o

-

e
e
o

-

=
i

=
.

=
o

i
-

PRO FERE

-

.
i

;z&“

e

e

—

i

e

w‘:ége
o

:

i
é%@:'
i
i,
ﬁ,“&ﬁ'
i
N
L 2
o

-
o

o i
o . o
L .
o
. .
B ""T%%’w* i
e i B ‘%ﬁ} s’%""'c’
J e i e e
o e ' W’"ﬁ) i e -
;ﬂgfpﬁm% i o i
,"#ﬁ‘ o Tty o il Ll
ﬁé;“@m#ﬂ e o L
i ',aﬁﬁiiﬁr‘wm,ﬂ s «Mg wgfwe i i
, %}{@i‘f*’m’i’?@*é‘fff i i o
o aaaswwnw&m u “‘”v,;rﬁz&e%‘vw&»;"éa%
o A ‘55%“ e mﬂ\’”“* Msi’,x et
o "*j‘;&%ﬁw&’sw . vw:ﬁ&“%"?wﬁ*‘% "
A o an Jene it i o o
i m;ﬁ?’j«f “,53»%%!??.9&“‘;;&'3?«&“9?%&“ " ;s:!‘;f‘sz?ﬁs‘“' . -
u«%m”; sm;«:-wﬁ:'fﬁgsﬂ!f ws",,ﬁ?&, e e ; X
, ,‘;ﬁ;ms;;,’i,ﬁgﬂw‘d%,%ggu . s@gﬁ:ﬁﬁg e e -
*‘ﬁ%:féws;aﬁézéwfﬁﬁsfﬂfs?mzzi» L o
i f m;cﬁ&%’%mwj;!,
et "!ﬁ‘i&#
v . o
2 i !
-
}ﬁ‘s;‘ “gis’ﬁZ?@wN:,és e ;‘
: e i s x
T L ‘¢
L . wW,M‘ﬁsférfr:‘u«egé‘ﬁ,‘fﬁﬁ(}ﬁwg‘,ﬂfsxs{'jfs‘nr““ o
el i‘x;mtiw,"?‘“ b wm‘w wwt“‘ Gy e 7
el Wr"*““"’ ,Wv] n;mm‘ b A
Ll .,wstm s D i o, o i
,mxwwﬂ : ,»ww i m”"sw‘“m é,w*“ wﬂ"ﬁﬁ““ et
L e vs“zf‘.&?“f;{w "inﬁt‘“f@‘ m;j”‘m:@ﬂ‘ i i
g nmr“*z:‘-“,;w S u‘;«kuw >
g,‘;’,”‘fﬁzxﬁ‘m‘,ﬁf“i“;, i ?«"?gli‘ffv“%’,’ssa‘";','fﬂ‘,w‘ i
“““5}5;%““’2”5 ;;www*,;,.srkg;mwgms'»",*ms*‘ﬁ,@nu e
o ik uf;,f;u;;;:(z‘g»;sg‘,,ﬂg’;:m;;;ﬁgwg\vﬂ es’wéﬁﬁ P
f i i gt G Pl e v»“m“‘ i i
i »qu!"ff]mﬁ“‘ n«m‘,',ms‘ W Sty oL
Ll ’ﬁ»*x9‘V;.;“,fx‘wts»*’;f’,fifﬂ‘*’}f,?,w"i"?x‘f“fsfw‘ﬂ’;f»fxi"sfsb‘ K
Widhad S mwx}wk,,w 4,5“1\’9,;5;‘@1&*!" »’"“ge’”r b
G o w»@z;m e !
: ;(»«ws‘:t«w;f N«;:;w;:" 7 'w‘fi""%v*“,‘S,‘z‘%y;ﬁffmgff“x i
| e G ““:‘:f%i?ﬁif::u?:z:nl’fiff:in‘?‘?: -
‘5xx»'g;,’z;:,m«w,nw. mv;gr,‘«g;;ﬁiﬁfc‘vzd@*g‘:;‘i‘,‘l&;;x;‘,i}i‘ig;n;:,‘;,‘;,m o “«;vr,;*;w;;&,» o
i ,q,-«\:w“ S i L -
,,Mwww; g;,,‘,“ﬁ,,\w«ffff‘ 'u‘,,,‘,»yg,,,,wja;u,,w;“gw“ﬂ,;:, e
. 7 gffmf"»:ffn ; “"“fs&"Neni:tﬂ‘ﬁ,ip.x"",’,:nsi&“’j'::ﬁ‘}g’“"‘ﬁ‘;:,f&x«§"f"§»xv‘jfav¥“, il
i e i o (ﬁm’;ﬂ:,\omﬂ:g‘sv,;;q»wr,uww;;;w:‘;wg"‘:s»s,;m,u;?u e
L o Pl ey il s e st o
e : :fw;vi;f,,ssag:ffwg;;g‘e&;z«;x;,xg,rug;u 'i“"f;‘;I’w';;fasfﬁ:fxxvss;"ﬁgﬁg“ﬁm5“ i
v ‘“’%?*E?ﬁ'“& o o t,<f’;‘\1fs»mr;,‘,;{&*’f&i\}f;"Qiﬁﬁc«gﬁ;*’i@ﬁ@sﬁ""c’:‘s’*j;ﬁnfé;*‘,‘x‘;ﬂﬁfﬁ’jﬁ‘;;’?ﬁ?ﬂﬁ
s @ ~u:x::ﬂiiwi%:;,ss%ﬁSﬁ?s:ﬁsﬁq‘::sﬁés’fﬁ‘;ﬁtﬁ’fgzﬁéﬁg‘z;"
v ;t:lzifig‘:fw;;;&u;‘;::,\,"‘gg»:’;z::un i «“;;;ff:?fﬁff»;v;t‘:agf::fggz:;ew;ff‘;;é?r;;x;»é‘;w,g .
‘I AN i i :I,)mw Al it ok iR ,;"w‘
. L i e w%‘ﬁzﬁ, . ,‘;,,1&,“:‘,‘;»:;35,‘?‘*,5;»;‘,,,;“35»,‘@‘&xsg;,,“i;;?;;
L i ! s e A o ot s !
w,«;w;j”, o g !] ol i;\,w,w; x,‘,wr;(,W,W;wxmgww
%?;g;{z,?ge:g s,:i‘-g,,,,,‘::;;, o e . ’;xf{f?"},‘f,’}y‘,&f"xg;’,,’:o;;;f‘ff,&gg%‘i’z’w::‘f“g,f sr;:i‘w;ixig :
a0 ot e) et g e it N
4]) Q»;W,,,,,g{,, i - 4 m i “"1,,w"",§;)x!“ A i
3 1<] "",Jwe;g45:»»’*;&‘5 ;ﬁgfngj,‘ﬁ‘,«vg;;&f’&f;«j o gy fj}ﬁ“;{f:)}i’av"- e
oy v 0 ey ffffx‘ffn?ﬁﬁﬂ‘;;&llﬁ»‘m‘.ﬁ:ﬁiw, ’:,’"ffx“:;‘EJis«>“;fﬁ13§“3§115;"
,smsw;ss:;a‘:sg,«;:;;«»«, T‘335'3“%@i‘,’-’»‘gg;‘,‘lféﬁi&‘?fﬁﬁi";’&‘%}i:f;x,,w“ > r;ﬁw‘iwv,ﬁifg,z,;’é::“izféfs’fﬁ”9 v
2 wsk,*uw“iwum g % i R, iy o w*,gw««x*wwg
D et i e Fl e i e e At L s Wt
A e m i Y s i S ,,pﬁwﬂ o el e L
e 2l ot 5 i st e i i e i ol S o
Ma»w‘@;;,m;;}w 5§ N éx,ﬁ,&m;g;gg:wyy ’W@ﬂgj’~‘§§sr‘é‘§f{,m ,na"?ﬁ;?ff,w:;&“
i Wumsr G ! sl i i Kx,e«u«wy)i‘ L
0 ‘,,(wg,,u;;f;wxi,»,:n‘, o i wﬁgi f (,M);!f‘ p
s w‘“’mr ~ s ‘ww s
| Gy o # - i e
R iy " il
,,,«wX,x,mx«,w,m, = e
; e il - w i
W“,\A,@X‘Y‘*ﬂ“ghr, i
o I;,Ms% ,w"?‘&x
e "14».%’&*
i ¢ o G
g R e
) Jf?:%{) ﬁ ay 1
’ Califo 3
I rn.

e
. e
A e
i
5

~ 1AL A

\ i;i‘x R
);,,r‘ L

i

LINGTON,

i
§

4
2

. Ao
G o i,
- : e s
- f“?‘é Wsﬁ&i&) fl‘,ﬁ’iv““‘ “ £
o T il o ! i i St
L‘issxjﬁ,’lsfé‘({mﬁ{sziqm sf;gg«é;z‘g;fémg;a;t ‘;fff.fi#‘i‘,i}m«»)
e, aggm?w;;‘s&ssv;fﬁis‘w . ,::wg;tf:« i
s Nfg,;sp:ﬁ;&;‘rrv;;lv{’d‘:qjs;:s‘g;g;svﬁ;a’xﬂxg;‘;:m}f;‘:,‘ﬁ,ﬁ:“S{,;;:“{‘;, ol)
it i il s] P Doy
ot o it p Ho Y o A
] i, i, e S
P ! i o i i e
‘*iti;”sif;ﬂ%g;i‘:;ﬁgﬁgf;ﬁi‘*?i;;%‘:?s“&vszifsff;:‘ﬁw;,; agjr;:*::;nw ;
g e ok Sl e o e
ot Magwm" ,»ms*hm Sl Wiy
Ol o e ol el P
f r?%?giﬁfif*éﬁém?““»
Bk e ;;gi‘,’wfg‘ﬁf& ;
' S L i ; il s
maq{w" T i
: “f'féwrn?i:::«'ﬁiff,;t’ ;
peene
i
i

The ideas and opinions expressed herein are solely those of the authors and are not
necessarily representative of or endorsed by the 1983 National Computer Conference
or the American Federation of Information Processing Societies, Inc.

Library of Congress Catalog Card Number 80649583
ISSN 0095-6880
ISBN 0-88283-039-2

AFIPS PRESS
1815 North Lynn Street
Arlington, Virginia 22209

©1983 by AFIPS Press. Copying is permitted without payment of royalty provided

that (1) each reproduction is done without alteration and (2) reference to the AFIPS

1983 National Computer Conference Proceedings and notice of copyright are included

on the first page. The title and abstract may be used without further permission in

computer-based and other information service systems. Permission to republish other
excerpts should be obtained from AFIPS Press.

Printed in the United States of America

A very bright and dedicated group of computing professionals
has labored long and hard to develop a high-quality technical
program for the 1983 NCC. These Proceedings represent a
printed record of many of the presentations planned for the
conference educational program. This collection should pro-
vide valuable reference material to computing professionals in
years to come.

DON B. MEDLEY
1983 NCC Conference Chairman

Preface

In addition to the papers included in the Proceedings and
presented at the 1983 NCC, many panelists and speakers also
participate, making a complete NCC educational program. I
hope that you will find time to attend one or more of these
valuable sessions and that this volume of the Proceedings will
be a useful source of information for you in later years.

“The Emerging Information Society: Computers, Communi-
cations, and People” is the theme of the 1983 National Com-
puter Conference. It became very clear as the Proceedings
developed that this theme is most appropriate for the confer-
ence. Many of the sessions within program tracks interweave
papers, presentations, and ideas that relate to other tracks.
Many papers in the Proceedings could have been placed in
several different tracks. The computing field is now clearly a
multidisciplinary field. Thus the Proceedings place emphasis
on office systems, personal computers, telecommunications,
and human factors. Of even greater significance is the growing
need to integrate all these disciplines to understand the entire
field today. It is our hope that the 1983 Proceedings provide
such a viewpoint.

With this theme as a foundation, the NCC ’83 Proceedings
have been grouped in nine major areas:

1. Software Engineering—providing new ideas and direc-
tions for the development of systems in the future.

2. Management/Education—a broad view of various man-
agement and education issues, with a mini-track on
maintenance of systems, a growing problem in the field.

3. Database/Distributed Systems—an update on new
trends in software and hardware for database manage-
ment.

4. Human and Social Issues—a broad coverage of issues
relating to the impact of computing on society, organi-
zations, and the individual.

ALLEN N. SMITH
1983 NCC Program Chairman

Introduction

5. Office Automation—an update on many facets of office
automation, including the growing impact of personal
computers on this area.

6. Decision Support Systems—a significant new area of
growth in providing executive and professional support
is covered in these sessions.

7. Hardware—a view of the trends and developments in
new approaches to computer hardware and architecture.

8. Telecommunications/Applications—a series of updates
on new and recent developments in telecommunications
along with brief updates on a series of applications and
on the use of the technology.

9. Personal Computers—a broad view of the explosively
growing area of microcomputers, both for personal and
for business use.

Pioneer Day will focus on Howard Aiken and the Harvard
Computational Laboratory, tracing early developments in the
computer field.

As with the program for 1982, we have reduced the number
of sessions to 84, whereas past programs gave more than 100.
This has allowed us to concentrate the program and the Pro-
ceedings on the areas of greatest importance and to offer
higher quality. We have selected over 80 papers from the vast
number of papers that were submitted; we believe the ones
selected provide high quality in their areas. We had to elimi-
nate many fine topics and decline many fine papers. The
conference program includes a key to the page numbers of the

papers in the Proceedings for easy reference. Summaries of
the panel discussions are not printed in the Proceedings; how-
ever, a brief summary of each track area is included in the
Proceedings.

The development of the 1983 NCC program required the
dedicated effort of many individuals: the Program Committee
members, the session organizers and leaders, the panelists
and presenters, and authors of technical papers, as well as the
referees who helped us select the papers to be presented in the

<
.

Proceedings. Additionally, the staff of AFIPS greatly assisted
us in developing the Proceedings. The Committee staff,
headed by Jeff Young, with the invaluable assistance of Carrie
Borgen and Georgia Marinelli, contributed more than it is
possible to acknowiedge to the development of this volume. I
wish to extend my own personal thanks to all of these individ-
uals, and especially to the Program Committee. It is our sin-
cere hope that this program will provide useful and thought-
provoking knowledge to those who attend.

CONTENTS

g T iii
Don B. Medley

D18 e T L1 Lot T+) + WA P v
Allen N. Smith

SOFTWARE ENGINEERING

Writing less code—An approachable ideal i i e 3
Naomi Lee Bloom

Foundation software: A significantly improved approach to the development of large application systems. 1
Gary A. Curtis

A case for adaptable applications SOftwareo i e 21

Mary Woodward and Peter F. DiGiammarino

Knowledgeable contexts for user interaction ittt e 29
Bozena Henisz Thompson, Frederick B. Thompson, and Tai-Ping Ho

An English-language processing system that “learns” about new domains.................. 39
Bruce W. Ballard and John C. Lusth

Implementation of an Ada™ run-time environment i e e 47
Herman Fischer and Edgar H. Sibley

Future Ada™ enVITOMIMEIES . ..ottt et ittt et ettt e e e et e e e e e e e e 57
Sabina H. Saib '

Stepwise structuring: A style of life for flexible software......... i i 65
Erik Sandewall, Sture Hagglund, Christian Gustafsson, Lennat Jonesj6, and Ola Strémfors

HITS: A symbolic testing and debugging system for multilingual microcomputer software 73
Takeshi Chusho, Atsushi Tanaka, Eri Okamoto, Akinori Honda, and Toru Kurosaki

A global checkpointing model fOr €ITOr TECOVETYottt i ettt et iiiiiaas 81
Krishna Kant

Development tools for bus controller software. i 91
M. I. Thomas

Logic analysis and its t001s.o ot e 97
R. S. Wang

MANAGEMENT/EDUCATION

Improving software maintenance attitudes i i et 107

Paul C. Tinnirello

A methodology for minimizing maintenance COSLS.u.uutnuueten ittt ean ettt eaieaanneeaannnne.s 113
Linda Brice and John Connell

Quality assurance and maintenance applications SYSEEINSo et e vttt iiet e trieeeaneeeaieeeannnnanns 123
Barbara J. Taute

Human investment techniques for effective software maintenance.............. oo, 131
Nicholas L. Marselos

Structured software MaiNtENANCEttt e e e e ettt e e e e 137
G. R. Eugenia Schneider

Application maintenance: One shop’s experience and organization................ i iiiiiee. .. 145
Robert E. Marsh

vii

Organizational issues of effective maintenance management................ i i, 155
Gary L. Richardson and Charles W. Butler

When a data processing department inherits software i i e 163
Joan R. Zak

Maintaining user participation throughout the systems developmentcycle................................... 173
Randy J. Raynor and Linda D. Speckmann

Data processing project management: A practical approach for publishing a Project Expectations Document ... 181
Lois Zells

DATABASE/DISTRIBUTED SYSTEMS

A distributed database design for a communications network control system 191
S. C. Lo, S. L. Kota, and M. H. Aronson
EMPACT™: A distributed database applicationc..uuueeimininnteeiiiit e ieeiiiaieannnn. 203

Alan Norman and Mark Anderton

Dynamic replication, am OVEIVIEW iut ittt et et e e et e e e et e e e e e e, 219
T. P. Daniell, R. C. Harding Jr., and S. H. Nauckhoff

Local query translation and optimization in a distributed system............. 229
Emmanuel Onuegbe, Said Rahimi, and Alan R. Hevner

Progress towards database management standards il 241
Donald R. Deutsch

Command use in a relational database SYStemttt i i i e e et 247
John D. Joyce and David D. Warmn

Generating requirements from enterprise analysis. i i i e e 255
David V. Kerner and Ashok Malhotra

Developing a long-range information architecture...........o i 261
James C. Wetherbe and Gordon B. Davis

A reconfigurable VLSI architecture for a database processor............... i il 271
Kemal Oflazer

Implementing set-theoretic relatic nal-query functions using highly parallel index-processing hardware 283
Sakti Pramanik

Cost-effective ways of improving database computer performance...............ot 293
David K. Hsiao

Application of the massively parallel processor to database management Systemsceveeinnns. 299
Edward W. Davis

Panacea or pitfall? The impact of relational databases on your environmentcccoouia.... 309
Willem Stoeller
HUMAN AND SOCIAL ISSUES

Advanced office systems: An empirical look at use and satisfaction 319
T. K. Bikson and B. A. Gutek

An Interactive Display Environment, or knitting sheep’s clothing forawolf................................. 329
Robert P. O'Hara

Resiliency of the computerized SOCIELYiuiiini i e e e e 341
Rein Turn and Eric J. Novotny

OFFICE AUTOMATION

Interfacing peopie with their machines i i e e 353
Nancy B. Finn

Current issues in electronic mail—Heralding a new era....... e e e e e, 361
Walter Ulrich

The integration of multimedia communications e 367
B. P. Donchue, III
65 10T 1 11 373

Paul F. Finnigan

Electronic mail: Evolving from intracompany to intercompanyoiuiiiiitiieernneeenneann, 379
H. Paris Burstyn

DECISION SUPPORT SYSTEMS

A new look at existence dependency in databases. i i i i et e 387
T. C. Chiang

Issues in the design of relational model management SYStEmS.oiiutiiin i iiiiiiiiiienaeeann. 395
Robert W. Blanning

Focal points for DSS effectivenesst i e e e 403
Carl Harrington

Information resource management for corporate deciSiOn SUPPOIt. vviiii it eaiaanns 409
William H. Gruber and George Sonnemann

Developing a strategy profile for management SUPPOTE SYSIEINS+« v eetunneerieernnaeennreenenanns 415
Gary K. Gulden and Eevelyn S. Arkush

The DSS development SYStEIM vttt ittt ettt ittt ittt ittt e 421
Robert H. Bonczek, Nasir Ghiaseddin, Clyde W. Holsapple, and Andrew B. Whinston

Applications of fuzzy languages and pictorial databases to decision support systems design.................... 437
Edward T. Lee

Database-oriented decision SUPPOTIt SYSTEIMSottt ittt ittt ettt et eeeieeaaeeanas 453
Daniel T. Lee

HARDWARE

Universities and the future of high-performance computing technology it 469
Kenneth G. Wilson

Dynamic RAM architectures for graphics applications.ttt inneas 479
Douglas L. Finke

The iRAM—An innovative approach to microprocessor memory SOIUtionS.ccovvvriiniieenerneennanns 487
John J. Fallin

MULTIBUS® continues to evolve to meet the challenges of the VLSIrevolutioncooiiuen... 497
Steve Cooper

Analysis of the M6809 InStruction Set.ttt i i ittt iieicainee s 503
Joel Boney

Tales from the trial trail: Videotex progress in the United States........... ..ottt iiiinnnnnnnen 513
Gary H. Arlen

Videotex and teletext in the business/consumer marketplaceccuiieiiiiiiiiiterenniinnnenenns 519
Larry T. Pfister

Winchesters for multiuser/multitask applications i e e 523
Larry Jacob

Intel iAPX 432—VLSI building blocks for a fault-tolerant computero, 531
Dave Johnson, Dave Budde, Dave Carson, and Craig Peterson

Performance evaluation of the MP/C ettt ittt 539

Bruce W. Arden and Ran Ginosar

A multiprocessor with replicated shared memory
Sigurd L. Lillevik and John L. Easterday

Reconfigurable architectures for VLSI processing arrays. .
Mariagiovanna Sami and Renato Stefanelli

Conflict-free memory allocation for associative data files .
Svetlana P. Kartashev and Steven I. Kartashev

Reconfigurable fault-tolerant multicomputer network
Svetlana P. Kartashev and Steven I. Kartashev

PIONEER DAY

TELECOMMUNICATIONS/APPLICATIONS

A standard session protocol for open systems interconnectionc.v ittt

Charles E. Young

The role of the Intelligent Peripheral Interface in systems architectureoouiiiuinineeennnen...

1. Dal Allan

Progress on the network layer of the OSI reference model
Peter F. Linington

The technology of digital speech: Compression, editing, and storageooiiiinii ...

R. E. Crochiere and J. L. Flanagan

Statistical modeling for automatic speech recognition [abstract of presentation]..............................

R. L. Mercer

implications of VLSI technology for speech processing [abstract of presentation]

R. W. Brodersen

Network security and vulnerability.....................
J. Michael Nye

IBM information network performance and availability me
Richard C. Soucy and Richard M. Bailey

Designing and managing an SNA network for growth
S. M. Schiffman

Backup and recovery in the IBM Information Network. . .
K. Bhadra and S. M. Schiffman

Logical problem determination in an SNA network
Robert A. Weingarten and Edward E. Iacobucci

Planning high-speed digital services in the Bell System . ..
Gary J. Handler

Three heuristics for improving centralized routing in large
Ivan M. Pesic and Daniel W. Lewis

£ R 1) () 143 £ 1 O

long-haul computer communication networks

A new probabilistic routing algorithm for packet-switched computer networks.

Chi-Yuan Chin and Kai Hwang

Optical wireless modem for office communication

Takatoshi Minami, Kenjiro Yano, Takashi Touge, Hisashi Morikawa, and Osamu Takahashi

A high-throughput interconnection structure
J. A. Hernandez, E. Horlait, R. Joly, and G. Pujolle

A new look at computer contracts
Dennis K. Knight

An information system for developing information systems
Bruce I. Blum

557

565

579

595

611

617

623

631

639

643

647

655

663

671

677

685

691

705

721

729

735

743

A metric of estimation quality...................
Tom DeMarco

Software productivity measurement

J. S. Collofello, S. N. Woodfield, and N. E. Gibbs

The laboratory automation system in the electrical communication laboratories of NTT

Nobuyoshi Terashima

Applications of digital optical disks in library preservation and reference oLl

William R. Nugent

PERSONAL COMPUTERS

Software maintenance objectives [NCC 1982 paper]
Ned Chapin

753

757

763

771

777

779

Toni Shetler
TRW
Redondo Beach, California

SOFTWARE ENGINEERING

The Software Engineering track at this year’s NCC has twelve sessions that are
rich with ideas and information; included are: methodology, technology, tools,
management, user considerations, and research and development.

Software engineering research and development activity is addressed by
three separate panels from the research, defense, and industrial communities.
Experts will examine the critical priorities, technologies, issues, and resources
instrumental in directing current R&D efforts and in formulating the ideas and
identifying the concerns that will be part of our future.

Software development techniques are addressed in four sessions that focus
on available methods and tools. Methods for improving development produc-
tivity through techniques such as reusable code will be presented. Presented
will be improvements in existing programming methodologies including devel-
opment support environments, testing and debugging tools, as well as effective
documentation methods.

Software development management is addressed by a panel experienced in
managing large projects and delivering state-of-the-art software systems. They
will discuss their experiences and work environments, and project these ex-
periences into the future, touching on the issues that software development
management will face in the years to come.

Artificial intelligence is addressed in two sessions. One session explores
experiences with systems that adapt to user interface requirements. The other
session provides a panel of AI experts to explore the value of Al in the tools
of the future. These sessions provide a refreshing look at how Al has evolved
from the fantasy fringe to the mainstream of computing.

The two Ada™ sessions address the present and the future: early experi-
ences developing Ada applications and Ada programming environments. The
software engineering community has watched Ada evolve during the
70’s—from concept to definition to early implementation. This evolution had
more care, planning, coordination, and tracking than any of its language pre-
decessors. These sessions provide an opportunity to learn about the Ada activ-
ity, thinking, and directions for the 80’s and beyond.

“Communicating with Databases in English”’: This session introduces cur-
rently available systems for asking questions of databases in English and de-
scribes commercial user experiences with them. The focus is on methods of
enabling users to redefine the subset ©f English appropriate for their own
applications and to switch easily from éne context to another. The session was
organized by the Association for Computational Linguistics to present the best
current work in applied natural language processing.

“Artificial Intelligence: Blue Sky or Tools of the Future?”” This session
presents work from several points across the research and development spec-
trum, from work characterized as “why-do-you-want-to-do-THAT?”’ to work
whose solid, practical results are being used in everyday industrial and aca-
demic applications.

“Writing Less Code—An Approachable Ideal”: This session is composed of
three reviewed papers that are included in the Proceedings.

“Software Management for the 80’s”: A group of experienced, large-scale
software development managers present their experience and intuition, ad-
dressing the problems and solutions of managing software development

projects in the changing computer hardware and software technological envi-
ronments. This session will concentrate on large-scale systems. The panelists
discuss past experiences in software management given changes in technolo-
gies, what the panelist is doing to manage effectively at present, and predic-
tions for the future.

“Reducing Program Development Risks with Reusable Code”: The need
for improved programmer productivity has spurred the development of a
variety of program generation aids. One significant approach to applications
development is reusable COBOL code modules. The developers and users of
Raytheon’s ReadyCode discuss the theory of reusability and its implemen-
tation in specific user environments.

“Software Engineering Techniques and Approaches”: This session is com-
posed of five reviewed papers that appear in the Proceedings.

“Directions in Software Engineering: Now and The Future”: This panel
session discusses the recent workshop held by ACM SIGSOFT and IEEE
Technical Committee on Software Engineering concerning activities they
could sponsor to speed the development of software engineering techniques
and their successful transfer into practice. Recommended actions from the
workshop are discussed and followed by open discussion.

“Software Technology for Adaptable Reliable Systems™: A discussion of the
new DOD software initiative program is presented. Two panelists, heavily
involved in its formulation, discuss the issues.

“Experience in Ada™ Applications”: This session focuses on some of the
first projects using Ada™ as an implementation language. Each of the speakers
has been involved with a large Ada application. In particular, this session
provides their early lessons learned, as well as describes how Ada was intro-
duced to their organizations.

“Future Visions: Ada™ Environments of the 1990’s”: This session is
composed of two reviewed papers and a panel of three. The two papers appear
in the Proceedings; the panelists, involved in Ada™ environment research
review the issues.

“Software Engineering by the Year 2000”": This panel of distinguished soft-
ware engineers explore the directions software engineering might take in the
next 17 years. Panelists present their predictions, followed by an interchange
among panelists and with the audience.

“Effective Software Documentation—Online Documentation”: Online
documentation is replacing hard-copy, or written, documentation for com-
puter systems and software. This session explores the past, present, and future
of online documentation.

Writing less code—An approachable ideal

by NAOMI LEE BLOOM

American Management Systems, Inc.
Arlington, Virginia

ABSTRACT

We are being inundated by a sea of unsatisfied user expectations. This growing, and
sometimes frightening, backlog of application development requests has been much
discussed but little reduced. One almost universal approach to reducing this backlog
has been to try to improve the productivity of our scarce technical resources (pro-
grammers, systems analysts, etc.). A more promising approach to meeting user
application needs may be to substantially reduce the amount of new code needed
to satisfy these needs. It takes no great insight to become convinced that, other
things being equal, the less code written to achieve a specific level of systems
support, the less risk, cost, elapsed time, and frustration must be accepted by the
organization. This paper presents a brief survey of some common, and some less
obvious, applications-enabling techniques. Two of the most promising techniques,
foundation software and adaptable application packages, are more fully described
in separate papers.

Writing Less Code—An Approachable Ideal 5

INTRODUCTION

We are being inundated by a sea of unsatisfied user expecta-
tions. This growing, and sometimes frightening, backlog of
application development requests has been much discussed
but little reduced. And the invisible backlog, described by
Martin' as the unspoken (and perhaps not yet dreamed of)
desires of our users, ensures that this problem is not likely to
diminish.

One almost universal approach to reducing this applications
backlog has been to try to improve the productivity of our
scarce technical resources (programmers, systems analysts,
etc.). Productivity techniques, such as structured program-
ming, structured analysis, regression testing, and interactive
programming, have been widely adopted, but still the backlog
grows. Clearly, even quantum leaps in the productivity of
scarce technical resources will not eliminate this backlog.

A more promising approach to meeting user application
needs may be to substantially reduce the amount of new code
needed to satisfy these needs. Such application-enabling tech-
niques, to use a phrase that seems to have originated within
IBM, are intended to reduce the amount of new code written
rather than to merely expedite the production of new code. It
takes no great insight to become convinced that, other things
being equal, the less code written to achieve a specific level of
systems support, the less risk, cost, elapsed time, and frus-
tration must be accepted by the organization.

It is important to note, however, that other things are usu-
ally not equal. Many of the techniques described in this paper
substitute increased consumption of computing resources for
reductions in the personnel resources needed to achieve a
certain level of user support. As hardware costs and the re-
sulting price performance ratios continue to improve while
competent analysts, programmers, and related computer pro-
fessionals grow more scarce and more expensive, it is a rea-
sonable business judgment to explicitly trade off increased
hardware resource consumption for man-hours of develop-
ment and user time. Such trade-offs must not compromise
satisfying user needs and they must be carefully evaluated for
each application so that the system overheads associated with

various packages and tools do not catch the project team

unawares.

This paper presents a brief survey of some common and
some less obvious applications-enabling techniques. Two of
the most promising techniques, foundation software and
adaptable application packages, are more fully described in
separate papers by Curtis” and Woodward and DiGiam-
marino.” If properly used, the techniques presented here will
reduce not only the amount of new code written by any one
organization, but also the aggregate amount of new code.

However, even if these applications-enabling techniques are
fully applied, some new code will have to be written, and that
should be done in a highly productive and orderly way. While
this paper and those by Curtis and Woodward and DiGiam-
marino focus mainly on traditional business applications,
applications-enabling techniques may be applied equally to
the development of scientific, system-oriented or personal
applications.

THE SPECTRUM (OR HIERARCHY) OF
APPLICATIONS-ENABLING TECHNIQUES

There is nothing very mysterious about finding ways to write
less code. You can do any of these things:

1. Convince the user not to want (or to need) a new appli-
cation.

2. -Reuse old code—your own or someone else’s.

3. Use simple tools (remember how levers work?) to multi-
ply the work value of any code you do write.

4. Get someone else, perhaps your users, to write the code
for you.

The key to successful applications enabling is to build these
very simple maxims into your systems development life-cycle
methodology. Applications development or even package in-
stallation projects should not be initiated, unless the new ap-
plication is really needed. And in every stage of the life cycle,
you must ask yourself what alternatives exist to developing
new code. Thus, applications-enabling techniques parallel, in
some sense, the applications development life cycle.

In the earliest stage, frequently called the business systems
or strategic systems planning stage, you must ask the funda-
mental question of whether this application is worth doing at
all. As the process goes forward, you should be asking the
following types of questions:

1. Has this application been developed before? If so, there
may be some old code that you can reuse.

2. Does this application lend itself to the use of simple
tools? Either tools that someone else has developed, or
that you yourself could develop?

3. Does this application lend itself to the end user-written
code that is characteristic of many data manipulation
and analysis applications?

By asking these types of questions at the appropriate points in
the systems development life cycle, you can take advantage of
the many techniques available to minimize the amount of new
code written. The remainder of this paper explores these tech-

6 National Computer Conference, 1983

niques in the order in which they tend to present themselves
in the life cycle.

DO NOT DEVELOP UNNECESSARY APPLICATIONS!
The most obvious solution to our problem of how to write less
code is to eliminate from the backlog all but the essential
(translation: justified) applications. Strategic systems plan-
ning (also known as business systems planning) is the process
by which an organization identifies and prioritizes its major
systems development objectives. By explicitly aligning the
applications development priorities with the organization’s
business strategy, we take a critical first step toward reducing
the amount of new code to be written.

Although there are many flavors of strategic systems plan-
ning described in the literature, the objectives identified by
IBM* in their business systems planning methodology are
representative:

1. To provide management with a formal, objective meth-
od for establishing priorities for corporate information
systems without regard to local interests

2. To ensure that scarce development resources are com-
mitted to those systems that have a long life, thereby
protecting the systems investment, because these sys-
tems are based on the business processes that are gener-
ally unaffected by organizational changes

3. To provide that the data processing resources are man-
aged for the most efficient and effective support of the
business goals

4. Toincrease executive confidence that high-return, major
information systems will be produced

5. To improve relationships between the information-sys-
tems department and users by providing for systems that
are responsive to user requirements and priorities

6. To identify data as a corporate resource that should be
planned, managed, and controlled in order to be used
effectively by everyone

By ensuring that we develop only those applications whose
relevance to the organization and benefits have been rigor-
ously examined, we have made the first breakthrough toward
minimizing the backlog of unsupported application require-
ments. To repeat, if you develop no unnecessary applications,
you will not be called upon to write (and maintain!) worthless
code.

REUSE OLD CODE—YOUR OWN OR
SOMEONE ELSE’S!

Where an application is justified, there are several possibili-
ties for developing it without writing any code or by writing
only a small amount of (it is hoped) simple code. Application
software packages have been available for nearly 30 years, and
many routine business (and system, e.g., sorting) functions
are very adequately supported by such packages. In addition,
many of your business functions, such as edit routines for
specific data elements, have probably been programmed

many times within your own organization. Before deciding
that an application is so unique as to obviate using any existing
code-—a common attitude among many in-house analysts and
users—consider the many flavors of software packages and
reusable in-house code.

Currently available commercial applications software can
be divided into three general categories:

1. Traditional software packages, which perform a well-de-
fined set of functions with minimal installation options

2. Contemporary software packages, which perform a well-
defined set of functions subject to many table-driven,
user-defined, installation-specific options

3. Adaptable software packages, which perform a flexible
set of functions subject to many table-driven, user-de-
fined, installation-specific options

Traditional Software Packages

Initially, application packages were really custom software
that the developer chose to share, albeit for compensation,
with others. Early package vendors often sold their essentially
custom systems with minimal documentation and installation
support. Installing such a package required the buyer to mod-
ify code even to support the most obvious installation-specific
requirements, for example, to change report headings to con-
tain the buyer’s company name.

The buyer of a traditional software package (and there are
many currently being sold) gets some clear benefits: On short
notice, he is able to obtain and install debugged code that
performs some well-defined set of functions after minimal
source code modification; and he pays a far lower purchase
price than he would for equivalent custom development.
Needless to say, the italicized adjectives are subject to the
buyers’ personal evaluation. But, in theory, the risks, cost,
elapsed time (and, hopefully, frustration) of purchasing a tra-
ditional package are less than in doing the application from
scratch.

That’s the theory, but the benefits are often not realized in
practice. With a traditional package, every user-specific re-
quirement, from report headings and formats to variations on
common algorithms, resulted in modifications to foreign (at
best) or (more often) incomprehensible and undocumented
source code. Although traditional packages remain an appro-
priate technique for writing less code, their inflexibility can be
frustrating.

Contemporary Software Packages

Eventually, modern (that is, scientific) approaches to soft-
ware design, combined with the recognition that even the
most flexible software buyer had some unique requirements,
led to a new type of package. Written to be generalized,
commercial software products, contemporary packages (my
term) have the following:

1. Well-documented source code constructed to provide
low-risk user exits, that is, specific points at which user-

Writing Less Code—An Approachable Ideal 7

written subroutines can be inserted without disrupting
the program flow or voiding the vendor’s warrantee

2. Reference tables that remove from the source code such
frequently customized functions as report headings and,
in some cases, formats; message code literals and sever-
ity levels; data element names, field lengths, data types,
and edit rules, including pointers to other reference
tables of valid values and code translations; parameter
values, for example, process scheduling dates, current
withholding tax percentages, and airline overbooking
percentages; calculation algorithms—sophisticated pack-
ages exist for which not only the parameter values but
also the operators and calculation bases are table-driven;
and coding structures, for example, the chart of accounts
or organizational structure

3. A formal installation process, including sample conver-
sion programs, job streams, and other code-reducing
aids

Like traditional packages, the purchase and use of contem-
porary application packages generally reduces the costs, risks,
elapsed time, and personal frustrations of meeting system
support needs. However, there is always a price for flexibility.
Sophisticated reference tables can require considerable load-
ing and maintenance effort, although this approach is far less
risky than modifying source code. Plus, users can often be
roped into taking responsibility for loading and maintaining
most of the tables.

More important, from the perspective of containing cost,
risk, and elapsed time, the availability of options means some-
one (usually a cast of thousands) must analyze, document,
recommend, evaluate, and (it is hoped) decide on each de-
sired option. But contemporary applications packages go a
long way toward meeting organization-specific requirements
without developing new code.

One further note before moving into a new area of pack-
aged software. As mentioned earlier, there is usually a hard-
ware resource consumption penalty for using generalized
software. Contemporary packages which favor table-driven
processes over hard-coded processing, exact a stiffer penalty
in this regard than do the traditional packages.

Adaptable Software Packages

One of the most interesting recent developments in soft-
ware packages is the trend toward building groups of related
modules that can be reconfigured to suit various application
requirements. One such package was developed to support
credit card collection activities (CACS). Recognizing that
credit card collections are a specific example of a generic class
of applications, that is, case tracking, scheduling, and state-
processing functions, the software was developed to automate
these generic functions. With a combination of powerful refer-
ence tables, including process control tables, and program
modules that can be combined in various ways, CACS can be
used with minimal source code modifications to support a
broad class of user requirements. The paper by Woodward
and DiGiammarino® describes CACS and the concept of
adaptable software in more detail.

Solve Part of the Problem With Old Code

Access to mathematical and statistical subroutines was an
early enhancement to many compilers. In contemporary sys-
tems, active data dictionaries often drive data element edits
from a common or shared subroutine. Indeed, most data pro-
cessing shops have developed some standard source language
components, perhaps as COPYLIB equivalents, that can be
reproduced in various applications at minimal risk, cost, and
so on. When we discuss using simple tools to leverage the
value of any newly written code, one point that we’ll develop
further is the idea that the design effort must explicitly focus
on identifying common processes that could be programmed
once rather than needing to be redone in multiple programs
or systems or installations.

To take full advantage of existing code (or to identify com-
mon processes for initial development), the life-cycle meth-
odology must emphasize answering the following questions at
each level of the design:

1. Have we ever automated this function before? Even a
relatively minor function, such as a date edit, can be
programmed once, even as a generalized routine, at far
less cost than having every programmer do his own
thing. At a minimum, your effort for the year 2000 will
be greatly simplified if you’ve been smart enough to
incorporate a single date routine into all your systems.
It’s essential to evaluate each process in this way as a
potential candidate for the organization’s library of stan-
dard software.

2. Will we ever need to automate this function again? Date
edits, translations of organization codes into their cor-
rect names, report headings, and many other common
functions appear in nearly every business application.
Do them once in a generalized way, at somewhat greater
cost initially, and use them forever.

Unless the deliverables at each stage of the development life-
cycle explicitly address the issue of standard software (re-
usable code), many opportunities for writing less code will be
missed—now and in the future.

USE SIMPLE TOOLS

There are two general approaches to multiplying the value of
any code you do write:

1. Extension software, which uses your (it is hoped) simple
code written in the tool’s own command language as the
input from which it creates (by translation, compilation,
assembly or one of several other extension techniques)
very substantial functionality; and

2. Conservation techniques, which are a formal set of de-
sign techniques that look for the common functional
elements in an application in order to develop a single
implementation of these common functions for use
across the application.

8 National Computer Conference, 1983

Reusing date routines is a very simple case of conservation. In
this section we’ll explore more sophisticated examples of the
two approaches just mentioned.

Extension Software

When you write JCL to unleash the power of IBM’s various
operating systems, you are using extension software to min-
imize the code you must write. My earliest programs in ma-
chine language on an IBM 1401 had no such extenders, and
we wrote our own tape reads and printer writes. Now, every
use of a system utility from within your application, that is,
calling the COBOL internal SORT, leverages a few utility
commands to perform considerable work.

Thus, the universe of extension software ranges from the
old and familiar to the new and still developing:

1. Utility programs that provide system or housekeeping
functions

2. Report writers and inquiry languages, including graphics
packages

3. Database management systems with which you use sim-
ple commands in the application programs to invoke
powerful data handling, edit, storage, and access
capabilities

4. Screen generators

. Data management and analysis tools, for example, SPSS

and SAS
6. Application generators
7. Very high-level languages.

w

The boundaries among these tools are not clear-cut, and
many of them can be used by nontechnical persons to achieve
the ultimate shifting of application development responsi-
bility. All of these tools hold the same promise of providing
complex software to leverage simple commands into powerful
functionality, and many deliver on this promise.

However, there is a serious fly in the ointment regarding the
use of extension techniques. We are now being inundated in

. a sea of command languages, specialized syntaxes, and easy-
to-learn, English-like, languages. There’s not even agreement
on how commands are delimited! Until considerable stan-
dardization occurs, taking advantage of even a small set of
these tools will impose a serious training burden on any orga-
nization. And many professional programmers and users will
resist using these tools because they quite reasonably perceive
that the cost of mastering them is too high.

Conservation Techniques

Perceptive analysts and designers have always recognized
common functions in their application specifications, but the
process of doing so was largely informal. On many business
applications, there are a rather large set of common functions
that lend themselves to a common software approach. At
American Management Systems, Inc., we have incorporated
into our life-cycle methodology a quite formal process for
searching for these common system elements.

The decision to build an application around a base of com-
mon software modules must be made explicit quite early in the
design process so that all further effort can be efficiently di-
rected. We call the resulting software, which provides com-
mon services to the rest of the application, foundation soft-
ware. The foundation software approach to developing large
application systems is described in detail in the companion
paper by Gary Curtis.”

GET SOMEONE ELSE TO WRITE THE CODE!

End-user computing is not a new idea. In the beginning of
computer history, programming was the adjunct function of
scientists, engineers, and mathematicians who were trying to
use the great behemoths to calculate ballistic missile trajec-
tories and to develop software for other, equally forbidding
problems. In my early days as a programmer, accountants
were still developing the first automated payrolls, general led-
gers, and banking and insurance systems. Professional pro-
gramming is less than 20 years old, so why do we now treat
end-user computing as a state-of-the-art development?

One reason is that, until now, whoever approached the
computer was forced to learn computer-speak—at great per-
sonal sacrifice. If we believe the advertisements for various
end-user computing tools, the professional programmer may
soon focus solely on core production systems and tool devel-
opment, leaving to the user development of most data extrac-
tion and analysis (MIS) systems. But the future has not yet
arrived.

Many of the simple tools described in this paper can be used
by a nontechnical person after some training, and the growth
of information centers attests to the availability of user-
friendly tools. Fourth generation languages, for example,
RAMIS I or FOCUS, are advertised as powerful tools for
developing whole applications from simple commands. The
proliferation of personal computers attests to the user orienta-
tion of such tools as VisiCalc. Clearly, if the user can directly
translate his unspoken (or never clearly spoken) information
requirements into a working system, he won’t have the DP
staff to kick around any more.

CONCLUSION

Computers are worthless without programs, be they software,
firmware, or part of the hardware itself. People still write
programs, and people are expensive, unpredictable, and frag-
ile. If only to sell more computers, the hardware vendors
would welcome (support and probably give birth to) any ap-
proach to program development that used more computer
resources to free scarce personnel to develop new applications
that used more computing resources. Since they develop many
of the packages and tools and generally corner the market on
really superb professional programmers, software vendors
certainly favor the techniques described in this paper. Cor-
porate users and DP managements are also on board the
write-less-code bandwagon. So why does the applications
backlog continue to grow?

Writing Less Code—An Approachable Ideal 9

. In-house programmers would rather write programs
(not to mention design whole systems) than load tables
for a contemporary package or do report writer setups.
Perhaps we need a new category of DP aide or para-
professional who sees using tools as a desirable job
description?

. Without standardization in grammar or syntax, cur-
rently available tools produce a Tower-of-Babel effect
wherever they go.

. Many users have terminal block, not to mention various
other phobia, that limit their ability to use any com-
puting tools.

. Computing resources, while obviously getting less ex-
pensive, are not free. Their acquisition, which always
occurs in large increments, is a more visible expenditure
to the organization than is the cost (opportunity cost) of
unfulfilled application needs.

Time is clearly on the side of the approaches described in
this paper, but I wouldn’t yet discharge my COBOL program-
mers nor declare that all user needs can be satisfied by their
new Apples! As in all things, a balanced mix of these new
techniques with more traditional application-development
strategies will produce the best results.

REFERENCES

1. Martin, James. Applications Development Without Programmers. N.J.:
Prentice-Hall, Inc., 1982.

2. Curtis, Gary A. “Foundation Software: A Significant Improved Approach
To The Development of Large Application Systems.” AFIPS Proceedings of
the National Computer Conference (Vol. 52), 1983.

3. Woodward, Mary, and Peter DiGiammarino. “A Case For Adaptable Appli-
cations Software.” AFIPS Proceedings of the National Computer Conference
(Vol. 52), 1983.

4. IBM. “Business Systems Planning—Information Systems Planning Guide,”
GE20-0527-3, 1981.

Foundation software: A significantly improved approach to
the development of large application systems

by GARY A. CURTIS

American Management Systems
Chicago, Illinois

ABSTRACT

The American Management Systems (AMS) approach to the technical framework
of large applications systems is based on a concept we call foundation software, an
integrated environment of standard packages and custom modules that provides
common services to the development and operation of applications software. This
environment provides a standardized, structured, and simplified view of the outside
world to applications software. Use of foundation software dramatically improves
the economics of development, operation, and maintenance of large systems and
reduces the risk of developing such systems. In this paper, the foundation software
approach is defined and illustrated, with particular emphasis on the relationship of
foundation software to the overall architecture of large-scale systems and the impact
of foundation software on the application-system development life cycle.

11

Foundation Software: A Significantly Improved Approach 13

INTRODUCTION

The AMS approach to the techaical framework of large appli-
cations systems is based on foundation software. Use of foun-
dation software dramatically improves the economics of de-
velopment, operation, and maintenance of large systems and
reduces the risk of developing such systems. This paper de-
scribes the foundation software concept and our experience
using this approach from three perspectives:

® The relationship of foundation software to the overall
architecture of large-scale systems is discussed, including
foundation software functions and components and the
major benefits to developing large-scale systems using
the foundation software approach.

® The use of foundation software is an inherent part of the
AMS GUIDE: Methodology, systems-development life
cycle. Foundation software activities in each phase of the
systems-development life cycle are described.

e The integration of foundation software and application
software is discussed from the viewpoint of the overall
system architecture.

THE DEFINITION OF FOUNDATION SOFTWARE

Foundation software is an integrated environment of standard
packages and custom modules that provides common services
to the development and operation of applications software.
This environment provides a standardized, structured, and
simplified view of the outside world to applications software.

Foundation software increases productivity throughout the
development, operation, and maintenance of applications by
isolating applications software from changes in the technical
components of the computer system and by making those
components easier to use.

Despite claims to the contrary, most operating systems,
database management systems (DBMSs), teleprocessing
monitors, and other technical components fail to simplify ap-
plications development and operations. Indeed, a common
result is that such components serve to greatly complicate the
development and operation of applications software. The
foundation software approach avoids this complication and
delivers the benefits offered by these technical components to
application software in a simple, effective manner.

Software Architectural Levels

Large-scale systems can be divided into three major archi-
tectural levels. Figure 1 shows the relationships among these

APPLICATION SOFTWARE

FOUNDATION SOFTWARE

SCREEN |ERROR REPORT | [NquiRY | REPORT -
MANAGE- [PRO- GENERA- 1PacKaGE | DIsTRI- EEEER
MENT, CESSING, | TOR BUTION DaTa
ﬁiﬁﬁf?ue CorRreC- | PACKAGE INTER-
HanDL TION FACE 1
TECHNICAL ENVIRONMENT
MVS DL/I IMS
of o ok | vram | sna | RaCF | e
DOS 1011S CICS

DISTRIBUTED O
SYSTEMS 3/6

% USER
% USER

Figure 1—System architectural levels

levels. Associated with each level are specific functional and
organizational responsibilities. The levels are

1. Technical environment—This level includes the technical
components that the system designer takes for granted
and that usually cannot be modified for application pur-
poses. It typically consists of
® system control program (OS/VS, DOS/VSE, MPE,

VMS, etc.)
® access methods and utilities (VSAM, VTAM, ID-
CAMS, etc.)
® network architecture (SNA, DECNET, X.25, etc.)
® telecommunications monitor (IMS DC, CICS, IDMS
DC, etc.)
¢ DBMS (IDMS, DL/1, Model 204, IMAGE, etc.)
Responsibility for the maintenance and support of com-
ponents of the technical environment generally rests
with the computing facility and its systems-software or-
ganization.

14 National Computer Conference, 1983

2. Application software—This level is the functional core of
the application system. It contains all of the specific
substantive functions that relate to the application (busi-
ness) problem at hand:

e editing, verification, cleansing of application data

® computations, analysis, transformations of applica-
tion data.

Most, if not all, of the application-data-dependent pro-

cessing operations occur at this level.

3. Foundation software—This level provides an interface
between the application software and the detailed con-
siderations required by each component of the technical
environment. Foundation software directly uses stan-
dard programming, communication, and control ser-
vices of the technical environment, such as database
calls, network messages, and control blocks, to provide
high-level common application services such as menu
processing, security, and error handling. Foundation
software may also include software packages such as
inquiry software and report generators.

Foundation-Software Functional Scope

The functional scope of foundation software cannot be rig-
idly defined. For any specific application system, determining
the functions to be provided by foundation software should be
domne in the context of the application design characteristics,
constraints of the technical environment, and the organi-
zational environment of the system-development effort.

Our experience is that functions with the following charac-
teristics are nearly always more effectively handled as founda-
tion software:

¢ common use of the function throughout some or all appli-
cation subsystems

® simplification of complex technical-environment features

® interface to technical-environment features that are sub-
ject to a high rate of technological change

® cxpected volatility in application requirements for the
function

® missing or poor technical-environment features

® performance sensitivity.

Although benefits from any one of these attributes can justify
inclusion of a function in foundation software, it is usually the
case that foundation software functions exhibit benefits due to
several of them. Based on these attributes, a general state-
ment of the functional scope of foundation software can be
made. The functional areas that foundation software typically
comprises are discussed later.

Foundation-Software Components
Foundation software consists of three types of components:
® Custom interface modules—Efficient, standardized utili-

zation of the technical environment’s most complex com-
ponents is usually provided through custom interface

modules. In some cases, such interfaces provide an entire
environment for applications processing. Control rela-
tionships among these interfaces and application soft-
ware vary from normal subprogram linkage to architec-
tures in which application software processes under the
control of a foundation software interface environment.
Such facilities as a reference-data interface, on-line menu
processor, and report distribution subsystem are usually
provided in this manner.

® Packaged software—Software packages are usually inte-
grated into foundation software with custom interfaces.
This topic is considered in more depth later.

® Common modules—Processing functions required fre-
quently throughout the application software are provided
as common modules that are invoked through standard
subprogram linkage. Some functions provided as com-
mon modules, such as numeric editing, free-form pars-
ing, and data validation, are generic to most business
applications systems. Others provide services that are
specific to a particular system or subsystem.

The Role of Packaged Software

Software packages, such as report generators, inquiry pack-
ages, and data-entry packages, are usually important com-
ponents of large applications systems. Packages can provide
cost-effective solutions to many of the processing functions of
large applications systems. A major difficulty in the effective
use of packages in such systems is that packages tend to be
functionally narrow in scope and are often cumbersome to use
outside the context of standardized interfaces and procedures.

Through the use of foundation software front-end and
back-end interfaces, software packages are integrated into the
processing environment of large applications systems, such
that the functions which the packages provide can be used
much more effectively by applications designers and pro-
grammers than would be possible if they were used stand-
alone.

For example, in a large-scale IMS DB/DC financial system,
ad hoc inquiries into historical and other databases have been
provided cost effectively by integrating the INQUIRY IV/
IMS query package into the foundation software on-line user
environment. Users access the package through the standard
application on-line protocol and menus, request their queries
in simplified, familiar terminology, and are essentially un-
aware that a package is being used. This level of integration
allows application security controls to be applied to ad hoc
queries and allows uncomplicated transfers among package
and nonpackage transactions. In this case, functionality was
also added to the package through foundation software. The
foundation software interface that captures query requests for
transfer to the package first scans the requests for search
conditions that will result in unacceptably lengthy on-line
database processing and redirects such requests to overnight
handling.

For a package to be incorporated into foundation software
it should be possible to use the package without any internal
modifications. This restriction does not include the use of

Foundation Software: A Significantly Improved Approach 15

vendor-supported exits through which the package passes
control to other software. Indeed, the use of such exits is a
common method for tailoring a package to specific application
requirements within the foundation software.

Foundation-Software Benefits

The foundation software approach provides benefits during
all phases of the system development process. Herein the
major ones are described, by phase.

During system design

Foundation software results in a high level of modulariza-
tion and is, in this regard, an extension of structured design
methodology. Common functions are designed only once and
many more functions can be provided by standard, reusable
software.

The high degree of isolation from a need for detailed under-
standing of the technical environment enables application de-
signers to concentrate more effectively on solving business
problems.

During system development and implementation

Senior technical staff resources are scarce throughout the
computing industry. Foundation software allows the efforts of
such staff members to be concentrated in high-payoff areas.
This allows technically sophisticated applications to be devel-
oped by relatively less sophisticated staff.

During the development of large-scale systems, changes
in the technical environment are usually introduced indepen-
dent of the application development effort. Foundation soft-
ware isolates application programmers from these changes
and results in fewer disruptions, less recoding and greater
productivity.

During system support

Rapid change in technology presents the system support
staff with a continuous major effort to keep application sys-
tems functioning against a moving background. With the
foundation-software approach, application programs are iso-
lated from the effects of this change. Application software can
be maintained by less sophisticated technical staff.

Due to the extensive use of foundation-software common
services, new application functions can be added with minimal
impact on the existing system. The application can thus be
adapted to changing user requirements more easily and more
cost effectively.

INTEGRATION WITH THE
SYSTEM DEVELOPMENT PROCESS

The foundation-software approach is an inherent part of the
AMS GUIDE: Methodology, systems-development life cycle.

This section examines some of the key aspects of the
foundation-software life cycle and the foundation-software
development and support team.

Foundation-Software Life Cycle

Foundation-software is designed, developed, and imple-
mented in a life cycle that is integrated with that of the overall
application system. The relationship of the foundation-
software and the application-development life cycles is shown
in Figure 2. Some of the key aspects of the foundation-
software life cycle follow.

® Overall system architecture—The first step in the
foundation-software life cycle is the development of an
integrating framework for the design of the system as a
whole. The overall structure for the system, the system
architecture, is designed as early as possible. The system
architecture defines the user interface with the on-line
components of the system, the environment in which the
system will be developed, and the operational environ-
ment in which the application software will run, and pro-
vides a model for effective management use of the sys-
tem. This step is critical to the successful evaluation of
the total system through its design, development, and
support phases.

Application System
Life Cycle

Foundation Software
Life Cycle

Concept Definition

Overall System Architecture

v
System Design v
Foundation Software Design

Foundation Software Development

System Development

v
Foundation Software Implementation

Foundation Software Support

v
System Implementation

System Support

Figure 2—Relationship of the foundation software and the application-system
life cycles

16 National Computer Conference, 1983

® Advanced availability of foundation-software functions—
Foundation-software design begins as early as possible,
generally late in the concept definition or early in the
system-design phase. This design encompasses all
foundation-software components including previously
developed foundation software, new custom founda-
tion-software components, and software packages.
Foundation-software design specifications must be com-
pleted sufficiently early in the system-design phase to
support the development of program specifications for
the application system. Development of foundation-
software begins during application-system design in or-
der to provide working modules, interfaces, and devel-
opment aids at the beginning of the application system
development phase. Foundation-software implementa-
tion and support activities begin during application sys-
tem development in order to ensure stable system-
development and turnover activities. '

® [terative design and development—Although a basic set
of foundation-software functions is designed and devel-
_oped early in the application-system life cycle, further
development of foundation-software functions is an iter-
ative process. The standardized interfaces and functional
isolation provided by the foundation-software approach
permit experience gained during application develop-
ment to be fed back into the foundation software without
disrupting application development.

Organizational Impact

The system-development project usually has a foundation-
software team that is responsible for the design, implemen-
tation, and support of all foundation-software components.
The primary objective of the foundation-software team’s ac-
tivities is to ensure that foundation-software designs and soft-
ware are in place sufficiently far in advance of application
teams’ needs to support the timely progress of the project.

The team consists mostly of foundation-software and tech-
nical specialists. The makeup of the team changes as the appli-
cation system moves through its development phases; that is,
in contrast to most application teams, the foundation-software
team has some members who bring very specific skills to bear
and are needed only until a particular problem is solved. In
all other ways, the team is managed as a normal system-
development team, reports to the project manager, and is
integrated into the project team. The foundation-software
team remains a part of the overall project team through imple-
mentation and turnover of the entire system, including all
foundation-software components.

FOUNDATION-SOFTWARE FUNCTIONS
AND FEATURES

The following foundation-software functions reflect AMS ex-
perience in various technical environments and application
areas and are neither a set of required foundation-software
functions nor an exhaustive list. They do, however, represent

areas where experience shows the foundation-software ap-
proach to be effective and the payoff to be significant.

On-Line User Management

On-line user management facilities provide a friendly,
screen-oriented environment that allows the user to exercise
all authorized application functions. The language, sequence
of operations, and features of this environment are relevant to
the application and the user, and are not constrained by jar-
gon and idiosyncracies of the on-line technical environment.
Features usually provided include

® menu processing
® screen handling
® security

® user assistance.

Input Management

Input management controls the processing of application
data from the point at which the data enter the system until
the data have been accepted as valid and has been stored in
application-data structures. Data can be entered, processed,
corrected, and reprocessed in batch or on-line modes, in any
combination. Standardized, application-oriented data organi-
zations such as transaction, document, and batch organiza-
tions are used. Specific features include

® data entry

® error processing and suspense
® error correction

® document approval

® input workflow control.

Application Data Management

Foundation software is used to simplify and standardize ac-
cess to application data structures and, where needed, to make
the access more efficient. This function generally takes the
form of data-structure (database) access interfaces that present
to the application tabular logical views of application data, and
of update-isolation facilities which ensure that application data
structures are updated in a consistent, synchronized manner.
The interfaces manipulate data structures using efficient, and
often complex, call patterns, database facilities, and custom-
developed functions. The major functions addressed by appli-
cation data management are

® reference data maintenance and control
® reference data interface

@ update isolation

® application data backout.

Network Management

In distributed data-processing environments, application
software may operate on different processors connected

Foundation Software: A Significantly Improved Approach 17

through a network. In such an environment, isolation from the
technical complexity of the network is provided by network-
control foundation software. Network-control software allows
the application software to be designed and implemented with-
out regard to where in the network architecture the application
software must operate. Network control includes the functions
of

® network status
® transaction routing
e distributed site support. A

o

Output Management

Management of the varied forms and high volumes of output
produced by large-scale application systems is controlled by
output-management foundation software. Some of the major
functions include

® report distribution
® graphics interface
® report generators
® on-line inquiry.

System Management

Overall management of the processing of a complex applica-
tion system is simplified through several foundation-software
functions. The objective is to present to system administrative
personnel a standardized, simplified view of control facilities
that makes it possible to exercise complex functions of the tech-
nical environment with minimal technical expertise. System-
management foundation software provides:

® scheduling
® recovery/restart
® performance monitoring.

Office Automation Facilities

Foundation software integrates application-system data and
reports with office-automation facilities in two ways. Where
the user’s office environment includes existing facilities (such
as stand-alone word-processing systems), foundation software
provides interfaces that allow application software to send data
to and receive it from these facilities. Where office-automation
features are required by an application system but are not
available in the user environment, foundation software in-
cludes both the application interfaces and the actual document
preparation and mailbox facilities themselves. The office-
automation facilities supported by foundation software include

® document preparation
® word processing
® clectronic mail.

Technical-Environment Enhancements

Occasionally, technical environments do not provide some
basic system support facilities that are essential to fulfillment of

the application’s primary objectives. In this situation, the
system designer must often decide between a considerable
sacrifice in application functionality and the development of
significantly more complex application software owing to the
incorporation of technical support features. When analysis of
this tradeoff leads to a decision to support the application’s
required functions by developing the complex facilities missing
from the technical environment, the foundation software ap-
proach minimizes the adverse impact of this additional com-
plexity. It further ensures that the complexity of the applica-
tion software is not affected. The following are examples of
facilities that are normally, and preferably, provided by the
technical environment, but that may be provided by founda-
tion software when necessary.

® database locking

® transaction logging
® job control

® dataset management.

FOUNDATION SOFTWARE CASE STUDY

A description of a large-scale integrated financial system im-
plemented under IBM’s IMS DB/DC technical environment is
presented below. The relationship of the foundation software
and application software components are particularly note-
worthy. Figure 3 shows the overall system architecture keyed
for the following discussion.

The on-line user interface (1) handles user sign-on, sign-off,
and security checking. It presents users with a series of menus
to get to the desired system function, be it data entry, pro-
cessing, or an inquiry request. As a security precaution, if a
terminal has not been used for an extended period (set by the
system administrator—perhaps 15 minutes), then the On-Line
User Interface will automatically sign-off the terminal.

A data entry/error correction program (2) accepts input
transactions (i.e., documents) and stores them on the docu-
ment suspense database.

If the user wishes to process the transaction immediately, the
data entry/error correction program will perform an IMS mes-
sage switch to an application edit/update program. If errors are
detected, the application program will signal the data entry/
error-correction program (2), which will post the errors high-
lighted back to the user, who may then correct the erroneous
data and immediately resubmit the document.

Note that data can be entered and corrected without ever
interacting with an application program. The data entry/error
correction program also handles the scheduling of documents
for processing. The purge-accepted-documents program (3)
physically deletes documents from the document suspense
database and creates an audit trail log.

Reference tables are created and maintained by the founda-
tion software reference data edit/update software (4) and ac-
cessed through the reference data interface (RDI) software
(5). The RDI is a memory-buffered approach, which takes
maximum advantage of the fact that in most financial systems
only a few specific table values constitute the majority of the
requests. The RDI approach has eliminated over 90% of the

18 National Computer Conference, 1983

User

Terminal

1 On-1ine

Document

2Data Entry/

Suspense

Error

Database Correction

Inﬂ%%%cion
J,l 4;1
LE.S. . F.S.
on-line 4RefereA€E“"4
Inquiry

Data
Edit/Update

\ ’
S—

Purge [F.S L |
Accepted
LA.S.
Document Edit/Update
) TS

Appli- Referenc Reference

cation Data 4——' Data

Database Interface Tables
Audit Log <:::::::>

A.S. 1
. 8 LE.S.
7 |F.S. Generate
System Reports
Assurance
9 1F.S.
¢ Report
Reports Distribution

File

Legend:
F.S. Foundation Software Report
A.S. Application-Specific Software

Distribution

Figure 3—IBM DB/DC integrated financial system architecture overview

Foundation Software: A Significantly Improved Approach 19

reference data DL/I calls in our financial system for Standard
Oil of Indiana.

The foundation software provides on-line inquiry (6) into
the reference data tables and also provides ad hoc inquiry
through a general-purpose inquiry package. The INQUIRY
IV/IMS package from Informatics has been used for this
purpose.

System assurance software (7) ensures that the application
database retains integrity at all times. Not only is the techni-
cal integrity of the application database verified (no broken
pointer chains, for example), but the substantive integrity is
also verified. This capability is incorporated into the database
design with planned redundancy and summary totals. In our
experience this is an essential tool to help prevent system and
application errors from corrupting the quality of the applica-
tion data.

Reports are produced both by custom-written COBOL re-
port programs, and by an ad hoc report generator (8), such as
EASYTRIEVE/IMS from Panasophic Software, which is inte-
grated into the foundation software.

Large systems typically generate scores of reports on a regu-
lar basis to be distributed to many recipients. It is time con-
suming and expensive to manually burst, duplicate, and decol-
late the output of standard report programs for distribution to
individual managers and staff personnel. AMS has developed
and used successfully on a wide variety of projects foundation
software that generates a custom packet of report pages for
each recipient. This report-distribution system (9) is table
driven, and it allows each individual to receive the correct num-
ber of copies of the desired reports, all organized into a neatly
bound and indexed packet.

A case for adaptable applications software

by MARY WOODWARD

Associates Financial Services
Southbend, Indiana

and
PETER F. DIGIAMMARINO

American Management Systems, Inc.
Redwood City, California

ABSTRACT

Contemporary economic circumstances have sent many organizations that extend
consumer credit scrambling to secure automated support for collection operations.
The traditional alternatives, custom system development and packaged software,
fall far short of being acceptable to most large credit-oriented organizations. The
Computer Assisted Collection System (CACS) was originally developed as a custom
system and has since been used as adaptable foundation software by many large
organizations to secure essentially customized support at a fraction of the cost, time,
and risk that would normally be required. This paper reports on the success of the
use of adaptive software to fill this urgent need and lends credence to the theory that
throughout the 1980s there will be a trend towards the use of adaptive software to
meet business’ demands for low-risk, low-cost, fully functional and tailored soft-
ware.

21

A Case for Adaptable Applications Software 23

INTRODUCTION

Consumer credit privileges are among the most visible and
popular services provided by financial institutions and stores.
Recent government regulations, economic factors, and social
trends have had a profound impact on the business of granting
credit. Consequently, consumer credit operations are of para-
mount importance in many of today’s business organizations.

A variety of support functions are required to establish and
maintain a profitable consumer credit operation, including
credit authorization, accounting, customer service, and col-
lections. Changing economic conditions and restrictive legis-
lation often strain an organization’s capacity to provide
effective and efficient credit services. The high payroll and
record-keeping costs due to their labor-intensive nature also
significantly affect productivity and profitability of credit
operations. These factors have an especially severe impact on
credit collections operations.

The Computer Assisted Collection System (CACS) is a
software system that improves the productivity and effec-
tiveness of credit collections through a form of office auto-
mation. CACS provides users with immediate, on-line access
to pertinent account information to assist in executing col-
lection tasks and in making decisions.

CACS was developed originally as a custom system by Wells
Fargo Bank, N.A., in cooperation with American Manage-
ment Systems, Inc. (AMS), a company that specializes in
management consulting and computer systems development.
The system first became operational in the Wells Fargo Credit
Card Collection Department in the spring of 1980.

Wells Fargo, like many organizations, was severely affected
by the recession of 1975. Collection operations were strained
beyond capacity as the number of delinquent and overlimit
customers requiring proper follow-up surged. Shortly after
the recession had eased, Wells Fargo Bank resolved to devel-
op an automated system for support of collections in order to
lower processing costs, improve collection effectiveness, and
accommodate surges in processing requirements in bad times,
as well as to allow for aggressive growth in credit operations.

Efforts to develop an automated collection support system
soon revealed that such a system would require careful human
engineering, the application of design techniques not com-
monly found in contemporary automated support systems,
and a technical architecture that, on the surface, appeared
straightforward but, in reality, was quite complex. Several
years and approximately one million dollars later, Wells Fargo
was no closer to having an operational support system than at
the outset.

A new, 18-month venture with AMS finally resulted in a
comprehensive collection support system that, almost from

the day of initial operation, started to pay back in terms of
increased collection productivity (close to 100% increases in
productivity were measured) and effectiveness (record low
losses and delinquencies were experienced). Wells Fargo,
had, after many hard years, succeeded.

THE CONCEPT OF ADAPTIVE
SOFTWARE EMERGES

The systems developers thought that the underlying CACS
design and technical architecture were sound enough and flex-
ible enough to be used by other organizations to help them
secure a collection system meeting their own collection re-
quirements. CACS, while certainly not a traditional software
package, could be used as baseline software around which a
customized collection support system could be developed.
The merits of this logic were taken to be

1. Wells Fargo Bank’s prior experience, and the experience
of at least a half-dozen other organizations, indicated
that it is difficult, expensive, time consuming, and risky
to custom-develop a collection system.

2. There were no mainframe collection system packages
available on the market.

3. Even if packages did emerge, the esoteric requirements
found in large organizations, which have evolved over
decades in the business, mean that the use of off-the-
shelf software would require major business and oper-
ational concessions, which would be undesirable and
traumatic.

For some set of organizations, CACS as foundation or
adaptive software could, it was reasoned, be used to secure a
significant head start towards developing a custom collection
system. Based on available data, the development of a custom
system for a large organization was estimated to require a
budget of from $500,000 to $1.5 million for professional ser-
vices over 18 to 36 elapsed months. With CACS, the same
functionality could be accomplished for fees and services of
from $100,000 to $500,000 in just 3 to 6 months.

On this reasoning, Wells Fargo and AMS set out to test
their hypothesis in the market place. The target customers
were large organizations in several market segments (banks,
finance companies, service bureaus, retailers, etc.) who might
be planning to provide automated support to collections.

THE INITIAL REACTION

Initial contact was made with several target corporations. As
expected, many companies were making hasty plans to pro-

24 National Computer Conference, 1983

vide automated assistance to collections since the current re-
cession was at hand and collection woes were mounting.
While the need was well-established and immediate, the alter-
natives were not attractive. The options were to develop cus-
tom software or to conform to the terms offered by relatively
inflexible, minicomputer-based collection systems that had
recently emerged.

The concept of starting with CACS and building upon it was
greeted initially by two types of response. Those organizations
with large systems organizations tended to say that their com-
pany never bought packages because packages couldn’t possi-
bly meet their specific requirements, were not developed ac-
cording to internal standards, and caused more trouble than
they were worth. Organizations that would usually be inclined
to consider off-the-shelf packaged software tended to focus on
the fact that CACS was not actually a package at all because
standard, well developed user documentation, run books, ac-
ceptance test scenarios, and the like did not exist.)

The response to these points was that CACS represented a
different kind of software solution. CACS is not a packaged
system. It is a set of software that can be installed and built
upon to provide, in the end, a complete system tailored to the
organization’s unique requirements. The system, in the end,
belongs to the organization; it is unique and is maintained by
in-house resources.

The decision to acquire and use CACS finally depends on
a comparative analysis of functionality, cost, schedule, and
risk (see Table 1). Without disputing any given organization’s
ability to succeed in developing a collection system, we see a
good deal of empirical evidence that it is difficult to do so. The
number of abortive efforts speaks for itself. For an or-
ganization starting from scratch, therefore, the risk of failure
is high. The time and cost associated with custom devel-
opment are also high relative to that required for systems that
start with adaptive software. Finally, since the software is
adaptive and easy to work with, all desired functions, fea-
tures, and requirements can be accommodated.

The final analysis of the adaptive solution includes user
review of the system in operation and technical evaluation of
the system’s components. The spectacular success of the sys-
tem at Wells Fargo Bank, and later at other sites as well, left
users clamoring for immediate installation of the system. The

TABLE —Comparison of packaged software, custom software,
and adaptive software

Packaged Custom
Evaluation Criterion Software Software Adaptive Software
Time required to .
implement/install Low High Moderate to Tow
Costs to install Low High Moderate to Tow
Risk Low High Moderate to low
Degree of Moderate to Tow
difficulty Low High
Flexibility Low Variable High
Closeness of fit . :
to requirements Low High High
Support Rely on In-house In-house
vendor

technical elegance of the system’s underlying design methods
and technical architecture left systems personnel convinced
that the software would be easy to work with and maintain.

Though initial reactions to the concept of starting with
CACS are ofien negative, the final decision is clearly in favor
of the adaptive software because of its handling of the critical
problems of development:

. The need to reinvent the wheel is eliminated.

. The organization’s unique requirements can be met.

. The risks are low.

. The costs are a fraction of what they otherwise might be.
. The time required is similarly reduced.

AW -

CACS STATE PROCESSING

There are several distinguishing design components of CACS
that have primarily accounted for its success as adaptive soft-
ware. The most prominent of these is its capacity for accu-
rately and completely modeling work situations that conform
to the following:

1. The work function is to manage a set of items according
to prescribed procedures (e.g., clients, prospects, ac-
counts, patients, etc.).

2. Associated with each item are one or more events that
can occur (phone call, ietter, payment, check-up, etc.).

3. For each item, one particular event is scheduled to occur
next (e.g., follow-up telephone call on the tenth).

4. This next scheduled event defines the item’s state.

5. Tt is essential to track all events.

6. Each event yields one of a set of possible results (e.g., no
answer, insufficient payment, broken promise, bad cred-
it check).

7. Given an item in a state, when an event occurs that yields
a particular result, the prescribed procedures determine
the new state for that item (e.g., after three no answers
send a letter and obtain a credit report).

The item’s progression through a well-defined set of work
situations in response to the results of scheduled events can be
documented using a standard state-processing diagram or a
conventional finite-state automata grammar. Examples of this
abound both in the world of computational theory’ and in the
world of collections. Figure 1 presents a simplified view of this
from a collections viewpoint. Figure 2 presents an actual state
diagram from one of the CACS installations. The system’s
states and processing rules are easily defined, set-up, used,
and refined at a given installation (and between installations)
using the CACS State Definition and Transition Tables, Pa-
rameter Tables, and well-structured application software.
With this, the time required to understand, completely and
unambiguously, and accurately document the business func-
tions, and then to design in detail and implement automated
support, is reduced to a mere fraction of that which would be
required using a conventional approach.

The CACS State Processing facility, with the systems tech-
nical architecture {see Figure 3) and its other generic support

WAITING FOR
NIGHT CALL

Too Many No Answers

No
Answer

WAITING
FOR INITIAL
CONTACT

Left
Message

Refusal

Too Many Unproductiyve
Left Messages

Promise to Pay

Insufficient Payment
Received

//// ayment Received

Hold Date
Arrives

Payment Received, Other
Promise Pending

AWAITING
PAYMENT OR
HOLD-DATE

AWAITING
BROKEN PROMISE
REVIEW

Promise to Pay

More Work

ore ‘Work

WAITING
REFUSAL
REVIEW

Alternate Action

Figure 1—CACS state processor overview

P
2

Alternate Action

aremyjos suonedddy sjqeidepy 107 ase) v

s<

§ Recelved,

Mother Partis)
High Activity Promise Payment
Pending ‘ b
o\
V
-I
4
%

-{ Asslstance

Vaiting

istes

Broken
Promise
Review

Fe

No Phone

Treoy Al

o/ Supervisor
eview

Recenc
Fo“ow-v'

Fil

Promise
Ruﬂ\cy

Fia,

<X BRLMY

! s
/ :
Iy
a2
-y
‘e
7
>
N
(g
\ WS4 1

2 x BP‘LMT ,/

Figure 2—CACS state processor, diagram from actual installation

€861 ‘eouaroyuo) 19indwio)) [euonEN

Paynents,
Purchases

Account ing
System
(a/s)

A/S
Credit

TS

l Table

————plaintenanceg

|Subsystem

Inactive
Accounts

\
\
" i
Daily
Suégsgtem Subsystem
N
A Y
N 1‘\
h \
\
\
Daily Action -
~Datermination 4 -
Subsysten -~

History
Subsysten)

b e amsnmn

3 v

Reports
Letters

Figure 3—CACS technical architecture

Requests foi—l ~———
Credit Bureau
. Work
Reports Lists

On-line ————

X

Reporting
Subsystem

Reports

sremyjos suonesiddy sjqeidepy 10y ase) v

LZ

28 National Computer Conference, 1983

functions (including list processing, audit trail processing, and
historical data tracking), define a technology capable of being
used as the foundation for a set of adaptive software systems.

IMPLICATIONS

Based on the CACS experience, there should be many similar
success stories developed around adaptive software in the fu-
ture. The need for multiple organizations to independently
develop large and complicated custom systems to address the
same fundamental business need is behind us. The need to
modify the business functions to fit the packaged software
solution is similarly obviated. The trend will be for well-
designed software systems to be used as the foundation upon
which other self-sustaining software solutions will evolve.

CACS is one of the forerunners in the evolution of such
systems. Its success with this strategy has been both swift and
startling. In just 14 months from the time of its introduction
into the marketplace, 10 organizations have selected it for
their solution. Half of these are already realizing the benefits
from an operational collection system. The remainder will be
operational within just a few months. Over 25 other or-
ganizations are now giving serious consideration to the sys-
tem. The success of CACS as adaptive software is already
secured. The success of adaptive software as a trend for the
80’s lies just around the corner.

REFERENCES

1. Brainard, Walter, and Lawrence Landweber. Theory of Computation. New
York: John Wiley, 1974.

Knowledgeable contexts for user interaction

by BOZENA HENISZ THOMPSON,
FREDERICK B. THOMPSON, and
TAI-PING HO

California Institute of Technology
Pasadena, California

ABSTRACT

ASK, A Simple Knowledgeable System, is a total system for the structuring, manip-
ulation, and communication of information. The ASK user interface is a simple
dialect of natural English. The system includes extensive means by which a user
group and application programmer can build a knowledgeable context for user
interaction. The users themselves can build, modify, and extend their knowledge
base. They can add complex definitions that embody knowledge of their domain.
They can ground a new tentative knowledge base on more stable ones, modifying
and extending their new one without affecting the old.

A truly knowledgeable system must also know how to perform complex tasks in
response to terse user inputs, taking over complicated but repetitive tasks on simple
cues. The ASK system includes three system-guided dialogues that can be used to
build such knowledgeability into a user’s context.

29

Knowledgeable Contexts for User Interaction 31

INTRODUCTION

Systems for Experts

It is generally agreed that any computer system which di-
rectly serves a group of users must be knowledgeable concern-
ing the domain in which that group is working. The term
“knowledge base” is rapidly replacing “database” to describe
the information available to the computer in responding to
user interaction. One form of knowledge-based system that is
receiving a good deal of attention is the expert system. In an
expert system, experts build the knowledge base and users
draw on this expert knowledge. In the words of Dr. Edward
Feigenbaum, of Stanford University, whose seminal work es-
tablished this important area:

Expert systems can be viewed as intermediaries between ex-
perts, who interact with the systems in “knowledge acquisition”
mode, and human users who interact with the systems in “con-
sultation mode.”

There are, on the other hand, many areas where the using
group itself is intimately involved in the building, modifica-
tion, and extension of their own knowledge base. In the typi-
cal research team, management or military staff, or business
office, the central activity is the maintenance of the knowl-
edge base in the form of plans, data, designs, and coordi-
nation of their operations. Office and manufacturing-auto-
mation systems will soon evolve into just such systems.
Knowledge-based systems that support these activities must
provide a kind of service to their users very different from
the kinds provided by expert systems. They are, in the words
of Dr. Donald Walker, of SRI International, Systems for
Experts.

There are certain properties that a system for experts must
have. First, such a system must be natural to use. This implies
a reasonable facility for natural language but also for accept-
ing the jargon that rapidly builds up within such a user-group.
It implies a capability for text and graphic processing and for
numerical and statistical calculation, all as an integral part of
the knowledge base itself. Such systems must have means by
which their user groups can easily add to, change, and extend
their knowledge base as a normal part of their interaction with
it. Such changes and extensions can come from many sources.
Some will occur as part of the users’ interaction with one
another: bringing records up to date, writing reports and cir-
culating comments on the work of others, completing design
drawings, and scheduling and maintaining the information
necessary for coordinating operations. Whole bodies of data
may come from other sources, for example by the incorpor-

ation of commercially available data or the inclusion of the
knowledge bases of subordinate groups. Providing facile
means for effecting all of these varied kinds of modification
and extension is an essential aspect of systems for experts.
When an expert team uses such a system on a day-to-day
basis, many of their tasks will be repetitious, and with experi-
ence these tasks will reduce in essence to the specification of
a few inputs to control a complex but repetitive process. A
system for experts must provide the means for defining such
tasks and relegating the tedious details to the system. And the
system must know enough to hold a brief dialogue with its
user to obtain the instructions necessary for it to complete the
task. The specifications of such tasks will be an everyday
practice of expert staffs; thus the means for such definition
must be facile and a natural part of system interaction.

The ASK System, a System for Experts

This paper is about such a system, the ASK System, a
system for experts. ASK, A Simple Knowledgeable System,
exists. It is implemented on a Hewlett-Packard HP-9836 desk-
top computer, in PASCAL. The film shown in connection
with this paper is of the ASK System in action. The film is
taken in real time. (Many of the examples from the film are
repeated in the written form of this paper.) In a single paper
it would be impossible both to give a broad coverage and also
to treat in any depth the various capabilities of this system. In
this paper we have chosen the former to give a broad overview
of the ASK System. For those who are seriously interested, we
would be glad to find an appropriate opportunity to discuss
more detailed aspects of the system.

To introduce you to ASK, we will start out with a few
examples of queries of a simple database concerning ships.
The uninitiated user may wish simply to ask:

) How many ships are there?
8
» What is known about ships?
some are in the following classes:
Navy
freighter
old
tanker
all have the following attributes:
destination
some have the following attributes:
home port
cargo

32 National Computer Conference, 1983

all have the following number attributes:

age
some have the following number attributes:
speed
length
beam
) List the destinations and home port of each ship.
ship destination home port
Ubu New York Naples
Tokyo —
Maru Oslo Tokyo
Kittyhawk Naples Boston
Boston —
London —
Alamo London London
New York —
North Star London New York
Nimitz London Norfolk
Saratoga unknown Norfolk

Y What is the number of New York ships?
There are 2 answers:
(1) New York (destination) ships
2
(2) New York (home port) ships
1
Y What about Norfolk?
What is the number of Norfolk ships?
Norfolk (home port) ships?
2
) Wheat is carried by how many ships?
2
) Coal and oil?
coal and oil is carried by how many ships?

ships
coal 1
oil 2

y How many ships are there with Inegth greater than 600 feet?
Spelling correction: “Inegth” to “length”
2
) What are they?
What are they [ships with length greater than 600 feet]?
North Star
Kittyhawk
What ships that carry wheat go to London or Oslo?
ships that carry wheat
London Maru
Oslo Alamo
Y Does the Maru carry wheat and go to London?
yes

~

In the terminology of ASK, a user context is a knowledge
base together with the vocabulary and definitions that go with
it. A given user will usually have several contexts for various
purposes, some of which may be shared with others in the
group. You have seen examples from the small “ship” file
context. Let’s look at quite a different one, an example of a
bibliography of literature on artificial intelligence (here trun-

cated).

> How many articles are there about knowledge represen-
tation?
15
) Which ones were written in 1979 by each author?
Which [articles about knowledge representation] were writ-
ten in 1979 by each author?
author articles about knowledge representation
G. G. Hendrix Encoding Knowledge in Partitioned
Networks
On the Epistemological Status of Se-
mantic Networks
) What other articles has Hendrix written?
What other articles [than articles about knowledge
representation] has Hendrix written?
LIFER: A Natural Language Interface Facility

R. J. Brachman

Or a knowledge base concerning one’s mail:

Y Who have I received mail from?
John Smith
Peter Jackson
» Display my mail from John Smith.
Fred, Your budget looks good to me. Suggest you
submit it as is.
John
) File it in my budget correspondence file.
File [my mail from John Smith] in my budget correspon-
dence file.
my mail from John Smith has been filed.

You have seen examples from three different contexts. How
contexts are created and related to one another will be dis-
cussed below.

EXTENDING USER CONTEXTS

The major emphasis of this paper is on the ability of the users
of ASK to structure their own knowledge bases. We turn now
to those issues.

Extending the Knowledge Base and Adding and
Changing Data

A knowledge base typically contains objects and classes of
these objects; it also has knowledge of the attributes that these
objects might possess and of relationships that might hold
among them. The ASK System accepts objects of several
types: individuals (e.g., Boston, John), numbers, texts (e.g.,
the text of a given memo or letter), matrices, and so on. The
following sequence illustrates how a user can extend his or her
knowledge base by adding new objects, classes, attributes,
and relations. We will use the artificial-intelligence (AI) bibli-
ography context for this illustration. Note how easy it is to add
new attributes, “fields” in relational-database terminology,
and how text objects are handled in a straightforward way as
integral parts of the knowledge base.

Knowledgeable Contexts for User Interaction 33

) Create the attribute: rating
The attribute rating has been added.

) create individuals: seminal, excellent, fair and impossible

The following individuals have been added:

seminal excellent fair impossible

The rating of Winograd’s 1980 paper in Cognitive Science is

excellent.

excellent has been added as the rating of Winograd’s 1980

paper in Cognitive Science.

rating of A Framework for Representing Knowledge is im-

possible.

impossible has been added as the rating of A Framework for

Representing Knowledge.

Scripts, Plans, Goals and Understanding’s rating is seminai.

seminal has been added as the rating of Scripts, Plans,

Goals and Understanding.

The rating of Minsky’s paper in The Psychology of Com-

puter Vision is seminal.

impossible has been replaced by seminal as the rating of

Minsky’s paper in The Psychology of Computer Vision.

List the author of each paper that has a rating of either

seminal or excellent.

paper author

Scripts, Plans, Goals and Understanding R. C. Schank

A Framework for Representing Knowledge =~ M. Minsky

What Does It Mean to Understand Natural

Language T. Winograd

» Create an individual/text relation named comment
The individual/text relation comment has been added.

) Create a comment on A General Syntactic Processor
Please enter text:

Best paper on chart parsers.
A new text has been added as comment on A General
Syntactic Processor.

) Display my comments on each paper by R. M. Kaplan.
paper by R. M. Kaplan comments
A General Syntactic Processor Best paper on chart pars-
ers.

~

~

~

~

~

Definitions

The examples so far illustrate how one can build, query,
and modify a database. However, to make such a system more
knowledgeable, one needs to be able to add definitions that
embody interrelationships among the basic objects, classes
and attributes of the data. The simplest form of definition is
synonym:

» definition: tub: old ship
Defined.

Although this form of definition allows one to introduce ab-
breviations and many forms of jargon, more extensive forms
of definition are desirable. Here are two illustrations using the
ship file context. In the second definition, note the use of
quotes to create local “variables.”

) definition: area: length * beam

Defined.
) List the length, beam and area of each tub.
tub length beam area
foot foot foot**2
Ubu 231.667 48 11120.016
Alamo 564.5 84 47418.
) definition: meter: 39.37 * (foot/12)
Defined.

) beam of the Alamo squared in square meters?
655.526472343 square meters

) definition: longest “ship”: “ship” whose length is the max-
imum length of “ship’’s
Defined.

) What is the length in meters of the longest ship whose home
port is Naples?
121.920243840 meters

The notion of what is long may be quite different in another
context, say in the bibliography context.

) definition: long: paper whose number of pages exceeds 49
Defined.

) definition: long: book whose number of pages exceeds 800
Defined.

> What Al bibliography items are long?
there are 2 answers:
(1) long: paper whose number of pages exceeds 49
Physical Symbol Systems
A General Syntactic Processor
(2) long: book whose number of pages exceeds 800
Human Problem Solving

> What long books were written in 19727
long: book whose number of pages exceeds 800
Human Problem Solving

Family relationships make for a good illustration of defini-
tions; we switch to a small family-relationships context.

) What are attributes?
individual/individual attributes:
spouse
) What are relations?
individual/individual relations:
parent
Y What are classes?
individual classes:
male
female
Y What are definitions?
definition: mother: female parent
definition: father: male parent
definition: child: converse of parent
definition: sibling: child of parent but not oneself
definition: cousin: child of sibling of parent
) List the father and mother of each of Billy Smith’s cousins.
Billy Smith’s cousins father mother
Baby Boyd Robert Boyd Jill Boyd

34 National Computer Conference, 1983

Verbs

Initially, the only verbs known to the ASK System are “to
be”” and “to have.” The user can add new verbs by para-
phrase, as in the following illustration:

)} verb: ships “go” to New York: destination of ships is
New York
Defined.

) verb: ships “carry” coal from London to Boston: ships have
coal as cargo, have London as home port and go to Boston
Defined.

> Each old ship carries what cargo to each port?

old ship port cargo

Ubu New York oil
Tokyo oil

Alamo London wheat

coal
) What is carried by the Alamo?
wheat
coal

> Wheat is carried to London from what ports?
New York

) What cities does the Alamo carry wheat to?
London

Basing One Context on Ancther

We have shown how users can add new vocabulary, data,
and definitions to their contexts. However, this would be a
tedious way to build a large and useful database from scratch.
We now discuss two ways of incorporating bodies of existing
data in a user context.

Consider a user of the Al bibliography context illustrated
above, who wants to build a wider bibliography context,
adding new information—vocabulary, data, and definitions—
without, however, disturbing the old one. To do so, all he or
she needs to do is select a new name, say CS bibliography, and

type
Base CS Bibliography on Al Bibliography

The result of this basing action is a new context. Upon enter-
ing this new context—

) Enter CS Bibliography
-—one can make additions:

) individuals: An Introduction to Database Systems, C. J.
Date
The following individuals have been added:
An Introduction to Database Systems C. J. Date

) An Introduction to Database Systems is a book.
An Introduction to Database Systems has been added to
book.

> The author of An Introduction to Database Systems is C. J.
Date.

C. J. Date has been added as author of An Introduction to
Database Systems.

» Keyword of An Introduction to Database Systems is data-
base.
database has been added as keyword of An Introduction to
Database Systems.

Y Who wrote what about databases?
author
D.L.Waltz Natural Language Access to a Large Data Base
C. J. Date An Introduction to Database Systems

These additions to the CS bibliography would not affect the
Al bibliography context. However, additions and modifica-
tions that are subsequently made in the AI bibliography con-
text would automatically be reflected in the CS bibliography.
Several contexts can be based on a given one, and one context
can be based on several; thus a hierarchical structure of con-
texts can be realized. All contexts are directly or indirectly
based on the BASE context, which contains the function
words and grammar of the ASK dialect of English, the math-
ematical and statistical capabilities, and the word processor.

The Bulk Data Input Dialogue

There is a great deal of information in existing databases,
and a system for experts must facilitate the addition of such
data to the knowledgeable user’s context. In the ASK System
there is a dialogue, called the Bulk Data Input Dialogue,
which can be called on to build an existing database into one’s
context. The result not only integrates these new data with
those already in the context, according to the ASK dialect of
English, but in many circumstances will make the use of these
data more responsive to users’ needs.

The Bulk Data Input Dialogue prompts the user for neces-
sary information to (a) establish the physical structure of the
database to be included (b) add necessary classes and attri-
butes as needed for the new data entries. The user also indi-
cates, using English constructions, the informational relation-
ships among the fields in the physical records of the database
file that he or she wishes carried over to the ASK context. We
will not illustrate the Bulk Data Input Dialogue here, since it
is similar to two other ASK System dialogues that will be
described and illustrated below.

KNOWLEDGEABLE DIALOGUES

In the day-to-day use of an interactive system, a user is very
often involved in repetitive tasks; much of the drudgery of
such tasks could be shifted onto the system if it were more
knowledgeable. Such a knowledgeable system, as it goes
about a task for the user, may need additional information
from the user. What information it needs at a particular point
may depend on earlier user inputs and the current state of the
database.

Some have raised the question, whether natural language is
always the most desirable medium for a user’s communication
with the computer. Expert systems, for example, have tended

Knowledgeable Contexts for User Interaction 35

to use computer-guided dialogues. One simple form such a
dialogue might take is illustrated by the following dialogue, in
which a new entry is added to the AI bibliography:

» New bibliography item

Add to what bibliography? AI Bibliography

Title: Natural Language Processing

Author: Harry Tennant

Keyword: natural language

Keyword: syntax processing

Keyword: speech acts

Keyword:

Natural Language Processing has been added to the Al

Bibliography.

) Title:
The “new bibliography item” dialogue is completed.

> What AI Bibliography items were written by Harry Ten-
nant?
Experience with the Evaluation of Natural Language
Question Answerers
Natural Language Processing

e S o e e

Other alternative media for user/system communication are
menu boards, selection arrays, and query by example. Many
other cryptic ways to communicate user needs to a knowledge-
able system can be thought of; often the most useful means
will be highly specific to the application. For example: in
positioning cargo in the hold of a ship, one would like to be
able to display the particular cargo space, showing its current
cargo, and to call for and move into place other items that are
to be included.

In the past, enabling the system to respond more intelli-
gently to the user’s needs required the provision of elaborate
programs, since the user’s tasks may be quite involved, with
complex decision structures. The introduction of terse, effec-
tive communication has incurred long delays; thus a user’s
changing needs had little chance of being met. In the ASK
System, the users themselves can provide this knowledge.
They can tell the system how to elicit the necessary informa-
tion and how to complete the required task. This ASK capa-
bility is quite easy to use, opening the way for its everyday use
in extending the knowledgeable responsiveness of the com-
puter to the user’s immediate needs.

The Dialogue-Designing Dialogue

The user must provide the system with knowledge of a
particular task; more precisely he or she must program this
knowledge into the system. The result of this programming
will be a system-guided dialogue that the user can subse-
quently initiate and that will then elicit the necessary inputs
that it needs. Using these inputs in conjunction with the
knowledge already available, particularly the database, the
system completes the task. It is this system-guided dialogue
that the user must be able to design.

In the ASK System, there is a special dialogue that can be
used to design system-guided dialogues to accomplish particu-
lar tasks. We call this the Dialogue Designing Dialogue

(DDD). Using DDD, the user becomes a computer-aided
designer. Since DDD, in conducting its dialogue with the
user, only requires simple responses or responses phrased in
ASK English, the user need not have any programming skill
or experience at all. Using DDD, the user alone can replace
a tedious, repetitive task with an efficient system-guided
dialogue, all in a natural-language environment. The ASK
DDD constitutes a high-level, natural-language programming
capability. We hasten to add that it is not a general-purpose
programming environment. It is for “ultra-high”-level pro-
gramming, gaining its programming efficiency through the
assumption of an extensive vocabulary and knowledge base on
which it can draw.

DDD is based on the concept of an interaction node. Such
a node represents a point in the dialogue where the computer
turns to the user for additional input, that is, more data or
further instruction as to what is desired. At such a node, the
system prompts the user as to what information it needs,
digests the user’s response, takes indicated actions, and
progresses to another node that it perceives as the next place
for interaction. As it does so, it maintains its own local con-
text, remembering what the user has told it and what it is
supposed to do.

The DDD dialogue sets up all of this; therefore it is itself
quite complex in its dialogue paths to elicit the information it
needs, information about prompts, expectations of user re-
sponses, diagnostic messages, references to the database,
maintenance of the local context, and so on. We can only
illustrate a small part of the DDD dialogue here, but it should
give you some feel for how the DDD dialogue works. Earlier
in this paper, we used as an iflustration a simpie dialogue for
adding a new item to the AI bibliography. Here is the DDD
dialogue that defined that “new bibliography item” dialogue.

) new dialogue

) What user input should initiate this dialogue? new bibli-
ography item
Please define each node in turn.
Designing node 1:

» What is the prompt message for node 1: Add to what bibli-
ography?

) If you wish the response to this prompt to be assigned to a
field, give the field number: 1

> What is the type option for node 1: 2

» What is the response option for a nil response to node 1: 1

> What is the response option for a bad evaluation of user
response: 2

} What is the response option for a good evaluation of user
response: 2

Y Transfer to what node: 2
Node 1 is completed.
Designing node 2:
The fields that have been assigned on entering this node
are:
<1>: Add to what bibliography?

» What is the prompt message for node 2: Title:

) If you wish the response to this prompt to be assigned to a
field, give the field number: 2

> What is the type option for node 2: 2

36 National Computer Conference, 1983

~ N~ ~ o~

~ N S N

P N

~ ~

N g

What is the new word option: 3

What is the category option for this word: 1

What is the response option for a nil response to node 1:
help

1: abort the dialogue and exit

2: reprompt

3: complete all actions and exit

4: a condition—action—transition sequence

: transfer to next node directly

What is the response option for a nil response to node 2: 3
What is the response option for a bad evaluation of user
response: 2

What is the response option for a good evaluation of user
response: 4

Condition: otherwise

Action: <2> isa <1>.

Action:

Transfer to what node: 3

Node 2 is completed.

Designing node 3:

The fields that have been assigned on entering this node
are:

<1>: Add to what bibliography?

<2>: Title:

What is the prompt message for node 3: Author:

If you wish the response to this prompt to be assigned to a
field, give the field number: 3

What is the type option for node 3: 2

What is the new word option: 3

What is the category option for this word: 1

What is the response option for a nil response to node 3: 2
What is the response option for a bad evaluation of user
response: 2

What is the response option for a good evaluation of user
response: 4

Condition: otherwise

Action: Author of <2> is <3>.

Action:

Transfer to what node: 4

Node 3 is completed.

Designing node 4:

The fields that have been assigned on entering this node
are:

<1>: Add to what bibliography?

<2>: Title:

<3>: Author:

What is the prompt message for node 4: Keyword:

If you wish the response to this prompt to be assigned to a
field, give the field number: 4

What is the type option for node 4: 2

What is the new word option: 3

What is the category option for this word: 1

What is the response option for a nil response to node 4: 4
Condition: otherwise

Action: display: “ <2> has been added to the <1>.”
Action:

Transfer to what node: 2

What is the response option for a bad evaluation of user
response: 2

(¥4

) What is the response option for a good evaluation of user
response: 4

Condition: otherwise

Action: Keyword of <2> is <4>,

Action:

Transfer to what node: 4

Node 4 is completed.

Design of “new bibliography item” dialogue is completed.

P R

Simple dialogues, like this one, can be defined by the user.
However, complex decision/action structures and the pro-
vision of diagnostics and recovery, complex looping, and so
forth is the appropriate province of the application program-
mer. The “node-driven” organization of DDD is quite natural
for someone with even brief experience in computer program-
ming. Sketching the dialogue as a rough flow chart, then
proceeding to the use of DDD, one can quickly implement
complex processes. DDD has a number of features that facil-
itate the development of the program, including a variety of
validity checks. The super-high level of natural-language pro-
gramming means that the sort of bugs found at low levels are
eliminated. Particularly significant is the fact that in the devel-
opment of such a user dialogue, all of the vocabulary and
associated semantics of the immediate application are directly
available.

The Use of Forms as a Dialogue Medium

The form is an efficient means of communication with
which we are all familiar. A number of computer systems
include a forms package. For most of these, however, filling in
a form results only in a document; the form does not consti-
tute a medium for interacting with the knowledge base or
controlling the actions of the system. The ASK forms capabil-
ity enlarges the roles and ways in which forms can be used as
a medium for user interaction. As the user fills in the fields of
a form, the system can make use of the information being
supplied to (a) check its consistency with the data already in
the knowledge base and, if necessary, respond with a diagnos-
tic, (b) fill in other fields with data developed from the knowl-
edge base, (c) extend the knowledge base, adding to the vo-
cabulary and adding to or changing the data itself, and (4) file
the completed form in prescribed files or in those indicated by
the user and also mail it to a specified distribution list through
the electronic-mail subsystem. Since the form processing can
check consistency and modify the knowledge base, forms can
be used to facilitate data input. Since form processing can fill
fields in the form, the forms capability includes the functions
of a report generator. Letters and memos can be written as
special cases of form filling, automatically adding dates, ad-
dresses, and so on, and filing and dispatching the result.

It must be easy and natural to add new forms, if they are to
be a convenient tool. That is the function of the Forms De-
signing Dialogue. Much like the Bulk Data Input Dialogue
and the DDD, the Forms Designing Dialogue holds a di-
alogue with the user through which he or she can specify the
fields of the form itself and the processing to be automatically
accomplished at the time the Form is filled in. The Forms

Knowledgeable Contexts for User Interaction 37

Designing Dialogue makes many options available, only a few
of which are illustrated here.

The protocol to be included here as an example of the
Forms Designing Dialogue is designed to illustrate the fea-
tures mentioned above, and does not reflect any actual form.
It utilizes the notion of a field as in the DDD, allowing a field
to be referred to by number.

» new form
> form name: shipping
) start your design:

Shipping Form
ship: 2222222222222222
port: 2222222222222222

quantity item price total
1111 2222222222222220222 $111.11 $1111.11
commander: 2222222222222222

Shipping Form
ship: <1>2222222222
port: <2>2222
quantity item price total

<3>1 <4>22222222222222 $<5> A1

$<6>1.11
commander: <7> 2222222222 -

Please confirm the design ("y” or "n"): y
Do you want to repeat some lines? (y/n): y
repetition field: <3>

repetition frequency: 0

repetition field:

What fields are to be filled by the computer?
field: <2>

value: home port of <1>

if unable, what message should be used:

< 1> does not have a home port.

if unable, what option should be taken: 1
field: <5>

value: price of <4> _

) if unable, what message should be used:

» if unable, what option should be taken:

) field: <6>

) value: <3> * <5>

) if unable, what message should be used:

)

)

~ o~ P PO

~

if unable, what option should be taken:

field:

What conditions should be verified by the computer?
) condition: <3> is less than the inventory of <4>?
) if fail, what message should be used?

There are not enough <4>s in stock.
) if fail, what option should be taken? 2
) condition:
Actions to be taken on completion of the form?
update data base: Reduce inventory of <4> by <3>.
update data base: Commander of <1> is <7>.
update data base:
name of completed form: Shipping List for <1>

~ N N S

) file in: Shipping Invoice File.
) file in:
) mail to: Jones.
Y mail to: ask
The design of form “shipping” has been completed.

We will now fill in the form that was just designed. To illus-
trate the fact that the database will be changed as a result of
filling the form, we first ask the questions:

) What is the home port and commander of each old ship?
There are 2 answers:
(1) There is no commander.

@)

ship home port
Ubu Naples
Alamo London

Y Who is John Smith?
The following words are not in the vocabulary: John Smith
) Inventory of wheat and hydrochloric acid?
wheat and hydrochloric acid inventory
wheat 86.7
hydrochloric acid 123400.

Note that the home port of the Alamo is London and that it
does not have a commander, further that John Smith is not
known to the system.

» Fill shipping

(For the purposes of the published paper, in contrast to the
film shown at the presentation of the paper, only the initial
and final copies of the form are given, underscores indicate
fields filled in by the user, all other fields being automatically
filled by the System)

(before)

Shipping Form
ship: _
port:
quantity item price total

$. $

commander:
(after)

Shipping Form
ship: Alamo
port: London
quantity item price total
3 wheat $ 35.75 $ 107.25
500 hydrochloric acid $ 250 $1250.00

commander: John Smith

Shipping List for Alamo has been filed in Shipping Invoice
File.

38 National Computer Conference, 1983

Shipping List for Alamo has been mailed to Jones. ACKNOWLEDGMENTS

mail to:
Fill shipping has been completed.

) List the home port and commander of each ship. The three system-guided dialogues, Bulk Data Input, Dia-
ship home port commander logue Designing Dialogue, and Forms Designing Dialogue,
Ubu Naples are from the doctoral dissertation of Tai-Ping Ho. The aspects
Alamo London John Smith of ASK that concern the basing of one context on another are

) Inventory of wheat and hydrochloric acid? from the doctoral dissertation of Kwang-I Yu. The methods
wheat and hydrochloric acid inventory for handling anaphora, fragments, and correction of inputs
wheat 83.7 are from the doctoral dissertation of David Trawick.
hydrochloric acid 122900. The ASK System is implemented on the HP-9836 Desktop

) What is in the Shipping Invoice File? Computer in PASCAL. The research that has resulted in the
Shipping List for Alamo ASK System has been supported by the Hewlett-Packard Cor-

Shipping List for Maru poration.

An English-language processing system that ‘‘learns’’ about
new domains

by BRUCE W. BALLARD and JOHN C. LUSTH

Duke University
Durham, North Carolina

ABSTRACT

We are developing an English-language processing system called LDC with empha-
sis upon (a) small- or medium-sized office domains, as opposed to large relational-
style databases; (b) mechanisms to learn about new domains and the English to be
used in discussing them; and (c) capabilities for deep semantic processing, for
example where English inputs can be phrased naturally, not merely as a notational
variant for complete, formal queries. LDC consists of two major components and
an external retrieval module. The first component, which we call “Prep,” obtains
information about a new domain and the language to be used in discussing it. The
second, “user-phase,” component of LDC resembles an ordinary NL processor, but
(a) most decisions are determined from the preprocessed information appearing in
the data files produced by Prep, and (b) the emphasis is upon the semantics of
“layered” domains, described herein. In this paper we (1) present the motivation
behind LDC; (2) summarize and give examples of the behavior of Prep; (3) provide
an overview of the user-phase component; and (4) give examples of current and
projected capabilities of the system.

39

An English-Language Processing System 41

INTRODUCTION

During the 1970’s, several experimental natural-language pro-
cessing systems were developed, many of them reaching the
prototype stage. At least one natural-language database
query system is now being marketed,' while several other
systems have been successfully used in pilot studies. Although
most practical investigations have concerned database
query,>71%13131719.21 gur previous work in natural-language
processing at Duke has been in the area of natural-language
programming. Our system, called the Natural Language
Computer (NLC), was developed in the late 1970’s,>* has
been systematically evaluated,’ and has been used on a trial
basis by linear algebra students without prior computing
experience.®

Drawing on our experience with NLC, we are presently
developing a new NL processor, which we call the Layered
Domain Class (LDC) system. Our current emphasis is upon
(a) small- or medium-sized office domains, as opposed to
large relational-style databases, (b) mechanisms to learn
about new domains and the English to be used in discussing
them, and (c) capabilities for deep semantic processing, e.g.,
where English inputs can be phrased naturally, not merely as
a notational variant for complete, formal queries. Our ap-
proach amounts to constructing a “knowledge base” and is
closer in spirit to systems like KLAUS, POL, SCHED, and
TEAM than to the database systems cited above.>'>'*1

In a recent publication’ we presented the philosophical and
psychological basis on which LDC is founded. As is explained
there, we are currently considering the class of what we refer
to as “layered” domains. We regard a domain as layered if its
structural relationships resemble those of NLC matrices,
where entities break down uniformly into lower-level entities.
Examples of “layered” domains and their associated entity
breakdowns include matrices (matrix, row/column, entry);
desk calendars (year, month, week, day, hour slot); office
architecture, (building, floor/wing, room); document organi-
zation (document, section, paragraph, sentence, word, char-
acter); and academic course offerings (course, section, stu-
dent). While some of these domains (e.g., academic course
enrollments) can be represented fairly well by conventional
database schemes, and others (e.g., documents) as text files,
we believe experience with previous systems has proven that
many of the semantics arising in a natural-language environ-
ment require a “deeper” form of domain model than are
provided by conventional representations. This is why LDC
has chosen to formulate a model of “layered” domains and
seeks to work with them. In this paper, we will select examples
from the course offering and document domains to illustrate
the capabilities and goals of LDC.

LDC consists of two major components and an external
retrieval module. The first component, which we call “Prep,”
serves to acquire information about a new domain and the
language to be used in discussing it. It then uses this domain
knowledge to derive various forms of information that will be
used during subsequent processing. The second, “user-phase”
component of LDC resembles an ordinary NL processor, but
its design is highly parameterized. Thus, many of its decisions
are determined from the preprocessed information appearing
in the data files produced by Prep. The actual retrieval com-
ponent and raw-data file are regarded as external to LDC.

THE LEARNING COMPONENT

The initial interaction between a user and LLDC, which in-
volves telling the system about a new domain, consists of a
dialogue with the preprocessor, which we call “Prep.” Prep
operates by asking for (a) the names of each type of “entity”
of the domain, (b) the nature of the relationships among
them, (c) the English words that will be used as nouns, verbs,
and modifiers, and (d) morphological and semantic properties
of these new words. It also allows the user to probe its knowl-
edge and to make updates as desired. We will now summarize
the capabilities of Prep.

Domain Structure Acquisition

Suppose we want to tell Prep about a data file that records
all student grades in a certain academic department for a given
semester. By asking the user a series of questions, Prep con-
structs a “‘domain model”” network like that shown in Figure
1. The important distinctions here are (a) decomposition of
one entity into another, indicated by the double arrow, versus
a simpler form of association; (b) multiple values, indicated by
plural names, versus single values; (c) an idea of which multi-
ple values are to be thought of as ordered, indicated by the
asterisk, for which ordinals such as “first,” “second,” ...,
“last” may be applied; and (d) an indication of which nodes
will have persons as values, indicated by an exclamation point.
The actual internal network is represented in a nested list
format. A description of how this structure is acquired, in-
cluding actual dialogue with the user, can be found else-
where.’

Language Acquisition

Having learned about domain structure, Prep proceeds to
inquire about related language items. In particular, for each
entity of the domain (node of the domain-structure network),

42 National Computer Conference, 1983

Courses

N\

Sections* Title

VAN

Students(|) Instructor(1)

r '
Lrage

Figure 1—An internal model of the final grades domain

Prep asks for (a) nouns used to refer to the entity, (b) adjec-
tives which modify the entity, and (c) nouns used to modify
the entity. Prep then proceeds to ask for verbs having the
given entity as subject. Since our parser and semantics pro-
cessor work with slotted, case-frame structures, Prep asks for
the entity types that are allowed for subject, object, and as
prepositional arguments. For instance, Prep might be told that
an instructor can fail a student, that a student can fail a course,
that a student can take a course from an instructor, and so
forth.

Having acquired a list of new vocabulary items, Prep pro-
poses what its rules suggest will be their inflections, for exam-
ple past and present participles for verbs, comparative and
superlative forms for adjectives, plurals for nouns, and so
forth. The user may then either accept the system’s “guess” or
specify the correct form.

Finally, Prep asks about the meanings of adjectives and
verbs, which it attempts to capture in terms of seven primi-
tives. This small set, coupled with mechanisms for traversing
the domain-structure network, provides a powerful language
with which to describe verb and adjective meanings. The sev-
en primitive functions are id, the identity function; val, which
returns the ‘“value” or name field of a record; look, which
retrieves a specified field of a record; num, which returns the
size of its argument, which is assumed to be a set; sum, which
returns the sum of its list of inputs; avg, which returns the
average of its list of inputs; and pct, which returns the fraction
of its list of boolean arguments which are true. In addition to
these seven built-in functions, other user-defined adjectives
can also be used. Thus, a “wordy” manuscript might be de-
scribed as a manuscript where 60% or more of the sentences
are “long.” The specification of these two adjectives is shown
in Figure 2.

Since verbs and adjectives are treated similarly, we will

ACQUIRING SEMANTICS FOR LONG SENTENCE

PRIMARY? sentence
TARGET? word
PATH IS: WORD/SENTENCE

FUNCTIONS? id /num
PREDICATE? >= 20

ACQUIRING SEMANTICS FOR WORDY MANUSCRIPT

PRIMARY? manuscript

TARGET? sentence

PATH IS: SENTENCE/PARAGRAPH/CHAPTER/MANUSCRIPT
FUNCTIONS? 1long /id /id /pct

PREDICATE? >= 60

adia

Figure 2—Semantic acquisition for adjectives {system out in upper case)

confine our discussion to adjectives. Furthermore, once the
meaning of an adjective has been obtained, the semantics for
its associated comparative and superlative forms can be de-
rived automatically. For example, the definition of “long sen-
ence” as given in Figure 2 says to (a) compute a value for the
entity in question, in this case the number of words in the
sentence, and then (b) compare this value against a designated
parameter, in this case 20. When phrases such as “sentences
longer than. ..” and “the longest sentence” arise, values are
computed as given in step (a) but then compared against one
another, rather than against the specified parameter.

As shown in Figure 2, Prep requests four pieces of informa-
tion for each adjective-entity pair. The first of these, called
the primary, is the entity to which the adjective is actually
“applied.” This may or may not be the entity with which the
adjective has been associated. For example, if a “lucky” stu-
dent is one who is enrolled in the section of a good instructor,
instructor would be the primary, not student, since the in-
structor would have to be investigated.

The second piece of information needed, called the target,
is any descendant of the primary and is the most primitive
entity needed to specify the semantics. In the case of “long
sentence,” the target entity would be word, since the number
of words must be found to tell whether a sentence is long.

The third piece of information requested is a list of functions
corresponding to the arcs between the primary and the target
nodes. Once the primary and target are identified, Prep out-
puts a path from the target to the primary. This path serves as
a guide to the user in specifying what is to be done to each
piece of data as it bubbles its way upward during semantic
processing.

The fourth and final piece of information required is a
predicate to be applied to the numerical value obtained from
the series of function calls just acquired. The overall effect,
then, of applying an adjective to a datarep is to obtain either
“true” or “false.”

Probing and Update

At any time during acquisition, Prep allows the user to
review all or selected parts of the information associated with
a given term or syntactic class. For instance, the user can ask
Prep to display all entity types presently known—

ENTITY NAME? list
ENTITIES ARE: SECTION, GRADE, STUDENT

—or may ask for information about all ways in which specified
terms can be used—

ENTITY NAME? uses score poor

score: SYNONYM FOR GRADE,
VERB FOR STUDENT

poor: ADJECTIVE FOR STUDENT.

Typing “uses” without arguments instructs Prep to give infor-
mation on all known terms.
When the user decides to change previcus specifications, he
BY P s

An English-Language Processing System 43

or she may call for an update, which begins with Prep asking
which entity is to be updated.

ENTITY NAME? instructor
Next, a menu of update options is displayed.

WHAT INFORMATION NEEDS TO BE UPDATED
FOR INSTRUCTOR?

LIST ATTRIBUTES (TYPE list)
DELETE ENTITY (TYPE del)
RENAME ENTITY (TYPE ren)
SYNONYMS (TYPE syn)

TYPE (TYPE typ)

The list option is used to request Prep to summarize all infor-
mation associated with the entity in question. The options
delete and rename are provided to allow for correcting errors
or for making changes in the network structure. The remain-
ing options are listed in the order the associated information
was originally acquired. A verb specification may be altered
by updating the entity associated with its subject.

As an example of an update, suppose the user has neglected
to inform Prep that the word ““teacher” can be used in place
of “instructor.” This correction is accomplished as follows:

OPTION: syn

SYNONYMS FOR INSTRUCTOR ARE: PROFESSOR
SYNONYMS TO BE ADDED: teacher
SYNONYMS TO BE DELETED: none

Here we see that Prep has (a) listed current synonyms; (b)
asked for new ones; and finally (c) asked for old ones to be
removed.

USER-PHASE PROCESSING

As shown in Figure 3, the user-phase component of LDC is
designed as a linear stage of modules for scanning, parsing,
semantic processing, and output generation.

Scanning

The role of the scanner is to identify each word of the typed
or spoken input and retrieve information about it from the
dictionary file, which will have been created by Prep. Each
dictionary listing consists of (a) the word itself; (b) its part of
speech ; (c) the associated root word; and (d) zero or more
associated features, each with one or more possible values. An
example of a word definition might be

(better Compar good (nt student section))

which says that “better” is a comparative form of “good,” and
can be applied to nouns having an nt-feature (for “nountype”)
of either “student” or “‘section.” Some words will have more
than one dictionary listing, in which case the scanner sends

Rout-Word Domain
Structure

l io-ﬂccur l iompat l

— [SCANNER |— [PARSER |— | semantics |— | outur |—

Dictionary

Ad j/Verb

Semantics

raw—data

GRAMMAR

Figure 3—An overview of user-phase processing. (Names of program
modules in boxes; other names are names of files, all of which are
created by the Preprocessor except for the grammar and the raw-data file.
The retrieval module is regarded as external to LDC.)

them all to the parser, where context will be used to select one
of them.

The existing LDC scanner assumes typed input. However,
we have been experimenting with a Nippon DP-200 voice
recognition device, have completed an initial interface be-
tween it and NLC, and will eventually want to provide the
LDC user with a microphone rather than a keyboard. One of
the structures we are using tells which pairs of dictionary
words can occur next to each other in a legal input. Antici-
pating the introduction of voice technology into LDC, Prep

sulting (a) the system grammar and (b) the domain-specific
dictionary it is creating. This file has been called Co-Occur in
Figure 3.

Parsing

The job of the parser is to determine, from the information
provided by the scanner, the syntactic structure of the input.
In a computational domain, especially one for retrieval rather
than programming, the syntactic complexity of most inputs
lies in the complexity of their noun phrases. For this reason,
we regard relative-clause verb forms as basic, and sentence-
level verbs as derived. For example, the input

“How many students failed the midterm?”
is treated as

Find-size-of: “students who failed the midterm”
The tree-like parser output for noun phrases is suggested by
the following structure, which corresponds to the phrase “the
longest word.”

(NP ((nt word) (sp sing)) (Head.word) (Superl.long))

The “feature” list immediately following the label “NP” indi-
cates lexical and semantic, opposed to syntactic, features that

44 National Computer Conference, 1983

have been built up during a parse. In particular, the nountype
(nt) of the head noun is known to be “word,” while the
singularity (sp) of the phrase has been determined to be “sin-
gular.” These features are used to enable certain “local”
forms of compatibility checks. For instance, adjectives an
other modifiers are accompanied in the dictionary by a list of
entity types they can modify. When a new word is incorpo-
rated into the parse structure, the set of values for each fea-
ture attached to it is intersected with the previous set of values
for that feature. Whenever the set of values for some feature
becomes nil, the parser knows that either (a) the wrong mean-
ing has been used for a word with several dictionary listings;
(b) a wrong choice was made at some previous point in the
nondeterministic processing of the system grammar; or (c) the
input is wrong or anomalous.

The LDC grammar is a hybrid between transition network
and phrase-structure grammars.'** Note from Figure 3 that
in addition to this grammar the auxiliary files Rout-Word and
Compat, each created by Prep, are made use of by the parser.
Rout-Word tells which words can begin a syntactic consti-
tuent, such as noun phrase, prepositional phrase, relative
clause, and so on. Some parts of speech are also included
(e.g., to handle the potentially infinite class of ordinals). This
information is much like the LL(1) tables of traditional com-
piler design, and prevents many forms of needless backup
during parsing. The Compat file, created by Prep based on
information gathered during preprocessing and also on heu-
ristics we have formulated for layered domains, is used to
assure that a constituent is ‘“‘compatible” with the word it is
about to be attached to.

Semantic Processing

The job of the semantics module is to translate the tree-like
parse structures into an internal form that we refer to as
“bubble structures.”® These structures, which can be inter-
preted directly or can be translated into a formal query for the
external retrieval component, possess at least three desirable
properties. First, they can be created in a straightforward
fashion from the information produced by the previous stages
of processing. Second, they capture the idea of the user’s
input, not merely its syntactic structure. Third, they can be
used to direct subsequent processing, which for us means both
carrying out actual retrieval operations and setting up an ap-
propriate context in which to process further inputs.

In determining the proper bubble structure for an input, the
domain-structure network, as acquired by Prep, serves as a
backbone on which semantic representations are based. Out-
put from the parser is used to complete the representation.
For simple sentences, it is sufficient to tag entities in the
domain-structure network with the appropriate modifiers
from the parse tree. Verbs are treated as adjectives and are
also attached to their primary entity, along with their remain-
ing operands. For more complex sentences, that is, those
containing relative clauses, a separate semantic represen-
tation is built up for each clause. These clause representations
are then merged into the final semantic representation. As an
example, the bubble structure corresponding to the input

“What grade did Mary get in the course John failed?” is
suggested in Figure 4. The reader will notice that only the
relevant nodes of the full domain-structure network given in
Figure 1 have been used.

Evaluation of these semantic representations, or bubble
structures, can proceed in two ways. The first method of eval-
uation, which is discussed in the next section, involves inter-
action with an external refrieval component. In the second
method, the bubble structure is used to drive an internal inter-
pretation routine. In the latter case semantic processing takes
place by producing data representations, or datareps, which
correspond to the noun phrases of the user’s input. For exam-
ple, the datarep

(section 2 course 3)

would refer to the 2-nd section of the 3-rd course in the do-
main. Evaluation of the bubble structure given in Figure 4
begins by creating a pointer to the first course in the data file.
Ultimately, a reference to each student of each section of that
course is made, until either the correct student (John) is found
or no more students remain, in which case a pointer to the
next section is generated. If all sections for a given course are
exhausted, then the next course is examined in a similar man-
ner. When a course is found that satisfies the left-hand side of
the bubble structure, the sections of that course are examined
for a student named Mary. If Mary is found, her grade is
retrieved from the data file and passed down to the “collect”
node, and eventually sent to the output generator.

In a pure bubble interpretation, all students of all sections
of all courses will be examined to find the student John.
Admittedly, this will be an inefficient process. It is important
to keep in mind that bubbles are a device to capture the deep
meaning of a sentence, not to provide an optimized means of
carrying out what has been asked for. Indeed, efficient re-
trieval almost certainly requires knowledge of the physical
structure of the raw-data file, for example which mappings
have been “inverted,” which we insist on concealing from the
natural-language components of LDC. In the interest of effi-
ciency, we provide for an external retrieval component, dis-
cussed in the next section.

Course

/

Section

Section

Student (john) Student (mary)
"failed" Grcl:de
[Collect]

Figure 4—Bubble structure for “What grade did Mary get in the course
John failed?”

An English-Language Processing System 45

Output Generation

Finally, an output generator converts the top-level datarep
produced by semantics into a human-readable form. We are
presently using a trivial generator, which for the datarep given
above would respond with “CPS 154.2.” At a later time we
will want to consider methods of generating more informative
responses. In fact, we will probably want to incorporate voice
response, which is now being provided for NLC by a Votan
D5000 device.

THE RETRIEVAL COMPONENT

We have seen that the information acquired by Prep focuses
on the conceptual rather than the physical structure of domain
entities. For instance, LDC will know that a course can be
“broken down into” sections, but it is not concerned with
whether the raw-data file has section names as its “primary
key,” whether courses are listed with pointers to their sec-
tions, and so forth. The actual “binding” of bubble structures
and datareps to physical record/table/file structures is handled
by a retrieval component, which is regarded as external to
LDC proper.

To test the feasibility of this approach, we are having a
“standard” retrieval component built (in PASCAL) to inter-
act with the existing LDC code (written in LISP). In addition
to routine bookkeeping operations to Get, Put, and Update
records, this module will implement certain operations that
are standard for layered domains but do not necessarily occur
in conventional query situations. These special-purpose oper-
ations include ordinals, to get the nth record with a certain
property; superlatives, to get the record with the largest,
smallest, etc. value in a specified field; and various bubble-
type operations such as averaging field values, counting the
number of records in a set, or finding the percentage of a set
of records having a specified property.

When LDC operates with an external retrieval module, the
bubble structure produced by the semantics processor (see
Figure 4) is first translated into a formal query. The retrieval
component uses this formal query to repeatedly subset the set
of all relevant records in the database. At the completion of
all the subsetting operations, a value is retrieved from a field
or fields of the remaining records. The module also recurses
on any embedded query, using the result to evaluate the main
query.

For the previously considered input ‘““What grade did Mary
get in the course John failed?”, the translation into a formal
query is suggested by the following.

Equal course { Equal student John
Apply student fail
Get course }

Equal student Mary

Get grade

Evaluation of the imbedded query occurs first, with records
in the database that do not have John as an entry in the
student field being discarded. Of the remaining records, those
that show that John failed, that is made a grade of F, are

evaluated for the course name. If two records remain after
subsetting, with entries in the course field of EE157 and
CPS154, then the main query would become

Equal course EE157 CPS154
Equal student Mary
Get grade

After subsetting the database using the main query as a
guide, only the record(s) with EE157 or CPS154 in the course
field, and with Mary in the student field is left. The values of
the grade field in the remaining record(s) are sent back to
LDC from the retrieval module, whereupon they are passed
to the output generator.

DISCUSSION

In designing an NL processor, many decisions must be made
regarding where and in what form various kinds of informa-
tion should be stored. When one is building a single-domain
system, many of these decisions can be made arbitrarily or to
minimize implementational complexities. When many do-
mains are to be handled, however, unwarranted decisions as
to what functions each routine should perform will frustrate
efforts to act upon newly acquired information, and may pro-
hibitively limit the flexibility of what can be learned. For this
reason, we feel that a learning system has much to contribute
to the theory of language processing, as well as enhances the
technology of natural-language interfaces.

We have seen that the learning mechanisms of LDC allow
for semantic specifications of new terms. These facilities are
important for at least three reasons. First, they allow the user
to paraphrase long constructs in a concise way. Second, se-
mantic acquisitions let one ask about certain very complex
notions that would be outside the scope of the vocabulary or
syntax of the system if they had to be expressed using prim-
itive terms. Third, information is available about new words
independent of the syntactic context in which they will occur.
For instance, knowing that “large” is an adjective that can
modify “section,” and that its inflected forms are “larger” and
“largest,” subsequent processing will be able to accept not
only “large section” but also “sections which are large,”
“larger section than...,” “sections larger than...,” “the
largest section,” and other forms.

As for technical issues, we have discussed several of the
ways in which the design of LDC is parameterized to support
learning. To oversimplify, learning takes place by converting
new information into various forms of data to be used by
existing processes. Thus, we have designed our semantics pro-
cessor in a domain-independent fashion, where mearnings are
represented as text to be interpreted, rather than as pre-
viously coded procedures. In this sense our semantics module
behaves like the parser, which similarly interprets its phrase-
structure grammar as a form of data.

ACKNOWLEDGMENTS

The creation of the Co-Occur, Rout-Word, and Compat files
appearing in Figure 1 is due to Andrew Reibman, and the

46 National Computer Conference, 1983

implementation of compatibility checking in the parser was
done by Nancy Tinkham. These individuals also contributed
to our method of producing and interpreting bubbles. We are
also indebted to Alan Biermann, Rusty Bobrow, Bill Buttle-
man, B. Chandrasekaran, Martha Evens, George Heidorn,
Gary Hendrix, Bill Ogden, Robert Rodman, and Fred
Thompson for valued discussions during the course of our
work. Finally, we are grateful to Griff Bilbro, Happy Deas,
Linda Fineman, Pamela Fink, and Casey Gilbert for helping
to sustain a friendly and productive atmosphere for Natural
Language research at Duke.

This report is based on work supported by the National
Science Foundation, Grant Number MCS-8116607.

REFERENCES

1. Ballard, B. “A Domain-Class Approach to Transportable Natural Lan-
guage Processing.” Cognition and Brain Theory, 5 (1982), 3, pp. 269-287.

2. Ballard, B. and A. Biermann. “Programming in Natural Language: NLC as
a Prototype.” Proceedings of the 1979 ACM National Conference, 1979,
pp. 228-237.

3. Biermann, A. “Natural Language Programming.” Proceedings of the
NATO Advanced Study Institute on Automatic Program Construction,
Bonas, France, 1981.

4. Biermann, A, and B. Ballard. “Toward Natural Language Computation.”
American Journal of Computational Linguistics, 6 (1980), 2, pp. 71-86.

5. Biermann, A., B. Ballard, and A. Sigmon. “An Experimental Study of
Natural Language Programming,” International Journal of Man-Machine
Studies, (1983), to appear.

6. Bronnenberg, W., S. Landsbergen, R. Scha, and W. Schoenmakers.
“PHLIQA-1, A Question-Answering System for Data-Base Consultation
in Natural English.” Philips Technical Review, 38 (1978-79), pp. 229-239
and 269-284.

7. Codd, E. F. “Seven Steps to RENDEVOUS with the Casual User.” IBM
Report J1333, 1974.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

. Geist, R., D. Kraines, and P. Fink. “Natural Language Computation in a

Linear Algebra Course.” National Educational Computer Conference,
1982, pp. 203-208.

. Haas, N. and G. Hendrix. “An Approach to Acquiring and Applying

Knowledge.” First National Conference on Artificial Intelligence, 1980,
pp. 235-239.

Harris, L. “The ROBOT system: Natural Language Processing Applied to
Database Query.” Proceedings of the 1978 ACM National Conference,
1978, pp. 165-172.

Heidorn, G. “Augmented Phrase-Structure Grammars.” IBM Research
Report, 1975.

Heidorn, G. “Natural Language Dialogue for Managing an On-Line Calen-
dar.” IBM Research Report RC7447, 1978.

Hendrix, G. “Human Engineering for Applied Natural Language Pro-
cessing.” Fifth International Conference on Artificial Intelligence, 1977,
pp. 183-191.

Hendrix, G. and W. Lewis. “Transportable Natural-Language Interfaces to
Databases,”” Annual Meeting of the Association for Computational Linguis-
tics, 1981, pp. 159-165.

Mylopoulos, J., A. Borgida, P. Cohen, N. Roussopoulos, J. Tsotsos, and
H. Wong. “TORUS—A Natural Language Understanding System for Data
Management.” Proceedings of the Fourth International Conference on Arti-
ficial Intelligence, 1975, pp. 414-421.

Plath, W. “REQUEST: A Natural Language Question-Answering
System.” IBM Journal of Research and Development, 20 (1976), 4,
pp- 326-335.

Thompson, F. and B. Thompson. ‘‘Practical Natural Language Processing:
The REL System as Prototype.” in M. Rubinoff and M. Yovits (eds.),
Advances in Computers, Vol. 3. New York: Academic Press, 1975.
Thompson, F. and B. Thompson. “Shifting to a Higher Gear in a Natural
Language System.” AFIPS, Proceedings of the National Computer Confer-
ence (Vol. 50), 1981, pp. 657-662.

Waltz, D. “An English-Language Question Answering System for a
Large Relational Database.” Communications of the ACM, 21 (1978), 7,
pp- 526-539.

Woods, W. “Transition Network Grammars for Natural Language Anal-
ysis,” Communications of the ACM, 13 (1970), pp. 591-606.

Woods, W., R. Kaplan, and B. Nash-Webber. The Lunar Sciences Natural
Language Information System: Final Report, Bolt, Beranek and Newman
Report 2378,'1972.

Implementation of an Ada* run-time environment

by HERMAN FISCHER

Litton Data Systems
Van Nuys, California

and
EDGAR H. SIBLEY

Alpha Omega Group, Inc.
Silver Spring, Maryland

ABSTRACT

The Ada Programming Support Environment (APSE) has been introduced! as a set
of tools to support program development systems. This paper introduces the idea
that the concepts and facilities of APSEs are valuable not only to host systems
(those used to develop software), but also to certain Ada run-time environments
(ARTE:s) (those in which applications execute) and examines the implementation
of large database transaction oriented systems in such an environment. Two exam-
ples of actual systems are used to show the benefits gained by using the Ada
environment. A cost/benefit analysis for such a transition is also outlined.

*Ada is a registered trademark of the Department of Defense.

47

Implementation of an Ada Run-Time Environment 49

INTRODUCTION

The benefits of using an Ada run-time environment (ARTE)
based on the Ada Programming Support Environment
(APSE) model are basically the same as the APSE’s benefits
for the programming host: transportability and interoperabil-
ity of system components in a hardware-independent manner
that was not previously realizable. These terms, though in
common use, are not always used in the same way and must
first be defined. The KITIA® have agreed that “inter-
operability” is the ability of support environments to ex-
change database objects and their relationships in forms
usable by tools and user programs without conversion, and
that “transportability” is the ability to install a function in a
different environment, without reprogramming, to perform
with the same functionality.

The ARTE/APSE Concepts

It is our belief that the STONEMAN model, though de-
fined for host/target environments, will be applied to com-
puting environments not intended for program deveiopment.
In STONEMAN, a kernel APSE (KAPSE) is surrounded by
a Minimal APSE (MAPSE) toolset that, when extended with
a comprehensive set of tools, becomes a full APSE. This is

COMMAND
LANGUAGE

HARDWARE |_ _ . __ _ _
HOST OsS.
DATABASE

CONFIG.
MANAGER

LINKER/
LOADER

. PORTABILITY
APPLICATIONS TOOLS: INTERFACE
DATA DICTIONARY MAINTENANCE
APPLICATIONS GENERATORS
TERMINAL TRANSACTION DEFINERS

REPORT GENERATORS

Figure 1 —STONEMAN model of APSE

illustrated in Figure 1, with the KAPSE at the center of a set
of rings (embodying the hardware, operating system, stan-
dardized interprogram communications mechanisms, and its
“database”), and with the surrounding wedges representing
the minimal toolset. Surrounding the outside of the wedges
are applications-specific tools and programs; these can also
occupy “open” (MAPSE) tool spaces in the wedges ring.

It is proposed that the layered-rings model applies to
transaction-oriented database management system (DBMS)
ARTE systems, as portrayed in Figure 2. Although more
detail is shown in the kernel of the ARTE (KARTE), the case
will be made that the features of the KARTE are applicable
to the APSE also. In fact, an ARTE can use many of the same
facilities, or share the same processor with an APSE (as hap-
pens today in logistics systems that run applications software
in the processor used to support software-development
organizations).

HARDWARE,
0s,

DATA BASE
STORAGE

ADDITIONAL ACCESS
METHODS

DATA BASE MANAGEMENT
STRUCTURE CHECKING

COMMAND TERMINAL
LANG. / _ INTERFACE

,” DBMSINTERFACESVIA
7" VARIOUS DATA MODELS N

QUERY INTERFACES
USER INTERFACES

— STRUCTURED MODELS
— UNSTRUCTURED FILES

DATA
DICTIONARY

\
// SECURITY | CONFIG. \
i MGMT. P
KARTE ORTABILITY

INTERFACE

FUNCTIONAL APPLICATIONS

MENUS, FORMATS
TRANSACTION DIALOGS
REPORTS

Figure 2—Application of model to transaction-oriented DBMS ARTE

50 National Computer Conference, 1983

We shall first examine the need for this form of run-time
environment.

Problems of Existing Large-Scale Information Systems

There are six categories of problems that exist in current
systems; we shall first show how these are solved in a current
programming and run-time environment (there are also many
problems with existing systems that are only remediable with
improved software methodologies, better maintenance, more
money, and the like). These are:

1. Hardware—Hardware, as used in large systems is often
obsolete before the applications software is placed in
operation; in fact this may occur early in the applica-
tion’s life cycle. Hardware is also often not suitable for
new, heretofore unthought-of applications of existing
software, such as occur when rapid-deployment concepts
force portability of previously stationary systems.

2. DBMS—DBMSs are large, complex beasts. The suc-
cessful ones marketed to Fortune 500 companies seem to
have upwards of 2,000,000 source lines, including the
various optional (but essential) tools that surround the
DBMS. These tools are constantly evolving, and up-
grading from one major version to the next is a major
undertaking. Furthermore, as the DBMS systems
evolve, new generations of systems appear. In the ab-
sence of KAPSE-like layers separating applications from
underlying implementations, portability is not possible.
Existing applications are enormously expensive to
upgrade.

3. Tools—DBMSs contain, in their environments, a large
quantity of very diverse tools; these vary from initial-
ization, backup, and restoration tools, to online dictio-
naries and schema-maintenance tools, reporting and
configuration-management tools, applications gener-
ators, Query tools (structured and English-like), and so
on. It is not reasonable to switch tools every time new
hardware is obtained, or when switching to an improved
underlying DBMS.

4. Applications Generators—Such applications generators
as the Cullinane Corp ADS-OnLine,’> the IBM IMS-
ADF,* and the Air Force On Line Data System

(AFOLDS) DUEL?’ are a vital part of today’s environ-.

ment. These products allow transactions to be coded in
very high level applications languages, or to be ex-
pressed as a set of rules or decisions. The Cullinane
product is said by commercial users to provide a seven-
fold to tenfold productivity improvement over “old”
{manually-coded) programming techniques. The USAF
product’s users estimate a 60% improvement in produc-
tivity. Applications generators are expected to become a
vital part of the future of DBMS-based transaction
processing systems, even though they are not, strictly
speaking, DBMS tools. Thus, their future use will need
some attention to the portability of the applications-
generator toolset independently of the underlying
DBMS or hardware.

5. Transaction-Based Terminal Handlers—The ability to
create user-friendly and easily maintainable transaction-
processing software depends, to a large extent, on user
terminal handling processors that are intimately inte-
grated intc the underlying system. At the same time,
they must be sufficiently separable to permit migration
among significantly differing terminals, networking
philosophies, communications facilities, and report gen-
erators that supply the user needs. Standish discusses the
needs for a bounded set of user interfaces for accessing
tools and the possible need for standardization in this
area.® User interfaces have been categorized as “normal
conversational” (prompted command lines), “form fill-
ing” (CRT with prompts and fill-in fields), “tree of
menus’’ (hierarchy of levels of choices), and “graphical”
(windows and iconics). All these will be needed at future
user interfaces.

6. Configuration = Management—Configuration-manage-
ment features are an integral part of today’s complex
large-scale transaction-based systems. However, they
are often treated lightly and incompletely; the result is
that logistics-type systems have never had great success
in supporting variants and versions of schemas, pro-
grams, and transactions. Nearly all major DBMS and
their dictionaries today support identification of versions
or variants, and yet almost none of these support the
coexistence or automatic maintenance of different ver-
sions at different sites, exchanging distributed data, con-
verting formats, ensuring proper library control and test-
ing, and recovering crash and archival data of differing
versions.

SOME EXISTING SYSTEMS

The U.S. Air Force relies on two very different large-scale
DBMS-oriented logistics systems for aircraft maintenance
tracking.

¢ The Maintenance Management Information Control Sys-
tem (MMICS), presently implemented on the Burroughs
Medium System computer family (the Phase II system)
handles fighter aircraft (F-15, F-16, and A-10). This sys-
tem tracks engine parts and operating conditions, and
performs calculations to predict the need for preventative
maintenance.

® The Automated Maintenance System (AMS), based on
the IBM 370 family architecture, handles airlift trans-
porters (C-5, C-141). It has also been considered for
handling logistics for the B-1, the Space Shuttle (if the
USAF takes responsibility for it), and the MX system.

The MMICS system is huge, encompassing far more than
fighter engine maintenance tracking; MMICS provides much
of the data required to manage maintenance equipment and
personnel resources, worldwide, for aircraft, missile, and
communications-electronics-meteorological ~ environments.
MMICS includes over % million source lines of coding.

The AMS system is also huge, including a large number of

Implementation of an Ada Run-Time Environment

51

TABLE [—Systems Environments and Problem Areas

Example Transportable
Transaction-Based Current Ada-Based
Logistics Systems Environments Environment
MMICS Phase-1 IBM
(Phase IT) AMS Compatible Compatible
Ms Cullinane
Purpose/Application Engine maintenance & Logistics
F15,F16, Al0 C5,C141
Aircraft Aircraft
Hardware Burroughs IBM Burroughs IBM 1BM KAPSE
B3500, B4700 360 Compat. B3500, B4700 370 compat. 370 compat. compatible
DBMS Internal Cobol S AFOLDS ™S IDMS Adaplex (CCA
(none) Corp.)
Tools Special Cobol IMS utilities Backup restore ADF DD -
Data Dicticnary utilities
Misc.
Applications Generation Nomne None DUEL ADF Adds-On Line -
Terminal Formating None IMS macros FRAMES ADF On Line -
Mapping

components and users. AMS is more recent than Phase II;
AMS is architecturally an online system, based on the 327x
terminal family and IBM’s IMS database system.

MMICS is an “updated system;” its COBOL programs re-
flect batch processing punched-card transactions and a
“home-grown” database structure (embedded in the trans-
action programs). MMICS has since evolved to be online, but
only by overlaying on the Burroughs Master Control Program
(MCP) a USAF “home-grown” transaction-analyzer program
(itself over 110,000 source lines) to simulate punched-card
inputs and line-printer output on CRTs.

MMICS operates in a base support computer environment,
where the complete system is known as Phase II. Not all Phase
II programs are COBOL-based with embedded database
handling: the Civil Engineering, Accounting and Finance,
Medical, Operations, and Transportations applications are all
implemented (on the same B3500 hardware) using AFOLDS,
which includes data description capabilities, an applications
generator, a transaction-oriented terminal handler (and forms
builder), and an English-like query language.

Neither Phase IT nor AMS is transportable; Phase II is not
because its MMICS has a large volume of embedded assem-
bler coding within Cobol programs to handle database access.
Phase II's AFOLDS-based functions are also machine de-
pendent. AMS is not transportable because of the use of IMS
and 327X terminal formatting facilities.

Table I examines these systems with respect to the problem
areas enumerated previously.

Hardware and Transportability

Phase II is tied to Burroughs Medium-Sized Systems. Most
bases have ““ancient” B3500 computers installed. These tran-
sistor and discrete component curiosities cannot be replaced,
under Government Accounting Office rules, except by com-
petitive bidding. (A few bases have slightly newer B4700s.)
Although Burroughs makes modern equivalents, such as the

900 series B3900, the USAF has not been able to convert to
them (due to the obvious lack of competition) and is thus
stuck with the B3500s.

Phase IV, the upgrade-in-process for Phase II, was directed
by public law to be a competitive procurement (the authors do
not mean to imply that it is bad, only that STONEMAN
concepts are needed to make such future actions reasonable).
Two companies are in a ‘“compute-off” conversion, Bur-
roughs and Univac; both are re-implementing the present
system on new (different) hardware families, using new oper-
ating systems and terminal handlers, and using manufacturer-
supplied DBMSs.

Even Phase IV hardware will become obsolete in the near
term (owing to the pressures of an advancing semiconductor
industry), and at that time the DBMS, operating system, and
terminal handling systems will remain untransportable. The
Phase IV system, once deployed, will be no more readily
transportable (in competitive reprocurement) than Phase II.

AMS, being based on IBM architecture, appears to have a
longer life: there is a large industry of instruction-set-
compatible processor builders. AMS users can thus develop
new software and not worry that near-term hardware up-
grades will remove the IMS and 327X terminal architectural
footing.

Independent Systems and Interoperability

There will always be organizational, spatial, and temporal
reasons for independent procurements of systems with similar
requirements. For example, the aircraft maintenance software
for fighter aircraft and transport aircraft has been handled by
separate organizations, and it is therefore not surprising that
MMICS and AMS are two different systems. MMICS is over
ten years old. If it were not for its lack of transportability,
some of the MMICS sites would have been upgraded to more
recently procured hardware. However, unless the new system
remains interoperable with the old one (in addition to being

52 National Computer Conference, 1983

able to reuse its software), there is no way to phase-in new
equipment, and there would thus be no way to reduce acqui-
sitions of side-by-side systems such as MMICS and AMS
which could otherwise share resources.

ENVIRONMENT CONCEPTS APPLIED
TO THE EXAMPLES

Both the Phase IT and AMS systems will, at some time in the
future, need to be transferred to new-technology support sys-
tems. There is only one cost-effective way that this can be
accomplished within the constraints of implementing trans-
portability and interoperability. Software costing studies show
that a robust modern support environment, providing a tool-
set which minimizes the complexity of applications programs,
minimizes costs.” Clearly there are two prerequisites to such
a transition: a robust DBMS and a complete set of tools to
support its use (e.g., applications generators).

Given that these prerequisites were met on an Ada-
supportive system, one would still be faced with the problem
that the resultant new systems would be nontransportable
(except among families of the Ada-supportive system
chosen). For example, if one were to base a reimplementation
on the ALS architecture (the U.S. Army Ada Language Sys-
tem effort), the system would be tied to DEC VAX architec-
ture and its current operating systems. Furthermore, the DEC
architecture, as it is being used by the Ada products, is not
supportive of transaction-based terminal networks (e.g.,
multidropped externally clustered buffered approaches).

An attempt to build a run-time system for the transported
systems is likely to meet with two barriers, the cost and the
lack of guarantees of support in future environments.

The only solution is to base the transported system on the
use of the STONEMAN concept, where the transaction-
processing software itself is an outer layer of programs around
a “ring” of DBMS and transaction-supportive tools.

COST/BENEFIT CONSIDERATIONS

The Phase II to Phase IV conversion, now in progress, pro-
vides interesting cost data. Each vendor is charging the tax-
payer (in round numbers) $50 million for the first increment
of software conversions. In addition, the USAF has approxi-
mately 500 staff members supporting the three-year effort.

Given that 1500 man-years cost approximately another $50
million, the initial conversion cost is of the order of $150
million—owing to the lack of software transportability. The
initial nine applications converted (of several hundred) are
said to be the most difficult, and may thus represent as much
as half of the total effort.

Moreover, Phase II is only one system, within one service,
and the selected hardware, however good it is at the time of
delivery, will be hopelessly obsolete by the end of the decade
and, under federal rules, unreplaceable except by a new multi-
vendor competition.

In an ARTE, only the kernel would need re-interfacing to
transport a system; that would be some orders of magnitude
less expensive to the taxpayer.

RELATIONSHIP BETWEEN APSE AND RTE

Where would one find an ARTE? Certainly the most obvious
possibility is to utilize the structure of an APSE and replace
some of the tools in the MAPSE with transaction and data-
base oriented functions, and utilize the same core KAPSE for
both APSE and ARTE.

This idea’s merit becomes clearer when one looks at the
systems given as examples above, and realizes that, in both
cases, the identical operating system (the major part of a
KAPSE) is used by both the programming-support centers
and the operations centers; in fact, operations often shares the
same processor with development on a time sharing basis.

It is then worth examining whether a KAPSE can also be
the kernel for an RTE.

Differences in KAPSE Databases

The STONEMAN document is a generic statement of the
goals of PSEs. Therefore, it is not unexpected that “in-
stances” of environments supposedly designed to meet these
goals differ substantially in matters important to the use of a
KAPSE for an ARTE kernel. Indeed, the definition is so
loose that it is possible to produce conflicting (and definitely
nontransportable) software based on different KAPSE imple-
mentations.®

Key areas are in the database support mechanism. The
SofTech Ada Language System implements a hierarchical
‘“database” structure based on the concept of trees of nodes,
attributes, stream storage (unformatted), etc.” This database
structure is well suited for “bulk” storage (of program text,
compiled code, and unstructured small files). The Inter-
metrics Ada Integrated Environment'® implements a ““semire-
lational” sort of database that uses a mechanism similar to
directory trees to locate each stored element (attribute, un-
structured file, or indexed file). Both of these environments
basically place the responsibility for the structuring of data
with the tools and programs that lie outside the KAPSE (e.g.,
compilers, program library managers, etc.). Two European
efforts (the UK" and the EEC') place in the KAPSE the
structuring mechanism for program support access to code
trees, program-library configuration data, and so on.

Other key areas include “options” such as configuration
management. The SofTech and Intermetrics effort both place
this responsibility as an embedded function within using tools,
rather than as a kernelized system service. (An effort to im-
plement configuration management in a transportable and
interoperable manner is presently funded to CSC; however,
this is being provided as a MAPSE tool, rather than being
integrated into the run-time environment.)

A Structured Database Project for the KAPSE

There is one known attempt to place a “structured” data-
base onto a KAPSE environment. The continuing success of
this effort could be used to base an argument that KAPSEs,
in general, are capable of supporting the form of database

Implementation of an Ada Run-Time Environment 53

required by transaction-based logistics systems, such as the
two discussed above.

The Computer Corporation of America’s Adaplex effort™
is developing an Ada-compatible DBMS. Their approach is
based on an entity and function database structure, with typed
data. Adaplex uses a database model said to furnish more
capabilities than either the hierarchical, network, or relational
database models. Although Adaplex is being implemented to
run on a DEC VAX computer, using the SofTech KAPSE and
MAPSE toolset, the authors of Adaplex intend to use the
VAX VMS operating system calls to access the disk directly
(instead of utilizing the SofTech KAPSE for disk access).

Although Adaplex is coded in Ada, it will be non-
transportable because of its VMS dependencies. The SofTech
KAPSE could probably be redefined to include the appropri-
ate disk-access services. Yet even given that the KAPSE con-
tains the necessary services, the SofTech KAPSE is non-
transportable because it is heavily dependent on VMS services
and non-Ada internal coding.™

The KIT" and KITIA' have efforts to create standardized
KAPSE interfaces; fruition of interface standardization would
allow the Adaplex DBMS to be transported to other
KAPSE:s.

Given that (a) the Adaplex can eliminate VMS dependen-
cies by a change to SofTech’s KAPSE services and (b) the
KAPSE interface-standardization efforts meet with success,
one would postulate that Adaplex could become an instance
of a transportable DBMS usable for constructing an ARTE.
This example would place the DBMS in the tool layer sur-
rounding the kernel, not in the kernel itself.

Using a Non-Ada DBMS in an APSE

The enormous cost of implementing a DBMS from scratch,

along with the necessary “optional” tools (applications gener- .

ators, transaction terminal handlers, etc) has led to the study
of incorporating existing, non-Ada DBMS implementations
with Ada environment tools and programs. A proposed
solution'” allows structured queries and updates from Ada
packages to map into non-APSE DBMS primitives, by trans-
lating the operations and binding the data. Thus, a set of
package interfaces “crosses” the APSE domain into “for-
eign” DBMS facilities, without going through a standard
KAPSE interface. Existing DBMS tools, application gener-
ators, terminal handlers, and English-like or well-designed
query tools of the original environment are not available to
the APSE user, except through the underlying operating sys-
tem. This shortcut solution thus does little to provide for
transportability and interoperability at the DBMS application
level.

USING AN ARTE DBMS IN THE APSE

Conventional DBMSs do not make a good job of dealing with
bulk data in the form of the so-called unformatted file or in
the form of libraries of nonhomogeneous data, such as a set
of programs that have been partially or fully link-edited as a

system ready to be executed. Such data occurs in streams of
bits representing machine structures: words, or bytes, or para-
graphs, or syllables, or blocks, and so on. The stream or its
parts may be directly or randomly accessible, or it may only be
serially accessible. Such data are sometimes called un-
structured data, and the database said to have no knowledge
of the internal form of the data. This may be true in some
cases, but it does not capture the essential difference. For
example, in Ada, a file is said to be ‘“associated with an
unbounded sequence of elements, all of the same type.” It can
be argued that the system is required to know the element
type, to ensure that all users access it using the same element
type.

A suitable treatment of bulk data is essential in the KAPSE,
because the entities that are controlled through a pro-
gramming support environment (PSE) are primarily associ-
ated in storage as bulk text (e.g., Ada source and compiled
objects). The normal way to deal with bulk data in the past has
depended on the usage of that data. If the data were an entire
system, a program, or a part of a program, and so on, it was
placed in a “library” that could access the program-unit by its
name. The structure of the program-unit was generally simple
or nonexistent. If the data were to be accessed by a procedure,
they were stored as a relatively conventional set of records in
a file or in some similar fashion (indeed, they could be stored
as a stream of characters or even as a stream of bits, but the
procedures and the supplied access methods were the only
way that the data structure was known). One of the special
Ada data structures is, of course, the Diana tree. This has a
structure that has been standardized, and the fact that the
Diana tree has needed to be made a standard is an interesting
example of the need for standards within the KAPSE or with
the MAPSE levels—in order to allow inter-tool action at that
level.

Clearly, if a DBMS is to be provided for use by the PSE, it
would be very convenient and useful if the same DBMS were
also suitable for applications use. This would mean that there
was a DBMS in the KAPSE to allow for the addition of a
formatted data concept to the PSE; as a result, the DBMS
could be used for other functions (as discussed later) and if the
same DBMS were to support such actions as an ad hoc query,
then the KARTE would potentially have the same interface
DBMS.

Classes of Data Supported

As already discussed, there are at least three classes of data
that are important in the Ada environment. These are:

1. Unformatted data.—This is a broad class of data that
may have structure, but which have no structure that
may be known to any program or procedure except
through special communication from a programmer.
This class of data could be a report in character form
(possibly internally indexed, or part of a word processing
system with a retrieval mechanism), or it could be a
traditional file (with a well-defined file structure that
needs a special access method—such as ISAM—to act as

54 National Computer Conference, 1983

an indexing device for rapid retrieval), or a “bucket of
bits” that might be the results of a transmission or a
program. All types within the class of unformatted data
have one characteristic in common—they consist of a
stream of bits that may have structure, but this structure
is unknown outside the suite of procedures that access
the data.

2. Standard formatted data. —Such data have a predefined
format that has been previously defined by a community
of users who are on their honor to see that all tool-using
devices are used consistently. Typical of these data are
the groups of procedures that work on a common data
structure. In a run-time environment these may be a
suite of personnel programs that provide accounting,
payroll, and personnel support services; in Ada the com-
piler and editor interactions (via Diana trees) are exam-
ples of standard formatted data systems. The difficulty
with such systems is that they rely on the good will of the
users (or the hard heads of auditors) and often are vio-
lated, either deliberately or in error.

3. Fully formatted data.—These are seen in database-
managed systems and in some structured PSEs. The es-
sential characteristic of such data is that the environment
is aware of the structure of data as a whole and of any
part of them. For example, the PSE being designed in
the UK has a built-in structure which assures that the
program parts are properly controlled—thus the sub-
programs oi a main program are associated with it;
moreover, the particular version of the subprogram that
is valid with it. Thus the “structure” of these data is an
exact match of the configuration that must be managed.
The run-time environment, then, will be able to retrieve
the required version of the main program and with it all
relevant and correctly versioned copies of its sub-
programs.

APSE AND ARTE INTERACTION

The ARTE and the APSE are not really easy to differentiate,
yet an attempt to do so for the programming environment has
led to the definition of an entity termed a KAPSE. And it
appears that in the time since the STONEMAN document was
approved the Ada community has forgotten that the prime
reason for a programming environment is to provide pro-
grams that can be run—presumably in a run-time environ-
ment. The idea of a host-to-target environment, of course, has
led to some of this apparent neglect, but most target machines
have a need for some environment, and it seems reasonable to
assume that future target-machine architecture will benefit
from the definition of a standard run-time environment. Nat-
urally, any other run-time environment that interacts with
other machines/computing devices will benefit even more if a
standard KARTE exists.

Much then has been said of the KAPSE, but little of the
KARTE. If, as appears very likely, the Ada langugage is used
to implement logistic and other large-scale nonoperational
(large-scale administrative) systems, then some of the require-
ments of a KARTE that were only marginally necessary in the

KAPSE will be more essential. These features include the
need for security features; a way to store data structures and
define the meaning of the data entities (an information-
resource dictionary); a means for storing and retrieving data
based on these definitions (a generalized DBMS with good
user interfaces for query, table generation, and reporting);
methods for recording program structures, their relationships
to data and users, and so on (a good software-configuration-
management system}; and interfaces to the documentation,
which can be a part of the combined configuration and infor-
mation resource management system.

There are at least three types of security that should be
investigated: user checking, procedure validation and ini-
tiation, and data sensitive checking.

The DBMS-like features should include the capability of
interfacing to a dictionary. Modern dictionaries have many
different features, but they are all generally able to capture
compiler data to document data and program usage. Some are
even able to hold information on the users, some security
needs, and some configuration-management controls. The
controls between a DBMS and a dictionary, and even the
configuration manager, are implemented through an active
interface between the dictionary and its users (automated or
human). The value of the dictionary is only fully realized if it
can operate in this controlling role.

CONCLUSIONS AND A PROPOSED ARCHITECTURE
The purpose of this paper was twofold:

1. To show that there was a need to consider the use of the
KAPSE as an ARTE.

2. To suggest some of the problems in making the transi-
tion from one to the other.

It does seem, however, that there is a possibility of using
architectures that have been developed for operating systems,
DBMSs, and information resource dictionary/configuration
management systems in the past. One possible high-level
architecture was given in Figure 2.

This shows that it would be possible to use the general
architecture of the STONEMAN KAPSE for a combined pro-
gramming and run-time support environment, but some addi-
tional controls will need to be added to the system, and the
configuration management system would need to have control
of any access to the libraries.

However, the use of an Ada environment that had realized
these features would make future software more easily trans-
portable and allow real ““software reusability,” thereby reduc-
ing the rising costs of software while allowing major systems
of the future to be implemented in spite of the expected “gap”
in available programmers and systems implementors.

ACKNOWLEDGMENT

The authors are grateful to Mr. Leo Meany of the U.S. Air
Force Data Systems Design Center, who provided informa-
tion on AFOLDS.

Implementation of an Ada Run-Time Environment 55

REFERENCES

. Department of Defense. Requirements for Ada Programming Support
Environments “STONEMAN.” Department of Defense, February 1980.

. “Definitions.” Kernel Ada Programming Support Environment (KAPSE)
Interface Team: Public Report Volume 1. San Diego, Calif.: Naval Ocean
Systems Center, Technical Document 509, April 1982, Appendix C.

. Application Development System/OnLine Reference Guide. Cullinane
Database Systems, Inc., Order Number TDAO-330-10, January 1982.

. IMS/Applications Development Facility Program Description/Operations
Manual. IBM Corporation, order number SH20-1931.

. AFOLDS, Air Force OnLine Systems User’s Guide. U.S. Air Force Data
Systems Design Center, Gunter AFS, Alabama, 1975.

. Standish, T. “Extensibility.”” Kermel Ada Programming Support
Environment (KAPSE) Interface Team: Public Report Volume 2. San
Diego, Calif.: Naval Ocean Systems Center, 1982.

. Boehm, B. Software Engineering Economics. New York: Prentice-Hall,
1981.

. Fischer, H. “Time Line Analysis of KAPSE Interfaces During a
Compilation.” Kernel Ada Programming Support Environment (KAPSE)
Interface Team: Public Report Volume 2. San Diego, Calif.: Naval Ocean
Systems Center, TD552, 1982, pp. 3Q-1 ff.

. “The Environment Database.” Ada Language System Specification.
Waltham: SofTech, CR-CP-0059-A00, June 1981, Appendix 50.

10.

11.

12.

13.

14.

15.

16.

17.

Computer Program Development Specification for Ada Integrated
Environment: KAPSE/Database. Cambridge: Intermetrics, Inc., Draft
IR-678, June 1981.

Final Technical Report. KAPSE Database. London: United Kingdom
Department of Industry.

Gallo, F. Presentation to EFDPMA Ada Conference. Copenhagen:
Olivetti Corp., September 1982.

Smith, J. Reference Manual for AdaPLEX. Cambridge, Mass.: Computer
Corporation of America, 1981.

“Rehosting.” Ada Language System KAPSE B5 Specification. Waltham:
SofTech, CR-CP-0059-C81, August 1981, pp. 3-63.

Kapse Interface Team. “Ada Programming Support Environment
Requirements for Interoperability and Transportability and Design Criteria
for Standard Interface Specifications.” Kernel Ada Programming Support
Environment (KAPSE) Interface Team: Public Report Volume 2. San
Diego, Calif.: Naval Ocean Systems Center, TD552, 1982, pp. 3G-2 ff.
Sibley, E. “Towards a KAPSE Interface Standard.” Kernel Ada
Programming Support Environment (KAPSE) Interface Team: Public
Report Volume 2. San Diego, Calif.: Naval Ocean Systems Center, TD552,
1982, pp. 3K-1 ff.

Bever, M., M. Dausmann, S. Drossopoulou, W. Kirchgassner, P.L.
Lockemann, G. Persch, and G. Winterstein. “The Integration of Existing
Database Systems in an Ada Environment.” Proceedings of the AdaTEC
Conference on Ada, New York: ACM, 1982.

Future Ada* environments

by SABINA H. SAIB

General Research Corporation
Santa Barbara, California

ABSTRACT

The current Ada environments are oriented toward traditional code production
tools such as editors, compilers, loaders, and program library managers. Future
Ada environments will add to the initial capabilities to provide support from the
initiation of requirements to the enhancement of existing operational software. In
addition to software development facilities, future Ada environments will support
management activities. The future will also see applications of current tools and
techniques across the entire life cycle.

*Ada is a trademark of the Department of Defense.

57

Future Ada Environments 59

INTRODUCTION

Ideally all phases of the software development cycle from
requirements to maintenance or enhancement should be sup-
ported by a software environment. Many current software
tools contain capabilities for supporting one phase of the life
cycle. These tools ignore what has gone before in the life cycle
or what will happen in the next phase. Often different lan-
guages that are oriented towards a portion of the life cycle are
used, so that the tool is totally incompatible with all other
tools in use. In the use of such tools, much effort is expended
in transferring incompatible data from one tool to another.
This effort could be avoided by implementing an integrated
support environment. During all phases of software devel-
opment, management needs to be able to see what the status
of a project is. Today this is often done without the use of tools
that can look at the actual state of the software. As a result,
the management view is often incorrect and management is
unable to address problems in a timely manner.

LIFE CYCLE CONSIDERATIONS

The traditional approach to identifying the capabilities
needed in a software development environment has been to
examine each phase in the software development life cycle as
a separate activity. Occasionally its relationship to immedi-
ately preceding and following phases is also considered.
Recently emphasis has been placed on the ability to trace
requirements through specifications and design to the imple-
mented code elements and acceptance tests. Another ap-
proach to developing an environment for life cycle support is
to examine the needs of the maintenance or enhancement
phase. The impact of a change in the requirements must be
traceable out to the affected software components, and the
proposed changes to the software must be traceable back to
the unaffected requirements.

GOALS FOR AN ENVIRONMENT

Any future Ada environment must include a wide variety of
capabilities in order to support the development of software
during all phases of the life cycle. It must be easy to use, and
assist the user not only in such detailed activities as interactive
debugging, but also in organizing and directing the effort. The
environment must be extensible to allow the addition of capa-
bilities as new tools and techniques emerge, and it must
be standardized across machine architectures, operating sys-
tems, and file access methods. The capabilities for an environ-
ment can be implemented as a set of cooperating development

and management tools. These tools can be clustered into
three major groups: multipurpose, software production, and
management.

Multipurpose tools find use in numerous phases of the soft-
ware life cycle. These tools for examining and updating text
files and the generation of reports must be designed with
general purpose capabilities to reflect their universal usage.
The most important multipurpose tool that can be developed
for an environment is the database manager. The Ada envi-
ronment requires a single database for all environment activ-
ities. Such a database will automatically provide a history of
a project and avoid duplication of database functions among
tools.

Software production tools that work together can form a
comprehensive package of support for a user. Some specific
tools that should be developed for the future Ada environ-
ments are requirements processor, specification processor,
design analyzer, coding assistant, standards checker, com-
piler, static analyzer, linking loader, configuration manager,
test assister, and verifier.

Management tools fill needs that differ from those of the
software production staff. Activities that should be supported
by tools are planning, staffing, controlling, directing, or-
ganizing, and status reporting.

From a designer’s viewpoint, the goals imply that the Ada
environment must be both extensible and modifiable. Experi-
ence has shown that nearly all truly useful systems grow and
change over time as new needs are developed and old ones
become obsolete. Extensibility and modifiability are en-
hanced by the use of a single, uniform, functionally oriented
command language. Tools will be contributed to the Ada
environment from numerous sources. The sheer number of
tools that should be provided makes it impossible for one
group to be the sole suppliers to the environment. Further-
more, the particular tools within the environment will be
changing. A tool should rely less on the physical format of
information than on its logical structure. A uniform database
system and database manager provide such a capability. The
virtual memory manager in the Ada Integrated Environment
appears to offer this capability. The design of a new tool can
ignore which other tools in the environment create the infor-
mation it needs; it only needs to know that the data will be
created and will be accessible though a standardized format
that stresses the logical rather than the physical characteristics
of the data.

SOFTWARE DEVELOPMENT DATABASE

For each software project, a common information storage and
retrieval system should provide a repository to consolidate all

60 National Computer Conference, 1983

relevant project data. The database also serves to unify the
tools in the environment by providing common access to
project data. The project database must, therefore, be com-
mon to all tools in the environment. Each tool should use the
database access facilities to retrieve the data it requires and to
store the information it derives. The use of such a database is
shown in Figure 1.

The advantages of a common database are many. Informa-
tion required by more than one tool can be computed and
stored once, avoiding duplicate data files and extra pro-
cessing. Also, information can be conveniently passed from

ADA
ENVIRONMENT
TOOL BOX

a ~N
~—_

A
— "
~— "
~— "

MANAGEMENT

Figure 1—Future Ada environments

one tool to another, communicating through the database.
Information managed within a database is more reliable than
data scattered in separated files. Information is less likely to
become inconsistent, because the database can impose a num-
ber of consistency constraints. For example, analysis data may
be inconsistent if a program has been modified since the anal-
ysis was done. Such analyses can be marked as obsolete when
a program has been modified, so that reanalysis can be

scheduled at a convenient point in the development.

REQUIREMENTS AND SPECIFICATION TOOLS

The requirements state what a computer system should do
from the user’s viewpoint. The environment should aid the
user or systems analyst who must enter the requirements in
machine readable form and must aid the analyst who must
convert the requirements into a system design.

There are five properties that a well-written requirements
document should have; it should be

Complete: say everything the implementor needs to
know.

Consistent: not contradict itself.

Testable: implementor can objectively determine

when the job has been done correctly.
Unambiguous: implementor can interpret requirements in
only one way.
Concise: not ramble on.

To a certain extent the environment can help an analyst
judge a set of requirements with respect to these criteria. In
addition, it is possible to construct a requirements definition
system that prompts the user for information so as to encour-
age requirements with these desirable properties and also to
enhance the environment’s ability to detect flaws.

Requirements are complete when all system inputs and out-
puts are fully characterized, system level error policy is stated,
all documentation and deliverables are specified, and the
functional relationships between inputs and outputs are
stated. For inputs and outputs this requires specifying the data
type, the value range, a prose description, a mnemonic name
for reference, the source for the input and destination for the
output, and its format. The environment can prompt the user
for such information about each proposed system data item.
This will help ensure that the requirements are complete.
Furthermore, since the environment obtains the requirements
through an interactive dialogue, the information will neces-
sarily be in machine-readable and machine-analyzable form.

For system errors the user should decide on the error han-
dling capabilities of the system. Error processing is too im-
portant to be left in the hands of systems analysts. The ana-
lyst’s job is to determine the feasibility and cost of the desired
error processing capabilities. For each error condition the
requirements tool should prompt the user for a description of
the nature of the error, what the user would like to see dis-
played to indicate detection, such as a lit-up panel or a sound-
ing alarm, and what recovery action to take, such as turning
off a sensor.

Future Ada Environments 61

The functional relationships between input and output
should be specified in a moderately nonprocedural way, since
the user who will supply them cannot be assumed to be a
systems analyst. SADT,' a manual system from Softech for
requirements definition, is a nonprocedural graphical ap-
proach to system decomposition. Graphical support for re-
quirements definition seems highly advantageous because a
clear drawing can offer a better perspective on logical re-
lationships than simple words can. An automated version of
SADT that is merged with a prompting system as just de-
scribed would be a valuable requirements tool.

In addition, the requirements tool should request a sched-
ule of activities, deliverables, tolerances whenever approxi-
mate answers are possible, timing constraints, physical
constraints, budgetary information, equipment to be used,
applicable standards, testing practices, and acceptance pro-
cedures. By having the tool explicitly request this informa-
tion, which will be primarily prose, hence not very analyzable,
the system database will be able to index the requirements
automatically for each of these major categories. Later, if the
user wishes to request the set of applicable standards for the
project, the database manager will be aware of which part of
the requirements dealt with this subject. With a less struc-
tured format for entering requirements, such queries would
be more difficult, if not impossible, for the database manager
to successfully respond to.

If the requirements are entered in the fashion just de-
scribed, it may be possible to perform limited tests for consis-
tency. RSL,” the TRW requirements specification language,
has such a capability. With the limited information about the
system available in a requirements document, it is still able to
check, for example, that all input items are used in the com-
putation of some output value, and that no output item is also
treated as an input item at a different point in the system.

Another advantage of using an automated tool to enter
requirements is that it simplifies tracing requirements into the
design and code. The Requirements Tracing Tool® developed
by Logicon tries to achieve this by forcing requirements to be
written in a format in which each identifiable requirement is
tagged with an indexing number that is explicitly written into
the design and code implementing the requirement. With the
requirements tool described here, the tracing of requirements
to design is automatic because the design will be generated
automatically from the requirements. The system can report
the relationships between design elements and those aspects
of the requirements from which they were generated.

SOFTWARE DESIGN

A program design should not only be useful in the stage of the
life cycle between the requirements phase and the imple-
mentation phase of a project, it should also aid the designer
in expressing the design, aid a reviewer in checking the design,
aid an implementer in developing the design into a product,
aid a tester in validating the resulting software, and aid a
maintainer in changing the design.

There are at least two levels of detail that a design language
should support: programming in the large and programming

in the small. In programming in the large, the user should be
prevented from detailed design. It should be possible to use
the requirements database to develop automatically a skeletal
system design that contains the highest level modules written
in pseudocode. Module inputs and outputs, a pseudocode
description of purpose, the attributes of the inputs and out-
puts, and the interfaces between modules can all be auto-
matically generated from the information gathered through
the dialogue described earlier. The analyst can restructure this
skeletal design and enhance it with the further details that are
inappropriate for the requirements.

In the design stage, a user should be able to input fragments
of a design and receive information on what has been entered,
consistency checks on what has been entered, and if desired
a measure of the completeness and complexity of the design
description. Analysis of a design should proceed in stages such
that the user is not inundated with information on the entire
design while the design is incomplete. Analysis reports should
be interactive, with the designer able to quickly alter the
design, reanalyze that part of the design, and view the results
on an interactive basis. The design analyzer should produce
consistency reports at various levels of detailed analysis, doc-
umentation reports, a detailed design skeleton that an imple-
mentor can use, a test plan outline that a tester can use, a
change history that a maintainer can use, and a project history
that can track the design progress.

At the design stage there is much more room for analysis
tools than at the requirements stage. One aspect of an Ada
design that must be carefully analyzed at the design stage
before much effort is spent in implementation is the package
organization. In Ada, when a package is recompiled, all the
programs using that package must be recompiled. Ideally, the
module-package relationships will be simple, without a great
deal of interdependencies between them. Tools showing the
dependencies between packages and compilation units will be
very useful at the design stage to minimize compilations when
changes are made and to minimize communications between
packages and multiple modules. Whether the design is written
in syntactically correct Ada or in a mixture of legal Ada and
prose that uses Ada keywords, the design tools should be able
to automatically generate a syntactically legal Ada program
turning the prose into comments. This program skeleton,
which is automatically generated from the design description
as the design skeleton was generated from the requirements,
cannot help but be traceable to and consistent with the design.

TESTING SUPPORT

In addition to the debugging facilities provided by the com-
piler, there are a number of formal testing techniques that the
environment should support with test tools. Formal testing
should be supported at both the single-module and system
(after integration) levels. The environment should maintain a
record of the test description, test data sets used, modules
tested, and test results. The testing information is useful not
only in accounting for the test performed but also in deter-
mining the retesting requirements for the maintenance and
enhancement phase. In formal testing there is the need to

62 National Computer Conference, 1983

generate appropriate tests to demonstrate that the software
performs correctly. There are several approaches to testing,
each of which can be supported by a test tool that assists in test
data generation. The test data generation tools provide data
sets for exercising the software in a particular way. Tools
performing boundary testing, symbolic execution of loop con-
structs, checking of assertions from a requirements stand-
point, stress testing, and path testing should be provided.

Test harnesses to assist the user in exercising singie or mui-
tiple modules in a simulated system environment should be
easily fabricated. A general test harness that provides hooks
to program-defined data can save effort and result in more
thorough test cases. Tools should also evaluate testing thor-
oughness. Criteria that can be used are

1. Showing that the complete input space for small modules
is exercised

2. Deriving the response function for a module to compare
it to the sampled ideal function

3. Checking that all combinations of paths for a small mod-
ule, and all path segments for a program, have been
exercised

4. Demonstrating that all functional requirement para-
graphs have test cases that have been used

For the purpose of demonstrating that optimal performance
has been achieved, the places where most of the time is being
spent should be determined. It has been shown that only 10%
of most code needs to be optimized for maximum per-
formance. Test tools should identify these areas for possible
redesign.

SOFTWARE MAINTENANCE AND ENHANCEMENT

Pennington® has estimated that software maintenance con-
sumes about 60% to 85% of the total software life cycle costs.
Since maintenance is the most expensive part of computer
software, the environment must provide maximum support
for the maintenance effort. The tools discussed in preceding
sections will help generate high-quality software and docu-
mentation. These tools will reduce many of the current soft-
ware maintenance problems. However, even the most reliable
software can contain errors, and all software is eventually
modified. N

Software maintenance can be divided into two categories:

1. Correction of faulty programs
2. Modification or enhancement of processing capabilities

To aid in the correction of faulty programs, tools will be
required for establishing a test environment to check reported
errors. Diagnostic facilities will also be necessary to aid in
tracking error symptoms to their source.

Corrected software must be retested to ensure that no new
errors were introduced. The test conditions that demonstrated
the error must be incorporated into the test plan. The changes
must be documented, and change notices must be distributed.

Major changes to a software product, whether corrections,

modifications, or enhancements, will require additional sup-
port from software tools. Changes in the user’s software re-
quirements can necessitate dramatic changes in the design of
existing code. Tools to provide assistance for these worst case
conditions will be required in any comprehensive software
support environment.

The appropriate place to start making changes in computer
software is with the statement of the user’s requirements and
the specifications for the software product. These documents
describe the user’s needs and how the software is to support
those needs. It is, therefore, most important to keep this
documentation up to date to direct the modification effort and
to allow for future maintenance efforts. Requirements and
specification documents in machine-readable form can be eas-
ily reviewed and edited to reflect any changes to be made.

Machine-readable software specifications can be expressed
in forms that can be analyzed automatically for completeness
and consistency. Therefore, changes to the specifications can
be checked for conflicts and missing information. Identifying
such errors at the earliest possible time minimizes the cost of
their correction. Automated analysis of specifications can also
produce a skeletal design that aids in evaluating the extent of
design changes precipitated by new requirements.

The aids described for generating test data and providing
the necessary testing environment (test harness) will find use
in the retesting phases. It is rarely sufficient to test just the
changed part of a program. A complete check of all processing
capabilities is necessary to verify that no adverse side effects
from any modifications affect other parts of the program.
Modifications that are necessary to correct faulty software
may indicate a shortcoming in previous testing efforts. The
criteria for acceptable test thoroughness can be reevaluated
and changed to improve testing reliability. Performance im-
provements can be measured and verified during retesting.

Documentation of the testing activity, including descrip-
tions of all tests and a log of all tests conducted, will be
assisted by the testing tools. An inventory of all tests will be
maintained, as well as a history of the tests performed on all
software. Test histories will be maintained for individual-unit
tests, subsystem and system level integration tests, and final
system checkout.

The final item of responsibility of software maintenance is
to keep track of various versions of modified programs. The
software maintenance environment will aid in documenting
program versions and storing distribution information such as
release dates and names of recipients. The documentation will
include installation instructions, user manuals, and system
descriptions that can be compiled from the project database.

MANAGEMENT TOOLS

Management activities can be broken down into five basic
categories:

1. Planning—opreparation of schedules, budgets, resource
estimates and other factors relevant to the execution of
a project

Future Ada Environments 63

2. Staffing—assignment of personnel to organizational
positions

3. Controlling—enforcement of directives and manage-
ment decisions

4. Directing—providing direction to project personnel to
support management objectives

5. Organizing—establishment of the project structure,
positions, and lines of authority

These activities are pervasive in software development,
being necessary during all phases of the software life cycle.
Up-to-date information regarding the project status and the
staff activities must be available for effective management.
The environment can play a large role in providing the neces-
sary information in a timely fashion and in a format suited to
someone removed from the technical aspects of the project.

The common project database will play a large role in sup-
plying the needed data to the manager. The environment can
automatically and accurately record as complete a history of
the project’s development as management needs. This infor-
mation can be reported to the manager, who plays a relatively
passive role in the building of the database, by a series of
management tools.

For planning activities, one of the most important reports
would be one indicating the degree of completeness of the
project. At the beginning of the project, the manager could
enter into the database a proposed schedule of events, includ-
ing recognizable milestones. The schedule could be updated
as the project progresses and unforeseen events occur; howev-
er, it would also present the means for the manager to note
which project tasks are falling behind schedule and which are
going as expected. Exception reports can indicate trouble
spots requiring special attention.

The manager should also be able to see at any time how well
the actual figures match the projected costs by entering
budgetary information into the database. The system can au-
tomatically record the computer resources used to date,
together with a record of personnel active on the project.
From this information, status reports on expenditures and
indications of possible trouble spots where projections are far
off can be automatically generated for the manager.

‘Once planning information is entered, special tools can
analyze the schedule of tasks to determine those critical paths

whose successful timely completion is vital to the overall suc-
cessful completion of the project. Interactive scheduling pro-
grams can assist the manager in developing a schedule that
tries to optimize staff and material resources. When a project
runs into trouble and requires rescheduling, such programs
can suggest new schedules consistent with the revised
information.

Another aspect of control is accountability. The environ-
ment enhances accountability because all activity within it is
recorded. If a module is erased from a library, the environ-
ment will indicate who issued the erasure command. If a
document is modified, the environment will be able to report
who the editor was. With this automatic recording and report-
ing capability, programmers will also be discouraged from
mischief since their identity will likely be known.

SUMMARY

Future Ada environments will support the entire life cycle of
a system, from helping to budget personnel to helping with
software maintenance. The code development tools presently
being implemented will be only a small part of future Ada
environments.

ACKNOWLEDGMENTS

Many present and past GRC personnel have contributed to
the ideas contained in this paper. In particular, Carolyn Gan-
non, Nancy Brooks, Reg Meeson, and Art Pyster made sub-
stantial contributions.

REFERENCES

1. Ross, D.T., and K.E. Schoman, Jr. “Structured Analysis for Requirements
Definition.” IEEE Transactions on Software Engineering, SE-3 (1977), pp.
6-15.

2. Alford, M.W. “A Requirement Engineering Methodology for Real Time
Processing Requirements.” IEEE Transactions on Software Engineering,
SE-2 (1977), pp. 60-69.

3. Pierce, R.A. “A Requirements Tracing Tool.” Proceedings of the Software
Quality and Assurance Workshop, November 1978, pp. 53-60.

4. Pennington, R.H. “Software Development and Maintenance—Where are
We?” Proceedings of the IEEE Computer Software and Applications
Conference, October 1980, pp. 419-422.

Stepwise structuring: A style of life for flexible software

byERIK SANDEWALL, STURE HAGGLUND, CHRISTIAN GUSTAFSSON,
LENNAT JONESJO, and OLA STROMFORS

Linkdping University
Linkdping, Sweden

ABSTRACT

In a life cycle perspective on software, the paper describes a strategy for initial-
ization and successive growth of software, which emphasizes flexible introduction
and flexible use. The examples in the paper are taken from office information
systems or personalized data processing systems.

The key points in the paper are as follows:

1. The system should be organized so that it allows multiple representations of
the same information, particularly as images (bitmaps), text, and structured
data.

2. New applications should first be started by using representations with rela-
tively little structure (such as images) and only graduaily shift to using more
structured representations.

3. Itis valuable for the end user to be able to control and make use of the gradual
introduction of more structure.

4. Tt is useful to have software tools that facilitate the interactive work of intro-
ducing more structure into the information. Some tools that have been imple-
mented in this project are described.

65

Stepwise Structuring for Flexible Software 67

A PRACTICAL CASE: FROM TEXT FILE TO
STRUCTURED DATA

When we have used office information systems in our own
work, we have repeatedly found it useful to use plain text files
as an interim representation before building a conventional
data file. Consider a very simple example: an international
address register, which contains name and address informa-
tion correctly in the various formats used in different coun-
tries and which is used for one single purpose: printing adhe-
sive mailing labels to be put on envelopes. If this address
register is represented as a text file, it can be edited (with a
standard text editor) and it can generate the required labels
(using the standard PRINT operation).

Such an implementation leaves with the user, of course, the
responsibility of making sure that all entries are correct—e.g.,
have the correct number of lines and observe the maximum
line length. However, it is not difficult for the user to under-
stand these requirements. If there are any mistakes, they can
be observed when the labels are printed out, and the user can
readily solve the problem. This arrangement has the funda-
mental advantage that the user can easily master the system.
For the user, that is an advantage that is often worth the price
of extra attention.

The text-editor implementation becomes impractical, of
course, when the number of addresses in the/éfirectory in-
creases and when the same information is to be used for
multiple purposes. The application is then converted to a file
of records in the obvious way—to a structured representation.
The extra effort of converting the existing text files to the
record format can be avoided if one implements the structured
representation right from the start. However, it can be worth
the effort, since the first stage, using the text file representa-
tion, provided a body of experience of several kinds: experi-
ence of all the odd varieties of addresses that may occur in
practice (which is useful for the implementor), a familiarity
with the computer system as a tool (which is significant for the
end user), and finally a check of possible practical problems
with computer-based solutions (such as mechanical problems
with the printer and the labels).

This simple case examplifies the first two of the general
principles that we proposed:

1. The data that are contained in an information processing
system occupy a slot in a spectrum from less structured
(in our example, the text file) to more structured (in our
example, the file of records).

2. It is useful to let the early stages of software develop-
ment be based on less structured data and to increase the
strength of structure as the system matures. A significant

advantage of this approach is that it is conservative with

respect to structuring; i.e., one does not introduce more

structure than necessary for processing. The organiza-

tional effects of different information media with differ-

ent levels of structuring has been studied by Innis' and
Taylor.”

In the remainder of the paper we shall argue that there are

more than two significant points along that spectrum and dis-

cuss their character. We shall also argue an additional point:

3. Software systems for interactive information processing
should support more than a single point on the struc-
turing spectrum. In other words, data with different lev-
els of structure should be able to coexist in the same
system.

Finally, we refer to systems that have been implemented
and used in our laboratory that have allowed us to develop and
test these principles.

SOME OTHER EXAMPLES

Let us now discuss additionai examples of applications whose
data have a place along the spectrum from less structure to
more structure.

References in a Text

A good example from the academic environment is the
preparation of the bibliography for a scientific paper. At first
the manuscripts are just text files. The first transformation is
to factor out the references individually as small text files
(notices, using the term of Sandewall et al., 1980.%) The main
text file is changed so that it contains only the expansion
command, with the file names of the text files for the various
references as arguments. A preprocessor must then be used
before the regular text formatter in order to reinsert the small
text segments for each reference.

Even this first step is valuable because it makes it con-
venient for various papers to share references. A second step
may be to change the text file representation of each reference
to a structured representation as a record in a database. Again
in this example, it is valuable to have a body of practical data
at work in the intended application before the structures are
decided.

From Image to Text File

We return to the problem of mixing paper-based and
computer-based documents and consider an information

68 National Computer Conference, 1983

workplace, i.e., an office or another working environment
where a large number of documents are processed by people.
By tradition, those documents arrive on paper.

It would be impractical to key all the contents of those
documents into the computer system—i.e., to convert them to
the form that we have called zext in the previous section. Not
only is it expensive to do the keypunching; it is also difficult
to support all kinds of figures, tables, photographs, etc.

The obvious solution, by analogy with the argument in the
previous section, is to recognize the original image of the
arriving papers as another representation (probably imple-
mented by raster-scan techniques), along with text and struc-
tured data. The image is of course less structured than the
text: The conversion from text to image is done automatically
by formatters and printout devices; the conversion from im-
age to text is usually done manually (by key-typing), and only
in some cases automatically.

The support of the image representation requires hardware
as well as software. The following is a scenario for what the
system could be like. The personal work station consists of a
keyboard, a text screen (i.e., a conventional character display
terminal), and an image screen (e.g., a full video screen). The
direct user-computer dialogue is performed using the key-
board and the text screen—e.g., for issuing commands to the
system. The system also contains a long-term memory for
image data, using either photographic or electronic storage
technology, and a short-term memory for the same kind of
data (e.g., in digitized form on a disk memory).

Both kinds of image memory are kept at a central location
and may be viewed from all work stations. It is well known
that the technology that makes that possible practically is
becoming available. Information of lasting value, such as
printed reports {or reports that used to be printed), are stored
in the long-term memory. In a research setting, this would
also include, for example, scientific journals. Information that
has just arrived and that is of general interest to the user
community (bulletin board information and circulation list
information) goes into short-term image memory and is trans-
ferred periodically to cheaper long-term memory. Newspaper
clippings, advertisements for new products, and (in a research
setting) calls for papers for conferences are examples of infor-
mation that could be handled in this way.

From the perspective of the user, paper-based information
that arrives in one copy to the organization is available imme-
diately to everybody on the image screen in his or her office.

Again, the advantages of the strategy should be fairly obvi-
ous: Our everyday office life includes many documents that
are, properly speaking, images, and that cannot be easily
expressed as text without significant loss of information and
readability. An electronic office system that is able to repre-
sent image and text side by side makes it possible to shift from
one representation to the other exactly when it is worthwhile.

Redundancy in Structured Data

There is also a later step, after the conversion from text to
structured data, which may be either a normal form represen-
tation, in the sense of database theory, or a so-called ruth

maintenance system, in the sense of artificial intelligence. If
the textual stage in the conversion chain is interpreted to
contain all the texts that are required by the organization and
if the structured-data stage deals with structured forms of the
same texts, then the next stage again should be one where the
user is relieved of the duty of maintaining redundant informa-
tion in cases where the same information is used in several
texts. This can be achieved either by reducing the structured
data to a normal form, with the standard techniques; or by
keeping redundant information in the system together with
operators that automatically maintain the consistency, which
is what truth maintenance systems do. ‘

The advantage of the normal-form approach is, among
others, that it can store large amounts of data economically.
An advantage of the truth-maintenance approach is that it can
be more concretely understood by the user: the machine still
contains the user’s documents, and there are “demons” that
propagate new information to all the relevant places. Those
demons can be created and removed at will and can also be
designed so that they can be asked about the reasons for their
actions.

A LARGER CASE STUDY: PERSONAL PLANNING
INFORMATION

Several experimental office information systems provide facil-
ities intended to facilitate the users’ personal planning: calen-
dars, agenda lists (such as “to do” lists and tickler files), and
others. Such facilities can serve a widely perceived need when
they make it easier to find common time for meetings and
appointments. (The potential disadvantages of making it even
easier to fill up people’s entire days with meetings have not
been discussed as much.) Further work along these lines is
envisioned: Morgan® points out that ““in true automation, the
control of when to use the tools is placed in the machine
support system,” and he suggests that that is a desirable goal:
“Similar work at Xerox, IBM, and MIT holds much promise
for truly automating in the office environment” (p. 7853).

Although formal reports are hard to find, informal evidence
suggests that computer-based personal planning systems do
not usually become popular. We believe that the following
factors contribute:

1. Many people want to be in control of how they use their
time.

2. Personal planning information is needed the most by
people who move around a lot. At least with today’s
technology, a computer terminal is not available when
and where a decision is made to update a plan.

3. The computer-based system cannot compete, in terms of
overall convenience, with the paper-based system of
handwritten notes.’

This does not mean that all is well the way things are usually
done. The available range of literature, courses, and tools for
personal planning suggests that many people are not satisfied
with how they use their own time. Some of those tools could
be computer based.

OC LOHIPUWCT ©

Stepwise Structuring for Flexible Software 69

Clearly, personal planning information has a structure.
Some tasks such as meetings occupy a fixed location in time;
others are limited by deadlines, or by requirements that things
be done in a certain order. There is also a goal structure, since
most tasks are intended to serve a purpose. Finally, many
tasks have other information attached to them: the task of
calling a person can be executed only if a phone number is
available; the task of traveling to another city is associated
with the information that goes into the travel expense form.

At least for a computer professional, it is tempting to diag-
nose that problems arise because the structure of the informa-
tion is not made explicit and to implement a piece of software
that will administer the information, properly structured. This
would be another example of going from a less structured,
paper-borne representation of the information (often imple-
mented as a heap of paper slips, with notes scribbled on
them), directly to a more structured, computer-borne repre-
sentation. According to the principle that we argue in this
paper, one should not attempt to do that.

In this case, the intermediary station is not computer-borne
texts, but instead paper-borne structures. The following de-
scription should be interpreted as an example of what one
could do, rather than as a specification. The paper-based tool,
which represents many of the structures in personal planning,
could be a small, looseleaf binder, with tab sheets organizing
the papers in the binder into sections and subsections. There
could be sections for personal calendar-style time planning
(on several levels of time scale); for the schedule of the whole
organization, which serves as background for the personal
schedule; for agendas and deadline-directed tasks; and for the
various kinds of information that are attached to the tasks and
sometimes prerequisites for performing them.

Furthermore, the structure provided by the tab sheets
should be further refined by a repertoire of different forms
used in the binder. It is natural to have special forms for
calendar sheets, address directory sheets, and agenda sheets;
and the looseleaf structure would allow new forms to be intro-
duced as significant new structures are recognized.

A structured, paper-based planning tool of this kind serves
a purpose in itself, and such systems exist already in the office
supply market. They are relevant to the topic of the present
paper, because we argue that such a paper-based planning
tool is necessary before a computer-based tool can become
worthwhile. Provided that the integrity of decision making is
preserved, the individual user may find it beneficial to arrange
that the information in his or her planning book interacts with
the information in the computer.

Interaction means that information indeed goes both ways.
For example, it is clearly convenient to let the address/
telephone directory in the planning book be a selective print-
out from a file that is shared in the organization, but it is also
natural to treat the handwritten updates in one person’s
address/telephone printout as a source of update information
for the database. Thus the interaction between paper-borne
and computer-borne information should be viewed as a paper
refresh: The user brings in a set of paper sheets with hand-
written corrections, updates the information in the computer
accordingly (or obtains assistance for that chore), and receives

a clean set of printouts confirming that the updates have been
performed.

The paper refresh operation is of course similar to how
programmers work with listings of programs. It may also serve
as a model for how other items of personal planning informa-
tion, such as weekly schedules, communicate with the
computer.

The structuring of personal planning information will then
have proceeded top-down, and differently from the bottom-
up structuring that we discussed above for the publication
referencing. Top-down structuring aims at providing an over-
all structure, within which yet unstructured parts may con-
tinue to exist. For example, in an information system which
supports image information in short-term memory as de-
scribed above, it may be sufficient to store an image of each
person’s weekly plans, so that it is available for others to
watch. (Dividing the plan into two columns, one of which is
not publicly visible, is a natural modification.) With that de-
sign, no software can inspect or modify the contents of the
week’s plan—a limitation that many users will consider a dis-
tinct advantage.

SOFTWARE DEVELOPMENT STRATEGIES

‘We described initially how the various representations may be
successive stages in the system’s development process. One
starts with a less structured representation and later shifts to
a more structured representation when the time is ripe. The
body of available information at the time is converted to the
more structured form, and there is some procedure {e.g., a
formatter or a report generator) that is able to recreate the
less structured form from the more structured one. The more
structured representation becomes the source;i.e., it is hence-
forth the object of successive editing.

In some cases the user may wish to keep both representa-
tions permanently. For example, ordinary business cards con-
tain some information that it may be worthwhile to change to
a more structured form in the address directory, but also some
other information which is best kept as it is, such as the logo-
type of the company or perhaps handwritten notes on the
card. The user may keep both the image of the card and the
database entry in his or her OIS in such a way that one can
easily go from one to the other. In this case it is unclear which
of the representations should be thought of as source in the
above sense.

An additional and more sophisticated case occurs when the
choices of representation are used alternatingly. In an applica-
tion it is often easy to find a more structured representation
that accounts for most but not all of the cases. Returning to
the example of the reference list in the scientific paper, most
quotations fit into one of a small number of cases (book,
paper in a journal, internal report, etc.); but there are also
occasional references that do not fit those patterns. In the
transfer from the textual representation of the individual ref-
erence to the structured representation, the user might then
elect to retain the textual representation for the odd cases.

This easy way out has two drawbacks: Search operations
(e.g., the search for papers with a certain author) will often

70 National Computer Conference, 1983

not “see” the odd cases, and transformations (e.g., alterna-
tive formats for presentation of the quotation, with italics for
the title of the paper, the journal, etc.) have to be done
manually for the odd cases. However, those drawbacks may
be easily acceptable if the volume of information is moderate
and if the system is always used interactively, as is often the
case in OIS. It is much worse to have to think in advance of
all the cases that may possibly arise—or to deal with an in-
flexible system where some of the cases that should have been
thought of in advance have not been.

Two general observations are that one and the same system
should be able to account for the various representations of
information, and that each user should be able to understand
how those representations for the same information can be
used and exchanged.

Comparisons with Other System Development Methods

Conventionally, software engineering has recommended a
sequence of carefully separated steps (often illustrated as a
staircase or waterfall) from specification of needs to operation
and maintenance. Stepwise structuring recommends instead
that that an initial system should be put into operation early,
using general-purpose software that is able to support low
levels of structuring; and that only as more experience is
gained should the level of structure be increased. The disad-
vantage of the conventional method is, of course, that it is
often difficult to understand needs and do the specifications in
advance.

The method of rapid prototyping has been proposed repeat-
edly as another way of dealing with that phenomenon. It has
often been quoted as a raison d’etre for various incremental
programming languages, such as CS4,° Lisp,” or APL.% How-
ever, prototyping cannot deal with the fact that users’ needs
change continuously during the system’s lifetime (and in fact,
that the system’s lifespan is often limited by its ability to adapt
to these changing needs). Stepwise structuring does address
that issue; but at the same time it will clearly require other
kinds of software tools in order to be practical—for example,
tools that support the transition to higher structuring levels.

The method of structured growth has been proposed by one
of the present authors’ as a strategy for the gradual extension
of software. The idea there is to build an initial software
system with relatively few facilities, but with an organization
that supports the gradual incorporation of more and more
features. Thus it is closer to stepwise structuring in character;
but, whereas the method of structured growth emphasizes the
gradual accumulation of more software and more variants of
data structures, stepwise structuring emphasizes transforma-
tion of data between structure levels as the most significant
event during the development process.

SOFTWARE TOOLS FOR STEPWISE STRUCTURING

The method of stepwise structuring formulated in this paper
immediately suggests the need for a number of software toois:

1. Support for mixed data representations. The most impor-

tant tool is an information management system (IMS) (a
kind of editor) that is able to handle several kinds of data
at the same time—e.g., text, structured data, figures,
and images. If some data are kept on a lower structuring
level, even after the bulk of the data has been trans-
formed to a stronger structure, then this IMS will be the
working tool of the computer user. But even if complete
transformations are done at one time and all data are
thereafter in the stronger structured form, the mixed-
structure information management system is a necessary
tool for those who do the conversion work.

. Data parsers. Regularities of data often arise spontane-

ously within one structuring level; therefore a data
parser can be used as a tool for increasing the structure
level. For example, an address directory has fairly regu-
lar contents, even if it is stored as a text file. But of
course one cannot assume that all data will fit into the
presumed syntax. A data parser that is going to be used
for this purpose must therefore be embedded within an
IMS as just described so that it can be run under strong
user control.

. Catalogs. One aspect of such an IMS for mixed data is

that it must include the services of a conventional file
directory. The use of directories for text files is univer-
sally understood, but when one starts to use a very large
number of small text files, the function of the dictionary
changes from being a way of assigning mnemonic names
to individual files to being a database where combina-
tions of named objects (entities, in database jargon; con-
cepts, in semantic network jargon) from the application
domain, have text objects (small text files, big strings)
associated with them.

Similarly, the image representation of information is
practical only if it is annotated by catalogs, which, for
example, will identify where a certain issue of a certain
journal is stored or in which picture frames a certain
article (defined by author, title, etc.) occurs, or where a
certain quotation within a certain article is located. In
our example, the catalog for the image information
tends to merge with the database used for generating
references in the bibliography in new papers. That ex-
ample illustrates a general principle: We really do not
need a system that is just a catalog; we need a database
that is organized in terms of concepts from the applica-
tion domain and that among other things contains what
used to be catalog or directory information.

When a text or an image is annotated in a catalog or
a database, some of its structure is already being identi-
fied. This suggests that the structuring operation (from
image to text and from text to structured data) is often
a top-down process, where one first identifies the top-
level structure and decomposes the original image (or
text) to a number of smaller images (or texts), which
may then be again decomposed. Several of the examples
follow this pattern, and a catalog in our wider sense can
be viewed as the software support for top-down
structuring.

There are aiso many exampies of bottom-up struc-

Stepwise Structuring for Flexible Software 71

turing, where small parts of a text are broken out, but

the whole text retains its character as text. The above

example of the references in the research paper is a case
in point, and one can add the examples of yearly activ-
ities reports, as well as curricula vitae, where lists of
similar events (seminars, travel, etc.) can be structured
in a bottom-up fashion.

. Reconversion tools. These last examples remind us of
another useful, general-purpose tool: a preprocessor for
the text formatter, which takes a source-source file as
input, recognizes the macro expansion commands in that
file, and produces as output a source file, which may be
input to the regular text formatter. For the bibliography
example, the user defines a command that fetches a text
file with a given name and embeds it in the main file.
Later, when the individual references are upgraded from
text to records, the command is redefined so that it
fetches the same information from the database and an-
notates it appropriately (e.g., using font shifts).

In general, there must always be a tool for recon-
verting data from a higher structuring level to a lower
one previously used. As long as a certain structuring
level is being used, one is likely to build up a number of
services that make_use of that level. Services that cannot
be substantially improved by using the increased struc-
ture can continue to be used as they are if information
with the new, higher structure is reconverted to the pre-
viously used level as a preprocessor to the service.

. Recognition mechanisms. We have discussed examples
where the conversion from text to structured data is
done at one time. It is also frequently necessary to iden-
tify pieces of data in an incoming text in order to relate
it to structured data that are already in the system—e.g.,
when a computer mail message contains the date and
time of a forthcoming event that has to be related to the
contents of the user’s calendar. In general, one needs
software that can recognize structure in surviving lower-
level data to such an extent that they can be related to
the right point in the existing structure in the system.
Kofer® describes plans for the design of an interface
between the two representations that would be adequate
for this purpose.

. Prototype implementations. The contents of the present
paper are conclusions that we have drawn from earlier
implementation efforts, namely the Linkdping Office In-
formation System (LOIS)'" and the ED3 structure ed-
itor,? which is a candidate tool for conversion from text
to structured data.

One view of ED3 is that it is an editor for tree-
structured documents, where the structure may be the
one of chapters and sections inside one document, or the
dictionary structure that organizes a collection of docu-
ments, or both. In an editing session, the user starts at
the root of a tree and is offered a repertoire of oper-
ations for navigating and modifying the tree structure.
The leaves of the tree are pieces of text and are modified
by a cooperating text editor.

ED3 has more recently been extended with support
for leaves that have other types than text, particularly

vector graphics and tables. As such, it illustrates the
required characteristics of a dictionary that encompasses
several representations, as discussed earlier in this
section.

But another view of ED?3 is that it simply maintains a
conventional text file together with a bracketing struc-
ture that points out the beginning and end positions in
the text of blocks that may be nested recursively. When
the user views a position in the ED3 tree, he/she views
one selected block in the text file. The surrounding
blocks are not seen at all, and in the contained blocks
only the first line is seen.

This view of ED3 is actually closer to the actual imple-
mentation. It also explains how ED3 may be useful as a
tool for the transition from text to structured data: It
contains commands whereby the user can conveniently
bracket the text file into recursively nested blocks.

In another project we have developed the Carousel
system'' which shows how a hierarchical information
structure, similar to the one used in ED3, can be the
basis of a very concise system for many of the basic
services in an office information system, such as forms
management and command-oriented user dialogue.

Finally, an extensible preprocessor for the formatter has
been implemented within Interlisp and has been applied to a
number of different uses, including the administration of ref-
erence lists. It was used for the preparation of this paper.

Work in progress includes the formal specification of an
IMS that, among other things, should be a good software
support environment for application development by stepwise
structuring.

ACKNOWLEDGMENTS

This research was supported by the Swedish Board of Tech-
nical Development under Contract Dnr 80-3918.

REFERENCES

1. Innis, Harold A. Empire and Communications. Oxford: Oxford University
Press, 1950.

2. Taylor, James R. “New Perspectives on the Office of the Future.” In
Proceedings of the International Workshop on Office Information Systems.
Paris: INRIA, 1981.

3. Sandewall, Erik, Goran Hektor, Anders Strém, Claes Strémberg, Ola
Stromfors, Henrik Sérensen, and Jaak Urmi. “Provisions for Flexibility in
the Linkoping Office Information System (LOIS).” AFIPS, Proceedings of
the National Computer Conference (Vol. 49), 1980, pp. 569-577.

4. Morgan, Howard Lee. “Research and Practice in Office Automation.”
Invited paper. S. H. Lavington (ed), Information Processing 80. North-
Holland, 1980.

5. Maryanski, Fred. “Guest Editor’s Introduction.” Computer, 14 (1981),
p. 11.

6. Berild, Stig, and Sam Nachmens. “CS4—A Tool for Database Design by
Infological Simulation.” In Proceedings of Third International Conference
on Very Large Data Bases. Published in 1977; available from IEEE Com-
puter Society, Long Beach, California.

7. Erik Sandewall: Programming in the Interactive Environment: The ‘Lisp’
Experience. ACM Computing Surveys, Vol. 10, No. 1, pp. 3572, March
1978.

72

National Computer Conference, 1983

10.

. Gomaa, Hassan, and Douglas B. H. Scott. “Prototyping as a Tool in the

Specification of User Requirements.” In Proceedings of the 5th Inter-
national Conference on Software Engineering. New York: IEEE, 1981.

. Kofer, G. Reinhard. Some Software Integration Technology Concepts for

Saving Money While Doing Empirical User Research. In Proceedings of the
Internationa! Workshop on Office Information Systems. Paris: INRIA,
1981.

Higglund, Sture; other authors (names not given in report). “80-talets
elektroniska kontor. Erfarenheter fran LOIS-projektet.” (“The Electronic
Office of the 80’s. Experience from the LOIS Project.”) Research report

11.

LiTH-MAT-R-81-4, Software Systems Research Center, Linkoping Uni-
versity, Sweden, 1981.

Sandewall, Erik. “Unified Dialogue Management in the Carousel System.”
In Proceedings of the SIGACTISIGPLAN Conference on the Principles of
Programming Languages. Albuquerque: 1982.

. Strémfors, Ola, and Lennart Jonesj6. “The Implementation and Experi-

ence of a Structure-Oriented Text Editor.” In Proceedings of ACM
SIGPLANISIGOA Symposium on Text Manipulation. New York: Associ-
ation for Computing Machinery, 1981.

HITS: A symbolic testing and debugging system for
multilingual microcomputer software

by TAKESHI CHUSHO,
ATSUSHI TANAKA, and
ERI OKAMOTO

Hitachi, Ltd.

Kawasaki, Japan

and

AKINORI HONDA

and TORU KUROSAKI
Hitachi, Ltd.

Yokohama, Japan

ABSTRACT

The use of a large-scale computer is the key to the development of increasingly
numerous and large-scale microcomputer software programs. HITS (Highly Inter-
active Testing-and-debugging System) constructs an integrated programming envi-
ronment for 68000 microcomputer systems on a large-scale computer in cooperation
with language translators. This system supports efficient and effective software
validation from module testing through system testing. Functions of HITS are
provided in the test-procedure description language, in which test data, expected
results and the testing environment are described and separated from the target
program. The main features are (1) symbolic support of both a high-level language
and an assembly language, (2) module testing facilities such as driver and stub
definitions, (3) a testing coverage monitor for branch testing, (4) debugging com-
mands added temporarily to a test procedure from a terminal, and (5) a macro
definition for language extension. HITS has already been used at many sites. In our
early experience of applying it to the software development of various commu-
nication systems, software productivity and reliability were considerably improved.

73

HITS: A Symbolic Testing and Debugging System x 75

INTRODUCTION

Software development for microcomputer systems is entering
a critical stage. This is because the programming environment
is still poor, even though microcomputers have been applied
extensively to various fields, many of which have required
high reliability. Furthermore, large-scale software has begun
to be developed as 16-bit microcomputers have come into
wider use. For example, we have developed 100 ~ 200 kilo
steps of software for a digital switching system using 68000
microcomputers.

To date, almost all programming environments for micro-
computer-software development have been constructed on
the target microcomputer or on a development support sys-
tem in which a microcomputer is embedded. Such resident
support systems, however, provide limited facilities. That is,
the programming language is usually assembly language. Fur-
thermore, a debugger supports only dump, patch, breakpoint,
and trace on a machine-language level. There are no oper-
ating systems with various useful utilities and powerful file
management for software development as there are in a large-
scale computer.

There are two effective solutions to these problems:

1. Programming in a high-level language and testing and
debugging on a source-program level.

2. Using a large-scale computer for developing software,
from programming through validation.

These solutions have been partially adopted in previous stud-
ies. For example, a high-level language, PL/M, for Intel’s
microcomputer families, was early developed. However, the
software development system is not sufficient for software
validation, because it mainly supports debugging, not testing
such as the symbolic description of a test procedure.' Another
example is the microcomputer software engineering facility,
MSEF, which uses a minicomputer.” Although this system is
aimed at supporting a wide range of microcomputer-software
development, the testing facility is limited to management of
the relationship between a target program, its input data, and
results under the hierarchical file system.

We have incorporated both of these solutions in an attempt
to deal with the problem of developing large-scale software
for digital switching systems. First, a system description lan-
guage for microcomputers, S-PL/H, has been developed and
its cross compiler has been available in the Hitachi M-series
computer system since the end of 1980.> S-PL/H is a superset
language of PL/M and it provides both the basic facilities of
PL/I and microcomputer-oriented facilities.

Next, a testing and debugging system for microcomputer

68000 software, HITS, has been developed for efficient and
effective software validation using the large-scale computer.*
This has been available since the spring of 1982. HITS con-
structs an integrated programming environment for micro-
computer software development in cooperation with S-PL/H.

The main requirements for HITS are a wide range of sup-
ports for various aspects as follows:

1. Support ranging from small-scale software through
large-scale software,

2. Target programs in both a high-level language and as-
sembly language,

3. Testing facilities ranging from module testing through
system testing,

4. Compatibility of testing facilities and debugging facili-
ties,

5. Executions in interactive mode and batch mode.

This paper describes the design concepts and functions of
HITS and some application results.

DESIGN CONCEPTS

Many different techniques and tools for software validation
have been developed, such as data-flow analysis for automatic
error detection, symbolic execution for automatic test-data
selection, and assertions for correctness proof.” Many of
them, however, are not practical for large-scale software vali-
dation because they require enormous computing resources.

Therefore, we still must depend on “exhaustive testing” in
which a lot of data are evaluated against the corresponding
expected results. Our goal is to improve the efficiency and
effectiveness of such dynamic testing. HITS was thus devel-
oped on the basis of the following design concepts:

1. Environment: use of a large-scale computer

2. Coverage: support of module testing, integration testing,
and system testing

3. Function: support and unification of systematic testing
facilities and interactive debugging facilities

4. Object: program modules written in a high-level lan-
guage and assembly language

5. Ease of use: minimization of preparations and oper-
ations, such as symbolic commands and a test-procedure
library.

First, the use of a large-scale computer provides the follow-
ing advantages:

® integrated file management for source programs, object
programs, test data, test results, and path-coverage data,

76 National Computer Conference, 1983

® parallel processing of both module testing and integra-
tion testing under a time-sharing system.

Figure 1 shows the system configuration of HITS. The second
item, systematic testing from module testing through system
testing in this configuration, will be described in the next
chapter.

The third item is based on the idea that testing and de-
bugging cannot be separated. Of the conventional tools for
software validation in practical use, there are many that pro-
vide only debugging facilities. The others provide only testing
facilities. For example, although MTS® and TPL are excellent
tools for module testing, they do not support debugging. Fur-
thermore, the former requires much preparation time because
of target-language independence. The latter is limited to tests
having only Fortran subroutine parameters. In HITS, when an
error is detected by the execution of a test procedure that
includes test data and the expected results, the test procedure
can be executed again interactively while adding temporary
commands for debugging.

The fourth item, support of both a high-level language and
assembly language, is necessary for the development of sys-
tem software because assembly language is used for the de-
scription of modules requiring device control or critical re-
sponse time. For example, in the aforementioned digital
switching system, 70% of all modules are described in a high-
level language, S-PL/H, and 30% in assembly language.
Therefore, these two languages are supported so that HITS
may be available not only for module testing but also for
integration testing and system testing. The fifth item, ease of
use, is indispensable to support tools. A test procedure de-
scription language for HITS was designed taking this policy
into consideration.

SYSTEMATIC TESTING

Software testing is performed in the following steps:

Programming Database

Source Object Test Test Coverage
Programs | Programs | Procedures Results Data
N
\\ /
\\ /
N //
Cross
Compiler Commands
HITS and
Cross Displays
Assembler
Terminals

T 8

Operating System
(TSS/Batch)

Large-Scale Computer

Figurc 1—Systcm configuration of HITS

—

module testing for validation of each module function,

2. integration testing for validation of interfaces between
related modules,

3. system testing for validation of system function.

To be applied as widely as possible, a test system should
systematically and uniformly support all of these steps and not
depend on any one particular testing strategy such as bottom-
up testing or top-down testing.®

HITS provides the following features for systematic testing:

1. All testing steps are supported by providing testing-
environment simulation facilities for module and inte-
gration testing and a module-binding facility for integra-
tion and system testing.

2. Test data can be shared among all testing steps by using
a test procedure that includes the test data.

3. Testing-coverage data for effective test-data selection
and quality assurance are collected throughout all test-
ing steps.

We will now look at these features in a little more detail.

Module/Integration Testing

Module and integration testing should be performed as
thoroughly as possible, considering the following two axioms
of productivity and reliability:

1. The later an error is detected, the more it costs to correct
it.°

2. It is difficult to get a high testing-coverage rate at a later
step.™®

These testing steps, however, require a testing-environment
construction that is complicated and troublesome. That is, an
upper module, lower modules, global data, and input/output
devices for the target module must be simulated. HITS re-
duces this work with testing-environment support facilities as
shown in Figure 2.

Test Procedure

A test procedure includes test data, expected results, and
testing-environment simulation, and is described in the test
procedure description language that will be discussed later.
This procedure is separated from a target module and can be
shared throughout all testing steps by eliminating the simu-
lation part, which integration of modules makes unnecessary.

Branch testing

Test-data selection methods are classified into functional
testing, based on function specification, and structural testing
based on program structure."’ Branch testing is typical of the
latter methods and is supported by HITS.' That is, the num-

HITS: A Symbolic Testing and Debugging System 77

Driver Definition (CALL)

= =

: Upper !

I Module |

e —
e - “ oo o = -~
I 1/0 :<— Target ————->: Global !
| Devices 1™ Module |<——1 Data _,
tmemm——,r —_,ed ke — -
Data I/ O Storage
(SET, LIST) ﬂ Allocation

-—————— - (GET)

: Lower :

I Modules

| I, -

Stub Definition (STUB)

<= : Contro! flow
<— : Data flow
() : Command

Figure 2—Environment support facilities for module testing

ber of executed branch directions is measured and the un-
executed parts are reported.

FUNCTIONS OF HITS

Test-Procedure Description Language

A test-procedure description language is designed as a com-
mand language rather than a procedural language because

1. HITS supports both testing and debugging in a uniform
manner, and a command language is very suitable for
interactive debugging.

2. Furthermore, a command language is easy to use even
for test-procedure description and this satisfies the de-
sign policy of minimization of preparations and oper-
ations.

The structure of a test procedure is as follows:

PROC test-procedure name
{commands in common use among the following
test cases}
CASE the first test-case name
{commands only for the first test case}
END
CASE the second test-case name
{commands only for the second test case}
END

END PROC

Commands in common use include commands such as
those for binding of target modules and storage allo-
cation of external global data. The test procedure is
stored in a library and is executed by an EXEC com-
mand or is entered directly from a terminal. We would
next like to look at command functions.

Simulation of Testing Environment

1. Driver definition: Upper module simulation is composed
of value assignments to input parameters using SET com-
mands, target-module invocation using a CALL or GO com-
mand, and result verification using IF commands. CALL may
include value assignments to input parameters.

2. Stub definition: Lower module simulation is described in
a STUB command whose subcommands may be composed of
IF commands for input-parameter checks and SET commands
for value assignment to output parameters.

3. External global data: Their storage is allocated using
GET commands and may be assigned values by SET com-
mands.

4. Input and outpur: Their instruction location is specified
as a breakpoint by an AT command whose subcommands are
SET commands for value assignments to input variables or
LIST commands for display of output values.

Reduction of Test Procedure Description

1. Macro-definition: A list of commands used repeatedly is
defined as a new extended command by a macro-definition
facility. For example, a new command for a result check is
defined as follows:

CLIST %CHECK
IF &1=&2 LIST'<O.K.>', &l = &2’
IF&1<>&2LIST'<N.G.>','&1< > &2’
END CLIST

&n implies the nth parameter. Assuming that this macro is
used as %#CHECK (STATE, 3), if the value of the variable
STATE is 3,

<O0.K.> STATE=3
is displayed. if not,
<N.G.> STATE < >3

is displayed.

2. Simplification of object identification: A QUALIFY
command permits references to a local name without qual-
ification that specifies the scope of the name. An EQUATE
command replaces a complicated address expression with a
new name.

3. Variation of constant values: A DATA command defines
a sequence of constant values so that a test case can be exe-
cuted repeatedly while varying only constant values.

78 National Computer Conference, 1983

4. Communication among test procedures: LOAD and
SAVE commands permit a test procedure to use data values
that are created by another test procedure.

Debugging Facilities

1. Breakpoint: The breakpoint is specified by an AT com-
mand which may include subcommands executed at the
breakpoint. A breakpoint is expressed by the procedure
names or statement numbers for the target program in
S-PL/H. The specification of the procedure name causes an
interruption and requests commands at the beginning of the
procedure. The specification of the procedure name following
END also functions at the end of the procedure. The state-
ment numbers should be used only for interactive debugging,
not for test-procedure description, so that modification of a
target program does not cause modification of the test pro-
cedure. For the target program in assembly language, a break-
point is expressed by the label names and hexadecimal offset
address.

2. Trace: TRACE commands are used for the forward and
backward control trace of branches or procedure calls, or for
trace of data-value modifications. A BREAK option causes
an interruption and requests commands at every trace event.

3. Debug mode: The BREAK option also functions at the
beginning of the target-program execution if it is so specified
before execution of a test procedure. Therefore, at that time,
temporary commands for debugging can be entered without
rewriting the test procedure in a library.

4. Off-line output: A large amount of trace data or dump
can be output to a line printer instead of a display terminal by
using an OUT option.

5. Exception handling: Exception handling can be de-
scribed in a STUB command with an INTERRUPT option
that includes an interruption condition such as an operation-
code trap and an address error. References to undefined data
are always detected.

DESIGN OF COMMAND LANGUAGE

The command syntax of HITS has the following features in
comparison with conventional command languages:

1. procedural concept of block structure,
2. target language dependency,
3. abbreviation of command name.

First, it is desirable that constraints between commands be
few. However, when HITS commands are used for descrip-
tion of a test procedure, some commands require subcom-
mands. Therefore, the following seven block structures are
introduced:

i. test-procedure block (PROC ~ END)
ii. test-case block (CASE ~ END)

iii. macro-definition block (CLIST ~ END)
iv. linkage block {(LINK ~ END)

v. stub block (STUB ~ END)
vi. condition block (IF ~ END)
vii. breakpoint block (AT ~END).

The last four blocks are used only if they have two or more

subcommands. When there is only one subcommand, it is

specified at their operands for simplicity. The second feature

implies that a user can describe a test procedure on the

target source-program level. For example, abstract operands

of HITS commands, < instruction-address> and < data-

address >, depend on a target language as shown in Table I.

Therefore, it is easy to learn and use the command language.

The third feature is provided to improve the efficiency of
interactive debugging (full names of commands should be.
used in test procedures for readability). Our abbreviation rule

is simple, that is, the latter part of a name can be truncated

from an arbitrary position after the first character. If the

truncated names of some commands are the same, the system

decides which is which in advance, based on the frequency of
use.

EXAMPLE

An example is given for explanation of a testing process using
HITS. Assume that we develop a program for selecting the
maximum of two values that are the minimum values of two
groups of values. Two procedures, MINIMAX and MIN, are
written in S-PL/H as shown in Figure 3.

A test procedure for integration testing of these procedures
is shown in Figure 4, assuming that the lower procedure MAX
and a caller of MINIMAX are not written yet. First, two
modules, SUB1 and SUB2, including MINIMAX and MIN,
respectively, are extracted from a library by an INCLUDE
command that is a subcommand of a LINK command. Next,
storage for the external global data, X and Y, is allocated.
Then, a stub for MAX is defined and several test cases follow.

One of the test cases, C07, is composed of value assign-
ments to global variables, X and Y, invocation for MINI-
MAX, and result check. The definition of %CHECK has
been previously mentioned. Here, two other interesting
macro-definitions can be used, namely %PRE and %POST.
They are assertions for verification of the precondition and
postcondition of a procedure, and are defined as follows:

CLIST %PRE
AT &1 DO
IF &2 RESUME
LIST '&1 PRECONDITION: &2 is false.’
END
END CLIST

CLIST %POST
AT END &1 DO
IF &2 RESUME
LIST '&1 POSTCONDITION: &2 is false.’
END

END CLIST

HITS: A Symbolic Testing and Debugging System 79

TABLE I—Command operands differing between S-PL/H and
assembly language

Details for
Abstract Operand Details for S-PL/H an Assembly Language

procedure name
or label with offset
statement number

< instruction-
address >

label with offset,
indirect addressing,
and register indexing

< data-address > variable name

For example, these commands may be inserted before a
CALL command in the test case C07 as follows:

%PRE (MIN, A(1)> —1)
%POST (MIN, 1< 11)

The first command verifies that the input parameter A to
procedure MIN has at least one valid value. The second veri-
fies that the array variable A was never erroneously referred
to out of range in procedure MIN.

When the test case CO7 is executed, the following error
message is output at %CHECK (RESULT, 2):

<N.G.> RESULT < >2

An example of interactive debugging for this error is shown in
Figure 5. The test case C07 is executed with the debug mode

SuUBl: do;
dc1 (X,Y) (10) integer external;

MINIMAX: proc (
dcl (M,MX,MY)
call MIN(X,MX
call MIN(Y,MY
M=MAX (MX,MY) ;

end MINIMAX;

end SUB1;

var M) public;
integer;

).

)

s
.
b

SUB2: do;
MIN: proc (A,var B) public ;
dc1 A(10) integer;
dc1 (B,I) integer;
B=A(1);
2

—~

I=
do

Il -h ;_\“

lile A(I) >= 0 ;
if A(I) > B then B=A(I);
I=I+1;

end;
end MIN;

end SUBZ;

Figure 3—A sample of a target program

PROC TP21
LINK INCLUDE SUB1,SUB2
GET X,Y
STUB MAX(P,Q) DO
SET MAX=P
IF P < Q SET MAX=Q
END

CASE (07
SET X=(1,3,5,7,-1)
SET Y=(2,4,6,-1)
CALL MINIMAX(RESULT)
%CHECK (RESULT,2)

END CASE

END PROC

Figure 4—A sample of a test procedure

(BREAK option). At the beginning of MIN, the value of the
input parameter A is checked. Then, MIN is executed while
tracing for modifications of the output parameter B. Finally,
the cause of the error in an if statement is detected, and this
test procedure is terminated.

APPLICATION OF HITS

This system has been released to many factories and laborato-
ries since the spring of 1982. The following advantages of
HITS were confirmed.

1. Writability: The average number of commands in a test
procedure is 4.4 ~ 5.6 per test case for module testing of
a digital switching system, although the number of com-

{ ready }

OPTION BREAK
EXEC TP21(CO &
break at MINIMAX }
AT MIN LIST A
RESUME
{ display and break at MIN }
TRACE DATA(MIN#B)
AT END MIN
RESUME
{ display and break at the end of MIN }

STOP PROC
{ ready }

Figure 5—An example of interactive debugging

80 National Computer Conference, 1983

mands depends on such things as the number of input
and output parameters, the number of external data,
and similarity among test cases.

2. Operability: The target program is automatically tested
by entering an EXEC command. This is because various
operations required by a conventional debugger are au-
tomated or assembled into a test procedure.

3. Reliability: The quality of a target program becomes
visible with the use of a testing-coverage facility and is
improved by adding test cases for unexecuted branches.
Reliability of testing is also improved because a test
procedure is described on the target-program source lev-
el and clearly corresponds to a target program and its
testing specifications.

4. Productivity: Productivity is improved by the following

factors:
i. early error detection by promotion of module test-
ing,

ii. high efficiency of test-data generation, execution,
and result check
iii. quick debugging.
In our experience, when HITS was applied to only mod-
ule and integration testing, testing cost was reduced by
35% in comparison with the previous testing method
using the target computer. For a target program applica-
ble to system testing, testing cost was reduced by 45%.
5. Maintainability: It is easy to modify and add test cases
because a test procedure is separate from a target pro-
gram. The test procedure is shared among module, inte-
gration, and system testing with only minor changes, and
is also available in the maintenance phase of a target
program.

CONCLUSIONS

A testing and debugging support system, HITS, for micro-
computer 68000 software was developed for efficient and ef-
fective software validation using a large-scale computer. The
main features of HITS are as follows:

1. All steps of module testing, integration testing, and sys-
tem testing are supported while sharing test data and
accumulating testing-coverage data.

2. Module-testing support facilities for simulation of an
upper module, lower modules, external global data, and
input/output devices are provided.

3. Test data, expected results, and environment simulation
are assembled in a test procedure that is executed under
both batch and interactive modes.

4. Both a high level language, S-PL/H, and assembly lan-

guage are supported on the source-program level,

HITS has already been released to many sites and has im-
proved software productivity and reliability.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to Dr. Takeo
Miura for providing the opportunity to conduct this study.
They are also indebted to Tan Watanabe, who designed
S-PL/H, for his invaluable technical assistance, Mitsuyuki
Masui for comments on drafts of the functional specification,
and Tatsuro Oishi for modification of the S-PL/H cross-
compiler and the cross-assembler that pass symbolic tables to
HITS.

REFERENCES

1. Guide to Intellec Microcomputer Development Systems. Santa Clara, Calif.:
Intel Corporation, 1978.

2. Eanes, R. S., C. K. Hitcon, R. M. Thall, and J. W. Brackett. “An Environ-
ment for Producing Well-Engineered Microcomputer Software.”” Proceed-
ings of the 4th International Conference on Software Engineering, 1979,
pp. 386-398.

3. Hitachi Microcomputer System: 68000 Super-PL/H Language Manual.
Tokyo: Hitachi Ltd., 1981.

4. Chusho, T., T. Watanabe, T. Kurosaki, and T. Yamamoto. “Design Con-
cepts of a Microcomputer Software Testing and Debugging System.” The
Fall Conference of Information Processing Society of Japan (in Japanese),
1981, pp. 419-420.

5. Miller, E. F., and W. E. Howden. “Tutorial: Software Testing and Valida-
tion Techniques,” IEEE Catalog No. EHO 138-8, 1978.

6. Module Testing System (MTS) Fact Book. London: Management Systems
and Programming Ltd., 1972.

7. Panzl, D. J. “Automatic Software Testing Drivers.” Computer, 11 (1978),
pp. 44-50.

8. Myers, G. 1. The Art of Software Testing. New York: Wiley-Interscience,
1979.

9. Sorkowitz, A. R. “Certification Testing: A Procedure to Improve the Qual-
ity of Software Testing.” Computer, 12 (1979), pp. 20-24.

10. Holthouse, M. A., and M. J. Hatch. “Experience with Automated Testing
Analysis.” Computer, 12 (1979), pp. 33-36.

11. Howden, W. E. “Applicability of Software Validation Techniques to Sci-
entific Programs.” ACM TOPLAS, 2 (1980), pp. 307-320.

12. Miller, E. F. “Program Testing: Art Meets Theory.” Computer, 10 (1977),
pp. 42-51.

A global checkpointing model for error recovery

by KRISHNA KANT
Northwestern University
Evanston, Illinois

ABSTRACT

The paper proposes a new concept for providing software fault tolerance in concur-
rent systems. It combines the traditional global-checkpointing mechanism with the
recovery-block concept in order to come up with an easily implementable error-
recovery mechanism. This mechanism involves smaller overhead in case of moder-
ate to high process interaction than the schemes considered in the past, which are
based upon the idea of local checkpointing. A model for computing the optimum
checkpointing interval is also presented. A particular distribution is hypothesized
for the coverage of the recovery and the behavior of the model studied in detail for
this case.

81

A Global Checkpointing Model for Error Recovery 83

A. INTRODUCTION

Global checkpointing (GCP) is a popular technique for en-
suring that an unexpected system failure does not result in the
loss of valuable information. The state of the entire system is
saved at periodic intervals (known as checkpoints) so that in
the event of a failure the system can be brought to a consistent
state simply by resetting it to its last checkpoint. There is an
obvious tradeoff between the checkpointing overhead and the
amount of computation lost as a result of failure. Many mod-
els have been proposed in the literature for computing the
optimum checkpointing interval >?

The fundamental assumption in such a GCP-based ap-
proach to fault tolerance is that the system failure is caused by
temporary faults such as transient hardware faults, operator
error, erroneous input data, timing problems resulting from
an unusual combination of circumstances, and so on. In such
cases, a rollback and retry procedure would most likely cor-
rect the problem. However, if we consider the failures re-
sulting from bugs in the operating software, such a scheme
does not suffice. In order to obtain fault tolerance against
software bugs, it becomes necessary to incorporate functional
redundancy in software. A well-known mechanism for doing
this is the recovery-block concept.”

As proposed by Randell, the recovery-block (RB) concept
uses local checkpointing (LCP), that is, the state saving and
restoration is done on a per process basis. If the processes
constituting a concurrent program only compete for resources
but do not interact otherwise, LCP is clearly the preferred
strategy, since the rollback and retry will be limited to only the
failed process. However, if we have a system of interacting
processes, the erroneous information may propagate from
one process to the other before it is detected. This leads to two
complications: (1) it is no longer sufficient to maintain only
the last checkpoint; in fact, very old checkpoints may need to
be kept in order to handle occasional very long rollbacks. (2)
the “exact” identification of the points to which the processes
of the system need be rolled back becomes extremely complex
and costly. (See Kant and Silberschatz* and Kim” for more on
LCP-based recovery in concurrent programs.) In this paper,
we explore the possibility of using GCP instead of LCP to
reduce the cost and complexity of recovery in concurrent
programs.

B. RECOVERY BLOCKS WITH GLOBAL
CHECKPOINTING

For this, we simply remove checkpointing from Randell’s RB
concept; that is, when a process enters an RB, it does not

establish any checkpoint. Any failures, including those re-
sulting from the inability to pass the acceptance tests, are
handled using the conventional GCP scheme. Thus the check-
points will be established at periodic intervals and their loca-
tion would be unrelated to the entry and exit points of the
RBs. It is worth mentioning that this use of GCP is not at the
level of entire computer system but only at the level of an
individual program, which may consist of several interacting
processes. In what follows, “system” refers to only one such
program.

An important consideration in the use of global checkpoints
for error recovery is the coverage, that is, the probability that
the rollback will undo the erroneous interactions between the
processes. Since the checkpoint interval is fixed in advance
rather than deduced from process interaction history, we run
the risk of doing too little or too much rollback for a given
case. If the rollback is insufficient, then the system will fail
again during retry. This situation can only be handled by
increasing the rollback span for the next recovery attempt.

We assume that every RB has at least N alternates, where
N is the number of previous checkpoints (PCPs) we are willing
to maintain throughout the execution of the program. The
first N — 1 of these PCPs are consecutive (i.e. PCP(1) is the
last established, PCP(2) is the one before that, etc.), and the
last one, PCP(V), corresponds to the starting system state.
The checkpoint to be established next during normal exe-
cution will be denoted by NCP. If a failure occurs before an
NCP, the goal would obviously be to rollback and restart the
system so that the execution proceeds successfully until the
establishment of this NCP. If, during reexecution, a failure
occurs prior to this NCP, then the rollback span must be
increased and execution attempted again as explained above.
It is clear that the system must keep track of the location of
NCP during retry.

In order to keep track of which alternative of an RB is to be
used for execution, we associate a counter ALTNO, initial-
ized to 1 with each RB. We assume that all alternatives of an
RB have been designed and coded independently and are
approximately equally reliable. Thus we could use them cyc-
lically, that is, if the current version of an RB (identified by
ALTNO) is suspected of being faulty, we set ALTNO to
mod(ALTNO,N) + 1 for the next retry. The intended recov-
ery algorithm for coping with a failure is as follows:

1. Set a checkpoint counter, K, to 1. K will be used to keep
track of how far back the system has been rolled back
from the current state in terms of the number of previous
checkpoints.

2. Rollback the system to Kth previous checkpoint. Note
thatif K = N, the system will be restarted from its initial

84 National Computer Conference, 1983

state. For each RB that was entered since the establish-

ment of this checkpoint until the point of failure, set

ALTNO to mod(ALTNO,N) + 1. The purpose of this is

to make sure that the failed part of the computation is

retried using different alternatives. Discard any check-
points that were established after PCP(K).

3. Restart the system and let it run until one of the follow-
ing two things happens:

a. Execution proceeds successfully until the point where
NCP should be established. In this case, all com-
putation has been redone successfully and no further
action is necessary until the next failure.

b. A failure occurs before the point for the establish-
ment of NCP. Increment K and go to step 2.

C. ANALYSIS OF GCP MODEL

Our purpose here is to find the optimal checkpoint interval by
minimizing the combined cost of checkpointing, recovery, and
recomputation. However, an assumption is necessary before
this cost could be defined meaningfully. Note that if a roll-
back to the starting state becomes necessary, an unbounded
amount of computation may have to be redone after the roll-
back. If this recomputation is considered in computing the
cost, the cost would be unbounded and no meaningful results
can be obtained. Therefore, we consider the costs associated
with only the first (N — 1) rollbacks. If the probability of
requiring rollback to the initial state is extremely small, the
results would still be quite accurate and useful. We define the
following quantities:

® cps: Checkpointing span, that is, the number instructions
executed between two successive checkpoints.

® cpo: Checkpointing overhead, that is, the number of
instructions (or its equivalent in terms of time overhead)
required to establish a checkpoint. We assume that the
use of a checkpoint in state restoration also involves the
same amount of overhead.

® PE;: Probability of successful execution until the next j
checkpoints have been established given that the exe-
cution started in a consistent state.

® PR;: Probability of successful recovery from failure when
the rollback span is j. '

® PER;: Probability of successful recovery and retry when
a rollback span of j is used. It is easy to see that

PER, = PE;+PR;.

® RRC': Expected cost, in terms of number of instructions,
of recovery and retry per failure.
® cost: Fractional cost of checkpointing, recovery and

retry.

Let ncp = cps + cpo. The overhead of initial rollback and
retry is ncp . With probability (1 — PER,), a failure will occur
during retry, thereby requiring more severe rollback. The
overhead of the second rollback and retry will be exactly
2*ncp because PCP(1) must be reestabiished during retry.

Continuing in this manner, and keeping in mind the assump-
tion stated above, we come up with the following expression
for RRC:

N-1 i—1
RRC =ncp* 2, i*] (1- PER))

=1 j=0

where PER, = 0.

Let ier be the instruction execution rate of the machine. Then
the number of checkpoints established per second is (ier/ncp).
Therefore,

Primary failure rate = (1 — PE,)*(ier/ncp) and

Primary checkpointing cost per second = cpo *(ier/ncp)

Thus, the total cost of checkpointing, recovery, and retry
(TC) is

TC =[cpo + (1 — PE,)*RRC]*(ierincp)

whence

N—-1 i—1
cost = TClier = cpoincp + (1 — PEy)* 2, i* || (1 - PER))

i=1 j=0

Now we can minimize cost and compute the optimum cps.
First, however, we must obtain an expression for PER;.

C.1 Calculation of PER,

First note some general properties of PE; and PR;. As-
suming that the occurrence of software and hardware faults is
uncorrelated, PE; would be-the product of PES; and PEH;,
which are the probabilities that the software and hardware
failures do not occur until the establishment of next j check-
points. Let P be the probability that no failure occurs during
the computation performed between successive checkpoints.
Then PES; = P**j assuming that the code used for establish-
ing checkpoints and using them for state restoration is free of
software faults. The probability P primarily depends upon
three parameters: (a) the checkpoint span ¢ps, (b) the “qual-
ity” of the software, and (c) its error-detection capability. The
last two of these are very difficult to quantify, although several
metrics for them have been proposed in the literature.® Here
we shall simply work with a parameter ifp , which is defined to
be the probability of failure per instruction of the user code.
Then

P=(1-ifp)*.

Note that if fault corrections were taken into account, ifp
would change as a function of the number of failures experi-
enced. We could use Musa’s execution-time model® to com-
pute this change. Here we assume that ifp is a constant. Thus,

PES; = (1 —ifp)"*.

PEH; can be computed using the classical hardware-reliability

A Global Checkpointing Model for Error Recovery

model. In order to make our analysis independent of the
execution speed of the machine, we shall work in terms of
number of instructions executed rather than the execution
time. We assume a constant hazard rate (in the units per
instruction) denoted by M. Then PEH; must be an exponential
function of the number of instructions executed. Therefore,

PEH; = exp(—\-ncp *j),
and
PE; = PES; * PEH; = (1 — ifpY " * exp(—\-(cps + cpo)-j).

Using the fact that ifp must be extremely small in any practical
case, we have:

PE; = exp(—j(a+cps + b))
where
a=\+ifp,b=\cpo.

We assume that correct recovery can always be performed
by rolling the system back to its starting state. Thus PR; =1
for j = N. It is also clear that PR, = 0 because no recovery is
possible without rollback. Furthermore, PR; is expected to be
a monotonically increasing function of j. We hypothesize that
it approaches 1 exponentially as a function of j. Thus

PR; =1-exp(—j/a), 0=j <N,

where « is a control parameter and must be nonnegative. It
can be noted that smaller values of a would be desirable.
Obviously, a« depends upon the extent to which erroneous
information can propagate before it is detected. This aspect of
the system behavior is primarily controlled by two parame-
ters, (a) the average number of instructions per RB and (b)
the extent of interactions between the processes of the system.
A reasonable measure for the latter is the fraction of in-
structions executed by the system that involve or constitute
interprocess communication. We denote average RB size by
rbs and the interprocess communication fraction by ipcf.
Then a can be written as a function of two arguments, that is,
a(rbs, ipcf). We claim the following:

1. a(rbs, ipcf) is very large for rbs > > cps and 0 < ipcf < 1.0
2. a(rbs, ipcf) is very small for rbs < < ¢ps and ipcf << 1.0
3. a(rbs, ipcf) increases monotonically with rbs and ipcf.

The first claim is based on the fact that no recovery is
possible if the average RB size is much larger than the check-
point span. The second claim is based on the fact that a single
rollback would be sufficient for correct recovery if rbs is much
smaller than cps and the interactions between processes are
very infrequent. The justification for the third claim should be
obvious. We assume that the contribution to « from rbs is
proportional to the fraction rbs/cps. The contribution due to
ipcf, however, is expected to increase with ipcf because error
propagation due to process interactions generally increases

very fast with the level of interaction. We hypothesize that o
is of the following form:

a(rbs, ipcf) = C+ (rbs/cps) + D+ ipcf*

where C, D, and u are some positive constants that depend on
various characteristics of the system under consideration, such
as the quality of acceptance tests, the number of processes,
and the complexity of interprocess communication. For exam-
ple, if the processes show a very complex interaction pattern,
the constant u is expected to be rather large, thereby making
recovery difficult even when the parameter ipcf is fairly small.
Since the checkpoint span, cps, is the only parameter of in-
terest in the calculation of the optimum checkpoint intervai,
we can rewrite a as follows:

a=clecps +d
where ¢ = C*rbs andd = D* ipcf*. Letx =a-cps + b. Then
a=(a-c—b-d+d-x)/(x —b). Also let y=exp(—1la).
Then,
PE; = exp(—jx); PR; =1—y’; PER; = exp (—jx) (1 -y’

N-1
cost = cpo/ncp + (1 —exp (—x) * >, i*

i=1
i1
]11 (1—exp (—jx (1-¥)).
The expression for cost can be further simplified as
cost = a-cpo/(x +a-cpo —b) + (1 —exp (—x)) *f(x)
where

fE)y=1+(1-(Q-y)exp (-x) = [2+(1-(1-y?)
xexp(—2x)*[3 + ...]]

C.2 Computation of the Optimal Checkpoint Interval

For N =2, we only need to consider the first term in f(x).
Since x < <1, we can approximate exp (—x) by (1 —x/2)*
and compute the value that minimizes cost. The result is:

x=(1-8/2)—[(1 - B2y -2(Vacpo —B) |,

where B = a-cpo — b. The model for N > 2 can now be solved
iteratively using the above value as the first approximation.
The results for the case N =4 are shown in Figures 1-3. The
parameters chosen are as follows:

® Hardware mean computation between failures
(=) =10°

® Checkpointing overhead (cpo)=1,000 instructions per
checkpoint

® C =3, which makes PR, =50% at ipcf=0 and RB-
size = ¢ps/2

® D =30 and u =3, which makes d =1.0 at ipcf =0.32.

86 National Computer Conference, 1983

IR

Log©PS)

[S.0

cosT
44 cosTe iPiﬁ‘ﬁaz” $0.05
- e -”’ \
Lo lifp) —>
ks * * 0.005
-10 -S -8 -7 -6 -5

Figure 1—COST and CPS versus instruction failure probability

The figures show optimum cps (CPS) and optimum cost
(COST) as a function of ifp, rbs, and ipcf. As expected, CPS
decreases and COST increases with increasing ifp. It is inter-
esting to note that for ifp > >\, that is, when the effect of
hardware failures is negligible, COST is directly proportional
and CPS is inversely proportional to the square root of ifp.
Since COST represents the fraction of instructions that are
“useless,” it must be < <1 for a practical case. This means
that for the above parameter values, the case ifp > 10~° would
be highly undesirable.

Both CPS and COST show interesting behavior with re-
spect to ¢ (= C*rbs). First consider the case ipcf =0. For
¢ < <cps, both COST and CPS are insensitive to increase in
¢ but rise at an increasing rate for larger values. Although
COST maintains its increasing trend, CPS peaks at around
¢ =cps/2 and then falls rapidly. Such behavior is expected
because as RB size increases correct recovery becomes in-
creasingly costly. The reason for the peak in CPS is that the
probability of correct execution (or reexecution) decreases as
cps increases; therefore, even though a larger cps would make
correct recovery more likely, the success of correct reexecu-
tion becomes more doubtful. Thus we cannot keep increasing
cps indefinitely to cope with larger rbs values. As the inter-
action between processes increases, the recovery cost rises at
an increasing rate and smaller cps is required in order to hold
COST down. This also explains why the peak in CPS becomes
smaller and shifts to left as ipcf increases. The results for other

S P

values of N (not included here) are very similar.

D. COMPARISON OF LOCAL AND
GLOBAL CHECKPOINTING

As mentioned before, the motivation for introducing GCP is
to reduce the cost and complexity of performing backward
recovery in concurrent programs. When comparing GCP
against LCP, we must consider two aspects: (1) the complexity
and overhead of the mechanism itself, and (2) the cost of all
computation that had to be discarded or redone. It is clear
that the recovery mechanism used by the GCP scheme is very
simple and would result in very little time and space overhead.
On the other hand, the LCP scheme requires maintaining
both a very large number of local checkpoints for each process
and the complete history of the interprocess interaction dur-
ing which they were established. Moverover, the determina-
tion of rollback points requires either a search through this
long history (as in Kant and Silberschatz*) or an incremental
update of information regarding it (as in Kim®). Thus the GCP
wins in this respect. The argument tilts in favor of LCP when
we consider the second aspect, because LCP determines the
correct rollback points on the basis of process interaction
history rather than by a trial and error method. Thus LCP
would be expected to usually involve less recomputation than
GCP. However, it should be noted that even in LCP we do not
know exactly where the problem lies (if we did, it should have
already been removed!) and the algorithm for determining
rollback points will usually require significantly more rollback
than necessary.

A Global Checkpointing Model for Error Recovery 87

CPS
29370
27360 ipcf=0.24
Tbs —>
100 200 400 800 1600 3200 6400 \ 42800
a
CosT
ipcf =02
&.907
——
6.357
ipcs=0.0
Tbs —
100 200 400 800 1600 3200 G400 42800
b

Figure 2—CPS versus recovery block size

It is clear from these observations that neither of the two
approaches can be claimed to be always superior to the other.
However, it can be argued that they are complementary if we
consider the full range of interprocess interaction levels. Since
all processes are rolled back to a common point in the GCP
scheme, its overall cost would be higher than that for the LCP
scheme for a system of processes that rarely interact. Further-
more, if the process interactions are rather infrequent, the

overhead of maintaining and searching interaction history of
the processes will be reasonably small. Thus LCP is an attrac-
tive scheme at low process-interaction levels. GCP appears to
be a better scheme at moderate to high process-interaction
levels, since the cost of maintaining and searching interaction
history rises sharply with interaction level. A combination of
the two schemes may also be used to advantage in certain
situations. For example, we may carry out the determination

88 National Computer Conference, 1983

VSW i

5 . -9
CPSx10° @ p=10

701

651

6-0 b

CprsS

COST @ Yp=1¢

~6

=51 6.0 COST
50 1T ~
,-J
n’ - . -
301 _CPSx16* @ifp=19 0-40
COST @ §p=10"
2‘5 ’LO-BO
2.0 + —t - 0.20
O.o O- 08 O' 16 0' 24 0'~32
ipef —>

Figure 3—COST and CPS versus interprocess communication fraction

of rollback points for all processes assuming the LCP scheme
but actually use GCP for rollbacks. In this case, the global
checkpoint to which the system must be rolled back will be the
one established prior to the earliest point in time to which
some process must be rolled back according to our rollback-
point determination algorithm.

E. CONCLUSIONS

In this paper, we have presented a global checkpointing
scheme as an alternative to the local checkpointing inherent in
the RB construct proposed by Randell. The basic purpose of
introducing GCP is to simplify backward recovery in concur-
rent programs at the risk of discarding some computation
unnecessarily. As noted above, this scheme is most suited
for concurrent programs with moderate to high process-
interaction levels. In this sense, the scheme complements the
LCP scheme, which was designed primarily for sequential
programs.

Several models for finding the optimum checkpoint interval
have been proposed in the literature.” * However, these mod-
els only consider recovery from transient failures where a
rollback to the last checkpoint is sufficient for recovery. Our
model deals with both transient hardware failures and the
failures caused by software imperfections. {We do not con-

sider permanent hardware failures, because the nature of re-
covery is very different in those cases). The model does take
into account crucial system parameters such as recovery block
size, the complexity and extent of process interaction, and so
on. The software reliability was accounted for by a single
parameter ifp, the instruction failure probability. An inter-
esting extension would be to use some of the software quality
metrics proposed in the literature to get a better character-
ization of software failure. Many other extensions are possi-
ble, such as the consideration of several classes of hardware
and software fauits, taking into account the effect of system
load on failure rates, and so on.

REFERENCES

1. Beaudry, M. D. “Performance Related Reliability Measures for Computing
Systems,” IEEE Transactions on Computers, C-27 (1978), pp. 540-547.

2. Chandy, K. M. “A Survey of Analytic Models of Rollback and Recovery
Strategies,” Computer, 8 (1975) May, pp. 40-41.

3. Gelenbe, E. “On the Optimum Checkpoint Interval,” Journal of the ACM,
26 (1979), pp. 259-270.

4. Kant, K. and A. Silberschatz. ‘“‘Software Fault Tolerance in Concurrent
Systems.” Technical Report, Northwestern University, September 1982.

5. Kim, K. H. “An Approach to Programmer Transparent Coordination of
Recovering Parallel Processes and its Efficient Implementation Rules,” Pro-
ceedings of the International Conference on Parallel Processing, August 1978,
pp. 58-68.

A Global Checkpointing Model for Error Recovery 89

6. Musa, J. D. “The Measurement and Management of Software Reliability.” 8. Schneider, V. “Some Experimental Estimators for Development‘al and
Proceedings of the IEEE, 68 (1980), pp. 1131-1143. Delivered Errors in Software Development Projects.” Proceedings of
7. Randell, B. “System Structure for Software Fault Tolerance.” JEEE Trans- COMPSAC 80, Oct. 29-31, 1980.

actions on Software Engineering, SE-1 (1976), pp. 220-232.

o]

Development tools for bus controller software

by M. L. THOMAS

TECSI-SOFTWARE
Paris, France

ABSTRACT

This paper addresses the problem of software specification and generation for bus
controller software. This software is representative of a class of software modules
for which the tools may be used. Two tools are described, a simple language in
which to specify the module and a program generator that produces code directly
from the specifications. The language uses finite state diagram ideas as do many
other specification languages, but is constrained so that generation of high-quality
code is feasible. A brief outline of the structure of the code generated is given,
followed by some indications of the performance of the tools and the experience
gained from their use.

91

Development Tools for Bus Controller Software 93

INTRODUCTION

This paper describes two program-development tools that
have been constructed for use in an avionics software project.
The tools are a language for specifications of a data-bus sys-
tem and a program generator used to convert the specifica-
tions into code. They were developed for their utility in the
specific problem domain rather than with more general objec-
tives. Nevertheless they illustrate, in practical running soft-
ware, the advantages to be gained by formal system specifica-
tion and its automatic conversion into code.

The data-bus standard of MIL-STD-1553B defines a config-
uration consisting of a bus controller that supervises data
traffic on a bus to which a number of peripherals may be
attached.! The controller uses internal data structures to de-
cide which source and destination devices are appropriate for
a data transfer request. In effect, these data structures model
the current state of the peripherals attached to the bus. Cer-
tain signals, for example a notification of device failure,
change the values in the data structures and will consequently
affect the treatment of subsequent transfer requests.

The classical paradigm for problems of this nature is the
state diagram. It is difficult to apply in this particular case
because of the large number (up to 30) of peripherals, each of
which may assume many different states. (An average of n
states for each peripheral gives a state space of n* config-
urations. Because the states of the peripherals are largely
independent, the size of the state space is not greatly reduced
by constraints on interrelations). Any reasonably complete
state diagram or tabular representation is clearly impractical
in these circumstances.

The consequent difficulties facing the project were those of

1. Specifying the controller software responsible for main-
taining a correct model of the current bus state.

2. Specifying how bus signals were to be processed taking

account of the information in the system model.

. Verifying the coherence of these specifications.

4. Producing a program embodying these specifications in
such a way that small changes in the specification (which
may be frequent in a development environment) could
be reliably and quickly incorporated into the program.

w

These difficulties were resolved to a greater or lesser extent
by two complementary tools that have been developed. The
first tool is a simple language that can be used to specify the
bus controller software. It has facilities to describe the data
structures used by the bus controller to model the system
state. The language may also be used to describe how the
controller must react to bus signals in the light of the current

state of its model. The second tool is a program that accepts
a specification written in the language and generates variable
declarations and code to meet the specification.

The next section of this paper describes the language that
has been developed and its relation to other specification
languages and models. The third section outlines some fea-
tures of the program-generator tool. This is followed by a
brief description of the experience gained by the use of these
tools.

THE SPECIFICATION LANGUAGE

Overview

The language was designed to allow the specification of
software belonging to a relatively small subset of systems. It
does not attempt to describe hardware components or the
interactions and synchronizations between multiple software
components, nor does it contain facilities to reflect timing
constraints. It is clearly not intended to serve as a general
system-specification language.

It does permit the description of an individual software
module and the behavior required from it in response to the
various inputs that it may receive. These inputs may come
from one or several software modules. It is assumed that the
processing of each input to the specified module is completed
before processing of the next input starts. This means that the
problems of deducing the access protection necessary for the
module’s common data structures are avoided, since concur-
rent accesses are precluded.

These restrictions of the language were adopted for the
pragmatic reason that the resultant language would ade-
quately specify the bus controller software under develop-
ment, and to facilitate the generation of code directly from
specifications written in the language. There are some more
general specification languages that permit the generation of
code skeletons for the specified system either automatically or
by a straight-forward manual process,” but a considerable
amount of information needs to be added to these code
skeletons.

A Simple Example of Part of a System Specification

It is important to note that any example, such as the one
given here, that is small enough to be understood easily can
also be represented efficiently in a tabular structure. As the
size of the example grows, the tabular structure becomes
more unmanageable.

94 National Computer Conference, 1983

The example incompletely specifies the behavior required
from a software module controlling part of the electrical sys-
tem of a car. When the car’s ignition switch is on, the direction
indicator switch activates the flashing direction indicators.
When the ignition switch is turned off and the direction indi-
cator switch is in the left or right position, the car’s electrical
system illuminates the left or right parking light (unless the
parking light switch is on, in which case both lights are illu-
minated).

COMPONENTS

IGNITION = (ON, OFF);

INDICATOR-SWITCH = (LEFT, NEUTRAL, RIGHT);
PARKING-SWITCH = (ON, OFF)

SIGNALS
ACTIVATE-INDICATOR-LEFT,
ACTIVATE-INDICATOR-RIGHT,
DEACTIVATE-INDICATOR,
IGNITION-SWITCHED-ON,
IGNITION-SWITCHED-OFF,
PARKING-SWITCHED-ON,
PARKING-SWITCHED-OFF

RULES
(IGNITION = ON) & ACTIVATE-INDICATOR-LEFT
N
[START LEFT INDICATOR FLASHING]
(INDICATOR-SWITCH = LEFT);

(IGNITION = OFF,
PARKING-SWITCH = OFF,
INDICATOR-SWITCH = LEFT) &
DEACTIVATE-INDICATOR
>
[TURN OFF LEFT PARKING LIGHT]
(INDICATOR SWITCH = NEUTRAL);

(PARKING-SWITCH = OFF,
INDICATOR-SWITCH = LEFT) &
IGNITION-SWITCHED-ON

>
[TURN ON ALL IGNITION SYSTEMS]
[TURN OFF LEFT PARKING LIGHT]
[START LEFT INDICATOR FLASHING]

(IGNITION = ON);
etc.

A specification contains three major subdivisions, namely
the COMPONENTS, SIGNALS, and RULES sections.

The COMPONENTS section serves to define the data
structures manipulated by the module being specified and
used by the module to determine its responses to the input
signal it receives. In the case of the bus controller these data
structures may represent the state of peripherals attached to
the data bus. It is also possible to define data structures that
do not reflect the state of physical devices; for example a data
structure that indicates the current flight phase could take the
vaiues TAKE-OFF, LANDING, CRUISE, and COMBAT.

FLIGHT-PHASE =
(TAKE-OFF, LANDING, CRUISE, COMBAT)

Two types of data structure, simple and complex, may be
defined in the COMPONENTS section. Simple data struc-
tures are analogous to PASCAL’s enumeration types. The
data structures IGNITION, INDICATOR-SWITCH, and
PARKING-SWITCH in the example are all simple. Complex
data structures are a way of grouping a set of related simple
and complex data structures in order to refer to them by
name.

Where a module’s data structures represent the states of
entities outside the module they need only reflect those
classes of states that can influence the actions of the module.
That is, the internal states of the entity can be partitioned and
each class of the partition be considered as one state from the
point of view of the module. This approach is common in
specification languages.

The SIGNALS section contains a list of input signals that
may be received by the module. The input signals are not
parameterized in any way, so an input signal whose param-
eters cause radically different actions to be performed should
be characterized by different input-signal names in this sec-
tion. In fact, the list may also contain signals which are gener-
ated internally within the module. These signals can be used
to direct the sequencing of the processing of external inputs to
the module.

The RULES section associates states of the module’s data
structures and an input signal with the processing that needs
to be executed and the new state of the module’s data struc-
tures. The left-hand side of each rule (preceding=>) defines a
subset of the state space of data structures, called the source
set, and also contains the name of an input signal. The right-
hand side of each rule contains an optional list of the names
of actions to be taken and the new values to be assigned to the
data structures, called the destination state. Only those data
structures that actually change value need to be mentioned.

The semantics of a rule are clearly related to the state
diagram paradigm:

Whenever the signal is to be processed by the module and
the data structure values belong to the source set than the
rule is applicable. The named actions should be carried out
and then the data structures should assume the new values
given.

Each rule therefore defines a class of transitions on the state
diagram whose states reflect all the possible configurations of
the data structures.

As indicated in the example, the source set need not indi-
cate values for all of the module’s data structures. It is also
possible to specify that a data-structure value should be one of
a subset of its possible values or that it should not take a
certain value or a subset of values. For example,

(FLIGHT-PHASE < > COMBAT)
(FLIGHT-PHASE = (TAKE-OFF OR LANDING)).

Neither of these forms is permitted in the description of the

Development Tools for Bus Controller Software 95

destination state since it makes no sense to assign any one of
a set of values to a data structure.

There are situations in which the actions in a rule may
change the new value to be assumed by the module’s data
structures. For example, in a printing module there may be a
data structure

END-OF-PAGE = (TRUE, FALSE).
The rule describing the printing of a line may be

(END-OF-PAGE =FALSE) & LINE-TO-PRINT
>
[PRINT LINE]
[DECREMENT NUMBER OF LINES REMAINING]
(END-OF-PAGE = FALSE);

The action of decrementing the number of lines remaining
may yield the result zero, in which case END-OF-PAGE
should become TRUE. It is possible to indicate that the value
to be assigned to a data structure may be changed by an action
so that the code-generation algorithm may take appropriate
action.

The language also provides facilities for the definition of
data structure types in a manner analogous to type definition
in PASCAL or ADA. These definitions appear in an optional
TYPES section.

Comparisons with Other Specification Languages

The term specification language as it is currently used cov-
ers two broad classes of language. The first is requirement-
specification languages.®** The system to be specified is de-
scribed from an external point of view, though reference may
be made to subsystems in order to clarify the description. The
second class is system-specification languages, where the sys-
tem whose design is to be specified is decomposed into sub-
systems.® Each of these subsystems is defined together with its
relationship to other subsystems. This paper describes a spec-
ification language for use at a later stage in the development
process, where the behavior of individual software compo-
nents that are regarded as non-decomposable must be speci-
fied. Formalization of the interaction between such compo-
nents, though of primary importance in system-specification
languages, is not addressed here. The description of system
components using the concept of internal state is conamon in
specification languages.>>” However, the decomposition of
these states into independent data structures whose combina-
tions define the state space of the component is not present in
these systems.

The notion of a system stimulus is also used in specification
languages.®’ The interpretation in the language spe-cified here
is identical to its usage in these other languages.

An older technique for specification of software modules is
the decision table.® Although decision-table conditions can be
regarded as specifying the subset of states in which some
actions are to be performed, the idea of a new state to be
entered after the actions is not present.

Verification of the Specification

One of the advantages of a rigorous formal specification is
that verification techniques may be applicable, though the
current system does not contain a verification tool. The only
check that is currently carried out ensures that at most one
transition rule is applicable from any system state in response
to any input signal. In manually written programs this situ-
ation is often disguised by dependencies on the order in which
the various tests of the data structures are made. This section
will indicate some verification techniques that are readily ap-
plicable to specifications formulated in the language.

It must be assumed that the data structures of a module are
independent, that is, that manipulation of one does not neces-
sarily change the value of others. A bus-controller module
where the data structures model independent peripherals at-
tached to the bus is an example of such a case. Such systems
can be concisely modeled using Petri Nets.® Several existing
languages for system description use Petri Nets for validation
purposes.

Each state of each data structure may be represented by a
place in a Place/Transition Net. The transitions of the net
represent the transition rules of the specification. The mark-
ing graph of these places defines the state space of possible
configurations of the data structures. Clearly the Place/Tran-
sition net so far described is an alternative representation of
the state diagram of the system and needs to be completed
with a description of the signals and the order in which they
may arrive for processing by the module. The new representa-
tion does however permit the application of analyses of struc-
ture that would be more difficult with state diagram represen-
tations, while the fact that the net represents a state diagram
reduces the complexity of these analyses.

The use of such verification techniques implies an extension
of the language to cover descriptions of possible input-signal
orderings. Riddle has developed a formalism to describe such
orderings."" More advanced verification may include the di-
vision of the state space of data-structure configurations into
classes of a spectrum ranging from Impossible through Ac-
ceptable Malfunction to Complete Malfunction using the con-
cepts of deontic logic."

THE PROGRAM GENERATOR

This software tool was developed to convert specifications
into high-quality code. It also generates declarations for the
data structures defined in the specifications. PASCAL or
CORALG66 code may be generated. Since the generator uses
an intermediate representation of the program, other target
languages can be easily added.

The generated program has a structure analogous to
PASCAL’s case statement, where the case branch selection is
made on the input signal that is to be processed. This does not
represent a loss of generality, since the input signals can be
represented as the values of a data structure in the COM-
PONENTS section and the SIGNALS section can be rede-
fined to contain only a single input signal that is the notifi-
cation that an input event has occurred.

96 National Computer Conference, 1983

When the transition rules of a specification have been par-
titioned into classes according to the input signals under which
they may apply, code is generated for each class. The order in
which the tests of data structure values are made greatly af-
fects the efficiency of the generated code. An exhaustive
search of possible orderings even within a subset of rules is not
possible for combinatorial reasons, so heuristic methods are
used.

A discussion of the problems of code generation and the
algorithms used can be found in another of the author’s

articles.”

EXPERIENCE WITH THE TOOLS

The avionics software project for which the tools were devel-
oped is divided into phases. At the end of the first phase a
hand-coded version of a simple bus controller had been pre-
pared. This hand-coded version used a tabular, packed data
representation of the states and transitions of the bus control-
ler. The tools were also completed towards the end of the first
phase. In order to gain experience, the simple controller was
specified in the defined specification language. This took ap-
proximately two weeks. However, no comparison with the
time taken to specify the hand-coded version is possible since
no formal specification of it existed.

The program and data of the tool-generated version oc-
cupied approximately the same amount of memory as the
original, but the execution time for a sequence of test inputs
was reduced by approximately 30%. It is difficult to evaluate
this result, since the automatically generated version does not
use packed data.

The time taken for the tool to process a set of rules obvi-
ously depends on their characteristics, but sets of one hundred

rules are typically processed in approximately three minutes
of CPU time on a DEC Vax computer.

REFERENCES

1. MIL-STD-1553B. U.S. Department of Defense, Sept. 1978.

2. Ludewig, J. “Computer Aided Specification of Process Control System.”
Computer, 15 (1982), 5, pp. 12-20.

3. Taylor, B. J. “A Method for Expressing the Functional Requirements of
Real Time Systems.” Proceedings of the IFAC/IFIP Workshop on Real-
Time Programming. Leibnitz, Austria, April 1980, pp. 111-120.

4. Teichreow, D. and E. A. Hershey. “PSL /PSA: A Computer-Aided Tech-
nique for Structured Documentation and Analysis of Information Pro-
cessing Systems.” IEEE Transactions on Software Engineering, SE-3
(1977), 1, pp. 41-48.

5. Davis, A. M. “The Design of a Family of Application-Oriented Require-
ments Languages.” Computer, 15 (1982), 5, pp. 21-28.

6. Riddle, W. E. “An Assessment of DREAM.” In H. Hunke (ed), Software
Engineering Environments. Amsterdam: North-Holland, 1981.

7. Alford, M. W. “A Requirements Engineering Methodology for Real-Time
Processing Requirements.” IEEE Transactions on Software Engineering,
SE-3 (1977), 1, pp. 60-69.

8. Metzner, J. R. and B. H. Barnes. Decision Table Languages and Systems.
New York: Academic Press, 1977.

9. Peterson, J. L. Petri Net Theory and the Modeling of Systems. New York:
Prentice-Hall, 1981.

10. Jorrand, P., J. P. Queille, and J. Sifakis. “Conception et Vérification des
Applications Réparties: Présentation du Systéme CESAR et de dévelop-
pements en cours.” Actes des journées BILAN ET PERSPECTIVES DES
20-21-22 JANVIER 1982—Projet Pilote SURF sur la sireté de fonction-
nement des systémes. Paris: Agence de I'Informatique, 1982.

i1. Riddie, W. E. “An Approach to Software System Behaviour Description.”
Computer Languages, 4, (1979), 1, pp. 29-47.

12. Anderson, A. R. “The Formal Analysis of Normative Systems.” In N.
Rescher (ed.}, The Logic of Action and Decision. Pittsburgh: University of
Pittsburgh Press, 1967.

13. “Thomas, M. I. “Automatic Generation of Bus Controller Software from its
Sipecification.” Unpublished manuscript, 1982. (Submitted for publica-
tion.)

Logic analysis and its tools

by Dr. R. S. WANG
RCA
Moorestown, New Jersey

ABSTRACT

This article discusses the logic analysis of a program, points out problems with the
logic analysis process in general use, and introduces an approach to logic analysis
that is more effective and less time consuming. The new method generates logic
paths out of programs and preanalyzes the paths in lieu of directly analyzing the
program. Three preanalysis software tools are introduced: procedure logic path
generator, program logic path generator, and logic path preanalyzer. Sample out-
puts are given to demonstrate the difference between program analysis and logic
path analysis.

97

Logic Analysis and Its Tools 99

INTRODUCTION

The general process of analyzing a program consists of identi-
fying entry point, identifying the path at branch point, going
to the called routine, returning to the calling routine, manip-
ulating data, and interpreting data. The process is completely
undisciplined' and is laborious and repetitive most of the
time.

The logic analysis is done by different people at different
stages of program development. The typical and more
thorough logic analysis is done during the design stage by the
designer and reviewer, and during the test stage by the tester.
The efficiency and effectiveness of the logic analysis approach
will cause a distinct impact on the quality and cost of the
design and test.

This article suggests a systematic logic analysis approach.
The approach is to isolate and preanalyze the program logic
paths on the computer before further analysis. The logic anal-
ysis of a CMS-2 language program in the white box test stage
is used for the illustration.

LOGIC ANALYSIS FOR MODULE
VERIFICATION TEST

A system consists of a set of modules with each module
consisting of a set of procedures. The test of a module is a
white box test by which data presets and data outputs are
needed to be defined through the logic analysis of the module
and the interpretation of the test case in the test requirement.
Two approaches are used to complete the module verification
test (MVT): One is a machine test and the other is an
inspection test.

For each test case, after the tester has acquired the under-
standing of the overall function to be performed, the tester
begins to analyze the program and the related data design.
The tester tries to correlate the test case and the program to
make sure that the program can carry out the functions as
described in the test case. The analysis consists of the follow-
ing processes:

1. Defining data according to the preset data specified in
the test case and the format required by the data design

2. Justifying and defining the preset data needed by the
program yet not defined in the test case

3. Manipulating the data as instructed by the related state-
ments in the program

4. Choosing branches at decision statements

5. Comparing the outputs of the program with the expected
outputs specified in the test case

The above analysis process may iterate one or more times
because of the following reasons:

. Mistakes made in the data manipulation

. Imperfection of the test case definition

. Complexity of the program

. Confirmation of the analysis result

. Identification or confirmation of the discrepancies or
€rrors

N A WN e

Problems of the Logic Analysis of MVT

The analysis is the foundation of the MVT. It is usually
quite time-consuming for the tester, requiring much patience
to go through the instructions primarily executed by the CPU.-
Figure 1 symbolically represents the nature and problems of
the program analysis. Part (a) of Figure 1 represents a set of
test cases. Input and output data are specified in the test case.
The stars symbolize the special data format used in the test
case. Part (b) represents the program where many logic paths
are blended together in a box. The data, which are the inputs
and outputs of the logic paths, are expressed in definite for-
mats as symbolized by the circles. Each test case in Part (a)
will have a corresponding logic path in part (b).

A problem of the prevalent logic analysis is that, for each
analysis, one has to identify the tangled logic path of the
program while performing other analysis efforts. This impacts
the required time and quality of the total analysis.

For short and straightforward logic paths, the problem is
not severe. However, for lengthy and tangled logic paths, the
problem is severe. For each analysis one has to memorize the
test conditions, select branch at decision statements, manipu-

LOGIC PATH DATA

TEST CASE 1 Inputs *»...*
Outputs »x...*
TEST CASE 2 Inputs *x..»
. Outputs *x...»

*

°
TEST CASEn Inputs *x,_.*
Outputs *x_.»

(a) TEST CASES (b) PROGRAM

Figure 1—Symbolic representation of test cases and program

100 National Computer Conference, 1983

LOGIC PATH DATA
7 _ ya
O o
TEST CASE 1 Inputs #%..x A o
Outputs *»..* & o ©
o °
TESTCASE2 lnputs *»..x [O o b
g Outputs *x...» ° 1o o Q o
'
d LP1 LP2 LPm
TEST CASE n Inputs *x,.»
Outputs =*,..»
(a) TEST CASES (b) PROGRAM (c) ISOLATED LOGIC

PATHS

Figure 2—Symbolic representation of test cases, program,
and isolated logic paths

late data, flip the pages to locate the called procedures and
calling procedures, and memorize control indicators. Because
of the involvements, one may easily lose track and end up
repeating the analysis or obtain analysis of questionable accu-
racy. The uncertainty may appear in the result of machine
test. It may result in another cycle of analysis and machine
test. For inspection test, this simply means a questionable test
quality. One of the causes of the problem is directly analyzing
the program each time.

In doing the analysis, visibility is a critical factor that affects
the analysis effectiveness.” Because the program contains
many logic paths not related to the test case, the related logic
path scatters around in the program, and the visibility is great-
ly impacted.

LOGIC PATH ISOLATION

To increase the visibility, to save time, and to improve the
analysis effectiveness, it is helpful if logic paths can be isolated
from the program for further analysis. Logic path isolation is
symbolically depicted in Figure 2. The program shown in Fig-
ure 2(b) is transformed into a set of isolated logic paths shown
in Figure 2(c). For further analysis, one can check the test case
against the isolated logic path instead of checking the test case
against the whole program.

The decision statements in the path become condition de-
scriptors. They reflect the preset conditions, data, and the
derivatives of the preset conditions and data. After the logic

" path is isolated, to analyze a logic path one does not have to
flip the pages back and forth to locate a called procedure or
a calling procedure. One does not have to select a branch at
every decision statement either. The analysis of the logic path
is simplified and straightforward. The tester can make a direct
comparison between the conditions indicated in the decision
statements with the data presets in the test case. The expected
outputs of the test case can be compared directly with the
outputs of the imperative statements. The redundancy of the
logic path identification effort is eliminated. The visibility of
the logic is greatly increased. Software tools to carry out the
logic path isolation processes are discussed in the following
paragraphs,

Procedure Logic Path Generator

This generator uses the program as input. It converts each
procedure into a set of logic paths. Each logic path is identi-
fied. Files are created. Printed output is also available. An
example is shown in Figure 3 to illustrate the process. A
software system has one module which consists of two pro-
cedures, PROC1 and PROC2, as shown in Figure 3(a) and
3(b). By using the program as input, the generator produces
one set of three logic paths for PROCI as shown in Figure
3(c), and one set of three logic paths for PROC2 as shown in
Figure 3(d). The decision statements are marked so that they
can be analyzed separately and do not interfere with the im-
perative statements. The decision statements in the program
become condition descriptors in the generated logic path. The
END statements of the program are not shown in the logic
path. Since all the unrelated information is not shown in the
generated logic path, obviously the visibility is significantly
increased. For each logic path, analyzing the generated logic
path is much easier and more effective than analyzing the logic
path in the program procedure.

Module Logic Path Generator

After the logic path has been identified for a test case a
sequence of procedure logic path IDs are manually listed.
This sequence of procedure logic path IDs is entered as the
input to the module logic path generator. The generator then
accesses the procedure logic path files for the selected IDs.
The procedure calls can be resolved automatically during the
generation process. The module logic paths are shown in Fig-
ure 4. Like the procedure logic paths, the module logic paths
present a higher visibility for logic analysis than the logic paths
in the program.

Logic Path Preanalyzer
The outputs of the procedure logic path generator and the

outputs of the module logic path generator can be further
organized by a tool called a logic path preanalyzer. The pur-

Logic Analysis and Its Tools

101

PROCEDURE PROC1$

SETATO1S

THEN BEGIN §
SETBTOXS
IF
D2E0@

THEN BEGIN §

SETCTO18§

PROC2$

ELSE BEGIN $

it

ofon

—© ©-

SETCTO @S

SETBTOYS

@
Logic Path 1
SETATO1
*IF D1 EQ@THEN BEGIN
SETBTO X
*IF D2 EQ® THEN BEGIN
SETCTO1
. PROC2
Logic Path 2
SETATO1
*IF D1 EQ® THEN BEGIN
SETBTO X
*IF D2EQ® ELSE BEGIN
SETCTO®
Logic Path 3
SETATO 1
*IF D1 EQ® ELSE BEGIN
SETBTOY

PROCEDURE PROC2$

SETETO 18

THEN BEGIN §

SETFTOAS

ELSE BEGIN$
IF
03EQQ
THEN BEGIN §
SETGTO1$

ENDS

®)

END-PROC $

Logic Path 1
SETETO 1
*IF D2EQ® THEN BEGIN
SETFTOA

Logic Path 2
SETETO1
*[F D2 EQ® ELSE BEGIN
*IF D3 EQ @ THEN BEGIN
SETGTO1

Logic Path 3
SETETO1
*IF D2 EQ® ELSE BEGIN
*IF D3 EQQ ELSE BEGIN

@)

)

Figure 3—(a) Flowchart of PROCEDURE PROCI; (b) flowchart of PROCEDURE PROC2;
(c) procedure logic paths of PROC1; (d) procedure logic paths of PROC2

102 National Computer Conference, 1983

Logic Path 1 Logic Path 2 Logic Path 3
[SETATO1 SETATO1 SETATO1
*IF D1 EQ@ THEN BEGIN | *IF D1 EQ @ THEN BEGIN | *IF D1 EQ @ THEN BEGIN
SET B TO X SETBTOX SETBTO X

*|F D2 EQ @ THEN BEGIN
SETCTO1
SETETO1

*IF D2 EQ® THEN BEGIN
SETFTOA

*IF D2 EQ @ THEN BEGIN
SETCTO1
SETETO1

*IF D2 EQ @ELSE BEGIN
*IF D3 EQ @ THEN BEGIN
SETGTO1

*IF D2 EQ @ THEN BEGIN
SETCTO1
SETETO1
*IF D2 DQ @ELSE BEGIN
*IF D3 EQ @ELSE BEGIN

{F D1 EQ@THEN BEGIN
IF D2EQ® ELSE BEGIN

Logic Path 1 Logic Path 2 Logic Path 3
Conditions Conditions Because of the
IF D1 EQ@THEN BEGIN | IF D1 EQ@ THEN BEGIN | reason for Logic Path 2,

this logic path is also
IF D2 EQ @ THEN BEGIN IF D2EQ® THEN BEGIN | considered invalid.
Inputs’ IF D2 EQQ ELSE BEGIN
X, D1,D2 IF D3 EQ Q@ THEN BEGIN
Process It is apparent that the second
SETATO1 and third conditions are
contradictory. Therefore,
SETBTOX this logic path is invalid.
SETCTO1
SETETO1
SETFTOA
Outputs
A,B,CEF
Logic Path 4 Logic Path 6
Conditions Conditions

1f D1 EQ @ ELSE BEGIN
Inputs

Logic Path 4 Logic Path 5
SETATO1 SETATO1
*IF D1 EQ@®THEN BEGIN | *IF D1 EQ @ELSE BEGIN
SETBTO X SETBTOY
*IF D2 EQ @ ELSE BEGIN
SETCTO®
Figure 4—Module logic paths
Logic Path 1 Logic Path 2 Logic Path 3
Conditions Conditions Conditions
IF D1 EQ@® THEN BEGIN | IF D1 EQ@® THEN BEGIN | IF D1 EQ@ELSE BEGIN
IF D2EQ® THEN BEGIN | IF D2 EQ@ ELSE BEGIN | Inputs
Inputs Inputs Y, D1
X, D1,D2 X, D1,D2 Process
Process Process SETATO1
SETATO1 SETATO1 SETBTOY
SETBTOX SETBTOX Qutputs
SETCTO1 SETCTO® A B
PROC2 Outputs
Outputs A, B, C
A,B,C
&)
Logic Path 1 Logic Path 2 Logic Path 3
Conditions Conditions Conditions
IF D2 EQ@®THEN BEGIN | IF D2 EQ @ELSE BEGIN IF D2 EQ@ ELSE BEGIN
Inputs IF D3 EQ@THEN BEGIN | IF D3EQ@ELSE BEGIN
D2, A Inputs {nputs
Process D2, D3 D2, D3
SETETO1 Process Process
SETFTOA SETETO1 SETETO1
QOutputs SETGTO1 Qutputs
E,F Outputs E
E,G

®).

Figure 5—(a) The preanalyzed procedure logic paths of PROCI; (b) the
preanalyzed procedure logic paths of PROC2

pose is to make the analysis of generated logic paths easier.
Examples are shown in Figures 5(a), 5(b) and 6. In Figures
5(a) and 5(b) the preanalyzed procedure logic paths are
shown. The conditions and process in the logic path are listed
separately. The inputs and outputs of the logic path are also
identified. The input and output data may greatly facilitate
the procedure interface analysis.

In Figure 6 the preanalyzed module logic paths are shown.

Inputs Y, D1
X,D1,D2 Process
Process SETATO1
SETATO1 SETBTOY
SETBTO X Outputs
SETCTO® A B
Qutputs

A,B,C

Figure 6—The preanalyzed module logic paths

The analysis of the logic path is straightforward. Using logic
path 1 as an example, it shows that if the conditions D1 and
D2are0,the A, C, E, and F will be set to 1. B will be set to
X. X, D1, and D2 are the inputs needed by the logic path.
The input and output data provide critical information for
module interface analysis if more than one module exists in a
system.

For logic path 2 the tester can easily tell that the second and
third conditions are contradictory, thus, the logic path is con-
sidered invalid. The visibility of the generated logic paths is
clearly much better than that of the program. Redundant page
flipping and branch selection are eliminated from the analysis
effort.

CONCLUSION

The approach introduced is used to isolate a logic path in a
program for an MVT test case. The immediate purpose is to
increase the visibility of the related program logic to be ana-
lyzed. Judging by the author’s experience, the approach may
improve the test quality and reduce the test cost. Moreover,
the logic paths generated may constitute part of the MVT test
results. They can be used for reviews and the analysis of
integration test. The integration test is the next level of test
after MVT.

Since the basic concept of this approach is to help analyze
programs effectively and economically, the applicability of
this approach is not limited in MVT. It can be applied to the
procedure test and the integration test. It is even applicable in
the design state and the maintenance stage. Since the logic

Logic Analysis and Its Tools 103

analysis is the major effort in software development and main-
tenance, the approach deserves further discussion.

The design, design review, procedure test, module veri-
fication test, and integration test are consecutive processes in
the program development cycle. Similar logic path analyses
are done in each of the processes as was done for the module
verification test. In fact, they all present more or less the same
problems as mentioned above. The logic path isolation and
analysis efforts that may be useful to the next process are not
saved. Consequently one may have to repeat the work. This
is a waste. For example, the designers must check the logic
paths in the flowchart to compare with the description in the
specification. The design reviewers also have to do the same.
If the generated logic path analysis approach is used, the
designer may generate the logic paths not only for his own use,
but it will also be helpful to design reviewers who analyze the
design. Furthermore, logic paths generated may be more suit-
able for presentation during the review meeting. Likewise, in
addition to the usage in that test process, the procedure logic
paths generated in the procedure test process may be used
directly in the module verification test process.

For the MVT process, the module logic paths generated are
extremely useful for the modular interface analysis of the
integration test. Because of their higher readability, the ma-
chine outputs of the logic path generators and preanalyzer
provide a good medium for reviews, presentations, and re-

ports. As the validation process is pushed from the test stage
into the design stage, the need for a good medium in the
design stage becomes apparent.

In the test stage and the maintenance stage the program is
analyzed and the tools are applicable. In order to apply the
approach and develop tools for the design usage, it is recom-
mended that a program design language be used in the design
process.

In industry, long years of software development experience
have demonstrated that people are not satisfied with an ad hoc
development approach even though the ad hoc approach may
allow more freedom and demand fewer tools. The additional
freedom may allow people to see some products earlier.
Fewer tools may give a feeling of saving some development
cost. Now the state of the art is to impose more control and
use more software tools. Generally, for large program devel-
opment, better control enables analysts to see the final
product earlier and the software tools can lower the total
development cost.

REFERENCES

1. Myers, G.J. The Art of Software Testing. New York: John Wiley & Sons,
1979.

2. Van Tassel, D. Program Style Design, Efficiency, Debugging, and Testing.

Englewood Cliffs, N.J.: Prentice-Hall, 1978.

Bennet P. Lientz

University of Califormia,
Los Angeles

Los Angeles, California

Ronald S. Lemos
California State University
Dominguez Hills, California

MANAGEMENT

This track addresses specific concerns in information systems staffing, man-
agement, and planning. The subtrack on staffing includes sessions on the role
of women in systems, software project management, and improving staff
effectiveness and productivity. The second subtrack, on software mainte-
nance, has sessions dealing with the management of software maintenance,
applications of software engineering, technical issues in maintenance, and
motivation of the software maintenance programmer. The final subtrack is on
planning and control; it comprises a session on planning and one on the audit
of complex computer/communication systems. All told, more than 50 speak-
ers, with experience as developers, implementers, users, and managers of
computer technology, will present papers or serve on panels in this track.

EDUCATION

In a relatively short time the computer has had a profound impact on educa-
tional processes throughout our society. Computer literacy is becoming neces-
sary for effective functioning in an increasingly complex environment. This is
especially true for people working in organizations. Computer literacy is dis-
cussed in terms of differences between what industry expects of a computer-
literate employee and what higher education plans to produce. Another ses-
sion deals with creative uses of educational technology. State-of-the-art uses
of videodiscs in industry, schools, and universities will be discussed.

Improving software maintenance attitudes

by PAUL C. TINNIRELLO

The A. M. Best Company
Oldwick, New Jersey

ABSTRACT

Attitudes towards maintenance have been an overlooked source of problems in the
software maintenance process. In the past, there has been little recognition of the
significance of how attitudes affect the performance of maintenance functions.
Investigation into the origin of these attitudes has led the author to formulate
feasible solutions that foster productive attitudes through the educational and pro-
fessional work environments.

107

Improving Software Maintenance Attitudes 109

INTRODUCTION

Progress in the development of software maintenance tech-
niques has been languid in comparison to the growth in soft-
ware development procedures. While fourth generation soft-
ware promises to ease the maintenance difficulties, it does not
change the fact that maintenance today is performed on soft-
ware that has been developed in the past 25 years. It is not
surprising, then, to discover that as much as 80% of all soft-
ware costs are spent in maintenance effort while only 20% of
the cost is invested in developing systems that will possibly
have software simplicity." The neglect in software mainte-
nance development has placed a stigma on the maintenance
process. In addition, there has been a serious impact on the
performance of maintenance in the programming environ-
ment as a result of the attitudes arising from poor mainte-
nance procedures.

DEFINING THE MAINTENANCE PROCESS AND
IDENTIFYING THE PROBLEM AREAS

The software maintenance process can be interpreted as the
correction, adaptation, and enhancement of computer pro-
grams and systems.” This definition of the maintenance pro-
cess is widely accepted among those in the data processing
(DP) community. However, finding agreement on what con-
stitutes maintenance problems has been a stumbling block for
years. Part of the difficulty in defining the problems stems
from the way software maintenance is viewed.> Management
may have a different concept of maintenance functions than a
programmer who is directly involved with maintenance activ-
ities. Still another viewpoint may come from the end-user who
has extracted a notion of maintenance from both management
and programmers.

It is the opinion of the author that software maintenance
problems can be segmented into three areas:

® maintenance management,
® maintenance programming,
® maintenance attitudes.

Maintenance management can be defined as the management
of the software maintenance process within the computer-
based organization. Maintenance management affects pro-
grammers, managers, and end-users, and requires the care-
ful integration of all parties towards a successful solution,
whether it be correction, adaptation, or enhancement. Main-
tenance programming can be defined as the technical meth-
odology in which a correction, adaptation, or enhancement

occurs. Such methodologies include programming practices
and techniques implemented within existing software systems.
Finally, maintenance attitudes can be defined as the position
an individual has towards the software maintenance process
in its entirety. Maintenance attitudes are usually held by
many members of the computer-based organization, with the
strongest attitudes being held by those who have the greatest
interaction with the maintenance process.

INTERDEPENDENCIES IN THE
MAINTENANCE SOLUTION

If there is to be any development in the software maintenance -
process, then each of the problem areas of maintenance man-
agement, maintenance programming, and maintenance atti-
tudes must be improved. Recognizing this fact is, of course,
much easier than agreeing on which area has the most impact
on the maintenance process. Thus far, it appears as if the
emphasis has been placed on the maintenance programming
category. One of the approaches used in this area has been the
evolution of structured programming techniques, which
promised prograrn maintainability through a modifiabie and
adaptable design. Academic institutions, especially DP orga-
nizations, began to stress the use of structured programming
techniques with the naive hope that maintenance complexities
would eventually by eliminated. Unfortunately, structured
concepts have not eradicated all of the maintenance prob-
lems. They have eased, however, some of the complexities in
the maintenance process.* In addition, attitudes in performing
maintenance functions have improved for those individuals
who are responsible for maintaining structured programs and
systems. This improvement in attitude, which was elevated by
the improvement in programming technique, demonstrates
how each maintenance area is dependent on the other for
success. The converse is also true. Poor maintenance manage-
ment would affect the quality of work being performed and
also diminish the attitude toward the maintenance process.’

At this point, the author would like to suggest that mainte-
nance attitude is a problem segment that, when improved, can
have more benefits for the maintenance process than im-
provements in the other problem areas. Until now, mainte-
nance attitudes have been recognized only as a result of
changes in the maintenance-management and maintenance-
programming segments.

COMPLEXITY OF MAINTENANCE ATTITUDES

The dynamics of attitudes is not fully understood. Attitudes
can be a mixture of emotional and mental processes that an

110 National Computer Conference, 1983

individual develops through personal experience.® Attitudes
towards software maintenance can affect maintenance man-
agement and maintenance programming in such a way as to
possibly prevent either initiative or completion in one or both
areas. The fact that software maintenance will not disappear,
nor will there be an all-purpose cure, indicates an attitude
unto itself. This complexity of attitudes makes it difficult to
find an approach that would succeed in improving all attitudes
towards the software maintenance process. No matter what
approach is used, attitudes will always be derived from the
experience that the individual encounters. It is with this
thought that the author is only suggesting a feasible solution
to the maintenance attitude problem. Further still, the author
wishes to confine his suggestions to improving those attitudes
of the computer programmer only.

ATTITUDE DEVELOPMENT

In an attempt to find a method for improving maintenance
attitudes, it is necessary to uncover the origin of such atti-
tudes. First, there is a need to examine those attitudes that
grow out of the work experience. The majority of program-
mers usually encounter maintenance duties during the first
several years of their professional careers. In some cases the
maintenance work may be moderate to light, while in others
the maintenance responsibilities can be heavy. Some organi-
zations have a definitive policy with respect to new program-
mers that requires that they be assigned maintenance respon-
sibilities in order to better their understanding of existing
systems and to improve their software skills. This philosophy
has been noted for its advantages by advocates of the software
maintenance process.”* However, such exposure to mainte-
nance, especially with new programmers, can be detrimental
to the organization and can possibly cause the development of
poor attitudes about the maintenance process.’ The point can
be argued either way about maintenance benefits, but the net
result in attitude is usually negative, even though some valu-
able experience was gained.

Perhaps this suggests that it is unpopular to have a good
attitude toward maintenance work. In any case, the effects of
maintenance have been recognized by programming manag-
ers involved with maintenance-related activities. Such effects
include high turnover, low productivity, and excessive soft-
ware costs.” Programmers who reflect the effects of the main-
tenance process often possess certain attitudes about their
work. These high-level attitudes, as they will be termed, in-
clude boredom, defeatism, frustration, and a feeling of lack of
recognition.®® They are usually attributed to some set of con-
ditions that is met while the programmers perform mainte-
nance functions. These conditions or high-level factors, as
they will be termed, include poor, little or no documentation;
unstructured or poorly designed programs and systems; poor
programming practices such as excess switches, meaningless
data names, and nonstandard language commands; and extra
work hours, odd work hours and pressure to complete mainte-
nance tasks in little or no time. There is no doubt that the
outgrowth of these high-level factors results in a poor or nega-
tive maintenance attitude. More important is the possibility

that high-level factors, which foster high-level attitudes, also
perpetuate the high-level factors.

As an example, consider a programmer who is given the
task of performing a maintenance function on a poorly de-
signed, poorly documented old program that has been the
maintenance responsibility of twenty-five prior programmers.
The probable result of such a task for the average programmer
is that an attitude is either developed or supported against the
maintenance process. In turn, the programmer will probably
not provide any more insight into the program than was orig-
inally given. The author’s experience has shown that the pro-
grammer’s attitude will allow only minimal documentation
and programming techniques to be performed, perhaps even
burdening the program with poorer code. While this example
might be overemphasized, it does illustrate how an attitude
perpetuated more software maintenance complexity. High-
level factors exist in many computer-based organizations and
it is not likely that they will immediately disappear. It is safe
to say, however, that attitudes developed in this environment
need to be rectified if the maintenance process is to improve.

Another source of maintenance attitudes comes from a
more fundamental area than the work place. These are the
attitudes that grow out of the educational experience, and
their roots lie deep within our educational behavioral pat-
terns. Two of the important individual needs developed dur-
ing this experience are those of creativity and skill growth.
Much of the initial exposure to computer programming was
through educational experiences that permitted the creation
of programs as a method to learn new skills. As a result, little
or no encounter with the maintenance process occurred ex-
cept for the individual program debugging (and that task was
consciously justified as part of the development scenario).
Attitudes towards maintenance were not even realized at this
stage. However, the attitudes that supported the theory that
programming is a creative and skill-strengthening process
flourished. Perhaps the occupational title of programmer as
opposed to software engineer connotes the creative attitude as
well.

When new programmers are exposed to real software main-
tenance situations, they are totally unprepared to handle the
depth of the software maintenance process. They find them-
selves performing a programming task that is constrained by
another style as well as design. In addition, they are con-
fronted with the responsibility of understanding a program
whose functions may be totally unfamiliar to them. It has been
argued, however, that it is very possible that maintenance
functions will provide new skill growth with programs that
employ current software techniques.> Unfortunately, pro-
grammers are usually assigned maintenance on specific sys-
tems for some duration and in time they will achieve the
maximum skill growth that can be derived from such a system.
In addition, not every system employs new or current software
techniques. Therefore the time it takes to outgrow the skills of
the system may be very short.

The need for creativity and skill growth extends beyond the
educational environment into the professional work place.
When these individual needs are denied, the result is usually
a search for a place where they can exist.” Recall that one of
the effects of software maintenance is high turnover. It is from

Improving Software Maintenance Attitudes 111

these concepts that the author suggests that a fundamental
problem in the software maintenance process is the possible
hindrance of creativity and professional skill growth. This
hindrance may create low-level attitudes, as they will be
termed, which include uncreativity and nongrowth. It is also
possible that these low-level attitudes create a subconscious
attitude in the programmer that manifests itself in the more
recognizable high-level attitudes described earlier.

Recognition of where maintenance attitudes originate
points towards a method of how they can be improved. Since
the attitudes described in this paper stem from the profession-
al work place and the educational environment, it is only
natural that a method of improvement occur in these places.
The author has provided suggestions for maintenance attitude
improvement via the conventional educational techniques
currently in use. These suggestions do not exclude the fact
that there are probably other techniques available. However,
the author would like to stress the fact that the source of any
method for improvement must come from the professional
work place and the educational environment.

SOLUTIONS IN THE EDUCATIONAL
ENVIRONMENT

Formal education curriculums, which include programming
courses, should also include courses that address software
maintenance issues. There is also an important need to clarify
what the occupational functions of a programmer entail. Sec-
ondary schools that offer programming classes to students
might want to structure their course objectives to include
exposure to the maintenance process. At this educational lev-
el it is not necessary to investigate the methodologies used in
maintenance but rather to introduce the concepts of what
maintenance is about.

At the college and university levels, students who are re-
quired to take data processing courses as part of a non-DP
cuarriculum should also be exposed to the maintenance issues.
As potential users of computer-based systems, they would
develop attitudes that may eventually be part of a computer-
based organization. If nothing else, the user community
would at least be conscious of the complexities involved in the
maintenance process.

Finally, and most important, are those college, university,
and programming schools whose curriculums are designed for
computer science and programming graduates. A software
maintenance course or courses should be required as part of
the requirements for graduation. The content of such a course
can be divided into the three areas of maintenance manage-
ment, maintenance programming, and maintenance attitudes.
One of the major objectives of the course is the realization
that software maintenance is essential for the success of the
computer-based organization. It would be of little value to
present the course in the way maintenance has been viewed in
the past, that is, “It’s a necessary evil.”

The particular topics of a software maintenance course may
include:

o the need for maintenance,
® what are maintenance functions,

tools for maintenance,

preventive maintenance,

planning maintenance groups,
interfacing with users and developers,
change control procedures,
monitoring maintenance activities,
attitude strategy,

integrating creativity,

maintenance programming practices.

Many of these topics would seem theoretical to students who
have never been involved in a computer-based organization.
However, a very practical topic, which can almost be the
course in itself, is that of maintenance programming practices.
Choosing a language that is a curriculum requirement, an
instructor can easily create assignments where students need
to correct, adapt, or enhance a prewritten program or pro-
grams. In the correction assignment, students are given the
task to find and correct a problem that was the result of a poor
design or oversight in functional specifications. Two pro-
grams, one structured, the other unstructured, would be given
to the students. The grade in such an assignment could be
dependent on the success of corrective action, or method of
implementation, that is, maintaining program design uniform-
ity, documentation standards, and the time it would take to’
make the change. Of course, it may take several assignments
before the time factor would be meaningful. In the adaptation
and enhancement assignments, the instructor could use the
corrective assignment programs and ask for implementation
of new functions or modify some existing functions. Use of
consistent programs might strengthen the maintenance con-
cepts without frustrating the student, a possible side effect in
such a course. If frustration becomes a barrier to completion
of an assignment, then perhaps the instructor could alter the
assignment to allow the student to find a technique for getting
around the frustration.

Another topic area is the integration of creativity and skill
growth within the maintenance process. Here students could
learn how to channel creative energy in a direction that is
beneficial to both the maintenance task and the individual
need. Typically, this topic would concentrate on the enhance-
ment aspects of the maintenance process.

Another course for software maintenance might be a study
of maintenance programming techniques for specific program
languages, for example, FORTRAN, COBOL, PL/1, and
ASSEMBLY. In this course the concentration would be on
the problems and solutions for correction, adaptation, and
enhancement within the constraints of the language. An as-
signment that an instructor could give might be to modify two
different language programs to perform a similar function.
Again, many assignments can be created to support such a
course objective. If a programming-languages maintenance
course is not practical, then another alternative would be to
include a maintenance section within the teaching of formal
languages themselves. In such courses, students can learn the
advantages of a programming language in the development
process as well as the technique to be used with the language
during the maintenance process.

As of this writing, the author has found little or no evidence

112 National Computer Conference, 1983

that indicates that higher educational institutions are re-
quiring maintenance courses as part of a computer science
degree program. Maintenance courses, like those suggested,
would help current and future programmers by raising their
consciousness of the maintenance process and by improving
their maintenance attitudes. It is hoped that the shock of
maintenance functions, which new programmers encounter,
will thereby disappear.

SOLUTIONS IN THE PROFESSIONAL WORKPLACE

Improving maintenance attitudes in the work place will be
more difficult than resolution in the educational environment.
Unfortunately, many programmers have less than positive
attitudes already established. However, changing attitudes is
definitely possible. One of the best ways to initiate an im-
provement is to have the computer-based organization dem-
onstrate a positive recognition of the maintenance process.
Programmers and managers involved with maintenance activ-
ities could be given extra incentives for their work. Such in-
centives could include extra compensation while assigned to
maintenance groups, time compensation for extra or odd
work hours, and advanced training in software techniques.’
Another improvement method is the establishment of a
planned development path for programmers. A typical path
may include the rotation of maintenance assignments and de-
velopiment assignments on a regular schedule. This will allow
programmers the opportunity to flex their creative skills and
to support their need for professional growth. There is much
evidence that indicates that some computer-based organi-
zations are already gearing up for some type of attitude im-
provement strategy. One of these strategies is the use of out-
side training seminars in software maintenance for managers,
project leaders, and group leaders.

Aside from commitments on the part of the computer-
based organization, there is a need for individuals to examine
their own methods for improving attitudes. Computer science
is a technology that almost dictates change, and it is vital that
individuals be conscious of those changes that are needed for
professional development.'® Professional programmers must
commit themselves to improving attitudes about mainte-
nance. Given the implementation of maintenance courses in
the formal educational environment, programmers can attend
those classes to improve maintenance skills and attitudes. Af-
ter all, there seems to be that kind of commitment whenever
a new software technique is introduced.

Attitude development in the professional work place is pos-
sible through a mutual effort on the part of the programmer
and the computer-based organization. Perhaps it will require
the educational community to react first before individuals
and companies commit themselves to an attitude improve-
ment plan.

CONCLUSION

Focusing the effort on improving attitudes towards mainte-
nance will help in the development of the software mainte-
nance process. Attitudes are complex, but their complexities
can be more easily understood if the origins of these attitudes
are examined. Recognizing the source of attitudes will foster
new methodologies in attitude improvement that can thus
become part of the programming process. No single solution
to attitudes will result in attitude change. It will take time for
attitude improvement theories to become acceptable as solu-
tions to maintenance problems. The educational environ-
ment, which enabled the achievement of new software tech-
niques, will also be inspirational in the development of new
maintenance concepts. The future of software maintenance
looks more promising with the recognition of underlying
problems and implementation of new solutions.

REFERENCES

1. Clark, David M. “Maintenance Programming.” Computerworld, 14 (1980),
Pp- 26-32.

2. Lientz, Bennet P., and E. Burton Swanson. Software Maintenance Manage-
ment. Reading, Mass.: Addison Wesley, 1980.

3. Schwartz, Barbara. “Eight Myths About Software Maintenance,” Datama-
tion 28 (1982), pp. 125-128.

4. Borghesi, Nancy T., and Patricia L. Krapf. “Structured Methodology.”
ICP Interface. Data Processing Management, Spring 1982, pp. 37-42.

5. Reutter, J. “Maintenance is a Management Problem and a Programmer’s
Opportunity.” AFIPS Proceedings of the National Computer Conference
(Vol. 50), 1981, pp. 343-347.

6. Silverman, Robert E. Psychology (2nd ed.). New York: Meredith Corpo-
ration, 1974.

7. Beeler, Jeffry. “Exec Identifies Seven Reasons Why DPers Quit,” Com-
puterworid, 16 (April 19, 1982), p. 25.

8. Carlyle, Kim. “Programmer’s Job Service Averages 18 Months,” Com-
puterworld 15 (1981), pp. 19-20.

9. Chapin, Ned. “Productivity in Software Maintenance,” AFIPS Proceedings
of the National Computer Conference (Vol. 50), 1981, pp. 349-352.

10. Weinberg, Gerald M. The Psychology of Computer Programming. New
York: Van Nostrand Reinhold, 1971.

A methodology for minimizing maintenance costs

by LINDA BRICE and JOHN CONNELL

Los Alamos National Laboratory
Los Alamos, New Mexico

ABSTRACT

Research conducted in the case study of a large applications system shows that the
two primary causes of high maintenance costs are

1. The frequency of user-requested changes to software
2. The psychological complexity of the software

A “tool kit” is suggested that, when applied to the design of new systems or
rewrites, will

1. Produce systems that users are less likely to need changed
2. Contribute to the reduction of psychological complexity of code, making it
easier to change when necessary

The tool kit is easy to use, can be applied to large or small systems in any language
on any equipment, and requires no purchase of hardware or software.

113

A Methodology for Minimizing Maintenance Costs 115

INTRODUCTION

Maintenance costs escalate when software must be changed.
Sometimes there are user-requested changes because the sys-
tem does not meet the user’s needs, and sometimes there are
“bugs” because the systems and the individual program mod-
ules composing those systems are not well structured. All
changes, whether necessary to fix bugs or desired to improve
or add features, are difficult when program code is psycho-
logically complex.

Quantifiable costs associated with software applications in-
clude the following: computer resources used by the applica-
tion; programmer staff time plus computer-resource costs ex-
pended to maintain the application; and associated user time
spent trying to learn and to use the end product.’ The focus
of this paper is on programmer staff time expended to main-
tain the application. Maintenance will be defined as all
changes required to keep a system running according to the
user’s needs, including

® Corrections to programs necessitated by coding errors or
misunderstanding of user requirements;

® Changes to programs required owing to changes in envi-
ronment or legal/regulatory changes not under the con-
trol of the user;

o Enhancements or optimizations that alter the processing
environment, often including minor new features.

Research performed in the case study of a large applications
system has shown that the number of changes applied to a
system and the psychological complexity (in particular, the
misuse of branching instructions) of the code undergoing
change both correlate positively with maintenance costs in
terms of programmer effort.>>' The term psychological
complexity, as used here, refers to those elements of pro-
gramming style that make the resulting software difficult to
maintain.

This paper is written to suggest several aids for the reduc-
tion of software maintenance costs. The first suggestion is for
the data processing professional to employ certain metrics to
estimate the expense of maintaining software. Software
shown to be expensive to maintain may then be subjected to
a break-even/payoff analysis for economic justification of a
rewrite. When rewrites appear to be economically feasible,
care must be taken so that the new system is indeed easier to
maintain than the old.

Many data processing shops continue to maintain produc-
tion systems, despite high maintenance efforts, simply be-
cause they work. It would be helpful to have a method of
deciding just when psychological complexity contributes
enough to the maintenance costs to be economically un-
feasible. There comes a time when, because of psychological

complexity due to poor initial program design, or due to many
“patches,” rewriting the program (or set of programs) is more
economically justifiable than continuing to maintain it.

In order to develop new systems and rewrites of existing
ones that will have lower maintenance costs, a2 methodology is
needed for designing with future maintenance in mind. Be-
cause psychological complexity is causally related to mainte-
nance costs, the methodology should provide a means for
minimizing such complexity. Since it has been demonstrated
that requests from the user for changes correlate significantly
with maintenance costs, the methodology should also aim at
maximizing user satisfaction with new systems and rewrites in
order to reduce future service requests.

WHEN TO REWRITE

One method for deciding when to redesign existing computer
applications involves deriving an economic break-even/payoff
analysis using a five-step process:

1. Track maintenance costs for a time period and then
project future costs, using straight-line trend analysis.
2. Measure the complexity of the existing code using a
demonstrated metric.>**?* This step does not con-
tribute directly to the break-even/payoff analysis, but it
does provide confidence that program complexity con-
tributes to maintenance costs.
. Estimate cost of rewrites.
4. Estimate costs for the maintenance of the new system
after implementation.
5. Prepare a break-even/payoff analysis. In this projection
(Figure 1), maintenance costs for the present system are
shown as a straight line. Total cost for the proposed

w

TOTAL COST IN THOUSANDS OF DOLLARS

Ll L
2) 8 8 10 12 14 16 18 20 22 24 26

Figure 1—Time in months (assuming rewrite takes two people six months)

116 National Computer Conference, 1983

system is shown as a broken line with cost to completion
of rewrite having a steep slope (it includes cost of main-
taining the present system), and cost after completion of
rewrite having a gentler slope since the new system will

be easier to maintain.

TOOL KIT FOR REWRITE

The life of software systems is traditionally viewed as a cycle
or sequence of iterative events. Recently, the life-cycle con-
cept has come under fire.®” This paper is not intended to pass
judgment on the life-cycle concept—many versions exist, not
all without merit. What is proposed here are a few techniques
that we hope will reduce the costliness of maintenance. In
order to describe the helpful tools, it is necessary to assume
that the software to be maintained is written, not purchased,
and that the development of that software proceeds in some
order decreed by management. It is suggested that in order to
minimize the number of post-implementation requests from
users for changes, users be involved in setting objectives, and
that production of output facsimiles and prototyping occur
early in the development process.

The assumption will be made that software writers’ man-
agement and the end users’ management agree on the events
that must take place to get the system up and running. Those
events should be scheduled in a visual form (Gantt charts,
Figure 2). The events will vary from prcject to project, but

will necessarily include consultation with the user to describe
system functions and software development. DP and user
managements should meet before each major step to review
the schedule.

The major goal is inexpensive maintenance. The tools are
recommended (a) to force users’ participation in the design,
which will cause them to request fewer changes later, and (b)
to produce lucid code that requires less effort per change.
They are:

1. System requirements definition (SRD).
Tool: Scheduling guideline
2. System Design.
Results in system design document (SDD).
Tools: Output facsimiles or prototypes
Data flow diagrams (DFDs)
Policy statements
Data dictionaries
3. Internal Design.
Results in Requirements Specification Package
(RSP).
Tools: DFD’s of proposed system (from SDD)
Approved output formats (from SDD)
Policy statements (from SDD)
Data dictionaries (completed from SDD)
Logic-flow charts
Program abstracts
Program design walkthroughs

1. SDD: Sample
- Outputs
*

2. SDD: Data Flow
Diagrams
+

1

3. SDD: Policies
- (Interviews)
A - a

4. SDD: Begin
- Dictionary
o

5. ASP: Chapin
- Charts -
<

B. RSP: Prcgram
- Abstracts
e

7. RSP: Design -
- Walkthroughs
[

8. RSP: Complete
- Dictionary
X

A 'S -

Py P 4 Y Y " 4

VAT FEB MAR APR

Start Date <

MAY JUN JuL AUB SEP ocT NOV

> Target Date

Figure 2—Gantt chart

A Methodology for Minimizing Maintenance Costs 117

The methods and tools mentioned do not depend on team
makeup or on computer-based tools. None of the tools are
original with this paper. What is proposed here is the inte-
grated use of the tools to meet the stated goals.

Systems Requirements Definition

The systems requirement definition (SRD) will not be cov-
ered in depth in this paper because, except for the schedule,
there are no specific tools recommended. The purpose of the
SRD is to identify proposed objectives, define the project
scope, define the organizational units involved, identify the
end users, identify production or purchase approaches, and
construct a rough schedule and cost/benefit for each
alternative.

Cost/benefit analysis has already taken place when the sys-
tem is a rewrite. It is inherent in the break-even/payoff anal-
ysis mentioned under “WHEN TO REWRITE.” If the sys-
tem is an entirely new development, the assumption is that a
cost/benefit study would be necessary for a go/no-go decision
by management at this point, prior to any actual development
effort.

The schedule is not intended to be rigid as to dates. It is
intended to identify the tasks to be performed, the parties
involved, and the order in which the tasks will be performed.
When reviews are held prior to the end of each phase (task),
the remainder of the schedule can be reviewed and adjusted
for reasonableness.

Gladden warns that “system objectives are more important
than system requirements . . . concentrating on cbjectives can
go along way to prevent a system from ‘evolving’ into one that
the user does not want or need.”” The life-cycle wheel model
of system development, which concentrates on viewpoints,
stresses that ““. .. requirements analysis is viewed as a design
activity from a user viewpoint. This design is synthesized from
various (incomplete, inconsistent) user scenarios and other
expressions of needs. The emphasis is on what functions the
system is to perform, and how the system interacts with the
users.”®

The SRD is, then, the project’s starting point and the place
where objectives are defined.

System Design

The ultimate degree of user satisfaction with a new system
or rewrite is often determined in the early stages of analysis
and design. It is recommended that intensive interviews be
conducted with the user during this phase. Such interviews
should concentrate primarily on net outputs—the part of the
system that will be visible to the user after implementation.
Users may have little interest in how data will be massaged to
produce these outputs.

System design: document components

Careful users will want to know how the accuracy of the
information contained in the net outputs can be guaranteed.

A system design document (SDD) should, therefore, contain
the following elements:

1. A brief description of the framework within which the
proposed system will operate, including
a. constraints imposed by the operating environment
b. required hardware/software configuration
c. allowances for future contingencies.

2. Samples of proposed net outputs, such as report layouts
and screens.

3. Proposed formats for net inputs, showing how data will
be captured at original collection points.

4. Visual diagrams of data flows for the present system
(either manual or automated) and the proposed system.

5. Policy statements giving a decision method for each pro-
cedure shown in the above diagram(s).

6. Rigorous definitions of all data elements shown in the
above diagram(s).

System design: tasks

Development of the SDD components need not be under-
taken in the order given above. The SDD’s development
guidelines may specify tasks to be performed in preparing
such a document, and the order in which they should be
performed.® The following is a brief description of each of
these tasks.

System design: tasks—describe system environment. At this
stage, the system designer can recognize when the new system
will exist in a physical environment that may impose con-
straints on the design. The task during this phase should in-
volve documenting the nature of that environment and identi-
fying areas that might impose design constraints.

System design: tasks—describe net outputs. Examples of
proposed outputs can be produced rapidly without using
actual applications software. The editor on any system can be
used to produce a text file that, when copied to the line
printer, will produce a facsimile report or screen layout. The
main advantage of this approach is that content and format
can be changed easily without modifying software. In addi-
tion, the facsimile reports provide an immediate focal point
for user interviews. Users who tend to be vague about system
requirements can often be coaxed into being more specific by
discussing information contained in the new outputs. If the
output formats are approved by the user before the system
design begins, the result should be fewer design changes and
service requests after implementation.

If an installation has available the necessary tools (i.e.,
flexible database systems), it is strongly recommended that a
prototype system be brought up at this early stage. “It is now
recognized . .. that although the customer may state his re-
quirements very firmly at the beginning, his perception of the
problem begins to change as he begins to consider how the
solution development . . . is proceeding.”'® Peters, Gladden,
and McCracken and Jackson all recommend rapid proto-

118 National Computer Conference, 1983

typing to combat wholesale requirements changes.®”'® The
remainder of the SDD is charged with demonstrating that the
approved sample net outputs can be produced accurately.

System design: tasks—describe net inputs. If the user is fa-
miliar with existing inputs, it is probably not necessary to
produce samples. There may be, however, implications in the
above components of the design for new methods of data
capture or even entirely new data elements to be captured. In
this case, it is important to solicit user approval of new input
formats such as data entry screens. The method for providing
examples of proposed input formats can be the same as that
for output formats—sample forms produced with a text editor
form an obvious, simple manner.

System design: tasks—produce data flow diagrams. For a
visual representation of the flow of data between functions
performed by a system, the use of the data flow diagram
(DFD) is highly recommended. DFDs have been explained in
Yourdon’s structured analysis and design technique, and are
described by Dr. Marco."' Basically, these diagrams consist of
bubles, arrows, and parallel lines. The bubbles represent a
procedure, the parallel lines represent a data store, and the
arrows represent the flow of data between the procedures and
data stores. The diagrams are ordered by degree of detail—
the highest level {Level 0) contains only one bubble labeled
with the system name and shows only net inputs to and out-
puts from the system (Figure 3). The lowest-level diagrams
show elementary procedures and data elements (Figure 4).
One suggestion for the number of descriptive levels is seven,
plus or minus two. The rule also applies to the number of
bubbles or procedures per level. The diagrams should remain
visually digestible, since they are the tool for user interviews
in this phase.

DFDs demonstrate for the user how net inputs will be trans-
formed into net outputs; therefore they serve as a primary
check on the accuracy and completeness of the outputs. This
technique tends to minimize unnecessary or over-complex
procedures and maximize user satisfaction.

Each of the bubbles or procedures shown in the lowest-level
DFD should have an associated policy statement that de-
scribes the decision method proposed to perform the pro-

ABC PAYROLL CUSTOMERS

N p—

ABC ACCTG.

WIDGET PROFIT/LOSS SYSTEM

PROFIT/LOSS REPOAT

WIDGET MGMT.
EMPLOYEES

Figure 3—Level 0 data-flow diagram

cedure. These policy statements should be expressed in struc-
tured English or pseudo-code so that they are unambiguous
yet still intelligible to the user (Figure 5). They should be
developed in the interviews with the user so that they are, in
fact, the user’s policies. Each policy statement should corre-
spond to a bubble on a low-level DFD.

These statements of user policy should eventually become
online documentation for production source-code in the form
of prologues (abstracts) for procedure modules. Initially, they
serve as a guide to system design; later, they can serve as a
maintenance aid.

System design: data dictionary

Each of the arrows in all of the levels of the DFDs will have
a label. The SDD should include a “dictionary” defining each
of these labels. The definition of a data label on a high-level
diagram should be in terms of the labels on the diagram of the
next lower level. At the lowest level, each label should also be
defined as to how, when, and where that element will be
captured.

If the dictionary is complete and rigorous, it serves as a
proof that the user’s requirements, as expressed in the policy
statements, can be satisfied using the data defined therein.
Each definition should correspond to the level of the DFD on
which it can be found as the label of a data flow. This also
answers the designer’s question, “what data do I need, and
where can I find it?”

Internal Design: Requirements Specification Package

Once the SDD has been approved by the user, “internal”
design can begin. Here, internal design will only address those
elements necessary to develop low-maintenance software.
The requirements specification package (RSP) components
will include

® Copies of the DFDs that identify program modules

® Approved output (reports)

® Data dictionary from the SDD

® Policy statements from the SDD

® Logic flow diagrams for each module (Chapin charts)
® Program abstracts.

The data dictionary may be revised during this phase of the
project, and policy statements should contribute to the func-
tions listed in the program abstract.

Internal design: Chapin charts

It is suggested that Chapin charts,”” Nassi-Shneiderman
Structured Flowcharts," or the structured programming de-
sign method (SPDM)™ be used to describe logic flow for each
program module. The three are similar in philosophy, and any
one can be used to bridge the gap between module need (basic
requirements) identification and executable code. The docu-
ment will be referred to here as a Chapin chart.

A Methodology for Minimizing Maintenance Costs 119

SELECT WIDSET OVHD COSTS

PRODUCE OVHD-COST REPORT

CONTRACT-LABOR

WORK-IN-PROGRESS DATA BASE

PROFIT/LOSS REPOATS

WIDGET MGMT]

() REVENUE = LABOR % CHARGE-RATE COST = (LABOR % SALARY~RATE] + OVHO-PER-WORKER

Figure 4—Level 1 data-flow diagram

The lowest-level DFDs in the proposed system section of
the SDD represent processes in bubble format. Usually, each
of these processes identifies a program module, as well as the
inputs and outputs. Policy statements in pseudo-code or in
structured English accompany the DFDs. The combination of

For each ABC Company General Ledger cost record
pertaining to Widget Division:

Add salaried employees and hourly employees to
employee count;

Add material costed to material-costed sum;

Pass employee count and material-costed sum to 1.2.
For each ABC Company Procurement record pertaining to
Widget Division:
Subtract from material-costed sum those purchase
orders involving contract labor, resulting in

overhead costs.

Pass overhead costs to 1.2 for use in management
report.

Divide overhead costs by employee count, resulting in
overhead-cost-per-worker.

Update the work-in-progress data base with overhead-
cost-per-worker.

Figure 5—Sample policy statement

inputs, outputs, and policy statements form the skeleton of a
Chapin chart. If a database-management system is used, it will
also have been defined in the SDD as “required software
configuration” under the operating environment. If not, files
or specific formats for data-transfer mechanisms must be
specified prior to the construction of Chapin charts.

The Chapin chart is based on this cumulative knowledge,
sometimes with the addition of special processing algorithms.
The reader is referred to the references for in-depth explana-
tions of this logic-flow chart.'>'*>'**> The method, in essence,
consists of visually representing a set of program building
blocks that allow single entry/exit and strictly limit branch-
ing, a practice known to increase psychological intelligibil-
ity. The set of program structures includes SEQUENCE,
IFTHENELSE, DOWHILE, DOUNTIL, and CASE. When
used properly, the set of combined structures lends itself to a
well-structured program guide where arbitrary transfers of
control are impossible. Figure 6 is an example of a Chapin
chart.

The benefits of the Chapin charts are

& Provision of a “GOTO-less” map to be translated direct-
ly into a programming language

120 National Computer Conference, 1983

SELECT OVERHEAD COSTS FOR WIDGET DIVISION

ENTER

READ FIRST G/L COST RECORD

DO WHILE MORE G/L COST DATA TO PROCESS

IS THIS A WIDGET DIVISION
RECORD?

YES NO

ADD SALARIED-EMPLOYEES TO
EMPLOYEE~COUNT

ADD HOURLY-EMPLOYEES TO
EMPLOYEE-COUNT

NULL
ADD MATERIAL-COSTED TO
MATERIAL-COSTED-SUM

PASS EMPLOYEE-COUNT AND
MATERIAL-COSTED-SUM TO
REPORT ROUTINE

READ NEXT G/L COST REGORD

READ FIRST PROCUREMENTS RECORD

DO WHILE MORE PROCUREMENT DATA TO PROCESS

IS THIS A WIDGET DIVISION
RECORD?

YES NO

IS IT A CONTRACT-LABOR
P.0.?7

YES NG

SUBTRACT CONTRACT-LABOR NULL
FROM MATERIAL-COSTED-SUM
GIVING OVERHEAD-COSTS

READ NEXT PROCUREMENTS RECORD

PASS OVERHEAD-COSTS TO REPORT ROUTINE

GIVING OVERHEAD-COST-
PER-WORKER

DIVIDE OVERHEAD-COSTS BY EMPLOYEE-COUNT

UPDATE WORK-IN-PROGRESS DATA BASE WITH OVERHEAD-COST-PER-WORKER

EXIT

Figure 6—Chapin chart

® Provision of a document that graphically depicts logic for
the purpose of review (peer review, team walkthrough)
® Provision of a test-bed guide.”

It has been noted that Chapin charts are not devices that
provide functional hierarchy, interfaces, or data flow.™ The
contention here is that there is no necessity that Chapin charts
respond to those needs, since they are met by the DFD. What
Chapin charts do well is control flow of executable code within
a higher-level functional design. This toolkit provides the
functional design via DFDs.

Internal design: walkthroughs

Approved DFDs showing processes (program modules),
inputs, outputs, policy statements, functional hierarchies, in-
terfaces, and data flows are available from the SDD phase;
program-module logic design is graphically represented by the
Chapin charts. Because of the importance of structuring pro-
gram code for understandability and readability in the mainte-
nance phase (“good” structure equals psychologically clear
code and minimum branching), the Chapin charts should be
subjected to a peer review before the coding phase. The re-
view should not only insure the structure of the individual
modules, but should double-check to see that elements are

defined in the data dictionary, that the process will accurately
perform what was intended in the higher-level diagrams, that
the outputs conform to the early prototype specifications, and
that a program abstract is present. The abstract would min-
imally consist of

Purpose

Input (arguments/files/other)
Output (arguments/files/other)
Functions (10 or less)

Local variables

Subprograms called

Errors (fatal/non-fatal)
Standards violations.®

An example of a program abstract is in Figure 7. The purpose
of walkthroughs is improved (low-maintenance) quality of the
product. The value of walkthroughs shows up ultimately in the
maintenance phase. “The inspection process shifts the discov-
ery and correction of errors and defects from software’s oper-
ational period to the early design stages. Since the cost for
software corrections during operations is many times the cost
incurred in detecting problems during design, inspections pro-
vide an unusual leveraging of cost/benefit over the entire life
cycle of the software.””” Although a heavy commitment is
necessary for the time of team members and moderator par-
ticipation, other benefits beyond low-maintenance code are

PROGRAM NUMBER: 56-311
SYSTEM DESIGN NUMBER: 56
DATA FLOW DIAGRAM NUMBER: 1.1

PROGRAM NAME: SELECT OVERHEAD COSTS FOR WIDGET DIVISION

AUTHOR : C. G. POND

PURPOSE: DETERMINE OVERHEAD COSTS FOR WIDGET DIVISION
INPUT: 1. GENERAL LEDGER COST FILE
(EXTERNAL FILE NAME = D70129A)

2. GENERAL LEDGER PROCUREMENTS FILE
(EXTERNAL FILE NAME = D70101A)

OUTPUT: 1. OVERHEAD COST REPORT

2. UPDATED WORK-IN-PROGRESS DATA BASE
FUNCTIONS: 1. FOR EACH ABC COMPANY GENERAL LEDGER COST FOR
THE WIDGET DIVISION, EXTRACT EMPLOYEE COUNTS
AND COST OF MATERIAL TO DATE.

2. REDUCE THE MATERIAL COST BY THE AMOUNT OF
CONTRACT LABOR.

3. CALL A SUBROUTINE TO PRODUCE AN OVERHEAD
COST REPORT, PASSING THE EMPLOYEE-COUNT, THE
ORIGINAL MATERIAL-COST, AND THE MATERIAL
COST REDUCED BY CONTRACT LABOR.

4. UPDATE THE WORK-IN-PROGRESS DATA BASE WITH
OVERHEAD COST PER WORKER. (REDUCED MATERIAL
COST DIVIDED BY NUMBER OF EMPLOYEES.)

LOCAL VARIABLES: MATERIAL-COSTED-SUM

OVERHEAD-COSTS
EMPLOYEE~COUNT
OVERHEAD-COST - PER-WORKER

SUBPROGRAMS CALLED: 1. 56-312
PRODUCE OVERHEAD-COST REPORT

COMPILATION CPTIONS = COBOL5, EL=T, LO.
ERRORS: NONE
STANDARDS VIOLATIONS: NONE

Figure 7—Program abstract

A Methodology for Minimizing Maintenance Costs

121

accrued, such as “training and exchange of technical informa-
tion among the programmers and analysts who participate in
the walkthrough.”®

CONCLUSION

Use of this tool kit will not guarantee that the resulting system
contains minimal psychological complexity and maximized
user satisfaction. It is possible to misuse the tools. The in-
tention of this paper was to explain some of the factors that
cause software to be expensive to maintain, and to provide
aids that may be useful in designing low-maintenance systems.

REFERENCES

1. Brice, L. “Existing Computer Applications—Maintain or Redesign: How
to Decide?.” Proceedings of the 1981 Computer Measurement Group Inter-
national Conference, pp. 20-28.

2. Brice, L., J. Connell, and J. Taylor. “Deriving Metrics for Relating Com-
plexity Measures to Software Maintenance Costs.” Proceedings of the 1982
Computer Measurement Group International Conference. Phoenix, Ariz.:
Computer Measurement Group, Inc., 1982, pp. 134-141.

3. Halstead, M. H. Elements of Software Science. New York: Elsevier North-

Holland, 1977.

McCabe, T. J. “A Complexity Measure.” IEEE Transactions on Software

Engineering, SE-2 (1972), 1, pp. 308-320.

5. Connell, J., and L. Brice. “Complexity Measures Applied to an Applica-
tions Case Study.” Fourth International Conference on Computer Capacity
Management Proceedings, 1982, pp. 121-128.

6. McCracken, D. D., and M. A. Jackson. “Life Cycle Concept Considered
Harmful.” Software Engineering Notes, 7 (1982), pp. 29-32.

7. Gladden, G. R. “Stop the Life Cycle, I Want To Get Off.” Software
Engineering Notes, 7 (1982), 2, pp. 35-39.

B

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24,

. Yamamoto, Y., R. V. Morris, C. Hartsough, and E. D. Callender. “The

Role of Requirements Analysis in the System Life Cycle.” AFIPS, Pro-
ceedings of the National Computer Conference Vol. 51, 1982, pp. 381-387.

. Brice, L., and F. Welch. Manual of Procedures and Standards. Adminis-

trative Data Processing Division, Los Alamos National Laboratory, Los
Alamos, N.M., 1982.

Peters, L. “Relating Software Requirements and Design.” ACM Pro-
ceedings of the Software Quality and Assurance Workshop. Software En-
gineering Notes of the ACM, 3 (1978), pp. 67-71.

DeMarco, T. Structured Analysis and System Specification. New York:
Yourdon, Inc., 1978.

Chapin, N. “New Format for Flowcharts.” Software Practice and Experi-
ences, 4 (1974), 4, pp. 341-357.

Nassi, I., and B. Shneiderman. “Flowchart Techniques for Structured Pro-
gramming.” SIGPLAN Notices of the ACM, 8 (1973), 8, pp. 12-26.
Marca, D. “A Method for Specifying Structured Programs.” Software En-
gineering Notes of the ACM, 4 (1979), 3, pp. 22-31.

Yoder, C. M., and M. L. Schrag. “Nassi-Shneiderman Charts—An Alter-
native to Flowcharts for Design.” Software Engineering Notes of the ACM,
(1978), 5, pp. 79-86.

Control Data Corporation. Final Report of the Aircraft Noise Prediction
Program Phase II, (Contract No. NAS1-13983), NASA, Langley Research
Center, Hampton, Va., July 1978.

Werner, F. L. “Software Inspections: Process and Payoffs.” Computer-
world, April 12, 1982.

Yourdon, E. Structured Walkthroughs. New York: Yourdon, Inc., 1978.
Chrysler, E. “Some Basic Determinants of Computer Programming Pro-
ducitivty.” Communications of the ACM, 21 (1978), pp. 472-483.
Chapin, N. “A Measure of Software Complexity.” AFIPS, Proceedings of
the National Computer Conference, Vol. 48, 1979, pp. 995-1002.
Zolnowski, J., and D. Simmons, “Measuring Program Complexity in a
COBOL Environment.” AFIPS, Proceedings of the National Computer
Conference, Vol. 49, 1980, pp. 757-766.

McTap, J. “The Complexity of an Individual Program.” AFIPS, Pro-
ceedings of the National Computer Conference, Vol. 49, 1980, pp. 767-771.
Berlinger, E. “An Information Theory Based Complexity Measure.”
AFIPS, Proceedings of the National Computer Conference, Vol. 49, 1980,
pp. 773-779.

Zolnowski, J. “Taking the Measure of Program Complexity.”” AFIPS, Pro-
ceedings of the National Computer Conference, Vol. 49, 1980, pp. 329-336.

Quality assurance and maintenance application systems

by BARBARA J. TAUTE

Time Inc.
New York, New York

ABSTRACT

Modifications to application systems in production can have a devastating effect on
the environment if the changes are not handled correctly. A comprehensive quality
assurance (QA) approach can help minimize this potentially harmful effect. This
approach involves all groups: users, data processing center, applications pro-
gramming, and quality assurance.

The QA approach should address four areas:

1. Phased approach

2. Procedure flows

3. Maintenance guidelines

4. Implementation

This paper describes the QA phased approach successfully developed at Time
Inc. The phased approach consists of the definition and implementation of eight
phases, envisioned in a circular life cycle. Emergency processing is considered
separately. Procedure flows consist of diagrams and charts listing responsibilities of
the participants. Maintenance guidelines contain helpful hints and checklists and
provide direction to the participants.

The benefits are noteworthy: The phased QA approach consolidates groups,
forms a standard for maintenance procedures, and increases productivity.

123

Quality Assurance and Maintenance Application Systems 125

INTRODUCTION

Computer application software systems in production exist in
a volatile environment. An environment is unstable when
data, hardware, systems software, and usage are in flux. Envi-
ronmental changes will probably create a need for modifica-
tion to the application system itself.

Production application systems are in high-risk environ-
ments simply because they are in use. The user community
expects and needs correctness to meet deadlines (in contrast
to a system in development, which is not yet in the users’
hands). Any change in a system can have an adverse effect on
its operation.

This paper will address a methodology for understanding,
controlling, and benefiting the maintenance environment.
The environment is best perceived as affecting four groups:
users, data processing center, applications programming, and
quality assurance. This approach document, developed by the
Quality Assurance Department of Time Inc., continually re-
flects the responsibilities of all four groups. Only through a
combined coordinated approach encompassing the four
groups can changes in production application systems be con-
trolled and made manageable.

TIME INC. ENVIRONMENT

Time Inc., with headquarters in New York, is a diversified
company encompassing publishing, forest products, and
video. The Application Programming Department supports
the development and maintenance of applications for the de-
partments of Magazines, Books, SAMI (Selling Areas—
Marketing, Inc.) and Corporate Staff offices. It is composed
of 240 people, split mainly between Chicago and New York.
A liaison role of user of record provides an application inter-
face to the user department. The Quality Assurance De-
partment provides methodologies and structured approaches
to all departments.

Because the people in applications programming were of
varied backgrounds (multiple groups), disciplines (software
packages to in-house development), experience levels (1 to 15
years), and sophistication (hard coded assembler to test data
generators) a need was perceived for a methodology to con-
solidate these efforts. This methodology was to be created by
the quality assurance team, which possessed an independent,
experienced, state-of-the-art view for programming structure.

The methodology was to address several areas. The first
area was to pertain to maintenance systems, the next to devel-
opment systems, the third to testing, the fourth to measure-
ment of all processes, and the fifth to productivity. This paper

deals with the first approach, that of maintenance systems,
which is defined as follows.

DEFINITIONS OF MAINTENANCE

A maintenance application system is defined as being in pro-
duction and in use by the user groups. Since maintenance
(back end) was being organized first (before a development
approach), the quality assurance department was not able to
define a specific set of test, documentation, operation, recov-
ery, or security requirements that would need to be met be-
fore a system was officially considered to be in maintenance.
This sort of requirement would compose the turnover criteria
from a development effort. Since no standard existed, pro-
grams showed varying levels of completeness in their pro-
duction environment. The original design criteria no longer
existed, and in many cases system documentation had not
been kept up to date. Yet these systems were providing accu-
rate, meaningful data and output results to the user de-
partments. In order to include all systems in the approach, it
was necessary to define maintenance as pertaining to any sys-
tem in a production environment.

The Quality Assurance Department, however, was able to
influence the definition of a maintenance life cycle. It is de-
fined to consist of eight structured, related phases with defi-
nitive criteria and responsibilities shared by four groups
(users, data center, application programming, and quality
assurance).

MAINTENANCE STRUCTURED PHASES

The maintenance life cycle (Figure 1) is represented as a circle
with one phase leading into the next. Its eight phases refer to
the following:

1. Request phase—An expressed desire for a change to a
system

2. Estimate phase—A calculation of effort to complete the
change

3. Schedule phase—An identifiable release date planned
for the change

4. Programming phase—The modifications to a controlled
source copy of the system

5. Test phase—The verification that the change performs
as expected

6. Documentation phase—The modification to system,
user, and run specifications

7. Release phase—The replacement of the old system with
the changed system

8. Operation phase—The day-to-day usage of the system

126 National Computer Conference, 1983

SO

OPERATION ESTIMATE

/
(=)
\

K‘e/

PROGRAM

40OPp

Figure 1—Maintenance life cycle

Request Phase Definition

A request for a change, whatever its form, initiates a pro-
cess that will affect an existing production system. A change
request is a request for an investment, since there will be time
and therefore money spent by various groups. A change re-
quest may occur for numerous reasons. If there are no change
requests, the environment is stable; and if a system is not
used, no changes are necessary. A system in production will
by definition have changes made to it, because it is being used.
The reason for a system change is often a function of the time
a system is in use and is not peculiar to one system or another
nor an indication of how poorly or well it was developed.

Since changes can come from so many different sources
(users, data processing center, programmer, manager, audi-
tor), it is necessary to have a standardized format representing
requests. It is not possible to evaluate changes or to assign
priority without established criteria. A change request form
helps pinpoint symptoms of a problem, level of need, and time
of involvement; and appropriate levels of approval can be
expressed and retained.

In the environment at Time Inc., several change request
forms were being used. The Quality Assurance Department
consolidated the best portions of these forms to devise a new
form for all groups.

The completed change request form specifies the deliv-
erable for this first phase. When it is completed, it is trans-
mitted to the librarian. This transmittal initiates the next
phase, the estimate phase.

Estimate Phase Definition

The estimate phase has its own significant steps. Upon re-
ceipt of the change request form, the librarian assigns it a

unique number. Then, if the change request concerns an ap-
plication system error, the suspect error needs to be verified
prior to estimation. It is hoped that this will help eliminate
reported problems that are the result of nonadherence to
operational procedure, user misunderstanding, or invalid
data. Next, a person from Applications Programming needs
to evaluate the change request and estimate the number of
hours it will take to correct the problem. The project manager
must always review this estimate for concurrence. The esti-
mate must be as thorough and as accurate as possible, since
this number will be used as the basis for a scheduling process.
The estimate is also reviewed with the user of record.

The process of internal reviews helps to eliminate incorrect
estimates and permits several individuals to learn from the
estimation process, rather than just a few. At Time Inc., levels
of review established were based on fixed hours. These limits
were refined as upper management modified their level of
review requirements and as personnel became more confident
in the estimate process.

The completion of the estimate and review portions (includ-
ing signatures on the change request form) determines the end
of the estimate phase. The schedule phase follows.

Schedule Phase Definition

Functional enhancements compose a significant portion of
the maintenance workioad. In order to handie these changes
as efficiently as possible from the standpoint of all depart-
ments, a scheduled release concept is used. Releases of sys-
tems are numbered and given predetermined dates based on
their business cycle, such as every 60 or 90 days. Nonemer-
gency changes are then assigned to a specific release number.
Each release contains multiple changes and forms a new re-
placement system. The advantages of this process are

1. Consolidation of changes

2. Increased stability of the production system
3. Reduction of training requirements

4. Better planned and managed workloads

The change requests provide the basis for a project tracking
system. A summary entry for each outstanding change forms
the agenda for a meeting of all four departments. Periodical
sessions, called Change Control Board meetings, are held to
discuss the various needs and priorities of groups. After the
meeting the project tracking system and the change request
form can be updated with a scheduled date and release
number.

When a scheduled release accommodates multiple changes,
it represents many added hours of effort. There is an increase
in the risk of malfunction for that release. Therefore an ap-
proval process similar to the review process in the estimate
phase must be followed. This process helps guarantee that
management will maintain proper awareness of releases of a
predefined magnitude.

At Time Inc. the process of scheduled release was a new
one. There was initial skepticism about its success until one
group installed this process, with close guidance. The process

Quality Assurance and Maintenance Application Systems 127

was an overwhelming success: Users were pleased to have
expected dates for changes, requests were dealt with and not
put aside because of time commitments, and application pro-
gramming was favorable to fewer releases in number. A
3-month release cycle was initially established, but this was
ultimately changed to a 2-month cycle to be more responsive
to the natural business cycle.

The assignment of a release date and time frame for a
change marks the completion of the schedule phase. The next
phase is the programming phase.

Programming Phase Definition

Modifications of application systems in production differ
from changes in systems in development, since production
systems are currently operating as an integral part of the user’s
business. It is essential to insure that modifications are being
made to the current operational version of a system. Thus, a
procedure to control the source should be followed. The pro-
gram phase consists of creating a test version of the controlled
production source code of the system, making the program-
ming changes according to the approved design, and initiating
the test process and updating the documentation. Associated
version numbers and dates will help guarantee that the proper
source code files are being modified. A program log at the
start of each program will help to identify the changes and
ease the next modifier’s job. While modifying the test version,
care must be taken to maintain the integrity of the production
system. Files can be lost or data can be extensively altered if
the integrity of the systems is compromised. In addition, the
programmer must be cautioned to make only authorized
changes. When a segment of code is opened up, it is not the
time to make a “nice little fix.”” These fixes can be disastrous
(in error), can cause extra test time (invalidating estimates),
or can just be undesirable (unneeded enhancement) to the
users.

At Time Inc. various existing support systems (SLIM,
PANVALET) required the retention of varying source copies.
An attempt to consolidate these was not deemed advisable,
because of varying form as well as location (varying cities,
varying locations). Therefore, ail groups agreed upon a min-
imum number of storage repositories and upon adherence to
defined control procedures. A long-range paperless re-
pository is currently being planned.

At the conclusion of the programming phase, a set of pro-
gram and system changes exist. This marks the beginning of
the test phase. ‘

Test Phase Definition

Testing of a production system is one of the most critical
and important phases of the entire change process. Testing
helps insure that the replacement system will function prop-
erly and not disrupt the user environment. The quality of
testing is a function of both the thoroughness of the test plan
and the quality of the test data. The test plan should be
comprehensive and should include unit testing, integration,
and system testing of the changed elements and their inter-

faces. Good test data start with a good test base, which is kept
current as production systems change. If a test base does not
exist, create one. Regression testing (verifying changed sys-
tems run correctly with known data) can only be accomplished
through maintaining a controlled test set.

The Program Manager has the ultimate responsibility for
the correctness of system changes, but other groups may also
become involved. Often users will test for functionality, and
the data center may verify via parallel runs. This involvement
can provide further confidence in system integrity.

At Time Inc., through the initiation of this methodology,
the programmers were made aware of the importance of keep-
ing a good test base to achieve time savings, cost savings, and
accuracy.

The completion of the test phase is evidenced by correct
operation of the changed program and by a test approval
signature on the change form. Prior to a system going live
(after a correct test run) documents must be updated. The
next phase discusses the documentation issues.

Documentation Phase Definition

Three forms of documentation are considered for mainte-
nance systems: system, user, and run.

Since documentation must be accomplished before the sys-
tem is released to production, it is therefore represented in the
life cycle immediately before the release phase.

System documentation is maintained to help a programmer
learn a system and its elements. This information describes
the system in its past phases (history) and its present state and
is used as the basis for future changes in the system. These
items, at a minimum, should be continuously maintained:
high-level system flow, system functional description, self-
documented program source compilation listing, and docu-
mentation describing data flow. System documentation
should be kept in an accessible but secured library area with
a checkout procedure. The documentation should be re-
trieved by the programmer or analyst, updated, and replaced
in the library. The amount and level of detail for controlled
documentation must be maintainable, since obsolete, incor-
rect documentation is more confusing than no documentation
at all.

User documentation should be composed of user manuals,
error lists, and functional descriptions for the use of the sys-
tem. A change in a system may very well change the way the
system appears to the user. An increase in functions can in-
crease the capabilities of the system. Remember: If users do
not know how to use the system, they cannot use it and will
not use it. Any change in a system should be evaluated for the
possible necessity of correcting or updating user documen-
tation. These modifications to the user documentation should
be made before the system is released.

Run documentation is the combination of materials (Job-
Procedures, JCL, restart/recovery instructions, etc.) required
by the data processing center to operate the system. There-
fore, the minimal requirements need to be set by the data
center. Often a system change will result in some modification
in the way the system is run. This means that existing oper-

128 National Computer Conference, 1983

ating instructions should be changed at the time of release.
If the data processing centers have standards or procedures,
these should be followed for form and content of run
information.

Reviews by the project manager or systems analyst can
help guarantee that all documentation is complete. The user
of record should help determine if user documentation is
thorough and clear.

Training may not be required for relatively small system
changes, but it is certainly necessary for larger ones. If there
is a functional change, users need to be retaught how to use
the function. New operating procedures may need to be
taught to the data processing center. The type and amount of
training is very system-dependent. The development of good
documentation can facilitate this training process.

At Time Inc., documentation levels varied considerably
among applications programming groups. Some groups had
required comprehensive documentation, and very detailed
user manuals were found to exist. For others, the manuals
were out of date and had not been maintained. One data
center had existing standards; for another they were still in
development. The introduction of this methodology helped to
standardize all documentation.

The completion of the documentation phase is evidenced by
signoffs on the change request form and in the tangible docu-
ments themselves. The subsequent phase is the release phase.

Release Phase Definition

The release phase is the natural last step of the change
process as well as the most critical step in the life cycle of a
change. It is at this time that users become excited about the
increased functionality that exists, programming is enthusi-
astic about their system release, analysts become concerned
about the unforeseen impacts of the change, and the data
processing center looks for a clean, easy installation of the
changes. This critical period can be greatly eased by a well-
controlled and well-communicated release procedure. A pre-
release review conducted by the Quality Assurance Depart-
ment with the participation of all four groups can ease this
process. Quality assurance should verify the following:

System installation readiness
Adequate system testing
Adequate approval testing
Completeness of documentation
Installation requirements specified
Transmittal form supplied

A

Once these characteristics are verified, the system can be
considered ready for release to production. These criteria
should be presented punctually for review so that the review
does not postpone the release process. After the review, the
system is officially turned over to the data processing center,
and the user is informed that the system is ready for use.

A controlled release process insures the definitive release of
systems. In the absence of this process, systems may never
officially be turned over to production but continue to be run
as test systems. This can lead to multiple versions and confuse

users. At Time Inc. this controlled process eliminated some of
these redundancies and solidified the release process.

The turnover to production marks the completion of the
release phase. This is signaled by the running of the pro-
duction jobs by the new system, and also officially by the
signatures on the change release transmittal. The last phase is
the operation phase.

Operation Phase Definition

Operation is the day-to-day activities of any system. Even
though a system is stable, various elements can cause the
erosion of a system solely through its use. Not all these ele-
ments can be planned for or controlled because of the vast,
unknown combinations of actions that can occur. What is
helpful, however, is to plan for an orderly description of the
event if an error does occur. Users and the data processing
center must be trained and educated about the functions and
use of the system. The more operational aids written into and
about the system, the more closely the environment can be
handled by the users and the data processing center, and the
less programmer assistance will be necessary. Testing should
be planned. It is costly, but remember that thorough testing
can improve the systems operation.

After the system has gone through one complete pro-
duction cycle, the four groups should convene and conduct a
postrelease review, led by the project manager.

A system in operation runs until it is outdated, is too diffi-
cult and costly to support, no longer functionally serves its
purpose, or needs extensive changes. A change leads back to
the request phase; a need for a rewrite leads into a new system
development process.

As in most companies, Time Inc. has numerous systems in
production and several in development. This process helped
all groups by controlling the maintenance process and defin-
ing its components.

A phase included separately is emergency processing. Be-
cause it is treated in a unique fashion, the process should be
discussed by itself.

EMERGENCY PROCESSING

Every attempt should be made to keep emergency releases to
a bare minimum. In fact, the by-product of a well-controlled
maintenance cycle ought to be the practical elimination of
emergency releases. However, they still exist in the real world
and therefore must be planned for. An emergency is a change
of such importance or impact it must be considered immedi-
ately and out of the normal maintenance structure. Emer-
gency processing expressed for the eight phases is described
below.

The emergency request phase can be originated by a change
request form or a “midnight” phone call. A change request
form is completed as soon as possible to record all work.

The emergency estimate phase follows the standard struc-
tured process if the emergency change does not need an imme-
diate fix. The programmer or analyst must immediately evalu-

ate the change, if it is a highly critical fix, and proceed directly

Quality Assurance and Maintenance Application Systems 129

to program and test. This can apply to both a temporary and
a permanent fix. If the correction cannot be accomplished
rapidly, a manager’s approval is necessary. If the permanent
fix must be made during extended working hours, the same
phases should be followed; but the time can be compressed and
the modifications can be installed outside the maintenance
release.

The schedule phase for emergency problems falls outside the
scheduled release concept. The schedule and time will depend
on the complexity of the change.

The program phase is no different for emergency problems.
A source still needs to be extracted from a library and modifi-
cations made to it.

The test phase is perhaps more important for emergency
problems. Since a bad situation already exists, extreme care
must be taken to make sure the fix improves the situation
rather than aggravating it. For changes to be installed immedi-
ately, all groups involved should approve the testing prior to its
release.

The emergency documentation phase must be conducted in
the same manner. However, emergency changes may require
different timing. Temporary documentation may need to be
developed before the permanent updates are released.

The emergency release phase will be under control of the
data processing center once the proper approvals are received.
The transmittal remains the same.

The emergency operation phase follows the same guidelines
once the emergency fix is in place.

Thus, the description of the phases and the emergency phase
give an understanding of the cyclical nature of maintenance
systems.

PROCEDURE FLOWS

A visual representation of the phases of maintenance is best
provided through diagrams and responsibility charts. The for-
mat as shown in Figure 2 is used to describe visually the func-
tions of the participants. The action column briefly describes
the event in English text. This event is represented by asymbol,
such as a listing, tape, or paper form, which is placed beside the
heading of the participant. Lines drawn connecting the sym-
bols indicate multiple participant input or output. In this way
all interfaces are shown in a clearly serialized fashion. A chart
should be constructed for each phase of the maintenance ap-
proach. The level of detail is optional, depending on levels of
need for any one particular group or desired summary level for
another. This form of phase representation clearly identifies
each participant group’s activities and their interface groups.
The second portion shows the responsibilities of the partici-
pants. Each title is listed and English text used to delineate
their activities during each maintenance phase. A set of pro-
cedure flows was constructed for Time Inc.’s environment.

GUIDELINES

Guidelines provide procedures for handling various aspects of
the maintenance process. These guidelines should be some-
what flexible in order to encompass subsequent suggestions or
considerations for the maintenance process. They should not

ACTION ——— e —
A A —n”
PERSON " —— .

ORIGINATOR

[UT;L:T
usen o necord :X&\
]

LIBRARIAN

PROJECT MANAGER

ANALYST/PROGRAMMER

DATA PROCESSING
CENTER

QUALITY ASSURANCE

Figure 2—Procedure flows

be hard-and-fast or demanding rules. As with any guidelines,
they are not meant to be a replacement for good judgment. In
many cases checklists are provided to help participants in-
crease their level of understanding about their responsibility
for the phase. In other cases, helpful hints and known areas of
concern are identified for the participants. A set of guidelines
for Time Inc.’s environment was constructed.

IMPLEMENTATION

For a methodology to be successful, planned action and atten-
tion must be given to its installation. At Time Inc. a separate
document was produced that addressed the implementation of
the maintenance approach. Before the approach was imple-
mented, program control library, automated tracking system,
move to production procedures, and required system docu-
mentation were addressed.

The implementation document itself had the following
chapters:

. Introduction

. Installing the Procedure

. Training the Participants

. Monitoring the Effort

. General Installation Schedule

N W

SUMMARY

A controlled, phased maintenance approach can simplify and
assist in the delivery of timely, correct versions of applications
systems software. This process is defined as a circular life cycle
with the collaboration of four groups to insure its success.

Time Inc. has defined a methodology for its environment
and is in the process of a successful installation and imple-
mentation of the procedures.

Human investment techniques for effective
software maintenance

by NICHOLAS L. MARSELOS

Western Electric Company
Lisle, Illinois

ABSTRACT

This paper presents methods for improving the maintenance of software by address-
ing the psychological issues that impact on software maintenance personnel. The
emphasis in this paper is on making software maintenance developers more effec-
tive through goal setting, by using team-building approaches, through support
personnel, and by using skill profiles to plan for their technical growth.

131

Human Investment Techniques 133

INTRODUCTION

Today everyone recognizes the problems in software mainte-
nance. Over half of the people now developing software are
involved in maintaining it. This absorbs a great deal of the
energy and creativity that we have in our software-develop-
ment community. With increasing emphasis the question is
being asked, “What can be done to solve this problem?”
Unfortunately, the difficulties in software maintenance are
not the result of a single problem, but of many. Many single
solutions have been employed to make software-maintenance
developers more effective. Most of these have been technical
solutions that help the software-maintenance developer de-
sign or program or control the software product more effec-
tively. There has, however, been a real lack of emphasis on
the human investment in software maintenance. Although the
technical solutions are beneficial and important, the real gains
in improving the productivity and effectiveness of software-
maintenance developers are attained by improving their mo-
tivation. This paper focuses on the psychological issues that
plague software-maintenance developers. It offers multi-
faceted solutions that, when applied, will improve their mo-
tivation and provide many other benefits to their companies.

MAINTENANCE IS A MULTIFACETED ACTIVITY

The technical nature of software maintenance is a well-under-
stood problem. The software-maintenance developer per-
forms a variety of activities. These include defect correction,
feature addition, and working with users. The software main-
tenance developer must also keep current on the system and
support environment in which his software product operates
in order to change the product as required by changes made
in the environment.

The software maintenance developer must constantly use
some of his creative energy to understand and get around the
constraints of the software product he or she is maintaining.
This product is usually poorly documented and in many cases
written in an unstructured and very difficult to change man-
ner. The software maintenance developer must also spend
part of his or her time dealing with the user in a variety of roles
that may include trainer, consultant, and complaint handler.
All of this is usually done with time pressures resulting from
very short development schedules.

These parts of the software-maintenance developer’s job
are well understood, and many solutions have been offered to
help in these areas. But there is an entire area in which very
few solutions have been offered, and which creates more sig-
nificant problems for the software-maintenance developer.

Psychological Issues of Software Maintenance

The software-maintenance developer is in a position with a
great deal of psychological pressure. This pressure comes
from a variety of sources. One source is the feeling of being
“stuck” in the job of maintaining a specific software product.
Often developers feel that management is indifferent to their
problems. The management passes down the message “Don’t
make waves, just get the job done.” The management’s atti-
tude may be reflected in their lack of interest in the education
and personal growth of the software-maintenance developers.
This makes software-maintenance developers feel like second-
class citizens in the organization.

The evolution of software maintenance has resulted in an
environment of independent islands. Each island supports
one or a few software-maintenance developers working on
their specific product, unattached and uninvolved with much
of the rest of the development organization. In this environ-
ment, the software-maintenance developer feels unsupported
and that the job rests solely on his or her shoulders.

The psychological pressures on software-maintenance de-
velopers has a demotivating effect. Over a period of time,
their productivity begins to diminish and this has bad effects
on the cost and quality of the software products being main-
tained.

Administrative Problems

The administrative problems of software maintenance as
seen by management revolve around the issue of keeping cost
to a minimum. This cost directly correlates with the number
of people involved in maintaining the software products. Man-
agement is faced with the problem of optimizing to the mini-
mum number of software-maintenance personnel that can
keep software products maintained in a healthy way. How-
ever, this often creates the alienation and morale-lowering
feelings experienced by software-maintenance developers.

The rotation of software-maintenance developers to differ-
ent assignments and the ability to provide backup for them is
often a serious administrative problem. This problem stems
from the long-learning curve required by the software mainte-
nance developer to effectively maintain the software product.
The lack of the effective documentation, which is common to
most software products, is a major contributor to the prob-
lem. In addition, the skeleton forces often put on mainte-
nance projects makes it virtually impossible for maintenance
personnel to back each other up on systems effectively.

134 National Computer Conference, 1983

MULTIFACETED SOLUTIONS TO THE
MAINTENANCE PROBLEMS

The overall effect of the administrative problems in software
maintenance is to demoralize the software-maintenance de-
veloper and to frustrate management. These problems have a
negative impact on the software product, which over a period
of time begins to degenerate. Software management sees a
large investment slowly dwindling away with little control on
their part to effectively reverse the process. The software-
maintenance developers feel pressed in the position of too
little support and too few resources to do the job effectively.

A key factor in improving the software-maintenance devel-
opers’ productivity and quality rests in motivating those de-
velopers. An environment must be established in which the
software-maintenance developers feel supported and can pro-
ceed to do their job in the most effective way. This takes a
commitment by management. It also requires a cultural
change that is first initiated by defining the organizational
objectives, and then enhanced by creating a supportive envi-
ronment that meets the psychological needs of the software-
maintenance developers.

Goal-Setting for the Organization

One of the most important needs in any organization is to
have well-defined goals in which everyone in the organization
supports. Software maintenance has its own set of goals.
These goals can conflict with each other, as indicated in the
experiment by Weinberg.' Table I identifies the goals and the
negative effects of those goals.

Software-maintenance goals must be set, then ranked to
avoid conflicting goals. As Table I shows, setting the goal of
timeliness, that is getting the products out on time, may jeop-
ardize the efficiency and maintainability of the software prod-
ucts being developed. This is true whether the products are in
the initial development stage or in the maintenance-develop-
ment stage of their life cycle. Table I also shows that an
organization both placing emphasis on timeliness and de-
manding high maintainability puts tremendous pressure on
the software-maintenance developer, since these two goals are
in direct conflict with each other. It is therefore important not

TABLE I—Goals of Software Maintenance

Goal Negative Effects

Timeliness Inefficiency in operation
Jeopardize maintainability
Increased development costs

May not be user friendly
Development longer

Greater resources required
Schedules shortened

Better project planning required
User satisfaction can suffer
Schedules longer

More resources required

More emphasis on documentation
More emphasis on design

Operational efficiency
Customer satisfaction

Minimum costs

Improve maintainability

only to establish the goal or goals that the organization would
like to achieve but also to rank those goals to minimize
conflicts.

The process of establishing goals for the organization has to
begin with management. The management should sit down
and decide what goals they really seek, whether it is to have
customer satisfaction or improved maintainability or timeli-
ness of its products. The goals may be global to the organiza-
tion or modified for each project. Once the goals are selected,
they should be ordered in terms of priority, the most im-
portant, the next most important, and so on. Once this list is
created, it should be checked to make sure that conflicting
items aren’t adjacent. If they are, the management must then
decide which is the most critical item of the two and move the
conflicting item down on the priority list. Finally, the entire
management must support these goals.

After the goals are well defined and written, everyone in the
organization must be informed what the goals are, and their
support must be promoted. This can be done by having meet-
ings of management and the software-maintenance develop-
ers. These meetings should be used to stress the importance
of these goals to the organization and to encourage sugges-
tions on how best to achieve the goals.

The success with which these goals will be accepted depends
on whether achievement of these goals is rewarded. The re-
wards can be of two forms. First, there must be recognition
awards. These are publicized awards for software-mainte-
nance developers who achieve the goals established by the
organization. For example, if timeliness is a specific goal, then
those developers that bring their products out on time would
receive recognition for their accomplishments either in the
organization’s news bulletin or in memoranda. Second, there
should be substantive awards given for achievement of the
goals. These include pay raises and promotions or any other
form of substantive award. In all cases, it should be made
common knowledge that the award has direct correlation with
achievement of the goals set by the organization.

When goals are established and promoted in such a way,
they will have a profound effect on the cultural aspects of the
organization. The software-maintenance developers will be
more motivated once they have clearly in mind what the or-
ganization considers important in the performance of their
activities. This will give the software-maintenance developers
objectives to direct their energies toward. It will not, however,
set up the type of supportive environment that is necessary for
them to be effective in achieving their goals. For that, a more
supportive team environment must be created.

Instituting Team Consciousness

Most software-maintenance developers are put in a situ-
ation where they have few people to rely on for support. New
project developments often have several team members work-
ing in concert to complete the project. When the project is in
its maintenance cycle, only a skeleton force, usually just a
single individual, will maintain the project. The software-
maintenance developer is left without having the benefit of
sounding boards or other peopie’s expertise to resolve prob-

Human Investment Techniques 135

lems. From a management perspective, this is necessary to
keep the cost of maintenance low. There are, however, ways
to solve this problem without substantially adding to the num-
ber of software-maintenance developers. This can be done by
creating teams that perform specialized functions which sup-
port the software maintenance developer.

Augment Groups

Augment groups are informal teams chartered to propose
solutions to problems or to suggest improvements for the
organization. They are founded on the concepts employed in
quality circles now popular in Japan. They differ from quality
circles in that they are populated by professionals and that
they can apply to any specific goal that the organization seeks.

The charter of an augment group is implied by its name.
The name and charter of the group should be chosen so as to
be directed to a specific organizational goal. For example,
there could be productivity groups or user-relationship groups
or more-effective-documentation groups. Each group would
be chartered to look into problems relating to one specific
area.

The process of organizing and conducting these groups is
now well defined in the literature pertaining to quality circles.”
The groups should be formed on a volunteer basis. Software-
maintenance developers should join the groups that most in-
terest them. Several groups can be established within the or-
ganization. In the case of multiple groups, a facilitator or
coordinator should attend the group meetings to ensure that
there is no significant overlap in the activities or the solutions
of the groups.

Augment groups in the area of software maintenance have
to perform two vital functions. First, they offer an opportunity
for some of the organization’s problems to be addressed in a
creative fashion; second, they give the software-maintenance
developers an opportunity to participate in a team effort. The
first benefit is one for the entire organization. Very often
augment groups suggest substantial improvements that save
the organization money or improve the productivity or quality
of its products. The second benefit of augment groups is to
provide a vehicle for the exchange of information among soft-
ware maintenance developers. This gives them a feeling of
team involvement even though their normal daily job might
isolate them.

Peer Review Units

Two of the major problems facing software-maintenance
developers are the lack of support in ensuring that a product
they have developed is of good quality and will work effec-
tively and second, the lack of backup personnel to relieve the
load in pressure situations. Both of these problems can be
relieved by the use of peer review units. A peer review unit is
a group designated to review the work of the members within
that group. The product can be the design documentation, the
analysis documentation, or the program code itself. The
group has a permanent membership. The membership is cho-
sen to achieve the compatability conducive to fostering “ego-

less,” or defensiveless, participation as described by Wein-
berg.’ The review process could be conducted as a structured
walkthrough. The review should have some formality, as de-
scribed by Yourdon.* At the minimum, it should include a
signoff sheet to indicate that the reviewers have accepted the
product being reviewed.

The value of peer review units is in the improved quality of
the program products being developed. The units also provide
a backup situation by having the reviewers learn about the
different systems that are involved. The results of field trials
indicate that peer ratings of programs can be productively
nonthreatening, and serve as incentives for programmers to
produce higher quality code.’

Application Area Groups

Another type of group that can help in the communication
and information and the support of software-maintenance de-
velopers is the application-area group. These are groups such
as user-interface groups, or maintenance-developer groups,
or birds-of-a-feather-type groups that work on problems or
exchange information that is of common interest to the group.
The group meets periodically to discuss either common prob-
lems or solutions, or to present new features or ideas, or to be
used as a sounding board for activities or plans within the
organization.

These types of groups are the easiest for an organization to
establish. They are conducted as simple and informal sessions.
They offer the software-maintenance developers an oppor-
tunity to exchange information and experiences. If users are
involved, it provides a mechanism in which the software-
maintenance developers and the users can improve their re-
lations by gaining a better understanding of each others’ prob-
lems and points of view.

Improving the Effectiveness of the Maintenance Personnel

The most significant qualification of software-maintenance
personnel is that they have the technical capability to perform
their job. This requires a well-planned training program. An-
other very important aspect of training is that the software-
maintenance developer feel they are personally growing in
their technical expertise and are keeping up with the state of
the art of their profession; (the substantially high need for
growth by software professionals was shown by Cougar and
Zanacki®). Both of these are also important to the organiza-
tion. Obviously, if the software-maintenance developers can-
not cope with the technical aspects of their job, the product
they are maintaining will suffer. If on the other hand, the
software-maintenance developers have a strong desire to grow
technically and that desire isn’t met by an effective program
for personal growth, then their morale becomes low and their
productivity is negatively affected.

The training of software-maintenance developers must be a
well-planned and controlled activity. The first step is to under-
stand the skills that the software maintenance developers al-
ready have. This can be done by developing a profile of the
skills they have acquired through education and on-the-job

136 National Computer Conference, 1983

experiences. Next, the organization should profile the skills
necessary for various jobs. Finally, the organization should
profile the educational or training vehicles that can teach
those skills. With this information, it’s possible to develop an
educational plan. This plan can be used for the rotation of
software-maintenance personnel and also for planning their
personal growth and training in a direction that benefits them
and is suitable for the organization’s needs.

Support Personnel

Many of the activities of the software-maintenance devel-
oper are of a low-level clerical nature. These are repetitive
and time-consuming activities that diminish the software-
maintenance developers’ overall effectiveness. Many of these
jobs, however, can be delegated to support personnel.

Software support personnel benefit the software-main-
tenance developer. They perform functions at various levels
depending on their own abilities and expertise. These can
range from simple data-entry jobs to performing the software
testing. A more skilled helper can provide the first-line inter-
face with users by handling some of the simple operations and
questions needed to support users.

The organization will also benefit from having software
support personnel. First, it reduces the cost of software main-
tenance by making the software-maintenance developers
more effective. It allows the software maintenance developers
to have more time for their specific activities and relegates the
clerical support work to a lower-salaried individual. The pres-
ence of software support personnel also enforces a certain
level of documentation: the documentation needed to help
them do their job. Second, they provide continuity for the
organization when new software-maintenance developers be-
gin to maintain the product. Finally, a software assistant can
be shared by several software-maintenance developers, pro-
viding added cost savings to the organization.

Software-maintenance developers can also be helped by
expert technical support. This can be instituted by circulating
a list of the persons in the organization who are most knowl-
edgable about specific areas, for example, job-control lan-
guage or program languages. The function of technical sup-
port experts is to answer inquiries about specific problems in
their particular areas of expertise. This can be done by setting
up expert tables where maybe for an hour or two every day the
expert would sit and field all questions.

The use of technical experts within an organization works if
the organization actively supports the policy of getting the job
done in the most expedient and effective way. This means that
the organization must discourage the not-invented-here syn-
drome and must encourage software-maintenance developers
to use their innovativeness to meet the organizations’ stated
goals and not simply waste their energies on problems where
they lack expertise. Rewards must be established for both the
technical support person and for those who seek his or her
help.

CONCLUSION

Software-maintenance developers often find themselves in an
unrewarding and stress-filled job. They may feel ignored by
their management and alienated from the rest of the organiza-
tion. They may suffer from not having a full understanding of
the goals of the organization and from the lack of support
personnel to help them do their job effectively. They may
have the feeling that they are stuck in their jobs and limited
in their professional growth.

This paper describes several approaches that can be applied
to making software maintenance developers more effective.
The approaches deal with the psychological aspects of soft-
ware-maintenance developers. The emphasis is on making
them feel more a part of the organization and giving them
more effective support. By using these approaches, the
software-maintenance developer’s motivation can be im-
proved remarkably. Only when this is done is it possible to
gain the maximum benefits from the technical tools and tech-
niques for improving software maintenance.

REFERENCES

1. Weinberg, G. M., “The Psychology of Improved Programming Perfor-
mance,” Datamation, November 1972.

2. “Quality Circles in EDP,” System Development, July 1982, Vol. 2, Number
S.

3. Weinberg, G. M. The Psychology of Computer Programming (1st Ed.).
London: Van Nostrand Reinhold, 1971.

4. Yourdon, E. Structured Walkthroughs (2nd Ed.). New York: YOURDON
Inc., 1970.

5. Schneiderman, B. Software Psychology (1st Ed.). Cambridge, Mass.: Win-
throp Publishers, 1980.

6. Cougar, J. D., and R. A. Zanacki. “What Motivates DP Professionals?”
Datamation, September 1978, pp. 116-123.

Structured software maintenance

by G. R. EUGENIA SCHNEIDER

Naval Weapons Center
China Lake, California

ABSTRACT

Many books are written about structured design and programming, but never about
structured maintenance. True structured maintenance comprises four functional
roles, called the manager, librarian, archivist, and programmer. The manager man-
ages. The archivist protects contents of computer files and stores information about
these files in an archive library. The librarian organizes and stores software docu-
mentation in the form of a program documentation package. The programmer, of
course, programs, using versions of the archive and library documents with slightly
altered contents, and records day-to-day activities in the programmer’s notebook.
A special tool used by programmers is emergency takeover, which is a procedure
for taking maintenance control of a new program.

137

Structured Software Maintenance 139

INTRODUCTION

In the universe generally depicted in the literature, software
is carefully designed, written, tested, documented, used for a
time, and then replaced by more up-to-date software created
in the same way. Articles, books, and training programs have

proliferated in support of this idealized environment. Un--

fortunately, no one seems to write books for maintainers of
ancient, unstructured, undocumented software. Indeed, few
will even admit that such persons exist.

This paper attempts to bridge the gap, to provide pro-
cedures and guidelines for practitioners in this much-maligned
and neglected area. It presents an overview of a comprehen-
sive system for structured software maintenance. The com-
plete system is outlined in the data-flow diagram in Figure 1.
The four sections of the diagram are for the four functional
areas of structured software maintenance, and the abbrevi-
ations along the information flow lines are record-keeping and
documentary tools used by the maintenance staff.

MEMBERS OF THE MAINTENANCE STAFF

Introduction

Because of the general disrespect for software mainte-
nance, programming is often the only activity management
sees as an appropriate maintenance function. So, no time or
resources are allocated to many other crucial activities. In a
fully-staffed maintenance group, resources must be assigned
to roles called

1. Manager—The manager sets priorities for maintenance
tasks, makes task assignments, and reports to higher
management levels.

2. Archivist—The archivist keeps track of current contents
of computer files and maintains back-up and retrieval
procedures.

3. Librarian—The librarian organizes storage and retrieval
of documents and other records about the software
being maintained.

4. Programmer—The programmer trouble-shoots software
failures, designs and tests program updates, and docu-
ments maintenance projects.

It is worthwhile to delineate the duties of each title separately
(see Table I). The roles can be modified later if necessary to
accommodate staffing limitations in a particular organization.

Maintenance Manager

The primary role of the maintenance manager is usually
that of master psychologist because this person must conduct
group therapy sessions to keep users, customers, operators,
and programmers speaking to one another.

Officially, however, the most important duty of the mainte-
nance manager is to monitor incoming program-change re-
quests and to keep some kind of centralized trouble log. When
a program change is proposed, the manager arranges for a
timely decision on the criticality and feasibility of the pro-
posal.

Table I-—Software maintenance functions

Who Does It?* How often?t
Mgr. Arch. Libr. Prog. Int. Wk. Mon. Qtr.

Activity

Task Area

Set/review priority x X
Assign tasks X X
Report to mgmi. x X
Make archive tapes
Monitor file updates
Store file lists
Retrieve file lists
Store documents X X
Retrieve documents X X
Forms management X X
‘Word processing

control X X
Distribute doc.

updates X X
Update programs X X
Update

documentation X X

b

LI

Record-Keeping

Status report X X
Archive library
folder X X
Document
library file X X X
Programmer’s
notebook X X

*Who does it? Mgr.—Maintenance manager; Arch.—Archivist; Libr.—Docu-
ment librarian; Prog.—Maintenance programmer.

fHow often? Int.—Intermittent, as needed; Wk.—At least weekly, better
daily; Mon.—At least monthly; Qtr.—Once each quarter; (no entry—may
never be done).

Process

Customer PCR Change

Request

Assign

Maintenance

Task
User Sample 1/0 /
Listings, dumps /
Computer | Test/benchmark_runs /

PNB Emergency PNB Maintenance
Takeover Library

Evaluate
Change
Request

Close
Maintenance
Project

PNB, MB

PUD Design,
Code and |pp
Test BB Document PNB
Make Update Changes A
Monthly Documents
Status MAL
Report
CB, NE, Forms
MAL PSR PSR PDP|

>

Computer

Archive tape run /

Abbreviations:

ALF Archive Library File
ATD Archive Tape Description
CB Computer Binder Run-
DD Data File Documentation
FCT File Control Table

MAL Monthly Activity Log

MG Maintainer’s Guide

PCR Program Change Request
PD Patch Documentation

PDP Program Doc. Package

PNB Programmer’s Notebook
PSR Program Status Record
PUD Program Update Description
UG User's Guide

streams

Management

>

Compile
Quarterly
Status

Report

ALF

Tape Provide
Archive Forms for

Maintenance
and

Tapes, ATD

Make

Archive Issue File Issue
Tape Information Documents
On Request on Request

Monitor

Monitor Documen-
Computer .
Run File tation
streams Changes Changes

Document
Library

File
Archive

Update
Archive
Tape
Runstream

Abstracts

PDP, ab-
stracts

Listings

Make Make
Monthly Update Monthly Store and
Status b Printed Status Cross
ocumenta- .
Report e Report Reference

Files New Documents

List of file changes

List of

new documents

User

Customer

Figure |—Data-flow diagram of the structured software maintenance system

Structured Software Maintenance 141

Finally, it may be useful to have the maintenance manager
develop and maintain the company’s disaster plan. This may
not be particularly appropriate as a maintenance function, but
experience has shown that, somehow, the maintenance shop
is tacitly held responsible when the system crashes.

Archivist

The archivist is tasked with keeping up-to-date records of
the contents of computer files. It doesn’t matter whatis in the
files. The only criterion for inclusion in the archive library is
that the information be in computer-readable form.

The archivist maintains a documentary folder for each com-
puter library (a library being defined here as a logically con-
nected set of separately accessible files). This folder includes

1. Current listings of the elements contained in the library

2. Methods for retrieving the information contained in the
library at each step of its evolution, starting from the first
time it was known to the maintenance group.

Note that the archivist does not keep track of which files are
logically associated with particular programs or with each
other. The only concern is with maintenance and protection of
the physical files.

The file-protection task is chiefly accomplished by period-
ically generating back-up tapes, including all files that have
been changed since the last time such a tape was written.
When a computer file is updated in between the generation of
these formal archive tapes, the archivist backs it up immedi-
ately in such a way that the change can be reinstated if the
updated file is lost or damaged.

Document Librarian

The major function of the document librarian is to system-
atize storage and retrieval of documents and other written
information of use to the maintenance staff. Then, at the end
of each quarter, the librarian prints a list of all documents
acquired and generated during the last quarter and distributes
the list to the rest of the maintenance staff.

Two other tasks, however, routinely become assigned to a
document librarian. The first is forms management—storing
master copies of all forms used in the shop and seeing to their
copying and distribution. The second peripheral duty is as
word-processing manager for the maintenance team: storing
skeleton copies of typical documents on the computer. A
documentor, then, need only copy the proper skeleton and fill
in the blanks. This has two advantages: it improves motivation
of documentors to produce the assigned reports, and it assures
that all documents of the same type will have the same format.

Maintenance Programmer

The operational cycle of maintenance programming is on
the order of: make a change, make a run, curse, scribble, and
loop.

Maintenance programming, however, is not the only task a
programmer must attend to if the maintenance facility is to
function effectively. There are three major types of informal
documentation that must be generated by the maintenance
programmer:

1. Programmer’s notebook

2. Maintenance binder

3. Appropriately structured code, enhanced with in-line or
in-code documentation.

This paper does not discuss the in-code or the in-line docu-
mentation since these topics have already been extensively
covered. The emphasis here is on the external documents—
the programmer’s notebook and the maintenance binder.
These are productivity tools that aid the programmer in pro-
ducing high-quality software updates. They are not produced
after the fact; they must be updated daily. The use of these
tools is described in the next section.

RECORD-KEEPING IN A MAINTENANCE SHOP

Introduction

Many companies fail to recognize documentation as a cru-
cial part of effective software maintenance. In a well-run
maintenance group, as much as 75% of the time is spent in
activities that can be loosely referred to as documenting.” But
most of this activity does not result in formal reports so it
often is not recognized as documentation. Some of these less
formal documentary formats are the following:

1. Archive library file—A folder containing listings that
define the contents of a computer library in sufficient
detail so that the library’s present or past contents can be
retrieved. The archivist maintains these records.

2. Program documentation package—A binder containing
a standardized set of section dividers that hold semi-
formal bits of information about a program and its inter-
actions with other software and hardware. The docu-
ment librarian keeps these packages up-to-date.

3. Programmer’s notebook—A collection of daily notes on
computer runs, file updates, significant conversations,
meetings, and so on. As is obvious from its name, this is
the responsibility of the maintenance programmer.

These record-keeping tools constitute complete and efficient,
if informal, documentation of the maintenance function. They
record lessons learned while programs are modified, and they
pave the way for any formal reports that are later required.

Before detailing these formats, a word about terminology is
in order. In this paper, there was a need to use words that have
both common and “computerese” meanings. The reader is
asked to assume that if any ambiguous term (e.g., file, library,
record) is used without some qualifier that indicates a
computer-readable entity, the common Engiish meaning is
intended.

142 National Computer Conference, 1983

The Archive Library

Within the archive library, doeumentary folders are filed
primarily by the computer on which they reside, then alpha-
betically by name. Tables of contents for the library are at the
front of the folder, with the most recent listing first. The first
section contains file lists, categorized as source code, run-
streams, data, or text. Listings are stored in alphabetical order
by file name and then by revision date, with the most recent
on top. Another section contains information about using
stored runstreams for documenting the library contents. An-
other holds listings showing how the files are retrieved from
back-up tapes, again with the most recent first. Another pos-
sible division is for compile-link listings if executable program
code is stored in the library. Finally, there is the omnipresent
category of “Other.”

The format of an archive library folder is shown in Table II.

Table II—The format of an archive library folder

Table of Contents: Most recent table of contents of the library usually
including, for each element: name, date when it was last changed,
size in words or sectors, and so on

Absolute elements: Compile-link lists for programs for which exe-
cutable copies are stored in the library

Current element listings:

Source lists—program symbolic elements

Runstreams—sets of control (JCL) commands, that are accessed
and executed (by the OS) as a unit

Data—sets of data records that are accessed and used (by a pro-
gram) as a unit

Text—a catch-all category for all other elements

File Maintenance Records: Listings of runstreams used to document
the library contents and information on how to retrieve the files
from an archive tape

Other: Essential in ANY folder, no matter what its purpose

This is how the folders are organized in an actual archive
library. For a programmer, however, the information may not
be accessible in this form. The best solution for a programmer
is to copy all files that relate to one program into a single
library. Then the format is useful to both operatives. Some
programmers decide instead to put all pertinent files in one
archive library folder, regardless of where they are found on
the machine. This is very frustrating if the group later acquires
an archivist.

The Document Library

The document library contains whatever information is
available, on paper, that is of interest to the maintenance
team. The library is organized around a book of abstracts,’
each of which references one of the programs, data files,
procedures, and so on, being maintained. Documents in the
library are organized first by system, a system being a group
of programs and procedures recognized as a logical unit by the
users. The next lower category is a subsystem, a name in-
vented by programmers to identify a group of programs on a

single computer or performing a single function. Finally, there
are binders for individual programs and sometimes for indi-
vidual data files.

There can never be a complete list of the documents that
might be written about a program. As a start, the librarian
stores information in a program documentation package, as
shown in Table III. Whenever the contents under “Other”
begin to overwhelm the rest of the package, it is time to be
creative, to build a more specific set of dividers and to insert
a sheet under “Other” to describe what was done.

Table IIT shows how program documentation looks in a
formal document library. The format is designed, however, so
that if there is no librarian, only programmers, the program
documentation package is transformed into a maintenance
binder. Though it has somewhat less formal contents, such as
tape dumps, the format is the same. If no formal documen-
tation exists in some binder sections when the program first
appears for maintenance, the maintainer may write some as a
matter of course. Others will never be produced formally;
they will be represented by notes, if at all.

Daily Record-keeping Tools

Everything that happens during a maintenance task must be
recorded in the programmer’s notebook: code changes and
their effects, program runs and their outcomes, insights
gained, information gleaned, summaries of conversations,
milestones achieved, and so on, and the date on which the
event occurred. This notebook must have the feature that,
although the first entries are made now, the records can be
straightforwardly extended backward in time as more infor-
mation becomes available. The programmer’s notebook is a
daily hand-written log of everything the programmer does,
learns, hears, or acquires that relates to the task at hand.

Another important record-keeping tool, the maintenance
binder, is quite formal by comparison. Recall that it is often
synonymous with the program documentation package in the
document library. When information is acquired that fits logi-
cally in the maintenance binder (i.e., it might be used some-
day, almost as is, in a formal report), it should be stored there.
The programmer must present an up-to-date maintenance
binder to the document librarian at the end of a maintenance

Table III—The format of a program documentation package

Abstract: Formal definition, one page long’

User’s Guide:

Analyst’s Manual: (a design document might go here)

Maintenance Information: Patch or maintenance document®

Source Lists and Cross-References:

Data Formats: Formal data file definitions®

Benchmark Inputs and Outputs:

Runstreams: “Canned”” command files used in maintenance

Related Software: Any available information about how the program
interacts with other software that is significant in the system (e.g.,
the program that creates a file it will read, or one that uses a file it
will write)

Other: Anything that doesn’t fit in another category

Structured Software Maintenance 143

project. This binder is frequently the only documentation in
the universe for that program. So, the structure of the mainte-
nance binder is (entirely by design) the skeleton on which to
hang any documentary information that might later be
included in a formal report.

EMERGENCY TAKEOVER

The previous section described the record-keeping activities
that support maintenance on a long-term basis and that were
portrayed as a flow diagram in Figure 1. But what if there is
no long-term basis for maintenance as for instance when a
program is transferred to the maintenance team for the first
time?

Emergency takeover is the name given to the steps involved
in learning enough about a program to update it. Then, de-
pending on the maintenance manager’s decision, events pro-
ceed fairly evenly toward either a permanent program revision
or a temporary patch. Since emergency takeover rarely ap-
pears in the literature, some time will be taken to explain the
steps.

Suppose someone walks into the maintenance shop, and
says, “XYZ didn’t work last night. . . Fix it!” Assuming that
no one in the group has ever heard of XYZ, there is a pro-
cedure to follow before beginning to make changes to the
program. The steps are the following:

1. Talk to the customer and the users. If the program has
never been heard of by your group, sit down and talk to
the person who requested the maintenance task. Then
talk to any users you can find. Ask what the program
does, how to find a complete set of inputs and outputs,
under what circumstances the program is used, if there
is any user documentation, and so on.

2. Search the document library. If there is any information
about XYZ in the library, find out who last worked on
it and get the programmer’s notebook and maintenance
binder. Otherwise, have the librarian open a new file for
the program and issue a set of dividers for creating its
maintenance binder.

3. Search the archive library. Locate tables of contents for
all pertinent program, runstream, and data files in the
archive library. If you do not already have them in a
maintenance binder, print listings and cross-references
of the program modules. If the archive library has no
information on the program, prepare an archive package
as soon as you locate the program on the computer so
that the archivist can take over maintenance of the files.

4. Start a programmer’s notebook. Obtain and fill in what-
ever forms are used to head a programmer’s notebook.
From this point on, document in the notebook every-
thing that happens during the maintenance project.

5. Assemble sample inputs and outputs. Find or create a
complete set of sample inputs and outputs, including raw
dumps (i.e., octal or hexadecimal, with no cleanup,
decoding, or translation) of all data media (e.g., tapes,
disk files) used by the program. Note: if the program is
being changed because it aborted, the run that failed

is needed to test the fix; but you also need bench-
mark data, a data set that ran successfully BEFORE the
failure.

6. Write the program update description. This is a form
defining the programmer’s concept of the requested
modification. The completed form is sent to the re-
questor for comment, via the maintenance manager. Its
function is to ensure that everyone—the programmer,
the manager, and the customer—can agree on exactly
what the proposed change will accomplish, what re-
sources will be expended, and so on. Once it is ap-
proved, the program update description becomes the
nearest thing to a software specification that the mainte-
nance shop is likely to encounter.

7. Work backwards to fill in the programmer’s notebook.
Using whatever information was gleaned from file lists,
sample I/O, and so on, work backwards from the present
to fill in the programmer’s notebook. (Begin notes for
each month on a new page in case information surfaces
later that must be incorporated in this history.)

8. Start to design the update. When the program update
description form comes back, approved or amended, it
is time to stop the book work and start on the update.
Translate the program update description steps into
high-level pseudocode (sometimes called structured En-
glish) or into a module flowchart. You will be amazed at
how much you already know about the program after
these few, simple steps.

LAST WORD

When is a maintenance task finished? The answer has the
same parameters as the answer to a related question: When is
a newly developed program ready for production? Curtly
stated, a program is ready when a test run, using the prede-
fined benchmark data, has been approved by the programmer
and the customer. When the librarian and archivist have also
closed their files and a post-implementation review has passed
without new changes being required, then the maintenance
project is truly finished.

The purpose of this paper is to bridge the gap between the
theoretical ideals expressed in the literature—structured de-
sign and programming, tactical and strategic planning, config-
uration management, formal documentation, and so on—and
the real world we know, where decrepit, undocumented pro-
grams are being maintained. Until all software is well struc-
tured, reliable, maintainable, and documented, the methods
outlined here will help maintenance practitioners to survive
and succeed in an unfriendly universe.

ACKNOWLEDGMENTS

This paper is a condensation of a Master’s thesis presented to
California State University, Chico, in fall 1981. The thesis, in
turn, was an expansion on an article for Auerbach Publishers.
My thanks to both organizations for their help.

144 National Computer Conference, 1983

REFERENCES Application Software Maintenance.” Communications of the Association for
Computing Machinery 21 (1978), 6, pp. 466-471.
1. Keston, R. How to Develop an Effective Long-Range Data Processing Plan. 3. Schneider, G., D. French, and L. Lucas. “How to Document Software,”
Rockville, Md.: Keston Associates, 1978. Naval Weapons Center CCF-87, August 1977.

2. Lientz, B. P., E. B. Swanson, and G. E. Tompkins. “Characteristics of 4. Schneider, G.. “Format Guidelines for DRMM’s,” DRMM-74-9, 1974,

Application maintenance: One shop’s experience
and organization

by ROBERT E. MARSH

Dow Corning Corporation
Midland, Michigan

ABSTRACT

Several years of data on software support activity at Dow Corning are analyzed to
illustrate the problems of managing this function. Most software changes are small
from the user’s point of view, but few changes are small from the maintenance point
of view. Several organizational models have been tried for the management of
support. None is entirely successful.

145

Application Maintenance: One Shop’s Experience 147

THE COMPUTING ENVIRONMENT

Through formal logging and recording of support requests and
applied personnel time since mid-1976, Dow Corning’s sup-
port group is able to report various characteristics of our
applications support effort—about 60 person years of effort to
date.

The following facts will give an idea of the environment and
context of this support history:

® Each support person has been provided with a CRT and
IBM’s System Productivity Facility (SPF) timesharing
software.

® Access to production source code is administered
through a library control function.

@ Batch turnaround time for compiles is usually less than 30
minutes, and probably 30% of the time it has been less
than 15 minutes.

® Virtually all programming is done in PL/1, with small
amounts of report programs written in Pansophic’s
EASYTRIEVE language.

® Administratively, requests are documented by the re-
sponsible key analyst as they are received (or encoun-
tered).

® The individual(s) working on requests logs his/her time
on a daily basis but the time sheets are collected monthly
for recording.

o About 50 individuals have had some part in this support
activity over a period of 63 years. About a third was done
by contract programming people.

® Table I gives some of the particulars as to the size and
growth of Dow Corning’s production environment.

THE MAINTENANCE LOAD

Some 60 person-years of data on support effort have been
accrued over a 6; year period. About 64% was logged to

individual requests; about 16% was logged against two gener-
al application support requests; about 20% was logged to
nonproject time—e.g., vacation, holidays, and sick time. The
following list of specifics relates to the 64% category of indi-
vidual requests; it shows the important characteristics of the
scheduling and performance of these requests.

Total number of logged support requests

to date 4,454
Approximate number of open requests not

completed (typically) 250
Total number of logged person-days to date 15,200
Total number of requests completed 3,690
Total number of requests canceled 460

Average size (in actual person-days) of
completed requests. (See cumulative

distribution curves, Figure 1) 2.6
Standard deviation of size of completed
requests - 6.4

Average turnover time (number of days from
date request received until request was fully
implemented and closed out) for all

completed requests 73.4 days
Average ‘“queue” time (number of days a

request waited before being assigned to

a support person to implement) 38.3 days

Average active time (number of elapsed days

it took to complete a request once it was

assigned to a support person) 351
Average age of current open request queue 354 days

Estimated backlog of work has ranged from 400 to 1300
person-days. Typically, the backlog estimate is near 600
person-days.

The average size of a request measured in effort to com-
pletion is 2.6 person-days; the average turnover time is 73.4

TABLE I—Growth of Dow Corning’s production environment

Total Total
Lines of Active Lines of Average Production
Production JCL Code Production Program Code Lines of Runs per
Date Jobs (thousands) Programs (thousands) Code/Program Month
1/1/73 647 37 N/A 256 N/A 2300
/73 739 49 N/A 342 N/A 3230
9/1/76 1114 N/A 1863 440 236 5489
51179 1444 164 2343 571 244 5523
9/1/80 1576 N/A 2693 N/A N/A 6952
9/1/81 1662 218 2895 876 302 7202
9/1/82 1707 245 3282 1115 340 7793

148 National Computer Conference, 1983

o
T

MO>—-ZMORBMTU
Ul ~!
() ul

N
ul

Pov s v s s g o s ae v eve b e v s pa e bas s

()

<—- PERCENT OF REQUESTS

E.G. 887 OF ALL REQUESTS WERE 1ESS
THAN 4.5 PERSON DAYS OF EFFOKT.

<~-- PERCENT OF SUPPORT EFFORT

E.G. 50% OF TOTAL EFFORT WAS SPENT ON REQUESTS
1ESS THAN 8.5 PERSON DAYS IN SIZE.

%] 5 ie 15

L B O A B B I L L LI LIS LR LA R LB A AL L B HLOL LR LRI N NN A R LRI L

28 25 30 35 40

REQUEST SIZE IN PERSON DAYS

Figure 1—Cumulative distribution curves

days. Of the turnover time, about half is spent in the queue
and the rest is spent while the request is being actively worked
on. There seem to be valid reasons for this disparity between
the size of the change and the duration of the change process.

First, changes in applications need to go through certain
control and verification procedures before they can be consid-
ered as complete. This usually involves a designated proba-
tionary production period where the application is watched,
and if unforeseen problems occur, the probationary time may
be extended. Second, support people batch their effort by
working on a number of requests concurrently.

Maintenance by Category

When requests are received or initiated, they are assessed
as either mandatory or discretionary in nature. Mandatory
requests require immediate attention—e.g., production appli-
cation failures, executive edicts, and government require-
ments. Discretionary requests are all the rest, i.e., not
mandatory.

Analysis of the most recent 19 person-years of support to
distinguish mandatory versus discretionary effort is sum-
marized in Table II. Individual comparisons of the last 2 years
of the support group’s efforts produced very comparable re-
sults showing a rather constant relationship.

The key analyst assigns a request type of code when re-
quests are documented. The codes were established to catego-
rize requests as to their primary reason for occurring, e.g.,

user request, consequence of some type of failure/problem, or
preventive maintenance. Fourteen request type codes were
used as follows:

User request types:

MI. Request for information about a system, e.g., how
do I update this information?

MM. Maintenance due to management decisions, e.g.,
department reorganization, and new marketing
strategy.

MP. Mass update of production files, e.g., change credit
coding for a large group of customer types.

TABLE II—Mandatory versus discretionary support
(19 person-years’ experience)

Approxi-
mate % of
Number Total

Mandatory requests supported 435 36.6
Discretionary requests supported 752 63.4
Totals 1187 100
Person-days expended on mandatory items 890 22.9
Person-days expended on discretionary
requests 3002 77.1
Totals 3892 100

Application Maintenance: One Shop’s Experience 149

NJ. New job development, e.g., develop some new ap-
plication.

RM. Request for discretionary modifications to existing
production applications.

SA. Stand-alone request, e.g., write a program to do a
one-time analysis of sales activity.

Consequences of some failure/problem:

MO. Maintenance due to operations’ problems, e.g., ran
job out of sequence.

MR. Maintenance in support of a restart, e.g., an applica-
tion failed and the restart was not a minor experi-
ence. The failure is not directly attributable to any
specific problem area.

MS. Maintenance due to systems design, €.g., a hard
coded table ran out of space and caused a failure.

MT. Maintenance due to technology changes, e.g., new

printer requires changes be made to some report
generating programs.

Maintenance due to user problems, e.g., user inad-
vertently input the same data twice.

Maintenance due to user support function, e.g., in-
adequate testing of a change causing problems in the
production environment.

MU.

MX.

Miscellaneous types:

MA. General maintenance request. Not attributable to
any identified problem area, yet it is necessary in
order to keep an existing application functioning—
e.g., routine restart support, make small corrective
changes to a program.

MB. Preventive maintenance—e.g., expand a field size
before it causes a failure; correct edit logic oversight
before erroneous data get passed into the system,
etc.

Table III reports on the distribution of completed requests
and the associated effort, the portion of support that was
logged to specific requests. This relates to 10,200 person-days
of effort, 64% of the total time recorded over some 6 years of
experience. The average and standard deviation columns re-
late to completed requests only, leaving out canceled, with-
drawn, and open requests. Completed request effort makes
up 95% of the total effort reported.

ORGANIZATIONS AND APPROACHES

Like many healthy, growing companies, Dow Corning over
the past decade has seen fit to reorganize its management
information service (MIS) function many times. Each new or
modified structure had its own rationale and was an attempt
to improve the effectiveness of the MIS function. The or-
ganizations that reflect the way maintenance effort was ad-
dressed or managed will be described.

About 11 years ago, the MIS function of Dow Corning had
reached the point of a fairly respectable shop:

1. Approximately 500 production batch applications with
online order entry and customer file maintenance

TABLE III—Distribution of support by request type

Request Average
Type % of % of Size Standard
Code Time Requests (Person-Days) Deviation
User Types
1. MI 4.4 9.8 . 1.1 2.9
2. MM 53 4.0 3.4 6.8
3. MP 2 4 1.4 2.2
4. NI 187 4.3 14.9 17.0
5. RM 238 16.8 4.5 7.2
6. SA 144 8.1 4.8 10.2
TOTALS 66.9 43.4 4.4 9.0
Failure Types
7. MO 19 5.6 8 12
8. MR 20 32 1.6 3.7
9. MS 6.0 8.8 1.7 4.4
10. MT 1.7 3.8 1.1 1.6
11. MU 49 9.8 1.2 2.8
12. MX 35 4.6 1.9 3.9
TOTALS 20.0 35.8 1.4 33
Miscellaneous Types
13. MA 124 18.6 1.7 3.9
14. MB .7 2.2 .9 1.0
TOTALS 13.1 20.8 1.6 3.7
FINAL
TOTALS 100% 100% 2.6 6.4
2. IBM 360/50 computer; disk and tape drives
3. Operating three shifts per day
4. About 14 people providing technical programming and

system design skills
5. One of IBM'’s first PL/1 shops

MIS Organization: 1971-1974

Organizationally, (see Figure 2) MIS included within its
domain three user representative positions entitled Functional
System Supervisor. The staff had dotted line connection with
the functional area they were associated with and with re-
sponsibility for defining and specifying the user requirements
for almost all application support requests, maintenance or
otherwise. The maintenance programming group consisted of
one or two former computer operators who were learning JCL
and PL/1 programming on the job. Using Lientz and Swan-
son’s' definition of maintenance, which “refers to all mod-
ifications made to any existing application system, including
enhancements and extensions,” about 50 to 75% of all
programming effort was maintenance. Perhaps a majority of
this effort would better be described as incremental exten-
sions of base systems, as opposed to corrective or other types
of maintenance.

The programming and analysis group consisted of about six
or seven technical programming people who received require-
ment specifications from the functional system supervisor af-

150 National Computer Conference, 1983

MANAGER OF MIS!

COMPUTER
ACTION
COMMITTEE
“CAG"”

MGR. OPERATION!

1 !
]

MGR. SYSTEMS

AND SERVICES DEVELOPMENT
SYSTEMS TECHNICAL PROGRAMMING DATA FUNCTIONAL FUNCTIONAL FUNCTIONAL
OPERATIONS SUPPORT & BASE SUPERVISOR SUPERVISOR SUPERVISOR
ANALYSIS ARCHITECTURE MKTG. ACCTG. MFG.
[| PROJECT
MACHINE SCHEDULING MAINTENANCE LEADER
OPERATIONS AND REPORT PROGRAMMING
DISTRIBUTION
PROJECT
LEADER
PROJECT
LEADER

Figure 2—Basic MIS organization 1971-1974

ter they were first approved by the supervisor of the pro-
gramming and analysis group. Because the functional system
supervisor was intended to be occupied with longer term and
larger application activity, users in need of more immediate
support of small projects were considered a detraction to the
functional system supervisor. To provide for this, a small
projects group was set up with a leader and a variable resource
budget equivalent to a staff of one or two. This budget was
reconsidered on a quarterly basis, by the Computer Action
Committee. This committee consisted of a group of key user
representatives from the main functional organizations of
Dow Corning who approved the project plans and resource

MEETINGS & SPEC. SVCS.|

schedule proposed by the systems development manager. This
basic organization continued until the time frame of the oil
embargo and the corresponding economic slowdown of 1974,

MIS Organization: 1974-1976

As a result of the slowdown, large project activity was cur-
tailed, the functional system supervisor positions were elimi-
nated and the systems development manager position was
vacated and an expanded small projects group was renamed
User Support Group (see Figure 3 for this organization struc-

DEPARTMENT MGR.

DEPARTMENT PLANNER

IOPERATIONS MGR.

FOUR SYSTEMS
PLANNING
GROUPS
[|
DATA BASE PROJECT USER TECHNICAL
DEVELOPMENT LEADER SUPPORT SUPPORT
(3] (4) (6.5} (n

——

COMPUTER
OPERATIONS
1

Figure 3—Basic MIS organization 1974-1976

Application Maintenance: One Shop’s Experience 151

ture). Coupled with the establishment of this new group was
the intent that all small projects activity (including operational
maintenance support) would be done exclusively by this group
of about six full-time and one part-time person. This repre-
sented about 40% of the application programming resources
in the department at that time. A 30 person-day maximum
was defined as the threshold for classifying a request as a small
project.

The title, User Support Group, was picked to emphasize
the user interface role of this group. This role included some
technical consulting to aid users in learning their own systems,
as well as learning elementary DP skills for creating their own
reports from production files.

The user interface with the User Support Group was with
the four chairmen of the functionally aligned planning groups.
Requests for small projects were received by the User Support
Group supervisor and he made time estimates to accomplish
the tasks. There was always a backlog of work requests, and
on a quarterly basis, the User Support Group supervisor met
with the Systems Planning Group representatives to commu-
nicate progress and decide on priorities for all the open re-
quests. This basic structure continued until late 1976.

Small Projects Separated From Maintenance: 1977

Better economic conditions allowed for a revitalization of
the Systems Development Group, but the User Support
Group was moved under the operations manager position (see
Figure 4). Part of the reason for this move, was to
enable systems development to concentrate on new systems
exclusively.

Another attempt was made to have the USG staff of eight
responsible for small projects only, and a separate group of
four responsible for maintenance, all under the operations
manager. At this time, Systems Development had a staffing

level of fifteen. Maintenance was defined as any work (on a
pre-existing system) necessary to keep the system functioning as
it was intended at implementation. Such maintenance requests
tended to average about one and one half person-days
effort, whereas small project requests averaged about six
person-days.

The separation of a maintenance group from the small
projects group came to be viewed as being inefficient. Both
groups had a supervisor who separately communicated with
the functional representatives now called functional system
coordinators. The nature of the communications was the
same, i.e., setting priorities and communicating progress or
problems. Furthermore, the nature of the work was the same
and there was confusion among all parties as to what category
a particular request might fall under. Was it maintenance or
was it a small project? A larger number of requests were
addressed under this approach, compared to the years before
and after. This may have been because more resources were
concentrated on this category of support maintenance that -
typically required less effort per request to complete than the
small project request.

During this period an MIS departmental procedure was
formally established that required User Support Group ap-
proval of new applications before they were considered to be
in a fully supported production status. Our shop started being
more sensitized to the desirability of formally documented
standards for production applications.

One of the benefits of having the maintenance function
under the operations side of the MIS organization was the
degree of checks and balances that tended to consider the long
term operations concerns of an application: Was the job con-
veniently restartable? Were there backup provisions identi-
fied for permanently created files? Are the reports uniquely
identifiable to enable their routine distribution? Are error
interrupts appropriately reported? Does the job delete all its
temporary files upon completion?

DEPARTMENT
MANAGER
FUNCTIONAL
SYSTEMS
MANAGERS

I]

l COMPUTER PLS::LN:A:';D TECHNICAL
SYSTEMS DEV. OPERATIONS SUPPORT ADM. SUPPORT
ADMINISTRATOR
{13-16) (4-6))
| {3-5)
L UsG OPERATIONS
{10.5-12) {11.5-13)

Figure 4—Basic MIS organization 1977 and onward

152 National Computer Conference, 1983

Small Projects and Maintenance Reconsolidated: 1978

A divided maintenance group was reconsolidated and the
work activity was viewed as being either mandatory or dis-
cretionary after a year. The mandatory work activity would be
addressed immediately in order to maintain or restore in-
tegrity to the production applications, while discretionary re-
quests would be prioritized by the user organization. The
previous practice of meeting every couple of months with the
systems coordinators was continued. A joint consensus was
reached at these sessions as to what was most important to the
corporation, rather than deciding according to a strict func-
tional perspective. In practice, this caused dissatisfaction
among some of the systems coordinators who could not plan
on any particular program because their requests were super-
seded by new, higher-priority needs in other functions. Some
coordinators thought that their functions had had, and con-
tinued to have legitimate needs, but could not compete favor-
ably with the more visible and always-pressing needs of other
functions.

Current Approaches

This led to the approach that Dow Corning has used for the
last four years. Each function is allocated a percentage allo-
cation of available user support resources. This percentage is
renegotiated on an annual basis. In addition, the functional
systems managers (as the functional systems coordinators
were renamed) could, on an individual basis, provide funds to
augment their allocation with contract programming re-
sources or they could negotiate with their functional counter-
parts to trade resource time or temporarily acquire a larger
percentage allocation. It was expected that this would enable
the functional systems managers to better plan their own des-
tiny and eliminate some of the haggling of group priority-
setting sessions. This was largely accomplished, but not with-
out some other effects.

In 1977, Dow Corning management developed and for-
malized the current organizational structure on the user side.
The Systems Management Board is made up of top level
executives from Dow Corning’s key operating functions. Sub-
ordinate to each of these executives is a functional systems
manager. The Systems Management Board sets the broad
direction for systems at Dow Corning. The functional systems
manager coordinates the development and operation of infor-
mation systems for his function and is the primary liaison with
all MIS department managers.>

Each functional systems manager was charged the time ex-
pended on mandatory maintenance for their applications as
they were encountered. This was somewhat predictable,
based on historical averages of 20-25% of total support allo-
cation. The annual exercise to establish new percentage allo-
cations for the new year met with disagreement and the easy
way out simply perpetuated the status quo. The inter-
functional trading or surrendering of resource time has oc-
curred only to a limited degree. This has resulted in an effec-
tive reduction of the corporate perspective in our systems
maintenance. Some functional areas have what appear to be

important needs waiting while other functions might simply be
using their time to provide only marginal benefits to the
corporation.

The User Support Group organized its activities along func-
tional lines and the User Support Group name was exchanged
for Production Systems Support. The word production was
used to reflect the exclusive production emphasis of this group
of resources. Support of documented and accepted pro-
duction applications or support of new applications being de-
veloped for documented production status could normally be
considered valid activity for Production Systems Support.
(The 30 person-day limit was still a limiting constraint for all
requests or groups of related requests.) This meant that Pro-
duction Systems Support would not provide consulting or pro-
gramming services for individual users unless this criterion
was met and the activity had been given priority approval by
the associated functional system manager. There had not been
that much non-production activity going on but with more and
more user computing anticipated, it was recognized as a diffi-
cult activity to support and control centrally and still keep up
with the demands for support of production applications.

The Production Systems Support Group organization (see
Figure 5) identified a lead analyst role entitled key analyst.
Each key analyst has primary responsibility to oversee all
Production Systems Support efforts that affect his/her func-
tions’ applications, about 425 batch jobs and 2 online systems
per analyst. The functional systems manager is the key ana-
lyst’s user contact for purposes of receiving change requests
and receiving priority assignments for requests. Mandatory
priority status can be assigned by the key analyst or the sys-
tems manager.

REMAINING PROBLEMS
AND POTENTIAL SOLUTIONS

Development of Production Systems Support staff in the latest
technology is difficult and impractical. Ever present user de-
mands and mandatory maintenance produce an environment
that will quickly develop staff in the traditional DP technology
used in existing systems, but it does not lend itself to learning
the latest technology being implemented in the new systems.
The movement of people between development and applica-
tions support can alleviate this, but it does not naturally hap-
pen, especially when groups are under different managers.

PRODUCTION SYSTEMS FUNCTIONAL
SUPPORT (PSS) SYSTEMS
SUPERVISOR MANAGERS

s

— i
T Y

PROGRAMMING
SUPPORT

RESOURCES

N

/

I R

KEY ANALYST 4

Figure 5—Organization of the PSS group

Application Maintenance: One Shop’s Experience 153

Personnel motivation and enthusiasm can be difficult under
normal circumstances, but problems are compounded when
the staff is given low priority work in the less active or over-
budgeted functional areas.

The intermediate sized project (30 to 100 person-days) is
very awkward to handle. Such a project is too large for the
support groups’ resource level and too small to disturb the
progress or plans of the systems development group who are
usually involved in much larger projects. The problem of
lengthy elapsed times from assignment to completion of even
the small requests remains an undesirable characteristic of our
experience.

Consideration is now being given to a couple of changes
that might serve to solve some of the past problems without
introducing many new ones. One change would consolidate
most of the Production Systems Support resources with the
development resources, but retain the existing functional key
analyst position of the support group. A small portion of the
support group would stay in the operations structure to pro-
vide basic operational maintenance support for failed
applications. This change would help resolve the tech-
nological development problem of support staff since rotation
of support staff would be less difficult to arrange under the
same manager.

The second change deals with the manner in which re-
sources are allocated to the functions. Rather than each func-
tion having a percentage of the total support budget so that all
the percentages sum to 100, a portion of the support budget
would be allocated. This portion would be determined by
what was considered slightly more than sufficient to handle all
mandatory maintenance. The remaining portion would be ap-
plied to support Production Systems Support projects as de-
cided by periodic priority-setting meetings of the functional
systems managers. This change would make it more practical
to handle the intermediate size project, since if desirable, all
the discretionary resources could be applied to the task so that
it could be completed in a reasonable time frame. Further-
more, all the functions would get some minimal level of re-
source, but a good portion of the effort (about half) would be
more consistently applied to the highest-priority corporate
need. Another alternative to settling the resource allocation
questions would be to charge back time directly to the func-
tional departments, thus letting the buyer decide his/her
budget.

One potential weakness seen in consolidating the support
resource with systems development is the organizational loss

of commitment to operational concerns. Perhaps a strong
operations representative on project review committees
would alleviate this weakness. Another area that could intro-
duce frustration and inefficiency is overlap of responsibilities.
The operations support activity would have to be controlled
and adequately distinguished from the production systems
support activity. Perhaps making the operations role one of a
short-term perspective (to keep applications running on
schedule) would enable an adequate delineation of re-
sponsibilities to be made.

Chargeback of time could introduce difficulty in maintain-
ing a stable staffing level—low budget years would probably
translate into dramatic reductions in support purchases.

WHAT IS THE ANSWER?
Managing application support effort is fraught with dilemmas:

1. A large demand for changes coexist with demands for
new systems—how is an effective balance defined and
achieved?

2. Personnel development in new technology is not prac-
tical when support people are fed a diet of traditional DP
demands.

3. How can support effort be distributed to effectively meet
corporate needs while retaining viability with individual
corporate functions?

4. Where do you put support activity and still retain oper-
ational interests along with personnel development
needs?

5. How do shops reduce the “active time”” of a request and
still retain needed verification and control features?

Different DP organizations share these basic problems, al-
though the size of the shop will alter the extent to which some
of these areas actually cause serious concern. Are there any
management models that have been developed and tested that
address this business situation? Has a consensus of opinion or
experience been identified?

REFERENCES

1. Lientz, B. P., and E. B. Swanson. Software Maintenance Management.
Reading, Mass.: Addison-Wesley, 1980.

2. Closs, J. P., and J. E. Randall. “Dow Corning Improves Group Commu-
nications.” INFOSYSTEMS, August 1980, pp. 70-72.

Organizational issues of effective maintenance management

by GARY L. RICHARDSON

Texaco Inc.

Houston, Texas

and

CHARLES W. BUTLER
University of Arkansas
Fayetteville, Arkansas

ABSTRACT

It is a continuing challenge to today’s data processing (DP) organization to evolve
a management structure that matches the technological advances of the system for
which it is responsible. The goal of this paper is to synthesize the emerging role of
a DP organization within its corporate environment, focusing particular attention
on the issue of software maintenance.

Attention is primarily on three dimensions of the required organization: the user
view, organized by functional area; the technical view, organized by area of ex-
pertise; and the organizational view, arranged by planning horizon. The conclusion
is drawn that a single group should have responsibility for integration and enhance-
ment of all installed applications. The tasks of this group comprise software con-
figuration control, operational integrity, performance tuning, and requirements
analysis and planning support for installed systems.

155

Organizational Issues of Effective Maintenance Management 157

INTRODUCTION

Today’s data processing (DP) technology is headed in many
different directions at once. This explosion in technology,
together with twenty years of systems development, has sud-
denly brought us to the exciting threshold of new organiza-
tional strategies and direction. The goal of this paper is to
present a generalized organization structure that facilitates
development and enhancement of software, focusing particu-
lar attention on the software maintenance function. The ideas
raised here are meant to be independent of any single or-
ganization and are designed to help the reader sort through
the myriad of factors that affect a particular organization.
However, it should be emphasized that the approach
presented has been applied within a large DP organization.

THE EMERGING DP ENVIRONMENT

A practical framework for analyzing the DP function can be
formulated by reviewing critical operational components and
observing their unique pattern of evolution or growth. In the
final analysis, organizational structure depends on three dis-
tinctive factors: data resources, technological components,
and the application environment. Because of the integration
of various levels of technology, the organization generally
evolves according to the pattern outlined in Table I. The driv-
ing force in these evolutionary stages is hardware technology,
which supports increasing capability, as demonstrated by
today’s complex network configurations and operating sys-
tems. This fact is illustrated in Table I by the diagonal arrows,
which indicate the pushing effect of technology on the applica-
tion environment and organizational framework. When one

TABLE I—DP Components and Organizational Trend

Factors
Organization
Observation Data Technological Application Framework
Point Resource Component Environment Required
I Record§ Mono- Application Narrow
“~~\Pr0gramming (ro)
II Files Multi- System Expanded
Programrlling (ilplo)
I Database Virtual “sMultisystem Functional
Machines Integration Specialization
S~ (IIPIO)
v Information Networks Virtual “Multidimen-
Center Application sional
Support

compares it to these technological advances, it is apparent
that the evolution of application software and organizational
framework has lagged behind technical sophistication.

Organizational growth is continuous, therefore difficult to
describe in discrete intervals, but recognition of four points
along the continuum provides critical insight into the emerg-
ing organization. The four points are as follows:

1. Narrow.—Low personnel requirements, data main-
tained as a separate file for each application; focus is on
input and output (I/O) and on replacing existing manual
procedures.

2. Expanded.—Extension of application functions or pro-
cesses (i/p/o) and an accompanying growth of personnel
resource requirements. Processing becomes more com-
plex.

3. Functional specialization.—Integrated systems com-
posed of major functions and processes (I/P/O); person-
nel with specialized knowledge within critical functional
areas.

4. Multidimensional support.—Automated applications
cover the firm’s entire operating sphere; information
centers emerge that focus on query and decision-
oriented areas.

In the past, applications such as payroll or accounts payable
were designed with limited scope. Today, each of these is
merely a subsystem, a single element of multisystem integra-
tion. The firm is now operating these virtual applications.
They are critical in that they are embedded in the firm’s func-
tional operating environment. However, even with this level
of sophistication these systems are never quite finished, owing
to the dynamic nature of business operations.

Along with the existing virtual system complexity, most
large organizations have also been expanding their services in
multiple directions. A sample of these is as follows:

1. Providing on-line access to users

2. Installing nonprocedural software for users

3. Directionally moving toward the information center
concept
Decentralizing installation of personal computers
Installing text processing and/or electronic mail systems
6. Connecting multiple processing and user nodes into dis-

tributed networks

v o

It takes only a casual glance at this list to see that the scope of
work undertaken has broadened considerably. It is not so
obvious what pressure this brings on the traditional DP or-
ganizational structure and on its procedures for maintaining
existing software systems. The breadth of hardware and utility

158 National Computer Conference, 1983

software used is too much for one group to handle. In other
words, the new environment demands a different organi-
zational approach to meet the breadth and complexity of
demands being placed on it.

DESIGN FACTORS

Operating Factors

The fundamental issues affecting the structure of organi-
zational units should be examined in such a way that the
following five questions will be addressed:

1. What is the perceived goal of the information systems
department?

2. Should software systems be carefully planned before
coding, or is prototyping the best technique?

3. Should development work units be organized primarily
around skills or around user functions?

4. Could your organization operate adequately if the com-
puter system were lost through a catastrophe?

5. What are the typical problems encountered by users?

Obviously, these questions can be answered in a wide variety
of ways. Collectively they indicate the continued need for an
application development unit.

First, the goal of the information systems department is
more and more recognized to be the maximization of the
value of corporate information (including data, graphics,
video, and voice, as well as text). The chore of writing new
traditional systems code is declining relative to the new sup-
port services such as telecommunications (networks), training
users, decentralizing hardware, and managing the orderly
growth of computer technology within the total organization.
This suggests that user involvement with the organization is
broadening in scope beyond the functional systems specifica-
tion activity.

Second, if we can prove that the use of good software en-
gineering practices does not adversely affect delivery times for
new systems or enhancements, there will be increased justifi-
cation for splitting system specification and analysis away
from code construction. However, a large segment of DP
professionals believes that prototyping is the only way to find
out what users really want. Quite probably there will always
have to be some prototyping in the process of collecting speci-
fications; possibly skill in prototyping is needed in applica-
tions development.

Third, development work needs to be controlled by profes-
sionals who understand both the user requirements and
enough about code construction to make intelligent design
tradeoffs. We propose that development groups be supplied
with carefully described specifications, be predominantly skill
oriented, and work from formal design blueprints, just as
carpenters would in building a house.

Fourth, if you feel that the computer is not indispensable,
then your organization has not reached the evolutionary stage
we have been describing.

Fifth, from the list of user services developed from ques-

tion 1 you should observe a wide assortment of requests and
problems, embracing such items as data availability, pur-
chased software, micros, remote terminals, local training, and
so on. The list should definitely include more than just simple
application development system software concerns. The truth
of this premise would mean that we really cannot simply or-
ganize around user requirements. They would need the entire
organization! Rather, we must consider techniques to provide
a simplified organizational view to users while hiding the true
organizational complexity away—in other words, a multi-
dimensional structure.

Human Factors

Human factors are also important in the design of a DP
organization. It is important to consider, for example,
whether computer professionals naturally relate to users or to
technology. Research evidence indicates that they are primar-
ily technology oriented and that well-trained individuals can
learn how to translate a reasonably well-defined user problem
into a computerized system. This suggests that staffing is
easier when it is based on skill groups, rather than on func-
tional applications. If requisite skills within the organization
were homogeneous this would be a moot point. That is not the
case today, and the cost of broadly training individuals is
becoming quite noticeable. In addition, there is a limit to the
range of diverse technology an individual can be technically
proficient in. A natural conclusion is that skill-centered units
are the most natural organizations for the application devel-
opment and technical-support functions.

Organizations can hinder or help human productivity. In
order for a professional to understand his or her role, the
organization must provide a coherent structure for logically
perceived work processes based on a division of labor. One
more decade of developing and operating information systems
with current techniques and philosophy will bring even
greater chaos. Too many options are being generated by tech-
nological development, and management is increasingly look-
ing at computer technology as a tool, rather than a status
symbol. The organization cannot tinker with technology and
human resources; it must apply good business decision-
making principles.

THE IMPORTANCE OF SOFTWARE MAINTENANCE

Is maintenance important? The answer to this question is
unequivocably yes. We are now entering an era in which the
operational nature of most software systems is so intermeshed
with functional systems that large segments of the organiza-
tion cannot perform their duties when the computer system is
not operational. Changes to these systems are increasingly
complex because of this and because of the integrated nature
of the systems. Finally the investment that firms have in in-
stalled systems is becoming widely recognized, as system
retrofit activities highlight their replacement cost. In order to
extend system life, the role of maintenance is critical; it is
clearly significant for the system life cycle. As illustrated in
Figure 1, the system life cycle can be viewed as a series of

Organizational Issues of Effective Maintenance Management 159

Resources

J

6% 27% 7% TIME

I S

Maintenance and Enhancement

Reg. Construction

Source: Zelkwitz, M.V. ives on Software
ACM Computing Surveys, Vol. 10, No. 2, 1978, pp 197-216.

Figure 1—System life cycle

broad subprocesses: requirements definition, construction,
and maintenance/enhancement.

Another critical factor that helps to explain the importance
of maintenance is the scope or impact of maintenance
changes. Research by Swanson' and Boehm? aids in sorting
out the importance of change scope. They divide maintenance
work into four levels of change scope: (1) corrective, (2) adap-
tive, (3) perfective, and (4) expansive. Comprehensive under-
standing of existing software is required for successful mainte-
nance changes. Corrective and adaptive maintenance requires
an understanding of existing software and is generally re-
stricted to small segments of an existing system. As the scope
of a change progresses into the perfective and expansive cate-
gories, system performance and functional enhancement be-
come the primary goal. In these instances, more knowledge of
component interaction is needed, even though relatively small
amounts of code are used for successful changes. In essence,
reevaluation of system construction is performed.

Three conclusions can be drawn regarding the nature of
software maintenance. First, the demand on the maintenance
function depends on the quality of products that are generated
during the development phase of the life cycle. Second, re-
gardless of the quality of the software product, maintenance
success depends on a level of understanding of the existing
system. Finally, even the smallest software change is signifi-
cant because of the value of software as an asset.

GENERALIZED ORGANIZATIONAL STRUCTURE

A multidimensional organizational structure is required to
assimilate technological innovation properly, address broad
user needs, and manage the software life cycle properly. Each
of these requirements is addressed in the organizational struc-
ture illustrated in Figure 2. First, the horizontal axis repre-
sents the technical scope of the DP organization. By or-
ganizing along technical skill lines, specific skill requirements
can be developed. Next, the vertical axis represents an appro-
priate packaging of the key functions of the DP organization.

PLANNING

REQUIREMENTS
ANALYSIS

APPLICATION TECHNICAL

DEVELOPMENT & SUPPORT SUPPORT ADMINISTRATION

OPERATION

Figure 2—Multidimensional organization structure

The various work units do not extend continually up the
organization, because at higher levels less technical and more
managerial skill is required. Finally, the third dimension rep-
resents the extension of data processing into the firm’s oper-
ation and is a functional user view of the organization.

Given the wide range of technological alternatives and
diversity of user requirements, at least five major organi-
zational units are required for multidimensional support. As
shown in Figure 2, they are as follows:

1. Planning—Development of strategic and tactical plans,
including (2) the primary planning interface to the man-
agement of operational departments and (b) evaluation
of technical advances.

2. Application development and support—Software devel-
opment and support activities that are taken within the
department.

3. Technical support—Technical support functions re-
quired for the department to perform its responsibilities
(systems programming, DBA, telecommunications,
etc.).

4. Administration.—Administrative functions involving
the personnel and financial activities within the de-
partments’ operation.

5. Operational support.—Operation of the computer cen-
ters and remote I/O stations.

Salient to the issue of effective life cycle and maintenance
management is the applications development and support
unit. Our premise, which is supported by research conducted
by Mooney® and Canning,* is that applications development
and support will be composed of two distinct responsibilites:
development and installed applications. Figure 3 is an exam-
ple of application development with four skill environments
(e.g., COBOL, PL/I, APL, and micros). The skill require-
ments shown are intended to be development-oriented skill
groupings. For instance, a COBOL group would be distinct
from a PL/T group. The point is that skills are rarely inter-
mingled within the same development work units.

Note that the traditional maintenance function is retitled

160 National Computer Conference, 1983

Application -
Development

Support

installed

Skill Group Skill Group Skill Group Info Center
Applications

Figure 3—Application development overview

“Installed Applications” and made responsible for the proper
functioning of all installed systems, as well as for minor en-
hancements. It focuses on software configuration control,
operational integrity, performance tuning, and requirements
analysis and planning support. It should be staffed with an
appropriate mixture of professionals and senior personnel
who can handle the broad range of tasks implicit in this func-
tion. The installed applications will require managerial and
technical skills critical to the activities of software mainte-
nance.

As a responsibility of the application development and sup-
port unit, maintenance activity typically consumes more than
half of the development function, and the growth of virtual
applications will bring additional support requirements into
the maintenance programming sector. In this environment,
it is necessary to learn how to efficiently maintain installed
systems to provide optimal resource allocations in new
development areas and a stable data resource base for other
applications to use in a decision support mode. The installed
applications group concentrates on operational systems,
which are a basis for shared data in the firm. The proposed
structure offers the operational benefits of a wide range of
technical skills within which maintenance is a significant
component.

MAINTENANCE MANAGEMENT BENEFITS

As stated earlier, an organizational structure can only facili-
tate productivity. It is up to management to optimize human
and technological resources. Operating within the general or-
ganizational structure, the installed applications unit presents
a number of operational and managerial features for mainte-
nance management:

1. Quality assurance.—Experience reveals that the re-
quirements definition (analysis) is heavily user de-
pendent, while the construction (design, coding, and
implementation) is more heavily slanted toward the
hardware/software environment. After implementation,
the operation/maintenance phase requires both user
knowledge and technical skills at various times. In all
circumstances, maintenance is performed on products
originally developed through requirements definition
and construction. A final system acceptance point is es-
tablished between the two subprocesses; inferior prod-
ucts can be rejected at that point.

2. Low prestige factor.—Separation of functions can en-

hance image through top-level management recognition
and participation. When a development project is com-
pleted it is transferred into the installed applications unit
along with a skeleton support staff.

3. Resource level determination.—Resource allocations to
a recognized function should result in equitable human
resource allocation for maintaining the valuable soft-
ware asset.

. Unique skill requirements.—Ed