
mands that effectively copy the contents of public 
storage while migrating, to archival storage, data sets 
that fail a test of currency. The user is also provided 
with commands for determining which of his data sets 
have been migrated and other commands for retrieving 
them from secondary storage. The authors conclude 
their paper with an interesting comment to the effect 

DepartMent 
File 

Pay 
File 

Employee 
File 

Figure I9-Physical data structures 



that the amount of space gained by moving data sets 
to archival storage more than pays for the effort in
volved and that most of the data moved to archival 
storage have stayed there. 

SUMMARY 

Storage hierarchy systems are a means of improving 
the cost/performance ratio of storage components by 
combining elements with different characteristics to 
meet the needs of a given class of applications. In 
general, the process involves the organization of data 
on fast and slower devices into manageable units and 
by transferring the most frequently used data to the 
faster device on a dynamic basis. 

Storage hierarchy systems fall into 3 general cate
gories: 

1. Buffer / core systems for addressable main stor
age that are transparent to the programmer. 

2. Storage management systems such as virtual 
memory that are used by the programmer. 

3. Data organization and management systems 
that permit large amounts of information to be 
stored and retrieved efficiently. 

Collectively, storage hierarchy systems present a new 
approach to the storage aspects of computer technology 
wherein performance improvements are made through 
system design and organization in conjunction with 
improvements in the components themselves. 

REFERENCES 

1 H KATZAN 
Advanced programming: Programming and operating systems 
Van Nostrand Reinhold Co 1970 

2 H KATZAN 
Operating systems architecture 
Proceedings of the Spring Joint Computer Conference 1970 

3 J GECSEI D R SLUTZ I L TRAIGER 
Evaluation techniques for storage hierarchies 
IBM Systems Journal Volume 9 Number 21970 

4 J S LIPTAY 
Structural aspects of the System/360 Model 85: II The cache 
IBM Systems Journal Volume 7 Number 11968 

5 C J CONTI D H GIBSON S H PITKOWSKY 
Structural aspects ofth€" System/360 Model 85: I General 
organization 
IBM Systems Journal Volume 7 Number 11968 

6 J 0 MURPHEY R M WADE 
The IBM 360/195 
Datamation April 1970 

7 IBM System/360 Model 195 functional characteristics 
IBM Corporation Form A22-6943 August 1969 

8 A guide to the IBM/370 Model 155 
IBM Corporation Form GC20-1729-0 1970 

Storage Hierarchy Systems 335 

9 A guide to the IBM System/370 Model 165 
IBM Corporation Form GC20-1730 1970 

10 H C LAUER 
Bulk core in a 360/67 time-sharing system 
Proceedings of the Fall Joint Computer Conference 1967 

11 D N FREEMAN 
A storage-hierarchy system for batch processing 
Proceedings of the Spring Joint Computer Conference 1968 

12 R E FIKES H C LAUER A L VAREHA 
Steps toward a general-purpose time-sharing system using 
large capacity core storage and T SS /360 
Proceedings of the 1968 ACM National Conference 

13 Y C CHEN S C HSIEH 
Selective transfer analysis 
IBM Research Report RC 1926 October 25 1967 

14 L I DINNERSTEIN 
The CDC 7600-a giant in our time 
Data Processing Magazine May 1969 

15 T H ELROD 
The CDC 7600 and SCOPE 76 
Datamation April 1970 

16 0 W JOHNSON J R MARTINSON 
Virtual memory in time sharing System/360 
TSS/360 Compendium 
IBM Data Processing Division 1969 

17 B C LANZANO 
Loader standardization for overlay programs 
Communications of the ACM Vol 12 No 10 October 1969 

18 H A KINSLOW 
The time-sharing monitor system 
Proceedings of the Fall Joint Computer Conference 1964 

19 F J CORBATO et al 
The compatible t'£me-sharing system 
The MIT Press Cambridge Massachusetts 1963 

20 A S LETT W L KONIGSFORD 
TSS/360: A time-shared operating system 
Proceedings of the Fall Joint Computer Conference 1968 

21 F J CORBATO V A VYSSOTSKY 
Introduction and overview of the MULTICS system 
Proceedings of the Fall Joint Computer Conference 1965 

22 B RANDELL C J KUEHNER 
Dynamic storage allocation systems 
Communications of the ACM Vol 11 No 5 May 1968 

23 J B DENNIS 
Segmentation and the design of multiprogrammed computer 
systems 
Journal of the ACM Vol 12 No 4 October 1965 

24 B WARDEN B A GALLER T C O'BRIEN 
F H WESTERVELT 
Program and addressing structure in a time-shan:ng 
environment 
Journal of the ACM Vol 13 No 1 January 1966 

25 I FLORES 
Virtual memory and paging 
Datamation August 1967-Part I 
Datamation September 1967-Part II 

26 G OPPENHEIMER N WEIZER 
Resource management for a medium scale time-sharing 
operating system 
Communications of the ACM Vol 11 No 5 May 1968 

27 P J DENNING 
Virtual memory 
Computing Surveys Vol 2 No 3 September 1970 



336 Spring Joint Computer Conference, 1971 

28 C CHRISTENSEN A D, HAUSE 
A multiprogramming, virtual memory system for a small 
computer 
Proceedings of the Spring Joint Computer Conference 1970 

29 W T COMFORT 
A computing system design for user service 
Proceedings of the Fall Joint Computer Conference 1965 

30 C T GIBSON 
Time-sharing in the IBM system/360: Model 67 
Proceedings of the Spring Joint Computer Conference 1966 

31 A OPLER 
Dynamic flow of programs and data through hierarchical 
storage 
Proceedings of the IFIP Congress 1965 

32 S E MADNICK J W ALSOP 
A modular approach to file system design 
Proceedings of the Spring Joint 'Computer Conference 1970 

33 P J DIXON J SABLE 
DM-l-a generalized data management system 
Proceedings of the Spring Joint Computer Conference 1967 

34 D B NELSON R A PICK K B ANDREWS 
GIM-l-a generalized information management language 
and computer system 
Proceedings of the Spring Joint Computer Conference 1967 

35 G G DODD 
Elements of data management systems 
Computing Surveys Vol 1 No 2 June 1969 

36 G H MEALY 
A nother look at data 
Proceedings of the Fall Joint Computer Conference 1967 

37 N CHAPIN 
A deeper look at data 
Proceedings of the ACM National Conference 1968 

38 J D ARON 
Information systems in perspective 
Computing Surveys Vol 1 No 4 December 1969 

39 Information Management System/360 
IBM Corporation Form GH20-0765 March 1970 

40 R E BLIER A H VORHAUS 
File organization in the SDC time-shared data management 
system (TDMS) 
System Development Corporation SP-2907 August 1968 

41 CODASYL Reports 
(1) A survey of generalized data base management systems 
(2) CODASYL data base task group 
Available from the ACM 

42 R C DALEY P G NEUMANN 
A general-purpose file system for secondary storage 
Proceedings of the Fall Joint Computer Conference 1965 

43 J P CONSIDINE A H WEISS 
Establishment and maintenance of a storage hierarchy for an 
on-line data base under T SS / 360 
Proceedings of the Fall Joint Computer Conference 1969 



Optimal sizing, loading and re-Ioading in a multi-level 
memory hierarchy system 

by s. R. ARORA 

University of Minnesota and UNIVAC Division, Sperry Rand Corporation 
Roseville, Minnesota 

and 

A. GALLO 

UNIVAC Division, Sperry Rand Corporation 
Roseville, Minnesota 

Starting with the appearance of the third generation 
computers the demand for memory storage devices has 
increased. This increased demand has been for both the 
main storage and auxiliary storage devices. The major 
reasons for this increase were the problems of larger 
data processing tasks and the introduction of multi
programming and time-sharing. 

The increase of memory storage space cannot be ac
complished economically without reducing the speeds 
of the memories. System designers have been trying to 
exploit the heterogeneous nature of programs and data 
files so that files that are least frequently accessed are 
stored in slower memory modules and files with high 
activity are loaded in faster memory modules. This has 
been done more or less on heuristic basis. 

This problem became more acute witq the introduc
tion of the directly addressable bulk. In this system 
organization the processor executes instructions and 
data fetches directly from the bulk core, which operates 
at a lower speed than the main memory. The proper 
allocation of the data and program segments in different 
memory modules became very critical in the overall 
performance. 

This paper studies the effects of loading and re
loading of program and data segments in various di
rectly addressable memory modules. It seeks optimal 
rules of loading and re-Ioading. It also studies the 
problem of optimal sizing of different memory m<?dules. 

We first select the criterion of effectiveness with· 
respect to the problem of memory allocation and 
memory sizing decisions. We define the central processor 
unit and the directly addressable memory levels as a 
sub-system of the whole computer system and take 

337 

response time as the performance measure of this sub
system. Considering the central processor as a single 
server, the response time of the sub-system is the serial 
sum of the instruction execution times of the various 
program modules making up a benchmark. We will call 
the individual programs and data segments "objects." 
The collection of all objects is our benchmark. We char
acterize an object through the following parameters. 

j = number identifying an object 

K = total number of objects in the benchmark 

j=l, 2, ... , K 

vj=size of the jth object 

pj=total number of references made to object j 
during the total benchmark run time 

i j = average number of instructions or data fetches 
per reference to object j 

R = total run time of the selected benchmark 

As stated earlier, an object can be a set of instructions 
or a set of data fetches. It can belong to the operating 
system or to the user's library. Some of the objects will 
show high level of activity, which means that the proces
sor will loop through a small set of instructions many 
times during one reference. Typically, loop bound 
programs are of this type. In other cases out of a large 
quantity of instructions or data only a few will be 
executed during one reference. Data banks and decision 
bound programs typically belong to this category. 



338 Spring Joint Computer Conference, 1971 

OPTIMAL LOADING RULE IN VARIOUS 
DIRECTLY ADDRESSABLE MEMORY 
LEVELS 

As stated earlier, our first objective is to determine 
how to load the given K objects in memory levels with 
different cycle times so that the total processing time 
of these objects is minimized. 

Define 

(1) 

Then the optimal loading rule is that the objects are 
loaded, starting from the fastest memory level to the 
slowest in descending order of the index hj. 

Theorem 

The total processing time R for processing K objects 
in an N level memory system with sizes Sn is minimized 
if objects are loaded within these levels, starting with 
the fastest memory in descending order of the quantity 
hj. 

Proof 

Consider two objects j and j' with sizes Vj and v/ and 
indexes hj andh/ such that h/ > hj. Consider two ad
jacent memory levels nand n+ 1, with speeds tn and 
tn+1• Let object j be currently loaded in level nand 
object j' in level n+ 1, which is contrary to the optimal 
loading rule. Let R' be the total response time with the 
current loading and R be the total response time if 
objects j and j' were to interchange their levels over the 
space v, where V= min(vj, vi). Values of Rand R' are 
given by 

R' L+ . v +. , ., v = tnpj~j" - tn+1Pj ~j -, 
Vj Vj 

(2) 

(3) 

where L is the response time of objects other than j and 
j'. The ratios v/vj, v/v/, denote the fractions of the 
objects j and j' which are affected by the above inter
change over the space v. 
Substituting (1) in (2) and (3), we obtain 

R' =L+tnhjv+tn+1h/·v 

R=L+tn+1h;v+tn.h/ ·V 

(4) 

(5) 

Subtracting (4) from (5) we obtain 

R-R'= (tn+1-tn)hjv- (tn+1-tn)h/v 

(6) 

Since (tn+1-tn) is positive and (hj-h/) is negative 
by assumptions, R - R' is negative. In other words the 
total response time has been reduced by the above 
interchange of objectsj andj'. Continuing similar inter
change over other objects, we will converge to the 
optimal loading rule, which will minimize the total 
response time. Arranging all the objects in the descend
ing order of index hj makes the loading rule optimal for 
any N level memory system of any sizes, including the 
particular case when the {Sn} == {Vj} • 

The heterogeneity of the objects makes it economical 
to execute them from memory levels with di£ferent 
speeds. Let us define the following parameters for our 
memory hierarchy system. 

tn = instruction execution time per instruction from 
the nth memory level 

en = cost per unit space per unit time for the nth 
memory level 

Assume that memories are numbered according to 
their speeds, the fastest is assigned number 1 and the 
slowest is assigned number N. It is clear that a memory 
hierarchy with different speeds and different costs for 
various memory levels is meaningful only if they 
satisfy the following relationships: 

t1 <t2<··· <tN 
and (7) 

ACTIVITY PROFILE CURVE 

We define the activity level of program j to be equal 
to p,ij, which is also equal to vjhj according to equation 
(1). The activity profile curve establishes a relation
ship between the cumulative activity level over the 
collection of objects and the cumulative memory space 
demand for these objects, when objects are assumed 
to be numbered according to the index hj. The object 
with the highest value of the index is numbered 1 and 
the one with the lowest value is numbered K. Let F (s) 
in Figure 1 denote the activity profile curve. 
F ( s) and S are defined as below: 

k 

F(s) = L: p,ij 
j=l 

k 

s= L: Vj 
j=l 

(8) 



where k is a subset of the objects K. In particular point 
A on the s-axis and point B on the F (s) axis are given by 

K 

B= L pii (9) 
j=1 

If we normalize Lj=lkpJij/ Lj=lKpJij; then we have a 
cumulative distribution curve. Let F' (s) denote the 
normalized function. The shape of the curve F' ( s) can 
be obtained by curve fitting techniques from the actual 
file data. Exponential curve given by F (s) = 1 - e-as 

was observed to fit several benchmarks, where the 
parameter characterizes the particular shape of the 
function for the given benchmark. 

OPTIMAL SIZING OF VARIOUS ADDRESSABLE 
MEMORY LEVELS 

The response time R for the given benchmark in the 
specified sub-system of the processor and directly 
addressable memories is given by 

K K 

R = L L tnpjijXn,j (10) 
n=1 i=1 

where O::S;xn ,j::S;1. It takes the value 0, if the object is 
not loaded in the nth level, a value of 1, if it is com
pletely loaded and a value 0 < Xn,j < 1, if it is fractionally 
loaded in the nth level. 

Let SI, • •• , Sn, ••• ,SN denote the sizes for the N 
memory levels. Assuming that loading of the objects 
follows the optimal loading rule, the response time R 

F(s) 

B 

~--------------------------e-------- s 
A 

Figure I-Activity profile curve for the given benchmark 

Multi-Level Memory Hierarchy System 339 

F(e 

B ---------

Figure 2 

may be written as 

Equation (11) is derived from equation (10) by sub
stituting F(s) for Lj=lkpii as defined in equation (8). 

The cost of processing the benchmark is given by 
the following equation. 

Z =R (E c,.Sn+G) (12) 

where G is the unit time rental cost of the processor. 
Z measures the total cost incurred by the sub-system 
for running the benchmark. The quantity 

(Ec,.sn+G) 
denotes the unit time rental cost of the sub-system and 
this rental cost is paid for the total response time R. 
The objective is to minimize Z subject to the constraint 
that the response time has to be smaller than a certain 
fixed number. Mathematically, the problem of optimal 
sizing may be stated as 

Find sn~O for n= 1, ... ,N 

which minimize 

subject to 
R::S;Ro 

(13) 

(14) 

Minimization may be achieved by defining the La
grange Function Z' and applying Kuhn Tucker condi
tions. We will simplify our problem by initially ignoring 
the non-negativity constraint on Sn and also by treating 
(14) as an equality constraint. If on solving the first 
order conditions, it is found that some of the Sn values 



340 Spring Joint Computer Conference, 1971 

are negative, such solutions will be unfeasible. The 
boundary solutions, where some of the 8n values were 
zero, will be examined systematically according to the 
algorithm described below. The Lagrange function Z' 
is given by 

Z' =R (~c"S.+G) -"A(R - Rol (15) 

If Z' is minimized at (SI*' ... ' Sn*, ... , SN*) the 
following conditions must be satisfied at the optimal 
point. 

oZ' iJR ( N ) iJR - = - Lcnsn+G -A- +Rcn=O 
OSn iJsn n=l OSn 

(16) 

for n=I,2, ... ,N 

OR/08n defines the rate of change in the total response 
time R with respect to a change in Sn, keeping the size 
of other levels unchanged. Subtracting equation (16) 
with index (n-l) from the same equation with index 
(n), we obtain 

( oR _ oR) (i: Cn8n+G-A) +R(Cn-Crt-l) =0 (17) 
oSn OSn-l n=l 

for n=2,3, ... ,N 

On re-arranging we obtain 

R 

Cn-l- Cn 
N 

:E CnSn+G-A 
n=l 

for n=2,3, ... ,N 

(18) 

By differentiating R from equation (11) with respect 
to Sn and 8n-l and subtracting the two derivatives we 
obtain 

(19) 

where f (s) denotes the derivative of the function F ( S ) • 

Substituting (19) in (18), we obtain 

= constant (20) 

for n = 2, 3, ... , N 

From equation (20) we obtain (N -2) equations of 
the form 

(21) 

We also have to satisfy the following two conditions, 
which provide us with the additional two equations 
needed to solve the optimal values of Sn. 

K 

81+S2+··· +SN= L Vj 

J=l 

R=Ro 

SEQUENCE OF ADMISSIBLE MEMORIES 

(22) 

(23) 

It may be recalled that while defining the activity 
profile curve, objects were numbered in descending 
order of the index hj. Consequently the derivative f(s) 
of the activity profile curve F ( s) is a monotonic non
increasing function of s. From equation (21) we con
clude that the sequence { (tn - tn-I) / (Cn-l - Cn) } for all n 
is monotonic non-decreasing. Any memory level which 
does not comply with this rule is a non-admissible 
memory level. Memory levels of this type can be elimi
nated from search for optimal solutions. 

ALGORITHM FOR SOLVING OPTIMAL VALUES 
OF MEMORY SIZES 

Optimal solution of the memory sizes has to satisfy 
equations (21) through (23). After the non-admissible 
memories have been eliminated, the sequence 
{ (tn - tn-I) / (Cn-l - cn)} for the admissible memories is 
monotonic non-decreasing. Also if objects are arranged 
in the descending order of the index hh the derivative 
f(s) of the activity profile curve F(s) is a monotonic 
non-increasing function of s. 

The following algorithm will systematically watch 
for the compliance of equations (21) through (23). 
Initially load all the objects in the slowest memory 
level N, and test whether the response time computed 
with equation (11) satisfies the specified response time 
constraint given in equation (23). If this constraint is 
satisfied, then the optimal solution has already been 
found, otherwise include the next faster memory level 
N-l. 

We have two unknown values which we can solve by 
applying equations (22) and (23). If equation (23) 
indicates that the response time constraint cannot be 



Multi-Level Memory Hierarchy System 341 

TABLE I-Airline Reservation Benchmark 

id h j pji j 

1 P 8.66 18300 
2 P 6.14 1560 
3 P .8125 1560 
4 P .781 300 
5 P .60 3600 
6 P .60 1920 
7 p .558 1536 
8 P .441 112 
9 P .361 300 

10 P .320 480 
11 P .291 317 
12 P .260 1560 
13 P .226 780 
14 p .223 780 
15 P .223 780 
16 P .148 95 
17 P .140 252 
18 P .118 375 
19 D 15.0X18-4 510 
20 D 8.35X12-4 431.7 
21 D 6.06XlO-4 .2 
22 D 2.65X10-4 .56 
23 D 2.22XlO-4 28 
24 D 1.47XlO-4 41.97 
25 D 1. 3X 10-4 3.0 
26 D .972X10-4 5.25 
27 D .62X10-4 3.0 
28 D .53XlO-4 .07 
29 D .456X10-4 27.36 
30 D .433X10-4 4.9 
31 D .38XlO-4 5.4 
32 D .20XlO-4 .02 
33 D . 185X10-4 7.99 
34 D . 175 X 10-4 105.00 
35 D . 167X10'-4 1.5 
36 D . 159 X 10-4 .07 
37 D . 059 X 10-4 45.20 
38 D .0415XI0-4 .49 
39 D .033X10-4 .1 
40 D .030XlO-4 4.04 
41 D . 0249 X 10-4 .05 
42 D . 0207 X 10-4 1.0 
43 D .016X10-4 .8 
44 D .00413 X 10-4 .01 
45 D .0016XlO-4 .01 
46 D . 0014 X 10-4 .02 
47 D . 00012 X 10-4 .0003 

satisfied, the next faster memory has to be included 
and now three equations with three unknowns have to 
be solved; equations (23), (22) and out of the set of 
equations given in (21) we include the following: 

tN-1 - tN-2 ) tN - tN-1 
----f(81, 82"" "8N-2 = f(81' 82"" "SN-1) 
CN-2 - CN-1 CN-1 - CN 

If the response time constraint cannot be satisfied, 

LPjij Vj LVj 

18300 2112 2112 
19860 254 2366 
21420 1920 4286 
21720 384 4670 
25320 6000 10670 
27240 3200 13870 
28776 2752 16622 
28888 254 16876 
29188 832 17708 
29668 1500 19208 
29985 1088 20296 
31545 6000 26296 
32325 384 26680 
33105 3500 30180 
33885 3500 33680 
33980 640 34320 
34232 1800 36120 
34607 3168 39288 
35117 340000 379288 
35548.7 516800 896088 
35548.9 330 896418 
35549.46 2112 898530 
35577.46 126000 1024530 
35619.43 285360 1309890 
35622.43 21500 1331390 
35627.68 54012 1385402 
35630.68 48000 1433402 
35630.75 1320 1434722 
35658.11 600000 2034722 
35633.01 113154 2147876 
35668.41 143160 2291236 
35668.43 1000 2292236 
35676.42 432000 2724236 
35781.42 6000000 8724236 
35782.92 90024 8814260 
35782.99 4400 1818660 
35828.19 7630000 1644860 
35828.68 118060 16566720 
35828.78 30030 16596750 
35832.82 1333352 17930102 
35832.87 20064 17950066 
35833.87 482600 18432666 
35834.67 264000 18696666 
35834.68 21102 18797768 
35834.69 60060 18777828 
35834.71 151032 18928860 
35834.713 240042 19168902 

we include the next faster memory and bring in one 
more equation from the set of equations given in (21). 
The first time a feasible solution exists, we try to obtain 
the optimal solution. If we want to carryon the op
timization with the technical constraints of the smallest 
size of the memory modules, an adjustment can be 
made so that R:::; Ro should be observed. If the response 
time constraint cannot be satisfied, including the last 



342 Spring Joint Computer Conference, 1971 

available memory level, then no feasible solution 
exists. 

If the solution to the involved equations violates the 
non-negativity. constraint on some 8n in the set of in
cluded memory levels, then all combinations of various 
8n being equal to zero have to be tested for the optimal 
solution. 

Example 

In this example we are taking an airline reservation 
system. The memory allocation for the objects in an 
airline reservation system is reasonably static. The 
granularity of the program and data files recognizes 47 
objects with a total memory requirement of 19.2M 
words. Suppose we decided to buy 2M words of directly 
addressable memory levels. We have to make the selec
tion out of three available memory levels. The speeds 
of these memory levels are 

The proportional costs of the respective memory levels 
are 

C2=5 c3=1 

Table I contains the file elements arranged in the 
descending order of the index hj, along with their 
parameters hj, pjij, LpJij, Vj and LVj. The second 
column of the table identifies the objects; P stands for 
programs and D stands for data. 

For our purposes we fitted an exponential curve over 
the first 29 objects for which the directly addressable 
memory is being considered. The equation of the expo
nential curv,e is given by 

F (8) = 1- e-(ao+a1s) 

The least square estimates for ao and a1 are 

ao=1.858 

a1 = .24166 X 10-5 

It may be verified that all three memory levels are 
admissible. 

Consider the three cases when R:S;30 msec., R:S;20 
msec. and R:S; 10 msec. respectively. 

For R=30 assume we have 83 memory level only. 
Multiplying the total activity with the instruction 
execution time of the 3rd memory level we obtain 
53.5 msec. which does not satisfy the response time 
constraint. 

Including 82 we solve equations (22) and (23) and 
obtain 

82= 1973704 

83=26296 

For R = 20 the response time constraint cannot be 
satisfied with memory levels 83 and 82 only. 81 also has 
to be included. Solving equations (21), (22) and (23) 
we obtain 

81 =265660 

82=168250 

83=1566090 

For R = 10 no feasible solution exists. This can be 
seen also when we multiply the total activity level by 
the instruction execution time obtained with the fastest 
memory level only. This is 17.83 msec. This is the best 
response time which can be obtained by buying the 
fastest memory level only, which is the most expensive 
system. 

DYNAMIC ALLOCATION 

In the real life one benchmark may not be representa
tive of the working conditions of a computer system. 
It might be desirable to observe several benchmarks. 
The collection of objects in different benchmarks might 
overlap. This is particularly evident for the operating 
systems, which will be accessed by all the benchmarks. 
Under these conditions it may be meaningful to re
locate some of the objects. The criterion of re-Iocation 
is that if the improvement in response time is greater 
than the re-Iocation overhead, including the work re
quired to do time-to-time checking for carrying on 
necessary re-location, then re-Ioc~tion is desirable. 
Define the following notations. 

Kr,n=set of objects accepted in memory level n at 
decision time r for the time period (r, r+ 1) 
(Figure 3). 

][ • lE 

r-1E--T~r~T ~r+1 

Figure 3 

Kr,n * = set of objects that should be loaded in level n 
at time period r, if optimal loading rule was 
followed. 

(
Kr-1,n, when no re-allocation is decided at time r 

Kr,n= Kr,n*, when re-allocation is decided at time r 
J n,m = set of objects that have to be transferred from 

level n to level m, if re-allocation is decided at 
time r. 



Dr = difference in response time between re-allocating 
and not re-allocating. 

E = fixed switching overhead incurred at every re
allocation. 

I1E = additional switching overhead to implement the 
checking algorithm. 

Gr = the frequency of testing whether are-allocation 
should take place. If the re-allocation is pre-set 
externally, I1E = o. 

The difference in response time can be expressed as 

N N 

Dr= L L tnpj(r)i j - L L tnpj(r)ij 
n=l jEKr,n n=l jEKr,n* 

N N 

L L L tn,mVj- (E+I1E·Gr ) (24) 
m=l n=l jEJn,m 

Our decision rule for re-allocation is the following: 

(Kr-l,n 
Kr,n= i 

lKr.n* 

The time interval to check the necessity of re-Ioading 
the objects is denoted by T. It is a function of the en
vironments and can be estimated on the basis of actual 
program behavior. There can be situations when T is 
large. It is realistic to assume that for larger T, it is 
more probable that we will have the case where Dr?:.O. 

IMPLEMENTATION 

The users who were first to install the directly ad
dressable memory hierarchies have spent considerable 
amount of effort to tune up their system.2 ,3 The 
Carnegie-Mellon University has written over a period 
of two years, five algorithms for loading objects to im
prove their system performance.2 

Some of the advantages of directly addressable 
memory hierarchies are heuristically obvious. List 
processing tasks are the classical examples, which 
system designers used to mention, while advocating a 
directly addressable slow memory in addition to a 
high speed primary memory level. Other heuristic 
suggestions for execution from slow memory levels are 
the 10 bound programs, communication buffers (in
cluding 10 symbionts), interactive (time sharing) jobs, 
etc. 

While many of these heuristic suggestions would not 
contradict the findings of this study, it is appropriate 
to point out some of the pitfalls. Take, for example, 
the level of 10 boundedness for loading criterion. 

Multi-Level Memory Hierarchy System 343 

Define the level of 10 boundedness 

where (tcpu) j is the total processing time of object j, 
(tIO) j is the total time spent in processing 10 requests 
for object j. 

fi is a close approximation to Pih the activity level 
of the jth object for a given benchmark run time as 
defined earlier in this study. However, the index fi 
ignores Vj, the size of the jth object, thus any loading 
rule based on the ranking of the objects in the descend
ing order fi contradicts the optimal loading rule proved 
in this study, consequently it is not an optimum loading 
rule. 

IBM Research Group has spent considerable amount 
of work to study the efficient use Of multi-level memory 
hierarchies. l ,3,7 Some of the conclusions of the IBM 
studies regarding the 360 systems are the following: 
(a) have in the slow memory a staging area for 
swapping in the objects, (b) transfer the objects for 
processing from the slow memory to the fast memory 
on a selective basis. The selection rule for transfer is to 
make a transfer if 

where i j is the activity level of object j 
Vj is the volume of the jth object 
b is a carefully calculated threshold value 

The activity level is defined prior to the use of the 
program. An IBM research paperl describes a pre
processor, which rearranges the object codes of a 
program according to their activity level for making 
selective transfers, when the object is scheduled for 
processing. The idea of selective transfer is in line with 
the idea of dynamic re-Iocation described in this paper. 
Our paper does not treat the problem of staging, which 
is treated in the literature in connection with replace
ment algorithms.6 ,8 

The present paper suggests memory allocation on the 
basis of a priori observed average characteristics of 
job mixes. Statistics known with respect to the oper
ating systems give evidence that the program behavior 
of the operating systems is usually steady for a large 
diversity of job mixes, therefore the optimal loading 
rule and optimal sizing of memory levels can be easily 
observed for the operating systems. For user environ
ments with large variability in the object character
istics, an implementation of the optimal loading rule 
on a dynamic basis could have little overhead, because 



344 Spring Joint Computer Conference, 1971 

only the ranking of one index has to be observed from 
time to time. 

REFERENCES 

1 Y C CHEN S C HSIEH 
Selective transfer analysis 
IBM Research 

2 A L VEREHA R M RUTLEDGE M M GOLD 
Strategies for structuring two level memories in a paging 
environment 
Carnegie-Mellon University Research Paper 

3 C V RAMAMOORTHY K M CHANDY 
Optimization of memory hierarchies in multiprogrammed 
systems 
ACM Journal July 1970 

4 F BASKETT J C BROWNE W M RAIKE 
The management of a multi-level non-paged memory system 
AFIPS Spring Joint Computer Conference 1970 

5 S R ARORA A GALLO 
Optimal loading, reloading, memory sizing in a system with 
multi-level memory hierarchy 
UNIVAC Tech Memo OlEN 108 

6 P DENNING 
Thrashing: Its causes and prevention 
AFIPS March 1969 

7 D N FREEMAN 
A storage hierarchy system for batch processing 
AFIPS March 1968 

8 L A BELADY 
A study of replacement algorithms for a virtual storage 
,computer . 
IBM Systems Journal Vol 5 No 21966 



The TABLON mass storage network 

by RICHARD B. GENTILE and JOSEPH R. LUCAS, JR. 

United States Department of Defense 
Washington, D. C. 

INTRODUCTION 

This paper documents an approach by the Department 
of Defense for solving the massive volume digital tape 
storage problem. It describes a computer network 
called TABLON which provides several trillion (1012) 

bits of on-line storage simultaneously to a number of 
dissimilar computer systems. Such a network has po
tential application to any company,major institution, 
or publicly supported organization with the following 
situations: 

-they currently employ a number of large scale, 
third-generation computer systems, 

-their data base is large enough to cause physical 
storage and/or access problems, 

-their data accumulation is growing faster than 
their ability to pay for devices to contain it, and 

-they have a strong desire to consolidate all their 
computerized information into one central lo
cation 

The need for more and more on-line storage has long 
been a recognized problem. What is perhaps not so well 
recognized, is the desire of some large installations (and 
some sharing minded smaller ones) to consolidate their 
data base, automate it, and establish a centralized 
facility upon which all can feed equally. The associated 
problems are formidable. Containing the data base on
line is probably the most serious, with distribution, 
timely access, and file management problems close be
hind. And if these problems could be overcome, the 
different characteristics of today's computer systems 
would surely stop them the very first time they tried 
to exchange a file between two different processors. 

For one element of the Department of Defense, this 
problem existed. A number of large magnetic tape li
braries were "centrally located" within the same gen
eral area, but not central enough to re.~uce the enormous 
resources involved with constant movement of data to, 

345 

from, and between libraries and computers. Multiple 
copies, manual intervention, antiquated accounting 
and administration, and a general inability to support 
an otherwise fully automated multi-computer complex 
were equal burdens. 

TAB LON then, was developed under two primary 
objectives. First, it was to permit near immediate ac
cessibility and automatic distribution of any portion 
of the total data base to any of several dissimilar com
puter systems. Second, it was to reduce the cost, 
space, and administration from that currently required 
to support an extremely large magnetic tape library. 

The TABLON system is a network of dedicated 
computers, special hardware components, and mass 
storage devices. It permits large scale third-generation 
computer systems (called User-CPU's) to store and 
retrieve data on a file, or file segment, basis. Storage 
and retrieval is automatic, via hard wired direct data 
transmission, upon exchange of commands between a 
User-CPU and the TAB LON network. TAB LON also 
solves the problem of providing dissimilar computer 
systems on-line file management access to the total 
data base. 

Obviously TABLON is expensive in terms of initial 
dollar outlay. A half-dozen components in the million 
dollar range can be easily identified, not counting engi
neering costs for hardware development. And then there 
is software, done by DoD personnel, but still an ex
pensive resource allocation. However, there are many 
organizations today whose collective inventory shows 
large disk and drum installations of 20 or more, some 
closer to 50. Multiply that number by a couple of 
hundred thousand dollars each (on a procurement 
basis) and one finds a multi-million dollar inventory for 
on-line storage alone. 

For the Department of Defense the TAB LON net
work represents cost avoidance as opposed to cost re
duction. Recovery of cost for the storage devices will 
be achieved during the life of these equipments through 
a reduction in magnetic tape procurements. Cost re-



346 Spring Joint Computer Conference, 1971 

Figure l-Simplified TABLON diagram 

covery for other components will be realized from a 
significant reduction in future storage peripherals 
(disks, drums) installed, plus an improvement in li
brary maintenance and management. Moreover, TAB
LON's capacity for growth in the years to come gives 
it a forecasted useful life of ten years, bringing the per 
year cost well below current and forecasted annual disk 
and drum expenditures. 

What follows is a summary description of the T AB
LON network, with primary emphasis on the authors' 
area of. personal involvement in overall concept and 
management, and in the functional level hardware de
sign and system integration. 

OPERATIONAL DESCRIPTION 

Today, when processing is completed at a User-CPU, 
output is written onto one or more reels of magnetic tape; 
the tape(s) being demounted and manually transported 
to a tape library. Using TABLON, instead of writing 
data onto digital tape(s), the User-CPU writes that 
same data directly into TABLON. To the User-CPU, 
the' content, format, and otlier characteristics of the 
data are the same for TAB LON as for magnetic tape . 

. On recall by the (same or dissimilar) User-CPU, 
TAB LON returns the data record by record, and in 
the proper character set, as does magnetic tape. Ini-

tially, TABLON will not permit retrieval of partial 
data files without first reading and discarding those 
data records located at the file beginning. Eventually, 
TABLON will permit storage and retrieval of logical 
file segments, but still on a file unit basis. TABLON 
is not a while-you-wait inquiry system; it is a digital 
data file (file segment) storage and retrieval network. 

The attached computers 

The attached computers, called User-CPU's, are, and 
will be typical stand-alone systems with their normal 
complement of peripherals. Security, and a reluctance 
to identify future procurements prevent the listing of 
actual computers by type and model. However, TAB
LON imposes no restrictions; thus any or all of the 
large scale third-generation systems are equally likely 
candidates. 

A time-sharing computer, a batch processor, and an 
information storage and retrieval system, all of differ
ent manufacture, are already attached as User-CPU's. 
TABLON accommodates their different modes of opera
tion equally, requiring only a software interface and 
communications package be added to the standard 
operating system of each. 

The User-CPU's are not centrally located. Some are 
within a 3000 foot distance, located in the same build
ing as the TABLON network. Others, a few miles 
away, are dependent on the "reliability" of public 
telephone circuits for long distance communications. 
This article will not discuss the methods, equipments, 
or problems associated with communications between 
the User-CPU locations and the central TABLON site. 

TABLON dataflow 

Figure 1 shows a simplified diagram of the TABLON 
network. Its components will be referenced as we trace 
the storage and retrieval of a data file from a User-CPU 
to TABLON and back to the User-CPU. 

A User-CPU has a data file it wishes to store into 
TABLON. The file is complete (all processing on it 
has terminated) and resides on a drum or disk within 
the User-CPU. A message is constructed by the User
CPU specifying parameters about the file. These in
clude file name, classification, si,ze, owner, who else 
can have access, plus an indicator as to whether the 
file is character based (and thus should be converted 
to ASCII) or binary (no conversion). This message is 
sent to TAB LON where appropriate entries are made 
for the file in the index catalog. Concurrently, TABLON 
checks for availability of a 106 bit core Buffer and con
nects that Buffer to the requesting User-CPU. When 



cataloging is complete and the available Buffer con
nected, TABLON sends a message back to the User
CPU informing it that transfer of data may begin. 

The User-CPU calls the first records from its drum 
or disk and writes these records out to the TAB LON 
Buffer. At this point the Buffer is his alone, to be written 
at a one megabit per second rate, but at whatever size 
logical records and at whatever interrecord intervals 
are characteristic of the User-CPU. The Buffer remains 
attached to the User-CPU until it has transferred 
about 128,000 ASCII characters, or otherwise filled or 
finished with the 106 available bits. Termination of the 
Buffer load operation is signaled by a message from the 
User-CPU to TABLON, whereupon another Buffer 
may be made available to the User-CPU for transfer 
of the next file segment while TABLON processes the 
previous segment. 

During the filling of Buffers by the User-CPU, the 
interface unit located in the User-CPU's area is making 
all necessary conversions to the ASCII character set 
and is padding, as necessary, each record of data such 
that each logical record falls on a Buffer word boundary. 
Both these operations will be undone when the data is 
later recalled for reading. 

Once a Buffer has been filled by the User-CPU, the 
data is moved immediately into one of the mass storage 
systems. Since the characteristics of the IBM 1360 
Photo-Digital system differ greatly from those of the 
AMPEX Terabit 1\1emory system, the method of 
handling data from the Buffers is different. A technical 
summary of both these devices is provided later in this 
paper. 

If data is destined for the AlVIPEX Terabit Memory 
(TBM*), the Buffer is switched to one of the TBM's 
two available write channels. The TABLON executive 
instructs the Terabit Memory to take the entire Buffer 
load and write it onto a specified block of high density 
magnetic tape. The TBM system then takes over and 
writes the Buffer load onto tape at a six megabit rate. 

If data is destined for the IBlVI 1360 system, the 
entire file must first be accumulated on the PDP-I0 
disk packs. This file staging requirement is due to the 
photographic storage media used by the 1360 system 
and to the very slow writing rate (30,000 characters 
per second) of the 1360 recorder unit. To accomplish 
this, the Buffer is switched to a special data channel 
(NETIF) to permit reading the Buffer contents into 
PDP-I0 memory, then out to the disk. The entire data 
file, Buffer load after Buffer load, is accumulated on 
the PDP-I0 disk prior to sending any data to the 1360 
storage system. By first staging the entire file on disk, 
TABLON is able to insure writing the full data file on 

* AMPEX Corporation Trademark. 

TABLON Mass Storage Network 347 

the same or consecutive physical storage elements 
within the 1360. Intermediate data staging also enables 
a better packing of files to achieve the highest possible 
utilization of the storage media since once developed, 
the media cannot be added to later. 

At the conclusion of file transfer between' the U ser
CPU and TABLON, sign-off messages are exchanged 
and TABLON's catalogs updated. It is not necessary 
for data files to reach either storage system in order to 
be considered complete. Once all data is accumulated 
on the PDP-I0 disk, it is considered entrusted to 
TABLON, and is available for immediate recall by the 
same or another User-CPU. 

Retrieval of a data file is the reverse of storage. The 
User-CPU calls TABLON and provides the name and 
access authority for the file desired. TAB LON verifies 
access and searches its index to find where' the file has 
been stored. Once located, the mass storage device 
containing the file is instructed to access that file and 
prepare it for reading. Then, the storage' device is con
nected to a Buffer and the first Buffer load of data 
transferred. The PDP-I0 then connects the appropriate 
Buffer to the User-CPU's dedicated line and notifies 
the User-CPU of data availability. Reading by the 
User-CPU is begun, with the TABLON interface again 
converting (as necessary) from ASCII to the User
CPU's internal character set, and padding or omitting 
blanks to insure that each subsequent data record be
gins at a full word boundary within the User-CPU. 
The process is continued until the entire data file, or 
the specified number of file subsets, is passed. 

Commonality across User-CPU's 

One of the most interesting features of TAB LON is 
its ability to permit retrieval of data by a User-CPU 
other than the one which stored the file; providing such 
capability presented a twofold problem. First, internal 
character sets used by different computers are not 
standard. Second, each computer assumes that 
successive records read enter on full word memory 
boundaries. 

TAB LON chose to implement hardware solutions to 
both problems, adding a feature to the TAB LON inter
face unit called the Formatter/Converter. The Con
verter is a relatively simple device consisting of a ,read 
only memory,' present to the internal character set of 
each type of User-CPU. At User-CPU option, data can 
be specified as binary (no' ASCII conversion) or char
acter, wherein the Converter will automatically do a 
read only table lookup and forward the ASCII con
figuration to TABLON for storage. 

The Formatter portion of the Formatter/Converter 



348 Spring Joint Computer Conference, 1971 

FIXED LENGTH RECORDS 

User -CPU#l 
48 bits , word 

1 [I-----rt-r.: ... ,....,. .. : . .-.:::34=: • ...,.::. ;'''''''-'. : . .,...,., :''''''' 

2 [1---...,1:-,:.:...,...:: .. = .. :34,..."....,..:: ...... :.:"""': .. .,..: 

3 [I---r.....,::.,...-,: :.,....-.:: ' ....... 34-.-.; ..... :::.-.: : ...... :. 

4 [1---..... ~:::.,..,...::.:..,...,..:::."" .. U . .,...~ .:.,... ... : ...... :::.,...,: 
rl-____ ~_ ... 

I , 

nlh=rl 
Recy{g ~i~~gth 

Records Numbered 
(1),(2), .•. , (n) 

TAlLON Buffer 
32 bits , word 

1 [1-------1 
I:.:~··n.::·:· 

User- CPU#2 
36 bits' word 

I r I r .. ,,,:,.'3!Ii"i:.':,, 

I) 2 r I F,';':,'"",:,-,::'''Y 

3 [ I F'.:, ..... 3!Ii ... ,,:';: 

fl----_--I , 
I I 

n!t::i 

VARIABLE LENGTH RECORDS 

HDR11;i·:::::··~··:·.;··::·::·,::: 

1 r )?:":.::3iC.:'::;':':::::: 
HiiR2r:;·;:.:··:~:·.:··:::.:::: 

2t }; .• ;: 
IHoa 3r.:·(:\·3i·~.::·:;:·f~·: 

311------1 
-,.... ..... , 

I , 

It=;j 
Record Lengths 
(1) = no bits 
(2) = 135 bits 
(3) = n bits 

... 1::':'.: .::~.::: 

fl--------1 

Figure 2-Formatter unit operation 

unit is somewhat more complicated and is described 
more fully in the technical summary. Su;ffice it to say, 
the Formatter adjusts all input records from the User
CPU's into a standard TABLON length. During out
put back to the User-CPU's, excess bits are added on, 
or stripped off, so as to make the next sequential data 
record fall on a full word boundary in the User-CPU. 
This action is shown in Figure 2. No manual inter
vention is required in either case. Each interface unit 
is tailored to the type and model of User-CPU attached. 

Anticipated performance-photo digital 

The IBM General Purpose Simulation System 
(GPSS/360) was used to resolve design tradeoffs and 
simulate anticipated performance of the Photo Digital 
Systems within the TABLON System. Only antici
pated performance figures are documented here. 

A run was made which simulated 15 consecutive 
hours of operation, including 4 hours of time which had 
only one Photo Digital in operation, completing 858 
jobs to and from TABLON. A "job" means a request 
at the User-CPU to store/fetch one complete file. The 
average job was completed in 5 minutes and 41 seconds, 
including the time (3 minutes and 4 seconds average) 
it waited in the User-CPU queue before actually getting 
to TABLON for processing. The range of job comple
tion times shows 468 jobs completed in 30 seconds or 
less, another 72 within the next 30 seconds, 80 percent 
of the jobs within 5 minutes. There was no appreciable 
difference between the average time required to com
plete a read job and the time required to complete a 
write job. 

The chance of a data file being able to go directly to 
TABLO N without delay (when needed/furnished by a 
User-CPU) is over 85 percent. During the 15 simulated 
hours, one User-CPU had as many as 13 jobs within 
its own queue awaiting a turn for TABLON. The aver
age backlog across all User-CPU's was 3.1 jobs, but 
the maximum did build as high as 17 at one time. 
Yet, there was only one job in the queue at the end of 
15 hours. Over three billion characters were sent to and 
from TAB LON during the 15 hours simulated, an 
average of 57,000 characters per second full time. 

Jobs arrived at the User-CPU's for processing by 
TABLON on an average of one per minute. Any User
CPU was equally likely to get the next job, including 
the same User-CPU that processed the last job. The 
average file size was 3,360,000. Some files were as small 
as 2,000 characters and some as large as 100 million 
characters, with 95 percent of the files less than one 
full reel of magnetic tape (20 million characters). 

T ABLON request language* 

The TABLON Operating System has the funda
mental task of translating high level file segment 
storage and retrieval requests into the detailed control 
sequences necessary to optimize data throughput time 
in a multi-User-CPU environment. 

* The Language and Command names used here are not neces
sarily the ones that are used in the system, however, the functions 
are the same. Moreover, some of these functions will not be 
available when the system first becomes operational. 



TABLON communicates with each User-CPU oper
ating system, not with individual User programs. 
However, depending on the particular environment 
under which a User-CPU operates, an applications 
programmer may effectively be in direct control of his 
data transfer. Although the initial system will permit 
only one outstanding command per User-CPU, eventu
ally TAB LON will permit each User-CPU to have 
several data movement requests outstanding. More
over, each of these requests may be associated with 
different files. 

Storing data files (STORE) 

To store a file, the User-CPU sends an initial STORE 
command to TABLON with parameters that identify 
the User, specify the FILE NAME, the mass memory 
system to use, and an estimate of the FILE SIZE. 
TABLON first ascertains that the request is from a 
valid User, that the storage allocation of the particular 
User will not be exceeded by this STORE, and that 
the FILE NAME is unique for this User. If the file is 
to be stored in the AMPEX Terabit lVIemory, a search 
of the MAP is made to locate the first contiguous 
storage area available that is just large enough to ac
commodate the data file. If the file is to be stored in 
the IBM 1360 System, a similar MAP search is made 
to determine which storage module will be selected for 
storage. Eventually, a catalog entry is constructed 
that will contain all the descriptors for this file. The 
actual transfer of the file then proceeds as described 
previously in this paper. Provisions have been made in 
the software structure to allow for non-contiguous file 
storage, clearly a necessity in the case of extremely 
large files. 

Retrieving data files (FETCH) 

Retrieval of the data files (or file segments) occurs 
in a similar fashion. The User may specify the starting 
point and length of data within a particular file to be 
transferred. For obvious throughput reasons, the sys
tem in general will not allow the User to FETCH less 
than one Buffer (106 bits) load unless, of course, the 
file length is less than 106 bits. On the other hand, 
random access allows the User to fetch only that portion 
of the data file he needs, thereby increasing job through
put at the User-CPU. 

File sharing (PERMIT/REVOKE) 

A series of DIRECTORY operations allows a file 
owner to permit other Users (independent of User-

TAB LON Mass Storage Network 349 

CPU's) access to one or more of his files. The permittee 
may be granted read only or read/modify access at the 
owner's option. Several authorized Users may have the 
same file open for reading simultaneously. The RE
VOKE command is used to terminate file access by one 
or more permittees. 

File IDodification (APPEND/REPLACE) 

The User may modify his file by either appending 
(APPEND function) or replacing (REPLACE func
tion). The APPEND function is straightforward as 
long as provisions are made in the catalog entry t.o 
allow for non-contiguous segments. The REPLACE 
function is only meaningful in the TBM case and gives 
the User the ability to update a single block of this file. 
Obviously, only one User may have access when a file 
is open for modification. 

File deletion (DELETE) 

A file owner deletes one of his files by the execution 
of the DELETE command. In addition to making 
appropriate catalog modifications in the DELETE 
case, the SCP also modifies the MAP to make the area 
holding the deleted file available for storage of new 
data. 

Reporting file activity 

An important part of the design is the inciusion of 
"soft" meters to measure and record the file activity 
of User groups. These statistics are maintained in the 
appropriate catalog entries during the day and com
bined with the permanent statistical accounting file at 
the close of each day. As a consequence, managers 
have significantly more information on which to base 
their decisions than is possible in a manual tape library 
facility. 

TECHNICAL DESCRIPTION 

Figure 1 shO\ys a simplified diagram of the TABLON 
system, consisting of the following major components; 
a pair of PDP-10 computers for overall control of the 
network and for management of the data base index; a 
Data Distribution Network used as the exchange 
mechanism for passing data between TAB LON and 
the attached User-CPU's; a set of sophisticated inter
face units (one at each User-CPU site) for real time 
conversion to the ASCII character set and for the 
automatic formatting of data records across different 



350 Spring Joint Computer Conference, 1971 

CPU word sizes; an AMPEX Terabit Memory for 
massive high speed storage of active data sets; and two 
IBM 1360 Photo-Digital storage systems for the ar
chiving of "forever kept" data. 

PDP-10 computer systems 

A pair of interconnected PDP-I0 processors are em
ployed as controllers for the overall TABLON network. 
During normal operations, one PDP-lO is designated 
the master controller for the entire network, the other 
serves as controller to the pair of IBM 1360 storage 
systems. The master controller function includes com
munication with attached User-CPU's, directory man
agement, and translating commands from the User
CPU's into action sequences to be executed by other 
network sub-components. The second PDP-lO, acting 
as 1360 controller, performs all data handling and 
manipulation necessary between the Buffers and the 
1360 storage units. This includes the scheduling of files 
into 1360 storage from the data staging disks and re
porting back to data management final addresses of the 
stored file. 

Redundancy and backup 

Not shown in Figure 1 is the interconnection between 
PDP-lO's. All twelve memory modules (196K words) 
are accessible by both processors. Also, each processor 
has its own I/O buss to which are attached those 
peripherals associated with its primary function. How
ever, each processor has access via a programmable 
switch to the other's I/O buss, and thus all peripherals 
of the entire TAB LON network. In this way, either 
PDP-lO processor can be the master, and can when 
necessary, perform the functions of both processors 
simultaneously. In either case, the processors them
selves do not get involved with the handling of data 
per se, and therefore can continue responsive operation 
when controlling the entire TABLON network alone. 

Software executive 

Software for the PDP-lO's was uniquely developed, 
consisting of a portion (15 percent) of the basic PDP-IO 
executive program, but mostly (85 percent) a special 
software package supplied through the talents of DoD. 
Major subroutines include the User-CPU communica
tions module, commands and responses to the Data 
Distribution Network, directory management module, 
and the high level storage/retrieval commands to the 
1360 controller (PDP-IO) and the Terabit Memory 

controller (PDP-9). No less significant are software 
modules for statistics, on-line maintenance diagnostics, 
and off-line loading and unloading of data to and from 
magnetic tape. 

COIllIllunications data Illultiplexor (CDM) 

The CDM provides for concurrent transmission of 
variable length messages between the PDP-IO and 
each of the User-CPU's. Data flow over each line is bit 
serial at 4800 bps. To allow for maximum design flexi
bility, a PDP-8/L computer was used to implement 
the control logic. This approach minimizes disturbances 
to the PDP-IO by interrupting only when an entire 
message has been received rather than for each single 
character. It also permits the CDM to relieve the 
PDP-IO of considerable error analysis and to implement 
retransmission requests based on its own analysis. 

Data distribution network 

To attain respectable data throughput rates within 
the TABLON network, it is necessary to transmit or 
receive data from many User-CPU's simultaneously. 
Since this objective cannot be fully realized by buffer
ing data transfers through the PDP-IO computer itself, 
a separate Data Distribution Network was necessary. 
The Data Distribution Network is composed of the 
following components: 

Switch controller 

The Switch Controller translates high level com
mands from the PDP-IO's into a series of detailed 
hardware sequences. These commands take the form 
of Buffer to User-CPU or Buffer to Mass Storage 
Channel switching functions, Buffer clears, Buffer mode 
setting, and network status collection. Control lines 
between the Buffer and the Switch Controller permit 
appropriate initialization of the Buffer Logic,· and pro
vides an interrupt capability to the Switch Controller 
when the Buffer encounters an error condition. The 
Switch Controller also monitors key voltage levels in 
both the Switch and Buffer components in the idle 
state so that failures may be detected and corrected as 
early as possible. The PDP-IO receives a generated 
interrupt signal in such cases. The Switch· Controller 
includes a PDP-9 for control logic implementation and 
easy communications with the PDP-IO's. 



Buffers 

The Buffers are standard 32K word, 32 bits/word, 
1 JLsec core memory systems with special control logic 
added to permit the Buffer to operate as a slave to 
either a User-CPU interface ora Mass Storage Chan
nel. Data is transferred between the Buffer and User
CPU at a 1 megabit serial rate, and between the Buffer 
and Mass Storage System at a 1 megabyte (8 bit byte) 
burst rate. 

CPU /BUF and BUF /Mass storage switch 

The CPU /BUF switch, under control of the Switch 
Controller, enables any User-CPU to communicate 
with any Buffer. Once a Buffer has been connected to 
a given User-CPU, no other User-CPU or Mass Storage 
System has access. The BUF/l\;fSS switch, also under 
control of the Switch Controller, is very similar logically 
to the CPU /BUF switch. It allows anyone of the Mass 
Storage Channels to communicate with any Buffer. 
Any Buffer not assigned is placed in a disconnect state. 

U ser-C P U interfaces 

Each User-CPU is supplied an interface unit which 
links the User-CPU via a 1 megabit dedicated line to 
the Data Distribution Network. Hardware wise, the 
User-CPU thinks it is communicating with a standard 
peripheral and to the extent possible, the same should 
be true for the software operating system. However, 
the TABLON concept is sufficiently revolutionary that 
software modifications at each User-CPU were un
avoidable. 

Form.atter / converter units 

The other fundamental functions of the User-CPU 
interface are logical record formatting and character 
code conversion. The Formatter/Converter unit within 
each interface performs these functions after being pre
conditioned by the User-CPU. Otherwise, the data is 
transferred as a binary stream only. The Formatter 
function is to force the first byte of each logical record 
to start at the beginning of a User-CPU word, even if 
the User-CPU is not the one that generated the file. 
Pad bits are added as necessary to achieve this result 
as shown in Figure 2 for both fixed and variable length 
records. The Converter function is applicable in the 
character transfer mode. In this mode, the standard 
User-CPU character (6, 7, or 8 bit) is converted to an 

TABLON Mass Storage Network 351 

ASCII code. Thus, all non-binary files in TAB LON are 
stored in standard ASCII format. 

AMPEX Terabit memory system 

The Al\;fPEX Terabit J\tlemory (TBM) system uses 
the video technique of rotating heads and transverse 
recording to store large volumes of digital data on a 
very few reels of standard magnetic video tape. This 
system provides random access capability through ex
tremely high speed searching (1000 ips) in combination 
with a reusable, update in place, magnetic storage 
media. 

The Terabit Memory is being developed jointly by 
the Department of Defense and the AMPEX Corpora
tion, under a task beginning in 1966. A small scale 
engineering model, containing at least one of each major 
TBM component has been constructed and is under
going tests at AMPEX's Sunnyvale, California, plant. 
Concurrently, construction is under way for a trillion 
bit version to be delivered to the Government in early 
1972. 

When it arrives, the Terabit Memory system will 
provide the TABLON network with its most responsive 
storage element. Having at least two full duplex high 
speed data channels from the Data Distribution Net
work, Buffers may be emptied and filled by TBM at 
a combined rate of 24 megabits per second. As the 
active element, all files susceptible to change, all files 
anticipating updates, and all files of a non-archival 
nature will reside on Terabit Memory tapes. When 
established that a file has become stabilized and can be 
archived, it will be transferred to the 1360 storage sys
tem for permanent retention. The bulk of activity be
tween TAB LON and its attached User-CPU's will 
involve storage· and retrieval of data files, or file seg
ments, contained on the TBM storage device. 

Terabit lllem.ory operation 

The TBM system is capable of executing N + 1 com
mands in parallel, where N is the number of transport 
controllers. The (N + l)st command is an immediate 
command such as ABORT, STOP, REQUEST STA
TUS, WHAT ABOUT, etc., that does not require a 
transport controller for its execution. The remaining 
commands are any combination of SEARCH, ERASE, 
READ, or WRITE operations. 

Normally, a TBM search operation will be performed 
during the time a system Buffer is being loaded by a 
User-CPU. Upon completion of both of these functions 
and the switching of the Buffer to a TBM Write Chan
nel, the PDP-10 forwards a WRITE command to the 



352 Spring Joint Computer Conference, 1971 

TBM Controller specifying the transport controller, 
transport, channel, and block address to be used for the 
storage of that particular buffer load of data. Except 
in special test or maintenance modes, only one block of 
data is transferred for each READ or WRITE com
mand. For the test, maintenance, and tape pre-test 
modes, a special exerciser (tester) is built into each 
data channel unit. In this mode, any number of blocks 
may be specified with each READ or WRITE oper
ation. 

Each TBM block consists of roughly 106 bits, the 
minimum amount of data that may be read or written. 
Approximately 167 msec is required to transmit that 
amount of data between the TBM and the Buffer. 

The average demand access time to any TBM data 
block is of the order of 15 seconds. However, since 
most files will be contiguously stored, this time will be 
applicable only for the first block of a file. Less than 1 
second is required to position the tape for reading of 
each of the, remaining blocks in the file. This assumes, 
of course, that the transport is not needed for some 
higher priority data retrieval prior to completion of 
that particular file transfer. 

The TBM system does not queue commands. By 
performing the queuing function in the PDP-10, 
TABLON retains the flexibility to effectively adapt 
itself to the various modes of User-CPU operation. 

Technical SUInInary of terabit IneInory 

The Terabit Memory system is composed of four 
major components; the magnetic tape Transport, the 
Transport Controller, the Digital Data Channel, and 
the TBM Controller. The relation of these four major 
components to one another is shown in Figure 3. A 
summary level description follows; readers are referred 
to Reference 6 for further and more detailed information. 

TBM Controller: Controlling the entire system is a 
PDP-9 computer called the TBM Controller. Its func
tion is to provide the command interface between the 
PDP-10 and the various major components of TBM. 
Commands are received in the form of a single instruc
tion consisting of an operation code (search, 'read, write, 
erase, etc.), a transport and block address, and the 
number of consecutive blocks to be operated on. In
structions are then issued to the Switches, Transport 
Controllers, and Digital Data Channels directly. Con
secutive commands will be accepted by the TBM 
Controller and executed simultaneously wherever pos
sible since operation of the major components are 
independent actions. 

Transport Controller: Operation of each tape Trans-

port is governed by an independent module called the 
Transport Controller. It receives packaged commands 
from the TBM Controller (PDP-9) and executes them 
against anyone of the 64 maximum Transports. Under 
independent supervision of the Transport Controller, 
a Transport is issued instructions for prepositioning in 
anticipation of reading or writing. Servo and addressing 
electronics, plus a small control computer (NOVA), 
are used to implement the control functions. The 
NOVA translates high-level function commands (read, 
write, erase, search, etc.) into detailed control sequences 
as required. 

Tape Transport: The function of the Transport is to 
move the tape at high speed (1000 ips) for searching, to 
accelerate and decelerate the tape, and to move the 
tape accurately during data transfer. A diagram of the 
Transport is shown in Figure 4. Only those functions 
necessary to 'move the tape (reels, capstans, vacuum 
chambers) and which cannot be provided by the Trans
port Controller or Data Channel are incorporated into 
the Transport. 

Digital Data Channel: Once a tape is prepositioned, 
the Transport Controller and Digital Data Channel 
begin actual reading or writing of data from/to the 
video tape. On writing, the channel accepts a digital 
input which is then frequency-modulated and written 
in that form onto tape. On reading, the FM data is 
demodulated and reconstructed into digital format. 
Read and write channels are independent, permitting 
simultaneous reading and writing of data onto separate 
transports. At an 800 inch per second head speed, the 
data rate is six megabits per second per channel. 

Switching Modules: The function of the switches is to 
attach any Transport Controller to any tape Trans
port, and to attach any Digital Data Channel to any 
tape Transport. Switch modules are housed physically 
at the base of each Transport module. 

Tape Characteristics: The storage media is standard 
10.5 inch reels of magnetic video recording tape. One 
reel contains about 48,000 inches of tape, providing 
43,000 usable inches for writing data. At one million 
bits per linear inch (approx.) of tape, there are 43 
billion (109) bits of data storage per tape reel. Useful 
life will be of the order of 1200 read or write passes to 
any block or its neighbor. Bad blocks can be deleted 
from service without affecting neighboring blocks. 

Tape Format: The format of the tape consists of 
transverse data tracks containing the FM modulated 
signal, plus three digital tracks (Address, Control, and 
Tally) along the edges of the tape. The Control track 
contains one pulse per once-around of the recording 



head, the Address track contains block addresses ° 
through 43,000, and the Tally track records the ac
tivity of each block such as number of accesses, last 
operation performed, and unique ID number. Each 
data track contains about 12,000 frequency-modulated 
bits. Tracks are 3.5 mils wide, separated by 1.8 mils, 
with 168 tracks containing 106 usable data bits in 
roughly one linear inch of tape. Each 106 data bits 
form one addressable block and represents the smallest 
segment of data which can be read or written in a 
single action. Since the length of each data block is 
determined by prerecording a longitudinal Address 
track during tape preparation, the amount of data per 
block could be varied without major change to the TBM 
system. Data blocks can be individually erased and 
rerecorded (erasing is prerequisite to recording) with
out affect on neighboring blocks. See Figure 5. 

Recording Head to Tape Relation: A rotating video 
head drum with eight record/reproduce transducers 
performs contact across the digital data portion of 
tape. Head to tape rotation speed is 800 inches per 
second against a linear tape speed of five inches per 

TO/FROM 
TABLON 
CONTROL 

TO/FROM DATA DISTRIBUTION NETWORK 

Figure 3-AMPEX terabit memory 

TABLON Mass Storage Network 353 

Rf H MOTOR N,51 MHI Y 

~------------------------~) 

TRANSPORT TOP PLATE 

, 

\ 

. -~:, 

\, \,.-:>' 

t" .. /' 
o~' 

TRANSPORT MODULE 

Figure 4-TBM top plate and transport module 



35·4: Spring Joint Computer Conference, 1971 

READ/WRITE 
TRANSOOCER 

ADDRESS TRACK 

REOUt«>ANT aITS 

Figure 5-TBM tape format 

second during reading and writing of data. This pro
duces transverse recordings nearly perpendicular to the 
length of tape. The tape itself extends slightly more 
than 90 degrees of the circumference of the rotating 
head drum. With the eight heads separated by 45 de
grees each, a minimum of two heads are in contact 
with the tape at all times. By providing the same signal 
to these same two heads simultaneously, all the in
formation is recorded twice, i.e., 100 percent redun
dancy recording. This recording technique permits a 
packing density of 1.4 million bits per square inch 
total, or 700,000 effective data bits including re
dundancy. 

Error Detection and Correction: After demarking (a 
tape pretest function) out all known areas of bad 
tape, error rates of less than 1 in 1010 data bits are ex
pected. This performance will be achieved by 100 per
cent redundancy recording, plus an error detection and 
correction scheme described below. 

A code word consists of 955 data bits and 37 EDC 
bits, for a total length of 992 bits. A single bit error 
within a code word (the most common TBM error) is 
detected and corrected with certainty. Beyond single 
bit error correction, the code is designed to detect, but 
not correct, all bursts with very high probability. For 
example, the probability that a burst error will occur 
when reading a TBM block is 2.54 X 10-4 (empirically 
determined). The probability that a burst will not be 
detected is 7.2XI0-9. The product of these two proba
bilities is 1.9 X 10-14 which represents the probability 
of an undetected burst error. Assuming correction of 
single bit errors and allowing 1 TBM block reread for 
every 2,000 BLOCKS read, a system error rate of 
better than 1 in 1012 is fully expected. 

I BM1360 photo-digital system 

The two IBM 1360 storage systems provide TAB
LON with an extermely large volume storage reservoir 

for data files of lesser activity. The 1360 system uses 
photographic film (called the film CHIP) to store data 
in permanent, non-updatablefashion. Thirty-two film 
chips are housed in a small plastic box (called a CELL) 
and transported pneumatically between storage mod
ules and read-write stations. Off-line storage of the film 
chips within their cell containers is also provided. For 
TAB LON then, the 1360 systems will house the perma
nent, hopefully seldom updated, archival segment of 
the total data base. Files stored in the 1360's will be 
larger, their access slower (they may even be off-line), 
and their life more permanent than the active files 
contained within the AMPEX Terabit memory. 

1360 systeIll operation 

As described earlier, the entire data file is assembled 
on the PDP-I0 staging disks prior to entry to the 1360 
storage systems. Writing to the 1360 is a block (18,450 
8-bit characters) at a time' from the PDP-I0, for
warded in burst mode across the channel to the Data 
Controller. The channel is freed for reading between 
blocks. Concurrently, a frame of unexposed film is 
positioned for writing by the Recorder. The Data Con
troller feeds the entire block to the Record station 
where it is written directly onto the film chip with a 
modulated electron beam. This process is followed by 
automatic on-line development of the film chip, con
cluded by placing the fully dried chip into a waiting 
cell. 

Cells remain at the Record/Develop Station until 
such time as the chip containing the last data segment 
arrives. At this point the cell is pneumatically removed 
from the Record/Develop Station and brought to one 
of the two Read Stations fOI readback check. Using a 
special read-no-transfer function within the 1360, the 
entire data file is read with the PDP-I0 being notified 
of any unrecoverable errors. Assuming none, this data 
file is then released from the PDP-IO staging disk. If 
errors are detected, then the PDP-I0 must initiate a 
rewrite of the data to 1360 to insure a valid copy. 
Once determined that all data from the recorded film 
chip can be recovered, no further deterioration of data 
quality is expected. 

Each Read Station permits the presence of two cells, 
thereby enabling exchange of chips between cells. On 
the completion of read-back verification, the chips in
volved with this latest file can be physically inserted 
to another cell if desired for a more logical storage 
arrangement. It should be restated that all decisions 
(and therefore instructions at the 1360) are generated 
by the PDP-I0 as external controller to the 1360 sys
tems. Each point to point movement of a cell, each 



chip pick, each read or write action, requires one or 
more individual commands from the PDP-10 to the 
1360 system. 

Technical sUIllIllary of 1360 systeIll 

The following very brief technical summary is pro
vided for the readers' immediate education. References 
1 to 5 are recommended for further information on the 
IBM 1360 system: 

Film Chip: The smallest physical unit of storage in 
the 1360 system is the film chip, a fine grain silver 
halide emulsion, about 1.4X2.8 inches in size. Data is 
formatted on the chip in 32 frames, each containing 
18,450 eight bit characters, arranged in 492 lines with 
37)1 characters per line. Each line contains 420 bits, 
of which 300 are data bits, 66 are error correction bits, 
12 identify frame and line numbers, and the remainder 
are for synchronization. The coding of a bit is shown in 
Figure 6. Physical frame size is .277 X .267 inches, con
taining 206,640 bits total (147,600 data only) for a 
density of 2 X 106 bits per square inch. Total chip 
capacity is 590,400 ASCII characters. 

Storage Cell: The cell body is approximately 3.0X 
1.6X1.1 inches, and contains 32 chips, each individually 
addressable. Figure 7 shows the orientation of the chips 
within the cell. The cell capacity with 32 film chips is 
18,892,800 ASCII characters, or about the same as a 
fully packed reel of magnetic computer tape. 

Control Processor: A stored program Processor is used 
to provide internal control of the 1360 system. This 
Processor operates at the selenoid-sensor level, deter
mines the various functions which the system performs 
and provides diagnostic and recovery capabilities. 
Specifically, error detection is achieved by hardware, 
but error correction is implemented by a hybrid com
bination of hardware and Control Processor software. 

File Modules: The basic File Module (the first module 
to be installed) stores 2250 cells. "Add-on" modules 
can be attached, each providing storage for 4500 addi
tional cells. Cells are stored in individual compartments 
within movable trays; selection is achieved by moving 
the tray(s), to align bottomless compartments into a 
vertical shaft above the desired cell. Vacuum is applied 
and the selected cell drawn from its storage position. 
Access is a few seconds slower to "add-on" modules, 
but will be negligible during overlapped operation. 

Record/ Develop Station: This unit records the film, 
chip, then completely and automatically develops, fixes 
washes, and dries the film and returns it to a waiting 

TABLON Mass Storage Network 355 

" I 

IJ [I 
TWO MARKS ARE USED TO RECORD EACH 
BIT OR BINARY DIGIT 

TRAtKI j I I • 
PORTIONS 0.' THREE TYPICAL 
TRACKS 0.' THE FRAME 

CODE :\-IARKS ARE "PAINTED" WITH A 
:\-10DULATED ELECTRON BEAM 

IBM 1360 BIT CODING 

Figure 6-IBM 1360 bit configura~.ull 

cell. The Recorder throughput rate is 30,000 charac
ters per second, the recording cycle takes about 18.5 
seconds per chip minimum. Development keeps pace 
with the recorder by processing chips simultaneously 
at each of eight developer stations. Complete processing 
of an individual chip takes about 180 seconds. 

Reader Stations: The Reader opens the cell, extracts 
the addressed chip, and positions it in front of the 
cathode ray tube flying spot scanner. Associated elec
tronics servo the flying spot onto a line of data and scan 
the recorded bit patterns. Information is scanned from 
the chip at an instantaneous rate of 2.5 megabits per 
second, with automatic line pair looping performed if 
the PDP-10 does not accept data promptly or if error 
correction procedures are in effect. 

Data Controller: The Data Controller serves as inter-



356 Spring Joint Computer Conference, 1971 

Figure 7-IBM 1360 storage cell and chip 

face between the 1360 and the PDP-10, handling 
messages, responses, and data transmissions in both 
directions. It accumulates bursts of data from the 
PDP-10 until 18,450 characters (one full frame) have 
been received. The Data Controller then initiates the 
Recorder and forwards the entire frame of data for 
writing. On reading, the Data Controller accepts char
acters from the Reader Station and prepares -them for 
transmission to the PDP-10. Error detection, and some 
correction procedures are also applied by the Data 
Controller if necessary. 

Error Detection and Correction: The 1360 system uses 
a powerful error detection and correction technique: 
Information bits in each line are divided into six-bit 
segments; the code employed can correct errors in an 
five segments in the line of 378 bits. Multiple levels of 
correction are available, making use of the 1360 Control 
Processor if necessary to mathematically reconstruct 
the original data. 

SUMMARY 

The TABLON system is not a myth, or paper proposal. 
All of the hardware components are delivered and in
stalled, except for the AMPEX Terabit memory sys
tem now under construction and scheduled for installa
tion by early 1972. Work on hardware interfacing, and 
software development, is· proceeding full bore with 
most User-CPU's having already exchanged test data 
with TABLON. Partial operation begins in early 1971, 
permitting exchange of data between on-line mass 
storage and standard 10.5 inch magnetic tape. By late 
1971, additional User-CPU's will be attached and mak-

ing daily use of TAB LON for the storage and retrieval 
of their data files. 

The TAB LON network is a first approach, to be 
continually developed and refined as operational time 
is accumulated. There will be many problems in bring
ing a network of this size to operational status; T AB
LON will surely stumble, and perhaps even fall, before 
the payoff begins. However, the TABLON concept has 
definite wide ranging application. As newer mass storage 
devices are developed, they may internally resemble 
the TAB LON organization. As long distance communi
cations become more reliable, and data bases become 
larger at remote locations, the TAB LON concept for 
shared access will prove both economical and feasible 
for other installations. In fact, shared storage in the 
massive capacity range may be the only answer. 

ACKNOWLEDGMENTS 

The authors wish to acknowledge the many out
standing technical contributions provided by others 
associated with the TABLON program; specifically the 
entire team dedicated to the design and implementation 
of the hardware and software systems, and those re
sponsible for maintenance and reliability of the overall 
network. Acknowledgment is due also to the following 
contractors for their enthusiastic support: the AMPEX. 
Corporation, the Digital Equipment Corporation, the 
IBM Corporation, and Westinghouse Electric. 

REFERENCES 

1 J D KUEHLER H R KERBY 
A photo-digital mass storage system . 
Proceedings of the Fall Joint Computer Conference 1966 
pp 735-742 

2 R M FURMAN 
IBM 1360 photo-digital storage system 
Technical Report IBM Systems Development Division 
TR 02.427 May 1968 

3 D P GUSTLIN D D PRENTICE 
Dynamic recovery techniques guarantee system reliability 
Proceedings of the Fall Joint Computer Conference 1968 
pp 1389-1397 

4 J B OLDHAM R T CHIEN D T TANG 
Error detection and correction in a photo-digital memory 
system 
IBM Journal of Research and Development Vol 12 No 6 
pp 421-492 November 1968 

5 R L GRIFFITH 
Data recovery in a photo-digital storage system 
IBM Journal of Research and Development Vol 13 No 4 
July 1969 

6 S DAMRON J R LUCAS J MILLER E SALBU 
M WILDMAN 
A random access terabit magnetic memory 
Proceedings of the Fall Joint Computer Conference 1968 
pp 1381-1387 



A structure for systems that plan abstractly 

by WALTER JACOBS 

The A merican University 
Washington, D.C. 

INTRODUCTION 

The advantages of introducing planning procedures in 
systems that deal with complex tasks are generally 
recognized. Here the special benefits of using abstraction 
in the planning process will be considered, and a 
structure particularly well suited for abstract planning, 
the purposive system, will be described. An example will 
be presented to show how abstract planning operates 
under the purposive system; this is the program 
PERCY, which simulates the behavior of a nest
building insect. 

There are superficial points of likeness between 
PERCY and L. Friedman's ADROIT (Friedman 1967, 
1969). ADROIT is also a simulation of a nest-building 
insect, but PERCY does much more, using a consider
ably shorter and simpler program. The value of the 
purposive system structure is clearly shown by this 
example. 

The concept of abstraction in planning is explained 
in the second section as the making of decisions without 
exploring the course of actions involved in executing 
these decisions. Instead of such exploration, a set of 
goals intermediate to the principal task are evaluated. 
The example of PERCY is described in the third 
section. It shows how the selection of intermediate goals 
can be separated from the translation into action of the 
corresponding decisions. 

The fourth section discusses the hierarchical structure 
that makes the separation possible. The process of 
abstraction takes place in the course of communication 
between adjacent levels of the hierarchy. The operations 
of the purposive system are explained in the fifth 
section; they are few in number, simple, and independent 
of the task. The system's information about the task is 
contained in its knowledge, organized in a data structure 
of standard format. A summary describing the results 
achieved in the PERCY application is given in the 
concluding section. 

357 

DECISIONS, PLANNING AND ABSTRACTION 

Abstraction in the sense used here is applicable to a 
system whose tasks require continual interaction with 
its environment. For such a system, the term action 
refers to an external commitment-an element of the 
system's observable behavior. A decision, on the other 
hand, is an internal operation. The term implies that a 
number of alternatives are evaluated and a selection is 
made. The decision then determines, directly or through 
some intervening process, what action or set of actions 
will follow. 

It is useful to consider some examples. The nest
building insect ADROIT mentioned above provides an 
example where decisions as just defined are not made. 
Sequences of actions that accomplish desired objectives 
are controlled by a hierarchy of routines called Release 
Mechanisms and Selector Mechanisms. But these 
sequences are simply triggered by conditions in the 
environment; no evaluation of alternatives takes place. 

In A. Samuel's checker-playing program (Samuel, 
1959), and in game-playing programs generally, each 
move made by the program is an action. There is one 
decision for each action, and evaluation of the alterna
tives considered in reaching the decision is done by 
analyzing possible sequences of moves to follow the one 
being considered. 

• The SRI robot "Shakey" follows a pattern quite 
different from either of these (Nilsson, 1969). It uses a 
problem-solving approach, in which the entire sequence 
of actions to handle the task is worked out on an intern
ally represented model of the environment before the 
first action is taken. Thus, there is only one decision per 
instance of a task, except where a mismatch between the 
environment and its model causes the planned solution 
to break down during execution. Again, as in the 
game-playing programs, analysis involves exploring 
possible sequences of actions. 

The kind of decision making to be described does not 



358 Spring Joint Computer Conference, 1971 

PERCY AND HIS ENVIRONMENT 

XDX xxx 
Xltlt 

A 

A 

I~I XX! 
xu: 
UI 

XDIt 
ItItX 
XItX 

Figure 1 

A 

XIX xxx 
XDX 

concern itself with the specific actions that may result 
from the decision that is selected. Rather, it considers 
intermediate goals, or way stations on the road to 
completion of the task. In abstract planning, a decision 
selects a goal among those that are available at the time 
the decision is faced, and this selection sets in motion a 
course of action that will arrive at some outcome-usual
ly one of several that are possible. At this point a new 
decision must be made. Thus, there are a number of 
decisions taken in completing a task, and a very much 
larger number of actions. 

Evaluation of goals is based on prior experience with 
similar decisions rather than on analysis of a course of 
action. The likelihood of each outcome is estimated, as 
well as the satisfaction to be gained in arriving at the 
outcome. Thus, an estimate of the expected satisfaction 
from selection of a goal is obtained, and these expecta
tions are used in reaching a decision. 

Past experience can be used because a decision 
remains in force till an outcome occurs. Which outcome 
takes place depends on what is met in the environment. 
In abstract planning, there is an assumption that the 
probabilities are stable. 

Thus, abstract planning frees the system from the 
burden of analyzing the actual process of trying to 
realize a desired outcome. It must be used when the 
system is not able to explore in an internal model the 
explicit consequences of a course of action. 

It is worth emphasizing that in most man-machine 
systems, abstract planning is the man's role in the 
process. The introduction of it into machine systems is 
a step-though far from the final one-toward having 
these systems handle their tasks in a way that deserves 
to be called "intelligent." 

PERCY-AN EXAMPLE OF AN ABSTRACT 
PLANNING SYSTEM 

The environment in which PERCY operates is 
pictured in Figure 1. There is a nest location, with eight 
individual sites at which material is to be placed in 
order to complete the nest-building task. There are a 
number of clumps of material (indicated by x's), a part 
of the upper area where food (small triangles) is hunted, 
and some obstacles to be avoided-in particular, the 
wall that separates the upper and lower areas. In 
addition, there are landmarks (small squares) which are 
visible at a distance, and are used by PERCY in 
reaching spots from which it can see its main targets. 

PERCY's task (there is only one in the present 
version) is to build its nest. To do this calls for eight 
trips. On each trip, one piece of material is located, 
picked up, carried back to the nest, and placed at an 
empty site. On some of the trips, PERCY will also 
get food. 

PERCY uses abstract planning for its trips, and 
makes decisions that try to maintain a high level of 
satisfaction. But its satisfaction will drop if it devotes 
too small a part of its time to the search for food, and 
gets hungry as a result. Satisfaction goes down also when 
it spends too much time getting food, and progress on 
the nest lags. Thus, in order to have good performance, 
the decisions it faces at various stages of the task must 
bring about a proper allocation of its time between 
getting food and building its nest. PERCY must rely on 
abstract planning because it has no internal model of the 
environment on which to explore in detail the conse
quences of a course of action. 

Its observable behavior consists of a series of ele
mentary actions. Each of these is produced in a cycle 
of behavior, which takes up a brief moment of PERCY's 
lifetime. A cycle begins with the receipt of a stimulus 
from the environment, continues by determining the 
desired response, and ends with the action that forms 
the response. 

In the nest-building task, PERCY uses only five 



elementary actions. They are: 

(i) a short movement in the direction of perceived 
target, 

(ii) a short side-step to avoid an obstacle, 
(iii) a turn through a limited angle, 
(iv) a movement partly extending its arm, 
(v) a movement partly retracting its arm. 

To accomplish even a limited objective, a number of 
these elementary actions must be strung together. To 
reach an outcome of a selected goal may require a large 
number of such actions in proper 'sequence, all initiated 
by a single decision. An example of such a sequence from 
a run of PERCY's task will be given shortly. 

Decisions are called for only at certain stages of 
PERCY's task. One such stage occurs when PERCY 
has just completed a trip by adding material to the nest, 
and is about to start another trip. At this point, it must 
decide whether food or material should be sought first. 
A principal factor in this decision is the amount of time 
that has elapsed since it last had food. 

Assigning priority to food accounts for one of the goals 
open at this stage. There are three others, for if PERCY 
wants to look for material first, there are three sections 
of the environment it may head for: the upper area 
shown in Figure 1, and the lower and upper sections of 
the other area. (PERCY is unable to distinguish between 
the two landmarks in the same section; it simply heads 
for the first landmark it sees in the chosen section.) 

To specify the goal, it is sufficient to name the classes 
of targets that are of interest during the time that goal 
is pursued, and to identify which of them is the principal 
target. For example, among the four goals just described, 
the one that gives priority to food is specified as follows: 

Food is the principal target, the door landmark and 
material are alternate targets. 

/' 

The "door landmark" is the one at the entrance to the 
upper area; it must be used because PERCY cannot 
see any target when the wall is in between. 

Each goal has several outcomes. The one just 
described has three· outcomes possible: Food will be 
obtained, or material will be spotted on the way, or 
something "illegal" may take place. This last outcome 
occurs when the environment fails to behave as called 
for in PERCY's program. For example, if the door 
landmark cannot be located, PERCY will go on search
ing till it reaches a point where it gives up the task. If no 
way out of the impasse were available, PERCY would 
continue to search until it "died." 

PERCY uses prior experience to estimate, for each 
goal considered, the probability that each outcome will 

Structure for Systems that Plan Abstractly 359 

occur and the length of time that will be needed to reach 
that outcome if it does occur. Taking account of its 
current state of hunger and progress on the nest, 
together with the estimated time that will elapse, it 
further estimates what its satisfaction will be should 
that outcome happen. Applying its probability esti
mates, it then arrives at an estimate of expected 
satisfaction for the goal being evaluated. Finally, it 
decides on the goal with the highest expectation. 

Nowhere in this process of evaluation does it give 
consideration to the actions that will follow its decision. 
Its evaluations deal only with measures that are quite 
detached from its environmental interactions. In spite 
of this, its decisions give rise to coherent and purposeful 
series of actions that can go on for many cycles of 
behavior before a new decision is required. 

Figure 2 (showing the output of the program as 
plotted on an SC 4060 printer) depicts the greater part 
of one of PERCY's trips. PERCY's movements during 
this trip are marked by a trail of dots, which show the 
successive positions of PERCY's turning center. The 
interval between two dots when PERCY is headed 
toward a target indicates how far it moves in a single 
action. The direction in which it is facing is shown by an 

FIRST TRIP TO NEST 

·····A························· 

,.<~~'~:: .... :.::: ... :: 
.1;" ."7 ... .." Iii 

••• : XliX 
\...t# X"" 

71::.' "'.:1. ""X 

F": :.:.. 

": :.:.. 

r.: 

xax 
xxx xxx 

\\~. ~ 
r.:. ~" 

~" 
.::.. .. 

":\ ~.-
I':-. .-

r:. ~ 
~~ 
i 
;.( 

xx xxx 
XDX 

Figure 2 

.14& 
& 

&1&& 

xxx 
n~ 



360 Spring Joint Computer Conference, 1971 

arrow, every fifth cycle of behavior. When arrows are 
shown without four dots intervening, PERCY is turn
ing, or, in one case, standing and eating food. 

Only three decisions were involved in this series, 
involving more than 300 individual actions by the time 
the trip was finished. About half of this total derived 
from the decision to seek food after material was picked 
up at the location shown in the figure. 

This single food-hunting sequence thus took nearly 
150 cycles. It was made up of four parts, in each of which 
PERCY was executing a limited objective, or subtask, 
contributing to the desired goal. The parts, and their 
corresponding objectives, were as follows: 

(i) A series of turns, searching for a target of 
interest, and ending when the door landmark was 
seen. 

(ii) A series of moves in the direction of that 
landmark, aiming to get near it, and ending when 
the objective was attained. 

(iii) Another series of turns, searching for food, and 
ending when food was spotted. 

(iv) A series of moves in pursuit of the food, that 
brought PERCY within arm's length of it; a 
sidestep to avoid the wall occurred at one point. 
When PERCY was near the food, it extended its 
arm in a series of movements, seized and ate the 
food, and returned its arm to the rest position. 

This behavior was generated in face of an environ
ment that is known only in the most limited way, and 
sensed very crudely. For example, PERCY has only the 
simplest ability to discriminate distances; it uses only 
the three categories "far," "near" and "at arm's 
length." The only information it has about the location 
of key features of its environment is contained in the 
way it associates landmarks with its goals. 

It clearly takes a program of some complexity to 
translate a single goal into a cogent course of action in 
the face of an environment that is so poorly known. The 
next two sections describe how the purposive system 
makes it possible to reuse the major part of that program 
for other goals, and thus to handle a complex task 
successfully with a program of moderate size. For 
further information about PERCY, see Jacobs, 1971. 

THE HIERARCHY OF ABSTRACT PLANNING 

The ability to realize an economical system for 
abstract planning with a variety of goals depends 
critically on the way programs for individual goals are 

combined. The purposive system uses a hierarchical 
organization to achieve this economy. Further, the 
structure of the system is independent of the nature of 
the tasks handled. This is why the greater part of the 
program is common not only to different goals, but also 
to distinct tasks, as long as they use the same set of 
perceptions and actions. 

Thus, it would take a relatively modest enlargement 
of the present PERCY program to add an exploration 
task. This would precede the nest-building, and would 
find a suitable place for a nest, and also pick the 
landmarks to be used in the later task. If other bugs 
were added to PERCY's environment, courting and 
fighting tasks could be readily introduced. 

The hierarchy in the purposive system has four levels, 
corresponding to four components in a physical realiza
tion of the system. These are called the body, task, 
method and strategy components. 

The body component forms the system's interface 
with the environment. It contains the sensory and motor 
apparatus; thus it receives the stimuli that originate in 
the environment, and carries out the actions that 
respond to these stimuli. 

The task component controls the operation of the 
body component. It coordinates sequences of actions 
into subtasks, such as those described in Section 3. It 
frees the higher components from any concern with the 
details of environmental interaction. 

The method component guides the task component 
through the succession of subtasks appropriate for a 
given goal. Since conditions in the environment deter
mine how a subtask will wind up, management at this 
level requires more than a linear sequencing of subtasks. 
The conversion of a decision into its subtasks is 
expressed as a submethod, which resembles a subtask in 
structure. 

The strategy component evaluates and selects goals. 
Since the other components take complete responsi
bility for execution of its decisions, this component is 
concerned only with the outcomes of its decisions. 

There is an obvious analogy in this hierarchy with the 
organization of a large enterprise. The strategy com
ponent corresponds to the top executive level, while the 
body component acts like the mass of employees who 
deal with the suppliers and customers. The other two 
components correspond to the intervening levels of 
management. 

Figure 3 names the communications that are passed 
in support of this hierarchy. (In general, the received 
form of the message is distinguished from the issued 
form.) The way these co~munications are handled is 
important in allowing the system to operate simply and 
economically. The only communications that occur 



internally are the following: 

(i) Once in every cycle of behavior, the body 
component reports a perception to the task 
component. In return it receives an intention. 
This specifies the action to be performed, and 
also specifies the kinds of targets that are of 
interest in forming the perception for the next 
cycle. 

(ii) When the subtask reaches a conclusion, the task 
component reports the situation that has been 
reached to the method component. That com
ponent issues a plan that specifies the next 
subtask to be performed, and identifies the kinds 
of targets involved. 

(iii) When the submethod finally arrives at an out
come, the plan in effect is communicated to the 
strategy component. That component sends back 
its goal, which sets the next submethod in 
motion. 

Under this scheme of operation, the body component 
is continually active in receiving stimuli from the 
environment and issuing responses. At successively 
higher levels, each component is involved less fre
quently than its predecessor, and is more detached from 
what is going on in the environment. The term 
"abstract" planning is therefore an apt description of 
the way the system controls its behavior. 

The upward and downward flows in Figure 3 may be 
found suggestive of the afferent and efferent flows in the 
Central Nervous System of a living creature. There, too, 
a decision can be turned over to lower levels of the CNS 
for execution without demanding the conscious attention 
of the higher brain centers. This analogy will be 
pursued elsewhere, for it can be shown that the structure 
and operations of the purposive system have implica
tions for a theory of the functioning of the Central 
Nervous System in cognitive activity. 

THE OPERATION OF THE PURPOSIVE 
SYSTEJ\1 

The components of the purposive system function as 
finite automata. In this way the structure takes 
maximum advantage of the use of abstraction. The 
inputs and outputs of each component are simply the 
communications that have been described, together with 
external stimuli and responses of the body component. 
The state varittble of the component provides the task 
context, appropriately abstracted, for processing the 
communications most simply and efficiently. 

Structure for Systems that Plan Abstractly 361 

STRATEGY 

COMPONENT 

. . . . . . . . . .) 

" ~Outcome 

METHOD 

COMPONENT 

. 
Goal ~ 

Decision V 

• • • • • '. • • -+ 
't'Feature Plan 

I 

I 

I 

: Situation Choice ~ 

TASK 

COMPONENT 

.~ 

~~Event Intention 

Perception "V 
BODY 

COMPONENT 

I 
Action I 

Stimulus J 
~ 

Figure 3-Components and flow of communication in a 
purposive system 

Except in the body component, each state variable 
acts as a pointer to an entry in a list structure. This 
structure is called the knowledge of the system. It 
contains, in a general format, all information specific to 
the task. The knowledge, as acted on by the general 
operations of the system, simply expresses the two 
functions-the state transition function and the output 



362 Spring Joint Computer Conference, 1971 

function-that describe the component as a finite 
automation. 

This is a very efficient arrangement. Its efficiency is 
enhanced by introducing, as parameters of the knowl
edge of subtasks and submethods, the specific objectives 
of a class of goals. Then a single entry in knowledge can 
apply to a whole group of state variables that differ only 
in their parameters. This makes it possible to execute a 
variety of subgoals with a relatively small number of 
subtasks and submethods. Here again, the structure is 
integrally bound up with the process of abstraction. 

An example from PERCY's program may help' to 
illustrate these points. The following stage of the task is 
assumed to have been reached: PERCY is hunting food, 
has not yet picked up material on the current trip, and 
has the door landmark in sight. The system's state (not 
including the knowledge of the task) is given by four 
variables: 

(i) The goal (state of the strategy component) 
indicates that food is the principal target; the 
alternate targets are the door landmark and any 
item of material. 

(ii) The plan (state of the method component) 
indicates which subtask is in progress: i.e., going 
to a sighted landmark. Its parameters are the 
identities of the landmark and of the alternate 
targets (food and material) whose sighting would 
also bring the subtask to an end. 

(iii) The situation (state of the task component) 
specifies the stage reached in the subtask: The 
landmark is visible but not near, and neither 
alternate target nor obstacle is in sight. 

(iv) The perception (state of the body component) 
records that the principal target is in sight but 
still "far away." No other item of interest is in 
sight. The arm is in the rest position, and 
nothing is held. 

It has been mentioned that the first three of these 
states act as pointers to entries in knowledge. For 
example, the entry that is pointed to by the situation 
(iii) just described contains three items of information: 

(i) The intention, or output of the task component. 
The intention in this case specifies the action of 
moving toward the principal target, and also 
identifies the types of the principal and alternate 
targets. 

(ii) The criteria by means of which the set of inputs 
-i.e., the possible perceptions-is partitioned 
into events. The events are the distinct meanings 
that the next reported perception can have in 
this situation. They include the following: "no 

change," "principal target near," "alternate 
target sighted," "obstacle in way," and "target 
not seen." 

(iii) For each event, the new situation that points to 
the knowledge entry needed should that event be 
recognized. For example, if the event is "no 
change," the new situation is the same as its 
predecessor; if the event is "alternate target 
sighted," the new situation is the one that marks 
the end of the subtask, with the particular target 
sighted as parameter. 

With this format, only the simplest and most general 
operations are needed in order to make the task 
component fUllction as a finite automaton and, in so 
doing, carry out its role in the production of behavior. 
These operations include receiving the perception from 
the task component, applying the criteria in knowledge 
to recognize the event, replacing the situation by the 
new one for that event, and issuing the output located 
in the knowledge entry for the new situation. Except 
when the subtask is done, this output is the intention 
and it goes to the body component. 

If the subtask is done, the output of the new situation 
is the situation descriptor itself, and it goes to the 
method component. In that case, the method component 
will return a plan. The plan is recognized as a choice, 
and this input to the task component will cause a 
second change of situation in the same cycle. This 
second situation will issue an intention to begin the new 
subtask. The process has already been shown schematic
ally in Figure 3. 

The same operations, using the same format of 
knowledge, take place in the method component when a 
subtask ends. In this case the input from the task 
component is the situation, and its recognized form is 
the feature. After the new plan replaces its predecessor, 
the output to the task component is that plan. And 
when the submethod ends, the plan is reported to the 
strategy component. The goal that is received in return 
is recognized as the decision, which then causes another 
change of state to the initial plan of the next 
submethod. 

When a submethod comes to an end and an input to 
the strategy component takes place, it is recognized as 
an outcome of the goal that has been in effect. However, 
a new operation----evaluation-takes place at this level 
in arriving at the new state of the component, and an 
appropriate modification of the structure of knowledge 
is necessary. 

A block diagram summarizing thea operation of 
the purposive system is shown in Figure 4. The 
RECOGNIZE operation carries out the task-independ
ent steps just described: It applies the criteria listed in 



the knowledge entry to the other input, selects the 
listed alternative that best matches that input, and 
issues the corresponding output. This points to the 
knowledge entry that replaces the one just used, and 
activates the communication needed for the next step 
of the process. 

RESULTS OF THE APPROACH 

A summary of the results accomplished on PERCY's 
task is given here as a basis for assessing the potential 
of abstract planning. That task was chosen· as one 
requiring an appreciable number of nonroutine deci
sions, producing activity of long duration without 
human intervention. (Subject to this, the example was 
constructed with an eye to minimizing the labor of 
simulating an environment and the necessary inter
actions with it.) 

In the process of completing its nest, PERCY used 
its five types of subtasks about 80 times. They required 
more than 1900 individual actions. The course taken by 
each subtask or action depended generally on the 
particular targets of the current goal as well as on the 
external conditions that were encountered. 

Inputs 

Sensed stimuli from environment 
Prior intention and perception 

Knowledge entry for prior 
situation 

Current perception 

Intention of current situation 
Current perception 

Knowledge entry for prior plan 
Current situation 

Knowledge entry for current 

cur~!~~a ~i~~ 

Knowledge entry for prior goal 
Current plan 

Knowledge entry for current plan 
Current goal 

RECOGNIZE 

Outputs 

Current perception 

Event 

Current situation 

Action 

Feature 
Current plan 

Choice 
New current situation 

Figure 4-Block diagram of purposive system 

Structure for Systems that Plan Abstractly 363 

Number 
Number of Description of 

Trip Outcome of Outcome Cycles 

1 1 Material taken at (205, 15) 33 
2 Food eaten at (228,410) 147 
3 Material placed at (246,120) 124 

2 1 Material taken at (115,335) 68 
2 Material placed at (250,130) 68 

3 1 Material taken at (205,320) 56 
2 Food eaten at (189,370) 75 
3 Material placed at (260,134) 117 

4 1 Material taken at (115,340) 78 
2 Material placed at (270,130) 81 

5 1 Material taken at (110,340) 87 
2 Food eaten at (217,390) 60 
3 Material placed at (274,120) 136 

6 1 Material taken at (205,320) 69 
2 Material placed at (270,110) 78 

7 1 Material taken at (110,335) 75 
2 Food eaten at (234,370) 64 
3 Material placed at (260,106) 152 

8 1 Material taken at (200,320) 65 
2 Food eaten at (276,390) 98 
3 Material placed at (250,110) 171 

Task completed 1902 

Figure 5--Sequence of outcomes in a single run of PERCY's 
nest-building task. 

PERCY had to make successful decisions in order to 
show good performance. No constraints were imposed 
on these decisions to keep PERCY from choosing 
unsatisfactory courses of action. Further, it operated 
with only the most summary memory of what happened 
in past decisions, and with almost no information about 
environmental conditions on which the quality of its 
decisions depended. I t had no way of exploring the 
future beyond the point at which the next decision 
would be made. 

In spite of these handicaps, PERCY was able to 
perform in impressively successful fashion. Figure 5 
shows the actual outcomes of its series of decisions. The 
coordinates of the places where material and food were 
taken, and the nest locations where material was 
placed, are used to indicate the outcomes. The behavior 
in arriving at these outcomes was in every case as direct, 
purposeful and non-tentative as in the example of 
Figure 2. On the other hand, there was no mechanical or 
trivial pattern to this behavior. 

PERCY did not spend an excessive amount of time 
going after food, which was hunted in only five of the 
eight trips. It also avoided the opposite error of sub
jecting itself to severe hunger. To an observer, every 
one of its many actions would appear meaningful in 
relation to its task. 

The structure of the purposive system made it 
possible to realize these results with a comparatively 
simple program. Written in Fortran (not the most 



364 Spring Joint Computer Conference, 1971 

efficient language for the purpose), the program con
tained about 600 instructions, although no special effort 
was made to hold down this total. The complete run on 
a third-generation computer took about 3 seconds of 
CPU time. 

The problem space in which PERCY operated was 
larger by many orders of magnitude than any that have 
been successfully tackled by a general problem-solving 
system. PERCY's accomplishments are thus a clear 
demonstration of the power of the abstract planning 
approach. Clearly, the way people handle most of their 
tasks is much closer to this pattern than it is to other 
existing general-purpose systems for probJem solving, 
which use extensive exploration of a detailed internal 
representation of the problem. 

In pointing this out, there is no intention to claim 
that the present approach deserves to be described as 
"intelligent." It seems safe to assert that in order to 
merit that characterization, a system must possess both 
problem-solving and abstract planning capabilities, and 
other capabillties as well. Nevertheless, it is believed 
that for many kinds of tasks, the abstract planning 
approach will turn out to be an efficient, economical way 
to deal with them. 

BIBLIOGRAPHY 

L FRIEDMAN 
Instinctive behavior and its computer synthesis 
Behavioral Science Vol 12 No 2 

Robot control strategy 
Proceedings of the International Joint Conference on 
Artificial Intelligence. 
Bedford Mass The Mitre Corp 1969 
W JACOBS 
Help stamp out programming 
Theoretical Approaches to Non-Numerical Problem 
Solving 
Banerji and Mesarovic ed Berlin Springer-Verlag 1970 

How a bug's mind works 
Proceedings American Society for Cybernetics Fourth 
Symposium 
To appear 1971 
N NILSSON 
A mobile automation 
Proceedings of the International Joint Conference on 
Artificial Intelligence 
Bedford Mass The Mitre Corp 1969 
A SAMUEL 
Some studies in machine learning using the game of checkers 
IBM Journal of Research and Development 
Vol 3 No 3 1959 



Unconventional superspeed computer systems 

by TIEN CHI CHEN 

IBM San Jose Research Laboratory 
San Jose, California 

INTRODUCTION 

As machine systems grow in complexity to provide 
ever higher quality and quantity of service, increasing 
attention has to be paid to aspects of computing which 
are not the requirements for problem solving, but 
rather demands imposed by the handling technique 
prescribed for earlier machines! 

A study of the self-optimizing capabilities of large 
computing systems suggests that unconventional sys
tems can be conceived which can gain efficiency, adapt 
to human usage patterns, and be consistent with 
future hardware promises. 

SUPERMACHINE SYSTEMS 

When hardware (and to an extent software) invest
ment for a given system exceeds a certain critical size, 
facilities can be provided for self-optimization. The 
system no longer needs to process the workload pas
sively, exactly as externally prescribed; it becomes a 
complex of autonomous units, each actively manipu
lating resources under its own jurisdiction. We shall 
designate such a large, self-optimized complex a" super
machine system." Self-optimization will be shown to 
be a practical necessity for throughput efficiency; con
ventional processing, by the same token, will be seen 
as a handicap. 

PARALLELISM, PIPELINING AND 
EFFICIENCY· 

An important reason for large systems is throughput 
enhancement. Within a given technology, there are 
two basic techniques to achieve this end: (a) tIuantita
tiv~ split of workload, that is, parallelism by identical 
processors, and (b) qualitative division of labor, an 
extreme case of which is pipelining. 

Employing parallelism, a multiprocessor ~of mul-

365 

tiplicity M is made to sweep over job requirements to 
achieve complete coverage in space-time. The job to 
be processed has a time-dependent natural width 
function w(t). For convenience of analysis we assume 
w(t) to have only two values 1 and W, with time ex
penditures tl and t2 respectively. Jobs with other w(t) 
can usually be recast in terms of this standardized 
model (Figure 1). 

The parallelism ratio p can be defined by 

p= (space-time of the part of job with width W)j 
(space-time of job) 

= Wt2/(t1+ Wt2) 

which is a property of the job. The multiprocessor 
needs to make only one pass to cover the narrow por
tion of the job and n passes to cover the wide portion, 
n=the integer part of [(w+M -1)jM]. The efficiency 
of coverage is 

7]= (space-time of job)j(space-time swept by 
multiprocessor) 

=ljM[I- (l-njW)p]. 

as shown in Figure 2. If W is not exactly divisible by 
M, there will be a residual inefficiency even when 
p=l. 

7] becomes Ijk when I-p=(kWjM -n)j(W -n). 
Figure 3 shows that, for W = 32 and n = 1, even if M 
exactly matches W, 7] falls to 50 percent, 20 percent 
and 10 percent while p is 96.8 percent, 87.1 percent, 
and 71.0 percent respectively; and for W = 100=M, 
7] = 10 percent when p remains as high as 90.9 percent. 
Further, no matter how large M is, the effective mul
tiplicity 7]M can never exceed 1/(1- p). 

Instead of many identical general processors, the 
division of labor approach employs a collection of non
identical, specialized mechanical operators functioning 
simultaneously to form a general facility. An extreme 
form of this is pipelining. 

A simple pipeline is constructed by first analyzing 
a given computing process into a linear sequence of 



366 Spring Joint Computer Conference, 1971 

EQUIPMENT 

A POSSIBLE PARALLEL 
PROCESSOR WITH 
M-lO REQUIRES 2 

PASSES W-32(-N) 
lj-3NT 

Ti4NT 

PARALLELISM RATIO 
-97.91% 

'--------------.... TIME 

Figure I-Job profile for the inner loop of a 32X32 matrix 
multiplication 

microprocedure segments, each of the latter is then 
assigned an independent operator which completes its 
work in exactly one time-quantum r, or a cycle. Each 
job will have turnaround time of Sr, but the steady
state pipeline throughput is S/Sr= l/r, independent 
of S (Figure 4). Given sufficient work-load, the overall 
throughput can approach this value also. 

The space-time diagram of such a pipeline with a 
jobstream of length L is shown in Figure 5, and is 
equivalent to a standard parallelism configuration 
with M=W=S, n=1 and p=I-I/L, hence 1]= 

1/[I+(S -1)/L]. 

'1=1.0~-----------------"" 

.2 

.I 
M=31 

0 M= 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 p=I.O 

Figure 2-Efficiency (I]) versus parallelism ration (P) for W = 32 
If M =31 = W-l, 1] =0.52 when p =1.0 

M=I024r-----------------------------------~ 

4 

2L-.----

.3 .4 .5 .6 .7 .8 .9 p= 1.0 

Figure 3-Efficiency curves for the case W =M 

Therefore, though details differ considerably, essen
tially the same efficiency worries plague the parallel 
and simply pipelined systems. Realistic superspeed 
systems often involve networks of unevenly quantized 
pipelines and nonuniform parallelism. The job stream 
may not possess ideal multiprocessing characteristics, 
and the efficiency becomes even more elusive. Self
optimization then becomes a critically needed feature, 
to allocate available resources to maximize throughput, 
yet preserving the correctness of results. 

TRAVERSAL STEADY-STATE 
TIME THROUGHPUT 

-83--. T ~T 
SI 

+)~)--.)~ 2T 2/2T'" ~T 
S, ~ 

+)--.)--.)~)99~)~)~ ST S/5T'"YT 

5, ~ ~ SS-I Ss 

Figure 4-The invariance of steady-state throughput of a linear 
pipeline 



SELF-OPTIMIZATION 

There are two main categories of optimization: 

(a) Procedure redefinition 
(b) Resequencing of the procedure collection. 

Redefinition calls for much perception and a global 
comprehension, and tends to fall in the domain of 
external optimization, by human or compiler, although 
the IBM System/360, Model 90 series show a modest 
ability.2 

Resequencing of procedures is a chief ingredient of 
multiprogramming.3 By handling many procedures 
together, the total equipment needed for adequate 
throughput will approximate the sum of the average 
(rather than the peak) requirements. Coincidental peak 
requirements often can be resolved, and under-usage 
of equipment avoided, by permuting the workload 
sequence. 

To be truly effective, this freedom to deploy available 
resources should extend down to each autonomous 
unit, within the scope of which the input work stream(s) 
can be analyzed into a number of causally independent 
streamlets, behaving like requirements from different 
users. Available resources are then assigned to enhance 
average progress without completely ignoring anyone 
streamlet. Thus, the supermachine system is expected 
to practice not only multiprogramming in the usual 
sense of the word, but also multiprogramming in the 
small, or "micro-multiprogramming" (Figure 6). The 
workload characteristic to be exploited is job inde
pendence, rather than the much more restricted job 
parallelism. 

The control technique is generalized ,table manage
ment. Each unit will alter linkages, recode, reclassify, 
change priorities, resolve conflicts, handle errors and 
anticipate future events. The hardware requirement 
consists mainly of memories for waiting streamlets and 

EQUIPMENT 

/' /' /" 
... 

/" 
r J.5& -'25& J3S& \ rt~ .... 5&1 I 
I 

J.s.. -'2s.. J 3s.. .... s.. i 
I I 
I I 
I J.~ J2~ J353 ,53 I 
I 

1"'52 

I 
~ JzSz J352 JLSz I 

I I J.5. I Jz5. ~5. .... s. I 
J 

I. LT 

'---------------------+TIME 

Figure 5-Profile of a stream of L jobs through a 5-segment 
pipeline. If L = 32, parallelism ratio = 96.25 percent and effi

ciency = 88.89 percent 

Unconventional Superspeed Computer Systems 367 

I An=:crcl I A1fk]JI' I JOB I 

1A21B2~1 JOB2 

IG~~'\I JOB 3 

~ 
SELECTOR SELECTOR 

A-UNIT 8-UNIT C-UNIT 

A3' BI' C2' 
A3 83' CI' 
A2' 83' C2' 
AI' ,81 CI 
A2 B3 C2 
AI B2 C3 

(JOBS) 

(INPUT SEQUENCE) 

(AUTONOMOUS UNITS) 

(POSSIBLE OUTPUT 
SEQUENCE) 

Figure 6-Micro-multiprogramming 

encoded signals, and capabilities for selection and 
switching; in other words associative memory co
packaged with standard logical hardware. Such a dis
tributed intelligence is costly with current technology, 
but can exploit LSI for its speed, economy, compact
ness, also its penchant for regularity. 

CONVENTIONAL PROCESSING 

To achieve effective self-optimization, the system 
should be granted maximum freedom to redefine, or 
resequence the work within its power. This implies 
minimum ove'rspecijication by external agents. The 
real-time happenings, ,because of multiprogramming, 
overlapped I/O, interruption features and conditional 
branches, are virtually impossible to anticipate. De
tailed specifications, made without the intimate knowl
edge of real-time events, tend to handicap the self
optimization. 

Most problem programs today are written in pro
cedural languages. These programs are pre-processed 
by a compiler into machine instructions, to be subse
quently handled explicitly by the machine. The com
piled machine codes historically were the only messages 



368 Spring Joint Computer Conference, 1971 

RO
RI
R2-

M 

C<AI!)~C(RO) 

C(RO"C(O)~C(RO) 

C(RO)-C(AJk)~C(RO) 

C(RO)-+C(Aik) 

(0) EXECUTION OF MATRIX LOOP 

C(Aik)~C(RO) 

C(RO).C(O)~C(R I) 
C(RI)- C(AJI)-+C(R2) 

C(R2)-+ C(Aik) 

(b) MATRIX LOOP IN THREE - ADDRESS 
CODE 

+) 

C(Aik)~..c(ROT 

..c(ROJ*C(O)~1:(R6J 

.c(ROT - C(AJk)~.ctROr 

.ccROJ"--+C(Aik) 

C(A.). C(O)- C(AJI)--+C(Aik) 

(c) ELIMINATION OF REDUNDANCY 
BY INTERNAL FORWARDING 

Figure 7-Processing of mult.ioperator statements 

understood by the earlier machines, and are still well
suited for most machines today; yet they contain the 
excessive tactical detail which condemns the super
machine system to inefficiency. 

PROCESSING MULTI-OPERATOR 
STATEMENTS 

Consider the following FORTRAN innerloop, lffi

portant in solving simultaneous equations: 

DO 300 K=J, 100 
300 A (I, K) =A(I, K)*Q-A(J, K) 

During compiling, statement 300 is recast into in
structions. For one- and two-address schemes, the 
arithmetic part reads as follows. 

C(Aik)~C(RO) 

C(RO)*C(Q)~C(RO) 

C(RO) - C(Ajk)~C(RO) 

C(RO)~C(Aik) 

Pipelined arithmetic operators M, A can be installed 

for multiplication and addition, each with a throughput 
of one result per cycle. Therefore, one could rightfully 
expect an overall throughput of one matrix element 
(A ik) per cycle. However, the instruction processing 
stream crosses upon itself three times at RO, thus 
slowing the flow to V6 the expected maximum rate 
(Figure 7a). 

The use of a three-address code 

C(Aik)~C(RO) 
C(RO)*C(Q)~C(R1) 

C(R1) - C(Ajk)~C(R2) 

C(R2)~C(Aik) 

results in the diagram in Figure 7b. There is no pipeline 
crossing, and unit throughput can be maintained. How
ever, the redundant use of the three registers is appar
ent, and the pipeline is lengthened unnecessarily; also 
three-address codes usually consume more program 
space. 

A still better way is to apply surgery on the instruc
tion sequence to eliminate the redundant paths, re
sulting in the clean pipeline in Figure 7c. 

+) 

C(Aik)--tC(RO) 
C(RO)*C(Q)~C(RO) 

C(RO) - C(Ajk)~C(RO) 

C(RO)~C(Aik) 

This technique, employed in real time, is found in 
the S/360 Model 90 series of computers.2 ,3 It re-creates 
the original string of operations. Clearly, hardware 
would be saved and compiling simplified if the frag
mentation into instructions never had taken place. 

ARRAY PROCESSING 

The program in the last section involves the sys
tematic handling of vectors. In routine computing in
volving arrays, the system is only given piecemeal 
information about the individual array elements, 
making it hard to divine the intent of array processing. 
Consequently, undue burden is placed on the decoding 
mechanism and the memory access hardware, and 
arithmetic pipelines tend to run at fraction capacity. 
There is the extra cost to perform index arithmetic 'to 
locate the array elements one at a time, and execution 
of branch instructions to 'close the loop.' 

Concise descriptions of array procedures already 
exist in APL/3605 and to a lesser extent in PLll, and 
are easy to use. Should these specifications remain un
altered by the act of compiling, the supermachine can 
be designed to mobilize its resources in real time. 



Memory data can be accessed en masse. Arithmetic 
operators can be reserved, and pre-configured into 
appropriate pipelines. Work areas can be created~ 

I/O devices can be synchronized. Competing programs 
can be downgraded in priority. In general, near-peak 
efficiency can be achieved for the self-optimized super
machine system. 

NAME HANDLING 

During compiling, the names in the procedural 
language program are mapped into addresses. 

Various relocation schemes further map the addresses 
into some other addresses. "Paging"6 and "cache"7 
mechanisms perform dynamic mappings in real time, 
based on information not available to' the compiler, 
and have tremendous performance implications to 
large machines. The initial mapping by the compiler, 
not capable of replacing paging and caching, is at least 
partly redundant. 

Most procedural languages today use names; the 
latter's value to the human user lies not just in the 
mnemonic value, but in the freedom to associate. A 
name is, so to speak, a universal reference-quantum. 
Names are used to designate words, arrays, bits, char
acter strings, and structures. They also designate 
branch targets, subprograms, and aspects, of the oper
ating system. They may designate other names, empti
ness (null) or a state of incomplete definition. One 
entity may have several names, or several items may 
have the same name, the ambiguity being resolvable 
by context. 

Direct handling of names by the machine not only 
removes a redundancy; its implication to the human 
user will be profound. During debugging, the correla
tion between the machine code and human procedural 
program will be more easily understood, and there is 
the possibility of following and manipulating associa
tions efficiently during computation. 

The handling of array names will permit the real
time assignment of space to fit the needs exactly. The 
programmer need not specify array dimensions, and 
indeed can alter them during computation. Already this 
freedom is being exploited to great advantage in 
APL/360 andPL/l. The rigid dimensioning of arrays 
is proving to be a fetter for both man and machine. 

MACHINE" M" FOR MULTI-OPERATOR 
STATEMENTS 

The unconventional supermachine systems are indi
cated in Figure 8. One can consider first Machine M, 
which uses (variable length) multi-operator statements, 

Unconventional Superspeed Computer Systems 369 

Figure 8-Unconventional machines 

possibly with rigid field formats and conventional 
addressing. Decoding will become more orderly, and 
the intermediate register assignment will be entirely 
up to the supermachine system in real time. 

As each statement describes a causal chain of events, 
at any time normally only one member of the chain 
can be handled. The unfinished statement segment can 
be put in a waiting state; other statements bearing no 
causal interlock can be processed simultaneously. The 
hardware to detect and resolve logical conflicts, and 
to redefine procedures (such as that used for internal
forwarding2

) will be simplified. 

MACHINE "A" FOR ARRAY PROCESSING 

Array processing is one of the most-discussed un
conventional machine features, but is usually presented 
outside the context of general purpose computing. 
Machine A is meant for array processing consistent 
with multiprogramming through self-optimization. It 
would use special array instructions, possibly created 
from a special compiler. There is, however, no need to 
prevent the system from handling its regular computing 
load. 

When arrays A, B, interact to produce array C, 
elements within each array often are not causally 
linked, and thus can operate independently to fill an 
arithmetic pipeline. Array processing is then just a 
special form of multiprogramming, in which the' jobs' 
are extremely well-defined, and are known in advance 
to be independent. 

In Machine A, arithmetic for large arrays can be 
assigned a high priority and behaves like, say, up to 16 
programs in parallel. Other jobs are given lower priority 
to ensure non-conflict. The handling, however, must be 
such that all jobs are processed sooner or later. Since 
array processing does not tax the decoding mechanism 



370 Spring Joint Computer Conference, 1971 

too heavily, it is actually desirable to mix-in conven
tional jobs which are decode-limited. 

Both statement processing and array processing 
enhance performance and are mutually consistent. It is 
possible to consider them together, to yield Machine 
"1l1 A." The format incompatibility can be resolved by 
adopting statements to array processing also. 

We observe that procedural languages like APL/360 
and PL/1 already have array facilities, and can be used 
as a basis. These languages also have a distinct name
orientation which seems particularly advantageous 
for arrays. 

NAME HANDLING MACHINES 

To handle names directly in all ramifications, would 
seem to require significant overhead beyond those 
needed for multi-operator statements, array processing 
and standard self-optimization. This is because associ
ated with each name is information concerning at
tributes and whereabouts of the named object. Al
though the handling technique is again table manage
ment, consistent with self-optimization needs, never
theless, the resources needed will not be trivial, and 
except for special purpose tasks (such as text handling, 
list processing), name handling should combine with 
statement processing and array handling. 

MACHINES "AN" AND "MAN" WITH ARRAY 
NAMING 

Machine AN handles only those names affecting 
arrays, and is org~nized like Machine A. MAN is 
similarly Machine M A with array naming. 

The simplest way to achieve array naming is to com
pile array names into indirect addresses, and a dynamic 
array management system is triggered on each referral. 
This is reminescent of interpretive matrix arithmetic 
software which dynamically manages a shared memory 
pool. 8 During computation both the array characteriza
tion and· array contents can change. 

As arrays increase in size, the name-handling over
head rapidly becomes insignificant relative to compute 
cost. It is interesting that, at the same time, dynamic 
memory management is truly meaningful with array 
naming, and is most beneficial when storage space is 
at a premium, namely when arrays are large. The hard
ware realization of AN and MAN will further allow much 
smaller arrays to be efficiently treated under extensive 
multiprogramming. 

The concatenation of vectors to form a longer vector 
will be automatically accomplished; when these vectors 
are character strings, this facility will have a clear in-

pact on the automatic handling of procedure language 
statements and textual material. 

MACHINE "MAN" 

The above technique can be extended to all types of 
namable information, but the overhead cost would be 
relatively large if the associated data processing time 
is small. Machine MAN attempts to pay an overhead, 
in order to reduce the overhead due to conventional 
compiling. It is a fully interpretive machine. 

Here a procedure language is executed more or less 
directly. The system will have powerful facilities both 
for scanning for delimiters and for I/O conversion. 

The choice of procedural language will have a strong 
bearing on machine efficiency. The APL/360 language 
seems closest to the ideal, because of its conciseness, 
array orientation, excellent non-numeric handling 
capabilities with which most other procedural languages 
can be simulated. Even the strict (right to left) execu
tion sequence is an asset for hardware implementation. 

Once the procedural language has been decided upon, 
an important machine-suitable canonical subset can be 
selected for hardware implementation. Canonical state
ments will be handled efficiently. More complex state
ments can be treated by slower means, which definitely 
includes software assistance. 

One can, therefore, write a code only the innerloop of 
which is written in canonical form, gaining both effi
ciency and convenience. Or, the user can submit a non
canonical code, and during execution a canonical ver
sion can be created and used. This is analogous to the 
'loop mode' feature in the System/360 Model 90 series, 
where the first traversal of the loop lays the groundwork 
for the subsequent efficient computation. The distinc
tion between compiling and interpretation tends to 
disappear. 

THE HUMANIZATION OF THE COMPUTER 

The concept of computer instructions is a quarter
century old, and compilers have been in use for more 
than a decade. Both have a genuine reason for their 
invention, and are still playing a vital role in computing 
today. 

Their introduction represented giant strides toward 
humanizing the computer, but not necessarily the 
ultimate step. 

Within the computer complex, it has become known 
that the most valuable resource is the human user. 
Into the global cost-effectiveness equation must be 
factored his throughput, turnaround time, endurance 
limit and ability to learn. These are tied in with his 



physiological makeup and behavioral patterns which 
have withstood the test of millenia. 

Circuitry and memory costs represent but a small 
function of the total cost of a computer installation. 9 

The projected sharp drop due to large scale integration, 
when applied to conventional designs, may mean a 
small lowering of the user's total cost for the same per
formance level. By the same token, the doubling or 
even quadrupling of circuitry and memory would 
represent a minor increase of total cost. Yet the added 
hardware, if placed conventionally, will tend not to 
have too significant an effect on systems whose through
put bottlenecks lie in the costly I/O and auxiliary 
memory equipment. 

Unconventional designs, on the other hand, can en
hance both internal supermachine efficiency and human 
effectiveness. Each design represents an aspect of 
"language-directed computer design"1° as seen from a 
self-optimizing supermachine viewpoint, consistent 
with the advance of future hardware, and made possible 
by the recent advances in the codification of software 
techniques. The future compiler or prepossessor, freed 
of the drudgery of detailed tactical machine code 
specifications, can now emphasize the strategic deploy
ment of resources towards global optimization of 
throughput performance. 

REFERENCES 

1 T C CHEN 
Parallelism, pipelining, and computer efficiency 
Computer Design Vol 10 pp 69-74 1971 

2 T C CHEN 
The overlap design of the IBM System/360 Model 92 central 
processing unit 

Unconventional Superspeed Computer Systems 371 

Proc AFIPS Fall Joint Computer Conference 1964 Part II 
pp 73-83 

3 D W "ANDERSON et al 
Machine philosophy and ~:nstruction handling 
IBM J Res Dev Volume 11 pp 8-241967 
R M TOMASULO 
An efficient algorithm for exploiting multiple arithmetic um:ts 
Ibid pp 25-33 

4 E F CODD 
Multiprogramming 
Advances in Computers Volume 3 pp 78-155 1962 

5 A D F ALKOFF K ElVERSON 
The APL/360 terminal system 
Interactive systems for experimental applied mathematics 
Proc of ACM Symposium Washington DC 1967 M Klerer 
and J Reinfelds editors Academic Press N ew York 1968 
pp 22-37 

6 B RANDALL C J KUEHNER 
Dynamic storage allocation systems 
Comm ACM Volume 11 pp 297-3051968 

7 J S LIPTAY 
Structural aspects of the System/360 Model 85. II: the Cache 
IBM Systems J Volume 7 pp 15-211968 
C J CONTI 
Concepts for buffer storage 
IEEE Computer Group News Volume 2 No 8 pp 9-131969 

8 F H BRANIN et al 
An interpretive program for matrix arithmetic 
IBM Systems J Volume 4 pp 2-24 1965 

9 M G SMITH W A NOTZ 
Large-scale integration from the user's point of view 
Proc AFIPS Fall Joint Computer Conference 1967 pp 87-94 

10 W M McKEEMAN 
Language-directed computer design 
Proc AFIPS Fall Joint Computer Conference 1967 pp 
413-417 
C McFARLAND 
A language-oriented computer design 
Proc AFIPS Fall Joint Computer Conference 1970 pp 
629-640 





High speed division for binary computers 

byH. LING 

International Business Machines Corporation 
San Jose, California 

INTRODUCTION 

Beyond the steps of SHIFT and SUBTRACT, division 
used in early machines generally relied upon Newton's 
method.7,IO In order to increase the speed of division 
the following two approaches, namely the S-R-T 
recoding method 5, 9,10,12 and the iterative multi
plication scheme,l, 3, 13 have resulted. The S-R-T
method offering an average shifting distance of 2.6 
bits4 is very close to the scheme used in Stretch;2 the 
iterative multiplication scheme providing a quadratic 
convergence rate with preselected starting block has 
been used in IBM 360/91. However, the shifting 
distance of the S-R-T method varies with the format 
of the denominator; the required number of multipli
cation and the starting table of the quadratic con
vergence scheme need further improvement. This 
paper is concerned about the second approach, i.e., 
the iterative multiplication scheme. Recently the 
author8 has developed a method in which one of the 
iterative multiplication is replaced by a fixed point 
subtraction. In this paper a better method is developed, 
this new method not only eliminates one of the 'itera
tive multiplication but also reduces the size of the 
starting table. The detailed derivation of the al
gorithm will be presented first, followed by a detailed 
description of the implementation procedure along 
with two examples. The comparison of the proposed 
division scheme with the others are also enclosed. 

THE ALGORITHM 

In binary division the quotient Q can be described as 

(1) 

where Ex, Ey are the exponent of the numerator and 
the denominator 

q=n/o 

373 

nand 0 are the mantissa of the numerator and 
denominator 

The normalized denominator 0 can be written as 

0= 0 .1020304 ••• On. 

Let us rewrite q into the following 

and let 

(3) 

Where L represents the first leading L-bit of the de
nominator. By substituting equation (3) into equation 
(2) we obtain 

2nk 
q= 1+k(2-L+1) (0.OL+1 ••• On) (4) 

Before further expansion of equation (4), the value of 
L is to be decided first. The choice of L is limited by 
either the size of the table where the value of k is kept, 
or the maximum number of fan-in and fan-out when 
the value of k is to be logically implemented. However, 
the size of the table and the maximum number of fan-in 
and fan-out can be slightly reduced due to the fact the 
leading bit of the normalized denominator is always 
equal to one, and the last bit of the L-Ieading bit can 
always be set to zero (if it is not so) by modifying the 
equation (4). Therefore, the size of the k-table is equal 
to 2 (L-2) , or the maximum number of fan-in is equal 
to 2(L-2), or the maximum number of fan-in is equal to 
L - 2. Under these constraints L is chosen to be 8. 

Let us rewrite equation (2) into the following 

n 
q= ----------------------------o . 1020304050607 + 2-708 + 2-80 . 09010 .•. On 

(5) 

with slight algebraic manipulation, equation (5) can 



374 Spring Joint Computer Conference, 1971 

be written as follows 

where 

n 
q=------------------------

o . dl d2d3d4d5d6d7 + 2-s0 . d9dlO • •• dn 
(6) 

dl = 02lh040506070s 

~= OS[02 (Oa' +0/ +05' +06' +0/) 

+02' (03+04+05+06+07) J+OS'02 

d3 = OS[03 (04' +05' +06+07') +0/ (04+ 05+06+ 07) J 

+OS'03 
d4 = OS[04 (Os' +06') +0506(04+ 07) J+OS'04 

d5 = Os {05[06' (02+ 03) +o7'J + 05[0607 (02+ 03) J 

+ 02' 03' 0607 } + os' Os 
d6 = OS[06 EB 07 J+ OS' 06 

~ = O/OS+070S' = [07EBOS] (7) 

d9dlO • •• dn = Os' (09010 ••• On) + Os (09' 010' ••• On') 

Substituting equation (7) into equation (3) and (4), 
we obtain 

1 
k = ------------

(0 . dl d2d3d4d5d6d7 ) 2 
(8) 

and 

2nk 
(9) 

When Os equals to one, the denominator of equation 
(9) equal to 1+k(2-70·d9dlO •• ·dn ); when Os equals to 
zero, the denominator of equation (9) is chosen to be 
1- k(2-70·dgdlO • • ·dn ). 

In order to converge [l/1±k(2-70·d9d10 •• ·dn ) J 
rapidly, the term 8 p is so defined to control the signifi
cant digit by equation (10) 

(10) 
where 

(11) 

D is the denominator of q of equation (9) and f (D) = 
(D/2) (D+1). 

It can be seen from equation (11) that if D has L
leading ones, or L-leading zeros after the one following 
the binary point, 281 will have at least 2L leading ones. 
Since 1±k(2-70·d9dlO •• ·dn ) will either have 8 leading 
ones or 8 leading zeros after the one following the 
binary point, 281 will have at least 16 leading ones, 
and 282 will have at least 32 leading ones. Substituting 
P=2 into equation flO), we have 

(12) 

Dividing both sides of equation (12) by D, equation 
(12) becomes 

:; ~ ~ e;) -e:') (H228') 

~ (1- ~) (HD") (13) 

or 

282 = (2-D) (I+D'2) 
D . (14) 

Generally speaking 32-bit precision is sufficient for 
single precision division, by substituting equation (14) 
into equation (9) we finally obtain 

q=2nk(2-D) (I+D'2) (15) 
or 

Q = 2E.,-E1I2nk (2 - D) (1 + D'2) (16) 

Equation (15) shows that if there are two multipliers 
available, a 32-bit precision quotient can be obtained 
with three multiplications. 

STEP I 

STEP II 

STEP III 

Q _ 2Ex-Ey .!! 
6 

_ 2Ex-Ey n 
O.lfJ26364 - 6

n 

Ex-Ey 21m 
- 2 -7 

I ± k{2 O.dgd
lO 

- d
n

) 

.. 2 Ex-By 2Im{2-D)(I+o,2) 

Multiplier I 
COllputes 

I Multiplier II 
:cOIIputes 

-7 I 

k{2 O.dgdlO - dn) : 2kn 
- - - - - --7 - - - - - -, 
D - I ± k(2 O.dgdlO - dn), +loaically 

L--_____ ,.--_~ ___ -' implemented 

I 
Multiplier I 
computes 

2Im(2-D) 

; Multiplier II 
: computes 

:D,2 
.- - - - - - - - - - -
I 

• ______ ,---_..:....: 1::..:.+0::..,_2 ___ +loaically 
implemented 

Multiplier I computes the quotient 

Q _ 2Ex-Ey 2Im(2-D)(l+D,2) 

Figure 1-The data flow of the proposed division schemes 



DESCRIPTION 

The implementation of this division scheme requires 
the logical implementation of d's, finding k from table 
1, and three consecutive multiplications to find the Q. 

The general data flow of this method can be divided 
into following three steps as shown in Figure 1. 

In order to explain the operating procedure step by 
step, two examples are given. 

Example 1. Find the quotient of 11957/44459 with 
32-bit precision. 

In binary these numbers are shown as 

10111010110101 
Q= 1010110110101011 

0.10111010110101 
Q = 2-

2 

0.1010110110101011 

since 08 = 1, all the d's are logically implemented ac
cording to equation (7). 

dl =l 
~=O 
da=l 
d4 =0 
dij=l 
d6 =1 
d7 =1 

=01010101 

Using dld2dad4dijd6d7 (dl = 1 always) as an entry into 
table 1, k is obtained. 

k = 0.1011110001010010011001000000110 

STEP I. 

Multiplier I computes k (2-70. dgdIOdlldI2dlad14dI5dIS) = 
0.0000000001111101000011101011011 (round off be
yond 32-bit) 

D = 0.1111111110000010111100010100101 

2 - D = 1.0000000001111101000011101011011 

For as = 1, 2 - D can be obtained directly by setting the 
leading bit of k (2-70. dgdlO • •• d16 ) equal to one. No 
mathematical operations are needed. Multiplier II 
computes 2kn 

2kn = 1.0001001011011111111000011101100 

(round off beyond 32-bit) 

High Speed Division for Binary Computers 375 

STEP II. 

Multiplier I computes 2kn(2 - D) 

2kn(2 - D) = 1.0001001101100101111010001101010 

Multiplier II computes D'2 

D'2 = 0.000000000000000000111101000110 

1 + D'2 = 1. 000000000000000000 11110 1 00011 0 

1 + D'2 can be obtained by directly setting the leading 
bit of D'2 equal to one. 

STEP III. 

Multiplier I computes Q 

Q=2Ex-EV2kn(2-D) (1+D'2) 

Q = 2-2 
( 1.0001001101100010011010101000110100101. .. ) 

i 
accuracy up to 34-bit-J 

which is 0.2689444207 in decimal. 
Example 2. Find the quotient of 11957/44203 with 

33-bit precision. 
In binary these numbers are shown as 

10111010110101 
Q= 1010110010101011 

0.10111010110101 
Q =2-

2 

0.1010110010101011 

since as = 0, all the d's are obtained from- equation (7). 
In this case they are equal to the a's. Using dld2dad4dijd6d7 
(dl = 1 always) as an entry into Table I, k is obtained. 

k = 0.101111101000001011111010000011 

STEP I. 

Multiplier I computes 

= 0.0000000011111110100000101111101 

D= 1+k(2-70.dgdIO • • ·dI6 ) for os=O 

D = 1.0000000011111110100000101111101 

Multiplier II computes 2kn 

2kn = 1.0001011000010001110111000100100 



376 Spring Joint Computer Conference, 1971 

TABLE I-The k-Table TABLE I-The k-Table (Continued) 

d k d k 

1000000 1.0000000000000000000000000000000 1111100 0.1000010000100001000010000100001 
1000001 0.1111110000001111110000001111110 1111101 0.1000001100010010011011101001100 
1000010 0.1111100000111110000011111000010 1111110 0.1000001000001000001000001000001 
1000011 0.1111010010001001100011010110000 1111111 0.1000000100000010000001000000100 
1000100 0.1111000011110000111100001111000 

d = O. dld2d3d.d5<4d7 1000101 0.1110110101110011000000111011011 
1000110 0.1110101000001110101000001110101 1 
1000111 0.1110011011000010101101000100100 k=-

2d 
1001000 0.1110001110001110001110001110010 
1001001 0.1110000001110000001110000001110 
1001010 0.1101110101100111110010001010011 
1001011 0.1101101001110100000011011010100 
1001100 0.1101011110010100001101011110011 
1001101 0.1101010011000111011110110000010 
1001110 0.1101001000001101001000001101001 
1001111 0.1100111101100100011101001010100 
1010000 0.1100110011001100110011001100110 TABLE II-The Quotient Digits qj+l of Example 1 Generated 
1010001 0.1100101001000101100001111110011 by S-R-T Method 
1010010 0.1100011111001110000011000111110 
1010011 0.1100010101100101110010000111110 

2xj qj+l operation 1010100 0.1100001100001100001100001100010 
1010101 0.1100000011000000110000001100000 
1010110 0.1011111010000010111110100000110 0 0.101110101101010 1 shift, subtract d 
1010111 0.1011110001010010011001000000110 1 0.000110100101001 0 shift 
1011000 0.1011101000101110100010111010001 2 0.001101001010010 0 shift 
1011001 0.1011100000010111000000101110000 3 0.011010010100100 0 shift 
1011010 0.1011011000001011011000001011011 4 0.110100101001000 1 shift, subtract d 
1011011 0.1011010000001011010000001011010 5 0.010010011100101 0 shift 
1011100 0.1011001000010110010000101100100 6 0.100100111001010 1 shift, subtract d 
1011101 0.1011000000101100000010110000001 7 1.110010111101001 0 shift 
1011110 0.1010111001001100010000010101110 8 1.100101111010010 0 shift 
1011111 0.1010110001110110100100011000010 9 1.001011110100100 -1 shift, add d 
1100000 0.1010101010101010101010101010101 10 1.101110011110011 0 shift 
1100001 0.1010100011101000001111110101100 11 1.011100111100110 -1 shift, add d 
1100010 0.1010011100101111000001010011101 12 0.010000101110111 0 shift 
1100011 0.1010010101111110101101010000001 13 0.100001011101110 1 shift, subtract d 
1100100 0.1010001111010111000010100011111 14 1.101100000110001 0 shift 
1100101 0.1010001000110111110000110010110 15 1.011000001100010 -1 shift, add d 
1100110 0.1010000010100000101000001010000 16 0.000111001101111 0 shift 
1100111 0.1001111100010001011001011110100 17 0.001110011011110 0 shift 
1101000 0.1001110110001001110110001001111 18 0.011100110111100 0 shift 
1101001 0.1001110000001001110000001001110 19 0.111001101111000 1 shift, subtract d 
1101010 0.1001101010010000111001111101101 20 0.011100101000101 0 shift 
1101011 0.1001100100011111000110100101001 21 0.111001010001010 1 shift, subtract d 
1101100 0.1001011110110100001001011110111 22 0.011011101101001 0 shift 
1101101 0.1001011001001111110110100110110 23 0.110111011010010 1 shift, subtract d 
1101110 0.1001010011110010000010010101000 24 0.010111111111001 0 shift 
1101111 0.1001001110011010100001011100010 25 0.101111111110010 1 shift, subtract d 
1110000 0.1001001001001001001001001001001 26 0.001001000111001 0 shift 
1110001 0.1001000011111101101111000000101 27 0.010010001110010 0 shift 
1110010 0.1000111110111000001000111110111 28 0.100100011100100 1 shift, subtract d 
1110011 0.1000111001111000001101010110111 29 1.110010000011101 0 shift 
1110100 0.1000110100111101110010110000100 30 1.100100000111010 0 shift 
1110101 0.1000110000001000110000001000110 31 1.001000001110100 -1 shift, add d 
1110110 0.1000101011011000111100101111110 32 1.100111010010011 0 shift 
1110111 0.1000100110101110010000001000101 33 1.001110100100110 -1 shift, add d 
1111000 0.1000100010001000100010001000100 34 1.100011111110111 0 shift 
1111001 0.1000011101100111101010110110000 35 1.000111111101110 -1 shift, add d 
1111010 0.1000011001001011100010100111111 36 1.100110110000111 0 shift 
1111011 0.1000010100110100000010000101010 



STEP II. 

Multiplier I computes 2kn(2-D) 

2kn (2 - D) = 1.00010100111111010110100001001011 

Multiplier II computes D'2 

D'2 = 0.0000000000000000111111010000100 

1 + D'2 = 1.0000000000000000111111010000100 

STEP III. 

Multiplier I computes Q 

Q=2Ex- EY2kn(2-D) (1+D'2) 

TABLE III-The Quotient Digits qj+l of Example 2 Generated 
by 8-R-T Method 

2xj qj+l operation 

0 0.101110101101010 1 shift, subtract d 
1 0.000111000101001 0 shift 
2 0.001110001010010 0 shift 
3 0.011100010100100 0 shift 
4 0.111000101001000 1 shift, subtract d 
5 0.011010111100101 0 shift 
6 0.110101111001010 1 shift, subtract d 
7 0.010101011101001 0 shift 
8 0.101010111010010 1 shift, subtract d 
9 1.111111011111001 0 shift 

10 1.111110111110010 0 shift 
11 1.111101111100100 0 shift 
12 1.111011111001000 0 shift 
13 1.110111110010000 0 shift 
14 1.101111100100000 0 shift 
15 1.011111001000000 -1 shift, add d 
16 0.010100100101011 0 shift 
17 0.101001001010110 1 shift, subtract d 
18 1.111100000000001 0 shift 
19 1.111000000000010 0 shift 
20 1.110000000000100 0 shift 
21 1.100000000001000 0 shift 
22 1.000000000010000 -1 shift, add d 
23 1.010110011001011 -1 shift, add d 
24 0.000011001000001 0 shift 
25 0.000110010000010 0 shift 
26 0.001100100000100 0 shift 
27 0.011001000001000 0 shift 
28 0.110010000010000 1 sbpt, subtract d 
29 0.001101101110101 0 shift 
30 0.011011011101010 0 shift 
31 0.110110111010100 1 shift, subtract d 
32 0.010111011111101 0 shift 
33 0.101110111111010 1 shift, subtract d 
34 0.000111101001001 0 shift 
35 0.001111010010010 0 shift 
36 0.011110100100100 0 shift 

High Speed Division for Binary Computers 377 

TABLE IV-The Comparison of Various Methods Used to Obtain 
the Quotient with 32-bit Precision 

M (multiplication) 
8 (subtraction) 

Method Anderson Ferrari 8-R-T Wallace The 
Precision 

digit 

time required 
to obtain 4M 
32-bit 

Example 1 
6M, 28 13 cycles 4M 

Example 2 

proposed 
method 

3M 

precision 
quotient 12 cycles 20 cycles 10 cycles 12 cycles 9 cycles 

Q = 2-2 (1.00010100111111100111101000010010000· .. ) 

i 
accuracy up to 33 bit-J 

Which is 0.02705020021 in decimal. 

COMPARISON 

In order to compare the speed of the various division 
methods, the machine cycle will be used as a basic 
unit. The precision of the quadratic convergence 
method with preselected starting block is easy to 
predict. However, the exactly shifting pattern of the 
S-R-T method has to be evaluated step by step. Ac
cording to Anderson1 that 32-bit by 32-bit multiplica
tion takes 3 main machine cycles, this is the converting 
factor used in this paper to convert the number of 
multiplications into machine cycles. 

The iterative multiplication approach includes the 
Wallace proposed scheme,13 the Anderson's denomi
nator convergence method1 ,6 and Ferrari's OGS 
method.3 For solving the example 1 and 2 in section III 
with 32-bit precision, Wallace method requires 3 itera
tive multiplications with starting block of 6-bit to find 
the reciprocal of the denominator, totally 4 multiplica
tions are needed to find the quotient. Anderson's de
nominator convergence scheme requires 4 iterative 
multiplications with starting block of 7-bit. Ferrari's 
OGS method requires 5 multiplications and two sub
tractions with starting block of 6-bit to find the re
ciprocal of the denominator, totally 6 multiplications 
and 2 subtractions are needed to find the quotient. 
Therefore, the use of Wallace method requires 12 
machine cycles, Anderson's method 12 cycles, and 
Ferrari's method 20 cycles. 

For 32-bit precision, the use of S-R-T method to find 
the quotient in example 1 and example 2 require 13 and 
10 cycles respectively. The set of rules for quotient 



378 Spring Joint Computer Conference, 1971 

determination is the following 

qj+l = 1 2xj~ (Y2) 

qj+l =0 ( - Y2) S2xr~ (Y2) 

qj+l = - 1 2xj < ( - Y2) 

where 2xj is the partial dividend at the start of jth 
step, qj is the quotient, the d and 2xj for example 1 can 
be written as 

d = 0.1010110110101011 

2Xj= 0.10111010110101 

for example 2 can be written as 

d = 0.1010110110101011 

2Xj= 0.10111010110101 

The quotient digits qj for example 1 and 2 are shown 
in Tables II and III respectively. 

The detailed comparison of the division speed of 
the various methods is listed in Table IV. 

REFERENCES 

1 S F ANDERSON J G EARL 
R E GOLDSCHMIDT D M POWERS 
Floating-point execution unit 
IBM Journal of Research and Development Vol 11 No 1 
pp 34-53 January 1967 

2 W BUCHHOLZ 
Planning a computer system 
McGraw-Hill pp 216 1962 

3 D FERRARI 
A Division method using a parallel multiplier 
IEEE Transactions on Electronic Computers Vol Ec-16 
pp 224-226 April 1967 

4 C V FREIMAN 
Statistical analysis of certain binary division algorithm 
Proceeding IRE Vol 49 pp 91-103 January 1961 

5 H L GARNER 
Number systems and arithmetic 
Advanced in Computers Edited by F L Alt and M 
Rubinoff Academic Press pp 173-175 1965 

6 R E GOLDSCHMIDT 
Application of division by convergence 
M Sc Thesis Dept of Elec Engineering MIT June 1964 

7 C C GOTLIEB J N P HUME . 
High-speed data processing 
McGraw-Hill pp 51-52 1958 

8 H LING 
High speed computer division using multiple-bit decoding 
technique 
To be published 

9 0 L MAcSORLEY 
High-speed arithmetic in binary computers 
Proceeding of IRE Vol 49 pp 67-91 January 1961 

10 J E ROBERTSON 
A new class of digital division method 
IEEE Transaction on Computers Vol Ec-7 pp 218-222 
Sept 1958 

11 P RABINOWITZ 
Multiple precision division 
CACM 4 pp 98 1961 

12 K D TOCHER 
Techniques of multiplication and division for automatic 
binary computers 
Quart Journal Mach and Applied Math Vol XI Pt 3 pp 
364-384 1958 

13 C S WALLACE 
A suggestion for a fast multiplier 
IEEE Transaction on Computers Vol Ec-13 pp 14-17 
Feb 1964 



A unified algorithm for elementary functions 

by J. S. WALTHER 

Hewlett-Packard Company 
Palo Alto, California 

SUMMARY 

This paper describes a single unified algorithm for the 
calculation of elementary functions including multipli
cation, division, sin, cos, tan, arctan, sinh, cosh, tanh, 
arctanh, In, exp and square-root. The basis for the 
algorithm is coordinate rotation in a linear, circular, or 
hyperbolic coordinate system depending on which 
function is to be calculated. The only operations re
quired are shifting, adding, subtracting and the recall 
of prestored constants. The limited domain of con
vergence of the algorithm is calculated, leading to a 
discussion of the modifications required to extend the 
domain for floating point calculations. 

A hardware floating point processor using the algo
rithm was built at Hewlett-Packard Laboratories. The 
block diagram of the processor, the microprogram 
control used for the algorithm, and measures of actual 
performance are shown. 

INTRODUCTION 

The use of coordinate rotation to calculate elementary 
functions is not new. In 1956 VoIder developed a class 
of algorithms for the calculation of trigonometric and 
hyperbolic functions, including exponential and loga
rithm. In 1959 he described a COordinate Rotation 
DIgital Computer (CORDIC) for the calculation of 
trigonometric functions, multiplication, division, and 
conversion between binary and mixed radix number 
systems. Daggett in 1959 discussed the use of the 
CORDIC for decimal-binary conversions. In 1968 
Liccardo'did a master's thesis on the class of CORDIC 
algorithms. 

It is not generally realized that many of these algo
rithms can be merged into one unified algorithm. 

COORDINATE SYSTEMS 

Let us consider coordinate systems parameterized by 
m in which the radius R and angle A of the vector 

379 

P = (x, y) sho~n in Figure 1 are defined as 

R=[X2+ my2J/2 

A =m-1/ 2 tan-1[ml / 2y/xJ 

I t can be shown that R is the distance from the origin 
to the intersection of the curve of constant radius with 
the x axis, while A is twice the area enclosed by the 
vector, the x axis, and the curve of constant radius, 
divided by the radius squared. The curves of constant 
radius for the circular ( m = 1), linear ( m = 0), and 
hyperbolic (m = -1) coordinate systems are shown in 
Figure 1. 

ITERATION EQUATIONS 

Let a new vector Pi+! = (Xi+!, Yi+l) be obtained from 
P i = (Xi, Yi) according to 

(3) 

(4) 

where m is the parameter for the coordinate system, 
and Oi is an arbitrary value. The angle and radius of 
the new vector in terms of the old are given by 

A i+1=Ai- a i (5) 

Ri+l=Ri*Ki (6) 
where 

ai = m-1/2 tan-Ie ml/2oiJ (7) 

Ki = [1 +moi2J/2 (8) 
J 

The angle and radius are modified by quantities which 
are independent of the coordinate values. Table I gives 
the equations for ai and Ki after applying identities A2 
and A5 from the appendix. 

For n iterations we find 

Rn=Ro*K 

(9) 

(10) 



380 Spring Joint Computer Conference, 1971 

y 

m= 1 
-- ............... 

" 

R 

Figure I-Angle A and Radius R of the vector P=(x, y) 

where 
n-l 

a=Lai 
i=O 

n-l 

K=IIKi 
i=O 

(11) 

(12) 

The total change in angle is just the sum of the incre
mental changes while the total change in radius is the 
product of the incremental changes. 

If a third variable z is provided for the accumulation 
of the angle variations 

(13) 

and the set of difference equations (3), (4), and (13) 
is solved for n iterations, we find, 

xn =K {xo cos (amI/2) +yoml/2 sin (amI/2 ) } (14) 

Yn = K {yo cos (aml/2) - xom-1/2 sin (aml/2) } (15) 

zn=zo+a (16) 

where a and K are as In equations (11) and (12). 

TABLE I-Angles and Radius Factors 

Coordinate Radius 
System m Angle (Xi Factor Ki 

1 tan-l~i (1 +~i2)112 
0 ~i 1 

-1 tanh-l~i (1_~~.2)1I2 

These relations are summarized in Figure 2 for m= 1, 
m = 0 and m = -1 for the following special cases. 

1. A is forced to zero: Yn = O. 

2. z is forced to zero: Zn = o. 
The initial values Xo, Yo, Zo are shown on the left of each 
block in the figure while the final values xn, Yn, Zn are 
shown on the right. The identities given in the appendix 
were used to simplify these results. By the proper choice 
of the initial values the functions x z, y/x, sin z, cos z, 
tan-l y, sinh z, cosh z, and tanh-1 y may be obtained. In 
addition the following functions may be generated. 

tan Z = sin z/cos Z 

tanh Z = sinh Z / cosh Z 

exp z=sinh z+cosh z 

(17) 

(18) 

(19) 

In w=2 tanh-ley/x] where x=w+1 andy=w-1 (20) 

(w)1/2= (X2_ y2)1/2 where x=w+}i and y=w-}i (21) 

CONVERGENCE SCHEME 

The angle A of the vector P may be forced to zero 
by a converging sequence of rotations ai which at each 
step brings the vector closer to the positive x axis. 

, ~ tr= '. (<<0,. - ,.~ .) 

7 Y Itl (y cos z + x sin z) 

z Z ,----+0 
i 

'1' ~~~ y Y 0 

-1 
z Z z + tan (y/x) 

CIRCUlAR (_1). z ... 0 CIRCULAR (_1). A ... 0 

n-1 2 1/2 

~ - If (1 + OJ ) for n iterations 

j-O 

X~ X ~x 

y --J--~LY + x·z 

z~t- Z i~o 
LINEAR (m-O). z ... 0 

'->~'-'''' -" • + , ....... ) 

Y ~ __ ~----41t_1 (Y cosh z + x sinh z) 

z~~z_l-~o 
HYPERBOLIC (m - -1). z ... 0 

n-1 

LINEAR (m-O). A ... 0 

x~HX _iC_1 l"T7 
y ~ ._Y_!---70 

-1 
z ~~~ z + tanh (y/x) 

HYPERBOLIC (m - -1). A ... 0 

Ir 2 1/2 
It_I - II (1 - OJ ) for n iterations 

j-O 

Figure 2-Input-output functions for CORDIC modes 



The magnitude of each element of the sequence may be 
predetermined, but the direction of rotation must be 
determined at each step such that 

(22) 

The sum of the remaining rotations must at each 
step be sufficient to bring the angle to at least within 
an-l of zero, even in the extreme case where Ai=O, 

1 Ai+11 =ai. Thus, 
n-l 

ai- ~ aj<an-l 
j=i+l 

(23) 

The domain of convergence is limited by the sum of 
the rotations .. 

n-l 

/ Ao /-~ aj<an-l 
j=O 

n-l 

max 1 Ao 1 = an-l + ~ aj 
j=O 

(24) 

(25) 

To show that A converges to within an-l of zero 
within n steps we first prove the following theorem. 

Theorem 

holds for i~O. 

Proof 

n-l 

/ Ai 1 < an-l + ~ aj 
j=i 

(26) 

We proceed by induction on i. The hypothesis (26) 
holds for i=O by (24). We now show that if the hy
pothesis is true for i then it is also true for i+ 1. Sub
tracting ai from (26) and applying (23) at the left 
side yields 

[ 

n-l] 
-ai< an-l+ ~ aj 

j=i+l 

Application of (22) then yields 

n-l 

/ Ai+11 < an-l + ~ aj 
j=i+l 

(27) 

(28) 

as was to be shown. Therefore, by induction, the hy
pothesis holds for all i~O. 

In particular, the theorem is true for i = n so that 

(29) 

The same scheme may be used to force the angle in 

Unified Algorithm for Elementary Functions 381 

TABLE II-Shift Sequences for a binary code 

coordinate domain of 
radix system shift sequence convergence 

p m Fmi; i~O max I Ao I 

2 1 0, 1, 2, 3, 4, i, ... .-..1. 74 
2 0 1,2,3,4,5, i+l, ... 1.0 
2 -1 1, 2, 3, 4, 4, 5, .... * '-"1.13 

* for m = -1 the following integers are repeated: 
{4, 13, 40, 121, ... , k, 3k+ 1, ... } 

radius 
factor 

K 

.-..1.65 
1.0 

,,-,0.80 

z to zero. The proof of convergence proceeds exactly as 
before except that A is replaced by z in equations (22) 
through (29). By equation (25) z has the same domain 
of convergence as A. 

max 1 Zo 1 = max 1 Ao I· (30) 

Note that since K is a function of Oi2, where Oi = 
m-1/ 2 tan[ ml/2aiJ, K is independent of the sequence of 
signs chosen for the ai. Thus, for a fixed sequence of 
ai magnitudes the constant 11K may be used as an 
initial value to counteract the factor K present in the 
final values. 

USE OF SHIFTERS 

The practical use of the algorithm is based on the 
use of shifters to effect the multiplication by Oi. If p is 
the radix of the number system and F i is an array of 
integers, where i ~ 0, then a multiplication of x by 

(31) 

is simply a shift of x by F i places to the right. The 
integers F i must be chosen such that the angles 

(32) 

satisfy the convergence criterion (23). The domain of 
convergence is then given by (25). 

Table II shows some F sequences, convergence 
domains, and radius factors for a binary code. 

The hyperbolic mode (m = -1) is somewhat compli
cated by the fact that for ai =tanh-1 (2- i ). the con
vergence criterion (23) is not satisfied. However, it can 
be shown that 

(33) 

and that therefore if the integers {4, 13, 40, 121, ... , k, 
3k+ 1, ... } in the Fi sequence are repeated then (23) 
becomes true. 



382 Spring Joint Computer Conference, 1971 

TABLE III-Prescaling Identities 

Identity 

r sin D if Q mod 4=0} 

sin (Q ~+ D) = i C?S D. ~f Q mod 4 = 1 
2 - sm D If Q mod 4 =2 

L -cos D if Q mod 4=3 

{

COS D if Q mod 4=01 
cos(Q ~+D)= -sin D ~fQ mod 4=1 

2 -cos D If Q mod 4=2J 
sin D if Q mod 4=3 

tan-' G)~~-tan-'(Y) 
2Q 

sinh(Q loge2+D) =2" [cosh D+sinh D-2-2Q(cosh D-sinh D)] 

2Q 
cosh(Q loge2+D) =2" [cosh D+sinh D+2-2Q(cosh D-sinh D)] 

tanh(Q loge2+D) = sinh (Q loge2+D)/cosh(Q loge2+D) 

tanh-1(1- M2-E ) = tanh-1(T) + (E /2)loge2 

where T=(2-M -M2-E)/(2+M -M2-E) 

exp(Q loge2+D) =2Q(cosh D+sinh D) 

loge(M2E) =logeM +Eloge2 

(2E12 sqrt(M) if E mod 2 =0 1 
sqrt(M2E) = i ~ 

l2 (E+l) 12 sqrt(M /2) if E mod 2 = 1 J 

EXTENDING THE DOMAIN 

The limited domain imposed by the convergence 
criterion (25) may be extended by means of the pre
scaling identities shown in Table III. For example, to 
calculate the sinc of a large argument, we first divide 
the argument by 7r /2 obtaining a quotient Q and a re
mainder D where I D I < 7r /2. The table shows that 
only sin D or cos D need be calculated and that 7r /2 is 
within the domain of convergence. Note that the sine 
and cosine can be generated simultaneously by the 
CORDIC algorithm and that the answer may then be 
chosen as plus or minus one of these according to Q 
mod 4. As a second example, to calculate the logarithm 

Domain 

1 D 1<~=157 2 . 

IDI<~=157 2 . 

1 y 1 <1.0 

1 D 1 <loge2 =0.69 

1 D 1 <loge2 =0.69 

1 D 1 <loge2 =0.69 

0.17 <T <0.75 

for 0.5::;;M <1, E~l 

1 D 1 <loge2 =0.69 

0.5SM <1.0 

(0.5::;;M <1.0 

i 
l 0.25 sM /2 <0,5 

0.5::;;1 M,,! <1.0 

0.25::;;! M y/2Mz 1 < 1.0 

Domain of 
Convergence 

1.74 

1.74 

1.74 

00 

1.13 

1.13 

1.13 

( -0.81, 0.81) 

1.13 

(0.10, 9.58) 

(0.03, 2.42) 

(-1.0, 1.0) 

(-1.0, 1.0) 

of a large argument we first shift the argument's binary 
point E places until it is just to the left of the most 
significant non-zero bit. The fraction M then satisfies 
0.5 ~M < 1.0 and as shown in the table therefore falls 
within the domain of convergence. The answer is calcu
lated as logeM + E loge2. 

ACCURACY 

The accuracy at the nth step is determined in theory 
by the size of the last of the converging sequence of 
rotations ai, and for large n -is- approximately equal in 
digits to F n-l. The accuracy in digits may conveniently 



be made equal to L, the length of storage used for each 
variable, by choosing n such that F n-l = L. 

In practice the accuracy is limited by the finite 
length of storage. The truncation of input arguments 
performed to make them fit within the storage length 
gives rise to unavoidable error, the size of which de
pends on the sensitivity of the calculated function to 
small changes in the input argument. In a binary code, 
the truncation of intermediate results after each of L 
iterations gives rise to a total of at most log2L bits of 
error. This latter error can be rendered harmless by using 
L+lo~L bits for the storage of intermediate results. 

In a normalized floating point number system it is 
desirable that all L bits of the result be accurate, inde
pendent of the absolute size of the argument. To ac
complish this for very small arguments it is necessary 
to keep each storage register in a normalized form; i.e., 
in a form where there are no leading zeros. It is possible 
to do this by transforming the iteration equations (3), 
(4), (13) to a normalized form according to the follow
ing substitutions. 

x becomes x' (34) 

y becomes y' 2-E (35) 

z becomes z' 2-E (36) 

aF becomes aF' 2-F (37) 

where E, a positive integer, is chosen such that the 
initial argument, placed into either the y or z register, 
is normalized. 

The result of the substitutions is 

x' (;-x' +my'2-(F+E) 

y' (;-y' - X'2-(F-E) 

z' (;-z' +ap'2-(F-E) 

(38) 

(39) 

(40) 

For simplicity the subscripts i and i+ 1 have been 
dropped. Instead, a has been expressed as a function 
of F as in equation (32), and the replacement operator 
((;-) has been used. i may be initialized to a value such 
that Fi=E: 

(41) 

and n may be chosen such that L significant bits are 
obtained: 

(42) 

Note that n-iinitial=L and that therefore providing 
L+lo~L bits for the storage of intermediate results is 
still adequate. 

The radius factor K is now a function of i = iinitial as 
well as m. 

n-l 

K m.i = II (1 +m2-2Fi) 1/2 

j=i 

(43) 

Unified Algorithm for Elementary Functions 383 

Shifter 
Control 

+ 

Adder 
Control 

ADDER I +mu 
'--------4 SUBTRACTER 

+ 

ADDER I -u 
SUBTRACTER 

{ SIGN OF Y DECISION 
SIGNALS SIGN OF1 

+ 

ADDER I 
SUBTRACTER 

CONSTANTS: ex m
t 

F 

READ
ONLY 

MEMORY 

Figure 3-Hardware block diagram 

+u 

Fortunately, not all the reciprocal constants l/Km •i 

need to be stored since for large values of i 

1 2' -. -=I-m(%)2-2
?" 

K m •i 

(44) 

and therefore all the constants having i>L/2 are 
identical to within L significant bits. Therefore, only 
L/2constants need to be stored for m = + 1 and also 
for m = -1. For m = 0 no constants need to be stored 
since KO•i = 1 for i2::1. 

A similar savings in storage can be made for the 
angle constants am,F since for large values of F 

a'm,F=am,F 2F = 1-m(73)2-2F, (45) 

and thus, as for the K constants, only L/2 constants 
need to be stored for m = + 1 and also· for m = -1. 
For m=O no constants need to be stored since a'o,F = 1 
for F2::1. 



384 Spring Joint Computer Conference, 1971 

m= {+1.0.-1} 

U=l U=-l 

ENDTEST 

NO 

YES 

END 

Figure 4-Flowchart of the microprogram control 

HARDWARE IMPLEMENTATION 

A hardware floating point processor based on the 
CORDIC algorithm has been built at Hewlett-Packard 
Laboratories. Figure 3 shows a block diagram of the 
processor which consists of three identical arithmetic 
units operated in parallel. Each arithmetic unit con-
tains a 64-bit register, an 8-bit parallel adder/sub-
tracter, and an 8-out-of-48 multiplex shifter. The as-
sembly of arithmetic units is controlled by a micro-
program stored in a read-only memory (ROM), which 
also contains the angle and radius-correction constants. 
The ROM contains 512 words of 48 bits each and oper-
ates on a cycle time of 200 nanoseconds. 

The processor accepts three data types: 48-bit float-
ing point, 32-bit floating point, and 32-bit integer. All 
the functions are calculated to 40 bits of precision 
(approximately 12 decimal digits), and the accuracy 
is limited only by the truncation of input arguments. 

The essential aspects of the microprogram used to 
execute the CORDIC algorithm are shown in Figure 4. 

The initial argument and correction constants are 
loaded into the three registers and m is set to one of the 
three values 1, 0, -1. If the initial argument is small, 
it is normalized and E is set to minus the binary ex
ponent of the result, otherwise, E is set to zero. Next, 
i is initialized to a value such that Fm,i=E. A loop is 
then entered and is repeated until F m,i- E = L. In this 
loop the direction of rotation necessary to force either 
of the angles A or z to zero is chosen; the binary vari
able u, used to control the three adder/subtracters, is 
set to either + 1 or -1; and the iteration equations are 
executed. 

Table IV gives a breakdown of the maximum execu
tion times for the most important functions. The fig
ures in/the column marked "data transfers from com
puter" are the times for operand and operation code 
transfers between the processor and an HP-2116 
computer. 

The processor retains the result of each executed 
function. Thus, add, subtract, multiply and divide re
quire only one additional operand to be supplied, and 
the one operand functions do not require any operand 
transfers. The first operand is loaded via the LOAD 
instruction, and the final result is retrieved via the 
STORE instruction. 

TABLE IV-Maximum Execution Times 

DATA 
CORDIC PRESCALE, TRANSFERS 

EXE- NORMAL- FROM 
CUTION IZE, MISC. COMPUTER TOTAL 

ROUTINE .usec .usec .usec JLsec 

LOAD 0 5 25 30 
STORE 0 0 15 15 

ADD 0 15 25 40 
SUBTRACT 0 25 25 50 
MULTIPLY 60 15 25 100 
DIVIDE 60 15 25 100 

SIN 70 85 5 160 
COS 70 85 5 160 
TAN 130 85 5 220 
ATAN 70 15 5 90 
SINH 70 55 5 130 
COSH 70 55 5 130 
TANH 130 55 5 190 
ATANH 70 45 5 120 
EXPONENTIAL 70 55 5 130 
LOGARITHM 70 45 5 120 
SQUARE- 70 25 5 100 

ROOT 



CONCLUSION 

The unified CORDIC algorithm is attractive for the 
calculation of elementary functions because of its 
simplicity, its accuracy, and its capability for high 
speed execution via parallel processing. Its applications 
include desktop calculators, as in the HP-9100 series; 
air navigation computers, as described in VoIder's 
original work; and floating point processors, as illus
trated in this paper. 

ACKNOWLEDGMENTS 

The author wishes to thank the many people at 
!Jewlett-Packard Laboratories and Cupertino Division 
for their contributions and support. 

REFERENCES 

1 D H DAGGETT 
Decimal-binary conversion in Cordie 
IRE Transactions on Electronic Computers Vol EC-8 No 3 
pp 335-339 September 1959 

2 M A LICCARDO 
An interconnect processor with emphasis on Cordie mode 
operation 

Unified Algorithm for Elementary Functions 385 

Masters Thesis EE Dept University of California at 
Berkeley September 1968 

3 J E VOLDER 
Binary computation algorithms for coordinate rotation and 
function generation 
Convair Report IAR-1148 Aeroelectronics Group June 1956 

4 J E VOLDER 
The Cordie trigonometric computing technique 
IRE Transactions on Electronic Computers Vol EC-8 No 3 
pp -330-334 September 1959 

APPENDIX 

Mathematical identities 

Let i = ( - I )1/2 

z==lim m-I /2 sin (zml/2) 
m-+O 

z==lim m-I /2 tan-l (zml/2) 
m-+O 

sinhz== -i sin (iz) 

coshz == cos ( iz) 

tanh-1z== -i tan-l (iz) 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 





A software system for tracing numerical significance during 
computer program execution 

by H. S. BRIGHT, B. A. COLHOUN, and F. B. MALLORY 

Computation Planning, Inc. 
Washington, D. C. 

INTRODUCTION 

This report will describe and discuss a presently
operational software system for tracing and displaying 
numerical accuracy in digital computer calculation. 
A FORTRAN program processed by the system is 
executed in an artificial arithmetic, in which every 
arithmetic step produces, in addition to the numerical 
result, an estimate of the number of significant digits 
in that result. Programs have been processed success
fully with significance mode segments totalling as many 
as 1400 FORTRAN statements. 

Actual input data and results of previous computa
tions are used in unaltered form. The user may specify 
initial accuracy of data; may select any part or parts 
of a program for execution in the error-indicating mode; 
and may request accuracy of any variable quantity at 
any point during program execution. 

Numerical errors in digital computations which are 
logically correct arise from three principal sources: 
"inherent," or input data inaccuracy; "analytic," or 
mathematical compromise; and "generated" error, 
from finite-precision machine arithmetic.1 

In the work described here, most concern· has been 
given to inherent and generated error categories. We 
have considered mainly the limitations of input data 
and the behavior of subtract error and rounding error 
generation. Specifically, we have developed a computer 
program for tracing and displaying, and localizing the 
sources of, the changes in number significance that 
occur during machine computation. 

MACHINE ARITHMETIC 

In scientific and engineering calculations, wide
spread use is made of the normalized floating-point 
arithmetic feature in which a number is represented 
by a fraction part (a number between positive and 

387 

negative unity) and an exponent part (a scale factor, 
an integer power to which the machine's number base 
or radix R is to be raised to constitute the desired 
multiplier) . 

The floating-point feature is an automatic means for 
scaling the number value whenever an arithmetic 
operation would result either in an unnormalized 
number (i.e., one or more high-order zeros in the base-R 
representation of the fraction part) or in a carry out 
of the high-order digit position of the fraction part. 
This automatic feature has the advantage of great user 
convenience, but suffers from the danger that gross 
errors may be generated without being evident to the 
user. 

Thus, conventional floating-point arithmetic is 
dangerously optimistic, in that it may camouflage error 
under an unknown number of not-known-to-be-valid 
digits. At the other extreme, error bounds analysis 
(which can be mechanized through the use of Interval 
Arithmetic) 6 provides worst-case estimates and in 
general is pessimistic. The initial version of the present 
system seeks to provide realistic predictions of remain
ing accuracy, utilizing significance arithmetic.5 

Subtract error, following subtraction of two nearly
equal· quantities, is the result of the cancellation of a 
large number of high-order digits. The fact that this 
can happen internally in a large calculation may cause 
sudden loss of all or almost all significance. This is the 
most frequent cause. for gross failure of a calculation 
in a program that is logically correct. It is often difficult 
to anticipate, and a user would need to hand-simulate 
the entire calculation, using actual input data, in order 
to observe the numerical behavior of calculations. In a 
typical program that is large enough to justify com
puter usage, the number of program steps executed is 
so large as to make hand simulation infeasible. 

Round-off error may be propagated up to or through 
the lowest-order retained digit when lower-order digits 



388 Spring Joint Computer Conference, 1971 

are removed in order to represent results in an arith
metic register. Wilkinson3 showed that in some repeated 
operations (e.g., summations) the accumulated round
off error may grow rapidly; with a simple recursion 
formula, the rounding error can accumulate expo
nentially as the number of terms. 

The example below involves a common procedure 
for checking the validity of results obtained during 
computation. It demonstrates the danger of judgments 
without consideration for, and knowledge of, numerical 
significances encountered during calculation. Forsythe4 

attributes to Moler the following set of two linear 
equations, two solutions 8 1 and 8 2, and the corre
sponding residuals R1 and R2, and asks which solution 
is more nearly correct: 

0.780x+0.563y - 0.217 = 0 
0.913x+0.659y - 0.254 = 0 

81 = (Xl, YI) = (0.999, -1.001) 
82 = (X2' Y2) = (0.341, - 00.87) 

R1 (Xl, YI) = ( - .001343, - .001572) 
R2(X2, Y2) = ( - .000001,0) 

Residual observation (how nearly does an approxi
mate solution satisfy a problem) is a widely-used 
method for checking the accuracy of computer programs 
and procedures for solving polynomial equations, 
systems of non-linear and linear equations, matrix 
inversions, and the like. It might be concluded, because 
residuals R2 are smaller than R I , that 8 2 is the better 
of the two solutions; however, note that 8 1 compares 
favorably with the true solution (1.0, -1.0), while 8 2 

does not. 
In this example, the examination of residuals, with

out consideration of the significance of the coefficients 
and of the results, leads to the wrong conclusion. The 
coefficients each have three significant digits as do 
Xl, Y1 and X2, while Y2 has only two significant digits; 
thus, the Ri cannot be calculated with the accuracy 
displayed and should be written as 

RI(XI} Yl) = ( - .001Ni , - .001Nj ) 

R2(X2, Y2) = ( - .00Nk - .00Nz) 

where each N m is a digit of unknown value. Obviously 
now RI is the better solution; but this is obvious only 
if the significances of the numbers are known. 

In this example, the calculations are so brief and 
simple that the results can be calculated quickly by 
hand. In a typical computer calculation, this is not the 
case. The system described here can, however, supply 
the needed significance estimates' for even a large and 
complicated calculation, so that judgments can be 
made by the user with reasonable objectivity. 

The basic concept of Significance Arithmetic5 is that 
each number .should carry with it an index specifying 
the most probable number of digits currently valid. At 
each arithmetic step, significance algorithms are exe
cuted to perform an estimate of the result significance, 
taking into account the nature of the calculation step, 
the previous significance and value of each incoming 
operand, and the precision of the machine for this 
operational step. The nature of rounding, if any, 
applied by the hardware, as well as the actual overall 
accuracy of supporting routines, must be taken into 
account. 

APPLICABILITY 

Besides providing a testing and debugging tool for 
numerical calculation, the system as described here has 
other potential applications, all related to the user's 
need to make explicitly evident the relationship between 
precision ("How many digits are recorded?") and 
significance or accuracy ("How many of the recorded 
digits are valid?"). 

One of these applications is assisting a user to make 
a choice between single-precision, double-precision, or 
perhaps higher-order calculations. This choice is 
usually made on intuitive grounds, perhaps coerced 
by memory size and/or processing time limitations, 
and certainly affected by custom or perhaps dogma 
within the computing organization. By executing his 
program in significance arithmetic, a user can obtain a 
factual measure of the result significance, and can 
choose to use the order of precision which yields the 
required accuracy. 

An obvious application is the use of this system as 
an experimental tool for determining computer word
length (precision) requirements. 

It is less obvious that the system can also be used 
to determine the accuracy requirements for input data: 
By executing an entire program or program system 
with different preset values for significance of one input 
datum (simulating various assumed accuracy levels for 
that particular item) the overall result of different 
accuracies for that datum can be observed. Accuracy 
specification for an input datum can thus be deter
mined by test. 

User source programs, expressed in FORTRAN 
language, need be modified by the user only to the ex
tent that certain control statements or pseudo-operations 
must be inserted to guide the system (hereinafter 
called SigPac) by requesting the desired services and 
providing necessary data initialization information. 

The SigPac System processes the user program in
cluding the user-inserted pseudo operations, pre-



initializes significance of entities not initialized by· the 
user, and converts all arithmetic . steps to significance 
arithmetic operations. The result of this process is a 
FORTRAN program which, when executed after 
compilation, produces output as requested by the user 
including significance information, with normal output 
suppressed if desired. 

Execution of a program in significance mode means 
that significance arithmetic procedures are employed 
which replace the hardware commands for single and 
double precision addition, subtraction, multiplication, 
division, and data movement, taking into account the 
sign, magnitude, and initial significance of incoming 
operands and producing the same quantities for the 
result of each arithmetic operation. The significance
mode library routines, in addition to producing the 
identical numerical results as the actual library routines, 
also provide significance estimates of computed func
tion values. 

The current system, which is primarily used for the 
testing of numerical procedures in programs considered 
logically correct, provides several kinds of pseudo
operations. 

Initialization of significance values of program con
stants and variables may be accomplished during com
pilation ("static initialization") or during execution 
("dynamic initialization"). The user may specify the 
initial significances of constants and variables, expressed 
as numbers of either decimal or binary digits. An entity 
whose initial significance is not specified by the user is 
assigned a "default significance" by the system. 

, SYSTEM CONCEPT (SEE FIGURE 1) 

The user program, with pseudo-operations inserted, 
is preprocessed by a special-purpose translator-compiler 
called the SigPac Scanner. The result is compilable 
FORTRAN source coding, consisting of the signifi
cance-indicating-arithmetic representation of the user 
program merged with CALLs on the SigPac run-time 
support library. 

This program is compiled by the production 
FORTRAN compiler. The resulting object code is 
loaded and executed in accordance with user service 
requests, under control of OS/360, in local batch or 
remote batch mode. The SigPac system produces, in 
addition to selective numerical output as in normal 
execution, user-requested information on the numerical 
significance of selected quantities. 

Selective output of symbolic names, number values, 
and significance information is provided through an 
appropriate SigPac output command which operates 
in conjunction with the conventional FORMAT 
statement. 

Software System for Tracing Numerical Significance 389 

FORTRAN Test Progrom 

Pseudo-Object Program 

Object Progrom 

Test Data Oul 

Figure l-SigPac system concept 
(Reproduced with permission, from Ref. 8) 

The portion or portions of the source program which 
are to be executed in significance mode may be freely 
selected by the user at any point by inserting a 
SIGENTER pseudo-operation to cause the system to 
enter into, and a SIGEXIT, to exit from, significance 
mode. After exiting from significance mode the system 
reverts to normal program execution; it preserves all 
significance information, which becomes active again 
when significance mode is reentered. 

SYSTEM LOGISTICS: TIME AND SPACE COSTS 
FOR USE 

In principle, one would expect a system such as this 
(which executes machine coding in interpretive form 
to trace numerical significance) to be extremely costly 
in operation. For example, in the 360 version described 
here, a single arithmetic step requires up to 238 ma
chine instructions to be executed using the present 
simple algorithms for significance prediction. (Remark: 
A part of this cost is due to the need for exact simula
tion of floating hexadecimal arithmetic.) 

Space requirements for significance-mode calcula
tions with this system are substantial if large arrays of 
numerical variables are operated upon, but are not 
prohibitive: for example, in the 360 system, SigPac 
assigns to each numeric value an additional four bytes 
(32 bits) of data space for storage of current signifi
cance index and related control information. 

In practice, we have found that thoughtful examina-



390 Spring Joint Computer Conference, 1971 

tion of typical user programs frequently discloses that 
only minor segments are suspect with respect to gen
erated error: examples are integrations, matrix arith
metic, and statistical analysis procedures. The use of 
the SIGENTER and SIGEXIT pseudo-ops to cause 
execution of the bulk of the user program in "normal" 
mode, and in Significance Mode only program seg
ments* suspected to be data-sensitive, produces in such 
cases useful information at modest time and space cost. 
In meaningful examples, fully detailed manual tracing 
of error propagation would be infeasible because of 
time, cost, and the unpredictability that is inevitable 
in massive hand calculations. 

For example, inversion (using conventional Gauss 
elimination with pivot search) of a real matrix of order 
100 involves only a few million steps; if carried out in 
Significance Mode, such a procedure would take only 
several minutes on a high-speed machine, as compared 
to a few seconds in normal mode. Hand calculation of 
error would be infeasible. 

For a very large calculation (e.g., solution of a differ
ence equation representation of a hyperbolic differential 
equation system) in which essentially all of the prob
lem's arithmetic must be performed in significance mode 
and which in normal mode requires hours of machine 
time per problem on a high-speed dedicated machine, 
we feel that SigPac usage would be inordinately costly. 
Such work would be economically attractive on future 
machines on which significance algorithms (which 
have been developed and rigorously evaluated through 
extensive experiments using the present SigPac system) 
could be micro-coded for high-speed operation at run 
time. 

SIGNIFICANCE ALGORITHMS 

The first-trial versions of the arithmetic significance 
algorithms, which are similar to those used by research 
workers in the field (e.g., (2», are now described. 

For multiplication and division, the significance of 
the result is equal to the significance of the less-signifi
cant argument. Thus, 

SR= min(Sx, Sy) [lJ 

where SR, Sx and Sy represent the significances of the 
result and arguments respectively. 

The add-subtract algorithm requires information 
concerning not only the significances but also the size 
of the exponents ex and ey. 

* Originally suggested to us by R. Danek of NASA-GSFC (ef. 
Ref. 8.) 

Let Z = I ex - ey I and eR = exponent of result. Then, 

[
ex>e~SR= min (Sy+Z, Sx)+eR- max (ex, ey)] 
eX~e~SR: m~n (Sx+Z, Sy)+eR- nlax (ex, ey) 
ex-e~SR- mIn (Sx, Sy) +eR - max (ex, ey) 

[2J 

These basic rules are for machines employing nor
malized binary fractions and exponents in their floating 
point notation. It is of course necessary to keep track 
of some high-order zeros on floating hexadecimal com
puters such as the 360, which use a hexa-decimal 
exponent with a binary fraction normalized to the near
est hexadecimal digit, and on floating octal machines 
such as the Bn500. 

Significance will be lost during. multiplication if 
N>P, where 

[3J 

(LZR ) u is the number of leading zeros in the fraction 
of the result prior to normalization and P is the pre
cision. N - P bits are lost. 

Additional details must be considered when handling 
the constant "zero." Zero may have full significance 
of input as data; may have any signifi~ance between 
full and none if calculated; and may have special 
meaning as a residual result. Exact numbers, if allowed, 
must also be treated independently (e.g., integer 
powers of floating-point numbers). 

The rules [1 J, [2J, and [3J produce statistical estimates 
intended to indicate "most probable number of valid 
digits" as a measure of current significance of each 
variable being traced. 

Despite the simplicity of this set of algorithms, it 
will be seen below that initial test results were suffi
ciently realistic to be useful. 

TEST CASE: COMPLEX ROOTS OF QUARTIC 

The following example of a SigPac application was 
one of six that were used by NASA's Goddard Space 
Flight Center (GSFC) as tests of the validity of the 
approach and the accuracy of results. 

This test program solves, by an iterative procedure, 
the polynomial equation F(x) =x4+C1x3+C2X2+C3X+ 
C4=0, whose coefficients Ci are all real. 

The following example is one of seventeen cases which 
were tested: F(x) = X4 - 5x3 + 9.0001x2 - 7.0003x + 
2.0002 = o. For these coefficients, the exact roots are 
1.0±0.01i, 2.0, and 1.0. 

The computer-produced roots with their system-



generated significance indices are: 

Real Component of Root 

9.999999999986386D - 01 

9.999999999986386D - 01 

1.999999999999998D+00 

1.000000000001966D+00 

Imaginary Component of Root 

- 1.000000000000243D - 02 

1.000000000000243D - 02 

Significance 
(Dec. Dig.) 

12.0 

12.0 

14.8 

16.0 

Significance 
(Dec. Dig.) 

12.6 

12.6 

The underlined digits are those which SigPac deter
mined tO'be significant. 

Significance predictions were produced by the system 
for the double precision numerical yalues of each of 
the seventeen sets of roots, corresponding to the seven
teen sets· of coefficients. In this example five of the six 
component significanCe estimates shown corresponded 
to the known accuracy of the respective quantities 
within one decimal digit; the sixth was optimistic by 
four digits. In all but 4 of the 102 components calcu
lated, the predictions were within four digits; most 
were well within that range. 

The relatively lax convergence criterion used with 
this relaxation solution was, it is felt, responsible for 
the fact that true accuracy of roots was lower than in
dicated arithmetic significance in every case. Conse
quently, we believe that the effective performance of 
the system in tracing arithmetic significance was prob
ably even better than would be concluded by com
paring, as we have done here, significance against 
accuracy, using initial trial algorithms. 

Prof. B. F. Cheydleur originated the concept of 
significance arithmetic in 1949 and served as a con
sultant on our initial system development. 

Prof. R. L. Ashenhurst consulted in development of 
the external-index significance algorithms for the basic 
operations and for library routines. 

The initial implementation was performed with the 
sponsorship of NASA under contract NAS5-11705, 
using the IBM 360/95 computer at GSFC, imple
menting a suggestion by one of us.s Mr. J. D. Linnekin 
was Technical Project Officer and supplied the ac
ceptance tests. 

Future versions of the present system will provide 
for program execution using other kinds of error-indi-

Software System for Tracing Numerical Significance 391 

cating arithmetic, including the bounds-indicating 
Interval Arithmetic of Moore6 and the signed-error
indicating ten, n+ I" arithmetic of Moshos and Turner.7 

Also, the ability to perform non-trivial experiments will 
permit improvement of the significance-prediction 
algorithms. 

REFERENCES AND NOTES 

1 This categorization is due to Ashenhurst and Metropolis! 
2 R L ASHENHURST N METROPOLIS 

Error estimation in computer calculation 
Amer Math Monthly 72/2 Part II Feb 1965 pp 47-58 

3 J H WILKINSON 
Rounding errors in algebraic processes 
Prentice-Hall 1963 

4 G E FORSYTHE 
Pitfalls in computation, or why a math book isn't enough 
Stanford University Technical Report No CS-147 January 
1970 Available from Commerce Clearinghouse as 
AD-699897 

5 B F CHEYDLEUR 
Binary notations in automatic computer algorithms and 
operation codes 
3rd ACM National Conference 1949 Oak Ridge conference 
paper pre print only Also Significance arithmetic notation and 
algorithms 
Unpublished internal memorandum Naval Ordnance 
Laboratory 1955 pp 1-19 (Available from ACM New York) 

6 R E MOORE 
Interval analysis 
Prentice-Hall 1966 

7 G J MOSHOS L R TURNER 
A utomatic estimates of computational errors 
IEEE Conference Paper CP-63-1474 October 1963 

8 H S BRIGHT 
A proposed numerical accuracy control system 
ACM Symposium on Experimental Applied 
Mathematics Washington D C August 1967 Proceedings 
published by Academic Press New York 1968 pp 314-334 

Addendum (To Reference and Notes) 

Authors' Comment: In late 1964, in consultation with B. F. 
Cheydleur (who (Ref. 5) had originated the Significance Arithme
tic concept) we planned a Significance Arithmetic Processor for 
the Philco 213 computer, which was never built. In December 
1966 we proposed an arithmetic-statement-only processor to 
Ford Motor Company. Earlier versions of the present paper 
were proposed to and rejected by: FJCC'70 (April 1970-
"Trivial"); SCIENCE (June 1970-"Merely statistical predic
tion"); and DATAMATION (August 1970-"Too heavy"). 
The present paper was proposed (thanks to a suggestion by B. A. 
Galler) to SJCC'71 in August 1970 and was accepted after cor
rection of errors. 

On January 21, 1971, through Dr. Hans Oser of NBS, we 
learned that an Interval Arithmetic package using a program 
precompiler concept had been developed at the Mathematics 
Research Center, University of Wisconsin; the precompiler had 



392 Spring Joint Computer Conference, 1971 

been unpublished but was described in their May 1970 Internal 
Report 1065 by F. D. Crary and T. D. Ladner. We are grateful 
to Dr. J. M. Yohe of MRC for these details. 

During the oral presentation of Reference 8, on August 7, 
1967, Dr. Elizabeth Cuthill of the U. S. Naval Ship R&D Center 
offered the comment that the proposed precompiler concept 
would permit a user program to be executed in any kind of 
arithmetic. She suggested that the Interval Arithmetic of Moore 
and the multiple-precision concept as exemplified in the well
known JPL package would be particularly useful. Unfortunately, 
her remarks were not included in the pUblication of conference 

proceedings by Academic Press. If so, they might have been 
useful to the workers at MRC. 

We feel that this situation illustrates the need for an early-
. publication process such as that which existed in 1961-63 through 
ACM (in "Research Summaries,"· CACM, edited by Mandy 
Grems) but which is not presently open to workers in this field. 
The oral presentation of the present paper, at the suggestion of 
Prof. Macon (Technical Program Chairman, SJCC'71) will be 
accompanied by an informal discussion by Dr. Y ohe of the 
relationship between the work reported here and that at MRC / 
UW. 



Automated interpretation and editing of fuzzy line drawings 

by SHI-KUO CHANGt 

IBM Thomas J. Watson Research Center 
Yorktown Heights, New York 

INTRODUCTION 

One of the problems in automated line drawing analysis 
is to construct a cleaner drawing from the original 
drawing. For example, a chemist using an interactive 
chemical structure analysis system will usually draw a 
rough sketch of a chemical structure on a display de
vice or a tablet. It is desirable to obtain a cleaner ver
sion of the rough sketch so that the cleaner drawing can 
be redisplayed. Moreover, the cleaner drawing can then 
be used to generate hard-copy output through a plotter, 
a magnetic film recorder or a photocomposer. Such an 
automated line drawing editing program can enhance 
the usefulness of an interactive system and is also of 
value in itself. 

For a particular application, one usually can design 
a specific program to clean up a particular class of 
drawings. We can easily envisage a program for editing 
chemical structures, a program for editing a special 
kind of engineering drawings and so on. However, such 
special-purpose programs will not be able to edit a wide 
variety of different kinds of line drawings. In order to 
do so, we must design a general-purpose line drawing 
editing program. 

In this paper we address ourselves to the problem of 
designing a general purpose line drawing editing pro
gram. First, we discuss the general philosophy of a 
table-driven line drawing editing program. The basic 
notion is to regard a line drawing as a fuzzy program 
and then to attempt to interpret the fuzzy program. 
The interpretation process is controlled by several 
tables. Therefore, the line drawing editing program is 
table-driven in the sense that by changing the tables the 
program can interpret different kinds of line drawings. 
It is analogous to a table-driven compiler. The main 
difference is that the program processed by a table
driven compiler has a unique interpretation, whereas a 

t Present address: School of Electrical Engineering, Cornell 
University, Ithaca, New York. 

393 

fuzzy program may have several interpretations and 
the line drawing editing program must be able to search 
for the correct interpretation. Next, a program for the 
automated editing of interconnected polygons is de
scribed. It is also shown how the weight table can be 
updated so that the average time of searching for the 
correct interpretations for a given collection of fuzzy 
programs is minimized. Several illustrative examples 
are given. Finally, some possible extensions of the pres
ent program are discussed. It is suggested that a hier
archically organized line drawing editing program may 
be able to interpret more complicated line drawings. 

THE INTERPRETATION OF FUZZY LINE 
DRAWINGS 

A line drawing is a collection of elementary line seg
ments. The elementary line segments may consist of 
straight lines or simple analytic curves or more compli
cated curves. The set of all the different elementary 
line segments is called the vocabulary of the line draw
ings. For example, we may use straight lines in the 
±Oo, ±45°, ±90°, and ±135° directions to construct 
line drawings called chain-coded line dra wings. 1 Such 
chain-coded line drawings have a finite vocabulary 
V = {Co, C1, C2, C3, C4, C5, C6, C7 }, where C i denotes a 
directed line segment on a finite grid whose length 
is (v2")Q and whose angle referenced to the x-axis is 
ix(450)Q, q =i mod 2, as shown in Figure 1. Any chain
coded line drawing can be constructed using chains of 
elements in V. For example, the triangle shown in 
Figure 2 can be chain-coded as 

COCOC3C5 

Since for automated processing of line drawings all 
line segments have parameters with limited precision, 
the vocabulary of the line drawings can usually be 
assumed to be finite. The vocabulary can be thought 
of as the 'building blocks' for the line drawings. Using 
the line segments in the vocabulary one can construct 



394 Spring Joint Computer Conference, 1971 

4 ..... --~----II~ 0 

5 7 

Figure l-The eight basic line segments for the chain code 

infinitely many different line drawings. However, for a 
given application only some of those possible drawings 
are of interest. For example, one may wish to generate 
only those drawings that resemble chemical structure 
diagrams. In such cases we impose additional con
straints on the generation process. Generally speaking, 
there are two kinds of constraints: (1) Prototype Genera
tion Constraint which specifies what prototype drawings 
are to be created, and (2) Interconnection or Spatial 
Relationship Constraint which specifies what kind of 
interconnections can be made between prototypes or 
what kind of spatial relationships must be satisfied be
tween prototypes. 

For example, for the generation of chemical struc
tures, the prototypes are polygons. They are then inter
connected to form more complicated structures. Thus 
the Prototype Generation Constraints (abbreviated to 
PGC) allow only the construction of polygons. The 
Interconnection Constraints (IC) allow all kinds of 
interconnection between polygons and the construction 
of tree-like structures. 

As another example, for the generation of mathe
matical expressions, the prototypes are alphanumeric 
characters and special function symbols. They must 
satisfy certain spatial relationships to form valid ex
pressions.Thus the PGC's allow the construction of 
alphanumeric characters and special symbols, and the 
Spatial Relationship Constraints (SRC) allow the crea
tion of valid mathematical expressions. 

For the automated analysis and generation of line 
drawings, such constraints (PGC, IC and SRC) can 
best be expressed by formal descriptive grammar rules. 
In Reference 2 we have discussed the use of hierarchical 
two-dimensional grammars for the analysis and genera
tion of drawings. In Reference 3 the problem of analyz
ing two-dimensional mathematical expressions is 
treated. It suffices to say here that formal descriptive 
techniques have been used with some success to analyze 
and generate (artificial) line drawings. However, in all 

cases considered, the drawings are assumed to be ideal 
or close to ideal. It is to the analysis of less ideal, or 
fuzzy, drawings that we should now focus our attention. 

First of all, it is obvious that line drawings such as 
hand-printed or hand-written characters, chemical 
structures, engineering sketches are all non-exact or 
fuzzy. Fuzziness comes in at two levels: (1) instead of 
a finite vocabulary, an infinite vocabulary is used, (2) 
instead of well formed exact structures, non-exact 
structures are created. We will discuss these two points 
in some detail. 

In the automated analysis of line drawings we assume 
that the vocabulary is finite. For example, in the chain
coded drawing we assume that all the line segments are 
in the eight prescribed directions. However, in the 
original drawing there might be curved line segments 
or straight lines in other directions. In order to obtain 
the chain-coded version, the original drawing has to be 
interpreted or, in usual terminology, quantized. Quanti
zation is thus the process in which the original infinite 
vocabulary is reduced to a finite vocabulary so that 
subsequent analysis of the drawing can be facilitated. 
Quantization is usually regarded as a preprocessing 
operation. Nevertheless, an incorrect quantization will 
probably result in an incorrect analysis. Thus we prefer 
to call the vocabulary reduction process the interpreta
tion process, in which the 'meaning' of individual line 
segments is decided by conditional (i.e., context de
pendent) quantization of the original line segments. 

This point of view can be reformulated as follows. 
We can regard the original line drawing as a fuzzy 
program, the fuzzy instructions being the individual 
fuzzy line segments. Our objective is to interpret the 
fuzzy program so that we can construct the correspond
ing non-fuzzy program (non-fuzzy line drawing). Thus 
the problem becomes one of interpreting fuzzy pro
grams. If the interpretation is correct, then the non
fuzzy program is executable in the sense that it does 
not violate any of the prototype generation constraints. 
If the interpretation is incorrect, then some of the con-

{I.I} 

(o.o)----........ ---~·{2.0) 
( 1.0) 

Figure 2-A chain-coded triangle 



Automated Interpretation and Editing of Fuzzy Line Drawings 395 

Fuzzy Program 

I . 
No Interpretation 

Figure 3-Automated program interpretation system 

straints are not satisfied and the non-fuzzy program is 
not executable. The second kind of fuzziness can also be 
taken care of using the formulation just described. The 
interconnection constraints and spatial relationship 
constraints determine the· well-formedness of the non
fuzzy line drawings. Therefore, if the interpretation is 
correct, then the resulting non-fuzzy program (line 
drawing) should have a well-formed structure. An in
correct interpretation will generate a program (line 
drawing) having no well-formed structures. 

Therefore, our objective can be stated as follows: 
find the non-fuzzy program corresponding to a given 
fuzzy program such that the resulting non-fuzzy pro
gram is executable (i.e., it satisfies all the constraints). 

In summary, the system we propose is diagram
matically represented in Figure 3. The input fuzzy pro-

Fuzzy Program 

(Nondete rministic) 

Finite-State Machine 

No Interpretation , 
I Nonfinal State 1 

Figure 4-Equivalent theoretical model 

Prototype Table 

Input Table 
Prototype Table 
Instruction Selection 
Weight Table 
Output Table 

Figure 5-Automated line drawing editing program 

gram is first interpreted. If the resulting non-fuzzy 
program is well-formed, then it is executed (i.e., the 
clean line drawing is sent to the output device). Other
wise another interpretation pass is entered. When all 
possible interpretations have been tried without suc
cess, the failure exit can be taken. This is the "No 
Interpretation" case. 

It should be mentioned that the theory of fuzzy 
programs had been studied in detail. 4 The equivalent 
theoretical model for the system shown in Figure 3 is 
illustrated in Figure 4. The (non-deterministic) finite
state machine represents the interpretive process en
closed in the dotted-line-block in Figure 3. In this 
particular case the programs are line drawings, and the 
constraints are incorporated into the finite state ma
chine so that the machine stops in a final state if and 
only if the fuzzy program satisfies all the imposed con
straints. In Reference 4 we have treated the problem 
of executing fuzzy programs using finite-state machines. 

POINTER XI YI X2 Yl 

'" \ 
} 

(al INPUT TABLE 
/ 

SWH NMBR NAM/ XI YI Xl YZ ANGLE 

I /"'" 
I I) first polygon 

I 

2 11 
Z I) 

second polygon 

(b) OUTPUT TABLE 

WTABLE 

LK 

"' 'ADDRESS I 

(ranked list of angles) 

(el INSTRUCTION SELECTION WEIGHT TABLE 

Figure 6 



396 Spring Joint Computer Conference, 1971 

r 
nmbr of 

aides 

L 
nmbr of 

L 
nmbt;";,f I 

aide a I 
Lname 

proto 

J' 

type 1_, ~ ~ 
conditions 

L 

, , I , 

CONDITION TABLE 

(a) PROTClilTYPE TABLE 

ZWI ,b 
2 

(1 2) (3 3) 

(2 2) (1 3) 

4 'OJ · .~ 2 3 
4 

(2 2) (4 4) (1 3) (2 4) 

(1 4) (2 3) 

'¢I '~I 4 2 

(5 5) (1 4) (2 3) 

(3 3) II 5) (2 4) 

6 6¢1 
6 

51>1 
5 2 

4 2 3 

(6 6) (3 3) (1 5) (2 4) 

(1 6) (2 5) (3 4) 

CONDITION TABLE 

Ib) Polygon Prototypes and their Descriptiona 

Figure 7 

We have shown that if the fuzzy program is regular, 
then one can decide whether it has a non-fuzzy execu
tion and, in case it does, one can effectively construct 
the corresponding non-fuzzy program. Therefore, from 
a theoretical point of view, we can always interpret (or 
reject) a fuzzy program provided that it is regular. 
Since line drawings can always be regarded as regular 
expressions, theoretically their interpretations can al
ways be found. However, from a practical point of view, 
we not only want to find the correct interpretation but 
also would like to find it in the shortest time possible. 
In other words, efficiency in finding the correct inter
pretation is also of importance. This problem will be 
discussed in the next section. 

AN EXPERIMENTAL PROGRAM FOR LINE 
DRAWING INTERPRETATION 

In the above we have discussed the general concepts 
of fuzzy program (fuzzy line drawing) interpretation. 
In this section an experimental program for the inter
pretation of interconnected polygons will be described. 

The experimental line drawing interpretation pro
gram is organized as shown in Figure 5. The program 
is initialized by reading in a table of (preconceived) 
prototypes and another table of initial weights for fuzzy 
instruction interpretation. Once properly set up, the 

program can accept fuzzy line drawings and attempt to 
interpret them. If the interpretation is. successful, then 
the weight table will be updated so that successful 
interpretations are reinforced. The overall effect of the 
updating procedure is such that the average search 
time for a given collection of fuzzy programs will be 
minimized. Thus we may say that the program is able 
to learn the idiosyncracies of the individual user and 
tries to adjust its interpretation of his drawings ac
cordingly. 

In the following paragraphs we describe the experi
mental program in some detail. 

First we describe the four basic tables of the program. 

(1) INPUT TABLE: An array of size N by 5, where 
N is the number of line segments of the input 
drawing. In any row, the first entry contains a 
pointer to the corresponding line segment in the 
output table (initially 0), the remaining four 
entries are the x and y coordinates of the starting 
and terminating points of the line segment. See 
Figure 6(a). 

(2) OUTPUT TABLE: An array of size M by 8, 
where M is the number of line segments of the 
output drawing (~N in general). In any row, 
the entries are SWH (1 if fixed and 0 if free), 
NMBR (k if this line segment is in the kth 
polygon), NAME (a pointer to the corresponding 
line segment in the input table), Xl, Yl, X2,Y2 
(x and y coordinates of the starting and termi
nating points of the line segment) and ANGLE 

I START I 

IS THERE ANY POLYGON?) NO 

1 YES 

FIND AN INTERPRETATION 

FOR IT. UPDATE WEIGHT 

VECTORS. 

I 
.--------------4( IS THERE ANY LINE LEFT? ) 

.J. NO 

r:---- -------r..., yks 
I INSERT CHARACTERS I ., 
I INTO THE DRAWING I 

~~~J~~~~-_J 
INTERPRET THE INTER

CONNECTION LINE. TO

AVOID CONFLICT, ADJUST

SIZE AND POSITION OF

POLYGONS.

t

Figure 8-Flowcharts for the experimental program. For clarity
error exits are not shown

Automated Interpretation and Editing of Fuzzy Line Drawings 397

(1 if 0°, 2 if 30°, 3 if 45°, 4 if 60°, 5 if 90°). See
Figure 6 (b) .

(3) PROTOTYPE TABLE: This table is organized
as shown in Figure 7(a). Given the number of
sides of a polygon, one first finds out the number
of prototypes for this polygon, then one can find
out the number of conditions for a particular
prototype, finally the conditions for this proto
type are found in the CONDITION TABLE. To
see how the prototypes are described, in Figure
7 (b) a number of prototypes and their corre
sponding descriptions are given. Each pair (I, J)
says in effect that side I should be symmetric
to side J with respect to a hypothetical axis (the
program will use this description to generate
both x-axis and y-axis symmteric polygons), and
pair (I, I) simply specifies that side I is per
pendicular to the axis in question. We can use
this description to describe axial symmetric or
complete symmetric polygons.

(4) INSTRUCTION SELECTION WEIGHT
TABLE: This table is organized as shown in
Figure 6(c). Given the state (i.e., the context in
which it is located, e.g., a triangle, a rectangle,
etc.) and the angle of a (fuzzy) line segment, one
can search the STATE array and the ANGLE
array to find out the BASE address and the
DISPLACEMENT. In our case the state of a
line segment is the number of branches of the
polygon of which it is a part (the state is 1 if
this line segment is not in any polygon). BASE+
DISPLACEMENT gives us the ADDRESS of a
row in the WTABLE array. The weights in this
row vector determine which- of the five angles
(0°, 30°, 45°, 60°, 90°) is most preferable when
the fuzzy line segment has the given angle and
is in the given state. The angles can be ordered
according to their weights, larger weights being
more preferable. One can thus construct a ranked
list of angles for each fuzzy line segments, which
is stored in the LK array. The last entry of the
LK array is the ADDRESS of this weight vector.
This link is provided because once we have se
lected an interpretation and chosen an angle in
the LK array, we can then go back to WTABLE
to update the weight vector.

Now we can explain the interpretation algorithm.
The flowchart of the interpretation algorithm is shown
in Figure 8. The main strategy is to "treat the polygons
first, then handle the interconnections." The program
first locates a polygon in the INPUT TABLE. It then
uses the INSTRUCTION SELECTION WEIGHT
TABLE to construct LK tables (ranked lists of angles)

for all line segments in this polygon. Thus for each LK
table there is a line segment. The program next looks
at all possible interpretations of the polygon by testing
whether the conditions of the prototypes in the PRO
TOTYPE TABLE are satisfied or not. From those
possible interpretations, the correct one (the one satis
fying all the constraints) is selected. The angles of the
line segments are now fixed. The clean polygon is next
constructed with respect to the selected interpretation.
It is then stored in the OUTPUT TABLE.

For example, the triangle shown in Figure 9 (a) is
fuzzy. Its line segments have LK tables as shown in
Figure 9(b). The best interpretation is found to be
((22), (1 3», and the clean triangle is shown in Figure
9(c). Notice that the angles are first determined so that
the orientation of the polygon becomes fixed. The loca
tion and length of the line segments can then be deter-

I 3

(a) Original Fuzzy Triangle

nine 1

Line 2

Line 3

(b) Instruction Selection from LK Tables

2

(c) Clean Triangle with Interpretation (2

Figure 9

398 Spring Joint Computer Conference, 1971

Figure lQ-Examples on line drawing interpretation

mined by rotating, extending or shrinking the original
line segments.

After a polygon has been successfully interpreted,
WTABLE is updated so that such an interpretation is
reinforced. The updating procedure is the following.
Suppose ll' l2, ... , In are the line segments that have
just been interpreted. Let ADDRESS i be the entry in
WTABLE corresponding to li' ANGLE i be the correct
interpretation of the angle of L, and COSTi be the
search cost incurred if the angle of l i is not interpreted
as ANGLE i. Then for all i, l~i~n,

WTABLE(ADDRESS i, ANGLE i)

~WTABLE(ADDRESSi, ANGLEi)+COST i.

In other words, if the interpre~ation of the angle of li
is ANGLE i, then WTABLE(ADDRESS i, ANGLE i)
is increased by COST i. Thus correct interpretations are
reinforced. The updating procedure is simple and in
tuitively appealing. Its theoretical justification can be
found in Reference 4, where it is shown that this pro
cedure actually minimizes the average search time for
a given collection of fuzzy programs.

The program repeats the above procedure for every
polygon in the line drawing. Since the polygons may
touch one another, some sides of the second (or
third, ...) polygon may have already been determined.
In this case they are treated as fixed (i.e., SWH = 1 in

its row in OUTPUT TABLE) and a similar procedure
is carried out for the free line segments.

When all the polygons have been treated, the pro
gram then handles the interconnection line segments.
Notice that since the 'state' is now different, by chang
ing the BASE address one can use a different WTABLE
for those line segments. For example, only 0°, 45°, 90°
lines are allowed. Thus although the angles are the
same, with different contexts (different states) the in
terpretation can be different. When the interconnection
line segments are fixed, the position and size of the
polygons can be adjusted, so that no conflict occurs
(no overlapping polygons, no lines piercing into poly
gons, etc.) in the clean line drawing.

The present version of the experimental program,
written in FORTRAN, is able to interpret intercon
nected polygons. Some of the results are illustrated in
Figure 10 and Figure 11. The drawings are produced
by a plotter. The drawings shown on the left are the
originals and those on the right are the clean versions.
It is clear that the polygons are symmetric with respect
either to the x-axis or to the y-axis, and the intercon
nected lines have also been adjusted. One obvious ap
plication of this program is the editing of hand-drawn
chemical structures. However, since the prototype table
can be modified at will, the program is not restricted to

Figure ll-More examples on line drawing interpretation

Automated Interpretation and Editing of Fuzzy Line Drawings 399

this application and may be used to interpret other
kinds of line drawings. For chemical structure editing,
in the last phase one can insert alphabetical characters
into the line drawing to make it complete. This phase
is also indicated in the flowchart (see Figure 8), but
has not been incorporated into the experimental pro
gram.

DISCUSSIONS AND CONCLUSIONS

In the previous sections we have described a general
approach to fuzzy line drawing interpretation and a
specific experimental program for the interpretation of
interconnected polygons. The basic notion of our ap
proach is to regard a fuzzy line drawing as a fuzzy
program and to attempt to interpret the fuzzy program.
The interpretation is found by testing whether the fuzzy
program (or part of the fuzzy program when a local
interpretation is possible) satisfies certain constraints.
The constraints are either Prototype Generation Con
straints or Spatial Relationship Constraints. In the
experimental program the first kind of constraints are
incorporated into the PROTOTYPE TABLE. The
second kind of constraints are built into the program:
spatial conflict is avoided by adjusting the size and
location of the polygons. For a more general system,
it would be more desirable to state all constraints ex
plicitly. The spatial constraints can then be coded as
grammar rules and read into the program, as shown by
the dotted box in Figure 5. Moreover, the flowchart
shown in Figure 8 indicates that the program consists
of two steps:

(1) The interpretation of prototypes.
(2) The organization of prototypes into higher level

structures.

In our case the prototypes are polygons, and the
higher level structures are interconnected polygons.
For more complicated line drawings, one may iterate
the two steps to obtain higher and higher level struc
tures. In each level, there may be a different set of
Prototype Generation and Spatial Constraints. There
fore, we have a collection of constraints organized into

levels or hierarchies. This is the concept of a hierarchical
grammar.2 In the present experimental program we
have only two levels. The techniques developed are
also applicable to a multi-level analysis and interpreta
tion program. Such extension seems to be both theo
retically interesting and practically useful.

In conclusion, the table-driven line drawing editing
program described in this paper is but one small step
toward the complete automation of fuzzy line drawing
analysis. Two main concepts have been introduced.
First, tables are used to control the interpretation
process, so that the program can be used to interpret
different kinds of line drawings. Second, a weight up
dating procedure is included in the program so that the
average search time for a given collection of fuzzy
programs can be minimized. However, the program is
still not general enough to interpret a wide variety of
fuzzy line drawings. It is suggested that a hierarchically
organized program will be useful to interpret more
complicated drawings. Experimental data should also
be gathered to see whether the weight updating pro
cedure indeed improves significantly the performance
of the program. We hope that this preliminary investi
gation will lead to more interesting developmeni in the
future.

REFERENCES

1 FREEMAN GLASS
On the quantization of line-drawing data
IEEE Trans on Systems Science and Cybernetics Vol
SSC-5 No 1 January 1969

2 S K CHANG
The analys1:s of two dimensional patterns using picture
processing grammars
Conference Record Second ACM Symposium on Theory
of Computing May 4-61970 Mass pp 206-216

3 S K CHANG
A method for the structural analysis of two dimensional
mathematical expressions
Information Sciences 2 July 1970 pp 253-272

4 S K CHANG
Fuzzy programs-Theory and applications
Proc of the Polytechnic Institute of Brooklyn XXI
International Symposium on Computers and Automata
Brooklyn New York April 1971

Computer graphics study of array response

by GEORGE W. BYRAM, GEORGE V. OLDS and LEON P. LA LUMIERE

Naval Research Laboratory
Washington, D. C.

INTRODUCTION

Most sonar systems as well as some radar systems use a
beam-formed array as their primary sensor. An array of
small receptors is the most convenient means of sam
pling an extended field. It is often the only feasible
means in large scale, long wavelength applications such
as sonar.

Since the individual receptors of a large array can
not be moved, control of the array directional sensi
tivity must be introduced through processing of their
output signals. The beam former performs this task by
altering the relative delays and amplitudes of individual
receptor outputs before summing them to form an ar
ray output.

The basic geometric variables involved in array re
sponse are shown in Figure 1. The special case of a
linear array has been chosen for simplicity. Even in
the more general case of a planar or volume array,
only two main directions will be of interest. These are
the actual direction of signal arrival and the desired ,
or beam-formed, direction.

The response of an array-beam former combination
can be computed quite easily. The . large number of
parameters involved, however, complicates interpreta-

NORMAL TO FORMED BEAM ANGLE
ARRAY

PLANE
WAVEFRONT~

" , ,
'\

0 0 0 0

Figure I-Geometric variables involved in array response

401

tion of numerical results. The use of three dimensional
computer plotting techniques permits display of the
response in a form which shows the influence of a pa
rameter directly. This method greatly aids insight into
arra.y properties. It also affords a considerable degree
of insight into some commonly used array pattern
computation techniques. This has proved to be a useful
teaching tool.

The following examples have been chosen to illus
trate some of the more important factors affecting array
response. They also illustrate the influence of format
and parameter choices on the clarity of the resulting
plots.

ARRAY RESPONSE EXAMPLES

Sampling and frequency response

A minimum length for an array is often dictated by
a specified maximum width for its main lobe. If the

a:
lLI
~
0
Q.

I-
:::>
Q.
I-
:::>
0

~;;;.
1.54. ~
~v

.;:,~
~~

'<~

Figure 2-Response of 14 element equispaced array

402 Spring Joint Computer Conference, 1971

45°
MAIN
BEAM

Figure 3-Response of perturbed array

number of receptors is limited their spacing may be
greater than a half wavelength and the array will be
undersampled. A periodic, undersampled array does
not gather sufficient independent information to permit
unique determination of the direction of arrival of a
low bandwidth signal. Hence, strong grating lobes,
arising from cycle to cycle ambiguity, will be present
if the elements are equally spaced. The problem is less
severe if the signal has high bandwidth or if the array
has non-uniform spacing.

The frequency dependence of the response of a 14
element equispaced array is shown in Figure 2. The
element spacing in this array is a half wavelength at
approximately 500 Hz. There are two grating lobes at
1 KHz and four at 2 KHz. If the spacing is perturbed
to disrupt the periodicity the grating lobes will be
spread into many smaller lobes. Figure 3 shows the
result of adding linearly increasing multiples of ten
percent to the spacings, starting at one end. Although
the array is now more severely undersampled, the
largest side lobe is five or six dB down from the main
lobe. The reduced width of the main lobe results from
the increased length of the array. The side lobe reduc
tion would have been slightly improved if the per
turbed spacing had been rescaled to the same total
length as the equispaced array. For a fixed length and
a fixed number of elements a point of diminishing re
turns is reached quite rapidly and extensive search for
optimum spacing schemes yields only slight further
improvement.

Wavefront curvature and focussing

The computations for Figures 2 and 3 assumed a
plane wavefront. If a source is quite close to the array,

SIGNAL ARRIVAL ANGLE

Figure 4-Effect of wavefront curvature on array response

however, the curvature of the wavefront can be signifi
cant. In some cases it is possible to focus the array to
favor a specific range.

Figure 4 shows the degradation in response of the
perturbed array at 1.5 KHz as the range becomes much
less than the focal distance. For extremely small ranges
the main lobe is greatly reduced but there is only a
slight increase in side lobe level. This is to be expected
since the phase errors resulting from wavefront curva
ture are no worse than those already existing for sig
nals arriving from non-beam-formed directions.

The extremely small delay differences involved in
focussing an array at any reasonable distance would be
lost in the delay fluctuations caused by local propaga
tion effects. Hence the pattern degradation at small
ranges is the most significant result shown in Figure 4.
The very weak dependence of the pattern on range and
focal distance for larger values indicates that the plane
wave assumption is justified in almost all practical
cases. To show the effects of wavefront curvature at
and beyond the focal distance it is necessary to take an
extreme case.

Two arrays are shown in Figure 5. Both are 372
wavelengths long and each is focussed on a point 5
wavelengths from its center. The linear array is focussed
by adding extra delay in the beam former for the inner
elements. The curved array has been focussed by bend
ing it to match the curvature of the desired wavefront.
Figure 6 compares the response of these two arrays.
The response patterns are almost identical. The fast
rise to maximum response and the slower fall off as
range exceeds the focal distance are typical for such
short focal distances.

Planar arrays

The arrays examined thus far have been mainly
linear arrays. Although linear arrays are the easiest
type to construct, they provide no directivity in those

FOCUS AT 5~

1
•

e 1 e
• • •

0 0 e e 0 0

• CURVED ARRAY
I-~~----I

o LINEAR ARRAY

Figure 5-Curved and linear eight element arrays

planes to which the array is normal. At higher fre
quencies it becomes practical to use planar and volume
arrays.

Figure 7 shows the response in azimuth and elevation
of a four-by-four, sixteen element planar array. The
main beam is formed broadside to the array. The third
variable in such a plot is used up by the additional
direction variable. Hence, to show the dependence on
an additional parameter it would be necessary to choose
some slice through the response surface as a starting
point. It is more convenient in most cases to make a
sequence of plots instead.

Figure 8 shows the result of increasing the frequency
by 50 percent. The central portion of this plot corre
sponds to the previous plot. As the frequency becomes
higher these side lobes will move inward toward the
center of the plot and be joined by others coming in
from the edges. Figure 9 shows the response at three

SIGNAL ARRIVAL ANGLE

Figure 6-Example of array focussing

Computer Graphics Study of Array Response 403

soo 0 0

AZIMUTH
-900

Figure 7-Response of "four by four" sixteen
element planar array

times the original frequency. The array is now severely
undersampled and the side lobes show a periodic ar
rangement. The increased width of the more extreme

- side lobes arises from the smaller effective aperture
which the array presents to an oblique arrival.

Pattern multiplication

The planar array response shown in Figure 9 was
computed directly. Some computation time could have
been saved, however, by the use of pattern multiplica
tion (1). The technique is sufficiently useful that it is
worthwhile torepeat the pattern computation of Figure
9 by pattern multiplication, with illustrative plots of
the intermediate steps.

Figure 10 shows the 16 element planar array and two
possible pairs of subarrays which could be used for
pattern multiplication. The dimensions shown in wave
lengths correspond to the frequency used for the plot
of Figure 9. The linear subarrays are the preferred
choice because their patterns will be mirror images of
each other in elevation-azimuth coordinates. Hence,
only one pattern need be computed and stored. The

AZIMUTH

Figure 8-Response of "four by four" planar array

404 Spring Joint Computer Conference, 1971

90° 0-
AZIMUTH

Figure 9-Response of :/four by four" sixteen
element planar array

required product can be obtained by taking successive
multipliers and multiplicands from locations starting
at opposite corners of the stored pattern.

The patterns of the two linear subarrays are shown
in Figures 11 and 12. The mirror image relationship is
clearly visible. These patterns are figures of revolution
with their respective arrays as axes. This is not obvious
in the figures because the use of elevation azimuth co
ordinates is equivalent to projecting the patterns on
the surface of a sphere. The product of these two pat
terns, point by point, is the pattern of Figure 9. The
contributions of the two individual patterns can be
recognized more easily looking at the underside· of the
pattern as shown in Figure 13.

The lack of perspective correction in the plotting is
quite a bit more conspicuous in the inverted plot be
cause the inverted base plane provides a frame of refer
ence for the eye.

The patterns of the other two possible subarrays are
shown in Figures 14 and 15. The small two by two
array possesses the same symmetry and same element

LEFT FOUR 0
ELEMENT LINEAR 0
SUBARRAY 0

o

3/
2X-i r-~

o 0 2

o T
SMALL 2 x 2

SUBARRAY

o

o RIGHT FOUR
o ELEMENT LINEAR

o SUBARRAY

i 3>- r -*-
I 3>-

o 0 T

o
LARGE 2 x 2

SUBARRAY

Figure lo-Sixteen element planar array and
two pairs of subarrays

AZIMUTH

Figure ll-Response of left four element linear array

spacing as the complete array. Hence its pattern is
quite similar to that of the complete array although
broadened by the diffraction resulting from its smaller
aperture.

The larger two by two subarray is quite severely
undersampled and hence has a large number of grating
lobes. The lobes of the small array tend to select the
lobes of the larger array visible in the resulting product
pattern. The straight lines across the front and rear of
the pattern of the larger two by two array merely indi
cate the absence of nulls in the response at ±90°
elevation.

The use of pattern multiplication is very advanta
geous for large arrays having a high degree of symmetry
or periodicity. The process can be extended by factor
ing a large array into many small arrays. For a com
pletely periodic array, the gain in computational effi
ciency is similar to that which the fast Fourier trans
form affords over conventional techniques. This is to
be expected since the far field pattern is the Fourier
transform of the element distribution.

90° O~~

AZIMUTH

Figure 12-Response of right four element linear array

90°

//
90· ,

I
11:;

'" ::t'
~!

t --goo

Figure 13-Response of planar array (inverted)

Volume arrays

The large number of elements in most volume arrays
makes the use of pattern multiplication almost essential.
The pattern of a four-by-four-by-four, 64 element vol
ume array consisting of a stack of four of the arrays
shown in Figure 10 can be obtained by one additional
pattern multiplication. Figure 16 shows the end fire
pattern of a four element linear array seen end-on in
elevation azimuth coordinates. The figure of revolu
tion nature of a linear array pattern is much more
easily seen in this orientation. Multiplication of this
pattern by the planar array pattern of Figure 9 results
in the volume array pattern of Figure 17. The side
lobe selection effect of the multiplication is again
quite evident.

CHOICE OF PARAMETERS FOR ARRAY PLOTS

These examples indicate the insight into array prop
erties obtainable through the use of computer plotting

Figure 14-Response of small "two by two" array

Computer Graphics Study of Array Response 405

a:: w
~ a..
I-

~
~ o
a:: w
~ a:: e
~ w
CD

AZIMUTH

Figure 15-Response of large "two by two" array

techniques. Considerable care in the choice of param
eters is required, however, to produce a meaningful and
easy to interpret plot. One of the three available vari
ables in a 3-D plot is used for the array response. Since
directional sensitivity is the raison d' etre of an array
it is generally essential to include all geometric vari
ables describing signal arrival direction. In the case of
a planar or volume array this uses up the remaining
two variables. In the case of a linear array however , ,
only one direction variable is required. The third vari
able can be selected from quantities such as: frequency,
amplitude shading parameter, beam steering angle, or
wavefront curvature.

The orientation of a 3-D plot is quite important. The
ridged surface obtained in frequency response plots
such as Figures 2 and 3 would be extremely difficult to
interpret if the axes used for signal arrival angle and
frequency were interchanged. It would be almost im
possible for the eye to separate individual ridges in the
confusion of many lines almost parallel to the front of
the plot.

It is also important that detail of interest in the

Figure 16-Endfire response of four element linear array

406 Spring Joint Computer Conference, 1971

AZIMUTH

Figure 17-Response of "four-by-four-by-four" volume array

center and rear of a plot not be hidden by higher fea
tures in the foreground. It is often advantageous to
reverse the frequency axis and put the lower frequen
cies toward the rear of the plot if the response extends
to extremely low frequencies. This prevents the very
broad main lobe at low frequencies from hiding points
farther back into the plot. The entire first line of an
elevation-azimuth plot corresponds to a single direction

since the poles of such a coordinate system are singular.
If the array has a significant response in that direction
a straight line across the front of the plot will hide de
tail farther back. This effect is visible in Figure 15.
Choice of a different coordinate system or a slight
change in the orientation or steering of the array to
provide a null in that direction can be helpful.

The planning of a 3-D plot is greatly aided by plot
ting a few selected slices of the· pattern. This is one
area in which a fast display and a high degree of man
machine interaction would be extremely useful.

General extrapolation plots (2) in frequency and
beam angle for linear arrays are of aid in selecting
parameters for 3-D plots in these variables.

REFERENCES

1 J D KRAUS
Antennas
pp 66-74 McGraw-Hill 1950

2 G W BYRAM G V OLDS
Computer display oj array response
78th Meeting of the Acoustical Society of America
San Diego Cal

Computer manipulation of digitized pictures

by NATHANIEL MACON and MAXINE KIEFER

The American University
Washington, D.C.

INTRODUCTION

To an increasing degree, equipment is available which
is capable of converting photographic information into
machine readable form or converting computer files
into a visual image more or less resembling a half-tone
picture, thus rendering photographic and other pictorial
information available as data for processing by digital
computers. Three major directions of effort have en
sued. Necessary utility routines have been developed
for managing I/O, file manipulation, and the imple
mentation of languages to facilitate programming
effort; analytical work toward character and pattern
recognition, and toward parametric characterization of
pictures has led to algorithms for accomplishing various
sorts of mensuration and analysis; and, finally, algo
rithms have begun to emerge which are designed to
change the appearance of a picture by modifying the
file which represents it. A brief list of references to this
work is given at the end of the paper, including an ex
cellent review of the field by Lipkin and Rosenfeld.

It is the third type of processing which has moti
vated the work described here, with the belief that
picture modification in an on-line, interactive environ
ment will soon be an important tool to experimental
psychology and a useful training device for photo
interpreters, medical technicians, and others. In this
context there are two types of manipulation: global
manipulation of an entire file, for example, for the pur
pose of enhancing or degrading picture quality, and
local manipulation in which one or more elements of a
picture are modified by enlargement, rotation, transla
tion, erasure, or the like.

REPRESENTATION OF IMAGE AND
NOTATION

The image to be processed is represented in a file· by
a matrix, z, of positive integers. The matrix elements,

407

Zii, are the (digitized) average gray levels or trans
mittance values over a square area of the image, and
each is associated with the midpoint of its respective
square. In the discussion we define the image as a func
tion of three variables, Yi, Xi, Zij. The Yi, Xj are coordi
nates of midpoints of grid squares of the ith row and
jth column of the M by N matrix; they normally take
on the values Yi=.5, 1.5,2.5, ... ; i=l, ... , M and Xj=
.5, 1.5, 2.5, ... , j=l, ... , N; i.e., Yi=i-.5, xj=j-.5.
The upper left hand corner square of the image is
represented by YI, Xl, zu.

An object or area within the image is defined by one
or more connected boundaries. A list of Y i, X j pairs
outlining the object represents a boundary. The con
vention is followed of recording the coordinate pairs
sequentially as though one were "walking around" the
object, keeping it to the left. A restriction is that each
boundary is continuous and closed in the sense that
the absolute difference between successive Y (and x)
values in the list, including the first and the last, never
exceeds 1; that is, no "jumping over elements" in
either the horizontal or vertical direction is implied by
the list. If, in scanning the boundary, it is found that
the restriction does not hold, the "missing" coordinate
pairs are linearly interpolated and inserted in the list.

Boundary points are considered to be inside, or a
part of, the represented object. Where the area to be
manipulated lies on or touches the frame of the image,
the coordinate pairs of the frame itself are taken as the
boundary.

DELINEATION OF OBJECTS

Manipulation of local areas or objects in a picture
requires some technique of defining the domains of
operation. In our programs, a local area was repre
sented as a set of contiguous horizontal strips, the end
points of which comprise its boundary. In the illustra
tions which follow, a boundary is denoted as a list of

408 Spring Joint Computer Conference, 1971

points Bk = (Yik' Xjk) , where k= 1, 2, ... , L. This list is
scanned and then sorted in ascending order of y. For
each y, sets of left and right x-values are recorded in
ascending order. The strips, not necessarily contiguous,
which these sets define thus comprise the area, row by
row.

To illustrate, assume a square area having an even
number of elements, for example, 16 as in Figure la,
with the following boundary:

k Yik Xjk k Yik

1 .5 3.5 7 3.5
2 .5 2.5 8 3.5
3 .5 1.5 9 3.5
4 .5 .5 10 3.5
5 1.5 .5 11 2-.5
6 2.5 .5 12 1.5

This list, when sorted as described, yields:

y-values

.5
1.5
2.5
3.5

YI
Y2

Y3

Y4

YI
Y2

Y3

Y4

Y6

0.5
1.5
2.5
3.5

0.5
1.5
2.5
3.5

4.5

Left and right x-values

Xl

.5,1.5

.5,3.5

.5,3.5

.5,1.5

X2 X3

2.5,3.5

2.5,3.5

X4

0.5 1.5 2.5 3.5

4 3 2 1
5 12
6 11
7 8 9 10

Figure Ia

Xl X2 X3 X4 X6

0.5 1.5 2.5 3.5 4.5

5 4 3 2 1
6 15
7 14
8 10 11 12 13

Figure Ib

Xjk

.5
1.5
2.5
3.5
3.5
3.5

Steps are taken in the initial scanning of the original
boundary list to insure that each section of a horizontal
strip contains an even number of x-values. When an
odd number of x-values appear for a section of a given
y, as, for example, when a horizontal boundary contains
an odd number of elements or when a vertex is en
countered, it is necessary to replicate one of the x
values. Suppose, for instance, that the object given in
Figure Ib were to be represented. In the scanning pro
cess the pairs representing B6, B9, and B13 would be
replicated and the strip representations after sorting
would appear as:

y-values

.5
1.5
2.5
3.5
4.5

left and right x-values

.5, .5 1.5,2.5 3.5,4.5
.5,4.5
.5,4.5
.5, 1.5 2.5,3.5 4.5,4.5
.5, .5

Obviously, an object may have more than one bound
ary (e.g., an annulus); and a boundary can have singu
lar points (e.g., a figure eight). When more than one
boundary defines the area, the boundary lists are com
bined before sorting. In this manner, shapes other than
simple closed curves, such as disjoint areas, can be
manipulated in one operation. Once the areas are de
fined as strips, the elements contained therein can be
translated with or without rotation, subjected to gray
level transformations, replaced by other contents as in
hole filling, and, by appropriate horizontal and vertical
operations, contracted and expanded. This technique
was used in the accompanying pictures to translate,
rotate, and fill after erasure.

TRANSLATION AND ROTATION

Let ir and jr denote the indices of some pivot or
anchor point (YiT, XjT)' and let it and jt represent the
indices of the point into which the pivot point is to be
mapped. Since the indices are here measures of dis
tances, translation of an area of a picture into another
position such that any (y i, X j) of the object maps into
(Yi', Xj') is a trivial operation in that all the new indices
for the Zij values are given by

and the new coordinate pairs by (y i', X j'). When trans
lation is combined with rotation about the pivot
through a counterclockwise angle, (x, the new coordi-

nates, which are given by

Yi' =Yi+(i-ir) COSa- (j-jr) sina

Xj' =Xj+(j-jr) cosa+(i-ir) sina

will not always be at the midpoints of the new cells
(except in the case of angles which are multiples of 90
degrees). The fact that there is no longer a one to one
correspondence between the original cells and the new
cells requires a procedure for assigning Zij values. As
signment of the gray level Zij to the new cell into which
the midpoint Y i, i j falls would result in overwriting
certain cells and leaving others empty. The "tilting"
of each square element within the area rotated suggests
a weighted assignment of the gray level on the basis of
the area covered to the (possibly) six cells overlaid, as
shown in Figure 2a. Such an allocation of gray levels
might be called a "girdle" technique, since the orienta
tion of the overlying square is constrained. In its place
we implemented an approximation, the "chemise".

The chemise approximation allocates gray levels to
underlying squares as if each rotated square had been
allowed to "settle" about its center into the horizontal
orientation shown in Figure 2b. Weights are assigned to
the covered cells, never exceeding four in number, on
the basis of the area covered. The indices and weights
resulting are as follows:

i'=integral part of y'+.5

j' = integral part of x' +.5

p = fractional part of Y' +.5

q = fractional part of x' +.5

Wi'i'= (l-p)(l-q)

•

Figure 2a

Computer Manipulation of Digitized Pictures 409

-

•

Figure 2b

Wi' ,i'+l = (1-p)q

Wi'+l,j,=p(l-q)

Wi'+l,i'+l =pq

These weights determine the proportionate parts of
the Zij value assigned to each of the four cells.

The illustrations which follow were obtained with the
chemise approximation. It appears to be adequate for
visual purposes.

Picture 1, for example, is computer generated. The
original, which is not reproduced, consisted of thirty
horizontal bars of equal width, with gray levels ranging
from 0 to 29. (The actual matrix is 400 by 400.) The
portion of the original bars contained in a butterfly
outline were rotated 20 degrees counterclockwise with
the upper right wing tip as an anchor. Though the re
production, which was obtained from a local vendor
who scanned the computer file with off-the-shelf equip
ment, suffers from cyclical noise and inability to show
all thirty gray levels, the appearance of straight lines
has been retained and it is doubtful that quality could
have been enhanced by increased precision in the
algorithm.

HOLE FILLING AFTER ERASURE

Suppose that an object is to be erased, that is, that
the gray levels within its boundary B k , k= 1, 2, ... , L,
are to be set to zero. Frequently the white area thus
created will be visually distracting or unesthetic. The
hole filling problem is that of associating a correspond
ing gray level z, which is in some sense consistent with
the gray levels Zk of the B k, with each point (x, y) of a
given set of points interior to the boundary.

410 Spring Joint Computer Conference, 1971

The boundary, B, may be taken to be a closed curve
and the set of (x, y) to be the interior of B, though we
will also provide for situations in which B "runs off the
picture" by allowing for missing gray levels along the
edge. The statement that the gray levels, z, in the in
terior are consistent with those of B is here interpreted
to mean that a given implementation of a hole filling
technique can yield a result which is subjectively ac
ceptable in the sense that neither B nor the hole are
visuaUy apparent.

Consider the stencil consisting of a given point (x, y)
interior to B and the corresponding boundary points
(Xl, Y), (X2, Y), (X, YI) and (x, Y2), as shown on the dia
gram, with associated gray levels z, Zl, Z2, Z3 and Z4,
respectively, where Z is unknown (and, indeed, un
defined).

Geometrically, the diagram may be interpreted either
as the projection on the x-y plane of the five points
whose coordinates are given, or as a two dimensional
array having a z-value associated with each point. Al
gebraically, we are going to determine a number z=
z(x, y, Xl, X2, YI, Y2, Zl, Z2, Z3, Z4) such that

1. Z is a linear combination of Zl, Z2, Z3, and Z4;
2. lim Z=Zi and lim Z=Zi+2, i= 1, 2;

3. The horizontal weights (coefficients of Zl and Z2)
and vertical weights (coefficients of Z3 and Z4)
will be directly proportional to two non-negative
horizontal and vertical control parameters, L
andM;

4. The horizontal and vertical weights will decrease
monotonically with 1 X-Xi 1 and 1 Y-Yi I, where
XI:::;X:::;X2 and YI:::;Y:::;Y2.

In what follows we will first develop an interpolation
formula for the stencil shown. Then we will develop a
mixed interpolation-extrapolation formula for use
when a point of B is missing, thus illustrating the
handling of exceptional stencils.

To form the linear combination we first interpolate

in the horizontal direction by forming

X-Xl X-X2
--Z2--- ZI,
X2-XI X2-XI

that is,

Similarly, the vertical interpolant is taken to be

The weights for these interpolants are defined as

L~-~ M~-~
and

M(X2--XI) +L(Y2-YI) M(X2- XI) + L(Y2-YI)'

so that conditions (3) and (4) are met, and the linear
combination is

+MX2-XI[(Y-YI)Z4+(Y2-Y)Z3]}.
Y2-YI

(1)

That condition (2) holds is a simple exercise.
Notice that changes in vertical or horizontal patterns

can be achieved by adjusting L or M, and also there
would be no loss of generality were we to set M = 1-L.
Furthermore, it is simple to introduce a "gain" param
eter K(x, y) as a multiplier of the right-hand side of the
Equation (1). These parameters, L, M and K when
used in conjunction with such unit operations as rota
tion, patching, superposition (or multiple-exposure),
and smoothing would seem to be adequate for most
practical purposes.

Suppose (X2, y, Z2) is missing. Consider the stencil

(Xl, Y2, z.) :==J (X, Y2, z.)

(Xl, y, Zl) ~ (X, y, z)

(Xl, YI, Zs) (X, YI, Z3)

where, Zs and Z6 are assumed known. For the horizontal
interpolation we wish to form

ZI+m(X-Xl),

where m is an appropriately weighted average of the

slopes

The weights are taken as

respectively, yielding

(Y-Yl) (Z4- Z6) + (Y2-Y)(Zg-Z5)
=Zl+~~~----~~~~~---

Y2-Yl

Once again we interpolate in the vertical direction
by forming the linear combination

Y-Yl Y-Y2
--Z4---Zg
Y2-Yl Y2-Yl

which reduces to

The weights for the horizontal and vertical interpolants
are taken to be

Picture 1

Computer Manipulation of Digitized Pictures 411

Picture 2

respectively. Thus, we have obtained

1

{L[(y, - y.)z. + (y - Y.) (z. - z.) + (y, -y) (z,- z.) 1

+ M(X-Xl)[(Y_Yl)Z4+(Y2_ Y)Zg]} (2)
Y2-Yl

as an interpolant analogous to Equation (1). The cor
responding formulas for o.ther stencils having a single
missing boundary point can be written in a similar
manner.

RESULTS

The pictures, except for computer generated Picture
1, are the results of processing a file on 7-channel mag
netic tape. A microphotograph of brain tissue was

412 Spring Joint Computer Conference, 1971

Picture 3

scanned and sixteen gray levels recorded on the tape.
(A reproduction of the original photograph from which
this tape was made can be found on page 8 of Reference
1.) The tape was processed on an IBM 360/40 (with
FORTRAN under Version 13 of OS) and the resulting
gray level values were output on 9-channel tape. The
output tapes were read and recorded on film by a local
vendor. Picture 2 is the recording of the original file.
It consists of 1100 rows of 750 elements of the scanned
photograph.

Picture 4
('

The local areas within the picture to be manipulated
were outlined manually, and coordinates, B k , of their
boundary points were punched on cards. Picture 3 is a
reproduction of Picture 2 with the two objects referred
to in this discussion outlined.

Picture 4 is a reproduction after operations on a
small section (300 rows) of the original image. Object 2
has been rotated counterclockwise 30 degrees about the
indicated pivot point, P.

Picture 5 is a reproduction after several operations.
Object 2 has been rotated 1800 and translated to a
position in the lower half of the picture. Object 1, has
been rotated 600 and moved to the right. The areas
formerly occupied by both objects have been filled in
by the hole-filling technique described.

Owing to the relatively poor quality of reproduction
of the pictures that have thus far been generated, it is
not possible to speculate on the extent to which more
precise algorithms would be required for any given
implementation. In the geometric butterfly of Picture 1,
the introduction of cyclical noise of both horizontal

Picture 5

and vertical nature makes it difficult to determine the
extent to which stair casing was avoided by the weight
ing scheme. Yet in Picture 4, the detail in the original
picture has been retained even to the fine, well-defined
curved line on the right of the object. No stair casing,
haloing, or other distortion in the surrounding area is
observed.

CONCLUSION

Up to this point in time the literature demonstrating
the effect of local manipulations of pictures has been
limited, and comparative evaluation of our results is
not possible. It has been demonstrated here that one
can insert or delete items from a picture or change their
appearance, position, and orientation using standard
programming techniques and modest computing equip
ment, and that the modified pictures will be of adequate
quality to support a variety of experiments. This paper

Computer Manipulation of Digitized Pictures 413

treats the subject from a technique-oriented standpoint
and establishes the validity of the techniques.

REFERENCES

1 B S LIPKIN A ROSENFELD Editors
Picture processing and psychopictorics
Academic Press New York 1970

2 A ROSENFELD
Picture processing by computer
Academic Press New York 1969

3 I H BARKDOLL B L McGLAMERY
An on-line image processing system
Proceedings of the ACM 23rd National Conference
Washington DC August 1968 pp 705-716

4 R NATHAN
Digital video-data handling
NASA Tech Report No 32-877 Jet Propulsion Laboratory
Pasadena California January 5 1966

5 R H SELZER
Digital computer processing of x-ray photographs
NASA Tech Report No 32-1028 Jet Propulsion
Laboratory Pasadena California November 15 1966

The design of a meta-system *

by A. S. NOETZEL

The Moore School of Electrical Engineering of the University of Pennsylvania
Philadelphia, Pennsylvania

INTRODUCTION

The design and implementation of multiprogrammed,
time-sharing computer systems continues long after the
system is put to use. A tool is needed that will measure
and evaluate the computer system while it is in opera
tion, as an aid to further development or optimization
for a particular usage. Research into the possibility of
developing this tool was undertaken at the University
of Pennsylvania's Moore School of Electrical Engineer
ing. The research led to the design of the tool, which is
presented in this report. It is called the Meta-system.

The uniqueness of the lVleta-system is due to the
coalescing of two widely used techniques-on-line
measurement, and simulation-into one system. Meas
urement is performed by extracting raw representations
of a computer system's operation (from that system)
using software techniques only. Evaluation of the
system is based on input of the measured performance
characteristics to a simulation model that exercises
modified hardware-software versions of the system. All
the potential modifications to the system are evaluated
in the context of the task load of the system, as extracted
from the operational system.

PRELIMINARY DESIGN

Because of the novelty of the l\leta-system, the
description of the system will be preceded by a discussion
of the design requirements of the system, and of the
capabilities and limitations of various design alterna
tives. This should also make clear the area of applic
ability of the lVleta-system.

The l\1eta-system was first conceived of as a feedback
loop on an operating computer system, in which the
functions of measurement, evaluation, and modification

* The work reported here was partially supported by the In
formation Systems Branch of the Office of Naval Research
(Contract N0014-67-A-0216-0014).

415

take place. These functions are discussed in the following
paragraphs.

The measurement function of the Meta-system

The study of measurement techniques of operational
systems resulted in the following set of requirements for
the measurement function of the l\tleta-system:

1. It should be implemented by software techniques.
The recognition and measurement of the logical
or decision-making functions of the operating
system will require decision~making capabilities
in the measurement devices. Also, the measure
ment device must be capable of handling a
variety of measurements and conditions of
operation. A software device is therefore indi
cated. To avoid the expense of an additional
processor, the measurement software will be
multiprogrammed with the system being
measured.

2. It should introduce little artifact.
3. It should record all information of interest. The

complete specification of the information of
interest will not be achieved until the entire
l\1eta-system, including the system modifications
to be evaluated, is specified.

4. It should be amenable to flexible off-line analysis
(i.e., information must be detailed).

5. It should be flexible, so that the same general
approach could accommodate new and more
specific areas of investigation.

The choice of the measurement that meets all of these
constraints is the event trace. This will be more precisely
defined later. For the moment, the event trace is a record
of the important occurrences in a computer systems
operation. These occurrences are interrupts, activations
of particular hardware devices within the system, or

416 Spring Joint Computer Conference, 1971

calls on significant subroutines. The event trace is
recorded at various points in the operating system by
writing a small amount of data specifying the nature of
the event, and the time at which the event occurs, into
a buffer area in main memory. The buffer is written to
external storage whenever it becomes full.

If the events constituting the event trace are properly
defined, the event trace may be an extensively detailed
record of the system's operation. It is, however, raw
data, and will be processed by the evaluation function
of the lVleta-system.

The evaluation function of the Meta-system

Ultimately, the evaluation of the computer system
will be provided by a system designer's response to the
parameters of system performance obtained by
measurement. And his response will depend upon the
options available to him-which are determined by
economic and political considerations. In order for the
Meta-system to complete the evaluation of a system, it
must include the system designer. Henceforth, 'evalua
tion function' will refer to the automatic part of
evaluation-the processing of measurement data to be
more helpful to the system designer.

The following possibilities for the evaluation function
of the lVleta-system are apparent:

1. If the event trace is a record of the time of the
beginnings and terminations of each interaction
of the user tasks, the evaluation function may
condense this data to obtain the response time
distributions for the user tasks.

2. If the event trace is a record of the activations
and deactivations of the hardware devices, the
evaluation function may condense this data to
create a record of the utilization factor of each
device.

In either of these cases, the actual evaluation will be
obtained by comparing the condensed data with some
standard. Since the purpose of the evaulation is to
determine the modifications that will improve the sys
tem's performance, the standard for evaluation should
be the same data taken from variant versions of the
system, especially modified versions in which perform
ance might be improved.

The evaluation function should satisfy these two re
quirements: (1) It should enable the system designers
to identify potential performance improvements· to the
system, and (2) it should indicate the performance of
the modified systems without the expense of perform
ing the modifications.

The Meta-system described thus far has the form
indicated in Figure 1. The evaluation function contains
a 'trial modification' loop in which measurements of
variant versions of the system are obtained. Another
possibility for the evaluation function suggests itself:

3. The evaluation function may be a simulation
model of the system, or modified versions of the
system. Condensed data, such as (1) and (2)
above, may be obtained from the model.

Selection of the simulation model as the evaluation
function imposes special requirements on the measure
ment function. Consider the measurements of one
system that are useful for simulating another system.
The measurements must not be the final results, such as
the utilization factors of various hardware components,
since these will be obtained from the simulation model.
Rather, they will be measurements that can be in
terpreted by the simulation model-frequencies of
occurrence of the operations, for example. The simula
tion model may then allocate a different time interval
for each operation, and different utilization factors will
be obtained. New resource allocation techniques, as well
as other system algorithms that influence the resource
allocation, may be investigated in the simulation model.

The measurements taken from the operational
system will therefore be measurements of the user task
demand for various system resources, which is related to
the allocation of the resources through the operation of
the system.

Next, it must be noted that a task's demand for
system hardware resources cannot be represented
independently of the system on which the task is run,
for two reasons. First, because the hardware resources
(as well as the other resources-macros, algorithms,

TIME-SHARING SYSTEM
USER ___ ~ OUTPUT
TASKS

MEASUREMENT

TRIAL MODIFICATIONS

Figure 1-The Meta-system

tables, etc.) vary from system to system. Second,
because it is the system as well as the user that generates
the demand. Only at the highest level of demand
specification-the level of machine-independent lan
guages-is the demand purely due to the user. But even
in this case, the demand for the execution of a program
written in a high-level language cannot be correlated in
a system-independent fashion, to the demand for
hardware resources.

The result that is important to the theory of
execution-simulation, is that it is possible to find
representations of user task demand that are relatively
independent of the system on which the task was run.

Relatively independent demand representations are
representations which remain valid for a system that is
within a specified class of modifications of the system
from which the representations were taken. One concrete
example may help make the concept of relative inde
pendence clearer. A task may be represented as a series
of I/O operations. The number and frequency of the I/O
operations are functions of the size of the data block
that is involved in a single I/O operation. Then the
sequence of demands for the I/O operations is a valid
representation of the task's demand in every system
which has the same block size in its external storage. It
will remain valid even if the speed of the I/O device is
changed, or if the configuration of the system or the
scheduling of the device is altered, changing the wait
time for the I/O operations.

It has been found possible to extract representations
of user task demand for system resources from several
different levels of operation. In each case, it is necessary
to preprocess the event trace as taken from the system,
before using the trace in the simulator. The preprocessor
and the remainder of the Meta-system is described in
the next section.

OVERVIEW OF THE META-SYSTEM

The Meta-system that was developed in detail was
designed for operation on a hypothetized system which
has the characteristics of three large time-sharing
systems-TSS on IBM 360, TSOS on the RCA Spectra
70/46, and the Multics system on the GE 645. Specifi
cally, it includes the features of recursive and reentrant
operating system routines, demand paging, multi
programming, multiple-I/O paths, multitasking and a
Virtual Access IVIethod. Reference to the details of the
computer system in this overview of the Meta-system
will be reference to the common, and commonly-known
features of these systems.

An outline of the Meta-system is shown in Figure 2.
The three parts of the Meta-system-the recording

Design of a Meta-System 417

USER TIME-SHARING SYSTEM
OUTPUT

TASKS

MODIFICATIONS

SYSTEM
EVENT
TRACE

\
PERFORMANCE

DATA

TRIAL MODIFICATIONS

SIMULATION "'---1 PRE
......... _-1 ROCESSOR MODEL

TASK
EVENT TRACES

Figure 2-The developed Meta-system

mechanisms, the preprocessor, and the simulation
model-are described in the following paragraphs:

The recording mechanisms

Measurement of the system's operation is performed
by small open subroutines embedded within the
operating system. The subroutines record the significant
events in the system's operation. An event is composed
of the following data items:

1. the time
2. an identification of the task (task number) for

which the event occurred
3. the identification of the type of event
4. data associated with the event

A few examples of event types are the following:
(In each case the time and type are recorded. Task
number is recorded for each event type except 'idle.' The
data field mayor may not be recorded, depending upon
the event type.)

The 'on' event, signifying a task gaining
control of the processor. No data is associated
with this event.

The 'idle' event indicating the beginning of a
processor idle period. No task number or data
need be recorded with this event.

The 'I/O-req' event, which is recorded when a
task (or a system routine) requests a physical
I/O operation. The data associated with this
event is a unique representation of the physical
address (e.g., device, cylinder, track) involved in
the operation. An 'I/O-req' event is not synony
mous with the initiation of an I/O device
because the system may delay the actual
operation.

418 Spring Joint Computer Conference, 1971

The page fault of 'pf' event, indicating the
necessity for a demand paging operation. The
data, in this case, is the virtual address of the
page required.

The event of a request for a Logical I/O
operation, or 'LI/O.' This event is recorded when
a task calls on a system routine to perform a
Logical I/O operation. The data associated with
this event is the logical specification, of the
record required (e.g. , file name, record name). The
data is, essentially, the input parameters to the
LI/O routine.

Other events complete the specification of the
system's operation. The set of all events that occur
during the operation of the system, recorded in the
order they occur, is known as the system event trace.

The preprocessor

The system event trace is first preprocessed before
becoming the input to the simulation model. Both the
preprocessor· and the model are run off-line.

The preprocessor accepts the system event trace in
mass storage as input. The preprocessor has two
functions:

1. To decompose the system event trace into event
traces representing the resource demand of each
task.

2. To 'purify' the task event trace. Since the task
event traces will become input to a simulator of
part of the system, the effects of that part of the
system in those traces should be removed before
the traces are used as simulator input. The
preprocessor does this. Several examples of
'system' influence (i.e., the system to be
simulated) in the representation of 'system'
demand, will be shown later.

The output of the preprocessor is a set of task event
traces-one for each task that was active during the
period the event recording mechanism was operating.
The events in the task event traces are much like those
of the system event trace except that:

(a) The task numbers are not recorded in the events,
since each event in a trace is of the same task.

(b) The time of each event is adjusted to be relative
to the operation of that task only.

An example of the second function of the preprocessor
-removing system influence in the event trace-is as

follows: One event in a system event trace is .~ c~ll qn a
Logical I/O (LI/O) routine. The LI/O routine calls on
a Physical I/O (PI/O) routine, and the Physical I/O
event is recorded. This call on the PI/O routine is not
due to the task, because the task specified its I/O
demand at the Logical level. The Physical I/O call must
be considered due to the system, and is removed by the
preprocessor of the system event trace.

The simulator

The simulator accepts the task event traces as input.
The simulation model includes the operation of the
system, from the level at which the events in the trace
are recorded, to the hardware. The simulator consists of:

(a) A Clockworks, which selects the next event from
the task traces and increments the simulation
time.

(b) An Event Analyzer: the analog of the interrupt
analyzer in the actual system.

(c) The Event Response Routines: models of the
operating system routines.

(d) The Hardware Section: representations of the
system hardware devices.

The output of the simulation model is the data that
allows evaluation of the system and isolation of areas of
possible improvement. This data consists of:

1. Utilization factors of the various devices.
2. Response time characteristics for the task

interactions.

The utilization data is recorded in the simulation
model by summing the simulated operating and idle
times of each hardware device. Response times are
calculated by the difference between the simulator time
at which the first 'on' event of the task is accepted by
the model, and the simulator time at which the
'terminate' event is accepted.

This data, obtained from the model, may be compared
with the same data taken directly from the operating
systems.

Levels of Meta-system awareness of system operation

It is obvious that the level of detail of the simulation
will depend upon the class of modifications that is being
contemplated.

Since the event trace, after some preprocessing
becomes the input to the simulation model, the defini
tion of the events in the trace will depend upon the

extent of the simulation model. If the events in the
trace are representations of some aspect of the original
system's operation (such as the operation of a hardware
device), and that aspect of the system is altered in the
simulation model (i.e., the device characteristics are
changed), then the event trace is irrelevant and useless
to the simulation. To be useful, the events must rather
be representations of the user tasks' requirements or
demand for that aspect of the system's operation. The
term 'system resource' which usually indicates the
hard ware devices of the system, may be extended to
include any aspect of the system's operation that may
be of interest-specifically, the system service macros,
the scheduling routine, the loader, or a compiler.
Therefore, the definition of the events in the trace are
seen to depend upon the definition of system resource
that is used for the specification of resource demand.

Lastly, the parts of the system that are of interest,
and considered to be resources, ·will be included in the
simulation model.

Thus, it can be seen that all of the following are
inter-related:

• the definition of system resource used to specify
resource demand.

• the class of trial modifications
• the extent of the simulation model
• the definition of the events in the trace

In the course of the design of the Meta-system it
became apparent that these four entities could be
specified at several different levels, which could best be
differentiated by calling them different levels of
Meta-system awareness of the system operation.

At the lowest level of awareness, only changes in
speed or configurations of the hardware devices are
potential modifications, and only the hardware and the
scheduler of the hardware devices need be included in
the simulation model. Any program calling for a
hardware operation will be considered a user program,
and the user programs' demand for system resources is
the demand for hardware operations. The events in the
trace, in this case, will be occurrences of the requests
for hardware operations.

At the highest level of Meta-system awareness-total
awareness of system and user programs-any modifica
tion to the real system may be made to the simulation
model, since the simulation will be total-and the model
as complex as the entire system. The events in the trace
will be defined in terms of instructions or commands
written at the terminals, and the system resource defined
as all of the programs that respond to these commands.

Between these two levels, several more practical levels

Design of a Meta-System 419

USER TASKS

HARDWARE

Figure 3-Conceptualization of Meta-system levels

of Meta-system awareness have been demonstrated in
the detailed design of the Meta-system.

Meta-system levels of awareness are represented
graphically in Figure 3. The representation of the
time-sharing system in this figure is quite arbitrary. It
roughly corresponds to the levels of logical complexity
of the information-processing capabilities of the system,
which are greatest for the parts of the system that
directly communicate with the user, and least at the
level of the hardware. Representations of system
operation taken from one level are used as the input to a
simulator of all parts of the system below that level,
including the hardware. Several such levels of measuring
and simulating the system are possible.

The design of anyone particular Meta-system
includes the determination of the Meta-system level.
The factors determining the Meta-system level, listed
above, must be selected to be mutually compatible.

DESIGN PROBLEMS OF THE META-SYSTEM

The analysis of the operation of time-sharing systems
for purposes of implementing the Meta-system centered
on isolating representations of user task demand for
system resources that are independent of the allocation
of the resources.

The representation of task demand taken from within
the system are obtained by viewing the execution of any
program above the Meta-system level to be due to the
'user,' even though the instructions being executed may
have been coded by a system's programmer (as would
occur during compilation of a user program) and the
rest as the 'system.' The user task demand is given by
the calls on the system functions.

These representations of task demand, however, are
not easily separated from the operation of the system

420 Spring Joint Computer Conference, 1971

(below Meta-system level). ~here are feedbacks from
system to task: allocation of system resources to the
task modifies the task demand for system resources.
Most of the problems encountered in the design of the
Meta-system are due to the system influence in the
'pure' or system-independent representations of user
task demand. The system influence is removed, in each
case, by one or a combination of the following
techniques:

(a) Construction and placement of the event record
ing mechanisms in the system to either exclude
the system influence, or include supplementary
information so that it may be removed later.

(b) Removing the system influence in tho prepro
cessor of the event trace.

(c) Carrying the system influence into the simulator,
but designing the simulator to neutralize its
effect.

The following paragraphs outline some of the
problems encountered in defining, extracting, and using
representations of resource demand, and the solutions to
them. Other problems, relating to the efficiency and
practicality of the technique are also discussed.

Task identifications in the event trace

A basic function of a multiprogramming operating
system is the scheduling of each task's use of system
resources. Thus, the way in which the events of each
task are intermingled in time is due solely to the
influence of the system.

In another instance of system operation-specifically,
the one provided by the simulator-one task may run
faster or slower, relative to the performance of the
others. The simulator must therefore view the repre
sentations of each task's demand separately.

The first way in which the representation of resource
demand is purified, then, is to separate the resource
demand of each task, into 'task event traces,' in a
preprocessor of the simulator input. In order to do this,
each event in the system event trace must be identified
with a task.

The event recording mechanisms are therefore placed
in positions within the operating system at which an
identification of the task is known. This is no great
obstacle to the implementation of the measurement
portion of the Meta-system. In most cases, the Task
Control Block for the task being operated on is
immediately available to the operating system routine.
When it is not, some unique representation of the task
such as task number or TCB address, is always main-

tained by the system, and m~y be used as the task
identification.

Some events are caused by the system only, and yet
must be recorded in order to complete specification of
task demand information. For example, the event of the
processor beginning to idle need not be associated with
any task, when it is recorded. Later, the 'idle' event will
be used as a 'task relinquishes processor' event. The
preprocessor of the event trace, having knowledge of
which task is on the CP, will complete the specification
of the event.

Representation of processor time requirements

A task's demand for the processor is given by the
number and type of instruction executions it requires.
Since it is neither practical nor necessary to count and
simulate the execution of the individual instructions*
a task's processor demand is taken to be the processor
time required by the task.

The measurement of the time a task spends in the
processing, however, is influenced by the a.mount of
memory interference due to I/O operations into memory,
taking place simultaneously with processing. Therefore,
the task's processor demand will be defined to be the
time the execution of the task would take if no memory
interference were present. The system influence due to
simultaneity is eliminated in the preprocessor of the
event trace. The preprocessor calculates the 'pure'
processing time, as follows: Let m be the memory speed
(cycles per second) and c be the average fraction of
memory cycles needed by the processor. Then with no
memory interference, processing for a period of t seconds
will spend ct seconds utilizing the memory.

Now suppose I/O operations taking k bytes per
second are being performed in the background. The time
for the processors use of memory will be expanded by a
factor of m/(m-k). The total time t' taken to perform
the original t seconds of processing is:

I (cm) t = l-c+-- t
m-k

The quantity {l-c+[cm/(m-k]} will be called the
memory interference factor f.

Each of the event traces taken from the system will
contain the actual time taken on the processor, t'. But,
in order to isolate the task requirement for processor
t~me - t -, the trace must also contain an indication of
the amount of I/O being performed simultaneously with
processing, so that f may be known during each interval

* Modifications internal to the processing unit will not be
considered here.

of processing time. Each event trace is constructed to
contain some account of the I/O activity and the
calculation of t from tf and f is performed in off-line
processing of the event trace.

Specification of memory requirements

The specification of the hardware resource require
ments made by the user programs-either directly or
via a call on a system routine-are generally quite
unambiguous. The specification of memory requirements
is an exception.

A task's memory requirement is actually one word
instruction or data-at a time. For obvious reasons,
memory must be allocated in larger units-in paging
systems, one page or block at a time. The requirement
for a page of memory-when the page is not allocated,
will result in an unambiguous specification of demand:
the page fault. But the system cannot know whether the
demand still exists one memory cycle after the page has
been allocated. Hence, the system itself specifies when
pages should be de-allocated. It will generally do this by
assigning a probabilistic value to the demand for the
page and deallocating the block when either one of these
conditions is met:

(a) When it becomes known that the page is no
longer needed;

(b) When some other task has a demand for the
memory block occupied by the page, which is
greater than the probabilistic demand for the
page;

(c) When it is known that the page will not be needed
for a period, and it is likely that condition b)
will be met before the end of the period.

If these deallocation judgments are made optimally,
a page fault for a particular page will not occur soon after
the deallocation of that page.

The record of page allocations and deallocations,
then, is an inexact specification of the task's demand for
memory: it shows a large degree of system influence.
However, it is the only record of memory demand
available without special hardware to monitor memory
utilization. This example of system influence is not
removed during preprocessing of the event trace, but is
removed by the simulation model, and removed only
when necessary.

The simulator will, in general, handle memory
allocation differently from the allocation shown in the
event trace. If, during the simulation, the task trace
shows a page fault for a page that the simulator has
already allocated, the page fault event is simply skipped.

Design of a Meta-System 421

On the other hand, if the simulation model deallocates a
page when it was not deallocated in the real system, the
simulator must impose a potential page fault on itself.
It replaces the page fault by evaluating the page re-use
time as a random variable. The specification of the
random variable is made from the average value of the
page re-use times of the previous and next re-use times
for the page that are available in the event trace.

Entrances and exits to system routine

Higher levels of specification of user demand for
system resources are demands for system functions. The
events indicating these functions are recorded at the
entrances to the routines performing the functions. The
operating system is written as a set of recursive
subroutines so that a call on one system routine may
result in calls on several others. If the original call on a
system routine is taken to be an indication of user
program demand, then these secondary calls, which are
not made directly by the user program, may not be
considered user demand. The events corresponding to
these calls are system-contributed data, and must be
eliminated from the event trace. A method of distin
guishing user program calls from system program calls
is required.

In order to distinguish system program calls from
user program calls on the system functions, both the
entrances to and exits from the system routines are
recorded as events. Off-line processing of the event
traces will remove the secondary calls that occur
between the entrance event and exit event of a particular
routine.

In order to place these event recording mechanisms in
the system, the entry and exit points of the system
routine of interest must be identified. The identification
of entry points is straightforward. The identification of
the exit points of system routines is, in general, a
difficult problem. Each transfer of the following types
must be analyzed to determine whether it should be
considered an exit from the subroutine:

(a) Transfer to the return address provided by the
standard subroutine call.

(b) Transfer to any address provided as a parameter
to the subroutine.

(c) Transfer to an address taken from the pushdown
stack of subroutine calls.

(d) A non-subroutine type transfer to another
system function.

The methodology outlined in the design specifies at
which of these transfers the event recording mechanism

422 Spring Joint Computer Conference, 1971

a) SUBROUTINE STRUCTURE
OF OPERATING SYSTEM

b) CLASSES OF
SUBROUTINES

c) DEFINITION OF META-SYSTEM LEVELS

Figure 4-Meta-system levels due to subroutine structure

(in some cases, a conditional recording mechanism)
should be placed.

V olume of data recorded: the concept of class of subroutines

As the representation of user resource demand is
refined, it becomes more a specification of logical
functions to be performed than a specification of
physical operations.

Because of the subroutine structure of the operating
system, it may be necessary to record many sub
functions of one logical function. Also, it is necessary to
carry some representation of the physical operations
even at logical level of user demand specifications.
Hence, high-level specifications of user demand require
more events than lower-level specifications.

In order to generalize the technique of recording the
event trace at higher levels of demand specification, the
number of events must be somewhat independent of the
level of specification-it cannot increase indefinitely as
the specification level increases.

The generalization of the definition of higher level
event traces must be made in such a way that the events
indicating the operation of routines that are always
called as the consequence of higher-level routines, are
not included in the higher level traces. This requires
analysis of the set of routines making up the operating
system to identify classes of subroutines, that have a
partial ordering imposed upon them by the nature of
their calls.

The classes of subroutines are defined as follows:
Routine A is in a class greater than or equal to Routine
B if A calls on B, either directly or through another
routine. If, in addition, routine B calls on routine A,
then A and B are in the same class.

As an example, applying the definition of class to the
subroutine structure of Figure 4a, in which the sub
routine calls are indicated by arrows, yields 5 classes,
whose partial ordering is shown in Figure 4b. The user
programs are always a class by themselves, and always
the highest class, since they are never called by the
system as subroutines. From the fact that the user
programs call on routines A, F and G, the class of user
programs call on the classes ABCEF and GHJ.

Once the classes of the operating system routines are
established, as in Figure 4b the set of levels at which the
resource demand of the system may be measured (the
level of lVleta-system awareness of system operation),
may be selected. The level is represented by the
interface between the classes of routines that are
considered user programs (higher in the ordering) by the
Meta-system, and the classes of routines that are
considered part of the system (the lower part of the
ordering). A level is chosen by simply drawing a line
across the arrows representing the calls on the sub
routine classes.

Only the entrances and exits to the subroutines of the
classes that are adjacent to the Meta-system level of
awareness need be recorded as events.* The routines
that are called only from higher-level routines within the
Meta-system awareness need not be recorded, even
though they may have been recorded in a previous,
lower-level Meta-system.

The set of levels of Meta-system awareness that may
be chosen for the subroutine structure of the example is

* This does not imply that the entrances and exits to every
subroutine of such a class must be recorded, because a finer
analysis (e.g., the operating system structure of Figure 4a) may
show that only several of the routines of a class are called from
above the Meta-system level. The analysis by class is a first
approximation to specify a set of routines that need not be
recorded. It is true, however, that if one routine of a class is
included within the model, then each routine of the class, and all
classes below it, must be included in the model.

the following:

(a) any of the 7 subsets of {K, I, D}, the lowest classes
(excluding the empty set)

(b) {GHJ, I}or {GHJ, I, D}
If the class GHJ is chosen, then the lower class,

K, need not be recorded since it occurs only as a
consequence of GHJ. The other lower class, I,
must be recorded, since it is called from above
GHJ.

(c) {ABCEF, GHJ}
The user programs call on this set of system

program classes. All other classes result from calls
on this set; therefore, calls on these other classes
need not be recorded.

It must be remembered, however, that the Figure 4b
is a structural representation of Meta-system classes,
and therefore provides only an estimate of the number
of events which will actually be recorded. The volume
of recorded data will depend upon the frequency with
which control passes through the Meta-system level.
Also, the calls on the subroutine classes are recorded at
the entrance to the subroutines. Thus, if the Meta
system level crosses one arrow leading into a class, the
level will in fact cross the other arrows into that class as
well, whether or not this is intended in the definition of
the level. For example, in Figure 4c, two levels are
shown. One, the higher level, is inefficient, since some
of the calls on the GHJ class result from the previously
recorded ABCEF class. In this case, a call sequence
from the user program to F to G is recorded twice. The
lower Meta-system is efficient.

Modeling system routines

The simulation model will include the models of some
of the system routines. In order to preserve the economy
inherent in simulation (as opposed to implementation
and testing) the models of these routines are simplified.
Yet the important aspects of their operation-in
particular, the decisions that ultimately result in
hardware resource allocation-must be duplicated
within the model.

Simplified versions of system routines have been
developed in the design of the Meta-system. It has been
estimated that 60 percent of the code in the executive
of a multi-programmed operating system exists for the
purpose of error checking. It is assumed in the lVleta
system design that the paths resulting from the error
checks are taken rather infrequently, therefore, they are
not a great influence on the resource allocation process.
These error checking paths are omitted from the

Design of a Meta-System 423

versions of the system routines in the model. Likewise,
security considerations, in file operations, do not
determine the location or identification of a particular
data item. It may be assumed that the frequency of file
operations being blocked for security reasons is small
enough not to influence the utilization data obtained in
the simulation. Security data has been omitted from the
model.

SUMMARY

This report has been a summarization of the· concept
of the Meta-system, and a review of the problems that
are encountered in the design of such execution-simula
tion systems, rather than simply a recounting of the
details of the design.

The completion of the design of the lVleta-system and
successful trial runs of the system (insofar as they are
possible on an unimplemented system) provide strong
evidence that the Meta-system is technologically
feasible, and will be an aid in the development of a
time-sharing system. The question of its economic
feasibility still remains since the implementation will be
a considerable task. However, simulation models are
employed during the development of most new computer
systems. Development of the simulation model to
operate in the Meta-system at the outset of the design is
probably a feasible approach, since the full benefit of the
Meta-system will be obtained in the later stage of
design, and it may then be given to the user to optimize
the system for his particular usage.

ACKNOWLEDGMENTS

The author is considerably indebted to his dissertation
supervisor, Dr. Noah S. Prywes, for his aid, advice and
encouragement during the period of the research. Also,
many thanks are due to Dr. David Hsiao, who gener
ously contributed his insight, experience and
enthusiasm.

REFERENCES

1 G M AMDAHL B BLAOUW
Architecture of IBM S/360
IBM Journal of Research and Development Vol 8 No 2
April 1964

2 P CALINGAERT
System performance evaluation: Survey and appraisal
CACM Vol 10 No 1 pp 12-18 January 1967

3 D J CAMPBELL W J HEFFNER
Measurement and analysis of large operating systems during
system development
AFIPS Proc FJCC Vol 33 pp 903-914 1968

424 Spring Joint Computer Conference, 1971

4 C T GIBSON
Time-sharing in the IBM System/360: Model67
AFIPS Proc SJCC Vol 28 p 611966

5 R C DALEY J B DENNIS
Virtual memory processes, and sharing in MULTICS
CACM Voill No 5 P 306 May 1968

6 P J DENNING
Equipment configuration in balanced computer systems
IEEE Transactions on Computers Vol C-18 No 11
pp 1008-1012 November 1969

7 J R DENNIS
Segmentation and the design of multiprogrammed computer
systems
JACM Vol 12 No 4 pp 589-602 October 1965

8 E W DIJKSTRA
Structure of THE multiprogramming system
CACM Voill No 5 May 1968

9 G H FINE P V McISAAC
Simulation of a time-sharing system
Management Science Vol 12 No 6 pp B180-B194 February
1966

10 D FOX J L KESSLER
Experiment in software modeling
Proc AFIPS FJCC 1967

11 IBM System/360 time sharing system, concepts and facilities
IBM Document C28-2oo3-3

12 IBM System/360 time sharing system, dynamic
loader-Program logic manual
IBM Document Y28-2031-o

13 IBM System/360 time sharing system, resident
supervisor-Program logic manual
IBM Document Y28-2012-3

14 A S LETT W L KONIGSFORD
TSS/36D-A time-shared operating system
AFIPS FJCC 1968 pp 16-28

15 R A MERIKALLIO
Simulation design of a multiprocessing system
AFIPS Proc FJCC Vol 33 Pt 21968

16 N R NIELSON
The analysis of general purpose computer time-sharing
systems
Document 40-10-1 Stanford University Computa tion
Center December 1966

17 G OPPENHEIMER N WEIZER
Resource management for a medium scale time sharing
operating system
CACM Vol 11 No 5 P 313 May 1968

18 E L ORGANICK
A guide to multics for subsystem writers
Project MAC Doc March 1967

19 70/46 processor reference manual
RCA Corp Document 70-46-62 March 1968

20 TSOS executive macros and command language reference
manual
RCA Document 70-00-615 June 1969

21 J H SALTZER J W GINTELL
The instrumentation of multics
CACM Vol 13 No 8 August 1970

22 F D SCHULMAN
Hardware measurement device for IBM System/360 time
sharing evaluation
Proc ACM National Conference pp 103-109 1967

23 V A VYSSOTSKY F J CORBATO R M GRAHAM
Structure of the multics supervisor
Proceedings FJCC pp 203-212 1965

An interactive simulator generating system for small
computers*

by JOEL L. BRAME and C. V. RAMAMOORTHY

University oj Texas
Austin, Texas

INTRODUCTION

This paper is concerned with a novel idea for the use of
an interactive computer system. The system, called an
Interactive Simulator Generator, is designed primarily
for a student interested in learning about the structure
of a computer. This is achieved through the use of
design configuration in a simulation process. The Inter
active Simulator Generator asks questions about the
structure of the target machine the user wants and
provides him finally with a simulator for his machine.
It also provides a list of pseudo micro-operations that
help the user to specify and develop assembly instruc
tions and programs. Modest diagnostic and debugging
aids are provided. Measurements such as frequency of
use and average execution time,etc., are also available
for comparing different computer configurations. The
simulation of a subset of the PDP-8 Computer is
illustrated. The system is programmed in System
360jAPL.

This project consists of a computer system that acts
as a tool to aid a user in simUlating and optimizing a
single purpose computer. The system· could also be
used as a teaching aid in computer design courses. The
theme of the project is design initialization and recon
figuration in a simulation process.

The system is intended to be used primarily by stu
dents· interested in learning the basic principles of
computer design. The system allows the user to build
the type machine that he has in mind, specify the in
structions that he wants to use, and then execute a
program written in the language he has specified.

The machine that the user builds can either be hypo
thetical, or a physical machine already defined.

The overall procedure that the user goes through

* This work is supported by National Science Foundation Grant
GJ-492.

425

consists of the following steps:

1. A user sits at an APL interactive computer
terminal. The hpst computer will ask the user
questions concerning his computer's operations.
The idea behind the system is to break the
simulated computer down into its basic opera
tions, called pseudo-microinstructions.

2. As the user answers questions, these pseudo
microinstructions are generated to correspond
with every operation of his computer. The user
will also be asked to specify the time that he
judges each operation will take. Only the knowl
edgeable user would be able to accurately esti
mate these values.

3. The user then uses each of these pseudo-micro
instructions to define each of his machine's
assembly language instructions.

4. The user will then be asked to enter a program
in the assembly language that he has specified.

5. This program will be executed. A clock will be
kept, and a report compiled, that will tell the
user his execution time and where he spent his
time.

6. The user will then be given the option of recon
figuring his computer. If he chooses to recon
figure, he must specify what changes (i.e., new
pseudo-microinstructions) he wants, and which
assembly language instruction macros that he
wants to redefine. Execution will then revert
back to step 5. If the user chooses not to recon
figure, then he can save his system, and sign off.

Thereby, the user can evaluate the hardware of his
computer for a given need and financial restriction by
looping through steps 5 and 6.

It should be noted here that the system does not
attempt to exactly, step for step, simulate the opera-

426 Spring Joint Computer Conference, 1971

ESTABLISH SYSTEM

F:[)IT OR RIWEFINE
INSTRUCTION DEFINITIONS

Figure 1

TRANSFERS
SlIIFTS
IlICREMF.NTS
DECREMENTS

tions of the target computer. Rather, it simulates only
the results of the operations. The simulator cannot
calculate the time that the operations take. It accepts
the timing answer of the user to be true. If the user
decides that he wants to spend more money for a par
ticular piece of hardware, he can go back and specify
a faster execution time .. Then, he can determine how
much this extra expense saves him in execution time.
Furthermore, the system will obviously allow the user
to develop the best programming method to achieve the
result for which his single purpose computer was de
signed.

Most systems that the simulator is designed to handle
could be developed by a knowledgeable person in half
of one working day or less. The example, subset of
PDP-8, took about one and a half hours to specify the
machine, and one hour to define the instruction set.

Figure 1 presents this flow of action that the user goes
through to define his computer.

The choice of APL

Iverson's A Programming Language is used to imple
ment the Interactive Simulator Generator. The major

reasons are: (a) It is easy to learn and get started;
(b) Its statements are compact; (c) it is easy to debug
programs since in system 360/ APL the error messages
are very meaningful; (d) it is easy to represent and
manipulate structured operands; (e) its operators have
remarkable power and flexibility. On the other hand,
the ease of programming had to be compromised with
long execution times. Since APL programs are hard to
read, extensive comments and good program docu
m~ntation had to be provided.

The simulator generator was programmed and de
bugged with the aid of an APL terminal in Austin
using a IBM system 360/50 at Dallas. The current use
of the generator is restricted mainly as a teaching aid
to undergraduate students in electrical engineering and
computer sciences learning computer organization and
in this the system has been very valuable. '

OVERVIEW OF SYSTEM

Criteria for design

This .system was theorized and implementation pur
sued WIth the following motivating principles in mind.

Primarily, the authors believe that a tool like this
would be a great teaching aid. In a computer design
course, an instructor could have the vehicle for con
verting his lectures into application demonstrations.
This would be both stimulating and thought-provoking
to the students as well as to the instructor. Further
more, if the student could see the application of theory,
he would certainly remember it longer and hopefully
learn it faster. This kind of demonstration would be
good not only for computer design courses, but also for
any kind of computer science or engineering class where
further knowledge of the computer and. its operating
procedures could make the students more aware of the
problems and challenges that the computer presents.

Secondly, the authors believe that there exists a
need for an "interactive" system to act as a tool to aid
a computer designer in designing new or improving
existing machines. There are existing computer-aided
design systems, but few if any of them are in the inter
active mode. The designer will get some of his best
ideas sitting and working at the terminal. He can test
out his ideas immediately instead of having to wait
for a batch run job to be prepared and run. In this way
when the designer has a brainstorm, and has the facts
fresh in his mind, he can sit down at his terminal and
explore his ideas .. Often, if there is a time lag between
thought and expression, a detail may be forgotten and
this detail could be the difference between success and
failure.

Structure of the overall system

We shall next outline the procedure that the user
goes through to simulate his computer. There is an
example in the appendix of the simulation of a small
computer system that is a subset of PDP-So

1. Specification of Hardware

The first thing that the Simulator must ascertain
from the user is the physical description of the hard
ware of the computer that he wants to. design. The
topics that the user is asked about are the following:

(A) Memory Size
(B) Word Size
(C) Registers, Counters, and Special Memory

Locations
(D) Method of Referencing lVIemory
(E) Appended Storage Devices

(A) Memory Size

The user is asked to state how many words of memory
he will need to execute the assembly language program
that he will enter at the end of the specification. If
there is enough space in the Execute workspace, then
the user is allowed to proceed. The amount of space he
can use is approximately 12000 bytes. The simulator
alone takes up about 32000 bytes of storage space.

(B) Word Size

The user is asked to indicate the bit length of the
word size of his computer. If it is over 3'2 bits, then he
is not allowed to proceed. This ·could be changed, but
for space restrictions and because this system is pri
marily designed for a small single purpose computer,
this is convenient and will allow most systems that it
was designed to handle.

(C) Register, Counter, and Special Memory Location

The simulator must simulate the registers, counters,
and special memory locations. (The system asks about
special memory locations only if the user has a variable
name or tag addressing scheme for his memory. If he
simulates his memory, then the system treats his entire
memory as special memory locations.) The Simulator
asks the user to name all the registers, counters, and
possibly special memory locations that his computer
has. It gives the user a new name and number to refer

Interactive Simulator Generating System 427

to each device. The system is designed such that the
user uses the numbers of the different types of storage
devices (i.e., register, counter or special memory loca
tion) to define the exact operations that he wants. It
also asks the user to give the bit length of each register
and counter. The Simulator builds a word the exact
length of each storage device. If the user wants, he can
get a print out of the storage devices in the numerical
order that they are identified with their respective bit
length.

As an example, if the third register that the user
enters is named ACC, the computer will tell him to
refer to this device as REG3. Then when he is specify
ing an operation that involves ACC, he refers to it by
the code that the Simulator tells him to use for the
type of device that it is (REG), and its respective
number which is 3.

(D) Method of Referencing Memory

The user has two ways that he can refer to memory
locations in his final assembly language program.

1. He can refer to them by the register indexes
which specify the location in memory that he
has this value stored. If he does this, the array
MEMLOC is used to simulate his memory.

2. He can refer to tags, i.e., names used to refer to
specific memory locations. Tags are referred to
as variables in the example at the end. The
system keeps up with the location where these
tags are stored by referring to the symbol table.
He must specify the number of tags that he
needs, and they are simulated in the array
VARIABLE.

This is necessary information for the computer when
it starts trying to execute his memory reference in
structions, and it has to determine which array, i.e.,
VARIABLE or MEMLOC, that he is referring to.

(E) Appended Storage Devices

The Simulator has to find out if the user wants any
storage devices appended together. This is needed for
any shift operation that the simulated computer might
have where a multiple number of devices shift as a
whole. Also, the simulated computer might have two
devices appended together to handle double precision
arithmetic operations.

The Simulator does, not record the devices that are
appended together as such. It only needs to know if the
specialist requests such a need, and tell him the limit

428 Spring Joint Computer Conference, 1971

of appended devices that the system will accommodate.
This limit is set at three, but could easily be changed
if the need existed. The procedure for shifts that in
volve more than one device is all taken care of in the
way that the user specifies the parameters.

2. Specification of Operations

The user will be asked questions concerning his
operations. The questions are broken down into two
parts, that is, operate and memory reference operations.

(A) Operate Operations

The user is asked detailed information about the
operations of his computer that are strictly internal.
That is, the operations that work on data after it has
been referenced from memory. These operations in
clude:

1. Sequential transfers
2. Simultaneous transfers
3. Shifts
4. Logical operations
5. Increments and decrements
6. Sets and clears

There is a separate APL function written that will
duplicate most any operation of the above types that
the user could ask for. If the user is unable to specify
an operation that he wants on his computer, then he
could insert an APL subroutine for this purpose.

The user is asked to specify every detail of the type
operation that he wants. As he answers the questions,
he is building a list that is concatenated onto the main
answer string, a vector named STRING. His answers
acts as parameters to each separate function when he
calls that function name with the correct indexes of
STRING. As the user specifies the exact operations
that he wants, the Simulator first checks to make sure
that his answer is in the correct format. If it is not,
then the answer is not accepted, and he is asked to
reenter his answers for that operation. If his answer is
in the correct format, then the Simulator gives the
user the exact instruction that will perform the opera
tion that he has just specified.

The following is a section taken out of the specifica
tion procedure. There is an instruction booklet that
goes with the Simulator Generator. The user is told
where in the booklet to refer for each section of opera
tions. The questions and instructions were all presented
to the user by the Simulator at first, but because of a

space restriction, they had to be transferred into a
user's booklet.

The following is an example on attaining information
about the user's sequential transfers.

I NOW WANT YOU TO ENTER ALL THE SE
QUENTIAL TRANSFERS THAT YOUR COM
PUTERHAS.

THIS FIRST SET OF QUESTIONS IS CON
CERNED ONLY WITH THE TRANSFERS THAT
CAN BE DONE SEQUENTIALLY. IF YOU HAVE
TRANSFERS THAT ARE DONE SIMULTANE
OUSLY, BUT COULD BE DONE SEQUENTIALLY,
PLEASE INCLUDE THEM IN THIS SECTION.
IN THE FOLLOWING QUESTIONS WHEN IT
ASKS FOR CODE NUMBERS OF DEVICES, USE
THE FOLLOWING CODE NUMBERS:

I-REGISTER
2-COUNTER
3-SPECIAL MEMORY LOCATION

PLEASE ENTER ANSWERS TO THE FOLLOW
ING 7 QUESTIONS FOR AS MANY TIMES AS
THERE ARE SINGLE BITS, OR STRINGS OF
BITS INVOLVED IN EACH PARTICULAR
TRANSFER. BE SURE TO SKIP A SPACE BE
TWEEN EACH NUMBER. IF ALL YOUR TRANS
FERS ARE SIMULTANEOUS, AND MUST BE
DONE THAT WAY, THEN ENTER THE NUM
BER9999.

1. CODE NUMBER OF DEVICE THAT BITS
ARE TRANSFERRED FROM.

2. NUMBER OF DEVICE THAT BITS ARE
TRANSFERRED FROlV1.

3. NUMBER OF LEFTMOST, COUNTING
FROM THE LEFT, BIT OF THE STRING
OF BITS BEING TRANSFERRED.

4. TOTAL NUMBER OF BITS IN THIS PAR
TICULAR STRING.

5. CODE NUMBER OF DEVICE THAT BITS
ARE TRANSFERRED INTO.

6. NUMBER OF DEVICE THAT BITS ARE
TRANSFERRED INTO.

7. NUMBER OF BIT, COUNTING FROlVI THE
LEFT, IN THE RECEIVING DEVICE THAT
LEFTMOST BIT OF THAT PARTICULAR
STRING IS STORED INTO.

AFTER ANSWERING QUESTIONS 1-7 FOR AS
MANY TIMES AS NECESSARY, PLEASE MAKE
YOUR LAST ENTRY THE AMOUNT OF TIME,

IN INTEGER NANOSECONDS, THAT YOU
THINK IT WILL TAKE YOUR COMPUTER TO
EXECUTE THIS OPERATION.

The Simulator will wait for the user to respond be
fore execution continues.

Suppose the user has a single transfer operation,
where he transfers bits 1-3 of REGI to bits 5-7 of
COUNT2 and bits 4-12 of REGI to bits 1-9 of REG2.
Suppose that the user enters the string:

11132251149121

The Simulator will tell him that his answer is in the
wrong form. (He has forgotten to specify the TIME.)
He will be asked to reenter his answers. Suppose this
time he enters the string:

1 1 1 3 2 2 5 1 1 4 9 1 2 1 2000

The Simulator will respond with the following:

THIS OPERATION WILL BE REFERRED TO AS
TRANSFER STRING [8+ tI5]

PLEASE MAKE NOTE OF THIS FACT.

Then when he wants to program an instruction that
does this one operation, he defines an APL function
with his instruction's name, and uses this instruction
form as the first, and only in this case, function defini
tion command. The string that the user entered is
stored in locations 9-23 of the array STRING. The
instruction he was told to use will issue the contents of
these locations of STRING to the function TRANS
FER, where they will be used as parameters to execute
the operation he defined.

Suppose the user has an instruction that combines
several of the elementary operations in one execution.
He merely has to define a function with the name of
his instruction and include each pseudo-microinstruc
tion, in the form that the simulator asked him to use,
in that one function definition.

(B) Memory Reference Operations

The user was given two choices for the way that he
wanted to reference memory in his instructions that
involved storing into or accessing from memory. The
operate functions allow only registers, counters, and

Interactive Simulator Generating System 429

special memory locations to have operations performed
together. It is easier for the user to program using tags
and let the system keep up with where it is stored, in
stead of having to remember the memory locations
that he stored a value into. However, if he simulates
his memory, then he can perform operations on con
tents of memory instead of having to first load the
contents of a tag into a storage device. This is because
his memory is simulated by the array MEMLOC,
which also simulates special memory locations (which
can perform operations with registers or counters). The
operate functions allow the user to use memory loca
tions as if addressing is by absolute location of memory.

In other words, if the user has operations that take
the contents of memory locations directly and perform
operations between it and a storage device, then he
wants to simulate his memory. His alternative, if he
uses tag, is to add a register that he really does not
have, and first load the contents of a tag into this
dummy register before performing the operation. This
alternative, though very clumsy, will give the user the
same result.

He must use the LOAD and STORE commands to
transfer the contents of tags or memory locations into
and out of the machine, where necessary.

The commands that the system provides for memory
reference instructions are the following:

READ
PRINT
LOAD
STORE
ADD
SUBTRACT
MULTIPLY
DIVIDE
DECLARE

The instructions, except for DECLARE, will handle
values contained in either VARIABLE or MEMLOC.
DECLARE is for only variable assignments.

The forms that the user must use are explicitly de
fined by the Simulator. The user is given a function
name, and he defines the parameters, which can be
either set numbers, or tag names. If he uses tags, he is
responsible for assigning them the correct values in the
course of his final program. He is told how to do all of
this.

An example of the form provided is the READ command, which is defined as follows:

FOR THE INPUT OPERATION THAT YOU HAVE, USE THE FOLLOWING FORM:

READ VARIABLE 1 TIME

430 Spring Joint Computer Conference, 1971

THE FIRST VARIABLE (VARIABLE1) REFERS TO THE NUMBER OF THE TAGS OR
MEMORY LOCATION THAT YOU WANT TO INPUT A VALUE FOR.

THE PROGRAM WILL STOP AND ASK YOU TO ENTER THE VALUE OF THAT TAG
OR MEMORY LOCATION EACH TIME THAT IT IS ENCOUNTERED.

TIME IS THE INTEGER AMOUNT, IN NANOSECONDS, THAT YOU THINK IT WILL TAKE
YOUR COMPUTER TO EXECUTE THIS OPERATION.

3. Definition of Instructions

The user is now asked to take the instruction forms
that were given him by the system, and use these
forms to define the instruction set that he wants to
use. To do this, he must first be instructed how to de
fine an APL function. This is done by having him refer
to the instruction booklet. Once he has learned this
procedure, he can use the operate instructions that the
system has given him and the memory reference in
struction forms that he was instructed to use to define
his instruction set in any manner he chooses.

The only exception to this is any jump instruction.
Because of the absence ofa needed APL operator, the
jumps that the user requires must be written in APL
code. There are several simple forms for him to use to
achieve the type operation he wants.

4. Entrance of Target Machine's Algorithm

Now the user takes the instructions that he has de
fined, and the APL instruction forms that he has learned
to use, and writes an APL function in about the same
format as he would write a program for his machine.

5. Execution and Reconfiguration

(A) Execution

To execute his. program, the specialist simply types
its name. After execution, he can get two reports from
the Simulator.

1. The times that this execution took.

(a) The accumulated time for each function
that the specialist defined. This is the time
that he predicted. If these times are ac
curate, this is the time that it would take
for that program to run on his computer.

(b) The time that it topk APL to execute this
program.

2. A report on the number of times that each basic

function was executed. From these two reports,
he can determine not only how much time he
spent, but also where he spent it.

(B) Reconfiguration

Now, if he wishes he can go back and specify more
and/or different operations. He can then take the extra
operations that he has defined, and either redefine the
instructions that he has already specified, or he can
define more instructions that he wants to use in his
assembly language program.

Once he has done this, he can execute his same pro
gram, with the new specifications, and see if he has
improved his execution time. Hopefully, with the loop
that exists between these steps, he can build the best
system that for a given investment will perform this
one operation.

Once he is happy with the configuration of his ma
chine, he can experiment to see if he can come up with
a programming technique that will improve his execu
tion time even more. In this way the user has two
methods that he can work with to improve his machine
for its application.

The user also has the option of simulating several
machines for the same application and deciding which
machine would be the best for his particular need.

6. Programming A ids

If the user has difficulty getting a program to work
correctly on his simulated computer, he has the follow
ing options of programming aids.

(A) He can put a TRACE on his program that will
allow him to specify the lines of the different
functions that he wants to trace. This facility
will print the name of the function being exe
cuted, and the line number, as well as the value
assigned on that line. This can be done for each
function, for as many lines of that function as
needed with only one short, simple command.
To remove the TRACE also takes only one
command.

(B) He can stop his program at any point that he
wishes, by issuing one command. When his pro
gram stops, he can ask for the contents of any
storage device or memory location at that in
stant. Then with one simple command, he can
start the program up right where it left off. The
program will stop each time it hits this line
number, and he can specify as many line num
bers as he wishes. To remove this facility, takes
one simple command.

(C) The user can get a memory dump by issuing one
simple command. He can ask for all of memory,
or only a particular part.

(D) The system has modest diagnostics to help the
user get through the simulation moves. Between
the booklet he has to refer to and the diagnostics
offered by the system, it is not difficult to be
come accustomed to the operating procedures of
the simulator.

SPECIFICS OF SYSTElVI

The following divisions of this paper give the finer
details of this system.

Operate operations

This is the heart of the Simulator. The Simulator has
to be able to duplicate any kind of transfer, shift,
logical operation, increment, decrement, set or clear
operation that the simulated computer might have.

The original idea was to have a separate function
for each micro-operation. However, this would have
involved a great deal of redundancy to anticipate every
operation that the user might want. In APL there are
two modes of operation-execution and definition. One
is unable to do the opposite operation in either mode.
Also, one cannot copy literal characters as themselves
when one transfers strings for one function to another.
Therefore, the method adopted to handle names and
variables, as discussed above, is to specify all the tags
and let the system reidentify them and tell the user the
new identification as a name and a number.

Then, the functions are programmed so that the user,
in his parameters, specifies the code for the type storage
device he is referring to and gives the number of that
particular device. In this way, the user can define ex
actly the operation that he wants, and one function
can be designed to handle all cases.

The main functions are defined very generally, and
the user can specify exactly the operation he wants for
each type operation definition. Also, in the definition
of the parameters, the user enters the integer amount

Interactive Simulator Generating System 431

of time, in nanoseconds, that he thinks it would take
that operation to execute on his computer.

All operate functions, except INCREM, convert the
contents of the word used to simulate the storage device
into binary before performing the appropriate opera
tion, as defined by the user. Once the operation has
been completed, the Simulator converts the contents
of the location back into its decimal equivalence.

Before the system will accept the parameter string
that defines an operation, it checks to make sure that
it is in the correct form, that is, it has the correct
number of elements. If it is not, then it asks the user
to redefine the parameters for that operation. If the
parameter string is accepted, then it is stored in an
array, STRING. Then the user is told the exact form
of the function call that will duplicate the operation he
has just defined. It is his responsibility to record this
instruction form and keep track of which instructions
duplicate their respective operations.

Because of a space restriction, all parts of the simula
tion system that are strictly instructional in nature
were removed from the system and put in an instruc
tional pamphlet. The Simulator advises the user on the
proper section of the pamphlet to refer to for each
group of questions that must be answered.

(A) Transfers

The Simulator has to be able to transfer any bit or
string of bits from any storage device to any other
storage device. Not only does the Simulator have to
take care of sequential transfers, but it also has to
duplicate simultaneous transfers. That is where certain
bits of a storage device are sending and receiving data
at the same instant.

The Simulator accomplishes this need with the func
tions TRANSFER, for sequential transfers, and
SIMULFER, for simultaneous transfers.

(B) Shifts

The Simulator must be able to make any kind of
shift operation that the user might want. This includes
any appended storage devices that might shift as a
single unit.

This is implemented in the system by the function
SHIFT. The user defines the exact shift operation he
wants by specifying parameters. This parameter string
is stored in the array STRING, and the user is told
the exact form of the instruction that will duplicate this
operation. The system as implemented in the proto
type, will allow no more than three appended storage
devices to be shifted as a whole unit. This limitation,

432 Spring Joint Computer Conference, 1971

however, is only a matter of convenience. If more is
needed, it can easily be changed to handle the added
facility.

(C) Logical Operations

The Simulator must be able to perform any kind of
logical product, sum or complementation between
storage devices. This capability is handled in the sys
tem by the function LOGOP. This function allows any
logical operation between any two storage devices of
the same length, or between any storage device and
integer number. The operations that are available are:
AND, inclusive OR, exclusive OR, NOT, NAND, in
clusive NOR, and exclusive NOR.

CD) Increments and Decrements

The Simulator must be able to perform any kind of
increment or decrement operation on any storage
device.

This capability is handled in the system by the func
tion INCREM. This function allows any storage device
to be incremented or decremented by any amount.

(E) Sets and Clears

The Simulator must be able to set or clear any bit
or string of bits in any storage device. This facility is
handled in the system by the function SET. This
function allows any bits in any storage device to be set
with ones or cleared to zeroes.

Memory reference operations

The instructions, i.e., functions, defined up to now
were those that would have no argument. Or in other
words, those functions that operated on data that was
already loaded into particular locations in the com
puter. The user will also need to define those functions
that necessitate reference to memory, that is those in
structions that require data to be stored into or accessed
from memory.

The Simulator does not attempt to simulate the
memory, as such, of the guest computer unless the user
asks for it.

The memory reference instructions are defined so
that theuser uses set forms and specifies the parameters
that these operations use. The parameters specify the
particular register, variable, or memory location that
he is referring to for that operation. These parameters,
depending on the user's programming, can either be

set numbers or tag names. If they are integer numbers
then obviously, they stay the same throughout the
execution of the program. If they are tags then the
user is responsible for initializing and reassigning the
values through9ut the course of his program. He is
instructed on how to do this in APL in his instructional
pamphlet. In this way, he can work with arrays as
easily as single tags. He must be careful to keep his
index numbers straight for each respective tag name or
array that he works with. The only restriction that the
user has is his choice of tag names. He cannot use any
tag name that the system uses, and all of his own must
be unique. If he simulates memory then the locations
are defined as index numbers from 1 to the total num
ber he asked for.

The only exception to the rule of defining memory
reference instructions is the JUMP instruction. This is
fully explained in the section on jumps.

Because of a space restriction, the phases of the sys
tem that are strictly instructional on memory reference
operations were also removed from the system and
placed into the instructional pamphlet. The Simulator
advises the user on the section of the pamphlet to refer
to for memory reference instructions.

(A) Load

Any operation that the user's computer has that
takes data out of a tag or memory location and places
it into a register will be of the following form:

LOAD VARIABLEl VARIABLE2 TIME

The first variable (VARIABLEl) refers to the number
of the tag or memory location he wants loaded. The
second variable (V ARIABLE2) refers to the number of
the register that he wants the value loaded into. TIME
is the integer amount, in nanoseconds, that he thinks
it will take his computer to execute this operation.

(B) Store

Any operation that he has that takes data out of a
register and stores it into a tag or memory location will
be of the following form:

STORE VARIABLE 1 VARIABLE2 TIME

The first variable (VARIABLEl) refers to the number
of the register whose contents he wants stored. The
second variable (V ARIABLE2) refers to the number
of the tag or memory location that he wants the value
stored into. TIME is the integer amount, in nano
seconds, that he thinks it will take his computer to
execute this operation.

Interactive Simulator Generating System 433

(C) Arithmetic Operations

Next are the arithmetic operations. They will be of the following form:

ADD
SUBTRACT
MULTIPLY
DIVIDE

VARIABLE 1 VARIABLE2 VARIABLE3 VARIABLE4 TIME

The first variable (VARIABLEl) refers to the code as to whether this operation is between two registers, a tag and
a register, or a memory location and a register. The code is the following:

O-REGISTER AND REGISTER
I-REGISTER AND TAG
2-REGISTER AND MEMORY LOCATION

The second variable (V ARIABLE2) refers to the number of the tag, memory location, 01' register referred to in
VARIABLEl. The third variable (VARIABLE3) refers to the number of the other device, a register, involved in
the operation. The fourth variable (V ARIABLE4) refers to the number of the register that the result of the operation
is to be stored into. TIME is the integer amount, in nanoseconds, that he thinks it will take his computer to execute
this operation.

(C) DECLARE

If the user has a tag to which he wants to assign a
value without having to do a read statement, then he
uses the following form:

VARIABLE I DECLARE NUMBER TIME

The first variable (V ARIABLEI) refers to the number
of the tag that he wants to assign a value to. NUMBER
refers to the value that he wants the tag assigned.
TIME is the integer amount, in nanoseconds, that he
thinks it will take his computer to execute that oper
ation.

(D) READ

For the input operation that the user has, he will
use the following form:

READ VARIABLE 1 TIME

The first variable (V ARIABLEl) refers to the number
of the tag or memory location that he wants to read
in a value for. The program will stop and ask him to
input the value for each tag or memory location read,
as encountered. All input must come from the user
through the terminal. The system will tell the user the
tag number it needs a value input for, for each read
instruction encountered. TIME is the integer amount,
in nanoseconds, that he thinks it will take his computer
to execute that operation.

(E) PRINT

For the output operation that the user has he will
use the following form:

PRINT VARIABLEI VARIABLE2 TIME

The first variable (V ARIABLEl) refers to the number
of the tag or memory location that he wants printed.
The second variable (V ARIABLE2) refers to the num
ber base that he wants that tag or memory location
printed in. The system will print a header with each
print instruction encountered, telling the number of
the tag or memory location/printed on that line. TIME
is the integer amount, in nanoseconds, that the spe
cialist thinks it will take his computer to execute that
operation.

Jumps and labels

(A) Jumps

According to APL manuals, labels are global, and
jumps can be made from any location of one function
to any other location of any other function in that
same active workspace. Unfortunately, in the APL
version that the prototype is implemented in, labels are
local and therefore jumps can only be made to labels
located within the same function definition as the jump
instruction. Another restriction with respect to jumps
is that APL will not allow you to transfer a literal

434 Spring Joint Computer Conference, 1971

string in a string of literals like a tag name, from one
function to another and then jump to that tag. APL
recognizes only the value of a tag and not its literal
self.

Therefore, the user will have to program his own
jumps in APL, and program them in his assembly
language type algorithm.

The system was originally theol'ized to be such that
all instructions, both operate and memory reference,
could be defined by micro-operations.

In implementation, the idea to define jumps like the
other memory reference instructions, had to be aban
doned. When, and if, the APL system personnel com
plete their work on the 'unquote operator,' i.e., allows
tag to be transferred from one function to another as
itself instead of its value, and if the system has global
labels, then both of these original ideas could be easily
implemented as originally designed.

The Simulator instructional pamphlet tells the user
the two major forms, i.e., conditional and unconditional
of APL jumps that he can easily learn and use. In both
forms, he is given the option of branching to a label,
or skipping over lines of instruction. The user has the
prerogative of programming his jumps as he wishes.
Any conditional jump instruction must be conditional
on either the contents of a register, counter, or special
memory location. This is mandatory.

(B) Labels

Label names have the same restrictions as tags,
only that they must start with a letter and not have
any operators in them. The only time that the specialist
has a tag name on the left of the function name is when
he plans to use it as a label. Lables can be on any line,
but they must be followed immediately by a colon. Any
label that is branched to must be defined as such.

The only other time that there is any other character
at all on the left of a function name is in the DECLARE
operation, and it is a number. Therefore, there should
not be any confusion or difficulty with labels.

Procedure for defining an APL function

At this point, the user will have defined all his operate
functions, and have been instructed how to define his
memory reference instructions. He will then be asked
to refer to the instructional pamphlet to learn how to
define a function in APL. This is a very straightfor
ward procedure and easy to learn.

Definition of instruction set

CA) Definition of Operate Instructions

Once the user has been informed how to define an
APL function he will be requested by the instructional
pamphlet to write APL programs that will act as
macros, a function definition using the pseudo-micro
instructions as noted by the Simulator as the instruc
tion, for each of his assembly language operate instruc
tions. The names of these instructions are his choice ,
except that they must be unique and obey the same
rules as tag names. He defines these functions with the
pseudo-microinstructions that he has already specified
and generated. He defines separate functions for each
of his operate instructions. He will specify the param
eters for his memory reference instructions in his final
program, using the set form that has been shown to
him.

If he discovers that he has forgotten to specify a
particular function then he gets out of definition mode
and loads the Simulator again. The Simulator recog
nizes that he wants to add a function by certain flags
that were set in the program the first time through.
It then transfers him to the section of reconfiguration.
This section is explained fully in RECONFIGURE.

CB) Definition of Memory Reference Instructions

The user has an option of how he wants to define his
memory reference instructions.

1. He can use the exact forms that are given to
him by the Simulator for these operations.

2. He can use the forms given him by the Simu
lator to write function definitions for the in
structions that he has that perform this same
operation.

Final program d~finition

After the user has entered his macros for his operate
instructions, and possibly his memory reference in
structions, he will be. instructed by the instructional
pamphlet to enter his final program function definition.
The instructions that he will use in this final program
are the following:

1. The function names that he defined to act as his
operate instructions is the operate macros.

2. The set forms that he was told to use for his

memory reference instructions, or the functions
that he defined with these forms.

3. The APL jump forms that he was instructed to
use to simulate his jump instructions.

Execution

After the user has completed the final program func
tion definition, he is asked to type "INITIATE." This
function initializes the system before each execution.
This function does the following:

1. Sets a flag so that the Simulator will know that
execution of the final program has happened for
the first time.

2. Sets the projected time that the user has speci
fied throughout the system to zero. (It will be
incremented by the value the user specified in
the parameters for each function definition. This
is the theoretical time that his program would
execute on the guest computer.)

3. Get the present value of the amount of IBM/360
50 time that has been used in this session. This
time is an integer amount and is expressed as
1/60's of a second. After execution, the function
REPORT uses this value to determine the
amount of APL time used to execute his pro
gram.

In this way the user can have two clock times that
he can work with to optimize his system.

Due to the many levels of function calls, it takes
APL a long time to execute this kind of program. The
example shows specific times.

Reconfigure and function editing

(A) Reconfigure

After the assembly language final program has exe
cuted, and the user has had an opportunity to check
his clock times, he may want to reconfigure his machine.
That is, he may want to redefine how the operate in
structions are executed by his machine, or he may want
to add some extra microinstructions that will give him
added capabilities before redefining his operations.

The operations needed, and their use, is left entirely
up to the user. The Simulator only gives him the ability
to define such operations that his machine could have,
and test them. Only the user knows how much he is
willing to pay for certain speeds, and the kind of speed
necessary for each single purpose.

Interactive Simulator Generating System 435

If he wants to add extra operate microinstructions to
his list of operations, then he loads the Simulator back
into the workspace. The Simulator will know by the
flag he set before executing his program for the first
time that he wants to reconfigure. It transfers him to
this section. The user is referred to the instructional
pamphlet, and asked to answer the question appropri
ately. From his answers, the Simulator detects what
type operation he wants to add, and transfers him to
the appropriate sections. He can add as many opera
tions as he wants. When completed, he signals the
Simulator, and it tells him to redefine, or edit, the
functions that he needs to improve or add.

(B) Function Editing

The user now is referred to the instructional pamphlet
where it explains how to edit an APL function. APL
has some very simple yet powerful function editing
capabilities.

Then he is asked to redefine the functions whose exe
cution time he needs to try to improve. After he has
done this, he reverts back to EXECUTION to re
execute his program. This loop between EXECUTE
and RECONFIGURE can continue for as long as
there is enough space in the active workspace for him
to store the extra parameter strings and any extra in
structions that he defines. This takes up very little
space, so this loop should be able to continue for as
long as he wants to work with that particular system.

Unanticipated needs

There is a good possibility that someone will want a
certain operation for which the Simulator will not· pro
vide facilities. The Simulator provides for this situation
by asking the user if there is any capability that he was
unable to specify because of a lacking on the part of the
system. If there is, then the user is asked to enter a
description of the capability that he needs, as well as
his name and phone number. The caretaker of the
system can check the memory locations that the mes
sage would be loaded into for each work space. If he
finds that there is a certain need that should be added,
then he can provide the added facility and then con
tact the person asking for that improvement.

Preserving a defined system

fhis system would not be very useful if the user had
to redefine his machine every time he signed on. The
Simulator allows the user to save his own particular

436 Spring Joint Computer Conference, 1971

system by entering several simple APL system com
mands. These commands and the order to be given are
all shown in the instructional pamphlet.

Limitations

(1) Since this system was designed primarily as an
educational tool, there was little emphasis put on simu
lation of the 1-0. There are plans to improve this
situation in the future.

(2) The system as implemented now does not allow
for the times for jumps on target computer to be ac
cumulated in the total execution time. This is only be
cause of the fact that jumps had to be programmed in
APL. Hopefully future versions of APL will allow for
this to be done. It could be done at the present but
would necessitate the user picking up a little more
APL than could be expected.

CONCLUSIONS AND EVALUATIONS

This system, for the most part, operates as it was
originally envisioned. There are several phases of the
system that could not be implemented as hoped. This
was mainly because of the APL version that this sys
tem was implemented in; however A Programming
Language is the only language that the authors know
of that could have possibly accomplished the desired
needs so completely.

The interactive system makes the simulation very
convenient for the user and changes the task of trying
to simulate a system from a boring job into a very
stimulating procedure. After becoming accustomed to
the operating procedure of the system, the Simulator is
almost like a new toy that is extremely pleasant to
manipulate. This system gives the operator a feeling of
power in expressing his ideas that he never had before.

In implementing this system, there were several
times that the final design was almost completed, and
then it was discovered that there was a need that could
not be facilitated. Therefore, if this system had to be
redesigned, a version of APL that allowed the following
would be very useful:

1. Global Labels, that is the ability to branch from
any point in one function to any point in another
function.

2. Variables. to be transferred from one function to
another as their literal self rather than their
values.

REFERENCES

1 P BERRY
APL/360 primer
IBM Technical Publications Department
White Plains New York 1969

2 Small computer handbook
Digital Equipment Corporation
Maynard Massachusetts 1967

3 I FLORES
The logic of computer arithmetic
Prentice-Hall Inc Englewood Cliffs New Jersey 1963

4 H W GSCHWIND
Design of digital computers, an introduction
Springer-Verlag New York 1967

5 S S HUSSON
Microprogramming manual for the IBM System/360 Model 50
International Business Machines Corporation
Poughkeepsie New York 1967

6 APL/360 user's manual
IBM Technical Publications Department
White Plains New York 1968

7 T C LOWE
An educational tool for use in the introduction of digital
computing
Informatics Inc 1967

8 J MARTIN
Design of real-time computer systems
Prentice-Hall Inc Englewood Cliffs New Jersey 1967

9 S PAKIN
APL/360 reference manual
Science Research Associates Chicago Illinois 1968

APPENDIX 1-PDP-8 SUBSET EXAMPLE

The PDP-8 is a small computer manufactured by
DIGITAL COMPUTER CORPORATION. It has a
word size of 12 bits, and a memory unit that will hold
4096 words. The PDP-8 has the following registers:

Accumulator
Memory Address
Memory Buffer
Program Counter
Link
Switch Register
Instruction

12 bits
12 bits
12 bits
12 bits
1 bit

12 bits
3 bits

The registers that it uses to perform its arithmetic
operations are not included. The registers that need to
be simulated because of programming operations that
involve them are the:

Accumulator
Link
Switch Register

Memory reference instructions

The memory reference instructions that are simulated
are the following:

AND Y

The AND operation is performed between the contents
of memory location Y and the contents of the AC
CUMULATOR. The result is left in the ACCUMU
LATOR, the original content of the ACCUMULATOR
is lost, and the content of Y is restored. Corresponding
bits of the ACCUMULATOR andY are operated on
independently. This instruction, often called mask or
extract, can be considered as a bit-by-bit multiplication.

TADY

The content of memory location Y is added to the
content of the ACCUMULATOR. The result of the
addition is held in the ACCUMULATOR, the original
content of the ACCUMULATOR is lost, and the con
tent of Y is restored.

ISZ Y

The content of memory location Y is incremented by
one. If the resultant content of Y equals zero, there is
a skip over one instruction, and the next instruction is
executed. If the content is not equal to zero then the
next instruction in order is executed.

DCA Y

The content of the ACCUMULATOR is deposited in
core memory at location Y and the ACCUMULATOR
is cleared. The previous content of memory location
Y is lost.

Operate instructions

The operate instructions that are simulated are the
following:

lAC

The content of the ACCUMULATOR is incremented
by one.

RAL

The content of the ACCUMULATOR is rotated one
bit to the left with the content of the LINK. The shift
is left, end-around.

Interactive Simulator Generating System 437

RTL

Same as RAL, except that shift occurs twice, that is
shift two bits instead of one.

RAR

The content of the ACCUMULATOR is rotated one
binary bit to the right with the content of the LINK.
The shift is right, end-around.

RTR

Same as RAR except that shifts two bits instead of one.

ClVIA

The contents of the ACCUMULATOR are com
plemented.

CML

The contents <;>f the LINK are complemented.

CIA

This is a combination of two instructions. First CMA
and then lAC. This operation converts the contents of
the ACCUMULATOR to its equivalent negative value.

CLL

The content of LIN,K is cleared to contain a o.

STL

The content of LINK is set to contain a 1.

CLA

The content of the ACCUMULATOR is cleared to
contain all O's.

STA

The content of the ACCUMULATOR is set to contain
alIi's.

OSR

The inclusive OR operation is performed between the
content of the ACCUMULATOR and the content of
the Switch Register. The result is left in the ACCUMU
LATOR, the original content of the ACCUMULATOR
is lost and the contents of the Switch Register is un
affected.

SKP

Skip the next instruction.

438 Spring Joint Computer Conference, 1971

SNL SMA

Skip the next instruction if the content of LINK is not
equal to o.

SZL

Skip the next instruction if the content of LINK is o.

SZA

Skip the next instruction if the content of the AC
CUMULATOR is o.

SNA

Skip the next instruction if the content of the AC
CUMULATOR is not equal to o.

Skip the next instruction if the content of the AC
CUMULATOR is negative.

SPA

Skip the next instruction if the content of the AC
CUMULATOR is non-negative.

This example does not attempt to simulate the PDP-8
as a whole, but only a subset of it. Nor does it attempt
to show the entire capabilities of the simulator system.
This is intended only to provide a simple straightfor
ward example of the use of the simulator with no re
configurations, diagnostics, or programming aids in
cluded.

The questions that the user answers as well as the
directions that he is to follow are in the instruction
booklet. Space restriction would not allow for inclusion
of this booklet in this paper.

ESTABLISII
SIMULATE

INTRODUCTION

Interactive Simulator Generating System 439

THIS IS A SYSTEM TIIAT HOPEFULLY WILL ALLOW YOU TO GENERATE A
SIUULATOR

FOR YOUR SINGLE PURPOSE COMPUTER.
NOW PLEASE REFER TO TO INSTRUCTION PIIAMPHLET.SECTION 1. TO G

ET AN OVERALL PICTURE OF WHAT
YOU ARE ABOUT TO DO.
ENTER THE RETURN WHEN READY TO PHOCEED.

DESCRIPtION OF· MACHINE

WHAT IS THE SIZE OF YOUR MEMORY BANK?
0:

4096
;:!IAT IS THE BIT SIZE OF YOUR INSTRUCTION liORD?
[1:

12
NOw PLEASE ENTER ALL THE REGISTERS THAT YOU HAVE. ONE AT A T

IME. THEN THE BITLENGTH OF EACH. WHEN YOU
HAVE ENTERED ALL YOUR REGISTERS. HIT ONLY THE RETURN KEY.
ENTER REGISTER NAME, HIT RETURN, THEN ENTER REGISTER BIT LEN

GTH.
ACC
THIS REGISTER WILL BE REFERRED TO FROM NOW ON AS REG1. PLEA

SE MAKE RECORD OF THIS.
WHAT IS THE BIT LENGTH OF THIS REGISTER?
0:

12
NOW ENTER THE NAME OF YOUR NEXT REGISTER .• IF COMPLETED. ENTE

R ONLY THE CARRIAGE RETURN.
fvJA
THIS REGISTER WILL BE REFERRED TO FROM NOW ON AS REG

2. PLEASE MAKE RECORD OF THIS .•
WHAT IS THE BIT LENGTH OF THIS REGISTER?
0:

12
NOW ENTER THE NAME OF YOUR NEXT REGISTER. IF COMPLETED. 1':I1TE

R ONLY THE CARRIAGE RETURN.
MB
THIS REGISTER WILL BE REFERRED TO FROM NOW ON AS REG

3. PLEASE MAKE RECORD OF THIS.
WHAT IS THE BIT LENGTH OF THIS REGISTER?
0:

12
NOW ENTER THE NAME OF YOUR NEXT REGISTER. IF COMPLETED, ENTE

R ONLY THE CARRIAGE RETURN.
PC
THIS REGISTER WILL BE REFERRED TO FROM NOW ON AS REG

4. PLEASE MAKE RECORD OF THIS.
WHAT IS THE BIT LENGTH OF THIS REGISTER?
0:

440 Spring Joint Computer Conference, 1971

12
NOW ENTER THE NAME OF YOUR NEXT REGISTER. IF COMPLETED. ENTE

R ONLY THE CARRIAGE RETURN.
LINK
THIS REGISTER WILL BE REFERRED TO FROM NOW ON AS REG

5. PLEASE MAKE RECORD OF THIS.
WHAT IS THE Blr LENGTH OF THIS REGISTER?
0:

1
NOW ENTER THE NAME OF YOUR NEXT REGISTER. IF COMPLETED. ENTE

'R ONLY THE CARRIAGE RETURN.
SWITCH
THIS REGISTER WILL BE REFERRED TO FROM NOW ON AS REG

6. PLEASE MAKE RECORD OF THIS.
WHAT IS THE Blr LENGTH OF THIS REGISTER?
0:

12 ,
NOW ENTER THE NAME OF YOUR NEXT REGISTER. IF COMPLETED, ENTE

R ONLY THE CARRIAGE RETURN.
IR
THIS REGISTER WILL BE REFERRED TO FROM NOW ON AS REG

7. PLEASE MAKE RECORD OF THIS.
WHAT IS THE BIr LENGTH OF THIS REGISTER?
0:

3
NOW ENTER THE NAME OF YOUR NEXT REGISTER. IF COMPLETED, ENTE

R ONL~THE CARRIAGE RETURN.

WOULD YOU LIKE TO HAVE A HARD COpy OF THE REGISTER NAMES AND
BITLENGTHS, IN NUMERICAL ORDER.

AS THE COMPUTER HAS THEM IDENTIi'IED. .ANSWER YES OR NO.
YES
ACC MA MB PC LINK SWITCH IR
12 12 12 12 1 12 3
NOW, PLEASE ENTER ALL THE COUNT~RS THAT YOU HAVE. ONE AT A T

IME. THEN THE BIT
LENGTH OF EACH. WHEN YOU HAVE ENTERED THEM ALL, HIT ONLY THE

RETURN KEY.
ENTER COUNTER NAME, HIT RETURN. THEN ENTER COUNTER BIT LENGT

H.

WOULD YOU LIKE A HARD COpy OF THE COUNTER NAMES, IN NUMERICA
L ORDER, AND THEIR BITLENGTHS

AS THE COMPUTER HAS THEM IDENTIFIED. ANSWER YES OR NO.
NO
REFER NOW TO SECTION 1.5 OF THE APPENDIX FOR INSTRUCTIONS ON

WHAT TO DO NEXT.

0:
(Refer to Booklet about Option of Memory Addressing)

Interactive Simulator Generating System 441

U:
1

WHAT rs THE SIZE OF THE BLOCK OF MEMORY SPACE THAT YOU WILL
NEED TO EXECUTE YOUR PROGRAM?

u:
·50

TllESE LOCATIONS WILL BE REFERRED TO FROM NOW ON AS MEMLOC1-U
EMLOC50 THEY ARE 12

BITS IN LENGTH
THE FOLLOWING IS A LIST OF VARIABLES THAT YOU CANNOT USE AS

VARIABLES OR LABELS IN YOUR PROGRA~IS.
APLNOW APLNO,.,l TERK TERKl TERK2 TERKS TERK4
TERK5 TERK6 TERK7 TERK8 TERK9 TERK10 TERK11 TERK12 TERK13 TE

RK14
TIME STRING COUNTER REGISTER MEMLOC VARIABLE WORDSIZ BITLENG

TH
BITLINGTH FLAGl FLAG2

- APPENDED srORAGE DEVICES

ARE THERE ANY REGISTERS APPENDED TO ONE ANOTHER.
YES
THE PRESENT SYSTEM ALLOWS NO MORE THAN THREE STORAGE DEVICES

TO BE APPENDED TOGETHER. THAT IS
IT WILL ALLOfl NO 1I0RE THAN TlIREE STORAGE DF-VICES '1'0 BE SlIIFT

ED ASA WHOLE. IF YOU NEED OR .WANT MORR THAN THIS
SIMPLY CONTACT JOEL BRAME.

NOW. PLEASE REFER TO YOUR INSTRUCTION PflAMPHLET.SECTION 2. T
o FIND OUT WHAT QUESTIONS

YOU ARE TO ANSWER AND TIlE FOR},! THAT THESE ANSWERS ARE TO HE
IN •

0: 9999
DOES YOUR COMPUTER HAVE ANY TRANSFER OPERATIONS THAT MUST BE

DONE SIMULTANEOUSLY?
NO

- SHIFT OPERATIONS
DOES YOUR COMPUTER HAVE SIIIFIj' OPERATIONS?
YES
NOrl PLEASE REFER TO SECTION 4 OF YOUR INSTRUCTION PIIAI1PllLET

TO RECEIVE FURTHER DIRECTIONS
U: 1 5 6 4 1 0 1 1 1500
THIS SHIFT OPERATION WILL BE REFERRED TO AS

SHIFT STRING[0+19]
PLEASE J.1AKE NOTE OF THIS FACT.
IF YOU HAVE MORE OPERATIONS OF THIS TYPE. THEN ANSWER THE AB

OVE QUESTIONS AGAIN. IF YOU
ARE COMPLETED. THEN ENTER ONLY THE NUMBER 9999.
U: 1 5 6 5 1 0 1 1 l~OO
THIS SHIFT OPERATION WILL BE .REFERRED TO AS

SHIFT STRING[9+19]
PLEASE J.IAKE NOTE OF THIS FACT.
IF YOU HAVE MORE OPERATIONS OF THIS TYPE. THEN ANSWER THE AB

OVEQUESTIONS AGAIN. IF YOU
ARE COMPLETED. THEN ENTER ONLY THE NUMBER 9999.
n:

442 Spring Joint Computer Conference, 1971

LOGICAL OPBRATIONS
9999

NOW PLEASE REFER TO SECTION 5 OF YOUR INSTRUCTION PHAMPHLET
TO RECEIVE FURTHER DIRECTIONS.

n:
1 5 7 001 5

YOUR ANSWER IS IN THE WRONG FORM. ~REREAD THE INSTRUCTIONS A
ND ANSWER THE QUESTIONS FOR 'THIS OPERATION AGAIN.

0:
1 5 7 0 0 1 5 1500

THIS OPERATION WILL BE REFERRED TO AS
LOGOP STRING[18+\8]

PLEASE MAKE NOTE OF THIS FACT.
IF YOU HAVE MORE OPERATIONS OF THIS TYPE,THEN ANSWER THE QU

ESTIONS AGAIN. IF YOU
}RE COMPLETED, THEN ENTER THE NUMBER 9999.
n:

1 1 7 0 0 1 1 1500
THIS OPERATION WILL BE REFERRED TO AS

LOGOP STRING[26+\8]
PLEASE MAKE NOrE OF THIS FACT.
IF YOU HAVE MORE OPERATIONS OF THIS TYPE, THEN ANSWER THE QU

ESTIONS AGAIN. IF YOU
ARE COMPLETED, THEN ENTER THE NUMBER 9999.
0:

1 1 5 1 7 1 1 1500
THIS OPERATION WILL BE REFERRED TO AS

LOGOP 3TRING[34+\8]
PLEASE flAKE NOTE OF TillS FACT.
IF YOU 1lAVE J.IORE OPERATIONS OF TillS TIPE, THEN ANSWER THE QU

ESTIONS AGAIN. IF YOU
ARE COMPLETED, THEN ENTER TilE NUMBER 9999.
0:

9999

- INCREMENTS DECREMENTS

NOW PLEASE REFER TO SECTION 6 OF YOUR INSTRUCTION PHAMPHLET
TO RECEIVE FURTHER DIRECTIONS.

0:
1 1 4 1 1500

THIS OPERATION WILL. BE REFERRED TO AS
INCREM STRING[42+\5]

PLEASE MAKE NOTE OF THIS FACT.
IF YOU HAVE 110RE OPERATIONS OF THIS TYPE, THEN ANSWER THE QU

ESTIONS AGAIN. IF YOU
ARE COI.fPLETED THEN ENTER THE." NUUBER 9999.
0:

9999
NOW PLEASE REFER TO SECTION 7 OF YOUR INSTRUCTION PHAMPHLET

TO RECEIVE FURTHER DIRECTIONS.
0:

Interactive Simulator Generating System 443

SErS AND CLEARS

1 5 4 1 1 1500
THIS OPERATION WILL BE REFERRED TO AS

SET STRING[47+l6]
PLEASE MAKE NOTE OF THIS.
IF YOU nAVE -ANY MORE OPERATIONS OF THIS TYPE. THEN ANSWER TH

E QUESTIONS AGAIN. IF COMPLETED
THEN ENTER THE NUMBER 9999.
0:

1 5 5 1 1 1500
THIS OPERATION WILL BE REFERRED TO AS

SET STRING[53+l6]
PLEASE MAKE NOTE OF THIS.
IF YOU HAVE ANY MORE OPERATIONS OF THIS TYPE. THEN ANSWER TH

E QUESTIONS AGAIN. IF COMPLETED
';I'!EN ENTER THE NUMBER 9999.
n:

1 1 5 1 12 1500
THIS OPERATION WILL BE REFERRED TO AS

SET STRING[59+\6]
PLEASE MAKE NOTE OF THIS.
IF YOU HAVE ANY HORE OPERATIONS OF THIS TYPE. THEN ANSWER TH

E QUESTIONS AGAIN. IF COMPLETED
THEN EPTER THE NUMBER 9999.
0:

1 1 4 1. 12 1500
THIS OPERATION WILL BE REFERRED TO AS

SET STRING[65+\6]
PLEASE MAKE NOTE OF THIS.
IF YOU HAVE ANY }'fORE OPERATIONS OF THIS TYPE. THEN ANSWA'R TH

E QUESTIONS AGAIN. IF COMPLETED
THEN ENTER THE NUMBER 9999.
0:

9999
WERE THERE ANY OPERATIONS TilAT YOU WERE UNABLE TO SPECIFY FO

R YOUR COMPUTER BECAUSE OF A LACKING ON
THE PART OF THE SIMULATOR. ANSWER YES OR NO.
NO
PLEASE REFER TO THE PHAMPHLET YOU HAVE WITH YOU TO LEARN WHA

T TO DO NEXT. REFER TO THE MEMORY REFERENCE
INSTRUCTIONS.APPENDIX1.. IT WILL EXPLAIN EVERYTHING THAT YO

U ARE TO DO TO CONTINUE THIS SIMULATION PROCESS.

444 Spring Joint Computer Conference, 1971

) CLEAR
CLE'AH WS

)COP1 EXECUTE:KE1
SAVED 15.22.05 07/25/70

)eOP1 SlMULATOR:KE1 NEEDS
SAVED 17.30.13 07/27/70

The following is an example of taking the pseudo-microinstructions

set desired. (MaIl1' pseudo-microinstructions can be used to define the

execution of anyone instruction). The user is instructed how to define

APL functions in the instruction booklet.

VClA
[1] HEGISTER[l]+-REGISTER[l]
[2] V

VCLA
ll] SET STRING~59+t6]
[2] V

VCLL
[1] SET BTRING[53+t6]
[2] V

VCMA
[1] LOGOP STHING[26+ t-8]
[2] V

V Cf.1L
[1] LOGOP STRING[18+18]
[2J V

VDCA KKK
[1] STORE 1,KKK.1500
[2] CLA
[3] V

VIAC
[1] INCREM STRING[42+1S]
[2] V

V 0:;11
[1] LOGOP STllING[34+\8]
[2] V

VRAL
[1] SHIFT STRING[O+\9]
[2] V

VRTL
[1] HAL
[2] RAL
[3] V

VRAR
[1] SllIFT STRING[9+\9]
[2] V

VRTR
[1] RAR
[2] RAR
[3] V

VSTA
[1] SET STRING[65+1G]
[2] V

VSTL
[1] SET STRING[l~ 7+ 16]
[2] V

VTAD LLL
[1] ADD 2.LLL. 1 1 3000
[2] V

SKP +2+726

SNL +(REGISTER[5]~0)/2+I26

SZL +(REGISTER[S]=O)/2+I26

Interactive Simulator Generating System 445

SZA

Sf/A

SMA

SPA

ISZ Y

+(REGISTEH[l]=O}/2+126

+(REGISTER[l]~O}/2+126

+(REGISTER[l]<0)/2+126

+(REGISTER[l]~O)/2+126

INCREM 3.Y. 4 1 3000
+(MEMLOC[Y]=0)/2+I26

446 Spring Joint Computer Conference, 1971

THE FOLWtlING IS A SORr ROUTINE ~RITTEN IN THE LANGUAGE

THAT WE HAVE DEFINED.IT IS A SUBSET OF THE PDP-8 ASSEMBLY CODE

OTHER THAN THE JUMP INsr RUCTIONS. AND ASSIGNING VALUES TO THE

VARIABLES THAT ARE USED AS FUNCTION PARAMETERS, AND LABELS.

v PROGRAN;UU;SS;TT
[1] UU+2
[2] RR+l
[3J LABEL:READ RR,1000
[4J RR+RR+l
[5] INCREM 3 1 4 1 3000
[6] +(MEMLOC[1]=0)/2+I26
[7] +LABEL
[8] +ESTAB
[9] LABELl :INCREM 3 13 1+ 1 3000
[10] +(MEMLOC[13]=0)/2+I26
[llJ +2+:I26
[12] +E5TAB
[13] CLA
[14] TAD SS
[15] CIA
[16] TAD SS+l
[17] SS+SS+l
[18] +(REGISTER[l]<0)/2+I~6
[19] -+LABELl
[20] CLA
[21] TAD 5S-1
[22] DCA 16
[23] TAD ss
[24] DCA SS-l
[25] TAD 16
[26] DCA SS
[27] TAD 1 L~
[28] IAC
[29] DCA 14
[30] -+LABEL 1
[31] ESTAB:CLA
[32] TAD 14
[33] +(REGISTER[1]~O)/2+I26
[34] +LABEL2
[35] CLA
[36] TAD 15
[37] DCA 14
[38J TAD 12
[39] DCA 13
[40] SS+2
[41] +LABELl

Interactive Simulator Generating System 447

['6:t] LAHEL2:PRIN'l' UU, 102000
[43J lIU+UU+1
L44J JNCHEM 3 12 4 1 3000
[45] +(MEMLOd[12]=0)/2+Z26
[46] +LABEL2
[47] +0

INITIATE

PROGRAN

PLEABE ENTER THE VALUE FOR f.1EMLOC1
0:

-15
PLEAS E ENTER THE VALUE FOR MEMLOC2
0:

3
PLEASE ENTER THE VALUE FOR J.1EMLOC3
U:

9
PLEASE ENTER THE VALUE FOR I.fEHLOC4
0:

6
PLEASE ENTER THE VALUE FOR MEMLOC5
0:

15
PLEASE ENTER THE VALUE FOR UEMLOC6
U:

1
PLEASE ENTER THE VALUE FOR ItEMLOC7
0: .

8
PLEASE ENTER THE VALUE FOR MEMLOC8
0:

10

448 Spring Joint Computer Conference, 1971

J!LF~SE ENTER THE VALUE FOR [\fEMLOC9
U:

20
PLEASE ErlTER THE VALUE FOR MElt/LOCi 0
U:

2
PLEASE ENTER THE VALUE FOR MEJ.1LOCll
U:

7
PLEASE ENTER THE VALUE FOR MEMLrlC12
0:

10
PLEASE ENTER THE VALUE FOR MEMLOC13
0:

0
PLEASE ENTER THE VALUE FOR MEMLOC14
,J:

1
P ·"E ASE ENTER THE VALUE FOR MEf.!LOC15
II .

o· •

0
PLEASE ENTER THE VALUE FOR MEMLOC16
0:

0

MEMLOC2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

MEULOC3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2

MEMLOC4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3

f.1EMLOC5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 6

MEMLOC6 0 0 0 0 0 0 0 0 0 0 0 0 0
0 7

MEMLOC7 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8

MEULOC8 0 0 0 0 0 0 0 0 0 0 0 0 0
0 9

I.JEMLOC9 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0

MEMLOC1O 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5

MEMLOC11 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0

Interactive Simulator Generating System 449

REPORT

THE ACCUMALATED TIME THAT YOU SPECIFIED FOR EACH OPERATION FOR T
HIS EXECUTION IS 0.0015825

'l'HE FOLLOWING IS THE AMOUNT OF APL TIME. IN 1/60 OF A SECOND. Til
AT EXECUTION

FOR THE PREVIOUS PROGRAM TOOK i4825
THE FOLLOWING IS A LIST OF ALL THE BASIC FUNCTION NAMES AND THE

NUMBER OF TIMES THEY WERE EXECUTED

TRANSFER OSIMULFER OSHIFT OLOGOP 0
INCREM 126SET 205ADD 249SUBTRACT OMULTIPLY a
~~VIDE OLOAD OSTORE 96DECLARE OREAD 16
PRINT 10

Multiband automatic test equipment-A computer controlled
check-out system

by TERUHISA KURODA

McKinsey & Company, Inc.
New York, New York

and

THOMAS C. BUSH

Sanders Associates, Inc.
Plainview, New York

INTRODUCTION

The major problem facing organizations using elec
tronic devices is in test and maintenance of the equip
ment. Due to the high cost of the equipment and de
mands made o~ its maximum utilization, fast and reli
able testing procedures are required to minimize down
time for repair and calibration.

The purpose of this paper is to describe the computer
and software system developed for MATE, the Multi
band Automatic Test Equipment. The MATE System
was developed to test naval avionic equipments. In
formation related to these naval avionic equipments is
both "classified" and irrelevant to the MATE systems
in the software sense and, therefore, is not included in
this paper.

SYSTEM OVERVIEW

The MATE System is self-contained and consists of
all software and hardware necessary for its operation.

Basic processes in the use of the MATE System are
shown in Figure 1. The test engineer first performs the
necessary analyses to determine what tests must be
made on a particular device; These tests are then or
ganized by a 3-digit test-sequence number with a 3-digit
test-series number. These tests are then flow charted
and coded, taking into account the rules of the MATE
programming language. Since this programming lan
guage is English-like, programs are called English
Language Programs or ELPs. ELPs are punched on
paper tape and catalogued on the disk, unit under test
is connected to MATE; and tests are performed.

451

Figure 2 shows the components of the MATE Sys
tem from the programming point of view. It shows how
major programs such as the Executive Program, Lan
guage Processor, and Utility Programs interact with
various input-output devices in the system. Measuring
devices and stimuli-generating equipment appear as
input-output units. The use of pertinent data on the
disk such as indices, tables, and libraries have been
indicated.

Hardware connections are shown in Figure 3. These
connections are ra"ther straightforward, except for the
use of two busses to transfer data between test modules
and the computer. The address bus is used to send the
device address of the test module to be referenced in
the input-output operation. Data from test modules
are sent across the data bus.

Execution of tests is shown by Figure 4. It shows
how various data stored on the disk are used.

The picture of the MATE station is shown in Figure
5. It can be seen how compact and self-sufficient the
system is.

MANUAL CHECKPOINT INADEQUATE

The basic testing process consists of sending a simple
stimulus to the unit under test, receiving the resulting
response, and measuring the response against a stand
ard. As the complexity of the devices to be tested in
creases, there is a corresponding rise in the number and
interrelationships among stimuli and responses. The
traditional manual testing approach, with the use of
lash-ups and semiautomatic control devices, is totally

452 Spring Joint Computer Conference, 1971

CONNECT
UNIT TO BE

TESTED

CATALOGUE
ELPON

DISK

ENGINEERING
ANALYSIS
OF TESTS

EXECUTE
TEST

CODE TEST
INTO
ELP

Figure I-MATE process chart

ORGANIZE
TESTS BY
TEST SEQ.

AND SERIES

FLOW CHART
TEST

inadequate for testing avionic equipments because of
the:

• Large amount of time spent in testing
• Inherent errors introduced in a manual process
• Shortage of required personnel and number of test

stations to serve testing needs within a time period
• Tedious method of locating faults
• Inaccurate method of recording test performance.

AUTOMATED SYSTEM IS THE ANSWER

With the declining cost of computers and peripherals,
and emergence of analog-digital technology, it has be-

Figure 2-MATE system components

come possible to build a computer-monitored automatic
check-out system. The MATE System is a self-con
tained test station consisting of test equipments, com
puter, and operator control stations. This system can
be driven in automatic mode by the computer or in
manual mode by paper tape or operator action. The
manual mode of operation is not described, since it does
not require the computer, and, therefore, is not relevant
to this discussion.

In the automatic mode, the MATE test station is
driven by English Language Programs (ELP), written
by test engineers and catalogued on disk storage, which
is operated upon by the MATE software. The test
process is directed by the operator who can intervene
and override any preplanned sequence of test or pa
rameters.

The MATE System was designed in a modular fash
ion to facilitate modification and/or growth. Additional
stimuli generators and measurement devices can be ac
commodated by adding new programs to the MATE
software. New units under test, sequence of test or test
parameters can be incorporated by writing new ELPs.

The MATE System, compared to manual methods,
will:

• Reduce check-out time
• Apply a uniform test standard to units under test
• Reduce the number of check-out personnel
• Reduce training time for personnel
• Record test results on hard copy
• Decrease errors introduced by operator

Figure 3-Hardware connections

• Reduce skill level required of operator
• Isolate faults to a level suitable for further manual

tests
• Permit the engineer to direct testing procedures

via an easily usable test language
• Reduce the number of test stations required to

handle the same load under a manual process.

HARDWARE DESCRIPTION

The hardware of the MATE System consists of a
computer, various test modules and a control/display
panel. These system components appear like any other
I/O device to the computer. Thus, the MATE hard
ware operates a computer with many I/O devices.

Computer configuration

• Varian 620/i computer
• 8192 word storage (16 Bit word)
• KSR-33 Teleprinter
• 131K words of disk storage
• 200 char/sec paper tape.

Testing Operations

OPERA TOR LOADS
AND EXECUTES A
BOOTSTRAP
PROGRAM. WHICH
CALLS CORE
RESIDENT PROGRAMS
FROM DISK STORAGE

OPERATOR DIALS UP
THE DESIRED TEST
SERIES AND RELATED
PROGRAM VIA THE
CONTROL PANEL

TESTS ARE EXECUTED.
OVER LA Y MODULES ARE
CALLED FROM DISK
STORAGE ACCORDING TO
THE ELP STATEMENTS
ENCOUNTERED DURING
EXECUTION

Testing
Terminated

* Indicates Programs Not Required for Testing.

Disk. Storage

LANGUAGE PROCESSOR

OVLY NO.1
OVLY NO 2
OVLY:NO.3

OVLY·NO. (N)

* UTILITY PROGRAMS
CATALOGUE SOURCE
CATALOGUE OBJECT
LIST DISK STORAGE
TEXT EDITOR

Figure 4-Test organization

Multiband Automatic Test Equipment 453

Figure 5-MATE station

Test modules

A test module is an electronic test instrument or
stimulus generating device such as digital voltmeter or
a sine square generator. These modules must all appear
as similar devices which can:

• Communicate with the computer by digital word
transfer

• Convert digital information to analog signals
• Convert analog measurements to digital for trans

fer to the computer
• Respond to and activate discrete signals for system

control functions
• Respond to strobing by a unique device address.

Typical test modules contain the following features:

• Modular packaging
• Built-in self-test circuitry which continuously

monitors the module outputs for failure
• Control p~nel programmed response indicators
• Manual or automatic operation
• Control panel alignment and self-check output.

Control panel

From the standpoint of the operator/user, the con
trol panel is the central point of all testing activities.
Consequently, the control panel was designed to accom-

454 Spring Joint Computer Conference, 1971

modate the testing needs of the operator. It has no
controls related to the computer. From the control
panel the operator can:

• Initiate tests by retrieving and executing ELPs
stored on the disk

• Override any faults which may be encountered
while executing tests

• Repeat· any test
• Repeat any measurement
• Interrupt the testing sequence, manually alter any

of the test parameters and continue testing
• Acknowledge testing results (GO/NOGO, run, etc.)
• Execute testing ELPs one instruction at a time
• Reset the entire system.

Display panel

The display panel, although not a control function, is
physically located adjacent to the control panel and
contains all the visual displays required in testing. The
panel can display:

• Test number currently being performed
• Operator instructions (i.e., operator decision, etc.)
• Next ELP instruction step to be executed (when

in single step mode)
• Alarm indications to alert the operator of hardware

malfunctions.
• Condition of I/O RF switching paths via an indi

cator lamp matrix
• Test results and values
• Indications and/or displays provided by the unit

under test.

MATE PROGRAMlVIING LANGUAGE

The MATE programming language is a special
purpose language designed for use by test engineers.
Since its format is cryptic English, we refer to it as
ELP (English Language Programs). Familiar engineer
ing expressions are retained while introducing some
necessary programming concepts like "go to" and
"execute subroutine." Th~ languag~ is easy to learn
and requires no previous knowledge or exposure to
programming.

The basic element of the language is a statement. An
ELP statement takes the following skeleton format
with the contents depending on the verb:

• Statement number
• Verb
• Contents.

The English elements of the MATE language consist
of verbs (test actions), test module names (nouns),
parameters (adjectives), and units of measure (other
adjectives). In order to reduce errors in coding, all
English words can be used in either abbreviated or full
form. Abbreviations require using only the leading
characters required to make the word unique. For ex
ample, the word "calibrate" can be expressed as CA,
"step attenuator" as STEPAT, "RF band" as RFB,
etc.

List of verbs

The verbs III the MATE language consist of the
following:

MATE-VERB ACTION TABLE

ELP Delimiters

Input/Output

Decision
Subroutines

Computation
Branch

Function of verbs

BEGIN
TERMINATE
READ
DISPLAY
SETUP
CALIBRATE
UPDATE
LOOKUP
WAIT FOR
SYSTEM RESET
IF
PERFORM
DEFINE
END
LET
GOTO

Each verb in the MATE serves specific functions and
requires certain information as described in the fol
lowing:

ELP delimiters

The BEGIN and TERMINATE verb serves to de
fine the start and end of a test sequence. It is identified
uniquely by.a 3-digit test-series and 3-digit test-se
quence number.

Input output verbs

The following verbs perform I/O operations to the
teleprinter, disk, test modules, control panel, or display
panel.

The SETUP verb is used to send stimuli to the test
module and the READ verb is used to obtain the re
sultant response from the test module reflecting a test
made on the unit under test.

The DISPLAY verb is used to display information
on the teleprinter or display panel.

Symbol tables are referenced by the UPDATE and
LOOKUP verbs. These verbs are I/O related since
symbol tables are stored on the disk.

The WAIT FOR verb is used to wait for the occur
rence of hardware responses. Such as I/O complete or
test module ready interrupts, and operator action like
a Go /NOGO decision.

The SYSTEM RESET verb is used to initialize all
test modules.

Examples of I/O verbs are:

001 SETUP, STEP ATTN (ATTN =59 DB)
002 READ, PWR OUT METER
003 DISPLAY, MESSAGE ('VOLTS', C, K,

LOLIM)
004 UPDATE, TABI ('LAB!') 'INC'
005 LOOKUP, TABI ('LABI')
006 WAIT FOR, RESUME
007 SYSTEM RESET
008 CALIBRATE, AUTO LEVEL (FREQ=

'LABL')

Decision

The IF verb is used to ask the true-false question
based on the mathematical expression greater than
(>), less than (<), equal (=), greater than or equal to
(~), and less than or equal to (::::;). If the answer is
true, a jump is made to the specified ELP statement
number. A false answer will cause the execution of the
next sequential ELP statement.

An example of the IF verb is:

010 IF, (2.5)::::; 'LABEL' < (3.0), GOTO (S100)

Subroutines

Subroutines can be included in the ELP provided
they are defined at the beginning by the DEFINE verb
and at the end of the END verb. The DEFINE verb
is used to list those parameters in the subroutine which
can be varied by the calling program.

The execution of a subroutine is done via the PER
FORM verb. It can also deliver values for parameters
of the subroutine.

Multiband Automatic Test Equipment 455

For example:

010 PERFORM (SI00) (33.25)
100 DEFINE ('X')
101 LET, 'X'='X'+1
102 END

Computation

Computation is indicated by the verb LET. Opera
tors available are add (+), subtract (-), multiply (*),
divide (/), and exponentiate (i). Any mathematical
expression can be stated, using these operators. The
interpretation of the expression is in left-to-right order.

Examples are:

020 LET, X=A i B+CX
030 LET, X=A+B/C

Branch

A branch in the ELP is accomplished by the use of
the GOTO verb. The destination can be specified as an
ELP statement number, a new test sequence number,
or a work indicating the end of a test series.

Examples of the GOTO verb are:

100 GOTO, (S200)
200 GOTO, (TI25)
300 GOTO, (EXEC)

SOFTWARE DESCRIPTION

After a survey of the computers which could be used
in the MATE System (in terms of size, cost, and system
requirements), the Varian 620i was selected. The Varian
620i, being a mini-computer, has software and periph
eral equipment which is either too general or too spe
cialized for a given application. Often I/O devices, such
as high-speed tape readers, are made by different com
panies and frequently require special interfaces to the
computer. Thus, what could have been an applications
programming task explodes into a major software de
velopment project. Further burden is imposed by the
sparcity of mini-computer simulators. Software de
velopment, therefore, must be done directly on these
computers which have only limited debugging aids. The
MATE System was no exception.

The software developed included:

• Executive program
• Input/Output handler for disk, high speed tape

reader and teleprinter

456 Spring Joint Computer Conference, 1971

• MATE software (object program) catalogue and
maintenance routines

• English Language Program (ELP) catalogue and
maintenance routines

• Utility programs to print contents of core and disk
storage

• Mathematical package to perform programmed
floating point arithmetic, exponentiation, and data
format conversion

• Interpreter program to operate upon ELPs
• Test module simulator.

MATE LANGUAGE PROCESSOR

Test procedures written by the engineers in the
MATE language must be translated into machine in
struction for execution. A detailed tradeoff analysis was
conducted to resolve the question of off-line compiler
application versus the on-line interpreter/compiler
technique for the MATE System. The interpreter ap
proach was chosen for the following reasons:

• Reasonable timing requirements by test equipment
• Engineers could work with the MATE language

for programming, execution, and maintenance,
without learning the computer machine instruc
tions

• Due to limitation of external storage, there was no
room to maintain both ELPs and software pro
grams on the disk

• Quicker implementation of the total MATE
System

• Ease of modification for extension of MATE
language

• Ease of maintenance of operating system.

The MATE language processor is an interpreter. It
consists of a resident and overlay programs. The resi
dent part contains a floating poirit mathematics pack
age, data format conversion programs (i.e., ASCII to
binary, floating point to binary, etc.), and the general
processor to identify, validate, and parse a source state
ment to be executed. When the ELP verb is identified,
an appropriate overlay program will be invoked to in
terpret and execute the ELP statement.

Executive program

The executive program is the center of the MATE
System. It is responsible for bringing together the oper
ator, language processor, test modules, and test pro
grams. The executive program is resident in core mem-

ory. The main components are:

• Interrupt processor
• Input/Output handler
• Table lookup routines
• Startup-shutdown routines
• Test program statement monitor.

The interrupt processor handles three types of inter
rupts: input-output alarm stop, and manual override
stop. Input/Output interrupts are caused by operator
action on the control panel, input data have arrived
from test modules, or ready state reached by test
modules.

When an alarm condition occurs on test modules, the
alarm stop interrupt occurs. The computer stops and
the system cannot be restarted until the alarm condi
tion is reset. The manual override interrupt occurs
whenever the test module, indicated on the control
panel for manual intervention, is addressed. The com
puter remains in the wait state while the operator per
forms the necessary manual action on the control
panel. The system is restarted when so directed by the
operator.

The Input/Output handler performs all the Input/
Output for the system. Devices handled are test mod
ules control panel, display panel, teletype, and disk
storage. In all cases, the calling program provides a
parameter list which provides all the data to perform
the physical input-output operation. There are two
types of I/O operations for test modules and control
panel. They are output pulse signal and data transfer.
The output pulse signal is used to activate control
panel lights and to describe the data about to be sent
to test modules. Data transferred to test modules is in
mUltiples of computer words and is either a device
address or information word.

I/O for the disk storage and teletype is done by a
specified number of words or to a control character
terminating the record. For disk I/O, the physical
track address must be specified. Since there is no wait
state in the computer, the read from teletype instruc
tion sequence is used to· simulate a wait state when
soliciting interrupts.

Due to the shortage of core storage, all tables are
stored on the disk. These tables hold information relat
ing to global and local symbols and their computed
values, and calibrated standards referenced by test
processes. Local symbols are symbols used only within
a test sequence. Those symbols which are used among
test sequences within test series are defined as global
symbols. The local symbol table is reset at the beginning
of a new test series.

The test module simulator is an important part of the

Executive Program. It permits the MATE System to
be checked out without test modules. The teletype
simulates the test modules. Inputs, described in octal
code, are typed in by the operator and outputs are
similarly printed. The simulator was invaluable in lo
cating hardware-software problems and faults in test
modules.

The startup-shutdown routines control initialization
and termination procedures. At startup, the test series
and test sequence numbers supplied by the operator,
via the control panel or teletype, are validated. The
appropriate ELP is located. Global and local tables are
initialized. The language processor is called to begin
interpreting the test ELP program. Shutdown simply
involves readying the system for another test.

The test program statement monitor allows operator
control of the current statement being executed.

Control panel optious permit displaying the current
statement number on the control panel, executing one
statement at a time, repeating a given test sequence,
restarting a test sequence from the last measurement
read, or inhibiting entry into fault isolation program in
case of errors. This monitor allows the operator to con
trol the execution of a test statement at the source
language level from the control panel and away from
the computer.

Utility programs

An integral part of the MATE System are the utility
programs. These programs consist of elementary rou
tines such as core and disk dump programs, and com
prehensive disk data handling programs.

Multiband Automatic Test Equipment 457

Disk service programs maintain software programs
and ELPs on disk storage. Further, they condense in
dices and data storage areas automatically when gaps
develop as a result of deletions.

As both a startup and backup procedure, all data
stored on the disk are stored on paper tape. There is an
initialization program to set up the disk storage and a
bootstrap program on paper tape to begin a test process.

CONCLUSION

The MATE automatic check-out system which has
been described, has been in operation for more than 6
months. Its performance has given support for a bright
future in computer-driven check-out systems.

The MATE System has demonstrated that:

• Test time can be reduced by a factor of 20 over
manual methods

• It is economically and operationally feasible to use
mini-computers in automatic check-out systems.

• Test engineer without previous programming ex
perience can learn to write test programs in the
specialized programming language, like the MATE
language, in 2 days.

REFERENCES

A guide to atlas for test specification writers
ARINC Report 418 Aeronautical Radio Inc Annapolis
Maryland May 15 1969

Coding techniques for failure recovery in a distributive
modular memory organization

by S. A. SZYGENDA

Southern M ethodist University
Dallas, Texas

and

M. J. FLYNN

T<he Johns Hopkins University
Baltimore, Maryland

INTRODUCTION

This paper considers various coding techniques which
could be applied to a memory organization to achieve
detection and correction of failures. In this discussion,
we define a fault as a malfunction of a systems compo
nent and a failure as a manifestation of a fault. Notice
that a single fault can result in multiple failures. Thus,
techniques such as error-detecting and correction codes,
when used alone, are . limited in that they operate on
failures-not faults.

Failure analysis of various memory organizations has
been performed.! The material presented in this section
of the .paper summarizes these results. The analysis
demonstrated that a fault in the accessing units, the
address decoders or in the drivers, can introduce mul
tiple failures in the memory. To insure against these
types of faults we must prevent, or detect and correct
the following conditions:

a. More than one of the decoder outputs becoming
active during a memory instruction.

b. Major fluctuations occurring in the amplitude of
the current pulse provided for the selection of
memory words.

By digital simulation, it has been determined that,
at most, two output leads from the memory drivers
will be active at anyone time, under a single fault as
sumption. Hence, a device capable of summing the cur
rent supplied by the drive lines can be used.

A simple parity check could perform this function;
however, a better implementation would use a device
capable of summing currents from a number of leads.

459

Faults would be indicated by attainment of minimum
or maximum threshold current values, i.e., this device
would possess properties similar to that of a Zener
diode.

By measuring the current, checking for two types of
faults can be accomplished, first, detection of fluctua
tions of the amplitude of the current pulse on the cor
rect line and, second, detection of no-drive-line or
two-drive-lines being activated.

The current summing methods can detect the faults
in the accessing units, but if processing is not halted
while this check is made, data in the memory may be
damaged. Since ·it is not desirable for processing time
to be sacrificed for checking, except where absolutely
necessary, it is assumed that data may have been er
roneously changed in the memory due to checking being
performed simultaneously with the memory operation.

Since it is necessary to locate the faulty word, the
procedure of summing the current pulses can be used
for that purpose. Under fault conditions, it is known
from the current summing check that half of the ad
dress (more precisely, which half), has been decoded
properly. Therefore, the faulty word must be one which
is selected by coincident current pulse with the correct
drive line.

Two questions remain to be answered:

1. How is the damaged memory word corrected?

2. How is the fault in the accessing hardware
corrected?

It will be shown that correction of memory data can
be accomplished if it is known that there will only be

460 Spring Joint Computer Conference, 1971

Figure 1-Decoder and memory module organization

one word damaged in a memory module. This correc
tion will be accomplished by coding techniques to be
discussed in the next section. Hence, the problem re
maining is that of assuring that the type of faults being
considered cannot affect more than one word in a mem
ory module. This can be accomplished with the ex
ample organization shown in Figure 1. In general, the
memory is divided into modules. For convenience, these
modules may be logically divided into 2N groups of 2M
words each. These groups will be referred to as the
memory modules.

The switching array is made up of elements which
are switched by half select currents applied by the
horizontal and vertical drivers. The memory word de
sired is then indicated by the switched element of the
array. For the read operation, a linear select current is
applied to the lead emanating from the selected ele
ment. The bit lines act as sensing lines to sense the
bits of the accessed word. The word is regenerated by
having the bit line inhibit positions requiring "0." The
word line is then driven to the "I" state.

A major feature of this organization is the manner
in which the switching array is implemented. This
implementation must meet the requirement of storing
words in such a manner that at most one complete
word in each module can be affected by a fault.

Figure 2 gives an example of this organization for a
memory array of eight modules containing eight words
each. As can be seen from the figure, lines R1, ••• , Rs
thread eight elements in a diagonal manner. (The sym
bology used on the R lines is for plarification only and
has not been used on the L lines. The lines are all
identical accessing lines.) This organization provides
the desired failure distribution for single faults that
could occur in the memory accessing units.

The question may arise as to the need for the current
summing device if any single word in a memory module
can be reconfigured. The reason for the summing is
strictly for fault indication. That is, corrective action
would not be taken unless a fault has been indicated.

Another possible area of faults would be on the bit

lines. A fault affecting a bit line can in turn affect a bit
in every word of the memory. However, it would only
affect a single bit per word, and this condition can be
corrected by techniques to be considered.

Faults in the accessing units can be eliminated by
switching in a spare unit and then an indication of this
condition will be given for replacement of the faulty
unit.

As yet, we have not mentioned the possibility of
transient faults in this organization. To insure against
needless replacement of modules, because of transient
faults, a retry feature will be used.

Mter a fault has been indicated and the memory
words reconstructed, a retry order will be given. Under
the retry condition, access to the switching array will
be inhibited unless no fault is indicated. If a fault is
again indicated, it will be assumed to be solid and the
spare unit will be activated.

Two way read technique

An additional feature is to be provided for this mem
ory organization. A two way read will be used on each
memory module. That is, the capability will be pro
vided to read an element in the same position of each
word in a module.

This feature provides the capability of reconstructing
a damaged word of data in the memory.

Figure 3 shows the basic organization with the two
way read feature added. For reading, a linear select
pulse will be provided on the bit line. This will switch
all memory elements in the "I" state to the "0" state.
The changes will be sensed by the word lines and stored
in the bit register.

For rewriting, a half select pulse of opposite polarity

WIRING TECHNIQUE FOR TIlE SWI1l:H1NG ARRAY

Figure 2-Wiring technique for the switching array

will be provided by the bit line and the word lines which
sensed the original change.

By repeating the procedure of sequentially stepping
through all the bit lines, we can read the contents of
the memory module as rows of bits. This procedure will
be essential to the discussion in the succeeding sections.

CODING SCHEME

Since all the memory modules are identical, we will
restrict our attention to a typical module. The major
techniques to be used are:

1. Virtual embedding of the address of the data
word into the word itself (Figure 4).

2. Use of an iterated code for reconstruction of a
memory word, or of a string of bits.

The scheme employed here uses virtual embedding
of the address of the data word into the word itself, for
the purposes of failure detection and correction. The
embedding is virtual because the address of the data
is never stored with the data. Rather, since its true
value is presumably known during the storage phase,
the coding f-or detection and correction treats its argu
ment as the concatenation of the address and the data
word itself.2

In conjunction with the vitrual embedding tech
nique, an iterated code is used. A linear code is applied
over the rows and over the columns of a memory
module to produce the iterated code.

The use of these techniques will be demonstrated for
the implementations adopted in this study.

Double error detection and single error correction

In this case, a Hamming minimum distance four
code (applied over the address and data jointly) is

Figure 3-Memory organization with two way read

Coding Techniques 461

sufficient to obtain double error detection and single
error correction.

With this system, the following can be accomplished.
Assume an address has been moved to the address
register (A.R.). The address is then decoded and a
location is accessed. From the configuration of a typical
system (Figure 5), we can determine whether the loca
tion accessed is the location that was specified.

When a word is moved to the A.R., the code bits are
checked to determine if a fault exists in the A.R. or in
the transfer. If a single failure has occurred, it will be
detected and corrected by the code. Therefore, the
validity of the contents of the A.R. can be assessed.
When a word is accessed, a code will be generated
jointly on the data portion of that word and on the
address in the A.R. This code should match identically
the code contained in the accessed location. If a match
does not occur, there exists an error in the address, the
data, or the match circuit. By decoding the accessed
word, it can be determined if the error is in the data.
If so, it can simply be corrected by the check circuitry.
If the error is not indicated in the data, it is concluded
that the fault is in the accessing circuitry. Correction
of this fault would be by use of the spare accessing
circuitry. Accessing of the word is then tried again. If,
again, an error indication is given (not in the data), it
is concluded that the fault is not in the address decoder
but actually in the code matching circuit. The preced
ing discussion is formalized in Algorithm 1.

ALGOUTIDI 1: HfX)llY ACCESS WITH DOUBLE ElUlOll DETECTION
AlII) SIIIGLE ElUlOll CORllECTION

1 :L - 1. Baa. fault been :Lnd:Lcated by the current s~ng circuit?

1 ~ ~'7
2 !love addre .. , covered by code, to address register

~
3 Yal:Ldity of content of address regiater 18 checked by use

of code bits. !
4 ... · .-. r: ~iL' ___ Ho __ .. , 6

s OIIe code to __ single error, or indicate double error.

1 r 1
6 Decode addre.s and access designated word.

~
7 Generate code bits on the concatenatiOn of the data and

address.

8

462 Spring Joint Computer Conference, 1971

9 Check the code on the data alone. • 10 Ie an error indicated in the data?

l~ ~'8
11 A8s~ that the fault 18 in the word accessing circuits.

~
12

11

~
12 Switch to spare units.

13 Is i - 2 ?
I yes
--------~~------------

14 i - 2

1~--------------~t6

15 Conclude that fault is in the match circuit • ...----~

8

~
16 Implies that a valid access has been made to the correct

location of uncorrupted data. • 17 ALGORITHM 2

10

~
18 Use code to mask failure in data.

Iterated codes

An iterated, or product, code can be envisioned as
one applied over the rows and columns of a binary array
(Figure 6). The minimum weight of such a code is the
product of the minimum weights of the individual codes.
A proof of this theorem is given by Peterson.3

Two different product codes will be considered:

1. Minimum weight 2 code on columns and rows.

2. Minimum weight 4 code on columns and rows.

The minimum weight of the first product code would
be 4. This code would be capable of double error detec
tion and single error correction.

These codes will serve a double purpose in the mem
ory organization proposed. They permit the reading
of a memory word covered by a code or the reading of
a string of bits covered by the code. Furthermore,

,....------
I
I

ADDRESSES OF I
MEMORY WORDS I
COVERED BY CODES. I
BUT NOT PHYSICALLY
CONTAINED .. MEMORY~

I

MEMORY

l,.--CODE CHECK an
I ~ COVERING EACH WORD

AND ITS ADDRESS

L~ ___&.....I

Figure 4-Virtual coding technique

these codes will permit the complete reconstruction of
a memory word.

Reconstruction of a data word

The particular memory organization chosen in this
study attempts to decrease the probability of multiple
random type failures and increase the probability that
multiple failures will be restricted to a single word in
the memory module.

Under this condition, it is desirable to reconfigure a
given word in a module. However, before failures can
be corrected, they must be isolated. The detection is
provided by two methods. First, there is the Hamming
code to detect failures. However, multiple failures are
not always detectable by a double error detection code.
Therefore, some alternate method of detection must be
provided. Since detection by the coding techniques
would be the fastest, this will be attempted first. If no
failures are indicated by the code, and a fault exists
(knowledge of this fault would be provided by the cur
rent summing circuit), the bit read would be performed
for the module, and the code which had been previously
generated on the hits would be checked. If a failure
exists in a word, it will be detected by this method. At

CODE BITS OVER
DATA AND ADDRESS

L..L~"T""-:OO-E-~-~-___ ..1..J}U DUPUCATE
A.R.

I r--,
L L'-r i oUPLICATE' - - - I I I. IOUPLICATEleJ

I SWITCHING I LDECODER I I
L

ARRAY I ___ '..J

-~-~ I
r OOP~CATE'" J
I DECODER ~-----L ___ ..J

Figure 5-Memory configuration with virtual coding features

r
I
I

ADDRESS OF ROWS ~

I
I
I
I
L

r- - - - - ~ADORESS OF COLUMNS

MEMORY ... V- LINEAR COOE BITS

....
"""-I LINEAR COOE BITS

Figure 6-1 terated coding technique

this point, the failure is located in a given module of
memory. Location of the failures to a particular word
in that module is accomplished with the assistance of
the summing circuit. Since a fault would have been
indicated by this circuit, it is known that a failure for
a given module will be at the intersection of the drivers
specified. This will locate the word containing failures.
Figure 7 illustrates a possible memory configuration
utilizing these techniques.

For an example of this technique, consider (Figure 2)
that drivers Ri and R j are active and a fault is indi
cated by the checker. Also, qriver Lk is active. The
specified word of the module would be indicated by Lk
and the modules being affected would be indicated by
LkRi or LkR j •

This discussion has covered the types of solid faults
detectable by the codes or the current summing check.

For a read only memory the use of a minimum weight
four code may be acceptable. However, in a read write
memory, where data is constantly being changed, it
would not be practical to generate this type of code for
the entire module each time a memory word is changed.

Although the use of a weight four code is impractical,
virtual parity codes can be used efficiently. The en
coding of a parity bit on a word of data is well known
and will not be discussed here. However, it would be a
costly procedure to recompute the parity on the bit
strings by generating the parity after each access to the
memory. Fortunately, the new parity on the bit string
can be simply computed.

Consider a word (aI, a2, ... , aN) being entered into
storage, and the storage word (SI, S2, ... , SN) which is
to be replaced, also, the parity word (PI, P2, ... , PN)
for the module.

The values of the parity word are assumed to be that
of the memory module containing the storage word to
be replaced. The following truth table provides the
specification for the new values of the parity word as a
function of the possible input combinations.

Coding Techniques 463

ai Si Pi Pil

0 0 0 0
1 0 0 1
0 1 0 1
1 1 0 0
0 0 1 1
1 0 1 0
0 1 1 0
1 1 1 1

Pil is the new required value of Pi. Hence, changes
need only take place where there is a change between
Pi and p il in the truth table.

The required function can be performed utilizing two
exclusive-or operations. Verification of this statement
can be shown by the following truth table.

ai Si aiEBsi Pi Pi! = (aiEBsi) EBpi

0 0 0 0 0
1 0 1 0 1
0 1 1 0 1
1 1 0 0 0
0 0 0 1 1
1 0 1 1 0
0 1 1 1 0
1 1 0 1 1

Therefore, an exclusive-or can be performed between
the new word being placed in memory and the word
whose place is being taken. This would be followed by
an exclusive-or with the parity word. The result would

MEMORY
MODULE

CHECK ON
CHECK BITS

CHECK ON ROWS

Figure 7-Memory configuration with iterated code

464 Spring Joint Computer Conference, 1971

be the new parity word. This procedure would take
place only on a WRITE operation. The complete
method for reconstruction of a data word is formalized
in Algorithm 2.

Next, we will consider f~ults in the checkers.

Checking the checkers

The question arises as to whether or not a malfunc
tion can occur in the check circuitry, such that it could
mask or introduce a fault into the data. The checking
circuits of interest are the current summing circuits and
the linear code decoders.

Faults occurring in the summing circuit could be of
the type that a fault is indicated, but none actually
exists. This case would be detected by the code circuit.
If the summing circuit indicates a fault, the code circuit
would attempt to locate the failures and correct them.
If the fault was in the summing circuit, the code circuit
would not be able to locate the failure. Hence, a fault
indication is provided for the summing unit, and the
faulty unit would be removed from the configuration.
Whether or not a fault is in the code circuitry will be
determined by a procedure described later. Another
possibility is that a fault exists in a checker, such that
it continually provides a fault free indication. One way
to insure against this type of failure is to use a micro
programmed diagnostic sequence, containing failures to
be detected by the checker, which will be executed
periodically to verify the integrity of the checkers.
Another alternative for this condition is to duplicate
the check circuitry. Duplication is acceptable since this
circuit is quite inexpensive. If a fault is indicated by
either unit, the code check will determine if the fault
is in the summing circuit. The precise unit can be de
duced from the outcome of the code check.

A procedure will now be given to provide fault de
tection for the parity or Hamming decoding unit. For
these units, duplication will again be employed. The
inputs to the decoders will be identical. Assume that
an output of 0 is the no fault indication and a 1 will be
the fault indication. The possible outputs for decoders
A and B would then be:

A B
0 0 No Fault
0 1 Decoder Fault
1 0 Decoder Fault
1 1 Fault, Not in the Decoder

If both units indicate a failure, it will be masked and
processing will continue. If only one of the units indi
cate a failure, an attempt will be made at masking the
supposed failure. After masking the data, it will again
be processed through the decoders.

The following tree diagrams show, for both units, the

possible output states that could be observed upon
reprocessing.

01 10

If\
00 10 11 00 01 11

Consider the outputs originally being 01. After mask
ing and reprocessing, it could not again assume the 01
state due to the single fault assumption. If the outputs
assumed the 00 state, the fault would be isolated to the
A unit. The 10 state and the 11 state would indicate
the B units.

If the original outputs were 10, the possible outputs
could be: 00 indicating a fault in unit B, 01 indicating
a fault in A, or 11 indicating a fault in A. These condi
tions are summarized below:

ALGORITHM 2: RECONSTRUCTION OF A DATA WORD

ALGORITHM 1 • 1 Has a fault been indicated by the current
su.ming circuit?

~yes L~~ .. _ -.
2 k - 1 .-
3 Access row k of bits and check code for ... __ ---.

modules accessed by the word decoders.

4 Does the bit access current summing circuit
indicate a fault?

no

S Switch to spare bit accessing circuit.

• 6 Does a failure exist in th~ data accessed?

no

7 Failure 1.& now isolated to a giv~n module.

8 Use Summing circuit to determine whicnword
in the faulty module has been accessed. • 9 Invert faulty bit.

~
10 Have all rows been read?

1 1··· no k-k+1-

11 Implies data is valid. Continue processing.

00

I
No action to

be taken

00 ,
Fault in A ,

Disconnect A and
continue processing

11

I
Correct failures

and continue
processing

01

I
Correct failure

and process
through decoders

10
I

Fault in B

I

11
I

Disconnect B, return
data to original state
and continue processing

10

I
Correct failures

and process
through decoders

---------~ 00 01 11
I I ,

Fault in B

I
Disconnect B
and continue

Fault in A

1
Disconnect A, return

data to original state
and continue processing

These techniques provide the capability of fault detec
ti<;m and isolation for the checking circuits.

M errwry configuration

A major objective of this study is to reduce, as much
as possible, the amount of redundant hardware used in
the system. The configurations shown in Figures 5 and
7 have utilized duplication of the accessing units, re
sulting in an undesirable level of redundancy. Since the
proposed memory would be modular or expandable in
nature, a configuration was adopted which decreases
the total amount of redundant hardware.

This configuration includes one or more read-only
memory (R.O.M.) units, one or more read-write mem
ory (R.W.M.) units, and one spare address register

Coding Techniques 465

.uE1ilElllClRrw.T

L-------f-1------
~r------- ------~

,...-, r..L-,
I A.D.~" SA I
LT..J L"T-'

I r-tD' I L_r':'.1
L. __ ~

I
r..... ________ ~- ... --yo

ADDREU •• laTIRI

Figure 8-Memory configuration with redundant accessing

(A.R.), address decoder (A.D.) and switching array
(S.A.), as shown in Figure 8. This approach eliminates
the need for duplication of the accessing units for each
R.O.M. or R.W.M. module.

Whenever a fault is indicated in any A.R., A.D. or
S.A., the spare system is switched into use, the appro
priate address is decoded and accessing of the word is
accomplished by switching to the correct unit. To in
sure that the spare units are functioning, they are not
left idle under fault free conditions. A counter is pro
vided so that every nth access to a memory unit will be
processed by the designated unit, as well as the spare.
The spare contains the same checking features as the
other units. Hence, corresponding faults will be indi
cated in a similar manner. To insure the functioning of
the switches, the outputs of the spare and the desig
nated units are compared. This process would be per
formed sequentially through each of the memory units,
to check the functioning of the interconnections be
tween any unit and the spare.

CONCLUSION

The techniques proposed in this paper provide the
capability of failure recovery in the memory organiz~
tion described.· All failures resulting from single solid
faults can be detected and corrected. In addition, fault
detection in the accessing circuitry and the checkers is
considered. A primary objective of this study has been
to demonstrate that multiple failures could be corrected
before they cause malfunctions, without resorting to
duplication or triplication of hardware. A total mem
ory system has been configured using the techniques
described in this paper. This configuration uses less
than 25 percent redundant hardware and no diagnostic
software. The system is presently undergoing fault
analysis by the use of digital simulation. 4

While the codes considered have fulfilled the specified
objective, it may be possible to use other codes result
ing in a more efficient implementation. Two possibilities

466 Spring Joint Computer Conference, 1971

are presently being considered, the first is coding tech
niques utilizing more efficient decoding procedures or
less redundant hardware. Second, the possibility of
utilizing residue codes, such that common decoders
could be utilized· for codes applied to data undergoing
arithmetic operations, as well as memory data, is being
considered.

REFERENCES

1 S A SZYGENDA M J FLYNN
Failure analysis of memory organizations for utilization in a

self repair memory system
IEEE Transactions on Reliability Feb 1971

2 R W DOWNING J S NOWAK
L S THOMENOKSA
No 1 EBB maintenance plan
The Bell System Technical Journal Vol 43 Sept 1964
Part 1 of 2 pp 1961-2019

3 W W PETERSON
Error correcting codes
MIT Press 1961 pp 81-85

4 S A SZYGENDA D ROUSE E THOMPSON
A model and implementation of a universal time delay
simulator for large digital nets
AFIPS Proceedings of the SJCC May 1970

Recovery through programming systemj360-systemj370

by DONALD L. DROULETTE

International Business. Machines Corporation
Kingston, New York

INTRODUCTION

Recovery Management can be defined as the opera
tional control of those system facilities (both program
and machine) which strive to effectively deal with de
tected machine malfunctions within an operating sys
tem. Its primary concern is to maintain total system
operation with minimum impact upon the availability
of system resources.

Recovery Management, defined above and treated
in this report, refers to recovery from an unscheduled
system interruption resulting from a machine malfunc
tion. As such, Recovery Management can be viewed
as a consideration which leads to a higher degree of
total system reliability, serviceability, and availability.

Effective Recovery Management is not a luxury; on
the contrary, it may, in a given system, be a necessity.
Without it, what need only be a minor problem be
comes a major problem, possibly a catastrophe.

Recovery Management facilities service unscheduled
system interruptions originating within an I/O device/
unit, channel, processor storage unit, or central pro
cessing unit. The presence of such an interruption is in
dicated by a device/unit, channel, or machine-check
condition. No individual Recovery Management facil
ity services all machine malfunctions.

Recovery Management facilities attempt recovery at
different levels; these levels differ with respect to the
consequences imposed upon the system during the re
covery process. Not all of the Recovery Management
facilities have the capability of effecting recovery at
each level. Some Recovery Management facilities are
optional, and as such, must be specified by the user at
system generation time. Considering that Recovery
Management facilities are directed at specific types of
failures, only after the thorough analysis of an installa
tion's applications and requirements should a Recovery
Management package be structured.

467

THE RECOVERY MANAGEMENT
OBJECTIVE

The objective of Recovery Management is to provide
the user with a higher degree of system availability
(more time for more jobs) by minimizing the impact
of machine malfunctions upon the user's operations.
This objective is realized with the successful achieve
ment of the following goals:

• Reduce the number of unscheduled system inter
ruptions resulting from machine malfunctions.

• Minimize the impact of such interruptions in the
event they do occur.

Through Programming, interruptions to the user can
be reduced, their impact minimized and their causes
isolated. There are a number of functions which can be
performed to achieve these objectives of Recovery
Management. Some of these are:

• I nstruction Retry-The concept of instruction retry
is not new. It is something IBM has been doing
for years, particularly in the I/O area. Instruction
retry has been standard procedure whenever an
error was encountered in reading or writing a tape.
It is possible to extend this retry capability and to
employ it when a CPU or main storagemalfunc
tion occurs. A relatively large number of malfunc
tions are intermittent in nature, rather than being
solid failures; therefore, there is a high probability
of success of execution and recovery if an instruc
tion retry can be attempted.

• RefreshingM ain Storage-If instruction retry can
not be accomplished, one function which could be
of value would be the ability to refresh main stor
age. Through this damage which either caused or
was ,caused by a malfunction could be repaired.

468 Spring Joint Computer Conference, 1971

This function could be accomplished by loading a
new copy of the affected module or "Csect" into
main storage or by a process known as check
summing.

• Selective Termination-This function would enable
the system to examine the failing environment,
determine what problem program was executing
and then proceed to terminate this program while
entering all other jobs which were executing at the
time of the malfunction. This is really a type of
job which "frees" the resources of the system allo
cated to the job and makes them available for
future use. This process results in the loss of a
specific job but it keeps the system alive.

• I/O Recovery-The above functions have been
directed mainly to errors which occur in the CPU
or main storage. From an examination of system
incidents, it is evident that a certain portion of
errors occur in the I/O area. Recovery could be
accomplished by I/O retry which is available
through the error recovery procedures for the dif
ferent I/O devices. Another group of I/O errors
channel control checks, channel data checks, and
interface control checks-may be analyzed and un
der certain conditions a retry can be attempted.
The I/O device or medium can malfunction and
if retry is not successful the ability to switch data
sets may be provided and then retry the operation
on the new drive. Another is to try alternate
routes to the same device, that is by addressing a
device through a different channel or control unit.

• Operator Awareness-A group of system incidents
is due to procedural and operator errors. Several
things can be done to decrease these errors such as
better trained personnel, minimal control informa
tion and clear and concise operator messages.

All of these functions are aimed at continuing the
operation of the system. This is not always possible to
accomplish. Therefore, the next best thing is to· mini
mize the effect of the malfunction. This can be done by
attempting to preserve information concerning the mal
function and to make it available to assist personnel to
determine what caused the error and what can be done
to correct it. Recording, therefore, is a major part of
recovery management.

Recovery Management support has provided a num
ber of these functions in the operating systems. RMS
has provided a hierarchy of recovery which involves
four levels of error recovery.

I Functional Recovery-Retry the interrupted
operation

II System Recovery-Terminate the affected task

III System-Supported Restart-Prepare for Re-IPL
IV System Repair-Require stop for repair

Functional Recovery

Functional recovery is achieved when an interrupted
operation is successfully retried. Such recovery is ex
tremely desirable from a system point of view, because
it makes the entire incident transparent to the user.

System Recovery

System recovery is achieved when system operation
is maintained' although an interrupted operation has
not been successfully retried. This effort involves: an
analysis of the failure's environment, a repair of the
damage associated with the malfunction to prevent
further interruptions, and/or an attempt to associate
the malfunction with a particular task in order to allow
selective termination of the affected job and continued
processing of the unaffected jobs.

System-Supported Restart

System-supported restart is achieved when a stop
for repair is not required and system operation is re
started using an Initial Program Load (IPL) procedure
supported by System Restart facilities. (System Re
start facilities aid the IPL procedure by preserving and
using system job and data queues.)

System Repair

System repair, the lowest but most critical level of
error recovery, consists of stopping the system and re
pairing a malfunction which cannot be serviced by the
particular recovery facility at any of the previous
levels. Recovery Management facilities aid maintenance
personnel by providing them with detailed error analy
sis records. There is always, however, the possibility
that system damage will be severe enough to preclude
retrieval of the error records. In those cases, personnel
will have to make use of the System/360 diagnostics
available to them.

The levels of error recovery applicable to IBM Oper
ating Systems operations are illustrated in Figure 1 ; the
outcome of recovery procedures I, II, or III determines
the level at which recovery will be effected. The brack
eted information on a given flowline indicates the con
sequences of recovery at that level.

Recovery Through Programming System/360-System/370 469

USER PERSONNEL INVOLVEMENT

The successful operation of a Recovery Management
package is directly proportional to the planning for and
use of specific facilities in a given operating system.

Once a user has determined what his needs and re
quirements are, the amount of specification required to
tailor his Recovery Management package is minimal.
The selection of some recovery facilities is made during
the system generation process. Modifications can be
made during the IPL/NIP process.

The programmer's responsibility varies greatly with
respect to the Recovery Management options available
to him:

• He may code actual error recovery routines which
will receive control through macros specifying user
exits (see Optional User Written Rout'ines).

• He need not involve himself at all with regard to
certain Recovery Management facilities.

Once the system has been set up and is running, it is
the operator's responsibility to be aware of and re
sponsive to the parameters required by, and the mes
sages and wait state codes issued by particular Recovery
Management facilities.

Maintenance personnel should acquaint themselves
with the scope and operation of those Recovery Man
agement facilities incorporated into the systems for
which they have responsibility. They must be familiar
with the messages and wait-state codes issued, and the
error records produced, if they are to make effective
use of the information available to them.

SUMMARY DESCRIPTION OF FACILITIES

This section briefly describes the available Re
covery Management facilities. Included are discussions
of the Machine-Check Handler (MCH) , the Channel
Check-Handler (CCH) , and I/O Recovery Manage
ment Support (I/O RMS). The individual recovery
facilities are discussed as they apply to specific types
of failures, or to specific recovery functions. The topics
of discussion are:

• I/O Device/Unit Recovery Facilities
• Channel Recovery Facilities
• I/O Recovery Management Facilities
• CPU/Processor Storage Recovery Facilities
• System Associated Recovery Facilities
• Error Record Retrieval Facilities

The following points are made to clarify the function

SYSTEM
OPfRATION 1 MACHINE_CHECKll---r-____ -.--_-'-'-SYS_TE_M_OPE_RA_T-,IONr---___ ---.-__

INTERRUPTION (t

I PfRFOItM
INSTRUCTION
RETRY

FUNCTIONAL
RECOVERY

I I SYSTEM OPfRATION I
CONTINUES

I
SUCCESSFUL

UNSUCCESSfUL

FECTED n TERMINATE AF
TASK ANDCO
SYSTEM OPfRA

NTINUE
TlON

M OPfRATlON--m RESTARTSYSTE
STOP FOR REPA IR NOT REQUIRED

III RESTARTSYSTE M OPfRATlON--
STOP FOR REPAIR IS REQUIRED

SYSTEM
RECOVERY

I
TASK ABNOItMALLY
TERMINATED!TASK'S
TCB SET NON-
DISPATCHABLE

SYSTEM OPERATION
CONTINUES

SUCCESSFUL

UNSUCCESSFUL

SYSTEM
SUPPOItTED

RESTART

OPERATOIt NOTIFIED
THAT RE-IPlIS
REQUIRED

SYSTEM IS PlACED
IN WAIT STATE

RE-IPI/SYSTEM IS
RESTARTED

SUCCESSFUL

UNSUCCESSFUL

SYSTEM
REPAIR

OPERATOIt NOTIFIED
THAT REPAIR OF
SYSTEM IS REQUIRED

SYSTEM IS PlACED
IN WAIT STATE

PfRSONNEl REPAIR
SYSTEM DAMAGf

RE-IPI/SYSTEM IS
RESTARTED

I

Figure 1-Levels of error recovery applicable to IBM operating
systems

and scope of those recovery facilities which cross the
bounds of two or more failure types:

• The Optional User Routines receive control from
the IBM supplied Error Recovery Procedures
(ERPS) on permanent I/O device/unit errors in
order to determine whether their associated tasks
are to be terminated.

• The System Environment Recording Routines
(SERO, SERt and the Machine-Check Handler
(MCR) program can perform recording functions
for channel and machine-check conditions. How
ever, the limited SERI and extensive MCH re
covery capabilities deal only with machine-check
conditions. Therefore, if one desires channel re
covery, he must also make use of the Channel
Check Handler (CCH). CCH may be used in
conjunction with MCH, SERO, or SERl.

• The System Environment Recording Editing and
Printing (SEREP) program may be used· to re
cord, edit, and print I/O device/unit, channel,
CPU, and processor storage conditions. SEREP
will be used when no automatic recording facility
has been invoked, the facility invoked has failed
in its operation, or the recorded records cannot be
retrieved by the Environment Record Editing and
Printing (EREP) program. EREP is a utility which
edits and prints those error analysis records placed
on the SYSt.LOGREC data set. This data set re
sides on the system residence device and is reserved
for the exclusive use of all those recovery facilities
which generate error analysis records.

470 Spring Joint Computer Conference, 1971

I/O DEVICE/UNIT RECOVERY FACILITIES

The problem of malfunctions occurring within I/O
device/units has been a concern for quite some time.
The facilities available for the servicing and detection
of these failures are:

• IBM Standard Error Recovery Procedures
• Optional User Written Routines
• On-Line Test System

IBM standard error recovery procedures

Standard error recovery procedures (ERPs) exist
for I/O devices/units in order to maintain device per
formance and to provide uniform recovery procedures
for all failures. The three types of IBM-supplied error
routines are:

• Device-dependent routines
• Common routines
• I/O Recording routines

The device-dependent routines attempt functional
recovery for particular device types by retrying opera
tions a specific number of times. If functional recovery
is not possible, control is passed to an optional user
written routine for further determination. Device
dependent routines exist for:

• Teleproce::,sing Devices
• Unit Record Devices
• Tape Devices
• Direct Access Devices
• Graphic Devices

The common routines are used by the device
dependent routines to analyze the type of error, to issue
console messages, and to update the statistics table.

The I/O recording routines are the outboard recorder
(OBR) and the statistical data recorder/channel-check
recorder (SDR/CCR). OBR produces records for
permanent I/O device failures on the SYSl.LOGREC
data set. SDR/CCR updates the statistic counters on
the SYSl.LOGREC data set whenever one of the error
statistics counters in the statistics table overflows, and
places I/O inboard records produced by the optional
Channel-Check Handler (CCH) on the SYSI.LOGREC
data set. The records placed on the SYSl.LOGREC aid
maintenance personnel at the System Repair level.

Optional user-written routines

Should an installation determine that available Re
covery Management facilities do not fill a need unique
to the installation's requirements, user-written routines
may be added to the system. When in the system,
user-written routines are given control through the
DCB macro instruction (SYNAD and EROPT). The
user routine can determine on certain I/O device con
ditions if its associated task should be terminated.

On-line test system

The purpose of the On-Line Test Sy~stem is to test the
functioning of I/O devices in a controlled environment
with minimum interference to the operating system.
The On-Line Test System consists of an executive pro
gram, a series of tests for I/O devices/units, and a
special SVC to perform functions required in the OS
nucleus. The executive program serves as an jnterface
between the operating system and the unit tests. It
schedules and controls the running of the tests and pro
vides communication with the operator. The use of the·
On-Line Test System serves to insure the integrity of
the system's I/O devices. It might be considered pre
ventive Recovery Management since its use should
lead to the repair of faulty equipment prior to failure
during system operation.

CHANNEL-CHECK HANDLER (CCH)

The Channel-Check Handler is designed to increase
machine availability by minimizing the effects of channel
malfunctions for 2860/2870/2880 and System/370
Model 155 channels. Without CCH, such malfunctions
would be system incidents. The Channel-Check Handler
will (1) determine the effect on the system of particular
conditions that may have occurred, (2) set error indi
cators in the Error Recovery Procedure Interface Bytes
(ERPIB) for the Error Recovery Procedure (ERP) ,
and (3) create a record of the channel-error condition.

Unlike MCH, which is model dependent, CCH is
only channel dependent because the Channel I/O Log
out area is the analysis material used by the CCH
program.

CCH includes the Dynamic Loading feature, which
enables the main part of CCH (channel and model
independent) to link to the various channel-dependent
analysis routines. (See Figure 2.) Dynamic Loading
also allows dynamic configuration for the specific chan
nels on-line at NIP time, even if more channels were
specified at SYSGEN time.

Recovery Through Programming System/360-System/370 471

The Channel-Check Handler receives control from
the I/O Supervisor (lOS) after detection of a channel
control check, channel data check or an interface con
trol check. CCH then completes its analysis to the error
condition by setting up the ERPIB for the ERP or by
indicating that immediate retry or termination is nec
essary. If termination is indicated, the error is recorded
on the SYSl.LOGREC data set and a wait-state condi
tion is set. If immediate retry is indicated, control is
then returned to lOS who performs the retry and passes
control to the next processing program on a successful
retry. This retry is for special I/O operations such as
SENSE. If an ERPIB has been created, lOS schedules
the appropriate device ERP which operates in the Error
Transient Area and receives a pointer to the ERPIB.
(See Figure 3.) Based on the ERPIB information, the
device ERP can determine whether a retry of the failing
operation can be attempted or if the operation must be
considered a permanent error.

For permanent error conditions, a message to the
operator is printed (WTO Error MSG), thestatisticalda
tacounters (STAT Update) for the devices are updated,
a record of the permanent error condition is made on
the SYSl.LOGREC data set by the Outboard Record
ing Routine (OBR) , and an exit is taken. For errors
marked as retryable, a retry is attempted and, if suc
cessful, control is passed to STAT Update to update the
statistical data counters and then to OBR, which re
cords the successful Channel-check recovery.

Functional Recovery is achieved on channel errors
that can be successfully retried by CCH or the device

CCH
CENTRAL

CHANNEL
SUPPORT

ACCORDING
TO

CHANNELS
AVAILABLE

AT IPL

I 2860

I 2870

I 2880

S/370 - .155
CHANNELS

EXPANSION

Figure 2-CCH dynamic loading

Figure 3-CCH processing

ERP. CCH enhances the performance of OS/360 by
reducing the number of system incidents resulting from
channel malfunctions.

I/O RECOVERY l\1ANAGEMENT SUPPORT

I/O Recovery Management Support (I/O RMS) is
an extension to existing functions of the Operating
System that address the availability and reliability
needs of IBM customers that may not be realized due
to channel, control unit, device, and medium failures.

Initially, these functions encompassed only the De
vice Dependent Error Recovery Procedures (ERP's),
which were designed to effect a retry of a device failure
on a particular path after a unit-check condition. Sub
sequently, with the implementation of the Channel
Check Handler (CCH), the utility of the ERP's was
extended to effect a retry of channel failures (channel
checks). In order to meet the continuing need for higher
availability and reliability, I/O RMS provides two
additional optional system functions that may be used
to address the problem of I/O errors: Alternate Path
Retry (APR) on the channel level and Dynamic Device
Reconfiguration (DDR). (See Figure 4).

Without these functions, when an ERP is unable to
successfully retry an I/O operation, permanent error
is indicated. When a program encounters a permanent
I/O error, it either accepts the error and continues, or
ABENDS. If a critical supervisor function encounters
a permanent I/O error, the system terminates.

APR

I/O RMS extends recovery from an I/O error with
APR by ensuring that a different channel will be tried

472 Spring Joint Computer Conference, 1971

Figure 4-APR/DDR processing

DYNAMIC
DEVICE

RECONFIGURATION

(if one exists) during error recovery on a channel-detected
error. If a permenent error exists on a device with a
demountable volume, I/O RMS will extend recovery
with DDR by requesting that the volume be moved to
another device and the I/O operation retried.

The maximum number of paths supported to anyone
device will be four. APR will ensure that a different
channel will be tried (if one exists, is on-line, and ready)
only on retry of channel-detected errors. Retry on other
errors will be handled as in the past. APR does not
support tp.

In addition, APR provides an operator Command
VARY PATH. Through this command an operator can
select a specific channel path and remove it from the
system. Also, a path that has been removed can be put
back on line through this command.

Alternate Path Retry is an extention of the Channel
Check Handler.

DDR

DDR extends I/O recovery when a permanent error
develops on a device with a demountable volume by
causing the system to request that the volume be
moved.

The operator may also request DDR during normal
execution to allow a volume to be moved from one de
vice to another. A DDR can be operator-requested for
volume cleaning, etc.

DDR can also be requested by the operator during
, "intervention required" conditions on readers, printers,

and punches.

DDR will support the 2400 tape series, the 2420-7
tape, the 2311 and 2314 disks, the 2321 data cell drive,
and readers, punches, and printers.

DDR can be requested by the operator anytime dur
ing execution, or by the system after a permanent error
for all 2400 (including 2420-7), 2311, 2314, and 2321
devices. DDR can be requested only by the operator
for readers, printers, and punches during "intervention
required" conditions. "Intervention required" is either
indicated by the system or may be caused by the opera
tor. (The operator may cause an "intervention re
quired" condition by making the unit "not ready.")

DDR's support of the 2314 allows the operator to
move a volume to a drive on another 2314. It also
allows the operator to move all data cells from the
failing 2321 to another 2321. DDR will not allow the
swapping of data cells on one device.

If the SYSRES option is selected, the SYSRES
volume may be moved from one device to another at
the request of the system or of the operator. The sys
tem will not request SYSRES swap unless a critical
I/O operation is involved. (A critical I/O operation is
one which involves the SVC library.)

If high availability is important to the installations,
a duplicate SYSR~S volume would be advisable. In
order to use such a volume, writing on SYSRES would
have to be prohibited except for the SYSl.LOGREC
data set. Therefore, no libraries on SYSRES could be
updated, no work data sets could be allocated on the
SYSRES device, and SYSl.SYSJOBQE would have to
be on a volume other than SYSRES. If the installation
had such a duplicate volume, as well as an additional
available SYSRES device, it would be possible to re
cover from both a device error and a media error.

SYSRES Option: Since some users do not have a
demountable SYSERS device, DDR support SYSRES
will be an option at SYSGEN time. THUS, the resident
code necessary for SYSRES DDR is included only
when the option is taken.

Dynamic Device Reconfiguration is an extention of
lOS as it applies as much to device errors as channel
errors.

With I/O RMS, a device encountering an error chan
nel prone path may be able to continue operating on a
different channel path. A volume on an error-prone
device may be used effectively on a different device.
Specifically, bus-out checks, and data checks, along
with other error types, will have a higher degree of
recovery, since a path to the volume may be made
available that excludes the source of error.

I/O RMS is not model dependent.
In summary, I/O RMS will extend device perform

ance in areas that may have previously rendered a job
or the system inoperative.

Recovery Through Programming System/36o-System/370 473

CPU/PROCESSOR STORAGE RECOVERY
FACILITIES

Machine-check conditions which arIse within the
CPU or processor storage are serviced by the mutually
exclusive recovery facilities ~ICH, SERO, and SERl.
If none of these are chosen at SYSGEN time, the de
fault condition is a wait state. That is, when a machine
check is encountered, the machine goes into a wait
state. If such a wait state condition occurs or should a
facility fail in its recovery attempt, SEREP may be
used to access the CPU logout. (MCH is mandatory in
the System/360 Model 85 and System/370 Models 155
and 165.)

MACHINE-CHECK HANDLER (MCH)

The primary function of the Machine-Check Handler
is to attempt recovery from main storage or CPU
failures which ECC or HIR has not previously cor
rected. An important additional function is to record
each failure. The goal of M CH is total recovery,
achieved when the interrupted program is enabled to
continue processing at the point where the interruption
occurred. When total recovery is not possible, MCH
attempts to terminate the effected task without halting
the entire system. If, however, a stop in system process
ing cannot be avoided, the error records produced by
M CH aid manual repair.

MCH processing is inseparable from the operations
of the machine recovery facilities, ECC and HIR.
Upon detection of a hardware failure, either ECC or
HIR (depending on the type of error) receives control.
Only after these circuits make their recovery attempt
does a machine-check interruption occur. MCH re
ceives control at the interruption by means of the
machine-check new PSW which contains the address
of the MCH Resident Nucleus. Figure 5 illustrates the
sequence of operations performed by MCH.

The path followed by MCH processing depends on
whether or not the machine facilities were successful in
their recovery attempt. If so, MCH only records the
error, after which control is returned to the system.
If the recovery attempt was unsuccessful, MCH ana
lyzes the error and attempts recovery. If recovery is
achieved, MCH records the error, notifies the operator,
and returns control to the system. However, should
recovery not be effected, MCH attempts to record the
error, informs the operator of the condition of the sys
tem, then enters the disabled-wait state.

NOTE: In System/360 Model 65, Instruction retry and
single bit error correction are performed by the program.

System environment recording (SERO and SER1)

These optional recovery facilities record machine
malfunctions of the CPU, processor storage, and chan
nels in System/360 Models 40, 50, 65, 75, and 91
(SER1 only). After an error record has been placed on
the SYSl.LOGREC, the system is placed in the wait
state. If system repair is not required, a message is is
sued to the operator requesting him to re-IPL (System
Supported Restart). In addition to the recording func
tion, SER1 attempts to associate the failure with a
specific task. If the failure affects only the job step
associated with the current task, the job step can be
terminated without requiring a complete stop of the
system (System Recovery).

RETRY NOT
FEASIBLE

I-
I

MACHINE
CHECK

INITIALIZATION

INSTRUCTION
RETRY

SUCCESSFUL

I
I

UNSUCCESSFUL
OR

CONDITIONAL

I
I

I REFRESH
I (FIRST TIME

HARDWARE
ANALYSIS

L!HRU ONLY) PROGRAM DAMAGE
ASSESSMENT
AND REPAIR

ERROR
PROCESSING

EXIT

Figure 5-MCH gross flow

474 Spring Joint Computer Conference, 1971

SYSTEM ASSOCIATED RECOVERY
FACILITIES

While the following facilities do not actually record
or analyze errors, they are an integral part of the Re
covery Management scheme in that they further reduce
the time involved in recovering from a malfunction
which has caused an interruption in system operation:

• System Restart
• Checkpoint/Restart

System restart

The system restart facilities aid the IPL procedures
by allowing the system to resume operation without
having to reenter jobs that have been enqueued. This
is especially time-saving in the case of those malfunc-

. tions which require a halt of system operation without
a stop for repair. Information concerning input work
queues, output work queues, and jobs in interpretation,
execution, or termination is preserved for use when the
system is reloaded. When the system is restarted, a
message is written to the operator describing the status
of each job in the system.

Checkpoint/restart

The checkpoint/restart facility provides the capa
bility of restarting program processing subsequent to
an I/O device/unit error, machine check, channel
check, intentional operator intervention, or similar
event. Job step information is recorded at user desig
nated checkpoints in a problem program; if restart be
comes necessary, it can be initiated from an available
checkpoint. Checkpoint/restart can be invoked subse
quent to system restart or subsequent to the abnormal
termination of an effected job by one of the recovery
facilities.

Use of this facility minimizes time lost in reprocessing
a job step that has been terminated. It is used to best
advantage in programs of long duration, or with pro
grams where restarting from the beginning would be
difficult.

ERROR RECORD RETRIEVAL FACILITIES

Although automatic recovery procedures are ex
tremely desirable, such recovery is sometimes impos
sible, and human intervention on the part of main
tenance personnel is required. The following facilities
are part of the Recovery Management scheme, in that

they facilitate system repair by providing a. means of
accessing failure data:

• Environment Record Editing and Printing
(EREP) utility

• System Environment Recording Editing and
Printing (SEREP) program

Environment record editing and printing utility

EREP, running under the operating system, edits
and prints error records generated by OBR, SDR/CCR,
CCH, SERO, SER1, and MCH and recorded on the
SYSl.LOGREC data set.

The EREP utility program can edit and print:

• Combinations of the above records
• Records that were generated within a specific

period of calendar time
• I/O outboard or statistical count records, or both,

related to a specific channel or unit
• I/O outboard or statistical count records, or both,

related to a specific I/O device type

EREP normally clears each selected record to zeros
in the SYSl.LOGREC data set when processing of that
record is complete. However, an option can be specified
to prevent the clearing of selected records. Thus, a log
of specific error conditions can be retained in the data
set.

EREP output provides information for interpreta
tion by the people performing the repair function.

A standard operating procedure in a Computer
Center using MCH and/or CCH should be to execute
EREP on a regular basis and then the information
would be available to repair personnel as an aid or in
dicator to anticipate serious trouble. Upon review, if a
particular pattern appears-indicating possible degra
dation, preventative maintenance may be performed
before the occurrence of a serious incident.

System environment recording, editing and printing
program

SEREP, is used to access failure information when:

• No automatic error recording facility (SERO,
SER1, CCH, MCH, OBR, SDR/CCR) has been
invoked

• An automatic error recording facility has failed in
the performance of its function

• The SYSl.LOGREC data set cannot be accessed
to obtain the error analysis records

Recovery Through Programming System/360-System/370 475

SEREP is manually loaded using the standard IPL
procedure. The program prints the information regard
ing the failure's environment on an online printing de
vice. The SEREP procedure is aimed at improving the
overall performance by minimizing unscheduled down
time. The program allows maintenance personnel to
take full advantage of the machine diagnostic capabili
ties of the system in analyzing and correcting the fol
lowing types of machine malfunctions:

• I/O Channel Failure
• I/O Device Failure
• I/O Test Channel Failure
• I/O Device Not Operational
• Machine Check Failure

RMS/65 RELATIONSHIP TO THE OPERATING
SYSTEM

The RMS/65 package is comprised of two compo
nents, the Machine Check Handler (M CH) and the
Channel Check Handler (CCH). For System/360
Model 65, both components are optional and a user at
SYSGEN time may choose (1) CCH only, (2) MCH

OS NUCLEUS

MCH RESIDENT STORAGE

MCH COMMON AREA

MCH TRANSIENT AREA

MCH NUCLEUS

VO SUPERVISOR

CHANNEL -CHECK HANDLER
COMMON

APPLICABLE CHANNEL DEPENDENT CODE
(DYNAMICALLY LOADED)

PSW'S

VO Nc.K
NEW NEW
PSW PSW

Figure 6-RMS relationship to OS

168

CHANNEL ID
172

VO EXTENDED LOG POINTER
176

EXTENDED CSW
180

RESERVED
232

MACHINE CHECK INTERRUPT CODE
240

RESERVED
248

FAILING STORAGE ADDRESS
252

REGION CODE
256

SCRATCH PAD LOGOUT
352

FLOATING POINT REG ISTERS
384

GENERAL PURPOSE REG ISTERS
448

CONTROL REGISTERS
512

Figure 7-Permanently allocated storage locations

only, or (3) both MCH and CCH, depending on the
needs of the installation. For System/360 Model 85 and
System/370 Models 155 and 165, the 1VICH and CCR
are an integral part of the Control System and, there
fore, are not an option.

When selected at SYSGEN time, the components of
RMS are included as part of the resident OS Nucleus.
See Figure 6.

SYSTEM/370 CONSIDERATIONS

The current program status word (PSW) bit 13 has
taken on more significance in System/370. In System/

476 Spring ·Joint Computer Conference, 1971

360, bit 13 had sole control of Recovery Management
functions. In System/370 there are recovery submasks
in the control registers area which function in conjunc
tion with bit 13 of the current PSW. Therefore, if bit
13 of the PSW is one submasks and the subclass mask
bit in the control register is another, the associated
condition will initiate a machine-check interruption.
If either bit is zero, an interruption would not be initi
ated. Some subclass condition masks are system dam
age, timer damage, system recovery, etc.

Permanently allocated storage locations have been
extended in System/370 for machine-check handling.
Storage locations 168 thru 512 contain the added in
formation for handling machine checks. (See Figure 7.)
This information is supplied to assist in performing the
recovery function. Such information consists of Chan
nel ID, I/O extended by log-out pointer, limited chan
nel log-out, I/O address, machine-check interruption
code (discussed below), failing storage address, floating
point, general and control registers as well as model
dependent areas.

The Machine-Check Interruption Code is a double
word starting at location 232. It contains such informa
tion as the time of interruption occurrence, machine
check intended log-out length, and subclasses. A sub
class identifies the m~chine-check condition which
caused the interruption. Some subclass conditions that
can be indicated are system damage, instruction pro
cessing damage, timer damage, external damage, auto
matic configuration (when performed by hardware)
and storage error type (whether corrected or uncor
rected).

CONCLUSION

I believe that effective error recovery is a partnership
between engineering and programming and these two
must form a partnership and attack the problem to
gether in order to provide a satisfactory solution. Re
covery Management Support is a step in the direction
which Error Recovery must take if the requirements
of computer technology are to be met in this area.
Every sign indicates that this is being accomplished.

It appears that some meaningful steps are being
taken toward the goal of reducing the number of inter
ruptions to which a user is exposed and to minimizing
the impact of these interruptions when they do occur.

REFERENCE MATERIALS

IBM System/360 Operating System-System Reference Library

Concepts and facilities
Operator's reference
MFT guide
MVT guide

GC28-6535
GC28-6691
GC27-6939
GC28-6720

IBM System/360 Operating System-Program Logic Manuals

I/O supervisor
MVT job management
MCH for model 65
MCH for model 85

GY28-6616
GY28-6660
GY27-7155
GY27-7181,.

IBM System 360 Operating System

Machine check handler for the IBM System/370
Models 155 and 165, systems logic GY27-7198

On automatic testing of on line real time systems

by JON S. GOULD

Computer Consultants Corporation
Denville, New Jersey

INTRODUCTION

One of the major problems confronting the development
of on-line, real-time information systems is overall
system debugging-the final testing of all the integrated
pieces working in concert under load conditions. An
indicative analogy can be drawn from a look at similar
project schedules (Figure 1), for systems of equal
magnitude when one system is a conventional develop
ment and the other is on-line, real-time system (OLRT),
our analysis will reveal the following:

1. Both systems require essentially the same
amount of time and effort in the first three (3)
phases.

2. During unit testing they are also quite similar
with OLRT leading slightly.

3. In the final phases of integration, acceptance and
cutover testing, the OLRT system extends
several lengths over a conventional system.

The problem is quite simple. Although many would
argue that OLRT systems are more intricate and
difficult, I think most experts would agree that the larger
non-OLRT systems are every bit as intricate and
difficult and in many cases, perhaps more so. The
problem, reduced to its simplest terms, is:

THERE ARE ESSENTIALLY NO
COMMERCIALLY AVAILABLE

OLRT DEBUGGING TOOLS!

There is essentially nothing available to the OLRT
developer to help him debug the real-time aspects of a
system, loading effects, testing of time critical events,
throughput, and the list goes on. By-and-Iarge, the
extensive facilities available through various commercial
operating systems in the form of dumps, traps and traces
are of little or no value to the OLRT system during the
final debugging stages of a system.

477

Therefore, the OLRT system developer is left to fend
for himself, to develop whatever aids can be done within
the scope of available resources. This effort, if it is
undertaken at all, generally amounts to some weak
attempts to build simple trap and trace subroutines, and
perhaps some appropriately placed 'core dump' routines.
This is integrated into the actual OLRT system and
tailored specifically to this task and its associated
programs, to the extent of rendering the routines useless
to any other similar subsequent systems development
effort. Therefore, when this project is completed, this
'test' code will be discarded or inactivated and probably
never reused. Since test code is almost always required
and never planned, it contributes greatly to project
over-runs and in some cases system failure.

Let us look at the two types of projects (conventional
and OLRT) from a testing and integrating viewpoint.
A large scale conventional 'batch' 'processing system
will involve several data files spread over disks and
tapes, and will probably involve a variety of SORTS
and MERGE runs, sprinkled liberally with processing
programs. To test this system we must make up several
dummy data files, or perhaps live data if it is available,
layout a set of transactions which will test the sundry
error conditions, and then run the system prograrri-by
program, printing and analyzing the intermediate data
and structures file as we go. Everything has been done
neatly and locked-in. to the processing unit in the
computer room. Each phase or sub-task of the test is
under the direct control of the programmer or operator.
Contrast this with the OLRT system: To test a system,
which may look like those in Figure 2, we must now
arrange to have operations personnel standing by
terminals in various parts of the country to enter c('rtain
specified data, in a specified sequence, at our command
(We have sent them the instructions several days ago
and after many phone calls they now understand what
they have to do.) We must establish communications,
have the data entered, and after the test have the
corresponding results from the remote terminals sent in

478 Spring Joint Computer Conference, 1971

for analysis. Obviously, we have very little control over
this type of testing. As the size of the system increases,
the debugging problem grows exponentially. In sum
mary, OLRT systems development is generally con
strained and may fail because of:

1. A lack of sophisticated debugging aids.
2. System load testing to an over-capacity state is

generally not attempted until cutover.
3. The test tools that are developed are custom

tailored to an application and virtually useless
for subsequent reuse.

4. Time compression capabilities to create real-time
situations are not usually available.

It is desirable to have a method of testing, debugging,
and analyzing an OLRT system that may be used over
and over without extensive modification. A system
should contain the following attributes:

1. It must be an easy-to-use debugging aid.
2. It must be reusable; which means it must be

generally transparent to the application under
going the test.

3. It must be able to subject the OLRT to data
loads which are at or near its capacity.

ACCEPTANCE
IYSTEM lIflT IYSTEM MODUICATICIf
DES" CODIJIG 1UT1RG IImGIATIOI IIETIITIRG CUTOVEI

~---+----~----~------~--------i-----~

IIAL -TIllE IllTEMI

II I EEI-<D
Figure I-Project schedules

IATELLlTE OR
• CONCEMTIATING

CCIII'UTEJI

CCIMIQf CAUIE.
- FACILITIE.

Figure 2-Communications networks

4. It must be readily modified to insert special
system functions.

5. It must be capable of compressing time-to test
now, those events scheduled several months or
years away.

6. It must be useful for debugging modifications
and new applications after cutover, as well as
during the initial development effort.

7. It must be available at the right time in the
development schedule.

8. It should provide a useful training aid for
maintenance programmers, operators, etc.

9. It must be 'external' to the OLRTsystem so that
its influence or overhead is not additive to
system occupancy.

10. OLRT should not require any special coding
whatsoever to use the test vehicle.

This is a tall order, to say the least. However, the
application description which follows provides these

things and more. This is primarily because the develop
ment of this system addressed itself to this problem
head-on, it is not a by-product of an on-line system.

The technique itself is straightforward and simple;
we assume that to provide meaningful tests of an OLRT
system, especially during the integration phases of the
system, the test vehicle should not reside in the same
hardware system as the OLRT system. The OLRT
system must be exercised in precisely the same manner
as the 'real' network, including interrupt loads, etc. The
primary differences between the technique described
here and most others is:

1. THE TEST VEHICLE DOES NOT RESIDE
IN THE ON-LINE SYSTEM.

2. THE TEST VEHICLE DOES NOT REQUIRE
ANY MODIFICATIONS TO THE OLRT
SYSTEJ\1.

EQUIPMENT

The test vehicle, hereafter referred to as ATOLS,
resides in a completely independent computer complex,
which may be the back-up hardware for the OLRT
system, or it may be contained in one of the popular
mini-computers, which could be used to provide this
function solely.

Regardless of the method selected, since the systems
are independent, there is no requirement for any special
engineering to effect the interface hook-up. Some extra
common carrier supplied hardware, such as patch panels
for communications lines and 1ine 'battery' supplies may
be required. However, this is standard off-the-shelf
equipment of which most communications systems have
an abundance. The application is described here, using
the back-up computer system, since it was a com
pletely redundant installation.

The communications carrier provides the equipment
installation of phone lines and terminal board hard ware
which is commonly referred to as their DEMARKA
TION POINT or DEMARKATION STRIP. The
common carrier terminates his equipment on the strip
and provides a corresponding termination point for the
attachment of 'foreign' equipment, such as the computer
system. This is the termination point for the carrier's
maintenance responsibility. The computer hardware
vendor wires to the corresponding termination and the
lines are connected and ready for on-line operations.

ATOLS is also terminated on the DEl\1ARKATION
STRIP in a similar manner as the on-line connections.
The effect of this connection is to have both hardware
systems 'split-wired' to the telephone lines. Figure 3

Automatic Testing of On Line Real Time Systems 479

COIIIIII CARRIER
'IIEJMICATION mlP'

--f\.
ON-LINE

---"'"
SYSTEM --"'"

___ rIL

MIlL TlPLEXOR --I'\.

"""-- -"

~

IrO

IriJ

If-{]
I

I
IL-

I

I

I

I

ICEYBOARD
TERMIIALS

DISPLAY
TERMIIALS

RElC)TE
CONCENTRATORS

MTA
PROC£SSORS

I
REI«) TE SITES

ImRNAL
CONNECTIONS TO
THE TEST SYSTEM

COMPUTER

I
LOCAL

COIIUtICATlONS

Figure 3-The test system installation

illustrates a typical connection at the DEMARKA
TION STRIP. It is important to note that the installa
tion of the common carrier's equipment is not necessary
to provide a simple ATOLS-to-OLRTS interface. If
there is a delay in the common carriers installation, the
machines can be temporarily wired together on a limited
number of lines.

After these line connections, we are ready for testing.
ATOLS is a fully implemented OLRT system with some
special features added for the test environment. It has
both on-line and off-line components for test data
generation and data analysis, as well as the on-line
operation.

THE ATOLS OFF-LINE SYSTEM COMPONENT

The off-line system provides for the generation of test
data to provide the inputs for a test run, and the
analysis of data that has been produced as outputs from
the test run, after transmission through the OLRT
system.

TEST DATA PREPARATION

One of the obvious problems of working with one
computer driving another is to generate enough test data
in the test vehicle to be able to sustain a volume level to
be transmitted to the on-line system over a period of

480 Spring Joint Computer Conference, 1971

HARDIIARE
ADDRESSING

<= J, LA

MESSAGE TEXT llstu SEQUEIICl
IUllER

SUlSTlTUTE IIICREIDT AND
DATA INSERT SEQUENCE

FIELD IIIMBERS

Figure 4-Test message data

time. Running at full speed, a system with several
hundred lines would process several thousands of
messages in an hour. Therefore, the system must have
the capability to generate massive amounts of input
information.

This is accomplished by a set of data preparation
programs which accept punched card images and
generates magnetic tape with the finished message
formats ~nd their destinations coded into the t~pe
records. Data preparation is essentially free-form with
the exception of a few control parameters, such as the
number of messages or copies of the message to be
generated and the hardware addressing characters, if
any. Several fields are permitted to be imbedded within
the data for the data generator program to update, such
as sequence numbers, account numbers, and items of
this sort that would be incremented or updated on
message-by-message basis.

As the tape is generated, a copy of each message can
be printed on the high-speed printer for verification of
the final d.ata format. The data generator function runs
in the background of the on-line system and is able to
produce test data while the switching system is in
operation. However, it is generally done off-line so that
the data can be verified before transmission to the
OLRT system.

The recommended method of data preparation is
off-line. The analyst determines the type of tests to be
run in advance, codes the data, and it is keypunched and
subsequently generated by the system. There are
certain types of inputs that you would like to enter into
the system while testing is in progress, such as special
message types and console orders. For these inputs, a
standard input device is available (the computer console,
teletype, etc.) to enter traffic directly into the on-line
system for transmission immediate action. Therefore,
the data need not be completely prepared off-line, and
may be entered at will from a supervisory station.

Figure 4 is an illustration of several input message
formats that the data preparation programs would
accept, expand, and generate to a magnetic tape file.

After the tape has been generated and the data
content has been verified on the high-speed printer,
ATOLS is ready to bring this tape into the system to
'queue the messages to the appropriate destinations. To
initiate this process, the computer operator enters
several commands through the operators console to
'close' the file and to 'load' it in for data transmission.
At this point, the on-line data preparation programs
take over, read the tape in, and queue the information
to a disk or drum in preparation for transmission. For
descriptive purposes, the generation and transmission
have been separated; actually, these functions may be
going on simultaneously.

When the data is loaded and queued to the lines, the
system notifies the operator of the number of messages
queued, queue reports to appear, etc. The complex is
ready for on-line testing of the real-time system. At this
point, the OLRT system is loaded in the on-line com
puter complex, and is awaiting input data or initiating
some network action.

DATA ANALYSIS

The current implementation has several basic func
tions. First, the inputs to the data analysis package are
the ATOLS journal tapes from the on-line run and the
initial input data tape that contains the initial test data.
These tapes are processed, merged, and sorted together
to produce a single tape file containing the chronological
events of the test. This file is input to a series of COBOL
and FORTRAN data processing programs to reduce the
data and to check its content. Some of the items that are
checked are:

1. Message routing in a switching application is
checked. The message sent by the test vehicle is
matched against the message received to verify
that it was transmitted on the correct line, and
the time differential to transit the on-line
system.

2. A check is made character-by-character of the
message sent against the message received to see
if any characters have been dropped or in some
way modified from the original message. Char
acters are checked within boundary limits that
are coded in the input data. This permits
processing programs on the on-line system to
modify the messages and still have some sections
verified.

3. ATOLS contains the difference in the time the
message was sent and the time it was received,
the line it was received on, and the sequence it

was received. This is used to verify the sequence
of priority messages in a system where several
levels of priority transmissions exist.

The off-line system produces these reports on the
high-speed line printer for further analysis. The
significance of this is that a test of several hours under a
full load, where thousands of messages are transmitted,
is a virtually impossible clerical function to analyze
for minute errors. ATOLS reduces this to a meaningful
task, since it reports only on errors. The analyst need
not only concern himself with the error traffic, rather
than the total.

Other off-line functions, which are very useful are a
series of utility programs to generate the communica
tions network. The network to be generated for a given
test is specified symbolically on punched cards. It is
quite simple to run several completely different tests
just by changing the network, and switching terminals.
This facility allows us to compress time in an imple
mentation schedule when remote installations are
scheduled to cutover during several months or year
periods. By generating a network now that will look
like the network two years from now, for instance,
we can test the system and debug it under that load
and be assured today that when that 200th terminal
is cutover some 18 or 20 months from now, the system
is not going to collapse when the first message is sent.
By providing network flexibility, these functions
become available quite readily.

THE ATOLS ON-LINE SYSTEM COMPONENT

The on-line system component that provides the
actual test vehicle is quite similar to most message
switching systems. It is in fact a complete message
switching system with all of the bells and whistles, plus
a few subtle differences. The first being that only a
minimal amount of message processing is done in the
switching system because of the flexibility required.
Second, error conditions' are handled somewhat
differently than they would be in a conventional
on-line system in that ATOLS is more concerned with
identifying time stamping and saving error conditions
than it is in correcting them. Therefore, the test vehicle
will time stamp and collect on file any data and or error
condition that is detected on the lines or in the response
to its stimuli. Aside from this, it has all of the com
ponents of a store-and-forward message switching
system.

The software structure contains five main line

Automatic Testing of On Line Real Time Systems 481

COMIIINICATIOIIS

FACILITIES

ERROR OPERATOR RECOVERY

PROCESSING ~ ~

Figure 5-Software structure

program subsystems, which are:

1. The Base Level Executive.
2. Communications Control.
3. Message Processing.
4. Input/Output Control System (Non-communi

cations).
5. The Overlay Controller.

These are the mainline resident programs. There are
other sub-systems for checkpoints and recovery,
operator commands, and several utility and report
programs to complete the system software. The latter
are mentioned briefly to clarify the text as required;
however, they are not worthy of a great deal of detailed
explanation at this time, since they are not concerned
with the main concept to be presented.

Figure 5 is a diagram of the software structure of the
five mainline programs.

The Base Level Executive is the main control program
of the test vehicle. Its functions are to determine the
priority of the other major elements of the test vehicle
and to pass control to these elements as required.
Priority of execution of each element is established by its
relative position in a monitor control table which is set
up at system assembly time. All programs release control
to the Base Level Executive, which maintains the status
of this table and allocates resources accordingly.

When the Base Level Executive Program has
serviced all the work it has to do in its control table and
nothing is outstanding, the Executive loops in an idle
timing loop, waiting for another activity to require
action. In this state, it keeps track pf this idle time,
which is provided as one of the statistics in the system.

The Communications Control Programs are logically
divided into input communications and output com
munications. The responsibilities of these are essentially

482 Spring Joint Computer Conference, 1971

that of adaptive teleprocessing line control. The
Communications Control Program has the following
responsibilities:

1. To determine for each line in the system whether
to send or receive on that line.

2. To address it or poll the line.
3. Determining if it must be dialed-up or it is

private wire.
4. Receiving and logging any data other than the

normal line addressing characters.
5. Notifying the logging and journaling programs

that data has been received.
6. Providing all of the error testing and reporting

for the transmission control units, lines, and the
data.

The Line Control Programs are responsible for
providing the characteristics of each line discipline that
the system is testing. Also, it provides for the other
functions of lines and terminals, such as to set lines up
and down if excessive errors occur. Another function is
to keep the system operator informed of network status,
lines that are in trouble, and the characteristics that are
on those lines. It also provides the basic timing functions
for open lines, stuck transmitters, inter-character
time-outs, no message time-outs-to protect the system
from lines that may hang up for one reason or another.
Again these occurrences are posted to the system
operator.

The Message Processing Program is simple and
straightforward. Since the test vehicle is essentially
data transparent, the only requirement of the Message
Processing Program is to properly route a message to its
output queue. This is done from information supplied by
the analyst on the data cards, indicating the line and
terminal this information is to be queued to. The
imbedded text of the message is not modified or analyzed
in any way. On incoming messages that are generated
by the on-line system, the Message Processing Program
time stamps, sequence numbers, and writes the message
to the journal tape for further processing.

The Input/Output Control System (IOCS) in the
test vehicle schedules and executes all I/O operations
for programs under the control of the Base Level
Executive. With the exception of the operator's console
and those communications line operations previously
mentioned, IOCS contains all of the I/O channel and
hardware device dependent error recovery procedures,
addressing, and is initiated by a request from one of the
Base Level Programs, after which it is interrupt-driven.
That is to say that IOCS is dormant until a request is
issued by some program under the Base Level Executive.

It then schedules the requested operation and starts the
physical I/O process. It is dormant again until further
processing is triggered by input/output interrupts from
the I/O channel. Inter-program communication be
tween IOCS and the application program is accom ..
plished through data control block linkages and the data
per se. The programs currently support the disk drives,
magnetic tapes, card reader punches, and high-speed
printers. The IOCS program is queue driven and has
several levels of priority so that it can be made sensitive
to a particular type of data if that is desirable for the
test.

The Overlay Controller Program and its buffer area
is used in ATOLS to reduce the main core requirements
for the system. Generally, Overlay Programs are used
for supervisory controls, special processing routines,
error procedures, and seldom used routines-such as
retrieval, statistics programs where there is no restric
tion on time and/or space required. Any number of
Overlay Programs may be included in the system since
they are resident on external storage. Any Overlay
Programs that are executed in the system under the
direct control of the Overlay controller are initiated by
the Base Level Executive Program. The Overlay
controller is queue driven, such that any routine wishing
to request an Overlay Program places the appropriate
request information in a common queue for the Overlay
Controller Program. When the request reaches the top
of the queue, the requested program if it is possible at
the time will be pulled in off the external storage device
and executed.

This method of using the Overlay Program is under
the direct control of the controller module, which
permits some specially tailored routines for a particular
on-line system to be included into the overall system
without a great deal of effort required for programming.
Since all of the mechanics of loading, executing, and
scheduling are there, the only thing that need be
provided is the actual processing program. This method
allows for a certain amount of personalization or custoin
tailoring of software to a particular system to be tested.

The test vehicle is equipped with a command console
to enter various orders to the system to re-configure
networks, start up and shut down, recovery, retrievals,
and things of this nature. In general, the types of
commands which can be entered are to two categories.
First there are network orders and second, general
orders. In the area of network orders, we have line
command orders and terminal command orders. These
orders provide for dynamic network modifications, such
as lines up, lines down, queue status reports, terminals
up, terminals down, terminal status reports, and those
functions associated with network parameters. The
general orders group is a catch-all for everything

else-set the time, set the date, start the system up,
shut the system down, etc. These functions are provided
so that the test director or the programmer debugging
the on-line system has the ability to direct the test
vehicle to perform in various degrees, depending on
what options he is debugging at the time. He may want
to run just one line, or he may want to run a hundred
lines; he may want to stagger them, or produce
instantaneous peaks. The programmer debugging the
on-line system needs a great deal of control over the test
vehicle to make sure that it provides the external inputs
that he wants, when he wants them, and in the manner
that he wants them.

Now, with all in readiness, the on-line system to be
tested waiting for an external stimuli, the test· vehicle
primed with the test data to be transmitted, the
programmer then brings up the test vehicle in a fashion
that is suitable for the test-those lines and terminals
that he requires. At this point, the test vehicle takes over
and begins driving the on-line system in the way the
'real' network ",ill when cutover takes place. The
programmer then sitting across the room on the on-line
system can then proceed to debug various features
including load capacity, graceful degradation, etc. As
the test system is driving, the programmer has at his
command the ability to increase the load, run in an
ambient state, or decrease the load by entering com
mands into the test vehicle as the test proceeds. While
the testing is in progress, the test vehicle is logging the
activity that is going on in the network to magnetic
tape. This magnetic tape will become one of the inputs
to the off-line programming system for the analysis of
the run, if required. In addition, as the system is
running, a constant stream of information is printing on
the operator's console to inform the programmer of how
the network is reacting, responding, what the queue
status is, that the alarms are going off, and what errors
have been detected.

The network and system constraints of ATOLS are
primarily the amount of core memory available, and the
band width capability of the processor. Th~ network
specifications for this implementation provide for:

1. 256 communications lines.
2. Several thousand terminals.
3. Supporting most of the popular line disciplines,

on a line-by-line basis (adaptive).
4. Master/slave mode of operation-adaptive by

line.

OTHER ATOLS USES

One of the extra benefits of the system has been to
monitor and, indeed, substantiate modifications made

Automatic Testing of On Line Real Time Systems 483

to the on-line system several months after cutover.
These modifications have been completely tested before
being incorporated into the on-line system. We were
able with a reasonable amount of insurance to go
on-line with 'new' programs. In addition, the process of
training operations and maintenance personnel has been
greatly enhanced since we can provide real situations
for analysis; we can overload the system, have the
operators go through the fall back and recovery
procedures (this is especially useful when an OLRT
system stablizes-the operations personnel tend to get
rusty over a period of several months). ATOLS provides
for continuous training throughout the life of the
system, as required.

One benefit derived from the ATOLS system that was
not anticipated at the outset of the project was monitor
ing of the on-line system. The test vehicle was modified
to 'ride' the lines of the on-line system and to capture
and time stamp the activities on those lines-sort of a
'big-brother' concept. We were time stamping data
transmitted on the lines and monitoring the on-line
system performance without having to introduce a large
amount of test or monitor equipment. The test vehicle
itself deals with the collection, and the off-line package
provided the results.

BENEFITS

I believe at this point, many of the benefits are
obvious. However, to mention a few:

1. The throughput and communication line error
rate can be measured.

2. All of the error paths of the on-line system can be
exercised randomly and over a long period of
time.

3. Special features that may be built into the
on-line system that may not occur very fre
quently may be tested.

4. Peak load and duration analysis can be made on
the system.

5. Behavior patterns can be developed.
6. Routing information can be checked.
7. The entire problem of fall back, recovery switch

over under various load conditions can be
completely tested.

8. The so-called degradation factors can be checked
and the entire system configuration of the on-line
hardware can be put to the test even though the
lines and/or terminals may be several months
from installation.

9. Time compression-The entire system for many
months and many years can be run continuously;

484 Spring Joint Computer Conference, 1971

those things that are planned in the future can be
checked out now while the system and the
software is fresh in the development terms.

SUMMARY AND CONCLUSIONS

The implementation of an on-line system can be a
traumatic experience. The failure rate is high, largely
due to the lack of tools available for testing and
debugging large, complicated, time-dependent systems.
It is my opinion that the only real way a large on-line
system can be satisfactorily debugged is by another
computer; as one computer to another supplying the
inputs as they are required. The test vehicle described
here is a giant step in providing such a tool. At .the same
time, it falls far short of being a panacea. However,
experience to date has proved it to be a very liable
solution to an extremely difficult problem. OLRT
systems are going to be around for a while and there will

be evolutions of systems even larger and. more compli
cated. The cost of developing a test vehicle such as this
becomes trivial and can be written off over several
systems to be developed by the company over a period
of time. It has proven to be more than simply a good,
sophisticated debugging tool to test out a system before
it goes on the air. It has also proven to be an invaluable
training aid on a continuous basis to train maintenance
programmers joining the organization to get some
experience without upsetting the on-line environment,
to train rusty operators, and to test other applications
that are not necessarily involved with the on-line
environment but run in the background of the on-line
system.

Considerably more work should be done in this area
to reduce the mortality rate of OLRT systems. The costs
are tremendous; the probability of success must be
increased. This is the challenge for the real-time
systems community.

PORTS-A method for dynamic interprogram
communication and job control*

by R. M. BALZER

The RAND Corporation
Santa Monica, California

INTRODUCTION

Without communication mechanisms, a program is
useless. It can neither obtain data for processing nor
make its results available. Thus every programming
language has contained communication mechanisms.
These mechanisms have traditionally been separated
into five categories based on the entity with which
communication is established. The five entities with
which programs can communicate are physical devices
(such as printers, card readers, etc.), terminals (al
though a physical device, they have usually been
treated separately), files, other programs, and the
monitor. Corresponding to each of these categories are
one or more communication mechanisms, some of which
may be shared with other categories.

The "alphabet soup" in the following example is
used only to indicate how diverse communication
mechanisms have become. In IBM's OS/360/ communi
cation with physical devices is through either BSAM
(Basic Sequential Access Method) or QSAM (Queued
Sequential Access Method); terminals use BTAM
(Basic Telecommunications Access Method), QTAM
(Queued Telecommunications Access Method), or
GAM (Graphics Access Method); files utilize BSAM,
QSAM, BDAM (Basic Direct Access Method), BISAM
(Basic Indexed Sequential Access Method), or QISAM
(Queued Indexed Sequential Access Method); com
munication to other programs is through subroutine
calls, and to the monitor through Supervisor Calls.
There are ten different mechanisms for the five cate-

* This study is part of RAND's ARPA sponsored research to
improve man-machine interaction under contract DAHC
15-67-C-0141. .

485

gories; each mechanism has different commands for
the utilization of the communication mechanism.

We propose that Ports offer a single unified mecha
nism for communicating with any of the five entities.
Besides simplifying communications, this unification
allows the dynamic specification of the entity being
communicated with at execution time. This delayed
binding can be effectively utilized for both debugging
and building more flexible programs, and as a means
for creating modular programs that can be easily
plugged together to form systems. The remainder of
this Report is devoted to defining Ports, explaining
their use, and justifying the above claims.

EVOLUTION OF PORTS

The concept of Ports evolved several' years ago
from work on a somewhat mistitled paper called
"Dataless Programming."z In that effort, we tried to
develop a programming language that would enable
representation for data structures to be selected after
a program was completed rather than before it was
begun. Selection of a representation after a program is
written is much more appropriate because at that
point the programmer knows exactly how the data are
used; beforehand he must predict the actual usage. The
different syntactic forms used in common programming
languages for the different representations force the
decision to be made at coding time. "Dataless Pro
gramming," by using a common syntactic form and
by extending the operations across all the representa
tions, allows the decision to be delayed until after
coding is completed. In addition to the chosen set of
standard representations, the user could create his own

486 Spring Joint Computer Conference, 1971

PROGRAM A PROGRAM B

Figure l-.TOINER example

representations by supplying the necessary manipula
tive routines for use by the compiler in accessing, up
dating, adding, deleting, or inserting an element from
the representation, or obtaining the next or previous
one.

Because "Dataless Programming" was never imple
mented as a system, we tried other ways to test its
ideas. The key concept was the ability to invoke a
routine, either standard or supplied by the programmer,
whenever a data structure was used. Not desiring to
write a compiler, we looked for a centralized mechanism
that could be controlled to invoke the proper manipula
tive routines. Such a mechanism exists in IBM's
OS/360,3 the Data Control Block (DCB) used for
files. Whenever an action is required on the file, such
as read or write, the address of the appropriate routine
is obtained from the DCB. These addresses are placed
in the DeB at the time the file is opened. The open
process was modified so that for selected files, the
address of an interface program, JOINER, was placed
into the DCB rather than the address of a standard
OS access method.

The JOINER program acted as an interface and con
troller between two DCBs that it had logically con
nected together. Thus, the output of one program was
available as input to another program. Each program
acted as the access method for the other. Consider
Figure 1. Program A has a DCB, called OUT, used for
output that has been joined to a DCB, called IN, used
for input in Program B.

Assume JOINER has loaded Programs A and B,
and has started A. Program A will open DCB OUT,
and the address of JOINER will be placed in the DCB.
Eventually, A will try some output through the OUT
DCB, invoking JOINER. JOINER now starts B, and
when B performs an input operation on its IN DCB,
JOINER gives B the output from Program A. When B
asks for the next input, JOINER suspends the program
and restarts A to obtain more output to give B as input.
JOINER thus coordinates the two programs and
allows each to be used as the access method for the
other. Notice that a type of co-routine4 relationship is

established between the programs. This relationship is
called Data-Directed Co-Routines because control is
switched back and forth between the two programs as
data are produced and required. Also note that the
connection between the two programs eXists outside
of each of them, and that they are unaware of who they
are communicating with.

The JOINER system described contains the key
elements of Ports (defined in the next section). How
ever, we need to demonstrate some practical uses for
this system because it tests the ideas in "Dataless
Programming."

We first add some macros to IBM's assembly lan
guage, which gives it a control block structure. These
macros are IF, ELSE, and ENDIF.5 The IF macro
begins a control block that is executed if and only if
the condition tested by the macro is true. This control
block is ended by either an ELSE or ENDIF macro.
The ELSE macro ends the IF control block and starts
an ELSE control block that is executed if and only if
the condition tested by the IF macro is false. These
macros can be nested, and hence a non-interactive
control structure analogous to those of PL/l or ALGOL
is created. We find that these macros are very heavily
used and that the nesting levels often extend ten levels
and beyond. Hence, to make the program more read
able, we build a formatting program that names the
levels and indents the listing according to these levels.

Then, with JOINER, we connect the output of the
assembler with the input of the format program. The
connection is specified to JOINER and neither program
is altered. By joining these two programs, we reduce
both our CPU and I/O charges and the elapsed time
needed to run the job.

The second application is even more important as it
is the basis for an entire time-sharing system built
under O/S. The RAND-built system is called Simul
taneous Graphics System (SGS).* When a job is to be
started, SGS joins the input of an O/S reader to the
output of a spool program. The spool program is neces
sary because the source files are kept on the disc in
compressed form as a linked list so that they can be
very rapidly updated. The spool program follows the
linked list and converts the file to the required se
quential set of 80-character card images. When the job
is running and requires input from or output for the
SGS file system, its DCBs are joined with the spool
program to provide the needed conversions. In this
way, we are able to run, unmodified, standard OS/360
programs that utilize the SGS file system, including
such IBM processors as the PL/l compiler and the
assembler.

* SGS "is an internal RAND time-sharing system.

DEFINITION AND IMPLEMENTATION

As presented in the preceding sections, Ports can be
defined as a data element used for communication with
files, terminals, physical devices, other programs and
the monitor. Four basic operations can be performed
on Ports. They can be CONNECTed to or DISCON
NECTed from another Port, and data can be sent
(SENDed) or RECEIVEd through a Port. One com
pound operation, REQUEST, consisting of a SEND
followed by a RECEIVE, and used for requesting
certain data, also exists. The reverse sequence, RE
CEIVE followed by a SEND, used for replying to a
REQUEST, does not exist as a single operation be
cause an arbitrary amount of processing may be done
between the RECEIVE and the answering SEND.

This definition, although containing the essence of
Ports, does not answer many questions about Ports
and the way they operate. We need to know how data
are passed through a Port; when control is transferred
to the co-routine; what happens if two SENDs occur
before the first one is processed by the co-routine; if
two Ports can be connected to a third; and how Ports
are connected to a terminal, physical device, or file;
etc. Ports can be logically implemented in many differ
ent ways, each providing different answers to the above
and similar questions. Each way is a logical implementa
tion-one that produces logically different behavior
as a result of the operations. We describe Ports in
terms of one such logical implementation, ISPL,7,8
rather than JOINER, in which we are severely limited
by the environment.

Incremental System Programming Language (ISPL)
is both a language and an environment for program
ming. The ISPL language is an incrementally compiled
PL/l-like language designed to run on the ISPL ma
chine, which is designed specifically to run programs
written in the ISPL language, and is intended for im
plementation through micro-code. As of this writing,
the ISPL system is being implemented by a RAND
development team. All further discussion of Ports is
in terms of this logical implementation.

In this implementation, Ports are defined in terms
of "data semaphores," an extension we have made to
Dijkstra's semaphores8 allowing data to be associated
with such semaphores. We have extended his definition
as follows (the extensions are in italics):

Semaphores are a basic language data type used for
synchronization. A semaphore logically consists
of a count of the available resources of a particular
type. The only legal operations on a semaphore are
the P, V, and conditional P operations. The P
operations request one resource. The semaphore's

PORTS 487

count is decremented by one, and if the result is
non-negative, the requestor continues. Otherwise,
the requestor must wait until the resource is made
available. The V operation makes a resource
available. It increments the semaphore's count
by one and if the result is non-positive, one of the
waiting requestors is reactivated. The conditional
P operation performs a P operation· only if the
requested resource is available, and returns an
indication of whether the resource was obtained or not.
Semaphores may, in addition, have a datum as
sociated with the available resource. Such semaphores
are called data semaphores, and the legal opera
tions for these semaphores are P-data, V-data,
and conditional P-data, which are like their non
data counterparts except that the V -data operation
must also supply the data to be associated with
the available resources, and the P data and con
ditional P-data operations must specify a variable
to which the data associated with the requested resource
will be assigned. The data can be any item in the
language to which the assignment operator applies,
or a structure of such items. The data can be buffered
in a stack or a queue, providing respectively, LIFO
and FIFO availability. They may also be stored
unbuffered for those data semaphores whose count
is never greater than one.

Using the definition for data semaphores, we define
Ports as a basic language data type used for com
munication. They consist logically of a pointer to the
Port to which the connection is made, and a data
semaphore representing the availability of and the
actual data being passed through the Port. The only
legal operations on Ports are CONNECT, DISCON
NECT, SEND, RECEIVE, conditional RECEIVE,
and REQUEST.

Because Ports are used for a type of co-routine call,
we feel the same mechanism used for transmitting data
to a subroutine should be used for Ports. Thus, the
data physically passed through the Port and its data
semaphore is a pointer to an actual parameter list,
the contents of which are accessed by the receiver
through a formal parameter list. As with subroutines,
the data logically passed through a Port and its inter
pretation are established as a convention between the
communicating programs.

The CONNECT command interconnects two Ports
by setting their pointers to reference each other.
DISCONNECT sets the two pointers to NULL.

When two Ports are connected, the Port specified in
a SEND, RECEIVE, or REQUEST command is
referred to as the local Port, and the Port it is connected
to as the remote Port.

488 Spring Joint Computer Conference, 1971

The SEND command builds an actual parameter list
from the data specified in the command, and performs
a V-data operation on the remote Port's data sema
phore with a pointer to the actual parameter list as the
data. The data in the actual parameter list is now
available to be received through the remote Port. The
RECEIVE command performs a P-data operation on
the local Port's data semaphore specifying an internal
cell to which the parameter-list pointer will be assigned,
and which will be used by the language's standard
mechanism for accessing formal parameters. If no data
is available, then the requestor is suspended until one
is available. The conditional RECEIVE is similar,
except that a conditional P operation is used. The
REQUEST command is simply a SEND followed by an
unconditional RECEIVE.

We have, so far, described the operations on Ports
in situations where two Ports are interconnected, but
have not handled the cases where a Port is connected
to a terminal, physical device, or file. Terminals and
physical devices are handled by connecting the Port
to a Port in a device-dependent system program for
the terminal or physical device that transforms the
communication into I/O commands appropriate for
the device, and which then requests the supervisor to
perform the I/O through the MONITOR Port (see
the following section).

Files are handled similarly, ·except that the deter
mination of the program to which the connection should
be made is based on the type of file specified. The ISPL
file system9 is .based on the "Dataless Programming"
principle that representation-extension capabilities
should be provided by allowing the user to supply the
manipulative routines necessary to implement the new
representation. Thus, corresponding to each type of
file, there exists a set of manipulation routines for
creating, destroying, connecting, disconnecting, and
communicating with files of that type. When the
CONNECT command is issued, the file name is found
in the master directory and its file type is used to access
and execute the connect routine, and to access the com
munication routine that is connected to the specified
Port. Ports are thus always connected to other Ports.
For terminals, physical devices, and files, the remotely
connected Port is in a program selected by the system
on the basis of the characteristics of the terminal,
physical device, or file.

The questions on detailed Port behavior posed in
this section have now been answered except for specify
ing when control is transferred to the co-routine. To
provide the flexibility we require, the control structure
of ISPL is necessarily complex. Scheduling decisions
are made at three levels. First is the process level. In
ISPL, a process is a set of independent tasks that

share a separate, unique, addressing space. It roughly
corresponds to a job. Processes are scheduled by their
supervisors that are informed via an interrupt when
one of their processes, which is waiting for some re
source, is again able to run. Nothing more can be said
about process scheduling because each supervisor can
use its own arbitrary scheduling algorithm. All schedul
ing within a process is controlled by the ISPL machine.
Each task within a process is a logically independent
flow of control that could be executed simultaneously
with other tasks if multi-processors were available.
Each task has a relative priority, and the task with
the largest relative priority that is not waiting is
scheduled by the ISPL machine. Tasks, in turn, are
composed of exclusive-execution blocks that are sepa
rate flows of control, but only one of which can logically
be executing at once, even in a multi-processor system.
As with tasks, the ISPL machine schedules exclusive
execution blocks within a task on the basis of their
relative priority among those not waiting. The im
portant difference between the two is that if an ex
clusive-execution block is interrupted by a higher
priority one, it will not be resumed when the higher
priority one waits for some resource, as is the case for
tasks, but must wait for the higher priority exclusive
execution block to exit. This control structure is re
quired for the implementation of co-routine and the
on-units of PL/l.lO An exit occurs when a program com
pletes or does a P operation on a synclITonous sema
phore-one which will not asynchronously be Ved.
Because it will not be Ved asynchronously, it must be
an exit so that some other exclusive-execution block
in the task can cause it to be Ved. In ISPL, each sema
phore and Port can be either synchronous or asyn
chronous. Thus, the control flow resulting from SEND
and RECEIVE operations on Ports depends upon
whether the remote Port is in the same process or
same task, and what its priority is relative to the
executing exclusive-execution block. This structure
enables us to build control structures ranging from
completely asynchronous execution to those that switch
control every time a SEND or RECEIVE is executed.

USAGE

Ports can obviously be used to communicate between
programs. But the capability to externally specify the
connection, and the arbitrary nature of the program to
which the connection is made, enable the Port mecha
nism to be utilized for a variety of other purposes.

Since batch and multiprogrammed monitors, job
control has traditionally been handled through a special
language~ This job control language has two main func-

tions, allocation of resources and fitting the job into
an environment. Fitting the job into an environment
consists of setting up the communication paths between
the job and the files, terminals, physical devices, pro
grams, and monitor with which it is to communicate.
This function is precisely what Ports are designed for,
and is specified via the CONNECT command. In ISPL,
each job has a Port named MONITOR, and it is used
for all communication with the job's monitor. Because
any program can be connected to this Port, this design
allows for a hierarchical system of monitors, each con
trolling the jobs running under it. Naturally, ISPL's
hierarchical design relies on much more than the Port
mechanism (see Reference 7 for a full description), but
Ports solved the communications requirements of the
system.

Communication with the monitor through a Port
provides the mechanism for handling the other main
function of job control, allocation of resources. The
creation and deletion of files, the allocation of file
space, the allocation of core space for the job, and the
specification of the central processor requirements are
all transmitted to the supervisor through the MONI
TOR Port. The format of these specifications is a con
vention established by the supervisor.

Ports can also be used for debugging and simulation
purposes. Output from a program can be routed to a
terminal, and input obtained from the terminal so that
a user can dynamically supply test data based on the
program's performance. The user can also simulate the
behavior of part of the system while observing and de
bugging the rest. A TEST program can be written to
implement data breakpoints. That is, whenever the
data transmitted through the Port to which the TEST
program is connected satisfy the test condition, a
'break' occurs and the user at a terminal is notified or a
printout occurs. The output of the TEST program is
the same as its input so that it does not affect the
logical processing of the program being debugged. A
SPLITTER program, whose two outputs are the same
as its one input, can be used to monitor, copy, or pro
vide an audit trail of the data transmitted through a
Port.

The last two programs mentioned, TEST and
SPLITTER, offer examples of what we hope will be
the major impact of the Port concept-a mechanism
for the construction of systems from small general
purpose" plugable" programs.

Perhaps the single most important problem facing
the computer industry today is our inability to generate,
cheaply and quickly, debugged software systems. Many
people. have proposed modularity as the solution, but
such systems have been hard to construct because of
the strict hierarchical nature of subroutine calls-the

PORTS 489

only common method of linking together such a set
of programs.

The Port concept improves the construction of
modular systems in three important ways. First, the
entity to which the connection of a Port is made need
not be specified within that program, and can be dy
namically decided at execution time. Second, the
linkage is co-routine rather than subroutine. As others
have suggested, this simplifies the construction of
many programs, enables retention of context, and re
moves the strict hierarchical organization dictated by
subroutine linkage. Finally, connection of a Port can
be made not only to Ports in other programs, but also
to terminals, files, and physical devices. Thus, the
same system can, with different connections, be used
in a variety of ways: on-line, off-line, audit-trailed,
data-breakpointed, or partial-user simulation.

The effectiveness of the Port concept results from
the combination into a single mechanism of three
powerful software techniques: co-routines, indirect
specification, and communications commonality. We
expect to extensively test the concept, especially its
modularity potential, through its implementation in
ISPL.

REFERENCES

1 IBM System/360, Supervisor and data management services
Form C28-6646 IBM Corporation Poughkeepsie N Y 1967

2 R M BALZER
Dataless programming
AFIPS Conference Proceedings FJCC 1967 Vol. 31
Thompson Book Co. Washington D C 1967 pp 535-545

3 IBM System/360, System control blocks
Form C28-6628 IBM Corporation Poughkeepsie N Y 1967
pp 21-78

4 M CONWAY
De~ign of a separable transition-diagram compiler
Communications of the ACM Vol 6 No 7 July 1963 pp
396-398

5 R M BALZER
Block programming in OS/360 assembly code
The RAND Corporation P-381O May 1968

6 R M BALZER
The ISPL language specifications
The RAND Corporation R-563-ARPA (In process)

7 R M BALZER
I SP L Machine: Principles of operation
The RAND Corporation R-562-ARPA (In process)

8 E W DIJKSTRA
The structure of the 'THE'-multiprogramming system
Communications of the ACM Vol 11 No 5 May 1968 pp
341-346

9 E HARSLEM J HEAFNER
The I SP L basic file system and file subsystem for supp(}rt
of computing research
The RAND Corporation R-603-ARPA (In process)

10 IBM System/360, PL/l reference manual
Form C28-8201 IBM Corporation Poughkeepsie N Y 1968

Automatic program segmentation based on boolean
connectivity*

by EDWARD W. VER HOEF

Ocean Data Systems, Inc.
Rockville, Maryland

INTRODUCTION

The past few years have seen a significant increase in
the number of computers with segmented memories,
i.e., computers in which executable memory is divided
into a fixed number of fixed length segments. A com
puter so organized can offer significant advantages over
the more conventionally organized machine, the fore
most advantage being that such an organization facili
tates running a job with only a portion of that job in
executable memory. This can be done in other com
puters but the determination of what portions of the
program must be in executable memory at any given
point in the process is then the responsibility of the
person writing the program, i.e., the programmer must
schedule the overlaying himself and reflect this schedule
in the program.

In most segmented memory computers such decisions
are made by the executive or operating system. The
programmer need not even be aware of these decisions.
This is made possible by the fact that in such computers,
any reference from within one segment to something
outside that segment (whether a fetch, store or transfer)
causes a trap to the executive. The executive then
determines whether the segment containing the refer
enced item is in executable memory. If it is, the action
takes place as desired; if not, the desired segment is
moved from peripheral storage to executable storage
and then the action· takes place. Thus the advantages
of such machine organization arise from this latter
action but the price of these advantages lie in the
executable action required even when the desired seg,...
ment is already in executable memory. Techniques

* The work presented here was performed at Informatics, Inc.
(Washington,D. C. Division). It was supported by the U.S. Air
Force Systems Command, Research and Technology Division,
Rome Air Development Center, Griffiss Air Force Base, New
York, under contract F30602-68-C-0285.

491

have been developed to minimize this cost but it cannot
be eliminated completely.l.2.3 The main thrust of these
techniques has been devoted to making the executive
action as efficient as possible.

However, Lowe4 has shown that in a heavily loaded
system of this type, even a small reduction in the inter
segment activity results in a significant increase in
efficiency of the system. Ramamoorthy 5. 6 made the
observation that the paths of possible control flow may
be represented by a directed graph. Furthermore he
presented a method for reduction of inter-segment
references which was based on the principle that the
instructions represented by a maximal strongly con
nected subgraph (i.e., a strongly connected subgraph
that is not a proper subset of any other strongly con
nected subgraph) should not be split into two or more
segments. The difficulty in this technique is that an
entire program could be a maximal strongly connected
subgraph and be larger than a segment.

This article presents an algorithm for partitioning- a
program into some number of pieces (called pages)
such that none of the pages exceeds segment size and
the number of interpage (inter-segment) references is
reduced. This algorithm operates solely on connec
tivity and size data describing the program, data readily
available from a compiler or assembler with relatively
modest modification. As mentioned above, inter-page
references can be a fetch or store of data or a transfer
of control. For simplicity of presentation, only the
latter are considered in this article. However, in the
research project on which the article is based, both
constant and variable data were treated in like manner.7

OVERVIEW OF ALGORITHM

The basic premise of the algorithm is that one should
first optimize loops and then optimize the linear por
tions of the program. This is simply a recognition of

492 Spring Joint Computer Conference, 1971

LINEAR STRING TREE STRUCTURE

LATTICE STRUCTURE LOOP

Figure 1-Types of structures

the fact that the code in a loop is executed many more
times than the code in a linear portion of the program.
Thus any inefficiency in a loop is paid for many times
over. The algorithm operates in three phases. In phase
1, loops are detected and their component instructions
are identified. The smallest loops are found first, fol
lowed by successively larger loops. The size of a loop
is measured in terms of the number of program units
(to be defined later) that comprise the loop. Size is a
measure of the estimated time required for execution
of the loop. * As soon as a loop has been detected the
program units comprising the loop are merged and
thereafter treated as a single unit. Phase 1 is finished
after the largest loop that could fit in a single segment
has been considered.

When phase 2 begins, the program consists of a
collection of program units forming a linear string, a
tree structure, a lattice structure, loops larger than a
segment, or some combination(s) of these (see Figure
1). In this phase, a particular path is traversed and the
program units along that path are identified and merged
until segment size is exceeded or the end of path is
encountered. In either event a new path is then selected

* LoweS defines the timing estimates available at this stage of
analysis as event, time. He then goes on to develop the concept
of unit time and shows a transformation from event time to
unit time. Unit time provides a more accurate means of estimat
ing running time than does event time but event time suffices
for our purposes.

and traversed in like manner. Phase 2 is complete
when all such paths have been traversed and all merging
based on connectivity accomplished. However, there
may yet remain merged units of less than segment size.
Such units are identified in phase 3 and merged to
minimize waste space.

PROGRAM DECOl\1:POSITION AND
REPRESENTATION

The program to be analyzed is considered to consist
of "units." Units are defined by Lowe8 in the following
manner. Let the smallest executable part of a program
be called an instruction element, frequently consisting
of a single word. An instruction unit is an ordered collec
tion of instruction elements el, e2, ... ef (f"?:. 2) such
that:

1. Each instruction element of the program appears
in exactly one unit;

2. For 1 '5:. i <I, the set of successors of e i consists
of the single element ei+l

3. For 1 < i '5:.1, e i is the successor of exactly one
element and that element is ei-l

4. The total volume of the unit (i.e., number of
words of storage required) is not greater than
some fixed maximum. (This maximum, for our
purposes, will be segment size.)

5. There exists no I' > I for which the above four
conditions are true.

A special case is made for any element which has mul
tiple predecessors and multiple successors and whose
volume is less than the fixed maximum. Such an ele
ment is considered to be a unit.

Lowe has suggested that if a program is known to
consist of m such units, an m Xm Boolean connectivity
matrix, A = [aij], can be constructed where aij= 1 if
the ith unit (called (X i) can transfer control to the jth
unit (called (Xj). Otherwise aij=O. If aij= 1 there "is
said to be a path of length 1 from (Xi to (Xj. In addition
it is possible to construct a 'row vector G = (gl, g2, ... ,
gm) where gi is the volume requirement of (Xi.

LOOP DETECTION

Figure 2 shows the algorithm used for identifying
and merging units forming loops. The basic tool used
in the detection of loops is the connectivity matrix, A,
raised to some power. Lowe has developed a fast,
simple technique for multiplying Boolean matrices.9

If D=An and d ij=l, there is a path of length n from
(Xi to (Xj. In particular, if d ii = 1, there is a loop of path

length n involving (Xi. Furthermore, for all other mem
bers, (x;, of this loop containing (Xi, d ij = 1. However,
there may be more than one loop of path length nand
therefore there may be more than n values for· i such
that d ii = 1. Thus one cannot always uniquely identify
the members of a loop by merely inspecting D. If An,
A n-\ and A are all simultaneously available, this
problem is solved.

Let C = A n-l and let D = An. Choose some i such that
d ii = 1. Then (Xi is a member of a loop of path length n.
If there exists some j such that Cij= 1, d jj = 1 and
aji = 1, then (Xj is a member of the same loop. Further
more, if one were to start at (Xi and traverse the loop,
the last unit encountered before returning to (Xi would
be (Xj. The process could be repeated, looking for k such
that C jk = 1, dkk = 1, and akj = 1, etc., until all n members
of the loop have been identified. It should be noted
that in addition to identifying these units, this tech
nique also yields information regarding their sequence
of execution; i.e., they are detected in reverse order of
that in which they would be executed although at this
point one cannot tell which will be the initial unit of
the loop.*

After a loop has been completely identified, the units
comprising the loop are merged in execution order into
the first unit detected for this loop. To merge (Xj into
(Xi the following steps must be performed:

1. Replace the ith row of A by the logical sum of
itself and the jth row of A.

2. Replace the ith column of A by the logical sum
of itself and the jth column of A.

3. Replace al;, a2;, ••• amj; ajl, aj2, ••• ajm and aii

by zero.
4. Replace gi by gi+gj.

5. Replace gj by zero.

It is to be noted that mergers are reflected in A but not
in the higher powers of A. If, when it is time to merge
some member of the loop, say (Xk, into (Xi, gi is such that
g i+gk exceeds segment size no further mergers are
made into (Xi. Instead the remaining mergers for the
loop are made into (Xk. This reflects the situation where
the volume requirement of the loop is such that it
exceeds segment size and the loop must be split between
two or more pages.

It is clearly not necessary to consIder loops with
path length of one as no merging of units is necessary
in such cases. Therefore if one examines Anand A n-l

for values of n = 2, 3, ... , m (where m is the dimension

* If it were desired to detect units of a loop in order of execution
rather than reverse order one need only use Cji and aij in place
of Cij and aji respectively.

FIND MAX. NO.
OF UNITS THAT

Automatic Program Segmentation 493

Figure 2-Loop merging

of A) one finds successively loops of path length 2, 3,
. .. , m. If the segment size is p. and the size of the
smallest unit is 1/ (both measured in some common unit
such as words or instructions), then it is obvious that
\..p./1/J* is the largest number of units that could be
merged without exceeding segment size. Thus it
suffices to limit the above examination to values of
n~ min (m, lfl/1/J).

NON-CYCLIC CONNECTIVITY

As stated earlier, at the start of phase 2 the program
consists of units forming a linear string, a tree structure,
a lattice structure, loops larger than a segment, or
some combination thereof. For illustrative purposes
the example shown in Figure 3 suffices.

Figure 4 shows the approach used in phase 2 which
is as follows: Find the smallest i such that g i > o. Find
the smallest j such that aij= 1, gj>O and gi+gj is not
greater than segment size. Similarly find the smallest k
such that ajk=l, gk>O and gi+gj+gk is not greater
than segment size. In this manner one continues to
move along some path from (Xi to some unit (Xp where

* [X] is the largest integer less than or equal to X

494 Spring Joint Computer Conference, 1971

Figure 3-Program structure to be merged

either apq=O for l:::;q:::;m (i.e., a p is terminal) or gq,
when added to gi+gj+·· • +gp is greater than segment
size. If a p is not terminal, all units along the path from
aj to a p are merged into ai, ai is put into a Last-In,

Figure 4-Non-cyclic merging

Figure 5-Merged program

First-Out list, and the path is explored further using
a q as the initial unit. Finally a terminal unit must be
encountered. When that happens this unit is merged
into the unit which preceded it in this path. If, after
the merger, the resultant unit is not terminal, the next
branch from that unit is selected as the path to be
traversed. If, however, the resultant unit after merger
is terminal, it is merged into the unit that preceded it
in the path. The procedure will finally result in an initial
unit which is terminal. This unit is then marked as
having been processed and the last unit in the LIFO
list is res elected. A branch from this unit is selected in
the above described manner and the resultant path is
traversed using the same rules as before. In all the
above processes, if ever a branch is selected which
leads to a unit that has already been processed (re
gardless of whether it was actually merged), this fact
is recognized and a different branch is selected.

When the LIFO list is finally empty the entire struc
ture emanating from the originally selected unit, ai,
will have been merged on a connectivity basis, subject
to segment size constraints. However a i might not be
the unit which contains the entry point for the program
and the program might even have multiple entry points.
Therefore there . might be units which were not en
countered in the above process. For this reason the
units are scanned to determine whether any were not
processed. If any such unit is found, the process is
repeated starting with that unit. Note however that
there will be no repetition of analysis of units that were
already processed. Only when all units have been pro
cessed will this phase terminate.

The result of applying phase 2 to the example shown
earlier, assuming each unit was of equal size and seg
ment capacity was four units, is shown in Figure 5.

CLEANUP

At this point all packing based on connectivity is
complete. However, note that there might be units
which are less than segment size, such as units 10 and
15. Phase 3 is a clean-up process which attempts to
minimize total required storage. In this phase only
the unit size vector, G, is examined. The algorithm is
as follows:

1. Find smallest i such that g i > O.
2. For i+l~j~m, if gj>O and gi+gj is not

greater than segment size, merge ex j into ex i.

3. Find smallest i' such that i+ 1 ~ i' < m and
g/>O.

4. If i' can be found go back to step 2; otherwise
the process is complete.

At thIS point each unit of non-zero size is assigned to
some page.

CONCLUSIONS

The algorithm presented above provides a simple means
for partitioning programs into pages in such a manner
as to reduce the number of inter-page references and
therefore amount of inter-segment activity. It is based
solely on information about the program that is ob
tainable by automatic inspection of the program such
as could be preformed in a compiler or assembler. The
inspection and packing algorithms are not very com
plex and thus should require very little time for their (
execution. The packing algorithm has been implemented
as a post-compilation operation. It has been tested
with a wide variety of program structure models and
has been found to give the anticipated packings. The

Automatic Program Segmentation 495

inspection algorithm is now being incorporated into a
JOVIAL compiler specially built for experiments in
segmentation.

REFERENCES

1 R C DALEY P G NEUMAN
A general-purpose file system for secondary storage
AFIPS Conference Proceedings Vol 27 Fall Joint Computer
Conference Spartan Books Washington DC pp 213-229

2 E L GLASER J F COULEUR G A OLIVER
System design of a computer for time sharing applications
AFIPS Conference Proceedings Vol 27 Fall Joint Computer
Conference Spartan Books Washington DC pp 197-202

3 V A VYSSOTSKY F J CORBATO R M GRAHAM
Structure of the MULTICS supervisor
AFIPS Conference Proceedings Vol 27 Fall Joint Computer
Conference Spartan Books Washington DC pp 203-212

4 T C LOWE J G VAN DYKE R A COLILLA
Program paging and operating algor#hms
RADC Final Report TR-68-444 November 1968
Rome Air Development Center AFSC Griffiss AFB
New York

5 C Y RAMAMOORTHY
Analysis of graphs by connectivity considerations
JACM 132 April 1966 pp 211-222

6 C V RAMAMOORTHY
The analytic design of a dynamic look-ahead and program
segmenting scheme for multi-programmed computers
Proc ACM 21st Nat Conf 1966 Thompson Book Co
Washington DC pp 229-239

7 E W VER HOEF D L SHIRLEY
Block file and MULTICS systems interface investigation
and programming
Final Report Vol II RADC Final Report TR-69-40 April
1970
Rome Air Development Center AFSC Griffiss AFB
New York

8 T C LOWE
Analysis of boolean models for time-shared paged
environments
Comm ACM 124 April 1969 pp 199-205

9 T C LOWE
An algorithm for rapid calculation of products of boolean
matrices
Software Age 2 March 1968 pp 36-37

Partial recompilation*

by RONALD B. AYRES and RICHARD L. DERRENBACHER**

Technology for Information Management, Inc.
Albany, New York

INTRODUCTION

It is axiomatic that a great deal of the machine time
required to debug and implement a computer program
is used to compile and recompile source code. In many
cases, recompilations require at least as much machine
time as an initial compilation, although the resultant
change to the program object code may be minimal.
In a time-sharing environment the redundancy associ
ated with these recompilations can be expected to
contribute to deterioration of response time. Conversa
tional debugging packages, such as DDT,! seem to
present only a partial solution to the problem, since
the debugging operation is usually divorced from the
source language updating and production of a corrected
object code program.

The purpose of this paper is to describe a compiler
writing technique which eliminates the need for entire
program recompilations. The technique is known as
"partial recompilation" and has been implemented
into the JOVIALt compiler for the 1604B computer
at the U.S. Air Force's Rome Air Development Center
(RADC). While interpreters and incremental com
pilers2 ,3,4 have been designed primarily for time-sharing
systems, the technique described in this paper may be
used in a batch environment as well, particularly when
used to debug and implement very large programs which
require large amounts of compilation time. The subject
compiler was modified to incorporate conversational
features and to operate in either a batch or in a simu
lated time-shared environment.

* This work was performed at TIM, Inc. and was supported
entirely by the U.S. Air Force Systems Command, Rome Air
Development Center, Griffiss Air Force Base, New York under
contract F30602-69-C-0316.
** Currently associated with Mohawk Data Sciences and In
formatics Incorporated, respectively.
t JOVIAL is a general purpose, relatively machine independent,
procedure oriented language developed by System Development
Corporation. It is the official command and control language for
the U.S. Air Force.

497

APPROACH

IIi the classic case, computer programs are written,
debugged, and implemented as follows:

1. Write program source code statements.
2. Compile source program and produce object

code.
3. If errors are detected, correct source code state

ments and return to step 2.
4. Execute program object code.
5. If errors are detected, prepare corrected source

code statements and return to step 2.

Programmers who are fortunate enough to know
machine code often eliminate the requirement to return
to step 2 by modifying the program object code and
continuing with step 4. Although this short cut often
saves time, several pitfalls confront the programmer
who elects to debug in this manner. First of all, errors
are probably more apt to be made when program cor
rections are introduced at the machine code level.
Secondly, the possibility always exists that the pro
grammer will forget to implement a correction at the
source level after it has been successfully implemented
and tested at the object code level. Finally, as source
language corrections are accumulated over long time
spans, the possibility of the introduction of new errors
is magnified.

Conversational debugging packagesl which permit
source level corrections without necessitating a program
recompilation provide a similar debugging shortcut
and eliminate the need to enter corrections at the
machine code level. Even with such debugging pack
ages, the other pitfalls still exist, however. Certain
types of program modifications are not possible at the
object code level at all, e.g., expanding or reducing the
size of certain tables or buffer areas.

The technique of partial recompilation reduces
program debuggmg time by permitting any source

498 Spring Joint Computer Conference, 1971

language modification to ,be made while nearly elimi
nating the requirement to completely recompile an
entire program, i.e., by eliminating the requirement to
ever return to step 2 of the program implementation
process. Instead, programs are implemented as follows:

1. Write program source code statements.
2. Compile source program and produce object

code.
3. If errors are detected, correct source code state

ments and compile only those statements neces
sary to effect the change in the previously gen
erated object code.

4. Execute program object code.
5. If errors are detected, correct source code

statements and compile only those statements
necessary to effect the change in the previously
generated object code and return to step 4.

Thus, a means of performing a parti~l recompilation
is provided. Since the partial recompilation results in
the processing of only a small number of source language
statements (depending upon the number and type of
source language modifications made), a significant
amount of time is saved over performing an entire pro
gram recompilation. For most types of source state
ment modifications, the partial recompilation takes only
a fraction of the time required to perform an entire
program recompilation, since most of the redundancy
associated with program recompilations is eliminated.
The programmer need not learn machine or object
code, since all communication with the compiler takes
place at the source language level.

COMPILER OPERATION

Source language input records contain an alpha
numeric source record identification, or "sequence
number." This record identification is unique and is
used to refer to a unique program record, or line. In
addition to the usual editing and modification functions,
the sequence number is used by the compiler as a link
between the source language input statements and the
intermediate information generated and saved for
those compiled statements. This relationship is neces
sary in order that the compiler may determine exactly
which source language statements must be co~piled
(or recompiled) based upon modifications made to a
source language program.

The partial compiler operates in one of two modes,
as specified by control information provided by the
user. The first mode is designated the INITIAL mode
and operates very much like a classic compiler. An

INITIAL compilation is always performed when a
program is compiled for the very first time. During this
compilation, all source language statements comprising
the program are compiled. The second mode is the
PARTIAL mode and is llsed whenever source language
modifications are to be made to a previously compiled
program.

The INITIAL compilation is performed as follows:

1. Generator Phase

Source language statements are obtained from either
a prestored source language file or are transmitted
directly to the compiler via an on-line CRT unit. If
the statements are transmitted via the CRT unit, a
source language fil e is constructed. As the statements
are obtained, the statement sequence numbers are
used to construct entries in a· Sequence Number Dic
tionary Table (SNODCT table). Source language is
processed on a statement by statement basis. If a
syntactic error is detected and the compilation is being
performed in the time-sharing, rather than batch en
vironment, the user is notified via,_the CRT unit and
is given the option of correcting the error immediately,
proceeding, aborting the compilation, or obtaining
"tutorial" assistance in identifying the detected error.
Statements are translated into binary values which
contribute to the construction of various compiler
lists and tables, such as the dictionary and intermediate
analysis tables. The SNODCT table is constructed so
that the intermediate data generated for a given source
language statement may be identified.

2. Translator Phase

Declarative data from the dictionary is translated
into machine language via entries in an. intermediate
object code table. This consists of reserving core stor
age, presetting the environment of the object program,
processing long octal and literal constants, and modify
ing the dictionary. Secondly, imperative data from the
intermediate analysis tables is translated into machine
language via entries in the intermediate object code
table. Temporary registers are allocated and tag loca
tions entered into the dictionary.

3. Assembly Phase

The assembly phase generates an object code pro
gram from entries in the intermediate object code
table. The SNODCT table is completed so that the
object code program registers generated for a given
source language statement may be identified.

The most noticeable difference between the classic
compiler and the INITIAL mode of the partial com
piler is that the partial compiler saves the generated
data, such as the dictionary and intermediate analysis
tables, and generates the SNODCT table as a means
of relating source language statements to the compiler
generated data and to the object code program registers
generated for those statements. All such output from
the INITIAL compilation is written on the secondary
storage device and is required as input for a PARTIAL
recompilation. The overhead associated with the gen
eration of this data during an INITIAL compilation is
usually more than compensated for by the time saved
during the first PARTIAL recompilation. This over
head was found to never exceed 15 percent for the 5
JOVIAL programs for which timings were made. The
larger mass storage requirements are imposed upon
the system by the partial recompilation technique
only so long as the source program is in a debug status.
A purge function is used to return space to the oper
ating system whenever a program is debugged to the
programmer's satisfaction. Another INITIAL compila
tion will return the program to a debug status by re
generating all data necessary for another PARTIAL
recompilation.

A PARTIAL recompilation is requested whenever
modifications are to be made to the program source
language. Rather than perform an entire program
recompilation, source language modification requests
are input to a PARTIAL recompilation, which operates
as follows:

1. Set-Up Phase

The set-up phase is designed to prepare the way for a
PARTIAL recompilation. Its functions include:

a. Read source language modification requests from
the on-line CRT unit or from an "alter card" deck.
These requests specify source language statements
to be added, deleted, or replaced from the source
language program.

b. Build an update file which contains all information
needed to update the source language file.

c. Set indicators within the SNODCT table to indi
cate the presence of insertion or deletion requests
and to identify source statements which must be
recompiled during the PARTIAL recompilation.
The number of such statements depends upon the
type of source modification requests made.

d. Construct object code modification tables which
indicate the points at which machine executable
instructions are to be inserted or deleted from

Partial Recompilation 499

the object code program, based upon the source
code modification requests and the appropriate
SNODCT data.

2. Generator Phase

Unlike the generator phase in the INITIAL mode,
the generator during a PARTIAL recompilation pro
cesses only a limited number of the statements com
prising the source program. All new statements are
processed, as well as any statements flagged for recom
pilation by the set-up phase. Dictionary entries are es
tablished for all new or recompiled data declarations
and statement labels. New (temporary) intermediate
data generated as a result of compiling new statements
or of recompiling old statements is saved. A new
(temporary) version of the SNODCT table is generated
for new statements compiled as well as for old state
ments recompiled.

3. Translator Phase

The translator phase operates exactly the same during
a PARTIAL recompilation as during an INITIAL
compilation, with the following exceptions:

a. Intermediate object code table entries are gen
erated for declarative data based upon those
dictionary entries which are new or which resulted
from a recompilation of old statements.

b. Intermediate object code table entries are built
for imperative data based upon entries of the
new (temporary) intermediate analysis tables
rather than the permanent version.

4. Assembly Phase

The assembly phase during a PARTIAL recompila
tion operates exactly the same as during an INITIAL
compilation except that in the former case a new
(temporary) object code program is generated based
upon the compiled and recompiled statements.

5. Reconciliation Phase

The reconciliation phase is divided into two parts;
object code reconciliation and source code reconcilia
tion, as follows:

a. The object code program generated during the
INITIAL compilation or during the previous
PARTIAL recompilation is modified based upon

500 Spring Joint Computer Conference, 1971

the object code modification tables generated
during the set-up phase and the object code
formed by the assembly phase of the current
PARTIAL recompilation. Appropriate object
code program registers are deleted, new object
code inserted, and address relocation performed.
The resultant object code program now embodies
all requested source language modifications.

b. New source language records from the update file
created by the set-up phase are combined with the
original source language statements to produce
an updated version of source language. The
SNODCT table and intermediate analysis tables
are restructured based upon the new (temporary)
versions and upon' the source language modifica
tion requests in the update file. All program files
and intermediate data are now in such a state
that another partial recompilation could be
performed.

One of the major considerations in performing a
PARTIAL recompilation is to determine, based upon
the type of source modifications made, exactly which
source statements must be recompiled. For certain
types of modifications, a PARTIAL recompilation may
not be possible. For example, in the subject compiler
an INITIAL compilation must be performed if the
organization of the environment (data declaration
area) is modified via the JOVIAL OVERLAY
statement.

Ideally, only new source language records would be
compiled during a PARTIAL recompilation, along
with all statements which contained undefined data
references or statement label references during the
INITIAL compilation (or previous PARTIAL recom
pilation). Although many PARTIAL recompilations
may result in the processing of such a limited number
of statements, many types of source language modifica
tions necessitate that unchanged but related statements
also be recompiled. If a very large number of source
language modifications of this type are requested, an
INITIAL compilation might be better, i.e., faster than
a PARTIAL recompilation. These determinations are
made by the set-up phase of the compiler based upon
source modifications requested and upon the content
of the SNODCT table.

When the SNODCT table is constructed by the gen
erator phase of the compiler, certain source language
statements are "linked" together by setting switches
within appropriate SNODCT entries. If any change is
made to a statement within a linked group, or if new
statements are inserted into a linked group, all state
ments within that group must be recompiled during a
PARTIAL recompilation. Statements which are linked

together for recompilation purposes III the subject
compiler include the following:

1. Logically related data declarations, such as
table entries or entries within a certain array.

2. Certain program loops (such as the JOVIAL
"for loop" or FORTRAN "do loop") and con
ditional statements.

3. Certain program subroutines.

A change to declarative data necessitates that refer
ences to it be recompiled during a PARTIAL recompila
tion since it is possible that the modifications to the
data declaration should result in different object code
for processing the data, such as in changing a data
definition from floating point to integer or vice versa.

Also, whenever, a statement which contains a state
ment label and is located within a linked group is re
compiled, statements which reference the label must
be recompiled since the relative object code address of
the statement label is apt to change. Fortunately, this
does not carry on forever, that is, such recompiled
statements do not cause other statements which refer
ence tags to them to be recompiled since only the address
reference of the secondarily recompiled statement
changes.

Admittedly, some redundancy still exists within the
current version of the compiler. For instance, it should
not always be necessary to recompile all logically
related data declarations and their associated refer
ences whenever a small portion of the declaration (such
as a table or array entry) is modified. Nor should it
always be necessary to recompile an entire program
subroutine whenever a portion of the subroutine is
modified. This redundancy is the result of an attempt
to keep modifications to the current version of the
compiler relatively straightforward. By sophisticating
the set-up and generator phases even less redundancy
would exist during a PARTIAL recompilation.

TIMINGS

The partial recompilatjon technique was tested and
timings made on five JOVIAL programs of various
length. The timing figures set forth for these programs
were obtained by using a high speed drum unit as the
mass storage device. Compiler program loading times
were subtracted from the actual elapsed times, since
all JOVIAL compiler programs in the subject system
are loaded from magnetic tape. Thus, timing compari
sons tend to reflect time spent during the actual com
pilation process.

Although the secondary storage requirements given

for the five test programs are representative of the re
quirements of the subject compiler, it must be pointed
out that these requirements could be reduced by em
ploying more efficient data storage techniques than
those currently used by the compiler. For example, 80
characters of storage is currently required for each line
of source language, even though the line may contain
considerably fewer than 80 characters of information.
Optimization of secondary storage usage should result
in storage requirements at least 20 percent less than
those given in this report.

For comparison purposes, an INITIAL compilation
was compared to a PARTIAL recompilation during
which a single insertion into the source language was
made. Partial recompilations which cause many addi
tional source statements to be recompiled could be
expected to take longer than the cases presented here.
Usual debug outputs, such as source and assembly
listings, were suppressed during both the INITIAL
and PARTIAL runs. The accompanying graph repre
sents "percentage of time saved" by performing a
PARTIAL recompilation rather than an INITIAL
program compilation.

~ --V--
75

%T1ME '::0
SAVED ::>

25

------/
V

200 400 600
NO. OF STATEMENTS

800 1000

TEST PROGRAM 1

No. of statements
Secondary storage requirements
INITIAL compilation
PARTIAL recompilation
Percent time saved,

PARTIAL vs. INITIAL

44
24,266 characters

21 seconds
9 seconds

57 percent

TEST PROGRAM 2

No. of statements
Secondary storage requirements
INITIAL compilation

273
73,350 characters

81 seconds

Partial Recompilation 501

PARTIAL recompilation
Percent time saved,

PARTIAL vs. INITIAL

21 seconds

75 percent

TEST PROGRAM 3

No. of statements
Secondary storage requirements
INITIAL compilation
PARTIAL recompilation
Percent time saved,

PARTIAL vs. INITIAL

468
115,780 characters

146 seconds
26 seconds

82 percent

TEST PROGRAM 4-

No. of statements
Secondary storage requirements
INITIAL compilation
PARTIAL recompilation
Percent time saved,

PARTIAL vs. INITIAL

685
160,417 characters

216 seconds
31 seconds

85 percent

TEST PROGRAM 5

No. of statements
Secondary storage requirements
INITIAL compilation
PARTIAL recompilation
Percent time saved,

PARTIAL vs. INITIAL

CONCLUSIONS

884
203,631 characters

296 seconds
36 seconds

88 percent

The technique of partial recompilation seems to present
a means of reducing most of the redundancy associated
with program recompilations. If implemented into a
compiler which operates in a time-sharing environment,
this time saving should result in improved terminal
response time, particularly to the user attempting to
debug a source language program conversationally.
The primary debugging advantages afforded by the
incremental compiler and the interpreter are available,
i.e., local syntactic errors may be corrected from the
terminal as they are encountered. .

The major advantages of a compiler with the partial
recompilation capability are:

1. A programmer need not be concerned with
program object code, since a partial recompila
tion can be performed in less time than a pro
grammer could determine and make object
code patches to an erroneous program. Pro
grammers should be encouraged to perform
source language corrections via a partial re
compilation as soon as errors are detected.

502 Spring Joint Computer Conference, 1971

2. The need for sophisticated debugging packages
is lessened since debugging commands and con,.;
sole typeouts may be entered at the source
language level via a partial recompilation.

3. The partial recompilation technique reduces
the burden (except for mass storage require
ments) of the system upon which the compiler
operates, since a minimum amount of time is
spent on complete program recompilations.

The major disadvantages of a compiler with the
partial recompilation capability are:

1. Due to the additional general housekeeping
functions necessary, the construction of the
compiler itself is necessarily more complex than
for a compiler which does not offer the capability.

2. Additional mass storage requirements are im
posed upon the system to accommodate the
additional data which must be generated and
saved in order to allow for a partial recom
pilation.

ACKNOWLEDGMENTS

The authors are grateful to their contract monitor,
Captain Andrew M. Kobziar of the U.S. Air Force's

Rome Air Development. Center (RADC), for his very
valuable contributions to the design and implementa
tion of the partial recompilation technique. Acknowl
edgment is also made to Mr. Albert J. Kreutzer for
programming assistance and to Messrs. Jack Rusman
and Robert T. Strain for their initial guidance and
inspiration.

REFERENCES

1 P V WATT
Generating and debugging programs at remote consoles oj the
PDP-6 time-sharing system
Proc Third Australian Computer Conference

2 H KATZAN JR
Batch, conversational, and incremental compilers
Proc SJCC 1969

3 KLOCK
Structuring programs jor multiprogram time-sharing on-line
applications
Proc FJCC 1965

4 J L RYAN R L CRANDALL
M C MEDWEDEFF
A conversational system jor incremental compilation and
execution in a time-sharing environment
Proc F JCC 1966

PL/ C:-The design of a high-performance compiler for PL II

by HOWARD L. MORGAN and ROBERT A. WAGNER

Cornell University
Ithaca, New York

INTRODUCTION

A general purpose production compiler faces many
diverse and demanding tasks. It must obviously accept
the full source language-including all rarely used and
difficult to compile features; it must produce efficient
object code; it must be prepared to accept very large
and long programs-and accept them in pieces to be
integrated later. It is obvious that by yielding on some
of these requirements, and by sacrificing generality for
efficiency for a particular class of program or user, im
proved compiler performance should be obtainable.
One large and important class of users are those just
learning the language. Their programs are typically
short, submitted all at once, and require only a modest
subset of the language. They need to be compiled re
peatedly to eliminate errors, and are often discarded
as soon as they execute properly. In general, their
execution time is very small relative to the total com
pilation time. It should also be noted that such pro
grams occur in tremendous numbers since classes of
hundreds of students submitting programs daily are not
at all uncommon. This class of program is further en
larged by the observation that even experienced pro
grammers have rather similar requirements (except for
requiring a larger subset of the language) during the
development and checkout of a new system.

PL/C is a special purpose processor for PL/I. 5 It has
been designed -and implemented by a group of faculty
and students in the Department of Computer Science
at Cornell University, both to serve the needs of in
struction and program checkout, and to serve as a test
vehIcle for some novel concepts in compiler construc
tion and diagnostic strategy. It is an open ended proj
ect, but the work to date has yielded a very high-per
formance compiler for a usefully large and strictly com
patible subset of the PL/I language.

This paper describes the strategies and structures
employed in the design of PL/C. Surprisingly many of
the techniques used appear to be generally applicable

503

in compiler design. The overall organization of the com
piler project is discussed in terms of both the technical
details and the personnel assignment strategy.

DESIGN OBJECTIVES

Before commencing the design of any large system,
the overall objectives must be well thought out. Four
major goals, along with several smaller objectives,
shaped the design of PL/C. These were:

1. High-performance-PL/C had to compile pro
grams of the size generally found in instructional
situations an order of magnitude faster than the
speeds obtainable with the "production" com
pilers. Efficiency of the generated object code
was not nearly as important, although one would
not want to completely overlook this question.

2. Diagnostic-Diagnostic assistance was at least
as important as processing efficiency. The goal
here was one of error correction rather than
simply error detection. The PL/C reaction to the
discovery of an error should be to supply an ex
planatory message, effect a repair, display the
nature of the repair to the user, and continue
processing. No source error should terminate the
scanning of the program, and as few as possible
should inhibit execution. In addition, as many
execution errors as feasible should also be
handled in this manner. This approach had been
developed on a series of previous compilers at
Cornell, beginning in 1962, and had been found
to be remarkably effective.1 ,2,3

3. Upward compatibility-In order to be useful as
a debugging and checkout compiler, and to
serve as a widespread aid, the subset had to be
strictly upward compatible with the IBM F
level implementation of PL/I, both in language
specification and in the semantics actually im-

504 Spring Joint Computer Conference, 1971

plemented by IBM. Thus, any program which
will run under PL/C without incurring any
diagnostic messages will run under the IBM
implementation and provide the same results.

4. Space-There are many installations which now
dedicate partitions to the high performance com
pilerslo such as W ATFOR. In addition, there
are a large number of IBM 360's of 128K and
larger. Thus, PL/C had to run in a 128K (byte)
machine under either the OS or DOS systems.
This meant that PL/C, along with any associ
ated symbol tables and generated object code
had to run in at most lOOK bytes, with the rest
reserved for the operating system.

Clearly, all of these goals interact heavily, and deci
sions made in attaining anyone will affect some or all
of the others. For example, adding more diagnostic
checking affects both space and speed, while increasing
the subset causes the need to add more diagnostic
checking.

Several subgoals were also adopted by the design
group. These were:

5. Portability-Previous experience had shown
that isolating operating system interfaces per
mitted easy conversions of compilers to new
operating systems.

6. Open-endedness-As a Computer Science group,
it was hoped that the structure which would
emerge would be one which could be modified
and added to with relative ease. For example,
object code optimization, compile time facilities,
and language extensions have all been proposed,
and should be able to fit within the PL/C
structure.

7. Breadth of subset-Goal 3. above merely stated
the compatibility requirement. It was hoped
that PL/C would provide far more than the
FORTRAN subset of PL/I. Here the interaction
with the open-endedness goal was high. If that
one was met, then additions to the subset should
be easy.

RESOURCES

When planning the design and implementation, the
resource allocation problem becomes quite important,
The PL/C design group consisted of an average of five
people, all highly motivated, and all very experienced.
Among them they had designed major parts of at least
eight compilers and four operating systems. The person
nel, all either Ph.D. or advanced graduate student level,

performed not only design, but also detailed coding and
checkout of the compiler. In particular, this meant that
design modifications could be and were in fact carried
out throughout the entire programming process. Such
modifications could easily lead to disaster (or at least
greatly increased implementation schedules) in a larger
or more formally structured group.

The second major resource needed for a programming
proj ect is computer time. Although real dollars were
used to pay for this, it was decided at the outset to
treat the machine as a freely available commodity.
Thus, the personnel were encouraged to use the com
puter in order to save their time, or the overall project
time.

OVERALL DESIGN AND INTERFACES

The overall design of the PL/C implementation
leaned heavily on the design of the CUPL compiler.2
Several members of the group had participated in
CUPL's design and implementation a few years earlier,
and CUPL actually meets all of the PL/C design goals
except for that of source language compatibility.

Experience with several error correcting compilers
and operating systems has proven the utility of an
explicit, syntactically correct representation of the
source program as a major interface between the" scan
and correct" phase and the object code generation phase
of the compilers. The presence of this intermediate
language code (I-code) has several advantages.

First, it permits the compiler to diagnose and correct
errors in near source language form. This in turn allows
error corrections to be displayed to the user in the form
of a reconstructed source statement. For example, the
following is a typical set of diagnostics for the state
ment in error:

PUT LIST (A B)
ERROR SY06 MISSING COMMA
ERROR SY07 MISSING SEMI-

COLON
PL/C USES PUT LIST (A, B);

The pedagogical advantages of displaying correct
statements to the user should not be underestimated.
It will often save him the trouble of looking in a manual
and trying to figure out what he should have done.

A second major advantage of I-code is that it con
stitutes a very clean interface between the major com
piler sections. The scan phase guarantees syntactically
perfect I-code to the code generation phase. As a result,
the design and coding of these sections could proceed
in parallel. Communication between designers took

place only when changes were made in I-code or in the
major interface, the symbol table. In addition, the code
generation phase could be streamlined to take ad
vantage of the fact that there would be no errors in its
input.

The syntax of I-code was carefully worked out early
in the design process, and was precisely documented
using BNF-like notation. The independence of designers
thus afforded the opportunity for each section's designer
to choose and develop algorithms according to personal
taste and programming style. The machine representa
tion of I-code is a string of 16 bit items (halfwords),
each representing one token of the source program. In
addition, certain pointers are inserted to speed the code
generation process, and to retain close links to the
source language form for reconstruction purposes.

In order to further speed the code generation task,
and to provide more diagnostics for the users, an inter
mediate pass over the I-code is made after scan, and
before code generation. This pass, called "semantics"
resolves problems created by the fact that PLII is a
block structured language which permits explicit dec
larations of variable names to appear anywhere in a
block. Thus, although a statement may be syntactically
correct, it may be semantically incorrect, i.e., the de
clared attributes of a name may conflict with that name
in usage. For example, if L has the attribute" label,"
it is semantically incorrect to write:

L=L+1;

One of the important design decisions was to accept
and solve this semantics problem without resorting to
what probably would have been a simpler solution
rule out declarations after use in the source language
subset. Since the above restriction would still not re
move all semantics errors, it was deemed better to
accept the challenge.

In a language with as rich a variety of data types as
PLII, it is only natural to expect that the design of the
symbol table will have an important effect on the over
all compiler design. In PLIO, this is doubly true since
the symbol table is required not only during compila
tion but also during execution of the object program.
Its use during execution is in continuing the source
level error messages. For example, a typical execution
error message is:

IN STMT NNNN ERROR EXB7
ABO HAS NOT BEEN INITIALIZED.

IT IS SET TO o.

The fact that this table had to be present in all phases
also meant that space was at a premium.

Memory organization for PLIO was dictated by the

U)
U)
W
It:
o
o
«

SCAN
n ~COMPILE

TIME
STACKS

rI-CODE
IS BUILT

SYMBOL
TABLE
IS
BUILT

PLIO 505

CODE
GENERATION EXECUTION

I-CODE Bu/~~RSI
AFTER BEING ••
MOVED

jOBJECT
CODE IS
BUILT

COMPLETED
SYMBOL
TABLE

~DYNAMIC
RUNTIME
STACK

OBJECT
CODE

A

~ FIXED WORK AREA AND TRANSFER
o VECTOR (ALWAYS ADDRESSABLE)
~
w
~

PL/C COMPILER

o

Figure l-Memory organization of PL/C

space needs of the two major interfaces, I-code and the
symbol table. The goals of the memory allocation were
simple-make as much use of all available space as
possible in all phases. Thus, it was desired to maximize
the amount of core available for the runtime stack dur
ing execution. Since the symbol table and object code
must also be present, this stack must clearly start at
the end of these two and grow to the maximum core
address allowed. A look at the code generation phase
reveals that I-code, symbol table, and growing object
code must all coexist. The organization presented in
Figure 1 is now used.

During the syntactic phase, both the symbol table
and the I-code must grow in the same direction. Thus,
the fraction of available space allocated to the symbol
table must be chosen carefully, so that the probability
of the symbol table catching up to the start of I-code
is small. In fact, in the first implementation, enough
space had to remain between the completed symbol
table and the beginning of I-code to hold most of the
object code. This came about because our initial
strategy was to generate code for an entire source
block, thus skipping around in I-code if necessary. It
was felt that this might save execution time, by reducing
the number of base register loads necessary. A later
pass at the design indicated that large programs could
be more easily compiled if the code generation were
done linearly, with branches inserted where necessary

506 Spring Joint Computer Conference, 1971

Figure 2-0verall organization of PL/C

due to the static structure of the program. In addition,
the I-code is now moved so that it abuts the end of core
just before code generation, thereby making the maxi
mum possible room available. The cost of this move is
negligible for small programs, but makes possible the
compilation of some large programs which would other
wise overwrite their I-code with object code, before
the I -code has been compiled.

Figure 2 shows the overall organization of PLjC
into the three passes over the source code or its I-code
equivalent. The first pass, syntactic analysis (SYNA),
processes declare statements and performs syntactic
analysis, error detection, and correction on the entire
source program. SYN A produces the initial version of
I -code (called betacode) and constructs the symbol
table.

The second pass, semantic analysis (SEMA), performs
the semantic error detection and correction on all ex
pressions in betacode. In addition, it modifies these
expressions into postfix form and rewrites them leaving
a new I-code, called gamma code. This gamma code is
the promised "perfect" intermediate language repre
sentation of the program which is then processed by
the third pass, code generation (CGEN).

DETAILED ORGANIZATION

The PLjC design proceeded in two phases. First, the
design of the major interfaces was performed. This
portion of the design process alternated with the design
of those algorithms in each pass which directly inter
acted with the interfaces. Design and redesign of inter
faces and algorithms proceeded through roughly three
iterations before coding began in earnest.

During this period of interface design communica
tions among the design group were quite free, and all
of the group were encouraged to participate in all of
the designs under consideration. Once coding began,
each designer became primarily responsible for some
section of the compiler. Thus they then became rather
concerned with the development of efficient local
algorithms.

During the coding phase of the project, the value of a
simple linear data flow (Figure 2) became apparent.
Such a structure reduced the burden of communication

among people dramatically. The person responsible for
code generation knew (and needed to know) little about
the algorithms and capabilities of the scan or semantics
sections of the compiler. Had a co-routine organization
been chosen, which would have involved calls between
generate and semantics on an expression by expression
basis, many more interfaces would have had to be
designed and documented.

Figure 3 shows a more detailed breakdown of the
compiler into actual modules, together with an indica
tion of the personnel assigned to each task (letters are
used instead of names). In addition to meeting the sub
goal of an isolated operating system interface and con
trol module, the organization was consciously designed
to minimize the number of person to person interfaces
which had to be created. This was done by assigning
the same person to routines on both sides of what
would require a natural interface. Not only is docu
mentation reduced, but the ability to change to a more
efficient interface on short notice is vastly increased.

INNOVATIONS

The combined result of allowing a high degree of
independence to the individual implementers, and the
amount of experience present was predictable. Each of
the major sections of the compiler contains some innova
tion or new method of doing things. In addition, those
sections which were more cut and dried employ algo
rithms which appear to be as efficient as any now
known. All parts of the compiler were implemented in
IBM 360 Assembler Language,4 most with extensive
use of the macro facilities available. This assembly lan~
guage implementation allowed highly efficient code to
be produced for each algorithm, and probably saved a
factor of two or three in speed and space over a possible
implementation in higher level language. (Another
compiler being developed at the same time was forced
to abandon its high level implementation language for
using too much space.)

The following sections are intended to describe the
most important or innovative algorithms used in the
various modules of the compiler. It is our suspicion
that the relatively high 'speed attained by PLjC is due
more to the combination of good algorithms than to
any specific one.

Lexical analysis

The lexical analyzer (LEXI) produces a stream of
tokens from the stream of input characters forming the
PLjI source program. Thus it must recognize constants,
identifiers, operators, and reserved words and condense

these into single tokens. The recognition of these is
straightforward. The AED9 approach of building a
finite state machine is not followed closely, although
the TRT instruction of the IBM 360, which in effect
simulates the FSM, is heavily used. The algorithm
worth mentioning is that used to hash identifiers into
the symbol table. A double random algorithm, which
constructs two hash functions, hand g, is used. The ith
look into the hash table for an item with key K is made
at location L(i, K) where

L(i, K) =h(K)+(i-l)g(K) mod p,

p being the size of the hash table, and g(K) is made
relatively prime to p. The hash functions are chosen to
minimize the possibility that h(Kl) = h(K2) and g(K1) =
g(K2) for Kl~K2.

Syntactic analysis

SYN A accepts the stream of tokens produced by
LEXI, recognizes statement boundaries (this task was
simplified through the introduction of 18 reserved
words, mostly statement keywords), and produces 1-
code for each statement after checking for syntactic
correctness. In addition, SYNA must process DE
CLARE statements, which accounts for about one half
of SYNA's instructions. Errors are corrected, generally
by either ignoring or supplying tokens to fit the re
quired syntax. The arithmetic expression analyzer is
interesting for its conciseness, and flexibility. It is
basically a pushdown automaton, with a· finite state
machine as a component. The FSM is implemented as
a branch table. LEXI supplies a class for each token,
CL(t). SYNA simply issues a GOTO TAB (S, CL(t)),
where S is the current state! The indicated routine
performs some action, which may be an error correc
tion, sets the new state of the machine, and goes back
to the main loop. Parentheses and certain other de
limiters simply push down the current state and start
the FSM again. Thus, an 8 class by 9 state branch table
summarizes the processing of expressions, by far the
most exercised mechanism in SYN A.

Semantic analysis

Semantic analysis (SEMA) scans the betacode pro
duced by SYN A, searching for expressions. A special
betacode token for expression start has already been
inserted by SYNA to make the search simple. This
token also includes a "semantic requirement code"
which specifies the restrictions to be imposed on the
expression. A typical restriction might be (SCALAR,
STRING) imposed on the Boolean expression in an IF

PLIC 507

CF
INTERPRETIVE
CODE FOR

...... ------ EXPESSION
OPERATORS

Figure 3-Detailed organization and personnel
assignment in PLIO

statement. SEMA proceeds to construct a parse-tree
for the expression, in postfix order. Simultaneously, it
produces a postfixed, resolved form of the expression,
and determines the conversion class (type) and struc
turing (dimensionality) of each subexpression. Where a
conflict between the conversion class (arithmetic, string,
label, pointer) of a subexpression and its governing
operator arises, SEMA reports an error, and corrects
it by modifying the parse tree. If no errors are detected,
the postfixed string replaces the original infixed string
in betacode, creating gammacode. Note that the post
fixed form must be shorter than the infixed string, and
thus only expressions change from betacode to gamma
code. If errors were detected, a recursive, top-down pass
is made over the corrected parse tree to get the new
postfixed string. This strategy permits some highly
sophisticated error correction to be used; for example, a
scheme which will minimize the number of tokens
changed has been proposed. Such a scheme requires
that information about the entire expression be con
veniently available, and the parse tree fills this need.
In addition spelling correction for identifiers could be
conveniently introduced at this stage. 7

508 Spring Joint Computer Conference, 1971

Code generation

The code generation pass consists of a series of state
ment drivers, each called into action by a particular
statement body token placed in I-code. Each statement
is viewed by CGEN as a string of expressions held to
gether by a network of pointer tokens which appear in
I-code. The statement drivers follow these pointer
chains to generate machine language code to evaluate
the imbedded expressions in an appropriate order.

Interpretive coder

An important feature of CGEN is the mechanism by
which individual machine language instructions are
generated. A macro language to facilitate this task has
been developed. This macro language is best viewed
as the machine language for a special purpose auto
maton for generating instructions. The language is
reasonably powerful, permitting conditional branching,
the setting of flags, and both machine language and
interpretive language subroutine calls. In addition, the
interpreter keeps near automatic track of the location
of each PLjC program variable. The generation of
accessing instructions is wholly a function of the
interpreter.

To produce the code needed to compute FLOOR (X) ,
where X is REAL FIXED BINARY (p, q), one writes:

GLOAD G, REALI

GRS SRA, REALI, RO, Al

GFIN

generate load of X
in to register

generate SRA X, q
to delete the frac
tion bits of X
finish code se
quence

Here, the number q has been placed in cell Al by previ
ous instructions. The GRS macro causes generation of
any RS format instruction as follows: GRS opcode,
register!, base2, displacement2. The opcode appears
literally. The other t.hree items are pointers to various
locations during compile time. Thus, REALI is a
pointer to REAL component of the 1st stack entry.
The interpretive coder records in location REALI in
formation allowing it to generate code to access the
quantity involved. As X is moved (by the GLOAD
macro) from storage to a register, the interpretive
coder records its new conceptual location in the compile
time stack entry REALI.

Execution

The PLjC runtime environment is mostly quite
standard. Thus there is a runtime stack management

routine, an IjO package which interfaces to the PL/C
operating system interface package, and a collection of
mathematical and string manipulation routines. Two
execution time interrupts are handled in interesting
manners. These are the timeout and uninitialized
variable interrupts.

Traditionally, the expiration of a step time limit has
been somewhat destructive of the executing program
environment. The timeout can occur deep within the
evaluation of an expression, and often results in unin
telligible diagnostic output. PL/C takes the approach
that time outs should be permitted only between state
ments, and accomplishes it as follows:

Upon completion of each statement, control is passed
by subroutine call to a small (one instruction) subrou
tine, which is located at the beginning of the common
data area always covered by general register 12. The
routine usually contains a BCR 15, R5 instruction
(unconditional return), and is generally called by a
BALR R5, R12. When the time out occurs, the return
is replaced by a two instruction sequence which passes
control to the appropriate diagnostic routine. The state
of the environment is fairly clean, permitting the user
to recover more information about the progress of his
program than would have been possible if intra-state
ment time outs occurred.

The uninitialized variable interrupt is not a hardware
interrupt at all. PLjC creates such an interrupt by the
following device: Each variable is initialized to the con
stant x'80000000', which is the smallest possible negative
integer on the 360, and whose complement cannot be
represented. PLjC generates an LPR instruction be
fore the accessing instructions, which will cause a hard
ware fixed overflow interrupt to occur if the indicated
value is encountered. This constant represents the
integer - 231, which requires 32 bits of precision for its
representation. Since PLjI imposes a precision limit of
31, the constant - 231 cannot arise through fixed-point
binary computations without overflow. In fact, in the
360, implementation of PLjC, this constant can occur
legitimately only as the representation of a character
string. The possibility of this occurrence is felt to be so
rare as not to require further checking.

Service routines

Every compiler includes a gamut of programs which
are not central to the operation, but which may be
called by many other parts of the compiler. The ensem
ble of these programs provides an internal environment
for the compilation task. In PLjC, these programs in
clude an overall control module, an error message writer
(phrase expander) similar to that described for the

PUFFT system,S and the "reverse translator," which
produces source images from I-code, and is used to indi
cate corrections which have been made by SYNA and
SEMA.

Special assemblers

Several special programs have been developed to
create the initial environment for compiling PL/ C
programs. There are over 250 keywords which must be
hashed into the symbol table, for example, and several
hundred error messages which must be broken down
into phrases.ll For both of these tasks, special routines
have been written which create these tables in the
PL/C compile time environment, and then punch out
object deck copies of core. These are then linkedited
with the rest of the compiler to produce a great savings
in initialization time.

DESIGN ACHIEVEMENTS

The actual performance of PL/C has been as good or
better than hoped for with respect to most of the seven
goals mentioned earlier. The compilation speed seems
to be an order of magnitude faster than PL/I-F. On a
360/65 running under OS/MVT, compilation speeds of
between 6,000 and 20,000 statements per minute have
been observed, depending upon the programs used. A
moderate sized sample of random student jobs, with a
substantial number of errors yielded the formula com
pile time = .04+ .007 s seconds, where s is the number of
statements. This gives an impressive 8500 statements/
minute compile speed for programs in which the error
correction mechanisms are heavily exercised.

The compiler correctly repairs a useful fraction of
the punctuation errors that are endemic with neo
phytes and which even afflict those programmers with
more experience. While its repair of significant syntacti~
and semantic errors is less often successful in the sense
of being able to recreate what the author intended, it is
often very successful in prolonging the life of a program
sufficiently to yield additional useful diagnostic informa
tion. Eight years of experience with this approach have
clearly demonstrated a significant reduction in the
number of job submissions required to obtain a success
ful execution of a program. In its current form PL/C
probably offers more ambitious and sophisticated
diagnostic assistance than any other compiler for any
language in general use, and this aspect of the system
is quite' open ended, with further developments
anticipated.

The breadth of subset which has been achieved has
surprised even the authors. The only significant omis-

PL/C 509

sions from the current version are the compile time
facilities, multitasking, I/O other than stream sequen
tial, and list processing. The achievement of open
endedness makes the addition of these possible, and
work is proceeding on the list processing area now.

The two factors which were most underestimated by
the group were space and implementation time. The
goal of running in lOOK was met through the use of
overlays. The memory organization proved robust
enough to handle the overlays without requiring any
redesign of modules. PL/C will compIle and execute
small programs in as little as 90K, and can handle about
250 statement programs in lOOK. A completely core
resident version (no overlays) is obtained by changing
one linkedit control card, and runs in lOOK.

The original implementation schedule called for a
rough version ready for testing in 6 months, and a
production version at the end of 9 months. Outside
sources who had implemented PL/I compilers estimated
18 months as a more realistic target for a production
version. In fact, the major testing with live student
audiences began after about 13 months, and production
versions were shipped in 17 months. Thus, the old rule
of thumb about multiplying any estimates of program
ming time by two is again validated.

CONCLUSIONS

A high-performance compiler has been designed and
implemented for a subset of PL/I using the strategies
outlined in this paper. In retrospect, one of the few
major changes in this strategy would have been the
early implementation of debugging aids for the compiler
writers. While we still feel strongly that assembler lan
guage was a wise choice, formatted dumps of I-code,
symbol table, and object code might have significantly
reduced the debugging time, and helped to meet im
plementation deadlines.

In our judgment the key factors in the success of the
PL/C project were:

1. Overall design which provided clean, clearly
specified interfaces between the major compiler
phases.

2. Elimination of many internal communication
problems through the assignment of personnel.
In particular, placing the same per~on on both
sides of an interface is seen as a major factor.

3. Use of new techniques in analysis and code
generation.

4. Refinement of "standard" techniques for high
performance compilers. These include limiting
the size of programs so that auxiliary storage is

510 Spring Joint Computer Conference, 1971

not used during the compilation process,and
use of a single pass over the actual source to
minimize I/O time.

Confirmation of the fact that high-performance com
pilers are here to stay has come recently in the form of
the announcement of the IBM Checkout PL/I,6 which
is actually an interpreter. It appears from the announce
ment that PL/C still enjoys a three or four to one per
formance advantage, but the days of having all users
pay the high penalties inherent in using production
compilers for debugging are numbered.

ACKNOWLEDGMENTS

The PL/C design is directed by Professor Richard
Conway and includes the authors, T. Wilcox, and M.
Zelkowitz. Additional design and programming assist
ance has been provided by M. Bodenstein, H. Cabassa,
P. Dormont, R. Fisher, T. Kahne, R. Holt, S. Lis
berger, N. Weiderman, K. Wong and W. Worley_

REFERENCES

1 R W CONWAY W L MAXWELL
CORC-The Cornell computing language
Comm ACM 6 Sept 1966 pp 317-321

2 R W CONWAY W L MAXWELL
CUPL-An approach to introductory computing instruction
Technical Report 68-2 Dept of Computer Science
Cornell University

3 R W CONWAY DELFAUSSE MAXWELL
WALKER
CLP-The Cornell list processor
Comm ACM 8 April 1965 pp 215-216

4 IBM 360 assembler language
IBM manual no C28-6514

5 IBM 360 PL/I (F) reference manual
IBM manual no GC28-8201-2

6 IBM scientific computing report
Fall 1970

7 H L MORGAN
Spelling correction in systems programs
Comm ACM 13 Feb 1970 pp 90-94

8 S ROSEN R SPURGEON J DONNELLY
PUFFT-The Purdue University fast FORTRAN
translator
Comm ACM 8 Nov 1965 pp 661-666

9 D T ROSS JOHNSON PORTER ACKLEY
A utomatic generation of efficient lexical processors using
finite-state techniques
Comm ACM 11 Dec 1968 pp805-814

10 P SHANTZ GERMAN MITCHELL SHIRLEY
ZARNKE
WATFOR-The University of Waterloo FORTRAN IV
compiler
Comm ACM 10 Jan 1967 pp 41-44

11 R A WAGNER
Common phrases and minimum space text storage
Technical Report 70-74 Dept of Computer Science
Cornell University

GPLjI-A PLjI extension for computer graphics

by DAVID N. SMITH

Boeing Computer Services Company Inc.
Wichita, Kansas

INTRODUCTION

The tools available to the professional graphics applica
tions programmer are without a doubt in the model T
stage. They are often implemented as subroutine
packages1 ,2 that either provide limited power or place a
large burden on the user of the package. In addition, in
an industrial environment the cost of training an
experienced programmer to become proficient with the
package can be very high.

The users of computers have long since become
accustomed to dealing with normal input-output in a
logical rather than a physical manner, often not
knowing or caring what mechanism is employed to
read a sequential file or where, at compile time, the
file is stored. High level languages have provided the
ability to have logically identical files on such diverse
units as tapes, disks, card readers and data cell drives.

A graphics terminal is just another input-output
device. Granted, it is a relatively new and still glamor
ous device, but this should not prevent creation of
software to allow a programmer to use the device
rather than to fight cumbersome packages and produce
unreadable source code. Several applications oriented,
specialized or device dependent languages have been
described in the literature,3 ,4,5 but none are general.

In an attempt to find a better solution to the problem,
a design study was initiated by the author in 1968. This
paper will present the status of this study as of Septem
ber, 1970. Discussed first will be general considerations
in the design of a high level graphics language,6 followed
by a short description of the PLjI based language.
PLjI was chosen as the base language, rather than
ALGOL or FORTRAN because of its built-in interrupt
handling structure, its richness of data types and
structuring, its built-in input-output (as compared to
ALGOL) and its "extendability" (as compared to
FORTRAN). A basic knowledge of PLjI is assumed
throughout.

511

GENERAL CONCEPTS

Since almost any graphics application of any signifi
cant size will require non-graphical computing support,
the language should at least allow access to a general
procedural language or be an extension of such a
language~ Some of the advantages to the "base"
language approach are:

A. Provide a syntactic base to guide in the design of
the graphics statements.

B. Cut implementation time because less needs to be
implemented and because some or most of the
implementation can be done in the host language.

C. Take advantage of extensions to and improvements
of the base language.

D. Avoid tIre-inventing the wheel". A GO TO state
ment is a GO TO statement whether in ALGOL,
FORTRAN, JOVIAL or "GRAPHICSTRAN."
(It might differ in flavor and texture but not in
meaning.)

E. Cut training time when the base language is one
known to the users.

The language should provide general digital graphics
facilities that are not limited to any machine or device
type. The user should not need to know the specific
characteristics of the hardware to write a program. A
display should be able to be described in terms that are
general to most (if not all) devices, with user knowledge
of a specific device limited to knowing which language
features are supported. Defaults should be supplied
when possible. Thus, if an image in storage contains the
information that it is to be displayed as a red image,
the image should still be displayable on a device that
does not support red images by simply ignoring the
option.

The above brings up an important point: That images
(or pictures) should be defined in terms of concepts

512 Spring Joint Computer Conference, 1971

rather than specific hardware commands. A statement
like:

LOWER RED PEN;

could be defined. for a plotter and a statement like:

MAKE BEAM RED;

could be defined for a CRT device. However, each of
these statements is conceptually applying the attribute
"color" to an image that is to be displayed. A more
general statement might be:

ATTRIBUTE OF (image) IS RED;

where "image" is a picture name. This does not limit the
application of the attribute ·"color" to existing or
supported devices but has applicability even to such
exotic output media as oil paintings and holograms.

It is a temptation to provide other than basic facilities
in a language. This should be avoided unless some over
all gain results. As an example, it is far better to provide
the ability to create labeled axes in an applications
subroutine library written in the language than to
build it into the language.

Implied in much of the previous discussion is the
idea that the language sho~lld support any and all
devices that are considered to be graphics devices.
This might well include, for example, line printers if
print plots are desired as output.

Image data structuring should be built in the
language in such a way that the details of the structure
are hidden from the user. Many examples of powerful
but complex image structuring schemes are described in
the literature. They have a common purpose, to pro
vide dynamic data structuring, but suffer from being so
complex to use that the average user will never apply
them. In addition, direct use of a specific data structure
prevents easy structure conversion as a program or its
application grows. Thus, image data structures should
be included in the language in such a way that the
details of the structures are hidden from the user and so
that the structural mechanism may be readily changed.
More than one structure should be available to allow the
user to select which type best fits his needs at the
moment, and a "non-structure," which eliminates the
need for expensive structural manipulations, should be
available.

The "non-structure" or sequential image provides
the ability to store pictures as a sequential list or stream
of graphics data. The characteristics of devices such as
plotters require that the programmer have control over
the order of the output.

Two approaches to causing the display of images
can be conceived. One is the "describe-it-then-output
it" method and the other is the "it-gets-output-while-

I-describe-it" method, or automatic method. The first
requires the user to output any and all images explicitly
after they are created. The second provides automatic
output as the image structure is being manipulated.
Both should be available with the automatic method
being the default.

With present graphics programming techniques, it is
necessary to have the graphics device allocated to the
program for all debug runs from the very start of
testing. This can place a hardship on the programmer
who needs to gain access to. an overcrowded graphics
terminal, not to mention the increase in costs due to
the use of the device and to the occupation of other
computer facilities. In most cases, initial debugging of a
program or of a change to a program can be planned
ahead of time and the session at the terminal is neces
sary only because it is the only testing method available.
An alternate solution is to provide a method of making
debug runs without an interactive terminal. This would
require a software simulated device with the following
characteristics:

A. A trace of input-output operations including the
names of all pictures displayed, whether or not
lightpen detects are allowed, which functions keys
are enabled, etc.

B. An input stream containing _ simulated user re
sponses to displays and actions to be taken to allow
further processing when errors occur.

C. The debug package should react to all operations
in the same manner as the device it replaces.

D. No program changes are required. The use of the
simultated device should be set by control cards.

E. Simulation of a high cost device might be provided
on a low cost terminal.

LANGUAGE DESCRIPTION

Vectors

Vector data and vector operations have been added to
GPL/I to allow for ease in geometric calculations and
to provide a method of describing language elements that
contain coordinate information. Points are described
by the components of a vector with its tail at the origin.
Scaling information is given by a vector which describes
the "distortion" along each of the coordinate axes.
Rota tion information is given by a vector which de
scribes the "torque" perpendicular to the plane in
which rotation. occurs.

Vectors may be two-dimensional (VECTOR (2)),
which is the default wheit the number of dimensions is
omitted, or they may be three-dimensional (VECTOR

(3». A vector is described in terms of its components
along the coordinate axes. A component constant is a
constant of any base, scale or precision followed by an
X, Y or Z. All of the following are vector components:

14.7X

2Y

100l0BX

O.214159E1Z

A vector may be formed by an expression of these
components. Several examples are:

VEC1=43.5X + 2.2Z + lAX + 2.7Y;

VEC2=8X + 2Z;

VEC3=8 + 2Z;

The Y component of VEC2 is zero. VEC3 has the same
value as VEC2 since a scalar constant is converted to an
X component. Vectors may be defined by the VECTOR
function and examined by the MAG, XMAG,
YMAG and ZMAG functions.

Operators are provided for the vector and scalar
products. The dot product of two vectors is:

VEC1 * . *VEC2

and the cross product is:

VECl ***VEC2

Addition and subtraction are performed by the stand
ard operators. In the hierarchy of operations, *** is
highest and * . * is next highest.

I mages and image expressions

The "image" is the foundation of GPL/I. The
language would n{}texist without it, and the bulk of the
power of the language is dependent upon the manipula
tions that may be applied to it. Thus, a careful under
standing of the concept and properties of the image is
essential.

TABLE I-Image Data

POINTS 7.2X + 3.3Y - 1.5Z

TEXT "'DEPRESS ANY FUNCTION KEY'. 0.14"

FUNCTIONS ARC(POINT1.POINT2.3.14159)
COPY(IM)
INSTANCE(PIC)

GPL/I 513

TABLE n-operators

NAME FORM

Char 60 Char 48

Inclusion +> INC

Connection III CON

Positioning €I AT

Scaling (> SCL

Rotation *) ROT

Defining an image as "an identifier to which the
IMAGE attribute has been applied", is correct but
provides little information. An image may be better
defined as a variable which may take as values some
combination of pictorial data, pictorial function values
and other images. This is still incomplete but is a
good starting definition. The best definition may be
obtained by listing the properties of an image as
described in this paper.

An image is a new data type which may have any
storage class and may be structured. Its value is in
two parts, pictorial values and attribute values. Both
may be changed at execution. Dynamic attributes
are discussed later. The storage for the value of an
image is acquired dynamically and is structured as
necessary to record relationships between images, their
contents and attributes. Although the structuring
mechanism may be very complex, it is totally hidden
from the user.

Image data consists of points (represented as vectors),
text, or values returned from image functions. See
Table I for an illustration of each.

Image data and other images, whether defined
(given values) or not, may be combined to form a new
image by the five image operators in a statement
patterned after the arithmetic assignment statement.
The operations are: inclusion, connection, positioning,
scaling and rotation. Table II summarizes the operators.
The priority of graphics operators is lower than all
other PL/I operators, as shown in Table III.

The inclusion operator causes the arguments to be
included in a resultant image. Thus,

A+>B

results in an image which contains A and B. The
connection operator is similar to the inclusion operator
except that a line is drawn from the last poiht of the
first argument image to the first point of the second
argument image. Assume that P4 and P5 are points,

514 Spring Joint Computer Conference, 1971

TABLE Ill-operator Priority

OPERATOR PRIORITY

*** Highest

.

** prefix + prefix -
* I

infix + infix -

< ..,< > .,> (= ..,=)= =

&

I
<> *> @

In +> lowest

then

P41111>5

are the two points connected by a line.
The positioning operator specifies how an image is to

be positioned. All images have a default coordinate
system. The positioning operator specifies how the
origin of this coordinate system is to be positioned in the
coordinate system of the re,sultant image.

DEAD_MAN

= GUN @ PI +> SLUG @ P2 +> MAN @ P3;

The origin of the image, GUN, is positioned at point PI
of a new image, SLUG is positioned and included and
MAN is positioned and included and the result is
assigned to the image DEAD_MAN.

The scaling operator specifies how the image is to be
scaled. It is like the positioning operator in that the
scaling applies to the resultant image.

LITTLE_BOX = BOX < > (lOOO.OX + 1000.0Y);

BIG_BOX = BOX < > (.OIX +.OIY);

Scaling may be used to create concentric circles,
assuming that CIRCLE contains a circle and that
CONCIRC has no previous value.

DO I = 1 TO 5;

CONCIRC = (CONCIRC + CIRCLE)

< > (.9X + .9Y);

END;

The rotation operator is used like the scaling operator.

It provides an amount in radians to rotate an image
about the Z axis. *

DEL = DELTA *> 3.14159Z;

Images may be defined in two or three dimensions.
Any legal non-complex arithmetic expression or

vector expression may occur in an image expression in
place of an image. The expression is evaluated and then
converted to vector (if necessary). The vector is con
sidered to be based at the origin. Its components then
describe a point which is at the tip of the- vector. The
vector is thus converted to an image of this point.

Images, when used to define other images, are as
signed by name rather than by value. This is one of the
more powerful features of the language. Consider
three images, P A, PB and PC, that contain the co
ordinates of the vertices of a triangle. The triangle is
formed by the statement:

TRIANGLE = PA III PB III PC III PA;

The last side is drawn by connecting PC with P A. Since
PA is an image and is assigned by NAME, this is
exactly the same point as the first P A. Thus, the image
TRIANGLE not only looks like a closed figure, it is a
closed figure. Applications in several fields** either
require or are simplified by an image which has the same
structure as the thing it represents.

Since images are assigned by name, any change in the
value of an image causes a change in any image which

TABLE IV-Examples of Image Assignment Statements

1)

2)

3)

4)

5}

6)

A = B +> C +> 0;

1M = (BB +> CD) t' POS(J) +)

EZ = (8 t' X +> C t' Y) <> SC

XX = A /II B IIJ 2.7X + 3.3Y IJI

A • B '" C IU D.

A .. A III E;

1* IS EQUIVALENT TO *1

A = B III C III 0 III E;

lMN @ XYl.

*> ANG;

{O + OY};

DCl MSG CHAR(13), ERMSG IMAGE, ERPOS VECTOR;

MSG = 'ERROR IN DATA'

ERMSG = HMSG" @ ERPOS;

1* IS EQUIVALENT TO *1

ERMSG .. '''ERROR IN DATA'H "ERPOS;

* Three dimensional images may be rotated about any or all axes.
** Such as electronic circuit design.

contains it. An image may be defined in terms of other
images which have no value at the time of assignment,
thus allowing definition to be deferred. As an example,
consider the concentric circle example given earlier. The
nest of circles becomes a nest of squares by:

CIRCLE = (OX + OY) III (IX + OY) III
(IX+ lY) III (OX + lY) III (OX+OY);

The image, CONCIRC, would now be changed as
would a display of CONCIRC* on a terminal.

The COPY function may be used to assign images by

A=XX;

B = COpy (A + R);

A = YY;

The value of B is not altered by the redefinition of A
in the third statement.

The effect of the scale, rotation and position operators
as well as most image attributes** applies to all images
in their scope. For example,

DCL A IMAGE REGION(OX + OY, IX + lY),
B IMAGE REGION (-IX -IY, OX + OY);

The regions of A and B do not overlap. Thus,

B = A;

would cause B to be empty. (The reason is that every
thing outside the region of B is scissored or deleted and
all of the region of A is outside the region of B.) Consider
also:

DCL (AA, B, C) IMAGE SCALE (2X + 2Y);

AA = (OX + OY) I I I (IX + OY);

B = AA;

C = B;

AA is a one-inch line scaled by 2X + 2Y (which would
be a Y2 inch line when displayed). B is AA scaled by
2X + 2Y (which would be a ~ inch line when dis
played). Cis B scaled by 2X + 2Y which is AA scaled
by 2X + 2Y (which would be a VB' inch line when
displayed).

Image grouping is obtained by the INSTANCE
function. Consider an image named IMX which is made
up of a number of other images:

IMX = A + >B + >C + >D;

A lightpen detect on IMX will be correlated with the
most basic image. Thus a detect on the part of IMX

* See the I/O section and the ACTIVE attribute.
** COLOR is a partial exception, for example.

GPL/I 515

corresponding to A would cause the detect to be
correlated with A (or a component of A) rather than
IMX. However, if IMY is defined as:

IMY = INSTANCE (IMX);

then a lightpen detect on any part of IMY causes IMY
to be correlated.

A number of useful image attributes are available.
They are described in detail in an appendix but they
include:

BLANKED

DASHED

FLICKER

INTENSITY

PERSPECTIVE

STYLE

THICKNESS

VIEWPLANE

The images described up to this point have been
structured images. A second type of image, the stream
image, may be operated upon like a structured image.
It is always assigned by value (and thus must be de
fined before assignment) and lacks the structure which
is so useful in lightpen correlations, graphics design,
etc. A stream image does have several advantages;
among them are savings in storage, savings in time to
manipulate images and a direct correlation with
sequential devices (plotters, for example). Unless
noted otherwise, all images described are structured.

Interrupt management

Interrupts are manipulated by an extension of the
standard PLjI interrupt management statements. An
interrupt queue is provided for interrupts that are a
result of a user's action at a terminal. Such interrupts
raise the FUNCTIONKEY, KEYBOARD, LIGHT
PEN, and DESIGN conditions. Interrupts that raise
the IMAGEINTERRUPT, CHARACTERDISPLAY,
and REGIONBOUNDARY conditions do so when the
interrupt occurs.

Interrupts are queued as they occur in the queue of
the task owning the file on which the interrupt occurs.
However, if the condition is disabled, it is ignored, and
if enabled for standard system action, the action is
performed immediately. The interrupt queue is ex
amined for processing when any of the following occur:

1. When the TAKE or WAIT statements are
executed.

2. When the file is closed.
3. When a task is terminated.

The TAKE statement allows interrupts to be processed
without entering a wait state. Interrupt conditions may
be selected by name or by file, or all may be taken. The

516 Spring Joint Computer Conference, 1971

TABLE V-Interrupt Processing Statement Examples

1) TAKE FILE(X) LIGHTPEN FUNCTIONKEY;

2) TAKE LIGHTPEN; /* ALL FILES */

3) TAKE ~ILE(X) NONE; /* CLEAR QUEUE FOR FILE X */

4) TAKE FILE(Xl) ALL. FILE(X2) DESIGN;

5) ON LIGHTPEN(ADAGE) GO TO LPEN;

6) ON ENDKEY(TUBE) BEGIN; END;

7) ON LIGHTPEN(X) IDENT(A,B,C)

BEGIN;

GO TO LAB(IDENT);

LAB(l):

LAB(2);

LAB(3);

END;

queue may be selectively or completely cleared. The
statement:

TAKE FILE(TUBE) LIGHTPEN;

causes all LIGHTPEN interrupts on file TUBE to be
processed. Additional examples are shown in Table V.

Eight graphics conditions are defined. The DESIGN
condition is raised when a graphics device signals that a
change to the displayed image is complete. The FUNC
TIONKEY condition is raised in response to a function
or selector key being depressed while the KEYBOARD
condition is raised in response to the end of manual
data entry. REGIONBOUNDARY is raised upon an
attempt to output an image that is bigger than the area
(REGION) in which it is contained. IMAGEIN
TERRUPT is raised by the display of an image created
by the built-in function, IMINTR. The LIGHTPEN
condition is raised as the result of the detect of an
enabled image by a lightpen, and the CHARACTER
DISPLAY and IMAGEDISPLAY conditions are
raised in response to an attempt to display images on a
file that does not support the given attributes.

Most graphics conditions allow the use of the IDENT
option* to assist in the correlation of interrupts and the
item causing the interrupt. Imagine a device (HAL
3361, for example) with four function selector buttons.
The FUNCTIONKEY on statement may be:

ON FUNCTIONKEY(HAL3361)

IDENT('1101'B) GO TO LAB(IDENT);

* KEYBOARD is the exception.

The bit string bits correspond to buttons 1, 2, 3 and 4
and specify that buttons 1, 2 and 4 are to be enabled for
interrupts. (The bit string may be a bit string variable
and will be referenced by name.) When an interrupt
occurs and the on-unit is invoked, the function IDENT
returns the button number. The IDENT option may
be used to correlate lightpen detecte:

ON LIGHTPEN(HAL3361)

IDENT (A,B,C,D,E) ---;

The IDENT list contains image names that are to be
enabled for interrupts. The IDENT function returns the
sequence number of the image in the list.

File management and input/output

GPL/I defines a fourth file type, GRAPHIC, * and a
set of attributes that describe the characteristics of the
file. GRAPHIC files may be of three types: DESIGN,
DISPLAY, and STORAGE. DESIGN files are defined
as files on which an image is displayed, and from which
it is possible to change some or all images. (Note that the
images need not be changed but that it must be possible
to do so.) Most C.R.T. devices fall in this category.

DISPLAY files are defined as files on which an image
is displayed but on which no action at the device may
directly cause a change in the image. Most plotters
fall in this category. A device that can be associated
with a DESIGN file may also be associated with a
DISPLAY file to eliminate any possible overhead
associated with DESIGN files.

STORAGE files are defined as files on which no image
is displayed but on which images may be stored for
later retrieval.

DISPLAY files may be declared as being HARD
COpy or SOFTCOPY. HARDCOPY files are files on
which the output image is permanent; that is, the
image cannot be modified once output. Images on
SOFTCOPY files may be modified.

Files are opened and closed as in PL/I. Implicit open
ing is supported. Additional open options are also
supported:

STORAGE, DISPLAY, DESIGN

ASSOCIATE (image-list)

PAGESIZE (vector-expression)

HARDCOPY,SOFTCOPY

UPDATE (option)

PAGESIZE specifies the size of the area (or volume) on

* STREAM, RECORD and TRANSIENT are the other three.

the device on which images are to be displayed. UP
DATE specifies that the file may accept input/output
from ACTIVE images. The other options are described
elsewhere.

Output may occur either explicitly by execution of a
PUT or ANIMATE statement, or implicitly by a
change in an image that has the ACTIVE attribute.
The ACTIVE attribute may be applied directly:

DECLARE BRACKET ACTIVE(X) IMAGE;

(BRACKET is active on file X), indirectly . by the
ASSOCIATE file option, and may be changed
dynamically.

Any change made to an active image is output and
any change made at a terminal is input with no further
action on the part of the program being necessary.

Explicit output is controlled by the PUT statement:

PUT FILE(ABC) LIST(CAR, HOUSE,
(CLOUDS(I) DO 1=1 TO N));

EDIT directed output allows use of a format which
specifies overriding attributes.

PUT FILE(XXX) EDIT (IM1,IM2)
(2 G(SCALE(V))) ;

The G (graphics) format item specifies the scale for the
two images. Options are available to sound alarms at the
terminal, lock and unlock keyboards, change the page
on hardcopy files or clear soft copy files, and position the
new page on hardcopy files.

The GET statement is used to retrieve images from
storage and de~ign files.

GET FILE(ABC) LIST(CAR,HOUSE);

Figure i-Circuit generated by example in text

GPL/I 517

The ERASE statement can cause selective or total
erasure of the display on a softcopy file.

ERASE FILE (XYZ) LIST (CAR, CLOUDS(4));

Example of image construction

The examp~e below creates an image of part of an
electronic circuit. The components are generated by
image functions. The function that generates capacitors
is given as an illustration. The generated circuit is
given in Figure 1. Each component is assumed to be
one inch long. The X and Y axes are given for reference
only.

DECLARE (NODE1,NODE2,NODE3) VECTOR,
CIRCUIT IMAGE;

DECLARE

(RESISTOR,CAPACITOR,VARINDUCT,

DIODE) RETURNS (IMAGE) ;

NODE1 = 2X + 2Y;

NODE2 = 3X + 2Y;

NODE3 = 4X + 2Y;

CIRCUIT = (RESISTOR * > 180Z) @ NODE1 +

(RESISTOR *> 90Z) @ NODE1 +

CAPACITOR @ NODE1 +

(RESISTOR *> 90Z) @ NODE2 +

V ARINDUCT @ NODE2 +

DIODE @ NODE3 +

NODE3111 (4X + OY);

CAPACITOR: PROCEDURE RETURNS(IMAGE);

DECLARE CAP IMAGE;

CAP = (O.OX +O.OY) II I (0.45X +O.OY) +

(.045X+0.2Y) III (.045X-0.2Y) +

ARC((1.0X +O.OY), (0.597X +0.1 Y) ,60.0Z)

+ (0.55X +O.OY) III (1.0X +O.OY) ;

RETURN(INSTANCE(CAP)) ;

END CAPACITOR;

Animation

Images may be animated in two basic ways. The
first is accomplished by outputting an image that

518 Spring Joint Computer Conference, 1971

contains a reference to the IMINTR function. IMINTR
returns an image that causes the IMAGEINTERRUPT
condition to be raised when it is displayed. The on-unit
can then change the image and re-display it. The
amount of control available using IMINTR is greater
than with the second method but can require extensive
use of the C.P.U.

The second type of animation is controlled by the
ANIMATE statement which may be implemented
in part or all by hardware features or software in a
peripheral unit or display controller. As an example,
consider the following:

ANIMATE FILE (X) LIST (CAR)
(OFFSET (.2X+1.7Y)) EVENT (EV);

The image CAR (on file X) is to be moved a distance of
.2X + 1. 7Y inches every second. The process continues
until the event variable, EV, is set to completion, the
file is closed or the image is erased.
The list of animation options may contain any of the
following:

ROTATE

OFFSET

SCALE

THICKNESS

PERSPECTIVE

VIEWPLANE

The argument gives the change per second. It is evalu
ated only when the animate statment is executed.
However, the dynamic option allows the value of the
argument to be evaluated each tenth of a second.

ANIMATE LIST(A,B,C) (ROTATE(ANG))
FILE (X) DYNAMIC;

Dynamic attributes

Certain image attributes may be changed at execution
time. A dynamic change in an attribute is properly a
dynamic change in the current VALUE of the attribute.
An image always has some color; for example, the
current value of the color attribute may be RED at
certain times and BLUE at others.

Attributes are applied to images in one of two ways.
Functions may be used which return an image which
is the argument image with the attribute applied. Thus,

COLOR (IMAGEX, 'YELLOW')

returns an image which is identical to "IMAGEX" but
with the color attribute applied with a value of
'YELLOW'.

The second method of altering attribute values is with
the attribute assignment statement. Attributes may be
assigned to variables declared· with the ATTRIBUTE

attribute or to the ATTR pseudo variable. For example,

ATR = COLOR('BLUE') + FLICKER(X) ;

causes the color and flicker attributes to be assigned
to the attribute variable ATR. No other attribute
values are set.

ATTR(IM) = THICKNESS(I)
+ REGION (Xl,X2) ;

The thickness and region attributes of the image 1M
are changed by the above example.

Other attributes that can be applied to an image in a
manner like the above include:

SHIFT

ROTATE

INTENSITY

DASHED

BLANK

ACTIVE

PERSPECTIVE

STYLE

Functions

A full set of graphic, vector and attribute functions
are defined in GPLjI and are described in an appendix.
Several are of sufficient power to warrant further
mention.

The CANONICAL attribute may be applied to any
ENTRY identifier with the RETURNS (IMAGE)
attribute. It specifies that the function is NOT to be
invoked when encountered but that the entry name
and parameters are to be retained. The function is
invoked when the image is displayed. This prevents
functions which return large amounts of data from
wasting storage unnecessarily.

The ATTACHER function returns a special image
to which lines may be later connected with the CON
CAT function. It is useful in network or circuit design.

REFERENCES

1 Graphic Subroutine Package (GSP)
IBM Form C27-6932

2 GPAK-Version II
IBM Program 360D-3.4.005 September 1966

3 G BRACCHI M SOMAL VICO
An interactive software system for computer-aided design-An
application to circuit project
CACM September 1970 pp 537-545

4 P G COMBA
A language for 3-dimensional geometric processing
Written Form IBM NY Scientific Center Report
~320-2923 November 1967

5 A HORWITZ J P CITRON J B YEATON
GRAF, Graphic additions to fortran
SJCC 1967 pp 553-557

6 R HORNBY D SMITH J GENTRY C BRYANT
Unpublished results of the graphics language committee
The Boeing Company Wichita Division 1969

APPENDIX A-FUTURE LANGUAGE
ADDITIONS

Major Additions

1. New coordinate systems-polar, spherical, cylin-
drical

2. User defined REGION boundaries
3. Debug feature
4. Define graphics design in more detail
5. HALFTONE, SOLID and LIGHTSOURCE

attributes for solid and gray tone images.

Research Items

1. Constraints
2. Structure analysis

APPENDIX C-GRAPHIC OPERATORS

Operator Description

GPL/I 519

3. Debug feature
4. New hardware features
5. Hidden line elimination
6. Processing continuous pictures

APPENDIX B-CHARACTER SET

The GPL/I character set is identical to that of PL/I
except for the changes listed below.

1. The commercial 'AT' sign, @, is an operator
rather than an alphabetic extender character.

2. The following operators are added to the
language.

Char 60 Char 48

+> INC

III CON
@ AT
<> SCL

*> ROT

3. The double quote (") character is added to the
character set.

Inclusion The first and second operands are included in a new image.

+>

Connection

III

Positioning

@

Scaling

<>

Rotation

*>

A+>B

Include the first and second operands in a new image and connect the last point of the first
image with the first point of the second.

AIIIB

Position the image (first operand) at the point given by the second operand.

A @ (2.7X + 3.3Y)

Scale the image (first operand) by the factor given by the second operand.

A < > (4.0X + 8.0Y)

Rotate the image (first operand) by the amount given by the second operand. Rotation is
counterclockwise.

A * > (.172Z)

520 Spring Joint Computer Conference, 1971

APPENDIX D-ATTRIBUTES

The attributes that may be altered by functions at execution are flagged with an asterisk.

Attribute

* ACTIVE (---)
QUIESCENT(--)

ASSOCIATE (---)

ATTRIBUTE

*BLANKED
UNBLANKED
CANONICAL

*COLOR(---)

*DASHED(---)

DATAFORM(---)

DEFINED (---)

DETECTABLE

DESIGN
DISPLAY
STORAGE

*FLICKER(---)

Applies To

Image

File

Data

Image

Entry

Entry

Image

Data

Image

Image

File

Image

Description

ACTIVE specifies that the image is to be automatically output
when changed and that the display is to be input when a change
is made to it. A list of files on which the image is active ~ay be
appended.
QUIESCENT is the opposite and is the default. I/O must be
explicit.
ASSOCIATE specifies images that are to be active on a file. A
parenthesized list of images is appended to ASSOCIATE.
ATTRIBUTE specifies that the variable is to have attributes
as its value.
BLANKED specifies that the image is invisible. UN
BLANKED is the default.
CANONICAL specifies that the entry is not to be invoked
when encountered but that the entry and its parameters are to
be retained as an intermediate result. The entry is invoked when
the image containing it is to be displayed. CANONICAL
implies REDUCIBLE and RETURNS(IMAGE).
Color specifies the color of the image. The parenthesized item
is an implementation defined color name in quotes. The default
is COLOR("). If a device does not support the given color, the
default is used.
DASHED specifies that the image is to be displayed as a dashed
line or curve. The parenthesized list is of the form:

(up-length, ...) , (down-length, ...)

The curve is drawn one "up-length". Then one "down-length".
The next item in each list is selected and the sequence is re
peated. A list is restarted if exhausted.
DATAFORM specifies that the data is to have the same
internal form as a reference to the CANONICAL entry name
in the parentheses. Assignment may be made to a DATAFORM
variable or it may be referenced in an image assignment
statement.
DEFINED specifies that the image is to be defined on the
value of the base image. Its value is that part (or all) of the
value of the base image that is contained in the region of the de
fined image.
DETECTABLE specifies that the image can be detected upon
by a lightpen. It is default for all images.
DESIGN specifies that the file is to be associated with a device
that can display and store images in such a way that they
can be both accessed by the program apd changed by the user
at the terminal.
DISPLAY specifies that the device can display images but
cannot store them and that the image cannot be changed by the
user.
STORAGE specifies that the device may store images but
cannot display them.
FLICKER specifies that the image is to be made alternately

Attribute

GRAPHIC

HARDCOPY
SOFTCOPY

IMAGE(-)

*INTENSITY(n)

*LOCATION(-)

*p AGESIZE(V)

*PERSPECTIVEL)

PROTECTED
UNPROTECTED

*ROTATE(_)

*SCALEL)

STREAM
STRUCTURE (---)

*STYLE(_)
*THICKNESS(n)

*UPDATE()

VECTOR(n)

*VIEWPLANE(---)

Applies To

File

File

Data

Image

Image

File

Image

Image

Image

Image

Image

Image

Image
Image

File

Data

Image

GPL/I 521

Description

visible and invisible. On and off times are specified in seconds
in a list similar to that provided with DASHED.
GRAPHIC specifies that the file supports graphic input and/or
output.
A HARDCOPY graphic file produces permanent copies and
thus cannot be changed by program action once output.
SOFTCOPY files may be changed by program action. SOFT
COPY is default.
IMAGE specifies that the data is to have a picture (or pictures)
as its value. The parenthesized list may be (2) for two di
mensional images or (3) for three dimensional images. See text
of paper.
INTENSITY specifies the relative intensity of the image.
The option "n" is a number between between 0 and 9.
LOCATION specifies the postion of the image in a containing
image or display.
PAGESIZE specifies the size of the page on a graphic file.
The vector "V" describes the page coordinates. On a CRT,
the page is the area of the screen that will contain all displays, on
a plotter the area to be plotted in until the page is next changed
and as needed on other devices to describe the working area.
PERSPECTIVE specifies that the 3-D image is to be displayed
with a perspective view.
PROTECTED specifiies that the image will be protected
from change by a user at a terminal when it is displayed.
It is the default.
UNPROTECTED specifies that the image may be changed
by the user at a terminal.
REGION specifies the area or volume in which the image is to
have a displayable value. Any parts of the image outside the
region boundary are scissored when the image is displayed.
The form is: .
REGION(vector [, vector])
ROTATE specifies an amount that the image is to be rotated
with respect to the containing image or device.
SCALE specifies an amount that the image is to be scaled
when displayed.
STRUCTURE specifies that the image is to be structured.
See text of paper.
STREAM specifies that the image is to be stored as sequential
data items. Stream images are always PROTECTED and
UNDETECTABLE. See text of paper.
STYLE specifies the form of display of character data in images.
THICKNESS specifies the relative thickness of the display of
lines in the image. The argument "n" ranges from 0 to 9.
UPDATE specifies the status of automatic I/O on a GRAPHIC
DESIGN file. The options are (the default) IMPLICIT which
allows automatic I/O and EXPLICIT which does not.
VECTOR specifies that the data is to be a 2-D (n=2) or 3-D
(n=3) vector.
VIEWPLANE specifies the size and position of a plane from
which views of a 3-D image are to be taken for 2-D display.

522 Spring Joint Computer Conference, 1971

APPENDIX E-DESIGN

Design

The DESIGN condition is raised when the device signals that a change in the displayed image (except for keyboard
entry) is complete. The FILE and IDENT options may be used. Standard system action is to update the structure
in core if the image is active or else to ignore the condition. DESIGN is enabled by default and may be disabled by
the NODESIGN label prefix.

Functionkey

The FUNCTIONKEY condition is raised by depressing a function key or selector button. The IDENT option
gives the name of a bit string with a length equal to the number of function keys~ A one bit indicates that the on-unit
is to be executed for that key. If omitted, a bit string of all one bits is assumed. The file option is also allowed.
FUNCTIONKEY is enabled by default and may be disabled by the NOFUNCTIONKEY label prefix. Standard
system action is to ignore the condition. The bit string is referenced by name.

Example:

Keyboard

DECLARE ENABLED-KEYS BIT (32)

INITIAL ('1111111111111111111111111'B);

ON FUNCTIONKEY (BW2250) IDENT (ENABLED_KEYS)

BEGIN; ---- END;

The KEYBOARD condition is raised whenever the end of data entry is signaled. The IDENT option may not be
used. Standard system action is to update the image if the image is active or else to ignore the condition. KEY
BOARD is enabled by default and may be disabled by the NOKEYBOARD label prefix.

Regionboundary

The REGIONBOUNDARY condition is raised when an image is being output to a file and a portion of the image
exceeds the region boundaries. System action is to delete all parts of the image that exceed the region. The IDENT
option is allowed. REGIONBOUNDARY is enabled by default and may not be disabled.

I mageinterrupt

The IMAGEINTERRUPT condition is raised by the display of an image that was created by the IMINTR
function. The standard system action is to ignore the condition. The IDENT option may be applied. IMAGEINTER
RUPT is enabled by default and may not be disabled.

Lightpen

The LIGHTPEN condition is raised by the detection of a DETECTABLE image by a lightpen. The IDENT
option may be applied. LIGHTPEN is enabled by default and may be disabled by the NOLIGHTPEN label prefix.
The standard system action is to ignore the condition.

GPLjI 523

Characterdisplay

The CHARACTERDISPLAY condition is raised when an unprotected image containing text data is to be output
to a file that cannot support unprotected text data with the given display characteristics. A standard return from the
on-unit causes defaults to be applied in an attempt to display the data. If no on-unit is active, the ERROR condition
is raised. The IDENT option may be applied. CHARACTERDISPLAY is enabled by default and may not be
disabled.

I magedisplay

The IMAGEDISPLA Y condition is raised when an image is to be output to a device which cannot support certain
attributes of the image. A standard return causes an attempt to display the image by changing certain attributes.
If this fails, the image is ignored. Standard system action is to raise the error condition. The CHARACTERDIS
PLAY condition is raised for text items. The IDENT option may be applied. IMAGEDISPLAY is enabled by de
fault and may not be disabled.

APPENDIX F-FUNCTIONS

Vector manipulation built-in functions

XPROD(V1,V2)
DPROD(V1,V2)
ANGLE (V1,V2)
MAG (V)
VECTOR(Sl,S2[,SsD
XMAG(V)
YMAG(V)
ZMAG(V)

Vector cross product
Vector dot product
Angle between vectors
Vector magnitude
Convert scalars to vector
Component magnitudes

Attribute built-in functions (See attributes in Appendix D)

SCALE
REGION
COLOR
BLANKED
STYLE
SHIFT
ROTATE
VIEWPLANE

Condition built-in functions

IDENT
LPDETCT

I mage built-in functions

INTERSECTION
VIEW
TEXT
ARC

PERSPECTIVE
ACTIVE
FLICKER
INTENSITY
DASHED
THICKNESS
PAGESIZE
UPDATE

Return number of item in on-unit IDENT option responsible for interrupt.
Returns the image on which the lightpen detect occurred.

Returns image that is the intersection of the two argument (3-D) images.
Return image that is the view of the argument (3-D) image from its viewplane.
Build character images.
Build arcs and circles.

524 Spring Joint Computer Conference, 1971

ATTACHER
NULLI
CONCA},
SWEEP

IMINTR
INSTANCE
LPTRACK

Special graphic built-in functions

INTERSECT
CHARLEN

I mage structure built-in functions

COpy (1M)
IMAGEN0(A,B)
INIMAGE(IM,N)
SUBELEM(IM,N)
EXPAND (1M)

APPENDIX G-STATEMENTS

A ttribute assignment statement

Syntax:

Returns special image. See text.
Returns a "NULL" image.
Connects images at attachers.
Returns an image (3-D) that is the result of sweeping another image (2-D)
along a given path.
Returns special image which causes an interrupt when it is displayed.
Grouping function. See text.
Returns the tracking symbol for graphics design.

Returns '1' B if the two argument images intersect.
Returns the total displayable length of a character string given its style and
height.

Copies the structure of 1M (remove references by name) .
Returns the sequence number of image B in image A.
Returns the Nth image that contains the image 1M.
Returns the Nth image that is contained in the image 1M.
Expands all canonical function references in 1M.

{
attribute-data-element} [, ... J = attribute-expression;

ATTR(image)

Where "attribute-expression" is:

(attribute) []
) attribute-data-element ~ +
) attribute-expression ({ }attribute-expression
~ (attribute-expression)) -

The attribute expression is evaluated left to right. For addition (+ operator), attributes are collected to form
a complete set. As additional attributes of the same type are encountered, the new attribute value replaces the
existing value. For subtraction, attributes are removed from the set. On assignment to an attribute-data-element
all unspecified attributes remain unspecified. On assignment to an image by the ATTR pseudo variable, all specified
attributes replace those of the image and the others are unchanged.

Example:

DCL (ALPHA,BETA) IMAGE;

ATTR(ALPHA) = ATTR(BETA) - REGION(BETA) + COLOR('RED');

Logical expressions

Images and attr\butes may be compared to images and attributes, respectively, with the = and -, = operators.
The value and type of attributes is compared but image comparison is of identity only.

Image assigment statement

Syntax:

image [, ...] = image-expression;

where "image-expression" is:

r
V ector-Expression

Image
I { + > } image-expression

1
1 :::::::::::::: {¥,} vector-expression I

(image-expression)
text-item

"vector-expression" is any legal vector or scalar arithmetic term or expression.

"text-item" is
{

"'character-string' [,size]" }

"character-string-identifier [,size]"

See text of paper for details of use.

On statement

Only the modifications to the ON statement are specified in detail:
Syntax:

ON graphics-on-condition(filename) [IDENT(option)] on-unit;
where:

{

bit-string }
"option" is

image-name [,image-name, ...]

GPLjI 525

The use of the IDENT option is described in the text of the paper and with the on-condition descriptions.

Take statement

Syntax:

TAKE [FILE (filename[, ...])]{~~tE }[...];
on-condition-name[...]

Interrupt(s) in the queue are processed when the TAKE statement is executed.

ALL

NONE

Process all interrupts.

Clear the queue.

"on-condition-name" Process interrupts for the given condition.
The FILE option limits the selection to interrupts from the given file.

Erase statement

Syntax:

ERASE FILE (filename [, ...]) [(list)];

526 Spring Joint Computer Conference, 1971

where

'list' is an image list that has the same syntax as a list in a PUT LIST statement.

ERASE will selectively clear images from a display. If the list is missing, the entire file is erased.

A nimate statement

Syntax:

ANIMATE FILE (filename) LIST (image-list) (parameters)

EVENT (event-variable) DYNAMIC;

The images in "image-list" are displayed on FILE (filename) and animated as specified by the "parameters". The
animation of an image continues until the image is nullified, the image display is erased, the "event-variable" is
set to completion or the file is closed. The allowable "parameters" are:

ROTATE (change-in-angle)

POSITION (change-in-position)

SCALE (change-in-scale)

THICKNESS (change-in-thickness)

PERSPECTIVE (change-in-perspective)

VIEWPLANE (change-in-viewplane)

The arguments to the parameters may be variables or expressions whose value changes each lo of a second when the
DYNAMIC option is specified and the implementation allows dynamic animation parameters for that device.
Otherwise the initial value is always used.

ANIMATE may be used on GRAPHIC DESIGN files only.

Signal statement

The SIGNAL statement is extended for GPLjI. Only the extension is described in detail.

Syntax:

SIGNAL on-condition [SET (set-values)];

where:

"set-values" are references to built-in condition functions.

The SET option defines values to be returned by condition functions that are invoked to determine the reason that
the condition was raised. The "set-values" are function names with the values that they are to return in parentheses.
Example:

SIGNAL LIGHTPEN(FILEX) SET (IDENT(l»;

Open statement

Additional options are allowed for the open statement:

DESIGN

STORAGE

DISPLAY

ASSOCIATE

PAGESIZE

HARDCOPY

SOFTCOPY

GPL/I 527

Put statement

Only the extensions for graphic files are shown.
Syntax:

PUT FILE (filename) [data] [options];

where:

{

LIST (image-list) }
'data'is

EDIT (image-list) (edit-format)

"options" are SIGNAL sound an alarm at the terminal at the start of output.

{
LOCK '}
UNLOCK

lock or unlock the terminal keyboard before output starts.

PAGE change the page on the device. This clears the CRT screen prior to output or
changes the physical page on HARDCOPY devices.

POSITION (--) Position the pen, scribe, etc., to the given point before changing the page. POSI
TION applies to HARDCOPY files only and may be used only with the PAGE
option. It overrides automatic page repositioning implied by the files P AGE
SIZE attribute.

"edit-format" is a format made up of the existing R format item and/or a G format item with the form: "n G
(attributes)" .
The attributes override those of the output image.

APPENDIX H-EXAMPLE PROGRAM

The program displays a circle and its center point. When the circle is detected upon it gets larger while detection
upon the center point causes the circle to shrink. The character string, 'END-PROGRAM' is displayed and initiates
program termination when detected upon.
/* SAMPLE GRAPHICS LANGUAGE PROGRAM */
SAMPLE: PROCEDURE OPTIONS(MAIN);
Sl: DECLARE

IBM2250 GRAPHIC FILE,

(CENTER,CIRCLE,MENU) ACTIVE(IBM2250) IMAGE,

RADIUS FLOAT BIN(21) INIT(2.0),

LP(3) LABEL;

S2: CENTER = (5.0X+5.0Y);

S3: CIRCLE = ARC((5.0X+5.0Y), VECTOR(RADIUS+5.0, 5.0),360.0);

S4: MENU = 'END PROGRAM',.2" @ (.lX+.1Y);

S5: PUT FILE(IBM2250) SIGNAL;

S6: ON LIGHTPEN IDENT(CIRCLE,CENTER,MENU) BEGIN;

S7: GO TO LP(IDENT);

LP(l): /* DETECT ON CIRCLE */
RADIUS = MAX(RADIUS+0.25, 6.0);
CIRCLE = ARC((5X+5Y), VECTOR(RADIUS+5 5.0), 360Z);
GO TO END;

528 Spring Joint Computer Conference, 1971

LP(2): 1* DETECT ON CENTER *1
RADIUS = MIN (RADIUS-0.25, 0.5) ;
CIRCLE = ARC((5.0X,5.0Y), VECTOR(RADIUS+5.0, 5.0), 360Z);
GO TO END;

LP(3): 1* END PROGRAM *1
ERASE FILE(BW2250);
COMPLETION(ENDPROGRAM) = 'l'B;

END: END;

88: W AIT(ENDPROGRAM) ;

END SAMPLE;

Description of example program

Label

81

S2
83
S4

S5
S6

S7

LP(l)

LP(2)
LP(3)

S8

Discussion

IBM2250 is declared as a file. The device is an IBM 2250 or its functional equivalent. The images:
CENTER, CIRCLE and MENU are declared as ACTIVE on the file IBM2250.
The center of the circle is created as a point at 5.0X and 5.0Y and it is output.
The circle is defined as a 360 degree arc with a 2 inch radius and it is output to the file IBM2250.
The image MENU is given the value of the character string 'END PROGRAM'. It is .2" high
and its lower left corner is at .lX+.1Y.
The console alarm is sounded to indicate the start of the program to the user.
The actions that are to be taken when a lightpen detect occurs are defined. The IDENT option
limits the invocation of the ON unit to the three images named.
The IDENT function returns a 1, 2 or 3 corresponding to the image in the IDENT option (S6
above) that was detected upon. A branch is than made to one of the labels LP(l), LP(2) or LP(3).
The radius of the circle is increased by 0.25 inches. Then the image, CIRCLE, is redefined and
output to replace the previous displayed circle.
The same action as above is taken except that the radius is decreased by 0.25.
The display is cleared and the event variable, ENDPROGRAM, is set to completion to end the
program.
Wait on the end of the program.

ETC-An extendible macro-based compiler

by B. N. DICKMAN

Bell Telephone Laboratories
Whippany, New Jersey

INTRODUCTION

ETC (ExTendible Compiler) is a high level language
compiler that allows the programmer to produce very
efficient code when necessary, getting as close to the
machine as he desires, and yet to write in machine in
dependent statements when the production of opti
mized code is not necessary. The programmer may also
easily extend ETC, creating new data types and opera
tions either from previous extensIons or from the
machine operations (or both) .

Extendible languages come in several forms. One
type allows extensions only in terms of a relatively
high level and complex base language.1 Another ex
tendible language may try for a 'minimal' base lan
guage2 which is still machine independent, with the
idea that if the base language is minimal, the defini
tions of the extensions become more comprehensible.

Many extendible languages depend on some macro
facility for text substitution, but usually the facility
is primitive,! rigid,3 or not implemented. One language
even has two separate macro languages.4 An extendible
language could be extendible only in terms of machine
independent statements, or it could be extendible
'downward', allowing the programmer to define new
operations in terms of machine operations as well.

One test of the downward extendibility of a language
is the degree to which the base language was imple
mented or could easily have been implemented (back
to the machine language) using the primitives intended
for extension of the language. This is not the same as
bootstrapping, since it implies accessibility to the in
nards of the compiler by the user at any level of ex
tension of the language. Furthermore, if one makes
extensions carefully, the programmer who wishes to
make changes to the language need not know anything
about the implementation of the syntax 'below him' or
how the syntax is described.

If one proceeds to extend the machine language
using only the assembler, macro facilities, and a judi-

529

ciously chosen set of primitives, then downward ex
tendibility is ensured.

ETC is such a language. It is an extendible infix
language compiler designed to produce very efficient
code. ETC gives the programmer the advantages of
using a high level language (e.g., relative ease of pro
gramming, documentation, and debugging) without
the usual drawbacks (e.g., the production of inefficient
code). One of the major aims of the language is to do
as much 'bookkeeping' for the programmer as possible
commensurate with the production of efficient code.

A second goal is to provide polymorphic operators
over data types, that is, have the same operator oper
ate on variables of different data types. Thirdly, it is
desired to provide a language that can be incrementally
implemented with relative lease.

An important bookkeeping feature of ETC is the
limited automatic register allocation feature. A way is
provided to divide the registers between explicit use
by the programmer and implicit use by the compiler,
without reserving certain registers for exclusive use by
the compiler. Except for subroutine interfaces, there is
virtually no need for the programmer to know the
number of the hardware register being used. All that
is important is the type of register. Thus ETC keeps
a record of which registers are free and allocates them
as appropriate. For most translators for high level
languages implemented for machines with more than
one register in which to do computations there is a
problem of efficient allocation of the registers. Usually,
memory-to-register and register-to-memory machine
operations consume much more time than do register
to-register operations. Thus it is advantageous to re
tain the intermediate results of computations in regis
ters as much as possible. If the number of intermediate
results exceeds the number of registers, those results to
be used most often should be given priority for re
maining in registers.

The key phrase here is 'most often.' Even if a trans
lator can tell which results occur the greatest number

530 Spring Joint Computer Conference, 1971

of times in a program, the translator cannot tell which
results will be used most often in the execution of that
program. Even the programmer does not always know
which paths will be executed most often. Of course,
certain heuristics can be used, but efficient register
allocation, and for that matter, generation of efficient
code, is not a trivial matter. It is difficult to tell a
language -translator what space-time trade-off one
wants to make. Of course, this does not mean that
optimizing translators are impossible.

The solution here has been to give the programmer
the ability to produce less-than-optimal code when
programming constraints allow programming in a high
level language, and yet give the programmer the Ineans
to produce code as optimized as he wishes without
programming in machine language. The programmer
may name and use the thirty-two machine registers
just as memory locations, except for subscripting.

If the programmer runs out of registers, the trans
lator outputs an error message and lets the programmer
decide which results are most important. A programmer
rarely runs out of registers. In practice, the programmer
who knows nothing about the registers and does not
explicitly use them never runs out of registers.

THE ENVIRONMENT

The SWAP assembler

ETC, the base language and the extended language,
exists as a macro library written in the SW Ap5 macro
language. While the language extension primitives
could be abstracted from the context of the SWAP
assembler, many of the problems of other extendible
languages do not exist in ETC, because ETC is based
on SWAP . SWAP has assembly-time arrays and push
down lists and allows the programmer easily to extend
the assembler symbol table. The programmer can store
and retrieve macro, symbol, and attribute libraries
and can change the input stream while compiling. The
macro facilities constitute a powerful set of text sub
stitution functions.

Since ETC is implemented using the SWAP macro
facilities, the label, commenting, and continuation
conventions of ETC are identical to those of SWAP.
The conventions are as follows;

Labels must start in column one. Machine operations,
pseudo-operations, macro calls, or ETC statements
start anywhere after column one, with one or more
blanks or exactly one comma used to delimit argu
ments. Everything occurring after a "sharp sign", #, is
considered commentary. The "commercial at" sign,
@, is used to denote continuation.

If @ is the last non-blank character on a card, the
next card(s) starting with column one, is concatenated
with the character preceding the @.

The machine

The machine for which the language was imple
mented is similar to the IBM 360. The differences are
that there are no memory-to-memory machine opera
tions; the memory-to-register and register-to-memory
instructions only move data; the machine has a splendid
set of true (immediate) instructions.

The term "labeled common" is used here to refer to
read-write memory. Programs 'reside in read-only
memory. Read-write memory is based, word addressed.
A labeled common region may not overlap a physical
unit of read-write memory, but several labeled common
regions may be defined within one physical unit. Read
only memory is not based.

There are sixteen each of A-registers and B-registers.
A-registers are used primarily for arithmetic opera
tions; B-registers for indexing, basing, and logical
operations.

THE EXTENDED LANGUAGE

General discussion

The application-oriented features will be described
only insofar as necessary to give a basis for under
standing the base language.

The extended language looks somewhat like FOR
TRAN except for the following; ETC statements may
be freely mixed with pseudo-operations, machine opera
tions, and macro calls; arrays may be only singly sub
scripted; and there is a facility for symbolically re
ferring to parts of words.

Features include a DECLARE statement; DO and
IF statements; limited automatic register allocation;
and predefined functions such as FLOAT and SQRT.
Other operations include plus, minus, divide, multiply,
exponentiation, logical 'or', logical 'and'.

The metalanguage used to describe the syntax has
the following conventions. Square brackets denote
optional syntactic entities. In a definition the words in
lower' case or with embedded underscores are to be
treated as metasymbols. That is, they represent the
form of what is to replace them in an actual statement.
All other words and special characters are to be coded
as specified.

ETC uses the lexical token break-out of SWAP.
This allows one to distinguish between assembly time

and run time operations where the same character is
used for both, but it means that blanks have syntactic
significance. In general, no blanks are allowed on both
sides of assembly time operations, but at least one
blank must be on either side of an operator generating
machine code (operators defined by the operation de
fining attributes, OPERATION, BINOP and UNOP).

In ETC all registers which are explicitly referenced
by the programmer must be declared symbolically. All
labeled common regions must be based. This means
that the base address of the labeled common region
which contains the symbol must be in a register, and
the labeled common region name and the register name
must be tied together via a US IN G statement. The
ETC BASE statement does all of this for the pro
grammer.

The "type" and "value" of a symbol locate the con
tents of the symbol in the machine or denote it as a
constant. For example, B-register one has type Band
value one. Attributes, as specified in the DECLARE
statement, may be either locative, as type and value,
or descriptive, as signed and floating.

Example of the extended language

Problem: To search the ten word array LIST and
put the maximum value in MAX.

Solution 1 (Register independent) :

MAX = 0

DO I = OTO 9

IF LIST (I) > MAX THEN MAX = LIST (I)

DOEND

CONCEPTS

The primitives, constituting the base language, are
those features of ETC which are intended expressly
for extending the language. They were used to imple
ment ETC and are available to any programmer.

Extensions to the language are always made by the
compiler to the "beginning" of the language, so that
old definitions of operations, functions, or attributes
may be modified, extended, or replaced completely.

Extensions to the language are generally local to the
program in which they occur. To make extensions
permanent, it is necessary to make them in the pro
gram defining ETC.

MAIN CONTROL

One might wonder how the assembler and ETC inter
act in terms of gaining. control from each other. Es-:
sentially, if SWAP does not recognize a statement as a

ETC 531

prefix operator with arguments, it is passed on to ETC
via a redefinition of NONOP (the pseudo-operation
called by SWAP for undefined operations) as a macro.
This macro is the main driving routine. It does print
formatting and calls the scanner. The scanner is a
macro whose definition is extended (always at the
beginning) by OPERATION, BINOP (binary opera
tion), UNOP (unary operation), and FUNCTION at
tribute declarations (and, of course, by any attribute
defined by the programmer in terms of these attri
butes). Actually, BINOP, UNOP, and FUNCTION
are all defined in terms of the OPERATION attribute.
BINOP, UNOP, and FUNCTION also output in
formation for use by the general expression parser,
which OPERATION does not. Syntax determination
of whether to call the parser was itself done as an
OPERATION declaration.

The default on the data type of the result of an
operation or function evaluation is the data type of the
first operand or argument. Explicit specification to the
parser of the resultant data type may be made in the
implementation of the operation or function by an ap
propriate declaration of the ETC system symbol
SYS_R_TYPE.

Defining operations

Several attributes may be used in a DECLARE
statement to define operations.

OPERATION is the· general operation defining at
tribute. Its form is

DCL operationname OPERATION(booleanexpression)

where

operationname is the name of the macro to be called if
booleanexpression is true. The boolean expression may
combine as much syntax and semantic analysis as the
programmer desires. booleanexpression can be any
SWAP macro language boolean expression but will
usually be in terms of SYSLST (1) to SYSLST (m) ;
where SYSLST (i) is the ith token in the source lan
guage statement.

OPERATION is generally used to define operations
which are not binary or unary operations, to extend the
definition of an existing operation to handle new data
types, to improve the code generated from an existing
definition, and to correct bugs in the code generation
for an existing operation.

For instance, one might have the '+' operation
implemented for fixed and floating point quantities
and want to extend '+' to handle matrices. One would
use the ATTRIBUTE attribute to introduce a
MATRIX attribute and then specify an OPERATION

532 Spring Joint Computer Conference, 1971

declaration which detects not only the syntax involved
in the addition operation, but also the fact that matrices
are being added. Then a macro is defined to do code
generation for this specialized form of '+'.

Also, a programmer might discover a 'trick' by
means of which a specific combination of operands and
operations may be made to produce more efficient
code than for the general case. He might specify an
OPERATION declaration to detect this special case
and write a macro to generate the code. No knowledge
about the implementation of the operation, other than
that of the specific case detected, would be required.

Finally, an OPERATION declaration may be used
to detect syntax and semantics of the special case of
an operation for which the code generation is incorrect
and to extend the compiler to generate the correct
code.

The UNOP and BINOP attributes are used specifi
cally to define unary and binary operations.

Used in conjunction with UNOP and BINOP is the
PRECEDENCE attribute. Its argument is the rela
tive or absolute precedence to be given the operator.

If not explicitly specified, the precedence of an opera
tor defaults to the currently highest precedence plus
one.

The RIGHT_TO_LEFT_SCAN attribute is used
in conjunction with the BINOP attribute to indicate
that the direction of scan of operators of equal prece
dence is to be from right to left. Default scan for
BINOP is from left to right.

Defining functions

The form for the function attribute is

DCL name FUNCTION[(macroname)]

where name is the name of the function and also the
name of the macro to be called for code generation,
unless macroname is specified. The code generation
macro is passed an argument list of form

variable = functionname (arguments)

and must perform the assignment to variable of the
result of evaluating the function.

Example: A SIN function which calls a SIN subroutine expecting its argument and returning its result in A-
register 0 might be coded as follows:

DCL SIN FUNCTION
MACRO
SIN

SYSLST(3,1) IS THE ARGUMENT OF THE THIRD TOKEN, I.E.,
THE ARGUMENT OF SIN.

AO = SYSLST(3,1)
CALL SIN

SYSLST(l) IS THE FIRST TOKEN, I.E., THE VARIABLE ON
THE LEFT HAND SIDE OF THE EQUAL SIGN.

SYSLST(l) = AO
MEND

In general SYSLST(i) is a way of referencing parameters to a macro call. SYSLST(i) is local to the macro in
which it appears. (Nested macro calls "push" SYSLST.)

The function may now be used in any expression.

For example:

x = Y + SIN(Z(l)) *2.0

Compile Time Bookkeeping
Attributes of Symbols

Symbol Table Equivalence: EQV

Whereas the SET pseudo-operation will set only the
value and type of one symbol to that of another, EQV
may be used to copy the whole symbol table entry.
This is especially useful when implementing an opera-

tion recursively, or when bootstrapping. Often one
wants to give a register variable the same attributes as
a memory variable.

Or suppose one has implemented an IF statement
in a straightforward manner. Consider the comparison
to less-than-zero of a signed variable fewer than 32 bits
long whose high order bit occupies the high order bit
of a word. (In ETC variables are allowed to be parts
of words.) Our present implementation would prob
ably unpack this variable from the word, propagate the
sign, compare it to zero, and branch accordingly. In

most twos complement machines it would be simpler to
test the whole word as being negative and branch ac
cordingly without unpacking the variable from the
word.

We might extend IF to detect this particular com
parison; use EQ V to define a new variable the same as
the old, except make the new variable a full word
variable; and recurse, expanding the IF macro with a
'less than zero' comparison.

The syntax of EQV is as follows:

sym1 EQV sym2

where syml and sym2 are symbols, will set the value,
type, and all attributes of syml to those of sym2. If
sym2 is a constant, defaults for the attributes are used.
Particular attributes of sym2 may be overridden by the
use of a number of optional keyword parameters:

VALUE = n sets the value of syml to n.
STYP = char sets the type of syml to char.
SIZE = n sets the size of syml to n

Example:

DISP=n
SUF=n

FIXED=n

FLOAT=n

ETC 533

set the displacement of syml to n.
sets syml to be signed (SUF= 1) or

unsigned (SUF=O).
indicates that syml is fixed if n is 1,

not fixed if n is O.
indicates that syml is floating if n is 1

not floating if n is O.

Defining attributes

New attributes may be defined by use of the ATTRI
BuTE attribute. The form of ATTRIBUTE is

DCL name ATTRIBUTE[(macroname)]

where name is the name of the attribute and also the
~ame of the macro to be called by DECLARE for
processing the attribute, unless macroname is specified.
The attribute processing macro is passed its argu
ments with the variable name starting in column one,
and with the contents of the attribute subscript, if any,
passed as argument list.

The following example, the implementation of the FUNCTION attribute, illustrates the use of the ATTRIBUTE
attribute:

DCL FUNCTION ATTRIBUTE (SYSDFNFN)
MACRO

FN_NAME SYSDFNFN MACRO_NAME
DCL IS ('MACRO_NAME'--, =,MACRO_NAME)IFNOT(FN_NAME) OPERATION@

(I.N.I.SYSLST =3&'I.SYSLST(2) , =' = '&'I.O.I.SYSLST(3) , = 'FN_NAME')
MEND

Explanation: If the optional macro name
(MACRO_NAME) is supplied, it is to be used as the
name of the code generation macro, otherwise, the
function name is assumed to be the name of the code
generation macro. In any case, FUNCTION is defined
as an operation with exactly three tokens, where the
second token is '=' , and the 'operand' part of the
third token is the name of the function. (The 'operand'
part consists of everything in the token up to a left
parenthesis.)

The argument of the DEFAULTS attribute is the
name of a macro to be called to handle defaults. When
used in conjunction with the ATTRIBUTE attribute,
DEFAULTS associates the attribute with the name of
a macro to be called by DECLARE after the last ex
plicit attribute has been processed. The macro to be
called is the one associated with the last explicitly
specified attribute. Usually, the same macro will be

specified for each attribute in a set of consistent at
tributes.

Register allocation and deallocation

ACTIVATE and DEACTIVATE are the problem
programmer oriented register allocation pseudo-opera
tions. ALLOC and DEALLOC are primitives essen
tially for allocating and de allocating "rock bottom"
scratch registers. There is limited automatic register
allocation. No "flow analysis" is done, so that the auto
matic register allocation mechanism generally is valid
only for straight line segments of code i.e., where the only
entry points or exit points are at the beginning or end
of the segment.

Three attributes are necessary for data declaration
purposes: REG where the specific numerical register

534 Spring Joint Computer Conference, 1971

designation is left to the automatic register allocation
mechanism, and AQU and BQU for static allocation of
registers.

The syntax for the register allocation attributes is as
follows:

DCL name AQU(number)
DCL name BQU(number)
DCL name REG (type)

The third form would declare name to be a particular
type (A or B) of register. It would not allocate a regis
ter. The first two forms specify both type and number
of register.

The form for the allocation pseudo-operations is:

ACTIVATE list
DEACTIVEATE list

The elements of list are register names, that is, they
have been declared to have the AQU, BQU, or REG
attribute. If the register to which the symbol refers
previously has been statically allocated (i.e., through
an AQU or BQU attribute), no allocation is done; the
automatic allocation mechanism is merely notified that
this register is free (DEACTIVATE) or that it is in
use (ACTIVATE). The abbreviations ACT and
DEACT are allowed.

If the register to which the symbol refers has been
statically allocated and is being deactivated, the value
of the symbol is "taken away". If the symbol has no
value and is being activated, it is given a value by the
automatic register allocation mechanism.

If the symbol has been declared using REG (A),
ACTIVATE finds a free register, gives its value and
type to the symbol, and marks the appropriate register
busy. In this context a register is considered free if it
has not been designated as an argument to AQU and
is not marked busy.

If the symbol has been declared using AQU (num)
or BQU (num) , ACTIVATE gives the symbol the value
num, the appropriate type, and marks the appropriate
register busy.

DEACTIVATE undefines its arguments and erases
the busy mark for the appropriate register.

Uses of ACTIVATE and DEACTIVATE include
automatic allocation of registers to scratch variables
and the means to tell when a register no longer con
tains a particular variable (just as the IBM 360 Assem
bler DROP avoids the problem of using a register that
on longer contains a base address).

AQU and BQU do not define the symbol in the
DCL statement. The symbol will be undefined until an
ACTIVATE statement is processed at which time it

will be defined with the value designated with the
AQU or BQU attribute.

Here is the previous example of the extended lan
guage, coded. using registers to avoid generating re
dundent fetches and stores:

DeL RMAX REG (A)
ACTIVATE RMAX #ALLOCATE A REGISTER
RMAX = 0
DO I = 0 TO 9

IF LIST(I) > RMAX THEN RMAX = LIST(I)
DOEND
MAX = RMAX

There is an inverse, IQU, for AQU and BQU. This
pseudo-operation will change the designated symbol
from static allocation to automatic allocation. That is,

DCL VAR AQU(3)
IQU VAR

is equivalent to

DCL VAR REG (A)

That is, registers in use by the programmer are ex
plicitly marked via ACTIVATE and DEACTIVATE,
and all others are available for temporary use (within
a statement) by the compiler via ALLOC and
DEALLOC.

ALLOC finds a free register, gives its value to the
symbol, and marks the register busy. In this context a
register is free if it is not marked busy (whether stati
cally allocated or not). ALLOC assumes that its argu
ment has a register type defined before ALLOC
is called. ALLOC may be used in preference to
ACTIVATE when defining an operation, since one is
assured that no ACTIVATE of statically allocated
registers will occur during the compilation of one
statement.

DEALLOC is the inverse of ALLOC. It is similar
to DEACT except that it does not "undefine" (i.e.,
push) its argument. It only erases the busy mark for
the appropriate register.

The philosophy of register allocation

We make it necessary for the programmer to activate
each register explicitly for several reasons: (1) At any
point in the program one can easily see what registers
are in use; (2) a statement is automatically flagged if
a register not containing an expected value is used;
(3) while the register is inactive, ETC can use it in
ternally as a scratch register for one ETC statement;
(4) subroutine interfacing, via passing arguments in
registers, is made easier.

Notice that the use of many statically allocated

ETC 535

registers nullifies the usefulness of the automatic alloca
tion feature. No register that has been statically allo
cated (i.e., through use of AQU or BQU) can also be
dynamically allocated (i.e., through use of REG and
ACTIVATE). This is true for the same reason that
memory that has been statically allocated cannot also
be dynamically allocated. It is advantageous to leave

the specific register undesignated by using REG
wherever possible.

Generating diagnostics: DIAG

The capability of automatic register allocation buys
several advantages, but it also has one penalty: if it is
to work effectively, it must have registers to allocate.
Thus sparing use must be made of the static allocation
attribute.

DIAG is a ETC primitive which is used to generate the diagnostics printed by ETC. DIAG will check the diag
nostic level then in effect and, if the level of the diagnostic to be printed is not less than this diagnostic level, the
diagnostic will be printed. DIAG also allows the user to prefix and suffix his message with standard phrases. Output
of error flags is accomplished by specifying the flag in column one of the DIAG call. A typical DIAG call is

DIAG LEVNO=4,PREFIX=8,SUFFIX=I,SUBTRACTION

which will cause the following diagnostics to be printed if the diagnostic level is less than or equal to 4.

****MIXED MODE SUBTRACTION NOT IMPLEMENTED

The problem programmer may use the pseudo-operation DIAGNOSTIC_LEVEL to specify that no diagnostic
less serious than that of a specified level be printed.

USING THE PRIMITIVES

A n inner product operator

Suppose one wanted to define the inner product of two three-dimensional vectors:

V3 = VI . V2

where VI and V2 are each the first word of blocks of three words. One could write

DCL . BINOP(DOT)
MACRO
DOT V3 EQ VI D V2

V3 = VI:(O) * V2:(O) + VI:(I) * V2:(I) + VI:(2) * V2:(2)

#THE COLONS ABOVE INDICATE CONCATENATION. WITHOUT THE COLONS,
#THE SUBSCRIPTED SYMBOLS WOULD BE TAKEN TO BE SUB PARAMETER
#REFERENCING.

MEND

A square root function

#THIS IS THE DEFINITION OF A FUNCTION TO TAKE THE SQUARE
ROOT OF A VARIABLE

DCL SQRTF FUNCTION
MACRO
SQRTFXEQY

#CALL A SUBROUTINE TO EVALUATE THE SQUARE ROOT
#ASSUME IT TAKES TWO ARGUMENTS: LOCATION TO STORE RESULT
AND INPUT VALUE.

536 Spring Joint Computer Conference, 1971

SQRT_SUB X,Y(1)
MEND

#NOW SUPPOSE WE HAVE A MACHINE
#OPERATION, FSQRT, WHICH TAKES TWO A-REGISTERS AS ARGUMENTS
BUT WORKS ONLY FOR FLOATING VARIABLES.

MACRO
SQRTF X EQ Y

#IF FIXED, CALL THE OLD SUBROUTINE
IS(FIXED(Y(1)), SQRT_SUB X,Y(l) ; JUMP .OUT)
#IF X AND Y(l) ARE BOTH A-REGISTERS, GENERATE THE MACHINE OPERATION
IS('MTYP(X)'='A'='MTYP(Y(l))', FSQRT X,Y(l) ; JUMP .OUT)
#IF X IS AN A-REGISTER, USE IT AS A SCRATCH REGISTER AND RECURSE
IS('MTYP(X)'='A', X = Y(l) ; X = SQRTF(X) ; JUMP .OUT)
#OTHERWISE, ALLOCATE A SCRATCH REGISTER AND RECURSE
TMP EQV O,STYP=A ; ALLOC TMP

TMP = SQRTF(Y(l))
X = TMP
DEALLOCTMP
MEND

Complex arithmetic

We will define the attribute COMPLEX and extend the operations "+" and "-" to handle unsubscripted
floating variables of type COMPLEX. The functions REALPART and IMAGPART will also be defined.
#THIS STATEMENT DEFINES THE ATTRIBUTE "COMPLEX"
#SYNTATICALLY. IT SAYS "CALL THE MACRO "CMPLX"
#TO EVALUATE THE ATTRIBUTE "COMPLEX"".

DCL COMPLEX ATTRIBUTE (CMPLX)

#THIS MACRO PROVIDES THE SEMANTICS FOR THE "COMPLEX" ATTRIBUTE.

MACRO
VARCOMPLX

DCL VAR BSS(2) FLOAT

#THE FOLLOWING STATEMENT MAKES AN ENTRY INTO THE SYMBOL TABLE
#DEFINING THE "COMPLEX" ATTRIBUTE OF VAR TO HAVE VALUE ONE.
#THIS KIND OF STATEMENT ALSO DEFINES THE ATTRIBUTE
#FOR ALL SYMBOLS IN THE SYMBOL TABLE. UP TO 255
#ATTRIBUTES ARE POSSIBLE (WITHOUT PACKING).

COMPLEX(VAR) SET 1
MEND

#THIS STATEMENT EXTENDS THE COMPILER TO RECOGNIZE THE
#ADDITION OR SUBTRACTION OF TWO COMPLEX VARIABLES.

DCL CMPLXOP OPERATION (N .SYSLST = 5&ANY ("SYSLST (4)"," +"," -") @
&COMPLEX(SYSLST(l)) =COMPLEX(SYSLST(3)) =COMPLEX(SYSLST(5)) =1)

#THIS MACRO DEFINES THE SEMANTICS OF ADDITION AND SUBTRACTION
#OF COMPLEX VARIABLES.

MACRO
CMPLXOP X EQ Y OP Z

#THESE THREE COMPILE TIME STATEMENTS DEFINE THREE REAL
#V ARIABLES OCCUPYING THE FIRST WORDS OF X, Y AND Z
TMPX EQV X,COMPLEX= O;TMPY EQV Y,COMPLEX=O;TMPZ EQV Z,COMPLEX=O

TMPX = TMPY OP TMPZ

#THESE THREE STATEMENTS DEFINE THREE REAL VARIABLES (REDEFINE
#TMPX, TMPY AND TMPZ) OCCUPYING THE SECOND WORDS OF X, Y AND Z.
TMPX EQV TMPX,VALUE=TMPX+1
TMPY EQV TMPY,VALUE=TMPY +1
TMPZ EQV TMPZ,VALUE=TMPX+1

TMPX = TMPY OP TMPZ
MEND
DCL REALPART FUNCTION
DCL IMAGPART FUNCTION
MACRO
REALPART A EQ FNCALL

#FNCALL(l) IS THE FIRST SUBARGUMENT OF FNCALL. HERE FNCALL(l)
#IS THE ARGUMENT OF THE FUNCTION REALPART, SINCE THE REALPART MACRO
#IS FED THE FUNCTION CALL AS PART OF AN ASSIGNMENT STATEMENT.
TMPX EQV FNCALL(l),COMPLEX=O

A = TMPX
MEND
MACRO
IMAGPART A EQ FNCALL

TMPX EQV FNCALL(l) ,COMPLEX=O,VALUE =FNCALL(l) +1

A = TMPX
MEND
DCL CMPLXASSIGN OPERATION(N.SYSLST=3&COMPLEX(SYSLST(1)) =1&@

COMPLEX(SYSLST(3)) =1)

MACRO
CMPLXASSIGN X EQ Y

TMPX EQV A,COMPLEX=O
TMPY EQV Y,COMPLEX=O

TMPX = TMPY

TMPX EQV TMPX,VALUE=TMPX+1
TMPY EQV TMPY,VALUE=TMPY +1

TMPX = TMPY
MEND

ETC 537

DISCUSSION relationship shared by any base language and its ex
tensions.

Downward extendibility probably limits the re
sultant language to the same structure as that of the
assembly language (if the assembler does not have
block structure, it will be very difficult to graft this
onto the extended language). But perhaps this is a

Code optimization on a global (i.e., more than one
statement) scale is very difficult, if not impossible.
However, on a statement-by-statement level one can
produce very efficient code relatively easily. Allowing
the programmer access to machine registers and ma
chine operations facilitates further optimization.

538 Spring Joint Computer Conference, 1971

In test cases coded both in ETC and machine lan
guage, ETC generated less than ten percent more code
than the machine language programs with substantially
less coding time for the ETC programs.

The extendibility of the language has proved to be
especially useful on a large project with stringent pro
gramming schedules where it was not clear in advance
what features the particular language should have.
Programming began in assembly language and parts of
the extended language were used as implemented.

Finally, extendibility makes maintenance of the
compiler simpler. It is not necessary to know anything
about the implementation of an operation in order to
correct a bug in code generation. The language may
easily be extended to detect the particular case for
which wrong code is generated and to generate the
correct code.

ACKNOWLEDGMENTS

Mr. C. B. Hedrick, Miss V. L. Bishop, Mr. D. J.
Desmond, Mrs. I. T. Pelak, and Mr. D. J. Sidor have

contributed to the implementation of the language.
The author would like to thank Messrs. D. Bzowy,
R. R. Conners, P. D. Jensen, and J. S. Walden for
many helpful discussions.

REFERENCES

1 J NICHOLLS
P L / 1 compile time extensibility
SIGPLAN Notices Boston Mass Vol 4 No 8 pp 40-441969

2 B J MAILLOUX J E L PECK
Algol 68 as an extendible language
SIGPLAN Notices Boston Mass Vol 4 No 8 pp 9-13 1969

3 W M WAITE
A Language independent macro processor
Comm ACM Vol 10 No 9 pp 433-4401967

4 A L SPRINGER
Extensible languages
Notes for Advanced Topics in Systems Programming
University of Michigan Ann Arbor Michigan 1970

5 M E BARTON
The macro assembler, SWAP
Proceedings of the Fall Joint Computer Conference AFIPS
Press Montvalle New Jersey Volume 37 pp 1-8 1970

A file organization method using multiple keys

by MICHAEL L. O'CONNELL

Sanders Associates, Inc.
Nashua, New Hampshire

BACKGROUND

The nature of mass storage hardware is such that each
data record stored in a given file is given a unique
identifier. That identifier, or key, may be the phys
ical address of the record, either absolute or rela
tive to some fixed point,· or it may be a key which is
made up of some combination of the record's character
istics, such as the contents of a specific field within the
record. Thus, in a personnel file, the record of "John
Smith" may be given the key of "19" (if it is the
nineteenth record in the file), or "01230402" (if it is on
device 01, cylinder 23, track 04, the second record), or
"15216" (if John Smith's employee number is 15216).
Regardless of the method used to assign the key,
however, all keys for records in anyone file must be
unique, i.e., no two records may possess the same key
value. The reason for this restriction is obvious: two
records cannot share the same physical address because
two records cannot share the same physical space, and
two records sharing the same key would lead to am
biguity, i.e., a command containing the non-unique key
would not be sufficient to enable the hardware to
determine which of the several records containing that
key was to be accessed.

Current hardware, then, requires that each data
record be identified by one and only one key, whose
value is unique to that file, even though that key may
be comprised of more than one logical data field.

USER REQUIREMENTS

The user of data records in a mass storage file is
frequently hampered by such key restrictions. This is
especially true with on-line applications in which many
users access the same records for different information.

For example, an accounts payable record may be
needed by one user who knows only the vendor number,
by another who knows only the vendor's name, and by

539

still another who knows only the product purchased
from the vendor. Hardware requires that a specific
piece of data (the key) be used in accessing the record.
In this example, vendor number would probably be the
key, and the two users who don't know the vendor
number would be required to look it up manually before
they can request the record. And, of course, if the
information needed is a list of vendors who had supplied
a specific product, it would be impossible to get without
looking at all records in the file, because, even if product
were the key, a given product might appear in more
than a single record, leading to duplicate keys.

The user needs to be able to access a record if he knows
any.pertinent information about that record, and he
needs to be able to access a.ll records which contain a
common value.1 A software system which permits both
these functions has been implemented. Named SAD 1*
(Sanders Associates Direct Indexing), the system IS

used in both on-line and batch environments.

GENERAL APPROACH

SADI forms a software interface between the user,
with his multiple and non-unique keys, and the hard
ware/operating system, with its single and unique keys
(Figure 1). It accepts a key from the user and selects
one or more data records containing that key, which are
then passed to the user serially.

Because of the high activity and number of keys
involved, the data records are stored in a file separate
from the keys. This approach permits key searching to
proceed independent of data a~cessing. In addition,
since the keys are usually significantly shorter than the
data records, the directory file consisting of all the keys
can be searched much more efficiently than could a
combined file. A data file and its associated directory
file are known collectively as a "user file".

* T.M., Sanders Associates, Inc.

540 Spring Joint Computer Conference, 1971

USER
SADI

PROGRAM

r -;;~-~I-; - -,
I SOF'l'l/ARE

I

I

DII!ECT
ACCESS
METIIOD

IIIDEXED
SEQUENTIAL

ACCESS
METHOD

L _____ .J

Figure I-System configuration

A third file containing a description of the data and
keys is also created and used by SAD!. The descriptor
file is used primarily during the creation of data records
to identify and extract keys from the data for inclusion
in the directory file.

THE DESCRIPTOR FILE

There is only one descriptor file in the entire system,
regardless of the number of user files. Each record in the
descriptor file describes one user file (Figure 2).

The descriptor file has a direct organization, and each
descriptor record's key as known to the hardware/
operating system is the directory file name which
appears in that record.

In order to create a new user file, the application
programmer supplies the information required for the
descriptor record (file names, key locations, and char
acteristics), and any data records that are to exist in the
original file. SADI then creates the descriptor record
and uses it and the user data to build the directory file
and the data file.

The "mode" of each key field is specified in order to
convert the user's request key, which is alphanumeric,
into the proper format (packed, binary, floating point,
etc.) for the directory searching operation.

THE DIRECTORY FILE

The directory file has an indexed sequential organiza
tion, i.e., records can be accessed at random or sequen
tially. There is one directory file per data file. There is

one directory record (Figure 3) for each key which
appears in each data record. Thus, a data file consisting
of 1,000 records, each with five keys, requires a direc
quence by data 5,000 records. The directory file is in se
tory file of key.

The length of the data key field is fixed in any given
directory file, but different directory files may have
different length data key fields. The length of the data
key field is equal to the length of the largest key in the
corresponding data file. Data keys shorter than the
maximum are left-justified in the directory file and filled
to the right with null values. This insures the proper
sequence in the directory file.

The key number indicates which key field in the data
record contains the value in the associated data key
field. The programmer must assign a key number to
each key field in the data record. Keys numbered from
one through ten are called "secondary" keys, and any
key numbered zero is called the "primary" key. It is not
necessary to assign a primary key, but there are
significant advantages to be gained from its use, as
discussed later.

The third field in each directory record is the relative
physical location of the data record (in the data file)
which contains this particular data key.

The key by which a given directory record is known to
the hardware/operating system is the entire directory
record. Even if two data records contain the same key
value and key number, their different physical addresses
assure a unique directory record. Similiarly, if one data
record contains the same value in two different key
fields, uniqueness in the directory file is assured by
different key numbers assigned to the two key fields.

THE DATA FILE

The data file is the simplest of the three SADI files
(Figure 4). It has a direct organization, and contains all
the user's data. The key of each data record is the
record's physical location relative to the beginning of
the file, assuring a unique key for each record. The keys
shown in Figure 4 are the keys known to the user and
which appear in the directory file; they are not the keys
by which the data record is known to the hardware/
operating system.

DIREC'l'OIIY
FILE _

Figure 2-A descriptor record

File Organization Method Using Multiple Keys 541

System ~8criptor File

POINTER TO
DATA KEY

NUMBER DATA RECORD

Figure 3-A directory record ~
The data file can be accessed only by first reading a

directory record, and obtaining from it the pointer to
the appropriate data record.

CREATING A USER FILE

Creating a user file is a three step process:

1. The descriptor record is created and written into
the system's descriptor file.

2. The user's data is read sequentially and written
into the data file. As each data record is pro
cessed, information in the descriptor record is
used to extract key information from the data
record, build a directory record, and write it in
a work file.

3. The work file is sorted into sequence by data key
and written into the directory file. The work file
is then scratched.

The relationship between the files and records is
shown in the example of a personnel file without a
primary key in Figure 5. There are three data records
with three keys each; there are nine directory records in
the directory file.

ACCESSING A DATA RECORD

The entire system of files is known to the user only by
the name of the directory file. When the user names the
file he requires with the command FILE EMPLOYEE ,
SADI brings into memory the corresponding record
from the descriptor file. The directory file and data file
are then located in preparation for a user request.

When the user requests access to a data record with
the command SHOW JONES, the directory file
EMPLOYEE is accessed and the record with the key
of JONES is brought into memory. (Partial, or generic,

i
De1ete

Character

KEY 2 KEY 3

·1

Figure 4-A data record

De.t. lCeJ' Jte> Do. ..

Ito· ~::.. I

JOIIES BARRY B. 01 00001

<II1TH, 30IIII Q. 01 00002

Dot.lo,ee K_ Dot. Zip Code Dept. Ro. ~
~,GllCllGER. 01 00003 (1) ... JOIlES, HARRY H • 0307'l 19413 7
03078 02 00001 (2) <II1TH JOIIII Q. 19~13 12608

.,
03078 02 00003 !3l <II1TH, GI!ORGI! R. 03078 03078 "4
03078 03 00003
l2608 03 00002

19013 02 00002

19413 03 00001 -1f t r f
7

Record -- Irq 1 Irq 2 Key 3

Delete
Character

Figure 5-Record and file relationships

keys such as this are discussed later.) The data record
pointer (00001) is used then to read the first record in
the data file and turn it over to the user.

If the user specifies SHOW 19413, SADI accesses the
first occurrence of the key 19413 (Zip Code), which
points to the second data record. If the user's intent,
however, is to access department number 19413, he can
specify SHOW 19413(3), which indicates that he wants
to access a data record in which 19413 appears as the
third key field, department number. If the possibility
of more than one employee in department 19413 exists,
the user specifies the command BROWSE 19413(3),
and SADI passes to the user, one at a time, all data
records in which 19413 appears as the third key.

A DELETE 03078(2) command, however, leads to
amibiguity, because the request refers to two data
records. Primary keys are used to resolve this problem.

PRIMARY KEYS

As stated earlier, the applications programmer can
specify one key field in a data record to be the primary
key (key number zero). All other keys in the data
records are secondary keys.

SADI does not permit more than one data record to
contain the same primary key value. Thus, the primary
key is used to identify, without ambiguity, a particular
data record. This ability is especially- useful in deleting
and revising data records.

If the files in Figure 5 had been defined with a
primary key, the user could access a given record with
no ambiguity by specifying the unique key value, such
as Social Security number or employee number.

542 Spring Joint Computer Conference, 1971

ADDING A DATA RECORD

When the user passes a data record to SADI with an
ADD request, SAD I performs the same process that it
does when the data file is initially created: it writes the
data record into the data file, extracts and builds a
directory record for each key in the data record, and
inserts the directory records, in key sequence, into the
directory file. If the data file has a primary key, SADI
insures that the data record being added to the data
file has a unique primary key.

DELETING A DATA RECORD

If a data file has no primary key, a DELETE
request has questionable meaning and value. Any key
value specified by the user could be contained in many
data records, and the user's intent is not clear: should
all data records containing the cited key value be
deleted, or should just one be deleted? If one, which
one? Because of the inherent ambiguity of such a
condition, SADI does not permit data record deletions
if no primary key exists.

If a data file has a primary key, that key must be
cited in any DELETE request for that file. Otherwise,
the ambiguities mentioned above would occur.

A DELETE request implies that all directory
records which point to the deleted data record must also
be deleted. Because the secondary key records are
dispersed throughout the key file, the following pro
cedure is used:

1. The primary directory record is brought into
memory, giving access to the data record
pointer.

2. The data record is brought into memory.
3. The secondary key values found in the data

record are used to locate and delete each
secondary directory record.

4. The primary directory record is deleted.
5. The data record is deleted.

The sequence of record deletions (secondary directory
records, primary directory record, data record) insures
that system crashes which occur during the process do
not leave pointers to deleted records. The worst that
can happen is to be left with a data record and no
directory records. The data record is then inaccessible
(the DELETE intended it that way!) and merely
occupies "dead space" in the file.

REVISING A DATA RECORD

Data record revisions fall into three categories:

1. Data only is revised (no change to key values).
2. Secondary key values are changed (with or

without other data changes).
3. The primary key value is changed (with or

without other changes).

The first case (no key value changes) is simplest: The
data record is read, revised, and rewritten. The directory
file remains unaltered.

In the second case (secondary keys revised), when the
user passes the revised data record to SADI, SADI
compares all the new secondary key values with all the
old secondary key values. For each secondary key which
has been revised, SADI deletes the old secondary
directory record and writes, in sequence, a new
secondary directory record. The revised data record, of
course, is rewritten into the data file.

Revision of the primary key is equivalent to request
ing a new copy of the data record. When SADI discovers
that the user has revised the primary key, it writes the
revised record as a new record into the data file, then
creates and writes the necessary primary and secondary
directory records into the directory file. If the user's
intent is not to copy, but truly to revise, he can then
issue a DELETE request, citing the old primary key.

Revisions of data files without primary keys fall, by
definition, into the first two categories, and are handled
as described above.

PAGING THROUGH THE DATA FILE

The directory file is ideally suited for use in accessing
data records sequentially by any or all keys. Its indexed
sequential organization permits the first directory
record for a given key value to be found immediately;
the directory file can then be read sequentially from that
point forward, thereby permitting sequential access of
the directly-organized data file.

Page through the data file is accomplished through a
BROWSE request. If no key is specified in the request,
the first (sequential) record in the directory file is
accessed. Upon a CONTINUE request, each successive
directory record is read and its corresponding data
record is passed to the user.

Generic key values may be specified in user requests.
If the key in the user request contains fewer characters
than exist in the key field, SAD I accesses the first
directory record which matches the request value,
matching on only as many high-order characters as

exist in the user request. Thus, if the user requests
BROWSE 17 in a Zip Code file, the first record accessed
would be for Zip Code 17014, or 17000, or whatever Zip
Code is lowest in the 17000 series. This facility is useful
if the user is not aware of any specific key value, but
knows only the general area of the file he wishes to
search. Generic keys may vary in length from ,one
character up to the total key length. The user may thus
be as general or specific in his request as he chooses.

SYSTEM MAINTENANCE

The "deletion" of a mass storage record is not done
by erasing the record, but by writing a special character
in a reserved location in the record. Each record read is
checked for the presence of the special character; if
present, the record is ignored.

SADI never reads a "deleted" data record, because its
directory records are also "deleted". However, as
activity in the files increases, the number of deleted
directory records increases, and SAD I spends more and
more time reading and then ignoring deleted records. At
some point in time, it becomes more economical to
recreate the directory file by copying it and dropping
the deleted records. Available file space may also
become depleted.

If conventional indexed sequential file organization
were used, instead of SADI, the process of copying the
file would, of course, entail copying all the data as well
as the keys. SADI requires that only the keys (contained
in the directory file), which are usually significantly
shorter than the data, be copied, resulting in a much
more efficient maintenance system.

The descriptor file and the data files do not contribute
to system inefficiencies due to deleted records, because
of their direct organization. Lack of available file space
is the only reason for copying these files.

Since the descriptor file has low activity, it rarely, if
ever, requires maintenance. The data files, however, do
periodically require recreation, although not nearly so
often as the directory files. The copying process would
modify the relative record addresses of most data
records, however, rendering the pointers in the directory
records useless. Therefore, at a convenient time when
both a data file and its directory file need "cleaning up",
the original file creation process is repeated, using the
existing data file as input to create an entirely new data
file and direct~ry file. The corresponding old files are
then scratched.

SYSTEM INTERFACE

Although the primary use of SADI today is in an
on-line environment, its interfaces with the rest of the

File Organization Method Using Multiple Keys 543

system use standard conventions, so that COBOL,
FORTRAN, and PL/I programs can call SADI to
perform its functions on their behalf. It has proven
useful in batch programs which perform random· file
updates and matching functions.

The user does not describe his files or reference them
through the standard operating system methods.
Instead, he issues a call to SAD I and passes the
appropriate parameters, such as file name, command,
and key value. In COBOL, for example, the user might
code CALL SADI using "EMPLOYEE", "ADD",
"19413".

SYSTEM IMPLEMENTATION

SADI is implemented on the IBM System/360 under
Operating System/360. It uses the IBM-supplied
Indexed SequentiaJ and Direct Access Methods.
Because there is no modification whatsoever to any
vendor-supplied software, SAD I is independent of new
software releases. It requires 6,800 bytes of storage.

FUTURE IMPROVEMENTS

There are several functional and operational improve
ments currently under consideration.

The implementation of mnemonic key numbers
would appear to be of value to the user. With such a
feature, the user could specify SHOW 03078(ZIP) when
he wants to access a record with that specific Zip Code;
he would not have to know that Zip Code is the second
key in the data record as he does now. Implementation
is simple: expand the descriptor record to contain the
mnemonic name of each key field, and, upon a request,
translate the user's mnemonic name into the correspond
ing key number. Search of the directory file then
proceeds as it does today.

Another study is under way to examine the tradeoffs
involved in maintaining a directory of deleted data
records for use in assigning addresses to new data
records. Although updating and searching this directory
would introduce new overheads, maintenance of the
(possibly) large data file would be totally eliminated.
Our results so far indicate that such a system can be
implemented economically, both from a programming
and operating standpoint.

If ultimately installed in our system, it will probably
become an option rather than a requirement. The
application programmer can then make the choice of
whether or not to include the option, based on his
knowledge of the data file size. The advantages of using
the deleted-record directory increase as the number of

544 Spring Joint Computer Conference, 1971

records in the data file and therefore the maintenance
cost increases.

CONCLUSION

SADI provides two valuable functions normally avail
able only in expensive data management systems: access
of data records by naming anyone of several key values
in the record, and accessing all data records which
contain the same key value. Yet the initial implementa
tion of SADI was accomplished at an estimated cost of
less than $10,000. With the use of information contained
in this paper, it is hoped that the user who needs these
functions can implement his own system for signifi
cantly less.

Besides the enhanced functions, the system improves
throughput over conventional methods by searching
short directory records instead of longer data records.
When file cleanup is required, it is usually more
economical and faster to process SADI files than
conventional ones.

The approach used in this system is similar to
approaches used in several currently available proprie
tary data management systems. SAD I employs the
concept of the inverted list, in which the data file is

inverted on each of its keys.2 The approach is not new,
but its usefulness in return for its implementation cost
is significant. Because the concept discussed here is
easily implemented on many systems, in a single
module it can be installed-ffisHy without perturbations , .
in an installation's data base. All resulting files are In
the operating system's standard format, so that, if
necessary, additional processing programs can be
written to access the files.

SADI is not a total answer to today's data manage
ment problems; I think that work currently under way
in the CODASYL Programming Language Committee3

will contribute significantly to those solutions. But
SAD I is here now, it works fast and efficiently, and,
with a little effort, is available to virtually all users of
today's operating systems.

REFERENCES

1 D SWARD
Data base technology
Honeywell Computer Journal Fall 1969 pp 14-25

2 G G DODD
Elements oj data management systems
Computing Surveys June 1969 pp 117-133

3 Data Base Task Group Report to the CODASYL
Programming Language Committee October 1969

Arranging frequency dependent data on sequential
memories*

by C. V. RAMAMOORTHY and P. R. BLEVINS

University of Texas
Austin, Texas

INTRODUCTION

Often the arrangement of frequency dependent data
such as pages on a sequential memory such as disks or
tapes critically affects the turnaround· time of real-time
or dedicated mode processes. Since the size of typical
problems renders exact solution techniques impractical,
a fast, efficient heuristic procedure becomes very useful.
This paper describes such a procedure which is ap
plicable to a general class of objective functions cor
responding to seek time functions constrained to be
only monotonically piecewise linear.

The procedure employs a directed graph formulation
analogous to the classical one-dimensional module
placement problem. By combining the connectivity
matrices representing the interpage frequencies and the
seek distances, the objective function is related to a
novel tableau called the Superimposed Tableau which
allows profitable permutations to be identified as Local
Gain Triangles.

Results include development of bo~nds for achieving
a locally optimum arrangement, proofs for finiteness
and feasibility, comparison of the procedure with a
modified version, and simulation experiences.

Problem definition

Memory hierarchies employed by modern computing
systems range from ultra fast "cache" buffer, to fast
core, to bulk core, to drum, to disk, to tape. Blocks of
data (pages) are transferred between different levels
of the hierarchy as a function of the page use frequency.
When collections of those pages are stored in a mem
ber of the hierarchy which can be characterized as
possessing only one degree of access freedom, perform-

* This work was supported by National Science Foundation
Grant GJ-492.

545

ance of the memory hierarchy depends strongly upon
the arrangement of the page string.2 When the fre
quency of transition between data blocks (pages,
tracks) is known or predictable, favorable ordering of
the blocks of information on the sequential memory
can reduce the average seek time between these blocks.
Ordering such frequency dependent data for storage
defines an optimization problem which can be formu
lated in graph theoretic terminology as follows:

Given a weighted, directed graph of N nodes, deter
mine an open string of N nodes such as to minimize

where

N N

L L !ijdijCdii
i=l j=l

!ij is a constant that denotes the transition fre
quency from node i to node j

d ij is a variable that denotes the normalized dis
tance between nodes i and j expressed as an
integer number

Cdii is a constant that denotes the unit cost per
d ij unit

A pplication classes

Consider the applicable classes of disk units and
tape units. Two general cases of the optimization prob
lem exist. The product term dijCdii (seek time) can
either be strictly linear with respect to d ij or it can be
only piecewise linear with respect to dij• In both cases
the seek time monotonically increases with increasing
dij•

Strictly linear seek tillIe

The first case is exemplified by the typical magnetic
tape unit possessing bi-directional read/write capa-

546 Spring Joint Computer Conference, 1971

140

111
120 '8

0
0
II

100 .!1
== e

80

II
60 .§

f-t

~
40 II

II
Ul

20

50 100 150 200

Number of Tracks Traveled

PIECE WISE LINEAR SEEK TIME (IBM 2314 Disk)

Distance Traveled L

LINEAR SEEK TIME (Typical Tape Unit)

Figure I-Application classes

bilities. With constant tape velocity and fixed page
size the seek time corresponds directly to the distance
(dij) between page i and page j. The initial tape ac
celeration delay (td) is common to all transitions and
can be ignored. See Figure 1. The unit cost (Cdij) per
unit dij is a constant for all dij allowing Cdii to be set
equal to unity by normalization. Therefore, when the
seek time is strictly linear with respect to distance the
objective function becomes:

N N

OF (LINEAR SEEK TIME) = ~ 2: (!ijdij)
i=1 j=1

Piecewise linear seek time

The second case is exemplified by certain large disk
units. First, a disk uni~ can be characterized as possess
ing only one degree of access freedom if it possesses
only one head per surface and the time required for
one disk revolution is much less than an intertrack
head movement. In the corresponding graph model, all
pages on a given track are considered to exist at a

single node. Secondly, such modern disk units (IBM
2413) employ several different head velocities depend
ing upon the number of tracks to be traveled. See
Figure I, As a result the seek time is only piecewise
linear with respect to the distance traveled. Also, it is
assumed that the separation distance between con
secutive tracks is constant and that the seek time
monotonically increases with increasing distance.
Therefore, when the seek time is only piecewise linear
with respect to the distance traveled, the objective
function becomes:

OF (PIECEWISE LINEAR SEEK TIME) =
N N

L L (hllijcdij)
i=1 j=1

Solution approaches

Such an important optimization problem recognizes
two types of solutions, exact and approximate. As
often discovered in combinatorics,l exact solutions are
very costly since the number of computations is often
proportional to N factorial or 2N where N is the num
ber of elements involved. Thus there exists a need for
heuristic methods5 possessing reasonable run time
bounds.

Exact solutions

A feasible solution to the problem is any permutation
of (1,2,3, .. " N) where a permutation (aiu ... , aiN)
corresponds to placing page ail in the first track, page
ai2 in the second track, and continuing until page aiN
has been placed in the Nth track. An exact solution
may be obtained by considering all N! permutations.
Run time estimates for the (N!) /2 undirected arrange
ments of a 12 node problem would require approxi
mately 133 hours of CPU time on a CDC 6600!

Alternately, consider a dynamic programming al
gorithm after Karp and Held.4 Consider the sequence
in which a page ail is placed in the first track· after
which a page ai2 (other than aiJ is placed in the second
track and so forth. When the jth page is placed in the
jth track the 'state' of the sequence (aiu ai2' ... , aij)
can be described by the unordered set {aiu ai2' ... , aij}.
Hence, sequences (1, 2) and (2, 1) correspond to the
same state {I, 2}. Clearly there are 2N states.

The cost of a state {iI, ' .. , i j } is defined as the mini
mum of the costs of all permutations of iI, ... , i j • As
a result, the cost of the "final" state {iI, .. " in} is
the cost of the.optimal solution.

The following recursive function can be used to de-

termine the state S cost:

C(<1» =0
C(S) =min{C(s-i) +:E:E (hk+fkj)}

iEs kfs jEs

Since all 2N states must be examined, the algorithm
possesses a run time growth rate at least proportional
to 2N. Also, the formulation implicitly assumes that the
seek time function is strictly linear. This is a severe
limitation since most real problems concern monotoni
cally piecewise linear functions.

Approxhnate solutions

Since both exact solution algorithms possessed un
favorable properties, a search for a heuristic procedure
with favorable properties was initiated. The presented
procedure possesses favorable run time bounds and is
applicable to both linear and monotonically piecewise
linear cost functions.

The remainder of the paper develops the procedure,
describes the procedure steps, and presents an eval
uation.

PROCEDURE DEVELOPMENT

This section presents the developments and defini
tions used by the optimization procedure. Matrix repre
sentations of both the jump (transition) frequency
data and the constraints are developed. By super
imposing these matrices and performing a termwise
multiplication, the objective function is represented by
a matrix called the Superimposed Tableau. The in
herent structural properties of the formulation allow a
simple, but fast heuristic optimization procedure to be
developed. The fundamental development is the effi
cient identification of profitable . node interchanges
from so-called Local Gain Triangles within the Super
imposed Tableau.

The simplicity of the procedure and the structural
properties of the Superimposed Tableau facilitate pro
gramming the procedure. Approximately 200 Fortran
statements are required and only one memory copy of
the tableau is required. Obviously the procedure run
time is sensitive to the number of nodes, their initial
ordering, and the jump frequency data; however, the
results based upon both random frequencies and those
in the laboratory applications encourage its use in
real-time situations.

Bounds for the number of node interchanges are de
veloped in APPENDIX A and theorems for finiteness
and feasibility are presented in APPENDIX B.

Arranging Frequency Dependent Data 547

Objective function

The developed procedure employs the same objec
tive function formulation as stated earlier in the prob
lem definition. Since it represents the total access
(seek) time required to achieve the given number of
internode jumps, it is proportional to the average seek
time. As a result, the procedure minimizes the average
seek time for the set of data blocks arranged on the
sequential memory.

Constraints

First, consider the fixed set of jump (transition)
frequencies (fij). This set completely specifies the ex
pected frequency of jumping between any two nodes in
the string. The frequencies may be expressed either as
integers corresponding to a number of jumps or as
fractions corresponding to normalized percentages.

A convenient means of representing the set of jump
frequencies employs a connectivity matrix and is called
the Jump Frequency Matrix (JFM). Since it com
pletely specifies the internode jump frequencies, it pro
vides all the required input data for the developed
optimization procedure. Note that when i = j, then
dij=O. This condition corresponds to a self-loop or a
jump from a node to itself. The cost of such a jump is
considered to be zero since the uistance traveled is zero.

N ow consider the most stringent constraint which
must be imposed upon the jump distance variables, dij.

From the linear graph representation it can be ob
served that for the 5-node string, the jump distance
variables must take on only the following list of in
tegers:

Jump Distance Integer List = [1, 1, 1, 1, 2, 2, 2, 3, 3, 4J

In general, for an N node string the Jump Distance
Integer List consists of the integers 1, 2, ... , N-1
where the integer K is included N - K times. This
list of integers can conveniently be entered into a
matrix. To preserve the clarity of the developed tableau
structure, the constant term Cdii which modifies d ij will
be shown in a corner box. Since the seek time (dijCdii)

is monotonically increasing with respect to distance,
Cdii affects only the objective function evaluation. Such
a matrix is called the Jump Distance Matrix (JDM).

Superimposed tableau

Superimposing the Jump Frequency Matrix upon
the Jump Distance Matrix and performing a termwise
multiplication generates the objective function repre
sented on a matrix labeled as the JFM and the JDM,

548 Spring Joint Computer Conference, 1971

PAGE j

1 2 } 4 5 TABLEAU LABELS

WL
I

WL
2 WL3 WL

4 WL5 wORKING LABELS

1 0
C

1
C z C

3
C

4
WL

1 If 12 2£ 13 3£14 4 £ 15

C1 C
1

C z c
3

2 WL
2 lf21 0 lf23 2f24 3£25

PAGE i
C z C

1 C
1 C z

3 WL3 2f31 lf32 0 If34 2f35

4
c

3
C z C

1
C

1
WL

4 3£41 2 £42 1£43 0 If45

"4 c
3

C z C
1

5 WL5 4f 51 3£52 2 £53 If54 0

Figure 2-The superimposed tableau

This representation of the objective function will be
called the Superimposed Tableau (Figure 2). Normally
the tableau will be shown without the jump distance
values or the jump distance unit costs since they re
main fixed with respect to the Tableau position. Only
the jump frequencies move upon the tableau as the
optimization procedure is performed. This corresponds
to the changes in the distance between the nodes with
out any change in the transition weights.

The Superimposed Tableau representation for the
objective function possesses several beneficial structural
properties. These include:

-representation of a feasible solution
-definition of a node string corresponding to each

tableau stage
-grouping of objective function terms with re

spect to jump distance (Level)
-a convenient tableau for evaluating the objec

tive function
-a convenient tableau for performing node inter

changes

Feasible solution

Entering the given initial jump frequencies into the
Superimposed Tableau establishes an initial feasible
solution. The rows and columns of the Tableau possess
both a set of Working Labels corresponding to the
given node identification and a set of Tableau Labels
which do not change. If all operations (node inter
changes) performed upon the tableau preserve feasi
bility, then the Superimposed Tableau will always
represent a feasible solution to the problem. This
feasible solution corresponds to a node string consecu
tively labeled 1, 2, ... , N using the Superimposed
Tableau Labels. Transformation of the labels to the

working node labels requires a one-to-one mapping of
the node Working Labels to their corresponding Super
imposed Tableau Labels. This information is directly
available from the tableau.

Local triangles

The developed optimization procedure tests the so
called 'local triangles' to identify promising node inter
changes. A local triangle consists of a given element in
the Superimposed Tableau plus two equal distance,
lower cost level elements. Within the tableau the three
elements form an isosceles triangle with the single ele
ment of higher cost level being called the vertex element
of the local triangle. In particular, the set of all local
triangles of size D corresponds to the set of all permuta
tions interchanging exactly two nodes of distance D
apart. Formally, for l~D~N -1 the local triangle may
be defined by

(!i.i-D, fij, Ji+D,i)

for j-D~i,j=2, ... , N, i=l, ... , N-1

(fi-D ,j, fij, h.i+D)

for i-D~j, i=2, ... , N,j=l, ... , N-1

When referenced to the corresponding node string the
vertex element represents the element which might be
moved to a lower level by interchanging two nodes in
the node string. Examples of local triangles and their
relationship to the node string are delineated in Figure
3. For the local triangle (f12, f13, ha) the vertex element
(f13) could be moved to a lower level only by inter
changing either nodes 1 and 2 or nodes 2 and 3. By
interchanging these nodes, one element of a lower cost
level must in turn be moved to a higher cost level. A
local triangle cost equals (2fii-h.i-D-fi+D.i) for
j-D~i and (2hi-fi-D,i-fi,i+D) for i-D~j. The fol
lowing classifications result:

Local Optimum Triangle-Exists whenever the cost
of the local triangle cannot be reduced by a node
interchange.

Local Gain Triangle-Exists whenever the cost of
the local triangle can be reduced by a node inter
change.

For a node interchange to show a net gain there must
exist at least one local gain triangle. This follows since
the net gain of a node interchange is calculated from
the summation of a set of local triangle costs.

In general, for an N node string, the number of local
triangles of size D (D equals the jump distance between

nodes) can be expressed as:

(N-D)·(N-D+1)

For example, in the N = 5 node string there exists 20
local triangles of size D = 1. The developed procedure
tests the tableau for triangles of size N -1, ... , 2, 1.
By summing the number of local triangles of each size,
the total number of local triangles per tableau equals

N-l

L (N-D)[(N-D)+lJ=(N3-N)/3
D=l

Node interchange rule

The optimization procedure to be presented intro
duces different permutations (changes in the tableau)
by interchanging exactly two nodes. Since it is desired
to always maintain feasibility of the tableau (corre
spondence to a realizable node string) the following
operation rule is employed:

To interchange node i and node j, the following oper
ations are required:

1. Interchange column i and column j

1 2 3 4 5

WL 1 WL 2 WL3 WL4 WL5

1 WL 1 0 I~
"2

2£13
c

3
lf14

c
4 4f15

2 WL 2

C
1

1£21 0 ~
C

2
2f24

c
3 3f

25

3 WL3 ~ 2 1
C

1
1£32 0

c
1

1£34
2f C2

35

4 WL4

c
3

3£41 ~ 2 2
c

1
lf43 0

c
1

lf45

5 WL5
c

4
4fSl

C
3

lf52 ~2
c

1
1£54 0

G

Figure 3-Local triangles

Arranging Frequency Dependent Data 549

BUILD ABBREVIATIONS:

INTERCHANGE NODES
(IC Stack Top Entry)

PUSH BT STACK
(IC Stack Top Entry)

POP IC STACK

LGT - LOCAL GAIN TRIANGLE
BT - BACKTRACK
IC - INTERCHANGE
ITFN - ITERATION TREE

FORK NUMiS£R

F

Figure 4-Procedure flowchart

2. Interchange row i and row j
3. Update the Superimposed Tableau Working

Labels

Evaluation of node interchanges

The procedure detects promising node inter-changes
by testing local triangles. But the net effect upon
the objective function is unknown since the local tri
angle involves only the cost relationship between
three nodes. When evaluating t~e net effect it is eco
nomical to do so without actually executing the inter
change. The Superimposed Tableau allows such a pro
cedure to be defined.

PROCEDURE STEPS

The preceding definitions and developments provide
the necessary background for the procedure which is
detailed in the flow-chart shown in Fig. 4. Since no
proof of the optimality of the results is presented, the
procedure must be considered heuristic.

550 Spring Joint Computer Conference, 1971

The major steps of both the Normal Procedure and
the Modified Procedure will be briefly discussed.

Normal procedure

Initial ordering

Initially the node string is ordered with respect to
the weight of each node's cut set of jump frequencies.
For a given node i the weight of the cut set of jump
frequencies is calculated by summing the column i
entries and the row i entries in the Superimposed
Tableau. The string is then symmetrically ordered with
respect to the weights by interchanging the required
nodes.

This initial ordering strongly contributes to a faster
solution. Since those nodes having a great number of
jumps (transitional affinity) are initially arranged
close together, the expected number of node inter
changes requited to achieve an optimum arrangement
is reduced.

Starting arrangern.en t

Since the Normal Procedure performs only one itera
tion, the symmetrically ordered starting arrangement
is used.

Local gain triangle identification

The key to the procedure's advantage over an ex
,haustive search of ail N! permutations is the identifica
tion of the Local Gain Triangle. As previously ex
plained for a node interchange to reduce the objective
function there must exist at least one Local Gain Tri
angle involving the node pair. Therefore, by testing all
local triangles 'promising' node interchanges can be
detected.

In order to minimize the number of required node
interchanges, testing starts with the maximum size
local triangle (D=N -1) and proceeds to the minimum
size local triangle (D=l). For example, consider two
nodes of distance L apart whose interchange would
reduce the objective function value. The procedure
would detect the condition with a Local Gain Triangle
of size L and one node interchange would result. Con
versely, if the procedure proceeded from minimum to
maximum size local triangles, several Local Gain Tri
angles of size less than L might be detected and each
could reslut in a node interchange.

Since the Local Gain Triangle identification pro
cedure starts with the maximum size local triangle, it

follows that the location of the triangle's vertex ele
ments proceeds from the highest level, Level N -1,
toward Level 2, the smallest level capable of containing
a local triangle of size 1. Also, proceeding from the
higher to the lower levels allows the procedure to delay
generating strongly connected substrings. Once gener
ated, such substrings are usually not broken and
commonly produce undesirable local optimum ar
rangements.

Evaluation of local gain triangles

If a Local Gain Triangle of size D is detected in a
given level, testing is interrupted after completing that
level. Every node interchange indicated by the Local
Gain Triangles is evaluated with respect to the objec
tive function. Those interchanges possessing positive
gains are pushed into the Interchange Stack. Should
no positive gain interchanges be found, testing for
Local Gain Triangles of size D resumes at the next
level.

Interchanging nodes

The node interchange denoted by the top entry of
the Interchange Stack is interchanged and a trace is
generated by pushing the information into the Back
track Stack. This stack will be employed to backtrack
to the proper fork after a local optimum, arrangement
has been achieved. Note that at each level of testing
for Local Gain Triangles multiple positive gain inter
changes may be detected. Each of these alternatives
corresponds to a branch of the iteration tree. When
more than one alternative is detected, a tree fork is
established.

After interchanging the node pair the procedure com
pletely restarts the Local Gain Triangle identification
procedure since a Local Gain Triangle of any size and
at any level may now exist.

Local optirn.urn. arrangern.ent

Whenever the Superimposed Tableau no longer con
tains any Local Gain Triangles corresponding to profit
able node interchanges, then a local optimum arrange
ment of the node string has been achieved. Such a
condition represents a terminal node of the iteration
tree. The procedure must next test if backtracking is
required to complete exploring all positive gain inter
changes.

Backtracking

If after achieving a local optimum, entries remain in
the Interchange Stack, then the Superimposed Tableau
must be rearranged using the trace available in the
Backtrack Stack. The Superimposed Tableau is rear
ranged to correspond to the string arrangement which
existed at the tree fork possessing the unexplored node
interchange indicated by the top entry of the Inter
change Stack.

Iteration stop arrangeDlent

Whenever a local optimum is reached and the Inter
change Stack is empty, then all branches of the itera
tion tree have been explored. The minimum local opti
mum detected during the iteration is selected as the
Iteration Optimum Arrangement.

Heuristic optiDluDl arrangeDlent

Since the Normal Procedure performs only one itera
tion, the Heuristic Optimum Arrangement equals the
Iteration Optimum Arrangement.

Modified procedure

The Modified Procedure extends the Normal Pro
cedure by performing N iterations rather than only
one. All steps described for the Normal Procedure are
identical except for the Starting Arrangement and the
Heuristic Optimum Arrangement steps.

Starting arrangeDlent

The Modified Procedure employs a different starting
arrangement for each of the N iterations. The N start
ing arrangements are generated by shifting end-around
the initially ordered node string. Since the procedure
employs only interchanges between two nodes, the
end-around shift generates a maximally permuted node
string which requires N -1 interchanges to undo. Re
stated, an end-around shift operation requires N-1
node interchanges to implement. Since N end-around
shifts returns the arrangement to its starting arrange
ment, the set of N starting arrangements consists of
the initially ordered arrangement plus N -1 arrange
ments generated by end-around shifts.

Heuristic optiDluDl arrangeDlent

From the set of N iteration optimum arrangements,
the arrangement having the minimum objective func-

Arranging Frequency Dependent Data 551

tion value is selected as the Heuristic Optimum Ar
rangement.

COIDDlents

Since the first starting arrangement of the Modified
Procedure equals the starting arrangement of the
Normal Procedure, the Heuristic Optimum Arrange
ment of the Modified Procedure will at least be as good
as that of the Normal Procedure. However, since N
iterations are employed the run time will be much
greater.

RESULTS

Both the Normal Procedure and the Modified Pro
cedure have been implemented in FORTRAN IV.
Using a CDC 6600 computer, numerous problems of up
to 20 nodes have been processed. The path frequencies
(iii) have been based upon random numbers as well as
realistic values in laboratory applications.

The run time lower bound is examined using both
theoretical values and timing run values.

Objective function values for the generated optimum
arrangements of the Normal Procedure are compared
to those of the Modified Procedure. Also the relation
ship between run time and the degree of optimization
was studied.

Run times

Basically the procedure performs three functions
which are:

(a) tests local triangles
(b) calculates net gain of detected local gain tri

angles
(c) searches a complete interchange alternative tree

(interchanging nodes and backtracking as re
quired)

Obviously the run time is strongly sensitive to the
transition frequencies of the graph being optimized
and depends upon the initial ordering scheme. See
Figures 6 and 7. However, based upon numerous
graphs the influence of whether the seek-time function
was strictly linear or only piecewise linear appears to
be slight and to depend upon the transition frequencies.
A lower bound for the run time as a function of the
number of graph nodes N can be expressed as

RUN TIME (LOWER BOUND) =K(N3_N)/3

552 Spring Joint Computer Conference, 1971

• I

2.250 I
I

2.000 /
l

0
0
CD
CD

1.750

8
0

fij
1.500

Q
Z

I
CUI ~~ ~ 3 /

-xv'" .,.n ~"17 1/
I

0
0

! 1.250

f&I
::e
E:: 1.000

Z
::>

/
J~

/
V

Pi:

• 750 J
II

:500 I
/V CU VE B

.250 ./
((k N;''' OY3)

.........
P ~

V"
~

.....-.. .,.--4 ~,...

7 8 9 10 11 12 13 14 15 16 17 18 19 20

NODE NUMBER

RUN TIME LOWER BOUNDS

Figure 5-Run time lower bounds

. where the constant K equals the time required to test
one local triangle. For the Modified Procedure which
employs N iterations the bound must be multiplied
byN.

Note that the heuristic procedure tests local triangles
by just subtracting two elements in a matrix and test
ing the sign of the difference. Time consuming opera
tions which are functions of N result only if local gain
triangles are detected. Each local gain triangle causes
the net gain relative to the objective function to be
evaluated (a matrix operation involving two rows and
two columns). If a positive net gain results, the corre
sponding nodes are interchanged (a matrix operation
which interchanges entries in two rows and two col
umns). Based upon timing runs (CDC 6600, FOR
TRAN IV code) the 10,912 local triangles for a graph
of 32 nodes can be tested in approximately 1.1 seconds.
If the procedure employs N iterations (where each
starting arrangement is an end-around shift of the
initially ordered arrangement) then the 349,184 local
triangles can be tested in approximately 35 seconds.

SUBGRAPH OBJECTIVE FUNCTION VALUES RUN TIMES

(N) Symmetrically Procedure Difference Procedure
Ordered Normal Modified Percentage Normal Modified

20 365 968 341 367 22.080

19 335 647 309 052 10.422

18 280 261 262 470 7.960

17 240 74 5 222 180 II. 982

16 202 539 191 682 2.912

15 180 579 161 935 161 935 0.00 11.168 99.149

14 147 805 139 715 137 101 1.87 .944 49.449

13 131 288 115 035 113 995 0.90 .837 37.479

12 99 807 92 619 91 651 I. 04 2.141 23.859

II 78 200 68 844 68 466 0.54 1.204 16.265

10 63 244 54 432 54 432 0.00 I. 7 42 16. 062

45 604 41 408 40 733 1.63 .460 6.428

32 330 29 649 29 294 1.19 .291 3.259

21 775 19 069 19 069 0.00 .245 1.802

15 334 13 120 12 734 2.94 .029 .741

7 074 6 235 6 094 2.26 .093 .243

Figure 6-Graph A optimization-Piecewise linear seek times

Note that this lower bound is achieved only if the given
arrangement is already optimum .

Figure 5 plots actual values of the implemented pro
cedure's lower bound. Since all jump frequencies (Iii)
were equal, the given arrangement was optimum:. Curve
A corresponds to the lower bound K (N3 - N) /3 of the
Normal Procedure while Curve B corresponds to the
lower bound KN(N3_N)/3 of the Modified Procedure.

Optimum values

To evaluate the optimum arrangements generated
by the procedure several graphs of up to 20 nodes were
processed. Figure 6 shows the results for a sequential
memory possessing a piecewise linear seek time. The
seek time function was based upon the IBM 2314 Disk
Unit (Figure 1). Figure 8 completely defines Graph A
by showing the Superimposed Tableau corresponding
to the initially ordered arrangement. Note that the

SUBGRAPH OBJECTIVE FUNCTION VALUES RUN TIMES

(N) Symmetrically Procedure Difference Procedure
Ordered Normal Modified Percentage Normal Modified

20 127 412 113 330 22.911
19 115 086 102 490 44.094
18 92 796 84 638 6.604
17 79 782 69 686 16.914
16 63 460 57 386 6.373
15 55 558 47 746 47 746 0.00 8.624 125.444
14 43 454 39 290 39 164 0.32 1.503 52.065
13 38 180 31 566 31 566 0.00 4.092 63.938
12 26 850 24 774 24 774 0.00 1.003 30.912
II 20 868 18 146 17 892 1.39 .449 19.086
10 15 986 13 594 13 594 0.00 I. 905 10.848

II 010 9 678 9 678 0.00 .412 5.850
7 200 6 760 6 760 0.00 .190 4.034
4 622 4 152 4 152 0.00 .369' 2.057
3 184 2 724 2 684 1. 46 .267 .577
I 432 I 280 1 236 3.43 .026 .261

Figure 7-Graph A optimization-8trictly linear seek times

Arranging Frequency Dependent Data 553

SUPERIMP~SED TAB~EAU

NBDE LABELS

7 10 17 2 9 19 5 18 12 3 6 11 15 8 16 20

NBDE WEIGHTS

1370 17~4 1830 1884 1910 1992 2054 2078 211~ 2190 2216 2132 211_ 2056 20__ 1956 1900 1832 1776 1'6'

0.0
9.0

9.0
0.0

66.0

22.0
66·0

0.0
88.0

&BJECTIVE FU~CTIeN VALUE. 365968.48

Figure 8-Initial stage of superimposed tableau-Graph A

graph is complete and that the minimum (1370) and
maximum (2216) node weights differ by less than a
factor of 2. Graphs without dominant nodes generally
require more interchanges to optimize. The subgraphs
were formed by deleting nodes from the original graph.
Then the subgraph was again symmetrically ordered
with respect to node weight; i.e., the node with the
greatest weight was placed in the middle of the node
string. Figure 7 shows the result for sequential memory
possessing a strictly linear seek time.

For sub graphs of Graph A of up to 15 nodes the
procedures yielded minimum objective function values
differing by less than 4 percent. Since the Modified
Procedure includes the Normal Procedure as its first
iteration, its minimum objective function value is al
ways less than or equal to that of the Normal Pro
cedure.

Tradeoffs

Comparisons of the run times for the two procedures
clearly indicate their major difference. Since the Modi-

fied Procedure performed N iterations (where each
starting arrangement was generated by an end-around
shift ·of the initially symmetrically ordered arrange
ment), it might be expected that the run time would
be N times the run time for the Normal Procedure
(where its single starting arrangement was the sym
metrically ordered arrangement). Run time results for
Graph A show increases greater than N. Upon closer
examination such increases can be explained. The
Normal Procedure employs only the symmetrically
ordered arrangement which was chosen because the
expected number of node interchanges required for op
timization should be a minimum. Therefore, its run
time is the expected minimum of the run times corre
sponding to arrangements generated by end-around
shifting.

Based upon the results for Graph A, the Normal
Procedure appears more economical than the Modified
Procedure. Consider the subgraphs of 14 and 15 nodes.
For the subgraph of 15 nodes both procedures achieved
identical optimum values, but the run time of the
Modified Procedure was approximately nine times
greater. For the subgraph of 14 nodes the Modified

554 Spring Joint Computer Conference, 1971

Procedure achieved an optimum value which was
slightly better (2 percent), but required a run time
approximately 50 times greater. A user should weigh
the long term effect of the better optimum compared
with the one time cost for the additional computer
time. The economies of the optimization problem may
easily justify the required additional computer time,
but for real-time applications the Normal Procedure
appears to be more useful.

CONCLUSIONS

As noted, achieving exact solutions becomes impractical
for problems as small as 12-15 nodes. Since common
problems usually involve more than 12-15 nodes, heu
ristic procedures offer the only, practical solution. Be
sides achieving results within practical run times (real
time applications) , our procedure accepts without
limitations seek time functions which are only mo
notonically piecewise linear. Also,' the procedure gener
ates a plurality of locally optimum arrangements. Often
such alternatives are more useful to a designer than a
single absolute optimum arrangement. Also, by main
taining a feasible solution at all times during execution,
the procedure generates useful results even if inter
rupted at arbitrary time limits.

The salient properties of the procedure can be gen
eralized to attack many related problems such as ar
ranging a closed node string (drums). Its fundamental
property is the efficient identification of profitable
permutations as Local Gain Triangles within the Super
imposed Tableau.

Variations may be applied to enhance the procedure
for specific problems. Since the run time is a function
of the number of nodes, faster times may be achieved
by node reductions. Techniques might include: fixing
the position of one or more nodes, reducing strongly
connected node clusters into single nodes, and parti
tioning large strings into substrings of strongly con
nected nodes. The starting arrangement influences both
run time and the set of locally optimum arrangements.
Numerous initial ordering and shifting schemes may be
employed. A promising compromise between the Modi
fied Procedure and the Normal Procedure would em
ploy shifting bi-directionally the initial arrangement by
a reduced number of shifts (about N / 4) .

As presented the procedure minimizes the objective
function. Clearly, it can be employed to maximize the
objective function by redefining the Local Gain Tri
angle.

ACKNOWLEDGMENT

The authors wish to record their sincere appreciation
of the suggestions and advice of Professor K. M.
Chandy of The University of Texas at Austin.

REFERENCES

1 E J BECKENBACH
Applied combinational mathematics
John Wiley 1964

2 P J DENNING
Effects of scheduling on file memory operations
1967 Spring Joint Computer Conference Proceedings
Vol 30 pp 9-21

3 T C HU
Integer programming and network flows
Addison-Wesley 1969

4 R M KARP M HELD
Finite state processes and dynamic programming
SIAM Journal on Applied Mathematics Vol 15 No 3
pp 693-718 May 1967

5 B W KERNIGHAN
Some graph partitioning problems related to program
segmentation
PhD Thesis Princeton University January 1969

6 D ZATYKO J DOBBIE
A mass memory system designed for the multi-program/mutli
processor users
Proceedings ACM 20th National Conference 1965
pp 487-500

APPENDIX A-BOUNDS FOR ACHIEVING
LOCALLY OPTIMUM ARRANGEMENTS

Cost of executing the procedure is difficult to specify.
However, to achieve a locally optimum arrangement
the procedure examines local triangles in order to de
tect local gain triangles. Examination of a local triangle
consists of just two subtractions involving tableau ele
ments. Both a Lower Bound and an Upper Bound for
the number of local triangles examined will be pre
sented. The upper bound must be considered only as
the very extreme bound since it is not realizable, but
it is useful for proving the finiteness of the procedure.

Lower bound

To develop a lower bound for the number of local
triangles which the procedure examines in order to
achieve a locally optimum arrangement, assume that
all iii of the given node string are equal. Under such
assumptions no local gain triangles exist. Therefore,
the lower bound corresponds to the total number of
local triangles in the tableau, namely

BOUND L= (N3_N)/3~N3/3 for N»l

where N is the number of nodes in the string.

Upper bound

To establish an upper bound for the number of local
triangles which the procedure examines in order to

achieve a locally optimum arrangement, assume that
the locally optimum arrangement is maximally per
muted with respect to the starting arrangement.

Definition:

If the transformation of arrangement A of N nodes
into arrangement A' requires a minimum of N-1
permutations which generate unique arrangements by
interchanging exactly two elements (transpositions),
then A' is said to be maximally permuted with respect
toA.

N ow consider the following two theorems from the
study of permutation groups:

Theormn 1:

At most, N -1 two-node transpositions are required
to transform arrangement A into A' where A' is any
member of the set of all possible permutations of A.

Theormn 2:

A permutation interchanging exactly two elements
separated by D elements can be factored into a mini
mum product of 2D+ 1 permutations interchanging
exactly two adjacent elements.

Since the starting arrangement is maximally per
muted with respect to a locally optimum arrangement,
a minimum of N -1 permutations interchanging exactly
2 elements are required to achieve a locally optimum
arrangement. Furthermore, assume that the properties
of the corresponding graph are such that the procedure
achieves the locally optimum arrangement using only
interchanges of adjacent elements.

Under such assumptions, the maximum number of
interchanges required to . achieve a locally optimum
arrangement equals

(N-l) (2DAVG.+1)

where

N-2

D AVG.= (L: D)/N-l= (N-2)/2.
D=O

Therefore

MAXIMUM INTERCHANGES = (N -1)2

Since only interchanges of adjacent nodes are al
lowed, all local triangles must be examined to deter
mine each interchange. The resulting Upper Bound for

Arranging Frequency Dependent Data 555

the number of local triangles examined equals the prod
uct of the number of local triangles per tableau and
the number of interchanges

BOUND U = (N -1)2(N3-N) /3
=N(N+1) (N -1)3
-N5/3 if N»1.

It should be noted that this upper bound is not realiz
able, but is useful for proving the finiteness of the
procedure.

ExaIDple:

Let the starting arrangement be A = bcdea and the
locally optimum arrangement which is maximally
permuted be A' = abcde. Therefore,

where 7r ij denotes the interchange of elements in posi
tions i and j.

Factoring each permutation into a minimum product
of 2D+ 1 permutations interchanging exactly two adja
cent nodes

or (N -1)2=16 permutations interchanging exactly
two adj acent elements are required.

APPENDIX B-THEOREMS

Feasibility theorem

Every stage of the Superimposed Tableau defines a
feasible solution.

Proof:

It is given that the procedure initially enters a feasible
solution into the Superimposed Tableau. All operations
performed upon the tableau employ only the Node
Interchange Rule which preserves feasibility. There
fore, every stage of the Superimposed Tableau defines
a feasible solution.

Finiteness theorem

The procedure terminates after performing a finite
number of node interchanges.

556 Spring Joint Computer Conference, 1971

Proof:

It has been shown that for a given starting arrange
ment the maximum number of node interchanges re
quired to achieve a locally optimum arrangement is
(N -1)2. Since each interchange must reduce the ob-

jective function, a maximum of (N -1)2 decrements
could exist .. Since only a finite number of alternatives
exist at each fork of the iteration tree and each node
interchange reduces the maximum number of remain
ing interchanges by one, the procedure terminates after
performing a finite number of node interchanges.

Associative processing of line drawings

by NEIL J. STILLMAN and CASPER R. DEFIORE

Rome Air Development Center (EMBIH)
Griffiss Air Force Base, N ew York

and

P. BRUCE BERRA

Syracuse University
Syracuse, N ew York

INTRODUCTION

The marriage of computer graphics and an associative
memory is a natural union. This is evidenced by the
widespread use of software simulations of associative
memories in today's most flexible graphical systems.
The content-address ability of a hardware associative
memory makes conventional addressing schemes super
fluous and eliminates the need for pointers required to
link related data, vastly reducing system overhead. The
parallel retrieval and update functions possible with a
hardware associative memory remove any need for
multiple storage which is so prevalent in current
systems and simultaneously increases processing speed.
The capability of implicitly storing relations between
data further decreases the storage requirements, while
increasing flexibility.

After examining current graphical data structures,
all of which rely on a maze of pointers or multiple
storage of information to represent the naturally
relational graphical data, and reviewing the funda
mentals of associative memories, a data structure
utilizing an associative memory to process line drawings
is presented.

BACKGROUND

One of the first systems to allow graphical communi
cation with a computer, SKETCHPAD,18,8 utilized
two-way pointers. The data about drawings were

557

actually structured in two separate forms. The first was
a table of display spot coordinates designed to make
display as rapid as possible, while the other was a ring
structure designed to contain the topology of the
drawing and facilitate its modification. Each entity
consisted of n consecutive storage locations, with
standardized locations for information about the various
properties of each entity type. All references to a
particular entity block were linked together by a string
of pointers originating within that block and pointing to
the succeeding and preceding members of the string.
Different rings thread through several levels in an
element providing several paths to the same informa
tion. Sutherland comments that his ring structure was
not intended to pack the required information into the
smallest possible storage space and that some redun
dancy was included in the ring structure to provide
faster running programs. SKETCHPAD placed a
higher priority on speed than on the ability to store
huge drawings.

Another ring-oriented data structure is CORAL/9,g
(Class Oriented Ring Associative Language). It stores
data in blocks of arbitrary but fixed length. The blocks
represent objects which can be connected by rings; each
object can belong to more than one ring allowing the
multi-dimensional associations required for graphical
data structures. Unlike SKETCHPAD, CORAL isn't
limited to two-way pointers; all ring elements have a
forward pointer to the next element in the ring, and
pointers to the ring start (type identifier) are alternated
with back pointers ~or all ring elements. By alternation

558 Spring Joint Computer Conference, 1971

of the less useful pointers, CORAL retains the flexibility
afforded by each pointer type, but requires only half the
space and does not incur a significant time loss. Since
efficiency was not a major consideration during the
system's development, storage space and processing
time produce a high overhead.

Similarly, DAC-111 and its successor APL6,8 at
General Motors use blocks of entity descripters, each of
which describes an entity and its properties, linking
blocks in current use together in a ring structure. By
decomposing a picture into entities a hierarchical
structure is obtained.

ASp12,8 (Associative Structure Package), is another
ring implemented data structure, but differs from the
others discussed in that it is a dual ring structure. All
elements belong to two rings; the "upper" ring being
those elements possessing the same property; and the
"lower" ring being a series of rings of elements related
to the master element by different properties. The ASP
structure allows interrogation in seven associative forms
(Feldman16). Lang concludes that the user, depending
upon his application, should determine how the rings
are to be implemented, i.e., with only forward pointers,
or with backward and/or rings tart pointers. If the rings
are small, forward pointers are probably sufficient while
if the rings are large other pointers should perhaps be
introduced.

A slightly different approach is the data structure of
GRAPHIC-2,3 basically a directed graph with no closed
loops. The structure contains four types of blocks; nodes
and branches of fixed length and leaf and data blocks of
arbitrary size. By convention, only the leaf blocks can
contain displayable material, while the other blocks
provide structural information. Because space is a
scarce resource in the GRAPHIC-2 computer, an
abbreviated pointer system is utilized, including neither
back pointers nor ringstart pointers. To quote Christen
sen, "Tracing one's way through the structure therefore
may require more time, but time is a resource that is
more readily available in GRAPHIC-2." The directed
graph is used also by Cotton and Greatorex4 in their
remote computer graphics system, and serves as the
basis for the graphics data structure used at the
University of Utah.2

Van Dam and Evans,20 in an effort to reduce the size
of a given graphical item to the absolute minimum,
have kept their data structure as pointer-free as
possible. The general structure of an item is a block
containing (1) a set of "keys" which name or identify
the information within an item, (2) elements which may
contain any type of information, i.e., data, program, or
both, and (3) a table of contents which associates the
keys with their related items and thereby allows the

system to locate elements. within an item. An item is
retrieved by providing a "description," a logical
expression combining keys, elements, and conditions on
the values of elements. Schemes for keeping part of the
picture in tree form and part in reduced form (points
and lines) are being considered for future implementa
tions. The fact that the points and lines form makes
lightpen pointing impractical but is nevertheless
considered implies that the storage space is at a great
premium.

The improvement of these systems centers about two
tasks regardless of the data structure discussed: the
processing of data at a faster rate, and the storing of
data in the smallest possible space. These two goals, to
date, have been incompatible, i.e., processing speed has
been gained at the expense of storage and storage can be
minimized only at the cost of processing time. With the
advent of an "associative memory," speed and storage
compression become compatible. The parallel search
capability speeds processing while the conte nt-address a
bility, which eliminates conventional addresses and
therefore data pointers and all housekeeping functions
associated with them, both increases speed and decreases
storage requirements.

FUNDAMENTALS OF ASSOCIATIVE
MEMORIES21

An associative memory has three main features not
possessed by conventional memories: (1) word-parallel
access of the entire memory, (2) word-parallel perform
ance of its basic operations in the entire memory, and
(3) the inclusion of comparison as a basic operation. In
addition, word operations may be performed either
bit-serial or bit-parallel. Bit-serial operation will com
pare sequentially against a 1 bit by n word slice of
memory (where n = number of words in AM) across\the
word while bit-parallel operation will compare the
entire memory m bits by n words (m = number of bits
in a word) simultaneously. It appears that this distinc
tion is of minor consequence, introducing only the
element of a time delay without affecting the three
prime features noted above.

The fundamental operations of any memory are
reading from, and writing into, any word or bit location.
An associative memory adds comparison to these two
universal requirements. It is the parallel executi()n of
the primary operations that sets the associative memory
apart. A natural associative memory strategy is that of
two-block partitioning, i.e., in order to perform an
operation on some members of the associative memory,
the members that are not to be operated on must be

segregated. This is accomplished by an initial operation
performed in parallel on all locations of the associative
memory to flag the members of interest. Then, for
example, a parallel write could be used to zero out all
flagged words simultaneously, or a parallel read could
be used to read the contents of the flagged words
simultaneously into an external buffer. In the com
parison operation, the reference word (comparand) is
simultaneously compared with all flagged words. ,The
comparand is not restricted to an entire word but may
be any arbitrarily specified field in the word.

The provisions of word-parallel access and simul
taneous comparison make the conventional concept of a
memory address obsolete. Formerly, when only one
word of a computer could be accessed at a time,
information was stored in an orderly fashion in uniquely
numbered storage locations. In the associative memory,
information is retrieved by content, not location, hence
the term "content-addressable memory." An associative
memory is ideally suited to cross-referencing because
unlike a conventional memory which must maintain a
separate index for each characteristic, information may
be retrieved on any combination of characteristics.

The instruction capabilities of associative memories
are usually grouped into two categories; search instruc
tions and arithmetic functions. The search instructions
allow simultaneous comparison throughout any portion
of memory (i.e., any number of words) and upon any
portion (field) of a word (i.e., any number of bits). The
search instructions9 include the following: equality,
inequality, maximum, minimum, greater than, greater
than or equal, less than, less than or equal, between
limits, next higher, and next lower. The Boolean
operations AND, inclusive OR, exclusive OR, and
complement may be performed bet;een fields to provide
complex query capability. Arithmetic operations of
addition, subtraction, multiplication, division, incre
ment field, and decrement field are indispensable in such
graphical operations as scaling and translation.

In summary, an associative memory is ideally suited
to perform operations on large amounts of data since it
can operate on all members of the data simultaneously,
in the time of a single operation, the only constraint
being memory size. An associative memory therefore, in
theory, has a speed advantage in proportion to the
number of words of data to be processed.

GRAPHICS AND THE ASSOCIATIVE MEMORY

Ring structures yield answers to questions such as
"What are the coordinates of Square X?," and its
converse "(Xl, YI), (X2, Y2), (X3, Y3), (X4, Y4) are the

Associative Processing of Line Drawings 559

coordinates of what square?" by virtue of their forward
and backward pointers. There are more than two ways
to pose a query however. Consider the question "What
is the relationship, if any exists, between point X and
point Y?" or "What pairs of objects are associated by
the relationship SIDE OF?" In all, there are seven
associative forms16 of a query as shown in Figure 1.
Since the relation is not explicitly stored in any of the
previously discussed data structures, there is no way of
answering questions phrased in forms 4, 5, 6, or 7. In
order to answer questions in the last four ways, conven
tional concepts of data processing must be abandoned.
The new structure must store, in addition to the
obj-ects, the relationship associating them. This task has
been accomplished in similar ways by Rovner and
Feldman,15 Ash and SibleY,1 and Levien and Maron.13 In
these approaches the "triple" (form 1) ATTRIBUTE
OF OBJECT = VALUE is the basic element of the data
structure. Levien and Maron add a fourth parameter by
giving each "triple" a name identifier. This parameter
may be used as an element in another "triple." In these
approaches, each "triple" is stored at least three times
to simulate an associative memory and enable queries in
all seven associative forms to be more efficient than in a
single listing.

Searching is minimized by using a hashed addressing
scheme which will translate the query directly into the
address of the answer (or linked to the answer). A
hashed addressing scheme does, however, produce conflict
situations, i.e., more than one pair of 'elements can hash
to the same address, producing a conflict that must be
resolved, for example, by a chained search of other
answers until the desired answer is identified. The
tradeoff is between tolerable conflict and the size of the
addressable space.

Two major improvements to the present-day simula-

ATTRIBUTE OF OBJECT VALUE

(1) SIDE OF SQUARE 1 LINE 1

(2) SIDE OF SQUARE 1 ?

(3) SIDE OF ? LINE 1

(4) ? SQUARE 1 LINE 1

(.5) SIDE OF ? ?

(6) ? ? LINE 1

(7) ? SQUARE 1 ?

Figure 1-Associative forms of a query

560 Spring Joint Computer Conference, 1971

101ft

I 0 01 10IIrr ID IIUIIBEII 1 X COIIIDII1ATB 1 Y COIIIDlllATIl 1 LIRS m IIUIIIIIIB 1 LIB m IIUJIBIB 1

LIRE

IIBCTAllGLB

TIlIAllGLB

ABBA I LI~m.:-=- I LI~~ I LI~ I

Figure 2-Multi-relational graphics data structure

tions of the associative memory would be the elimination
of multiple storage of all relations and the removal of
the conflict situation caused by hashing. Both are
provided by a true "associative memory," which
processes a random list of triples in any of the seven
query modes in the most efficient manner possible,
having stored it only once while not requiring an
addressing scheme. Even though the data triples are
stored only once, by the nature of the word-parallel,
bit-serial operation with masking of an associative
memory, all seven associative form questions can be
answered with equal ease.

In the above scheme each triple takes up one word in
the associative memory, i.e., the data are structured one
relation per word. Storing one relation per word,
however, doesn't even begin to take advantage of the
power of an associative memory. Utilizing a Control
Data 1604B computer interfaced with a prototype
associative memory built by Goodyear for Rome Air
Development Center9 and containing 2048 forty-eight
bit words, a complete two dimensional line-drawing
graphics system can be implemented. Imposing the
following constraints on the system will assure that any
drawing will fit completely in the associative memory.
The maximum number of points per drawing will be
1024, and the maximum number of lines will be 512.
Also, a maximum of 64 rectangles and 64 triangles can
be defined. Two bits of each word are required to specify
the entity type. Six bits defines a unique ID number for
each rectangle or triangle, while it takes nine bits and
ten bits to specify lines and points respectively with a
unique identifier. The four relations

SIDE OF SQUARE X = LINE W

SIDE OF SQUARE X = LINE X

SIDE OF SQUARE X = LINE Y

SIDE OF SQUARE X = LINE Z

which are stored three times (approximately 12 words)
in LEAp15 and similar systems, and once (four words)
in the same system using an associative memory can be
stored in one word by placing the nine bit codes of the
four lines in the word identifying the rectangle which
they compose. This particular example therefore re
quires about 10 percent of the storage requirement of any
system in existence today. Triangles, lines, and points
are defined similarly (See Figure 2). The limits specified
above provide for identification of all entities in 1664
words, leaving 336 words unused. A point may belong to
more than two lines but only space to specify two is
provided. At absolutely no overhead to the system
another word may be used, repeating the first 30 bits of
the point record, and specifying the identifiers of two
additional lines. This may also be done with a line which
belongs to more than two rectangles or triangles.
Exclusive of time factors external to the associative
memory (which would be incurred conventionally as
well) it would take, for example, less than 60 micro
seconds to retrieve the record of a specific rectangle.9

Possibly the most notable feature of the planned
implementation is its extremely fast update capability.
Scaling and translation, which are merely multiplication
by, and addition of, a constant respectively are
accomplished, in their entirety and regardless of the
complexity of the picture, in the same time that a
conventional memory processes one coordinate. This
fact that retrieval and update functions are completely
independent of picture complexity (as long as the
picture is contained completely in the AM) sums up the
greatest advantage of the associative memory. Another
notable feature is that the system overhead per picture,
again regardless of the complexity of the picture, is
always four words.

The update or modification of a picture is most
dependent on "pointers" or "relations" and it is
threading through all these that consumes most of the
time in conventional approaches. The elimination of
this maze due to the content addressing of the associa
tive memory provides, for example, the deletion of a
line and therefore all objects to which it belongs (i.e.,
rectangles, etc.) in about 140 microseconds.9

CONCLUSIONS

Feldman's simulator7 raised the question whether it
would pay to build hardware associative memories for
general purpose use since it should be feasible to build
a software system which loses a factor of about two in
storage, and three-to-five in time, against an associative
memory of the same basic speed.

It should be noted, however, that according to
Minker,14 present day relational data systems tech
nology has emphasized retrieval to the exclusion of
maintenance, i.e., update capability. Maintenance
functions depend primarily on the "pointers" or
"relations" and therefore associative memories will
exert their maximum influence in this area.

In addition, the work of Sibleyl,l7 is patterned after
Rovner's15 "triples" using hashed addressing. His view
is that software simulations of associative memories
"for the moment ... are a stopgap measure."

Feldman's estimate of a loss of a factor of two in
storage to an associative memory seems very conserva
tive in light of the new data structure introduced above.
Figures as to the time advantage of such a system will
have to await implementation of the data structure but
it is expected that timing results will show Feldman's
estimate of a saving of three-to-five in time to also be
very conservative.

The software simulated associative memory using
hashing is limited to an exact match operation, and all
other search strategies must be built on multiple use of
the exact match operation, due to the fact that hashing
requires a completely specified field on which to apply
the hashing algorithm. On the other hand, a hardware
associative memory has about a dozen different basic
search capabilities indicating that a hardware associa
tive memory is far more flexible than a software
simulation of an associative memory.

As an example, consider the problem of finding all
lines of length between four and six inches. Let the name
and length be specified for each line. In the simulated
associative memory if hashing is done by name only, or
by name and length, the question cannot be answered;
if hashing is by length only and the lengths are integral
then an exact match on lengths four, five, and six will
yield the answers. However, if the lengths are continuous
between four and six, then again, for all intents and
purposes, the simulated associative memory cannot
yield an answer. In contrast, a hardware associative
memory would do a single between limits parallel
search and arrive at a complete solution in less than
twice the time required for an exact match.

As integrated circuits come into widespread use and
the price of an associative memory drops to about twice
that of a conventional memory5.more and more people
will begin to examine its unique advantages.

REFERENCES

1 W LASH E H SIBLEY
TRAMP-An interpretive associative processor with

Associative Processing of Line Drawings 561

deductive capabilities
Proceedings ACM National Conference 1968 pp 143-56

2 S CARR
Geometric modeling
University of Utah Technical Report 4-13 1969

3 C CHRISTENSEN E N PINSON
Multi-function graphics for a large computer system
Proceedings Fall Joint Computer Conference Vol 31 1967
pp 697-711

4 I COTTON F S GREATOREX JR
Data structures and techniques for remote computer graphics
Proceedings Fall Joint Computer Conference Vol 33 Part I
1968 pp 533-544

5 C DEFIORE
Fast sorting
Datamation Vol 16 No 8 August 1 1970 pp 47-51

6 G G DODD
APL-A language for associative data handling in PL/I
Proceedings Fall Joint Computer Conference Vol 29 1966
pp 677-684

7 J A FELDMAN
Aspects of associative processing
MIT Technical Note 1965-13 April 1965

8 J C GRAY
Compound data structure for computer-aided design-A survey
Proceedings ACM National Conference 1967 pp 355-365

9 Handbook of operating and maintenance instructions for the
associative memory
Vol II-Associative Memory Programming Manual
Goodyear Aerospace Corporation Akron Ohio
GER-13738 March 1968

10 A G HANLON
Content-addressable and associative memory systems-A
survey
IEEE Transactions on Electronic Computers August 1966

11 E L JACKS
A laboratory for the study of graphical man-machine
communication
Proceedings Fall Joint Computer Conference Vol 26 1964
pp 343-350

12 C A LANG J C GRAY
ASP-A ring implemented associative structure package
Communications of the ACM Vol 11 No 8 August 1968
pp 550-555

13 R E LEVIEN ME MARON
A computer system for inference execution and data retrieval
Memorandum RM-5085-PR Rand Corporation Santa
Monica California September 1966

14 J MINKER J D SABLE
Relational data system study
Auerbach Final Report-Contract F30602-70-0097
July 1970

15 P D ROVNER J A FELDMAN
The leap language and data structure
January 1968

16 P D ROVNER J C FELDMAN
An algol-based associative language
Communications of the ACM Vol 12 August 1969
pp 545-555

17 E H SIBLEY D G GORDON R W TAYLOR
Graphical systems communications-An associative memory
approach
Proceedings Fall Joint Computer Conference Vol 33 Part I
1968 pp 545-555

562 Spring Joint Computer Conference, 1971

18 I E SUTHERLAND
Sketchpad-A man-machine graphical communication
system
Proceedings Spring Joint Computer Conference Vol 23
1963 pp 329-346

19 W R SUTHERLAND
On-line graphical specification of computer procedures
Tech Report 405 Lincoln Laboratory Cambridge
Massachusetts 1966

20 A VAN DAM D EVANS
A compact data structure for storing, retrieving, and
manipulating line drawings
Proceedings Spring Joint Computer Conference Vol 30
1967 pp 601-610

21 A WOLINSKY
Principles and applications of associative memories
Third Annual Symposium on the Interface of Computer
Science and Statistics Los Angeles California January 1969

The hardware-implemented high-level machine language for
SYMBOL

by GILMAN D. CHESLEY and WILLIAM R. SMITH

Fairchild Camera and Instrument Corporation
Palo Alto, California

INTRODUCTION

Through the years since the specification and develop
ment of the first computer systems, machine instruction
sets have undergone the least modification of any aspect
of these systems. A process of evolutionary growth
through accretion of new components has taken place
in contrast to the revolution in the programming and
systems areas. One can point to stack commands,
indexing, and microprogramming, all developed several
years ago, and then the list of new concepts in instruc
tions runs out. Similarly, the number of papers in the
literature relating to the hardware implementation of
programming languages is sparse. This seems anomalous
considering that reductions in the cost of logic asso
ciated with the development of integrated circuits
allow the possibility of implementing much more
complex functions in hardware than with past design
practices.

The efforts as reported in the literature break down
into several attacks. The first approach, contem
poraneous with the development of procedural lan
guages, was the NCR 304 as reported by Yowell1 and
described in Sammet's "Programming Languages",
and was an attempt to implement an Autocoder level
in hardware, bridging the gap between machine
languages and high-level languages. This direction of
development has ceased, probably because of the
explosive growth of high-level languages as the user
language.

The second approach is that of directly implementing
a severely restricted subset of an existing high-order
language2,3,4 although none of these proposals seem to
have resulted in hardware. A more recent effort that
was consummated is the microprogramming of EULER
as reported by Weber.5 Sometimes evolutionary steps
are suggested6 to aid the system in the compilation
and execution of languages without attempting to
encompass the whole effort in hardware. The Burroughs

563

family of machines growing out of the B5000 is a very
practical realization of this approach.

Another direction, epitomized by ADAM/,S is that
of designing a unique high-order language to be hard
ware implemented with characteristics selected to ease
the implementation problem. Of course, once outside
the realm of general-purpose high-order languages,
many languages become interesting candidates for
hardware because of features designed with existing
system structures in mind. 9

The approach taken with the SYMBOL system was
to design a concise general-purpose language, well
within the main stream of contemporary language
development, but with novel features as appropriate
and with as few linguistic limitations as possible. The
SYMBOL language can be characterized as a high-level,
procedural, general-purpose, hierarchical language with
variable-length processing and storage to allow the
explicit representation of structures that are variable
in size, shape, and field length, and without type and
size declarations since conversion and space manage
ment are handled automatically. It is a highly efficient
language for the user since all of the language features
contribute directly to execution of the program rather
than to easing compilation or memory management.
Most of the language is directly implemented in
hardware and is now running in a multi-processor
virtua~-memory environment.

SYMBOL DESIGN GOALS

The specification of the SYMBOL* architect,urelO

and the design of the SYMBOL* language was a con-

* Although some confusion might ensue from calling both the
hardware system and the language by the same name, this
seemed proper in this case where the language is hardware
implemented and thus becomes a part of the specification of the
system.

564 Spring Joint Computer Conference, 1971

joint effort with each affecting the other. Very early
in the project it was recognized that the language
should be very concise to allow for a practical imple
mentation. At the same time it was felt that it should
be a general-purpose, procedural, "state of the art"
language with no functional restrictions imposed on it
to cater to its hardware implementation. Outside the
langu3,ge area, a design philosophy existed within the
project that memory space management and data type
testing and conversion could be done with hardware
substituting for the traditional software handling of
these areas. It was possible to combine these concepts
by designing dynamic variable-length data space
management and type conversion hardware and elim
inating all size and type declarations from the language.
Similarly, by specifying the most general hardware
capabilities possible, language limitations such as the
number of subscripts or the size of a name were elim
inated. In addition, the language is highly hierarchical,
much in the spirit of ALGOL, further simplifying the
translation and error checking hardware, as well as
contributing to the ease of programming in the language.
To minimize the conversion problem, all number
processing is done in a decimal, floating point, variable
field length internal mode. A special binary form exists
for storing status information.

HARDWARE REQUIREMENTS

The major requirement imposed by the language on
the hardware was complete variability of data size.
Thus, both string and arithmetic processing had to
be capable of operating on variable length fields (any
length strings are allowed although numbers are limited
to 99 digits). The system is capable of storing and
accessing variable length data. This capability serves
both the processing or execution aspect of the language
as well as the compiling and system functions (e.g.,
variable length identifiers).

A subscripting capability implies structures, and, in
keeping with the general philosophy, it was decided
that no limitations should be imposed. Thus, structure
handling hardware allows complete variability in size
and shape, regular or irregular, and complete dynami
cism whereby a complete structure may be assigned
to a substructure or field of any other structure. This
requires extensive and efficient space allocation and
recovery mechanisms but removes these concerns
from the language portion of the SYMBOL system.

LANGUAGE HIGHLIGHTS

The semantics of the language will be covered in the
next section and the syntax is contained in Appendix A.

This section will attempt to convey a flavor of the
language by introducing some of the more novel
features. First, however, the question "Why a new
language?" must be considered.

In attempting to implement in the hardware an
existing high-order, main stream language, FORTRAN,
ALGOL, BASIC, and a subset of PL/I would probably
be the chief candidates. The successful implementation
of SYMBOL suggests that any of these languages
could also be hardware implemented and that their
rejection becomes more a matter of choice than of
necessity. BASIC was felt to be too primitive. ALGOL
lacks input/output facilities and thus cannot be
considered a complete language. FORTRAN was a
strong contender because of its ubiquity. As the first
high-level language, it is far from being a state-of-the
art language. Also, as constructed it is quite machine
dependent (consider the problems of COMMON and
EQUIVALENCE in a variable field length environ
ment). Thus, although FORTRAN is familiar to most
of the programming world, it was felt that choosing
this language would be both retrogressive and overly
restrictive. Finally, PL/I was eliminated because
full PL/I was considered too complex for efficient and
economic hardware implementation and because it
lacked the overall simplicity desired for an end user
orientated language. In summary, it was felt that the
existing languages were biased too much toward a
multitude of data types and hardware influenced
elements and that for hardware implementation a
cleaner language with a high degree of generality was
desirable.

Therefore, a new language, SYMBOL, was developed
with only two design requirements: first, it should be
free of declarations about the nature of an identifier
and, second, structures should be literally representable
in the program and the external medium. Other features
that developed as the design evolved were the complete
variability of field and structure size and the execution
time dynamicism of this flexibility.

Considering first the conventional aspects of the
language, SYMBOL is a general purpose, procedural
language fully in the main stream of language develop
ment. Exp~essions can contain the normal set of
arithmetic, comparison, and binary operators having
standard precedence relationships. Operands can be of
various degrees of indirection: literals, simple variables,
subscripted variables with any number of simple or
complex subscripts, or procedure calls. The input/
output statements are flexible but simple, reflecting the
ability of the system to do data space management. A
standard conditional statement is supplied, but with the
final group of embedded statements closed with an
END to avoid the dangling ELSE problem. A very

Hardware-Implemented High-Level Machine Language for SYMBOL 565

flexible loop statement is available, allowing an un
limited number of loop clauses which have conventional
default values if not present. It is a block structure
language with default local identifiers and a floating
global statement to move identifiers out to the enclosing
block. Full procedural capability is available to the
user with call-by- name parameters, automatic recursion
as required, and a return statement for functional use
which returns a generated value to the calling point.

Turning now to the more unusual characteristics of
the language, its· declaration-free nature is evidenced
by the absence of size or type declarations or of implicit
restrictions on field or processing length. This char
acteristic is built on the dual assumptions of automatic
convertibility between data types and variable field
length processing and storage. The premise here is that
these are burdens best removed from the user and
given to the hardware. Another salient characteristic
of the language is its ability to represent structures
literally. Thus, a vector containing the integers one
through nine would be represented:

(11213141516171819)

with the left and right angle marks and the vertical
bar (called group and field marks, respectively) specifi
cally reserved in the language for this purpose. Regular
or irregular structures may be represented in this
manner with any depth or shape and when stored in
memory may be subscripted normally. For example,
the three dimensional array A may be created by an
initialization statement in the program:

A«1l112113X21122123X31132133»;

and a reference to A[3, 2] would access the number 32
and a reference to' A[2] would access the vector
(21 122 123). The declaration-free and dynamic fea
tures of structure handling can be illustrated by con
sidering the execution of the following assignment
statement:

A[I] = (A[3, 2] 1 A[2]);
giving in A:

{(32(21 122123)X21 122123X31 132133»

There are essentially no limitations on this kind of
structure manipulation. The same flexibility is allowed
at the field level:

A[I, 2, 1] = I STRING LITERALS ARE BETWEEN
FIELD MARKS I;

giving:

((32 (STRING LITERALS ARE BETWEEN FIELD
MARKS I 22 1 23X21 122 I 23X31 132 133»

Referencing a structure point that does not exist
causes the necessary structure to be created and

filled with null fields. Thus:

B[5,3] =444;
causes in B:

(III (II 444»

It was mentioned before that structures may be
initialized in the language by writing the literal struc
ture with its identifier as a statement in the language.
A switching structure may be similarly initialized by
preceding the structure identifier with the reserved
word SWITCH which causes the structure fields to be
interpreted as labels rather than as data. For example:

SWITCH L (X I Y I Z);

sets up the switching structure Land:

GO TO L[2];

causes a transfer to a program point labeled Y. This
allows computed transfers to be performed by making
the subscript of the transfer statement an expression
to be executed.

A natural concomitant to VFL storage is VFL
processing. All processing operations, numeric or string,
are performed serially on variable length data fields
with the restriction that numeric processing is limited to
a 99 digit normalized fraction portion of a floating
point number. The creation of irrational numbers is a
special problem for a VFL system. Consider processing
Ys which would require infinite time and space to
complete the operation. Two techniques are available
in SYMBOL for controlling the length of numeric
processing and thus processing speed and storage space.
The first is a hardware register, referenced in the lan
guage by the reserved word LIMIT, whiQh controls the
truncation and rounding point of processing. VFL
processing continues until the length of the fraction
portion of the result reaches the value of the limit
register, causing processing to terminate. The default
value of the limit register is nine and it can be manip
ulated as an ordinary variable:

LIMIT = LIMIT -4;

would give LIMIT a value of five allowing processing
to be faster, particularly for multiply and divide.
Another method for controlling processing length is a
precision mode whereby any number entering the
system may be tagged with an EM (empirical) suffix
indicating that the number is accurate only to the
precision (length) supplied. Any number not so tagged
is assumed to be exact; that is, of infinite accuracy and
having implied low order zeros. The precision of the
result of processing is equal to the least precision of
either operand or the limit register. The result is
empirical if either operand is empirical or if limiting

566 Spring Joint Computer Conference, 1971

takes place. Consider the following examples:

LIMIT = 9; 73'

LIMIT = 5; 73'
LIMIT=5; 7i

is .333333333EM

is .33333EM

is .25

LIMIT=5; 1/4.00 EM is .250EM

Along with the normal operators, SYMBOL also
includes format control operators to reconfigure data
into a desired format using character-by-character
testing, replacement, insertion, etc. Two operators are
available, FORMAT and MASK, with the former
operating on numeric data and the latter operating on
string data and often used to convert between less
dense code sets and the internal set. Many of the format
features follow those suggested in Reference 11. To
illustrate formatting, consider the following format
control fields operating on the internally stored number
12345.6789 :

CONTROL FIELD

+9ZV
-9Z.FD
10D.10D
ZZCZZZCZZZ.DD
ZBZBZBZBZBV
'$'*C***C***. D D
8B+ D.FDlO+ ND
B-D.FDIO-DDMB
B-FD.FDMB

RESULTS

+12345
12345.6789

0000012345.6789000000
12,345.67

12345
$***12,345.67

+ 1.2345678910+4
1.234567891004
12345.6789

The last two control field examples are wired into the
format unit and are used for automatic conversion
from numeric to string type. The floating form is
used if the absolute value of the exponent is larger than
nine. The fixed form is used for all other cases. The full
set of control characters is tabulated in Appendix B
but a brief description will be included here to flesh out
the above examples. Two replica tors are used: a one
or two digit number causing the following control
character to be repeated that many times and the
"enough" replicator (F) causing replication until the
fraction or integer portion of the data field is used up.
Literal insertion (of a dollar sign) is shown in the sixth
example and "B" causes insertion of a blank and "10"

causes insertion of the exponent tag. Three leading
zero suppression characters are illustrated: "N" causes
suppression only, "Z" causes replacement by blanks,
"*" causes replacement by asterisks, "C" causes a
comma or the adjacent zero suppression character to be
inserted. The signs cause both signs or minus only to
be transferred. Decimal point placement is controlled
with"" and "V" with only the former causing in-

sertion. The M character caused the EM tag to be
generated if the number is empirical.

A link mechanism exists in the language by which
expressions can be assigned to data space, and when
ever that data space is referenced, the expression is
executed in its place. The link is created by an assign
ment statement having the reserved word LINK
preceding the expression. Links may be assigned to
substructure fields and may be used as often as desired.
As an example of how the link mechanism might be
used, consider the following:

Employment History [X] = LINK Military Record;
Credit Rating [Y] = LINK Military Record;

The following statement accomplishes the updating
of both uses of Military Record:

Military Record [K] = I Discharge Date 11/1/67 I;

The expression of the link operand can include a
procedure call so that more complicated functions may
be performed via the link mechanism. Variable refer
ences are also included in the link operand as part of
expression syntax so that links may appear on the des
tination side of an assignment statement causing
indirect assignments.

The SYMBOL language includes a named data
input mode, activated by the qualifier DATA'in the
input statement, which allows data items to be input
without referencing their identifiers in the input
statement. Instead, the name is included with the
data, similar in form to the initialization statements,
and the input loading mechanism causes the current
location of the identifier to be .referenced and the
incoming data assigned to that location. This feature
allows dynamic interaction to take place between the
program and the user with the data requirements being
determined in real time during e:x;ecution rather than
when the program is written.

The "on" mechanism, similar to the one introduced
in PL/I, has been provided in SYMBOL. On's are
blocks of statements executed out-of-line by implicit
rather than explicit reference. In the SYMBOL imple
mentation, the reserved word ON is followed by a list
of identifiers which precede the on body. These identi
fiers may refer to variables, labels, or procedures. The on
block is executed out-of-line after storing to a variable,
and before transferring to a label or a procedure. The
reserved word INTERRUPT may also appear in the
on list and refers to a hardware register of internal and
external conditions that activate the on. Disable/enable
statements are included in the language to deactivate/
reactivate on action as desired. The on mechanism can
be used to monitor program performance of selected

Hardware-Implemented High-Level Machine Language for SYMBOL 567

items and can be subsequently deactivated after the
debugging phase is complete.

A DESCRIPTION OF THE LANGUAGE

C omponent.~

Reserved characters are graphics having a unique
interpretation to the system. They are also required as
delimiters for multi-character names. Reserved char
acters may be categorized as follows:

Break Characters: space CR TAB
Grouping:
Separators:
Operators:

() [] {)
, I
* +

~

/

Reserved names are contiguous strings of alphabetic
characters having a specific meaning to the system
and interpreted as a single entity. In fact, if a large
enough character set were available, all of the reserved
names could be replaced by reserved characters, albeit
at the cost of readability. They can be grouped as
follows:

Operators: GREATER, GTE, EQUALS, NEQ, LTE,
LESS, BEFORE, SAME, AFTER, AND, OR, NOT,
ABS,JOIN

Statement: INPUT, OUTPUT, GO, IF, LOOP,
BLOCK, GLOBAL, PROCEDURE, RETURN, ON,
ENABLE, DISABLE

Statement Clauses: LINK, TO, FROM, THEN, ELSE,
END, INTERRUPT, FOR, WHILE, FROM, BY,
THRU

N on-reserved names, sometimes called identifiers, are
alphanumeric strings starting with an alphabetic
character, isolated by reserved characters, and op
tionally contain embedded spaces allowing multi-word
names. They are used to identify variables, procedures,
or label transfer points in the program.

Any string of characters between field marks is a
string literal. That is, it is interpreted as data rather
than as a reference to data. Literals meeting valid
number syntax need not be enclosed within field marks.
The form for numbers is a string of digits with an
optional decimal point and an optional exponent
suffix consisting of the character "10" followed by an
optional sign and one or two digits.

Expressions are language elements used to generate

or modify data, unlike the simpler elements discussed
in the previous paragraphs which reference or represent
data. Expressions may be used any place that a name
reference is proper (except, of course, as an assignment
reference) and are formed out of the following elements:
reserved character operators, reserved word operators,
variable operands, string literal operands, numeric
literal operands, parentheses, and other components to
be covered later.

Because the SYMBOL language is declaration-free,
variable names do not have an inherent data type
associated with them. The issue of data type can be
minimized but not ignored altogether because the
standard operators of a high-order language partition
into at least two categories: numeric and string (Boolean
and binary data types can be considered a subset of
string type and that is the approach taken with SYM
BOL.) Thus, in SYMBOL, the operators require a data
type rather than the variables and an error is called
when an operator/operand mismatch occurs rather than
when data is stored to a variable as with most high-order
languages. The error is indicated only if the automatic
conversion process between the two data types is not
successful.

The operators are partitioned as follows:

Numeric Operands: ABS,+,-,*,/, GREATER, GTE,
EQUALS, NEQ, LTE, LESS

String Operands: BEFORE, SAME, AFTER, JOIN,
AND,OR,NOT

Numeric Result: ABS,+,-,*,/

String Result: GREATER, GTE, EQUALS, NEQ,
LTE, LESS, BEFORE, SAME, AFTER, JOIN,
AND,OR,NOT

The operators AND, OR, NOT require strings of
0/1 characters only. Only JOIN produces a full string
while the comparisons produce a 0/1 string character
and the binary operators AND, OR, NOT produce a
string of 0/1 characters. Other than the previously dis
cussed characteristics, all operations-operands and re
sults-are variable field length.

Mathematical usage has established a convention
with respect to precedence among the arithmetic
operators. Thus, A+B*C means A+(B*C) rather than
(A+B)*C. It has been customary with artificial lan
guages to extend this notion to give all of the operators
in the language a relative precedence. For SYMBOL,

568 Spring Joint Computer Conference, 1971

the precedence' relationships are as follows:

HIGH ABS
+ (monadic), -(monadic)
*,/
+ (dyadic), - (dyadic)
JOIN
comparison operators
NOT
AND

LOW OR

Parentheses are used for vitiating the precedence
relationships so that interpretations such as (A + B)*C
can be made.

Simple statements

Statements in the language are basically used either
to transfer or modify data stored in memory or to
change and control the sequence of execution of these
data statements.

The basic form of the assignment statement is:

identifier = fxpression

(Italics will be used throughout this paper to represent
syntax elements. The full syntax of the language is
given in Appendix A.) The value generated by the
expression is stored in the variable represented by the
identifier, replacing any previous value without regard
for field size or data type.

The forms of input/output statements are:

INPUT[FROM expression,] L, iden#fier

OUTPUT[TO expression,] L, expression

(final bit of metalanguage: capital letter words represent
the actual reserved word, brackets enclose an optional
syntax element, the list operator L causes a list of one
or more elements to be constructed and separated by
the given punctuation mark).

The I/O statements cause data to be transferred
between memory and external devices. If no TO /
FROM clause is supplied, the transfer takes place
between memory and the default device. Lists of data
are terminated by an end-of-record mark (~). Each
input datum in sequence is assigned to a different
variable, and output data generated by each expression
is placed on a different line (if a printing medium is
being used). A STRING qualifier may be used which
prevents automatic spacing action on output or
structuring on input. A DATA qualifier requires/causes
identifiers to be associated with the data being trans
ferred. EX/EM qualifiers may be used on input to

cause numeric data to be packed and tagged unless
specified otherwise externally.

The basic form of the transfer statement is:

GO [TO] label

Any statement may be preceded by one or more
identifiers followed by colons. This establishes the
statement as a program transfer point and the identifier
as a label. The transfer statement is the basic language
mechanism to cause a transfer of the sequence of state
ment execution, when encountered, from one point in
the program to another.

The basic form of the conditional statement IS:

IF expression THEN body [ELSE body] END

where 1he expression must generate a Boolean result.
The body is a list of zero or more statements separated
by semicolons, and may contain conditional statements,
allowing nesting of conditionals. Either the first body
or the second (optional) body is executed, depending on
whether the expression is true or false.

Blocks

The basic form of a block is :

BLOCK body END

where the body can contain one or more global
statements:

GLOBAL L, identifier

The block mechanism is a device for preventing
interference and interaction between identifiers when
several program segments are brought together to form
a single package. It causes all uses of an identifier to
be local to the body of the block containing the identifier
and thus have no connection to uses of the same identi
fier outside the block.

The GLOBAL statement provides the capability of
establishing an identity between the same identifier in
different blocks by causing all identifiers in the global
list to become known to the program body immediately
outside the block (i.e., global statements carry identi
fiers up one block level). This allows two or more
different blocks packaged together in the same program
to communicate via common identifiers contained
within their global statements. The following uses of
identifiers are automatically local and thus these
identifiers may not appear in a global list : initialization,
switch, label, on list, procedure declaration and pro
cedure formal parameter. Although global statements
only carry identifiers up one block level, blocks can be
nested to any depth and enough global statements

Hardware-Implemented High-Level Machine Language for SYMBOL 569

must be supplied to boost identifiers up to a desired
level.

Procedures

A procedure is a block with a name identifier. The
basic form of a procedure is:

PROCEDURE identifier; body END

The reserved word PROCEDURE causes the procedure
body to be established as a program block to be executed
in place of and whenever the identifier occurs in the
program. Referencing a procedure name causes an
automatic transfer to the start of the procedure body,
execution of that body, and an automatic return to the
reference point when the body is completed. Procedures
can only be entered by reference to the procedure name
although they can be exited via a transfer statement.
A procedure body is transferred around when en
countered in-line. Procedures can be recursively entered
when the procedure is referenced within its own block.

Procedures are often used in a functional manner
after execution of the procedure body there is a need to
return a generated value to the calling point, replacing
the procedure reference. The return statement provides
this capability and has the following form:

RETURN expression

The return statement causes its expression operand
to be calculated and returned to the calling point
replacing the reference before terminating the procedure
block. Assignment destinations may be returned to the
calling point with the return statement, allowing pro
cedure calls to appear on the destination side of an
assignment statement. More than one return statement
may be used in a procedure, and if none are encountered,
the procedure terminates in a normal (non-functional)
manner when the END is reached.

Parameters may be used to transfer constants,
variables, expressions, or labels (syntactically called
references) between the calling point and the body of
a procedure by following the procedure name at the
calling point with a list of these items surrounded by
parentheses. These "actual parameters" are correlated
one-to-one to a list of "formal parameter" identifiers
immediately following the procedure identifier and
preceding the procedure body. Whenever the formal
parameter is encountered in executing the procedure,
body, it is replaced by its corresponding actual param
eter which is executed in its plaee. This is referred to

DECLARJlTION

----- - -----,
I
I

identifiel"[(L.reference)] r - - ~ PR[lCEDURE identifiel"[(L.identifiel") ~;:
body I

'- - - - - -[RETUR~I l"efel"ence;~ I

L - ---EtiD I

___ ~ _____ J

Figure l-Procedure form

as a "call-by-name" parameter correlation. The com
plete form for procedures is shown in Figure l.

The implementation of the parameter mechanism in
the SYMBOL system allows a "procedureless param
eter" to be defined. It is created by an assignment
statement of the following form:

identifier = LINK reference

The parameter mechanism is activated whenever the
identifier appears in any context in a program causing
the reference to be executed in its place. The link
assignment is a dynamic (execution time) action and has
no connection with a procedure.

ON block

The on mechanism is a technique whereby a block of
programming may be executed out-of-line by implicit
rather than explicit (as with procedure) reference.
The form of the on block is as follows:

ON L, identifier; body END

where the identifiers may refer to data variables,
procedures, or labels. An on block is automatically
executed by the following actions to its list of identifiers:
after storing to a data identifier, before execution of a
procedure, before transfer to a label. Since an on block
is called implicitly it has no need for parameters or the
return mechanism. After execution of the on block,
processing continues at the point where the on block
was activated.

The reserved word INTERRUPT may appear in the
list of on conditions and refers to a hardware register
that may be set by a number of external and internal
conditions, thus causing that on block to be executed.

570 Spring Joint Computer Conference, 1971

The disable/enable statements are used to control
the deactivation and reactivation of on identifiers. The
form is as follows:

DISABLE L, identifier
ENABLE L, identifier

When an identifier is disabled, the on block IS no
longer activated by a use of that identifier.

Loop

The loop statement provides a convenient mechanism
for repeating the execution of a group of statements
while varying an (optional) variable within the group
until a given criterion is met which causes an exit
from the loop. Loops may also be exited via a transfer
statement within the loop. The form of the loop is as
follows:

LOOP [identifier][L, clause]; body END

where the clauses are as follows:

FOR L, expression
[FROM expression] [BY expression] [THR U expression]

where the latter elements can be in any sequence and
have default values of 1,1, infinity respectively.
Either clause can be terminated by an optional "while"
element.

The loop body is repetitively executed with the loop
variable (if present) taking on the designated value,
until the clause is satisfied or the while modifier becomes
false. Then the next clause in sequence is executed,
executing the body each time, until no more clauses
remain, in which case the loop is terminated. Variables
in the loop header may be modified at any time by
actions within the loop body.

Structures

A structure is a group (or vector) of one or more
elements consisting of basic elements or structures.
Basic elements are separated by field marks (I) and
groups are contained within group marks (< >). Struc
tures need not be regular in size, shape, or data type
and may vary dynamically. They may be nested to
any depth. Depending on their program context they
may contain data, labels, or expressions.

Structure points may be referenced on either side of

an assignment statement or may be written with
program segments contained within the group marks on
the data side of an assignment statement. Explicit
structures may be written and used as data. In this
structure assignment case, each program segment
within the literal structure is executed, a result is
generated, and then the whole structure is assigned to
the destination point. Using the structure marks,
literal structures may be created at the input device
and subsequently input to a variable. Similarly,
structured variables may be directly transferred to an
output medium.

Structures containing data or label identifiers may
be given an initial value by writing them in the pro
gram, preceded by an identifier, as a separate statement.
To initialize label structures, the reserved word
SWITCH must also precede the structure identifier.
Simple, non-structured variables may. be initialized
by the variable identifier followed by the literal data
enclosed within field marks. Initialization takes place
only once in a program when the initialization state
ment for< a variable is first encountered. Subsequent
passes through the program transfer around the
initialization statements.

Full structures are accessed by reference to the
structure identifier without subscripts. Substructures
are accessed by enough subscripts to select the desired
substructure level. Most substructure references will be
with enough subscripts to select the field level. Sub
:ijelds are accessed by a bound pair (expressions sep
arated by a colon) as the last subscript after the field
level. Characters are selected from the field starting
at the left value of the bound pair and continuing to the
number of characters indicated by the right value
of the bound pair. All substructures above the field
level are complete and valid structures and thus
cannot be used in expressions (automatic vector or
array operations are not included as part of the hard
ware language). Basically, structures can only be
assigned or transferred between the external medium.

There are essentially no limitations to structure
manipulations. Fields or vectors can be extended,
contracted, or removed by assignment. Fields or
vectors created by reference are filled with nulls. The
only restriction is that data cannot be destroyed by
referencing below an existing field level although it is
legitimate to destroy it by assignment. The reserved
word IN tests whether a particular structure point
referenced by a subscripted variable exists, returning
either a true or false value. Oversubscripting by an in
reference does not cause null structure to be generated.·

A switch structure containing labels can be the
subscripted variable operand of a transfer statement,
allowing a computed go to be performed.

Hardware-Implemented High-Level Machine Language for SYMBOL 571

Data Control

Two techniques are available to control the length
of variable field length arithmetic processing. The
first is a precision Ilmiting register, acting as a hardware
variable in the language and referenced by the reserved
word LIMIT. The default or standard value is 9
causing all numeric processing to cease at a maximum
value of 9 digits of precision. Any other positive value
up to 99 may be assigned to the limit register.

The second technique tags (directly or with an input
qualifier) all numbers entering the system with an EM
(empirical) suffix which indicates that they are a.ccurate
only to the number of digits (precision) supplIed. All
numbers not specified as EM are tagged by the system
as EX (exact) and these numbers are assumed to
possess an infinite string of low order zeros. These
tags affect processing in an obvious and natural way
and combine with the limit register to give precision
controlled processing with a size override for the sake of
efficiency. Any exact calculation terminated by the
limit register produces an empirical result (when
limiting takes place an internal status indicator is set
which may be accessed and reset by the reserved word
LIMITED). With this system, when the accuracy of
an algorithm is not taken into account, meaningless
results will be indicated by the precision shrinking to
zero.

Many times a standard data format, automatically
provided by the system will be sufficient. Often, how
ever, an application demands a particular format, and
two operators are provided by the SYMBOL language
to control format. The FORMAT operator recon
figures numeric data and the MASK operator recon
figures string data. They both have a control operand
and a data operand with the characters of the control
operand operating on (selecting, inserting, replacing,
etc.) characters of the data operand. Many of the
characters of the format operator are concerned with
check and payroll formats while many of the mask
characters cause conversion between special data modes.
The full set of format and mask control characters is
summarized in Appendix B. To further aid in format
control, the output statement has a STR.ING mode
option which suppresses the normal carnage return
spacing features associated with the output statement.

Software patches to hardware

As a hardware-implemented language, SYMBOL is
vulnerable to the criticism of inflexibility. To obviate
this objection, hardware breaks to system softw~r~ were
included in the language as well as the abIlIty to
control the basic memory operations of the system.

The reserved word TRAP is a separate language
statement which, when encountered, causes· the hard
ware Translator to interrupt the translation process
and turn system control back to the master hardware
scheduler. At this point, if desired, a system program
would be executed. The reserved word SYSTE.M
performs a similar function for the execution unit (the
Instruction Sequencer), causing a system interrupt
when encountered. It has no effect on the Translator,
passing through the translation process without change.

The Privileged Memory Operations (PMO) are
language statements causing actions identical to the
actual hardware memory operations of the system
which are described in the companion paper on system
architecture. They are of the nature: "fetch the word
at the address I give you and follow any indirect links
to give me the next address in sequence" or "store
the word I give you into the address I give you and
assign new space and link it in if no following space
exists and return the next address to me." The operands
of the PMO's as seen by the user, are hex coded char
acter strings (so that they can be manipulated as valid
data) of the data and address fields and are automati
cally packed and unpacked by hardware. Since all the
status of the system is ultimately kept in memory, the
PMO's have the ability to control and mimic all aspects
of the system, albeit at a slower rate than hardware
can accomplish the same task.

Since SYMBOL is a time-sharing system, it is neces
sary to prevent programs from inadvertently inter
fering with each other. As a hardware language, the
protection is inherent: until now, there are no language
mechanisms by which one program can interfere with
another since all data is manipulated under symbolic
names rather than as memory addresses. The introduc
tion of memory operations into the language recreates
this danger. Thus, they are designed as privileged
operations which can only be used under special
restrictions. Basically, one must either be a system
programmer or be using a system procedure to utilize
thePMO's.

CONCLUSIONS

Hopefully the SYMBOL language has been described
in enough' detail to give the reader familiar with pro
gramming languages the flavor of the language and to
give the language expert enough information to actually
use the language. As yet, few perfomance figures are
available since the project is just entering the operation
and evaluation phase, although preliminary measure
ments indicate potential compiling rates of hundreds of
thousands of statements per minute. Of course, per-

572 Spring Joint Computer Conference, 1971

APPENDIX A
SYf'BOL SYNTAX

digit :: = 11213141516171al910
letter:: = Alai cl---1 z lalb I cl---I zl
character :: = _any character except *"_
break-char :: = _a carriage return, tab or space_
identifier :: = letter[[letter I digi t I break-char] ••• (letter I digi t)]

label :: = identifier

decimal-number :: = digit ••• [.] I [digit •••] • digit •••

e:cponent-part :: = 101:+ 1-] [digi t] digi t

number :: = decimal-number I e:cponent-part I decimal-number exponent-part

8tring-number :: = [+1-] [(digiti,) ••.] number [ExIEM]

8tring :: = _sequence of zero or more of any characters except \ > and *"_
field :: = 8tring-numberl8tring

data-field:: = "1" field II I"
named-data :: = identifier (data-fieZdldata-8tructure)

dB :: = [L II I" fie ld]

data-8tructure :: = <dB [data-8tructure dB] ••• >
ls :: = [L II I" labe Z]
Zabe l-s tructure :: = <Z8 [labe l-8tructure l8] ___ >
a8 :: = [L II I" e:cp]

aS8ignment-8tructure :: = ,a8[a88ignment-8tructure as] ••• >
8ubscription :: = identifier "[" L,e::cp "]"

8ubfield :: = identifier "[" L,e:cp:e::cp"]"

designator :: = identifier Isubscription Iprocedure-call I LIMIT

procedure-call :: = identifier ["(" L, [reference] ")"]

constant :: = data-fieldlnumber

value :: = designator I subfieldlcon8tant IIN(sub8cription Isubfield) I LIMITED

reference :: = designator I e:cp I label

arithmetic-or :: = +1-1*11
s tring-op :: = JOIN 1 FORMAT I MASK

binary-op :: = A.~DIOR

arithmetic-rrlatio>l :: = GREATER[rnAN] 1 GTE 1 EQUALS INEQILTE 1 LESS[rnAN]

Mri>l!I-rclation :: = BEFOREISAMEIAFTER

r<lati(>nal-op :: = ar-ithmctic-reZationI8tring-reZation

,I;·!(],N,·-0T' :: = rc latJ~o>1a [-(IT' 1 ari thmetic-0T' Il'tring-op Ibinary-op

":. '>l.7Ji ('-0,' :: = + I-I ASS INOT

assignment-element:: = assignment-structure lexp ILINK reference

qssignment-stm :: = L,designator • assignment-element

go-to-stm :: = GO[m] (labe II subscription Iprocedure-caLl I identifier)

caLl-stm :: = [CALL] procedure-call

break-stm :: = PAUSE ISVSTEMITRAP

dummy-stm :: = [CONTINUE]

cOllUllent-stm :: = NOTE_any characters except ,_

output-stm :: = OUTPUT ([m exp,JL,expISTRING[TO e::cp,JL,expIDATA[TO e::cp,]

L, identifier)

input-stm :: = INPUT([EXIEM][FROM exp,JL,designatorlSTRING[FR£14 exp,]

L,designatoriDATA[FRIJol exp])

list-data:: = L * (fieldldata-structure)*

string-data:: = L * [character ... h
self-defined-data :: = named-data ... *

initialization-stm :: = named-data

switch-stm :: = SWITCH identifier label-structure

for-clause:: = FOR L, (explexp WHILE exp)

step-clause :: = (FROM explBV explTHRU expl'IIHILE e::cp) ...

loop-header:: = LOOP [designator] L, [for-clauselstep-clause];

loop-stm :: = loop-header body END

on-element-list :: = L, (identifier I label I INTERRUPT)

on-header:: = (Jl on-eZement-list;

on-cont1'Ol-stm :: = (DISABLEIENABLE) on-element-list

return-stm :: = RETURN [reference]

procedure-header :: = PROCEDURE identifier ["("L,identifier")"],

conditional-stm :: = IF exp THEN body [ELSE body] END

scope-stm :: = GLOBAL L,identifier

block :: = (BLOCKlon-headerlprocedure-header) body END

stm :: = label: stmlassignment-stmlgo-to-stmlcall-stmlbreak-stmldumny-stm

I cOllUllent-stm I output-stm I input-stm I ini tia lization-stm IsbJi tch-stm

Iloop-stm I on-contro l-stm lreturn-stm Iscope-stm I condi tiona l-stm I block

body:: = [L;stm]
/:!!:£il!:'E!!_££_::_££!!ii_! __ _

privileged-stm :: = (fetchlstoreldeletelassi(PI) METALANGUAGE
(identifierlsubscription) (xiV) .Select one alternative from group

fetch:: = FFIFRIFLIFDIFT [xlV] Select zero or one from group

store :: = SAISOISIISDlsT

delete :: = DEIDSIDl

assign :: = AGIIG

X... Repeat zero' or more times

L XV List of Y's separated by X's

X A comnent

"X" riot a metas):!llbol

Appendix A

formance in the SYMBOL system is an admixture of
two opposing factors, hardware implemented functions
and an extremely dynamic language, and it will be
very difficult to separate these two contributions.
It is probably true that the SYMBOL language, if
compiled and executed on a conventional architecture,
would be as slow as any other high-level language
having comparable execution time dynamicism coupled
with automatic data space management. Default
PL/I would probably provide a fairly relevant basis for
prediction. As implemented in the SYMBOL hardware,
however, any task requiring the variable length pro
cessing and storage or the dynamic structure features of
the language should show a considerable performance
gain over conventional software/hardware systems.

Early experience within the SYMBOL project has
shown the language to be an extremely simple one to
learn and use, considering its powerful capabilities.
The use of structures .seem to indicate that their great
flexibility and dynamicism completely eliminate the

need to develop exotic strategies for data base manage
ment. For example, hash sorting buckets in SYMBOL
can simply be vectors of an array since vectors auto
matically expand as the subscript increases. Since
collisions are of little consequence, scatter storage
techniques12 need not be complicated. Little practical
experience has been gained with the precision controlled
processing mode although it is expected to be a boon to
numerical analysts as well as a source of surprise to less
sophisticated users who have never considered the
question of numerical accuracy since conventional
systems tend to mask accuracy loss.

SYMBOL is a break with the existing trends in
language development, as epitomized by ALGOL 68
and full PL/I. That is, the SYMBOL system hardware
takes over from the user and performs the complete
memory management task including all space allocation
and recovery, structure expansion and contraction,
and virtual memory paging between disk and main
memory. The other languages do the opposite by

Hardware-Implemented High-Level Machine Language for SYMBOL 573

APPEIDIX B

~T Q'a'

RI(J'

~T /MASK CPEPATf1RS

ACTIIIt 1tI RES ... T

Literal string a inserted if source
negative; otilenlise nothing.
Uteral string a inserted if source
positive; otilenlise nothing.
Space (positive) or - (negative)
inserted IS first non-space char.
Sign inserted IS first non-space
character.

" Suppress leading zeros.
Z Spaces replace leading zeros.

Asterisks replace leading zeros.

C_ or zero-suppression character
inserted.
00l1ar sign inserted IS first non
space character.
Exponent tag inserted.

EX (exact) or EM (eqlir1ca1)
inserted.
Null (exact) or EM (eqlirical)
inserted.

!;
.~ §

:E'" o iii! ~
.. l!!i iii!

O,nll NO

O,na NO

0,1 n

0,1 n

NO

0,2 1

----- -;~';';l-~~'~i-,~;;;.t;d~--Al;~-;;;';;;--- ----- --i---
IS reference point for fonnat field.
Serves IS reference point for fonnat
field.

RESTRICTIIltS

10 ... st be foll_d by
correct exponent
fOl'Nt.

MASK A a Source character inserted unless 0,1 F,n (Space) default.
s_ as 0.

Converts two hex characters to
one standard character.
Ulpacks hex character to four
binary (O/l) characters.

F ,n Resul t mus t have
leftmost bit false.

F ,n (0000) default.

-~~~~~~;~-~;~~~~::::=------------ -:--- -~---r~: J~U;~~~!~~::~~ ____ _
Produces four di gi t count of ALL 4 F emus t be preceded
source length. by F.

COMMIW D/S Digit (mRMAT)/Character (MASK)
trans ferred.

F ,n (zero/space)
default.

Ignore source character.
Space character inserted.
Carriage return character inserted.

F,n
F ,n FB wi th M~.SK on ly.

in
'0.' Literal string 0. inserted.

1

1m ,Quote represented I ~~~~l~n~:teral by

*Replication Classes

NO

Codes indicated by n may be preceded by a 1- or 2- digit number. Effect
is of repeating the code that many times.
Codes indicated by F may be preceded by an F, whi ch causes the code to
be repeated until the source field is used up. In FORMAT specifications,
each F applies only to one side of the decimal point (i .e., integer ~
fractional portion is used up). .•
No replication allowed but code can be used more than once in a field.
No replication and can be used only once in a field.

NOTE: Standard Format Conversion:

8-FD.FDMI (Fixed - exponent one digit) or
B-D.FDlO-ODMl (Floating - exponent two digits)

Appendix B

giving the user more and more control over space
management and, in fact, require a fairly high level of
expertise in arranging and programming problems
for efficient use of space. Herein lies the sticking point:
will future users of high-level language systems want
more or less control over the mechanics of their data
base? The SYMBOL philosophy is that user data
space management will go the way of manual trans
missions on automobiles: fine for special purposes but
the average user will be willing to give up some per
formance and flexibility for ease-of-use.

In a way, the situation is analogous to the introduc
tion of high-level languages with FORTRAN. At the
time there was great concern within the FORTRAN
project that the system must have an execution time
performance roughly equivalent to a machine language
program for the same task. After introduction of the
system it was soon found that this criterion was much
less important than was initially thought because the
programming leverage given by a high-level language
more than compensated for execution inefficiencies.
The same argument applied to space management
should be even more persuasive today with the ratio
between programming and hardware costs undergoing
a dramatic reversal.

REFERENCES

1 E C YOWELL
A mechanized approach to automatic coding
Automatic Coding J ourn Franklin Inst Monograph No 3
Phila Pa April 1957 pp 103-111

2 J P ANDERSON
A computer jor direct execution oj alogrithmic languages
Proc EJCC Vol 20 1961 pp 184-193

3 A J MELBOURNE J M PUGMIRE
A small computer jor the direct processing oj FORTRAN
statements
Computer Journ Vol 8 No 1 April 1965 pp 24-27

4 T R BASHKOW A SASSON A KRONFELD
System design oj a FORTRAN machine
IEEE Trans Elec Comp Vol EC-16 No 4 Aug 1967
pp 485-499

[) H WEBER
A microprogrammed implementation oj EULER on the IBM
System/360 Model 30
Comm ACM Vol 10 No 9 Sept 1967 pp 549-558

6 W M McKEEMAN
Language directed computer design
Proc FJCC Vol311967 pp 413-417

7 A P MULLERY R F SCHAUER R RICE
ADAM-A problem-oriented symbol processor
Proc SJCC Vol 23 1963 pp 367-380

8 A P MULLERY
A procedure-oriented machine language
IEEE Trans Elec Comp Vol EC-13 No 4 Aug 1964
pp 449-455

9 K J THURBER
System design oj a cellular APL computer
IEEE Trans Comp Vol C-19 No 4 April 1970 pp 291-303

10 W R SMITH et al
SYMBOL: A large experimental system exploring major
hardware replacement oj sojtware
This volume

11 D E KNUTH
A proposal jor input/output conventions in ALGOL 60
Comm ACM Vol 7 No 5 May 1964 pp 273-283

12 R MORRIS
Scatter storage techniques
Comm ACM Vol 11 No 1 Jan 1968 pp 38-43

SYMBOL-A major departure from classic software
dominated von Neumann computing systems

by REX RICE and WILLIAM R. SMITH

Fairchild Camera and Instrument Corporation
Palo Alto, California

INTRODUCTION

The prime goal of the SYMBOL research project was to
demonstrate, with a full-scale working system that a
very high-level, general-purpose, procedural, "~tate of
the ar~" language and a large portion of a time-sharing
operatmg system could be implemented directly in
hardware and achieve a significant increase in overall
computational rates. A further objective was to create
hardware design and construction techniques which
could be easily applied by a small number of people
to implement such a system in a reasonable time and
at a relatively. low cost. Although this was a research
project, there was a high dedication to developing auto
mation, hardware, test equipment and documentation
to support the project. The name SYMBOL was chosen
to signify direct hardware symbolic addressing.

Another goal of the projecl was to develop hard
ware/software algorithms which directly aid a casual as
well as a professional user working with non-numeric
data. Particular attention was given to the manipula
ti?n of data structures for file maintenance coupled
WIth powerful field and character manipulating in
structions.

The general-purpose SYMBOL language1 was de
veloped after studying a large number of modern lan
guages including ALGOL, FORTRAN, PLl1 LISP
and EULER. It was decided early that the new lan
guage had to perform all useful operations on applica
tion problems without being cluttered with machine
dependent operators; also, since it was a research
project there was no strong necessity to be compatible
with available programs written in other languages.
On the hardware side it was decided that no appreciable
restriction to the language would be permitted and
that hardware would have to be invented to match
the language. As the project progressed it became
desirable to include conversational-mode multiproces-

575

sing and multiprogramming as well as source language
text editing.

The architectural philosophy of the SYMBOL sys
tem led to hardware implementation of a variety of
features which have been and are software functions of
current systems. Some of the interesting features di
rectly implemented in hardware in SYMBOL are:

Dynamic Memory Allocation
Dynamic Memory Reclamation
Dynamically Variable Field Lengths
Dynamically Variable Structures
Automatic Virtual Memory Management
Automatic Data Type Conversion
Automatic Time-Sharing Supervision
Direct Symbolic Addressing
Precision-Controlled Arithmetic Processing
Direct Hardware Compilation
Alphanumeric Field Manipulation
Direct Text Editing

PROJECT HISTORY

From the beginning, this research project was com
mitted to producing a real and functioning system
rather than a simple simulation. A brief outline of the
project history appears below. It should be noted that
considerable emphasis was placed on hardware design
and implementation techniques. In fact, the complete
project was treated as a" closed system" where no item
(such as a user with his application) was considered
separately from the language, operating system, or
hardware.

1963-64: Hardware Technology Development
Fairchild CT,uL Family for Circuits
Power Distribution Techniques

576 Spring Joint Computer Conference, 1971

Large Two-Layer Printed Circuit Boards
Dual In-Line Package Invented

1964-65: Data Flow Model2 Process Unit Construction
Two-Layer Printed Circuit Board System Inter

connections
Cam-Operated, Zero Insertion Force Contacts
High-to-Low Order Variable Length Arithmetic

Processing
Use of CTJLL

1964-67: Language Development for SYMBOL
Dynamically Variable Field Length Data
Structured Data Literally Represented
Complete Syntax and Semantics
Source Text and Program Editing
Definition of Operating System Hardware/

Software

1965-69: Computer-Aided Engineering Design Package
Development

Equation Expansion and Checking
Timing, Loading and Offset Checking
System Logic Function Factoring
System Interconnections
Placement
Wire Routing

1964-70: Hardware Development for SYMBOL
December, 1967-Logic Flow Charts Complete
December, 1968-Partial Construction and Testing

Started
December, 1969-Fabrication Complete and

De bugging Started
June, 1970-SYMBOL Hardware Operational
January, 1971-8YMBOL Delivered to Iowa
. State University

SYMBOL FROM A USER'S VIEWPOINT

Much of the written or printed communication in our
society is conducted on what may be described as
"Typewriter English." We communicate with upper
and lower case alphabet, decimal numbers and a group
of commonly accepted special symbols. These com
munications are generated in all sorts of forms and may
vary from handwritten, to typewriter produced or to
automatic computation output, etc. Several features
become evident on examination of the preferred com
munication forms.

Variable field length

People use a free flowing written communication
style which requires a complete variability in the num-

ber of characters in a word (English that is). The in
formation contained in groupings of characters or words
(i.e., fields) is also of variable length and can change
as manipulation upon that field occurs. Although past
computing practice has developed abbreviated mne
monics and codes to fit fixed word machines and to
reduce writers cramp, it may be noted that deciphering
one's program or data base a year later is often labori
ous and is especially difficult for a third party. To ease
this problem in SYMBOL, techniques were developed
which allow complete and dynamic variability in the
length of a string of characters used as a name, a word
or a field. Each user is under no software/hardware
constraint and may use any word or field size he wishes.
He never needs to predetermine field size by declara
tions., In both the source program and in the data base
this variability is provided.

A new character called a Field Mark was introduced
to define the start and end of a variable length field in
the data base and for non-numeric literals in the pro
gram. The Field Mark is a long vertical line and was
chosen so as to be easy to see and not to conflict with
commonly used characters. The field mark is entered
from keys, or automatically generated by the system,
as the data base is developed.
Examples:

11231
1 This is a field 1

1 A field may be as long as desired 1

1 A field may be short 1

1 A field may be short and then expanded 1

1 or contracted 1

Decimal arithmetic

People have been raised with the decimal system.
Even though they adapt to computers and the use of
the hex/binary system, it is unnatural. The SYMBOL
system accepts either fixed or floating point decimal
numbers with positive or negative mantissas varying
from one to ninety nine digits with or without a decimal
point. Exponents, if any, may contain a plus or minus
sign and may have up to two decimaJ digits. The oper
ands for arithmetic may be both fixed, both floating or
mixed. The system hardware automatically converts
them to an internal floating point form and computes
a left justified floating point decimal result. Since arith
metic computations on variable_ field length numbers
can produce even longer results a LIMIT register is
provided to truncate the resulting computations at a
desired number of significant digits. The LIMIT value
may' be dynamically changed by the user's program as

he explores the effect of preClSlOn versus computing
time on his solution. The machine identifies truncated
results with an automatically generated symbol" EM"
following the number.

Examples:

Limit = 5
~=.33333EM

Limit =25
~ = .3333333333333333333333333EM

Limit = 10
-7000.00EM/ - .3101 = 2333.33EM

All numbers without the EM tag are assumed to be
exact with an unlimited number of trailing zeros. Note
that in the last example the first operand limited the
precision of the result in contrast to the LIMIT register
limiting the first two cases.

Character manipulation

In a string and character oriented environment out
put for human consumption is of paramount impor
tance. The easy and efficient manipulation of data
within fields both for data base computations and for
efficient report generation must be provided. SYMBOL
includes direct hardware implementation of two opera
tors to reconfigure string fields into desired formats. The
FORMAT operator is used to manipulate numeric
operands by applying a "pictorial string" mask against
the operand field. The operation proceeds on a charac
ter by character basis from left to right (i.e., high order
to low order). Zero suppression, left justification, right
justification, decimal point alignment, floating dollar
sign, check protection and comma insertion are some
of the operations provided. The MASK operator pro
vides a similar manipulation capability for alphanu
meric string fields. Literal string insertion, character dele
tion, character insertion, field length counts, carriage
control and space insertions, are some of the operations
provided. The hardware implemented FORMAT and
MASK operators have demonstrated exceptional per
formance when compared to conventional software
procedure controlled character manipulation.

FORMAT examples follow for 12471.2342 which is
the operand field:

FORMAT
Pictorial String
DDDDDDD.DDD
$ZZZCZZZCZZZ.DD
'$'B***C***C***.DD
+D.5D1O+DD

Result Field
0012471.234

$12,471.23
$*****12,471.23
+ 1.2471210+04

SYMBOL 577

J\i[ASK examples follow for 16N491-XMT I which is the
operand field:

MASK
Pictorial String

IISSS
SBSBSSSBISSS
FC
5F' PART TYPE'

Result Field

491
6N491XMT
0009
6N491 PART TYPE

The first FORMAT example illustrates control of the
number of digits (D) in the result. The next uses zero
suppression (Z), floating dollar sign ($), and conditional
comma insertion (C). The next shows check protection
(*) with conditional comma insertion and the last shows
floating point notation (10) and picture replicator usage.
The MASK examples illustrate character ignore (I),
blank insertion (B), field length counting (FC) , and
literal insertion (' -'),

Data structure manipulation

In both manual and in automatic record handling
the difficulty of generation and maintenance of data
bases determines the usefulness and efficiency of the
total process. In this area SYMBOL departs further
from tradition and places all field, group and structure
delineation directly in the data base. This is in contrast
to having most delineation present in the addressing
portions of object codes in more conventional systems.
Complete dynamic variability (at execute time) of field
size, vector size and structural configuration is provided.
This is directly implemented in hardware to provide
for competitive execution rates and more importantly
to relieve the programmer from any necessity of de
claring data base sizes and attributes. Early work in
this area was reported in a research study on a system
called ADAM.3 SYMBOL extends these concepts to
allow open-ended dynamic data base flexibility and to
our knowledge, for the first time, resulted in full scale
hardware for supporting these features.

Group marks (i.e., (») are added to the character set
to provide field grouping (i.e., vectors) in the data
base. The following examples illustrate the use of field
and group marks in the data base. These delimiters are
also used in the instruction stream to define various
items such as constants, literals, structures, etc. Con
sider the following examples of data structures.

578 Spring Joint Computer Conference, 1971

String Fields:

\ Joe Doaks \
\ Flight No. 306, SFO to JFK \
\ Cape Code House, 2 Bedroom, 1 Bath, Living Room, Dining Room, Fireplace, Basement, 2 Car Attached
Garage \

Numeric Fields:

\ 374.1279536844879310-72\
\-1234.5\
\ $*****1,576,265.461

Dynamically Varying Structures (Time Sequence)

(123 1 456 1 789) __ INITIAL Structure
(123 (4561 ABC)789) __ Modified Once
(123 (456 1 ABC (DEF \ GHI \ JKL))789) __ Modified Twice

The last sturcture above can be visualized as:

(123 789)
~56IABC)

(DEF 1 GHI \ JKL)

Few limits are placed on data structures. Fields may
grow to the size of main memory. No restriction is
placed on the depth of nesting in a structure.

Operating system complexity

SYMBOL directly implements almost all of a time
sharing and multiprogramming system directly in
hardware. Further, the internal machine language is
the source language. This direct implementation of
source language significantly reduces the layers of soft
ware normally found between source and object codes.
This in turn reduces the "hidden rules" or system de
pendent constraints which plague the casual or pro
fessional user of the system. These features combine to
make the system exceptionally easy to use for problems
where data base manipulation on alphanumeric data
is of prime consideration. Since the system provides
powerful arithmetic operations on variable field decimal
data it is also excellent for most engineering and
scientific uses.

A valid point can be made that if all language is
"hard wired" then error correction, extensions, new
language elements, etc., are difficult to achieve. This

need was recognized in SYMBOL and features are
provided in the hardware/software interlace to allow
expansion or extension. First, interrupts are provided
for traps at hardware compile and/or execution time.
These interrupts allow a break-out from the high-level
language and may call a "system program" to perform
some desired task. Second, privileged memory opera
tions are provided which allow a privileged program to
initiate directly any memory operation available to the
hardware. A combination of regular and privilege
operations may be used to create new language ele
ments and/or new macro instructions.

Facilities for "file- management," for example, are
supported with software that uses a combination of
ordinary language and privileged instructions. These
algorithms could have been directly implemented using
SYMBOL techniques, but they were not sufficiently
clear to be stabilized and did not need the 'higher per
formance of direct implementation. Further research
evaluating th"s type of tradeoff would prove most
interesting.

The objective in SYMBOL was to support the high
duty cycle and basic features of the operating system
in hardware. Many of the algorithms are hardware
executed with software established parameters so as to

obtain higher performance without loosing the needed
flexibility. This support provides a significant simplifi
cation in the overall operating system.

SYMBOL FROM THE ARCHITECTURAL
VIEWPOINT

Studies of modern large computer systems have
shown that a large portion of the logic in the main
frame hardware is idle most of the time. Some of the
largest systems have achieved more parallelism using
a main CPU and several auxiliary smaller computers to
handle input and output tasks, etc. (i.e., CDC 6600
and 7600). The GAMMA 60 developed earlier by the
Bull Company in France departed from tradition by
exploring the running of several problem segments in
small units each containing sufficient registers and logic
to operate autonomously for short computation se
quences. The matrix-type systems such-as the ILL lAC
IV allow many identical, or nearly identical, programs
to operate simultaneously on the same type of large
problem.

The SYMBOL system architecture shares some s·mi
larities to and has some differences from these systems.
SYMBOL achieves parallelism and·execution efficiency
by using time-sharing with multiprogramming and
multiprocessing done through seven simultaneously
operating autonomous processing units sharing a com
mon virtual memory. The hardware contains a large
main memory, used as a virtual memory buffer, and the
"Autonomous Functional Units" (AFU). In the tradi
tion of GAMMA 60 the autonomous units have suffi
cient logic registers, control, etc., to perform sequences
of operations without being under control of a conven
tional CPU. SYMBOL departs from previous systems
at this point. Each AFU is dedicated to a portion of the
computing process and its logic (i.e., instruction se
quences) is hard wired so that source language is es
sentially machine language. 1 ,4 The gross block diagram
in Figure 1 shows the common communication bus
structure of the system. Each AFU is a special purpose
processor.

The architecture is designed so that the time-sharing
supervision is managed by the System Supervisor (SS).
Provided the job load permits, each AFU can be per
forming its tasks on a different users job while simul
taneously sharing virtual memory with other AFU s,
The SS maintains queues of jobs ready for each AFU
and schedules the system tasks. Communication is
conducted along the main bus and by several local
buses.

A unique feature of the system is automatic and
dynamic hardware memory management. The assign-

SYMBOL 579

ment, and access of memQry is done by the Memory
Controller (Me). With memory control as a service
function the logic for generating and manipulating data
is distributed to the various other AFUs.

Figure 2 presents a summary of the functions hard
wired into each of the AFU s. The Interface Processor
(IP) provides source text editing without use of the
Central Processor (CP). The Translator (TR) converts
the source language into a reverse Polish string form
ready for processing by the CP. Below each box a
number gives the count of large printed circuit cards,
each containing 160 to 200 integrated circuits, used
for the AFU. This gives the reader a rough feel for the
relative sizes of the units.

SYMBOL FROM THE PHYSICAL VIEWPOINT

At the start of the SYMBOL project it was decided
to use a functionally-factored, bus-oriented system.
Preliminary studies showed that large printed circuit
boards (i.e., 12"X17") with about 200 integrated cir
cuit packages (providing the equivalent of about 800
two-input gates) would be sufficient to minimize sys
tem interconnections (Figure 3).5

It was also obvious that two-layer printed circuit
boards were much less expensive than multi-layer
boards. A substantial and successful effort was mounted
to develop placement and wire routing algorithms and
to obtain a computer-aided engineering package which
enabled us to effectively use two-layer boards.

The choice of a circuit family drastically affected the
type and number of interconnections required. The
Complementary Transistor Micro Logic (CT,uL) family
was chosen because of its useful "wired OR" capability
which has proven to reduce interconnections between
20 and 40 percent compared to other circuit families. 6

The system bus implementation was also given much
consideration. After preliminary studies it was decided
to use a set of 200 Interconnections running as parallel
lines for the length of the main frame. Figure 4 is a
view of one of the system bases which is a simple two
sided printed circuit board. One hundred and eleven
lines run the full length of the system and are used as
the main bus. The main base is partitioned as follows:

64 bidirectional data lines
24 bidirectional address lines
10 bidirectional priority lines
6 operation code lines
5 terminal number lines
1 system clock
1 system clear

580 Spring Joint Computer Conference, 1971

MAIN
SYSTEM BUS CHANNEL

1 HIGH SPEED
TELEPHONE

CHANNELS

RATE
SUPERVISOR CONTROLLER f-- CHANNEL S

SS CC
MEMORY
BUS

MEMORY I MAIN
~

CONTROLLER ~~ MEMORY

Me I
TRANSLATOR f--

TR

DISC HEAD PER f--- CONTROLLER TRACK
DISC FILE

DC I--

~

HMEMORY
RECLAIMER

YBULK MR
CENTRAL

~
DISC FILE/

PROCESSOR

CP
INTERFACE

100- PROCESSOR
~ IP

Figure I-Gross block diagram of the SYMBOL system

The balance of the 200 lines are used for local inter
connections within AFU s of two to seventeen boards
in size. As the design progressed it was necessary to
add an additional 200 "bypass" lines on the bases. The

PROCESSING FUNCTIONS SERVICE FUNCTIONS

CENTRAL PROCESSOR MAIN MEMORY CONTROLLER

Polish String Processing COMMUNICATION Page Allocation
Variable Len9th Numeric

BUS
System Address Processing

Processing Data String Management
Variable Length String Page Table Management

Processing
Data Type Conversion 15 CARDS

Data Structuring
MEMORY RECLAIMER Structure Referencing

Variable Structure ~ Processing of Deleted Space
Assignment to Make Reusable

39 CARDS 2 CARDS

TRANSLATOR DISC CHANNEL PROCESSOR

Name Table Generation ---- Page Transfer Control
II Object String Generation Page Tobie Processing

Address Linking 3 CARDS
Library Access and

Linking CHANNEL CONTROLLER

15 CARDS - Channel Sequencing

INTERFACE PROCESSOR
Buffer Processing
I/O Message Control

Buffer Processing 11 CARDS
Information Transfer to

and from Virtual Memory SYSTEM SUPERVISOR
Text Editing

Task Queue Processing
8 CARDS Interrupt Processing-- Paging Control

Real-Time Processing
Software Communication

Control

14 CARDS

Figure 2-Functions performed in the SYMBOL main frame

Figure 3-Basic 12" X 17" two sided printed circuit board with
up to 220 dual in-line components

final design allows each large board to contact up to
200 bus lines and have 200 lines bypass it. Each board
contact can be connected to the same contact number
on the next card or alternatively can be connected via
a bypass line to a board several slots distant. Using
these techniques the whole system was implemented
with a maximum of 600 parallel lines, with cuts, on
two-layer printed circuit bases.

There have been many interesting debates within
the project on the size of boards chosen and on the num
ber of interconnecting lines needed on the bases. It is
not clear that our choices are optimum; however, it is
now clear that they were sufficient. The completed
system used about 102 large boards inserted between
the two system base structures. It is illustrated in
Figure 5. It was interesting to find that all the main

Figure 4-8YMBOL interconnection base

frame including I/O~ memory, disk and channel inter
face logic took less than 20,000 CTJLL packages.

SYMBOL FROM A PERFORMANCE
VIEWPOINT

The evaluation phase of SYMBOL IIR is just be
ginning with the hardware near completion. In order
to obtain a preview of the performance a set of measure
ments has been made on the hardware.

Basic operation rates

The clock period on SYMBOL IIR now stands at
320 nsec and may be later reduced to about 200 nsec.
All measurements were taken at the 320 nsec period.
The basic clock period in SYMBOL IIR contains long
logic chains allowing relatively complex tasks to be
performed. Many of the key logic chains contain 20 to
25 levels of AND-OR logic. The system uses Fairchild
CTJLL, type I throughout. The core memory is a 1964
model with a basic 2.5 JLsec cycle. Due to a semi-serial
interface on the core memory it has an effective cycle
of 4 JLsec,

An improved system (referred to as SYMBOL II)
has been studied and has been partially specified. This
system is based on the technology of the experimental
system, SYMBOL IIR, but has been considerably
optimized. SYMBOL II is also specified to use the latest
cost orientated hardware technology. Conservative
performance estimates of SYMBOL II will be made to
give a comparison of how the SYMBOL algorithms
would stand up in a contemporary hardware technology
design. They will be based on a clock period of 100
nsec using a circuit family such as CTJLL, type II and
an LSI memory with a 200 nsec period. One should
keep in mind that the following comparisons are be-

Figure 5a-The SYMBOL main frame

SYMBOL 581

Figure 5b-Detail view of SYMBOL main frame

tween SYMBOL, which is a VFL machine running in a
very dynamic execution time environment, and a more
conventional fixed field machine running a language
with the data boundaries determined at translate time.
The former places more demands on the hardware while
the latter shifts the burden of data management to the
user.

For the purposes of comparison SYMBOL IIR will
be referred to as SIIR and SYMBOL II as SII,

Field processing operations

SIIR performs all field operations in a VFL serial
by-character mode. It was always assumed that after
system evaluation and bottle-neck analysis, if war
ranted, certain operators such as those shown below
would be executed in a more parallel mode by using
additional hardware. SII estimates are based on serial
processing and known algorithm improvements that
reduce or do not materially increase the hardware
required.

The following table gives processing times measured
on SIIR and estimated for SII. The execution time
values are specified in microseconds and do not in
clude the instruction fetch time or single word operand
fetching and storing.

582 Spring Joint Computer Conference, 1971

SYr430l IIR MEASURED-- EXECUTION TIMES IN \lSEC

[FERATION SIIR SII

1234+4321 5.6 1.2

12345678-87654321 10.0 1.6

50 digits + 50 digits 45.0 5.0

Convert to floating point 1234 5.2 1.2

Convert to floating point 12345678 12.5 1.8

Convert to floating point 50 digits 120.0 18.0

COIJ1)are 12345678,87654321 4.0 1.0

COIJ1)are 12345678,12345670 6.5 1.2

I abc I join I def\ 4.5 1.2

I 123456781 join 1123456781 60.0 12.0

1234 format IZZZ.DDI 9.0 3.0

1234 format I ZBZBV I 8.0 2.6

12345.6789 fonnat II $ I *C*-C***. DD I 76.0 15.0

Compilation

Several programs were compiled on SIIR and the
overall times and space usage measured. The SIIR re
sults are tabulated below.

SYMBOL IIR MEASURED COMPILE TIMES IN vSEC

NO. BYTES OF BYTES OF AVERAGE TIME
STATEMENTS SOURCE OBJECT CODE PER STATEMENT

Program A 195 8330 7315 820

Program B 70 3528 5112 1280

Program C 157 7560 6025 760

This represents about 75,000 statements compiled per minute on SIIR.

A comparative table for SII assuming added flexi
bility on SII for handling various other languages in
addition to the SYMBOL language is given below. The
data is based on a sampled study of object code and
projected execution times of several recently developed
algorithms.

SYr430l ESTIMATED COMPILE TIMES IN \lSEC

BYTES OF BYTES OF AVERAGE TIME
STATEMENTS SOURCE CODE OBJECT CODE PER STATEMENT

Program A 195 8330 2350 185

Program B 70 3528 1735 220

Program C 157 7560 2110 185

This would give a cOlJ1)i1ation rate of 300,000 statements per minute.

Paging overhead

SYMBOL has very low overhead for paging. The
algorithms are based on direct hardware execution
using parameters set up by software. A count of worst

case paging overhead for SIIR in terms of memory
cycles for a CP page out is given below.

SYMBOL IIR PAGING OVERHEAD IN MEMORY CYCLES

ITEM WORST CASE AVERAGE

CP Shut Down 7 7

SS Queuing and Push Selection 50 30

SS Disc Servicing 8 6

CP Start Up ..! 6

TOTAL Memory Cycles 71 49

Assuming an average of 5 \lsec per memory cycle counting internal

cycles this gives 355 \lsec worst case. In SII using an improved

algorithm the overhead would be less than 20 \lsec.

I nput/ output

The overhead for I/O for a time-sharing system be
comes an important factor in providing adequate termi
nal response time. To illustrate the effect of the hidden
software overhead an operation trace of a IBM 360/44
during FORTRAN IV output was performed. A similar
operation was performed on SIIR. The equivalent out
put statements in both languages are shown in the
table below.

The trace of the FORTRAN statement indicated
1753 instructions being executed. Each instruction re
quires an average of two memory cycles. The trace
program does not trace any of the supervisor or channel
operations so that well over 3,000 and more likely near
4,500 memory cycles were used in executing the
FORTRAN statement.

SYMBOL VS FORTRAN OUTPUT STATEMENT
TRACES IN MEKlRY CYCLES

1 . . EST. OVERHEAD I I LANGUAGE STATEMENT TRACED • NOT TRACED

I SYMBOL OUTPUT 12345.56 FORMAT ID.DD~oDDli 130 0 r
--':"'-------.. --- ... ---------------,

FORTRAN WRITE (6,10)X i
10 FORMAT (lX.E9.3) ; 3466 1000

Task control overhead

In order to measure the overhead for compilation
and execution a program consisting of one CONTINUE
statement was executed on SIIR. This causes a null
program to be entered, translated, and executed and
thus places a large demand on any system resources
required, isolating overhead from" useful" actions. All

memory cycles were traced with the following dis
tribution:

PROCESSOR USED

SS
TR
CP

MEMORY CYCLES

41
20
18

TOTAL 79

This could be compared with any contemporary sys
tem where the entire compiler would have been paged
in and much of the supervisor would have been executed
to establish many resources that would not have been
needed.

Subscripting

It would seem that VFL data structures imply slow
data referencing. However, the SYMBOL project
demonstrated that efficient handling of dynamically
varying data can be achieved with sophisticated list
processing techniques. SYMBOL IIR established the
foundation and the algorithms have now been de
veloped to be competitive with conventional fixed field
indexing while retaining the VFL features. A few refer
ences and their equivalent memory cycles for SIIR are
given below. The subscript Fetch cycles are not counted.

REFERENCE

A[4,9]
A[16,32,6]
A[3]
A[70]
A

TYPICAL MEMORY
CYCLES REQUIRED

4-6
8-10
2-3
9-12
2

A substantial improvement has been obtained for
SYMBOL II promising to make it as fast or in some
cases faster than conventional indexing.

SYMBOL FROM A COST VIEWPOINT

A study of a modern computer installation and its
users as a total "system" reveals where and how the
computing dollar is divided. Consultants hom Iowa
State University made available all the necessary data
for such a study early in the program. 7 Figure 6 illus
trates the LS.U. IBM 360/50 installation in 1966 at

SALES a
SERVICE

SYMBOL 583

J'---:----->

Figure 6-The computing pie illustrated for Iowa State
University 360/50 installation

the time the study was made. This" pie" has since been
compared with many other business and scientific in
stallations of vary:ng sizes with different computer
systems. There is general agreement that the minor
variations in the size of the slices for different installa
tions do not materially affect the picture. This applies
to most modern "classic software-dominated systems."

The objective of data processing is to solve problems
where the" user with a PROBLEM" is the input and
the" ANSWER" is the output. It is assumed that the
user has his problem well defined and has the data
available but the data is not yet programmed. The con
version of his problem to a computable language and
the debugging necessary for correct execution is in
cluded in the total cost of operating an installation.

I.S.U. calculated the total system operation on this
basis as approximately $109,600 per month. The rate
and . labor costs were adjusted to normal commercial
standards for the calculations. Both commercial and
scientific problems were run in the problem mix. The
following sections discuss the breakdown of the overall
cost.

About 37 percent or $40,000 is used by the problem
originator and/or the professional programmer to con
vert the problem to a debugged, high-level language
and to obtain answers.

Thirty three percent or $36,000 is required for oper
ating personnel, key-punch operators, file clerks, sys
tems programmers, administration, space, power, etc.

Thirty percent of the total pie or $33,000 goes for

584 Spring Joint Computer Conference, 1971

BASIC SAVINGS
USER's TIME
GREATER THROUGHPUT
LESS PROFESSIONAL HELP

ADDED SYMBOL SAVINGS
USER's TIME

CLEAN LANGUAGE
COMPLETE VARIABILITY IN

FIELDS,
STRINGS,
STRUCTURES.

NO DECLARATIONS FOR
TYPE,
SIZE.

SOURCE AND MACHINE
LANGUAGE NEARLY
IDENTICAL.

Figure 7-Savings in problem expense

machine rental. It is estimated that about one third of
the rental expense goes for direct development of hard
ware and system software (perhaps half and half), one
third for sales, service, and application support, and
one third for administrative costs, overhead, and profit.

The choice of a hardware configuration and its ma
chine language is the tail wagging the dog. Inexpensive
hardware and a good, easy-to-use programming system
can reduce the size (i.e., total cost) of the pie but in
conventional systems will not materially alter the rela
tive size of the slices.

In the following text the computing pie is used to
illustrate SYMBOL concepts from a cost point of view.
Each major slice will be further subdivided into its own
percentage parts (i.e., each major slice will be 100 per
cent of the portion under consideration and will be
divided into its constituent parts).

Figure 7 shows the potential problem expense saving
to be obtained from any good conversation-mode, high
level language, time-sharing system. It has been esti
mated that approximately 50 percent of the problem

BASIC TIMESHARING SAVINGS
FEWER KEYPUNCHERS
FEWER FILE CLERKS

ADDED SYMBOL SAVINGS
FEWER SYSTEM PROGRAMMERS
EASIER APPLICATION PROGRAMS
MORE PERFORMANCE/COST
EASIER FACILITIES

NO RAISED FLOOR
LESS AIR CONDITIONING
SMALLER FLOOR AREA

Figure 8-Savings in installation operation expense

expense slice can be saved in reduced user learning
time, increased throughput, less professional program
ming support required, etc. We estimate the SYMBOL
system will further reduce these costs with its" clean"
and" concise" directly implemented high-level language
and simplified operating system.!

The savings in the operation of an installation comes
from four sources. This is illustrated in Figure 8. First:
A good time-sharing system will reduce the administra
tive help such as file clerks, keypunch operators, etc.
H is estimated that this saving can be ten to fifteen
percent of the installation operating expense exclusive
of system rental. The SYMBOL system with conversa
tion-mode multiprocessing and multiprogramming will
also share in this saving. Second: The "system soft
ware" support required in a conventional installation
is a very significant portion of the expense. Here SYM
BoL shows a definite added saving. What system soft
ware remains can be written in the high-level, general
purpose language and will be easier to write, debug and
understand later. This will reduce the number of pro
fessional personnel required. Third: The SYMBOL
language is directly implemented in hardware and thus
uses less main memory for "system software." For ex
ample, a resident compiler is not required. In addition,
much less program swapping occurs and thus less virtual
memory transfer time is needed. Hardware execution of
algorithms is also faster and results in enhanced in
struction execution speed. These features will require
less programming attention and also provide more
throughput per installation dollar spent. Fourth: The
SYMBOL hardware is designed with modern integrated
circuits and large two-layer printed circuit boards. The
total system hardware package is compact and does not

: ~

2% SYMBOL SAVINGS ~
LESS STORAGE REQUIRED~ -r,~ iliiil."1IIJIIi'"
FOR SYSTEM SOFTWARE .J-:III

~2'JI. SYMBOL SAVINGS
SIMPLE ELEGANT PACkAGING

Figure 9-Manufacturer's direct hardware expense

need raised floors, special air conditioning, or vast
amounts of floor space. It is estimated that these SYM
BoL features will reduce installation operating ex
pense by an additional 20-35 percent or a total of 30-50
percent.

The slice of the computing pie represent~ng the com
puter manufacturer's hardware contribution is illus
trated in Figure 9; approximately seventeen percent of
this slice is attributable to hardware. For large systems
the peripheral equipment and the bulk files can approxi
mate about one half of the total cost. The main storage
is another quarter and the CPU logic is another quarter.
Naturally some variation in these amounts will occur
from installation to installation and for different system
types.

The SYMBOL approach saves costs in several ways:
The first area of savings is in the use of large two-layer
printed circuit boards and two-layer printed circuit
bases with cam-operated contacts for all system inter
connections.

Except for cables to peripherals and wires used for
correction of design errors and for logical extensions no
wire exists in the system. Figure 3 illustrates a logic
board and Figure 5 illustrates the main frame of the
SYMBOL system. This type of packaging lowers pro
duction costs for logic. It is estimated as much as a
fifty percent saving will be achieved over small board,
wire-wrap back panel, multi-cabinet conventional sys
tems. This same technique reduces costs in terminal
equipment but not to such a large degree. We estimate
that three percent of the manufacturer's slice of the pie
can be saved by this functionally-factored, bus-oriented,
large printed circuit board design philosophy. The sec-

,..... •• ANlJFACTURER SUPPLIED

USER GENERATED OR
CONTRACT SOFTWARE

Figure lO-Manufacturer's system software expense

.
: ~

SYMBOL 585

Figure ll-Manufacturer's software application expense

ond way savings are obtained is in the hardware effi
ciency gained by the SYMBOL system. Since most of
the normal system software is hard wired, very little
resident main memory is used, thus providing much
larger percentages of main memory for application pro
grams. The execution of system instructions is done at
"clock speeds" in a "macro" rather than a "micro"
manner. This provides much faster high-powered in
struction execution. Finally, more of the system hard
ware is simultaneously operating due to the system
organization which allows mUltiple jobs to be in the
main frame for overlapped execution. We estimate that
an additional two percen.t of the manufacturer's slice
of the pie is saved here.

The largest and most important single saving for
SYMBOL is in the "System Software." Figure 10 illus
trates this point. Irrespective of whether the system
manufacturer or someone else produces the software
for a conventional computer this large expense is real.
The SYMBOL features directly implemented in logic
(i.e., hard wired) make unnecessary at least 80 percent
of the conventional system software used in large time
sharing machines. This represents an estimated 16 per
cent saving in the system manufacturer's slice of the
computing pie.

The field support of the system software is a major
expense. The sheer volume of paper and record keeping
to keep current with the latest changes is a major
problem. In the design of the SYMBOL system this
problem was given great attention. In studying the
software delivered with large systems using a relatively
static high-level language, we note that most (if not all)
of the changes made were on the programmed imple-

586 Spring Joint Computer Conference, 1971

mentation or were due to programming errors. Many
levels of machine and assembly language programs and
machine runs were between the hardware language and
the programmers' source language. This quite naturally
introduces confusion (and errors) either in original
programming or in understanding the hidden rules
when using the system.

It may also be noted that as more and more applica
tions are programmed in a language it automatically
becomes more rigid. We believe that the" clean," high
level, general-purpose SYMBOL language is excellent
for most uses. Since direct hardware implementation
requires little field support in the software sense, we
estimate approximately a six percent saving in the
manufacturer's support expense. This is illustrated in
Figure 11.

Good service is a must in a large system. The SYM
BoL hardware has been engineered for good reliability
and at the same time easy maintenance. We do not
anticipate any added expense for SYMBOL hardware
maintenance over conventional systems with equivalent
storage and logic circuit counts. Our experience on the
SYMBO L model has verified this belief.

The previous material has split the computing dollar
up in parts and has described how major savings can
be realized with a "total systems" approach. The SYM
BOL techniques described herein together with good
time-sharing, conversation mode practice can reduce
computing costs up to 50 percent. Referr~ng to Figure
12, one may visualize how the savings in the whole
computing pie add up.

CONCLUSION

The full scale running SYMBOL system has demon
strated the following:

1. A very high-level, general-purpose, procedural,
"state of the art" language and a large portion
of a time-sharing operating system can be effec
tively implemented directly in hardware.

2. Complete dynamic variability in data fields,
data structures, processing length of strings and
numbers and depth of structural nesting (sub
scripting) can be efficiently and directly imple
mented in hardware. Competitive execution
speeds can be obtained as compared with more
conventional fixed field and structure machines
and in certain areas such as language transla
tion extremely high performance rates can be
demonstrated.

3. Design and construction techniques using only
large two-layer printed circuit boards for all

USER WITH

PROBLEMS

j SOLUTIONS>

8% POTENTIAL SAVING

Figure 12-Potential savings with a good conversation mode
hardware/software system

system interconnections and buses together with
a functionally factored system results in an eco
nomical, serviceable and reliable system.

4. The direct hardware implementation of a gen
eral-purpose, high-level language, the use of the
SYMBOL construction techniques and a good
conversation mode system can save up to 50 per
cent of computing costs. This is contrasted to a
good conventional system using a general-pur
pose, high-level batch oriented system.

5. The use of the SYMBOL system (software plus
hardware) has shown that significantly fewer
hidden rules exist to plague the casual or the
professional user in debugging programs.

ACKNOWLEDGMENT

The authors wish to express their thanks to the Fair
child Camera and Instrument Corporation for the op
portunity to do this research.

Special thanks are due to Professor Robert Stewart,
Professor Arthur Pohm and Professor Roy Zingg of
Iowa State University for their constructive help and
support. We are most grateful to the National Science
Foundation for the grant which made it possible for
the SYMBOL IIR system to be delivered to Iowa
State University for evaluation and continuing re
search on this technology.

Finally, we are deeply indebted to the past and pres
ent members of the Digital Systems Research Depart
ment at Fairchild. Their hard work and enthusiasm
made this research project result in a real and operating
system.

REFERENCES

1 G D CHESLEY W R SMITH
The hardware-implemented high-level machine language for
SYMBOL
This volume

2 J R TENNANT G D CHESLEY
Design and layout of large integrated circuit boards
Second Annual Seminar on Integrated Circuits January
1965

3 A P MULLERY R F SCHAUER R RICE
ADAM-A problem-oriented SYMBOL processor
Proc SJCC Vol 23 1963 pp 367-380

4 W R SMITH et al
SYMBOL: A large experimental system exploring major

hardware replacement of software
This volume

SYMBOL 587

5 B E COWART R RICE S F LUNDSTROM
The physical attributes and testing aspects of the SYMBOL
system
This volume

6 W R SMITH
System design based on LSI constraints: A case history
Digest of 1968 Computer Group Conference June 25-27
1968 International Hotel Los Angeles California IEEE
345 East 47th Street New York New York

7 R RICE
Impact of arrays on digital systems
IEEE Journ of Solid-State Circuits Vol SC-2 No 4
December 1967
An expanded set of references to cover work on the
SYMBOL can be found in References 1, 4, and 5.

The physical attributes and testing aspects of the
symbol system

by B. E. COWART, R. RICE and S. F. LUNDSTROM

Fairchild Camera and Instrument Corporation
Palo Alto, California

INTRODUCTION

The major goals of the SYMBOL computer research
project have been to provide a more effective man-ma
chine interface and to reduce the total cost of a digital
system to the user. The development of the multi
processing/multi-programming computer architecture
with much of the executive system, memory manage
ment, and high-level language implemented in hard
ware is described in other related papers.1 ,2,3 The
SYMBOL project also has investigated low-cost con
struction techniques suitable for equipment to be used
in commercial/industrial environments.

The packaging system utilized (See Figure 1) is a
free-standing, self-contained unit with the electronics
fabricated entirely on two-sided printed circuit (p.c.)
boards. In addition to low-cost mechanical packaging,
special low-cost test equipment has been developed. It
utilizes the same mechanical packaging and allows very
rapid and efficient testing of individual logic boards
and of the full SYMBOL system. These techniques re
sult in a significant savings in the amount of engineering
manpower required for hardware prototype debugging.

PHYSICAL CHARACTERISTICS

One of the first problems attacked by the SYMBOL
research project was the excessive cost and intercon
nection complexity of the mechanical packaging tech
niques commonly used for digital systems. The mechani
cal packaging system developed allows the use o~ free
standing, self-contained units requiring no special or
raised floors and no special cooling, and using commer
cially-available power supplies. The SYMBOL com
puter shown in Figure 1 utilizes this packaging ap
proach. The section above the table top contains all the
logic and system interconnections for the CPU, I/O

589

channels, memory controls and system executive con
trols.2 The lower section contains all of the power sup
plies, power controls and the cooling components. In
Figure 1B the section above the table top and in the
foreground is the SYMBOL logic. The smaller enclosed
section in the rear is a hand wired system maintenance
unit.

The logic (upper section) is fabricated on large (12" X
17") two-sided printed circuit boards with plated
through holes. (See Figure 2). These logic cards contain
all of the active logic components in the SYMBOL sys
tem and are easily removed and repaired. As shown dia
gramatically in Figure 3, the logic boards are mounted
on one-half inch centers between a pair of two-sided
printed circuit "motherboards."

Interconnections between logic cards are made on the
motherboards with parallel lines for bus connections.
The local buses which intraconnect Autonomous Func
tional Units (AFU's)2 are physically identical to, and
intermingled with, system buses which interconnect the
AFU's (global signals). These printed circuit buses pro
vide all required system interconnections. Every signal
pin position has two associated buses. One bus con
nects to the pin while the second bus bypasses the pin.
A signal on the connect bus and a signal on the bypass
bus may "cross-over" between board positions (Figure
3). In addition, either or both buses may have con
tinuity breaks to isolate groups of boards (Figure 5).

Due to practical limitations on moth~rboard size, the
SYMBOL system has been implemented using five
motherboard modules. Each motherboard module can
interconnect thirty logic boards. In the SYMBOL sys
tem four modules are used for the computer logic and
one module is partially used for the system mainte
nance unit. As mentioned above, all signals in the system
are distributed on the printed circuit wires of the two
sided logic boards and motherboards. The only excep
tions are cables to external peripheral devices and bulk

590 Spring Joint Computer Conference, 1971

Figure la-SYMBOL main frame including power, cooling, logic
and interconnects

storage (Figure 4) wires which fix errors or implement
design improvements (Figure 2), and the short jumper
wires used to connect the motherboard modules
(Figure 5).

Figure 1b-SYMBOL main frame with covers removed

Figure 2-Typical 12" X 17" two-sided logic board with additions
or changes in discrete wires

Figure 3-Conceptual physical organization of SYMBOL

Physical Attributes and Testing Aspects of Symbol System 591

As Figure 3 shows, connectors are required on two
edges of the logic boards to provide signal paths to the
motherboards. A cam-operated contact system was de
veloped to allow zero contact-force insertion and re
moval of logic boards (from the top) and to provide high
reliability, high pressure contact when engaged. The
contacts themselves are soldered into the motherboards
and, together with some molded plastic card guides,
become a permanent physical part of the motherboard
interconnection system (see Figure 6). To cam or un
cam a board involves rotating two cam pairs using a
cam key. No special board handles, locks, etc., are
required.

In addition to logic board contacts on the inside of
a motherboard, contacts may be provided on the out
side of the motherboard at each board position. The
connector positions on the outside of the motherboard
allow lamp panel maintenance aids called wing panels
(Figure 7) or printed circuit board cable connectors
called paddleboards (Figure 4) to be connected to any
board position in the system. In practice, only those
positions specified before fabrication are used for ex
ternal connection.

The signals interconnected by the motherboard sys-

Figure 4-Paddleboards with cables to external peripheral
equipment and bulk storage devices

Figure 5-Motherboard module interconnect wires and
main power distribution system

tern originate on the logic boards. Figure 2 shows a
typical logic board. The 200 signal pins, a clock pin and
a number of power pins on the two long sides connect
to the motherboards. An additional fifty pins used for
test points are available on the top of the board for
monitoring during system operation and test. A typical
logic board holds about 175 dual in-line packages; the
maximum capacity is 220 packages. High packaging
density has not been a major system goal. On the con
trary, emphasis is placed on functional completeness
and interconnection density on a board. An additional
effort was made during prototype fabrication to guar
antee some extra package positions on each board (at
least ten percent) to allow implementation of logic func
tions "overlooked" and design improvements. Discrete
wires are used to repair board fabrication errors and to
implement additional logic. No degradation in perform
ance has resulted and no special electrical considerations
have been required. Surprisingly, not one board has had
to be remade for the system. Discrete wire and com
ponent additions to the original boards have sufficed to
bring the system to an operational state.

592 Spring Joint Computer Conference, 1971

Figure 6-Zero insertion force, . cam-operated connector system

ELECTRICAL CHARACTERISTICS

A mechanical packaging system is useless unless the
digital system itself can operate successfully in that
package. The electrical characteristics of the SYMBOL
system were chosen to provide a relatively high-speed
system using conventional technology. De~ign decisions
were made with speed enhancement and noise suppres
sion high on the list of design criteria. Few concessions
which compromise economy have been permitted.

Circuit family

The Complementary Transistor Micro-Logic (CTpL)
circuit family chosen facilitated both the ease of design
and the operating speed of the system. The CTpL
family4,5 is a positive logic family with wired-or capa-

bility at every point except at the flip-flop outputs. The
basic AND gate is a emitter-follower device with rela
tively slow rise and fall times (7-10 nsec for the 3V
swing) but with a relatively fast propagation delay
through the gate (typically less than 5 nsec). The slow
rise and fall times significantly reduce the problems of
fabricating a high-speed system on two-sided printed
circuit boards. However, since the basic gate is non
saturating, there is a slight voltage degradation through
each gate. Thus, level restoring elements (AND, NOR,
LATCH, FLIP-FLOP) are required at various places
in a chain of logic as shown in Figure 8. In SYMBOL (a
synchronous system) the total chain allowed in one
clock cycle is four sets of the gate and level restorer
combinations. The experience gained in SYMBOL
shows the importance of the wired-or capability very
clearly. There are a significant number of five, six, or
seven-way wired-or ties. If discrete OR gates had been
required, the size of the system would have been signifi
cantly larger. Most AND functions are four inputs or
or less with the average about two-inputs. There are
some 10-way and larger OR-ties.

Figure 7-Wing panel in motherboard position for monitoring
signal buses

Physical Attributes and Testing Aspects of Symbol System 593

CAD support

A computer-aided design (CAD) system was devel
oped to assist appropriate design and fabrication opera
tions in the development of SYMBOL. The approach
was not one of developing a general system and then
using it for the SYMBOL design. Instead, when a need
developed where CAD programs could help, a new sec
tion of the system was generated specifically for that
need. Usually the new section of the CAD system was
generated by the engineer or designer first requiring
that section. The resulting system greatly enhanced
the power of the designers and the reliability of the
final system.

One of the sections of the CAD system is a logic de
sign assistance sect~on. In this section, each device is
characterized as it can be expected to perform in the
system environment. This system characterization is
in terms of quantized, normalized units of time delay,
signal voltage degradation, threshold variations, and
fan-in/fan-out effects. Time delay characterization in
cludes an allowance for typical propagation delays as
well as device delays. Special noise conditions (such as
global signals or cables to peripherals) are accounted for
by modifying the characterization of the devices used
in these services. Special time or loading conditions can
be forced, especially in the case of long bus signals. The
CAD system points out violation of noise margins, load,
or time delays so that the designer can modify a design
to comply with the system rules.

In the section of the CAD system which performs the
logic placement and wire routing functions, no attempt
was made to specifically minimize wire lengths or to pro
vide the maximum number of devices per board. In
stead, placement and routing were based on intercon
nect capability of the two-sided printed circuit board.
The rules for partitioning of logic to various boards by
the designer were also based on this same criteria, modi
fied by an added criteria that the printed circuit cards
should consist of complete functions.

Signal distribution

Many signal distribution problems are encountered
when using high speed circuits.4 •6 •7 The choice of the
CTpL logic family considerably reduces the problems of
signal distribution in systems with two-sided printed
circuit boards. Signals between boards within an AFU
are treated ·no differently than on-board intraconnects.
These signals are the AFU intraconnections on the
motherboards and are less than eight inches in length.
No attempt is made to provide terminations or im
pedance controls.

FF -- J------- FF

l '" AJ\{)/RESTORER
I I I I

NORIRESTORER : : : : :
L-O L{] L.O L--cJ

CLOCK

Figure 8-Representative CTp.L logic chain in SYMBOL

Global signals, on the other hand, can be as much as
six feet long. The base interconnects for these signals
are treated as transmission lines with distributed dis
crete loads, and an approximate termination is placed
at each end of the lines. The clock line is a particular
example of this type of signal (Figure 9). The copper
trace for this signal is as ",ide as practical to reduce its
impedance. The wide trace reduces the effect of the
loads on the propagation velocity and minimizes re
flections and distortion on the line. Each of the boards
(107 total) in SYMBOL presents a load on the clock
line of approximately 500 ohms to ground. To drive
this low impedance load a special clock driver is re
quired, one of the few discrete circuits in the system.
The other main bus signals (except for system clear)
did not require discrete circuits because each AFU was
constrained to connect to the system bus only once.

POWER

The SYMBOL electro/mechanical system is designed
to deliver properly regulated power at each circuit in
the system and to remove the generated heat. Cooling of
the system is accomplished with miniature axial fans
blowing air upward through the card cage. No special
room air conditioning is required. Power distribution is
somewhat more complicated. Although the power dis
tribution system was designed to provide excellent DC
regulation, ease of installation and economy took prec
edence over requirements for dynamic performance.
However, power distribution had to be appropriate for
the high-speed circuits in the system. 8 Power is dis
ributed throughout the system using a combination
of large copper bus bars on the motherboards and a
power distribution grid of printed-circuit wires on the
logic boards.

The current in a thirty card module is approximately
200-250 amperes. To distribute this much current over
the fifteen inch span of the module, a large copper bus
is used. This bus in turn is connected to the main distri
bution bus by laminated copper risers (see Figure 5).

594 Spring Joint Computer Conference, 1971

Figure 9-Close-up of motherboard showing wide clock line with
wide and narrow ground lines for shielding

The system power is distributed longitudinally near the
lower edge of the motherboards. The voltage regulators
use remote sensing at the main distribution buses. The
riser, distribution bus, and printed circuit board distri
bution system are sufficiently massive to provide regu
lation of less than fifty millivolts from the sense point
to the remote sectors of the printed circuit board.

The power distribution system on the logic boards
is standardized to provide a pseudo-ground plane made
up of the composite of the positive, negative, and
ground distribution grids (Figure 10). The grid geome
try was chosen so that the circumference of a net cell
is less than a half wave length for the highest frequency
of appreciable magnitude. The size of the logic board
is such that local filtering on the boards is more efficient
and productive than attempts to provide super-low dis
tribution impedance. The decoupling capacitors can be
seen on the logic board in Figure 2.

The CT,uL circuit family chosen for use in SYMBOL
requires two supply voltages in addition to ground. The
three-terminal DC equivalent circuit can be represented
as in Figure 11. As can be seen, the grou~d terminal can
be vi~wed as a current source to the power system, re
quiring that approximately thirty percent of the posi
tive terminal current be diverted by an appropriate
sink. In the SYMBOL system, a shunt regulator sta
bilizes the potential between the negative terminal and
the ground terminal. This technique is used instead of
the normal two supply (+ V, - V) system because only
41 worth of supplies and related inefficiencies are re
quired (31 for + V and I for ground regulation) instead
of 51 (31 for + V and 21 for -V).

The power supply system used is a floating supply
which uses a combination of unregulated and regulated
supplies to generate 800 amps at 6.7 V. Since the power

load of CT,uL does not change appreciably with the
state of the device, the variation in the current within
the system is less than thirty percent. Most of the cur
rent is supplied by unregulated sources (a sort of poor
man's current source). The remainder is provided by
tightly regulated, commercially available voltage
sources which are distributed along the main power bus
and provide current required to maintain regulation.
Each component of the power system is small enough
for easy installation and maintenance, yet large enough
to provide economical power. In addition to being
economical, the distribution elements are self-adjusting
in case of failure. Consider the two possible modes of
failure, over voltage or loss of voltage. If a single unit
fails by 'over voltage, all the other regulated sources
shut off. The resulting load of the system imposed by
these sources shutting off prevents the voltage from
rising to destructive levels. If a single unit loses voltage,
remaining supplies have a sufficient reserve of current
capacity to provide the necessary current with only a
minor degradation in regulation in a localized sector of
the system.

TESTING TECHNIQUES

Since logic designers and logic devices never seem to
be perfect, all the advances in architecture and me
chanical packaging would not be useful unless some
techniques were developed to allow the system to be
tested. Many approaches to solving the testing problem
have been reported. 9 ,lo,11 SYMBOL has unique prob-

* 11111111111111111111111111 1111111111111111111111111 11
: : : : : : : : : : : : : :
... : : : : : : : : : : : : : : :

. :

: : : : : : : : : : : : : : : : :

:
: : : : : : : : : : : : : : : : : :

:

:

:

1""::

Figure lO-Composite + V, - V, GND power distribution grid
on SYMBOL logic boards prior to signal routing

Physical Attributes and Testing Aspects of Symbol System 595

lems analogous to trying to test both the CPU and
most of the executive system simultaneously. During
design and system partitioning it was found that func
tional splitting of logic tended to minimize bus lines
used. Such a split also became useful during testing. A
combination of manual and automatic test aids has
been developed to support the SYMBOL project. The
SYMBOL documentation, board test, system monitor
ing, and system test techniques (discussed below) are
low-cost approaches to solving the unique SYMBOL
testing problems.

Documentation

Documentation of the system was one of the first
problems encountered. The documentation used to sup
port SYMBOL fabrication and testing is quite simple.
A computer-generated listing from the CAD system
describes (in a pseudo-equation form) the logic. imple
mented on each node, the name and reference number
of each signal involved, the physical location of the pins
on the logic element which implements the node, and
the origins and/or destinations of all signals involved.
Since all cross-references for a node are given· at one
point in the document and since the signals are listed
in both alphabetic (by signal name) and numeric (by
reference number) order, engineers and technicians
waste little time trying to find related logic. The CAD
system includes comprehensive document editing fea
tures to allow easy modification of the original logic and
specification of added logic. Both logical and physical
descriptions in the document can be edited. The editing
features combined with simple procedures to obtain
up-to-date documents have provided excellent com
munication of logic changes to all those involved with
the testing process.

31
Power
Supply I+-

'j~ ±
21
..-

r CTfLL System- - l
I Equivalent Circuit ~I

T
I
I
J.

1
I
J.

I
.>
~ .~

>-

I
I
I
I
I

T L ______ J

Figure ll-DC equivalent circuit of SYMBOL

Figure 12-Test point panel used to monitor logic boards during
system operation

Test point and bus monitoring

It was noted earlier that the printed circuit logic
boards have fifty test points along the top edge. In
SYMBOL the designer assigned these test points to
signals he thought were of interest. These signals are
usually phase-counters and ~heir controls, state flip
flops and central logic decision points. In a production
environment, the test points would probably be chosen
to allow efficient isolation of fabrication errors (rather
than logic design errors as in the prototype). A special
indicator panel, called a test point panel, has been de
signed to connect to the test points and to receive power
from the board under test. Figure 12 shows this panel
installed on a printed circuit board. Note that there is
an indicator light and a probe point for each of the fifty
test points. The lamp corresponding to a particular
test point will light if the test point is at a high voltage
(logic "one"). In some cases, a panel with pulse str~tc~
ers between each of the test points and the lamps IS

uE'ed so that transient logic conditions can be detected.
The design of the motherboards allows the straight

line buses to be broken at various points in the system.
By using breaks and bypasses, the separate AFU's can
have a local signal bus in addition to their connection
to the global bus lines. To allow monitoring of the sig
nals on these buses, a monitoring panel called a "wing"
panel has been designed to insert in a connector on the
outside of the motherboard much as a cable connector
paddleboard does. Figure 6 shows the wing panel in
more detail. Note that the wing panel has one indi
cator light and one switch for each of the 100 signal
pins on the motherboard at the point of connection.
The indicator lamp is lit if the associated signal line is

596 Spring Joint Computer Conference, 1971

Figure l3-Typical SYMBOL system test configuration with
board extender, test point and wing panels in place

at a high voltage and off otherwise. Two types of wing
panels are available, a right wing panel and a left wing
panel. The two types allow viewing of wings on each of
the· two motherboards from the same end of the SYM
BoL system. One of the reasons that the bused-signal
concept is successful is that the CT~L family provides
a true wired-or capability. Eecause of this capability, a
switch on a wing panel can be used to force (i.e., "or")
a logic "one" on the associated signal bus on the moth
erboard. It should be noted that the test point panel
and the wing panels are also standard two-sided printed
circuit boards.

Unfortunately, it is necessary, from time to time, to
probe signals on the logic board itself during operation
of the system. To do this, a board extender was de-

veloped, again using two-sided printed circuit boards
and simple mechanical parts. The wing panels can be
connected to the board extender also. Figure 13 shows
a typical system debugging setup with test point panels,
wing panels and extender in place. Because of the sys
tem timing rules followed during design, no problems
have been encountered due to the extra signal propaga
tion time when a logic board is extended.

Logic board testing

In the early stages of the SYMBOL project, an auto
matic programmable logic board tester was constructed.
However, it soon became clear that too great an in
vestment of engineering time was required to perform
successful tests. The major problem was that the boards
being tested were not necessarily logically correct. An
added complication was that the tests were programmed
by hand. As a result, the tests required an excessive
amount of time to program and as much time was spent
debugging the test program as debugging the board
under test.

A human-factors analysis of the specific operations
required for functional board testing (in combination
with the usually limited Rand D budget) resulted in
the development of a board tester used for most of the
SYMBOL project. This tester (Figure 14) was designed
to minimize the number of physical motions required
during manual testing of prototype logic boards. In
addition, every attempt was made to eliminate the need
for any other instrumentation during testing. The same
test point panel and wing panels used for system testing
mount on the board tester and are used to force and/or
monitor logic conditions at the 200 signal pins and fifty
test points on the boards. Switch bounce is no problem
because board testing is not dynamic in this tester.

During functional board test, signals on the logic
board must also be traced and/or monitored. The tester
control panel has been designed to help support these
requirements. A single clock pulse with the same dy
namic characteristics as seen in the SYMBOL system
is generated by the CLOCK switch. The LOGIC test
probe is used to monitor signal points on the board
under test. The condition of the signal probed is indi
cated by both an audio and a visual signal. Three indi
cator lamps, one on the control panel and one on top
of each of the two uprights, light when a logic "one" is
probed. However, that is not sufficient to show that a
particular signal line is electrically active or that the
probe even made contact. Therefore, an audio signal
is generated to indicate both logic one and logic zero via
high and low frequencies; for an open circuit, no tone
is generated. A set of lamps and switches is connected

Physical Attributes and Testing Aspects of Symbol System 597

through a cable to a fourteen pin package probe. This
probe can be used both to monitor and to test a logic
element. All lamps on the control panel have asso
ciated pulse stretchers to detect transient logic con
ditions.

During the initial testing of a logic board, con
tinuity of signal traces is often suspect. The board tester
can also assist in continuity checking. When the power
to the board under test is turned off, the jack under the
board power switch on the front panel is energized with
a logic "one". A probe from this jack and the LOGIC
pro be can be used in place of an ohmmeter to check
continuity. A similar operation can be done through
use of the LOGIC probe and the package probe. The
LOGIC probe generates an audible confirmation of con
tinuity precluding the need for separate observation
of a meter.

The ease of use of the board tester is best seen in the
average time for testing. The automatic board tester
averaged about two man weeks per board. The manual
functional tester required about one man day per
board. It is anticipated that when a system such as
SYMBOL enters volume production it might be eco
nomical to return to the automatic tester since the logic
design will have been debugged and the investment
in tester programming could be amortized over the
production run.

System test

The problems encountered during system test on the
SYMBOL system have been typical prototype test
problems. The SYMBOL system is a synchronous de
sign. Thus signals must propagate through whatever
logic chains are required before the arrival of the subse
quent clock. Although no timing rules were violated
in the initial design, some logic corrections could be
made less complex if the system timing rules could be
relaxed. Also, some of the requirements of the initial
system tester (described below) required a longer clock
cycle. Thus, a second, slower, system clock speed was
introduced at the outset.

Both automatic and manual aids are used for SYM
BOL system test. Automatic testing aids are used to
help isolate problems to a specific area in an AFU while
manual aids are used to isolate the specific problem.
Many of the manual test aids have already been shown.
The board extender (Figure 13) allows a particular
board to be accessible at its position in the system. The
wing panels (Figure 7) can be mounted on the outside
of the motherboards at positions which were specified
by the designers during AFU design. The test point
panels (Figure 12) monitor boards in the system. The

Figure 14-Manual, functional, logic board tester

normal complement of black boxes for monitoring the
logic conditions of all pins on a package, for stopping
the system clock on a logic condition, for· determining
how far operation proceeded through a sequential net
work before halting or forking, etc., has been con
structed and is used during detailed logic debugging.

Extremely few areas of system test require the use of
an oscilloscope. The electronics controlling the magnetic
disk and magnetic core memories requires an oscillo
scope to set up and verify timing. The portions of the
system involved with various I/O clock frequencies
such as peripheral controllers and transceivers also often
require an oscilloscope. Very few other system prob
lems have been discovered through the use of oscillo
scopes. These few problems generally have been fabri
cation errors such as the case where the power supply
filter capacitors were incorrectly inserted between
ground and a signal line (resulting in very slow rise and
fall times of the signal).

I t is impractical to use manual techniques for system
debugging. Such techniques would be analogous to
single stepping an executive system program to find
errors in loops buried deep within a software system.

598 Spring Joint Computer Conference, 1971

T

System Test 110

System Mode a
Clock Control

Figure 15-Programmable SYMBOL system test support
configuration

Some kind of program trace must be generated. The
analogy is particularly apt in the case of SYMBOL since
the hardware includes most of the executive system.
The SYMBOL system construction schedule was such
that I/O. equipment was one of the last things to be
come operational. Thus, self-diagnostics were imprac
tical until late in the program. Some way of exercising
and/or moriitoring various AFU's and portions of the
system automatically and of recording the results of
these tests was absolutely necessary. In response to
that need the SYMBOL system tester was developed
(See Figure 15).

The system tester consisted of a small control com
puter with on-line disk storage, card reader, line printer
and typewriter, interfaced to the SYMBOL main buses
and to the SYMBOL mode and clock control lines.
Since all SYMBOL system operation is coordinated via
signals on the main signal bus, the control computer
was programmed to substitute for any missing part of
the system and to exercise any portion of the system
accessible via the main bus. In addition, the main bus
could be "watched" during independent system opera
tion and desired data could be recorded. The discrep
ancy between the speed of the control computer with a
limited bandwidth data channel and the SYMBOL
clock speed was resolved by allowing the interface to
turn off the SYMBOL clock temporarily when any
data needed to be transferred to or from the main bus
buffer register in the interface. Control of the clock
in this manner significantly reduces the execution rate
of the SYMBOL system while monitoring the actions
of the system although this approach is considerably
faster than simulation techniques. Except for real-time
support logic, all logical sequences were executed in the
same order with respect to each other no matter what
the actual clock speed.

The general use of the system tester consisted of first
initializing the memory with appropriate data, setting
the system mode to AFU test or system test, starting
the appropriate portion of the system, and monitoring
the system operation via the line printer. Sixteen extra

data lines, in addition to the SYMBOL main bus lines
were provided to allow arbitrary signals in the system
to be patched into the system tester. These lines could
be connected to local buses, local control lines, etc. A
language called DEBUG was developed to allow direct
execution of any of the virtual memory operations and
system supervision cycles under control of the small
computer. The system supervision cycles allowed start
ing and stopping of the various AFU's in the system.
An automatic memory exercising mode was included.
Any arbitrary pattern could be written into all words,
read and checked. Any errors detected were auto
matically listed on the line printer. The "watching" of
the bus signals was done in a TRACE mode. During
TRACE, all memory operations performed by a par
ticular AFU and/or inter-AFU control communication
were listed on the line printer. Since the control com
puter was programmable, special problems such as il
legal use of particular memory words could be tracked
through the use of special monitoring programs.

To provide independent maintenance and debugging
capability, a substitute for the programmable test
system was devised. An additional AFU called the
Maintenance Unit (MU) was defined and imple
mented. Figure 16 shows the final syst.em configuration
of SYMBOL with the Maintenance Unit. I/O equip
ment from the remote interactive batch terminal is
used as the input/output medium. A special punched
card format (produced by the SUPERBUG language
processor) was defined and is used as input to the

SYMBOL

System
ModeS

Clock
Control

Main
Buses

Console
Control

Figure 16-SYMBOL system maintenance unit configuration

Physical Attributes and Testing Aspects of Symbol System 599

DEBUG operations which are hard wired into the
MU. The MU implements a majority of the most
frequently used features of the programmable system
tester and does not implement those features which
were relatively unused. The SYMBOL control console
also controls the MU.

The use of the limited bandwidth channel from the
SYMBOL main buses to the control computer in the
system tester proved the feasibility of performing re
mote testing of complex computing equipment. No
good solution has yet been discovered for isolating
errors in peripheral equipment using these techniques.
The small number of system interconnections has been
instrumental in making this system testing approach
possible.

CONCLUSIONS

The SYMBOL project has developed a generally useful
and inexpensive technology which includes system
packaging, computer-aided engineering design and cir
cuit board and system testing techniques.

The system packaging techniques use two-sided
printed circuit boards for both signal and power distri
bution intraconnections. A cam-operated zero-insertion
force, high pressure connector gives reliable but inex
pensive pluggable connections. All system level inter
connections are made on two-layer printed circuit
motherboards. No wire wrap or other forms of wired
connections are used. The cam-operated contacts solder
directly onto the motherboards for mechanical stability
and electrical reliability. Simple forced air cooling is
used. Inexpensive power is provided by a high current
main supply and a low-voltage, lower-current shunt
supply.

A complete engineering design package using com
puter aids was developed for the project. From logic
equation input, electrical and timing checks are made
(human aided), factoring and functional unit selections
are made, automatic placement is accomplished, wire
routing is done, and finally, printed circuit board art
work is automatically generated.

The testing techniques allow single circuit boards,
several boards, a functional unit, several functional
units, or the complete system to be exercised. Single
boards may be tested in a separate "board tester."
Any board in the main frame of the system may be
placed on a board extender for scoping, etc. The parallel
line motherboards permit "wings" to be placed at any
desired main frame location for observing or controlling
logical states. The main frame can be driven by a small
computer to simulate operating conditions at any level
from a single board up to the complete system. A pro-

grammed debug package was developed for the small
computer to activate the system and to help diagnose
trouble.

These SYMBOL technologies have already proven
useful in the implementation of the following projects:

Minus; a smaller-than-mini computer with a 512
word, 9 bit semiconductor memory,

SYMBOL Terminal; an interactive, remote-batch
terminal;

LSI Memory; the 2048 word X 64 bit production
bipolar memories used for the ILLIAC IV com
puter Process Element Memories,

Board Testers; the memory and SYMBOL logic
board testers,

Automatic AC Functional Memory Tester; a
special tester for AC functional testing of LSI
memory components

We believe that, taken together, these techniques will
be very useful in low-cost commercial computing sys
tems for years to come.

ACKNOWLEDGMENTS

The authors wish to acknowledge special contributions
to the development of the hardware system and testing
techniques. William R. Smith contributed to many
facets of the hardware system development and was
largely responsible for the CAD system mentioned
above. He, together with Theodore A. Laliotis, de
veloped many of the details of testing procedures.
Myron A. Calhoun contributed the programming sup
port required for the success of the system tester and,
together with Thomas G. Cook, the design of the Main
tenance Unit. Wayne Willis contributed materially to
the mechanical design of the system.

REFERENCES

1 R RICE W R SMITH
SYMBOL: A major departure from classic software dominated
von Neumann computing systems
This volume

2 W R SMITH R RICE G D CHESLEY
T A LALIOTIS S F LUNDSTROM
M A CALHOUN L D GEROULD T G COOK
SYMBOL: A large experimental system exploring major
hardware replacement of software
This volume

3 G D CHESLEY W R SMITH
The hardware-implemented high-level machine language for
SYMBOL
This volume

600 Spring Joint Computer Conference, 1971

4 R B SEEDS W R SMITH R D NEVALA
Integrated complementary transistor nanosecond logic
Proceedings of the IEEE Dec 1964 Vol 52 No 12 pp
1584-1590

5 R RICE
Functional design and interconnections: Key to inexpensive
systems
Electronics Feb 7 1966 Vol 39 No 3 pp 109-116

6 D B JARVIS
Effects oj interconnections on high speed logic circuits
IEEE Transactions on Electronic Computers October 1963
Vol EC-12 pp 476-487

7 W T RHOADES
Logic circuits don't live alone
Electronics March 6 1967 Vol 40 pp 162-164

8 W T RHOADES
Power distribution considerations jor nanosecond circuitry
IEEE Pacific Computer Conference T-147 1963 pp 139-154

9 R E FORBES D H RUTHERFORD
C B STIEGLITZ L H TUNG
A seld-diagnosable computer
FJCC 1965 Proceedings pp 1073-1086

10 K MALING E L ALLEN
A computer organization and programming system jor
automated maintenance
IEEE Transactions on Electronic Computers Dec 1963
pp 887-895

11 S SESHU D N FREEMAN
The diagnosis oj asynchronous sequential switching systems
IRE Transactions on Electronic Computers August 1962
pp 459-465

SYMBOL-A large experimental system exploring major
hardware replacement of software

by WILLIAM R. SMITH, REX RICE, GILMAN D. CHESLEY, THEODORE A. LALIOTIS,
STEPHEN F. LUNDSTROM, MYRON A. CALHOUN, LAWRENCE D. GEROULD, and
THOMAS G. COOK

Fairchild Camera and Instrument Corporation
Palo Alto, California

INTRODUCTION

The SYMBOL system is the result of a major develop
mental effort to increase the functional capability of
hardware. Part of the charter of the broad based proj
ect was to reexamine the traditional division between
hardware and software, to reexamine the respective
roles of program instruction and data storage, and to
reduce the overall complexity and cost of computing.!
In order to adequately evaluate the concepts that had
been developed it was concluded that an experimental,
usable, real system must be built. The SYMBOL sys
tem, now operational, is the embodiment of this effort.

The system was developed in an environment with
hardware and software design considered in common.
Virtually no one associated with the project could refer
to himself as a hardware or software specialist exclu
sively. As an example, the logic design of the field
process units was done by an individual with a basic
programming background.2 The wire routing automa
tion was developed by an engineer who Was formerly a
pure logic design specialist.

Even before the system became operational much
had been learned about the practical aspects of building
highly capable hardware. No claim is made that
SYMBOL represents an optimum general purpose,
time-sharing, multiprocessing system. In contrast,
numerous simplifying assumptions were made in the
system where they did not serve the goals of the proj
ect. Certain modularity restrictions are examples of
this. It is claimed that SYMBOL represents a signifi
cant advance in systems technology and provides the
foundation for a significant reduction in the cost of
computing. As the system moves into an intensive
evaluation phase it should prove to be a real asset for
advanced systems research.

601

This paper represents an overview of the SYMBOL
organization. An attempt is made to give simplified
examples of various key features in contrast to a broad
brush treatment of many topics.

GROSS ORGANIZATION

The system has eight specialized processors that
operate as autonomous units. Each functional unit is
linked to the system by the Main Bus. See Figure 1.
Consider some of the features of the system and their
relationship to the gross processor organization as out
lined in the following sections.

Dynamic memory management

Direct hardware memory management is perhaps the
most unique feature of the SYMBOL system. The
memory management centers around a special purpose
processor called the Memory Controller (MC). The
MC effectively isolates the main memory from the
main bus and the other processors and in turn provides
a more sophisticated storage function for the various
processors. In contrast to simple read/write memory
operations the MC has a set of fifteen operations that
are available to the other processors of the system.
The Me is a special purpose processor that allocates
memory space on demand, performs address arithmetic,
and manages the associative memory needed for paging.
The Memory Reclaimer (MR) supports the MC by
reprocessing used space to make it available for subse
quent reuse. It is a separate unit to allow the task to
be performed using a low priority access to the memory.

602 Spring Joint Computer Conference, 1971

MAIN
SYSTEM BUS

SUPERVISOR

SS

TRANSLATOR

TR

CP

~~~} HIGH SPEED CHANNELS 
CHANNEL E }TELEPHONE RATE 
CONTROLLER CHANNELS 
CC 

MEMORY 
CONTROLLER 

IP 

MEMORY 
BUS 

Figure 1-Gross block diagram of the SYMBOL system 

Direct compilation 

The Translator (TR) accepts the high level SYMBOL 
language3 as input and produces a reverse Polish object 
string and name table suitable for processing by the 
Central Processor (CP). The TR performs the direct 
hardware compilation using only a small table of about 
100 words stored in main memory. 

Dynamic variable field length 

Within the Central Processor all field processing is 
done with dynamically variable field lengths. All alpha
numeric string processing is done by the Format 
Processor (FP) while all numeric processing is done by 
the Arithmetic Processor (AP). The resources of the 
MC are used extensively by the CP in handling the 
storage of data. 

Dynamically variable data structures 

Complete variability of data structures is allowed. 
They can change size, shape, and depth during process
ing. Within the CP the Reference Processor (RP) 
manages the storage and referencing of all data arrays 
and structure. The M C functions are used extensively 
by the RP. 

Time-sharing supervision 

The System Supervisor (SS) is the task scheduler for 
the system. All transitions from one processing mode to 
another are handled by the SS. Queues are maintained 
for all of the time-shared processors. The SS executes 
two important hardware algorithms, job task schedul
ing and paging management. A real-time clock is used 
in the process of rationing out critical resources such as 
central processor time. The SS also performs key in
formation transfers needed to tie hardware algorithms 
into software system management procedures. 

Direct text editing 

The Interface Processor (IP) and Channel Controller 
(CC) perform the input/output tasks of the system. 
The IP has ability to handle general text editing in 
support of interactive communication via a special 
terminal. Input/output and text editing do not use the 
CP resources. 

Virtual memory management 

When the M C detects that a page is not in main 
memory it notifies the requesting processor and the 
system supervisor. The SS then utilizes a paging algo
rithm to supply the appropriate disk transfer commands 
to the Disk Controller (DC). Each user of memory 
must, upon receiving a page-out response, be able to 
shut down and save its current state and status and 
restart after paging is complete. 

Figure 2-Breakdown of the SYMBOL hardware showing the 
relative sizes of the various processors 



SYSTEM CONFIGURATION 

The system has a small complement of peripheral 
and storage equipment associated with the main frame. 
This complement of equipment has proven sufficient 
for the experimental purposes of the system. The main 
memory is an 8K word X 64 bit/word core memory 
with a cycle time of 2.5 microsec. It is organized into 32 
pages with 256 words/page. The main paging memory 
is a small Burroughs head-per-track disk divided into 
800 pages. The bulk paging memory is a Data Products 
Disk-file organized into 50,000 pages. 

The Channel Controller is designed to handle up to 
31 channels. This low limit was deemed sufficient for 
evaluation of the experimental system. As of this writ
ing one high ~peed (100,000 bits/sec. effective data 
rate) channel and three phone line (up to 2400 baud) 
channels have been implemented. More can be added 
during the evaluation phase. 

The main frame contains about 18,000 dual in-line 
CT.uL components. Its physical properties are described 
in other papers.4, 5 In order to get a relative measure 
of the size of the various autonomous processors a 
chart is given in Figure 2. 

SYSTEM COMMUNICATION 

The main bus of the system is a time-shared, global 
communication path. It uses the special properties of 

Fi~ure 3-Use of the main bus for control exchange cycles 

SYMBOL 603 

the CT.uL family in its implementation.4,5 The bus 
contains 111 parallel lines. They are distributed as 
follows: 

Data Bus 64 
Address Bus 24 
Operation Code Bus 6 
Terminal Identification Bus 5 
Priority Bus 10 
System Clock 1 
System Clear 1 

Four types of bus usage are available. They are: 

Processor to M C transfers 
M C to Processor transfers 
Processor to Processor transfers 
Control exchange cycles 

The basic information transfers are priority se
quenced. The priority bus indicates the desired bus 
usage for the following cycle; if a unit desires to use the 
bus it raises its priority line and then checks the pri
ority bus to see if there are any higher priority requests. 
If not it uses the bus on the following cycle. 

Control exchange cycles are used to communicate 
control information between the SS and the various 
processors over the data and address buses. See Figure 
3. During a control cycle the data and address bus lines 
have preassigned uses. Certain lines are used to start 
the CP. Others indicate the completion mode for the 
TR. During a given cycle any combination of the paths 
can be used. The SS has autonomous interface control 
functions that are used to communicate with the pro
cessors during control cycles so that more than one 
control signal can be transmitted during a given cycle. 

MEMORY ORGANIZATION 

Virtual memory 

The SYMBOL memory is organized as a simple two
level, fixed page size virtual memory.6 The page has 
256 words with each word having 64 bits. Virtual 
memory is accessed by a 24 bit address with 16 bits 
used to select the page and 8 bits to select a particular 
word within a page. See Figure 4. 

The main memory for the experimental system is 
logically divided into 32 pages. The relative portion of 
the address is used directly while the page number 
accesses an associative memory which in turn supplies 
the current page address in main memory. 

The associative memory has one cell for each page 



604 Spring Joint Computer Conference, 1971 

Virtual 
Address 

Associative 
Memory 

o 
PAGE NUMBER 

Main Memory Address 

Figure 4-The simple two level addressing structure for the 
virtual memory 

in the main memory. By providing an associative mem
ory tied to the main memory the individual processors 
need not be concerned with the location association 
process. This provides a significant reduction in the 
logical complexity of the processors even though it may 
lead to slightly more overall electronics. 

The paging disk memory has fixed assignment of 
page locations. See Figure 5. A page is brought into an 
available location in main memory upon demand. When 
it is purged back to disk it is transferred back to the 
same location on disk. (The return transfer is omitted 
if the page was not changed in main memory.) 

The main memory organization is shown in Figure 6. 
The first page is used for system tables. This includes a 
reserved word table for the translator, a software call 
table, and the control words for memory allocation and 
queuing. The next set of pages are used for storing the 
control words of the various terminals or users on the 
system. Each active terminal has 24 words of control 
information in low core. Much of the control informa
tion could have been placed in virtual memory as 
would certainly be required for a system with a larger 
channel capacity. As a simplifying restriction for SYM
BoL all channel tables were placed in main memory. 

The input/output buffers for the various active 
channels are also held in core. The buffers require 16 
words per active channel. Variable buffer sizes although 
possible were not implemented. 

The remainder of main memory is available for 
virtual memory buffering. Paging is managed by the 
hardware with the page selection for purging under the 
control of the system supervisor. The algorithm is a 
very flexible parameterized process that allows most of 

the conventional paging algorithms to be executed. The 
parameters are maintained for each terminal so that 
the paging dynamics can be tailored on a terminal by 
terminal basis. 

The virtual memory organization is quite simple for 
SYMBOL in contrast to the more common segmenta
tion schemes.7,8 The primary difference that allows the 
simplified approach to be taken in SYMBOL is that 
contiguous addressing above the page level is not 
needed. All users and channels share the same virtual 
memory space. The 24 bit address space is thoroughly 
used. With space allocated only upon demand and with 
no restriction on a scrambled assignment of pages to 
users it is anticipated that 24 bits will be sufficient for 
many more than the 31 possible terminals. If file space 
is needed beyond the 24 bits of address space it can be 
addressed via special block input/output transfers. 

Page lists 

Pages are associated together with the use of linked 
page lists. Pages available for assignment are main-

Main Memory 

AsSOCiative 
--~ Memory 

Paging Memory 

Figure 5-Virtual memory organization showing the fixed location 
of pages in the paging memory 



tained on an available page list. As each user needs 
space a user page list is started by transferring a page 
from the available page list to the particular user. A 
control word is established at this time as a focal point 
for all future page list management for the user. As 
more space is needed pages are added to form a variable 
length storage area for general purpose usage. See 
Figure 7. 

A given user may have more than one page list. 
Typical page list usage for a terminal would be one 
page list for program source text, another for the com
piled object program, and a third for data variable 
storage. Other page lists are used for long or short 
term file storage. 

SYSTEM SUPER-
VISOR TABLES 

1 Page 

TERMINAL 
CONTROL 3 Pages 
TABLES 

INPUT/OUTPUT 
BUFFERS 

1-2 Pages 

+ 
t 

VIRTUAL 
MEMORY 

PAGING SPACE 

,,~ "I" 

Figure 6-Layout of main memory 

SYMBOL 605 

Available Page List User Page Lists 

~g 

Figure 7-Simplified page list structure within the 
virtual memory 

Page lists grow monotonically as space is needed. 
When an entire list is no longer needed it is given back 
to the system by returning it to the available page list. 

Page organization 

In order to handle non-contiguous address space a 
certain amount of the storage space must be devoted to 
linking or association data overhead. In SYMBOL 
about 11 percent of the storage space is for overhead 
bookkeeping. 

Pages have three distinct information regions as 
shown in Figure 8. The first region called the page 
header is used to maintain the page lists and manage 
the space within the page. The second region is a set of 
28 words. The third region is a set of 28 groups with 
each group containing eight words. Each group has a 
corresponding group link word associated by a simple 

Group 4 
Group 5 
Group 6 

Group 1F 

0 

8 
to 
18 

20 

30 

as 
FO 

F8 

Page Header 
I. 

t 2 3 

~ A B 
11 12 13 
19 fA 18 
21 22 

F1 

9 ~ B 

4 ~6 

" 0 E 

4 ~ 16 
IC 10 1E 

Fe FD FE 

7 

F 

7 
F 

FF 

Group Link 
Words 

Group 
Data Space 

Figure 8-Page organization showing group and link word layout 
where addresses are given in HEX notation 



606 Spring Joint. Computer Conference, 1971 

String Start Address 

Word Group 
Two 

Word Group 
Three 

Figure 9-Structure of a variable length string 

address mapping. Consider in Figure 8 word 5 and the 
corresponding group 5. Data is stored in words 28 
through 2F. This eight word group is the fundamental 
quantum of space allocation. It is the smallest amount 
of memory space that is assignable to a given purpose. 

When data is needed for some purpose groups are 
assigned. For example, if six words were needed to 
store a data vector one group would be assigned. If 
space for a vector of 14 one word items were needed 
two groups would be assigned. Variable length informa
tion areas are developed by chaining together these 
basic units of storage. 

I nf ormation strings 

Variable length lists of storage locations are used for 
general information storage in SYMBOL. They are 
logically contiguous memory cells but not necessarily 
physically contiguous cells. 

Consider a typical variable length information string 
in Figure 9. Data space for 24 words of information is 
tied together by way of the associated group link words. 
If access to the start of the string is known it is possible 
to follow the entire string by accessing the correspond
ing group link word each time the end of a group is 
encountered. It is also possible to traverse the string 
backwards by using the back links also stored in the 
group link word. 

Each processor uses the variable length storage serv
ice of the memory controller CIVIC) without cognizance 
of the address sequence that is involved. For example, 
when a processor needs space to store a vector of data 
fields an Assign Group (AG) command is sent to the 
M C along with a tag specifying a page list With which 
the string is to be associated. The MC then selects an 
available group from the page list and returns the- ad
dress of the first word of the group to the requesting 

processor. When the processor is ready to store a word 
it transmits the data and the address previously as
signed to the M C along with the command Store and 
Assign (SA). The MC stores the word and generates 
the address of the next available word. When the end 
of the group or string is encountered the MC assigns 
another group and links it into the string. 

In the string storing process the requesting processor 
receives addresses from the MC and resubmits them 
to the MC at a later time for future extension of the 
string. All address arithmetic is done by the Me. Con
sider the example in Table 1. The first five commands 
result in the words A, B, C, and D being stored in a 
string beginning with word A. 

To reaccess the string the original start address A is 
submitted to the MC with the Fetch and Follow (FF) 
command. The data in cell A is returned along with the 
next address in the logical sequence. When the string 
is no longer needed a Delete String (DS) command 
along with the string starting address is submitted to 
the MC. The entire string is then placed on a space 
reclamation list. The Memory Reclaimer processor 
scans the space reclamation lists of the various page 
lists during idle memory time and makes the groups of 
the deleted strings reassignable. 

The basic memory usage process deals with variations 
of the AG, SA, FF, and DS operations. Eleven other 
memory commands are available to give a full memory 
service complement. 

Space utilization efficiency was an important aspect 
of the SYMBOL memory design. Studies have been 
made into the optimum size of the space .allocation 
group.9 The trade-offs center on balancing the linking 
overhead cost and the unused group fragments cost. 
The overhead cost is compensated by the allocation on 

TABLE I -Simplified example of a memory usage sequence 

SIMPLIFIED EXAJoFlE OF A MEKIRY USAGE SEQUENCE 

ADDRESS RETURN DATA TO RETURN 
~EIOiIC OPERATIOO TO Me ADDRESS Me DATA 

___ ~§ _____ ~~!9!L§!'Q!!I! __________ =____ _ ____ ! __________ = ________ = ___ _ 
___ ~~ _____ ~!Q~_!_~~!9!L ______ !____ _ ____ ~ __________ ~ ________ = ___ _ 
___ ~~ _____ gQ~_!_~~!9'L _______ ~____ _ ____ !: __________ ~ ________ = ____ _ 
___ ~~ _____ g~!!_!_~~~!9!! ________ £____ _ ____ ~ __________ ~ ________ = ____ _ 
___ ~~ _____ g~!!_!_~~!!1!! ________ ~____ _ ____ !L _________ ~ ________ = ____ _ 
___ fL ____ f~!£~_!_f~!1~ ________ !____ _ ____ ~ __________ = ________ ~ ___ _ 

___ fL ____ f~!~_!_fQ!1~ ________ ~____ _ ____ !: __________ = ________ ~ ___ _ 

___ EE___ _E~~£~_!_E~!!~ ________ £ __________ ~ __________ = ________ L __ _ 
___ EL __ .t-_f~!£~_!_E~!1~ ________ ~ __________ = __________ = ________ ~ ___ _ 

OS Delete Strinq a 



demand approach. In most machines, fixed size data 
arrays are allocated to their maximum needed size. 
When the average array usage is considered a sub
stantial amount of demand allocation overhead can be 
afforded before approaching the normal excess fixed 
allocation space usage. 

INFORMATION FORMS 

Data fields 

Two basic data types are defined in the system, 
namely string and numeric fields. The string field is 
characterized by a special String Start (SS) character 
followed by a variable length set of ASCII alpha
numeric characters terminated by a special String End 
(SE) character. This illustrates perhaps the most sig
nificant aspect of all SYJVIBOL data representations. 
The type and length of the datum is carried with the 
datum. The instruction code is independent of the 
dynamic attributes of the data. 

The second data type is a variable length, packed 
decimal, floating point number. The numeric form also 
carries a designator of the class of precision. Numbers 
may be exact with an infinite number of trailing zeros 
implied or they may be empirical implying that all 
following digits are unknown and cannot be assumed 
present for calculation purposes. Like the string field 
all attributes of the datum are carried by the datum 
itself. 

As a simplifying hardware design decision other forms 
of data fields were not implemented. It is straight
forward to extend the SYMBOL concepts to packed 
variable-length binary strings, fixed length binary nu
merics, variable length binary numerics, etc. In any of 
these cases the datum must carry a type designator 
and an explicit or implicit designation of field length. 

(JohnlAI celJ mlEI zabeth) 

I J o h n I 
I A I I c • I 
I J 1m I 
I E I I z a b • 
t h I 
~ 

Figure to-A vector of string fields and the corresponding 
representation of the data in memory 

SYMBOL 607 

Source programs 

Source programs are special forms of string fields. 
They are variable length ASCII character strings with 
delimiters defining length and type. They can be 
treated as data fields during preparation and then later 
used as program source for compilation. Source pro
cedures may be assembled into libraries of various 
forms as long as they retain the string field attributes 
for compilation purposes. 

Data structures 

Data structures are defined as a variable length 
group of items where an item may be a string field, a 
numeric field, or another group of items. With this re
cursive definition a structure could be a vector, a ma
trix, or an irregular array. There is no limit to the depth 
or size of an array providing a field or a group does not 
exceed the size of main memory during execution. 

Consider the example of a simple vector shown in 
Figure 10. The special graphics <, I, and > have been 
introduced for representing field boundaries and group
ings of fields. They are used to define the extent of 
variable length fields and referred to as left group 
marks, field marks, and right group marks respectively. 
In memory the string fields are delimited by String 
Start (SS) and String End (SE) characters. Another 
special character called the End Vector (EV) code 
terminates a group of fields. The storage representation 
in Figure 10 shows a series of string fields followed by 
a special End Vector (EV) code which again is a length 
indicator with the data. The string fields are aligned to 
start on machine word boundaries. In the case of Eliza
beth two machine words are needed to store the field. 

In Figure 11 the matrix representation is similar to 
the vector example except that two levels of vectors 
exist. The definition of a structure could be restated as 
a variable length group of items where an item may be 
a string field, a numeric field, or an address link to 
another group. 

Object string and name tables 

When a program is compiled the translator creates a 
reverse Polish string with postfix operator notation and 
a structured name table. The Polish string, called the 
object string, and the name table are the basic informa
tion forms used during program execution by the cen
tral processor. The use of a" separate name table during 
execution is perhaps one of the most distinctive de
partures from traditional processing forms. Where in 
most systems, the program string to be executed con-



608 Spring Joint Computer Conference, 1971 

« 2 N 4 32 I P N pI. 1 7) 
(2N70SAPC143INPNI.3S» 

AD !!,..- .. 
/ 

~ ~ ". 
E V y 

Group Li nk Level 

~2N 432 s 
E 

S P N P I s 

( 
I . 1 7 I 
E 
V 

" I 2 N 7 0 8 A P 
C 1 4 3 I 
I N P N I 
I . 3 8 I 
~ 

Figure 11-A simple two dimensional array.and the corresponding 
three variable length memory strings that are used 

tains address references to the data space to be utilized, 
with the SYMBOL system the object string contains 
references to entries in the name table which act as a 
centralized point where all information about a given 
identifier is kept. It is this feature that gives the system 
its extreme execution time dynamicism. Whenever the 
nature of an identifier is modified in any way-loca
tion, size, type, etc., only the name table entry need be 
changed since all references in the object string to an 
identifier must go through this entry. 

The source form of a simple assignment statement 
and the corresponding object string and name table 
are shown in Figure 12. The identifiers are isolated and 
added to the name table when not already there. Note 
that the identifiers can be variable length and have 
more than one word. Associated with each identifier is 
a control word. All references in the object string in
volving the identifier will point to the corresponding 
control word. The object string is composed of name 
table addresses, literal data (the value 3.2), operators 
in postfix representation, and correspondence links back 
to the source string. The correspondence links are for 
simple error diagnosis and are therefore ignored during 
normal execution. The object string and name table are 
totally independent of the future size and data type of 
the variable. 

Now consider the name table after execution has be
gun and assume that the data variables have current 
values. In Figure 13 the variables Beta and Gamma are 

Source String: 

Alpha 4-- Beta * 3.2 - (Long Name join Beta) i 

Object String 

A[Alpha] A[Beta] 3.2 * A[Long Name] A [Beta] join- +-; 

Source String Storage 
A I p h a 
B • t a * 
.2-(Lon 
Nam. Jol 

B • t a ) 

Ob' Ject String S~rage: Name Table Storage: 
A .J IAlphal 
A .. t-'-r---\ ---1-
.i3. 2 ~lB. -
L ~ 

t a : -* J L 0 n Q N a 
A 

-~ ------.. m • I 
A 

' .. Ll -
~II 
-
~I 
; ~ 

JTO 
Data 
Values 

Figure 12-Information structure for a simple assignment 
statement 

Data Values: 

Alpha (John Doe /110 Main (30-25IDSR )(39IMS 112» 

Beta /1432.1/ 

Gamma 1 Heading for a report / 

Storage Representation: 

_, A I P h a I 
--'- i .. 

.. e ~B e t a I Nom 
Tab Ie : 1 4 32. 

• G a m m a 

~ ~ 

I--

1 I 
: 

c::: 
lIlU H • a din :0 

---- • J 
• _I 
I 1 
n I 
!~ 
c 
w 
~V 

o h n o 0 

1 0 M a i 

.. 
~ 

for a r 130- 251 
• p 0 r t I IDS R I 

I ~ 

.... 3 9 I 
I M S I 
I 1 2 I 
~ 

Figure 13-Examples of a structure and two fields and how they 
are stored into memory along with the name table 



simple fields. Gamma is a multiword string and there
fore it is stored in a memory string with a link address 
placed in the corresponding control word. Beta is a 
short field such that it can be stored in one word directly 
in the name table. Alpha is an irregular structure. The 
name table for Alpha contains a link to the first group 
which in turn contains two string fields, two link ad
dresses, and an end vector mark. The link addresses 
point to two groups, one containing two fields and one 
containing three fields. As execution progresses the 
attributes and storage representation of the variables 
may change. In any event, the name table and the data 
itself will contain all the attributes of the variables. 

BASIC INFORMATION FLOW 

In order to observe how the various processors of 
SYMBOL are used to serve the end users problem 
temporarily ignore the multiprocessing aspects of the 
system. A user at a terminal operates in various modes; 
program loading, program compilation, and program 
execution are the fundamental usage modes. Consider 
the state diagram in Figure 14. A user would start in 
the OFF-LINE mode and by some transitional control 
means he would initialize his tasks into the ON-LINE 
IDLE mode. From here he can go into the LOAD 
mode to develop a program. When he is ready to exe
cute his program and assuming he is a perfect program
mer he would have his program compiled and executed. 
At the end of execution he can restart and rerun his 
program or he can return to the LOAD mode and 
modify his program. 

Figure 14-Idealized task flow for one terminal 

SYMBOL 609 

Figure 15-A more detailed block diagram of the SYMBOL 
system showing register configuration and major functions within 

each processor 

The following sections deal with examples of the in
formation flow for the basic operational modes of a 
terminal. A more detailed system block diagram in 
Figure 15 will be used to support the description. Visu
alize the time sequence of the terminal operational 
states of Figure 14 in conjunction with the static hard
ware diagram of Figure 15. 

Load mode 

The LOAD mode is an input/output text editing 
mode. Its primary purpose is for program source load
ing. In the normal case a separate page list is used to 
store the text string. This area is called the Transient 
Working Area (TWA). 

Three processors work together to perform the text 
editing tasks. The Channel Controller (CC) transfers 
data characters to and from I/O devices from and to 
the I/O Buffers in main memory respectively. When 
the CC detects control characters in the I/O stream it 
communicates the control information directly to the 



610 Spring Joint Computer Conference, 1971 

I ~ 
InputlOutput Stream ~ __ ....J 

1/0 Buffers 
In Main Memory 

-="... __ l...Current 
r-----~ Pointer 

Figure 16-Information flow in the LOAD mode 

SS by way of a control exchange cycle. The CC is a . 
character oriented processor which services up to 32 
processors in a commutating manner. The CC also has 
a high speed (block) operating mode which is priority 
driven to allow servicing of disk and high speed tape 
devices. The block mode is not used in the LOAD or 
normal I/O mode. 

The Interface Processor (IP) operating on a burst 
basis empties or fills I/O buffers and transfers appropri
ate characters to and from the virtual memorv. The 
IP works with a current text pointer while perf~rming 
its functions. The IP functions include basic text inser
tion, searching, displaying designated text portions, 
deletion of designated text portions, and moving the 
current pointer. In Figure 16 the basic information flow 
during the LOAD mode is summarized. 

Part of the justification for implementing editing 
functions in hardware came from the desire to eliminate 
the CP from many of the system overhead tasks. In 
addition, response times would be unacceptable if the 
CC were to communicate directly with virtual memory. 
The IP was developed to make the basic transfers be
tween small buffers and paging memory. Once a special 
processor was developed it was found that many editing 
tasks and double buffering could be handled using es
sentially the same data transfer hardware. 

This IP /CC/SS process is available for both LOAD 
mode data preparation and program execution· I/O. 
The full text editing facilities are available for any 
program input statement. 

Compile mode 

Program compilation and address linkage editing 
functions are performed by the Translator (TR). The 
TR accepts the language source string from the TWA 

or some other source text area in virtual memory. The 
high level language is converted into a reverse Polish 
string and a structured name (identifier) table. The 
Polish string, called the Object Stri~g, and the Name 
Table may be stored in Virtual Memory on separate 
page lists or on a common page list. The gross flow of 
information in the Translation mode is shown in Figure 
17. 

The TR performs a one pass compilation generating 
the object string as it scans the source string. It also 
builds the name table during this scan on a program 
block-by-block basis. At the end of the source pass the 
TR processes the name table and resolves all global 
references by creating appropriate indirect links. Ex
ternal procedure references are resolved during the 
name table pass and they are compiled and included 
with the object string as needed. 

The TR includes external procedures by accessing 
procedure source libraries and compiling needed proce
dures into the object string. The procedure libraries are 
organized into two sets, namely privileged and non
privileged procedures. Privileged programs differ from 
normal programs in that they can contain privileged 
statements for direct memory manipulation using the 
NrC operations. Storage protection is obtained by con
trolling the privileged status of user programs and the 
programs that they can reference. Non-privileged pro
grams have a high degree of storage protection both 
from other programs and from themselves due to the 
hardware storage management and central processor 
algorithms. Programs using privileged statements loose 
some of the protection. By controlling the access to 

Transient 
Working Area 

--------. TRANSLATOR 

Procedure Library 

Ob' ect String 

Name Table 

Figure 17-Information flow in the COMPILE mode 



privileged programs and the manner in which they are 
used the overall storage protection in the system is 
quite satisfactory for multiterminal operation. 

Execution mode 

The Central Processor (CP) is the execution unit for 
the translated language receiving the translated source 
string along with the nested name table blocks as input. 
Because the CP operates on a high order language
actually a Polish string, postfixed operator object 
string-the CP uses a push-down stack for its operands. 
That is, the data reference is generated with all indirec
tions traced out until a memory reference point is 
reached, and then this reference is pushed into the 
stack. This process continues until the postfixed opera
tors are encountered in the object string. Each operator 
causes the top one or two (monadic or dyadic operator) 
stack entries to be pulled up, processing to take place, 
and the result to replace the operand(s) on the stack. 

Substructure referencing, also known as subscripting, 
is a much more formidable task in SY1VIBOL than with 
conventional systems. This is due to the extremely dy
namic flexibility of these structures. With conventional, 
systems, accessing an element of a vector is a simple 
matter of assigning a base along with an index register 
for the subscript variable and at execution time merely 
doing an address calculation to find the desired element. 
With SYMBOL there can be no possibility of a base 
address or an address calculation both because of the 
dynamic nature of space allocation as well as the fact 
that logically contiguous data need not be physically 
contiguous in memory. The Reference Processor (RP) 
has the charter for finding substructure points, basically 
through a scanning technique along with several speed
ups. 

Another novel aspect of the CP is that all processing 
operations are done on variable length data. The string 
operations can be of any length, the only limitation 
being that they must fit into the main memory. The 
numeric operations are limited to a 99 digit fractional 
length (numbers are represented internally as normal
ized floating-point decimal numbers). Furthermore, 
the length of numeric processing is controlled by the 
limit register. Also, a precision mode exists whereby 
numbers tagged with E}VI (empirical) will limit pro
cessing precision to the number of fractional digits they 
contain, unless the limit register is set to a smaller 
value. 

The information flow for the CP is summarized in 
Figure 18. The CP has four distinct sections, namely 
the Instruction Sequencer (IS), the Reference Pro
cessor (RP), the Arithmetic Processor (AP) , and the 

SYMBOL 611 

OBJECT STRING 

DATA STORAGE 

Figure 18-Information flow during program execution 

Format and String Processor (FP). As shown in Figure 
15 the CP has a common control bus that is used to 
control the various processors during program execu
tion. The following four sections describe the functions 
of each of the processors in the CP. 

Instruction sequencer 

The IS portion of the CP is the master controller 
and switching unit of the CPo It has the task of scan
ning the object string, and accumulating items in the 
stack for the various units it supplies. For example, 
operands are accumulated for the process units and any 
type conversion required is sensed and requested of the 
FP by the IS, as appropriate. Similarly, a structure 
reference and all of its subscripts are computed and 
placed into the stack which is then turned over to the 
RP for access. 

The IS also prepares data for assignment by the RP 
or output by the I/O unit. It does this in the former 
case by stacking both the assignment reference and the 
data and in the latter case by stacking the data and 
turning control back to the system. 

Another major task performed by the IS is that of 
dynamically creating nested language blocks. Reference 
should be made to the companion paper on the SYM
BoL language3 if the concept is new to the reader. In 
quick review, blocks are language constructs consisting 
of program segments contained between the reserved 
words BLOCK and END (PROCEDURE and ON also 
establish blocks). Within a block, all uses of an identifier 
are local to that block, unless contained within a 
GLOBAL statement, and thus a different name table 
is constructed for each block. The overall structure of 



612 Spring Joint Computer Conference, 1971 

name tables has a static aspect determined by the way 
the program is written and a dynamic aspect deter
mined by the sequence in which these blocks are exe
cuted. It is this latter characteristic that we are con
cerned with in this discussion. Whenever a new block 
is encountered by the IS, processing on the old block is 
suspended by pushing down all information about that 
block that must be retained (sometimes called the 
activation record) into the stack, and starting a new 
stack and activation record for the new block on top 
of the old stack. Of course, the new record must con
tain a link to the old record so that when the new block 
is completed, the old block with its status information 
can be reestablished. 

A further complexity occurs with procedure blocks 
because of the need to correlate actual and formal 
parameters (again, see the language paper).3 The IS 
transfers the links to the actual parameters from the 
object string to the stack, accesses the name table for 
the new block where the formal parameters occur as 
the first entries of this name table. The actual param
eter links are then placed one-by-one into the formal 
parameter entries of the name table. Parameter linking 
completed, the remainder of the normal block action 
for the procedure is accomplished. Whenever the IS 
encounters' a name table entry tagged as a formal 
parameter, it indirectly accesses the actual parameter 
in its place, which may not be a statement; but may be 
a variable, constant, label, literal, procedure, or ex
pression. This indirection mechanism is also handled in 
the IS stack. A push down of a limited set of status 
information takes place, mostly consisting of the ad
dress where execution of the object string was tem
porarily discontinued. Then the new object string of 
the actual parameter is executed, using the stack until 
the return operator is encountered indicating the end 
of the actual parameter string. This causes the previous 
status to be recovered from the stack and execution of 
the object string recommences with the results of the 
execution of the actual parameter remaining in the top 
of the stack. 

Reference processor 

The basic task of the RP is to deal with structures. 
As a simple added duty, it accesses the address of an 
item from the name table for the IS. That is, the IS 
receives an address from the object string and turns it 
over to the RP with a request to "get simple address." 
The RP performs several actions depending on the 
nature of the identifier. If it is an existing data item it 
provides the address of the data along with a code indi
cating its nature. If it is an uninitialized data item, it 

first assigns space before supplying the data address. 
In a similar manner it provides links to labels and pro
cedures and if any identifiers are global, it first traces 
out the global indirection before returning the link. Any 
anomalies in the name table cause an error return. 

The structure handling task may be broken down 
into two subtasks: creation of structures and substruc
ture and the referencing of substructure points. Recall 
that structures are dynamically variable in all aspects. 
Thus, there are two further subsets under the creation 
of structures: creation of basic structures and the re
configuration of substructures. As a subset task to the 
referencing of substructures the language contains a 
character subscripting capability where the final sub
script may be a "bound-pair" of subscripts which refer 
to the starting point and extent of a character subfield 
with the previous subscripts pointing to the field. 

The RP receives a linear representation of the struc
ture to be created in the IS stack. The RP must store 
this structure in memory, replacing its linear form with 
a hierarchical form with links to lower or deeper elements 
occurring at the next higher level. Refer to Figures 10, 
11, and 13. It achieves this by assigning a new memory 
group each time it encounters a new left group mark, 
creating a line to the new group in the higher group and 
filling that group with elements maintaining a link back 
to the higher group in its own group link stack. When
ever a right group mark is encountered in the IS stack, 
the current memory group is closed with an "end 
vector" tag and the next higher memory group continu
ation point is accessed from the group link stack. This 
process continues until the structure in the IS stack is 
exhausted and results in a linked, hierarchical structure. 

A similar process takes place when a new structure is 
assigned to an existing substructure point. The old 
structure is deleted (for later recovery by the memory 
reclaimer) and the new linear structure in the stack is 
structured and linked into the proper substructure 
point. All combinations of replacement are allowed: 
structure by a structure, field by a filed, structure by a 
filed, field by a structure. The second situation of a field 
replacing a field can be a problem in the case where the 
new field is larger than the old field because vector 
expansion must take place (in the opposite situation, 
nulls are inserted). The simple solution of providing a 
non-hierarchical link out of a new space is inadequate 
for the situation where successive words of a large 
vector are sequentially expanded. The solution is to 
link in a new memory group only after checking if there 
is no space remaining in the present group or the next 
one, and then rewriting the remainder of the present 
group adjacent to the new field. In this way, expansion 
of many fileds of a vector makes use of the newly 
created space. 



The general algorithm for structure referencing is for 
the RP to scan back through the IS stack to find the 
structured link, and then to proceed upward a sub
script at a time, accessing each vector using special 
speed up techniques as appropriate, until the final sub
script is reached. At this point the RP replaces the 
subscripted reference in the IS stack with a link to a 
substructure or a link to a field if the data level was 
reached. At any point in structure referencing, the 
structure previously stored may not extend to the 
referenced point (oversubscripting). The language rule 
in this situation is that new space should be created as 
required to expand the structure to the subscripted 
reference point (fields filled with nulls) and the RP is 
responsible for accomplishing this task. 

If after structure referencing to the field level, a 
bound pair of subscripts appear in the IS stack, the 
RP scans and counts across the field, selecting the 
requisite characters and placing the result in the IS 
stack. An error is called if the bound pair is encountered 
before the field level is reached. 

A rithmetic processor 

The AP is a serial process unit operating on variable 
length data consisting of floating-point, normalized, 
decimal numbers. These operations are done from high
to-low order to simplify data handling by allowing the 
register operations for both string and numeric pro
cessing to be similar. Also, comparisons are faster be
cause a mis-match is immediately known. Two other 
important features are included in the processing hard
ware: a limit register, loaded by the IS under command 
of the language, which causes processing to terminate 
at the precision specified, and a precision controlling 
mode whereby each operand can be specified to be ac
curate to its existing precision and thus control the 
precision of the result. 

The operations add, subtract, multiply and divide 
are performed. For add and subtract, one or the other 
operand is streamed through the unit (high-to-Iow) 
until the exponents are aligned, at which time both 
operands start to stream through. Since the number 
representation is magnitude plus sign, a positive result 
is desired so that the signs of the operands and the sign 
of the operator are combined to control which, if either, 
of the operands is streamed through in complemented 
form. High-to-Iow order arithmetic requires a nine's 
counterlO to delay output over an intervening string of 
nines until a carry/no carry decision is reached. Even
tually, either an empirical end of an operand is reached, 
or the limit counter value is reached, or both exact 
numbers are ended. At this point, arithmetic is finished 
and control is turned back to the IS. 

SYMBOL 613 

l\1ultiply is accomplished by successive additions or 
subtractions followed by a shift until all of the multi-:
plier digits are exhausted. Only after the full trapazoid 
of the partial product is produced is a rounding pass 
applied to achieve the precision requirements. The 
speed-up of adding one to the previous multiplier digit 
and subtracting from the partial product if the multi
plier digit is larger than four is used. Of course, with 
multiply (and divide) exponents are added (subtracted) 
so that no shift of the fractional portions of the operands 
are required. Division is accomplished by a gradual 
non-restoring reduction of the partial dividend until 
the precision of the result is equal to the least precise of 
the two operands or the limit counter. 

Since processing in this system is accomplished seri
ally in a decimal mode with few speed-ups, the speed of 
processing is sharply dependent on the size of the 
operands. When the limit counter is set to a small value, 
say 5, processing can be quite fast but 99 digit divides 
can be extremely slow. It is therefore important that 
the user selects only as much precision as he really 
needs. 

The numeric comparisons are performed by the AP as 
a subtract operation but terminate immediately upon 
a mismatch and return a zero result rather than a one. 
The IS has the task of combining the result returned 
by the AP with the desired comparison operation to 
generate the overall result in the IS stack. 

Format processor 

The FP unit performs the string JOIN operation, 
the binary string operations AND, OR, NOT, the 
string comparison operations BEFORE, SAME, 
AFTER, the FORMAT and MASK operations, and 
the automatic type conversion on operands requested 
by the IS: numeric to string, string to numeric, and 
numeric to integer (used primarily for sUbscripts). 
These operations are also performed serially. 

The JOIN operation is performed in the obvious 
manner of streaming the second operand onto the tail 
of the first operand, forming a single result operand. 

The binary operations are performed character-by
character, performing the required operation by pro
ducing ·0/1 result characters, filling in the shorter 
operand with zeros. 

The string comparisons are also performed character
by-character, comparing successive .characters until a 
mismatch is found according to the built-in ASCII 
collate sequence and returning a 0/1 result. 

The FORl\1AT and MASK operators provide a 
powerful string manipulation capability for a wide 
variety of applications from payroll and banking forms 



614 Spring Joint Computer Conference, 1971 

Queue Top Bottom 

Top Entry 

Bottom Entry 

Second Entr 

Third Entry 

Figure 19-Typical task queue structure 

preparation to system software character manipulation. 
FORMAT is a packed-numeric-to-string operator that 
allows the user to describe the format of the result with 
a pictorial like character string. The operation is per
formed in a serial manner as dictated by the operands. 
The standard default conversion from packed numeric 
form to string is a subset of the FORMAT operation. 
MASK is a string-to-string operator similar to FOR
MAT. MASK can be used for character insertion, dele
tion, and spacing control. It is often used to control or 
measure the length of the fields. MASK is also processed 
in a serial-by-character manner. 

SYSTEM SUPERVISION 

The Load, Compile, Execution, and I/O comprise 
the basic processing modes for the system. Three addi
tional modes are defined for a terminal, off-line, on-line 
idle, and normal completion. They are all passive modes 
and differ only in the allowed transitions that can take 
place upon an interrupt stimulus. For example, the 
normal completion state is the only state from which 
the RESTART execution command can be honored. 
RESTART is only allowed if the object string were 
left in a reusable state. 

The diagram in Figure 14 shows a few of the terminal 
state transitions. These transitions are significant in 
that they are all supported by hardware algorithms. 

When the control code corresponding to RUN is re
ceived by the SS the transition from the Load mode 
to the compile mode can be processed without soft
ware intervention. Many other transitions can occur 
but they generally require some system software as
sistance. The transition from the Load mode to the 
Compile mode involves the following steps. If the IP 
is active it must be allowed to complete in such a way 
that the source string is intact. The task is then re
moved from the queue for the IP and added to the 
queue for the TR. In addition the control tables in 
main memory are initialized for the TR making avail
able the address of the start of the source string and 
the address of the procedure libraries to be used. 

A typical task queue is illustrated in Figure 19. It is 
comprised of a linked list of entries (control words). 
The queue has a pointer to the top entry and another 
pointer to the bottom entry. By maintaining both the 
top and bottom pointers it is easy to add an entry to 
either the top or the bottom of the queue. 

Each time a control transition occurs the SS updates 
the queues by performing appropriate add or delete ac
tions to each of the processor queues involved. This is 
part of first phase of any SS task processing. The second 
phase of SS processing involves assigning work to free 
processors that have assignable tasks on their queues. 

The multiprocessing algorithm is centered around 
manipulation and use of queues for the CP, TR, IP, 
MR, and DC. The SS has a general purpose queue 
processor that allows an item to be added to the top, 
added to the bottom, or deleted from any queue. The 
algorithm has a default mode which is completely 
hardware controlled. Various parameters can be set by 
software that bias the operating dynamics. For ex
ample, two time values are maintained for each entry 
in the CP queue. One measures the accumulated pro
cessing time and the other measures the actual time 
that the task is on the top of a queue. The values are 
preset to parameter values when a task enters the 
queue. When the values have been counted down to 

NORMAL COMPLETION 

QUIT PAGE OUT 

START-----.c -J---+INTERRUPT DUE TO QUIT 

I/O COMPLETION 

SUPERVISOR CALL 

Figure 20-Mode transitions affecting the central processor 



zero an SS task is generated to modify the queues. In 
most cases this is used to move the task from a high 
priority position near the top of a queue to a low pri
ority position near the bottom of a queue. 

The processing flow in Figure 14 is greatly over
simplified for general purpose system supervision. In 
Figure 20, the control commands to and from the cen
tral processor are illustrated. The SS can command the 
CP to start on a task or to quit working on a task. The 
CP can terminate processing on a given task for one of 
six basic reasons. Consider the I/O completion. In most 
cases for most terminals the hardware algorithm for 
controlling I/O would be sufficient. If on the other 
hand, a batch processing terminal with spooled I/O 
were desired it would be necessary to alter the control 
process for I/O with a system software procedure. To 
cause software to be called for a specific terminal upon 
an I/O service request, a specific control bit must be 
set in the terminal control word for that channel. This 
causes an automatic software call to be generated by 
the SS. 

The software call is handled in SYMBOL by starting 
a pseudo terminal operating with the requesting chan
nel number as a parameter. In this manner the control 
header tables for the requesting channel can be operated 
upon as data. This is illustrated in Figure 21 where an 
interrupt of a specific class causes the corresponding 
program specified in a software call table to be selected 
and control transferred to the pseudo terminal with the 
parameter TN. Each different class of interrupt maps 
into a different control word in the software control 
table. In this manner only the software procedure de
sired will be accessed in virtual memory. In SYMBOL 
over 80 different software interrupts are controlled via 
the software control table located in the lower part of 
main memory. This represents the principle interface 
between hardware and system software. 

CONCLUSION 

The traditional boundary between hardware and soft
ware has been weakened during the past ten years and 
is due for a significant shift beyond the token improve
ments. It is believed that in SYMBOL a major step 
towards significantly more capable hardware has been 
attained. 

The SYJVIBOL system is now entering an extensive 
evaluation phase where the system's strengths and 
weaknesses will become more apparent through actual 
day to day usage. The developers of the system have 
gained much insight into the merits of each of. the ap
proaches taken. The overall approach to memory man
agement is considered a breakthrough. The moving of 

Terminal ~-----, 
Zero, __ --c 

Headers '--1----

Terminala----..., 
N 

Headers 

SYMBOL 615 

Software Call Table 

Figure 21-Mechanism for handling a software call caused by a 
transition interrupt 

data attributes from instructions to the data is con
sidered fundamental. 

No clain is made that the SYMBOL system has been 
balanced for optimum performance and use of hard
ware. Certain critical areas of memory management 
and system supervision are felt to be 10 to 100 times 
more efficient than conventional means. Certain aspects 
of structure referencing are a major advance over soft
ware list processors but fall short of being competitive 
for some types of large array referencing. Many of the 
weaknesses in this first SYMBOL model were solved 
by the designers too late to be factored into the actual 
hardware. Many other aspects of the system such as 
the paging and system supervisor algorithms can be 
evaluated after significant usage experience. 

The computing professionals have debated for many 
years the questions: Can a compiler be developed in 
hardware? Can the heart of system supervision be com
mitted to hardware? Can data space management be 
taken over by hardware? Can hardware be designed to 
take over major software functions? Can complex 
hardware be debugged? These and many other ques
tions have been positively answered with the running 
SYMBOL system. The most significant part of the en
tire project is that the concepts were reduced to full 
scale, operating hardware. 

ACKNOWLEDGMENTS 

In addition to the authors of this paper, many others 
contributed to some aspect of the SYMBOL project. 
Critical to the completion of the system was the team 
spirit and devotion displayed throughout the project 
by all members of the staff. 

The authors wish to acknowledge George Powers, 
Stanley Mazor, and Russel Briggs for their contribu
tions to the hardware development and Hamilton 



616 Spring Joint Computer Conference, 1971 

Richards and Mrs. Hilma Mortell for their contribu
tions to the early software development. 

REFERENCES 

1 R RICE W R SMITH 
SYMBOL: A major departure from classic software dominated 
von Neumann computing systems 
This volume 

2 S MAZOR 
Programming and/or logic design 
Digest of the 1968 Computer Group Conference June 1968 
Los Angeles 

3 G D CHESLEY W R SMITH 
The hardware-implemented high-level machine language for 
SYMBOL 
This volume 

4 B E COWART R RICE S F LUNDSTROM 
The physical attributes and testing aspects of the SYMBOL 

system 
This volume 

5 W R SMITH 
System design based on LSI constraints: A case history 
Digest of the 1968 Computer Group Conference June 1968 
Los Angeles 

6 T KILBURN 
One-level storage system 
IRE Transactions on Electronic Computers Vol EC-ll 
Number 2 April 1962 

7 E L GLASER J F COULEUR G A OLIVER 
System design of a computer for time sharing applications 
1965 FJCC Vol 27 Part 1 

8 F J CORBATO V A VYSSOTSKY 
Introduction and overview of the multics system 
1965 FJCC Vol 27 Part 1 

9 W R SMITH 
Associative memory techniques for large data processors 
PhD Dissertation Iowa State University 1963 

10 A P MULLERY R F SCHAUER R RICE 
Adam: A problem-oriented symbol processor 
1963 SJCC Vol 23 



A semi-automatic relevancy generation technique for data 
processing, education and career development 

by J. DAVID BENENATI 

Xerox Corporation 
Rochester, New York 

TECHNICAL OBSOLESCENCE: CURE AND 
PREVENTION 

"In a rapidly changing technology such as ADP, 
personnel resources, in the absence of intensive training, 
tend to become obsolescent at the same rate as hard
ware resources, and a major effort is required to keep 
a staff current and competent." This conclusion was 
recorded by a 14 member panel appointed by President 
Nixon to recommend improvements in the Data Pro
cessing activities of the Department of Defense. It is 
particularly interesting to note that this statement was 
one of the panel's main recommendations as cited by 
Information Week (8/3/70), and COMPUTER
WORLD (8/19/70). The significance, of course, is that 
training, costs are finally being classified along with 
hardware costs and we may at last be somewhere near 
the threshold of putting some order to the existing 
chaos of Data Processing education. 

Everyone has always agreed in principle to the idea 
of continuing education for data processing profes
sionals. The problems connected with providing quality 
DP education are not in selling the idea that it is re
quired; but, in getting people to come to an operational 
agreement as to what it is. Or more specifically, there 
has not been a system available to DP professionals and 
management that enabled them to identify what train
ing had the greatest relevance for any particular indi
vidual. If a method was established whereby an indi
vidual educational plan could be developed for each 
person in a given organization, it would then be a 
fairly simple matter to summarize these plans and ulti
mately set organizational priorities. 

However, even though everyone concurs that con
tinuing education is a must, it is important that a more 
specific statement of need is made to provide clues as 
to who should develop what skills. For example: 

a. DP Managers and Project Leaders must be trained 

617 

lest they lose touch with the rapidly changing 
technology. A manager who developed his pro
gramming skill with the autocoder language will 
not necessarily appreciate the significance of 
modular programming in COBOL if he has not 
previously been involved in COBOL coding. 

b. A programmer who could improve his diagnostic 
techniques through a greater understanding of 
machine instructions cannot always pull an as
signment that will expose him to BAL. 

c. New techniques and concepts that have a reason
ably high probability of usefulness to all DP pro
fessionals on subjects such as teleprocessing and 
data base organization are constantly arising but 
one cannot take the time to study them if he is 
chained to the oars of the maintenance problems 
associated with a second generation system. 

Data Processing organizations need to develop edu
cational guidelines that can be translated into a reason
able plan for individual skills enhancement. For only 
in this way can the resources be mustered that are 
necessary to identify and implement the monumental 
training task that is required everywhere in the DP 
industry. Most data processing professionals would 
agree that at least 20 perceIJ.t of their time should be 
spent in some form of self development. If you consider 
a 300 man DP shop with an average per capita earnings 
of $10,000 per year, just the time allocated for this 
development would cost $600,000 per year. If you con
sider that most companies have in the past spent some
thing like $2,000 per man on travel, per diem and course 
costs, this would add another $600,000 to the pile. The 
implication becomes obvious that a reasonable amount 
of planning and control must be exerted over a $1.2 
million expenditure. 

In general, the situation is even worse. Industry pays 
for education and training that is poorly planned, ill 
timed and seldom uniformly agreed as even being 



618 Spring Joint Computer Conference, 1971 

No systeW\c.\tlc 
QPpronc.h yet ~ p 
to *5, 000 per 
nedd is spent 
to develop 
DP sK,lls 

Figure 1 

relevant to the business goals of the particular company 
in question; and, even more ironic, they pay for the 
same training twice. For if Ajax Electronics hires a 
programmer trainee for $8,000/year and spends another 
$3,000 on his training, you can typically expect that 
this particular programmer will be hired by Bachalah 
Industries for $12,500/year in two years. Thus, both 
Ajax Electronics and Bachalah Industries pay for the 
same training. Superficially, this might look great to 
the programmer for it appears that he really makes 
out-but let's face it, you cannot really get something 
for nothing. Sooner or later, the piper must be paid and 
if you really believe that your profession has substance, 
you should not have to resort to artificial means to 
inflate your salary. 

How do you correct the current situation? How do 
you prevent it from recurring? How can management 
be assured that the maximum resources are directed to 
the most appropriate technical development of the DP 
staff? One approach is to systematize a great deal of 
the decision-making process associated with educational 
planning. This has been done for one Xerox Systems & 
Programming Group through the Data Processing Man
power Planning System. This system enables a detailed 
description of each staff member's personal skills history 
to be compared to an idealized educational model for 
each particular job code in order to produce a general
ized training plan for the total environment. Sufficient 
data is now available to analyze the gross requirements 
of the environment and establish priorities. Once the 
resource~ have been identified and appropriated to re-

solve the gross requirements, a second pass can be 
made at individual training plans. This time, each in
dividual's personal plan can be redeveloped in conjunc
tion with his immediate supervisor and an education 
staff member. In this way, we will be in a position to 
realistically allocate educational resources to the out
standing requirements of the environment. 

OUTLINE OF SYSTEM 

It is difficult to understand the underlying rationale 
of man that stimulates him to account for every nickel 
spent in the pursuit of business goals, wherein little 
control whatsoever is exerted in the attainment of the 
human skills required to achieve those goals. At Xerox 
we have developed a semi-automatic mechanism for 
the identification, control, and attainment of the skills 
associated with the data processing activity. 

It is fairly obvious to most data processing profes
sionals that some sort of planning and control proce
dure is required to administer the resources associated 
with the development and maintenance of technical 
skills. Some of the economic relationships of data pro
cessing skills development have already been described. 
However,·· few people fully appreciate the more subtle 

20 % of profession"ls 
thV\e spent on 
forrv\Q t se t f 
oeve lopn,en t 
3DO-rY\dn stdff 
dverd8'n~ fllo, 000 
per yeo.r wOl.{ld 
cost ~ foO(), 000 

in j~st Lost time 
froY'Yl Qctive rrojects 

Figure 2 



aspects of the education dilemma such as: How does a 
professional determine what skills will be most useful 
to him or his company? How does one determine how 
his particular skill pattern relates to the corporate 
goals? How does he prioritize his own educational re
quirements as there just is not time to learn everything? 

Obviously, most data processing professionals do not 
have access to the kind of information that would en
able them to formulate reasonable conclusions with re
spect to such questions. As a matter of fact, this sort of 
data is generally not available to anyone. The data 
processing manpower planning system is designed to 
provide the data base and the feedback mechanism to 
produce the information required to more intelligently 
address these questions. The output of the system will 
be available to all effected individuals such that each 
can contribute to the decision-making processes regard
ing his own professional career development. 

The major elements of the system can be summarized 
as follows: 

1. Analysis of individual work experience and edu
cational background through the use of a Skills 
Inventory questionnaire. 

2. Development of individualized educational plans 
for each member of the group. 

3. Establishments of educational priorities. 

D P E duc.at; 0\,"\ 

Qnd Tra,r\\r\S 
is at Leas t 
cost Ly eno u~ h 
to re~uire 
sys tefY'\c.\ti c. 
coY\troLs. 

Figure 3 

A Semi-Automatic Relevancy Generation Technique 619 

Useable sKills 
of the }-\ u. YY\Ci vt 
Reso~~c.es of at" 
0'3 C\Y\\z~tion ore 
it's rno s t Va Luoble 
possess\oJ'l <1ncl 
should be treQted 
w\th ca reQ"kr c.Qre 
Q'nd preciSloy) thQtl 
any other ·lteyy\. 

Figure 4 

4. Determination of best implementation approach. 
5. Implement required training. 
6. Measure training effectiveness. 
7. Reiterate entire procedure. 

SKILLS INVENTORY QUESTIONNAIRE 

A thirty-five page questionnaire was designed to col
lect the work history and relevant technical education 
background of the members of the data processing 
staff. Analysis of the data contained in all of the com
pleted questionnaires is expected to improve existing 
methods of: 

• Educational Planning and Career Development 
• Promoting and Transferring of Personnel 
• Optimal allocation of Manpower to on-going and 

planned projects 

The scope of this article will permit treatment of only 
the educational planning and career developmental 
aspects of the system. 

Analysis of existing skills is an obvious point of de
parture in the development of any individualized man-



620 Spring Joint Computer Conference, 1971 

power planning system. The questionnaire itself is di
vided into the following seven sections: (1) Manage
ment Experience; (2) Supplementary Personnel Data 
(Professional Affiliations, Memberships, Patents, Li
censes, Publications, etc., and Previous Employers); 
(3) History of Work Experience (Applications, Data 
Processing Skills History, Additional Skill Fields); (4) 
Specialties and Preferences; (5) Hardware Experience; 
(6) Technical Training; and (7) Survey of Project 
Assignments. 

For most of the items on the questionnaire, the re
spondent is asked to indicate the number of years asso
ciated with a particular skill and the year in which this 
skill was last used. 

MAJOR HEADING 
RESPONDENT COMPLETE S 

INDIVIDUAL ITEM THESE TWO COLUMNS 

I I 
• NO. LAST 

CODE ITEM YRS. YEAR 

EFOOf) OPERATIONS RESEARCH 2.5 69 

EFOOl DeClslon TheorY '" 1.5 69 
EFOO2 Dynamic ProQramminCl 0.0 68 
EFOO3 Estimation Theory 1.0 69 

There are over twelve hundred and fifty individual 
items and over one hundred individual categories. How
ever, the form requires, on the average, only about two 
hours to complete because it is organized in such a 
manner that the respondent will skip the areas in which 
he personally does not possess previous training or work 
experience. In addition, the instrument is administered 
in groups of up to twenty people under highly con
trolled conditions with several proctors to assure that 
the respondents have properly interpreted the instruc
tions. A manpower planning staff specialist describes 
the questionnaire and explains how to complete the 
form. In addition, each section is preceded by written 
instructions. To further reduce the communication 
problem, the proctors assist by providing immediate 
access to common definitions such as the distinction 
between the various levels of management and how to 
respond to certain areas of the questionnaire if you 
have never been employed. as a computer operator
yet, as a programmer you acquired considerable hands
on operations experience. 

When the form is completed, it is reduced to an in
dividual profile containing only those items marked by 
that particular respondent. Selected key data is then 

summarized to formulate individual profiles to be used 
for analysis. 

In order to assure that each individual best depicts 
his skill pattern in the most representative way, the 
profile is returned to both the individual and his im
mediate supervisor for comments and· modification. In 
addition, we wish to assure that every individual knows 
exactly what information is retained on him in the data 
bank. 

The inventory· we have developed concentrates on 
strictly those skills that can be interpreted to have a 
direct relationship to currently envisioned projects and 
data processing applications. This excludes such items 
as chemistry, physics, etc. The decision to exclude 
general skills was one of expediency and it is tentatively 
planned that our experience might generally lead the 
way to the development of similar inventories for all 
areas of the company, not just the Rochester-based 
data processing organizations. 

EDUCATIONAL PREREQUISITES AND 
EXPERIENCE EQUIVALENCIES 

In order to determine what skills would most prob
ably be needed in the Xerox-Rochester environment in 
the next six to eighteen months, we established a Blue 
Ribbon Committee consisting of our most experienced 
Data Processing Management and Technical Special
ists. The committee made formal recommendations as 
to exactly what courses would be required to assure 
the desired minimal skills for each of our data processing 
related job codes. These recommendations ranged from 
operations personnel to functional area training and 
general management. The idea was to describe in ex
plicit detail the subject matter and skills required by 
an individual to be considered properly qualified for 
any given job. Most of the jobs have various levels and 
corresponding pay ranges such as associate program
mer, programmer and programmer/analyst. As the 
business programmer/analyst makes more money than 
the associate programmer, it can logically be argued 
that he should possess all of the skills and/or formal 
training of the next two lower positions. Thus, it fre
quently turns out that the senior specialist requires 
more training than the junior specialist because he 
has not had the opportunity to update his skills through 
the years. The committee's recommendations as they 
pertain to these three positions are indicated in Figures 
5, 6, 7, and 8. Each of the· indicated courses has an 
explicit detailed course description that identifies the 
precise skills and the proficiencies that can be expected 
of its graduates. Thus, the minimal skills required for 
each of the indicated job codes are translated into 
course descriptions. 



The committee also meets on a periodic basis to as
sure that the skills and/or training activities that have 
been identified as significant are also the ones most 
likely to be required by the environment during the 
next planning cycle. 

We are now ready to compare the mandatory educa
tion recommendations of the committee against the 
individual skills profiles to develop a specific educa
tional plan for each of our people. 

DEVELOPMENT OF INDIVIDUALIZED 
EDUCATIONAL PLANS 

Now that we have a detailed an accurate record of 
each individual's background and a series of formal 
recommendations for each job code, it should be a 
fairly simple matter to bring the two together in a de
tailed educational guide for each programmer (see 
Figure 9). It now becomes a mechanical task to deter
mine whether or not an associate programmer has had 

ASSOCIATE PROGRAI+1ER 

MOTE' Associate Progranmers can satisfy manditory requirements through either 
Path'A or Path B. The principal difference being that if the Initial Data 
Processing Skins Course is taken, many of the other course requirements are 

:!~:cs~:~~i::iy one course or its equivalent is required of the associated 
group. 

MANDITORY OPTIONAl , OF DAYS 
PATH A PAl" IS 

Introduction to Progranming 
* 6 Techniques 

InitiaT Data ProceSSing Ski 11s 
* 65 Traininq Proaram 

Intro to Xerox Data Processing 
* 1 1]2 Environment 

New Ea.llovee Oriente tion * * 1/2 

Xerox llP Orientation * 2 

CaI1Duter Systems Fundamentals OR ** 2 1/2 

Basic ComDuter ConceDts - 1 1/2 

Basic Data COIII1Iunications * * 1 1/2 

Intro to SYstem 360 * 1 

Fundamentals of Proqranmin1l (PO * 2 112 
TuilCliirientals of Progranming 

* 1 WorkshoD 

Introduction to COI!jL * 6 

Introduction to JCl * 1 1/2 

IBM S/360 Uti 1i ties cat Xerox * 2 

Introducti on to AUTO FLOW * 1/2 
IItIVAC 1108 In~ro and 

* 1 COntrol Cards 

SiCIlIa 7 Intro and CJntrol Cards * 2 112 

RPG OR - - 1 112 

MARK IV Advanced ~R .* - 3 

Utilization of the Manaq~ Processor ** ** 5 

SYStems Desiqn and Analvsis I * . 8 

Figure 5 

A Semi-Automatic Relevancy Generation Technique 621 

experience with one of the report writer type languages 
such as RPG, MARK IV, or MANAGE. The specific 
mandatory requirements of the associate programmer 
dictate (see Figures 5 and 6) that he either has experi
ence in one of these three languages or that he be auto
matically scheduled for training in MANAGE. It is 
also possible to evaluate a business programmer's Sys
tems and Procedures background by comparing the 
total years and number of relevant items indicated in 
his response to predetermined parameters in order to 
evaluate whether he should be recommended for the 
Systems Analysis II course or has already obtained 
equivalent experience. The general problem of course 
scheduling is thus reduced to determining what experi
ence background is equivalent to what recommended 
training activity. It can be readily seen that if we es
tablish rough nlimeric parameters for the equivalencies 
it becomes a simple task to automate the entire process. 
For example, we can establish that a total of ten years 
cumulative experience or four years experience in any 
one of the following categories can be regarded as 
equivalent to the Systems Analysis II course. The cate
gories are as follows: 

NO. LAST 
CODE ITEM YRS. YEAR 

TOTAL SYSTEMS AND 
EIOOO PROCEDURES EXPERIENCE 

EIOO] card DesiQn 
EI002 Data Flle DesiQn 
~£1003 FlowchartinQ 
ElO04 Fonns DeslQn 
ElD05 Func Anal Svs Model 

-.EI006 Hardware Evaluation 
EI007 MQmtExDer Svs & Proc 
ElOO8 t·1Qmt Info Svs DesfQn 
EI009 Mission Concept-Scope'Determinatlon 
EIO 0 Opera tl ona l1\.,a l.vs 1 S 

-EIO 1 Or-Q-anlzatlonal AnalYS1S 
El02 PERT-CPM 
EIO 3 Procedure lfri ti ng 
EIO 4 ProJect -ControT 

1015 RecorasKQint. R-eDorts 
1016 S-pecl flcation WritlnQ 

:10 7 Svs tems Ana lvs 1 s 
:10 8 SYstems and Proc. General 
:10 9 Systems PlannlnQ 
EI020 SYstems Presentation 
E [021 Test Procedures 
E lOZZ Work Measurement 

_E 023 WorK Sampl i ng 
E 024 Work Simplification 
JI025 Other (Pl ease SpecTfYI 

-

Obviously, any combination of these rules can also 
work such th::J,t four years indicated experience in the 
EI017 Systems Analysis category would be considered 
equivalent to the recommended training but we will 
not accept four years experience in EIOOI Card Design 



622 Spring Joint Computer Conference, 1971 

ASSOCIATE PROGRAMMER (cont) 

I <l;J1AA RAI nD 

111lA a.. ........ ,.... OR 

I SiMla 5/7 Svnt>o1lMeta-Svmbo1 

Standards 
::~rt ~!~~~/ontro1 and 

I s/~n milO! Snrt Sl!!minar 

I <:/'U:n rllRAI ""hun <I; .. mi .. " .. 

I <l;/1AA rRRnI D .. nnrt W .. it .... r .. "tu .... 

IrMnl 11<;4<:' 

I VhC: <:i ...... ?I-a 

+ft tho VhC: rr_lf> 

IT"."" tn rnDTDAN TV 

I n_ntarv R4<;IC 

Tl!!chniaue!; fn BASIC 

Prerequisites COIIIIIfttee 
Member Signature 

Date 

MANDATORY 
PATH A PATH B OPTIONAl , OF DAYS 

** - , 
- - 7 

3 

* 1 

* 1 

* 1 

* 1/2 

* 1 

* 1 112 

* 3 

* 10 

* 5 

* 1 

* 1 

Figure 6 

as equivalent. It is just a matter of establishing the 
ground rules and the basic logic associated with each 
recommendation. 

We are now ready to review the individualized edu
cational planning guides with the effected staff person
nel. At this point, an attempt is made to smooth out 
anomalies caused by the ever present exceptions to the 
rule. A staff member of the Education & Personnel 
Development Group reviews the educational plans with 
each respondant for consistency. Common sense seems 
to be all that is required to extricate ourselves from 
embarrassing situations such as scheduling an associate 
programmer for a one and one-half day survey seminar 
on data communications because he has no previous 
experience in the area and has not taken formal training 
in the subject, when in reality, data communications 
is his hobby and he has a teletypewriter in his basement 
that is connected to the civil defense network through 
a modem he designed and built himself. A second con
fidence check of the system is made when we review 
each of the educational plans with the appropriate 
manager who finalizes the plan with an official sign-off. 
The manager's sign-off can be also used in extremely 
austere times to establish worst case priorities. The 
subject of general educational priorities will be treated 
later in this paper. As a spin-off benefit of this phase 

of the planning cycle, we have an opportunity to review 
with each area manager the overall strengths and weak
nesses of his group in terms of human skills as they com
pare to his project assignments and also to the rest of 
the data processing staff. In this way, we hope to stimu
late the use of the skills profiles and summary data for 
manpower allocation and planning purposes. 

DEVELOPMENT OF GROSS BUDGET 
ESTIMATES 

We have employed this system to collect data and 
develop educational plans for about three hundred 
people. One surprising feature of the system has been 
that remarkably little modifications are required after 
our first cut at the educational plans. That is, in re
viewing our plan with the individual and his manager, 
less than ten percent alterations have been required 
from our original estimates. 

All data is then summarized and we are thus in a 
position to identify the outstanding educational re
quirements of the environment. I t becomes a fairly 
simple matter to determine what courses should be 
taught in house and what courses should be farmed out 
to an outside vendor based on an analysis of the total 

BUSINESS PROGRAI+1ER 

**Indicates only one course or its equivalent is required of the associated 
group. 

Inu.nnediate COBOL Techniques for 

Sys tems Des i gn and 
Analvsis II 

los Data ~ndina OR 

I DOS Data Manaa-nt r.ndina 

~~=:e~~ ~~!~~~~a~:ogranmer 
of File De!;ian 

Decision Tabl .. " S-inar 

los lanouaae Tnt ... rla,. .. 

I £ffll!t"tivlI! Writina 

Effective I htenino 

Effective 

I Microfilm Infnnnatinn C:vet ....... C: .. minar 

Decision Makino 

Prerequisf tes Comni ttee 
Member Signature 

Date 

Figure 7 

MANDITORY OPTIONAL , OF DAYS 

* 7 

* 5 

** , 
** 5 

* 5 

* 4 

* 1 

* 1 

* , 
* 112 

* 1 

* 1 

* 1/2 



impact on our environment. 1 In addition, now that 
gross data are available, the costs versus use considera
tions for such educational support systems as the Edu
tronics International films, Advanced Systems Video
tapes, Centracom student carrels, etc., can be weighed 
against projected activity. Such factors as potential 
number of attendees, internal staff strengths and weak
nesses, costs of comparable outside offerings, avail
ability, etc., can now be easily orchestrated to our 
maximum advantage. Once the big picture is captured, 
the detailed considerations become almost trivial. We 
presently have about 100 different course offerings (or 
equivalent experience descriptors) that are required of 
various members of our data processing staff. 

PRIORITIZATION OF TRAINING ACTIVITIES 

The priority system developed provides management 
with the ability to directly control the principle educa-

BUSINESS PROGIWtIER/ANALYST 

**Indicates only one course or its equivalent is required of the associated 
group. 

CCJnmunications Systems Design and 
Analvsis 

OS Advanced Codi ncr OR 

DOS Advanced Codino 

OS WorkshoD OR 

DOS WorkshoD 
Opti ca 1 Character Recogni tion 
Seminar 

XOS Orientation 

XOS Systems Compatability 

Advanced Effective Listening 

Problem Solving and Discussion Skills 
Perfonnance ~pra1sall 
Compensation Seminar 

Introduction to Simulation 

DOS BTAH OR 

OS BTAM OR 

DOS QTAM OR 

OS OTAH 

Emplo~nt Seminar 

Leadership Seminar 

OS Systems Control for Progranmers 

Prerequi sites COIlIIIi ttee 
Member Signature 

Date 

twiDATORY 

* 

** 
** 
** 

** 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

Figure 8 

OPTIONAL I OF DAYS 

10 

5 

5 

7 1/2 

5 

* 1 

1 

2 

1/2 

3 

1 

1 

** 5 

** 5 

** 5 

** 5 

1/2 

5 

5 

A Semi-Automatic Relevancy Generation Technique 623 

NItME 11 'cb1b EDUCATIONAL PlANNING GUIDE JOB TITLE 1 .. 1MII Pmar_r 

COURSE REOIJIREIt:NTS 

III II 11100/0 • 0 0 

o - I I 0 

I I 

COURSE NO. OATES LOCATION LENGTH Tilt: COURSE NO. OATES LOCATION LENGTH Tilt: S_V TOTALS 
9 

40 

6 .6 
68 
8 

Figure 9 

..... datory .1!..!LL 
Optional __ 

ICEV 

o Optional 
Needs COurse 

+ HIS Tlken COUrse 
I HIS Equivilent 

Experience 
? Undetel'lllned 
• Needs Prerequisites 

tional variables in the following ways: 

1. Determine which of the many possible training 
activities are most significant for each position 
description in terms immediacy of need, rela
tionship to job category, importance to the indi=
vidual and relationship to project assignment. 

2. Prioritize each of the training activities by posi
tion description into three levels or groupings of 

. recommended courses. 
3. Rank courses for each individual according to 

their specific needs as a function of their skills 
history, course priority and individual assign
ments. 

4. Establish thresholds or cut-off levels at any 
point within the system to guarantee consistency 
with existing budgets or simply to determine 
the effects of future budget supplements or cuts. 

The procedure employed is fully compatible with the 
existing data bank (Individual Skills Profile and Gross 
Educational Recommendations). 

a. Underlying Rationale 

The underlying rationale assumes that there is a 
basic set of technical para-technical and non
technical skills needed by each member of the 
Xerox Systems & Data Processing Services Organi
zation to properly discharge his responsibilities to 
the company. Furthermore, the particular set of 
skills required by any individual should be a func
tion of his position description and his project 
assignments. 



624 Spring Joint Computer Conference, 1971 

We also make the assumption that human skills 
can be acquired through either appropriate job 
experience, formal training or more ideally, a mix
ture of both. The procedure suggests that the 
surest, quickest and cheapest way to the attain
ment of many skills, particularly at the lower 
levels, is through planned formal training activi
ties synchronized with relevant job assignments. 
As we have least control over job assignments we 
have reserved consideration of its effects until the 
last step in the system. In this way, we should 
not only have the most up-to-date information on 
job assignments but lack of definition or stability 
in this area will also have minimum debilitating 
effects on the system. 

b. Basic Procedures 

A series of minimal training activities have al
ready been recommended by the Education Pre
requisites committee for each professional job 
code. As expected, the indicated requirements far 
outstretched any reasonable estimates of the ex
pected 1971-72 educational budgets. Therefore, 
our procedure is simply a systematic approach to 
narrowing down the existing recommendations of 
the Educational Prerequisites Committee to con
form to any budget level authorized by manage
ment. Furthermore, we have designed the system 
to speak to the most urgent needs first regardless 
of the authorized budget level. 

Each position description is assigned three levels 
of course priorities as follows: 

Priority 1: The key to a training activity being 
classified under the number one or highest priority 
level is "Iffimediacy of Need." Does a professional 
with this particular job classification actually 
need this skill right now to properly discharge his 
responsibilities to Xerox? Next; is this course tech
nical such as the COBOL Debugging Seminar, or 
para-technical such as Documentation Standards 
or Systems Analysis I. Thus, to qualify for pri
ority 1, the training activity must be classified as 
(1) a technical course with an immediate need 
(TI), or (2) a para-technical course with an im
mediate need (PI). No other classifications are 
allowed. 

Priority 2: To qualify for a priority 2 classifica
tion, the course must be either (1) _a_ non-technical 
course with an immediate need (NTI) , or (2) a 
technical course with a non-immediate need 

(TNI). An example of a non-technical course with 
an immediate need would be the New Employee 
Orientation Seminar offered by personnel (for 
employees with less than three months with 
Xer.ox). An example of a technical course that is 
needed by an associate programmer but not im
mediately would be Basic Data COInmunications 
as we currently do not have any associate pro
grammers assigned to teleprocessing oriented 
projects. 

Priority 3: In priority 3, we again find a commOn 
factor and that is non-immediacy of need. Spe
cifically, (1) the para-technical training activities 
for which there is no immediate need (PNI), and, 
(2) non-technical training activities for which 
there is no immediate need (NTI). An example of 
a non-technical training activity, is the Leader
ship Seminar. Although it is not required by an 
associate programmer, the Leadership Seminar or 
its equivalency should be required of management 
above a certain level. 

Each position description is assigned three levels 
of course priorities. Within each priority levc§31 are 
ranked individual courses or training, <activities 
according to order of significance to Xerox. The 
priority levels and individual course ra~ks can be 
evaluated for each member of the organization 
twice. First, as a part of the group requirements 
for all members of any given job category and 
second, upon request, on an individualized basis 
as a function of job assignment. In both cases, 
personal skills history is taken into account. To 
illustrate how the system would work, consider 
the following examples taken from the existing 
levels of Xerox Programmers: 

Category Rank 
Associate Programmer 

Priority 1 

Intro to Programming Techniques TI 1 
Initial DP Skills Training Program TI 2 
Computer Systems Fundamentals TI 3 
Basic Computer Concepts TI 4 
Fundamentals of Programming TI 5 
Fundamentals of Programming Workshop TI 6 
Xerox Data Processing Orientation TI 7 
S/360 Intro TI 8 
Intro to Sigma 5/7 TI 9 
Intro to Sigma 3 TI 10 
Intro to CF-16 TI 11 
Intro to 110~ TI 12 
Intro to COBOL TI 13 
Intro to 360 JCL TI 14 
Intro to Sigma 5/7 Control Cards TI 15 
Intro to Sigma 3 Control Cards TI 16 



Priority 1 (cont.) 

Intro to 1108 Control Cards 
S/360 Utilities 
Systems Analysis I 

Priority 2 

New Employee Orientation 
Basic Data Communications 
MARK IV 
MANAGE 
RPG 
360 COBOL Sort 
360BAL 
Sigma 5/7 Symbol Meta/Symbol 
1108 Assembler 
Intro to BASIC 

Priority 3 

Intro to Autoflow 
Intro to Xerox DP Environment 
Documentation Standards 
Forms Design Control and Report Layout 

Business Programmer 
Priority 1 

Intermediate Course for Application 
Programmers 

OS Language Interface 
Techniques of File Design 
Decision Tables 
Systems Analysis II 

Priority 2 

OS Data Management Coding 

Priority 3 

Microfilm Info Systems 
Effective Presentation, 
Effective Listening 
Effective Writing 
Decision Making 

Programmer Analyst 
Priority 1 

OS Systems Control for Programmers 
OS Advanced Coding 
DOS Advanced Coding 

Priority 2 

OS Workshop 
Intro to Simulation 
OSBTAM 
OSQTAM 
DOS Workshop 
DOSBTAM 
OSQTAM 

Priority 3 

Category 

TI 
TI 
PI 

NTI 
TNI 
TNI 
TNI 
TNI 
TNI 
TNI 
TNI 
TNI 
TNI 

PNI 
PNI 
PNI 
PNI 

TI 
TI 
TI 
TI 
PI 

TNI 

PNI 
NTNI 
NTNI 
NTNI 
NTNI 

TI 
TI 
TI 

Rank 

17 
18 
19 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
2 
3 
4 

1 
2 
3 
4 
5 

1 

1 
2 
3 
4 
5 

1 
2 
3 

Category Rank 

TNI 
TNI 
TNI 
TNI 
TNI 
TNI 
TNI 

1 
2 
3 
4 
5 
6 
7 

Communications Systems Design & Analysis PNI 1 
Leadership Seminar NTNI 2 

At first inspection, all of these recommended 
training activities look no more abbreviated than 

A Semi-Automatic Relevancy Generation Technique 625 

our initial gross plans. However, this is not the 
case for definite priorities have now been sys
tematically established and most of these courses 
will fall through the cracks when played against 
the existing individual course recommendations. 
Asan example, take the case uf Roger Smedley. 
The initial gross recommendations for Roger 
are as follows: 

Basic Data Communications 
Documentation Standards 
Forms Design, Control and Layout 

If orders are issued (probably based on overall 
budget considerations) to satisfy only the immedi
ate priority 1 requirements of the environment, 
Roger would now be scheduled for absolutely no 
training because none of these activities are in
cluded in this classification. However, if the pri
ority 2 option were exercised, he would receive 
training in Basic Data Communications. Obvi
ously, the other two courses fall into the priority 3 
classification. Should Roger be assigned a project 
that required an immediate knowledge of tele
processing, it would be a simple matter to per
sonalize his requirements by getting appropriate 
management to indicate that he absolutely needs 
such training as a function of his assignment. The 
system would then recategorize the Basic Data 
Communications course, in this case, to be a tech
nical course with an immediate need and attach 
a personalized annotation to its course descriptor 
(TI(P)). Thus, the course automatically moves to 
priority 1 for Roger, but not for all other Associ
ate Programmers. Therefore when this system is 
played against initial gross recommendations, 
most of the identified training activities fall into 
the lower two priority classifications. 

c. Major Benefits 

The real power of the system does not begin to 
unfold until you consider how it can be used to 
directly superimpose management control on a 
highly detailed educational planning system. First 
of all, management at any time can recategorize 
a particular course into a priority 1 classification 
simply by defining that there is an immediate 
need for this particular training. The system can 
then report back to management just exactly how 
much this immediacy costs. This need can be ex
pressed on a group or individual basis depending 
upon the situation. A second significant benefit to 



626 Spring Joint Computer Conference, 1971 

management would be the use of the system to 
establish overall levels of education support. 
Management would have the option of establish
ing thresholds of training at each level for all job 
categories. For example, in austere times we 
might classify only three courses as priority 1 
courses for the associate programmer level; in 
better times, we might include all fifteen. At all 
times, management will have available current 
detailed and approved training plans for all mem
bers of its staff. All general or individual training 
plan changes can be quickly reflected in terms of 
expenditures against plan. 

Probably the most exciting aspect of the entire sys
tem is its ability to help establish an equitable educa
tional priority system. As anyone who has been in
volved in any form of education knows, the acquisition 
and dissemination of knowledge is an endless process. 
One does not have to be too familiar with data process
ing training to speculate that in a recession year there 
is a reasonable probability that a good training analyst 
could identify more educational needs than are cur
rently feasible for any particular organization. If you 
can only command the resources to accomplish 50 per
cent of the job, how do you determine which half to 
implement? Again, the procedure is simple. If, for ex
ample, the committee has recommended a total of 
twenty courses or their equivalents as mandatory at 
the associate programmer level, an analysis of our staff 
requirements will indicate that we have people who 
exist at any point along the scale from one to twenty. 
As we have already summarized the gross educational 
requirements of all of the associate programmers and 
calculated their total educational costs in terms of 
dollars and man days of effort, we simply have to deter
mine how much of that training we can presently af
ford. If we can only acquire enough resources to do 25 
percent of the total job, our recommendations as to 
who should take what courses are fairly straightfor
ward from this point onward. If associate programmer 
A has taken five mandatory courses or has their equiva
lent, we schedule him for the next five courses (25 
percent) or the rough equivalent of his fair share of 
the total budget derated according to the exigencies of 
the times and his personalized requirements. If associ
ate programmer B already has taken 15 courses or has 
equivalent experience, he will also be scheduled for 
five courses or his 25 percent of the action. Man A 
will now have completed 50 percent of the mandatory 
requirements of an associate programmer while man B 
will have completed 100 percent of the requirements. 
This approach has the added advantage that it does 
not penalize an individual because he was unable to 

receive proper training or acquire appropriate experi
ence because he might have been chained to the oars of 
maintaining a second generation system. It also does 
not overlook the possibility that the individual with 
more relevant skills might have been in large part re
sponsible for their acquisition. 

FOLLOW UP AND CONTROL SYSTEM 

From here on, all that remains to be done is the 
following: (1) Maintenance of records such as course 
enrollments, attendance, grades, etc. ; (2) Analyze 
course critiques and trip reports and plan the categori
zation and implementation of exception training (vyz. 
educational activities that are not specifically handled 
by the system). 

SUMMARY AND CONCLUSIONS 

Although the system has not been in operation long 
enough to provide conclusive evidence of its success 
and w~ have not yet completed the automation of 
many of its elements that have been planned with 
mechanization in mind, we feel very confident that the 
system has to date provided us with the following 
benefits: 

• A more precise method for the identification of 
gross educational requirements. 

• A technique for stimulating the use of Skills In
ventory type information for manpower allocation 
purposes. 

• A tool for the development of training/educational 
plans in sufficient detail that measurement is 

meaningful and accurate budgeting is possible. 
• A mechanism that enables the equitable prioriti

zation of educational requirements. 
• A system that provides summary data that allow 

the analysis of the economic trade offs of make or 
buy decisions based on projected usage. 

But the most important aspect of the system is its 
potential to provide information to each and every 
data processing professional that can be used in guiding 
his personal career development decisions. 

The basic concepts associated with the entire system 
are amazingly simple. That is, to prepare educational 
plans based on the difference between the existing skills 
of our staff members and the technical and business 
requirements of the environment. The only new twist 
is that the power of the computer is invoked to enable 
us to analyze the problems in massive detail in a very 
timely manner. It is interesting to consider the fact 
that the area Financial Accounting was one of the first 
activities to become almost universally automated 



wherein human skills accounting seems to be only 
slightly closer to automation today than it was ten 
years ago. The next step for ~s will be the automatic 
generation of daily instructor guides recommending 
curriculum emphasis for each of our in-house programs 
based on the actual skills history of the students as
signed to that particular class. 

A Semi-Automatic Relevancy Generation Technique 627 

REFERENCE 

1 J D BENENATI 
Building an in-house training program-The price of 
unbundling 
Paper presented at the American Banking Association, 
National Automation Conference San Francisco 
California April 1970 





An architectural framework for system analysis and 
evaluation* 

by PETER FREEMAN 

Ca'Fnegie-M ellon University 
Pittsburgh, Pennsylvania 

THE PROBLEM 

In any situation where a large amount of information 
must be handled, the need for structure soon becomes 
evident. When one must process a quantity of informa
tion and reduce it to a small amount (for example, from 
a large set of evaluations decide whether to buy system 
A or system B) the need for hierarchical structure is 
especially evident because of the inability of the human 
mind to consider more than a very small number of 
pieces of information simultaneously. If one is presented 
with 100 facts and asked to make a single overall judg
ment in terms of three or four possibilities, he must 
have some means of aggregation. 

A second aspect of the problem is the diversity of the 
information involved in the evaluation of a complex 
system. For example, evaluating a political information 
retrieval system might involve consideration of tech
nical facts, projected usage patterns, the attitudes of 
politicians toward mechanization of previously intui
tive processes, etc. What is needed is not only an aggre
gation scheme, but (hopefully) a small set of common 
factors that underlie the larger number of measure
ments. Apples and oranges can be compared if you 
know that each provides nutritional value. 

The evaluation of an operating system is a good ex
ample (and, in fact, is the one that prompted the de
velopment of the approach presented here). Suppose 
you wish to make an evaluation that judges the sys
tem's performance, suitability to a market, use of 
hardware, and suitability for further development. 

What you are given (or, rather, what can usually be 
obtained) are external performance measurements, 
sketchy overall descriptions of the system, some (usu-

* This work was supported by the Advanced Research Projects 
Agency of the Office of the Secretary of Defense (F44620-70-C-
0107) and is monitored by the Air Force Office of Scientific 
Research. 

629 

ally incorrect) internal documentation, listings; and 
perhaps some internal performance measurements. You 
also know the hardware it uses, the general state of 
operating system technology in terms of the mecha
nisms used in other systems, the kinds of people using 
the system, and some rough (almost never quantitative) 
idea of the computational needs of those users. From 
such a polyglot of data you must develop succinct 
judgments and explanations that accurately character
ize the system. 

Examples of other complex evaluation and analysis 
tasks are: 

-determine where a set of design goals is in rela-
tion to the state of the art; 

-determine if a system meets its design goals; 
-propose the . logical successor to a given system; 
-collect and evaluate all known data on a system. 

These and similar tasks require one to build up a co
herent view of the object being studied. This in turn 
requires the hierarchical structuring of information 
into a small number of categories. The framework pre
sented here is a way of achieving this. 

THE FRAMEWORK 

Some day we may understand complex systems well 
enough to permit the definition and use of factors com
mon to all systems (just as we now evaluate diverse 
electronic components in common terms of power drain, 
number of circuits used, operating temperature, etc.). 
Currently, however, the best we are able to do is to 
find a set of interesting dimensions along which to 
evaluate some small set of systems. The trouble is that 
these dimensions are usually chosen on the basis of 
readily available data and not on the basis of their 



630 Spring Joint Computer Conference, 1971 

ability to cover a diverse range of information or pro
vide a basis for total evaluation. 

The framework presented here was developed in 
analogy to the problem of developing a thorough and, 
at the same time, an overall analysis of a building. It 
consists of six dimensions that encompass most of what 
one would want to know in such an evaluation. The 
dimensions are not necessarily independent and may be 
thought of as representing six ways of looking at an 
object. 

Imagine that you are an architect asked to evaluate 
a large building. The data points that you can collect 
may be as diverse as those in our illustration above. 
There are, however, six categories which will serve to 
group information of interest about the building: its 
location, the foundation it is built upon, its structure, 
the functions it is meant to provide and/or that it 
actually provides, its finish, and its adaptability to new 
purposes. If you make a judgment about the building 
along each of these dimensions and combine them in a 
manner that agrees with the importance assigned to 
each (which may change from building to building), 
you can obtain a coherent evaluation. 

Further, preparing the judgment on each dimension 
will require a number of subsidiary decisions that may 
be of final interest themselves (for example, how strong 
is the foundation, does it take account of special local 
soil conditions, etc.). More importantly, the categories 
will force you not only to sort out data into convenient 
equivalence classes but will permit the use of a single 
piece of data in several ways (for example, the observa
tion that concrete block is used throughout is pertinent 
to an evaluation of the foundation, the finish and the 
adaptability as well as the structure). 

Our framework is based on the following definitions 
of the six dimensions: 

Location: The system's position with respect to 
another object, set of concepts, set of mechanisms 
or techniques. 

,Foundations: Objects, concepts, techniques, prac
tices, etc., whose effect is felt throughout the sys
tem. 

Structure: The way the system is physically or 
logically built and put together; the basic mecha
nisms that provide the functions of the system. 

Functions: Services or actions provided by the 
system. 

Finish: Polish, absence of "rough edges", smooth
ness, external appearance. 

Adaptability: The ability to be changed to provide 
new functions or reside on new foundations. 

These definitions are not very precise, nor do we want 

them to be. They are meant to indicate six major views 
that should be considered; their exact definitions may 
vary somewhat from situation to situation. 

As illustration, the following definitions-by-example 
show the categories of information, or to put it another 
way, some of the questions to be asked along each of 
the six factor dimensions for the evaluation of an oper
ating system. 

Location: 
1. with respect to competing systems; 
2. with respect to hardware technology; 
3. with respect to software technology; 
4. with respect to design goals; 
5. with respect to conceivable systems. 

Foundations: 
1. functional concepts used; 
2. implementation concepts used; 
3. basic resource sharing algorithms; 
4. coding quality; 
5. internal documentation quality. 

Structure: 
1. physical layout of code and tables; 
2. subpart interconnections; 
3. data flow; 
4. control linkage mechanisms; 
5. measurement sub-system; 
6. test sub-system. 

Functions: 
1. functions provided; 
2. evaluation of performance; 
3. additional needed functions; 
4. completeness of functions provided (internal 

consistency) . 
Finish: 

1. user interface; 
2. user documentation; 
3. ease of doing simple tasks; 
4. error handling; 
5. crash rate; 
6. crash recovery. 

Adaptability: 
1. growth possibilities; 
2. ability to be tailored; 
3. extensions possible. 

USE OF THE FRAMEWORK 

The purpose of presenting this framework is primarily 
to provide a starting place for the development of more 
coherent system evaluation methods. Nevertheless, at 
least three different uses can be made of it in its present 
form: 



Architectural Framework for System Analysis and Evalpation 631 

Generation of analysis questions 

When evaluating a complex system, one is often 
hard-pressed to know what questions to ask. Simply 
measuring the performance 'of various components or 
analyzing their logic may be insufficient. By taking 
this framework of six dimensions, defining appropriate 
sub-dimensions, and then asking what must be known 
in order to evaluate the system along each such direc
tion, one can arrive at a more complete set of measure
ments to be taken and analyses to be made. 

Data organization 

Given a large amount of data about a system, one 
must structure it as we pointed out above. Normally 
one wishes to organize it in an hierarchical fashion that 
groups like data or like subcomponents of diverse data 
together. This framework provides such an organi
zation. 

Guide to evaluation 

If one is evaluating several systems for purposes of 
comparison or wishes to arrive at an overall judgment 
of a single system, this framework can provide the 
nucleus of an approach. After the framework is fully 
defined for the situation at hand an attempt can be 
made to assign relative weights to the different dimen
sions and sub-dimensions. Although one may not wish 
to rely totally on such a procedure (although it should 
be seriously considered), attempting to determine 
quantitatively the relative importance of different fac-

tors that enter into the final decision will prove to be of 
great help in arriving at a rationalized evaluation. 

SUMMARY 

We have presented a framework for the analysis and 
evaluation of complex systems that can serve both as 
an organizer of existing data and a generator of meas
urements to be made. Its primary feature is the group
ing of diverse pieces of data into a small number of 
factors that have common and intuitive meanings. Its 
hierarchical nature allows one to gain an overview of a 
large amount of dissimilar data and to aggregate indi
vidual judgments from a wide variety of evaluations. 

The ability of the approach to reduce the amount of 
information that must be considered at each level, its 
adaptability to differing evaluation problems, and its 
guidance to what questions to ask recommend its use. 
Further, its (albeit slight) quantitative character puts 
it a step ahead of the completely informal and unstruc
tured methods commonly used. Use of the approach 
by the author in the total evaluation of a medium 
scale time-sharing system indicates that it does indeed 
provide a good evaluation framework. 

Clearly, there is much work left to be done here. We 
must further refine and formalize system analysis and 
evaluation techniques. We must try to get a more 
quantitative understanding of the relationships between 
various dimensions and factors. We must evaluate in as 
rigorous a fashion as possible many systems. 

Our intent has been to define a new framework for 
the analysis of complex systems. If its grouping of con
cepts proves to be useful in practice, fine. If not, per
haps its insufficiencies will spur others to develop better 
frameworks. 





AMERICAN FEDERATION OF INFORMATION PROCESSING 
SOCIETIES, INC. (AFIPS) 

AFIPS OFFICERS AND BOARD OF DIRECTORS 

President 

Dr. Richard I. Tanaka 
California Computer Products, Inc. 

2411 W. LaPalma Avenue 
Anaheim, California 92803 

Secretary 

Mr. Richard G. Canning 
Canning Publications, Inc. 

925 Anza Avenue 
Vista, California 92083 

Executive Director 

Dr. Bruce Gilchrist 
AFIPS Headquarters 
210 Summit Avenue 

Montvale, New Jersey 07645 

Mr. Walter Carlson 
IBM Coropration 

Armonk, New York 

ACM Directors 

V ice President 

Mr. Keith W.Uncapher 
The RAND Corporation 

1700 Main Street 
Santa Monica, California 90406 

Treasurer 

Dr. Robert W. Rector 
Cognitive Systems, Inc. 

319 S. Robertson Boulevard 
Beverly Hills, California 90211 

Executive Secretary 

Mr. H. G. Asmus 
AFIPS Headquarters 
210 Summit Avenue 

Montvale, New Jersey 07645 

Mr. Donn B.Parker 
Stanford Research Institute 

333 Ravenswood Avenue 
Menlo Park, California 94025 

Dr. Ward Sangren 
University of California 
2200 University Avenue 

Berkeley, California 94720 

Mr. L. C. Hobbs 
Hobbs Associates, Inc. 

P. O. Box 686 
Corona del Mar, California 92625 

IEEE Directors 

Dr. Robert A. Kudlich 
Wayland Laboratory 
Raytheon Company 
Boston Post Road 

Wayland, Massachusetts 01778 

Dr. Edward J. McCluskey 
Department of Electrical Engineering 

Stanford University 
Palo Alto, California 94305 

Simulation Councils Director 

Mr. James E. Wolle 
Missile & Space Division 

General Electric Company 
P. O. Box 8555 

Philadelphia, Pennsylvania 19101 

Association fo~ Computational Linguistics Director 

Dr. Donald E. Walker 
Head, Language and Test Processing 

The Mitre Corporation 
Bedford, Massachusetts 01730 



American Institute of Aeronautics 
and Astronautics Director 

Dr. Eugene Levin 
Culler-Harrison Company 

745 Ward Drive 
Santa Barbara, California 93105 

American Statistical Association Director 

Dr. Martin Scha tzoff 
Manager, Operations Research 

IBM Cambridge Scientific Center 
545 Technology Square 

Cambridge, Massachusetts 02139 

Instrument Society of America Director 

Mr. Theodore J. Williams 
Purdue Laboratory for Applied Industrial Control 

Purdue University 
Lafayette, Indiana 47907 

Society for Information Display Director 

Mr. William Bethke 
RADC-(EME, W. Bethke) 

Griffis Air Force Base 
N ew York, New York 13440 

American Institute of Certified Public 
Accountants Director 

Mr. Noel Zakin 
Manager, Computer Technical S~rvices 

ACIPA 
666 Fifth Avenue 

New York, New York 10019 

American Society for Information Science Director 

Mr. Herbert Koller 
ASIS 

2011 Eye Street, N. W. 
Washington, D. C. 20006 

Society for Industrial and Applied Mathematics Director 

Dr. D. L. Thomsen, Jr. 
IBM Corporation 

Armonk, New York 10504 

Special Libraries Association Director 

Mr. Burton E. Lamkin 
Office of Education 

7th and D Streets, S. W. 
Washington, D. C. 20202 

JOINT COMPUTER CONFERENCE BOARD 

President 

Dr. Richard I. Tanaka 
California Computer Products, Inc. 

2411 W. LaPalama Avenue 
Anaheim, California 92803 

V ice President 

Mr. Keith W. Uncapher 
The RAND Corporation 

1700 Main Street 
Santa Monica, California 90406 

Treasurer 

Dr. Robert W. Rector 
Cognitive Systems, Inc. 
319 S. Robertson Blvd. 

Beverly Hills, California 90211 

A CM Representative 

Mr. Richard B. Blue, Sr. 
1320 Victoria Avenue 

Los Angeles, California 90019 

IEEE Representative 

Dr. Robert A. Kudlich 
Wayland Laboratory 
Raytheon Company 
Boston Post Road 

Wayland, Massachusetts 01778 

SCi Representative 

Mr. John E. Sherman 
Lockheed Missiles and Space Co. 

Org. 19-30, Building 102 
P. O. Box 504 

Sunnyvale, California 94088 



JOINT COMPUTER CONFERENCE 
COMMITTEE 

Dr. A. S. Hoagland, Chairman 
IBM Research Center 

P. O. Box 218 
Yorktown Heights, New York 10598 

JOINT COMPUTER CONFERENCE TECHNICAL 
PROGRAM COMMITTEE 

Mr. David R. Brown, Chairman 
Stanford Research Institute 

333 Ravenswood Avenue 
Menlo Park, California 94025 

FUTURE JCC GENERAL CHAIRMEN 

1971 FJCC 

Mr. Ralph R. Wheeler 
Lockheed Missiles and Space Co. 

Dept. 19-31, Bldg. 151 
P. O. Box 504 

Sunnyvale, California 94088 

1972 SJCC 

Mr. Jack E. Bertram 
IBM Corporation 

P. O. Box 37 
Armonk, New York 10504 



1971 SJCC STEERING COMMITTEE 

General Chairman 

Jack Moshman 
Moshman Associates, Inc. 

V ice Chairman 

Wayne Swift 
Computer Sciences Corporation 

Secretary 

Elaine Kokiko 
Moshman Associates, Inc. 

Treasurer 

Gordon D. Goldstein 
Office of Naval Research 

Technical Program 

Nathaniel Macon-Chairman 
The American University 

Stanley Winkler-Vice Chairman 
IBM Corporation 

Local Arrangements 

H. F. Woodbury-Chairman 
Control Data Corporation 

Robert Greaney-Vice· Chairman 
Operations Research, Inc. 

Registration 

Walter Rogers-Chairman 
Penril Data Communications, Inc. 

James L. Smith-Vice Chairman 
I. I. Communications Corporation 

Printing and Mailing 

Philip J. Musgrave-Chairman . 
Data Transmission Company 

Samuel B. Beatty-Vice Chairman 
Creative Communications Associates 

Exhibits 

Richard H. Wilcox-Chairman 
Office of Emergency Preparedness 

Donna Spiegler-Vice Chairman 
Department of Health, Education, and Welfare 

Special Activities 

Ethel Marden-Co-chairman 
N ationalBureau of Standards 

Rudolph Koenig-Vice Chairman 
Software Engineering Associates, Inc. 

Evelyn Sticht-Co-Chairman 
Operations Research, Inc. 

Virginia Schade-Vice Chairman 
Operations Research, Inc. 

Public Relations 

William W. Fain-Chairman 
C.A.C.I. 

Kenneth Hitch-Vice Chairman 
C.A.C.I. 

A C M Representative 

Carl Hammer 
Univac 

IEEE Computer Society Representative 

Harry Hayman 
NASA Apollo Space Program 

SCi Representative 

J. Bruce Mawson 
Electronic Associates, Inc. 

AS! S Liaison 

Herbert R. Koller 
A.S.I.S. 

JCC Committee Liaison 

David Sudkin 
Intercapital Resources, Inc. 



SESSION CHAIRMEN, REVIEWERS, AND PANELISTS 

Artope, George R. 
Bergman, Jules 
Birnbaum, Irving 
Brown, Kathryn, M. 
Cox, J. Grady 
Edwards, N. P. 
Estrin, Gerald 
Fain, William W. 
Fogel, Lawrence, J. 
Fox, Raymond G. 
Gass, Saul I. 
Goldstein, Gordon 
Gotlieb, Calvin C. 

Anzelmo, Frank 
Aron, Joel D. 
Badger, George F., Jr. 
Ball, N. Addison 
Ballot, Michael 
Basili, Victor R. 
Bayles, Richard 
Boehm, John G. 
Bryan, G. Edward 
Campi, Anthony V. 
Canaday, R. H. 
Casey, Jay . 
Cashman, Eugene K., Jr. 
Chow, W. F. 
Cohen, Gerald D. 
Curtis, Kent 
Denes, John E. 
Durney, Arnold I. 
Earnest, C. P. 
Enslow, Philip 
Farmer, Nick A. 
Fuelling, Clinton P. 
Gass, Saul 
Gilstrap, Lewey O. 

Abraham, David G. 
Adams, Edward 
Arnold, R. F. 
Avram, Herbert M. 
Barthel, Daniel 
Belkin, Jack 

SESSION CHAIRMEN 

Green, Paul 
Grimm, E. H., III 
Halbrecht, Herbert z. 
Hamblen, John 
Hammer, Carl 
Herzberg, Donald G. 
Howerton, Paul W. 
Israel, Fred 
Jacobs, Walter W. 
Johnston, Robert F. 
McDonald, Bruce J. 
Nagel, Roger N. 
Oliver, Paul 

REVIEWERS 

Hamblen, John 
Hammer, Carl 
Hollander, Gerhard L. 
Hsiao, David K. 
Jacobs, Walter 
Kain, Richard Y. 
Kaltman, Alvin 
Klir, George J. 
Koller, Herbert 
Landoll, James R. 
Larsen, Norman 
Lindsay, Robert K. 
Lowe, Thomas C. 
Machover, Carl 
Macon, Nathaniel 
Mawson, Bruce 
McFarland, Clay 
McDonald, Bruce 
Meadows, Charles 
Meers, Dale 
Migliorisi, E. M. 
Miles, E. P., Jr. 
Mills, H. D. 

PANELISTS 

Bitzer, Donald 
Blumstein, Alfred 
Bright, Herbert S. 
Bromberg, Howard 
Casey, Jay 
Cawley, Daniel M. 

Osborne, Thomas E. 
Pasta, John R. 
Rice, Rex 
Rosin, Robert F. 
Saunders, William B. 
Simonson, Walter E. 
Turoff, Murray 
Vichnevetsky, R. 
Wheeler, Gilmore S. 
Wilcox, Richard H. 
Winkler, Stanley 

Mitchell, Baker A. 
Moshman, Jack 
Nielsen, Norman R. 
Oliver, Paul 
Pasta, John R. 
Peters, Bernard 
Ramamoorthy, C. V. 
Rosin, Robert 
Ross, Dann C. 
Saunders, William B. 
Schneider, Arthur J. 
Shirely, D. Lynn 
Skelly, Patrick G. 
Swift, Wayne 
Tauber, Richard 
Thomas, Lou 
Turoff, Murray 
Wallace, John B., Jr. 
Weizenbaum, Joseph 
Whiteman, John R. 
Winkler, Stanley 
Wolf, Eric W. 
Zinn, Karl L. 

Chartrand, Robert L. 
Chevion, Dov 
Chou, W. 
Collins, Timothy 
Conway, Richard W. 
Criswell, James 



Daunt, Jerome J. 
Davis, Rob,ert N. ' 
Davis, Ruth N. 
Dixon, Robert G., Jr. 
Doede, John 
Donahue, George R. 
Dorn, Philip H. 
Douglas, Alexander S. 
Dummermuth, Ernst 
Dunn, Robert 
Ellis, Robert H. 
Favret, Andrew 
Felling, William 
Flynn, Tom 
Frank, H. 
Glass, William 
Gourley, D. E. 
Gracer, Franklin 
Grosch, H. R. J. 
Hess, Sidney 
Hickey, Albert E. 
Higgins, Frank 
Hoppe, Charles W. 
Hoover, Charles 
House, Peter 
Hughes, L. 
Ishizaki, Sumio 

Israel, Fred 
Jefferies, Robert S., Jr. 
Johnson, Philip 
Jones, Richard C. 
Kelly, Joseph C. 
Klein, Herbert 
Knowlton, Kenneth 
Lehner, Ralph 
Lehmer, Derck H. 
Liberatori, Robert 
Longenecker, Al 
Lower, Elmer 
Ludwig, George H. 
MacDonald, Robert B. 
Macon, Nathaniel 
Melody, W. H. 
Mezei, L. 
Mills, Richard C. 
Mitzel, Harold E. 
Nagel, Stuart, S. 
N egroponte, Nicholas 
Oestreicher, Hans 
Oliver, G. A. 
Olson, Jerry 
Paller, Alan T. 
Pimental, David 

Plummer, Dave 
Prokop, J. S. 
Rappsilber, Thomas W. 
Rea, D. E. 
Rothenberg, David 
Samoylenko, S. I. 
Scannon, Richard, M. 
Schiller, Jeffrey, S. 

. Schulz, Harold A. 
Schwartz, Jacob T. 
Smagorinsky, . Joseph 
Small, Robert 
Smith, Fred 
Snow, Joel 
Solomon, Martin B. 
Stewart, Robert M., Jr. 
Strassmann, Paul A. 
Svenson, R. A. 
Talbot, Peggy Anne 
Teicher, S. 
Van Dyne, George M. 
Vichnevetsky, Robert 
Weeg, Gerard P. 
Winograd, Shmuel 
Yencha, Martin A. 
Zingy, Roy J. 



SJCC PRELMINARY LIST OF EXHIBITORS 

ACM 
Addison-Wesley Publishing Co., Inc. 
Addressograph Multigraph Corporation 
AFIPS Press 
Airoyal Manufacturing Company 
American Elsevier Publishing Company 
AMP Incorporated 
Ampex Corporation 
Anderson Jacobson, Inc. 
Applied Magnetics Corporation 
AT&T 
Atlantic Technology 
Atron Corporation 
Auerbach Info., Inc. 
Auricord Div. Scovill Mfg. Company 
Auto-Trol Corporation 
Barnes & Noble 
Beehive Medical Electronics, Inc. 
The Bendix Corporation 
Biomation 
Boeing Computer Services, Inc. 
Boole & Babbage, Inc. 
Bridge Data Products 
Bucode, Inc. 
Bunker-Ramo Corp. 
Burroughs Corporation, ECD 
Caelus Memories, Inc. 
California Computer Products, Inc. 
Calma Company 
Cambridge Memories, Inc. 
Centronics Data Computer Corporation 
Century Data Systems, Inc. 
Certex, Inc. 
Certron Corporation 
Cincinnati Milacron, Inc. 
Cipher Data· Products 
Codex Corporation 
Collins Radio Company 
ComData Corporation 
Computek, Inc. 
Computer Communications, Inc. 
Computer Design Publishing Corporation 
Computer Sciences Corporation 
Computer Terminal Corporation 
Computerworld 
Congraf Corporation 
Conrac Div. Conrac Corporation 
Consolidated Computer Limited 
Customized Data Systems, Inc. 
Data 100 Corporation 
Data General Corp"oration 
Datamation 
Datapac, Inc. 
Data Printer Corporation 

DataPro Research Corporation 
Data Processing Magazine 
Data Products Corporation 
Data Product News 
Datascan, Inc. 
Decision Data Corporation 
Delta Data Systems Corporation 
Diablo Systems, Inc. 
A. B. Dick Company 
Dicom Industries, Inc. 
Digi-Data Corporation 
Digital Computer Controls 
Digital Equipment Corporation 
Digitronics Corporation 
Documation, Inc. 
Eastman Kodak Company 
Electronic Arrays, Components Div. 
Electronic Associates, Inc. 
Electronic News 
Electronic Processors, Inc. 
ESE Limited 
Facit-Odhner 
Ford Industries, Inc. 
Four-Phase Systems, Inc. 
Fujitsu Limited 
General Computer Service Inc. 
General Electric, Communications Systems Div. 
Genisco Technology Corporation 
The Gerber Scientific Instrument Company 
Gould Inc., Graphics Div. 
GTE Lenkurt Inc. 
Hayden Publishing Co., Inc. 
Hazeltine Corporation 
Hewlett-Packard 
Hitchcock Publishing Company 
Houston Instrument 
IEEE 
Incoterm Corporation 
Inforex, Inc. 
Information Control Corporation 
International Data Corporation 
IjOnex Div. of Sonex, Inc. 
Iron Mountain Security Storage Corporation 
ISS (Information Storage Systems, Inc.) 
Kennedy Company 
Kybe Corporation 
Licon Div. of Illinois Tool Works, Inc. 
Litton ABS OEM Products 
Litton DATALOG Division 
Lundy Electronics & Systems, Inc. 
McGraw-Hill 
Marshall Data Systems 
Maverick Computer Systems, Inc. 
Memorex 



Memory Technology 
Micro Switch, A Div. of Honeywell 
Milgo Electronic Corporation 
Modem Data 
Mohawk Industrial Labs, Inc. 
Monolithic Memories, Inc. 
NCR Special Products Div. 
N emonic Data Systems, Inc. 
N ortronics Company, Inc. 
Nuclear Data Inc. 
Numeridex Tape Systems, Inc. (InjOpac Div) 
Odec Computer Systems, Inc. 
On Line Computer Corporation 
Optical Memory Systems 
Optical Scanning Corporation 
Pace Computing Corporation 
Panasonic 
Penril Data Communications, Inc. 
Per Data, Inc. 
Peripheral Equipment Corporation 
Photophysics, Inc. 
Plessey Memory Products Corporation 
Potter Instrument Company, Inc. 
Precision Instrument Company 
Prentice Hall, Inc. 
Princeton Electronic Products, Inc. 
Quadri Corporation 
Quindata, Inc. 
RCA-CSD 
Raymond Precision Industries, Inc. 
Raytheon Company (Computer Operation) 
Recortec, Inc. 
Redcor Corporation 
Remex 
Research & Development 
RFL Industries 
Sangamo Electric Company 

Science Accessories Corporation 
Singer-General Precision, Inc. 
Singer-Link Div. 
Sorbus Incorporated 
Spartan Books 
Storage Technology Corporation 
Sugarman Laboratories, Inc. 
Sycor, Inc. 
Sykes Datatronics Inc. 
Syner-Data, Inc. 
TEAC Corporation of America 
Techtran Industries, Inc. 
Tektronix, Inc. 
Tele-Signal Corporation 
Teletype Corporation 
Tempo Computers, Inc. 
Texas Instruments Incorporated 
Timeplex, Inc. 
Tracor Data Systems 
Trio Labs 
Trivex, Inc. 
Ultronic Systems Corporation 
United Telecontrol Electronics, Inc. 
Van San Associates 
Varian Data Machines 
Versatec, Inc. 
Video Systems Corporation 
Visicon, Inc. 
Vogue Instrument Corp., Shepard Div. 
Wang Computer Products, Inc. 
Western Union Data Services Co., Inc. 
Western Union Telegraph Company 
Westinghouse Electric 
John Wiley & Sons, Inc. 
Wiltek, Inc. 
Xerox 



Alkus, M. R., 143 
Allred, G. R., 163 
Arora, S. R., 316, 337 
Ayres, R. B., 497 
Balzer, R. M., 485 
Barsamian, H., 151 
Beckett, W., 39 
Benenati, J. D., 617 
Berra, P. B., 557 
Biss, K., 303 
Blevins, P. R., 545 
Boehm, B. W., 205 
Borch, D. T., 93 
Botterill, J. H., 103 
Brame, J. L., 425 
Bright, H. S., 387 
Bush, T. C., 451 
Byram, G. W., 401 
Calhoun, M. A., 601 
Cantrill, S. V., 239 
Chalmers, L., 265 
Chang, S. K., 393 
Chen, T. C., 365 
Chesley, G. D., 363, 601 
Chien, R., 303 
Cockrum, J. S., 23 
Cohen, D., 77 
Colhoun, B. A., 387 
Conn, R. W., 1 
Cook, T. G., 601 
Cowart, B. E., 589 
Crockett, E. D., 23 
DeCegama, A., 151 
DeCuir, L: E., 271 
Defiore, C. R., 557 
Derrenbacher, R. L., 497 
Dickman, B. N., 529 
Diehr, G., 231 
Droulette, D. L., 467 
Eckhouse, R. H., Jr., 169 
Flynn, M. J., 459 
Freeman, P., 629 
Gallo, A., 337 
Garnatz, D., 231 
Garrett, R. W., 271 
Gentile, R. B., 345 
Gerould, L. D., 601 
Gould, J. S., 477 
Hall, T. W., 217 
Hamada, N., 123 
Heyne, G. F., 103 
Hibbs, R. B., 

AUTHOR INDEX 

Hunt, E., 15 
Ishizaki, S., 231 
Jacobs, W. W., 357 
Jain, G. P., 319 
Jensen, D. D., 295 
Katzan, H., Jr., 325 
Kesel, P. G., 39 
Kiefer, M., 407 
Konishi, T., 123 
Kuroda, T., 451 
Laliotis, T. A., 601 
LaLumiere, L. P., 401 
Lessieu, E. J., 61 
Ling, H., 373 
Loo, J., 83 
Lucas, J. R., Jr., 345 
Lundstrom, S. F., 589,601 
Macon, N., 407 
Mallory, F. B., 387 
Manocha, T., 309 
Martin, W. L., 309 
McQuillan, J. M., 77 
Moore, J., 179 
Morenoff, E., 39 
Morgan, H. L., 503 
Morgan, K. G., 239 
Nagel, S. S., 137 
Noetzel, A. S., 415 
Nunamaker, J. F., Jr., 283 
O'Connell, M. L., 539 
O'Donald, B. T., 83 
Olds, G. V., 401 
Patel, A. M., 11 
Price, G. W., 131 
Prosser, F., 295 
Ramamoorthy, C. V., 425, 

545 
Raymond, S., 265 
Rice, R., 575, 589, 601 
Richter-Nielsen, J. A., 199 
Schultz, J. R., 239 
Seven, M. J., 205 
Smith, D. N., 511 
Smith, W. R., 563, 577, 601 
Springer, C. H., 143 
Stack, T. R., 113 
Stahl, F., 303 
Steingart, D., 179 
Steuber, W., 265 
Stevens, K. W., 309 
Stillman, N. J., 557 
Szygenda, S. A., 459 



Thomas, D. E., Jr., 277 
Thurber, K. J., 49 
Tymes, L. R., 211 
Ver Hoef, E. W., 491 
Wagner, R. A., 503 
Walker, S. T., 113 
Walther, J. S., 379 

Watson, R. A., 205 
Winkler, S., 131 
Winninghoff, F. J., 39 
Whiteman, I. R., 83 
Wolff, P. M., 39 
Yasuda, I., 123 
Zaks, R., 179 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102a
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642

