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Preface

RUSSELL K. BROWN
1984 NCC Chairman

The purpose of the National Computer Conference is to provide an atmosphere in
which designers, suppliers, users, managers, educators, and representatives of gov-
ernment and society at large can meet and interact. Discussions of new technical
developments, as well as national and international issues and challenges facing the
information processing community, are encouraged.

This year’s discussions and developments are included, for the most part, in this
anniversary Volume 53 of the Proceedings of the National Computer Conference,
completing 12 years as the world’s premier computer exposition.

The decision to chair a second National Computer Conference may well be one
of the more major choices one makes in even a complicated lifetime. Certainly this
choice was compounded by the change in site from Houston to Las Vegas, made
only 15 months before the Conference date. Perhaps a few words on that move are
in order.

In Fall 1982 the NCC Committee and Board were again faced with a dilemma of
great magnitude. After the move of the 1982 NCC from New York to Houston—
because of space (3,200 booth units) and facility considerations—and the plan to use
Houston in 1984, the plan for 1984 was also scrapped because of the same consid-
erations. With a need to expand yet another 600 booth units, only Las Vegas and
Chicago could house the show. And since Chicago is the site of NCC ’85, the
decision seemed obvious.

Compounding the decision, however, was the fact all NCCs of the past were
presented in a major population center. Over the past four years, local and nearby
interest added as much as 50,000 to the total attendance. It was obvious that a total
nationalization of the NCC, with massive publicity, would be needed to turn out
crowds approaching those of recent years. This week, we hope, you will be able to
observe our success.

A major show in Las Vegas in July presents its own special challenges. Thirty
thousand hotel rooms guarantee close-in housing for those attending. And certainly
no one can fault Las Vegas’ ability to entertain its guests. In addition, you will see
no shortcuts or shortcomings in the presentation of this NCC.

What you will see is a display of 650 companies filling 3,800 booth units for a new
NCC record. You will be exposed to a high-quality program, high-quality Profes-
sional Development Seminars, a major keynote address, a special Pioneer Day
program, and numerous other attractions that we feel will make this a noteworthy
week. It is the intention of the CSC to give attending registrants all the positive
values of moving to a new city and to make any negatives as invisible as possible.
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An example of this is the largest busing expenditure in Las Vegas history for the
various round trips between hotels and the Conference during the warm summer
days.

If I may return to our program, I may be able to elicit in you a feeling of
satisfaction to match the pride I feel. The program is made permanent by the
archival record of the Proceedings. Here we capture for posterity the most current
reports on recent achievements and new applications, on advances at the frontiers
of computer science and technology.

Dr. Dennis Frailey of the Texas Instruments corporation was buffeted in mid-
preparation of this program and these Proceedings by the move. Through all the
personnel shuffling and turmoil, he managed to steer a straight course toward a
superior presentation.

Dennis recognized, early on, that the registrant has only three days, on the
average, to assimilate all aspects of an NCC. His first decision was to direct that—
with a superior Professional Development Program and 12 football fields of
exhibits—the program as defined in the past be intensely screened for short-
comings. His Committee introduced a much finer mesh in their screen than has ever
been used before. The number of papers and sessions are down slightly from what
you have seen in previous NCCs, but we are confident that their value to you will
be high.

Volunteers, for a conference of this magnitude, number in the hundreds. They
are members of the NCC Sponsoring Societies and the other AFIPS Constituent
Societies. To these groups and their participating members I would like to give my
heartiest thanks, particularly in view of the truncated schedules on which we were
all operating.

To the Las Vegas Convention Bureau, which greatly eased our move into a new
city, my thanks for the myriad arrangements and assistance you provided.

To the NCC Board and Committee, who well knew the danger to NCC °84 if plans
were not well organized, my thanks for your confidence and support.

To the AFIPS Headquarters Staff and all the members of our CSC, thank you for
your dedication, time, and effort you have contributed to an ongoing tradition of
excellence.

To my wife, who in 1981 asked, “Why?” in 1982 asked, “How can I help?”’ and
in 1983 said, “Let me be a part of this,” you know my thoughts.

And finally, to ten of the previous NCC Chairmen, thank you for your assistance,
guidance, and inventiveness. Much of what you created is embodied here.
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Introduction

DENNIS J. FRAILEY
1984 NCC Program Chairman

1984! Orwell’s year is here! Have events happened as Orwell predicted in 79847
Have computers become the tool of those who would suppress our individual
freedoms? These were the obvious questions when the program committee first sat
down in fall 1982 to develop a theme for the 1984 NCC. Each of us reread Orwell’s
classic. We discussed ideas for a conference theme that would truly represent the
current state of computing. And we were struck by a simple fact: computers are
being used today in many ways that were totally unexpected. The choreographer
whose computer provides a breakthrough in explaining his ideas to dancers; the
businessman whose spread sheet program turned his company around financially;
the physically handicapped whose voice-activated personal computers give them
control over their environment—these and others whose uses of computers were
only recently the stuff of science fiction serve to point out what is really important
and unique about computing today—creative use of computers by individuals.

The availability of computers to individuals has evolved from timeshared main-
frame systems to minicomputers to personal computers. Each step has provided a
significant increase in availability and power through dramatic cost reduction. Data
communication technology has kept pace in recent years, enabling a truly world-
wide system of information exchange to be developed. What is important about this
technology, and indeed what is anti-Orwellian about it, is that control is migrating
away from the center—toward the individual. This is what’s different about comput-
ers today. This is what promises to continue the computer revolution. And this
creative use by individuals—in the office, the factory, and the home—is the theme
that ties together the diverse topics addressed by the NCC program.

The program consists of over 90 sessions, presented over a four-day period. Ten
topic areas or tracks represent the committee’s way of dividing a broad set of
subjects into manageable components. In addition to a wide range of sessions on
such topics as hardware and architecture, software, management, automation of
office and factory, databases, data communications, personal computers and soci-
etal issues, we’ve augmented the program in the areas of artificial intelligence and
computer graphics and entertainment—areas where those attending recent NCCs
have shown particularly high interest. We’ve also oriented the focus toward the
questions we believe are uppermost in the minds of NCC attendees: “What’s new?”
and “How will it affect me?”

Although this Proceedings volume contains more than 80 papers, they represent
less than a third of the total NCC program. Panel discussions occupy more than half
of the program, and some of the sessions include presentations on topics too recent



to meet the publication deadline for the Proceedings, such as the very latest micro-
processors and networks. The Proceedings are organized by track, and each section
begins with an overview of the whole track—panel sessions as well as papers. For
those attending, this serves as a guide to the program as a whole. For those unable
to attend, it serves to give the flavor of the program and helps to put the papers into
perspective. Because of the frequent overlap of topics, readers are likely to find
sessions and papers of interest in several of the tracks.

The 1984 NCC program is the combined effort of almost 1,000 people, most of
whom are unpaid volunteers. This includes 12 program committee members; more
than 90 session organizers and chairs; almost 300 presenters, panelists, and authors
of technical papers; and nearly 500 referees who helped us select the technical
papers. (There were also several hundred people whose high-quality papers and
session proposals could not be accommodated.) In addition, recognition must go to
at least a dozen AFIPS staff members; the program committee staff, headed by jean
Presnell; and the spouses and employers of all of the above, whose forbearance and
assistance made their contributions possible. All of us sincerely hope that each
person attending NCC will find the program stimulating, helpful, and educational.
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The automated office
Michael Alsup, Track Chair

The Office Automation track at this year’s NCC includes
12 sessions rich with ideas and information. The contributions
that office systems can make to productivity and managerial
effectiveness are reviewed from functional, technical, stra-
tegic, and end-user perspectives; and the depth and breadth
of office automation is presented by a number of industry
experts.

The current state of the art in office automation is outlined
in the first session, entitled “Office Automation: State of the
Art.” Noted consultants summarize current trends in the mar-
ketplace and analyze vendor offerings.

The key to the implementation of successful office systems
is to identify user requirements and select equipment that
satisfies those requirements. Two sessions outline approaches
that have been successful in the definition of user require-
ments. In “Analyzing Managers’/Professionals’ needs for
OA,” a consultant will discuss how to evaluate user require-
ments for office systems, and representatives from two organi-
zations that have recently evaluated these requirements and
implemented advanced office systems will share their experi-
ences. In a second session, “Office Automation in Large
Organizations,” two organizations that have implemented
very large and integrated office systems summarize their ex-
periences and outline their successes and failures. Organiza-
tions that are considering their requirements for office auto-
mation have a valuable opportunity in these sessions to learn
from others who have pioneered in this area. _

As microcomputers and word processors have become
more powerful, additional attention is being focused on de-
sign and functionality in office systems. Vendors are integrat-
ing the delivery of a number of functions and application
systems into a single work station with powerful communica-
tions capabilities and a standard user interface to all applica-

tions. Four sessions explore the changing role of work stations
in the office. “Design and Functionality in Office Systems”
examines how the user aspects of office systems are evolving.
A consultant summarizes the trends and likely market direc-
tion and evaluates several well-known products. A second
session, ‘“Management Work Stations and Integrated Infor-
mation Systems,” examines three new work stations that in-
clude powerful capabilities for data, voice, and video; and it
evaluates the issues involved in the successful implementation
of these systems. “The Micro-Mainframe Connection” ex-
plores benefits and pitfalls in the connection of micro-
computers and mainframe computers from software, commu-
nications, and end-user points of view. Finally, the role and
potential of voice in office systems will be explored in “Voice
Technology in the Office.” These sessions are especially use-
ful to organizations considering the role and fast-evolving ca-
pabilities of work stations in their organizations.

The strategic and managerial implications of office auto-
mation are explored in two sessions. “Strategic Systems Plan-
ning: Art, Science, or Nonsense?”” explores whether it is pos-
sible to develop a strategic plan for office automation in the
face of rapid and profound technological change. “Office Au-
tomation Selection Criteria: A Q&A Session” explores and
defines appropriate selection criteria for office automation
systems from a management point of view. ;

Communications networks are becoming the nervous sys-
tems of large organizations. Three office automation sessions
examine the impact of developments in communication tech-
nology for the office environment. The advantages and disad-
vantages of three different approaches for integrating office
systems equipment are presented in “Integration Alternatives
and Strategies.” Representatives of a well-known mainframe
vendor, a PBX vendor, and a local area network vendor out-



line the short- and longer-term advantages of their systems
architectures in the office.

One of the principal advantages of a local area network is
the attachment of devices whose capabilities are shared
among the work stations on the network. These devices in-
clude intelligent copiers, electronic file cabinets, communica-
tions gateways, and mainframe computers. “Shared Network
Resources” summarizes the advantages and capabilities of

these resources, and two leading vendors summarize their
offerings.

Electronic mail is an important and practical way to im-
prove productivity and reduce costs. It can be broadly defined
as the transmission of messages by electronic means. “Elec-
tronic Mail: Current Developments” summarizes the alterna-
tives available in electronic mail, and three vendors with
leading-edge products summarize their offerings.



Implementing a large office automation system—how
to make it work

by JACK GOLDEN and STUART BELL

The MITRE Corporation
McLean, Virginia

ABSTRACT

This paper discusses the implementation of a large office automation system to be
used by nondata processing as well as data processing staff, i.e., the knowledge
worker. At its completion the system will encompass more than 1,000 terminals
(one terminal per office). The paper covers the nature of the basic system, IBM’s
Professional Office System (PROFS), what it does, how it functions, the extent of
use, and how to encourage potential users to use it. The paper reviews training
procedures from one-on-one to higher ratios and the reasoning behind them, and
goes over in detail the nature of the “innovation” curve. Also reviewed are the
computer performance and the Local Area Network (broadband with Sytek bus
interface units). We currently serve more than 500 users with around 300 terminals
already distributed.
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INTRODUCTION

We discuss here the implementation of a large office automa-
tion (OA) system and how we made it work. By and large,
we’re talking about one terminal per office, or a total of 1,000
terminals, covering nine buildings within a two-mile radius.

Our discussion will go over the nature of the corporation, a
nonprofit organization that does business primarily with the
federal government. We will review our office automation
architecture and design goals, our implementation strategy in
terms of our basic system, the pilot group used in developing
the system, and how we controlled additions to the group.

And most importantly, we’ll cover what actually hap-
pened in terms of acceptance of OA concepts by the pilot
group, communications problems, and wide-implementation
problems.

Corporation Background

The MITRE Corporation is a not-for-profit systems en-
gineering company chartered in the public interest. MITRE
was established in 1958 to assist the Air Force, but today
assists most federal civilian agencies, as well as other DoD
agencies in the areas of command and control systems, infor-
mation systems, as well as the energy/environmental area.
The major product of the corporation is information, utilizing
the media of reports, specifications, memos, briefings, etc.—
paper in general.

We cover here office automation activities supporting the
1,500 or so staff at the Washington center. We will allude to
other systems used throughout the rest of the corporation and
how we interface with them. Additionally, we wish to stress
. the implementation problems and solutions, not the specific
hardware or software components of the system.

OA at MITRE

MITRE entered the office automation area in 1972 when we
developed a centralized word processing support facility with
an administration support center. During this period we had
two shifts (eight operators each shift, working six days per
week at its high point). In 1976 we migrated to the decentra-
lized word processing concept (approximately 40 word pro-
cessing terminals off cluster controllers). From 1976 until
1980, word processing and computer useage was growing at a
rapid rate.

In 1981, the Corporate management decided it was time to
develop an integrated plan for the spread of information ser-
vices to our professionals, secretaries, and administrative

staff. An internal study group, consisting of four senior man-
agers, was chartered to review the computer and telecom-
munication support needs of the company. The committee’s
work was completed in the fall of 1981 with corporate man-
agement’s acceptance of a “target system,” a four-phase im-
plementation plan, and authorization and funding for the
plan’s first two phases.

The system was designed to account for the heterogeneous
user population in terms of data processing skills, typing
skills, the nature of work being performed, and the level of
each person in the company. The design encompassed hun-
dreds of terminals and tens of computers with multiple ven-
dors making up the system.

The target system networked computer resources, allowing
the users to share data, programs, and special-purpose periph-
erals. We also strongly wanted to have a local area network
that would support video in terms of both security (e.g., badge
readers from remote buildings) and instructional TV (e.g., the
lunch-time seminars).

Based on the 1981 recommendations of the committee, our
1983 architecture evolved to a fully connected system. We are
basically utilizing a Sytek LocalNet 20 bus interface unit in our
broadband data distribution system. We now have connec-
tivity and information transfer among all of our major seg-
ments, internally in the Washington Center and with the out-
side world.

Implementing a Large-Scale OA System

We would now like to discuss how our implementation
strategy obtained a workable office automation system.

There are four major components that make the system
work:

® the computer system
® the local area network
@ user acceptance

® applications software

Our implementation strategy was as follows. In late 1981 we
evaluated the available software options in the office auto-
mation area. Our primary concern, beyond the normal OA
functions, was that the software reside on our IBM main-
frame. The Professional Office System (PROFS) was chosen
because of cost, maturity of the product, breadth of applica-
tions, and relative ease of use. 1982 was spent debugging,
customizing, testing the product, and implementing a proto-
type system. By mid-1983 we were ready for corporate-wide
implementation.

PROFS is a menu-driven system; that is, the capabilities are
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accessed through menus (or lists). There are three main
menus and numerous submenus. The display terminal’s Pro-
gram Function Keys (PF Keys) are used to move between
menus and to invoke specific functions. The system was cus-
tomized over time to offer the various user segments different
levels of information. These included (what we deemed im-
portant) management needs, and staff needs.

As was stated, the PROFs architecture allows for the ready
access of information not provided by the basic software. The
basic software offers general OA tools such as electronic mail,
calendar functions, electronic filing/retrieving, reminder func-,
tions, and document preparation.

From March to August 1983 we undertook several studies.
These included a system evaluation, communication options
between buildings {statistical multiplexing, microwave option,
etc.), a definition of our FY84 configuration, a definition of an
adequate support structure, a finalized training mechanism,
and, of course, a study of the role of the personal computer
in our environment.

Starting in August 1983 and extending to August 1984, we
have been installing an additional 180 terminals (which trans-
lates to an additional 270 or so users to the system). This is
Phase 1 of across-the-company implementation. FY85 will be
an additional 180 terminals, and so on until there will be one
terminal per office.

The Local Area Network

For our local area network we used a broadband CATV
system utilizing Sytek LocalNet 20 system. LocalNet is a
packet-switched local area data communications network pro-
viding communication functions and standard broadband
CATYV coaxial cables. The properties of a broadband system
permit LocalNet to construct independent subnetworks—
terminal channels. Each of those subnetworks provides data
communications for hundreds of users. In the summer of
1982, we initiated a limited test of the system within one
building to ensure functional compatibility of all components.
In 1983 we extended the network to cover our five remote
buildings, all within a two-mile radius. Our problems arose
when we could not physically connect the buildings with a
cable. We experimented with a host of alternatives; these
included telephone lines at 9,600 bits per second, microwave
transmission at a very high effective data rate, laser transmis-
sion, and the use of statistical multiplexors. We are currently
utilizing all of these for one reason or another.

The LocalNet medium provides the high band with 300 to
400 MHZ proven reliability and multidrop capability required
for growing data communications requirements. Analog vid-
€0 or voice applications can share the same cable using dedi-
cated frequency channels. A single channel can accommodate
approximately 100 simultaneous virtual circuits.

Getting The System ‘“‘Used”

We would now like to discuss how one goes about genei-
ating productive use of the system. Nothing is more important
than having senior management commitment; however, 100%

commitment is really not needed to have successful imple-
mentation. Management should not be negative. Once this
commitment is in place, the road to success can then be fol-
lowed.

Aside from the typical notes and messages on any office
automation systern, it is important to have tools on the system
that would be helpful to the knowledge worker or the profes-
sional. We chose to have project financial information as the
first application on the system for management use. This fi-
nancial planning and analysis tool proved to be most useful
inasmuch as the system was used immediately (in other words,
users took the time to become familiar with the system be-
cause they were getting something useful out of it). People will
not take the time to learn a system that does not have useful
information: if all they have are the note and message func-
tions, its utility is small, (although these functions are impor-
tant and some OA systems are designed just around notes).

We suggest that the system population be enriched as soon
as possible. We added approximately 15 terminals per month
(25 users per month), but doubling this number would have
been more productive. Additionally, the service divisions or
entities of the corporation should be made part of the system
as soon as possible. This allows the support people to become
productive almost instantaneously. The message here is to not
be discouraged by the lack of enthusiasm among the users. At
the beginning, having a sparse population is like having a
telephone with no one to call.

In an early, sparse system, the financial systems and other
individual productivity aids predominate. As the system be-
comes richer and the conductivity fuller, mail and documents
become the most popular features.

We would now like to discuss the implications of having a
“rich” vs. “sparse” network in terms of individual use of the
system. From observation, the typical nondata processing
user can be thought of as going through five phases. We call
the first phase tinkering or learning. Depending on the num-
ber of people on the system, this can last anywhere from one
to six months, with the average around three months. During
this time the unsophisticated user (not data processing or-
iented) learns how to use the machine, not that it actually
takes three months to learn, but rather that the user is “too
busy” to read the manual or ask questions. After the initial
tinkering stage, there is a two- to three-month getting ac-
quainted period. The user starts to generate mail, type a few
documents, and use some of the applications on the system.
No (real) productivity is gained during this time, just an
awareness of what can be done. We call the next phase the
suggestions phase. During this phase the user realizes the
potential of the computer and becomes an instant expert on
how to do things better. Suggestions come pouring in on what
to put on the system and how to make it more productive.
Overlapping this suggestion phase is the commitment phase.
At this point in the user profile, he will not move to another
office when office moving time comes around uniess there is
a terminal in his office (similar to a telephone). The next
phase is the most important, the synergistic phase. It is at this
time that individual users help and compliment one another
on the system, and we finally see corporate productivity in-
creases rather than just individual productivity gains. From
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beginning to end this cycle can take anywhere from 6 to 18
months depending on the background of the individuals in-
volved. This is why we previously stated, “Don’t get discour-
aged during the early life of the system or when suggestions
come pouring in.”

Initially, we spent about three months (one person) in de-
veloping the training manual and procedures. For the first 50
users, we trained on a one-to-one basis; for the next 100 users,
we trained on a one-to-three ratio, with one-to-seven for the
remainder of the early population, (the first 250 users). Our
philosophy was that we should build a strong foundation dur-
ing the first 50 users, so that they could be called upon to
answer questions from their coworkers (the next generation of
users). This philosophy works out very well.

Concurrent with training, we established a user services
group (three staff); one telephone number was established by
which all questions could be handled. We also instituted
monthly user meetings where innovations and particular ques-
tions could be discussed and guest lecturers presented. We are
now starting to use computer-aided instruction.

Although we feel that our initial training mode worked out
well, we recommend a slightly different approach. More ef-
fort should be spent in the development of training material,
and several skill-level/position-level materials should defi-
nitely be prepared. A training ratio of one-to-five with a large-
screen terminal projection, followed by a 30-minute one-to-
one follow-up is recommended.

Once the network is enriched, users tend to help each
other; so, the task of training should actually decrease as users
are added to the system. Although there are more individuals
to train, there are more training aides around.

We keep an accurate record of all questions and comments
that come into our user services group as an example of the
problems and questions that arise. The format is as follows:

® General PROFS (five categories)

® General “other” software

® Hardware (when system is down)

® Administrative (training requests (other than PROFS);
documentation)

® software

® Word Processing (Wang or NBI questions)

o UNIX

® Cable Plant

® Personal Computer

® Miscellaneous

® Consulting (more than 15 minutes on the phone)

Once a significant number of users have been added to the
network, system reliability is a major issue. Therefore, it is
prudent to have accurate records of why the system, or any
component, is down and what the “fix” or resolution is. This
is important, since you will often hear, “the system is always
down,” when actually it may have been down for only five
minutes during a given week.

In regard to our local area network (LAN), we found that
there is plenty to choose from. But remember, a LAN may
not be for you. In our installation the cost for the backbone
cable ran from $5 to $10 per liner foot, depending on the

building layout size (e.g., needing amplifiers). This averages
$300 to $1,000 per drop or tap, depending on the building
configuration. For comparison, point-to-point averages $500
per terminal.

One important item is new skills; the type of person needed
to run this type of activity is usually not within the organiza-
tion. And, of course, the LAN facilitates office moves.

One is always asked, What are your productivity gains?
How many people have you let go?, etc. The answer to the
first is, ““don’t know and probably won’t,” and the answer to
the second is, “none. . .but you can be sure, things get done
faster, more efficient, and with better results.” We usually
don’t get rid of people, but redefine their roles.

We make ro attempt to get a productivity figure, but we do
make an attempt to evaluate the system. This is done in sev-
eral ways): first, we get user feedback on a daily basis; then
meetings and our PROFS Answer Line (PAL) provide addi-
tional feedback. We also investigate the usefulness of the
system by means of questionnaires, telephone interviews, and
usage data.

Most importantly, we get feedback on how the system has
changed the way we do business, both as individuals and as a
group. As individuals, we see uses other than OA functions
being used, e.g., spreadsheet. As a group, we see reports
going electronically to our sponsors, remote sites sending
their documents for review back to the main office, and more
dialog among and between groups. We see the service orga-
nizations modernizing in large ways.

Health Effects

When the potential health effects of using VDTs came up,
we performed a literature review in the area of terminal effect
on operator fatigue. The study covered optical, musculoskele-
tal, morale, and radiation issues. The medical literature re-
vealed little risk in all areas. We realize that the specific area
of radiation is not satisfactorily documented and is still an area
of volatile discussion. Additionally, VDT use and eye strain
are still being investigated.

The Computer

In this section, we describe the facilities we employ to deliv-
er the office automation service to our customers.

The overriding goal in an office automation environment is
excellent response. The most important aspect of excellent
response is choosing the correct definition of excellent. At the
MITRE Washington Computer Center (MWCC), we aim for
a general consensus that our response is excellent. Customers
are encouraged to send notes or mail to the computing center
management whenever they see a response problem. Regular
presentations are made to the community describing our re-
sponse measurement techniques, and as a consulting com-
pany, we have an internal interest in both the techniques and
the results.

Office automation makes everyone neighbors and removes
(at least in its initial phases) the traditional management lines
of filtering. Everyone becomes a performance expert, every-
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one wants a hand in running the computing center; and every-
one has instant access to everyone else. Thus, the systems
team must be selected and trained to be customer-oriented;
and although we have a user services section, each member of
the systems team and operations staff must always be aware,
and willing, to work with any user or customer who is having
a problem with the delivered system.

Our present configuration is an IBM 4341 with 16 million
characters of main storage. Please note that this is a historical
accident and not an endorsement of either IBM or the 4341
product line. While this device serves our needs very well,
MITRE is in no way suggesting this as a recommended device,
nor are we in the position to comment on the strength of this
compared with other, similar configurations proposed by
other vendors.

The local area network has substantial performance impact
since it presents each terminal image to the central computer
as though it were locally attached to the CPU, thus yielding
substantial (over one second) performance improvements.
The customer on the remote end of the local network sees
these performance improvements directly.

The path between the central computer and the remote
terminal is operated at 9,600 bits per second, roughly 1,000
characters per second. In a normal IBM remote terminal en-
vironment, the screen of a remote terminal remains blank
until the full image is transmitted (1,920 characters plus over-
head). Thus, in a normal multibuilding campus environment
such as MITRE, the fastest response that can be delivered is
a woeful two seconds per screen (assuming zero CPU).

Performance in a growth environment requires an under-
standing of both the growth effects and the prediction of
added load to be placed on the system. As we described
earlier, we have a clear understanding of our expected load
growth. We are adding 15 terminals per month for the next
three years (approximately). The main effect is in the increase
in logged-on-users. We are growing at the rate of approxi-
mately five users per month (about one peak logged-on user
per each three new terminals).

The number of active users is a better indication of the load
on the central facility. It is well known that a CPU will support
a large number of terminals if they are not used. In our office
automation environment, logged-on terminals tend to be ac-
tive because of a strange anomaly of our office automation
software: it keeps a clock on the screen up to date by refresh-
ing the screen once each minute. Thus, the active user count
is also growing by about one user for each three terminals
added to the network.

Capacity comes in chunks; a machine is typically either
upgraded or replaced whenever there is insufficient capacity
to support the required workload. Given this fact, we can
expect response to degrade slowly as the user load grows until
the response goals are no longer being met consistently. At
that point (or ideally, just before), a capacity upgrade is re-
quired. This, in turn, causes an improvement in response and
the cycle starts again.

There are many elaborate tools for capacity planning on the
market. Each aitempts to predict, based on pasi periorimance,
when the present hardware will become saturated and require
upgrade. If you are fortunate to locate a measure of perfor-

mance that correlates well with response, you may save a lot
of money and time. In our case, interactive response time is
reported by the system. The reported figure is the inboard
response and does not include communication software, line,
and terminal delay. The time the user sees is not as good as
this number, but it is a constant ratio.

We have determined from previous experiments that inter-
active response time below 200 milliseconds is excellent. We
are not claiming that the end user sees response .within 200
milliseconds of the pressing of a function key. While we be-
lieve it is close, we have not measured this number and can
make no such claims. We prefer, however, to state that the
response delivered is well correlated to the number presented,
and the majority of our users feel that response is excellent
when numbers below 200 milliseconds are reported by the
system reporting software.

During a typical day, six to seven seconds per minute are
devoted automatically by the computer scheduling software to
the interactive OA users. This low percentage of the CPU
resource (10%-12%) is sufficient to provide a repeatedly
measured response time of less than two-tenths of a second for
all interactive transactions of a short duration. Those inter-
active functions of a longer duration, such as database queries
and massive report generations, are detected by the computer
scheduler and scheduled over a one- or two-second period by
the remaining 80% to 90% of the CPU resource.

Modern disk subsystems provide a large amount of data per
disk. We have found that our disk access mechanism will serve
between 15 and 30 simultaneous office automation users, pro-
viding for their storage and systems support needs in an effi-
cient and timely manner. Currently disks yield about 10 mil-
lion characters of storage per user by just providing sufficient
disk drives to meet the needs of system responsiveness.

This leads to a very well balanced condition in a modern
operating system environment that permits the mixing of sys-
tem and user data. Each increment of user growth requires
more storage for private data and more access arms to ensure
excellent system response time. Both are delivered in a bal-
anced package with modern disk subsystems.

Real memory is the critical factor in delivering excellent
performance in a central support office automation configura-
tion. Each vendor’s scheme for mapping virtual storage into
real memory differs in its implementation detail; however, all
must be provided with sufficient real storage to ensure that
most of a user’s program is in real storage whenever required.

In our environment, we feel that a program portion, or
page, once referenced should remain in real memory for a
minimum of 10 seconds before being replaced by another
user’s pages. Our current 16 million bytes of real memory
constantly better this goal for a peak of 180 simultaneous
users.

Bottlenecks always exist in meeting the stated performance
goals for any computing center. In an office automation envi-
ronment, they extend beyond the traditional CPU and DISK
SPACE numbers normally considered in a batch environ-
ment. The nontraditional bottlenecks extend to printers, com-
munication ports, and terminais. Iligh-quality printers are a
must in an office automation environment. It is a myth that
electronic mail replaces paper. Try to read a 500-line message
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on a video terminal. A hundred or so lines into it, you auto-
matically reach for a magic marker and circle something to go
back to for further study. The result, in our case, is needing
a cloth and a spray bottle to clean the screen several times per
day.

Our customers depend on the timeliness of the printing
facility to meet their production schedules. Several very high
quality printers must be utilized to ensure sufficient capacity
and redundancy for any expected action. For example, this
briefing was prepared electronically on an IBM 6670 LASER
printer using software developed at the MWCC. The final
charts were previewed on the terminal and only a single,
camera-ready copy was produced on the printer.

You might think this would reduce the printing demands.
Actually, the opposite has proven to be true. Our customers
were expecting several-day turnaround for the production of
high-quality VUGRAPHs by the reprographics department.
We have shortened that time to 15 minutes. Unfortunately,
the customer has also shortened the time before the briefing
to work on the presentation by a like amount. Thus, the
computing center must be able to deliver very rapid turn-
around with extreme reliability whenever the VUGRAPH
software is invoked. )

CPU BUSY is the first number everyone wants to know
when looking at response. It is not an important number in an
OA environment since BUSY is normally a measure of batch
rather than interactive workload. A better number is the num-
ber of seconds per minute the CPU spends servicing the inter-
active workload.

A channel is a path from memory to a direct access device,
tape, or communications controller. In our environment, no
more than six disk drives share a single channel. You may be
able to support more or fewer disks per channel depending on
the speed of the pack and the size of the disks.

There is no single value that can be determined for all
hardware and software configurations; however, any one con-
figuration should work for a balanced configuration, acquiring
hardware and relocating data to meet this need.

In the environment shown, we began an aggressive bal-
ancing program in January and are now running a balanced
T/O configuration.

Real memory is the critical determination of response in
office automation or any other environment employing IBM
equipment. We suspect real memory is the critical response
factor in any environment. Real memory usage is a difficult
item to measure precisely. We have examined many different
reports to try and identify a single number of sets of numbers
that characterize the utilization of real storage in our environ-
ment.

In doing this, we examined the dynamics of paging in our
computing center. Our system operates in a demand paging
environment. This means that a user’s program does not re-
quire storage sufficient to hold the entire program before it
can begin operating. The result, in a memory-constrained
environment, is frequent suspension of the program while
additional portions of the code or data are brought into
memory from a backing storage device such as a disk.

When a user’s program finishes executing, the code and
data remain in storage for some time until that area of mem-

ory must be reused by other users for their code or data.
Ideally, an active user will always have all code and data in
storage for each execution of a program. Since OA customers
tend to perform the same functions over and over, there is
generally little or no paging or other I/O activity required;
thus, excellent response is possible without exotic system .
tuning.

In our environment there is a table, called the CORE-
TABLE (historical interest in core memory), that is scanned
to find free pages. The system reports the rate of scanning of
this table (SCAN RATE) in one of its regular performance
charts. The change in SCAN RATE took place when we
added an additional eight million characters of real memory to
our overloaded computer.

SCAN TIME, the reciprocal of the SCAN RATE, is a
derived number that IBM does not directly report in their
performance software. A portion of a user program will re-
main in real memory for 10 seconds if it is not utilized. For
example, if an OA customer uses a program section more
often than once per 10 seconds, no I/O will result when the
SCAN TIME is longer than 10 seconds.

There is a tendency to understate the costs of implementing
an OA program throughout the company. Management is
prone to forget the second-order costs and focus on the cost
of the terminal and the terminal support cable plant.

Often there is a CPU replacement or upgrade required.
There is always more printout, and printout of a more urgent
nature. In our environment, much of the new printout can be
of a sensitive nature (performance reviews, interview reports)
and must be specially handled and retained for the users in a
dispatch area.

The training demands jump. Prior to OA, our systems pro-
grammers conducted classes informally, as our user commu-
nity was small and stable. Now, we have a very large percent-
age of nondata processing users with urgent training demands.
Frequently, these training demands are placed on us by high
executives who are satisfied only with, ““Yes” or “Yes, sir,” as
answers to our schedule conflicts.

Documentation must often be written (or rewritten) to ad-
dress customers who have never used a central computer be-
fore. Have you ever pondered how many different ways to
spell ENTER as you survey the range of terminals that use*
RETURN or various graphic symbols rather than one consis-
tent symbol?

Everyone wants to manage the computing staff. Systems
team members suddenly get messages from vice presidents
and are expected to be at their beck and call. Substantial
interpersonnel training is required of the systems team. Mem-
bers who were accustomed to hiding are suddenly connected
electronically with everyone in the company.

Operations and system members must become diplomats!
We have replaced nearly our entire systems team since the
office automation project began. New systems programmers
are selected as much for tact as for technical skills—it is a
myth that systems people are hard to deal with and each
systems programmer tries to cultivate that myth. There is a
large group of professional systems programmers who under-
stand they are responsible for many millions of dollars and
long for the respect and responsibility that such investments
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demand. Our staff has an excellent attitude toward our cus-
tomers and recognizes that each of them directly contributes
to support our mortgage, hobbies, growth, and professional
aspirations. :

One of the good (and bad) side effects of a centralized
office automation configuration is that everyone in the com-
pany becomes a performance expert. Terms such as Q1TIME,
SRM, RMF, PAGE RATE, and such are not the measure of
excellence in performance. Use terms such as excellent, good,
fair, and poor; and encourage complaints when response is
other than excellent.

Measure everything easily available in your environment
and look for items that correlate well. Hunt for those numbers
that change sharply with a small change in response. Consider
yourself, or your performance expert, as a detective. Request
regular reports and expect presentations on trends and bottle-
necks on a frequent basis.

Excellent performance is mandatory for office automation.
Our software performance measurement tools report the
introduce response time, excluding network delays, as 200

milliseconds maximum. This number is not an absolute mea-
surement, but an indication of excellence. Users are consis-
tently satisfied when the number is two-tenths of a second or
below and begin to grumble when it rises above three-tenths
of a second.

You must rethink and understand your goals in a large OA
environment. Batch production must take second place on the
machine dedicated to supporting the office automation cus-
tomer.

The growth of the computing terminal network will be a
byproduct of OA. The decision to introduce OA carries the
decision to provide a very large number of terminals for use
by professionals and support staff. It is MITRE’s goal to
install a terminal in every office occupied by professional or
support staff. You cannot expect people to walk down the hali
to use the telephone or read their morning mail.

User support is absolutely required in an OA environment.
We select a portion of our user support team from the secre-
tarial staff to ensure a minimum of jargon and ensure a goor
relationship between the customers and the support peopl



Computer hardware and architectures

Fayé Briggs, Track Chair

Achieving high performance in computer systems depends not
only on using faster and more reliable hardware devices but
also on major improvements in computer architecture and
processing techniques. The Computer Hardware and Archi-
tecture track focuses on these issues. The track is composed
of nine sessions that address the new generation of high-
performance computers. The topics of these sessions are

Trends in Supercomputer Systems

The Fifth Generation

VLSI Design

32-Bit Microprocessors

Attached Numerical Processors

New Microprocessor-Based Computer Architectures
Multiprocessor Systems

Distributed Processors

System Reliability
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“Trends in Supercomputer Systems: Design and Use,” a
panel session, discusses five major issues: new system organi-
zations, design trends, application software, the implications
in operating systems and languages, and the Japanese effort in
these areas. Another panel, “The Fifth Generation Re-
visited,” follows the very successful panel on the same subject
last year. The objective of this year’s panel is to present an
updated report on the status of the various worldwide pro-
grams that are fifth-generation computer research and devel-
opment efforts.

“VLSI Systems” is a paper session investigating the impact
of VLSI designs and structures on computer architecture and
hardware. The session starts with a tutorial paper on the status
of VLSI. A design automation system and a sample design
and application of a VLSI co-processor will be presented.

The new generation of “32-Bit Microprocessors” and mi-
crocomputers is organized as a paper session. This session
looks at the organization of these new high-performance mi-
croprocessors and the new challenge for integrating them into
systems. They display advanced architectural features often
found in minicomputers and mainframes. Examples of fea-
tures presented are pipelining, prefetching schemes, larger
virtual and physical address spaces, and data buffering
schemes. “New Microprocessor-Based Computer Architec-
tures” takes a look at complete computer systems based on
these newer microprocessors.

The next paper session, “Attached Numerical Processors,”
looks at the software and hardware approaches to imple-
menting floating- and fixed-point arithmetics for use in the
new generation of powerful microprocessors. The goals and
design tradeoffs for one specific system are presented, and a
new approach to designing a fast numerical workbench is
also discussed. The latter scheme uses a set of replicated
functional processors for fine and coarse granules of numer-
ical processing.

Two sessions are devoted to multiprocessing systems. The
previously mentioned session, “New Microprocessor-Based
Computer Architectures,” focuses on how to exploit these
new microprocessors in multiprocessing and other distributed
applications. A paper session on multiprocessing investigates
general multiprocessing concepts. The first paper illustrates
the design of a high-performance multiprocessor using off-
the-shelf microprocessors. The other two papers discuss new
data-sharing techniques and models to estimate the through-
put of multiprocessor systems.

The . “Distributed Processors” session consists of papers
looking at new techniques for network control. The first paper
investigates a new bus arbitration scheme when VLSI func-



tional units are destributed on the network. An innovative
concurrency control mechanism and a practical implementa-
tion of a network operating system are also presented.
Finally, we have a paper session, “System Reliability.” This
session investigates innovative methods for diagnosing a mul-
tiprocessor system and methods for incorporating fault toler-

ance in system-level designs.

In summary, the Computer Architecture and Hardware
track presents exciting continuity in the quest for reliable
high-performance computing structures that are needed for
the exploding computing needs of the late eighties and
nineties.
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ABSTRACT

A VLSI-densed shared-bus distributed system is a computer system consisting of a
large number of VLSI processing units (VPUs) connected to one another by a
high-speed bus. Data traffic in such a system is characterized by three distinct
features: large population, bursty transmission, and task-dependent accesses with
priority. A bus arbitration scheme is required to resolve contentions when several
VPUs generate requests simultaneously. Conventional schemes such as daisy chain-
ing, polling, and independent requests are shown to be inadequate. In this paper,
a multiaccess code-deciphering (MACD) scheme is proposed. Two versions of the
scheme are studied. The first version is a load-dependent scheme that can resolve
contentions of N VPUs in an average time of O(logg, N) steps where K is equal to
the bus width. The second version estimates the number of contending VPUs and
resolves contention in a constant average time independent of load. The proposed
schemes can support task-dependent accesses with priority.
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INTRODUCTION

Recent advances in very large scale integrated logic (VLSI)
and communication technology, coupled with the explosion in
size and complexity of new applications, have led to the devel-
opment of distributed computing systems. These systems pos-
sess a large number of general- and special-purpose pro-
cessing units joined by an interconnection network. Notable
examples are the PUMPS architecture,’ the systolic-array ar-
chitecture,? the recently announced Cyberplus computer,’
and specialized systems, such as the processors at the joints of
robot arms. PUMPS is a pattern analysis and image database
machine that incorporates pools of special-purpose VLSI pro-
cessing units. In a systolic-array architecture, sets of VLSI
systolic processors, which perform functions such as matrix
inversion, fast Fourier transform, and sorting, are connected
to a host. The Cyberplus computer has a maximum config-
uration of 64 processors and a speed of 16 billion calculations
per second. We call this kind of system a VLSI-densed system,
and the processing unit, a VPU.

In a VLSI-densed system, one of the most important issues
is the connection of the VPUs. A shared bus is widely used
because of its simplicity in connection, flexibility in expan-
sion, and efficiency in communication. Figure 1 depicts a
typical configuration of such a system. Wah has shown that a
shared bus provides enough bandwidth for a large class of
VLSI-densed systems.* Large computer systems usually im-
plement a number of relatively independent shared buses.
The Cyberplus Computer has four independent “rings” that
can partition the processors for four different applications.

In this paper, we propose a bus arbitration scheme for
resolving contentions when several VPUs try to access the bus
simultaneously. Characteristics of data traffic in a VLSI-
densed system are discussed in the next section. Three con-
ventional bus arbitration schemes, namely daisy chaining, pol-
ling, and independent requests are compared.’” These
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yi A\
& —
N SHARED BUS
Bus Interfaces
VPU-1; VPU-2 VPU-n

Figure 1—Configuration of a VLSI-densed system

schemes are found to be inadequate for VLSI-densed systems.
A load-dependent Multiaccess Code-Deciphering (MACD)
bus arbitration scheme is proposed, and this scheme is ex-
tended so that an estimate of the number of contending VPUs
is taken into account. The enhanced scheme can resolve con-
tentions in a constant average time, independent of the num-
ber of contending stations.

CONVENTIONAL BUS ARBITRATION SCHEMES

The operations of a VPU alternate between computations and
data communications. We assume that when a VPU requests
bus access, it has a large volume of data to transmit and
requires a rapid response. That is, there is a large peak-to-
average ratio of bus use. This type of data traffic is called
bursty traffic.® Another characteristic of data traffic is that
messages may have different priorities. Priority, in turn, de-
pends on the urgency with which the bus is needed by a certain
VPU for executing a task. The bus should be granted to the
message with the highest priority.

On the other hand, a bus shared by autonomous VPUs
alternates between bus contentions and data transmissions
(Figure 2). A VPU with data ready to transmit is allowed to
contend for the bus during a contention period. In order to
resolve the contentions in the minimum amount of time, a
good bus arbitration scheme should be used. Three bus arbi-
tration schemes have been proposed for conventional com-
puter systems. They were identified by Thurber as daisy
chaining, polling, and independent requests.’

In daisy chaining, all input-output devices are connected
serially along a common control line. During the bus-granting
process, a bus grant signal propagates sequentially, device by
device, until a requesting device is encountered. This device
blocks further propagation of the signal and gains control of
the bus by setting the bus busy line. This scheme involves the

LBus utilization period

\

7

-Bus contention period

Figure 2—Operation mode of a shared bus
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use of at least three control lines: bus grant, bus request, and
bus busy.

In a bus system with polling, a set of poll count lines is
connected directly to all the devices on the bus. In response to
bus requests, a sequence of numbers, each of which corre-
sponds to the address of a device, is generaied on the poll
count lines. When a requesting device finds that its address
matches the number on the poll count lines, the bus is granted
to this device, and the bus busy line is set. This scheme re-
quires [log; M] poll count lines, where M is the number of
devices on the bus, and two additional control lines are for bus
request and bus busy.

In an independent-request scheme, each device has a sepa-
rate pair of bus request and bus grant control lines connected
to the arbitrator. When a device requests bus access, it sends
a request signal on its bus request line. Bus control will be
granted to one of the requesting devices based on prede-
termined priorities assigned to the devices. For M devices on
a system implementing this scheme, more than 2M control
lines are necessary. This scheme is the most costly as far as the
number of control lines is concerned.

As VLSI-densed systems bear distinctions in the operating
environment from that of conventional systems, the above bus
arbitration schemes are found to be inadequate. We examined
these schemes with respect to the control line complexity, the
time complexity and the capability of task-dependent priority
accesses.

1. Control-line complexity. The polling scheme is imprac-
tical when the number of VPUs is large because the
number of poll count lines must be large enough so that
each VPU can be identified by a unique address. A pair
of control lines is needed for each VPU in the inde-
pendent-request scheme. This is impractical even when
the number of devices is moderately large.

2. Time complexity. Daisy chaining and polling are basic-
ally sequential schemes. They are inadequate for han-
dling bursty traffic, which is characterized by a high ratio
of peak-to-average data transmission rate and the fact
that only a few VPUs are requesting bus access at any
time. Suppose there are N out of M independent re-
questing devices, the average time to identify a re-
questing device is M/N. When N is small and the data
transmission time is short, the overhead for bus arbi-
tration is large.

3. Capability of task-dependent priority accesses. Priority
of a device connected in a daisy chain is determined by
its physical position in the chain. In a polling scheme, it
is determined by the device’s order in the sequence of
polling counts. The priorities of the bus request lines in
an independent-request scheme are usually fixed at de-
sign time. Since the priority of devices cannot be
changed easily, the three existing schemes are incapable
of handling task-dependent priority accesses.

The above observations reveal that none of the three con-
wrneetbznemal laes wlibemnbtinm cnhomenc 10 cnffininant Ffae tha wande ~F
yoliuviiai Uub'al Ulill ativil DVIIVILIVD 1D auun.n.uu. lUl UiIv 1ueeud Ul

VLSI-densed systems. They call for a new arbitration scheme
that can handle bursty traffic and that will access with priority.

LOAD-DEPENDENT MULTIACCESS ARBITRATION
SCHEME FOR VLSI-DENSED SYSTEMS

In this section, a deterministic MACD scheme is presented.
The scheme is discussed with respect to access without and
with priority.

MACD Bus Arbitration for Access without Priority

We have previously studied a window search scheme to
resolve contentions in a local multiaccess network.”'® In that
scheme, a global window is maintained by all the stations, and
each contender generates a contending parameter. A con-
tender is eliminated from contention if its parameter is outside
the window. A distributed control rule is applied to expand or
to shrink the window in each contention step. As the con-
tending process proceeds, the window size becomes smaller
and smaller. Eventually, a unique contender is isolated in the
window.

We can adapt the above scheme for resolving bus con-
tentions. To support the scheme, two mechanisms are needed:
a collision detection mechanism and a window control mech-
anism. The collision detection mechanism can be imple-
mented by using the Wired-OR property of the bus. When
two or more VPUs write simultaneously on the bus, the result
is simply the bitwise logical OR of these numbers. By inter-
preting the result after a write, each VPU can determine
whether a collision has occurred. The window control scheme
described in References 9 and 10 is based on information of
previous contentions and an estimate of the channel load. It
is too complicated to be useful in the bus environment. The
MACD technique, however, is a fast and effective scheme
that combines window control and collision detection in a
simple manner.

To describe the scheme formally, let us assume that there
are N requesting VPUs, and each VPU writes a binary num-
ber X, (i=1,2,...,N) to the bus. The Xs are chosen from a
structured code space S with the following properties:

X;, X;€S, i#j, are related, i.e.,
Xi >Xi or Xi<Xj (1)
f(Xi X @ - BDXn) =
max{Xl,Xz,...,XN}XQGS,Nzl (2)

where @ is the bitwise logical OR operator. By reading data
on the bus and applying the code-deciphering function, f, a
VPU knows the maximum number written on the bus. This
information provides a basis for the window search mech-
anism to set the window. If the initial window is set so that the
maximum value is included in the window, then an optimal
detection procedure can be designed so that exactly one VPU
will be isolated finally.

In order for the MACD technjque to work properlv, we
need to piove i that a code space i that satisfies LL’]‘l.iatiOiiS 1and
2 does exist. The following theorem shows the existence of at
least one such code space.
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Theorem: There exists a code space S of n-bit binary num-
bers and a deciphering function f which satisfy the con-
straints in Equations 1 and 2.

Proof: LetS=1{0°10°|a+b=n—1, a=0, b=0}where
0* represents a consecutive sequence of k zeroes. Then for
any two different elements u and v in S, it is easy to verify
the relatedness property. For any n-bit binary number,
X = (x1Xz- - - Xo), We define a deciphering function f on X
such that:

(X)=0°10""", ifx,.,=1,x;=0forall 1<j=p.

We claim that S and f as defined above satisfy Equations 1
and 2. To verify this, we can define N codes such that:

6=010"20"1 i=1,...,N
By definition of S,

GeS,
and

max(cy, G, . . . ,Cn) = 0™ 10" ™!

where m = minfa(i)|i=1,2,...,N}. An overlapped vari-
able Y=(y1¥y2-"¥a) is defined to be the bitwise logical
OR of the ¢;s; that is,

Ny -y =c@c® - Dex

Y as defined retains the following properties:
Va1 =1,

and
vy =0 foralk=m.

By definition of the deciphering function f,
f(Y)=0m10"""

or

f(c;@ ;- - @en) = max(cy, . - . ,Cn)-

Using code deciphering, a bus arbitration protocol can be
designed. The network supporting the protocol should have
the following components: a synchronous parallel bus for
transmitting data and codes, a bus status control line for indi-
cating the busy status of the bus, and an intelligent VPU-bus
interface for each VPU that is capable of (1) sensing the
bus-status control line, (2) reading data from the bus, (3)
writing data to the bus, (4) generating random codes, and (5)
deciphering codes read from the bus. The time interval for
generating a random number, writing the number to the bus,
and deciphering the code read from the bus is called a slot.

Whenever a VPU has data ready to transmit, it checks the
bus status first. If the bus is in use, it waits until the bus
becomes idle. To contend for the bus, a VPU chooses a code
randomly from the code space S and writes it to the bus. The
resulting code written on the bus is the bitwise logical OR of
all the codes written by the contending VPUs. Each con-
tending VPU reads the resulting code written and computes
the deciphered code using the code-deciphering function. It
compares the deciphered code with the code generated lo-
cally. Three results are possible:

=

. the locally generated code is equal to the code read

2. the locally generated code is not equal to the code read
but is equal to the deciphered code

3. the locally generated code is equal to neither the code

read nor the deciphered code.

The last outcome implies that this VPU has not generated
the maximum code and has to wait until the next contention
period. The first and second outcomes imply that this VPU
has generated the maximum code and should be allowed to
transmit. However, there may be other VPUs that have gener-
ated the same code. If there are more than one VPU in this
set (hidden collision), the contention resolution process has to
be repeated. There are two ways to detect hidden collision.
First, each VPU in this set generates an n-bit random number
and writes it to the bus. To prevent the possibility of two VPUs
generating the same random number, each VPU can use a
distinct n-bit station identification code as the random num-
ber. If the number read from the bus matches the number
written, then hidden collision has been resolved. If collision is
detected, the MACD scheme is repeated. Second, we can
assume that hidden collision is not resolved, and the collision-
detection process is repeated. The process has to be repeated
a number of times until there is high confidence that exactly
one VPU is isolated.

When the probability is high that a large number of stations
have generated the maximum code, the second method of
resolving hidden collision is better because it is very likely that
the MACD process has to be repeated, and the time for
propagating the random number in the first method is lost. On
the other hand, if the probability is high that exactly one
station has generated the maximum code, the first method is
better because hidden collision can be detected efficiently. In
the second method, the code space S is much smaller (the size
is n for an n-bit number). As a result, a few additional steps
are necessary in order to achieve a high enough confidence
that there is no hidden collision. In this paper, we have used
the first method of resolving hidden collisions because the
number of contending VPUs is usually relatively small com-
pared to the bus width. Even when this is not true, we propose
in the next section a method of using a variable-sized code
space so that the number of VPUs contending in a slot is
small.

It is important to note that the code space discussed in
Theorem 1 (unary representation) is not unique. If binary
codes are used, Equation 1 is still satisfied. A new code-
deciphering function has to be designed so that Equation 2 is
satisfied. By detecting the most significant bit that is mis-
matched among the codes generated by the contending VPUs,
half of the stations, on the average, can be eliminated in each
contention. This is not as efficient as unary-code representa-
tions because 1/W stations remain (W is the bus width) after
each contention, if unary codes are used.

MACD Bus Arbitration for Priority Access

In a system with priority accesses, a VPU is assigned a
priority level by the task that invokes its execution. The set of
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VPUs with the same priority level constitutes a priority class.
The global priority class is the class of contending VPUs with
the highest priority level in the system. In a contention period,
bus control is granted to a VPU that belongs to the global
priority class.

To support accesses with priority, the system should be able
to identify the global priority. One way to do so is to add a set
of control lines to the system, each of which corresponds to a
priority level. A requesting VPU is responsible for setting the
corresponding priority line. The global priority level can then
be identified by finding the control line with the highest prior-
ity level that is being set. This scheme works well when there
are a limited number of priority levels.

On the other hand, the MACD scheme proposed earlier
can be adapted to priority accesses in two ways: First is
MACD by code space partitioning. The code space of the
original MACD scheme is partitioned into subspaces so that
each subspace corresponds to a priority level. The partition
should satisfy the following condition:

If XeS,;, YeS;andi>j, then X>Y

where S; and S; are subspaces corresponding to priority levels
i and j respectively. Using this partitioning, priority levels are
encoded into the contending codes, and the deciphering func-
tion proposed in Theorem 1 can identify the global priority
level and the largest code in this level.

The other method of adaptation is MACD by two-phase
identification. The partitioning of code space is practical when
the number of priority levels is relatively small as compared to
the size of the code space. When the number of priority levels
is large, a contention period can be divided into two phases:
a priority resolution phase followed by an intraclass conten-
tion phase. In the priority resolution phase, a strictly in-
creasing function, which maps a set of priority levels onto a
code space, is defined in each contention slot. The mapping is
done so that the minimum number of priority levels is
assigned to the same code. In a contention slot, every con-
tending VPU writes its code to the bus and deciphers the
number read from the bus. A set of VPUs with the highest
priority levels (corresponding to the deciphered code) is iden-
tified. The process is repeated until the set of VPUs with the
highest priority level is identified. When the bus width is
larger than or equal to the number of priority levels, this phase
can be completed in one contention slot.

Evaluation of Load-dependent MACD Bus Arbitration
Scheme

Bus arbitration schemes can be evaluated with respect to
the following attributes: complexity of implementation, com-
plexity of contention time, flexibility, reliability, and priority
access capability. The MACD scheme requires one control
line (bus busy). The control logic for the bus interface is
relatively simple. A VPU can be added to or removed from
the bus without disturbing other components of the system.
This system is, therefore, flexible for expansion and con-
venient for the removal of faulty units. The MACD scheme

can support accesses with priority. Moreover, the scheme is
efficient as far as contention time is concerned. The analysis
and simulation results are shown in the remaining part of this
section.

The time complexity of contention resolution can be mea-
sured by the mean number of contention slots in each con-
tention period. To analyze this complexity, let N be the num-
ber of contending VPUs at the beginning of a contention
period and K be the size of the code space equal to the bus
width W. Assuming that codes are chosen randomly, a VPU
generates a given code ¢ (i=1,2,...,N) with probability
1/W. Designate the maximum of N such ¢;s as ¢y, the m-th
code in the code space, i.e., ¢m = max{c;]i=1,2,...,N}. If
exactly one VPU generates code c,, and other VPUs generate
codes less than c,,, then the contention is resolved. The proba-
bility for this event to occur is:

@ o

Since m ranges from 1 to W and these W events are mutually
exclusive, the probability that contention is resolved in one
step is P¢ w ~ Where K=W is:

Pewn= % q(m|N,K=W)

u Q)

In Figure 3, Px w,n is plotted against N/W. It is observed that
the probability of success in one attempt is higher if the code
space (equal to bus width) is larger and the number of con-
tending VPUs is kept constant. It is observed that P, w,n is a
strictly decreasing function of N and decreases to zero when
N is large. This means that the MACD technique is unable to
resolve contention in one step when the load is extremely
heavy. However, most of the contending VPUs are eliminated
in one attempt. The number of survivors is reduced signifi-
cantly as contention proceeds, and the probability of success
is increased consequently. The following analysis demon-
strates this phenomenon.

Given that the maximum of codes generated by the con-
tending VPUs is ¢, the m-th code in the code space. Define
indicator variables X;,i=1,...,N,

with probability 1/m
with probability 1 — 1/m

The random variable Z indicates the number of VPUs that
generate c,, in the contention. These VPUs are allowed to
contend in the following steps. The expected value of Z given
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m, N, and W, E(Z | m, N, W), represents the average number
of surviving VPUs. It is easy to show that:

E(z|m,N,w=K)=§. ©)

Furthermore, the probability that the current maximum code
with N contending stations and a bus width of W is c,, can be
expressed as:

p(m|N,W=K) = (%)N— (%;—I)N (6)

The expected number of VPUs that would survive a con-
tention is:

E(ZIN,W=K)— EE(Z‘m N, W =K)

p(m’N,W=K)

N 1N-—1 2N—1
=W{ 7 T3t
(W-DN! +y~
w w
_ 1\N-1
Ny W=D N
wN w w
N_ (W' N
== +=
w w W
2N
E(Z‘N,W=K)
The ratio -y=—N——SWis a measure of the aver-

age fraction of contending VPUs that can survive a con-
tention. Let N(t=0,1,...) be the expected number of con-
tending VPUs in step t. By Equation 7, we have

Nt_(z)No t=0.

Therefore,
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N,—>1 as t->loge,No. ®

As shown in Figure 3, we can see that Py wn—>1as N<W,
and Pg w n—0 as N > W. This fact reveals that the con-
tention process of MACD can approximately be divided into
two phases. The effect of the first phase, thatis, when N, > W,
is in reducing the number of contending VPUs. When the
process enters the second phase, N, =< W, contention can be
resolved in about one step. The overall contention process will
stop within an average of logw, N steps. Figure 4 shows the
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simulation results that confirm our analysis. The number of
contention slots shown includes the additional slots required
for resolving hidden collisions. MACD performs better when
the bus width is large.

LOAD-INDEPENDENT MACD BUS ARBITRATION
SCHEME

As shown in Equation 8 and Figure 4, the scheme proposed in
the last section is load-dependent and performs well when the
bus width is large and the number of contending VPUs is
small. Since the number of contention slots grows logarith-
mically with the number of contending VPUs, the scheme is
inefficient when the number of contending VPUs is large or
the bus width is small.

The cause for the load dependency is the fixed code space.
In order to reduce the number of VPUs contending in a slot,
th code space can be designed so that it is a function of the
number of contending VPUs and the bus width. By choosing
the size of the code space so that the number of VPUs con-
tending in a slot is a relatively small constant as compared to
the bus width, contention can be resolved in a time that is
load-independent. We have studied a similar scheme for con-
tention resolution on carrier-sense-multiple-access bus net-
works.>

The solution depends on choosing the size of the code space
and estimating the number of contending VPUs. Suppose N
can be estimated accurately, and a code is chosen so that
K/N =r1. The probability that contention is resolved in one
step (refer to Equation 4) is: ’

K

Penw= 2

m=K-w+1

q(m ’ N=K/r,K,W)
KE uN—l (9)

where q(m 1 N =K/, K, W) is defined in Equation 3. The val-

ue of Px n,w is plotted in Figure 3. It is seen that the success
probability is higher and load independent as a result of the
increase in the code space size.

The expected number of VPUs that would survive a con-
tention can also be derived similarly. In this case, the number
of surviving VPUs is N if no station contends in the slot. That
is, Equation 5 is changed to:

N
E(Z m’N=K/r,W)={}E K=m=<K-W+1
N 1=m<K-W (10)
The definition of p(m l N, W) in Equation 6 remains true. The

expected number of surviving VPUs in one contention is:

K
E(Z!N=K/r,W)= ZE(Zim.N

m=1

=K/1,W)p(m | N =K/r, W)
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Figure 5—The optimal choice of the code-space size (W = 16, N =60)
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Since K/N =r is a constant, E(Z I N =K/r, W) is a constant

independent of load (=N) if K is large as compared to W.

The correct choice of r is shown in Figure 5. There is an
optimal choice of r so that the number of contention slots is
minimum. The optimal value depends on the value of W and
is load independent (assuming that N is known). The value is
approximately five for the combinations of W and N tested.
Using the optimal value of r, the performance of the load-
independent MACD scheme is plotted in Figure 4. In gener-
ating these results, the size of the code space, K, is chosen to
be W if r X N is smaller than W; that is, the scheme proposed
earlier is used when the load is light. It is observed that the
proposed scheme requires a small constant number of slots
when the load is heavy.

The proposed scheme requires N to be known. In general,
this is not possible due to the distributed control. One way is
to estimate N based on information collected during the con-
tentions. However, this information can indicate that one or
more contending VPUs have generated the same code, but
cannot reveal the exact number of contending VPUs. If the
number of VPUs contending in a contention slot is small, a
reasonable estimate of N can be obtained by using the number
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Table I—Comparison of MACD with conventional bus arbitration schemes. (M = number of VPUs connected to the bus)

Comparison of MACD with Conventionai Bus-Arbitration Schemes
Attributes | Hardware Compiexity Contention Time Reliability | Flexibility Priority
Control Control light Heavy Failure Easy Task
Schemes ‘Logic Line Load Load Tolerance | Reconfig. | Dependence
MACD O(M) 1 V3! ~1 Yes Yes Yes
Daisy-
O(M) 3 o(M) ~nl No No No
Chaining
Polling Oo(M) 2 +log,M O(M) ~1 Yes No No
Independent
oM) 2M O(logoM) | O(loggM) Yes No No
Requests

of bits that are ones in a contention slot, B, as the number of
VPUs contending in this slot. That is,

BXxK

N=w

(12)

This will systematically underestimate the actual value of N,
and some correction to the value of r used should be intro-
duced. In Figure 5, the optimal value of r that should be used
is slightly different when the estimate in Equation 12 is used.
The number of contention slots required is slightly increased
when N is estimated.

A maximum-likelihood estimate of N also can be derived.
However, the complexity of such a scheme is high and cannot
be used in real-time applications.

CONCLUSION

In this paper, we have studied the problem of bus contentions
in VLSI-densed shared-bus systems. Data traffic generated by
VPUs in such systems are characterized by three distinct

features: large population, bursty transmissions, and task-
dependent priority accesses. A bus arbitration protocol is nec-
essary to resolve access conflicts when several VPUs are trying
to access the bus simultaneously. Conventional schemes such
as daisy chaining, polling, and independent requests are
shown to be inadequate because of the large overhead or the
high complexity of implementation.

The load-dependent MACD scheme presented in this paper
can resolve contention of N VPUs in an average time of
O(logw, N) steps where W is the width of the bus. For bursty
traffic in a system with a parallel bus, N is usually relatively
small as compared to W. Nearly perfect bus scheduling is
achievable. An extended scheme is proposed that estimates
the value of N and uses a code space of variable size de-
pending on N. It is found that contentions can be resolved in
a time that is load-independent.

The proposed MACD scheme can support task-dependent
priority accesses that cannot be supported by conventional
bus arbitration schemes. Comparisons between the MACD
and the conventional bus arbitration schemes are summarized
in Table I. These comparisons clearly indicate that the MACD
scheme is superior in almost every respect.
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DMERT—An operating system
for telecommunications systems

by S. F. HO, C. J. RICHARDSON, W. C. SCHWARTZ
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Naperville, Illinois

ABSTRACT

The duplex multi-environment real-time (DMERT) operating system is a process-
oriented, fault-tolerant operating system designed to provide a versatile software
base for telecommunication systems. DMERT provides general fault recovery capa-
bilities, virtual machine layers to meet application needs, a UNIX environment, and
1/O interfaces to peripheral devices. This paper gives a detailed description of the
DMERT architecture and its capabilities.

This paper is a revision of the paper presented in the 1983 National Communications Forum.
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INTRODUCTION

A major goal of the duplex multi-environment real-time
(DMERT) operating system is to provide a versatile software
base to fulfill the varied processing needs of telecommunica-
tion applications. While the needs of these applications are
different, they have several common characteristics. First, a
major component of these applications is software. Second,
the major mission of this software is real-time oriented with
response times as short as several milliseconds. Third, each
application has a need for continuous operation and hence
stringent processor availability requirements. Fourth and fi-
nally, each application is to be operated over a long period of
time, which requires extensive software for monitoring and
reporting on system status as well as changing and upgrading
the system while it is in operation. To satisfy these needs,
DMERT is designed to:

1. Support multiple real-time applications. It is necessary
for the DMERT operating system to support many
applications, each with different real-time demands.
Some applications include databases that need many
disk jobs serviced quickly. Others control telecommuni-
cation equipment requiring rapid response to an event
such as an interrupt and dedicated processing capacity
for an interval thereafter. To satisfy these diverse needs,
a design objective was established to provide modularity
in the operating system that allows a high degree of
application tailoring.

2. Improve application development productivity. Soft-
ware for telecommunication applications is usually im-
plemented in assembly language. To increase pro-
ductivity of the developers, an objective of efficiently
supporting the C programming language' was estab-
lished. Telecommunications systems often have major
software components that are not time critical. Hence a
design objective of DMERT was to support a UNIX
interface as a familiar operating system environment for
the non-time-critical software.

3. Be fault tolerant. To meet the reliability objectives of the
applications, it is necessary to support software packages
for error checking and recovery. In order to reduce the
complexity of both the operational and recovery com-
ponents of the system, a design objective was established
to separate recovery software from the core of the sys-
tem. An objective of incorporating extensive internal
consistency and integrity checks within all software com-
ponents was established to ensure that critical software
modules protected themselves from errors in other parts
of the system.

In summary, DMERT is a process-oriented operating sys-
tem designed to support both real-time and time-shared oper-
ations, with an emphasis on high reliability and availability.
This paper outlines the DMERT capabilities and describes
how these design objectives are achieved. The second section
gives an architectural overview of DMERT. The process
types, process communication primitives, and the time-
sharing and real-time scheduling policies are described. The
last section highlights DMERT features for achieving the high
reliability and availability goals.

DMERT ARCHITECTURE

The architecture of DMERT is based on an earlier system,
MERT,” a real time operating system derived from the UNIX
operating system.® The “D”” in DMERT reflects one of the
characteristics that distinguishes it from the previous two
operating systems, namely DMERT is designed to execute on
a fault-tolerant 3B20D duplex processor.* Thus, the DMERT
architecture is dependent on proven concepts from UNIX and
MERT, which are extended to support highly reliable
telecommunication applications.

One of the basic goals for DMERT was to build modular
and independent processes, each having localized data known
only to itself. Hence, the notion of a process is fundamental
to the DMERT architecture, which is essentially composed of
a kernel and a collection of cooperating, concurrent pro-
cesses. The following sections define what a process is and
how processes communicate with each other.

Definition of a Process

A process is a collection of related, logical segments (pro-
grams and data) that can be brought into memory to form an
executable entity. A segment is the basic memory entity in
DMERT. A segment is composed of 1 to 64 pages, each 512
32-bit words in length. Segments can grow dynamically in
increments of a page. A process typically consists of four
segments: code or text, a stack used for temporary data, a
data segment containing global data, and a special type of data
segment called a process control block (PCB). The PCB seg-
ment contains unique information that identifies the process
to the operating system. This information includes the process
number, type of process, priority, and address space qualifiers
that define the virtual address for a process. Each process has
its own virtual address space of up to 128 segments. These
virtual addresses are mapped to physical addresses by 3B20D
hardware under the control of the DMERT operating system.

Besides the regular process entries for handling process
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events and interrupts, any process may have a fault entry. A
process is entered at its fault entry when another process sends
a fault to this process, or a hardware/software fault is detected
by the system when the process is running. The purpose of the
fault entry is to give the faulted process an opportunity to
perform some recovery action based on where the process was
faulted and why. Every faulted process has a fault code that
indicates the nature of the fault and state information that
indicates the state of the process at the time the fault
occurred.

A process can be dynamically created to perform a set of
functions and then terminated when the task is completed.
Processes that continually perform work remain “alive’ at all
times, however, they may sleep or be inactive until an event,
message, Or interrupt occurs. An inactive process may be
swapped out to the disk, i.e., the process memory image is
copied to the disk and the memory occupied by the process is
released. This keeps main memory to be loaded with the
working set of processes at a given point in time.

Process Types

DMERT has four basic types of processes: kernel, kernel
process, supervisor process, and UNIX process. DMERT
may be viewed as a hierarchy of virtual machines, where
successive levels put additional restrictions on access right and
further remove the programmer from details of the physical
machine. However, the high level may take advantage of ser-
vices provided by the lower levels. In general, the higher the
level, the more services are available to the application pro-
grammer; the lower the level, the more real-time efficient is
the program execution. This level structuring of virtual ma-
chines permits DMERT to manage real-time applications,
while at the same time providing the flexibility of a time-
sharing system. This approach avoids contention for system
resources with priority tasks and simplifies the implementa-
tion effort for lower priority tasks.

Kernel

The DMERT kernel provides the most primitive virtual
machine. The kernel handles hardware interrupts, timer inter-
rupts, and operating system traps. In all cases, the kernel
saves the state of an interrupted process, provides whatever
service is requested, and restores the state of the interrupted
process. The kernel services are basic and they execute
efficiently.

Also part of the DMERT kernel are special processes that
provide scheduling, memory management, and other ser-
vices. Special processes behave as kernel processes, except
that they do not have their own virtual address space, but
rather reside in the kernel’s address space. These special pro-
cesses communicate with the kernel through function calls
instead of operating system traps, and they have access to
global system data. For example, the memory manager and
the scheduler are two special processes in DMERT. The
memory manager loads processes into memory, selects seg-

ments to be swapped out to disk when additional main memo-

ry is required, and provides routines that may be called by the
kernel. The scheduler controls the execution of time-shared
processes, i.e., supervisor and UNIX processes.

Kernel processes

Kernel processes comprise the next virtual machine layer in
DMERT. They are completely interrupt driven and are de-
signed to provide time-critical processing in a real-time envi-
ronment. Kernel processes have their own virtual address
space. However, they share the kernel’s stack and the kernel’s
message buffer segment to provide quick access to arguments
of operating system traps and fast message communications
between processes. Kernel process segments are always
memory resident to ensure rapid response to events such as
interrupts. The various peripheral device drivers and the file
manager are examples of kernel processes.

Supervisor and UNIX processes

Supervisor and UNIX processes form the third layer of
virtual machine. These processes can use all the services pro-
vided by the kernel and kernel processes. Supervisor and
UNIX processes provide time-sharing services that can be
considered background tasks. They share the real time of the
processor with each other according to priorities administered
by the scheduler. In general, these processes are not locked in
memory and can be swapped out. Thus, supervisor and UNIX
processes may take longer to dispatch than special and kernel
processes.

UNIX processes are actually supervisor processes, but a
shared library hides the supervisor interface and replaces it
with a UNIX environment. Conceptually, supervisor and
UNIX processes are different, but they are the same from the
operating system’s point of view.

Inter-process Communication

DMERT provides a rich set of inter-process communication
and synchronization mechanisms including messages, events,
inter-process traps, and shared memory. These inter-process
communication primitives are fundamental to the DMERT
structure. Most of the system services are requested by an
exchange of events and messages between a requesting pro-
cess and either a system process or the kernel.

Messages and ports

Processes are in general independent and distinct entities.
Two processes working together on a task must be able to
exchange information. To satisfy this need, messages may be
sent from any level process to any other level process. The
sender needs only to know the target process number and a
pre-agreed format of the message. An optional acknowl-
edgement message is provided so the sender can synchronize
actions with the receiver.

Process ports permit processes to communicate with each
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other without knowing each other’s process number. A pro-
cess port is a globally known “device” to which a process may
attach itself for receiving messages. Other processes may com-
municate with a process connected to a port by sending mes-
sages to that port. Thus process ports permit unrelated pro-
cesses to communicate with each other.

Events

Communications between processes may occur using an
event mechanism. An event is a one-bit message that can be
sent from one process and be interrogated by the receiving
process. Presently, 32 events are available, of which the
DMERT operating system reserves 16 for its use. Application
processes communicating using events can define the usages
of the remaining 16 events. Thus, two or more processes can
communicate internal states using events.

Inter-process traps

Trapping implies a transfer of control from one process to
another with the passing of input parameters to the target
process. The trapped process returns status and control back
to the trapping process after if has completed the requested
service. Any process may trap to another process, as long as
the argument-passing protocol is mutually agreed upon.

Shared memory

Processes are built with a view of their own virtual address
space and in general cannot access any other process’s address
space. This affords protection. However, sharing of large
amounts of data is difficult with messages or events. Cooper-
ating processes that must exchange information at higher rates
than those supported by message or events can share seg-
ments. A shared segment is a part of the virtual address space
of several processes simultaneously.

Process Scheduling

The DMERT operating system simultaneously supports
both a real-time and a time-sharing philosophy. Kernel pro-
cesses operate in the real-time environment. The remaining
processor time is shared among supervisor and UNIX
processes.

Real-time

DMERT’s real-time allocation strategy is based on exe-
cution levels and preemptive scheduling. DMERT maintains
a process hierarchy based on 16 execution levels. A kernel
process can belong to levels 3 through 15 (levels 0 through 2
are reserved for the time-sharing environment). Kernel pro-
cesses are used to implement tasks with stringent real-time
requirements. DMERT dispatches processes at the highest
execution level first. Generally, once a kernel process is dis-

patched, it is allowed to run to completion, i.e., until the
kernel process relinquishes its control of the processor. How-
ever, if another kernel process at a higher execution level is
awakened, DMERT preempts the executing process. Upon
completion of the preempting process, if no other higher level
processes were also awakened, DMERT resumes the sus-
pended process.

DMERT applications are allowed to assign their own pro-
cesses’ execution levels, thus allowing applications to control
and distribute the real time. This approach is flexible and
supports a variety of applications.

Time sharing

The portion of real time not utilized by the kernel and
kernel processes is time shared among supervisor and UNIX
processes. Processes supporting the time-shared environ-
ment, such as the scheduler and memory manager, reside at
execution level 2. These processes are at the bottom of the
real-time hierarchy and gain control of the processor only
after all other real-time work is completed.

Supervisor and UNIX processes execute at levels 0 and 1.
The scheduling hierarchy of supervisor processes is based on
software priority. The major difference between priority in
the time-sharing environment and execution levels in the real-
time environment is that DMERT adjusts software priorities

“dynamically depending on the I/O characteristics of the pro-

cess and the system load, whereas execution levels are fixed.

RELIABILITY AND AVAILABILITY

The DMERT operating system must be able to support the
stringent electronic switching system’s reliability require-
ments. To minimize the number of system failures and the

-associated down-time per failure, DMERT supports audits

and overload control, progressive initialization, reconfigura-
tion, preventive and corrective maintenance, field updates,
and system updates. These features are described in the fol-
lowing sections.

Audit and Overload Control

The DMERT audit package verifies the validity of critical
system data. Audit strategies are based on the inherent prop-
erties of the data structures and redundancies that are built
into the structures. Audits are distributed throughout the sys-
tem within processes that control the data to be audited.
Audits can be issued by manual requests or the audit control
structure. The DMERT system integrity monitor (SIM) is
responsible for scheduling and dispatching all audits, and for
handling all overload conditions. SIM receives overload con-
ditions from DMERT operating system processes. The appli-
cation and the craft are then notified that these conditions
exist.

DMERT overload controls handle conditions in which crit-
ical system resources (e.g., message buffers, swap space, etc.)
are in short supply or the system’s real-time performance falls
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below a predetermined limit. These conditions occur when
the system is overloaded with input requests, or sufficient
resources are lost due to software errors over a long period of
system operation. Most overload strategies involve changing
the policy of assigning resources to processes and running
audits to recover sysiem resources. 1he combination of audits
and overload control is a powerful mechanism to maintain
system integrity.

Progressive Initialization

The DMERT recovery strategy attempts to minimize the
service disruption caused by an initialization in response to
hardware and software faults. Several levels of recovery ac-
tions are provided to match the level of initialization to the
severity of the fault. Although DMERT attempts to recover at
the lowest possible level, the recovery level is automatically
escalated if the current level fails.

The initialization of application processes only is the least
disruptive or the lowest level of initialization. Applications
determine their own recovery strategies. This level of initiali-
zation can be requested by a craftperson or by an application
process. DMERT administers the initialization counts and
timers, but a DMERT operating system initialization is not
taken.

The next level of recovery involves initializing DMERT
processes as well as application processes. This level is the
primary recovery mechanism in DMERT and uses a rollback
strategy. The goal of this initialization level is to restore the
system to a sane and operational state with minimal effect on
service. Each process in the system is notified by its fault entry
that a system initialization has been taken. Using state infor-
mation that is maintained during normal operation, each pro-
cess cleans up any transactions in progress and then returns.
This strategy is effective because only a few processes are
actually active at any given time.

If the rollback strategy fails, DMERT is rebooted from
disk. Even when such a bootstrap occurs, several regions of
memory are protected to maintain some continuity. The suc-
cessively more severe levels of initialization involve re-
initializing these protected regions. However, one protected
memory region is preserved for applications, and is initialized
only by manual request or a power up.

Reconfiguration

DMERT takes full advantage of the redundancy provided
by the 3B20D processor. The equipment configuration data-
base maintains information concerning the hardware config-
uration and hardware error rates. This provides a basis for
automatic reconfiguration and allows the recovery strategy to
be tuned to meet the needs of the individual applications.

In processing a hardware error interrupt, the unit causing
the error is determined. The error count for that unit is then
incremented and compared with its error threshold. if the
threshold has not been exceeded, the unit remains in service.
If the threshold has been exceeded, the configuration man-
agement routines decide on the corrective action. This deci-

sion is based on the availability and status of a replacement
unit. Configuration options include removing the unit, switch-
ing in a replacement unit, or continuing operation on the
faulty unit.

Preventive and Corrective Maintenance

DMERT provides a comprehensive set of diagnostics that
can be invoked directly by the craftperson or under program
control. Diagnostics ensure the operational capabilities of
hardware units.

A routine exercise is performed daily to verify the oper-
ation of all units in the system. These units are diagnosed and
a status report is generated indicating their conditions.

In addition to the routine exercise, if a unit is removed from
service because of a fault condition, diagnostics are sched-
uled. If the unit fails diagnostics, a report is generated indi-
cating the failure cause. If the unit passes diagnostics, it re-
mains in service. However, to prevent a unit remaining in
service that passes diagnostics, but fails repeatedly during
actual operation, a count is kept of the number of times oper-
ational failure occurs. Any unit that exceeds a predetermined
limit may be removed from service, pending some correc-
tive action (e.g., more exhaustive diagnostics and unit
replacement).

Field Update

Field update, which is typically called overwriting in tradi-
tional electronic switching systems, is the problem correction
mechanism for DMERT. Field update may be used to modify
data and programs on the 3B20D disk or in main memory.
Field updates must be performed without disturbing system
operations (e.g., call processing, critical system functions,
etc.). The features of field update are the ability to change a
file both instantaneously and in a temporary way, the ability
to update a function in a running process, the ability to coor-
dinate changes to functions within a process, and the ability to
change data contents or the structure of data in a running
process. Changes made to the running process update the disk
image of the process as well as the main memory image.

System Update

DMERT system update provides a safe, reliable mech-
anism to introduce new versions of DMERT and application
software into the 3B20D/DMERT systems, while minimizing
service disruption. System update differs from field update in
the magnitude of the program and data changes being in-
stalled. Normally, a system update will replace all the soft-
ware in the system, which is a complete reissue of DMERT,
application software, and/or data. For this reason, system up-
dates always include a memory reinitialization of all processes
and data from disk. Only the protected memory areas are not
reinitialized.
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SUMMARY

The DMERT system has achieved its objective of providing a
cost- and real-time-effective base for a wide variety of
telecommunication systems. The concepts of multiple levels
of functional support, reliability and availability features, and
versatile I/O interfaces provide an adaptable base that can be
tailored to many differing needs. More than one hundred
DMERT systems have been installed in the field. These sys-
tems include electronic switching applications, database
applications, as well as add-on extensions to existing switching
machines to enhance processing power. The DMERT system
is also the basis of a number of telecommunication system

designs currently under way. This widespread use of 3B20D/
DMERT marks it as a processor/operating system combina-
tion of significance in telecommunication systems.
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ABSTRACT

A powerful and expandable system can be economically realized by a local com-
puter network consisting of various kinds of microprocessor-based systems. The
following three problems must be solved to organize a distributed processing system
using nonidentical elements: (1) communication, (2) query conversion, and (3)
global concurrency control. Except in the case when all transactions are read-only
ones, (3) must be handled. Since each system in a network does not usually have
concurrency control capability or may not use the identical mechanism, it is neces-
sary to develop a global concurrency control mechanism for a local network consis-
ting of systems without such capability. In this paper two such mechanisms are
presented. By assigning ordered numbers to the component systems, a consistent
and deadlock-free global mechanism is realized for a semijoin-based query proce-
dure. To improve efficiency, a mechanism permitting dynamic modification capabil-
ity of ordering is also presented.

*This paper was written when the authors were at Kyoto University.
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INTRODUCTION

The top-down and the bottom-up approaches are those that
can be used to organize a distributed system. Through the
former approach, which takes a global view of the whole
system, consistent and efficient systems can be easily de-
signed. This paper, however, will discuss the latter approach,
since it is a practical solution to the problem of constructing
a distributed system using already existing systems, such as
work stations with database capability, database machines,
and picture file systems using laser discs. For this approach the
following problems must be solved: (1) communication proce-
dures among systems, (2) conversion of user requests, and (3)
global concurrency control. Except for the case when all
transactions are read-only ones, Problem 3 must be solved.
Since Problems 1 and 2 are handled by various authors, this
paper will focus on Problem 3.

As described below (see Figure 1(a)), Problem 3 must be
considered even when there exists no global write transaction.
That is, considering only query processing procedures is not
enough to handle global read-only transactions when local
write transactions at each site are permitted. Although this
problem is very important when constructing a network using
various different subsystems, the authors believe that it has
not been discussed before. To simplify the problem, we will
use the following three restrictions, which are considered to
be reasonable:

1. To avoid Problems 1 and 2, we assume that the com-
ponent systems realize relational databases with an iden-
tical query language.

2. For a network we only consider an Ether-type local net-
work with broadcasting capability.

3. We decompose a global transaction into a global read-
only transaction and local read-write transactions so that
global read-write transactions can be avoided. Since
handling of such a global read-write transaction makes
discussion complicated, it is excluded in order to present

basic ideas.
t; : read A t2 : read C A 4 D
t3 : write AB >< ty : write CD t3/ \t4
tp : read B t : read D }‘1:2/0v
site 1 site 2
(a) (b)

Figure 1—Necessity of the global concurrency control mechanism even if
there are no global write transactions

For the global concurrency control problem, the following
three cases must be considered:

1. There may be a system that does not have any concur-
rency control mechanisms. All transactions are pro-
posed serially at this system, and local locking mech-
anisms are not available to global control mechanisms.

2. Even if a system has a concurrency control mechanism,
it may not be usable for global control. That is, there
may be a system with an independent concurrency con-
trol mechanism in order to improve efficiency at its own
site, which is not suitable for distributed control.

3. Even if all the systems have global concurrency control
mechanisms, they may not be identical. For example,
some systems use time-stamp-based mechanisms,
whereas other systems employ two-phase lock mech-
anisms. We cannot combine these different global con-
currency control mechanisms.

Since Case 1 is the most restrictive, this paper will discuss
that case. Since the locking mechanism is not available for
global concurrency control, a query modification approach is
used to realize such control.

Figure 1(a) shows that we need a global concurrency control
mechanism when all global transactions are read-only. We will
consider the following four transactions where t, and t, are
global read-only ones and t; and t, are local write transactions:

ti: After reading value A at site 1, read value D at site 2.
t2: After reading value C at site 2, read value B at site 1.
t3: Modify values A and B at site 1.
ts: Modify values C and D at site 2.

The order of the transaction processing at sites 1 and 2, by
the schedule shown in Figure 1(a), is as follows:

site 1: t; > t;—>t,
site 2: t,—o>ty—>t

Since these two orderings are not compatible, we have to
restart either t; or t,. This example shows that we need a
global concurrency control mechanism even if all global trans-
actions are read-only.

In order to avoid such a problem, the order of transaction
processing at each site should be controlled by a global con-
currency control mechanism. We will present a global concur-
rency control mechanism that uses ordering numbers assigned
to the sites. A semijoin-based query-processing procedure is
combined with the mechanism. Another mechanism is also
presented, which improves efficiency by modifying the site
ordering numbers adaptively.
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BASIC CONCEPTS

Concurrency Control

For efficient processing, it is important to execute many
transactions concurrently. In this case a semantically correct
schedule must be generated. Here a schedule consists of a
sequence of read and write operations (see Figure 1(a)). Gen-
erally we shall assume that the schedule is consistent if and
only if its effect is equivalent to that obtained by executing the
same transactions serially in some order, called serializable.’
We say that two schedules are equivalent if and only if the
value that one transaction reads was written by the same
transaction in both schedules. For example, in Figure 1(a), t,
reads the value that t; wrote at site 1, so t, must be before t;
in an equivalent serial schedule. The graph in Figure 1(b)
shows this kind of precedence relationship among transac-
tions. Since it has a cycle, there is no equivalent serial sched-
ule; that is, this schedule is not serializable. To guarantee
serializability, many methods have been introduced. In cen-
tralized database systems, concurrency control mechanisms
are not essential, since transactions can be executed serially.
In distributed database systems, however, since transactions
are executed in parallel at several sites, a global concurrency
control mechanism is necessary even if each site has a local
concurrency control mechanism. When many transactions are
executed concurrently, deadlock may occur; so a deadlock-
free mechanism is also required.

One of the methods used to ensure that schedules are seri-
alizable and deadlock-free is the tree protocol.”> If each
transaction obeys the tree protocol, no global scheduler is
required. The relationship among data is assumed to be repre-
sented by a tree, which is true for hierarchical database
systems.

The basic operations to be considered are LOCK and UN-
LOCK. Only one transaction is permitted to lock a datum at
a time. We use L(A) and U(A) to represent LOCK A and
UNLOCK A, respectively. A tree protocol is satisfied by a
transaction with respect to T, a tree whose nodes corresponds
to data if

. Any datum can be locked for the first time.

. A datum can be locked if its parent is currently locked.

. Any datum can be unlocked at any time.

. No datum is ever locked twice by one transaction.

. Transactions requiring access to data at different levels
of the tree structure must lock each record connecting
the different levels.

wn W

Example 1: We will consider the four transactions used in
Figure 1. We assume that the tree showing the relationships
among data is shown as Figure 2. In order to obey the tree
protocol, transactions are modified as follows:

—*

+: LLA)L(C)U(A)L(DYU(C)U(D)
: L(C)L(B)U(C)U(B)
ts: L(A)L(C)U(A)L(B)U(C)U(B)
: LIC)L(D)U(C)U(D)

-
N

Iy

A

|
B/ \D

Figure 2—Ordering on data for the tree protocol

Although t, requires A and D only, it has to lock C because
of the requirement 2 of the tree protocol. Since the first lock
of a transaction is not restricted, t; and t, start by locking C.

Query Processing

Let R be a relation on a set {A,,...,A.} of attributes,
where the set is denoted by R, the relation schema of R. Let
u be a tuple of a relation and u[X] be the part of u correspond-
ing to the attribute set X. In this paper the following notations
of relational algebra will be used:

Projection: R[X] = {u[X]|u€ R}
Natural equijoin R,™R;={u|u€R, u[R] ER,, u[Rj]E€
Rj, R= RiuRj}

A query graph G, =(V,E,L) corresponding to a natural
join query q is a labeled undirected graph. V is a set of
vertices, where v; in V corresponds to relation R; referred to
in q. Two vertices v; and v; corresponding to R; and R; are
connected by an edge if and only if there is R;><R;. The label
of the edge is a subset of R; N R;. E is the set of edges, and L
is the set of labels for E.

A query is cailed a tree query if there exists a query graph
that corresponds to it and it is circuit-free; otherwise it is
cyclic.

A semijoin of R; by R; is denoted by R;><R; and defined
as

Ri>™<R;=(R{>R))[R]
= Ril>< R]'[Ri N R]]

In distributed database systems semijoins are used in order to
reduce the cost of communications. For tree queries there
exists an efficient procedure to calculate partial results for all
relations using semijoins only. Here a partial result for R; is
the result of the join projected on R;. Since conversion meth-
ods exist which can transform cyclic queries into tree que-
ries,"* we consider tree queries only in this paper.

Although there may be more than one relation at each site,
for simplicity we assume that each site S; contains exactly one
relation R;, which is obtained by preprocessing all relations at
site S; involved in the query. This assumption is commonly
used, and the scheme shown here may be easily extended to
handle more general cases.

A general semijoin-based tree query-processing procedure
is as follows (because of space limitations, we have simplified
the description):
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Procedure 1: Query-processing procedure for a tree query
using semijoins.

1. In the tree graph representing the given query, select an

~arbitrary relaton as a root of the tree.

2. Phase 1: Starting from the leaf relations, perform semi-
joins by sending values of join attributes.

3. At the root relation, a partial result is obtained.

4. Phase 2: Starting from the root relation, perform semi-
joins by sending values of join attributes. At each site
partial results are then obtained.

Example 2: Let us consider the tree query in Figure 3. The
attributes of the relations are as follows:

Ri(AD) Ry (ABCE) R;(BF) R4(CG)

We assume that each R; is stored at site S; (i=1,2,3,4). The
following R is required as the result:

R=R;>™R,™MR;>R,4
Partial results for these relations are as follows:
R[AD] R[ABCE] R[BF] R[CG]

If only partial results are required, the semijoin-based algo-
rithm is sufficient. If this is not the case (i.e., if R is required
at some site), the algorithm can be used as a preprocess.

1. We can select any relation as a root. Let R, be the root.
2. Phase 1:
(2-1) Send B values of R; from site S; to site S,. Perform
a semijoin with R,.
(2-2) Send C values of R, from site S, to site S;. Perform
a semijoin with the result of (2-1).
(2-3) Send A values of the result of the above two oper-
ations from site S, to site S;. Perform a semijoin
with R;.
. At site S, the partial result R[AD] is obtained.
4. Phase 2:

(4-1) Send A values of the above result to site S,. Per-
form a semijoin and the partial result RTABCE] is
obtained at site S,.

(4-2) Send B (and C) values of RABCE] to site S; (and
site S4, respectively). By performing a semijoin the
partial result R[BF] (and R[CG]) can be obtained
at site S; (and site S., respectively).

w

(By)AD

A
(Rg)ABCE
B c
OENC
BF CG

Figure 3—A tree query

THE PROBLEM

Although an overview of some of the problems involved with
global concurrency control, as well as the assumptions made,
were discussed in the introduction, we will give specific details
here.

Consider the case when systems without concurrency con-
trol mechanisms are connected by an Ether-type bus line. This
network satisfies the following properties: (1) a message can
be broadcast to all the sites, and (2) it is not possible to
transmit messages simultaneously from more than one site.

All global transactions are assumed to be read-only.
Modification of relations is assumed to be realized by local
transactions. This is similar to a relational database system
that realizes views. Usually, however, modification operations
are permitted to be applied to the base relations only (read-
only views), because the general view update problem is
known to be very difficult.

Since semijoin-based query-processing procedures are very
efficient, we will use them in this paper. We have to modify
the procedure, however, because of the following problem.

If the data are modified between Phase 1 and Phase 2 in
Procedure 1, we may not get the correct result. If we organize
a distributed database system by the top-down approach, we
usually use a locking mechanism to prevent such a modifica-
tion. Since the assumption that the subtransaction at Phase 1
and one at Phase 2 are considered to be different at the
processing site, data may be modified before the second sub-
transaction. To handle the problem caused by such a local
write transaction, one simple method is to store the values at
Phase 1 that will be used at Phase 2. This approach, however,
may require many duplicated data, and there still exists a
global consistency problem (Introduction); so we will discuss
methods to prevent this problem in following sections.

'We will consider query-processing procedures together with
concurrency control mechanisms. Usually read-only trans-
actions are called queries. In the following sections we use the
term query instead of transaction when a transaction performs
only read requests.

A QUERY-PROCESSING PROCEDURE AND A
BASIC GLOBAL CONCURRENCY CONTROL
MECHANISM

As shown in the previous section, it is necessary to modify the
semijoin-based query-processing procedure when local write
transactions are permitted. In this section we will present a
query-processing procedure having the following properties.

1. Instead of visiting the same site twice at Phases 1 and 2,
it requires that each site be visited only once.

2. Relations in a query tree can be processed in an arbitrary
order.

We need the first property because of the problem pointed
out in the previous section. The second property is used
to combine the query-processing procedure with a tree-
protocol-based global concurrency control mechanism.
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First we modify the basic semijoin-based procedure to sa-
tisfy Property 1 above.

Example 3: Let us consider the same query as Example 2.
We assume that the target relation R{ABG] is required at site
S,. By sending values contained in ABG together with the join
attributes, the result can be obtained at site S; by performing
Phase 1 only.

1. Let R, be the root.
2. (2-1) Same as Example 2.
(2-2) Send R4(CG) to site S, since C is the join attribute
and G is contained in the target. Perform a join.
(2-3) Send combined values of ABG to site S; and per-
form a join.
3. Atsite S; R[ABG] is obtained.

We assume that projection R[X] of the join of all relations
in the query is required at one site. In such a case we only need
Phase 1 of Procedure 1 by transmitting attributes in X to-
gether with join attributes.

A tree query is usually processed from leaf sites by Proce-
dure 1; but by using the broadcast capability of Ether-type
networks, we can change the order of processing.

Procedure 2: Query-processing procedure using the broad-
cast capability.

1. Let T be the tree representing the given query.

2. Select one arbitrary relation R; in T. Let X be the attri-
bute set of the target relation (i.e., R[X] is required at
site S;, where R is the join of all relations involved in the
query). Let Y be the union of attributes satisfying

JFi

where UR; denotes the union of all the join attributes
JFi
of R;. Broadcast Rj[Y] to all sites.
3. Let Rj;, ..., Rjn be all relations satisfying RN R; # @.
Let Ry be one of the relations.
(3-1) Except Ry, perform the following semijoin at the
site of Rj G=j1, -+ »jm)-

R;>™R[R:NRj]
(3-2) At the site of Ry perform the following join:
R >™R{[Y]

Note that attribute set of Rx may change if R; contains
attributes in X that were not originally contained in Ry.
4. Let T’ be the new tree obtained from T by eliminating
Ri. T’ can be obtained by the following steps:
(4-1) Remove all edges connecting between R; and R;
(G=j1s- -, Jm) directly. Remove Ri.
(4-2) Connect Ry and R)’s (j =ji,- - -, jm, j # k) directly.

The conversion of (4-1) and (4-2) is shown in Figure 4(a) and
(b). Let T' be the new T and goto step (2).

Rjm Rim XR;

RxXR;[RN(X URj)]
bl
Rj1 XR; j#i

Rjz XR;
(b)

Figure 4—Conversion of a tree

5. Repeat the above process until only the relation at the
target site remains. At that time the result R[X] is ob-
tained at the site.

Theorem 1: Procedure 2 is correct.

Proof: We only need to prove that the transformation
shown in Figure 4(a) and (b) is correct. It is easily shown by
the following equation.

Ri><R; P9 - -B9R, = (R P<R)
>I(R™<Ry)
.. .b9(RmP<R)
>4 (Re™><R{[Y])
QED

One possible problem of Procedure 2 is to find a method to
determine Ry in Step 3.

Procedure 3: Select of Ry at Step 3 of Procedure 2.

1. Let S, be the site where it is required to obtain the target
relation.

2. Among R;’s select Ry which is close to Ro. Here distance
on the tree is determined by the number of edges be-
tween the two nodes.

Example 4: Let us consider the tree query shown in Figure
3. We assume that the target relation R{ABG] is required at
site S;. X=ABG.

1. Let R,—»R;— R,— R, be the linear order of the re-
lations; we assume that relations are processed in this
order.

2. Rz:

(2-1) Select R, as the relation to apply to the join.

(2-2) Broadcast R,[ABC] (A, B, and C are join attri-
butes) and perform a join at S, and semijoins at S;
and S,;. The resulting relation at each site is as
follows:

Ri(ABCD) Ri(BF) R4«(CG)

(2-3) By eliminating R, a new query graph, shown in
Figure 5, is obtained.

(2-4) Process R; and R, by the conventional tree-query-
processing procedure.

3. Atsite S; R[ABG] is obtained.
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Ri<Ro
ABCD
B C
BF CG

R3XRg R4XRa

Figure 5—A new query graph

Since for any query we can use the same order to process
relations, the following concurrency control mechanism can
be used:

Procedure 4: Query-processing procedure for a tree query
preserving global consistency.

1. There is a fixed ordering of the sites. Let Sq, S»,...,S,
be the sequence of the sites in this order. Since we as-
sume that each site does not process queries concur-
rently, at any moment each site processes at most one
query.

2. For each query we use the ordering (Si, Ss,...,S,) to
select sites by Procedure 2. We must consider the follow-
ing two cases in order to apply Procedure 2.

(2-1) After processing R;, we must proceed to R;.1, but
there are cases when R;;; is not contained in the
query. In such cases we need put dummy pro-
cessing of Ri;q in the query.

(2-2) The target site R, may not be R,, which is the last
relation to be processed. In such a case we apply
Procedure 2 as if S, is the target site. After obtain-
ing the result at the site it is transmitted to the
target site.

3. After processing R;, if S;.1 is occupied by another query,
wait until it completes. When R; is assigned to process
query g, it starts to perform joins received from R;
(j <i) for q: (see Example 4).

The pipeline processing is achieved by (1) serial processing
at each site and (2) the serial processing property of the com-
munication bus line.

Theorem 2: Procedure 4 is correct, and it ensures seri-
alizability and deadlock freedom.

Proof: In the method shown in Procedure 4, a mechanism
similar to a special case of the tree protocol is used. Data
items are replaced by sites, and the chain showing the order-
ing (S1, ..., S,) is a special tree structure. Thus, serializability
and deadlock freedom result from the fact that the tree proto-
col satisfies these conditions.

QED

Example 5: Let us consider the tree query shown in Figure
6(a). Here attributes of relations are as follows.

R,(AD) R,(ABCE) R,(BF) R,(CG)

So: Ro(ABCE) S2:Ri14Rs
A C B C

B
S1: Ry(AD) S5: R(CH S3:Rg S5: Rs

S3: R3(BF)

(a) (b)
S3: R3IX(RiPdR2)
o— o
C S5:RiIXR2 and Rs

(c)

Q
S5 : (RiIDdR2)X (R3 X (R R2)) X Rs
= RiD>IRaDR3XRs

d

Figure 6—An example of Procedure 4

We assume that each R; is stored at site S; (i=1,2,3,5) and
that the joins of all relations is R. R is required to be calcu-
lated at site S.. We give a fixed linear order as follows:

51— 8:—>8:—=8,—S;s

Si: Send R; to S,. The resulting query graph is shown in
Figure 6(b).

S,: Perform a join. Select Rs as Ry and broadcast R; ><R,.
At site Ss, RiP<R; is stored. The computation starts
when Ss becomes the site to process the query.

S;: Perform a semijoin and R;P<(R;™MR,) is obtained.
Broadcast R3 < (R] > Rz)

S4: Since R, is not contained in the query, it is used to
synchronize with other queries. No computation is
made at S,.

Ss: Perform a join (R; ™R, from S,, R;><(R;><R,) from
S;, and Rs at Ss) and R is obtained. Send its result to the
S..

A GLOBAL CONCURRENCY CONTROL
MECHANISM USING ADAPTIVE ORDERING
OF SITES

In the previous section we discussed a basic global concur-
rency control mechanism. Since every query has to visit all
sites in a fixed order between the first site and the last site
required, it has the following disadvantages: (1) for each
query the optimal ordering is usually different, so the cost for
processing may become high; and (2) there are queries that
need to visit only a few sites. The base mechanism may require
that several sites be visited which are not used. This produces
unnecessary overhead.

In this section we will develop a mechanism that changes
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ordering adaptively according to the query set. As the net-
work has broadcasting capability, each site can know the sta-
tus of processing at other sites as well as queries in the queue.
By the new mechanism, the ordering of the sites is modified
according to the queries in the queueing list.

We will define a graph showing the order of the sites.

Definition 1: An order graph Go(V,E) is a directed graph.
V is a set of vertices, where v; in V corresponds to site S;. E
is a set of all directed edges. If there exists an edge ¢;; from v;
to v, site S; precedes S; in order. Let V, be vertices in V that
have an incoming edge and/or an outgoing edge.

For the first query for the system we can determine an
arbitrary order of sites. For the second query, sites that are
not used by the first query can be processed in an arbitrary
order. The order determined by the queries currently pro-
cessed is shown by the order graph in Definition 1. When a
new query is added or a query is completed, we can change the
graph to improve the efficiency as compared to the fixed-
order approach. We assume that the order graph is kept by all
the sites.

Procedure 5: Procedure for the order graph modification.

Let V, be a set of vertices corresponding to the sites cur-
rently involved in the query processing. A subset V,, of V,
determined by Case 2 is called a set of vertices whose orders
are modifiable. Initially Vo=@ and V,, = @.

Case 1: When a new query Q is added.

Let S be the set of sites used by Q. We can determine

the ordering of sites as follows:

(1-1) For sites in SN (Vy—V,,) the order does not
conflict with the current order graph.

(1-2) For the sites S N V,, the following graph modifi-
cation process can be applied:

(1-2-1) Let a vertexin S N V,, be v;. We assume that
there are edges e,; and e;,. By the condition
implied when generating a vertex in V,,
each vertex in V,, has an outgoing edge. Add
edge exn.

(1-2-2) Remove ey; and ey, If v; does not have in-
coming edges, Step 1-2-1 is not necessary.

(1-2-3) The position of v; is arbitrary if the new posi-
tion is the successor of the old v;.

(1-3) Forsitesin S but not in V,, an arbitrary order can
be assigned. Since Q is assumed to be a tree
query, we can determine the ordering necessary
to obey the ordering determined by the query
graph as much as possible. Vo U S becomes new
Vo, and V,, — S becomes the new V.

Case 2: When a query Q terminates, sites used by Q
only may be eliminated from the graph. There
are the following two cases.

(2-1) The site used by Q only has an outgoing edge.
We cannot eliminate the vertex corresponding to
the site, but the position of the vertex can be
moved. We put the vertex to V,,,.

(2-2) The site used by Q only does not have an out-
going edge. In such a case we can eliminate the
vertex corresponding to the site from V. This
process is applied recursively until no further
elimination is possible.

Example 4: We assume that the following queries Q, and Q,
are currently processed in the system:

Q;: It uses Sy and S, in the order $;— S,
Q,: It uses Ss, S4, and Ss in the order S;— S;— Ss

We assume that Qs which uses Sy, S, S, and S¢ is added to the
system.

Vo={51, Sz, 53, S4a SS}
V=0
S=1{81, S, S4, Se}

For SNV,=1{S;, Sz, S4}, we must follow the orders deter-
mined by the queries Q, and Q, that is S; — S. The order for
Qs must not conflict with S;—S,. Let the order for Q; be

S$;—S8;—> 56— S,
By merging these orders we get the following order:
Sg"’ S1—> Sz—“) Ss—) Si— Ss

Now we assume that Q, terminates. Sites used by Q; only are
S; and Ss. Since Ss does not have outgoing edges, it can be
eliminated from V,. Since S; has an outgoing edge, V,, = {Ss}.

An outline of the proof of the correctness of Procedure 5 is
as follows. For any currently executing queries the visitation
order is the same, so the process is the same as that in Proce-
dure 4. The problem is caused by queries that have already
terminated when query Q is added. We assume that the last
site of Q is S;. If such a query terminates at S,’s descendant,
it is obvious that it is before Q in the equivalent serial sched-
ule, so there is no contradiction. If it terminates at S;’s ances-
tor, the sites that it used cannot become the descendant of
sites used by Q, so no contradicton occurred.

SUMMARY

In this paper we have shown global concurrency control mech-
anisms for a local network consisting of systems that do not
have concurrency control capability. Because of this assump-
tion we do not use a locking mechanism at each site. The
whole query is decomposed into subqueries at the site where
the query is produced. Since the data flow control can be
expressed in a query, the whole mechanism can be realized by
a so-called query modification approach. The major reasons
why we do not need locking or timestamp mechanisms are
that (1) at each site queries are serially processed and (2) by
observing the data transmitted on the bus line, the status of
the processing can be determined.
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Synapse tightly coupled multiprocessors: A new approach
to solve old problems
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Milpitas, California

ABSTRACT

The theoretical merits of a tightly coupled multiple-processor/shared-memory ar-
chitecture have long been recognized. Two major problems in designing such an
architecture are the performance limitations imposed by shared-memory bus con-
tention in cached processors and multiple-processor data coherency. In the Synapse
system, memory contention was significantly reduced by designing a processor
cache employing a non-write-through algorithm, which minimized bandwidth be-
tween cache and shared memory. The multicache coherency problem was solved by
a new bussing scheme, the Synapse Expansion Bus, which includes an ownership
level protocol between processor caches. Using a non-write-through cache and the
Synapse Expansion Bus, Synapse has designed a symmetric, tightly coupled multi-
processor system, capable of being expanded on line and under power from two
through twenty-eight processors with a linear improvement in system performance.
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INTRODUCTION

Imagine being able to plug dozens of processors together, and
have them become a single, logical, transaction-processing
entity. The significant tasks of load balancing and system
tuning would be an impossibility in current efforts to use
multiple, loosely coupled microprocessors in on-line trans-
action processing.

With the new Synapse mainframe system,"” designed for
high-performance database transaction processing, as many
as 28 processors can share a common, fault-tolerant memory
system. The more processors there are, the faster a common
transaction job queue is handled. Measured results with many
processors have shown that incremental processing power has
increased additively with more processors. In other words,
four processors linked together produce the same computing
power as four independent processors, a ten-processor Syn-
apse system has the power of ten processors, and so on. The
key to the Synapse Expansion Architecture approach is a
focus on the nature of on-line transaction processing, and a
new look at bus arbitration and caching in tightly coupled
systems.

HISTORICAL ASPECTS OF CACHING

Memory hierarchies in the form of cache memories are used
in most current computer systems to improve processor per-
formance. Cache memory temporarily holds the in-use con-
tents of main memory. Data present in cache memory can be
accessed by the processor in much less time than if located in
main memory. Thus, processor performance is increased,
since less time is spent waiting for instructions and for data to
be fetched. Typically, cache memory can be accessed 5-10
times faster than main memory.

Increases in performance due to cache memories are ex-
plained by the properties of temporal and spatial locality.
Temporal locality, or locality by time, means that data refer-
enced in the near future are likely to be in use already. Tem-
poral locality is exhibited by program loops in which instruc-
tions and data are reused. Spatial locality, or locality by space,
means there is a high probability of making references in the
near future that are close to the locations of the current refer-
ence. This behavior is influenced by some common character-
istics of programs: Instructions are mostly executed se-
quentially, and related data items, such as arrays, are stored
together.

Optimizing the design of cache memories has four aspects.>
They are (1) maximizing the hit ratio, (2) minimizing the
access time to cache data, (3) minimizing delay due to a cache
miss, and (4) minimizing the overhead of updating main

memory and maintaining cache coherency. Optimizing these
aspects maximizes single processor performance by min-
imizing the average processor memory access time. Band-
width between the cache and backing store (memory) is often
larger than would be necessary without a cache.

MULTIPLE-PROCESSOR CONSIDERATIONS

When designing a system where more than one processor
share common memory (Figure 1), a major limiting factor on
system performance is the number of processors that can
share memory effectively. The limiting factor on the number
of processors is the bus bandwidth and, in turn, memory
contention. As memory contention increases, the average
memory access time increases, and the performance of each
processor decreases.*® It became clear that the design goals
required to maximize the performance of the Synapse multi-
processor system were to maximize bus and shared-memory
bandwidth, and to minimize the bus bandwidth required per
processor. More specifically, in order to meet these goals, the
most critical aspect of the Synapse multiprocessor, shared-
memory cache design, was to minimize bus bandwidth use
between cache and shared memory.

Techniques for maximizing bus and shared-memory band-
width are straightforward. A description of how the Synapse
Expansion Bus (XBUS) meets these goals is described later in
this article. A more significant problem is that of designing a
cache that minimizes bus bandwidth use per processor.

NON-SHARED CACHE

MEMORY

|
| | |

CACHE CACHE CACHE

CcpPU CPU CPU

Figure 1—Multiple processors sharing common memory
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WRITE-THROUGH VS. NON-WRITE-THROUGH

Extensive studies have been conducted on the effects of stan-
dard cache design parameters (such as cache size, block size,
set associativity, prefetch and fetch algorithms, and replace-
ment algorithms) on the bandwidth between cache and
memory.>”® Two different techniques for processing write
operations have significantly different effects on bus band-
width between cache and memory.

In the write-through method of write operations, a pro-
cessor write to cache is immediately written through to shared
memory. This method is used in systems such as the IBM 3033
and the VAX 11/780.

In the non-write-through method,>*® processor reads and
writes are treated alike: If the block to be written is currently
not present in the cache, it is copied from shared memory. All
subsequent read or write accesses to this block are processed
by the cache until such time as selected by the replacement
algorithm. At this time the data are written back to shared
memory. Data need not be written back to shared memory if
they were not modified. A single cache access by the pro-
cessor can potentially cause zero, one (read), or two (purge
old block, read new block) accesses to shared memory.

The advantage of the non-write-through algorithm is that
the access rate between the cache and shared memory can be
reduced to any value by a sufficient increase in cache size. In
contrast, in the write-through method, the access rate be-
tween cache and shared memory can only be reduced to the
write access rate of the processor. Instruction mix analyses
show that write accesses vary from 10% to 30%, depending on
processor architecture and application. Therefore, when
write-through is used, a minimum 10-30% of processor acces-
ses also generate accesses to shared memory. The non-write-
through approach results in a three- to tenfold reduction in the
transfers between cache and shared memory.

THE MULTICACHE COHERENCE PROBLEM

Unfortunately, in a multiple-cache/multiple-processor sys-
tem, both methods of cache write operation run into diffi-
culties with memory coherence (Figure 2). A shared-memory
scheme is coherent if the data returned on a read are always
the data last written to the same address.>**°

As a specific example, assume that in a two-processor sys-
tem, two caches use the non-write-through method and share
memory connected by a common bus. Let “A” be the mem-
ory address of a block of data which is read and modified by
both processors. A modification of the contents of address
“A” is done by processor “0” in its cache, but the result is not
transmitted to memory. A subsequent read of address “A” by
processor “1” causes cache “1” to read the contents of “A”
from shared memory, which contains stale data for address
“A.” There are several possible solutions to this:

First, all processors in the system can use a shared cache
{e.g., the Univac 1100/80 has two processors sharing one
cache). This solution is not feasible because the bandwidth of
a single cache is not sufficient to support a large number of
processors. In addition, longer cache access time delays are

MEMORY A (LT

AT
CACHE

AI1H
CACHE

CPU CPU

Figure 2—Multicache coherency

incurred, because the shared cache cannot be physically close
to all processors.

Second, each time a processor performs a write to the
cache, it broadcasts the write to all other caches in the system.
If the address is found in another cache, it can be invalidated.
The IBM 3033 processors use invalidation. The major draw-
back to broadcasting all writes is that an increase in bus band-
width is required (write-through method).

Finally, software control can be used to guarantee coher-
ency. Certain addresses containing such items as semaphores
or a job queue can be designated noncacheable and can be
accessed only from shared memory. The drawback of non-
cacheable data is that the access time between the processor
and shared memory is substantially increased. Thus, for effi-
ciency, some shared data must be cached. The processor must
then be equipped with commands that allow it to purge any
address from its cache. An additional disadvantage of this
technique is that the caching mechanism is no longer software-
transparent. The Honeywell Series 66 and Elxsi 6400 system
use similar techniques.

THE SYNAPSECACHE

The Synapse System uses a fourth method, ownership, to
solve the multicache coherence problem. The processors
(general-purpose—GPP, and input/output—IOP) and the
XBUS implement a distributed ownership protocol to ensure
that no data are write-shared. In addition, GPP caches use the
non-write-through method to minimize required bandwidth
between cache and shared memory. The protocol allows data
to shift dynamically from multiple-cached copies in a read-
only mode, to a single copy, which can be modified. System
performance is optimized by aliowing efficient sharing of data
while minimizing the overheads of multicache coherence.
Figure 3 is a block diagram of the Synapse N + 1 system.
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SYNAPSE EXPANSION ARCHITECTURE
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Figure 3—The Synapse N + 1 system

Two types of processor module, GPP and IOP, access shared
memory via the XBUS. Each processor type uses the Motor-
ola 68000 microprocessor as its instruction engine. Shared
memory is the repository for the operating software, applica-
tion programs, control structures, and lists used by several
processors to schedule system activities. Shared memory can
be expanded in 1-mbyte increments for a total of 16 mbytes
distributed over as many as four main memory controllers
(MMCs). Each MMC contains a 15-entry job queue to handle
multiple requests and to pipeline requests with responses.
The GPP is the instruction processor that executes user
programs and the majority of the operating software from
shared memory. Each GPP includes a 16-kbyte non-write-
through cache, which increases processor performance while
minimizing XBUS use. Each cache participates in the bus
ownership protocol to ensure data coherency. Other functions
include a paged-address translation and protection scheme
implemented with an address translation cache.

The IOP also interfaces to the XBUS and accesses shared
memory. Each IOP has a private, 512-kbyte local memory in
which a portion of the operating system software resides.
Each IOP manages up to 16 device controllers including Ad-
vanced Communication Subsystems (ACSs), Disk Control-
lers, and Multiple Purpose Controllers (MPCs). Even though
the IOP does not contain a cache, it also participates with
GPPs and MMCs in XBUS ownership protocol.

SYNAPSE EXPANSION BUS: UNIQUE FOUR-LEVEL
PROTOCOL

The XBUS consists of two independent buses, which ensure
the highest possible system availability. The buses are identi-
cal, allowing accesses to be interleaved on both buses, but can
be used singularly when one bus fails. The XBUS provides
checked parallel information transfer, synchronous with a
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common system clock (in actuality, dual clocks for fault-
tolerance reasons), but asynchronous with respect to device
read and write cycle times (deferred response). Words of
32-bits are transferred at a 10-MHz rate simultaneously on
each bus, with bus transactions consisting of one quadword
(four words, or 16 bytes). Total bandwidth of both buses is 64
Mbytes/second when address overhead is accounted for.

XBUS protocol can be broken down into four levels: elec-
trical, signal, transaction, and ownership. Most single-
processor bus protocols consist of the first three levels. The
ownership level protocol supplies the additional logical inter-
face required to allow several processors to share memory,
while maintaining data coherency. The ownership level proto-
col is implemented in a distributed manner among GPPs,
IOPs, and MMCs, to allow incremental on-line system
expansion.

ELECTRICAL AND SIGNAL LEVEL PROTOCOL

XBUS data and control signals are implemented using the
Schottky TTL logic family. System clocks are distributed
using differential ECL technology. Each bus consists of 61
signals, which are divided into three signal groups: arbitra-
tion, information transfer, and acknowledge.

XBUS arbitration uses a unique binary tree technique to
allow one-clock synchronous arbitration of up to 64 devices
using only nine signal lines, rather than one signal per device.
Arbitration policy has two priority levels, with responses at
the higher level and requests at the lower level. Within each
level, priority is by device slot number with round-robin en-
forcement allowing all requesting devices access to the bus
before any device can gain a second access.

The information transfer group consists of a four-bit com-
mand field, a 32-bit address and data field, and a six-bit
requestor—number field. Each field is protected by at least
byte parity. The requestor—number field contains the card slot
number of the transmitter for requests and the requestor card
slot number for responses.

The acknowledge group allows the receiver to communicate
to the transmitter that the data or addresses have been trans-
ferred correctly and accepted. The acknowledge group is al-
ways valid two timeslots (clock periods) after the data are
transferred. The receiver signals a negative acknowledge code
to the transmitter if parity or protocol errors are detected. If

the receiver is unable to execute the transmitted command, it
signals a busy acknowledge, which causes the transmitter to
retry the command after a retry interval. For example, if the
MMC job queue is full, a read request from a GPP would be
busied. Ownership protocol uses the busy acknowledge to
serialize simultaneous requests for the same quadword ad-
dress. Busy acknowledges are infrequent in normal system
operation.

TRANSACTION LEVEL PROTOCOL

There is a fixed, pipelined, timeslot relationship between arbi-
tration, information, and acknowledge groups. For the infor-
mation group transmitted during timeslot “n,” arbitration
takes place during timeslot “n—1,” and acknowledge takes
place during timeslot “n + 2.”” All bus transactions are broken
into unidirectional transfers, called exchanges. The six types
of exchanges are read-request-public, read-request-private,
read response, write-modified, write-unmodified, and write
new data. The unidirectional nature of XBUS exchanges max-
imizes the efficiency of bus and shared-memory use by allow-
ing up to 64 pending interleaved requests.

A read transaction consists of a read request followed by a
deferred read response. Figures 4a and 4b show the timing
relationship between the three signal groups. The request
consists of one timeslot of address and the response consists
of four timeslots of data (16 bytes). Note that the timeslots
between the read request and deferred response are variable
and are available for additional exchanges initiated by other
processors.

Bus timing for write exchanges is shown in Figures 5a and
Sb. Write-modified and write new data consist of one timeslot
of address and four timeslots of data. The write-unmodified
consists of one timeslot address only. The pipelined nature of
arbitration, data transfer, and acknowledgement is illustrated
by multiple read and write exchanges in Figure 6.

OWNERSHIP PROTOCOL

The key to Synapse’s ability to allow a large number of tightly
coupled processors to execute in a linear, performance-
additive manner is the XBUS ownership protocol and its
implementation in the GPP, IOP, and MMC. This protocol is

Relative Relative
Relative 1| 2|3 |a|5s |6 | 7] s Relative 1| 2| 3| a|5s5 |6 7|8
Arbitration Arbitration
Group arb Group arb hold | hold hold
information read Information data data data data
Group addr Group word0 wordl | word2 | word3
Acknowledae ack Acknowledge sck 2ck ack ack
Group addr Group word0 | word1 | word2 | word3

Figure 4—A read request (a) followed by a deferred read response (b)
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Figure 5—The write transaction (a) includes four words of data; the write-unmodified transaction (b) does not include data
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Figure 6—Multiple read and write exchanges

made up of a basic set of general concepts that can be imple-
mented in a straightforward manner on all XBUS devices.
The physical shared-memory system is partitioned into

quadwords of 16 bytes each. Each quadword is identified by .

a unique physical quadword address. All data transfers in-
volve one complete quadword. Partial transfers (bytes, half-
words, or words) are not supported on the bus, although
cache—processor transfers of these types are, of course, pro-
vided. For each physical quadword address in the system,
there is one XBUS device that is said to be the current owner
of that quadword address. By definition, the owner of a quad-
word address always has the correct value of the quadword
data for that address.

Each quadword address in the system also has a usage mode
of public or private associated with it. The usage mode of a
quadword address applies to any and all copies of the quad-
word data for that address. If the usage mode of a quadword
address is public, then the shared memory is the owner of the
quadword address and has the correct data for that address;
other XBUS devices may have copies of the quadword data
for the quadword address, and these copies are guaranteed to
be correct; and the value of the quadword data for the quad-
word address cannot be modified by anyone.

If the usage mode of a quadword address is private, then the
owner of the quadword address has the correct quadword data
for that address and can modify it in any way, and there are
no other valid copies of the quadword data for that address in
the system. A

The current owner and usage mode of a quadword address
will change dynamically as the system executes. The owner-
ship and usage modes of a quadword address can always be
determined from the last bus transactions that occurred for
the given quadword address.

EXAMPLES OF SYNAPSECACHE QUADWORD
OWNERSHIP

The following set of examples illustrates the ownership level
protocol using three GPPs and one MMC. At the start of this
sequence, the memory is the owner of quadword address
“A.” The GPPO cache issues a read request public, and the
shared memory responses with quadword data for address
“A” (Figure 7). Quadword address “A” is still owned by
shared memory with a public usage mode. The GPPO cache
has a copy of quadword “A,” which cannot be modified. In
Figure 8, a second read request public is issued by GPP1 cache
with the owner, shared memory, responding with quadword

[A]
SHARED
MEMORY
READ A ,
EXPANSION
./ BuUsS
l RESP.
CACHE iA] [ CACHE CACHE
GPP, GPP, GPP,
Figure 7—The read-request-public exchange
LY
SHARED
MEMORY
{ EXPANSION
BUS'
RESP. READ A
y
CACHE -2 CACHE {24 CACHE
GPP, GPP, GPP,

Figure 8—A second read-request-public exchange
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data for “A.” At the end of the second read public trans-
action, both caches (GPP0 and GPP1) contain read-only co-
pies of quadword “A” with a public usage mode. Shared
memory is still the owner. Most requests in the system are
public (70-80%) for such items as processor instructions and
read-only data. In general, the public usage mode ailows data
that are not being modified to be shared by all processors with
no interference. Since shared memory owns quadword “A,”
the cache just invalidates the entry corresponding to quad-
word address “A” when it must be purged.

GPP2 next decides it must modify quadword address “A.”
The GPP2 cache issues a read private to transfer ownership of
quadword “A” from shared memory, with shared memory
responding with quadword “A” data. GPPO and GPP1 caches
monitor the XBUS for all exchanges corresponding to cached
quadwords. When GPP0O and GPP1 detect the read private
“A,” public copies of quadword “A” are invalidated in real
time. Figure 9 shows the result of GPP2’s read private ex-
change: GPP2 owns quadword “A,” with a private usage
mode, and has the only correct value of quadword “A” data;
shared memory no longer owns quadword “A,” and the GPP0
and GPP1 public copies are invalidated.

GPPO next requires that it modify quadword address “A.”
The GPPO cache issues a read private to transfer ownership of
quadword “A.”” The GPP2 cache bus monitor detects a read
private to quadword “A,” which it owns with a private usage
mode, and so issues a cache acknowledge to GPP0. The GPP2
cache then responds directly to GPP0 while also transferring
ownership. This is a direct cache-to-cache transfer. Shared
memory has ignored the read request for quadword “A” be-
cause it is not the owner. This is accomplished by an addi-
tional mode bit for each quadword. Storing the mode bit adds
one 64-kbyte dynamic RAM per one megabyte memory,
which implies a memory overhead of less than 1%. The results
of this exchange are shown in Figure 10. GPPO is the owner of
quadword “A,” with a private usage mode; GPP2 no longer
owns quadword “A”; and shared memory is not involved in
the transaction.

If GPPO needs to purge quadword “A” to make room for
another entry, it must return the ownership, and the correct
data, to shared memory. If the data have been modified,
GPPO issues a write-modified exchange, which returns both
ownership and data to shared memory. If the data have not

SHARED
MEMORY
1l RESP.
EXPANSION
{ READ A ] BUS
Y HR
CACHE X CACHE X CACHE 2]
GPP, GPP, GPP.

Figure 9—Public-to-private transition
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CACHE [A| |CACHE _ CACHE
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Figure 10—Cache-to-cache response

been modified, GPPQ issues a write-unmodified command,
which returns ownership to shared memory and uses the last
value of the data in shared memory as the current correct
data.

If GPP2 cache issues a read public request (Figure 11a),
GPP0’s bus monitor detects a public request for quadword
“A” with private usage mode and issues a busy acknowledge
to GPP2. The GPP0 cache then passes quadword “A” own-
ership and data back to memory using a write-modified or a
write-unmodified exchange. GPP2 then reissues (Figure 11b)
the read public request (since it was previously busied) and
memory responds with quadword “A” data. At the end of this
sequence, shared memory owns quadword “A,” the GPP2
cache contains a public copy of quadword “A,” GPPO no
longer owns quadword “A,” and its copy has been invali-
dated. Transitions of the usage mode from public to private or
private to public between GPP caches occur very infrequently.

Several requests for the same quadword address are auto-
matically handled, since the current owner of the quadword is
responsible for acknowledging each request it owns. If a re-
quest is received for a quadword address for which a response
is already pending, the current owner (who is waiting for the
response) is responsible for issuing a busy acknowledge to the
requestor. The requestor will reissue the read request after a
retry period.

The IOP reference characteristics are markedly different
from the GPP’s. The nature of IOP accesses is to move large
contiguous blocks of data, to or from shared memory, which
exhibit little temporal locality. For example, disk data are
transferred in multiples of disk sectors which are 2 kbytes
long. One strategy in order to modify a quadword in shared
memory would be to have the quadword read privately first
and then written with the write-modified command. This is
inefficient because the quadword data read are immediately
replaced with new data and will not be referenced again by the
IOP. A solution to this problem is to create a command to
allow the quadword data to be written directly to memory
without requiring a read request private to gain ownership and
still maintain memory coherency. The write new data com-
mand steals ownership of the quadword address from the
current owner and transfers ownership to shared memory. All

“public or private cache entries corresponding to the quadword

address of the write new data are invalidated.
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Figure 11—Read public request (a) causes the owner to busy the request; (b) shared memory responds to subsequent request

GPP IMPLEMENTATION

The GPP is a single-board, Motorola 68000-based processor,
which serves as the execution unit for system software and
application programs. The major GPP subsystems are shown
in Figure 12. The 68000 subsystem includes a 10-MHz 68000,
32-KB EPROM for selftest, timers, and two serial ports that
can be used for a system debugger and local console.

The remainder of the GPP is controlled by a microengine,
which includes a 1-kbyte-by-72-bit-wide microinstruction
word and special-purpose data paths. The microengine con-
trols all GPP datapaths, implements the address translation
mechanism, controls the address translation cache, controls
the data cache (including algorithms), and controls the XBUS
interfaces and monitors.

The GPP cache permits reads and writes by the 68000 with
no wait states for cache hits. It is physically separated into
quadword address tag RAM, including address comparitors
and quadword data RAM. Figure 13 illustrates the GPP cache
organization. Three mode bits included with the cache ad-
dress tags are the valid bit (which indicates that the corre-
sponding cache entry is allocated), the usage mode (private or
public) bit, and the data-modified bit. The generation of ad-
dress tags, cache replacement algorithms, and transfer of data
between the quadword data RAM and the XBUS is controlled
by the microengine.

(EXPANSION BUS A} (EXPANSION BUS B))

Cache size is 16 kbytes divided into blocks of one quadword
(16 bytes). The cache is two-set associative and uses the non-
write-through method in conjunction with XBUS ownership
protocol. The replacement algorithm is random between
sets.>®

Dual XBUS interfaces allow data to be transferred between
the shared memory or another processor and the GPP data
cache. Each XBUS interface contains bus monitor logic,
which monitors all exchanges on each bus. Data cache tags are
replicated (for a total of three copies of the cache tags) in each
bus monitor, to allow the tags to be accessed and updated in
parallel with 68000 execution. The bus monitor provides two
types of functions. A real time function includes invalidation—
validation or acknowledgment of read requests based on ex-
changes with quadword addresses corresponding to cache en-
tries. When a response is required, the bus monitor queues
the address and issues an interrupt to the microengine. The
microengine then initiates the response by controlling transfer
of the data from the data cache to the XBUS interface.

CONCLUSIONS

Why did Synapse go to the trouble of tying multiple proces-
sors—tightly coupling them—to a shared-memory system?
One reason is that the interprocessor communication that
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arises in a loosely coupled multiple-computer system signifi-
cantly reduces the total system’s performance. This inter-
processor communication does not appear in the Synapse
tightly coupled multiprocessor architecture. Fault tolerance in
a multiple-computer system requires excess processing capa-
bility that does not directly contribute to the production envi-
ronment. In contrast, the N+ 1 multiprocessors of the
Synapse system all directly contribute to the total system’s
performance in a fully operational system.

In addition, a large part of the effort in designing and imple-
menting on-line transaction processing applications for loose-
ly coupled systems is in the areas of system growth, tuning and
load balancing, and file distribution. A tightly coupled archi-
tecture automates these areas, thereby accelerating project
development and reducing project costs. The system can grow

on line because distributed ownership protocols allow mod- .

ules to be added or deleted under power; it requires no load
balancing or tuning because all processes are dispatched from
a common list in shared memory; and it requires no file distri-
bution because all files are equally available to all processors.

The Synapse XBUS ownership protocol is designed to min-
imize bus bandwidth required per processor (GPP or IOP),
while maintaining memory coherency. The non-write-through
algorithm always produces less bus traffic than does the write-
through algorithm for caches larger than 1-2 kbytes and block
sizes that are not too large. The 16-byte quadword block size
is a tradeoff between minimizing bus traffic (small block size
is better) and maximizing cache hit rate. Cache allocation
algorithms are optimized such that most quadwords are
fetched with a public usage mode that has two positive per-
formance effects. First, since public quadwords are read-only,
they need not be written to memory when purged from cache.
Second, several GPPs can have public copies in their in-
dividual caches, without interfering with each other. Single-
processor modification of quadword data is handled effi-
ciently. Concurrent write access to a quadword has been
infrequent in operating the Synapse system.

Measurements during system operation have verified that
bus bandwidth use per processor is very low. The percentage
of Synapse XBUS bandwidth used per GPP has been mea-
sured at 2% of the total bus bandwidth. Performance has
increased linearly with each processor added. During that

time, the cache hit rate was found to be in excess of 95%.

A final advantage of the Synapse bus ownership protocol is
that it allows future flexibility in the actual algorithms used by
GPP caches. Because of the non-write-through algorithm, bus
bandwidth used by any processor can be further reduced by
increasing the cache size.
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Throughput of multiprocessors with replicated shared
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ABSTRACT

Multiprocessors with replicated shared memory use a memory structure consisting
of a set of memories, one for each processor, with identical contents. This minimizes
read interference since each processor simply accesses its own private copy of the
shared memory. To ensure shared-memory integrity, write requests transfer data to
all copies in parallel. Compared to traditional shared memories, multiprocessors
with replicated shared memories may achieve a speed-up which approaches O(N),
with N equal to the number of processors. This speed-up occurs for systems with
large N, a small number of shared memories, and large shared-memory use and
fractions of read requests.
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INTRODUCTION

Multiprocessor computers provide the potential for increased
performance through concurrent computation, and for in-
creased fault tolerance through hardware redundancy. Theor-
etically, a multiprocessor computer with N processors should
achieve an O(N) speed-up compared to a uniprocessor com-
puter. Of the several factors limiting multiprocessor speed-up,
the interprocessor interference of shared memory signifi-
cantly degrades performance. One method to minimize
memory interference involves use of replicated shared-mem-
ory structures. Rather than a single memory, replicated
shared memory consists of a set of memories, one for each
processor, with identical contents. Reads may occur concur-
rently since each processor accesses its own copy. To maintain
shared memory consistency, writes update all copies in paral-
lel, and require arbitration and synchronization. Replicated
shared memory structures increase multiprocessor throughput
because of decreased interprocessor interference. In addition,
these shared-memory structures may provide for increased
fault tolerance because of multiple copies. Still, given a multi-
processor computer with replicated shared-memory struc-
tures, which application characteristics affect the increase in
throughput, and to what extent? These questions will be stud-
ied in this paper.

A following section of this paper reviews previous work in
replicated shared-memory structures and outlines a through-
put model used to determine the speed-up of such memories
compared to single memories. Next, some definitions and an
example are provided to describe the parameters of an appli-
cation. Using these definitions, the last section discusses the
speed-up of generalized, symmetrical multiprocessors with
replicated shared memories.

BACKGROUND

Experience with multiprocessor computers has shown de-
signers that minimizing interprocessor interference is one of
the keys to exploiting parallelism. To minimize interference,
several techniques have been investigated including crossbar
switches, reconfigurable busses,' and multiport memory. The
latter, multiport memory, requires several sets of address,
data, and control busses, one for each port. Both Covo® and
Pearce and Majithia® have suggested that memory replication,
a copy for each port, may be used as a multiport memory
structure. More recently, Lillevik et al.* have presented guide-
lines for the design of multiport memory using replication
techniques.

One specific example of the decrease in bus interference
provided by replicated shared memory is in implementing

global data such as semaphores. Usually, semaphore “busy
waits”’ require consecutive accesses of the system bus. But
with replicated shared memory, processors first read their
local copy of the semaphore until released (which does not use
the system bus), and then perform a “locked” read-modify—
write cycle (which does use the system bus). This feature has
led Borrill’ and the IEEE P896 Future Bus Committee to
consider supporting replicated shared memory in their stan-
dard.

Replicated Shared Memory Example

At Oregon State University, a five-processor computer has
been developed and is in operation to investigate replicated
shared memory structures.® From the PMS diagram in Figure
1, the system contains five 8086/8087 microprocessors inter-
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Figure 1—PMS diagram of a multiprocessor with replicated shared memory
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connected with Intel’'s MULTIBUS. Each of the five pro-
cessors contains 256 Kbytes of dynamic random access mem-
ory (RAM) of which 128 Kbytes is shared. The multiprocessor
functions as follows: For reads from shared memory, each
processor accesses its own copy of RAM using a resident bus,
but for writes to the shared memory, the MULTIBUS pro-
vides an arbitration protocol and data path for broadcasts. In
this case, all of the shared RAMs become slave resources and
data are transferred on the bus to all slaves in parallel. In
Reference 6, the authors point out that each processor,
memory copy, and set of switches could be integrated on a
single chip as a versatile building-block for multiprocessor
computers.

Multiprocessor Throughput Model

To assess the performance of multiprocessors, Lillevik et
al.” have developed a model of throughput under conditions
of interprocessor interference. The model assumes a hard-
ware environment of N processors connected to M shared
resources (memory, coprocessor, input-output, etc.) as
shown in Figure 2. In this figure, notice that each processor
also connects to local or resident resources, and that an N x M
conflict-free interconnection network links the processors to
the shared resources. Besides N and M, the model considers
the bandwidth ratios of processors to shared and resident
resources, the priority assignment of processors, and the use
of shared and resident resources by processors. This stochastic
model combines the above information, considers interfer-
ence conditions, and generates individual processor and total
system throughput.

Basically, the model functions as follows: For each possible
combination of requests for shared and resident resources
(which describes one of many possible system states), some
processors will experience a delay because another processor
has higher priority. The sum or union of the probabilities of
occurrence of those states causing processor delay then equals
the total probability of delay for the time interval of interest.
And one minus this delay indicates the probability of no delay
or the average throughput for a specific processor. To deter-
mine the probability of occurrence of a specific state, the
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Figure 2—A multiprocessor computer block diagram

model considers the intersection event that all of the pro-
cessors are accessing the resource as defined by that state.
Since the individual processor requests are assumed indepen-
dent, the probability of occurrence of a state equals the prod-
uct of individual processor occurrences. These individual
probabilities of occurrence may be determined from the use of
shared and resident resources by processors. Using the experi-
mental multiprocessor described above, Easterday has col-
lected laboratory data to verify the model.® For total shared
resource use of 60-70%, the error is less than 3%, and at
saturation (100%) it increases to 10%. This results from the
assumption on independence, which begins to fail at higher
use because the hardware queues requests. The model has
been programmed on an HP-1000, which requires, for exam-
ple, approximately 20 seconds for an N = 16 and M = 16 mul-
tiprocessor.

DEFINITIONS

Algorithms intended for execution on multiprocessor comput-
ers seek to exploit the inherent parallelism of the application.
Typically, programmers separate the problem into several
tasks, which may either execute concurrently or which may
require a strict sequential order. The operating system must
manage the tasks and resolve such dilemmas as mutual exclu-
sion of shared resources, intertask communication, and task
synchronization and scheduling. Although the interaction of
the hardware and software changes dynamically, an approxi-
mate description may consider it constant over an interval of
time. Fundamentally, one may characterize a multiprocessor
system in terms of the hardware involved and its extent in
solving a problem. To represent this involvement, consider
the following:

Definition 1

A multiprocessor algorithm A (N, M, U) describes over an
interval of time the interaction of N processors connected to
M shared memories, where the use of each memory by each
processor may be found from an N X M matrix U defined as
follows:

U=|:uu"’u1M]

Uny " UM

with u,..,, = probability that processor n accesses shared
memory m. As probabilities, the sum over m of the u,,, must
be less than or equal to one. In fact, processors access resident
resources with probability one minus this sum. Notice that the
definition of U exactly parallels the role of processor use as
described for the model of the previous section. Since access
to a shared memory may contain both read and write requests,
as defined by the instruction mix, each u,,, actually consists of
two factors as follows:

Definition 2

Each element u,,, of utilization matrix U contains a read
utilization r,,, and a write utilization w,,, such that
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Unm = Tom + Wom ey

where 7,,, = probability that processor n requests a read from
shared memory m, and w,,, = probability that processor n
requests a write to shared memory m. Furthermore, let o,
represent the fraction of read requests compared to total re-
quests,

Tnm Tnm
O et Wom @
The above definitions provide a method to determine the
speed-up of multiprocessor computers with replicated shared
memories compared to single or conventional shared memo-
ries. Since replicated shared memories provide nearly
conflict-free read requests, the read fractions a..., may be used
to determine a modified utilization matrix U’, which depends
on a given application. Specifically, consider the next defini-
tion.

Definition 3

A modified N X M utilization matrix U’ represents the ef-
fect of replicated shared memories as follows,

U= [“il'"“{‘,“ ]
UNn1 " UNm.
where u,» = probability that processor n requests a write to
replicated shared memory m.
Using Definition 2 and Equations 1 and 2,

Uy = Wom

= Uy (1 — otym) 3)

In Equation 3, the u.. represents reduced values of the u,,.
because some fraction a,,,, of the total requests for a replicated
shared memory are nearly conflict-free—the reads—and es-
sentially accesses to a resident memory.

From Definitions 1 and 3, an expression may be developed
for the speedup of a multiprocessor with replicated shared
memories compared to single, conventional shared memories.

Definition 4

Let T(a) represent the throughput of a multiprocessor exe-
cuting algorithm “a.”” The speedup S of a multiprocessor with
replicated shared memories compared to conventional, single
memories may be found from

AGY)
S = T ( ) 4)
where A’ =an algorithm defined with modified utilization

matrix U’, and A = an algorithm with utilization matrix U. In
Equation 4, the throughput T(A’) will be greater than
throughput 7(A) because fewer memory accesses will result
in interference. To determine numeric values for Equation 4,
the model presented in the previous section may be used.

FFT Example

To solidify the definitions and methodology of the previous
sections, consider a multiprocessor implementation of an
eight-point fast Fourier transform (FFT) as shown in Figure 3.
Each output value will be found by a specific processor, so the
assumed hardware consists of N = 8 processors. Also, it will
be assumed that a single shared memory (M = 1) holds the
initial, intermediate, and final data of all processors. At each
node in the figure, a processor must complete a computation
of the form:

y(l,m)=y(l—1,m1)+W’y(l—1,m2) (5)

where | = node row, m = node column, and m,, m,, r, W are
constants.

If in Equation 5, each operation requires one instruction
fetch, two argument reads, and one resultant write to mem-
ory, then the total number of memory accesses for 3 nodes
equals:

R =total number memory requests for one processor
= (2 ops)(1 fetch + 2 reads + 1 write)(3 nodes)
=24

Next, assume the 6 instruction fetches are from resident
memory. Thus, from Definition 1

X(0) o

I\ ) Y(0)

X(1) o vv ’ Y(4

x(2) Y(2)

O'I ‘
XXX o o
IOA\)

X(8) Y(3)

, AA
ANSE

Figure 3—Signal flow graph for an eight-point FFT
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24-6

u,.,,.=—R—=0.75; IsnsN M=1
0.75
0.75
U={" (6)
Loﬁs

Of the 18 accesses to shared memory, 12 involve read requests
and 6 involve writes; hence, from Definition 2

5

Onm =18 = 0.33

and from Equations 2 and 1

Frm = Oy U = 0.25, with

Wom = Unm —Tmm=0.50; forlsn<=sN, M=1

From Equation 3, the modified utilization matrix U’ may be
determined as:

r0.5
0.5

v=| - ™

0.5
From Equations 6 and 7, the eight-point FFT application may
be characterized as A(N, M, U) and A'(N, M, U’). Using the
two utilization matrices U and U’ in the model produced the
following result,

TA’) _4.9

s T me—— T — .
T(A) 2.9 1.66 8)

Thus, in Equation 8, the use of a replicated shared memory .

produced a speed-up of 1.66, or a 66% increase in throughput.
For this example of an eight-point FFT, this implies that the
hardware could sample data at a 66% greater rate.

The obvious question at this point is “How realistic a result
does this represent?” Clearly, the processors require syn-
chronization to share memory and intermediate data. In addi-
tion, the multiplication operations require more time than the
additions, and neither of the operations may require three
memory accesses for arguments. And what about the inherent
error of the model itself? All of these factors and others
modify the results somewhat, but Equation 8 represents a
first-order, approximate speed-up and possibly an upper
bound on the problem. Thus, the example serves a useful
purpose and illustrates the methodology involved in the anal-
ysis of multiprocessors with replicated shared memories.

SPEEDUP OF SYMMETRICAL MULTIPROCESSORS

From the results of the previous example, clearly the use of
replicated shared-memory structures with multiprocessor
computers provides the potential for significant speed-up.
This section will discuss several unanswered questions: Was
the eight-point FFT example an isolated case? More precisely,
can speed-up be determined for the more general case? What
are the key application characteristics that influence speed-
up, and how much speed-up can be expected? To answer these
and other questions, one must begin with a set of assumptions
about the hardware and software of the multiprocessor com-
puter.

Rather than consider an unlimited number of combinations
of N processors, M shared memories, and various utilizations
and read fractions, we will analyze symmetric multi-
processors. Here, each processor divides its memory accesses
equally between the M shared memories. In addition, we will
vary the read fraction a,, over the range 0.1<a,, <0.9.
Also, we will let the number of processors and shared memo-
ries be less than or equal to five. Using the above assumptions,
utilizations for various numbers of shared memories and read
fractions may be found in Table I. The first column in this
table corresponds to processor use of conventional memories,
and the remaining columns correspond to processor use of
replicated shared memories (which change with the read frac-
tion). For example, an N =3 and M =2 system with read
fraction a,, = 0.7 would correspond to the following utiliza-
tion and modified utilization matrices:

05 05
U=|05 05
0.5 05
0.15  0.15
U'=0.15 0.15
0.15 015

By using Equation 4 and the model discussed in the previous
section, a table of speed-ups may be developed to provide a
database for the following discussions (see Table II).

The speed-up as a function of read fraction for several
values of the number of processors (and constant number of
shared memories, M = 2) is shown in Figure 4. In all cases,
the speed-up begins at zero percent for read fraction zero, and

Table I—Use factors for various numbers of memories and read

fractions

M a__, Read Fraction

Memories 0.0 0.1 B.a 0.5 0.7 0.9
1 1.00 0.90 0.70 0.50 0.30 0.10
2 0.50 0.45 0.35 0.25 0.15 0.05
3 0.33 0.30 0.23 0.16 0.10 0.03
i 0.25 0.22 0.17 0.1z 0.67 0.02
[ 0.20 0.18 0.14 0.10 0.06 0.01
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Table II—Percent speed-up for various numbers of processors,
memories, and read fractions

N M » Read Fraction
Processors Memories 0.1 O?EE 0.5 0.7 0.9
2 1 19 51 75 91 99
2 6 17 25 30 33
3 4 11 16 19 20
4 3 7 11 13 14
5 2 6 8 10 11
3 1 30 87 138 176 197
2 12 34 52 64 71
3 8 21 32 39 42
4 5 14 22 27 29
5 4 12 17 21 23
4 1 40 119 194 256 294
2 18 52 80 100 111
3 12 32 48 60 66
4 3 22 34 42 46
5 6 17 26 32 35
5 1 50 150 247 333 391
2 24 69 108 138 156
3 15 42 65 85 90
4 10 30 46 57 63
5 9 23 35 44 48

as the read fraction increases the speed-up increases. More-
over, the greater the number of processors, the greater the
speed-up. One would expect speed-up to increase with read
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Figure 4—Speed-up as a function of read fraction
for M =2 shared memories
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Figure 5—Speed-up as a function of read fraction for N =S5 processors

fraction because fewer write requests (which require arbi-
tration) imply reduced shared memory interference. Yet as
the number of processors increases, the speed-up increases.
This occurs because for a fixed number of shared memories,
a greater number of processors results in increased inter-
ference, and replicated shared memories reduce interference
to a greater extent.

Next, how does the number of shared memories affect the
speed-up? Figure § illustrates the speed-up as a function of
read fraction for several values of the number of shared
memories (and constant number of processors, N =5). As
before, the speedup begins at zero percent for read fraction
zero, and increases with read fraction for the same reasons
(fewer writes and interference). But now the speed-up de-
creases with increasing number of shared memories. For a
fixed number of processors, individual memory use and inter-
ference decrease as the number of shared memories increases.
Replicated shared memories produce less of an effect with a
greater number of shared memories because processor inter-
ference is less to begin with. Thus, the speed-up decreases
with an increased number of shared memories for fixed num-
ber of processors.

In both Figures 4 and 5, the speed-up flattens as the read
fraction approaches one, or 100% reads and no writes. This
occurs because the processors have now become essentially
independent of each other, which results in no interference
and maximum possible throughput O(N).
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Summarizing Table II, maximum speed-up occurs for a sin-
gle replicated shared memory with all N processors perform-
ing reads only. In fact, the maximum speedup equals O(N). To
generalize this result, a multiprocessor with replicated shared
memories will increase the throughput of a multiprocessor
with conventional shared memories to the greatest extent,
when the multiprocessor contains a large number of proces-
sors, all accessing a single replicated shared memory, with all
accesses reads. Under such ideal conditions, the processors
experience no shared memory interference and achieve max-
imum theoretical throughput O(N). So the net effect of repli-
cated shared memories is to decrease interprocessor inter-
ference and increase system throughput.

CONCLUSIONS

A multiprocessor with replicated shared memory uses several
copies of the memory, one for each processor, to decrease
interference. Each multiprocessor application may be de-
scribed over an interval of time using a utilization matrix U,
which specifies the interaction of the N processors and M
shared memories. For multiprocessors with replicated shared
memories, a modified utilization matrix U’ may be used,
which also considers the fraction of read requests .. Speed-

up of a multiprocessor with replicated shared memories com-
pared to a multiprocessor with conventional shared memories
approaches O(N). This maximum occurs for a large number of
processors, a small number of shared memories, large shared-
memory use, and a large fraction of reads.
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The DCS—A new approach to multisystem data-sharing

by AKIRA SEKINO, KEIZO MORITANI, TERUAKI MASAI, TOSHIAKI TASAKI,
and KAZUO GOTO
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ABSTRACT

This paper describes a special purpose computer, the Data-sharing Control System
(DCS), which was developed for multisystem data-sharing. This computer enables
efficient block-level data sharing among several loosely coupled computer systems.
Major architectural features incorporated into the design of the DCS are discussed
in some detail, in the light of general requirements for such systems. The DCS-
based loosely coupled multiprocessor architecture, together with the traditional
tightly coupled multiprocessing, provides a new framework for the design of reliable
large-scale database systems.
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INTRODUCTION

With the cost of computer hardware falling steadily and the
need for processing power and high availability ever-rising,
the demand is growing for a new kind of multiprocessing
computer architecture that allows efficient data processing,
smooth and extensive system growth, and a high degree of
overall reliability. Mainframe computer manufacturers tradi-
tionally have offered tightly coupled and loosely coupled mul-
tiprocessor architectures," and minicomputer manufacturers
offer new fault-tolerant architectures,” in order to satisfy this
kind of demand. The traditional tightly coupled multipro-
cessor architecture allows connection between several pro-
cessors under the control of a single operating system at a
main storage level, while the loosely coupled multiprocessor
architecture allows connection of several computer systems
under the control of multiple operating systems at a channel
connection level. Each of these multiple computer systems
may well be a tightly coupled multiprocessor.

Large-scale commercial computers can usually include up
to four central processing units (CPUs) to improve their per-
formance, as well as their availability in tightly coupled multi-
processor (TCMP) configurations, as seen in IBM 3080 series
or NEC ACOS 1000 computers.® To build a larger, more
reliable system, one needs to introduce a loosely coupled
multiprocessor (LCMP) capability, which connects indepen-
dent computer systems by a shared secondary storage and
optional direct channel-to-channel intersystem adapters. This
capability often becomes essential in the design of large-scale
on-line database systems. Japanese banking systems, for ex-
ample, are expected within the next few years to execute 300
to 500 transactions per second.*

Today’s LCMP architecture, however, has some difficulties
in achieving effective data-sharing among multiple loosely
coupled computer systems. Multisystem data-sharing requires
that the data-sharing control information necessary for data-
access serialization be accessible commonly from all the com-
puter systems. In one LCMP implementation, this is done by
storing the control information at commonly accessible disk
controllers.* In another implementation, the same effect is
produced by passing data-locking request information all
around the computer systems, using a ring of channel-to-chan-
nel intersystem adapters spanned between these systems.’
Low intelligence of the disk controllers will limit the number
of lockable data entities in the first implementation, while the
communication overhead between loosely coupled computer
systems will become a serious performance bottleneck in the
second implementation, thereby limiting the performance of
the entire computer complex. It is therefore difficult in these
implementations to achieve effective multisystem data-
sharing for a high transaction environment.

This paper presents still another approach that attempts to
solve the above problem of multisystem data-sharing, by de-
scribing the architecture of NEC’s newly developed Data-
sharing Control System (DCS). The DCS-based LCMP archi-
tecture and the traditional TCMP architecture combine to
provide a new framework for the practical design of reliable
large-scale database systems.

DESIGN REQUIREMENTS

Given a general background of the demand for a new kind of
multiprocessing computer framework, the following describes
a set of design requirements that were postulated in deter-
mining the DCS-based LCMP system architecture:

1. Flexible structure to allow cost-effective large-scale sys-
tem designs—Both TCMP and LCMP architectures
must be usable in configuring an optimized computer
complex to satisfy various application needs. Large-scale
computer complexes, involving up to eight computer
systems, each of which may be a TCMP system, should
be configurable in this architectural framework, with low
incremental cost. .

2. Efficient data-sharing in high transaction environments
—Efficient data-sharing among large-scale computer
systems must be achievable in order to facilitate cost-ef-
fective high-transaction system designs. For this pur-
pose, the DCS must have sufficient performance capa-
bility for processing up to several thousand data lock—
unlock requests per second, for data access serialization.
It must be possible to choose granularity of locks at a
data-block level.

3. Reliable system operation—The resulting computer
complex must be fault-tolerant at various levels and have
extensive serviceability and data recovery considerations
to improve system availability. The DCS, being a critical
component of the computer complex, should be ex-
tremely reliable.

4. Smooth field migration and upgrade capability—The
new architectural framework must allow smooth field
migration from a single-system environment to a loosely
coupled, multisystem environment. It also must allow
smooth field upgrades involving additions of various sys-
tem components, preferably with minimal or no stop-
page of system operation.

5. System operation with minimal human intervention—
The resulting computer complex must have considera-
tions to reduce human intervention in operating the
computer complex.
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SYSTEM ARCHITECTURE

The approach chosen by the DCS is to design a reliable new
high-performance control system, which is specialized in
multisystem data-sharing management and does not require
significant hardware changes to existing host computers or
their secondary storage systems.

Overall System Organization

The overall organization of a lage-scale DCS-based LCMP
computer complex is shown in Figure 1. It specifically includes
eight host computers (NEC’s ACOS computers), a secondary
storage system (disks), and the DCS.

Each of the host computers may have up to four CPUs
organized as tightly coupled multiprocessors. Therefore, the
entire computer complex may include 32 CPUs. The second-
ary storage system contains ordinary disk controllers and disk
units, which may store sharable data. In order that sharable
data be accessible from a host computer, there must be at least
one channel path between the host computer and the disk
controller, which controls access to the sharable data stored
on a disk unit. It is not necessary to modify the secondary
storage system, the stored data itself, or application programs
that run on host computers when an installation migrates from
a single-system environment to a multisystem environment.
Thus, users’ investment in purchased hardware and developed
software are protected from undesirable system changes. The
DCS is a new stand-alone special-purpose computer designed
to control data-sharing among the loosely-coupled host com-
puters. It is a sophisticated processor complex by itself, as will
be described later, which makes it a very reliable high-perfor-
mance control system. There must be at least one channel
path between each host computer and the DCS.

Division of Functions

The major functions offered by the DCS include block-level
and file-level serialization of conflicting host task accesses
made to sharable data in the secondary storage system; inter-
host message communication; graceful degradation of the
DCS configuration, upon detection of unrecoverable failures;
functions related to data recovery, such as multisystem jour-
nal serialization, bad block freezes, etc., and statistical data
collection.

The multisystem data-sharing requires a functional cooper-
ation of host computers and the DCS in the following way.
Serialization of conflicting data accesses made by host tasks
are conducted either by host computers or the DCS, in order
to control data integrity efficiently. If a host task accesses
global data, that is, data that potentially can be accessed by
tasks of multiple host computers, the operating system of the
host computer issues a LOCK command to the DCS before it
issues a data access command to the secondary storage sys-
tem. The DCS then attempts to execute this command for the
host task, but if it detects a deadlock situation, it notifies the
host task that the command would cause a deadlock. If a host
task accesses local data, that is, data accessed only locally

HOST HOST
COMPUTER secee e COMPUTER,)
DISK DISK
CONTROLLER| ® * * [CONTROLLER

DCS
>
e s e DISK
UNIT

Figure 1—Overall system organization

within a particular host, the operating system similarly issues
a LOCK command to itself and attempts to process the re-
quest within that particular host. If the command cannot be
immediately executed because of conflicting data accesses,
the operating system must notify the DCS of this situation for
a deadlock examination, as described in more detail later.
This kind of arrangement is called a hierarchical deadlock
detection protocol.®

Another example of host-DCS cooperation is data recovery
needed in the event of data damage due to malfunction of the
secondary storage system. The operating system for each host
computer normally keeps its own journal in the secondary
storage system. When damaged data must be recovered,
several journals created by the host computers must be
merged by using a journal serialization function of the DCS.
In addition, the DCS normally freezes the damaged data area
upon detection of data damage, to prevent further host access
to the damaged data.

Diversity in Serialization Commands

The DCS command repertoire has a variety of control com-
mands to make efficient and reliable multisystem data-sharing
possible. However, most distinctive commands are data-ac-
cess serialization commands, which include a set of LOCK-
UNLOCK commands and a WAIT STATUS NOTIFICA-
TION command.

LOCK and UNLOCK commands

A LOCK command is used by a host operating system to
obtain exclusive control of a particular data entity, such as a
physical file or block of data, on behalf of a specified applica-
tion task; the use of the data entity can thus be seriaiized
properly. Without this kind of serialization control, sharable

data might lose its integrity in various ways because of uncon-
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Task 1 time Task 2
READ RECORD A tl
(=100)
t2 READ RECORD A
(=100)
ADD 10 t3
REWRITE RECORD A t4
(=110)
t5 ADD 100
t6 REWRITE RECORD A
(=200)
(a) Task 1l's update is lost
Task 1 time Task 2
LOCK RECORD A tl
(= grant)
WRITE RECORD A t2
t3 LOCK RECORD B
(> grant)
t4 WRITE RECORDC B
LOCK RECORD B t5
(> wait)
t6 LOCK RECORD A
(9 wait)

(b) Deadlock occurs at time t6

Figure 2—Inconveniences caused by multiple data accesses

trolled simultaneous updating of the same data.” In a situation
shown in Figure 2(a), for example, a record update operation
in Task 1 will be lost, because of a conflicting update oper-
ation in Task 2. This inconvenience, however, can be avoided
by delaying the read operation in Task 2 until the completion
of the rewrite operation in Task 1, in order to serialize the use
of this record.

A lock request using a LOCK command may or may not be
granted by the DCS, depending on the status of data in ques-
tion and the nature of the request. Once a lock request is
granted, this situation continues until an unlock request con-
cerning the same data is received from the same task. There
are two kinds of locks; exclusive locks, which are generally
used for data updates and shared locks, used for data re-
trievals. An exclusive lock request is granted only to a single
task at a time, whereas a shared lock may be simultaneously
granted to several independent tasks, each requesting shared
data access using a shared lock. If a lock request cannot be
granted, the DCS advises the task to wait until that data are
released.

At this point, care must be taken to avoid a deadlock, by
advising the task to wait. This requires that the DCS deter-
mine whether or not a new wait would cause a deadlock and
to advise the task to wait only when deadlock will not be

caused. If it does cause a deadlock, as shown in Figure 2(b),
for example, the DCS informs the host operating system of
the resulting deadlock, instead of asking the task to wait.
Then, the operating system rolls back the task and releases all
the data entities held by it. The detailed information on the
deadlock is available to the operating system for later analysis.
If the task is advised to wait, it will be notified by the DCS
when the data becomes available, that the wait is over.

Data entities held by a task are normally released by the
task’s release request using either an UNLOCK or an UN-
LOCK ALL command. The former unlocks a set of specified
data entities, while the latter unlocks all data entities held by
the task. When several tasks share the same buffer area in the
main storage, the use of an UNLOCK AND LOCK command
allows a complete transfer of all data entities held by one task
to another, thus saving the cost of executing another set of
data input commands.

WAIT STATUS NOTIFICATION command

A WAIT STATUS NOTIFICATION command is used by
a host operating system to notify the DCS of a wait status for
alocal sharable data. When this command is used to notify the
DCS of an occurrence of a new local wait, the DCS deter-
mines whether or not this new wait will cause a deadlock
involving both local and global data. If it finds a deadlock, the
DCS informs the host of this situation; otherwise, it records
the new wait-status concerning the local sharable data. The
DCS keeps this information for other deadlock examination
involving local and global data, until it receives another WAIT
STATUS NOTIFICATION command notifying it of the ter-
mination of the local wait.

DCS ARCHITECTURE

It is important that a DCS have architecture that is suitable to
its design requirements. In particular, special considerations
are necessary to satisfy requirements in regard to performance
and reliability. The following describes the architectural as-
pect of the DCS hardware and software, which is crucial to the
DCS design.

DCS Hardware

The DCS hardware organization is shown in Figure 3. The
major components are host interface controls (HICs), data-
sharing control processors (DCPs), common storage units
(CSUs), and the associated interconnection buses. This or-
ganization allows highly paralle]l DCS operations, which are
important in achieving high processing throughput, as well as
dynamic reconfiguration based on component redundancy,
which is important to attaining high availability.

Host interface control

The DCS has a maximum of eight HICs, each of which
provides up to four channel paths. These channel paths oper-
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Figure 3—DCS hardware organization

ate in parallel, receiving the DCS commands from multiple
host computers and returning the corresponding final re-
sponses to these computers. The DCS can receive these com-
mands at any HIC and pass them to any DCP for command
execution. However, which DCP will execute a given data-
access serialization command is decided upon by hashing
based on the identifier of the data entity under consideration,
because DCPs are designed in such a way that each individual
data entity can be controlled only by a certain DCP. A min-
imum of one channel path is required for a host-DCS con-
nection.

Data-sharing control processor

A maximum of eight DCPs, which are responsible for com-
mand execution, exist in the DCS. The DCPs are organized as
DCP-pairs for reasons of availability, as shown in Figure 3,
but normally work as independent processors—each exe-
cuting a separate stream of DCS commands. Each DCP has a
three-million-instructions-per-second (MIPS) processor and
its own main storage. The control program and data-sharing
control tables reside in this main storage. Therefore, data-
access serialization commands are executed in parallel by the
DCPs. However, if a wait situation resuits from a LOCK
command execution by a DCP, the DCP reports to one of the
DCPs specifically designated as the deadlock examiner, using
one of the inter-DCP buses. The deadlock examiner then

looks for the possibility of a deadlock—using its deadlock
detection tables—and returns the answer to the previous
DCP. The results will be given to the original HIC, through
which the LOCK command was received. DCPs organized as
DCP-pairs can back each other up in the event of an un-
recoverable DCP failure, including that of the deadlock-
examiner DCP.

Common storage unit

A common storage unit (CSU) is used to keep duplicate
copies of the DCP control program, data-sharing control ta-
bles, and so on. This information is not necessary for normal
DCP operation, but it is essential to the DCP recovery func-
tions described later. The DCS contains a maximum of four
CSUs.

Power supply
Various components of the DCS have their own power sup-

plies, so that independent maintenance of failed components
may be possible without stopping the DCS operation.

DCP Control Software

The DCP control software includes various program mod-
ules, in addition to data-sharing control tables, as outlined in
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DCP

DRIVER

OTHER TABLES
DATA-SHARING
COMMAND BASIC DEADLOCK CONTROL TABLES
PROCESSOR MONITOR EXAMINER
RECOVERY
MANAGER
® 90
/
Figure 4—DCP control software

Figure 4. Major components are as follows. 1 12

The basic monitor is the nucleus of the DCP control pro- HIC HIC
gram. This module controls task switching, main storage man-
agement, configuration management, exception handling, DRIVER DRIVER
etc. The HIC driver is responsible for receiving DCS com-
mands from HICs. The command processor consists of a 2 10 11
collection of program modules capable of executing DCS
commands. The CSU driver is responsible for CSU data read— COMMAND csu COMMAND
write operations. The DCP driver is responsible for inter- EXECUTION |crant DRIVER TERMINATION
DCP communication using the inter-DCP buses. The recov-
ery manager manages DCS recovery functions. These are de- WAIT
scribed in the next section. Finally, the deadlock examiner is 3 DCP 2 DCP
responsible for examining the possibility of a deadlock. It
resides with other program modules mentioned above only on DRIVER DRIVER
a DCP designated as the deadlock examiner.

The general flow of control within the DCP control pro-
gram that is needed to execute a LOCK command is depicted 4 DCP 8 DCP
in Figure 5. Though this figure is almost self-explanatory,
brief comments are in order. ' DRIVER DRIVER

The path most frequently taken is 1-2-10-11-12. It repre-
sents the case where a lock request can be granted immedi-
ately. This path is the shortest one. On the other hand, paths 5 s 7 DEADLOCK
1-2-3-4-5-8-9-10-11-12 and 1-2-3-4-5-6-7-8-9-10-11-12 DEADLOCK EXAMINAT ION
represent cases where the same request results in a wait, re- EXAMINATION INATIO
spectively involving and not involving a deadlock. Boxes 6 and TERM N
10 represent duplicate table-update operations. The length of :NO
the most frequently taken path, 1-2-10-11-12, is about 1500 6
steps, requiring about a 500-microsecond processing time on CSu
a three-MIPS DCP. In other words, a single DCP is capable DRIVER

of executing roughly a thousand typical DCS commands, with
50% DCP utilization. This implies that the maximum DCS
configuration, including eight DCPs, has performance capa-

Figure 5—General control flow representing a “LOCK” command execution
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Figure 6—System redundancy in a four-host DCS configuration

ble of processing as many as 8000 simple DCS commands per
second.

RELIABILITY, AVAILABILITY, AND
SERVICEABILITY CONSIDERATIONS

Satisfactory operation of loosely coupled multiple computers
requires various reliability-related considerations on the
DCS, in addition to locking and recovery considerations on
multisystem sharable data. In fact, high availability of the
DCS is most essential to the overall system operation. The
DCS offers several reliability, availability, and serviceability
considerations, which are discussed in the following sections.

1. System-wide hardware and software redundancy to al-
low dynamic system reconfiguration upon various un-
recoverable failures

2. Automatic rebooting of the DCP software as a means of
recovery from DCP software troubles

3. Continuous bookkeeping of a set of duplicate data-
sharing control tables in CSUs

4. DCP-pair mutual backup capability to improve system
availability

5. Faulty component maintenance simultaneous with the
DCS operation, and on-line addition of recovered
components

Redundant Organization

Figure 6 explains system redundancy by showing a DCS-
based multisystem computer complex involving four host
computers. A number of redundancy types exist in this config-
uration, making graceful degradation possible, based on dy-
namic reconfiguration. Each host computer has two channel

DCP; DCP sy
PROCESSOR PROCESSOR
MAIN MAIN
STORAGE STORAGE
\ /
BUFFER BUFFER

v V

T
STORAGE !AREA

Figure 7—CSU internal organization

connections with the DCS. Although failure of a channel or an
HIC might occur, the host computer can still issue DCS com-
mands using the remaining host-DCS channel connection.
DCPs organized as a DCP-pair (e.g., DCP 0 and DCP 1) can
back each other up in the event of an unrecoverable DCP
failure. Data-sharing control tables exist in duplicate, one in
a DCP main storage and the other in the associated CSU.
Failure of a CSU, however, will not cause stoppage of the
associated DCPs. Two inter-DCP buses exist for message
communication. Failure of an inter-DCP bus will not separate
DCPs.

Automatic DCP Software Rebooting

This is useful for straightening out a situation where some
unknown portion of the DCP software is suspected of damage
caused by a possibly undetected intermittent DCP failure.
The DCP software, including the control programs and data-
sharing control tables, is reloaded from its CSU, and the DCP
operation is then automatically restarted. Automatic DCP
software rebooting decreases the probability of unrecoverable
DCP failures.

Bookkeeping of Duplicate Control Tables

Each DCP keeps an up-to-date duplicate copy of the data-
sharing control tables it maintains in main storage. This dupli-
cate copy is held in the associated CSU and is updated every
time its counterpart in the main storage is dynamically up-
dated by each DCP. It exists only as a backup copy of the
data-sharing control tables and, as such, is normaily not read
by the associated DCP for the purpose of data-sharing con-
trol. As a matter of fact, each DCP occasionally reads out the
content of the duplicate data-sharing control tables from its
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Figure 8—Storage area allocation maps

CSU, just to make sure that the contents of both tables are
consistent.

Special consideration is needed in updating the content of
duplicate control tables in a CSU. It must be assured that a set
of specified table entries is always updated as an atomic
action:® a set of table updates must either be all done or not
be done at all, in order to maintain system integrity. For this
purpose, a CSU has two independent 4000-byte buffers,
through each of which the CSU receives a set of specified
table-update requests from the associated DCP, as shown in
Figure 7. If a set of table-update requests is fully received, the
CSU proceeds to update actual table entries in the storage
area. However, if only a partial set of requests is received
because of a DCP failure, this partial request is simply dis-
carded by the CSU. Thus, it is possible for each DCP to keep
an up-to-date copy of duplicate control tables in the associ-
ated CSU, without losing integrity of table data.

DCP-Pair Mutual Backup Capability

A rough sketch of storage area allocation maps for DCP
main storage and the associated CSU is shown in Figure 8.
This allocation makes it possible for one DCP to back up its
mate-DCP by receiving a copy of the mate’s data-sharing
control tables from the associated CSU, whenever the mate-
DCP suffers from an unrecoverable DCP failure. This kind of
DCP-pair reconfiguration is automatically carried out in the
DCS.

All of these reliability-related functions must be imple-
mented very carefully; if erroneously implemented, they can
introduce additional problems. False failure techniques are
being used for system debugging.

CONCLUSION

This paper describes a special purpose computer approach to
multisystem data-sharing, as taken by the DCS. In particular,
major architectural features incorporated into the design of
the DCS have been discussed to show their implications for
large-scale loosely coupled computer systems. These features
include support of various access serialization commands, a
hierarchical deadlock-detection mechanism involving host
computers and the DCS, a modular computer-complex DCS
organization based on DCP-pairs, a CSU design with an
atomic data-update capability, DCP-pair mutual backup ca-
pability, and so on. All of these considerations significantly
contribute to satisfying the overall system design require-
ments stated at the beginning of this paper.

It is now possible to envision a very reliable special purpose
computer, the DCS, capable of processing several thousand
block-level access serialization commands per second, for re-
alization of cost-effective multisystem data-sharing. Finally, it
should be stressed that the DCS-based LCMP and traditional
TCMP architectures blend naturally to form a new framework
for the design of reliable large-scale database systems.
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ABSTRACT

This paper presents the initial design and implementation of a simple micro-
computer with a reduced instruction set, which forms a building block for a parallel
multi-microcomputer system. The microcomputer has a 16-bit word size, with each
register and data element being 16 bits. It has less than 20 operators. Each micro-
computer in the multi-microcomputer system is addressable, and behaves as a
combined memory cell and processor that is able to service the LOAD, STORE,
and EXECUTE operations. The multi-microcomputer system centers on a 16-bit
global address space. An address consists of two parts: the high eight bits define a
specific microcomputer, and the low eight bits define a word in that microcomputer.
When the top eight bits are zero the address is considered local to the microcom-
puter. Although a microcomputer can load or store any word in the global address
space, an attempt to execute code at an alien address causes execution to transfer
to the specified microcomputer. Although the microcomputer design is based on
16-bit units, we ultimately wish to design the simplest microcomputer that is able to
handle variable length information.'?
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DESIGN PHILOSOPHY

Traditionally, the trend in designing microprocessors and
mainframe computers has been toward increasingly complex
instruction sets and associated architectures.>* In contrast,
designs based on the so-called reduced-instruction set philos-
ophy have a simple set of instructions, and a correspondingly
simple machine organization tailored to their efficient exe-
cution.? In very large scale integration (VLSI) scaled to sub-
micron dimensions, the traditional approach of attempting to
make larger single microprocessors becomes self-defeating
because of communications problems and the escalating costs
of designing and testing such complex processors. One obvi-
ous solution is miniature (reduced-instruction set) microcom-
puters that can be replicated like memory cells and operate as
multiprocessor systems. In such systems the potential per-
formance benefits of VLSI are exploited by parallelism, rath-
er than by attempting to improve the performance of a single
processor. Provided that appropriate means for programming
can be found, this is a more general solution. The aim of the
ongoing reduced-instruction set multi-microprocessor system
(RIMMS) project is to design the simplest conventional mi-
crocomputer—with primitive communications mechanisms
—able to form a component of a tightly coupled multi-micro-
computer system.

The initial design and implementation of a RIMMS micro-
computer is presented below. This microcomputer has a 16-bit
word size, with each register, data element, and address being
16 bits. Instructions, however, are 2 X 16 bits and use a
three-address format. There are less than 20 operators. Each
microcomputer in the multi-microcomputer system is address-
able, and behaves as a combined memory and processor that
is able to service the LOAD, STORE, and EXECUTE oper-
ations. Design of the multi-microcomputer system centers on
the 16-bit global address space. An address consists of two
parts: the high eight bits define a specific microcomputer,
while the low eight bits define a word in that microcomputer’s
memory. Although a microcomputer can access any word in
the global address space, an attempt to execute alien code
causes execution to transfer to the specified microcomputer.

This design contains a number of important concepts. First,
although a microcomputer can make a data access to any word
in the global address space, code is always executed by the
local microcomputer. Second, a microcomputer has the min-
imal basis for parallelism, namely a FORK instruction, which
creates a parallel flow of control. Third, a microcomputer
executes a process to completion, thus providing a primitive
form of synchronized access to the contents of its local mem-
ory. Finally, to facilitate simple process migration, the
amount of state information held in the processor’s registers
is minimized.

In this paper we present the architecture and implementa-
tion of an initial RIMMS microcomputer. We follow this with
a discussion of problems with the current design and of future
work of the RIMMS project.

ARCHITECTURE

The architecture and programming of RIMMS is described in
terms of two levels of machine: the multi-microcomputer level
handles interprocess and interprocessor communication sup-
porting nonlocal LOAD, STORE, and EXECUTE oper-
ations; and the microcomputer level services these operations
and handles the atomic execution of a single process.

Multi-microcomputer System

RIMMS consists of a linear array of up to 255 microcom-
puters that communicate via a shared bus, as shown in Figure
1. Each microcomputer has a simple processor and 256 words
of local memory.

The system has a 16-bit address space: (see Figure 2). The
top eight bits are a global address (in the range 1-255) defi-
ning a microcomputer, while the bottom eight bits are a local
address (in the range 0-255) defining a word in its memory.
Global address zero is the default for specifying the current
local address space and is therefore not recognized at the
multi-microcomputer level.

When one microcomputer wishes to communicate with an-
other, for example to access its local memory, the micro-
computer generates a “packet.” The format of a packet, as
shown in Figure 3, consists of a two-bit operation field, a2 X
8-bit destination address, and a 16-bit operand. The four

8-bit global address

lr 2' v e e e 255

processor processor processor
memory memory memory

(8-bit local (8-bit local {8-bit local
address) address) address)

Figure 1—Multi-microcomputer system

microcomputer | memory cell

Figure 2—RIMMS address
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global local

2 bits 8 bits 8 bits 16 bits

operation | address | operand

Figure 3—Multi-microcomputer packet format

Packet Received

LOAD STORE REG  STORE_MEM  EXECUTE
Processor Status
BUSY
. EXECUTING - error reject
. WAITING - accept reject
IDLE - error - accept
Memory Status
BUSY reject reject reject reject
IDLE accept accept accept accept

Figure 4—Microcomputer status versus packet received

bus

Memory
Controller

Processor
(ALU + registers)

local memory
256 x 16-bit words

Figure 5—Microcomputer

operations are: load from memory (LOAD), store into regis-
ter (STORE_REG), store into memory (STORE_MEM),
and execute instruction (EXECUTE).

The packet operations are defined as follows: LOAD copies
the contents of MEMORY [address] to the microcomputer’s
register defined by the 16-bit operand. This is implemented by
the destination microcomputer generating a STORE_REG
packet. STORE_REG places the operand in the micro-
computer’s register defined by the address. STORE_MEM
places the operand into the MEMORY[address]. EXECUTE
starts a new process whose code is at MEMORY{address] and
data environment is at MEMORY[operand]. For all these
packets the global address defines the destination micro-
computer.

Microcomputers take turns to send a packet on the bus.
When a packet is sent the destination microcomputer may
accept or reject the packet. In either case the source micro-
computer relinquishes the bus. If rejected, the source
microcomputer will attempt to send the packet again at its
next turn to use the bus. Whether a packet is accepted or

wminnbad Adnemnmdn el atatiia ~AF tlan wnnngoane nnd maomaaeer
ICjECiea Gepeiias On ul€ Status O uil Pprocessor ana memory
of the destination microcomputer. In simple terms, LOAD
and STORE operations may be serviced by the memory con-

currently with the operation of the processor. However an

memory operation register MOP ( 2 bits)
memory address register MAR (16 bits)
memory data register MDR ’ ‘

Figure 6—Memory controller registers

EXECUTE packet may be accepted only when the processor
is idle, having completed the execution of its previous process.
Figure 4 lists the complete rules for processing packets.

In Figure 4, BUSY EXECUTING specifies that the pro-
cessor is executing instructions, and BUSY WAITING speci-
fies that the processor is executing but temporarily waiting for
an operand to be loaded from a memory. Next we examine
the architecture of a microcomputer.

Microcomputer

The microcomputer-level machine consists of three basic
components: the local memory of up to 256 X 16-bit words,
the memory controller, and the 16-bit processor for arith-
metic, as illustrated by Figure 5. The memory controller is
connected to the global bus, and to the local processor and
memory. It supports communication—in the form of packets
—between these three units. To hold a packet, the memory
controller has three registers: a 2-bit memory operation regis-
ter, a 16-bit memory address register, and a 16-bit memory
data register (Figure 6). These registers correspond to the
operation, address, and operand fields, respectively, of a
packet.

When a memory controller is idle it can receive a packet
either from the local processor or from some other micro-
computer. A packet from the processor can be destined for
the local memory or for another microcomputer, whereas a
packet from the bus can be destined for the local processor or
memory. A packet’s destination is specified by the top eight
bits of the address in the memory address register (MAR).

The processor, the last component of the microcomputer,
consists of an arithmetic logical unit (ALU) and seven regis-
ters supporting a 16-bit word size. Each register, data ele-
ment, and address is 16 bits. Instructions, however, are 2 X 16
bits and use a three-address format. Figure 7 shows the seven
registers of which only the first two are addressable. The
program counter, C, points to the local code currently being
executed. The data register, D, points to the current data
environment, which may be anywhere in the global address
space. I1, I2 holds the current 2 X 16-bit instruction. Al, A2,
and A3 are the input registers to the ALU, holding the current
instruction’s operands. Their contents have no meaning from
one instruction to the next.

(16 bits)
(16 bits)

program counter C
data register D

instruction registers 11,12 (2x16 bits)

ALU register 1 Al (16 bits)
ALU register 2 A2 ’ !
ALU register 3 A3 ‘ ’

Figure 7—Processor registers



Reduced Instruction Set Multi-Microcomputer System 73

Ml M2 M3 ol 02 03
5 bits 1 1 1 8 bits 8 bits 8 bits

[operatorlmode bitslliteral/addressllit:eral/address literal/addressl

0 - literal
1 - address (memory [D+ signed literalj)

Figure 8—Microcomputer instruction format (2 X 16 bits)

Operation Mnemonic Description
arithmetic ADD -
SUB -
logical AND -
OR -
NOT -
shift LSHIFT logical shift
ASHIFT arithmetic shift
compare EQ equals
GT greater than
control IF if TRUE jump
FORK fork flow of control
HALT halt processor
movement MOVE move argument to address
STORE C store program counter
LOAD D load data register
STORE D store data register

Figure 9—Processor instruction set

An instructions format, as illustrated by Figure 8, consists

of a five-bit operator field, 3 x 1-bit mode (Mi) fields, and -

3 X 8-bit operand (0i) fields. Modes and arguments are inter-
preted as follows. If the value of mode bit Mi = 0, then the
corresponding eight-bit operand 0i is treated as a literal. 0i is
sign-extended to 16 bits and the resulting argument is placed
in the corresponding ALU register Ai. If the mode bitMi=1,
then the eight-bit operand 0i is treated as a signed displace-
ment relative to the data register D. The resulting address,
D + 0i, is dereferenced (via the multi-microcomputer level if
necessary) and the memory content is placed in the ALU
register Ai. Notice that the modes and operands are inter-
preted independently both of the operator and of whether
they are to be used for input and output by the ALU. How-
ever, the operator does determine how many of the three
arguments are used by the ALU.

The ALU supports only two information types: 16-bit in-
tegers (2’s complement) and booleans (TRUE = FFFF,
FALSE < > FFFF), and following the reduced instruction set
philosophy only a minimal set of operators are provided.
These operators are listed in Figure 9. Finally, note that the
reason we have chosen a three-address instruction format and
only two addressable registers is to minimize the state infor-
mation that needs to be moved from one microcomputer to
another, when control is transferred.

Programming

In briefly examining the programming of RIMMS we will
continue to discern two levels of machine. At the multi-micro-
computer level, because of the shared 16-bit address space,
the system can be programmed as a single, sequential com-

Time Micro 1 Micro 2
C D C D
| 0100 9999 - -
|
|
v 01FF 9999 - -
0200 9999 - -
- - 0200 9999

Figure 10—Sequential execution

puter with up to 255 X 256 words of memory or, more inter-
estingly, as a parallel computer with up to 255 processors each
with 256 words of memory. For instance, if allocated con-
secutive memory locations, a large sequential program will
span a number of microcomputers. As control reaches the
boundary of a microcomputer (Figure 10) its program counter
will contain a nonlocal address, causing the contents of the
program counter C and the data register D to migrate to the
next processor.

For parallel execution a separate process must be placed in
each processor. These processes are started by the use of
FORK instructions; a FORK may be thought of as a GOTO
that not only transfers control but also continues execution.
Normally in a parallel-control-flow computer additional oper-
ators are necessary to synchronize access to shared memory
locations. With RIMMS, the programmer has a choice of
causing unsynchronized LOAD and STORE operations,
which compete for memory access, or of executing code in the
target microcomputer, which accesses its local memory. Since
code is executed atomically by a processor, such an access is
treated as a critical region. Figure 11 illustrates the RIMMS
parallelism. In this example, a series of FORK instructions in
Microcomputer 1 are executed to create parallelism. A FORK
specifies new C and D values, and causes the generation of an
EXECUTE packet. Having created the parallelism, Micro-
computer 1 executes a HALT instruction. Then as each pro-
cessor finishes, it returns controls “GOTO 1040” to Micro-
computer 1. For each processor, Microcomputer 1 subtracts
one from the count of processors, executing “SUB p 1 p,” and

Micro 1 Micro 2 Micro 3
Create
parallelism C° D’
0100: FORK 0200 02EQ
0102: FORK 0300 03E0 | 0200:
0104: FORK 0400 O4E0 { 0202: [P 0300:
Halt processor Return

0260: GOTO 0140 Return
0360: GOTO 0140

0130: HALT

Count terminating
processors
0140: SUB p 1 p
0142: GT p O ¢
0l44: IF c 0148 0146
0146: HALT
0148:

Figure 11—Parallelism and synchronization in RIMMS
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Figure 12—Bus and memory controllers

then tests to see if the count “p” is still greater than zero “GT
p 0. c.” If greater, “c” then control-goes to instruction “0146”
which HALTS the processor, otherwise it control-continues at
instruction “0148.”

At the microcomputer level, as the reader will see from
Figure 9, CALL, GOTO, LOAD C operators, and so forth,
are not included in the instruction set as might have been
expected. This is for two reasons: First we have attempted to
minimize the operators, therefore CALL, etc., must be pro-
grammed, and second, because of the 2 X 16-bit, three-
address instruction format, operators such as GOTO and
LOAD C can be specified as “IF TRUE address null.” Having
examined the architecture and programming of RIMMS, in
the next section we examine its actual implementation.

IMPLEMENTATION

In the initial implementation of RIMMS our aim has been to
keep the structures as simple and conventional as possible in
order to concentrate on a realization that would highlight any
design difficulties relevant to the system rather than the imple-
mentation. At the multi-microcomputer level, this consists of
a passive bus connected to an array of microcomputers. At the
microcomputer level, because of present limitations in avail-
able level of integration and in order to ease testing, the
computer itself is implemented as three components: a CPU
chip, a programmable logic array (PLA) chip for the memory
controller, and commercially available parts for the memory.

Multi-microcomputer System

The multi-microcomputer system centers on a bus, as illus-
trated by Figure 12. The bus carries a 16-bit address made up
of an 8-bit micro address, an 8-bit memory address, 16 bits of
data, and three memory operation bits to cover a fifth “no
operation” memory access. In order to reduce the total pin
count on the CPU and memory conirolier chips, both data and
address are sent as two bytes on two parallel eight-bit busses
between communicating microcomputers and between CPU

and memory.

OR AND

_ S — —
@ g 3
4 &
& - { 8
5
<
& <3 £ I
o o 0 o Q
2= & £ ] R
0w 0 RN ) o D
‘efr|=H{q) 12 & A ot (H ey
A o ol i o o
i b & < < & P
— () w0 ‘E‘ lg
. E = = £ &
23 . B
o O o
Lk / 55
= - —J L) 4 LUV =

Figure 13—CPU chip

Access to the bus by the microcomputers is controlled by an
additional wire loop, which is daisy-chained through the mi-
cros. This wire conveys a single “token” successively from one
microcomputer to the next. When the token is received, the
microcomputer may attempt to transmit a packet of data and
address bits. When a packet is accepted, the packet is trans-
mitted between the memory controller registers of the source
and destination microcomputers. When the microcomputer
finishes with the bus, the token is passed to the next micro-
computer.

Microcomputer

Implementation of a microcomputer centers on the design
of two custom chips for the memory controller and the pro-
cessor. The memory controller, as illustrated by Figure 12, is
a PLA; for simplicity its registers are part of the CPU chip
(Figure 13). The task of this PLA is to control the movement
of packets between the processor, the local memory, and the
bus.

The processor, as shown in Figure 13, is a simple, conven-
tional two-bus data path® consisting of a register file, shifter,
ALU MAR/MDR registers, and a control PLA to implement
the instruction set. The register file contains the 7 X 16-bit
registers shown in Figure 7. Next comes the shifter. Then the
ALU with two 16-bit input and two output registers. Lastly,
there are the memory address and memory data registers,
whose contents are moved between the processor-local
memory-bus, under control of the memory controller PLA.

Both the memory controller PLA and the CPU chip are in
the final stages of design, and an estimate of the CPU chip size
indicates that it will occupy approximately 8 X 8 mm in an
NMOS process with A = 3. The floor plan of the CPU chip
is shown in Figure 14. Within this overall floor plan the system
is partitioned into three distinct sections, a data path, micro-
program control unit, and I/O ports.

T ntn emath ¢ ” 3 3
The data path “DATAPA” contains a set of registers, a

shifter and an ALU. The microprogram control unit contains
a PLA “CNTROL,” buffer drivers “CTLDRYV,” and de-
coders “UPDECD” and “LRDECD.” The micro-instruc-
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Figure 14—Floor plan of CPU chip

tions are partially encoded in the PLA, and the control inputs
from the PLA to the data path determine which operations
occur in the data path during a given clock cycle. Decoding is
done by upper and lower decoders, which drive the data path
directly. Control sequences not only depend on the data
stored in the registers but also on external signals from the
memory control chip to the control unit.

Data communication between the data path and the other
chips in the set is through I/O ports “MMREGS,” i.e., MDR
and MAR. The communication itself is achieved using packet
operation instructions. The ports are tristate and can be used
as inputs or outputs.

DISCUSSION

For a multi-microcomputer system the most fundamental
problem to be solved is how to orchestrate a single com-
putation so that it can be distributed across an ensemble of
processors.>” One good example of special-purpose multi-
processors is Kung’s Systolic Arrays.*® Examples of general-
purpose multi-processors are the INMOS Transputer and the
OCCAM programming language.*

The RIMMS design is a more conventional solution, which
achieves the programming and distribution of a single com-
putation across multiple processors by minimal extensions to
conventional microprocessors. To achieve this distribution,
the RIMMS design is based on a number of important con-
cepts. First, each microcomputer has its own local memory,
thereby encouraging locality of reference and reducing sys-

tem-wide communication. Second, each microcomputer
forms part of a global address space and is able to access the
contents of any other microcomputer’s memory. Finally, each
component microcomputer may be viewed as a single compo-
nent able to service LOAD, STORE, and EXECUTE opera-
tions on its contents.

Architecture

To conclude the presentation of RIMMS, in this section we
discuss problems with the current design and future work of
the project. In designing architecture for RIMMS, three areas
require optimization: the handling of parallelism, the pro-
grammability of the instruction set, and the layout of the
microcomputer chip. For parallelism, we believe, the initial
architecture has a number of important properties. These
include the two-component address, FORK instructions, the
minimal state information held in registers (C and D registers
and three-address instructions), and the local (and atomic)
execution of code.

In contrast, the programmability of the microcomputers is
poor. The three-address format leads to large instructions and
redundant fields for certain operators. The decision to process
the modes and operands of an instruction before examining
the operator leads to dissimilar input and output arguments.
And the choice of modes (i.e., literal, MEMORY[D + Oi])
makes programming difficult. A choice of MEMORY
[C + Oi] and MEMORY|D + Oi] would have been an im-
provement.

Architectural improvements to assist layout also are neces-
sary. Implicit in the architecture is that registers Al, A2, and
A3 are the input registers of the ALU. In fact, during im-
plementation it was necessary to use extra input and output
registers for the ALU. In addition, the choice of eight-bit
instruction operands requires all operands to be sign-ex-
tended before use.

Implementation

Because the initial RIMMS architecture is not intended to
be optimum and the development is continuing, detailed crit-
icism of its implementation is best deferred. In a new imple-
mentation the common bus will be replaced by bidirectional,
point-to-point connections between microcomputers, allow-
ing greater parallelism in data transfers between each unit.
We intend to make the local memory part of the CPU by
increasing the number of registers in the data path. Finally, we
expect to be able to implement the whole of a microcomputer
on one chip, as a step towards the aim of an integrated VLSI
multi-microcomputer system.
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System considerations in the NS32032 design

by RICHARD MATEOSIAN
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Santa Clara, California

ABSTRACT

The key element in the high-performance systems toward which the 32-bit micro-
processors are targeted is the memory and its buses. Viewing memory rather than
the CPU as the key system element leads to an important rule for CPU designers:
don’t hog the bus. The NS32032 avoids kogging the bus by increasing the informa-
tion content of memory transactions, and by keeping key data where it’s needed
rather than moving it across the bus each time it’s used. The information content
of transactions is increased through the use of a wide bus and a compact instruction
encoding. Key data is kept in registers and in an MMU translation lookaside buffer.
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INTRODUCTION

The high-performance 16-bit microprocessors introduced
over the last five years have broken ground in a new market
for microprocessors: high-performance systems such as en-
gineering and CAD workstations, and even general-purpose
mainframe-level computers. The 16-bit microprocessors gen-
erally have plenty of computing power, but suffer in these
applications from an inefficient use of memory. The principal
purpose of the 32-bit microprocessors now reaching the mar-
ket is to overcome this difficulty and to provide efficient en-
gines for high-performance systems.

Designing high-performance microprocessor-based systems
requires viewing the memory and its buses as the critical
elements. DMA, graphics, and multiple CPUs must all con-
tend for this resource, and the key design criterion for CPUs
intended for this environment is that they provide high levels
of computing power without hogging the bus. In this paper
we shall see how the NS32032 was designed to meet that
criterion.

HOW NOT TO HOG THE BUS

If the memory bus is seen as the critical resource in a system,
then there are two main ways to optimize its use. The first is
to convey more information per transaction, and the second is
to keep key data where it is to be used, without passing it
across the bus each time it is needed. The NS32032 design
makes use of both of these techniques.

Conveying as much information as possible in each trans-
action is made possible in the NS32032 in several ways. First
is the 32-bit width of the bus. Since many of the entities dealt
with in workstation applications are 32 bits in size, a 32-bit bus
represents a substantial increase in the efficiency of accessing
such items, when compared with a 16-bit bus.

The second way that the NS32032 maximizes the informa-
tion content of bus transactions is to use a compactly encoded
instruction set. Variable sized instructions and displacements,
special addressing modes, complete orthogonality, and un-
restricted instruction alignment all contribute to program
compactness. To further improve the bus efficiency of instruc-
tion fetching, accesses to instruction memory are made asyn-
chronously to execution. An 8-byte instruction prefetch
queue (FIFO) allows transfers to be made on 32-bit bound-
aries and at low priority. Instruction alignment is handled
automaticaliy inside the CPU, and under normal circum-
stances instructions are presented to the execution unit as fast
as it can handle them, but without placing undue demands on
the memory.

Keeping data where it is to be used is facilitated in the

NS32032 design in several ways. Most importantly, general-
purpose registers in the CPU and in the floating point unit
allow frequently accessed variables to be used without an
argument transfer over the memory bus. Similarly, in the
MMU, a cache of recently used translations allows address
translation to proceed with infrequent access to the large
memory-based translation tables required for demand paged
virtual memory.

NS32032 DETAILS

The architecture of the NS16000 Family has been described
elsewhere. In brief, the main processing chips of an NS16000
system are a CPU, Memory Management Unit (MMU), and
Floating Point Unit (FPU). All CPUs of the NS16000 Family
have the same 32-bit architecture and 32-bit internal imple-
mentation. They differ only in the width of the bus to mem-
ory. The NS32032 has a 32-bit bus.

Instruction Encoding

The compact instruction encoding of the NS32032 arises
from a number of interrelated factors:

. Orthogonality of operation, data type, addressing mode
. No instruction alignment restriction

. No instruction size restriction

. Variable sized displacements

. A variety of register-relative addressing modes

DW=

Orthogonality serves to reduce the number of instructions
required to perform typical high-level language functions. For
example, the statement

A=A+B

normally translates into a single NS32032 instruction, regard-
less of whether A and B are local, global, or external and
whether they are variables, array elements, or record fields.
Furthermore, this instruction rarely occupies more than 4
bytes of instruction memory.

Instructions for the NS32032 can be any number of bytes in
size and can begin at any byte of memory. This requires
special circuitry in the CPU (see Figure 1), which could be
avoided if size and alignment restrictions like those of older
microprocessor families were enforced. The resolution of the
tradeoff in favor of special circuitry is easily understood when
the memory and its buses, rather than the CPU, are regarded
as the critical system resource.
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NS32032 CPU Block Diagram
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Figure 1—Special NS32032 circuitry avoids alignment restrictions

Variable sized displacements and the register-relative ad-
dressing modes that use displacements contribute to the com-
pactness of NS32032 programs. Figure 2 shows the NS§32032
addressing modes. Note that many involve the use of a base
register to contain a memory address, and a displacement
encoded in the instruction. The first two bits of a displacement
are used to encode its size in bytes. The encoding allows
displacements ranging between —64 and 63, by far the most
common case, to be encoded in a single byte, while displace-
ments up to 4 bytes in size allow the entire addressing range

GENERAL

DEDICATED - w2

| o 1 PROGRAM COUNTER | PC wo [ ]

Lo STATICBASE | 58 m{ 1]

[ FRAME PONTER | £P =

[o 1 USERSTACK PTR. | 8P1 o ]

[0 T wrensuprstackpm. ] sro s ML J

= ==

[omvs | wooue | a7 | |
R 11,
o [ ]
n [ 1.
o |

L FsR 1 r | ) .
ks | ]
| 1 .
e[ 3|

Figure 2—Many NS32032 addressing modes use displacements

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS

Register Relative

01000 Register O relative disp(RO) Disp + Register.

01001 Register 1 relative disp(R1)

01010 Register 2 relative disp(R2)

01011 Register 3 relative disp(R3)

01100 Register 4 relative disp(R4)

01101 Register 5 relative disp(R5)

01110 Register 6 relative disp(R6)

01111 Register 7 relative disp(R7}

Memory Relative

10000 Frame memory relative disp2(disp1(FP)) Disp2 + Pointer; Pointer found at

10001 Stack memory relative disp2(disp1(SP)) address Disp1 - Register. "SP”

10010 Static memory relative disp2(disp1(SB)) is either SPQ or SP1, as selected
inPSA.

Absolute

10101 Absolute @disp Disp.

External

10110 External EXT (disp1) + disp2 Disp2 = Pointer; Pointer is found
atLink Table Entry number Disp1.

11000 Frame memory disp(FP) Disp + Register; "SP" is either

11001 Stack memory disp(SP) SPO or SP1, as selected in PSR.

11010 Static memory disp(SB)

11011 Program memory * +disp

Figure 3—Registers reduce bus traffic

to be spanned. The base register can be either a general-
purpose register or one of several registers designed to sup-
port directly the data structures most frequently used by com-
piled code.

General Registers

The general-purpose registers of the N§32032 CPU and its
associated floating point unit (the NS16081 FPU) reduce bus
traffic by eliminating memory transactions for operand
accesses. The use of compiler techniques like data flow analy-
sis, which optimize the use of general-purpose registers by
high-level language programs is further facilitated in the
NS32032 architecture by orthogonality, which allows all vari-
ables to be treated uniformly.

Figure 3 shows the register set of the N§32032, which con-
tains eight general purpose registers and eight floating point
registers. Even though floating point operations are handled
by a separate chip, the floating point operations and registers
are integrated with the N§32032 architecture so that floating
point variables can be handled exactly like integer variables by
compilers.
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Figure 4—NS32032/NS16082 memory management uses memory-based
tables
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Memory Management

Demand paged virtual memory for the NS32032 is achieved
with the NS16082 MMU, which uses extensive memory-based
tables to define three-level address translation and access pro-
tection for user and supervisor address spaces. (See Figure 4.)
Memory management for the NS32032 avoids burdening the
memory bus in two ways. First, memory accesses with or
without address translation look identical to the memory. The
MMU automatically inserts an additional cycle into translated
transactions, but does so invisibly to the memory.

The second feature of the MMU that avoids burdening the
memory bus is a 32-entry cache of recently used page transla-
tions, automatically updated with a clocked FIFO algorithm.
In typical applications this cache allows translation to proceed
without access to the memory-based tables better than 98% of

the time. Without this feature, each memory access would
incur an address translation overhead of between two and four
mMemory accesses.

SUMMARY

The key element in the high-performance systems toward
which the 32-bit microprocessors are targeted is the memory
and its buses. Viewing memory rather than the CPU as the key
system element leads to an important rule for CPU designers:
don’t hog the bus. The NS32032 avoids hogging the bus by
increasing the information content of memory transactions
and by keeping key data where it’s needed, rather than
moving it across the bus each time it’s used.






An inside look at the Z80,000 CPU:
Zilog’s new 32-bit microprocessor

by ANIL PATEL
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ABSTRACT

With recent advances in very large scale integrated circuit (VLSI) design, the
once-distinct boundaries of micro-, mini-, and mainframe computer architectures
are eroding. For example, the Motorola 68000, the Z8000 CPU, and the Intel 8086
have broken the once-distinct boundary between micro- and minicomputers. Now
the Z80,000 CPU, Zilog’s new 32-bit processor chip, has broken the distinct bound-
ary between mini- and mainframe computers by featuring a mainframe power on an
integrated-circuit chip. The distinguishing features of the Z80,000 CPU—such as
on-chip virtual memory management, on-chip cache memory, six-stage pipeline
architecture, burst memory transfer, and multiprocessing support—put it ahead of
any CPU in its class.

The CPU supports linear and segmented addressing. The regular instruction set
and rich and powerful addressing modes are well suited to compilers and operating
systems. The flexibility and simplicity of the Z80,000 provide an easy solution to
hardware and software system design.

83






An Inside Look at the Z80,000 CPU 85

ARCHITECTURE

The 780,000 CPU is a register-oriented machine that provides
sixteen 32-bit general purpose registers (Figure 1). The regis-
ters are truly general purpose, with no restrictions on their use
as accumulators, addressing registers, Stack Pointers, or data
registers. Therefore, bottlenecks encountered with register
organizations that dedicate specific registers for accumulators
(or data) and addressing are eliminated. In addition, because
any register can be used as a Stack Pointer, the registers lend
themselves to high-level language support by providing the
multiple Stack Pointers required for parsing operations.

The organization of the registers also provides for efficient
handling of mixed data types. Registers can be used for 8- or
16-bit arithmetic and logical operations without loss of the
high-order 24 and 16 bits, respectively, giving the effect of a
much larger register space. In addition, 32-bit registers can be
paired for 64-bit data.

The 780,000 CPU uses 32-bit logical addresses to directly
access up to 4 gigabytes of memory in each of 4 address
spaces. Separate address spaces are provided for system and
normal modes and for instructions and data. The programmer
has available four different address representations in access-
ing the memory space (Figure 2), providing maximum flexibil-
ity in applying the processor to the specific requirements of
the application environment. Two bits in the flag and control
word (FCW) select compact, segmented, or linear address
representation.

Compact mode uses a 16-bit address, which gets concate-
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Figure 1—General purpose registers

nated to the upper 16 bits of the Program Counter to form a
32-bit address. Programs operating within a 64K workspace
can take advantage of the compact mode’s dense code and
efficient use of base registers.

Many applications lend themselves to the use of segmented
mode, where individual objects are allocated to separate pro-
tected segments. The segment remains unchanged during ad-
dress calculations; only the offset is affected. There are two
segment sizes available with the Z80,000 CPU, controlled by
the most significant bit of the address field. Thus, the pro-
grammer has the flexibility of having 128 segments of up to 16
megabytes, and 32K segments of up to 64K in size.

Applications requiring a large linear address space without
the formal structure of segmentation include graphics and the
processing of large arrays. Additionally, with the availability
of 32 bits of addressing, certain application-specific imple-
mentations use address lines creatively and would otherwise
be hampered by the structure imposed by segmentation. The
780,000 CPU supports 32-bit linear addressing, as well as
segmented and compact addressing, to provide maximum
flexibility to the system designer.

Nine general addressing modes provide efficient access to
the many types of data structures. A rich instruction set com-
bines with the address modes to operate on a variety of data
types, including 8-, 16-, and 32-bit integer and logical values,
as well as bits, bit fields, packed decimal, and dynamic length
strings. Additionally, high-level language support is enhanced
by instructions for procedure linkage, array indexing, and
integer conversion, as well as the more common operations.

A separate system mode, with its own Stack Pointer and
protected address space, supports operating systems. Because
some instructions are privileged, executing only in system
mode, the operating system and system resources are protec-
ted from programs operating in normal mode. The System
Call instruction is used by the normal mode program to com-
municate with the operating system through the Z80,000 CPU
trap facility. The processor also includes an extensive trap
mechanism for run-time error detection and software de-

bugging.

MEMORY MANAGEMENT

The 780,000 CPU memory management mechanism has been
integrated with the CPU on-chip, offering two primary advan-
tages to the system designer: a parts count reduction and
faster access to memory. Memory access is faster because the
CPU generates physical addresses, thus eliminating the delay
of an external memory mapping device.

The CPU’s Paged Memory Management Unit (PMMU)
provides translation of logical addresses to physical addresses,
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Figure 2—Address representation

memory access protection, and protected access to memory
mapped I/O devices. Demand-paged virtual memory is easily
implemented without special software recovery routines or
storage of the internal state following address translation
faults. The implementation is accomplished through early de-
tection of translation faults, resulting in the ability to restart
all instructions efficiently. Besides providing access protec-
tion, the page attribute mechanism also contains referenced
and modified bits that aid the operating system in determining
which page in physical memory should be swapped with the
required page from mass storage.

To manage the Z80,000 CPU’s 4G-byte logical address
space, the translation scheme divides it into fixed-size,
1K-byte pages. The logical address’s 22 high-order bits select
a page in the address space, while the 10 least significant bits
select a byte within the page. Similarly, physical memory is
divided into 1K-byte units, called frames. The memory man-
agement unit maps a logical page to a frame. Having both
logical and physical units of the same size simplifies the oper-
ating system’s memory allocation problem.

The CPU and operating system cooperate to translate a
program’s logical addresses inte physical addresses that are
used to access memory. The CPU’s paging scheme is similar
to that of most mainframes and super-minicomputers. First,

the operating system creates translation tables in memory,
then initializes pointers to the tables in control registers. The
CPU automatically references the tables to perform the ad-
dress translation and access protection for each memory ac-
cess. Delays that would be associated with referencing the
translation tables are minimized by using an additional on-
chip cache associated with the Memory Management Unit,
the Translation Lookaside Buffer (TLB). Logical addresses,
their corresponding physical addresses, and access attributes
are stored in the TLB (Figure 3) as they are translated through
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Figure 3—Address translation using the TLB
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the translation tables. Subsequent accesses to the same page
do not require access to the translation tables stored in memo-
ry; they are simply retrieved from the TLB. The tables are
accessed only when an entry does not exist in the TLB, a TLB
“miss.” The least recently used entry is then replaced with the
new address translation and access information. The TLB can
hold the 16 most recently referenced pages, providing a TLB
hit ratio that is typically over 96%.

The 780,000 CPU implements a three-level address trans-
lation process. Once the operating system creates the trans-
lation tables and initializes the control registers, the CPU
automatically references the level-1, level-2, and page tables
to perform address translation and access protection (Figure
4). Access protection is encoded in a 4-bit field at any level of
the translation process. This allows access protection to be
accomplished at the page level, level-1, level-2, or a mixture
of the 3. The use of 3 levels of translation is dictated by the
32-bit logical address of the Z80,000 CPU, whereas a 2-level
translation mechanism would be appropriate for 24-bit logical
addresses.

It is possible to reduce the number of levels of translation
by specifying in the table descriptor registers (the control
registers containing pointers to the translation tables) that
either or both the level-1 and level-2 tables should be omitted
during the translation process. Skipping level-1 tables is useful
when only a 24-bit address space is required. Both tables can
be skipped when 16-bit addressing is sufficient for the needs
of the application. Additionally, the tables can be reduced in
size by specifying in the table entries the size of the next level
table in increments of 256 bytes. Thus, maximum flexibility in
translation, access protection, and table organization is main-
tained by the Z80,000 CPU memory management implemen-
tation.

PERFORMANCE BOOSTERS: CACHE, SIX-STAGE
PIPELINE, BURST MEMORY TRANSFER

The 780,000 CPU implementation includes a six-stage pipe-
line (Figure 5) supported by two 32-bit ALUs, one assigned to
address calculation and the other associated with the execu-
tion stage. The pipeline allows concurrent operation of up to
six instructions.

All pipeline stages can operate in a single processor cycle,
which is composed of two clock cycles. The pipeline allows
simple instructions, such as register-to-register Load and
memory-to-register Add, to be executed at a rate of one in-
struction for each processor cycle, leading to a peak perfor-
mance of 12.5 million instructions per second with a 25-MHz
clock. In practice, the actual instruction rate is about one-
third of the peak rate because of certain delays.

Because the pipeline may require two memory fetches dur-
ing each processor cycle—one to fetch the instruction and the
other for the operand feich stage—it is necessary to buffer the
high execution rate of the pipeline from the relatively slow
memory access rate. Because memory fetches typically take
three or more bus cycles, the pipeline would be idle most of
the time if all references had to access main memory. By
including an on-chip cache that can be accessed in one pro-
cessor cycle, most memory references can be made without
external bus transactions, allowing the pipeline to function at
an extremely high level of performance.

The cache holds copies of the most recently accessed
memory locations. On each memory fetch, the CPU examines
the cache to determine if the data at that address is available
on chip, in other words, a cache “hit.” If available, the data
is read from the cache rather than from external memory. If
it is not available, a cache “miss,” the CPU generates an
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Figure 5—Six-stage pipeline

external memory transaction to fetch the data and then stores
the fetched information in the cache. The Z80,000 CPU cache
is organized as 16 lines, or blocks, of 16 bytes, for a total of
256 bytes of data (Figure 6). Each block is associated with a
28-bit tag that represents the most significant bits of the ad-
dress of the block. The lower 4 bits of the address select the
appropriate byte, word, or longword within the block. There
are eight validity bits, each corresponding to a word within the
block. This structure represents an optimum tradeoff between
performance and silicon area (cost).

The Z80,000 CPU cache is mode programmable to best fit
the requirements of the application. Modes include instruc-
tion only, data only, instruction/data (all mainframes imple-
ment instruction/data), and local memory. Whereas particular
applications for the Z80,000 CPU may require instructions
only to be cached, caching data along with instructions will
typically increase cache performance by 20%. Local memory
allows a specific address to be assigned to each block; thus,
the cache takes on the form of an extremely fast 256-byte

memory. For example, in a highly intensive interrupt driven

environment, the interrupt service routines (ISR) may be allo-
cated to the on-chip local memory to maximize ISR through-
put.

For references requiring operand stores, the data is always
written to main memory. The cache is also updated if it con-
tains the addressed location; otherwise it is unaffected. This
mechanism, called write-through, ensures that main memory
represents the most recent value stored at any address. With-
out the ability to write through cache to main memory, the
CPU would be required to update memory whenever the least
recently used cache line is flushed to allow space for new code

or data during a cache miss operation. The write-through
mechanism allows processing to continue, concurrent with the
bus activity associated with the write. The pipeline allows
concurrent operation because the next instruction is most
likely to be present in the CPU. Additionally, burst transfers
into cache further increase the probability that instructions
are present on-chip, minimizing the potential of write-through
operations conflicting with bus read transactions.

Increased bus bandwidth can be achieved by taking advan-
tage of the optional burst transfer capability of the Z80,000
CPU bus interface. Burst memory transactions use multiple
data strobes following each address strobe to transfer con-
secutive memory locations. The CPU uses burst transactions
to prefetch a cache block on an instruction fetch cache miss.
A read transaction with a single data strobe and one wait state
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Figure 6—Cache organization
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requires three bus clocks. However, with burst transfers, a
transaction with four data strobes and one wait state requires
six bus clocks, resulting in twice the bus bandwidth of the
single transfer transaction. With a 12.5-MHz bus clock (25-
MHz CPU clock), 32-bit data path, and 4 data transfer per
transaction, with no wait state, the bus bandwidth is 40 mega-
bytes a second. Burst transactions are also used for fetching
and storing operands when multiple transfers are necessary,
such as string operations, Load Multiple instructions, and
loading of program status, and when unaligned accesses oc-
cur.

MULTIPROCESSING

The CPU provides support for interconnection in four types
of multiprocessor configurations (Figure 7): coprocessor,
slave processor, tightly coupled multiple CPUs, and loosely
coupled multiple CPUs. Coprocessors work concurrently with
the CPU to execute a single instruction stream using the Ex-
tended Processing Architecture (EPA) facility. This allows
extension of the Z80,000 CPU architecture to include floating
-point operations and other specialized functions. Addition-
ally, the processing speeds offered by extended processing
units (EPUs) optimized for particular operations, such as the
78070 Arithmetic Processing Unit, can provide significant
performance improvements.

When the CPU encounters an EPU instruction (and the
EPA bit in the FCW is set to 1), it begins a CPU-to-EPU
instruction transaction that broadcasts the first two words of
the EPU instruction to all (as many as four) EPUs in the
system. If a data transfer is required, the CPU and the se-
lected EPU conduct the appropriate data transfer transaction.
The CPU is the bus master, handling address translations and
bus transactions. The EPUBSY signal is used by the CPU and
EPUs to synchronize transfers. EPU operations are efficient
because the CPU is not required to wait for completion of the
EPU operation, and no elaborate handshaking is necessary.
In fact, up to four EPUs can be actively processing data while
the CPU handles other chores. In systems supporting the
functionality of an extended processing unit without the actual
EPU present (the EPA bit in the FCW is cleared to 0), the
EPU instructions are trapped and emulated in software.

Slave processors, such as the Z8016 DMA Transfer Con-
troller, perform dedicated functions asynchronously to the
CPU. The CPU and slave processor share a local bus, of which
the CPU is the default master. When the slave wishes to use
the bus, it requests the bus using the BUSREQ line. The CPU
responds by asserting BUSACK and placing all other output
signals in 3-state. The slave then gains control of the bus (and
in the case of the Z8016, it provides DMA capabilities). When
the slave no longer needs the bus, it relinquishes the control
back to the CPU.

Tightly coupled, multiple CPUs execute independent in-
struction streams and generally communicate through shared
memory located on a common (global) bus using the CPU’s
GREQ and GACK lines. Each CPU is default master only of
its local bus; an external arbiter chooses the global bus master.
The CPU also provides status information about interlocked
memory references so that bus control is not relinquished

cPU — cPU -
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EPU | DMA |
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MEMORY |— MEMORY |—
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Figure 7—Multiprocessing support

during an indivisible operation such as Test and Set or In-
crement Interlocked.

The 780,000 CPU’s I/O and interrupt facilities support
loosely coupled multiple CPUs, which generally communicate
through a multi-ported peripheral, such as the Z8038 FIFO
/O Controller.

EXCEPTION PROCESSING

The 780,000 CPU supports four types of exceptions: reset,
bus error, interrupts, and traps. A reset exception occurs
when the reset line is activated. In responding to a reset ex-
ception, the CPU fetches the program status (FCW and PC)

(D} LOOSELY-COUPLED
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from physical address 2 and resets itself into the initialized
state.

When external hardware indicates a bus error exception on
the memory response lines RSP,-RSP;, the CPU terminates
the transaction in progress. The CPU also terminates the
instruction in execution. In processing bus error exception,
the CPU saves the program status, the physical address for the
transaction, and a word identifying the status and control
signals used for the transaction.

Three types of interrupts are supported: vectored, non-
vectored, and nonmaskable. The vectored and nonvectored
interrupts have mask bits in the FCW. All interrupts read an
identifier word from the bus during an interrupt acknowledge
transaction and save the word on the system stack. Vectored
interrupts use the lower byte of this word to select a unique PC
value from the program status area.

The CPU supports 12 trap conditions: extended instruction,
privileged instruction, system call, address translation, re-
served instruction, odd PC, trace, breakpoint, conditional,
integer overflow, bounds check, and subscript error.

In descending order, the priority of exceptions is: reset, bus
error, trap, nonmaskable interrupt, vectored interrupt, and
nonvectored interrupt.

780,000 CPU PERFORMANCE

Cache memory and the pipelined structure cause the per-
formance evaluation of the Z80,000 CPU to be complex. The
best approach is separation of instruction processing time into
a sum of three components: execution time, pipeline delays,
and memory delays. Performance was evaluated by statisti-
cally measuring activities of 10 C language programs and then
performing a computer simulation of the cache, Translation
Lookaside Buffer, and pipeline mechanisms.

The execution time for an instruction is the number of
cycles required to execute the instruction if there are no other
delays such as cache miss or register interlock. Common in-
structions, such as loading a register with a word operand
specified by a base-register-plus-displacement addressing
mode, execute in 1 processor cycle (2 clock cycles), but the
average instruction execution time is 1.3 processor cycles.

Pipeline delays are caused by branch instructions, register
interlocks, and other miscellaneous delays. The most signifi-
cant of these is delay due to branch instructions. When a
branch is taken, instructions in the pipe behind the branch
instruction are flushed. Unconditional branches introduce a
delay of two processor cycles. Conditional branches cause a
three processor cycles delay if the condition is met and no
delay if the condition is not met. The average delay due to
branches is 0.5 processor cycles per instruction.

Another significant pipeline delay is register interlock.
Whenever the execution stage modifies a register that is to be
used in a subsequent instruction as an address register, the
address calculation must be held up (interlocked) until the
execution is complete. The interlock ensures that the proper
register value is used in the address caicuiation. The average
register interlock delay is 0.2 processor cycles per instruction.
All the other miscellaneous delays add up to 0.2 processor

cycles. Therefore, the total average pipeline delay is 0.9 pro-
cessor cycles per instruction.

Memory delays are caused by cache misses and TLB misses.
When the processor fetches an instruction or operand for
which a corresponding entry in the cache or TLB does not
exist, a reference to main memory is generated. The average
delay due to these memory transfers is 1.2 cycles per instruc-
tion. This delay calculation is based on a 32-bit data path, a
memory cycle time of 3 processor cycles, and support of burst
transfers.

Instruction processing time, Ti =
Execution delay + Pipeline delay + Memory delay.
Therefore Ti = 1.3+ 0.9 + 1.2 = 3.4 processor cycles.

The total processing time is an average of 3.4 processor cycles
per instruction. At 10 MHz, this corresponds to 1.5 MIPS; at
25 MHz, the instruction execution rate is 3.7 MIPS.

EASE OF SYSTEM DESIGN

The Z80,000 CPU allows particular cost and performance
objectives to be met by allowing designers to balance memory
access and bus bandwidth appropriately and to incorporate
burst transfers into designs. The Hardware Interface Control
register (HICR) defines the characteristics of the hardware
configuration surrounding the CPU. By setting appropriate
bits in the HICR, the system designer can specify bus speed,
memory data path, and the number of wait states to be auto-
matically inserted for different types of bus accesses.

The bus speed can be one-half or one-fourth the CPU’s
clock frequency. Because the cache effectively decouples the
CPU from the external bus, high processing rates can be
achieved on-chip supported by an external bus that is not only
easier to design but also less costly than one operating at the
high clock frequencies of the 280,000 CPU. A performance of
1.5 MIPS can be achieved at 10 MHz, using slow and inexpen-
sive memory of 600-nanosecond memory cycle time. Using
240-nanosecond memory cycle time, a performance of 3.7
MIPS can be achieved at 25 MHz. In addition, because the bus
can operate at two frequencies relative to the processor’s
clock, design migration to faster versions of the CPU will not
incur major redevelopment. For instance, a 10 MHz Z80,000
design using a 5 MHz bus can be increased to 20 MHz while
maintaining the same external bus speed.

The memory data path width can be specified separately for
the upper and lower portions of the memory space as either 16
or 32 bits. The number of wait states to be automatically
inserted during bus accessses can be specific to the upper and
lower portions of the memory and I/O spaces. Thus, a system
can accommodate a slow, 16-bit-side ROM and a fast 32-bit-
wide RAM.

CONCLUSION
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1. High performance
a. On-chip Memory Management Unit (MMU)
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. On-chip cache—instruction/data
Six-stage pipeline architecture with two 32-bit ALUs
. Burst memory transfers
. EPU overlap (CPU is able to run while coprocessor is
running)
2. Flexible architecture
a. Available linear, segmented, and compact addressing
b. Programmable hardware configuration (e.g., bus
speed, wait states)
¢. Support for multiprocessing: tightly coupled, loosely
coupled, slave processor, cOprocessor
3. Simple and regular architecture
a. Regular use of operations, addressing modes, and
data types in instruction set
b. Rich and powerful addressing modes
4. Miscellaneous benefits
a. Instruction set well suited for high-level, structured
languages like C, PASCAL

oo o

b. Architecture well suited for operating systems
c. On-chip MMU for easy and cost-effective hardware
design

d. Simple memory management and task switching for
operating system

. Largest virtual memory available per task
Largest register set

. Execution rate of up to 12.5 MIPS

. Memory mapped I/O
Single phase clock
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The Z80,000 CPU addresses a wide range of system applica-
tions including high-performance, desk-top general purpose
computing, graphics, and array processing, wherever main-
frame performance is at low cost.
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ABSTRACT

This paper describes an array-processing architecture capable of executing high-
level vector operations. There are two distinguishing features of this architecture:
First, the user can define for later use complex vector operations that involve several
arithmetic operations and branching. Once defined, they appear as built-in vector
instructions to the user. Second, the algorithms for accessing and aligning vectors
are implemented in hardware, eliminating the need for user programs to deal with
memory addresses.
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INTRODUCTION

This paper presents a bus-organized array processor designed
to execute high-level vector operations. Unlike conventional
array processors that can only execute basic arithmetic vector
operations, such as addition and multiplication, and that rely
heavily on pipelined arithmetic units, the system proposed
here uses programmable processing units that can execute
complex vector operations involving several arithmetic oper-
ations as well as conditional branching within the body of the
operation. One of the primary motivations for this work is to
provide an experimental research system for investigating dif-
ferent methods for implementing vector algorithms. It is felt
that by organizing vector calculations so that the basic oper-
ations on the vector components are more complex than sim-
ple arithmetic operations, a higher degree of parallelism can
be realized.

The next section provides a discussion of the considerations
that have motivated this high-level approach to array pro-
cessing. The third section presents the array processor archi-
tecture we have developed to support this approach. The final
section summarizes some of the research projects planned for
and motivated by the array processor presented in section
three.

BACKGROUND AND MOTIVATIONS

A major problem encountered in the design and use of high-
performance parallel] systems involves the movement of data
between functional units. As the speed and number of pro-
cessor and memory units are increased, the capacity of the
data transfer paths between these units becomes the critical
bottleneck to overall system performance. There are two gen-
eral solutions to the problem: (1) increase the number and
bandwidth of the data transfer paths in the system, or (2)
organize computations to decrease the amount of data that
must be transferred between the different units. While the
first solution is more general—it does not place additional
restrictions on how the system is used—it is usually the most
expensive. An implied objective of the second solution is to
reduce the need for expensive, high-speed data transfer paths
by reducing the amount of data that must be passed between
functional units. This is usually possible only if the class of
computations to be performed is restricted in some way.
The simplest scheme for connecting several functional units
is a bus shared by all of the units (Figure 1a). The problem
with this interconnection structure is that only one item of
data at a time can be transferred between functional units.
Several techniques for increasing the capacity of data transfer

paths in a computer system have been developed. Most of
these use multiple data paths to reduce the number of func-
tional units that must share a common data path. For exam-
ple, if the number of functional units is relatively small (less
than 16-20), a crossbar switch (Figure 1b) can be used to
provide a direct connection between any two units."> While
the cost of such a switch is proportional to the square of the
number of functional units, any two or more different pairs of
units can transfer data simultaneously. If the number of func-
tional units is large (more than 16-20), a multistage intercon-
nection network (Figure 1c) can provide a more cost-effective
interconnection structure than the crossbar.>* These are net-
works that provide the capability for any unit to transfer data
to any other unit, but they cannot support as many simulta-
neous transfers as a crossbar. However, for n functional units,
the cost of a multistage interconnection network is only on the
order of n(logn) instead of n” for the crossbar.>°

This paper is concerned with the second approach to re-
lieving the data transfer bottleneck, namely, restricting the
amount of necessary data movement between functional units
so that a simple bus can be used for all data transfers between
functional units. While this will not work for all types of
computations, it will usually be successful for algorithms that
can be decomposed into a large number of independent sub-
algorithms. One source of algorithms with this property is the
class of vector calculations where the same operation is ap-
plied to all elements of one or more vectors. Since the oper-
ations on different components of a vector are usually inde-
pendent, these calculations can involve a large number of
independent operations with little if any sharing of data.
Therefore, the architecture proposed in this paper will be
bus-organized and optimized to execute vector calculations
with a minimum of data movement between processors and
memories. It is intended to be used as a back-end processor
that adds vector-processing capability to a general-purpose
Pprocessor.

The key to using a bus effectively in vector calculations is to
organize the system and the algorithms so that the time re-
quired to perform a component operation is large relative to
the time required to transfer the operands and results on the
bus. In this way the bus can be time shared among several
functional units without significant loss of performance. To do
this, the processing units should be capable of performing
operations that are more complex than simple arithmetic
operations. In fact, they should be capable of executing algo-
rithms composed of several arithmetic operations and simple
branching instructions. Then, the execution of several oper-
ations on several vector components can be executed simulta-
neously in different processors and overlapped with the trans-
fer of operands and results.
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Figure 1—Intermodule communication

Let N denote the maximum number of processing units that
can be kept busy, each performing an operation on different
components of a vector, in a bus-organized system. Then N is
equal to [t/t]1+ 1, where t, is the processing time of the
operation, t, is the bus transfer time for its operands and
results, and {x] denotes the smallest integer greater than or
equal to x. To see this, note that an operation can be initiated
in a processor each t, time units. After t, +t, time units, the

operation in the first processor is complete so that it can be
assigned another. The number of processors that can be as-
signed an operation before the first one is free is just [t /t,].
Hence, [t,/t,] + 1 processors can be kept busy. If more pro-
cessing units were available, they would not increase the per-
formance of the system, since the bus would be saturated and
unable to supply data fast enough to keep all of the processors
busy. Therefore, by organizing a vector algorithm so that the
time to execute operations on vector elements is large relative
to the time to transfer data between memory units and
processors, the performance limitations inherent in a bus-
organized system can be alleviated. Again, this argues for
general-purpose functional units that can be programmed to
perform complex operations.

If [t/t.] + 1 processors are used to perform an operation on
vectors of length k in a bus-organized system, then the total
time required to perform the operation is given by

T=k-t+t,

This follows from the fact that the bus is saturated so that all
processing time is overlapped with bus transfers. Therefore,
the total time to perform the vector operation is approxi-
mately equal to k - t,, the time required to transfer the oper-
ands and results for the k component operations. The extra t,
term is for the time to complete the last component operation
during which no bus transfers are taking place.

To illustrate the concepts outlined above, consider per-
forming the operation Z <« X* + Y?, where X, Y, and Z are
vectors of length 100. Figure 2 shows two ways this calculation
could be organized for a system in which all data transfers
between memory and processing units take place via a com-
mon time-shared bus. The 200 multiplications and 100 addi-
tions that must be executed to perform the vector operation
are shown in Figure 2a. For the purpose of illustration assume
that the multiply and add instructions each require two time
units, and one time unit is required to transfer a single com-
ponent of a vector between a memory unit and a processing
unit. Figure 2b shows the instructions that must be executed
if the instructions in Figure 2a are executed horizontally (i.e.,
row 0, then row 1, then row 2).

Figure 2c shows the other possibility where the instructions
are executed vertically (i.e., column 0, then column 1,...,
then column 99). Four time units are needed to execute each
of the first 200 rows in Figure 2b and five time units are
needed for each of the last 100 rows. In both cases only two
processors can be used giving a total execution time of approx-
imately 700 time units for the complete calculation of X* + Y?
using two processors. If the instructions are organized as
shown in Figure 2¢, then the instructions in each row of that
figure require nine time units, but three processors can be
kept busy. This gives a total computation time of 300 time
units using three processors. The improvement of more than
a factor of two for the algorithm in Figure 2c, over the one in
Figure 2b, is due to two factors:

1. 400 of the 700 data transfers in Figure 2b have been
eliminated
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PO €« XO*XO; Pl <« XI*XI; ee ng <« x”'x”
Qo €« YO‘YO; Ql &« YI*YI; s Q99 &« Ygg*ygg

20 <« P°+Q°; Zl &« Pl+Q1; ces 299 <« ng'i'Q99

(a) Arithmetic instructions involved in computing X2 + Y2

fetch Xo; Po <« xo*xo; store P
fetch X Pl <« Xl*xl; store P

0;
1’ 1}
fetch x”; l’99 €-X99*X99; store ng;
fetch Yo; Qo (—YO*YO; store Qo;
fetch Yl; Ql <—Y1*Yl; store Ql;

fetch Y € Y, *Y, g5 store Q”;

995 Qg9 € Ygo*¥g
fetch Po; fetch QO; Z0 G-PO*QO; store ZO;
fetch Pl; fetch Ql; 21 &« Pl*ng store 21;
fetch P”; fetch Q99; 299 (—P”*Q”; store 299;

(b) Horizontally organized computation

fetch Xo; fetch ‘io; P& xoixo; Q (—YO'YO; Z0 € PHQ; store 2

fetch Xl; fetch Yl; P <—x1*xl; Q(—Yl*‘ll; Zl € P+Q; store Z

0
1

. . * - * . -
fetch 199, fetch Y”, P& X99 ng, Q (—Y” Yggv 299 € P+Q; store 299

(c) Vertically organized computation

Figure 2—Computation of X2 + Y2

2. three processors can be effectively used (kept busy) exe-
cuting the algorithm in Figure 2c, while only two can be
used effectively for the algorithm in Figure 2b

As another example of this approach, consider the follow-
ing FOR loop, which might be part of a larger program.

FOR I=1TO 100 DO
T X[I] + Y[I];
IF (X[1]> Y[I])
THEN U < X[I] - Y[I};
ELSE U < Y[I] - X[IJ;
Z[ < T2+ 4*U
END

If the body of this loop is considered as an operation per-
formed on the vectors X and Y to produce the result vector Z,
then the type of advantages illustrated by the previous exam-
ple can also be realized for this example. In particular, the
components of X and Y only need to be transferred from
memory to a processing unit once, and only the result Z must
be stored. Moreover, because several arithmetic operations
are performed during each execution of the loop, the ratio of
processing time to data transfer time should be large enough
to enable the concurrent use of several processing units. If
the processors were unable to execute programs involving
branches and several arithmetic operations, these advantages
would not be realized.
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Figure 3—Aurray processor block diagram

OVERVIEW OF THE ARRAY PROCESSOR

The general organization of the array processor is shown by
the block diagram in Figure 3. It is composed of two major
subsystems, the vector subsystem consisting of the PG, VM,
and PP modules, and the scalar subsystem consisting of the IP
and SP modules. The system functions by passing packets of
information between the modules along a high-speed bus. A
general description of the operation of each of the five types
of modules is given below.

The Interface Processor

This module provides an interface between the array pro-
cessor and a host computer. Programs and data for the array
processor are downloaded from the host processor, and re-
sults are uploaded through the interface processor module.
Since the array processor is used as a back-end processor for
a general-purpose computer, it has no I/O capability. All
access to large-capacity storage devices (e.g., disk and tape
drives) is provided by the host computer through the interface
processor module. A consequence of this is that the array
processor does not support virtual memory, and all data for a
computation must be present in the array processor’s memo-
ries during the computation.

The Scalar Processor

The scalar processor is a general-purpose processor in that
it contains both a CPU and local memory, and it interprets
programs by fetching and executing instructions from its local
memory. It is the module that is in overall control of a com-
putation performed in the array processer. Such a computa-
tion is specified by a main program containing instructions
executed by the scalar processor as well as special vector
instructions. These are instructions that initiate vector oper-
ations to be performed in the vector subsystem using vectors
stored in the vector memory (VM) modules. The main pro-
gram is executed by the scalar processor until a vector in-
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struction is encountered. At that point, the vector subsystem
is instructed to perform the vector operation and inform the
scalar processor when it is finished. Thus the vector subsystem
can be viewed as a powerful slave processor for the scalar
processor that provides storage space for vectors and per-
forms all vector operations.

The Packet Processor

The normal operation of the vector subsystem is for each
packet processor to be performing the same operation, but on
different components of the operand vectors. In the previous
section, it was argued that if this is to be most effective, the
processors should be capable of executing relatively complex
operations. For these reasons, the packet processors are small
and fast general-purpose computers with local memory. Prior
to initiating a computation on the array processor, copies of
programs defining all of the vector operations to be per-
formed must be downloaded to all of the packet processors.
Programs for frequently used operations could also be stored
permanently in the packet processors using ROMs. A packet
processor is idle until it receives a packet containing com-
ponents of the operand vectors, an op-code specifying which
operation is to be performed, and addresses in vector memory
for the results. Then, the processor proceeds to execute the
program for the specified operation. When that program ter-
minates, the packet processor forms a new packet consisting
of the results and their vector memory addresses and sends it
to the vector memory modules. It then returns to the idle state
and waits for another packet of operands.

The Vector Memories

These modules are used to hold all vector operands and
results during a computation performed by the array pro-
cessor. All vector operands must be downloaded from the
host computer to these modules before the computation can
be initiated. Similarly, all result vectors must be uploaded to
the host computer when the computation is complete. When
a vector operation is performed, the components of the vector
operands are sequentially fetched from the memory modules
and passed to the packet processors. When a component
operation completes execution in a packet processor, the re-
sulting components are passed back to the memory modules
and stored in the result vectors. It was observed in section two
that the highest performance is achieved when the bus is satu-
rated. For that reason, multiple interleaved vector memory
modules can be used to increase the memory bandwidth and
match it to the bandwidth of the bus.

The Packet Generator

Once a vector operation is initiated by the scalar processor,
it is under the control of one of the packet generator modules.
These modules also control downloading and uploading of
data between the vector memory modules and the host com-
puter. Multiple packet generators are allowed so that several

vector operations and data transfers can be active simulta-
neously. If this capability is not needed, only one packet gen-
erator module is required.

To explain the operation of the packet generators, consider
the vector operation Z « X* + Y?. To initiate this operation a
packet generator would be passed a command packet from the
scalar processor that specified the number of operand and
result vectors, their lengths, their starting locations in vector
memory, and an op-code specifying the operation X* + Y.
Recall that the program defining this operation would have
been preloaded into the packet processors. The packet gener-
ator would then proceed to generate a sequence of packets for
the packet processors. The i-th packet would contain the oper-
ands X; and Y;, the op-code, and the address of Z;. There-
fore, the packet generator must be capable of generating a
sequence of addresses for each vector involved in the oper-
ation. To form the i-th packet, the packet generator first sends
fetch requests to the vector memory modules for components
X; and Y;. When these operands are available, it combines
them with the op-code and the address of Z; to form the
packet. The packet generator also must monitor the bus to
know when all of the generated packets have been executed
and their results stored in vector memory. When this occurs,
the packet generator notifies the scalar processor that the
vector operation is complete.

Since the packet generator must be capable of generating
the sequence of addresses for the components of a vector, it
is the logical choice for controlling the transfer of data be-
tween the host computer and the vector memory modules.
This process is similar to the generation of operand packets.
To upload a vector the IP generates a sequence of packets
where each one contains one component of the vector and
sends these packets to the interface processor instead of the
packet processors. To download a vector, a sequence of store
addresses is generated and paired with vector components
requested from the interface processor instead of the vector
memory modules. These packets are then sent to the vector
memories instead of the packet processors.

The array processor is used by the host to perform computa-
tions that contain a number of vector operations. The pro-
grams for these computations are compiled in the host
computer and then downloaded to the array processor for
execution. The identification and definition of the vector in-
structions are done by the compiler or the user before the
programs are downloaded. The operation of the array pro-
cessor as it performs one of these computations is summarized
as follows:

Phase 1—Initialization

1. The main program defining the computation is down-
loaded from the host computer to the scalar processor.
2. Programs defining each of the vector instructions are
broadcast from the host computer to the packet pro-
cessors. Identical copies of each are loaded into every
packet processor.
. Data vectors needed during the computation are down-
loaded from the host computer to the vector memory
modules under the control of a packet generator.

w
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Phase 2—Execution

1. The scalar processor executes the main program. All
instructions except vector instructions are executed se-
quentially in the scalar processor.

2. When a vector instruction is encountered by the scalar
processor, it sends a command packet to one of the
packet generators. This is a packet that contains all of
the information needed by the packet generator to con-
trol the execution of the vector instruction.

3. Once it receives a command, a packet generator controls
the execution of the vector instruction corresponding to
that command by generating and sending packets to the
packet processor modules. Each packet corresponds to
the operation performed on one component of the oper-
and vectors and contains an op-code for the operation,
addresses for the results, and the vector components
fetched by the packet generator from the vector memory
modules.

4. When a packet is received at a packet processor, it exe-
cutes the operation specified by the op-code and forms
a packet containing the results and their vector memory
addresses. This packet is then sent to the vector mem-
ory, and the packet processor enters an idle state waiting
for another packet.

5. When all of the components of the operand vectors have
been processed, the packet generator notifies the scalar
processor of the completion of the vector instruction.

Phase 3—Termination

1. Once the main program terminates, the scalar processor
initiates a transfer of result vectors to the host computer.

2. When all results are transferred to the host computer,
the computation is complete and the array processor
waits for the host to initiate another one.

We note two distinguishing features of the proposed ar-
chitecture. First, the generation of addresses, the memory
accesses, and the execution of operations are all decoupled
and implemented by independent functional units. Second,
the functional units are data driven. That is, there is no central
control unit that synchronizes the different units. Instead,
their operations are initiated by the arrival of packets from
other units. Similar features can be found in several other
architectures.”® However, most of these systems have applied
the concepts at a relatively low level (e.g., the machine in-
struction level), and many have used complex parallel inter-
connection networks. An important goal of our research is to
explore the possibility of improving the effectiveness of a
bus-organized system by applying these two concepts at a
higher level.

An early version of the proposed architecture and the con-
cept of interleaving both memory and processor modules was
studied by S. Ahuja in his doctoral dissertation.'® His tech-
nique of interleaving the processors was also reported in Ref-
erence 11. A method for using queues to match the per-
formance of interleaved memory modules and interleaved
processor modules can be found in Reference 12.

CONCLUSION

A prototype of the array processor described in this paper is
currently under construction at Rice University. We expect to
produce a system capable of sustaining from one- to five-
megaflop performance over a wide range of vector operations.
While this will provide a powerful tool for numerical com-
putation, our main goal is to develop a testbed for research
into the best way to organize computations for this type of
architecture and to compare it with other types of array pro-
cessors. To this end, the following three research projects
have been identified.

Project 1—Data Skewing in Vector Memory

In order to sustain a high rate of data transfer to and from
the vector memories, it will be necessary to use several inter-
leaved modules. However, when vectors are fetched with a
stride that is a multiple or divisor of the number of memory
modules, the memory requests will not be equally distributed
among the modules, negating the effect of interleaving. To
alleviate this problem, different algorithms for skewing vec-
tors across memory modules can be used. Both the vector
memory modules and the packet generators are being de-
signed to support the implementation of different skewing
algorithms. The goal of this project is to use this ability to
investigate the effects of different skewing algorithms on over-
all system performance.

Project 2—Numerical Algorithms

The purpose of this project is to develop new algorithms
that take advantage of the unique properties of the array
processor. The initial effort will concentrate on numerical
algorithms that can be formulated naturally using vector in-
structions. Here, the goal is to find ways to partition and
vectorize the algorithms to use the ability of the packet pro-
cessors to execute complex operations.

Project 3—Compiler Design

This is a long-range project with the goal of producing a
FORTRAN compiler for the array processor. This compiler
will be capable of recognizing vector operations and produc-
ing programs that realize them on the packet processors. It is
expected that with the ability of the packet processors to
execute complex operations, the compiler will be able to vec-
torize complex data-dependent FOR loops.
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Compatible software and hardware implementations
permitted by IEEE standards for binary
floating-point arithmetic

by HARRY W. LOOK
Zilog Corporation
Campbell, California

ABSTRACT

Zilog’s* System 8000, a UNIX*-based system using the Z8000 microprocessor
family, incorporates the vision held by the authors of the IEEE 754 Standard for
binary floating-point arithmetic. Floating-point implementation can be realized
entirely in software with Zilog’s Z8070 Software Emulator, or entirely in hardware
with the FFP-8/01 processor board or the Z8070 chip. Each of these implementa-
tions is examined separately. Because the IEEE standard specifies numerical pre-
cision and exception handling, the user can choose either the software or the
hardware implementation without any sacrifice in the accuracy of the results. And
as the hardware availability increases and the cost decreases, floating-point oper-
ations can be easily transported from software to hardware for increased per-
formance.

*UNIX is a trademark of Bell Laboratories; Zilog is licensed by AT&T.
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78070 SOFTWARE EMULATION PACKAGE

The Software Emulator provides floating-point arithmetic ca-
pability for Zilog’s 16-bit microprocessors, the Z8000 CPU
family. The Emulator deals with a range of integers from — 9
X 10®t0 9 x 10" and with a range of real numbers from 3.4
X 107?10 1.2 X 10**2, Like the Z8070 chip, the Emulator
can operate on single precision (32-bit), double precision
(64-bit), or double extended (80-bit) data types. Integer for-
mats supported are long (32 bits), quad (64 bits) and decimal
(80 bits), which can include up to 19 binary-coded decimal
digits and a sign bit. All computations and all values are
automatically converted to the 80-bit double extended format
when they are loaded into the Emulator.

The Z8000 trap structure permits floating-point operations
to be performed with either the Software Emulator or a hard-
ware device. Bit 13 of the Z8000’s Flag and Control Word
register (FCW) is set by the user to indicate the presence of
the Extended Processor Unit (e.g., Z8070 chip). The EPU
instruction set serves as an extension of the Z8000 instruction
set and has a unique set of opcodes to distinguish it from
Z8000 instructions. If an EPU instruction is encountered and
Bit 13 of the FCW is reset to indicate that the EPU is not
present, an extended instruction trap will occur, and the Em-
ulator will be invoked. If the EPU hardware is present and Bit
13 is set, no trap is generated, and the hardware captures and
processes the instruction.

The Emulator itself consists of a system dependent module
and a system independent module. The system independent
module, which contains the floating-point routines used for
computations, is about 5,000 bytes of code and requires fewer
than 30 words of stack space for operation. The system depen-
dent module, which is used to call the independent module, is
a small set of assembly language interface routines that can be
tailored to the host system. Functionally, the Emulator, which
is a software trap handler for floating-point instructions, is
responsible for the following functions:

1. Decoding the floating-point Instruction that was not
“recognized” by the Z8000 (Bit 13 of FCW reset)

2. Performing the floating-point computation with a format
in conformance to the IEEE standard

3. Handling exceptions either by a trap to a service routine
or by default (the user selects the approach by setting a
bit)

4. Saving the required status information prior to the trap
and restoring the information (the computational engine
is the Z8000 rather than the Z8070 EPU chip)

Most floating-point operations with the Emulator finish in
about 1 ms, using a 6 Mhz Z8000, which includes the trapping
and operating system overhead.

ZILOG’S FPP-8/01 FLOATING-POINT PROCESSOR
BOARD

Zilog’s FPP-8/01 is a two-board hardware implementation of
the full IEEE standard. Like the Software Emulator, it per-
forms all internal operations in double extended format. De-
signed for the 32-bit Z-Bus Backplane Interconnect (ZBI bus)
used in Zilog’s System 8000, it greatly increases the speed of
floating-point operations. Typically performing 125K floating-
point Operations per second (KFLOP), performance is over
100 x that of the Software Emulator. The performance fig-
ures were obtained by finding the dot product of two
1,000-element vectors. The FPP-8/01 board set contains 400
equivalent integrated circuits, which includes 4K-by-4-bit
static RAMS, 16-bit-by-16-bit multipliers, and 4-bit micro-
processor slices.

Functionally, the FPP-8/01 (Figure 1) consists of five units:

1. The ZBI interface

2. A microcode sequencer and control store
3. A sign engine

4. An exponent engine

5. A fraction engine

The ZBI interface serves as the communication path be-
tween the FPP-8/01 and the rest of the System 8000. Floating-
point microcode is loaded into the control store through the
ZBI bus when power is applied to the system.

Once loaded, the FPP-8/01 monitors the ZBI bus for
floating-point instructions. When the CPU encounters an
FPP-8/01 instruction, it performs the address calculation and
provides the address and data timing signals for data transfer.
The microcode control sequencer then captures the in-
struction and data and begins processing. Unlike the Software
Emulator, which uses the CPU trap structure, the FPP-8/01
operates as a coprocessor, and no CPU trap is generated.
While the FPP-8/01 is performing number crunching, the CPU
continues its normal functions. But if the CPU detects a sec-
ond FPP-8/01 instruction while the first is being executed, the
CPU stops until the first floating-point instruction finishes.
When finished, the CPU completes the instruction fetch, and
operation resumes. The sign, exponent, and fraction engines
perform the actual floating-point operations with sixteen 4-bit
slices. The fraction engine also uses 16 X 16 multipliers.

The FPP-8/01 is a hardware emulation of the Z8070 chip.
There are a few minor exceptions, which, of course, have no
effect on the precision of the calculations or the handling of
exceptions. With the FPP-8/01, the CPU stops if sequential
floating-point instructions are encountered. Processing of the
first floating-point instruction must be complete before the
instruction fetch of the second instruction is completed. The
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78070, on the other hand, has a one-deep queue. The CPU
may not need to stop at all for sequential floating-point in-
structions. The CPU stops only if the subsequent floating-
point instruction is one of the following:

1. A Load or Store operation where a value from the first
operation is needed by the second instruction.

2. A Load or Store operation where conversion of data
types is involved.

3. Waiting because the instruction queue is full.

In addition, the User and Flags registers, which are present
in both the FPP-8/01 and Z8070, cannot be bit-set. The FPP-
8/01, unlike the Z8070, required that the entire register be
reloaded to change bit information.

728070 EXTENDED PROCESSING UNIT

With the Z8070 Floating-Point Processor, floating-point oper-
ations can be performed significantly faster (100 X to 500 x )
than if done through software emulation. Applications like
graphics, engineering workstations, C and PASCAL pro-
grams declaring floating-point variables, and FORTRAN pro-
grams can benefit from the addition of a floating-point co-
processor to a system. Because of the Z8000’s trap structure,
software does not need to be rewritten if the Z8070 is added.
One simply sets Bit 13 of the FCW register to indicate that the
Z8070 is present, and the Z8070 processes the floating-point
instructions; this is in contrast to trapping to floating-point
subroutines for Z8000 processing if the Z8070 is not present.

Execution times for the Z8070 chip are listed below in clock
cycles.

80-bit
32-bit 64-bit (Double
(Single)  (Double) Extended)
Addition/subtraction 18 18 18
Multiplication 28 42 48
Division 29 43 49

(Execution time in microseconds is obtained by dividing clock
cycles by the clock speed in Mhz. For example, a 32-bit Mul-
tiply will take 2.8 microseconds using the standard 10-Mhz
Z8070.) This performance level is 1.7 X to 7 X that of other
announced floating-point chips at their standard clock rate.

Z8070 Architecture

The Z8070 is functionally organized as two processors: an
Interface processor and a Data processor. These two proces-
sors, which are integrated onto the same chip, have separate
clocks (Figure 2). This allows a slower speed microprocessor
to operate with a faster Z8070 (or vice versa) by matching the
interface processor clock to that of the system microprocessor
and still operate the data processor at a faster clock speed.
The interface and data processor operate independently. The
interface processor fetches and aligns floating-point instruc-
tions and data, manages the internal queue, and executes
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Figure 1—The FPP-8/01 Floating-Point Processor

certain control and data instructions. The internal queue can
store one instruction with associated data while another sepa-
rated instruction is being executed. The data processor con-
tains eight 80-bit data registers and performs the actual
floating-point processing. Like the Software Emulator and the
FPP-8/01, all computations done internally are in the double
extended format. All floating-point operations fully comply
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Figure 2—Z8070 Block Diagram
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with the IEEE standard, including exception handling, ma-
nipulation of denormal numbers, infinities, and NaNs.

Z8070 Interface

Unlike the FPP-8/01, which monitors the ZBI bus, the
73070 monitors the CPU bus for floating-point instructions.
The Z8070 supports interfaces to the Z800™ 16-bit CPU,
which is code-compatible with the Z80® CPU, the Z8000
CPU, the Z80,000™ 32-bit CPU with on-chip cache and
MMU, and a Universal Interface. The interface is selected by
configuring two pins as high or low in the 68-pin Leadless Chip
Carrier package. Interface selection using this approach pro-
vides a universal device without the problem of balancing the
production and inventory mix. With the Universal Interface,
the Chip Select line, rather than the microprocessor’s bus
signals, is monitored. An active signal on this line indicates
that the instruction on the bus is meant for the Floating-Point
Processor. The Z8070 then reads data from the bus during
each processor cycle until it collects the full instruction and
data. Data bus widths of 8, 16, and 32 bits are supported with
the Universal Interface.

With the Z8070’s Coprocessor Interface, the CPU always
remains a bus master. This eliminates the overhead that re-
sults if the Bus request/Bus acknowledge approach is used.
For a transfer of data between the Z8070’s internal registers
and main memory, the CPU calculates the memory address,
places it on the address/data bus, and generates the appropri-
ate timing signals. The data are then placed on the address/
data bus by the Z8070 and written into memory. This bus
efficiency contrasts with alternative approaches, which re-

quire a transfer of data from the Floating-Point Processor to

the CPU and then to memory.

IEEE 754 STANDARD FOR BINARY
FLOATING-POINT ARITHMETIC

The IEEE standard assists in accuracy of results, independent
of the particular hardware or software implementation. The
78070 Software Emulator, the FPP-8/01, and the Z8070 fully
comply with the standard. The standard specifies the follow-

ing:

1. The minimum number of bits to represent exponents
and mantissas in the single, double, and double-ex-
tended formats

2. The set of floating-point operations that must be sup-
ported (Add, Subtract, Multiply, Divide, Square Root,
Remainder, Rounding integer to floating-point, Data
Type Conversion, and Compare)

3. Bit representations for plus and minus infinity, zero,

denormalized numbers, and NaNs

Acceptable rounding methods

Default handling of exceptions caused by overflow, un-

derflow, division by zero, square root of negative num-

ber, and operation on an NaN

v

SUMMARY

For floating-point intensive applications where computational
speed is critical, hardware solutions such as the Z8070 and
FPP-8/01 are more suitable than software solutions. For other
applications which may require occasional floating-point com-
putations, a Software Emulator is more cost effective. What-
ever method is used, a microprocessor like the Z8000 provides
a convenient trap structure that supports both software and
hardware solutions without software redesign. And, because
of compliance with the IEEE standard, accuracy of results is
ensured.






Goals and tradeoffs in the design
of the MC68881 floating point coprocessor

by JOEL BONEY

Motorola Inc.
Austin, Texas

ABSTRACT

This paper describes the goals and tradeoffs in the design of the MC68881 Floating
Point Coprocessor. The Motorola MC68881 is a complete implementation of the
proposed IEEE floating point standard on a single VLSI chip. It is a coprocessor
for the MC68020 microprocessor and is a peripheral processor for other M68000
family processors.

The design of the MC68881 was guided by a set of goals. This paper discusses the
major goals of the MC68881 project and their impact on the design. During the
definition of the architecture of the MC68881 many engineering tradeoffs were
made by the design team. This paper also documents how some of these tradeoffs
affected our decisions. Lastly, the paper gives enough of an overview of the
MC68881 to make the discussions of the goals and tradeoffs meaningful.
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INTRODUCTION

No design project should be undertaken without a good set of
clear goals that are the guiding information allowing the de-
signers to make the necessary tradeoffs during the design
process. This paper documents the design goals and some of
the architectural tradeoffs of the MC68881 design project.
This VLSI design project will take about 4 years from the first
preliminary specification to first silicon (which is expected
about the time this paper is published).

The Motorola MC68881 is a complete implementation of
the proposed IEEE floating point standard on a single VLSI
chip.! It is a coprocessor for the MC68020 microprocessor and
is a peripheral processor for other M68000 family processors.
Since it will be necessary to have some knowledge of the
MC68881 in order to understand the goals and tradeoffs, this
paper also includes an overview of the MC68881. More spe-
cific detail about the MC68881 can be obtained from other
papers and articles published by the design team.>**

AN OVERVIEW OF THE MC68881

The MC68881 is a high performance floating point unit de-
signed to interface with the 32-bit MC68020 as a coprocessor.
It can also be used as a peripheral processor with some per-
formance degradation, in systems where the MC68020 is not
the main processor (e.g. MC68000, MC68008, MC68010).
The configuration of the MC68881 as a coprocessor or a
peripheral processor can be completely transparent to user
software.

The MC68881 utilizes the general purpose M68000 family
coprocessor interface to provide a logical extension of the
CPU’s instruction set and register set such that it is trans-
parent to the programmer. The programmer is never aware
that the coprocessor and main processor are implemented on
two separate chips.

Internally the MC68881 is divided into two processing ele-
ments, the Bus Interface Processor (BIP) which handles the
coprocessor interface and the Arithmetic Processor (AP). All
interaction with the main processor is handled by the BIP
while the AP executes all MC68881 instructions.*

Bus Interface Processor

All interprocessor transfers are initiated by the MC68020.
During the processing of an MC68881 instruction, the
MC68020 transfers instruction information and data to the
coprocessor via standard M68000 write bus cycles using a

unique CPU function code and receives data, requests for
service, and status information from the coprocessor via stan-
dard M68000 read bus cycles.

The MC68881 contains a number of coprocessor interface
registers which are addressed like memory by the MC68020’s
micro-machine. These registers are not part of the program-
mer visible register set.

Reserved opcodes in the M68000 instruction map that
formerly trapped out to an exception routine (Line 1111 Em-
ulator Trap) are now defined as coprocessor instructions.
Only the MC68020 tracks the instruction stream. When it
detects a coprocessor instruction, it writes the next word in the
instruction stream to the coprocessor and reads the co-
processor’s response. The BIP encodes in the response any
additional action required of the main processor on behalf of
the coprocessor. A typical request for service is “‘evaluate the
effective address and transfer N bytes of data to the co-
processor interface operand register.”

The coprocessor interface permits the MC68881 to execute
most floating point instructions concurrent with the
MC68020’s execution of non-floating point instructions.

The MC68881 is designed to operate over 8-, 16-, or 32-bit
data buses. The part is packaged in a 64-pin DIP or 68-pin
Pin-Grid-Array package.

The coprocessor interface is fully compatible with the
MC68020’s on-chip instruction cache and virtual memory ar-
chitecture. The interface insures that all coprocessor exe-
cution time exceptions, including instruction single-step, are
handled identically to main processor execution time excep-
tions. Both the MC68020 and the MC68881 are designed for
16.67-Mhz operation. Since the interface is based solely on
standard M68000 asynchronous bus cycles, the MC68881 need
not run at the same clock speed as the main processor.

Arithmetic Processor

Once the BIP has decoded an instruction and requested any
operands it needs, the microcode in the Arithmetic Processor
is started to acquire the operands and to perform the re-
quested operation. The AP is implemented as a pseudo two-
level micro-machine much like the MC68000.”

Architecture Overview

The architecture of the MC68881 appears to the user as a
logical extension of the M68000 family architecture. It is a
register oriented, one-and-a-half-address processor similar to
the MC68000 and its derivatives.®
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Programmer’s model

The MC68881 adds the following registers to the pro-
grammer’s model of the M68000 family:

1. Eight 80-bit floating point data registers analogous to the
M68000 integer data registers.

2. A 32-bit control register contains enable bits for each
class of exception trap, and mode bits to select rounding
mode and rounding precision.

3. A 32-bit status register contains the floating point condi-
tion codes, quotient bits set by remainder and modulo,
and exception status information.

4. A 32-bit instruction address register contains the address
in memory of the last floating point instruction. This
address is used in exception trap handling.

Data formats

The MC68881 supports the following data formats:

1. Byte, word, and long word integers,
2. Single, double, and extended precision binary real,
3. Decimal real string (packed BCD).

The three integer data formats are identical to those sup-
ported by M68000 family processors. The floating point data
formats, single precision (32-bits), and double precision
(64-bits) are as defined by the IEEE standard.?

The extended precision data format is also in conformance
with the IEEE standard, but the standard does not specify this
format to the bit level as it does for single and double. The
format on the MC68881 consists of 96 bits, 3 long words, with
an explicit most significant mantissa bit. Only 80 bits are
actually used, the other 16 bits are left for future expan-
dability.

The decimal real string format consists of a signed 3-digit
base 10 exponent and a signed 17-digit base 10 mantissa. All
digits are packed BCD so that a whole string fits in 96 bits.

Integer, single precision, double precision, and decimal real
string format operands are always converted to an extended
precision floating point number prior to participating in an
MC68881 operation. The floating point data registers always
contain extended precision values, and all internal computa-
tions are performed to extended precision.

Instruction set

The instruction set of the MC68881 can be subdivided as
follows:

1. Moves; register to register, external operand to register,
and register to external operand forms are provided.
The external operand may be any of the 7 data formats
supported, and may be specified by any MC68020 ad-
dressing mode.

. Arithmetic and Transcendental Operations; register to
register and external operand to register forms are pro-
vided. The external operand may be any of the 7 data
formats supported, and may be specified by any
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MC68020 addressing mode. The result is always placed
in the specified floating point data register.

3. Miscellaneous; move multiples (in and out) branches,
set on condition, trap on condition, save context, restore
context, etc.

The arithmetic and transcendental operations are listed in
Figure 1. Dyadic operations (those requiring two operands)
are listed first followed by the monadic operations.

Add IEEE Remainder
Compare Scale Exponent

Divide Single Precision Divide
Modulo Single Precision Multiply
Multiply Subtract

Absolute Value Log Base 2

Arc Cosine Log Base e

Arc Sine LogBaseeof x+1

Arc Tangent Negate

Hyperbolic Arc Tangent Sine

Cosine Sine and Cosine
Hyperbolic Cosine Hyperbolic Sine

e to the x Power Square Root

¢ to the x Power — 1 Tangent

Get Exponent Hyperbolic Tangent
Get Mantissa 10 to the x Power
Integer Part Test

Log Base 10 2 to the x Power

Figure 1—Supported operations

All operations required by the IEEE standard are provided
on the MC68881 plus many more. All instructions support all
IEEE defined special values (normalized, zeroes, infinities,
denormalized numbers, and ‘not-a-numbers’), and return the
IEEE specified results with accuracy as specified in the
standard.

Following the precedent set by the orthogonal instruction
set in the M68000 family of processors, MC68881 instructions
are provided for move, arithmetic, and transcendental oper-
ations using any data format and any addressing mode. The
domain of an operand in a given data format is unrestricted
for all operations. No operations require software envelopes
to conform to the standard. Similarly, for the transcendentals,
all argument reduction is performed on-chip.

The MC68881’s conditional instructions utilize 32 floating
point conditional predicates encoded in five bits. The four
possible relations between two floating point numbers,
greater than, equal, less than, or unordered, are encoded into
four bits. The fifth bit, as required by the proposed standard,
indicates whether an exception should be raised if the predi-
cate evaluation yields an unordered relationship.

GOALS AND TRADEOFFS
Goals

There were five major goals for the MC68881 project given
in the following priority:
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1. The MC68881 should have the same style of architecture
as the other members of the M68000 family
Performance

Functionality and user friendliness

. Reduce design time and long term design costs

. Producibility

v

MG68000 Family Style of Architecture

Since we felt that the functionality of the MC68881 would
eventually be moved onto the same die as the main CPU, an
important goal was to insure that the architecture of the
MC68881 fit in with the rest of the family. The MC68881
should expand the instruction set of the main CPU in an
orthogonal manner that was transparent to the programmer
(i.e., the user should not be aware that the MC68020/
MC68881 consisted of two devices).

The coprocessor interface scheme is crucial to achieving this
goal. The philosophy was to split the work done by the co-
processor interface between the main CPU and the co-
processor such that each element does what it can do best. For
example, the MC68020 decodes the original instruction and
determines that it is a coprocessor instruction. It then informs
the coprocessor by writing a coprocessor defined operation
word to the coprocessor. The coprocessor decodes this word
and requests that the main CPU do the effective address cal-
culation and transfer operands of ‘n’ bytes to the coprocessor.
Or if a floating point exception occurred, the coprocessor
might ask the main CPU to commence exception processing.
Thus it can be seen that the MC68020 does what it already
knows how to do: decide basic instructions, calculate effective
addresses, and take exceptions. The coprocessor knows about
its defined operation and knows what kind and size of data it
wants from the main CPU or if an exception occurred.

A tradeoff was made in the coprocessor interface scheme to
use standard asynchronous M68000 bus cycles for communica-
tion between the main CPU and the coprocessor. There was
a minor speed penalty for this method when the MC68881 was
used as a coprocessor for the MC68020, but it allowed the
MC68881 to be used by all other M68000 family members as
a peripheral.

This decision, along with the decision to not make the
MC68881 a bus master (i.e., the MC68881 does not fetch its
own operands; they are fetched by the main CPU and passed
to the MC68881) greatly simplifies the system hardware inter-
face to the MC68881 and allows flexibility.

Another tradeoff/decision made by the MC68881 design
team was the selection of a register based one-and-a-half ad-
dress architecture. In this type of architecture one of the
operands typically comes from memory while the other oper-
and comes from a register with the result going to the register
or memory. This architecture is consistent with the architec-
ture of the other M68000 family members. Further, since the
M68000 processors have 8 integer data registers, the decision
was made to have 8 additional floating point data registers.
Studies have indicated that 8 registers are optimal for expres-
sion evaluation, etc.; and by having the same number of in-
teger and floating point data registers compiler writers should
be able to use the same register allocation algorithms for
integers and floating point.

Orthogonality across the instruction set and addressing
modes is a feature of the M68000 family that was preserved by
the MC68881. All the addressing modes of the MC68020 are
available for accessing floating point operands. Further, the
safety features supported by the M68000 processor such as
illegal instruction and illegal addressing mode traps are also
supported by the MC68020/MC68881 pair.

Performance

Within the constraints of M68000 family architectural con-
sistency, performance was the next most important design
goal for the MC68881. Both the MC68020 and the MC68881
were designed for a clock speed of 16.67 Mhz. Even though
the HCMOS process results in a slightly larger die, it was
selected for both projects because of speed and low power
consumption.

Performance of the basic functions, add, subtract, multiply,
and divide, was emphasized. Special hardware was added to
the execution unit to speed up these basic operations. Table I
gives the execution times for the register to register forms of
these operations on a MC68020/MC68881 pair. These times
do not reflect the potential throughput increase from
concurrency.

The single multiply and single divide operations assume
that their operands are single precision, and produce a single
precision result (while maintaining the range of extended).
These operations are provided for special applications where
multiply and divide performance is more important than loss
of significance.

Even though we wanted the operations to be very fast on
the average, one tradeoff we made was to insure that the worst
case execution times would not be significantly different from
the best case times. In some applications the only important
item would be the average execution time, but in real-time
applications the whole system usually has to be designed using
the worst case time. Floating point units that depend on slow
software envelopes to handle special cases will be very hard to
use in real-time applications.

All calculations in the MC68881 are done internally to full
IEEE extended precision. Even though we might have
achieved marginally faster single and/or double precision
times by including special hardware for single and double
precision, we decided to concentrate our efforts in making
extended precision very fast. This gives us very competitive
times for all operand size not just single or double.

The last major performance-related tradeoff was the deci-

TABLE I—Execution times

Operation Clock Time (psec)

(reg-reg) Cycles @ 16.67 Mhz
Add 40 2.4
Subtract 40 2.4
Multiply 60 3.6
Divide 92 5.5
Single Mul 46 2.8
Single Div 58 35
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sion to support concurrent operation. Concurrency means
that once an instruction is started in the MC68881 the
MC68020 is free to continue executing other non-MC68881
instructions. Thus the two processors overlap their execution,
which increases the overall throughput of the pair. The sup-
port of concurrency did cost some silicon area and added some
complexity, but we felt that the potential benefits outweighed
the silicon costs.

Functionality and User Friendliness

Probably the biggest tradeoff we made toward functionality
and user friendliness was the decision to support the proposed
IEEE standard in its entirety in silicon.! As participants in the
standardization process we felt the accuracy and safety pro-
vided by the standard greatly outweighed the minor impact it
had on die size and hence, cost. Many people seem needlessly
frightened by the complexity of the standard. If all the de-
faults of the standard are selected, the user is hardly aware of
it except that he gets better results and has fewer problems
with his algorithms blowing up than with conventional floating
point implementations.” Most of the special modes are in-
cluded for the expert numerical analysts and can be ignored by
the average user.

Conformance to the standard involves much more than just
conformance to the specified data formats. The standard
specifies what operations must be supplied in a conforming
implementation, and what accuracy is required for the oper-
ations. Further, it defines exceptions, specifies their detec-
tion, and specifies the results of exceptional operations in
both trapping and non-trapping environments. The standard
specifies special data types within each format (signed zeroes
and infinities, not-a-numbers, denormalized numbers) and
specifies the results of operations involving these special data
types. It also specifies user selectable modes for rounding
mode and precision. Any floating point hardware element
that does not support all these requirements does not conform

“to the IEEE standard.

In addition to the functions required by the standard we
decided to support many additional functions including a com-
plete set of transcendental functions. As with the IEEE re-
quired functions, no software envelope is required to make
the functions work correctly. The transcendentals even do the
argument reduction on chip.

A slightly more efficient use of silicon would have been
made if we had just implemented a set of primitive transcen-
dentals on the chip. All the functions we support can be de-
rived from a subset of primitives. There are perhaps a few
hundred people in the world who know how to derive these
correctly. It took us several years to figure it out. We didn’t
want our customers to have to go through what we did to
become numerical experts in order to use our part, nor did we
want to ship a large, slow software envelope with every part.
The silicon impact was minimal, so we just put everything on
the chip.

Another major tradeoff we made was whether to support all
of the data types supported by the M68000 family in addition
to the floating point data types and conversions required by

the standard. We decided to support all data types including
a decimal real string type. This feature along with the fact that
all internal operations are done to full extended precision
makes the MCG68881 very easy to use and very accurate. The
old FORTRAN problem of mixed modes goes away when an
MC68881 is used since all sizes and types of data can take part
in a floating point calculation with maximum accuracy.

As mentioned previously, we decided to support concur-
rency for performance reasons; however, we made a lot of
minor design tradeoffs to insure that the concurrency is com-
pletely transparent to the programmer.

Reduce Design Time and Long Term Design Cost

As VLSI chips have gotten bigger, the time it takes to do
the architectural design, the circuit design, and the layout has
increased dramatically. We therefore made many tradeoffs in
the design to reduce the design complexity. The MC68881 is
implemented as a pseudo two-level microcode machine. It has
a very wide control word with very little residual control.”
Several PLAs are used for microcode address generation and
for the coprocessor responses.*

Nearly all the cost of implementing the IEEE standard is
contained in several PLAs and a small amount of microcode.
There is almost no random logic used to implement the IEEE
standard or for that matter any of the other functionality
improvements of the MC68881. The only time we used ran-
dom logic was in the performance paths in the execution unit
for the basic four functions and in parts of the BIP. The
MC68881 is the most regular non-memory VLSI micro-
processor device we have ever produced.

As for long term design cost, we felt that no manufacturer
could afford to make a whole family of floating point
coprocessors—the market just isn’t big enough to justify the
cost. Because we felt this way, we were more likely to include
extra functionality on the MC68881 so that we don’t have to
do an enhanced version later. Further, the general purpose
coprocessor interface insures us that we won’t have to do a
new version of the MC68881 for each existing M68000 family
member nor will we have to do a new version for any new
family members. Therefore, we may have put more design
effort and cost into the original MC68881 design, but we feel
we greatly reduced the long term design cost to Motorola.

Producibility

The best paper design in the world is useless unless it can be
produced cheaply in volume. Although at times we did trade-
off die size for regularity and functionality, the final die size
is producible in the HCMOS process. And if processing im-
provements continue at the pace they have in the past, in a few
years the MC68881 will seem like a tiny die.

In fact, testing and package costs will dominate the device
cost over time. To this end we will package the MC68881 in a
64-pin DIP or 68-pin Pin-Grid-Array package. Both of these
packages will be high volume packages. For testing, the
MC68881 has extensive on-chip test logic to reduce test costs
that I am not free to discuss in this paper.
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SUMMARY

This paper has attempted to provide a glimpse into the
thought processes of the designers of the MC68881. The
project had more goals than the 5 mentioned and there were
an endless number of tradeoffs made daily with only the major
ones mentioned here. Of course, dozens of people participate
in the design of any VLSI device from the initial marketers
who gave us customer input to the final layout draftsmen who
put it on silicon. Rarely were any of the decisions mentioned
in this paper made by one or two people, but rather by groups.
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ABSTRACT

We describe an extended-precision operand computer (EPOC). The single-
precision word length is 128 bits. This makes possible calculations with large in-
tegers without resort to multiprecision techniques in software. Since this is a special-
purpose machine, the hardware and software have been developed from scratch to
implement it. The application toward which the EPOC is directed is the factoring
of large integers using the continued fraction algorithm. This application presents
interesting mathematical and architectural problems to solve and has implications

in cryptography.
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INTRODUCTION

We have built a special-purpose computer with properties that
facilitate the calculations for a class of mathematical prob-
lems. These are problems in number theory, specifically the
factoring of large (50- to 80-digit) integer numbers. We
present some features of this computer, an Extended-
Precision Operand Computer (EPOC), which differs from
conventional architectures in several ways.

The most prominent feature of the computer is the ex-
tended precision of the operands. In most computer architec-
tures, large numbers must be handled by multiprecision soft-
ware routines. This is time-consuming (8+5n operations per
multiprecise operation in one package on the $/370, where n
is the degree of extra precision). Quadruple precision addi-
tion, for instance, requires 28 operations rather than one. To
make calculations with large numbers faster, EPOC provides
128-bit operands in memory and registers that the program-
mer can fetch, store, and manipulate with single operations.
This degree of precision accommodates up to 38-digit decimal
numbers. The operand length of the EPOC is extendible with-
in the architecture by linking additional hardware and adjust-
ing the timing.

One measure of a computer system is its speed. In compute-
bound applications, the speed of the processor directly limits
performance. Traditional architectures expend processor time
in the instruction fetch portion of the instruction cycle. This
expenditure is avoided if the instructions are fetched in paral-
lel with their execution as pipelined processors do. In micro-
coded processors, the next microinstruction is fetched while
the present microoperation is executed. Microcoded proce-
dures run up to ten times faster than those coded in software.
EPOC is microcoded in a user-defined language, making use
of a family of system programs developed specifically for this
project.

The factoring problem to which EPOC is directed must
operate on candidate numbers by calculating their residues
modulo a set of prime numbers. EPOC includes an array of
remainder elements which will figure the residues of a candi-
date by all members of a set of primes at once. This has some
aspects of parallel processing, some aspects of vector or array
processing. The dividers are a set of separate (but not auton-
omous) arithmetic elements which are hard-wired to perform
the specific remainder operation required.

Many of the problems to which EPOC will be applied have
long running times (on the order of months). To assure correct
operation, we have built sanity checks into the operational
software, can run diagnostics quickly between program seg-
ments, and have segmented the algorithm so that it can be
checkpointed periodically. Checkpoint and restart procedures

are necessary when problems must run for an extended period
of time in an exposed environment.

EPOC HARDWARE

EPOC is a prototype. It has been constructed with simplicity
and ease of maintenance in mind. A multibus backplane holds
multibus prototype cards on which sockets and integrated
circuits are mounted. The circuit interconnection technique is
wirewrap, chosen for its simplicity, flexibility, and reliability.
The circuits used in EPOC are from the Schottky TTL and
Advanced Schottky TTL families.”* These technologies are
fast at the circuit level, rugged, and straightforward as a design
medium. EPOC consists of 18 cards, but only 4 card types.
There are 12 dividers, 4 ALUs, and one each sequencer and
IOTE. (See Figure 1).

Input/Output Terminal Emulator (IOTE)

The IOTE is an input/output terminal emulator. This de-
vice is the channel between EPOC and the external world
(host computer and operator). EPOC’s channel need not have
a high data rate, since the EPOC application is processor-

CONSOLE
HOST

I0TE

ALU

Figure 1—EPOC hardware connections
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bound. This fact has been exploited in the EPOC system by
providing all input/output via terminal emulation. This means
that when EPOC wishes to communicate with the host sys-
tem, it appears to the host to be a user typing on a terminal
keyboard. When the host system is sending, EPOC must be
able to ‘read’ the data off the emulated terminal screen. Doing
input/output via terminal emulation has the benefits of sim-
plicity and inherent portability, since any system to which a
terminal can be attached could serve as host to EPOC in
operation.

The IOTE is a microcomputer subsystem that provides syn-
chronous control of EPOC in addition to buffering and I/O
functions. The hardware is based on a Z80A processor and
has minimum circuitry to support the required activities, most
functional capability and operational logic resident in the pro-
gram. The IOTE handles communications connections to the
host and operator’s console on one side. It buffers and de-
codes or encodes messages, and inserts or removes protocol
information. On the other side, the IOTE has access to the
EPOC control register, can respond to EPOC service re-
quests, and can request the processor to stop. When EPOC is
stopped, the IOTE acts as a DMA channel to/from the EPOC
data store. One of the purposes to which this capability is put
is the loading of the microcode store on the sequencer and the
initialization of the data store on the ALU. Another is the
unloading of results from EPOC to the host computer. In this
case, the transfer is requested from the EPOC side of the
interface. To report these results, the IOTE will sign on to the
host computer system, transfer the required data, then sign
off.

Sequencer

The microprogram of the EPOC processor resides on the
sequencer (SEQ), which assures that operations are per-
formed in the correct order. The function of SEQ is to pro-
duce the address of the next microinstruction, given the
present instruction and the status of the machine. The EPOC
sequencer is based upon the AMD2910 microprogram
sequencer'. This device has the ability to handle up to 12-bit
addresses (implying a 4K microinstruction space), a 5-deep
call/return stack, a counter, and 16 instructions (most of them
conditional). Conditions are fed into the sequencer from
around the EPOC dataflow by the P2 bus on the backplane,
and selected by fields in the microword. SEQ configures the
ALU slices, holds the microprogram store (4K x 64bits), and
controls the operation of the divider bank. The microinstruc-
tion store is loaded over the EPOC backplane bus by the
IOTE. SEQ controls and monitors ALU operation by means
of the conditions bus on the backplane, and a command bus
which is broadcast to the ALU slices and other parts of the
processor on the top cable bus. SEQ also controls the divider
bus, and provides the main system 8MHz clock to the rest of
the hardware.

Arithmetic and Logic Unit (ALU)

Central to the calculations done by EPOC is the 128-bit
arithmetic and logical unit (ALU). The AMD2903A register

and arithmetic and logic unit (RALU) 4-bit slice’ is the central
component in the ALU. 25 operations can be performed
among the accessible operands, with sources and destinations
selectable. The ALU gives the progammer 16 gpr’s and a Q
register, each 128 bits in length. The ALU board also contains
a 128-bit 65MHz shift register which is used to provide a
general shifting capability and to communicate with the di-
viders. The ALU board contains the operand store, a
4k X 128bit static RAM with 100nsec access (MOSTEK
4804).

Packaging an ALU of this size is challenging, especially
when performance contraints are considered. EPOC is built
on multibus prototype boards; the 128 bit ALU is made up of
4 such boards, each with 32 bits of ALU, GPRs, store, and
shifter. The partitioned ALU communicates with more sig-
nificant and less significant neighbors via top-card cables in
such a way that the hardware of each slice is identical to the
others and no positional dependency is built in. The ALU has
carry look-ahead so that the cycle time will be limited as little
as possible by the length of the operands.

Divider

The factoring algorithm to be used on EPOC relies on the
identification of possible factor components as survivors of a
trial division process. 128-bit candidate numbers are divided
by small primes from a factor base. All the numbers are
positive and the quotients are not of interest, only the remain-
ders. This means that trial dividers can be made from a simple
16-bit ALU and shift register. Division then consists of shift-
ing and conditional substraction. An EPOC with 10 dividers
attached will perform 6-8 times better at the factoring algo-
rithm than EPOC without the dividers. Since the dividers are
simple and inexpensive, they are a cost-effective way to accel-
erate this algorithm. The dividers are clocked at 16MHz, so
they process one bit of the input value every 62.5 nsec. A
remainder will be produced after 8 usec. With 10 dividers in
operation, allowing for overhead in startup and termination of
the operation, the divider bank can produce a remainder on
the average of every microsecond.

The dividers are packaged separately from the main EPOC
logic and controlled over a dedicated bus and cable. The
separation in the package makes it possible to expend the
divider subsystem independently to meet future needs. This
flexibility may prove useful in adjusting EPOC performance,
since the best mix of dividers to main processors for the
CFRAC factoring algorithm (see below) is not known.

EPOC SYSTEM SOFTWARE

EPOC is a hardware implementation of the inner loops of a
specific algorithm. It is a special-purpose processor. The com-
ponents however, have some generality and can serve as the
basis for other special-purpose devices. The source of this
generality is the programmability of the devices. Pro-
grammability also permits modification of the operational al-
gorithm (tuning) as the EPOC application evolves. (See Fig-
ure 2.)
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Figure 2—EPOC system software

Definition Program

To allow the maximum flexibility to the programmer in the
language in which he will program EPOC (and because the
machine specification was not complete when the assembler
project was begun) there is a definition program. Using this
program, the programmer can define to the assembler the
target machine and source language of the program. This is
functionally equivalent to the definition statements included
in the AMDASM microcode assembler” but the details differ.

Input to this program is a machine definition file, while
output is a set of internal-format tables suitable for insertion
into the assembler. These are passed to the assembler along
with the user’s symbolic source code as primary inputs. The
definition program serves as a ‘shock absorber’ in the
processor-to-assembler interface. Two programmers can be
programming the same machine in two different languages by
the use of different definition files. One programmer or team
of programmers can program two different machines in the
same language by adjustments to the definition of the
machines.

Microcode Assembler

To program EPOC in a reasonable format, we have devel-
oped a symbols-to-binary translator in the form of a symbolic

assembler®. This assembler is a nontraditional two-pass as-
sembler. Mnemonics are not built in, but are read from the
definition program output described above. The assembler is
a cross-assembler which is portable from one host system to
another to the extent that RATFOR programs are portable®,
Generality in the target machine is attainable by providing
parametric mnemonics, word lengths, and other semantic at-
tributes of the assembler. Only the syntax must be preserved
to use this one assembler for two entirely different machines.
With a preprocessor to absorb syntax differences, this assem-
bler can assemble code for many assembler-level languages.
Generality arises by treating the assembler as the most gen-
eral possible translator—from symbols to bit fields. The gen-
erality is purchased at the expense of efficiency, in this case of
speed of assembly and complexity in the definition file.

Linker

Assembler output is in the form of an object module which
is not directly executable. In addition to the binary micro-
words that are the object of the assembly, there is relocation
information (RLD) pointing to the location in the object code
where the relocatable values are located, and library sub-
program linkages (ESD) asking for code from the system
libraries. The linker will convert the object file into a load file
with all addresses which require it to be properly modified for
relocation and all external references to be resolved in the
linkage process. The linker also maintains the subprogram
libraries, allowing additions and deletions and entering new
object files into the library if the user requests it.

Portability is a characteristic of the linker as of all EPOC
systems programs. The library format is also portable, since
library files are text files. Files in text (ASCII hex) are at least
double the size of the same information in binary. Assuming
that the EPOC microcode files will be small makes the use of
text files reasonable and convenient.

Loader and Unloader

The structure of the EPOC system files and the host con-
nection method makes the process of loading data or a pro-
gram to be executed into EPOC store more than a simple copy
from the disk to memory. The host system, upon which the
linker-output load file exists, is connected to EPOC over a
(terminal) communication line. The loader must account for
buffer size in the IOTE, a communications protocol from the
host to the IOTE, and a code conversion from ASCII-hex to
binary. The loader consists of two programs, one written in
RATFOR and resident on the host system, the other written
in 8080 assembler and controlling the IOTE. The loading
process is accomplished by cooperation between these two
programs. Since there is a communication line involved, mes-
sages are checked for correct transmission and retransmitted
if necessary. There is a communications protocol embedded
inside the loader programs.

When EPOC reports the results of a calculation, those re-
sults must be unloaded from EPOC and placed into a file on
the host disk. The unloader program and IOTE accomplish
this task in cooperation similar to the loader process described
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above. The results file will be processed by a subsequent
program on the host to produce the answer to the mathe-
matical problem. EPOC has completed its subtask once the
intermediate result has been transmitted to the host.

Microcode Simulator

EPOC is programmed directly in horizontal microcode.
This means that each bus in the machine data flow is con-
trolled by the programmer during each instruction cycle. This
level of programming is difficult to master, but it can yield the
best possible machine performance. Debugging micropro-
grams is challenging, since the code is so close to the hardware
that nonstandard debugging techniques are required. Even
when a microcode compiler becomes available, the debugging
of both compiled and assembled programs is a necessary
facility.

The IOTE allows operator-interactive support for program
debugging. This, however, is expensive in both programmer
and machine time and provides a limited window on oper-
ation. The microcode can provide a test driver that permits
the display of interesting values at breakpoints during oper-
ation. The microcode simulator, though, is the best facility for
the functional checking of microprogams.

The microcode simulator has the same transfer function
that the EPOC itself has. It is a program written in RATFOR
that will process data exactly as EPOC would. Since it is a
simulator, any internal state that the programmer may wish to
access can be made available. Using the simulator, the pro-
grammer can run the same load modules that will be sent to
EPOC and see that they are operating correctly or where a
malfunction has occured.

EPOC OPERATIONAL SOFTWARE

Diagnostic Programs

In the course of system development, many small micro-
programs have been developed that test the SEQ, ALU, and
divider dataflows for expected results. These diagnostic pro-
grams exercise the logic and flush the data paths of the ma-
chine. When the diagnostic set works properly, the user can
be confident of the operational readiness of the EPOC hard-
ware. This capability is useful in operation as well as in devel-
opment. For reasons of speed and cost, there is little error-
checking circuitry built into EPOC. In order to assure that the
device is producing good results, the diagnostic set is run
periodically. Since EPOC is not involved in real-time or life-
critical processing, this periodic diagnosis is the most cost-
effective way of ensuring proper operation. Calculated results
are compared with expected values and agreement indicates
correct operation.

Console and Host Connection

To allow the operator to communicate with the machine
while it is in operation, a simple console interface for alter/
display has been provided. This facility accomodates the de-

sire of the operator t0 monitor and affect the progress of the
calculation. The class of problem upon which EPOC will work
may require many (hundreds or thousands) hours of calcu-
lation. During this time, the operator can check the progress
of the algorithm. The host can compile reports as described
above, but, actual hands-on contact with the machine is useful
in both development and operation.

Continued FRACtion Algorithm

The continued fraction (CFRAC) algorithm® is a useful
method in the factoring of large integers. Large (100-digit)
integers and the difficulty in factoring them are the fundamen-
tal reason why RSA public key cryptosystems’ are considered
secure. CFRAC was discovered about 1970, and has since
been extensively use by investigators factoring numbers of
mathematical interest. Pomerance and Wagstaff at the Uni-
versity of Georgia have recently improved the performance of
the CFRAC algorithm by the use of early exit heuristics to cut
short a calculation when its continuance does not appear
promising™.

CFRAC is an algorithm for the factoring of large numbers,
and EPOC is a processor tailored to the accomplishment of
certain portions of the CFRAC algorithm. CFRAC deals with
numbers in the range of the square root of the number to be
factored. These numbers are generated by the algorithm, then
divided by a set of small prime numbers called the factor base.
‘When a candidate number divides completely over this factor
base, this intermediate result is noted. When enough such
numbers have been found, a factorization of the original num-
ber is possible. EPOC performs only one part of the CFRAC
algorithm, the generation of candidate numbers and their trial
division by the factor base. This part requires much computa-
tion but small memory. The final result is produced by the
second phase of the algorithm which requires less computa-
tion but much store. This phase runs on the host system. The
combined system, EPOC and host, solves the CFRAC
problem—the capability of each processor is complementary
to the other in this calculation.

EPOC DEVELOPMENT ENVIRONMENT

Portable Systems

A system can be said to be portable to the extent that its
operation does not depend on the specific hardware upon
which it runs. Various degrees of portability can be provided
by different techniques in systems. The method which has
been employed in the case of the EPOC development system
is the use of the RATFOR”® preprocessor for FORTRAN.
This allows the code in which the development system is writ-
ten to be ported to any system with a FORTRAN compiler
and SOFTWARE TOOLS support®.

Software Tools

With the adoption of RATFOR as the system programming
language, the development aids which come with the software
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tools’ system are also available. We have made extensive use
of these—some of the utility programs (cat, rev, tsort, sort)
are integral parts of the procedures which are executed in the
systems programming process.

A good set of development tools that are mature and free
from significant flaws, and available in source form so that
they can be adapted the specifics of a project, is priceless. For
the EPOC project, this role was taken by the SOFTWARE
TOOLS environment® provided by SA Barman and his staff
on the departmental Cyber computer, and at a greater re-
move by Kernighan and Plauger et.al. to the computing
community”®.

Computer-aided Design

The hardware design task for EPOC has been performed
using a computer-aided design (CAD) system of programs to
keep track of pin numbers in networks, signal names, fanin/
out levels, etc’. This CAD system of programs was developed
for prototype digital system fabrication, and has served the
EPOC case well.

EPOC is a prototype; interconnection is done by wire wrap-
ping. The CAD system bridges the gap between a computer-
readable wire list that can be used to fabricate wrapped boards
by automatic wire-wrapping machine and a user-readable
representation of the design that can be used to document,
communicate, and update the design.

CAD is notable for its simple hardware description lan-
guage (HDL). The language has only two statement types: a
declarative statement denoted by the keyword DEFINE
which tells the symbolic (designer-assigned) name of a de-
vice(s), its type (index into a technology table), and its loca-
tion. The other is a connective statement denoted by the
keyword WIRE and takes the form:

WIRE listl TO list2
where list1 and list2 denote pins which are to be connected.

While simplicity has advantages, this language is verbose in
description. Computer-readable hardware descriptions are a
valuable form of design documentation and the more readable
a HDL, the better. CAD has served to make the hardware
portion of the EPOC project possible. It is a significant step
toward the capability of programming hardware design with
computer development aids as is done with software.

In any hardware project, a CAD system, even a primitive
one, is vital to success. The CAD software used for EPOC has
delivered up much useful information which has helped to
avoid problems or repair them quickly when they arise. De-
signing hardware without a CAD system is like developing
programs in binary—it is not productive, though it is possible
if the problem is small enough. If the problem is of reasonable
size, it is possible in theory, but not in practice.

SYSTEM SUMMARY

EPOC is an extended-precision operand computer. The
single-precision word length is 128 bits, making it possible to

process large integers without resort to multiprecise software
routines. Since this is a special-purpose device, the hardware
and software have been invented from scratch to realize it.

The hardware consists of an IOTE, ALU, SEQ, and a bank
of divider elements that are specifically for a factoring prob-
lem EPOC can solve. The IOTE is a microcomputer system
which handles the host and console interfaces to EPOC as a
buffered DMA channel. It handles the interface to the host
system by emulating a terminal for communications. The SEQ
holds the microstore and executes the microinstructions in a
sequence dictated by the program and the conditions that
arise in the dataflow. The ALU can perform 128-bit oper-
ations in a single cycle (some cycles which produce carries are
lengthened in time). With the exception of the dividers,
EPOC is a general-purpose, fast, small-store, microprogram-
mable, 128-bit processor data flow.

The software consists of a family of system programs for
producing and testing EPOC microprograms: assembler, link-
er, loader, and a definition program, and a microcode simu-
lator to check the function of the produced code. To make the
programs portable, they are all written in RATFOR. To make
them as general as possible, they are heavily parameterized.

One point in summary, a system of things is more difficult
to develop and operate than a collection of things. A signifi-
cant fraction of the EPOC design and debugging effort has
been spent on the interconnection of the components rather
than on the components themselves. The bus layouts, proto-
cols, interfacing conventions and other design considerations
of components interconnection and packaging are a lot of
work to generate without errors. This significant effort was
consistently neglected and underestimated, and this may be in
general a cause of systems integration problems.
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New microprocessor-based computer architectures
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ABSTRACT

The maturing 16/32 bit microprocessor technology is making possible a variety of
multiprocessor architectures, which are either new, or have not been economically
feasible heretofore. Such architectures are now being commercially applied to both
extremes of the computing spectrum: in multi-user, transaction processing systems,
as well as in personal office and engineering workstations. This paper outlines the
key architectural features of several notable microprocessor-based, multiprocessor
designs.
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INTRODUCTION

In addition to software standardization, two other unexpected
developments are arising out of the maturing microproces-
sor technology. On the one hand, the proliferation of
microprocessor-based, desk-top computers is casting doubt
on the validity of the notion that the computer is an expensive
resource which must be shared and centrally-controlled. The
technical capabilities and price/performance of personal,
desk-top workstations, coupled with advances in local area
networks, lend plausibility to future scenarios in which the
role of central computers (including today’s superminis) will
no longer be to supply computing power, but will be limited
to the control of shared data bases.

On the other hand, the same powerful, low-cost, off-the-
shelf microprocessors are making possible a variety of new,
multiprocessor architectures, which are especially suitable for
handling on-line transaction processing and other multi-user
missions. Because of the sensitivity of the data they control,
and because many employees and/or customers will be heavily
dependent on their availability, these systems often offer
fault-tolerant (FT) features.

Microprocessor-based architectures are thus destined to
play a significant role at both ends of the computing environs:
on the user’s desk, and at the “central” facility, where the
latter can range from a departmental file server to the central
corporate data depository.

This paper examines some of the new microprocessor-based
architectures now becoming commercially available for ser-
vice at these extremes of the spectrum.

FAULT-TOLERANT SYSTEMS

Perhaps the most interesting microprocessor-based architec-
tures are evolving in the field of fault-tolerant (FT) systems.
The goal of a fault-tolerant computer system is to protect the
applications processes and the data base from being adversely
impacted by hardware faults. The system’s ability to do this is
measured by its depth, which is the number of faults of a
particular type that can be tolerated concurrently (typically
just one), and coverage, which is the range of fault types with
which the system is equipped to deal.

Demand for FT systems, originally limited to such fields as
process control and telephone switching, is now driven mainly
by the exploding popularity of on-line transaction processing
(OLTP) applications, of which the airline reservations sys-
tems were early harbingers in the mid-1960s. Tandem Com-
puters (Cupertino, CA) has been the premier supplier of FT
systems for OLTP applications since it shipped its first system
in 1976.

It is of value to review the key features of the Tandem
system (Figure 1) to provide a perspective on the newer archi-
tectures. Each Tandem system is a network of up to 16
minicomputer-class processors, implemented in ad-hoc TTL
logic. Inter-processor communications is carried by a du-
plexed, 16-bit-parallel, 6.7-MHz bus system. All peripheral
controllers are dual ported, so each is accessible from two
processors. Disk drives are accessible from two controllers.
Disk mirroring can be invoked, under which the operating
system automatically maintains identical copies of the data
base on two separate disk drives.

The message based operating system, a copy of which re-
sides in each processor, isolates the user processes from con-
figuration details. A user process needing disk service, for
example, addresses a “message” to the disk server process;
the operating system determines the location of the requested
resource, and routes the message accordingly. Thus the user
process need not know which two processors are connected to
the disk in question, or which of the two currently runs the
“primary” disk server process.

Fault-recovery in the Tandem system is achieved by main-
taining, for each process, a semi-active backup copy in an-
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Figure 1—Tandem’s NonStop system architecture
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other processor. The primary process keeps its backup in-
formed through a series of checkpoints, each of which defines
the state of the process at some strategic point in the computa-
tion. Should the processor running the primary become dis-
abled, (detected by the absence of the I'M ALIVE message it
is expected to broadcast every second), the backup resumes
from the last good checkpoint. Applications programmers
originally had to explicitly implant checkpoint calls in their
processes; new software elements have now largely isolated
the end-user from the checkpointing details.

The duality in the Tandem architecture eliminates single-
points-of-failure, while the message-based software architec-
ture facilitates on-line repair, graceful (modular) growth, and
geographically-dispersed networking.

““Pair and Spare’”’ and Related Strategies

Stratus Computer (Natick, MA) is a 1980 start-up that
became public in 1983. Stratus addresses the same OLTP
markets as Tandem, but offers a drastically different,
microprocessor-based FT architecture.

The key architectural concept in the Stratus system, infor-
mally known as the “pair and spare” philosophy, involves
quadruplication of all major internal functions. First, each
internal subsystem has a duplicate counterpart, its “spare.”
Both such subsystems are self-checking; each consists of a
““pair” of identical functions which are given identical inputs,
and whose outputs are compared on each clock pulse. A
mismatch in the outputs of its internal halves creates an error
signal in the given subsystem.

In normal operation, a subsystem and its spare run in tight
lockstep; both get identical inputs from the duplexed system
bus and produce identical outputs to the bus. Once a sub-
system discovers an internal mismatch through the “self-
checking” comparison process, it immediately “pulls out,”
letting the spare subsystem carry on with the task at hand,
without missing a beat.

Until the faulty subsystem is detected and repaired, the
system will operate at a reduced FT depth. To assure that
failed subsystems are promptly replaced, Stratus equips its
systems with dialers that automatically report such failures to
a service center.

When a repaired subsystem is returned to service, an inter- -

rupt is generated to the CPU (the spare CPU if the repaired
subsystem is the other CPU). The CPU then undertakes to
“re-educate” the fresh subsystem and bring it into syn-
chronism with its functioning spare. For example, a new
memory board is brought to mirror-image condition by copy-
ing into it the contents of the functioning memory. This pro-
cess may use up to a few seconds.

Although self-checking is employed in each subsystem, the
pair-and-spare strategy is limited to those subsystems that can
be tightly synchronized, e.g., the CPU and memory. The disk
controllers are self-checking through duplicate read and write
sections (Figure 2). Signals are not allowed on the system bus
(on read) or onto the disk (on write) unless both parts of the
relevant section agree. Conventional disk mirroring is imple-
mented by the operating system. Similarly, the communica-
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Figure Z—A stratus self-checking disk controller

tions controllers are self-checking but are not in lockstep;
instead, each normally handles half the load, but both have
access to all terminals. Should one controller fail, the other
picks up the entire load.

The modularization into self-checking subsystems is at the
printed circuit board level. Each of these large (16" x 20")
boards contains a self-checking implementation of one of the
following functions: CPU; memory control; 1-MB memory;
disk controller; tape controller; and communications control-
ler. A fully-duplexed, basic Processing Module (PM) contains
11 boards (the tape controller is not usually duplicated).

This basic PM contains 18 microprocessors. Each CPU
board carries 4 Motorola 68000 MPUs: two to implement a
basic demand-paging CPU (a pecularity of the original 68000
prevented this from being accomplished with one MPU), and
two more to create the duplicate function for on-board self-
checking. The disk, tape, and communications controllers are
each based on a Zilog Z80A MPUJ, again duplicated for the
self-checking implementation.

While the “pair and spare” strategy is not new, the imple-
mentation of the required function quadruplication could not
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be achieved economically before the advent of low-cost, off-
the-shelf microprocessors. A fully-duplexed Stratus system is
comparable in price to non-FT superminis, and is well below
a similarly configured Tandem system.

Each of Intel Corp.’s 432 microprocessor chip family mem-
bers contains Functional Redundancy Checking (FRC), a fea-
ture which facilitates the construction of pair-and-spare sys-
tems. With FRC, the comparison circuits needed to perform
self-checking in a subsystem are built into the chips. Two chips
can be configured in a self-checking pair by merely feeding
them identical inputs, and connecting all corresponding out-
put pins together. An external signal determines which chip in
a self-checking pair is the “checker” by enabling the com-
parison circuits on that chip.

A related architecture, dubbed ‘‘n-modular-redundancy,”
replicates each function an odd number of times. Special vot-
ing circuits compare the outputs and “vote out” wrong results.
Thus in a triple-modular-redundant system, the two functions
that agree will suppress the deviant result produced by a pre-
sumably malfunctioning third.

August Systems (Tigard, OR) is building FT systems based
on a variation of this principle, for service in industrial auto-
mation and process control applications. In the August sys-
tem, the three Intel 8086-based processors perform the voting
in software. This is possible because of the repetitive nature of
the computation involved in these applications. Voting occurs
just prior to launching the next iteration of the control algo-
rithm. (This control algorithm is usually implemented in
PROMs rather than RAMs). Through a set of read-only links,
the processors can read, but never write each other’s memory;
thus they can read the values to be voted on, but erroneous
results are isolated within the malfunctioning processor.
Again, the availability of off-the-shelf microprocessors has
made the high degree of duplication involved in such schemes
economically feasible.

The “‘pair-and-spare” scheme is in one sense more robust
than the backup/checkpointing strategy, since a single fault
cannot “‘crash” a function, but merely results in the temporary
loss of FT depth. This in turn means that the system need not
employ backup processes, thereby dispensing with the check-
pointing traffic and related programming complexity. Also
unnecessary are the I'M ALIVE broadcasts. All applications
software, and most system software, can treat the system as a
conventional computer.

The principal disadvantage of the “pair-and-spare” and n-
modular-redundant strategies is that system growth can only
be achieved in large steps, if at all. In the Stratus system, for
example, processing capacity is increased by interconnecting
additional Processing Modules, each accompanied by its own
memory, controllers, and peripherals, over an 11.2-Mbit/sec
ring-type local area network. Each PM is essentially an inde-
pendent system; load sharing, if any, is achieved by explicit
user programming.

Tightly-coupled, “Pool” Systems

Synapse Computer (Milpitas, CA), a well-funded 1980
start-up, has developed a load-sharing, tightly-coupled multi-
processor architecture that is more flexible in its ability to

accommodate growth. Synapse, too, focuses on the OLTP
field.

The strategic concept in the Synapse N + 1 system is to treat
the multiple processors as a pool, from which the system
draws idle resources to service the next pending transaction.
By configuring just one more than the N processors needed to
service a given load, the system attains essentially the same
resiliency as a 2N system, where each processor is backed by
another.

The key architectural element is a shared memory system,
which holds the only copy of the operating system, and is
accessible to up to 28 processors via a duplexed, 8-MHz,
32-bit-parallel bus system (Figure 3). The processors, all of
which are based on the Motorola 68000 MPU, are of two
types: general-purpose processors (GPPs), and I/O processors
(IOPs). Dual ported controllers for disk/tape and communica-
tions allow access from two IOPs to each peripheral. Thus the
“pool” concept does not strictly apply beyond the applications
processors; the IOPs and disk controllers use the 2N strategy.
Disk mirroring may be optionally invoked to protect against
disk drive failures.

In normal operation, the GPPs and IOP schedule work for
each other by making dispatching requests against queues in
shared memory. When idle, the processors look up these
queues for work to do. An elegant ““‘memory data ownership”
scheme is used to prevent two processors from assigning them-
selves to the same task. IOPs have 128 KB of local storage,
while the GPPs have 16 KB of high-speed cache to minimize
memory bus loading and permit operation at an optimum
speed.

The cache employs a non-write-through policy, so requests
for memory “owned” by a given cache are satisfied by inter-
processor communications. The 16-MB address space of the
68000 is divided into domains of 1 MB code and 1 MB data
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each. This was done in order to facilitate rapid context switch:
a process domain calling on a system service, for example, is
switched in about 100 microseconds by merely switching the
address space. Since the system requires small program mod-
ules in any case (see below), this limitation on the address
space size was deemed acceptable.

Process and processor failures can be easily handled by
merely reassigning the incomplete tasks to the “work to do”
queues. A semi-transparent checkpointing system is main-
tained. The users need not implant explicit checkpoint calls;
however, they must build their applications from small mod-
ules, called “Program Units,” according to specific design
rules. The system automatically invokes checkpoints between
Program Units (this feature can be optionally disabled).
Crashed processes are restarted in a functioning processor
from the last good checkpoint. Checkpoints are saved on disk.

The related data base system, which is integrated with the
operating system rather than imposed on it at a higher level,
implements a COMMIT strategy that assures the effects of
incomplete transactions can be completely removed. This is
achieved by the “write-ahead log” technique.

A ROM-based bootstrap program allows a freshly-installed
processor to load the needed code into its buffer (IOP case),
or begin execution at the right point (GPP case).

A memory failure is the most severe problem that can occur
in the Synapse system, since such a failure can wipe out the
work queues, data base buffer pool, and pieces of the oper-
ating system. Rather than maintain a duplicate, mirror-image
memory system, the Synapse system deals with this situation
by automatically rebooting the system. The memory control-
ler detecting this failure raises an interrupt signal that tells all
processors to reset. Then the mass-storage controller in the
first I/O slot attempts to reboot the operating system into
shared memory, bypassing the bad module. Should it fail to
do so within a given time interval, the second mass-storage
controllers will attempt the boot. A data base recovery pro-
cess then uses the mirrored log file to undo all uncommitted
transactions, and implement pending committed transactions.
End users are guaranteed to sustain no more than the loss of
the screen they were manipulating at the time of the crash
since such screens are not yet checkpointed.

Each system component (CPU, Memory Control, 1-MB
memory, IOPs and controllers) occupies one 15" X 17" board.
There are 64 slots in the cabinet; however, not all are inter-
changeable. A triple-redundant, majority-voting power sys-
tem protects against the loss of a power supply.

Tightly-coupled multiprocessor “pool” systems are not en-
tirely new. In the mid-1960s, using mainframe technology,
IBM employed elements of the idea in the 9020 system, a
three-processor arrangement used in air traffic control cen-
ters. A few years ago, BTI (Mt. View, CA) implemented such
a system in minicomputer technology. Elxsi (San Jose, CA)
recently began shipping a high-performance, ECL-based,
multiprocessor ‘“‘pool” system.

The availability of off-the-shelf 16/32 bit microprocessors
has made this architecture considerably more appealing in
terms of both economics and impiementation time. To assure
some degree of independence in selecting the underlying mi-
croprocessor, Synapse coded most of its operating system in
PASCAL.

The Auragen Synchronized Cluster Scheme

Auragen (Ft. Lee, NJ) is another 1980 start-up that is tar-
geting the OLTP market with a multiprocessor, 68000-based
FT system. Conceptually, the Auragen system is rather simi-
lar to Tandem’s, but inciudes several interesting improve-
ments in hardware and software capabilities, and in price/
performance.

The system consists of up to 32 clusters, interconnected
over a duplexed, 32-bit-parallel, 4-MHz bus system. Each
cluster is a self-contained multiprocessor system using the
VERSAbus to interconnect a number of specialized proces-
sors with a shared-memory subsystem of up to 8 MB. The
68000-based Executive Processor interfaces to the duplexed
system bus and has 128 KB of private memory. It executes the
local operating system, which is based on UNIX System III.
The system is modified and augmented to provide inter-
process communications in the multi-cluster environment,
synchronization functions (see below), and crash recovery.
The Exec Processor generally does not need access to the
cluster’s shared memory.

The Work Processor consists of two 68010 MPUs, each of
which can work on an independent process, while interleaving
their memory requests to obtain the maximum benefit from
the shared-memory bandwidth. The Work Processor executes
user tasks, as well as such “global” system tasks as the page
server, file server, TTY (terminal) server, and “root server”
or process scheduler.

Other processors which may be part of the cluster include
the 68000-based Communications Processor with its own
128-KB memory, and a disk/tape controller implemented with
2901 bit slices. The disks and communications interfaces are
dual ported, to be accessible to two controllers residing in two
separate clusters. Although the AUROS operating system
presents the user with UNIX-compatible interfaces, internally
it is implemented as a message-based system. All inter-pro-
cess communications is via system-controlled messages.

Fault-tolerance in the Auragen system is based on synchro-
nization. This is a variation of the checkpointing scheme,
which is user-transparent and more efficient. Each primary
process has an inactive backup in another cluster. The backup
has access to all the input messages sent to its primary, and
keeps track of the number of messages sent by its primary. At
either periodic intervals, or when the number of input mes-
sages read by the primary exceeds an installation-defined
limit, the backup is automatically synchronized with its prima-
ry; at that point, input messages and output counts may be
discarded.

Should the primary process fail when detected by the usual
local mechanisms, plus ’'M ALIVE broadcasts, the backup
restarts from the state defined in the last synchronization. It
reprocesses the input messages accumulated since the last
synchronization, taking care to suppress output messages al-
ready issued by the primary (indicated by the output message
count). By keeping the backup only approximately in step
with the primary, the scheme conserves system resources, at
the expense of some additional processing steps that are in-
voked only when recovering from a (presumably rare) fault.

More details on the systems described above may be found
in References 7-17.
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APOLLO DOMAIN: DISTRIBUTED
VIRTUAL MEMORY

A testimony to the attraction of the “‘one man, one computer”
concept is the dazzling success of Apollo (Chelmsford, MA),
a 1980 start-up that was well on its way to becoming a $100-
million company in 1983. Apollo was one of the first to recog-
nize the potential market for personal engineering worksta-
tions, made possible by the technological advances in micro-
processors, Winchester disks, and local networking.

The Apollo product philosophy is to combine the best fea-
tures of time-sharing systems (resource sharing) with those of
dedicated minicomputers (interactiveness and quick re-
sponse). To achieve these goals, the Apollo DOMAIN system
consists of locally-networked, 68000-based, personal worksta-
tions, running under control of a multi-tasking operating sys-
tem, driving a multi-window, high-resolution graphics display.

The powerful local processing capabilities of these worksta-
tions are augmented by a resource sharing scheme, promoted
by a network-wide object name space. Programs, data files,
and some system structures are accessible as addressable ob-
jects across the entire network. Users may identify desired
objects with a UNIX-like path name, which is translated by
the system into a 96-bit object address. The object address
consists of a 64-bit unique object identification (UID) and a
32-bit, byte-within-object address. UID uniqueness is assured
by encoding into it the serial number of the workstation that
created it, and the time of its creation.

Within the workstation, processes have a 24-bit virtual ad-
dress space, defined by the hardware addressing capability of
the 68000. Objects requested by user commands are mapped
into the 16-MB virtual process address space in segments.
Thus the user process need not do explicit I/O. No data move-
ment takes place until a page fault actually occurs. The 1-KB
pages are retrieved as needed from either local storage, if any,
or from a remote disk structure, across the network.

The network is a coaxial ring, operating at a 12-Mbits/sec
signaling rate. Access arbitration is implemented by a token-
passing scheme: stations may transmit only after receiving a
unique bit pattern, the token, from the station immediately
upstream, and must regenerate this pattern at the end of the
transmission and send it to the next downstream station. Bit
stuffing is used to distinguish several flag characters, including
the token, from random data.

Several models of the Apollo workstations have evolved,
but the internal architecture is largely invariable across the
line. It consists of a proprietary 32-bit bus connecting the
68000-based CPU, two-level memory management unit, dis-
play subsystem, disk subsystem, and network interface. In
addition, a Multibus controller is available on some models, to
allow attachment of additional peripherals. The display sub-
system consists of a large, high-resolution display (typically
1024 X 800) driven from a separate, dual-ported display
memory. Special high-speed, bit-moving hardware facilitates
scrolling and window moves.

CONVERGENT TECHNOLOGIES’ MEGAFRAME

A 1979 start-up, Convergent Technologies (Santa Clara, CA)
has been notably successful with its AWS and IWS lines of
personal office workstations. These workstations, now both

based on the Intel 8086 MPU, are optionally configurable into
a resource-sharing cluster. The proprietary operating system,
CTOS, supports multi-tasking and real-time capabilities.

In mid-1983, Convergent introduced the MegaFrame, a
microprocessor-based multiprocessor system. Full fault-
tolerance had been considered at the start of the project, but
due to various constraints, the designers settled on less ambi-
tious goals. The system was designed to accommodate modu-
lar growth while shielding existing applications from its im-
pact. In particular, one or more Applications Processors,
running a version of UNIX, are supported by several special-
ized support (e.g., file and terminal) processors, whose num-
ber can also be increased in the field. The support processors
run specialized software based on CTOS. A 2.7-MHz,
32-bit-parallel bus system interconnects all processors.

The Applications Processors (APs) are based on Motorola
68010, which improves on the original 68000 by allowing the
processor to recover from, rather than crash on, page faults.
A full two-level, demand-paging, 4-MB virtual memory sys-
tem is supported. Up to 4 MB of real memory can be associ-
ated with each AP, using a private bus. Up to 16 APs can be
accommodated.

The File Processor (FP) uses the Intel 80186 MPU, which is
upward compatible from the 8086 employed in Convergent’s
previous products. The File Processor executes the UNIX file
system portion, which has been removed from the kernel in
the AP. In addition, the FP can execute more sophisticated
file systems (e.g., ISAM) or even a relational DBMS. The FP
directly controls up to three 50-MB disk drives. Up to five
additional FPs may be present, each with its own set of up to
three drives. One FP is designated as the “master”: it is re-
sponsible for system initialization, and for coordinating the
other FPs.

Other specialized processors include the 186-based Cluster
Controller, which interfaces to a network of existing Con-
vergent workstations and the new, 8088-based Personal Ter-
minal (PT); the 186-based Terminal Controller, which allows
“dumb terminals” to access the UNIX-running APs; and the
Signetics 8X300-based SMD controller, supporting SMD-type
disk drives.

Processors communicate over the bus via a message-based
communications software system, supported by ‘“hardware
mailboxes” and a “doorbell interrupt” that alerts a given pro-
cessor to look into its mailbox for a message. A system-wide
address space is defined by 40-bit addresses. Each consists of
an 8-bit “slot number,” which specifies a processor, and a
32-bit address, allowing a larger address space than is cur-
rently supported by either the 186 or the 68000.

The Master File Processor, in addition to its duties in ini-
tializing the entire system and in coordinating the other FPs
(e.g., by initiating parallel path name searches through the
individual UNIX file trees on each FP), also maintains a mul-
tiple “watchdog timer” system: every second it sets a value in
a designated memory location of every processor in the sys-
tem. Should any processor fail to clear that location, the MFP
assumes that processor is crashed or stalled, and initiates diag-
nostic and recovery procedures. Each processor occupies one
large PCB, which also hosts 256—-512 KB of local memory. Up
to six 6-slot “low boy” cabinets may be configured on the
system bus.
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SUMMARY

The term “new computer architectures” tends to be associ-
ated today with such long-range undertakings as Japan’s Al-
based “Fifth Generation” project, or Columbia University’s
“Non-Von” program. In contrast, the innovative multi-

processor architectures made possible by the maturing 16/32
bit microprocessor technology, illustrated by the examples
cited above, are currently available. Microprocessor-based
designs are rapidly claiming large stakes not only in desk-top,
personal workstations, but also in multi-user and transaction
processing systems.
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ABSTRACT

Silicon “intelligence” is explored from the viewpoint of integrated circuit manu-
facturing technology. The capabilities of future computers are largely predicated on
its brain function, or integrated-circuit-based intelligence. The major technologies
that comprise integrated circuit fabrication are explored. The current status and
likely future direction of each is presented. The major areas are integrated circuit
design, silicon crystal manufacturing, wafer preparation, imaging, etching, doping,
and deposition.

Microelectronics technology, the science of microstructure formation, is ex-
plored, and various imaging strategies necessary to extend the resolution limits of
VLSI devices are summarized. The various device manufacturing technologies are
presented on a time scale, showing current mature technologies (1983), emerging
technology (1984-1987), and future technology (1987-1990). Finally, VLSI device
functions are compared to human brain functions, with projections made to the year
2000.
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INTRODUCTION

The intelligence we increasingly ascribe to computers is de-
rived form the integrated circuit (IC) “brains,” or chips re-
siding in their cores. ICs are the source of the increasing
power embodied in the disciplines of microelectronic device
fabrication. The “suborders” of this technology are IC pattern
design, silicon crystal manufacturing, wafer preparation,
imaging, etching, doping, and deposition.

In this paper, we will examine each of these areas, consid-
ering the current and future state of technology and its relative
ability to meet the demands of future IC device fabrication.
The overall challenge in producing a VLSI chip is one of
transferring a computer-generated series of patterns into a
silicon or gallium arsenide crystal slice, along with a specified
level of dopant to provide conductive paths for electron move-
ment. This must be done at submicron resolution levels in
volume production on semi-automated equipment and in
super-clean environments. Last but not least, the process
must produce economic chip yield. Figure 1 summarizes the
decrease in IC geometries.

1983 1986
1. Die Size 150 mils 100-350 mils
2. Cell Size 45um? 11um?
3. Mask levels (total) 10 12
4. Mask levels (critical) 3 5
5. Line space size 2.5um 1.5um
6. Alignment tolerance  1.5um 0.1um
7. Critical dimension
tolerance 0.4um 0.15um
8. Total dimensional
tolerance 0.5um +0.3um
9. Diffusion widths 5.0um 1.5um
10. Metallization line
widths 3.0um 2.0um
11. Contact size 20um 0.8um
12. Resolution 2.0um 0.8um
13. Metallization
thickness 1.2um 1.0um
14. Oxide thicknesses
(minimum) 800 angstroms 200 angstroms
15. Junction depths 1.5um 200 angstroms
16. Efch selectivity
ratio (Si) 8:1 201

Figure 1—Integrated circuit feature size and registration control trends

IC PATTERN DESIGN

The design, layout, and data preparation for integrated circuit
patterns have evolved from a laborious task done almost en-
tirely by hand to a highly automated process with very little
human intervention. Computers have invaded the IC design
and layout process to a considerable extent, first as electronic
drafting boards and recently as highly interactive systems re-
quiring only simplistic circuit stick drawings, or even concepts,
in order to completely implement a set of finished VLSI
masks. All computer-aided design (CAD) information is fed
into a digitizer, which converts information into digital data
for the photo or e-beam master reticle generator.

Increased computer assistance in mask pattern design has
resulted in almost fully automated processing. This is accom-
plished by first selecting a type of pre-established or optimized
software that approximates or has built-in algorithms coin-
ciding with the type of device being built. When overall design
parameters for chip architecture are set, the designer’s role is
reduced to one of placing individual sections of the chip in
different places within the chip, and even then the computer
optimizes these decisions. The number of circuit elements per
section must be specified, and again tested electronically (in
the computer) for violation of design rules.

Highly automated chip design software is used for arrays,
microprocessors, logic chips, and other device types with pre-
dictable elements. Automatic placement and routing software
routines are also used to reduce circuit layout time. The de-
signer may place various elements within the chip area and the
computer is used to place the circuit pathways and find inter-
connections. Figure 2 shows the stick-diagram input and
computer-generated pattern output, automatically compen-

- sating for preprogrammed design rules.

A major benefit of computer design, layout routing, and
interconnection is freeing the creative talents of a designer
from monotonous and time consuming essential mechanical
tasks. Advanced software, such as silicon compilers, uses
high-level abstract language that will take a very simple sketch
or statement from a designer and automatically determine the
macro- and microelements of the chip; creating first a dia-
gram, then an actual pattern. Placement and routing functions
are performed by a silicon assembler. These approaches min-
imize human intervention into areas where time consumption
would be high, thereby freeing designers to think about more
important aspects of design.

In the future, even higher levels of abstraction will be used
for design and artwork production. Symbolic logi¢, device
modeling by the computer, and silicon compilers are examples
of the reduced role of the human in these functions. A print-
out of a computerized three-dimensional model of a device is
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Figure 2—Stick-diagram input and computer output

shown in Figure 3. More complex designs are produced faster
and at much lower cost.

SILICON CRYSTAL MANUFACTURING

A large part of the success of future VLSI devices rests on the
quality of silicon and other crystals from which wafers are
made. In order to meet current demands for high-quality
silicon ingots, computer-controlled manufacturing is essen-
tial. The challenge of supplying a nearly perfect, defect-free
crystal is complicated by the rapid increase in wafer diameter,
as shown in Figure 4.

In the past two years, four-inch wafers have become the
dominant production size, yet five- and six-inch wafers are
already used in limited quantities, and plans for eight-inch
crystals are being made. The primary problem in crystal-
pulling technology is the removal of internal impurities and
defects. Increasing crystal diameter by 50% per year magni-
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Figure 3—Example of computerized device modeling

fies this problem many times. For example, carbon and oxy-
gen impurities occur in silicon and act as unwanted dopants by
modifying the charge-carrying properties of the crystal. While
ambient helium or argon is used as the gas during crystal
growth, these impurities enter in ppm levels as contaminants
from surrounding equipment and gases. The carbon content
affects the electrical properties, and oxygen may weaken the
structure of the crystal, as well as forming complexes with
carbon to alter electrical properties. Heat treatments, such as
annealing, are used to keep defects and impurities at a min-
imum level. Defects in the as-grown ingot are called intrinsic,
and include stacking faults, point defects, oxygen, carbon and
other impurities, crystal dislocations, interstitial vacancy clus-
ters, and swirls.

WAFER SIZE EVOLUTION

1972 @ .
1976
1980

Figure 4—Crystal diameter trends
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Computer control of all major crystal growth parameters is
essential to producing dislocation-free crystals. These param-
eters include melt temperature, crystal and crucible rotation
speed, lift speed, heater temperature, and other variables.
The most promising location for producing perfect crystals is
a space lab, where a zero-gravity environment is available.
The Sony development of a high-magnetic field (MCA—
magnetic field CA) greatly improved crystal quality by sup-
pressing thermal convection in the melt, and thereby reducing
oxygen content and growth defects. Figure 5 compares CZ
with MCZ crystal growth environments. The MCZ process
also reduces distortion and warpage in wafers sliced from
MCZ ingots.

In the future, new crystal material, including gallium arse-
nide, which is now used for special high-speed IC applica-
tions, will be put into production for higher speed devices.
Future crystal production in a zero-gravity space lab will most
likely provide the ultimate in crystal quality.

WAFER PREPARATION

The physical dimensions of silicon wafers, and specifically
flatness and surface uniformity, have become critical in ad-
vanced IC fabrication processes. Many additional steps are
now taken to classify these important wafer parameters. For
example, wafers are identified by the ingot from which they
came, since nonuniformities in wafer batches are often trace-
able to a crystal growth problem.

Surface flatness across the water diameter is critical because
it acts essentially as an optical plane. After resist is coated
onto the wafer surface, it becomes an optical medium for
microstructure formation. Energy of various wavelengths will
be reflected off the water surface, and thus the degree of
surface “polish,” a chemical process, is important. If either
the overall flatness or individual area nonuniformity vary,
microimaging variations will occur.

Wafer preparation involves making one side of the silicon
wafer surface as optically perfect as possible. The availability
of software-driven, iaser-based analytical equipment for map-
ping the contour of the wafer surface allows for careful screen-
ing of all substrates. Figure 6 shows a typical wafer surface
“map.”

Pulling Direction

Silicon Crystal

i
Silicon Melt (Sjlr:.:blt

Magnetic Field

t CZ Method } { MCZ Method )

Figure 5—CZ and MCZ crystal types

Figure 6—Wafer surface map

An ultra-flat wafer that enters the wafer fabrication process
must be checked continually because the wafer process steps
involve high-temperature operations. Thermal stress induced
in ion implantation or etching causes warpage, and future
processes will strive for temperature reduction at all steps.
Since wafers are continually reimaged during fabrication, sur-
faces should be defect free (zero particulates above 0.5-pm
diameter) and flat to one-half wave.

IMAGING

The technology that drives IC fabrication is microlithography,
the process of forming microstructures on semiconductor sur-
faces. When resist-patterning technology proves its capability
for a record level of resolution, pressure is exerted on etching
and other fabrication processes to at least equal the new level
of resolution. Current microimaging for IC production is ac-
complished primarily with a mix (die-by-die) exposure and
scanning-slit imaging. These methods are being used for 246K
RAM production, but may not be capable of the submicron
imaging needed for one-megabit and denser devices. Current
resolution levels (minimum geometries) are ~ 1.5 pm, and
minimum geometries needed for devices by 1985 or 1986 will
be 0.9-0.7 pm. Current printing technologies can image the
level of resolution, but not with sufficient control to deliver
acceptable device yield.

On the immediate horizon are several patterning tech-
nologies that all promise to deliver the submicron geometries
needed to produce one-megabit and denser memories in pro-
duction. These technologies are either extensions or optical
methods now in use, or fall into the category of “beam”

- techniques. Extending current technology will certainly place

a strain on optical stepping capabilities, perhaps requiring
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multilevel resist processes. At best, optical methods will be
working near their practical resolution limit to pattern lines
and spaces that are 0.5 pm wide.

Optical Lithography (Nonbeam)

Multilevel structures are one method used to obtain higher
resolution, and are produced by using a three-level structure
consisting of a thick (2 wm) planarizing layer, a thin (1000 A)
middle oxide (deposited) layer, and a thin (7000 A) “top”
coating of positive resist. The top layer is patterned with high
resolution geometries, and the oxide etched, followed by
reactive-ion etching through the planarizing layer with the
etched oxide as the mask. Many variations on this central
multilevel theme are possible, but conceptually and prac-
tically are very much alike in both degree of process difficulty
and resolution potential (Figure 7).

Mutltilevel lithography has advantages in that it uses existing
imaging equipment, provides resolution possible down to 0.5
pm, and retains existing process experience (same learning
curve). The disadvantages include the addition of extra pro-
cessing steps, increases in potential defects due to handling,
and the requirement of a higher level of process control.

Optical lithography with nonbeam exposure sources has as
its limit the exposing wavelength. This translates into a resolu-
tion of between 0.21 pm and 0.44 pm. Current technology
limits the practical resolution of optical (nonbeam) imaging at
0.5-0.7 pm. This figure will undoubtedly be reduced with
time, as shorter wavelength steppers and shorter wavelength-
sensitive resists become available.

Optical Beam Lithography

Laser beams are the logical extension of optical lithography
for advanced IC fabrication. Ultraviolet laser beams from a
308-nanometer wavelength eximer laser have carved 0.5-um
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Figure 7—SEM of Multilevel resist image

images in resist as thick as 1.0 pm. The super-bright (10 W)
emission of the UV eximer laser will permit exposure
throughput above that of conventional UV mask aligners. The
chlorine and fluorine gases associated with these tools, and
their size, are a concern, but the results shown in Figure 8 are
very impressive. Computer-directed laser imaging will cer-
tainly become a key lithography technique.

Lasers also are used in holographic lithography, where ho-
lograms of the various masks are made. In resist exposure, a
laser “reads out” the hologram, projecting the mask images
onto the wafer. The projected image is spatially filtered to
remove defects.

Optical beam lithography can be summarized as follows:

Pros Cons
—Extends resolution limit to —Requires new process
sub-half-micron range technology
—Potential cost is below —Production equipment not
e-beam and X-ray for available

equivalent throughput
—Technology remains “‘optical” -

' I
Figure 8—Laser-generated resist image

Electron Beam Lithography

A complete modulated beam of electrons is the primary
method for electron lithography. The flexibility of pattern
placement makes electron beams ideal for custom mask and
“small-run” prototype devices. The principle of operation is
shown in Figure 9.

Electron beam lithography is limited by slow exposure
throughput, but provides excellent 0.5-pwm resolutions as indi-
cated in the SEM shown below. Advancements include prox-
imity shadow printing for improved resolution and high-
voltage systems to reduce electron scatter effects. The
extremely good registration capability of the e-beam method
provides a means to make VLSI masks and reticles for other
lithography approaches.

E-beam lithography seems to be finding a niche in custom
chips (which may grow to constitute a large percent of the
market), mask making, and critical mask levels in wafers. Pros
and cons are as follows:
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Pros Cons

—Rapid turnaround on mask ~ —Relatively small wafer

sets for protoevaluations exposure throughput
—High level of alignment —Electron scattering in resist

tolerance detracts from resolution
—Excellent chip customization —Relatively high capital

tool equipment costs as a

beam-writing technique
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Figure 9—E-beam exposure principle and resulting resist image

X-ray Lithography

X-rays promise the highest resolution and throughput prod-
uct of all existing lithography techniques. Wavelengths are
optimized around 7A, and conventional X-ray sources to emit

this energy are well understood. The operating principle is
shown in Figure 10.

Sharp point sources are needed to cast a sharp shadow
through the mask and into the resist. Plasma gas discharge
X-ray sources are more powerful than the 1-2 W electron-
beam-generated X-ray sources, but are unreliable. Plasmas
are equivalent to electron-gun-generated X-rays as point
sources, but both lack the power needed for good production
rates.

Electron storage rings promise power, highly collimated
X-rays and tunable wavelengths, but cost about $5 million.
Even though X-ray storage rings offer several exposure sta-
tions, companies are still reluctant to plunge into a relatively
new technology with such high initial investment. Lithog-
raphers are left to choose between low-power X-ray sources
and a multilevel resist with only a thin top layer to expose, or
a more powerful source and a simpler one-level resist process.
An example of the high resolution attainable with X-rays is
shown here along with a summary of this technology.

Pros Cons
—Extremely high resolution —High-quality masks difficult to
—Not dust sensitive produce

—Blanket exposure favors high —Sources not powerful enough
for good throughput

—Alignment for sub-half-micron
geometries critical

throughput

Figure 10—X-ray exposure principle and resist image

Ion Beam Exposure

Collimated beams of protons (hydrogen ions) are the basis
for ion beam imaging, and resists (positive optical) have great-
er sensitivity to ions than they do to electrons, X-rays, or UV
light. Production throughput is further enhanced by the be-
havior of ions, since protons do not have high-energy elec-
trons that scatter into unwanted areas. All ion energy resides
in the desired area during resist exposure. The mechanism
used for ion beam lithography is shown in Figure 11.

Ion scatter in a mask material is a problem, and good masks
are difficult to produce, especially when made from 0.4-pm
thick, single-crystal silicon. Jon beam exposure does have very
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Figure 11—Ion beam exposure principle and resist image

high resolution potential, as indicated by the ion-imaged
photo below. Throughput is currently pegged at 40 wafers per
hour. The advantages of this lithography include the sub-
micron (0.5-pm) resolution in single-level resist, that good
resists are available, and the high exposure sensitivity of re-
sists. The disadvantages include masks that are hard to pro-
duce, alignment that is semi-critical, and that commercial sys-
tems are not available.

In summary, both optical and nonoptical imaging technol-
ogies are available for submicron imaging in the near future.
The higher resolution devices will require beam-writing stra-
tegies. Which one is chosen depends on equipment through-
put, cost, and resolution, the winner being most efficient in all
areas. The likely result of these various emerging techniques
will be the integration of several imaging strategies for a single
chip.

The most likely scenario for wafer imaging in the future will
be a hybrid of several methods. Assuming 10-12 masking
steps used in a given device, the highest resolution—central
imaging method will be used for the two or three most critical
mask levels. In descending order of resolution, subsequent
imaging methods will be used for various mask levels. A mix-
ture of the methods shown below is likely (Figure 12).

ETCHING

The etching process in IC fabrication involves selective re-
moval of several different types of films. Films typically
etched include silicon dioxide, silicon nitride, polysilicon, alu-
minum alloys, tungsten, and metal silicides. Etching is used to
open windows for dopant ions, to form areas for ohmic con-
tract, to create the interconnection patterns, or to form bond-
ing pads.

Etching technology has moved rapidly from wet acid im-
mersion processes to dry reactive ion removal. The driving

Broad Spectrum Scanners (1:1)

20

1-10X Steppers

=
o

X—rlcv

PRODUCTION RESOLUTION
CAPABILITY IN MICRONS
o

20 40 60 80 100
Exposure Throughput (Wafers/Hour)

Figure 12—IC lithography strategy vs. image resolution and wafer
throughput

force in this change is the need to conserve silicon area by
eliminating lateral etching. Both wet and dry plasma etches
act isotropically (etch equally in all directions) in films being
etched. Reactive-ion etch technology is anisotropic, etching
only in the vertical plane, keeping etched structures narrow
and deep, as shown in Figure 13.

The advantages of reactive-ion etching (RIE) include the
elimination of toxic chemicals posing waste disposal and
safety problems. A typical RIE etcher schematic is shown in
Figure 14.

The challenge of future etch technology is to provide very
precise control of the etch process as films approach 200-300
thickness and less. Etching of a given film must be complete
without attacking the underlying layer or “chewing up” or
pinholing the mask, above the etched layer. The removal rate
of etched films vs. films not to be etched is called the selec-
tivity ratio. This ratio is kept high (10:1 to 20:1) by carefully
blending active etch specie gasses, optimizing power levels in

Figure 13—Reactive-ion etched structure
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Figure 14—Reactive-ion etched schematic

the etcher, and treating etch masks—such as deep-UV curing
of resist etch masks. laser end-point detection has been added
to the etch process to prevent overetching.

DOPING

Doping is the IC fabrication step that differentiates the silicon
wafer’s electrical properties, giving rise to the conductive elec-
tron pathways that form the actual circuit. Doping is placing
“impurity” ions of phosphorus, boron, or arsenic within the
silicon crystal lattice. The higher the level of impurity ions, the
greater the conductivity of the silicon. Areas of the wafer left
undoped become the insulating areas of the circuit. The steps
prior to doping are imaging and etching of a mask, which is
usually a silicon dioxide film, to open up areas directly to the
base silicon.

Traditional doping processes, where predeposition of the
dopant is followed by thermal “drive-in” or diffusion, are
quickly being replaced by ion implantation. The reasons for
this change are the same as for the move into anisotrophic dry
etching from isotropic wet etching. The lateral diffusion of
ions in standard doping processes results in a consumption of
silicon area that is no longer tolerable with current high-
density VLSI chips. Ion implantation provides a more aniso-
tropic dopant ion profile, keeping the concentration shallow
and deep. The damage to the silicon crystal caused by smash-
ing a highly accelerated ion into the silicon is removed by laser
annealing, also a relatively low-temperature operation. Ion
implantation is still a blanket process where the wafer is
scanned by a stream of ions, and a resist or oxide mask delin-
eates the dopant profile.

The future for doping processes in IC fabrication may be
direct doping, where the ion implant mask steps are com-
pletely eliminated. This would greatly simplify the process by
removing two steps (imaging and etching), and probably re-
sult in a yield increase. A new tool for maskless ion doping is
depicted in Figure 15. Announced in 1983, the submicron
probe, which uses a liquid metal source, represents a major
advancement in chip fabrication capability. The computer
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Figure 15—Direct ion implant technique

programmed ion probe permits precise delivery of ions to
coordinate with accuracies of less than 0.1 pm. A high degree
of control is made possible by using digitally controlled ion
optics and beam-monitoring electronics.

DEPOSITION

A primary technology in IC fabrication is the application of
high-quality semiconductor films. Deposition of a wide range
of materials is required, and many new metals silicides and
refractory metals are now used along with conventional oxides
(doped and undoped), polysilicon, silicon nitride, aluminum
alloys, and even special polymeric films. Deposited layers
must be extremely uniform, cover wafer topography well, and
be relatively free of contaminants or defects that arise in the
manufacturing process.

Deposition technology has kept pace with the other pro-
cesses in IC fabrication by supplying lower temperature envi-
ronments, suitable reactant gases, and high film uniformity.
Advances in chemical vapor deposition (CVD) have led to
plasma-enhanced CVD (PECVD), a very promising technol-
ogy for low-temperature deposition of a wide variety of mate-
rials. DECVD also has a high deposition rate, but needs
improvements yet in the areas of film stress and particulate
level. PECVD reactors need to be designed for high through-
put as well. The two reactors shown in Figure 16, one single-
plate and there other multiple-plate, illustrate approaches
currently used.

Film uniformity is more easily achieved in the larger but
lower throughput parallel plate system, while the multiple-
plate reactor may result in uneven film thickness at the edges
of wafers. The factors that must be monitored to achieve good
film properties include load size, process cycle time, gas
depletion rates, deposition rate, system pressure and tem-
perature, “radiation” energy flux to the substrate (determines
stress); and system cleanliness. The need for lower tem-
peratures in all aspects of IC fabrication makes PECVD at-
tractive for future applications.

A primary concern in the area of deposition is the materials
used. The material used for interconnection patterns has tra-
ditionally been aluminum alloyed with copper and silicon.
Advanced deposition methods, including magnetron sputter-
ing, have satisfied the physical requirements for thin, uniform
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Figure 16—Two types of PECVD reactors

films. However, aluminum is subject to electromigration, has
a low melting point, and interacts with silicon. Gate materials
likewise suffer from limitations due to rapid advances in IC
technology. Polycrystalline silicon has been the material of
choice in MOS circuits, but suffers from high sheet resistance,
which reduces circuit speed. At elevated temperatures, poly-
silicon undergoes grain growth, a factor that interferes with
fine-line imaging.

The new replacements for aluminum alloys and polysilicon
are refractory metals and their silicides. While electron beam
evaporation, sputtering, and CVD can be used to apply these
materials, PECVD is very desirable. Tungsten, molybdenum,
and tungsten silicide films have been successfully applied with
PECVD, as shown in Figure 17.

Figure 17—Step coverage of tungsten

Transition metal and metal silicide films represent the fu-
ture direction for high-density and high-speed integrated cir-
cuits. Smooth, pinhole-free films of new materials deposited
in high-purity environments with low stress and good step
coverage are moving from the laboratory to the production
line to meet future chip specifications for many applications.

IC FABRICATION PROCESS TRENDS

A comparison of the current and projected technological level
of key IC process parameters is shown in Figure 18. The areas
cited represent critical areas of change needed to implement
the high-density chips of the future. In general, all films using
IC manufacturing will need to be thinner, and produced with
more exact control. All key IC dimensions that regulate IC
electrical behavior are being reduced, such as gate thickness
and width. All dimensional tolerances are necessarily smaller,
bringing the degree of control of some dimensions to *0.1
pm.

The necessity for all of these changes will bring consid-
erable pressure in equipment and material supplies alike. For
example, reducing the thickness of an oxide layer from 800A
to 200A affects several aspects of IC process technology, in-
cluding deposition, imaging, etching, doping, and design. The
incentive that drives all of these disciplines within IC fabri-
cation technology is the production of chips with greater
application capabilities at lower cost.

The “more-for-less” improvement has been an earmark of
semiconducter technology since ICs first went into production
more than 20 years ago. The continuance of this unique eco-
nomic value, in a world where inflation causes a a more typical
“less-for-more” relationship in products, has made IC-based
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products pervasive. The incentive for all IC industry par-
ticipants is the opening up of new, large markets.

SUMMARY

The major disciplines that make up integrated circuit fabrica-
tion technology have been examined with respect to current
technology status and likely future developments to meet
VLSI device trends. At the end of 1983, current technology
considered mature for IC device manufacturing is summarized
along with emerging and future technology. Time frames indi-
cate technology used for the bulk of IC devices worldwide.

IC Device Fabrication: Technology Used Vs. Time

1983—Mature Technology
—Scanning projection printing
—Proximity and contact

printing

—Optical resists
—E-beam masking
—Barrel plasma etching
—Diffusion doping
—Track-type wafer handling
—Wet etching
—LPCVD deposition
—Semiautomated process

1984-1987—Emerging
Technology
—Mid-UV wavelength imaging
—Deep UV wavelength imaging
—Reactive ion etching
—MOCVD and PECVD
deposition
—Optical stepping
—E-beam wafer writing
—Ion implantation
—Planar plasma etching
—Ion milling
—Galium arsenide crystals
—Multilevel resists and e-beam
resists
—Fully automated process
segments

1987-1990—Emerging
Technology
—X-ray storage ring en-
ergy for imaging
—Ion beam imaging
—Laser doping and

imaging

—Resist-less imaging (ion
beam and laser)

—Holographic

imaging

—All-dry resist developing

and etching

—Novel IC structures (3-D,
superlattices, etc.)

—Robotic interface with
automatic equipment

—Software-controlled

processing

Finally, a comparison of semiconductor device operating pa-
rameters with the human brain is made as a benchmark for
technological progress. Indeed, the “silicon brain” is begin-
ning to rival ours in certain areas of comparison. In terms of
total density, however, the human brain is likely to stay ahead
of silicon chips well into the 21st Century.

Semiconductor Technology

Area of Comparison ~ Human Brain 1960 1980 2000
Memory Density

(bits/cm®) 10 10° 10° 10°
Computing Power

(switches/second) 10" 10" 10" 10"
Speed (cycles per

second) 10? 10° 108 10"
Total Density

(circuits/cm?) 10 10 10? 10°
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IDAS—An integrated design automation system
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ABSTRACT

Computer-aided design tools are vital to the design of VLSI (very-large-scale inte-
gration). This paper presents a new integrated design automation system for de-
scribing, documenting, simulating, and synthesizing digital systems. The system
consists of a new hardware description language, LALSD II; a translator; a simu-
lator; and a logic synthesizer. The language allows the designer to describe a digital
system at various levels of detail, to define modules for implementation, and to
describe the system at the behavior level, the structure level, or both. The language
can accurately describe the timing for various operations. It can precisely describe
mutltilevel, paraliel operations. LALSD II can describe synchronous, asynchronous,
or mixed systems.

The translator converts the language into a database for simulation and logic
synthesis. It can translate each module of the system independently. This means
that a designer can modify any module without retranslating other modules.

The multilevel hierarchical simulator is a six-valued, table-driven, significant
event simulator with selective trace capabilities. Synchronous, asynchronous, or
mixed systems and concurrent events can also be simulated. It can simulate intricate
timing relations among different components.

The logic synthesizer accepts the database, the library of logic modules, the key
modules, and the clock period specified by the user and produces the logic design
in terms of logic modules and their interconnections.
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INTRODUCTION

With the advances in very-large-scale integration (VLSI) and
the increasing complexity of digital systems, computer-aided
design is no longer optional; instead, it is vital for designing
modern VLSI digital networks. The gap to be bridged in the
design automation area is the automated logic/system design,
simulation, and testing of digital systems.'™

Under the direction of this author, the research work has
been performed and the implementation of an integrated de-
sign automation system has been carried out by the Research
Group on Design Automation and Fault-tolerant Computing
at SUNY—Binghamton.

Our goal is to develop a design automation (DA) system
that will reduce the design effort and make complex system
design possible. It will allow the designer to experiment with
various design configurations. The system should greatly re-
duce the time and effort required to implement, test, and
refine the design. A powerful hardware description language
(HDL) should be the basis of this design automation system.
With it, a single hierarchical simulator will be used to check
the performance and the operations of a digital system from
the behavior level to the gate level. A logic synthesizer will
allow systematic transformation of the behavior description
into the connections of hardware modules under the user’s
directions. Even a functional test generator can be used to
generate tests automatically from behavior description.

The DA system is shown in Figure 1. The designer uses the
new language,®’ called Language for Automated Logic and
System Design (LALSD II), to express his design. The trans-
lator checks the syntax of the language and reports errors for
the designer to modify the description.® When the language
statements are free from syntax errors, the translator pro-
duces a common database to be used by the simulator, the
logic synthesizer, and the test generator. The simulator” veri-
fies the design and evaluates the performance at various levels
of detail. The logic synthesizer produces logic design contain-
ing two parts: the structure part and the control part (imple-
mented in microcode).>” The translator, simulator, and logic
synthesizer have been implemented. Some research results on
hardware description language-driven test generation have
been reported by our Research Group.'*™"* The test genera-
tor, when implemented, will generate test sequences for de-
tecting faults in hardware modules at different levels.

In the next section, the features of the new language,
LALSD II, will be discussed. An example will be given to
show that the same language can be used for describing the
same module at various levels. The third section outlines the
key features of the translator. The LALSD-driven simulator
is described in the fourth section, with examples of simulation
runs. In the final section, the key features of the logic syn-
thesizer are pointed out, and computer time for translation

and synthesis of several digital systems (effective address
computation, blackjack machine, PDP-8, and Chu’s com-
puter) are given.

THE NEW LANGUAGE—LALSD II

For a hardware description language to cover the broad design
spectrum—i.e., to achieve the purposes of describing, simu-
lating, synthesizing, and testing digital systems—it should
contain the following features:

1. Hierarchical structure with user-definable modules. The
hierarchical structure permits the functional decomposi-
tion of large systems. It allows the descriptions of sub-
systems at various levels. Breaking up the description
into subsystems can also make the design easier. A hier-
archical system allows either top-down or bottom-up de-
sign procedure, which will provide smooth transitions
from one level to another. The modular construct is the
basis for the hierarchical structure. The modules will
bear a close resemblance to the actual hardware com-
ponents. The interaction between a module and the out-
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Figure 1—LALSD-II-driven design automation system
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side should go through its input/output ports, and the
design language should allow the user to define his/her
own modules.

2. Multilevel description. The design of digital systems is
usually an iterative process. In the early stage of the
design process, emphasis is placed on the behavior of the
system. More and more structural implementations are
added to the design until the final implementation, com-
posed of hardware primitives only. Besides that, in de-
sign or simulation, only a part of the system is under
close investigation at one time. The language should
allow the detailed description of this part and high-level
descriptions of the others. This will substantially reduce
both design effort and simulation time.

3. Behavior-level control description. The language should
provide the capability of specifying the system’s behav-
ior in a concise, systematic, structured, readable form.
No implementation detail should be required for the
high-level description.

4. Detail-level accurate timing facility. The language
should provide the facility of accurately describing the
digital system operations without requiring gate-level
implementation. In the lower level, not only the oper-
ations but also the timing of a module must be defined.
The race, hazard, etc., should be detected by simulating
the description of a digital system.

5. Parallel operation description. In hardware systems
many activities occur concurrently. Hence the language
should provide a simple way of describing parallelism.

The new language, LALSD II, possesses all five of these
features.®”

The following example shows the flexibility of LALSD Il in
describing the same system at the behavior or structure level
or a mixture of both. First, only behavior description is given.
Second, only the structure is given to describe it as a con-
nection of 8 full-adders with ripple carries. It is assumed that
a UNIT-TYPE called full-adder has been defined. The state-
ment “USE add (0..7): full-adder;” instantiates (activates)
eight 1-bit full adders. In the last part, it is described as com-
posed of two 4-bit adders, with the behavior specified in the
last CONTROL part. The WAIT procedure is required before
the reading of the bit 4-add’s output. Note that the UNIT
adder contains a subunit which is a 4-bit adder that can further
be decomposed into four subunits; each is a one-bit full-
adder. Note that in all examples, capital characters are used
for system keywords. Lowercase words are user-defined
entities.

Example 1. The three levels of description for an 8-bit adder

Description No. 1: behavioral level only
UNIT adder;
b(0..7), c(0..7): INPUT;
a(0..8): OUTPUT;
CONTROL
a:=b+c;
END adder;

Description No. 2: structural level only

UNIT adder;
b(0..7), c(0..7): INPUT;
a(0..8): OUTPUT

STRUCTURE
USE add (0. .7): full-adder;
CONNECTION

add (*).in1 = b(*); add (*).in2 = c(*);
FOR i:0 to 6 DO add(i).cin =
add(i + 1).cout;
add(7).cin = 0; a(*) = add(0).cout
@ add(*).out;
END adder;

Description No. 3: mixed-level description

UNIT adder;
b(0..7), c(0..7): INPUT;
a(0..8): OUTPUT;
STRUCTURE
USE add4(0. . 1): bit4-add;
CONNECTION add4(0).cin = add4(1).cout;
add4(1).cin = 0;
UNIT-TYPE bit4-add;
in1(0. .3), in2(0. . 3), cin: INPUT;
out(0. . 3),cout: OUTPUT;
CONTROL
add4(0).in1 @ add4(1).inl: =b;
add4(0).in2 @ add4(1).in2: =c;
wait (20);
a:=add4(0).cout @ add4(0).out @ add4(1).out;
END adder; '

Examples describing the timing facility of LALSD Il and an
LALSD II description of the PDP-8 computer can be found in
References 6 and 7. Readers are encouraged to read these
references for detail. The syntax and lexicon of LALSD II are
available from the author.

TRANSLATOR

The block diagram for the LALSD II translator is given in
Figure 2. The translator consists of three components: lexical
analyzer, parser, and semantic routines. The lexical analyzer
takes the text program as input and separates it into proper
tokens. A source listing is provided during the process. A
proper token can be a keyword, an operator, or a delimiter.
If an improper token is found, an error message is generated,
and the lexical analyzer neglects this token and goes on to find
the next one.

The parser calls the lexical analyzer to get the next token of
the input text. It also drives the translation process to accept
the proper syntax and perform the corresponding semantic
actions. The translator uses a syntax-directed translation
scheme. The syntax of LALSD II is defined in nonambiguous,
context-free productions. These productions are fed into a
parser generator to produce a lookahead left-to-right (LALR)
parsing table. The parsing process starts at the initial state. If
the lexical analyzer provides a token that the parser does not
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Figure 2—Block diagram for translator

expect to see, the parser is in an error state. An error message
is then issued.

The semantic routines are for the sole purpose of gener-
ating all tables as a database output of the input digital system
description. The language hierarchy of LALSD II is a block-
oriented language. There are four types of blocks: UNIT,
UNIT-TYPE, FUNCTION, and PROCEDURE. Each block
corresponds to a module table, and the table contains pointers
to all other tables necessary for describing the information of
a block. Within each block there are three sections: INPUT/
OUTPUT (I/0) PART, STRUCTURE PART, and CON-
TROL PART. However, not all these sections are mandatory;
it depends on the level of description desired. For example, a
digital system described in functional level will probably dis-
regard the interconnections as well as detail timings.

The I/O part translation will produce the I/O part table
through which we can obtain the number and the type of [/O
pins (input, output, tristate, bidirection, open collector) of a
module. The structure part translation will produce tables
conveying all structural information. All physical components
(corresponding to a symbol in the language description) are
stored in the symbol table. All physical boundaries and attri-
butes are stored in the type table. The interconnection be-
tween modules is shown by the connection table and the I/O
identification table together. Finally, the control part of the
translation records all behavior descriptions of a module in
the control table and the condition table of the database.

SIMULATOR

The LALSD-II-driven simulator uses the database produced
by the translator. It is a six-valued, significant event simulator
with selective trace capabilities. The six values are 0, 1, Posi-
tive edge P, Negative edge N, Unknown U, and High-
impedance Z. Inclusion of P and N is to represent signal rise
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Figure 3—Overall structure of LALSD-II-driven simulator

(transition from 0 to 1) and fall (transition from 1 to 0). In
initializing the system, certain signal values are not known;
they are represented by U. Any signal at the high-impedance
state is represented by the Z value. The choice of significant
event and selective trace is for reducing simulation execution
time. This is done by simulating only units whose input(s)
have changed. Furthermore, if after the change of an ele-
ment’s input(s) its output does not change, then the fanout of
that element is not simulated. The simulator can simulate a
digital system at various levels. It can simulate synchronous,
asynchronous, or mixed systems as well as concurrent events.
The LALSD II simulator is capable of simulating intricate
timing relations among different components of a system.
The simulator has been implemented in PL/I for ITEL AS/6
(similar to IBM 370/158). Several examples, such as the PDP-
8 computer, blackjack machines, Chu’s computer, and Su and
DuCasse’s reconfiguration fault-tolerant system, have been
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run by the simulator to show its salient features. The entire
simulator consists of 71 subroutines. The source code contains
approximately 10,000 lines. The simulator consists of three
phases, as shown in Figure 3.

Phase 1: Preprocessing Phase—In this phase, all necessary
processing of the common database is done to prepare it for
the simulation phase. This includes database inputting, event
queue creation, space allocation and initiation, and the pro-
cessing of simulation command language such as RUN, INIT
(for initialization), DISPLAY, TRACE, ACTIVATE, and
END.

Phase 2: Simulation Phase—In this phase, the simulation of
the behavior of the system takes place. This includes unit
activation, the processing of connection and control parts, and
expression evaluation.

Phase 3: Postprocessing Phase—In this phase, the HIS-
TORY file generated during the simulation phase will be pro-
cessed to print the desired value of I/O parts or variables of
the system under simulation. The HISTORY file contains all
the changes to the I/O parts and variables of the system and
the corresponding time of their changes.

The overall flow of the simulation process is given in Figure
4, starting from the top block. The common database, gener-
ated by the LALSD II translator from the LALSD II descrip-
tion of the digital system, is one of the simulator’s input files.
The other input file is the user-specified simulation command
file, shown on the left side of Figure 4. The function of the
main routine is to control the entire operation of the simu-
lator. All other blocks in the next level are subservient to this
main program. Each routine at each level invokes one or more
of the next level subroutines to carry out appropriate pro-
cessing. The preprocessing routine’s task is to allocate space
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Figure 4—Overall flow of the simulation process

for all the data structures in the database, transform the com-
mon database to a form more readily usable by the next phase
of the simulator, and initialize all the required variables into
either unknown or user-specified values. The preprocessing
program invokes the time queue creation and unit activation.

The time queue creation is responsible for setting up the
required data structures to implement the event queue and
event scheduling mechanism. The unit activation activates
either all units in the system—in the absence of a user-
specified activate command—or only units specified by the
designer in the activate command.

The main program calls upon the control-processing rou-
tine. This routine serves as the control statement recognizer.
It indentifies the type of the control statement, and, de-
pending on this recognition, takes the appropriate action to
implement that control statement properly. The control pro-
cessing routine in turn, in cases where it is required to evaluate
an expression or a conditional statement, calls upon the ex-
pression evaluation program. This evaluation program, de-
pending on the type of the expression to be evaluated, either
evaluates the final value of the expression or returns a TRUE
or FALSE value for the condition to be tested. This routine
also returns a delay value equal either to zero or to the amount
of delay associated with the expression to be evaluated. The
expression evaluation routine in turn calls upon one of its
subordinate routines, shown in Figure 4. The operation of
each block in this level is self-explanatory, except the last one,
which contains subroutines for implementing all the primitive
operations in the LALSD II not included in the other catego-
ries. For the list of these operations the reader may see Refer-
ence 9.

The final block in the second level is the simulation trace file
generator, which produces the trace of all the changes during
simulation. This file includes all the changes in the system
variables with the corresponding time for the changes. It can
be processed either off line to print it in different formats, or
by the simulation result printing routine to print the designer-
specified variables’ states for the entire simulation run.

Table I shows the results of simulation runs for six exam-
ples: Adder, Address Generation, Multiplier, Chu’s com-
puter,™ Su and DuCasse’s reconfiguration scheme for fault-
tolerance,'® and the PDP-8 computer.

LOGIC SYNTHESIZER

Although almost all manufacturers have a design automation
system for the physical design, very few have included an
automated logic design system. This system will expedite the
design process, shorten design time, and reduce design cost.
The system should allow the designer to experiment with var-
ious design configurations as easily as possible. The system
should also greatly reduce the time and effort required to
implement, test, and refine the design.

With the user-specified key components, the library of
other components, and the period for clock, the logic syn-
thesizer transforms the common database produced by the
translator into the integrated circuit chips and their inter-
connections instead of producing a logic diagram in terms of
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gates and flip-flops and going through the tedious process o
partitioning and assignment. :

The essential features of our logic synthesis approach are
given below:

1. Modular primitive binding. The synthesis output is given
in terms of the integrated circuit chips (functional prim-
itives, such as registers, adders, multiplexers, etc.) and
their interconnections. It is more suitable for contem-
porary hardware design than gate-level implementa-
tions. Since the synthesizer output is of the same format
as the original program, it can be directly used as simu-
lation input.

2. Inherent parallelism exploitation. Since LALSD II de-
scription does not require operations to be specified
clock cycle by clock cycle, the synthesizer tries to ar-
range operations to be executed as fast as possible under
the given configuration. In this instance, a hardware
module may be shared by several operations at different
times.

3. User-directed configuration. Unlike some HDLs, which
require the data part to be specified exactly, the syn-
thesizer needs only user’s directions on key components.
By changing key component specification, the user can
try several different configurations to pursue the opti-
mum design.

4. Tterative design procedure. The output of the synthe-
sizer is compatible with the LALSD II program. Hence,
the user can even change part of the output, then rerun
the synthesizer to get results.

5. Behavior-level redundancy elimination. One drawback
of a high-level language is that many redundancies exist
in the description, though they may not be needed in the
actual implementation. These kinds of redundancies are
eliminated by the synthesizer.

Several examples have been run using the logic synthesizer
to produce the implementation in terms of ICs and inter-
connections. Four of them will be included here: the address
translation, the blackjack machine, the PDP-8 computer, and
Chu’s computer.® A brief summary of computer runs is given
in Table II.

By changing the key components, two designs for the ad-
dress translation and three implementations of the blackjack

machines are generated by the computer, using the logic syn-

TABLE I—Statistics of simulator example runs

No. of Stmts.

Example Name of in LALSD II Simulation Virtual
No. Circuit  Description Time (Secs)  Storage

1 ADDER 61 9.17 760K

2 ADDGEN 24 6.73 710K
ADDGEN 24 6.82 710K

3 MULTIPLY 29 7.83 708K

4 CHUCOMP 65 10.72 710K

5 NMR 106 12.84 730K

6 PDP-8 143 19.50 712K

thesizer program. The third column shows the CPU time in
terms of the number of seconds for translating the LALSD II
description. The next column gives the time for logic syn-
thesis. Note that it only took a little over two and one-half
minutes of CPU time on the ITEL AS-6 computer to design
(translation and synthesis) the PDP-8 automatically. The last
column gives the number of clock cycles needed in the con-
troller for activating the structure part of each implementa-
tion. The above results for this logic design automation are

very encouraging.

CONCLUSION

This paper has introduced the various parts of this integrated
logic design automation system—the new design language,
logic synthesis, and simulation. This system will greatly re-
duce design effort and make complex system design possible.
Furthermore, new research problems can be solved by using
the system as the basis.

Using LALSD II, a user can describe the function of the
system to be designed in a systematic way. In the beginning,
the description is procedure-oriented, with no explicit timing
relations. The LALSD II simulator can be invoked to check
its operation. When the description is correct, the logic syn-
thesizer is applied to transform the sequential procedural de-
scription into parallel nonprocedural modular interconnec-
tions. By changing variables such as technology to be used and
quantity and types of key modules used, the user may try tens
or hundreds of different design configurations. This greatly
aids the user in finding a very good, if not an optimum, design
configuration. The same simulator can be invoked again, this
time to check the detailed timing relations. After the user is
satisfied with the design configuration, he/she may choose the
actual integrated circuits for each module used by the syn-
thesizer. Then the logic design is completed.

Even with our prototype logic synthesizer, the reduction of
design time is very promising. The user usually spends an hour
to describe a digital system, such as the PDP-8 computer. The
synthesizer needs only 89 seconds to generate an implementa-
tion consisting of the interconnections of modules and the
control signal chart. If the user is not satisfied with the de-
signed configuration, he/she can try again by specifying differ-
ent key modules. Usually three or four runs can generate a
satisfactory design configuration.

TABLE II—Summary of computer runs

No. of No. of

Computer Source Trans. Synth. Clock

Run Statements Time Time Cycles
ADDGEN!1 22 7 4 2
ADDGEN2 22 7 5 5
BLACK1 52 13 13 18
BLACK2 52 13 13 17
BLACK3 52 13 13 16
PDP-8 140 68 89 87

Chu’s

Computer 50 27 33 35
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Of course more work needs to be done on this approach in
order to facilitate really automated design. An automated
module selector for choosing the actual integrated circuits will
be very useful. Some criteria need to be established to help
the user to choose key modules. Alternatively, these criteria
can be combined with the logic synthesizer to generate a
near-optimum design without the user’s directions.

One problem for future research is to establish some crite-
ria for the automatic logic synthesis. Instead of using com-
ponents selected by the user, algorithms may be investigated
to pursue the optimum design under the established criteria.
Another problem is the design for testability. Extra com-
ponents and test points may be incorporated to enchance
testability. The third problem deals with the combination of
logic design and physical design—i.e., instead of partition,
placement, and routing being performed at the final gate
level, they may be applied at the hardware modular level. We
speculate that in the future the difference between hardware
and software will become smaller and smaller, and a digital
system may be designed using one algorithmic language.
When the actual implementation is performed, cost, per-
formance, and reliability will be taken into consideration so
that part of a digital system is implemented in hardware and
the others in software.
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A versatile VLSI fast Fourier transform processor
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ABSTRACT

A versatile special-purpose VLSI fast Fourier transform (FFT) processor is pre-
sented. It can process variant data sizes of FFT and cooperate with other identical
FFT processors to accomplish cascade and parallel FFT processing schemes. The
operations of the single processor FFT processing scheme, the multiprocessor cas-
cade FFT processing scheme, and the multiprocessor parallel FFT processing
scheme are described. The results of performance analysis show that the combina-
tion of adaptive architecture capability and VLSI technology can provide a practical
solution for meeting the goal of advanced real-time FFT processing.
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INTRODUCTION

The fast Fourier transform (FFT) algorithm? is one of the most
widely used tools in digital signal processing systems. A large
body of knowledge has been generated on the subject of the
FFT algorithm, and its parallelism has been studied exten-
sively.>**%® Recently, the VLSI FFT computational net-
works were proposed”'®"' for constructing the special-
purpose FFT processor. However, these studies of VLSI FFT
computational networks do not consider the flexibility of pro-
cessing different data sizes. The VLSI technology is con-
strained by the chip density, packaging area, and pins num-
ber. These constraints also cause the problem of I/O bound
and computation bound. If one processes a user’s FFT task in
a special-purpose hardware FFT processor, the /O operations
of the source and result data may easily impose the perfor-
mance limitation. In addition, for the distributed processing
system, the distrubuted source data might be stored in a com-
puter unit with several I/O ports or be arranged (or mapped)
in multiple-port memories. Processing a user’s FFT task with
the arrangement of source data and available resources can
improve the resource utilization and can prevent the per-
formance limitation imposed by the I/O operations.

This paper presents a versatile VLSI FFT processor for the
Star local network,' which not only can process variant data
sizes of FFT but also can cooperate with other identical FFT
processors to accomplish the cascade and parallel FFT
processing schemes. Star is a local computer network de-
signed to integrate image database management and image
analysis into a system. It consists of a reconfigurable commu-
nication subnet (Starnet), heterogeneous resource units, and
distributed-control software entities. The fault-tolerant,
reconfigurable communication subnet interconnects multiple
host computers, special VLSI units, and various memory units
for real-time management of the image. Figure 1 is the block

worker
computer _L
N |
—F L~ ]
>
Database (. -
- I C ication
PL —
fe— : 1 subnet
. B
. . :_'_ - (Starnet)
.
* . .
. .
VISI > . .
processor w | ° :

Figure 1—The block diagram of the Star communication subnet.

diagram of the Star communication subnet. The system com-
ponents are attached to the interface unit," which in turn
connects to multiple ports of the interconnection network.
The communication path is established via the destination
tag-routing technique, and a path establishment is less than
one microsecond. Star is flexible and can be configured into
various topology to provide better peformance level than
other rigid special architecture.

In Section 2, the various parts of the versatile VLSI FFT
processor are described. A detailed description of the pro-
cessing user’s FFT task on Star is given in Section 3. The
operations of the single processor FFT processing scheme, the
multiprocessor cascade FFT processing scheme, and the mul-
tiprocessor parallel FFT processing scheme are discussed sep-
arately. The performance analysis is done in Section 4. Sec-
tion 5 is the conclusion.

A VERSATILE VLSI FFT PROCESSOR

Figure 2 is the block diagram of a versatile VLSI FFT pro-
cessor. The processor communicates with other processors
and data units through four interface units (IUs), denoted as
IUw, IUo1, IU;p, and IU;;, that connect to the Starnet. The
processor control unit (PCU) accepts the FFT task description
from the user (or other processor) and decides the sequence
of actions to be taken; it coordinates and controls the activities
of the whole processor. The MCSW switches between the
memory bank unit and the computation unit (CU) serve the
function of switching the input and output ports of the CU
with two memory bank units MBy and MB,. Such config-
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Figure 2—The block diagram of a versatile VLSI FFT processor
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Figure 3—The circuit diagram of memory bank unit

uration and bidirectional IUs eliminate the restriction of fixed
I/O ports and allow the FFT processor to act as a bidirectional
FFT processing processor. The memory bank control unit
(MBCU) generates the memory address sequences and con-
trols the read/write operation of four data storages My_; in the
memory bank unit. The switch control signals MSWC and Co_5
set up the paths among data storages, IUs, and CU. The
memory enable (ME), memory read (MR), and memory
write (MW) signals control the operation of individual data
storage. The circuit diagram of one of the memory bank units,
is shown in Figure 3.

The computation unit is an FFT VLSI chip that contains a
pipeline butterfly computation element (PIPECE) and a par-
allel FFT quotient network (PARQUO) as shown in Figure 4.
The PIPECE offers the capabilities of a fast butterfly com-
putation rate and the overlapping of I/O operations with the
computation. The PARQUO offers the capability of parallel
processing the FFT within certain data size ranges. The twid-
dle factors of the PIPECE come from the outside of the VLSI
chip, while the twiddle factors of the PARQUO come from
the presorted Read Only Memory (ROM) associated with
each computation element (CE). Considering the pins limita-
tion, the I/O ports of the VLSI FFT circuit are denoted as
ING, IN1, OUTO, and OUT1. The hand-shaking mechanism
of the VLSI FFT circuit with the external world is done by the
control unit with four hand-shaking signals: input available
(INAVL), input acknowledge (INACK), OUTPUT available
(OUTAVL), and output acknowledge (OUTACK). The con-
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Figure 4—The block diagram of a VLSI FFT circuit

trol unit performs the function of accepting the operation
command from the external world, coordinating the data
input/output operations, and controlling the operations of
CEs. The external world issue command to the control unit by
activating the Command Strob (CMSB) signal and putting the
command work into the INO and/or IN1 ports. The command
word contains parameters to specify the active PIPECE or the
active PARQUO operation mode.

The construction of the PIPECE is straightforward. With
three pipeline real adders, three pipeline real subtracters, four
pipeline real multipliers, and delays, one can form a pipeline
butterfly computation element as shown in Figure 5. Consid-
ering the PIPECE as L concatenated computation stations,
each station performs a portion of the butterfly computation.
For computation station i, 1 <i<L, it can accept data from
station i — 1 only if its intermediate result was accepted by
station i + 1. Therefore, the last computation station accepts
data from its previous station only after the external world has
received its output. The hand-shaking mechanism can be in-
corporated between computation stations and implemented
by means of simple hand-shaking protocol.'***

The transformation from the complete parallel FFT com-
putational network such as the Shuffle-Exchange network® to
the equivalent quotient network can be found in Fishburn and
Finkel’s paper.”* Figure 6 is the circuit diagram of the
PARQUO. Since each CE in the quotient network emulates
the actions for several CEs in the large network, buffers are
required to hold data, and this is accomplished by two parallel
double queues (DEQs) denoted as DEQO and DEQ1. Twe
DEQs share two common pointers and an INQUE signal that
controls one of the DEQs in accessing data from the INO or
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Figure 5—A pipeline butterfly computation element

IN1 port. Assume that the PARQUO is designed with 2° CEs, "0UTl
which are addressed as C,_;...C,, and its maximum pro-
cessing capability is 2%-point FFT, where a<q. The input I !
sequence of source data A(k), where k=0 to 2°—1 and - DEQO [ J |
a<b=gq, is defined as <o —— CE
s i : B ° I
INO : = A(Cip—3. . . ip); 1
s RO . b1 _

IN1:=A(QQlip—3...ip); Ip-2...10=0t02 1. y [————DEQO | < =om
The control unit enables the CE(0C,_....Co) and '\, __@_‘ CE,
CE(1C.-; ... Cy) to access 2°* data points from the INO and 1
IN1 ports, respectively, by activating the INQUE signal and _@_ < oM
the CE addressing signals. After completing the external data ("_ \ ——l
input operation, each CE(C,-; ... C,) holds the source data h 4@_\ 2 |
A(Cooy...Clip—o-q...19) in DEQO and A(C,-;... - '
Colip-a—1...1p) in DEQL. The control unit starts activating all — DEQ0 W] \_ ROM ‘
CEs to process the FFT. At the end of FFT computation, each K E
CE(C.-1...Co) holds the final Fourier coefficients X(0i,. . . > {osa1 |- * 3 ’l
ip-a-1Co. .. C,—1) in DEQO and X(1i; . . .ip-2-1Co . . . Comq) in 1
DEQI1 according to the bit-reversal output order of the DIF

isogeometry algorithm with perfect shuffle permutation. The

output operation is then accomplished by sequentially acces- CEs selectione-s| .._ggévg
sing 2°7*"* pairs of data from the DEQs of each CE, and it is DEQs pointerse—~ control [——OUTACK
xpressed twiddle factogp .| | LINACK
€ as address unit
computation® —>O0UTAVL
X(0i1 e ib—l) = OUTO; 1/0 controle— MSB
. . . . _ INO, 3
X(1,...1y—y) :=0UTL; i§;...ipb-;=0t0 27" —1. command from fhe sxternal I
N1 world

The PARQUO accepts the next group of data only if its DEQs
are empty. This nonpipeline restriction simplifies the design
of the control unit, but a price is paid for increasing the
processing time.

Figure 6—The circuit diagram of the parallel FFT quotient network
(PARQUO) with four computation elements

Figure 7, one can see that a 2™-point FFT can be processed as

PROCESSING THE FFT WITH VERSATILE VLSI FFT
PROCESSORS

From a careful observation of Gentleman and Sande
Decimation-In-Frequency (DIF) FFT algorithm' as shown in

s stages of butterfly computation and then 2° groups
2™ *-point FFT, where 0 <s < m — 1. Since the PARQUO has
the maximum processing capability of 29-point FFT and the
minimum processing capability of 2**'-point FFT without
zero padding, the decision in decomposition is based on the
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stage 1 stage 2

stage3

A >C<A+B
B (A - B) * W(16,i)

Figure 7—The signal flowgraph of a 16-point radix-2
Decimation-In-Frequency FFT algorithm with the in-place property

data size and the processing capability of the PARQUO. To
avoid the side effect of zero padding, when the data size is
smaller than 2**', the given FFT task is processed by acti-
vating the PIPECE. If the data size is larger than 2* and
smaller than 27, then it is processed by the PARQUO. As
the data size 2™ exceeds the the maximum processing capabil-
ity of the PARQUO, the FFT computation will first be
performed by processing m — q stages of butterflies in the
PIPECE, and then the intermediate results of the (m — q)th
stage are treated as 2™ ? groups 2%point FFT, which can be
processed by the PARQUO. When the PIPECE is activated,
the intermediate results of one iteration are arranged in the
internal data storages properly to be ready for the next itera-
tion. After each iteration, the processor will change the pro-
cessing direction by controlling the MCSW switches. Follow-
ing the above decomposition rules, variant sizes of FFT can be
processed in a single FFT processor.'®

Multiprocessor Cascade FFT Processing Scheme

In Figure 7, after the first half of the butterflies in stage 1
are done, the successive output of stage 1 can be processed in
stage 2, and so on. Hence, for a given FFT task with G groups
of 2™ data points, one can linearly connect an m number of
FFT processors, and according to the sequence order of the
linear connection, each processor is then assigned a Pseudo
Number (PSN) to charge one stage of butterfly computation.
The Linear(P,j,i) defines the linear connection pattern such

I I . Source
Ujo FFT i " data input
processor
I with PSN:1
I I,_Source
'_—U.l U. data i
3 i1 ata input
I I
“1Yi0 FFT Uso
processor
with PSN:2
I I
—{ U, ——
i1
Ujl
I I
Us0 FFT Uso|
processor
with PSN:3
I I
— —
U.
j1 Uiy
—
I I Result
="
UiO FFT Ujo data output
processor
with PSN:4
LT I | Result ,
Uil Ujl data output

Figure 8—The topology and connection pattern of the linearly connected
FFT processors

that the IU;, and IU;; of the FFT processor with PSN =k
connect to the IU, and IU;; of the FFT processor with
PSN=k+1, where P is the number of processors and
1=k =P and i,j represent the two IU groups. The FFT pro-
cessor with PSN = 1 accepts pairs of source data from its IUj
and IU;,, whereas the processor with PSN = P produces the
Fourier coefficients from its IU;, and IUj;, which are con-
nected to the destination unit through the Starnet. Figure 8
shows the connection pattern of Linear(4,1,0).

The data movement operation is divided into three phases
and is shown in Figure 9. Suppose a 2*-point 1-D FFT task, as
shown in Figure 7, is processed by four linearly connected
processors. At phase 1, the first processor queues the OUT1
data of the first four butterflies in M; and sends the OUTO
data through the IUj, to the next processor, which will queue
the received data in M,. At phase 2, the first processor queues
the OUT1 data of the next four butterflies in M; and send the
OUTO and queued M, data through the IUj; and IUj, to the
next processor. The second processor stores the incoming
data from the IU, and M; data storage and processes the
queues M, data and the incoming data from the IU;; as a pair
of INO and IN1 data. Finally, at phase 3, the first processor
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FFT processor
with PSN:k

Starnet
TS
Ich
Starnet
IUj]

wired-in path

phase 1

FFT processor
with PSN:k+l

— — — —phase 2

~— e =—e=Dphase 3

Figure 9—The data movement of cascade 1-D FFT processing scheme

(*COMMENT :

TASK TYPE: CAScade Multiple One Dimensional FFTs.
TOPOLOGY: Linear.

DATA SIZE: G groups of M-point data, M = 2%,
REQUEST: log,M processors.

ASSIGN: Pseudo number PSN, v=0 and u=1, where PSN is an
integer and 1 =PSN=m.
SOURCE: Source data are sent to the processor with PSN =1

as the sequence of

ForI=0to G—1

U, < A(L k);
U, <Ak +M2);
where 0=k=M2~-1landi=v.
)
Begin

Linear(m, 1,0); (* establish linear connection*)
MCSW: = pass; i: = v; j: = u; (* set direction *)
s: = PSN; (* specify computation stage*)
(* performing the FFT computation *)
ForI:=0to G—-1do
Forc:=0to 2! —1do
For k:=0to2™*—1do
Begin
[INPUT DATA FEEDING PROCESS]
Case of s
s=1: MB,(Go1,C |, G, 1, G5 L );
INO «1IU;
IN1 < IU,;
s>1: If k<2m—s-1
Then
IfI=0and c=0
(phase 1)  Then MB,(C, 1);
Mo(k) < IU,;
(phase2)  Else MB,(Co1,Cy ), G, );
MB; (C, | ,MSWC = pass);
INO « My(k);
IN1«IUy;
M, (k) «IU,;

End.

Else MB;(Col,Ci{,G1);
MB; (C; | , MSWC = pass);
IfI=G-land ¢=25"1-1
Then INO <M, (k — 20-5-1);

IN1 «IUy;
(phase 1 & 3) Else INO <M, (k —2m~s71);
IN1«1IU;;
Mo (k = 2°7571) «1Uy;
End of Case;
[COMPUTATION PROCESS]
(* active PIPECE *)
OUTO0 «INO + IN1;

OUT1 « (IN0O - IN1) * W(M, k * 27 1);
[OUTPUT DATA HANDLING PROCESS]
Case of s
s=m:MB;(C,1,C ,CG1,Gl);
IU;, < OUTO;
1U;, < OUTY;
s<m:If k<2ms!
Then MB;(G,1,C,1,G1);
MB;(C; | ,MSWC = cross);
IfI=0andc=0
(phase 1)  Then IU;,, < OUTO;
M, (k) - OUTI;
(phases 1 & 3)  Else IU;, «-OUTY;
M, (k) <OUT1;
1U;, < Ms(k);
(phase 2)  Else MB (G| ,C,1);
MB;(C,1,C; 1, MSWC = cross);
WM, (k— 2mmsh);

1U;, « OUTO;
M, (k — 25"« OUTL;
End of Case;
End;
Ifs<m
Then MB,(Cs | );
For k: =0to 2™ ! do
IU;; < My(k);

Figure 10—CASMOD algorithm



158 National Computer Conference, 1984

sends its M data through the IU;; to the next processor, which
processes the queued M, data and the incoming data from the
1U;; and a pair of INO and IN1 data. Similarly, the data move-
ment operation is available for the second and third processor,
and so on. In general, the processor with PSN=k, I <=k=m,
repeats 2“~" times of phase 1, 2, and 3 operations, and each
processor overlaps the phase 3 operation with the next repet-
itive phase 1 operation. In the case of processing G groups of
1-D FFT, the first processor (i.e., PSN = 1) overlaps the phase
3 operation with the next group’s phase 1 operation, and the
rest of the processors (except the last processor) repeat
G=2""" times of phase 1 to 3 operations. Note that the cascade
FFT processing scheme only involves the active PIPECE
operation mode.

The algorithm CASMOD (Figure 10) describing the cas-
cade FFT processing scheme is given as follows. The notation
““destination < source’ stands for the data transfer operation,
and the transfer operations in each PROCESS occur concur-
rently except when they are separated by the conditional
statement If-Then-Else. The INPUT DATA FEEDING
PROCESS, COMPUTATION PROCESS, and OUTPUT
DATA HANDLING PROCESS are pipelined. The states of
switch control signals Co_; are represented with “ 1> or “ | ”
to stand for the upper or lower link. The data path set by the
MCSW or MSWC is either “pass” or “cross.”

The multiprocessor cascade FFT processing scheme be-
comes attractive when the G value is greatern than one, be-
cause it reduces the external data transferring time by over-
lapping the receiving of source data and the transmitting of
the results with the butterfly computation.

Parallel Processing Multiple One-Dimensional FFTs

Representing 2* FFT processors in binary form as PSN =
P._;...Po, the Cube(P,c,i) defines the connection pattern of
the IU;; of processor P,_;...P....P, connecting to the IU;
of processor P,_;.. .P....P,, and the IU; of processor
P,;...P....Py connecting to the IU,, of processor
Pi_y...P.... Py, where P=2" and 0=<c=x—1 and i repre-
sent one of two IU groups. Figure 11 shows the connection
pattern of Cube(4,1,1) and Cube(4,0,0). Suppose one re-
quests four FFT processors with PSN =P,P, to process a
16-point 1-D FFT task as shown in Figure 7, then each pro-
cessor will charge two-butterfly computations in each stage
according to the order of PSN. Assume that the source data
input ports will the [Uy and IU,, before starting the
computation, and that each processor establishes Cube(4,1,1)
as shown in Figure 11. Those processors with P; = 0 queue the
OUTO data and send the OUT1 data through IU,,, and pro-
cessors with P, = 1 queue the OUT1 data and send OUTO data
through IU,;. This data exchange operation is shown in Figure
12. When the last pair of incoming source data arrive, each
processor establishes Cube(4,0,0) as shown in Figure 11 and
stage 2 computation can start after finishing the exchange of
intermediate results and switching the processing direction. It
allows each processor to have two-butterfly computation time
to establish the next connection pattern Cube(4,0,0). In Star-
net, a path establishment time is less than one microsecond.
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Figure 11—The topology and connection pattern of Cube(4,1,1) and
Cube(4,0,0)

This procedure is then continued until there is no need to
exchange data; i.e., c=0. In general, processing 2™-point
FFT with 2" processors, where 0 < x < m, requires x times of
exchange steps and each step takes 2™ *"! data transfer
operations. After the xth data exchange step, each processor
processes 2™ *-point FFT independently. The operation of -
parallel-processing multiple one-dimensional FFT is de-
scribed in the PARMOD algorithm (Figure 13).

When x = 0, the above parallel processing scheme becomes
a single processor FFT processing scheme. If x=m-1, i.e.,
each processor executes only one butterfly computation in
each stage, one obtains the maximum parallelism in pro-
cessing one-dimensional FFT.

PERFORMANCE ANALYSIS
The following parameters are defined.

1. T, = one data item transfer operation time between the
source/result data unit and the FFT processor.

2. T. = one data item transfer operation time between FFT
processors.

3. T, = the input or output operation time of the PASQUO
for one pair of data.

4. T, = one butterfly operation time.
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Figure 12—The data exchange of parallel 1-D FFT processing scheme

5. L =the number of computation stations in the pipeline
butterfly computation element (PIPECE).

6. The number of CEs in the PARQUO is-2* and its max-
imum processing capability is 2%-point FFT, where a < q.

Suppose the PIPECE and the CEs of the PARQUO are de-
signed with the same kind of real adder/subtracter/mutiplier;
then the input-output time of the PIPECE is also denoted as
T, and the time to start the successive butterfly computation
in the PIPECE is T,/L. In addition, according to the defined
parameters, assume that T,=T.=T,/L =T;. The FFT pro-
cessing time will be calculated from the receiving of source
data to the end of transmitting results and without concern for
the output sequence of the final Fourier coefficients. Also, the
overhead time spent in the processor control unit after accept-
ing the user’s FFT task description is neglected.

The Performance Measures of the Single FFT Processor

The total FFT processing time of G groups 2™-point FFT is
the single versatile FFT processor is formulated as follows:

(* COMMENT:
TASK TYPE: PARallel Multiple One Dimensional FFTs.
TOPOLOGY: Cube.
DATA SIZE: G groups of M data pointss, M =2".
REQUEST: 2% processors, where 0 <x <m.
ASSIGN: v=0,u=1and PSN=P__,...P,
SOURCE: For processor PSN=P,_, ... P,, the incoming source
data follows the sequence of
U< A, 0P, ;... Pyin_x2---Jo)s
IIjil (_A(I’ 1Px—l e Pojm—x—Z e jO);
where oy 2...jo=0t0 27 * 1 -1 i=v,
")
Begin

Fors:=1toxdo
(* setting the processing direction *)
If s=even
Then MCSW: =cross; i: =v; j: =u;
Else MCSW: =pass; i:=u; j: =V;
(* path establishment *)
Cube(2%,x - s,j);
(* performing the FFT computation *)
ForI: =0to G—1do
Fork:=0to 2™ *1-1do
[INPUT DATA FEEDING PROCESS]
Ifs=1
Then (* access the source data *)
MB,(Co1,Ci 4,1, Gl
INO «1IUy;
IN1«<IUg;
Else (* access internal data *)
P, =0
Then MB; (MSWC = cross,Cy 1 ,C; 1);
INO <M, (1,k);
IN1 <M, (L, k);
Else MB; (MSWC = cross, Cy { ,C; | );
INO <M, (I, k);
INL <M, (1, k);
[COMPUTATION PROCESS]
(* active PIPECE *)
t=:k 4+ PSN *2m-—x-1,
OUTO0 «INO + IN1;
OUT1 « (INO — IN1) *W(M, t *2571);
[OUTPUT DATA HANDLING PROCESS]
(* including the data exchangement *)
Ifp _.=0
Then MB;(C, 1.C,{,C,1.Gl )
M, (I, k) < OUTO;
1U;; < OUTY;
M, (L k) <—IU’-0;
Else M:Bj(coT .G, G 1, Gl
IUjo «—OUTO;
M; (I, k) < OUTI;
M, (LK)« IUjl;
End;
m:=m=x;v:=j;, wr=i;
Single processor Multiple 1 — D FFT (Section 3.1);
End.

Figure 13—PARMOD algorithm

Case 1. m = a, active PIPECE.
Teer = TxG#2™ + Typx[m + G*(m — 2)/L*2™"1].
Case 2. a<m = q, active PARQUO.
Teer = G*T#2™ + G+ T #m#2™72"1,

M

@
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Figure 14—The log, speed-up of the machine A and versatile FFT processor
in 1-D FFT processing scheme as a function of m and Ry

Case 3. q <m, active PIPECE and PARQUO.

Terr = G*T#2™ + G#T¥2™ !
+ Tp*[m — q + G#(m — q — 1)/L«2™""
+ Gxq#2" 7. 3

To evaluate the speed performance of the designed versatile
FFT processor, two conceptual machines are defined. The
first one, named machine A, can always process any given size
of FFT in maximum parallelism. The second machine, named
machine B, is the sequential-type hardware FFT processor
that sequentially executes the butterflies. If machine A and B
each have two input ports and two output ports, then the
processing time of 2™-point FFT in machine A is expressed as

TMA = Ts*2“' + m*T‘,, (4)
and in machine B it is expressed as
Tve = T#2™ + m*2™ '+ Ty, %)

One might note that the speed-up ratio of machine A is about
0(m/2+T/Ts) over machine B.

Denote R, as T,/T, R, as T/T;, and let a=6, q=10,
L =32, and R, = 40. Figure 14 shows the log, speed-up of
machine A and a versatile VLSI FFT processor, compared
with machine B, as a function of m and R,. As R, decreases,
the I/O operation becomes a dominate term in evaluting the
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Figure 15—The log, speed-up of the cascade 1-D FFT processing scheme, as
a function of m and G

FFT processing time. In some applications, the source/result
data might be stored in the medium-speed storage, which may
cause the R, value to be small. In such a case, further im-
provement of the speed performance should be done by using
either the multiprocessor cascade FFT processing scheme or
the multiprocessor parallel FFT processing scheme. As semi-
conductor technology progresses, the increasing speed of
hardware circuits reduces the T, value and results in the im-
portance of the I/O consideration.

The Performance Measures of the Cascade Processing
Scheme

Since the cascade FFT processing scheme only activates the
PIPECE:s and each processor overlaps its butterfly computa-
tion with the incoming data from the previous processor, its
output handling rate is determined by the next processor. For
easy illustration, assuming that T, = T, and counting from the
time the first pair of source data arrive at the first processor,
the second processor can start its butterfly computation after
M/4+T. + T, time units and the third processor can start
its butterfly computation after (M/4 + M/8)+*T. + 2+T, time
units, and so on. This means that it takes about M/2*
T, + m*T, time units to produce the first pair of Fourier coef-
ficients. The total processing time of G groups 2™-point FFT
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with m linearly connected versatile VLSI FFT processors is
then formulated as

Terr = 2% '%(G + 1)+T, + m+Ts,. (6)

Figure 15 shows the log, speed-up ratio of the cascade FFT
processing scheme, relative to machine B, as a function of m
and G with R, =5 and R, =1 respectively. As G increases,
the CASMOD FFT processing scheme gets better perfor-
mance, and its throughput is twice as high as that of machine
A for large G value. In applications where the source/result
data storages only have several input/output ports, the de-
signed cascade FFT processing scheme can achieve both high
performance and high throughput.

The Performance Measures of the Parallel Processing
Scheme

The total processing time of 2" processors, 0 <x<m,
parallel-processing G groups 2™-point FFT is formulated as

Case l. m—x=a.

Tepr = G+T#2™7*
+ G#Tes[1 + (x — 1)=2™ 1]
+ To*[m + G*(m — x — 1)/L+2™"*"1], @)

Case 2. a<m—x=q.

Terr = G#T#2™7*
+ GHT1 + (x — 1)¥27771]
+ G T2m !
+ To*[G#*(m — x)*2™7* 7! + x]. (8

Case 3. q<m —x.

TFI-T = G*TS*Z“‘""
+ GeTo[l + (x — 1)x27=7)
+ G*T2m ™!
+ Tp*[m — q + G*(m — x — q)/L«2™"*"1
+ Grq#2™ 7. 9

Because the data exchange of the first stage is overlapped
with the butterfly computation and the incoming source data,
its actual data exchange operation time is the last produced
intermediate result. Siegel® has presented a parallel proces-
sing 1-D FFT algorithm for the SIMD machine. Performing
2™-point FFT in an SIMD machine with 2* processing ele-
ments, 0<x<m, takes m*2™*"" butterfly operations and
x*2™*"! external data transfer operations. Due to the lack of
information about the internal data transfer operations in the
processing elements of an SIMD machine, which depends on
the detail hardware circuit design, the processing time of
2™-point 1-D FFT in an SIMD machine is approximately and
optimistically expressed as

Tsimp = Te#2™ 7™ + Tp*m#2™ 771 4 Terxs2m 771, (10)

Assuming that T. = T, Figure 16 is the log, speed-up of an
SIMD machine and designed FFT processors in the parallel
1-D FFT processing scheme, relative to machine B, as a func-
tion of x and R,. The result shows that the parallel FFT
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Figure 16—The log, speed-up of an idealized SIMD machine and versatile
FFT processors in parallel 1-D FFT processing scheme as a function
of x and R,

processing scheme of designed versatile FFT processors gains
higher speed performance. Note that in Figure 16, with
R, =10, 32 designed FFT processors can have the same per-
formance as an SIMD machine with 1,024 processing ele-
ments. Such comparison gives only the approximation; in fact,
the processing elements of an SIMD machine are usually not
designed to process the FFT algorithm only. Hence, the T,
value of an SIMD machine will be larger than that of a special-
purpose FFT processor.

CONCLUSION

As semiconductor techology progresses parallel FFT com-
puting architecture becomes more and more attractive in real-
time applications. However, the associated communication
problem and the related I/O problem also become more and
more important. Performance of a theoretical special-purpose
hardware FFT processor that can process any given size of
FFT with maximum parallelism can easily be limited by the
I/O operation.

The versatile special-purpose VLSI FFT processor de-
scribed in this paper facilitates single and multiple processors
using cascade and parallel FFT processing schemes for various
applications and source data arrangements. The design of the
FFT VLSI computation unit takes a more practical approach
by considering the pins limitation and the progress of VLSI
technology. The flexible memory organization and bidirec-
tional processing capability allow the processor to deal with a
variety of source input and result output sequences. Further-
more, the flexibility of processing variant sizes of FFT in
single FFT and multiple FFT processors will be suitable for a
multiuser real-time processing environment.
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The results of the performance analysis show that the com-
bination of Star architecture capability with VLSI technology
and related technology developments can provide a practical
approach toward meeting the goal of advanced real-time FFT
processing. The cascade FFT processing scheme offers the
capability of meeting both the high performance and high
throughput requirements with limited /O ports. Such a
scheme appears to be attractive for collecting and processing
large amounts of data in real-time. It is concluded that the
parallel FFT processing scheme with multiple versatile VLSI
FFT processors in Star can achieve higher performance than
can the SIMD machine. In addition, the achievement of high
performance through an exploitation of parallelism using a
distributed computing approach not only significantly im-
proves fault tolerance but also allows maximum flexibility.
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Design diversity: An approach to fault tolerance
of design faults
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ABSTRACT

Diversity of design is discussed as a means to attain fault tolerance with respect to
latent design faults in software and hardware. Some potential advantages of this
approach in software versus a single design protected by fault avoidance (verifica-
tion, validation, and proofs) are presented. An extension to design fault tolerance
in VLSI circuits is identified. The results of earlier experimental studies are re-
viewed, and new results of a specification-oriented multiversion software experi-
ment are summarized.
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INTRODUCTION: THE DESIGN DIVERSITY
APPROACH

Over the past two decades, several successful fault-tolerant
systems (tolerating faults of physical origin, to be called
“physical faults” in this paper) have been designed, built, and
used in important applications.®’” Major examples are the
JPL-STAR (Self-Testing And Repairing) computer for multi-
year interplanetary space missions,>* the Bell Laboratories
duplexed ESS central processors,” and the advanced SIFT
and FTMP* designs intended to serve as real-time control
computers for commercial airliners of the future. THE SIFT
and FTMP designs use a minimum of three complete and
separate computing channels with majority voting (by soft-
ware in SIFT; by hardware in FTMP) to assure system survival
after the first physical fault. Reconfiguration and sparing are
then used to lower the probability of system failure to the
desired value of 107° for a 10-hour flight.

In contrast to the successful systems that exercise tolerance
of physical faults, there are no examples of operational sys-
tems that tolerate design faults either in software or in hard-
ware. The fault-avoidance approach is exclusively used to
eliminate design faults. The inevitable left-over design faults
are removed by maintenance procedures applied off-line, i.e.,
after a system crash has occurred. The question whether de-
sign faults can be successfully tolerated by extensions and
generalizations of fault tolerance techniques has remained
unanswered. The question can be addressed in two parts:

1. Isit possible to implement design fault tolerance regard-
less of cost?

2. Can this approach compete, with respect to cost, with
the currently prevalent design fault-avoidance ap-
proaches that use verification, validation, and correct-
ness proofs?

In setting out to investigate the potential of fault tolerance
techniques in the domain of design faults, we note that a
strong analogy exists between physical and design faults, as
show in Figure 1.

The existence of systems with strong tolerance of physical
faults attained through multiple-channel computing is an en-
couraging fact. However, it is evident that the channels are
identical and therefore do not possess the critically important
property of design diversity that is needed to tolerate the
manifestation of a latent design defect. Clearly, the multiple
computing channels will have the potential for design fault
tolerance only if there is a very high probability that the left-
over design faults do not evoke the same forms of undesirable
behavior in a majority of channels; that is, if their symptoms
are not isomorphic at the points of observation.

Consequently, design diversity is the new key requirement
for design fault tolerance that needs to be added to a multi-
channel system that tolerates physical faults. Design diversity
in this context means the independent generation of two or
more software or hardware elements (e.g., program modules,
VLSI circuit masks, €tc.) to satisfy a given requirement. It
must be noted that the discussion of diversity applies not only
to the initial generation of programs and designs but also to
subsequent modifications or redesigns that are made in order
to improve performance or to correct discovered defects and
inadequacies.

CONDITIONS FOR THE INDEPENDENCE
OF DESIGN FAULTS

Independence of the design and implementation efforts is the
mechanism that is employed to minimize the probability of
identical design-fault symptoms in a majority of computing
channels. It is approached first by the use of different algo-
rithms, programming languages, translators, design automa-
tion tools, implementation techniques, machine languages,
and so on. The second condition for independence is the
employment of independent programmers or designers, pref-
erably with diversity in their training and experience.

The third and most critical condition for independence of
design faults is the existence of a complete and correct initial
statement of the requirements to be met by the diverse de-
signs. This is the hard core of the fault-tolerance approach.
Latent defects, such as inconsistencies, ambiguities, and omis-
sions in the initial statement, are likely to bias otherwise en-

ADVERSE PHYSICAL PHENOMENON HUMAN MISTAKE

! N

CHANGE OF COMPONENT LOGIC DESIGN SOFTWARE OR HARDWARE

PARAMETERS: FAILURE IMPERFECTION DESIGN IMPERFECTION
MANIFESTED AS MANIFESTED AS MANIFESTED AS
PHYSICAL FAULT LOGIC FAULT INFORMATION FAULT

o~

EXPECTED LOGICAL BEHAVIOR DISRUPTED
LOGIC ERROR

N

EXPECTED INFORMATION PROCESSING DISRUPTED
INFORMATION ERROR

l

ERRORS IN OUTPUT AND/OR
FAILURE OF INFORMATION PROCESSING FUNCTIONS

Figure 1—An analogy between physical and design faults
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tirely independent programming or logic design efforts so that
they produce isomorphic design faults.

The most promising approach to create the initial statement
is the use of formal, very-high-level specifications that them-
selves can be automatically tested for latent defects, or even
proven to be defect-free. Here perfection is required only at
the highest level of specification; the rest of the design and
implementation process and its tools are not required to be
perfect, but only as good as possible within existing con-
straints on resources and time.

POTENTIAL ADVANTAGES OF DESIGN DIVERSITY

The most immediate and direct application of design fault
tolerance through design diversity exists in the multichannel
systems with very complete tolerance of physical faults (e.g.,
SIFT®) that are employed in life-critical applications. The
hardware resources and architectural features to support de-
sign diversity are already present, and implementation of de-
sign diversity is a logical extension of the existing physical
fault tolerance mechanisms. Furthermore, design faults in the
hardware of a channel can be tolerated by choosing for each
channel functionally compatible hardware building blocks
from different suppliers.

A more speculative, but also much more general applica-
tion of design diversity is its use as a partial replacement for
current software verification and validation (V&V) proce-
dures. Instead of a thorough V&V of a single program, two
independent versions are to be executed in an operational
environment, completing V&V concurrently with productive
operation. The doubled cost of producing the software is com-
pensated by a reduction of the V&V time and a decrease in
the cost of manpower and special tools needed for the very
thorough V&V effort. The second (backup) version can be
taken off line when adequate reliability of operation is
reached, and then returned for special operating conditions
that require greater reliability assurance, especially after
modifications or after maintenance. A potential system life-
time cost reduction exists because such a system can support
continued operation after latent design faults are uncovered,
providing near 100% availability. The cost of fault analysis
and elimination should be reduced because of the lesser ur-
gency of the repair actions, since operation is not interrupted
as long as the majority of channels are not affected.

A very intriguing long-range implication of the design di-
versity approach in software is the possibility of using a “mail-
order” approach to the production of two or more versions of
software modules. Given a precise formal specification that
includes a set of fundamental tests, the software can be gener-
ated by programmers working at their own preferred times
and locations, possibly using their own personal computing
equipment. Two potential advantages have been identified:

1. The overhead cost of programming that accrues in highly
controlled professional programming environments
would be drastically reduced through this approach,
which allows free play to individual initiative and uses
low-cost home facilities.

2. The potential of the rapidly growing number of com-
puter hobbyists to serve as productive programmers
would be tapped through this approach. For various rea-
sons, many individuals with programming talents cannot
fill the role of a professional programmer as defined by
today’s rigorous approaches to quality control and use of
centralized sites during the programming process.

Finally, an important reliability and cost advantage through
design diversity may be expected for VLSI circuit design. The
growing complexity of VLSI circuits, with 400,000 gates/chip
available today and 1 million gates/chip predicted for 1986,
raises the probability of latent design faults, since a complete
verification of the design becomes very difficult to attain.
Furthermore, the design automation and verification tools
themselves are subject to latent design faults. Even with
multichannel fault-tolerant system designs, a single latent de-
sign fault would require the replacement of all chips of the
class, since on-chip modifications are impractical. Such a re-
placement would be a costly and time-consuming process. On
the contrary, use of design diversity of VLSI circuits does
allow the continued use of chips with design faults, as long as
their symptoms are not isomorphic at the circuit boundaries.
Reliable operation throughout the lifetime of a system may be
obtained by means of design diversity without having a single
chip with a perfect design and without any modification of the
basic structure of the VLSI circuits.

INITIAL STUDIES OF MULTIVERSION SOFTWARE:
AN EXPERIMENTAL APPROACH

The potential advantages that were identified in the preceding
section have provided the motivation for study of design di-
versity and design fault tolerance as alternatives to the gen-
erally used verification, validation, and proof methodology
that aims to deliver perfect software products and hardware
circuits.

An increasing awareness of the need for design fault toler-
ance led to the initiation of a research effort at UCLA in
1975.° The work was founded on a 14-year background of
continuous investigations in tolerance of physical faults,>® and
its goal was to study the feasibility of adapting to software
design fault tolerance the technique of N-fold modular redun-
dancy (NMR) with majority voting, which is effective in the
tolerance of physical faults. The approach was called N-
version programming (NVP), and the first experimental study
of its feasibility was completed in 1978."" A literature search
in 1975 revealed few other efforts in this area. Suggestions that
this approach might be a viable method of software fault
tolerance had been published recently.’*'>'* However,
quite arguably, the first suggestion on record has been made
by Dr. Dionysius Lardner, who wrote in his article “Bab-
bage’s Calculating Engine,” published in the Edinburgh Re-
view, No. CXX, July 1834, as follows:

The most certain and effectual check upon errors which arise in
the process of computation, is to cause the same computations
to be made by separate and independent computers; and this
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check is rendered still more decisive if they make their computa-
tions by different methods.

A second approach already under investigation in 1975 was
the recovery block (RB) technique, in which alternate soft-
ware routines are organized in a manner similar to the
dynamic-redundancy (standby-sparing) technique in hard-
ware.” The prime objective is to perform run-time software
design fault detection by an acceptance test and to implement
recovery by taking an alternate path of execution. This tech-
nique is also being continuously investigated at several
locations. Some comparisons of RB with NVP have been
made."*® Several related research activities have been re-
ported more recently. '8+

N-version programming is defined as the independent gen-
eration of N =2 software modules, called versions, from the
same initial specification.” Independent generation here
means that programming efforts are carried out by individuals
or groups that do not interact in the programming process.
Wherever possible, different algorithms and programming
languages or translators are used in each effort.

The goal of the initial specification is to state the functional
requirements completely and unambiguously, while leaving
the widest possible choice of implementations to the N pro-
gramming efforts. The initial specification also states all the
special features that are needed in order to execute the set of
N versions in a fault-tolerant manner." An initial speci-
fication defines (1) the function to be implemented by an
N-version software unit; (2) data formats for the special mech-
anisms: comparison vectors (c-vectors), comparison status in-
dicators (cs-indicators), and synchronization mechanisms; (3)
the cross-check points (cc-points) for c-vector generation; (4)
the comparison (matching or voting) algorithm; and (5) the
response to the possible outcomes of matching or voting. We
note that comparison is used as a general term, while match-
ing refers to the N = 2 case, and voting to a majority decision
with N>2. The comparison algorithm explicitly states the
allowable range of discrepancy in numerical results, if such a
range exists.

It is a fundamental conjecture of the N-version approach
that the independence of programming efforts will greatly
reduce the probability of identical software design faults oc-
curring in two or more versions. Together with a reasonable
choice of c-vectors and cc-points, this is expected to turn
N-version programming into an effective method to achieve
tolerance of software design faults. The effectiveness of the
entire approach depends on the validity of this conjecture, so
an experimental investigation was deemed to be the essential
next step of the study. The initial research effort at UCLA
addressed two questions:

1. Which constraints (e.g., need for formal specifications,
suitable types of problems, nature of algorithms, timing
constraints, inexact voting algorithms, etc.) have to be
satisfied to make N-version programming feasible at ail
regardless of the cost?

2. How does the cost effectiveness of the N-version pro-
gramming approach compare to the two alternatives:
nonredundant programming and the recovery block™
approach?

The scarcity of previous results and an absence of formal
theories on N-version programming led to the choice of an
experimental approach: to choose some conveniently acces-
sible programming problems, to assess the applicability of
N-version programming, and then to proceed to generate a set
of programs. Once generated, the programs were executed in
a simulated multiple-hardware system, and the resulting ob-
servations were applied to refine the methodology and to
build up theoretical concepts of N-version programming. A
more detailed discussion of the research approach and goals
is available,® as are detailed discussions of two sets of experi-
mental results, using 27 and 16 independently written pro-
grams.lz,u

THE SPECIFICATION-ORIENTED MULTIVERSION
SOFTWARE EXPERIMENT

The preceding experimental work demonstrated the prac-
ticality of experimental investigations and confirmed the need
for high-quality software specifications. As a consequence,
the first aim of the subsequent research was the investigation
of software specification techniques. Other aims were to in-
vestigate the types and causes of common software errors, to
propose improvements to software specification techniques
and to the use of these techniques, and to propose future
experiments in the investigation of design fault-tolerance in
software and in hardware.”*

The following software specification languages were exam-
ined as candidates for use in the experiment: OBJ,” SPE-
CIAL,” DREAM,* SEMANOL,' UDSS,’ and PDL." Key
attributes required for selection were comprehensibility, test-
ability, maintainability, explicit handling of error conditions,
and availability for immediate use.

To examine the effect of specification techniques on multi-
version software an experiment was designed in which three
different specifications were used. The first was the formal
specification language OBJ." The second specification lan-
guage used was the nonformal PDL' that was characteristic of
current industry practice. English language was used as the
third, or control, specification language, since English had
been used in the previous studies.™

A specification is formal if it is written in a language with
explicitly and precisely defined syntax and semantics.”® This
leads to some very advantageous properties: the specification
can be studied mathematically; it can be mechanized and
tested to gather empirical evidence of its correctness; it can be
computer processed to remove ambiguities, to remove incon-
sistencies, and to be made complete enough (at least) for
empirical testing; the interpretation by implementors and cus-
tomers in an unambiguous way is easier; and writing rigorous
specifications is easier with a formal methodology. OBJ was
chosen as the formal specification language because the mech-
anism necessary to construct and test specifications using OBJ
was available at UCLA along with iocal expertise. This proved
to be important since, like all other formal specification lan-
guages examined, it had quite inadequate existing documen-
tation. OBJ did, however, promote modularity and explicit
handling of error conditions.

The nonformal specification language PDL lacks the power
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and sophistication of OBJ, but it does have adequate
documentation, is reasonably well known, and has been in use
in industry for several years. Writing specifications in PDL is
straightforward, the ease of understanding depending largely
on the amount of care taken by the writer. PDL provides
extensive cross referencing and indexing—a feature that
would be very useful in OBJ. Specifications written in PDL do
tend to be rather long, however.

The problem chosen for the experiment was an “airport
scheduler” exercise. This database problem concerns the
operation of an airport in which flights are scheduled to depart
for other airports and seats are reserved on those flights. The
problem was discussed originally by Ehrig, Kreowski, and
Weber” and later used to illustrate OBJ by Goguen and
Tardo.'® Because the problem is transaction oriented, the nat-
ural choice of N-version cross-check points was at the end of
each transaction. With the OBJ specification as a reference
point, a specification was written in PDL and another one in
English.

EXECUTION OF THE EXPERIMENT

Programmers with reasonable proficiency in PL/1 were re-
cruited among the Computer Science students at UCLA.
They were assigned to work with one of the three specifica-
tions; no specification was tackled by a group whose overall
range of abilities was not representative of the total range.
The programmers were given a realistic deadline and a mon-
etary incentive to produce programs of at least minimal qual-
ity by the deadline. The experiment proceeded in several
steps: (1) recruiting, (2) teaching OBJ and PDL, (3) exam-
ining and ranking, (4) Assigning the problem, and (5) evaluat-
ing programs.

A seminar was held at the UCLA Computer Science De-
partment to announce the need for programmers; and over
the next four weeks 30 programmers were recruited, whose
abilities ranged from good to excellent, who were senior or
graduate students, and who had anywhere from no profes-
sional experience at all up to several years of experience. The
next stage was the presentation of a one-day course on OBJ
and PDL, which was necessary because of the total lack of
familiarity with OBJ and very little familiarity with PDL.
Study material was distributed and an examination was held
two days later, at which the 30 participants were ranked as
good, average, or poor. The members of each ranking were
then assigned in roughly equal numbers to use the OBJ, PDL,
and English specifications. The purpose of the examination
was to avoid loading any of the specifications with either
predominantly good or predominantly bad programmers.

At a subsequent meeting each programmer was given a
packet containing the specification, a notebook to record pro-
grammer effort, bugs encountered, and other problems, and
a questionnaire on the specification and its use. It was also
made clear that the programmers would not be paid for their
work unless their programs passed a straightforward accept-
ance test. While an example of a typical acceptance test was
given, the actual test to be used was not revealed. They were
strongly requested to avoid working with other participants,

and the goal of the experiment was once again carefully ex-
plained to support this request.

At the end of the four-week interval 18 of the 30 pro-
grammers returned working program versions of the airport
scheduler written in PL/1. Of the 18 program versions seven
were written from the OBJ specification, five from the PDL
specification, and six from English. All 18 programs were run
with the standard acceptance test data. After minor modifica-
tions were made to two programs by the original program-
mers, all 18 were judged satisfactory and were prepared for
more detailed testing.

To conduct the more extensive testing, a very demanding
set of 100 input transactions was developed in an attempt to
exercise as many features of the programs as possible. The
immediate consequence of running the programs with this
input data was the discovery that 11 of the 18 programs
aborted on invalid input. This is, of course, a very dangerous
situation to encounter in N-version programming, as Chen
had found out." In this case, one aborting bad version usually
causes operating system intervention for all versions, effec-
tively allowing the bad version to outvote two otherwise
healthy versions. To fix this situation all programs were instru-
mented using PL/1 language capabilities to detect and to
attempt recovery from these otherwise catastrophic errors.
After such instrumentation, all programs survived the test
case input, with 10 of the 11 previously abortable programs
making reasonable recoveries.

Program size and time requirements varied considerably.
Table I shows, for each program version, the number of PL/1
statements used in the program (PL/1 Stmts), the number of
procedures used (Procs), the compile time (PL/1 MUS*), the

TABLE I—Characteristics of all 18 versions

PLN PL/1 | GO
Version || Stmts | Procs | MUS | MUS | Size
OBIJ1 423 22 | 1514 | 3.89 | 37600
OBR2 400 28 | 1135 | 3.96 | 28048
OBJ3 398 17 7.42 | 4.33 | 30904
OBJ4 328 14 8.62 | 4.77 | 29920
OBIJ5 455 14 | 1479 | 3.10 | 32304
OBJ6 243 16 471 | 2.70 | 20960
OBI7 336 23 8.30 | 4.92 | 34808
PDL1 455 27 | 1696 | 3.16 | 24928
PDL2 501 33 | 19.58 | 19.58 | 29656
PDL3 242 19 431 | 4.09 | 27360
PDLA 437 39 |1631 | 2.84 | 30896
PDLS 217 11 426 | 4.30 | 26440
ENG1 260 21 475 | 3.33 | 27552
ENG2 || 372 19 | 1241 | 3.89 | 37792
ENG3 || 385 30 8.12 | 2.41 | 20648
ENG4 || 689 25 128231 2.94 | 26864
ENGS || 481 15 8.76 | 2.42 | 24056
ENG6 || 387 12 ] 19.23 | 3.99 | 24656
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TABLE II—Test results for individual versions

Version OK Cosmetic Good Detected | Undet.
Points Errors OK+Cos Errors Errors
OBI1 73 0 73 2 25
OBI2 71 18 89 8 3
OBRI3 67 11 78 4 18
OBJ4 69 3 72 8 20
OBJ5 67 12 79 0 21
OBJ6 46 0 46 0 54
OBJ7 52 17 69 7 24
PDL1 59 2 61 1 38
FDL2 54 2 56 32 12
PDL3 95 0 95 4 1
PDLA 45 28 73 0 27
PDLS 94 0 94 5 1
ENG1 74 12 86 0 14
ENG2 67 27 94 0 6
ENG3 97 1 98 0 2
ENG4 30 5 35 25 40
ENGS5 55 6 61 0 39
ENG6 53 3 56 9 35

TABLE IV—Outputs of members of a triplet

Code Meaning

Good: error free or cosmetic error
Detected error in single version
Undetected error: distinct
Undetected error: common

glelole

TABLE V—The three-version decision function

execution time for the 100-point test case (GO MUS), and the
program size in bytes (Size).

The output produced for each of the 100 input data points
was classified as “good” if the output was completely correct
or was logically correct with “cosmetic” errors. The numerous
cosmetic errors were due mainly to misspelling and bad out-
put formatting. Other data points were classified as either
detected or undetected error points. A point was considered
to be a detected error if the program version caused execution
of the instrumented code that had been added to detect and
attempt recovery from abort conditions. In the far more seri-
ous case that the output looked legal but was in fact wrong,
the point was considered an undetected error detectable only
by external means. Table II shows the results of this classifica-
tion.

Next, all possible triple combinations of the 18 versions
were executed as an N-version module. Table III lists the
breakdown of these 816 combinations. There were now three
output points to consider for each input point, with the output

TABLE III—Three-version triplets

Triplet Number of
Composition Triplets
000 35
PPP 10
EEE 20
OPE 210
OOP 105
OOE 126
OPP 70
OEE 105
PPE 60
PEE 75
All 816

Type g‘_’['o‘:: Function Result | Decision Oogvd:lnce
Vi 0 V(G,G,G) G Triplex 3
V2 1 V(G,G,D) G Duplex 2
V3 1 V(G,G,U) G Triplex 2
V4 2 V(G,D,D) G Simplex 1
V5 2 V(G,D,U) D Duplex 0
V6 2 V(G,U,U) D Triplex 0
V7 2 V(G,U*,U*) uU* Triplex 2
V8 3 V(D,D,D) D Null 0
V9 3 V(D,D,U) U Simplex 1
V10 3 V(DO,U,U) D Duplex 0
Vi1l 3 V(D,U*,U*) u* Duplex 2
V12 3 V(U,U,U) D Triplex 0
V13 3 V(U,U*U") uU* Triplex 2
Vi4 3 V(U*,U*,U") u* Triplex 3

points coded as in Table IV. Note that U is an undetected
error that is not duplicated in one of the other two versions,
U* an undetected error that is common to both or all three of
the versions. The 14 meaningful combinations of these codes
are shown with the corresponding voting function output in
Table V. The distribution of the experimental results over the
14 voting categories is shown in Table VI.

All common errors were tabulated and traced to their
causes. It was found that there were 21 different cases of
common errors. Five of these were caused by specification
limitations or errors, seven by logic errors made by the pro-
grammers, and nine by implementation errors. These com-
mon errors were tabulated in Tables VII-IX.

WORK IN PROGRESS AND GOALS FOR
LONG-RANGE RESEARCH

One major goal of the experiments described in the preceding
sections is to apply the accumulated experience to the design
of the next experiment. It has become evident that the general
UCLA campus computing facility is an unsupportive and of-
ten hostile environment for multiversion software experi-
ments. With a view to establishing a long-term research facil-
ity for such investigations, an effort is in progress to create a
multichannel fault-tolerant system as an integral part of the

*Machine unit second (MUS) is actually a measure of time and other resources
such as /O needs.
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TABLE VI—Decision function results

TABLE VII—Common specification errors

3-Version Group Error In Description
Type oBl | PDL | ENG
Al | 00O | PPP | EEE | OPE | Other St | 1457 Only defines four destinations
V1 | 36665 | 1703 | 448 820 | 9354 ?340 2 45,6 | Time shown as 09:45 in example
B e L 454 e e i s
65% | 37%| 128%| 83%| 64%| 65% S 2.4 | Duplicate error message ambiguity
6 Parameter checking ambiguity
V3 22105 842 274 554 5939 | 14496 5
271% | 24.1% | 274% | 27.7% | 28.3% | 26.8%
V4 1283 48 8 32 347 848 TABLE VIII—Common logic errors
16% | 14%| 08%| 1.6%| 17%| 1.6% — —
Vs 3986 141 83 80 1046 | 2631 Error Appears Description
49% | 40% | 88%| 40%| 50%| 49% ORI | PDL | ENG
84% | 75% | 18% | 103% | 83% | 8.5% L2 | 3 5__| CANCEL works only on partial database
24% | 25% | 12%| 41% | 18%| 2.5% 14 1 Cannot retrieve record
V8 176 4 0 0 65| 107 L5 1 Allows duplicate record __
02% | 01% | 00%| 00%| 03%| 02% L6 4__| CANCEL, RESERVE-SEAT ignored
) 477 20 7 2 123 323 L7 4 Bad input leads to chaos
06% | 06%| 07%| 02%| 06%| 0.6%
V1o 867 11 6 2 274 554 TABLE IX—Common implementation errors
11% | 03%| 06%| 11%| 13%| 1.0%
Vil 87 6 0 0 28 s3 - = —
01% | 02%| 00%| 00%| 01%| 01% ST e G Description
V12 1415 173 1 20 275 946 Il 2 | 12345 Did not check input parameters first
17% | 49% | 01%| 1.0% | 13%| 17% ) 14 Expects i a5 0945
Vi3 353 43 0 8 62 235 B |1258 4 1__| Wrong error message on illegal input
0.4% 1.4% 0.0% 0.4% 0.3% 0.4% 14 4 4 1 CREATE does not work the second time
Vi4 112 25 10 6 13 58 I5 24 5| Error message output on legal input
01% | 07% | 1.0%| 03%| 01% ]| 01% 73 C 6 | Allows null parameters
I7 1 4 Allows invalid parameters
Total 81600 3500 1000 2000 21000 54100 I8 6 No output after first list produced
100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% 7] 2 Cannot handle invalid input

UCLA Computer Science Department advanced local net-
work facility, which uses the LOCUS distributed operating
system.” The projected six-year effort consists of four phases.

The first phase is the implementation of a multichannel
fault-tolerant subset NIFTS, composed of at least three iden-
tical computing nodes (DEC VAX 11/750 computers) of the
UCLA local network. It is to serve as an experimental vehicle
for subsequent design fault tolerance studies. The SIFT? con-
cept is being adapted at UCLA .to serve as the foundation of
NIFTS. In the second phase NIFTS will be used as the means
to continue and expand the ongoing experimental research on
the tolerance of software design faults that has been described
in this paper. In the third phase we will investigate and imple-
ment a generalization of NIFTS to encompass N computing
nodes with nonidentical hardware. Such an ‘“N-fold diverse
hardware” form of NIFTS is intended to tolerate faults due to
left-over design errors and to errors introduced during modifi-
cation and maintenance. In the fourth phase we plan to con-
duct extensive fault tolerance experiments with NIFTS as
developed in the first three phases. The main goal is to evalu-
ate the effectiveness and to refine the methodology of using

design fault tolerance.
A second planned extension of our research is to employ
the mail order concept of obtaining multiversion software. We

are working to secure the cooperation of fault tolerance re-
search groups at several universities in the USA and in Eu-
rope. Members of these groups will participate in writing the
programs for a larger experiment that will be evaluated on our
new experimental facility, NIFTS.

The practicality and generality of the design diversity ap-
proach as an alternative to fault avoidance remain to be estab-
lished or disproved; however, the design fault problem in both
software and VLSI circuits remains quite serious, and we
consider our research results to be sufficiently encouraging to
warrant further and more intensive efforts.
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ABSTRACT

The development of LSI technology makes it possible to partition a system into
replaceable modules, and the advent of low-cost microprocessors makes possible
networks of hundreds (or more) of interconnected modules. The problem of repair-
ing such a system is becoming a matter of major importance in digital systems.

In this paper a new procedure for defining an optimal design with respect to cost
of repair for a system consisting of replaceable modules (processors) is introduced.
Also the tradeoff between the number of repetitions of the diagnostic test (speed
of diagnosis), the number of testing links in the system (complexity), and the
number of replaced fault-free modules (accuracy) is considered.

In an early paper, Preparata, Metze, and Chien* formulated a model of system
level diagnosis and defined two types of diagnosability measures, i.e. one-step
t-fault diagnosability, and sequential t-fault diagnosability. They proved that Dy, is
one-step t-fault diagnosable and single loop connection is sequentially t-fault diag-
nosable. Friedman® later generalized this measure to one-step t-out-of-S (t/S) diag-
nosability, in which t faults are diagnosed to within S =t modules. This introduces
the possibility of inexact diagnosis—i.e. such that some fault-free modules may have
to be replaced in order to repair a system in one step.

So far most of the resuits that are available are only for single-loop or Dy, design,
and the results for a system in between these two extreme cases are not available.
A Dy, system needs more testing links and a single-loop system needs more steps in
order to be repaired. In this paper we have defined a design in between D;, and
single-loop systems; also the tradeoff between the number of repetitions of the
diagnostic test (speed of diagnosis), the number of testing links (complexity), and
the number of replaced fault-free modules (accuracy) is considered, and the optimal
design with respect to cost of repair is defined.
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INTRODUCTION AND BACKGROUND

Several papers considering various aspects of self-diagnosable -

systems have appeared in the literature,'™" and it appears that
a graph-theoretic model can be effectively used in the area of
system diagnosis. A system is partitioned into a number of
modules my, m;, my, . . . , m,_; that can correspond to the pro-
cessors in a multiprocessor system, and it is assumed that each
module can test or be tested by some other modules. The
outcome of a test in which my tests m; is denoted by a;;. The
variable a; is binary; a; =1 indicates “m; finds module m;
faulty,” a; = 0 indicates “m; finds module m; fault-free.” If m;
is faulty, then the outcome a; is unpredictable.

Preparata et al.* originally considered this graph-theoretic
model for the purpose of diagnosis of multiple faults. They
defined two types of diagnosability, namely one-step t-fauit
diagnosability and sequential t-fault diagnosability.

Definition 1. A system of n units is one-step t-fault diagno-
sable if all faulty units within the system can be identified
without replacement provided the number of faulty units
present does not exceed t.

Definition 2. A system of n units is sequentially t-fault diag-
nosable if at least one faulty unit can be identified without
replacement provided the number of faulty units present does
not exceed t.

In a sequentially diagnosable system, at each step at least
one faulty module can be diagnosed. This module can be
replaced by a module that is assumed to be fault-free and the
test can be applied again. This is equivalent to identifying one
fault-free module. This procedure is repeated until the system
is completely fault-free. Preparata et al. proved that it is pos-
sible to design a system which has n modules and is one-step
t-fault diagnosable if and only if n =2t + 1 and each module
is tested by at least t other modules (when no two modules test
each other). They defined the following canonical system.

Definition 3. A system S is a Ds, system if there exists a
testing link from m; to my if and only if (j —i) =3m (mod-
ulo n) where 8, m are integers and m assumes the values
1,2,...,t.

Figure 1 shows a D;, design. Preparata et al. showed that
D5, systems are one-step t-fault diagnosable. They also consid-
ered a single-loop design that is sequentially t-fault diagnos-
able (a special case of Dj,, D;;). Such a system is obtained by
connecting the n elements in a cycle. They gave a lower bound
on the value of n; Preparata® proved that a single loop is

sequentially t-fault diagnosable if and only if n= (m + 1)+
A(m+1) +1, with t=2m + A\, m an integer, and A =0,1.

Friedman'® later generalized this measure to one-step t-out-
of-S(t/S) diagnosability, in which t faults are diagnosed to
within S = t modules. This introduces the possibility of inexact
diagnosis and replacement of the faulty modules plus some
modules that may not be faulty. Friedman introduced the
following measure.

Definition 4. A system V is k-step t/S-fault diagnosable if by
k applications of the diagnostic test sequence any set of =<t
faulty modules can be diagnosed and repaired by replacing at
most S modules.

Obviously S=t and n = S (if n = § repair is trivial since the
entire system is replaced). Friedman also considered a one-
step repair of a single-loop system with n >>t, which requires
the replacement of at most S modules, where S=
maxf(t —f+2)—1 and f <t is the actual number of faults in
the system.

TRADEOFFS IN SYSTEM LEVEL DIAGNOSIS

In this paper we will develop a procedure for defining an
optimal design with respect to cost of repair in a system con-

Figure 1—D;; design
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sisting of replaceable modules, and we will consider the trade-
off between (1) the number of steps (i.e. test iterations) for
repairing a system (speed of diagnosis), (2) the number of
replaced fault-free modules (accuracy), (3) the number of
testing links in the system (complexity). The following general
problem will be solved: Given n (the number of modules of
the system), and t (upper bound on the number of faults), in
order to minimize the total repair cost,

1. In how many steps should the system be diagnosed?

2. What bound on the number of fault-free modules to be
replaced should be used?

3. How many testing links should be used?

In order to design a minimum-cost design we must define
the parameters that affect the cost. A single-loop system
(n>>1) is sequentially t-fault diagnosable and the number of
testing links is equal to n. A D, design is one-step t-fault
diagnosable and the number of testing links is equal to nt;
however, a single loop design needs more steps, k, in order to
be diagnosed (in a worst case the diagnostic test may have to
be repeated t times) but needs fewer testing links, L, in com-
parison to Ds, design; thus there is a tradeoff between the
number of steps for repairing a system and the number of
testing links. Another factor that affects the minimum-cost
design is the number of replaced fault-free modules, S,. Con-
sider a system with a single-loop connection. This system can
be repaired sequentially in at most t steps (k <t) if no fault-
free module may be replaced (S, = 0). However, we can repair
this system in one step (k = 1) if some of the modules that are
possibly faulty may be replaced (S, = 0). Thus there is a trade-
off between the number of steps for repeating a diagnostic test
(k) and the number of replaced fault-free modules (S,). In
general, by considering Dy, and single loop designs one sees
that there is a tradeoff between the number of repetitions of
a test, k (speed of diagnosis), the number of replaced fault-
free modules, S, (accuracy), and the number of testing links/
module, L (complexity). Tables I and II illustrate this trade-
off.

k-STEP DIAGNOSABILITY

As was explained, a single-loop system is sequentially t-fault
diagnosable, and a D, system is one-step t-fault diagnosable.
However, a design in between these two extreme cases was
not defined. For example, a design that can be repaired (with-
out replacement of fault-free modules) in two steps, three
steps, or in general in k steps is not available. In the following
we will define a system that can be repaired in at most k steps
for arbitrary k. In this paper by n >>t we mean n= (|t/2] +
1)([t/2] + 1) + 1,* which is the condition of sequentiality.*
This is because both sequential and t/S diagnosability require
the identification of at least one fault-free module.

In the following we define a system that is k-step t-fault or
k-step /S fault diagnosable.

*| ] indicate the greatest integer =< /2. [ ] indicate the smallest integer = ¢/2.

TABLE I—Tradeoff with no fault-free modules replaced (S, = 0)

Design k L
single-loop t
Dy 1

TABLE IT—Tradeoff with one testing link (L =1),
single-loop design

k S,
t 0
1 /4

NOTE: See equation (5) and following for definition of t*/4.

Definition 5. A system S is said to belong to a design D,
when a testing link from m; to m; exists if and only if j —i=m
(modulo n) where m=1,2,...,L (special case of Dy with
3=1).

Lemma 1. If a system S with n >> t modules employs design
D;. with L =[t/k], then S is k-step t-fault diagnosable.

Proof. Since each module of the system S is tested by [t/k]
other modules and n >>t this implies that at least one fault-
free module can be identified. Thus at each step the status of
at least [t/k] faulty modules can be diagnosed, and in at most
k steps k [t/k] = t faulty modules will be diagnosed.

From Lemma 1 it is seen that when k =1 then L = [t/k] =t
and the system can be repaired in one step. If k =t, then
L =[t/k] = 1, and the system can be repaired in at most t steps.
Using Lemma 1 the following corollary is immediate.

Corollary 1. If a system S with n >>t employs design D,
with L =[t/a] then S is k-step t/S-fault diagnosable. Where
a>kand 1<a<t.

In design Dy, with L = [t/a] each module is tested by {t/al
other modules. As will be seen later, the value of a affects the
number of replaced fault-free modules S, for a fixed k; in
Corollary 1, the value of S, is explicitly considered. That e = k
implies k-step t-fault diagnosability; if k < a, in order to repair
a system in k steps some fault-free modules may have to be
replaced. The value of k/a also affects the number of replaced
modules. When k =« =1 the total number of testing links is
nk[t/a] = nt and no fault-free module will be replaced. When
k/a <1, that is, in k-step t/S-fault diagnosability, each module
is tested by fewer than [t/k] other modules and we have to
repair the system in at most k steps. Thus some of the fault-
free modules may have to be replaced.

MINIMUM COST DESIGN OF DIGITAL SYSTEM
For cost evaluation we define the following parameters:
C, = cost of repeating a test/moduie.

C_ =cost of testing link/module, i.e. nC_ = cost of a single
loop connnection.
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C, = cost of replacing a fault-free module. (We assume that all
modules have identical costs and that all tests must be
repeated.)

First we will find the minimum cost design for k-step t/S-
fault diagnosability. Then by using « =k and C,—® we can
find the minimum cost design for k-step t-fault diagnosability.
C,— « means that in k-step t-fault diagnosability the cost of
replacing a fault-free module is very high and we are not
allowed to replace fault-free modules. One factor that affects
the number of replaced fault-free modules in the strategy for
repair, i.e. which module to replace, and when, for minimum
S,. We must define a strategy for repair that is constrained;
that is, a strategy in which we can decide in how many steps
we wish to repair a system (the value of k will be specified by
the designer, which can be found by the procedure of this

paper).
Constraint Strategy

We define the following constraint strategy, which we call
A(k —1,1). In this strategy, in the first (k — 1) iterations we
replace those modules that are definitely faulty and at the kth
step we replace all modules that may be faulty, i.e. all modules
that cannot be definitely determined to be fault-free. The
following example illustrates how strategy A(k ~ 1,1) can be
used for repairing a system.

Example 1. Consider a single-loop connection with n =17
and t = 6. Let modules m,;,ms,mg,mg, and my (f = 5) be faulty.
We wish to repair the system by using strategy A(k — 1,1) with
k =3. In this strategy, at the first and second applications of
the diagnostic test we replace those modules that are defi-
nitely faulty and at the third step we replace those modules
that are definitely faulty plus those modules that are possibly
faulty. The fault pattern in the first iteration is assumed to be
as follows:

* 0k
1234 11 12 13 14 1
101

e

*
91
0

00 %

567 0 11 12 13 14 15 16
1011 000 0O0TO0OTO

Module m, (and only m,) is definitely faulty. Therefore we

replace module m, and reapply the test. The fault pattern in
the second iteration is then as follows:

m; 1

2
agi-1)i 0

e

* * ok
1 4567891011 12 13 14 15 16
0 101110 0 0 0 0 0 0 O

Module m; (and only ms) is definitely faulty. We replace

module m; we reapply the test. The fault pattern in the third
iteration is as follows:

* * Ok
0123456789 1011 12 13 14 15 16
aG-1 0000001110 0 0 0 0 0 0 O

Since we wish to repair the system in 3 steps, we have to
replace modules mg,m;,mg,my,m;o (of which m, is definitely

faulty and the others possibly faulty). The total number of
replaced modules is equal to 7. In this example 7 —f=
7 — 5 = 2 fault-free modules are replaced; S, = 2. If we want to
repair the system with S, =0, we have to apply the test 6
times.

Minimum-Cost Design

In order to find a minimum-cost design for the constraint
strategy we proceed as follows: We restrict ourselves to system
D,., in which each module is tested by L =[t/a] other mod-
ules. For minimum-cost design of k-step t-fault diagnosability,
a =k and the total number of testing links is equal to [nt/k].
In order to calculate the number of replaced modules we will
use stategy A(k —1,1). The value of S can be calculated as
follows: since each module is tested by L =[t/a] other mod-
ules and n>>t, in k iterations we can detect at least [tk/al
definitely faulty modules. However, since t is the upper bound
on the number of faults, there may possibly be t' = t — [tk/a]
more faulty modules.

The maximum number of modules that may have to be
replaced in a worst case for t' faulty modules is S=
£*(t' — f* + 2) — 1, where f* = max [number of (01)’s, [} num-
ber of one’s]].”® Thus the total number of replaced modules is

S =[tk/a + £*(t' — * +2) — 1] )

where t’ =t — [tk/a]. Thus we have

S =[tk/a + f*(t — tk/a — * + 2) — 1]. 2)
The maximum value of S occurs when df = 0. Equation (2)
implies

e
Hence

f*=[t—_—;@J+1=[(§—;—i)]+1.

Substituting the value of f* into equation (2) results in the
following:

s=[%+(%—;—k+1) 1] 3)

where 1 =@ =<t; 1=k =t;k =< a. Thus the number of replaced
fault-free modules is at most

s.=|(3-5) 1 ®

* It is possible to consider a diagnostic model in which some of the modules are
performing computation while others are doing testing. In this case the term
knC, will decrease but the control unit will be more complex, because it has to
decide which module must be in the computation or testing phase.
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Hence the parameters for minimum-cost design are as fol-
lows:

1. k = Number of test iterations; 1<k =<t.

2. L=[nt/al=Total number of testing links; 1=a=t;
k=a.

3. S, =[(t/2 - kt/2a)*] = Number of replaced fault-free
modules.

When k=1 (i.e. for repairing a system in one step) from
equation (4) S, = [(t/2 — tk/2a)?] = 0. Thus if each module is
tested by t other modules, we will not replace any fault-free
modules. From equation (4) it is seen that for minimum-cost
design of a system two cases can be considered: Case 1 when
S, is not constrained and its value can be obtained from other
parameters (o, k); and Case 2 when S, is constrained and the
optimal-cost design will be obtained with respect to it. In this
case, since one of the parameters (S;) is fixed the optimal cost
may be higher than in Case 1, when all three parameters can

vary.

Case 1: Optimal-cost design when S, is not constrained

The total cost in terms of k,L, S, is as follows: Total
cost = cost of testing links + cost of repeating a test + cost of
replacing fault-free moduies,

C= [%ﬂ CL + knG, +[(¢2 — tk/20)7] C, )

Where 1=a=<t; 1=k=<t; a=k. In equation (5) the term
knc,* means that all of the modules are taking part in testing
during k steps repair. In order to find an optimal-cost design
the total derivative must be equal to zero:

3C . . aC . _

;i;da—l--a—idk—o.

—nt tk ([t tk _

—(X_TCL+_2_(§_$>CE—O' (6)

t(t tk _

nCr‘a(i—E)Cg—O. 7
Thus we have

Gk [k

C,_t/a_)t/a—[c,_]' 8)

Substituting equation (8) into equation (6) and simplifying we
have

20 2 0. ©)

g

From equation (9) the optimal-cost design for k-step t-fauit
diagnosability can be obtained by substituting C,— . Thus
we have

3

2C 27°C,
-Vieucl. (10a)

Or from equation (8) by substituting o = k the same result can
be obtained as follows:

C= [%] nC. + knC;
9¢€_ o k=Vicsel (10b)

dk

From equation (10) it is seen that when C;/C, =t, thenk =t
and a single-loop design is optimal with respect to cost of
repair for t-fault diagnosability. When C./C, =1/t thenk =1
and one-step repair should be used in t-fault diagnosability.
This is a consequence of the fact that when C,, the cost of a
testing link, is very high a single-loop design is the obvious
choice, and when C, is very high one-step design must be
considered. Figure 2* shows cost versus k for C./C, =2 and it

*The actual forms of the graphs are in the form of step function, but in order
to illustrate the actual value of cost between two integer values of k or L, we will
draw all graphs in a continuous form.

cost+‘

14 —
13 S
12 4

11

i 1 T + 3 4 v T T -

1 2 3 i 5 6 7 8 9
Figure 2—Cost versus k for k-step t-fault diagnosability
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TABLE II—Tradeoffs of C,, C,, nC,, and C, for t-fault
diagnosability, t =20 !

TABLE V—Cost for t/S-fault and t-fault diagnosability, t = 20,
C/CL =¥, nC/C,=6

is seen that when testing links are relatively less expensive
than repeating a test, then more testing links and fewer test
repetitions must be used.

Example 2. Let t =20 and

C. _ cost of repeating a test 1

C.  cost of a single loop 4

nC _ cost of a single loop _
C, cost of replacing a fault-free module ~

16.

The values of k, t/a, S;, and cost can be calculated as follows:

kG, kt nC K _ _
2_CL 2+ Cg = §_10k+16—0—)k—8.

[T -

2
Cost = [“—ﬂ Co+ kG, + [(E - ik—) ] C,=4.25nC..
o 1\2 2a

Thus the optimal cost design is as follows:

b

5.

Procedure = t/S-fault diagnosability

Maximum number of test applications = §

Number of testing links/module = 2

Maximum number of fault-free modules which may have
to be replaced = 4

Cost = 4.25 (cost of a single loop)

Now if we consider the case that the cost of replacing a
fault-free module is relatively high in comparison with the
above example, then we have the following: Let C./C. =1/2,
nC./C, = 6. From equations (8) and (9) we obtain

KC, ki nCi_

K’ _ _
3¢, 2+Cg O_)Z 10k +6=0—>k=6.

TABLE IV—Cost for t/S = Fault and t-fault diagnosability, t = 20,

C./C, =¥, nC,/C, = 16

k tla S, Cost

t/S fault diagnosability 8 2 4 4.25 nC
t-fault diagnosability 9 3 0 5.5nC,

k t/a S, Cost k ta S Cost
C._10C _ t/S-fault diagnosability 6 3 1 6.16 n C.
G e 16 8 2 4 425G, tfault diagnosabilty 7 3 0 650G
C _110G
&3 =" 6 3 1 6.16 nC,

From equation (8) we have

ot
sg=[(%—%§)2]=(10—9)2=1

2

Cost = [n;t] CL+ kG, + [(% - %) ] C,=6.16nCy.

Table 3 shows the comparison of these two cases. From
Table II it is seen that the value of k decreases as C; becomes
expensive. The number of testing links increases since C_
becomes cheaper, and the value of S, decreases since C, be-
comes expensive.

If we wish to use k-step t-fault diagnosability (i.e. S;=0),
then from equation (10) we have k =[VtC./C,] which results

cost
= A

T T T T T T
0 1 2 3 4 5 6
Figure 3—Cost versus L for k-step t/S-fault diagnosability

L
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in k=9, [t/k]=3, and cost = 5.5 nC, if nC,/C, = 1/4. Also,
k=7, [t’k]= 3, and Cost = 6.5 nC, if nC,/nC, = 1/2. Thus we
have the results shown in Tables IV and V. Comparing the
cost of repair for these two cases, we see that in both cases the
cost of t/S-fault diagnosability is lower than the cost of t-fault
diagnosability if nC;/C, > 0.

Figure 3 shows the graph of cost versus L for t=20,
CJ/C.=1/2,k=4, and nC,/C, = 24,12,6,4,2,1/2. From Figure
3 it is seen that all curves intersect at point L = [t/a] = 5. This
is because k=4, and L =[t/a]=5—a =4—>k =a =4. Thus
at point k = a we can use the design for t-fault diagnosability
and the cost associated with this design is independent of the
cost of replacing good modules. Therefore all curves meet at
L =5 and they have the same value. Figure 4 illustrates the
effect of the value of t on the cost of repair.

Case 2: Optimal-cost design when s, is constrained

In Case 1 we have considered the optimal cost design for a
case in which S, is not constrained and determined its value so
that the total cost is minimum. We will now consider the case
that S, is constrained, i.e. its maximum value is fixed, and the
optimal-cost design is required subject to this constraint.
Since in this case we already have fixed one of the parameters,

OIO
(=]

cost
s A

nCL
=1/2, T = 5, k=2
g

56 _|
52 _]
t=20
48 .
by |
4o
36
32
28
24 4
20 ]
16 |

12

[ T T 1 1 [ T
0 1 2 3 4 5 6 7 8

Figure 4—Cost versus L for k-step t/S-fault diagnosability

the total cost will always be at least as great as and may be
higher than in the previous case.
From equation (4) we have the following:

[t & 2]
Se= [(i 7&) '
Solving for t/a we obtain

t/a = [(t — 2VS,)/k] (11)
Equation (11) shows that as the number of testing links de-
creases, the number of replaced fault-free modules increases.
Using equation (5) we have the following result:

C=[(t - 2VS)/kInC, + nkC, + S,C, (12)
For the optimal cost design we have dC/dk =0,

= (-2V5) & 13)

tla = [k EC-::] (8)

T _
6 -
5 -
y
3
2 -
1
$4=25
i T T T T T T Y T "k
0 1 2 3 4 5 6 7 8 9

Figure 5—Cost versus k for k-step t/S-fault diagnosability (S, is constrained)
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Figure 5 illustrates cost versus k for k-step t/S-fault diagnos-
ability when S, is given. -

COMPARISON OF k-STEP t/S-FAULT
DIAGNOSABILITY WITH k-STEP t-FAULT
DIAGNOSABILITY

From the preceding results we can conclude that since the cost
of repeating a test divided by the cost of replacing a fault-free
module is always greater than zero, i.e. in practice C, # «, and
that even in a worst case that C./C, or nC,/C; is very small,
k-step t/S-fault diagnosability results in lower costs than k-step
t-fault diagnosability. (See Figure 3.) Before constructing an
optimal cost design we may wish to know the difference in cost
between the optimal-cost designs of a k-step t/S-fault diagnos-
ability and of a k-step t-fault diagnosability. In order to find
the difference in cost we proceed as follows.

1. k-step t-fault diagnosability
a. Find value of k from k =[VtC,/C,].
b. Find cost from C = [nt/k]C. + nkC,.
2. k-step t/S-fault diagnosability (S, is not constrained)
a. Find value of k from k*C/2C. — kt/2 + nC,/C, = 0.
b. Find value of t/a from t/a = [kC,/C.].
¢. Find cost from C = [nt/a] C + nkC; + S,C,.
3. k-step t/S-fault diagnosability (S, is constrained)
a. Find value of k from k> = (t — 2VS,)(CL/C,).
b. Find value of t/a from t/a = [(t — 2V'S,)/k].
c. Find cost from C = [(t — 2VS/k]nC, + nkC, + S,C,.

Now we can compare the costs for each design option. If we
wish to use only k-step t-fault diagnosability (although the
cost of t/S procedure is lower), then by using the values of C,
and C. we can find whether to use one-step or k-step t-fault
diagnosability immediately;

1. If C/C, =t then we use single loop design for t-fault
diagnosability.

2. If C/C, = 1/t then we use one-step repair for t-fault diag-
nosability.

3..If 1/t < C/C, <t then we use design D,; .

DISCUSSION OF THE RESULTS

In this paper the design of a digital system that is k-step
t/S-fault diagnosable or k-step t-fault diagnosable was consid-
ered. The tradeoff of the number of iterations of the diagnos-
tic test for repairing a system (speed of diagnosis), the number

of testing links (complexity), and the number of replaced.
fault-free modules (accuracy) was presented. The procedure
for finding an optimal-cost design in terms of cost parameters
C,,C.,C,; for repairing a digital system was explained, and the
comparison between k-step t-fault and k-step t/S-fault diagno-
sability was considered. Our results show that the cost of
k-step t/S-fault design may be less than k-step t-fault design
and that the selection of parameters k,L,S, is very important.
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Software
A. Winsor Brown, Track Chair

A track on software presents an interesting challenge. All
the tracks (except ‘“Hardware and Architecture”) have a great
deal to do with software. So what should the focus of the
software track be? This problem was solved by a proposed
description for the track from an archetypical hardware per-
son’s view of software: “The problem is just a simple matter
of programming.” As those of us in software know, the prob-
lem is more than just a simple matter of programming. This
slight change in wording makes the focus clear. The track
explores various aspects of the software life cycle: specifica-
tion, design, implementation, integration, test, delivery, and
maintenance.

The sessions from the Software track have more to do with
the why, how, and wherefore of the development process than
they do with the what of any particular application or area.
Therefore, in the program booklet they are listed in Informa-
tion Processing Management as well. Despite this listing, all
software sessions are described in the present overview.

Using a combination of comparisons, case studies, panel
discussions, and formal papers, the Software track attempts to
bring to the fore useful information on maintenance, develop-
ment processes and methods, practical tools and techniques,
integrated software, UNIX, delivery, and programming lan-
guages. Having maintenance at the top of the list may seem
backwards, but its importance is justified by the number of
dollars being spent on it. This year also marked a first for
maintenance: the Data Processing Management Association
now has a special interest group just for maintenance—
SIGMA. It assisted in organizing the two sessions on main-
tenance, which address the subject from two different
perspectives.

A session addressing the creative ways being found for
doing and managing the enhancement and correction of exist-

ing application software, “Software Maintenance: New Syn-
ergy,” presents some practical methods. Systems information
databases, redocumentation, maintaining user satisfaction,
and factoring maintenance into the requirements and design
of a system are the four specific areas covered. The session
thus looks at both what is being done and what can be done
now. :

“Maintenance: The Future of Present Systems,” on the
other hand, focuses on how to ensure that present software
systems can be made to serve the needs of the future. Con-
cepts like technology transfer, contracted maintenance, pro-
longing life, and fourth-generation language environments
are covered in the papers in this session. All of these come out
of a realization that past software systems have survived
longer than was expected.

The huge sums of money being spent in data processing
system development are probably second only to the costs of
maintenance. These large outlays attract the interest and con-
cern of management, practitioners, and providers of services.
Not surprisingly, then, the three sessions covering software
development processes and methods seem to focus on the
traditional data processing software environment and cover
the areas of structured tools and methods, development
productivity management, and information management
methodologies.

“A Battle Royal: Structured Tools and Methods” compares
and contrasts the Warnier and Data Flow structured systems
development approaches. Panelists represent both training
organizations’ and users’ perspectives. Perhaps hints of the
future of systems development tools and methods will be
glimpsed in these presentations on productivity improvement
techniques.

“Software Development Productivity Strategies” will con-



centrate on the processes by which costs can be reduced and
yields increases in systems development. It will address the
topics of conditioning the organization for restructuring the
development environment, phased production and implemen-
tation of corporate data models, and resolving the conflicts
presented by integrating differing schools of development
techniques and methodologies.

“New Information Management Methodologies” will dis-
cuss how the traditional methodology life cycle must change in
order to support corporate information resource management
environments. New methods for using the new productivity
tools, such as prototyping and fourth-generation languages,
will be covered. These new tools allow trial implementation to
begin after only the planning or specification phase is com-
plete, and mean that the database cannot wait until after the
design phase is complete.

The results of software engineering are seldom directly vis-
ible (unlike some of the results of computer hardware en-
gineering). One of the few ways for practitioners to find out
about the successes and failures of others is at conference
sessions. Focusing on the development process from more a
software engineering perspective (and from less a manage-
ment and data processing perspective) are six sessions
presenting results of the use of practical tools and techniques:
prototyping, software engineering work stations, software en-
gineering techniques, software automation, software engi-
neering management, and test and validation.

Three different perspectives will be used in the examination
of the concept of rapid applications prototyping in the panel
session titled “Applications Prototyping.” Congruence with
general design theory, experiences within a large aerospace
firm, and the use of knowledge-based systems are all dis-
cussed as they relate to rapid prototyping. As a result, the
prerequisites, tools, techniques, and experiences with applica-
tions prototyping will be addressed.

Are the cobbler’s children finally going to get shoes? Will
there be “Software Engineering Work Stations” in our future,
as indicated by the title of this session? A lot of effort has gone
into work stations for other branches of engineering, so why
not software too? In fact, this session discusses issues in the
evolution of computer-aided software engineering, using the
lessons learned in existing computer-aided engineering sys-
tems. Work has been on going in university environments;
and information on Plexsys, a workbench environment for
information system design (an enhancement of the PSL/PSA
system), is presented by one of the panelists. In addition, a
paper is presented that shows the possibilities of the personal
computer as the basis for software engineering work stations.

“Software Engineering Techniques” reports on specific
methods that are all covered by papers in this session: simu-
lation, software manufacturing (code generation), and proto-
typing. The objectives of the techniques are software transfer-
ability, affecting maintenance, and quick implementation or
real-time graphics, respectively. The session thus provides an
excellent opportunity for software engineers to find out about
techniques that others have used.

New aspects of the development process will be addressed
in the panel “Software Automation—An International Per-
spective.” The international perspective broadens the topic to

include issues of societal/cultural impacts, what the “ad-
vanced” nations must do to keep their lead, and how the
developing nations might get ahead by avoiding the mistakes
that have already been made. Two other questions the panel
will attempt to address include whether there is a software
revolution in the making and what fifth-generation software
will be like.

The first of the three papers in the “Software Engineering
Management” session is concerned with the interplay of an
integrated methodology and the tools that support it. The
second addresses the software management challenges raised
by new computer system designs: networks, distributed sys-
tems, multi/coprocessors, fault tolerant systems, etc. The
third paper presents the results of the application of software
engineering principles to real-time projects.

“Software Test and Validation” presents practical results
from the application of various techniques to the problems of
testing and validating software. Test case selection based on
the cost of errors, dynamic assertions for interactive program
validation, and tool-based approaches to testing are reported
on in three papers.

Two of the hottest topics in software lately have been the
UNIX operating system and integrated software. There is a
lot of talk about UNIX, but not many end users are actually
using it. On the integrated software front, the industry has
heard announcements from some of the major software
houses, but third-party integrated applications built around
those announced products are not yet available.

The existing and proposed integrated systems do have
widely varying characteristics—in the core about which they
are integrated, in their user interfaces, and in the way the
various pieces communicate, among others. “Emerging
Trends in Integrated Software” explores the major ap-
proaches being used to realize integration and presents two
examples of existing integrated software, of which one is icon-
based and the other uses a more traditional user interface.
The session thus promises to provide some insight into the
kinds and forms of integration.

The panel “UNIX: State of the Art” will report on the
current status of UNIX technically and commercially. It
should thus provide a status report on UNIX, which has been
steadily evolving and growing in market importance over the
last three years. The panel will then prognosticate the future
directions of UNIX from both the market and the technical
points of view. What they say about the future of UNIX will
actually provide some interesting insight into the realities of
the present.

Despite all the ballyhoo about integrated software and
icons, users can seldom survive without documentation, the
paperware that is often sorely lacking. While concentrating on
mini-computer and embedded systems, the comparison of
military and commercial documentation requirements in
“Military vs. Commercial Documentation” should present
factors that also apply to mainframe and microcomputers.
‘Writers must meet not only technical but marketplace require-
ments, and this session should help them adapt to the differ-
ences between military and commercial documentation.

It seems that every Tom, Dick, and Harry is writing micro
software, or would like to write it. As book publishers enter



the production and distribution channel, it should be easier
for budding authors to get their products to market. “Writing
Microcomputer Software that Sells” provides three perspec-
tives: publishers’, wholesalers’, and authors’. The publishers’
software editorial philosophy, the wholesalers’ evaluation
process and services provided to the retailer and consumer,
and the authors’ viewpoint when working for a publisher
should give an interesting glimpse into this new channel of
distribution.

Where would the software industry be without program-
ming languages? Three sessions on programming languages
complete the software track. The language debates go on
much like political ones—seldom with clear winners or losers.
The sessions that cover programming languages will address a
relatively new language (Modula-2), a new version of an old
language (COBOL), and large versus small languages.
“Modula-2 and Its Applications” will show this new language
in use through case study presentations. The uses cover oper-
ating system implementation, computer-aided design, and in-
tegrated programming (development) environments. During
the presentations, examples of Modula-2 in use as a portable
systems implementation language and as a computational
applications development tool will be discussed.

Believe it or not, good old COBOL has been back in the
news recently. “COBOL-8X—The New Standard” discusses
the features of this new version of the language, presents a
cost/benefit analysis of the effects of COBOL-8X, and dis-
cusses criticisms of potential incompatibilities. The session
promises to provide a quick update on the happenings in the
COBOL language world.

The panel session “Large vs. Small Programming Lan-
guages: Pros & Cons” will provide a forum for a discussion of
the merits and demerits of large and small languages. The
terms large and small may be poorly defined, but they are
intuitively clear to many. The size of a language is determined
by the number of its syntactic and semantic elements and the
complexity of their interaction. Specific languages will be used
as illustrations, but the session is not a debate about them. For
example, the original BASIC represents a small language,
whereas PL/I is obviously a large language. Panelists with
experience in both large and small languages present their
views on the relative advantages and disadvantages of each
size.

The Software track obviously covers a great deal more than
just programming. Is software just a simple matter of pro-
gramming? You be the judge.
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ABSTRACT

Changing one’s point of view on the maintenance function can lead to a better
understanding of the relationship between maintenance and other aspects of soft-
ware products. This can lead to an improved allocation of effort when building
software products.
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INTRODUCTION

The maintenance requirements of software products are gen-
erally given insufficient consideration by software product de-
signers because they miscalculate the importance of the main-
tenance function as a cost component in the life of a software
product. One aspect of the problem may be attributable to an
inappropriate point of view. The life cycle model most com-
monly used to portray software development misrepresents
the activity it is intended to explain and gives insufficient
emphasis to maintenance.

Corrections to these problems may lead to more optimal
solutions in the process of software development. This is likely
because the trade-off between maintainability and other com-
ponents of a software product will become more properly
balanced. Correspondingly, the analysis and design docu-
ments associated with software products will include items of
greater value to the maintenance function.

POINTS OF VIEW

When practitioners first started trying to bring some order to
the process of software development, they developed the con-
cept of a “life cycle” for new software. The cycle generally
began with problem recognition or goals. It then stepped
through analysis, design, coding, installation, testing, and
operation. The last step of the cycle was maintenance. The
problems with this model are numerous. As Zvegintzov has
pointed out, this model does not accurately describe a sys-
tem’s life. Moreover, the model is generally portrayed as a
linear concept, not as a cycle.! In reality the life cycle model
mixes a linear concept with a cyclical concept. It ties the
concept of the process by which good operational product is
generated to the operation of a system that uses the product.

Perhaps the most egregious error in the traditional life cycle
model is the mishandling of the concept of maintenance.
Maintenance is generally shown as a single step at the end of
the cycle; in fact, it is better portrayed as second- (or
3rd-, 4th-, ..., nth-) round development. The life cycle then
becomes develop, operate, develop, operate, develop, and so
forth. The model now looks more like a cycle, but has become
less useful. This is because the relationship between product
building and operations is not so tightly coupled. Much as an
airframe manufacturer typically does not operate an airline
(and vice versa), the operations of most software products are
separated from their manufacture. As an aside, one can make
the argument that the failure to isolate software development
from operations is a fundamental error that results in a prod-
uct of extremely poor quality.

What we have left when we dispense with the life cycle

There is one other effect of the wide acceptance of the life
cycle model with which we must deal. When maintenance
(dealing with old products) is included at the end of the cycle,
then it is presumed that the beginning sections of the cycle
are to be applied to new products. This leads not only to a
rather wrong-headed view of how the efforts of the analyst—
programmer are distributed, but also fosters the impression
that structured techniques are best applied only to new
projects. As shown in Figure 1, if we are to divide analyst—
programmer activity between existing and new applications,
at least two thirds of the activity will be attributable to existing
applications.”>

Although the analysis to prove the point has not been devel-
oped here, it is perfectly clear that the application of struc-
tured techniques is equally valid for all analyst-programmer
activity. It then follows that the greatest absolute benefit will
occur when the analyst-programmer is engaged in mainte-
nance. While this conclusion has been recognized, the process
by which we obtained it here has not.

COSTS AND ALLOCATION OF EFFORT

In software development, the validity of a project should be
determined by traditional cost-benefit analysis.* This ap-
proach uses a model in which costs are seen to be rising and
benefits falling as the scope of a project expands. The discus-

Creation of new systems

Maintenance of

existing systems

Figure 1—What analyst-programmers do
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sion here will be limited to the cost side of the model with the
operating assumption that minimization of the total cost of a
software product over its entire useful life is a reasonable
objective function for the software engineer. This assumption
is held to be valid whether the product is an addition, cor-
rection, or modification to an already existing product, or a
completely new product.

For our discussion the total cost to be minimized consists of
three fundamental components: maintenance cost, operating
cost, and original development cost. This schema includes all
costs of fixing problems or errors, all enhancements, and all
changes required by alterations in the operating environment
of a product—that is, the costs of any and all changes to a
product after it is first delivered—within the definition of
maintenance. Operating costs include hardware costs, con-
sumables, and any labor and management costs associated
directly with the running of the product. Development costs
include all the original analysis, design, coding, and testing
costs of a new product. The behavior of these cost compo-
nents is of considerable interest to the software engineer, as
they should be a major determinant of the structure of his
product.

The historical trends of these cost components are worthy
of review. Operations costs per unit of work are declining
largely because the hardware component of these costs is
rapidly declining—this overwhelms other operations cost
components. However, as the cost of a unit of work has
declined, the demand for additional units has expanded in
greater proportion. Thus, the overall trend of this expenditure
is up, not down. (This behavior can be explained by a concept
well known to economists, that of elastic demand. The de-
mand for computer hardware has been highly price elastic
throughout the history of the industry and is expected to
remain so for the foreseeable future.) Development costs and
maintenance costs are both labor intensive and thus are in-
creasing. Maintenance costs may also be increasing because
the useful life of software products is increasing. Certainly,
our realization of the enormity of maintenance costs is
increasing.

The distribution of costs between these major components
is likely to vary widely depending on the nature of the work,
the maturity of the system, and the work style of the organiza-
tion. Figure 2 shows the implied distribution between mainte-
nance activity, hardware operations activity, and all other
activity within fifteen federal installations surveyed by the
General Accounting Office (GAO).? The other category in-
cludes personnel costs attributable to operations, administra-
tive support, and management, as well as new-product devel-
opment. The figure is interesting because it demonstrates the
great importance of the maintenance function as well as the
continuing importance of hardware cost.

The point of this aspect of our discussion is that while
hardware costs have traditionally been given, and should con-
tinue to be given, great attention, the next most important
cost component is software maintenance. Original develop-
ment costs, which receive tremendous attention in the
structured-analysis literature, are a distant third in the actual
cost of most systems.

Maintenance
32.1%

Hardware for operations
38.7%

Figure 2—Implied distribution of costs in GAO study

TRADE-OFFS

In all development projects there are many trade-offs. For our
purposes, the trade-off between maintenance and other cost
components is of interest.

The strong relationship between a well-structured develop-
ment process and the maintainability of a system is well recog-
nized in the software-engineering literature. In almost every
treatise on structured analysis or structured design, long argu-
ments are made about the efficacy of these structured tech-
niques. The arguments always include testimony to the fact
that structured development produces systems that have fewer
errors, are much easier to understand, and thus much easier
to maintain. However, they tend to view maintainability as a
fallout of good structured techniques. A better point of view
would be to view maintainability as a quantifiable character-
istic of software. Maintainability could then be included more
usefully in the objective function for a product, and more or
less of this quality could be included in the delivered product
as a result of design decisions.

Using this view, one can trade additional product develop-
ment effort for reduced maintenance costs. The technical op-
timum is when the last added-development costs are just cov-
ered by the reduced-maintenance costs, the assumption being
that any further development efforts generate insufficient
benefits. On a practical basis very few people have hard num-
bers to cover this issue. Nevertheless, it is probably safe to
assert that in most cases the trade-off between development
and maintenance costs can be pushed much further in terms
of increased development costs. It is also most likely to be the
case that this development effort should be pushed beyond the
amount of maintainability that falls out of good structured
techniques. This additional maintainability is desizned in the
product.
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The same optimality presumptions apply with respect to the
trade-off between maintenance and operations costs. How-
ever, one should take great care in making any assumptions
about operations costs. In all probability the sum of all oper-
ations costs for a product over its useful life is not declining.
Nevertheless, operations costs have always been given consid-
erable attention, while maintenance costs have not. Thus, on
this latter basis alone one could presume that some trade-off
in favor of increased operations costs and lowered mainte-
nance costs would be reasonable.

PLANNING FOR MAINTENANCE

As Reutter points out (see Figure 3), most of the activity in
maintenance is directed toward product capabilities or charac-
teristics not included in the original product design.> More-
over, most of the remaining maintenance activity is directed
toward changes in the environment in which the software
product operates. Only a small portion of maintenance is
directed toward correction of errors. While this may not re-
flect the experience with all software, it probably does repre-
sent what one should expect from fairly well-designed and
well-written software products. In high-quality software the
error rate may approach zero; this should be an attainable
objective. On the other hand, we expect the environment to
be changing. We also expect demands for enhancement.
Moreover, we expect both of these to occur on a regular basis.
What needs to be done is to develop software that is very
amenable to these expected changes.

Many areas of expectation for change are identified at the
analysis and design stages of product development. In these

stages decisions are made that determine the scope of the

project. Characteristics to be included in the product are then
given the detailed attention necessary to complete the devel-
opment process and characteristics to be excluded are fre-
quently forgotten. While it is true that many specification
documents have a brief statement about avenues of possible
extension for the product—and a few even have sentences
scattered throughout about points of expandability—these
statements are usually treated as asides to the process of build-
ing the specified product.

There is another side to the coin of features not included in
a product design. This has to do with features or technical
solutions that were rejected as being in some way unsuitable
for the product. These include all those dead ends encoun-
tered during the anaysis and design stages. Also to be consid-
ered are those features that once looked so promising, only to
be found fundamentally inconsistent with the accepted devel-
opment of the product. The information and knowledge asso-
ciated with these considered but rejected features are almost
never found in any specification document.

A major set of additions to the specification document is
necessary to capture the analysis of features excluded from a
product. These additions may be of some value to the builders
of the currently specified product, but their objective is specif-
ically to aid the maintenance analyst—-programmer. In a sense,
these additions will be a resource library that the maintenance

Errors
8%

Environment changes
35%

Upgrades and enchancements
57%

Figure 3—Reutter’s distribution of maintenance costs

programmer can explore to see if his problem has already
been addressed. It will also serve another important purpose.
It will stand as the justification for the design decisions in the
current product that are related to potential extensions of the
product. Finally, these additions will be spread throughout
the specification and design documents. They will serve as a
continuing reminder to all those involved in the development
process to include maintenance-related issues in every deci-
sion process.

Case Study—The Economic Information System

The Economic Information System (EIS) is a large (15
gigabyte) database system for the time series data describing
the economies of all countries in the world. The system is
currently under development at the International Monetary
Fund and is scheduled to begin operation in June 1985. The
EIS serves well to illustrate some of the points that have been
made in this paper. It is a moderately large software project
(budget in excess of $3.5 million) that in some aspects is a
conversion of a current system and in other aspects a major
extension of that system. Thus, it is typical of most of the
software projects found in the commercial world. Both com-
ponents of the project fall within the realm of maintenance.

The current database system consists of a set of ISAM files
and home-grown database programs resident on a Burroughs
mainframe. In addition, a large set of operations programs
have been developed to generate a number of major publica-
tions that are run from the database. Most of the code for both
the database and the operations are in COBOL. All of the
operations code and a subset of the original database code
(152,000 lines) will be converted directly to the IBM environ-
ment. This will be the batch production part of the new sys-
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tem. An on-line access and update system is also being con-
structed as an addition to the previous system.

The original charge to the development team was to move
the current system to an IBM environment with the on-line
extensions, use a commercially available database manage-
ment system (DBMS), and be up in 18 months. In the initial
justification for the project it was stated that “productivity
aids would become available in the form of programming tools
and software packages which will significantly reduce staff
resources required for future systems development and on-
going systems maintenance.”® Thus, the continuing cost of
maintaining systems was given primary focus prior to project
initiation.

The first major decision in this project was the choice of
DBMS. The question was formed around the type of DBMS
(hierarchical, network, inverted file, and relational) as much
as the particular vendor. Hierarchical- and relational-type
DBMSs were dropped early in the decision process, the
former because of its inflexibility to change and large up-front
design requirements, and the latter because of known per-
formance problems and the absence of any product with per-

formance experience in large database applications. In the

evaluation of the remaining two types of DBMSs, three crit-
ical areas—DBMS data structures, database implementation
and maintenance, and user access and manipulation capabili-
ties—were identified. Critical requirements were developed
within each of these areas. Candidate systems were then eval-
uated against these requirements.

This DBMS choice provides an excellent example of trade-
off. Because of the mix between batch and on-line activity in
this application, neither the network- nor the inverted-file-
type of DBMS was found to have an advantage with respect

"to hardware resources. However, with respect to implemen-
tation and maintenance, the inverted-file-type DBMS had
an overwhelming advantage. The database design process is
much simpler in an inverted-file database. Moreover, in-
verted-file structures are much more amenable to extension
and change than network structures. This became the basis of
our choice.

Another example of the maintenance concept entering into
a major decision in this project arose in the database design
process. In the batch operations process on the current system
large data records (10 Kbyte) are read into a buffer. The
applications then use a central utility to obtain the sections of
the records that they need. This works well in the current
batch system; however, the approach is completely inap-
propriate for on-line update and inquiry activities. The on-line
requirements of the project have led to the development of
much smaller records in the target database. The question is
then whether to build up the large buffer the entire batch
stream expects, or to make some major changes in the data-
gathering procedures of the batch application code. From the
design and development effort point of view, building the
buffer would be the best choice. From an operations point of
view, building the buffer would be more expensive. However,
overnight batch costs are 10% of daytime costs in our environ-
ment and there is a succession of use of various parts of the
large buffer in our current operations. Thus, the operations
costs are not an overriding issue. What is clear is that the large

buffer structure is not likely to be suitable for the extensions
of this application that will be forthcoming after it is put in
place. Moreover, the structure that is chosen now will be cast,
if not in steel, at least in bronze for some years to come.

It was decided to change the data presentation procedures.
This decision will raise development costs for the project. The
decision will also have a negative effect on our ability to
produce a product on a timely basis. However, the ability to
enhance the product after its initial delivery will be signifi-
cantly increasd.

CONCLUSION

There is still substantial room for improvement in our under-
standing of the process by which software products are con-
structed. A more carefully constructed life cycle model will
improve this understanding. In addition, a clear analysis of the
cost trade-off between maintenance and other cost compo-
nents of a software product is likely to lead to a better re-
source allocation. However, these suggestions are limited to
creating the setting in which improved maintainability may be
developed. The many techniques that may be employed for
improving maintainability have not been explored. This re-
mains the task of future explorers in this field of endeavor.
The growing cost of software maintenance suggests such ef-
forts be given high priority.
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Maintaining user satisfaction with performance of an online
system
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ABSTRACT

This paper discusses the experience of OCLC, Online Computer Library Center,
Inc., with maintaining user satisfaction with performance of its online system.
OCLC is an innovator in the field of automated library services. Because it is a
service organization, user satisfaction with its online services of cataloging, inter-
library loan, serials control, and acquisitions is a major concern. An important
component of that satisfaction is online system performance, primarily measured by
response time and system availability.

This paper also discusses the considerable effort that has been devoted to system
support activities to address response time and availability improvement. Among
the system support activities discussed are creation of an internal problem reporting
and monitoring system, organizing to more clearly delineate responsibility and
authority, and communication of system support activities to the user. These activ-
ities have had a positive effect on user satisfaction with OCLC’s online system.

195






Maintaining User Satisfaction with an Online System 197

INTRODUCTION

OCLC, Online Computer Library Center Inc., a privately
funded, not-for-profit corporation, was founded in 1967 to
help libraries improve patron access to the ever expanding
body of worldwide knowledge and information. The first on-
line service in support of that corporate purpose was the
OCLC Shared Cataloging subsystem originally designed for
54 academic libraries in the state of Ohio. As libraries’ recog-
nition of cost savings and service enhancement possible with
with this system grew, the OCLC computer system, the com-
plexity of software, and the need for corrective, adaptive, and
perfective maintenance also grew. OCLC’s current system of
custom manufactured terminals, dedicated telecommunica-
tions lines, front end minicomputers, network supervisor,
host computers, and back-end database processors provides
cataloging, serials control, acquisitions, and interlibrary loan
services to approximately 3,500 member instituions serving
over 6,000 libraries internationally via more than 5,000
terminals.

Our physical facility, located in Dublin, Ohio, contains over
44,000 square feet of secure, environmentally controlled com-
puter floor space, a dramatic change from the space rented
from Ohio State University little more than a decade before.
More dramatic, however, is the change in the people who
support and use the system.

OCLC was founded by the Ohio College Association, a
group of university presidents, to increase availability of li-
brary resources and reduce costs among the academic institu-
tions in the state. That founding resulted in an initial
computer-based system that was designed, developed, and
modified almost experimentally by a few dedicated people
committed to making dramatic—at the time, revolutionary—
changes in the library community. From that foundation
evolved the current OCLC organization of over 670 staff and
a customer base of over 6,000 libraries of all types—not just
college libraries, but public, governmental, school, medical,
law, and corporate libraries, serviced through a multiple-tier
distribution channel.

Associated with the internal change of OCLC is a change in
user expectations. System performance expectations continue
to grow with increased user sophistication regarding online
systems use. Additionally, as the OCLC system becomes the
backbone of operations in a growing number of customers’
libraries, high expectations of maintaining adequate online
system performance are not unreasonable.

THE PROBLEM

The problem of maintaining user satisfaction with perfor-
mance in an online system entails a complex system of exter-

nal and internal perceptions and constraints that vary over
time. Key factors of perceptions and constraints are inter-
related and seem to be part of a zero-sum game in informal
systems such as ours; if one area -of performance is satis-
factory, another area is perceived less so by some measure.
Therefore, one element of a solution is more formal measures
of acceptable performance for each component that affects
user perceived system performance.

Users’ perceptions of performance areas for interactive sys-
tems include response time, system availability, and reliability
measures as well as expectations of database integrity, com-
pleteness, currency, and high expectations of new systems
development and responsive maintenance. As is only proper,
failure to meet formal performance standards results in un-
acceptable performance from the users’ perspective. How-
ever, if performance is measured informally, even what at one
time was satisfactory performance may no longer be so;
change takes place in the level of user expectations of ade-
quate performance to target the lowest area of performance as
unacceptable. This change in level of expectation seems to be
natural; and systems performance expectations seem to vary
with user sophistication, which in the OCLC system has grown
substantially during the last decade.

The key aspects of this increasing demand for maintaining
user satisfaction with performance in an online system are
understood measures of performance consistent over time;’
development of new systems; and adequate system mainte-
nance in terms of its adaptive, perfective, and corrective as-
pects. It is because of the universality and typical symptomatic
treatment of those needs that OCLC’s approach may be ap-
propriate to other interactive environments.

SYMPTOMATIC TREATMENT

Using internally defined measures of response time and avail-
ability and using informal, individually conceptualized mea-
sures of other performance factors mentioned above, OCLC
staff have had their hands full chasing the illusion of satis-
factory performance; users continued to be dissatisfied. The
effects of this lack of measurability have materially affected
system support activities where patchwork maintenance and
damage control have been consuming activities to keep the
system available in the short term to the exclusion of address-
ing other user-perceived performance criteria for a longer
term. Attaining the right mix of performance levels in an
informal system may be harder than finding the pot of gold at
the end of the rainbow, but it has the same allure.

To help understand the shifting nature of priorities and the
long-term effects of looking only at short-term system per-
formance, we must understand our online environment. OC-
LC online is a dynamic system that accommodates growth of
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accessibility for added terminals and new functions. Barbara
Taute calls this type of environment unstable, and that is
certainly the case.” Users and OCLC staff agree that growth
has typically been followed by periods of unacceptable re-
liability, availability, and response time. Growth demands
have taken their toll on maintainability. The environment is
not a desirable one, because induced periods of instability
have caused wholesale shifts of staff for support at the expense
of new development. The result of these shifts is conflicting
performance criteria: new development vs. current system
stability.? This unacceptable trade of performance issues high-
lighted our need to address internal problems requiring imme-
diate remedy as longer-term remedies were formulated.

INTERNAL PROBLEM

The OCLC online system is growing: over 600 user terminals
and over a million new records are added per year. The result
of this growth is a continuing imbalance of staff need and
availability. Reactive approaches to this imbalance included
cutbacks in training, increases in Band-Aid problem fixing,
and redirecting staff from other areas to help. We did all of
these things we knew were harmful in the long term but that
we could easily justify in the short term. The result was a
temporary increase in system stability, but at a heavy cost,
akin to running faster to keep from falling; it only works for
awhile.

As if things weren’t bad enough, there were role perception
difficulties regarding software maintenance. What is it? Who
does it? When and how is it done? How is it regarded in the
company? The diversity of answers to these questions ad-
versely affected even short-term maintenance activities.
Meanwhile, users were demanding that we do something to
improve performance.

DOING SOMETHING

We isolated four areas to address: user expectations, system
problems, procedures, and the organization. As we were
thinking about how to manage our problems, we focused on
time to repair as a critical element in user-perceived perfor-
mance in an online system.

Doing Something About User Expectations

Although user expectations have always been considered by
OCLC staff, it is increasingly important to address those
expectations formally in the development and operation of a
system,' and it is acutely important in interactive systems.

Developing understood measures of system performance,
improving communications about system aberration and ex-
pected resumption of normal service, improving problem-call
handling, and increasing availability of problem-call staff, in
addition to the Herculean task of improving system perfor-
mance, are the activities we felt most important tc bring user
expectations and actual performance closer together.

Developing commonly understood measures of perfor-
mance that relate well to user experience at a terminal, and

yet can be monitored and controlled at a central site, is a
nontrivial task in an online environment. In addition, user-
perceived measures of performance in an online system of
transaction response time, system availability, and system re-
liability are made even more complex by potential misinter-
pretation of the statistics necessary to describe these perfor-
mance measures.

To explore the complexity of communicating online system
performance characteristics, let’s look at response time. Cer-
tainly we should be able to agree that user-perceived system
response time can be measured as the interval of time between
the SEND/DO IT key stroke of the terminal user and the full
screen display of the system’s response. Figure 1 shows the
components of our system a transaction may exercise; how-
ever, not all components are used for every transaction. Add
human-related variables, and it should be obvious that a state-
ment of an average response time of 8 seconds can mean many
different things to many people.

Other complicating factors are the nonhomogeneous re-
source requirements for different ways of requesting the same
information, cyclical use of the system by season, week within
season, day within week, and hour within day, continuing
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change in system environment, and lack of monitoring tools
for understanding those changes better. A system person’s
approach is to make various assumptions concerning un-
measured activities and add that to monitored activities to
calculate an average over time. A user’s approach is to time
activities at the terminal, whether with a clock or not. Our
experience indicates that the system person and the user have
difficulty communicating performance measurements with
such disparate baselines of measurement. Therefore, develop-
ing common measures is precisely what must be done for
effective communication.

OCLC is currently conducting investigations to determine
how best to characterize user-perceived online system per-
formance in order to relate it to our characterization of per-
formance; the first step is to come to a common definition.
The first investigation consisted of 14 user institutions that
manually timed specific transactions at a predetermined time
of day and reported their observed response times and system
availability to OCLC for summarization. This manual ap-
proach was meant only to give us a feeling of users’ experi-
ence. The other study involves a hardware device attached to
a user’s terminal to directly measure and calculate response
time statistics over a period of terminal use. The user reported
statistics are then correlated to OCLC-measured computer
system response times. Figure 2 shows user vs. OCLC mea-
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sures for response times and system availability over a
41-week period. This has dramatically improved our ability to
communicate response time and availability performance
measures with the user.

Other activities to promote user satisfaction with system
performance are to increase communication about system ac-
tivity, increase the use of meaningful broadcast messages via
the users’ terminals, and increase responsiveness to trouble
calls by providing a hierarchy of user-call handling.

The entry level of our hierarchy of problem-call handling is
the OCLC reception staff, which discriminates between infor-
mational and assistance calls and transfers calls that require
more attention to a second level. At the second level, the
Marketing and User Services Division of OCLC staffs a trou-
ble call function where further discrimination among user-,
application-, and system-caused problems is made. Only
computer system problems are then passed on to network
operation technicians for further diagnosis and resolution.
Network operation technicians dispatch field service aid for
terminal and modem problems and deal with the telephone
companies for telecommunications problems; computer hard-
ware and software problems are passed to system support
personnel for resolution, the final level of the problem resolu-
tion hierarchy. The severity of the problem coupled with the
estimated time to repair determines the mechanics of problem
resolution.

Doing Something About the System

Although terminal and telecommunications are com-
ponents of our online system, it is our computer environment
that is the subject of this section. Our computer hardware is
stable at over 99% availability for each major component on
a regular basis. Although 99% component availability seems
more than adequate, the number of components and the num-
ber of terminals can produce over 5,000 terminal hours outage
per week. That much outage translates into user dissatisfac-
tion and lost revenue for the period. OCLC from the begin-
ning adopted a philosophy of self-reliance. It currently has
24-hour-a-day, seven-day-a-week computer maintenance sup-
port to provide immediate reaction to any hardware malfunc-
tion to try to reduce the mean time to repair and hence in-
crease system availability. A substantial investment in spares
inventory, test equipment, staff, and staff training help keep
our computer hardware running at that relatively high avail-
ability. The software component is not as stable as the hard-
ware, nor is the environment as straightforward.

Dealing with software has resulted in major changes to our
existing environment. Some of those changes are further iden-
tified in the following sections on procedures and organiza-
tion. The main change to be identified here is a recognition by
the corporation of the primary importance of user perception
of performance and a recognition that maintenance of ade-
quate performance had failed. As part of an overall effort,
OCLC temporarily redirected the work of our development
staff from installing additional software to an already unstable
system to attending to medium-term-problem resolution. The
support group, which has primary responsibility for restoring
the system after a failure, necessarily operates in the short
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term, often allowing only symptomatic treatment and leaving
the real problem unresolved. Recovery vs. resolution is a
resource problem intensified by online systems. OCLC recog-
nized the unmet need for problem resolution as an activity
simultaneous with the requirement to recover on a day-to-day
basis.

The significance of this recognition of time between recov-
ery and medium-term resolution resulted in new procedures
for problem solving. It also allowed system support staff’s
significant expertise to be more productively employed in re-
solving problems rather than continuing symptomatic treat-

]

ment, a result of sufficient resources to use innovative meth-
ods to combat long-neglected problems.* We call the system
support activities of resolving maintenance hot spots systems
manageability.

Doing Something About Procedures
The most significant result of dealing with procedures was

the creation of a problem reporting and monitoring system
that is itself an online application. Previous attempts at prob-
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lem reporting and monitoring systems had not been effective.
This time success is directly attributable to the managers, who
regard this process as their communications tool.

The problem resolution process is a result of analyzing what
was needed to identify and resolve significant problems. It
required line managers to take an active role in refining the
process as well as to accept responsibility for managing prob-
lem resolution as they would a development project. It re-
quires their commitment to be effective.

The essence of the problem resolution process is its use as
a common mechanism for problem reporting, responsibility
assignment, status communication, priority reassignment, and
reference for similar problems. This process is recognized
across the company as the way to bring problems of signifi-
cance to light and to ensure appropriate recognition and reso-
lution of those problems. The element of time is used in this
process to identify the type of effort and responsibility for
problem resolution: short, primarily recovery and patches;
medium, planned problem fixes and small rewrites; and long,
inclusion of fix in redesign and new development projects. All
problems of any significance are entered into this process. A
problem report form is shown as Figure 3. Biweekly problem
report process meetings have a specific purpose, have well
prepared attendees sharing a common problem solving atti-
tude, and enable continuing refinement of the resolution pro-
cess to take place.

Doing Something About the Organization

The organization is the framework within which staff per-
form activities. Intuitively, the better the definition of organi-
zation within the context of desired goals, the more likely it is
that there will be congruence of activities and goals. Ob-
versely, the fuzzier the organization is in terms of definition,
the more likely it is that conflict will appear as a result of
overlapping responsibilities and accountabilities.

In software maintenance, OCLC’s experience displayed the
characteristics of a fuzzy organization. Improved organiza-
tional definition was required to set the stage for assigning
goal-congruent responsibilities. Our definition of support or-
ganizations embodied the attributes of adaptive, perfective,
and corrective maintenance as defined in current software
“maintenance documents.’ Additionally, we used maintenance
response time as a qualifier of organizational definition, since
it is a critical factor in availability as a component of per-
formance of online systems.

Maintenance response time is defined and measured as the
elapsed time between problem recognition and problem re-
covery, where recovery may mean patch or repair. We identi-
fied three intervals of maintenance response time to help
emphasize organizational maintenance responsibilities: short-
term, medium-term, and long-term. Immediate problem re-
covery is a special case of short-term maintenance response
time. These may seem trivial; however, simplicity has an el-
egance of its own, and the addition of response time to the
definitions of maintenance helped us identify solutions to our
responsibility problems.

Each of the operations organizations, shown as the lower

four boxes in Figure 4, have some system maintenance re-
sponsibilities. Time helps identify specific responsibilities. For
immediate maintenance, Computer Operation recovers and
Systems Support provides corrective and perfective mainte-
nance. Short-term maintenance is the responsibility of
Systems Support. Medium- and long-term maintenance in-
volving system software is the responsibility of Computer Sys-
tems Engineering; medium- and long-term maintenance for
application software is handled in the Product Development
Division.

Other universal software maintenance issues were also
treated after a combined look at procedures and organization.
Maintenance adhocracy is giving way to increased planning,
and motivational improvements have resulted from recog-
nition of maintenance staff expertise and their accom-
plishments.®

An additional motivational boost has resulted from effec-
tive use of support staff in more than short-term corrective
maintenance. Although not eradicated, artificial status barri-
ers between development and maintenance within OCLC
have been reduced. However, our experience with recruiting
indicates that the term maintenance still has negative connota-
tions in the data processing world, something we’ll all have to
continue to campaign against. User recognition of accom-
plishments of improving the performance of the OCLC online
system has also been a great help in solidifying the importance
of support staff.

The improved procedures and organizational responsibility
described above are providing more effective online system
maintenance, which has a direct positive effect on systems
performance and on users’ perception of system performance.

SUMMARY

Positive effects of this integrated program to improve OCLC
online system performance have been measured by its users

OCLC
. Administrative ] Research &
Marketing Services Finance Planning
Online
Operations
. Systems Product
Operations Engineering Development

Figure 4—OCLC organization
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and providers. System performance measures of response
time, availability, and reliability have improved significantly
since these activities have started. This improvement has al-
lowed us to resume scheduling system enhancements to in-
crease users’ satisfaction with online system performance in
the area of system enhancements.

Although not as amenable to measurement as external
ones, internal effects such as staff morale and productivity
have improved also.

A program of systems manageability is under way to ensure
maintaining user satisfaction with the OCLC Online System
by improving response time and availability. It includes re-
finement of the above activities of formalizing and communi-
cating system performance measures, increasing the quality of
software maintenance, and improving the systems environ-
ment, as well as showing progress in new feature development
with engineered maintainability improvements.
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ABSTRACT

Over the past decade or so there has been much attention paid to techniques and
methodologies to produce high-quality systems. A concurrent development has
been the emergence of software tools that aid in the production and maintenance
of software systems; yet the maintenance environment continues to be littered with
poorly written and poorly documented programs.

The focus of this paper is to outline a conceptual approach to the allocation of
software maintenance resources and the role of automated tools in this process. It
is contended that software maintenance tools cannot be simply purchased or built
and then used indiscriminately. Rather, it takes an administrative activity to quan-
titatively decide which code units are best for resource allocation. Finally, to dem-
onstrate the utility of this approach, a case study based on the author’s experience
is presented.
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THE MAINTENANCE LEGACY

Over the past decade or so much attention has been paid to
techniques and methodologies to produce high-quality, main-
tainable systems. Yet DP management still finds itself left
with a swelling production library containing a hodgepodge of
code that shows little resemblance to what we now define as
good.

veyed 120 DP organizations." This survey found the mean age
of installed systems to be nearly five years and the average size
of these systems to be approximately 23,000 lines of source
code. A review of the typical production library often reveals
high levels of poorly written code with inadequate documen-
tation, a statistic that is not surprising when one considers the
time-consuming, laborious nature of manually producing
high-quality code that is also well documented. This impetus
has stimulated the recent proliferation of software mainte-
nance tools.

The author believes that structured code, clear mechanical
format, and other such forms of architectural definition are
positive when produced at reasonable cost. Studies indicate
somewhat conclusively that structured programming can
lower maintenance costs. One point, however, is becoming
increasingly clear. That is, methodologies and tools in and of
themselves will not automatically correct all the errors of the
past. Indeed, the new techniques can become costly and inef-
fectual if they are used randomly. Our challenge here is to
describe a rational approach to correcting this maintenance
legacy by proper allocation of resources, including a growing
set of software tools designed to aid in this process.

PROBLEM DEFINITION

The road to reduced maintenance effort begins with the an-
swers to two questions:

1. Which programs abend most frequently?

2. Which programs, though they may run perfectly, are so
poorly written and/or documented that they cannot be
easily changed?

The significance of these two questions is considerable
when one considers that two of the essential activities associ-
ated with software maintenance are correcting program errors
and implementing user-requested changes to software. Even
though many firms have recognized the need to answer these
questions, most large DP shops have found the quest arduous.

Surprisingly, many organizations find the first question dif-
ficult to answer. They can neither locate nor statistically quan-

In the late seventies Dr. Gerry Tompkins of UCLA sur-

tify their production source code, much less begin to describe
quantitatively which code units could be classified as good,
average, or poor. This situation must be resolved before sub-
sequent steps, outlined below, can be undertaken. The three
administrative systems following can aid in this process.

Library Control

An automated control package to insure that all production
source code is located in approved libraries and that produc-
tion load modules contain only these source modules. Though
there are many reasons for installing such a system, its pur-
pose is to bind the execution errors associated with executing
a load module to the source code responsible for them.

Operations Logging

A tracking system that traps all production jobs and records
completion status (e.g., good completion, space abort, JCL
error, bad compietion code). This tool should provide exe-
cution information at least down to the load module level.

System Profile

A text-oriented system, summarizing basic system metrics
such as

age,

. language,

. total lines of source code,

. user evaluations of the current system,

. future enhancement plans at the aggregate level.

T N

By using these three techniques it is possible to identify the
target code population accurately, then array the code units
according to abort frequency.

Phase 2 of the problem definition activity begins once oper-
ational statistics are available regarding code performance. It
is then necessary to divide code units into three broad
categories:

1. Good Code—low abort frequency
2. Bad Code—high abort frequency
3. Marginal Code—borderline abort frequency

Here we are left with both a philosophical and a tech-
nological problem. Philosophically, we may believe that well-
written code has a low abort history and vice versa. Alterna-
tively, some believe that abort history is independent of code
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structure. It is observed that some systems require highly
skilled operational support personnel and code modifications;
are complex, owing to a lack of a coherent design architec-
ture; yet are stable, judging by abort statistics. It is the au-
thors’ opinion that the subject of good versus bad code is
multidimensional, involving both mechanical and operational
factors. The maintenance function involves both aspects of
operation and enhancement; therefore goodness of code must
involve more than one view. A second philosophical issue
surrounds the idea of documentation value. When one looks
at the millennia of existing production code without support-
ing documentation, some doubt must exist about whether it is
of value to be concerned about such things. In attempting to
rationalize such behavior there is at least the obvious con-
clusion that the cost of documentation production outweighs
its value. The authors believe that an automated approach
to producing documentation improves both software accuracy
and cost effectiveness.

Now for the technical problem: It is theoretically possible to
quantify abort frequency and arbitrarily divide code units into
good, marginal, and bad categories; however, we have already
said that this is not enough. There are at least two other code
grading technical issues that should be addressed. First, code
complexity needs to be evaluated. McCabe? and others have
defined quantitative measures of code complexity, although
once again there is no broad agreement about when a code
unit is too complex. Indeed, some productive code requires
complexity; and in some cases it is rationally added to the
code architecture for efficiency or other reasons. In any case,
high-complexity index values could be warnings to review an
existing code unit and decide whether it is feasible to simplify
it in some way. A third aspect of the technical problem is the
architecture of the code unit itself. This is manifested by un-
structured or large modules. Within this realm one might
attempt to review style, language, structure, size, and existing
documentation of the unit in order to supply a qualitative
grade. The final aspect of code review requires judgment
about whether the code should be a candidate, based on stra-
tegic objectives. For example, if an old batch system is being
replaced in less than one year with a new online system, then
it makes sense not to give that code any extra support. Alter-
natively, an old system with no upgrade planned would be a
candidate. This activity is designed with a view to future
evaluation.

We have indicated that in order to effectively allocate main-
tenance resources it is necessary to quantify where current
operational problems now exist through formalized abort his-
tory statistics. In addition to this we should provide some type
of grading scheme at the code unit level to identify potential
modules for which resources can be profitably allocated to
repair. It is feasible to use automated tools to do much of the
scanning work for items such as size (lines of code), complex-
ity, adherence to code standards, and other related functions.
After all the automated statistics are summarized it should be
possible to select high-priority targets for closer manual exam-
ination. From this aggregation of data it is then necessary to
select and rank code units to be given special consideration for
rework. Some day this process can be highly automated;
however, it currently will involve a high degree of subjective
judgment.

THE PURIFICATION PROCESS

We have outlined an analytical process designed to identify
systems and code units (i.e., programs) that are candidates for
rework. The key question now is, “What do we do with the
subset of problem code defined?” Figure 1 shows schemat-
ically the process described above. Note that two new items
show up at the bottom of the figure, rewrite and redocumenta-
tion. Each of these deserves more discussion here. Rewrite
represents code units in such shape that manual rearchitecture
of the system is required to resolve the indicated problem.
Typically this means that new functionality is required or that
the basic database design approach is flawed. Obviously
placement of code in this category should be done only as a
last resort because of inherent cost and time to accomplish.

The second form of code repair is automated redocumenta-
tion, which is defined as the software-driven process of pro-
ducing documentation for existing code directly from the syn-
tax itself. Elshoff and Marcotty from General Motors have
documented their company’s approach to the use of similar
automated techniques to improve code readability and modi-
fication.” We feel that these tools are most useful when used
as an aid to the maintenance programmer who is trying to
draw understanding from a block of unyielding (and usually
undocumented) source code. These tools may be categorized
as follows:

1. Dynamic analyzers
2. Static analyzers
3. Restructure/recoding tools

Dynamic analyzers have long been accepted as a part of the
maintenance programmer’s workbench. Debugging compilers
and interpreters compose this group of tools. Usually, the
dynamic analyzer is used in conjunction with test data during
an interactive session. Features commonly associated with dy-
namic analyzers are (1) fast syntax checking, (2) one step

FRODUCTION LIBRARY

Type I

(leave alone)

Type III

Redocument
: marnual effort : auto. tools

: 5 to $50/L0C : .2 to $2/L0C

Figure 1—Decision schematic for production code
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compile and run, (3) program path tracing, (4) execution
suspension and restart, and (5) variable dump and
modification.

The difficulty with this method of analysis is that it consid-
ers only the paths traveled by the selected test data. Dynamic
analysis is, therefore, analysis by trial and error. It is best
suited for the investigation of a particular test case or a limited
set of test cases, not for gaining an all-path understanding of
a program.

Static analyzers are more of a newcomer to the maintenance
environment. To be sure, flowcharting programs have existed
for some time. Yet the flowcharting program merely provides
a rehashed version of program logic in graphic form. In the
output of a typical static analyzer, we see the beginnings of an
attempt to unravel program logic. Moreover, static analysis
can provide useful information regarding program style and
complexity.

Yet of all the tools now available to maintenance program-
ming, the restructuring/recoding tools are surely the most ex-
citing. They combine the intelligence of the static analyzer
with the ability to generate code. Unstructured code (i.e.,
code with GOTO statements) is the input to this tool. The tool
analyzes the unstructured code and produces a structured
version. Collectively, this family of tools represents our cen-
tral focus here.

THE ECONOMICS OF REDOCUMENTATION

We believe that automated redocumentation is the preferred
alternative for code repair. For some justification of this let us
first look at the resource economics involved in the code re-
pair decisions.

Type I and II code (see Figure 1) represent the code library
that is to be essentially left alone. For this segment of the
library it is generally possible to allocate resources at the rate
of one maintenance programmer per 40,000 to 70,000 lines of
source code (independent of the language). This allows for a
small amount of enhancement but generally provides for very
little extra resources for more than daily operational require-
ments. Obviously, numerical guidelines such as this need to
be validated locally before extensive reliance is placed on
them. For the Type III subset, it is a truly complex job to
specify an appropriate level of resource allocation. In many
DP organizations, the aggregate resources dedicated to the
maintenance function can range from almost 90% to as low as
30%. A proper number lies only in management’s eyes and is
closely tied to a general philosophy of maintenance. We are
suggesting that at least 10% of the maintenance library has
been neglected. Various studies, reported by Jones* at IBM
and Hermann® at Shell Oil and others, document the develop-
ment cost of systems at values ranging from $5 to $50 or more
per line of code produced. Our experience, however, is that
automated documentation can be produced at a cost of be-
tween 20¢ and $2.00 per line. This represents a cost ratio of
25:1! In stable database situations the redocumenation strat-
egy is often viable and cost effective. A small allocation of
resources can produce dramatic results for properly chosen
code units. It is true that even more dramatic improvements
can be made through the rewrite process. However, the

allocation of resources is concomitantly much higher; and the
benefit often occurs much later, after an extended develop-
ment cycle.

Having now examined how to identify targets for profitable
use of redocumentation tools and the economic rationale for
using automated redocumentation, let us turn to a case study,
drawn from the authors’ own experience, to demonstrate the
utility of this approach.

A CASE STUDY

Texaco Inc. is typical of many large DP operations and re-
cently faced the problem of rising maintenance costs. There
were a large number of diverse applications, each with its own
maintenance staff and procedures. Also, like many DP or-
ganizations, Texaco had invested a considerable amount of
money and staff time in learning to use new design tech-
nologies and tools. These efforts notwithstanding, many staff
members felt that the level of effort expended on maintenance
was still too high, primarily because of the large volume of
old, poorly written code that had existed before the new meth-
odologies were implemented.

To quantify the actual maintenance effort, functional
applications were manually inventoried. This inventory con-
firmed the previously held suspicion that approximately half
of the professional programming staff worked on mainte-
nance. Because of the increasing backlog of new applications
and enhancements to existing systems, and because of the
omnipresent goal of holding costs to a minimum, this situation
was deemed unacceptable. Early schemes to reduce this effort
called for the mass redocumentation of all the production
libraries via automated tools. Despite the relative cheapness
of these tools, cost-benefit estimates precluded the use of this
tactic. Hence it was decided that particular systems and sub-
systems would be targeted for rewrite or redocumentation.

First, manual methods were used to identify the relevant
applications. Two points become apparent as this process was
carried out: (1) manual code reviews were too time con-
suming, and (2) manual records of abends were difficult to
organize.

It was decided to expand the use of automated tools to
address these problems more effectively. In addition to the
previously stated features, an automated library management
system was required to improve control of source and load
libraries across multiple sites. Having unsucessfully searched
the outside software market for an integrated tool that would
meet these requirements, it was decided to create a custom
library management system, LIBMAN. LIBMAN is a control
system using the services of several existing software tools
(SPF, VTAM, PANVALET, ACF2, etc.) to provide control
over both the repair and enhancement of production pro-
grams. The operational logging system used for the actual
identification of problem programs was the MVS Integrated
Control System (MICS) from Morino Associates, Inc., which
gathers information from diverse sources such as SMF and
TSO/MON. This information was then collected on a SAS
database from which reports on code unit performance were
derived. Finally, profiles were created to assist in the process
of describing current systems. Originally a manual effort, this
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system has now been converted into an online one, using
DATAMANAGER as a repository.

After the administrative-level systems were in place and the
code universe was well defined, it was possible to identify code
that was structurally poor. This subset of the code population
became the target code, which would be examined in more
depth. Through the process outlined earlier, some of these
code units were amenable to automated redocumentation. At
this point several automated tools were applied to the selected
programs. First, for the COBOL systems an outside product,
SCAN/370 from Group Operations, Inc., was selected.
SCAN/370 produces a report that traces all the logic paths of
a given program. This program also provides a source listing
containing imbedded path data, complete with identification
of dead code.

Later a restructuring/recoding tool for COBOL source pro-
grams became available. This program, called SUPER-
STRUCTURE (also by Group Operations, Inc.), creates a
scorecard that identifies unacceptable program flaws such as
(1) interparagraph GOTO statements, (2) run away paths,
and (3) fall-through execution of paragraphs. Having created
the scorecard and identified the paths of a program, SUPER-
STRUCTURE rewrites the program paths using only struc-
tured constructs (sequence, iteration, and selection). The re-
sultant source code contains essentially none of the flaws of
the original source program.

Most of the company’s developmental programming is pro-
duced in PL/I. Though the language itself contains elements
that may encourage good programming style, a number of
older systems were found to abend with regularity and were
difficult to modify. A significant review was undertaken to
find analyzers and documentors that fit a PL/I development
environment. Unfortunately, no vendor-supplied tool was
found that would be compatible with the current methodolo-
gies, so an in-house tool was developed. The tool, TEXJAX,
conducts static analyses of program paths via code scanning
and renders several forms of documentation:

1. Complexity measures

2. Jackson style structure charts
3. Module hierarchy charts

4. Annotated source code

The next documentation tool selected was a system redocu-
mentation tool linked to JCL. This tool, DOCU/TEXT from
Diversified Software Systems, Inc., was tested on a few se-
lected applications; and it appeared that it could be used on
all the JCL libraries. This was in marked contrast to the way
the other tools were used, but in this case it seemed to be
feasible. Our evaluation is that system-level tools of this type
cause one of two events to occur. Either you modify the tool
to fit the prevailing customs, or prevailing customs have to
change. In this case, the traditional system documentation,
manually produced, was so widely used that output from the
purchased version of DOCU/TEXT required extensive modi-
fication to fit desired formats. Consequently, work is ongoing

to implement a JCL scanning process that will use DOCU/
TEXT as a nucleus. Its output will be used to duplicate and
replace the current manual run books used by the operations
group.

All the tools and techniques outlined in this paper continue
to evolve. As with most management-oriented concepts, it is
difficult to quantify the relationship of improved productivity
to the use of automated tools. We have, however, recorded a
decline in resource requirements in the period during which
these tools have been installed. Part of this is due to manage-
ment’s increased interest in this subject, as well as improved
procedures and tools.

CONCLUSION

There are many disjointed software tools on the market to-
day, and more are emerging daily. Various combinations of
these tools will fit unique organizations. We have attempted to
outline an approach to the selection of target code units and
general types of tools that collectively aid in the maintenance
function. A most important conclusion resulting from our
experience is that tools cannot be purchased or built and then
used indiscriminately. Rather, it takes an administrative activ-
ity to identify which code units are best for resource alloca-
tion. Then, management has to support these efforts with
rational levels of resources designed to “purify” production
libraries. Even more pertinently, it requires a high level of
management focus to cause the process to occur in an orderly
manner. Within the software tools marketplace we anticipate
more innovation in the area of automatic restructuring/
recoding. It seems inevitable that artificial intelligence (expert
systems) may lead the way in this area. One possible way to
implement such a scheme would be to create an expert system
that is well versed in one of the popular design methodologies
(Jackson, Yourdon, etc.), give it access to the path informa-
tion provided by static analysis tools, then restructure accord-
ingly. Once this can be successfully done, the family of
redocumentation tools will become more coherent.

Whatever the case may be, it is probable that tools will
continue to play an increasingly visible role in the mainte-
nance of software systems and will require continued manage-
ment effort to keep them cost effective.
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System information database:
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by LINDA BRICE
and JOHN CONNELL

Los Alamos National Laboratory
Los Alamos, New Mexico

ABSTRACT

Documenting application systems has long been considered a necessary evil. Neces-
sary because documentation provides a map to present systems, serves as a mainte-
nance aid, and is required by the auditors; evil because it is an activity generally
dreaded by those who develop the systems. Since normal behavior regarding un-
pleasant chores is avoidance, application systems documentation is sometimes ab-
sent and often incomplete.

Documenting may be unpopular for a number of reasons, including psychological
ones. One very obvious problem is that, except for a few automated tools at the
program level, documentation is a manual process used in an automated environ-
ment. Automating the process is a way to reduce the laboriousness of the task.

This paper is a case study of how one data processing organization applied student
labor and a relational database management system in a prototype to automate
much of their applications systems documentation function. The capabilities, fringe
benefits, and future enhancements of the tool are discussed.
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INTRODUCTION

Why should maintenance aids be automated? In many instal-
lations system documentation is still a cumbersome manual
process. There are automated data dictionaries and program
documentors on the market, but few link to other aspects of
an organization’s functions, and most take several years to
populate with data. Some organizations commit to five or ten
years’ worth of data gathering and data entry, unassured of
the results. Others accept as a fact of life that manual docu-
mentation is not an effective maintenance aid, but continue to
set up frameworks with strict requirements and standards.

This paper shows how a relational data base management
system was used to develop an in-house automated documen-
tation system for the Administrative Data Processing (ADP)
Division of the Los Alamos National Laboratory. The data-
base has been given the acronym SID, system information
database. It contains much of the documentation pertaining to
production application systems. This documentation has his-
torically been maintained manually in Central File folders. At
the time of this writing, SID has proven to be very effective for
entering, updating, and retrieving documentation data rapidly
and accurately.

WHY THE NEED TO DOCUMENT

Documentation is considered the “map” of present systems,
and a valuable aid to maintenance programmers. Accurate
documentation is also a reliable guide to relationships within
and between systems. It provides a means for reducing the
risk of introducing errors during maintenance work. If an
error does occur, a visual picture of control flow is available
to help locate the source of the error. In the normal course of
events, clear documentation makes staff turnover less dis-
ruptive by providing a useful training aid. Finally, adequate
documentation will satisfy auditors’ requirements for infor-
mation about how systems work.

Data processing professionals have long been admonished
to document in certain standard ways. Most shops were led to
believe, by the literature of the 1970s, that visual tables of
contents (VTOCs), IBM’s hierarchical input process output
(HIPO), and flow charts, for example, were the best tools for
documentation and were necessary. Now, we are told to pro-
duce data flow diagrams, structure charts, Chapin charts, data
models, Jackson diagrams, and Warnier-Orr diagrams, as
well as myriad forms supplied by structured methodologies.

Many installations simply have not sorted out which old
tools to discard, which new ones to adopt, what to make
retroactive, or whether or not all tools need to be applied at

the system, task, and program level. Most organizations have
viewed documentation as a program level activity, with recent
emphasis on the data element level. There is much more than
a program in the makeup of most application systems. They
are also composed of operating system procedures, database
interfaces, data files, and other elements. Documentation
must not only be present, it must be flexible. Few DP organi-
zations can bear the expense of throwing a system away and
rewriting it from scratch. When “the intent is to modify func-
tionality or capability or even performance, the trend is to add
code, a front end, or a box... Add on, not replace’ is the
trend in software.”” Documentation must be enhanced easily,
just like software. Martin and McClure state that “what is
needed is succinct, high-quality documentation that is easily
accessible and easily updatable. To be maintainable, pro-
grams and their associated documentation must be flexible
and extensible.””” To that statement we could add that all
documentation pertaining to an applications systern must fit
the same description as that for a program.

BASIC ELEMENTS OF DOCUMENTATION
GENERALLY NEEDED FOR EACH APPLICATION

Regardless of the tool used or the level at which it is applied,
the basic elements of documentation needed for a typical
business application include:

1. The basic purpose of the system

2. Identification of the customer

3. How the system runs (tasks, procedures, call files, jobs,

operating system commands)

4. How execution begins and proceeds

. Which groups of higher level languages or fourth-
generation language instructions exist

. How the groups of languages (or programs) are invoked

. Which functions are performed

. Which files exist

. How is the data processed—and by which tasks or
programs

10. What the output (input) looks like (files, screens, re-

ports, etc)
11. Who is responsible for the system maintenance

W

O 00 N O\

Whatever the capacity of the hardware, the size of the applica-
tion, the programming language employed, the number of
staff members, or whether a database management system is
used or not, these types of basic elements need to exist for
maintainers and auditors of the system.
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Figure 1—Visual table of contents (VTOC)

WHY DOCUMENTING IS SO UNPOPULAR

Documentation, useful if not absolutely necessary, is often
the least favorite part of most DP professionals’ duties. This
is so because documentation is seldom scheduled as part of the
job. When schedules slip, system implementation is a more
important feature; there must be a system. The documenta-
tion portion of the schedule, often inadequately allotted at the
start, is diminished because it is often performed after the fact
and because it is usually a clumsy, manual system. Sometimes
documentation begins when maintenance begins.?

Documentation in ADP was completely manual prior to the
development of SID and included several elements: First was
a visual table of contents (VTOC) describing the hierarchy of
tasks. This is a manually drawn set of boxes within a strict
format. The major functions of the system appear as text
within the boxes of this system schematic (Figure 1). The
VTOC was initiated during system design and maintained 4
during the life of the system. It was normally produced after
system implementation, to merely fulfill a documentation re-
quirement, and often was not maintained because of the ne-
cessity to manually redraw and retype the chart.

The next item was a hierarchical input process output
(HIPO) describing the flow of input and output with respect
to the functions of a program or task. Special symbols to
represent files, output listings, and direction of flow (arrows)
were drawn by hand with the aid of a template, and a narrative
was typed (Figure 2). HIPOs were intended to be design aids,
but were usually produced post-implementation and then only
because of standards requirements. Obviously, due to the
nature of the format, changes of any consequence required
redrawing of one or more pages, or a manual cut-and-paste
procedure. Such inconvenience discouraged the maintenance
of the charts to accurately refiect the state of the system as it
changed character over time because of maintenance and
enhancement.

BATCH PROCESS NO. 27

TRANSACTIONS
- \1. EDIT TRANSACTIONS
PROCEDURE >
2. UPDATE SEQUENTIAL ————® @
FILEA

/ 3. PRODUCE UPDATE
REPORT
PROCEDURE
2 —

UPDATE
REPORT

P

MASTER

—_—

PRODUCE - a LIST
/ MASTER LIST /‘_
PROCEDURE —_— . PD‘;?'(A;EB(;;E
3

2. CREATENEW —0 o
DATA BASE
———» FROM SEQUENTIAL
FILE

Figure 2—Hierarchial input process output (HIPO)

Next were the indices of programs and files, which provided
simple lists, usually alphabetized. Other information, such as
what task invoked the listed program, or what files were refer-
enced by the program was usually included (although some of
the data existed in other forms in the HIPO). The frustration
in manually maintaining such lists is that the data must be
recorded at least twice (the I/O files are listed on the program
index; the referencing programs are listed on the file index).

Also included was information about file and data ele-
ments. Data elements were typically described by a record
layout form (Figure 3). The record layouts often were
hand-drawn.

Finally, there were program listings, which were main-
tained in hard-copy form in folders arranged in an order
meaningful to the organization (by section, by function, and
so on). The listings were checked out to maintenance pro-
grammers in a library-type arrangement.

FILE NAME: A RECORD NAME: EMPLOYEE

FIELD EMPLOYEE | EMPLOYEE | DATE OF SEX
NAME: NUMBER NAME BIRTH
CHARACTERISTICS: X{6} X{14) X(6) o
RELATIVE 1-6 7-20 21-26 27
POSITION:

Figure 3—Record layout
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AUTOMATION CAN MAKE DOCUMENTATION
MORE PALATABLE

Streamlining of documentation procedures may improve the
product to the point that it becomes a true maintenance aid
instead of a mere fulfillment of standards requirements. There
are psychological reasons that programmers are more com-
fortable with automated tools than with manual ones. Data
processing professionals, like the shoemaker with his barefoot
children, automate the lives of others, but often have no time
to automate their own business. Naturally, programmers be-
come frustrated at being forced to deal with internal paper
work when they are accustomed to automation in every other
aspect of their work.

If manual processes are clumsy, they also tend to produce
incomplete and inaccurate results. Although management
makes rules in the form of standards, having an understand-
able incentive for profit, they reinforce the message to their
staff that the most important part of a job is to get the system
up and running. Of course, the message is well received by
programmers, who often view documentation as a nuisance.

Automated documentation has all of the advantages of any
other automated system, including interactive retrievals, si-
multaneous access by several parties, and easy aggregates.
One particular advantage of automated documentation is the
retrieval of information across systems. For example, manual
documentation shows program and file relationships within a
particular system, but if one wanted to list every program that
reads File XXX because the format must change to increase
the field length of a data item, then all manual documentation
for systems suspected to relate to the file must be searched, or
all machine-readable files across those systems must be
searched to complete the list; an easy retrieval for a properly
formatted system information database. Size considerations,
an aid in estimation of the effort required for a job, are also
available, e.g., the number of files within the number of sys-
tems that reference Purchase Order Number or one of its
aliases. As Brown writes, “the most common error in docu-
mentation is to provide masses of detail . . . but little on overall
organization . . . and on the relationship between parts.”*

AUTOMATING DOCUMENTATION: A CASE STUDY

At Los Alamos National Laboratory, management and staff
agreed that an automated documentation process should be
attempted. A relational database system was already licensed
in-house, had proved to be an excellent tool for other applica-
tions, and was chosen to inventory and manage parts of our
documentation function. There existed, however, a resource
problem. All available analysts, designers, and programmers
were committed to other projects. Given the work load facing
the entire division, there was little justification in hiring staff
for the documentation project, which was considered over-
head. It was not a development of an application desired by
the customers who pay the bills. There also was a little skep-
ticism on the part of management. There had been no official
cost-benefit study performed for the project and management
could not be certain it would be worth the effort to disturb the

status quo to implement a new documentation system when
the staff was in the throes of a great deal of new development.

By afortunate circumstance, the ADP Division was host for
the summer to four young men from the service academies. *
The Service Academy Research Associates (SARAs) came to
us from the Air Force and the Naval academies; three of them
were in their senior year, one was a computer science major,
and none had practical data processing experience. They were
enthusiastic about learning a state-of-the-art tool, so it was
decided to assign them the documentation project, even
though they could not work as a true team since their four- to
six-week tenures overlapped very little. Armed with a name,
SID, and a database management tool, they produced a pro-
totype that proved to be quite successful in convincing man-
agement and staff that the documentation procedures could
indeed change for the better.

While the first SARA was en route to Los Alamos, a sys-
tems requirements definition was produced as a guide to the
current manual system and what we wanted to accomplish
with SID. Normally, a systems design document follows the
requirements definition in the development of any new
project. In this case, however, the detailed design was re-
placed with the prototype version of the system.

A pilot system was rapidly available for management to
evaluate in terms of cost and benefit and for the staff to
evaluate in terms of usability. The pilot project had small-
scale actual data; data were entered for small but complete
systems.

The system was refined by submitting the prototype version
to selected members of the programming staff for critique.
Tables were easily restructured to add and delete data ele-
ments or to modify attributes, without the loss or troublesome
reloading of any of the real data. Additional live data were
loaded from a hierarchical database on a separate computer
via magnetic tape. Live data also were loaded from files that
programmers had set up to keep track of various systems for
which they were responsible. It was interesting to note that
many programmers had already discovered that the manually
maintained central files were inadequate for maintenance pur-
poses and that several members of the staff had taken steps to
record applications data in a more usable state.

A recent survey of programmer opinion indicated that the
current ADP staff was 100% in favor of maintaining an auto-
mated system to map the state of present systems and the
evolution of future systems. When a representative task force
of the programming staff viewed demonstrations of the re-
trievals, they responded favorably.

Some of the automated retrievals that replaced manual
documentation elements include the VTOC (Figure 4), HIPO
(Figure 5), index of programs, index of files, index of tasks,
and catalog of systems (Figure 6). The VTOC is somewhat
different in format from the original. To allow for an unre-
stricted number of high level functions, the information is
spread down the page instead of across. The informational

*Midshipman Christian N. Haugen, U.S. Naval Academy; Cadet Edwin O.
Heierman, U.S. Air Force Academy; Midshipman Matthew J. McKelvey,
U.S. Naval Academy; Midshipman Gard J. Clark, U.S. Naval Academy.
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VISUAL TABLE OF CONTENTS
FOR SYSTEM 23
CAPITAL EQUIPMENT BUDGET SYSTEM
(CEBS)
PROCEDURE NO. 10

PROCEDURE
2301
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NIGHTLY
UPDATE
PROCEDURE
C230100
UPDATE
PROGRAM
100
COBOL
SORT
PROGRAM
101
UPDATE
PROGRAM
102
SUMMARY
REPORT
PROCEDURE
CEBS
PURCHASE
REQUEST
TRANSFER
PROGRAM
103
TRANSFER
Figure 4—VTOC

elements are retained, however, and both hierarchical and
sequencing attributes are preserved. A catalog of systems
relates files to programs, programs to tasks, and tasks to
systems. In the example in Figure 6, the capital equipment
budget system (CEBS) is documented. CEBS is identified as
system 23. Task 2301 is a procedure file that executes three
programs—230601, 230605, and 230625. Each program is also
identified by its generic name. Files appearing as I/O within
the programs are documented in the rightmost column.
Source data is input to the database using the input screen
tools supplied by the database management system (Figure 7).
Updates to documentation of the present system are accom-
plished using the same screens.

FRINGE BENEFITS

SID was devised with the intent of helping programmers to
map present and future systems. However, once in piace, it
provided several other benefits. A matrix describing system
identifiers and associated responsible programmers had been

HIERARCHICAL INPUT PROCESS OUTPUT
FOR SYSTEM 23
CAPITAL EQUIPMENT BUDGET SYSTEM
BATCH PROCESS NO. 27
PROCEDURE NO. 2301

INPUT FILES PROGRAM OUTPUT FILES
® TRANSACTIONS 230501 ® FILEA
e FILEA ® EDIT ® REPORT
TRANSACTIONS
e UPDATE FILE A
® PRODUCE UPDATE
REPORT
® FILEA 230605
® PRODUCE ® MASTER
MASTER LIST
® FILEA 230625 o NEWDB
. ® CREATE NEwW DB °
Figure 5—HIPO
CATALOG OF SYSTEM,
TASK, PROGRAM, FILE
TASK
SYSTEM (PROCEDURE) PROGRAM FILE(S)
ID 1D NAME USED
23-CEBS 2301 230601 FILE A
EDIT/UPDATE REPORT
230605 FILE A
MASTER LIST MASTER
230625 FILEA
NEW DB OoLD DB
NEW DB
Figure 6—System catalog

maintained on word processing equipment. A similar matrix
detailing application system, organizational section where the
functional responsibility for that application resides, and pro-
grammers identified in order by level of responsibility (pri-
mary responsibility, back-up to primary responsibility, and
secondary back-up responsibility) can now be made by a fairly
simpie merge of reiations. The query ianguage cormnmands are
collected into an executable procedure so that the matrix can
be produced with one operating system level command. The
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PROGRAM UPDATE FORM

SYSTEM SUBSYSTEM PROGRAM
IDENTIFIER IDENTIFIER NUMBER
[Jp— [ [ ——
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PROGRAM NAME SYSTEM USED
c
Cmm -
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L'NESS F LANGSESGE WHICH CALLS
F:O v PROGRAM
== Cmmmmm €
SUBROUTINE
OF ?
Commee =
Figure 7—SID data entry screen

word processing files have been deleted and the clerical staff
updates employee information as it relates to system responsi-
bility directly on the database. Section leaders (first-line man-
agement to whom the responsible programmers report) like-
wise record responsibility changes directly on the database.
Figure 8 is an example of the responsibility matrix. Of course,
responsibility information can be retrieved by name of staff

member as well as by application system. It is sometimes
useful for management to know—by employee—for which
systems each employee maintains responsibility, and what
constitutes the level of responsibility. Once system responsi-
bility data are captured, it is a simple step to report organiza-
tional entity, telephone number, and location for members of
staff, either as a complete organizational report or as re-
trievals for single individuals or groups of individuals.

Another fringe benefit of storing gross system data in one
place is the ability to estimate system size. Many installations
can list the modules present in a system, but few can report
much about actual system size, because expansion and con-
traction take place continuously with modification. There is
an occasional need to give at least approximate-figure answers
to questions about how long it will take to convert completely
to a new hardware vendor or what the estimate is for con-
verting to a new language version or a different control lan-
guage. These questions frequently are not just academic; en-
tire installations can change hardware vendors, and it is not
unusual for vendors of software to cease support of earlier
versions. Approximate figures for lines of code per language,
languages per system, programs per system, tasks (operating
procedure level commands) per system, and other sums can
provide the basis for estimating conversion effort, and there-
fore, monetary cost. Such queries can be processed easily by
the count and sum features of most databases.

FUTURE ENHANCEMENTS

While the primary intent of the database is to serve the pro-
gramming staff who maintain present systems and develop
new ones, the functions can be expanded to include the oper-
ations side of systems production. Run and recovery instruc-

RESPONSIBILITY TABLE

SYSTEM SYSTEM ORGANIZATIONAL 1st 2nd
1D NAME SECTION PRIMARY BACKUP BACKUP
12 PAYROLL EMPLOYEE HAWKINS RICH McCALISTER
INFORMATION
20 COMMITMENTS ACCOUNTING TOMLINSON HUDGINS ARMSTRONG
AND OPERATIONS

23 CAPITAL BUDGET AND ROYBAL HILL
EQUIPMENT PLANNING

70 GENERAL ACCOUNTING HUDGINS OSBORN
LEDGER AND OPERATIONS

85 PROPERTY MATERIALS ARMSTRONG
MANAGEMENT

Figure 8—SID retrieval
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tions, file access and permits, account restrictions, job setups,
file retentions, expected outputs, and other operations data
can be appended to system, task, program, file, or data ele-
ment relations as appropriate. Operations information is a
natural addition because operators and production controllers
are also interested in employee system responsibilities and
system functional descriptions, which have already been de-
scribed in the database.

Information about system functions, responsibilities, and
operations can form a useful link to controlling resources and
measuring activities associated with a system. The level of
activity against a system is a guide to future staffing in an
organization. Activity in the form of customer requests for
service (maintenance, enhancements) on a particular system
can be married to the system information database to get a
complete picture of current system activity levels. For exam-
ple, it can be noted that system #98 is general ledger, that task
#107 account update executes 12 programs and 7 files (from
SID), that the task is executed approximately 30 times per
month (from SID), that program #203 aborted seven times
last month (from SID with operations data), and that program
#203 had five service requests logged against it in the past six
weeks (from the resource control or metrics database). Other
data, such as the effort required to complete the requests for
service on the program and history of the program, can be
used in assessing staffing levels for the system as well as for
considerations in the program’s redesign.

CONCLUDING REMARKS

No database, even a modern relational database, is magic.
The organization considering support of a SID must commit
to some amount of overhead. As in the case of the automated
systems we deliver to our customers, data must be entered,
the database tool must be understood, and more likely than
not, programs will have to be designed and maintained to
perform sophistitated retrievals and to provide links from one
database to another.

When SID was developed by ADP at Los Alamos, the
prototype was brought up almost entirely by the SARAs, a

real tribute to the ease of use of the relational database man-
agement system. Yet several programs were required, adding
to the overhead of maintenance and documentation for those
remaining after the student apprentices have left. Like all
systems, data processing’s management information systems
must be staffed to watch for and prevent system degradation.
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The features discussed in this paper are among the more
significant new features of the draft proposed revised X3.23
American National Standard Programming Language
COBOL (COBOL-80). The features presented here repre-
sent only a sample of all the new features of the revised
COBOL standard. Many other more subtle features of
COBOL-80 are included as well.

Based on my own analysis as well as on a government analy-
sis conducted on a sizable sample of its own program inven-
tory, I expect a significant increase in productivity will be
derived from using COBOL-80 in program development and
maintenance. Particularly in the area of program mainte-
nance, although the cost savings will be deferred as programs
go through their normal life cycle, the productivity gains de-
rived from the maintenance of well-structured COBOL-80
programs will be a significant factor in systems maintenance
operating costs.

This revision of the COBOL standard has, in addition to the
new features, numerous clarifications of poorly defined (am-
biguous and undefined) rules that existed in the previous
COBOL-74 and COBOL-68 standards. These clarifications,
although constructively serving the COBOL user community
at large, may inadvertently conflict with a specific imple-
mentor’s COBOL compiler. This occurs when a specific
implementor-defined interpretation of an ambiguous rule oc-
casionally differs from the newly defined standard interpreta-
tion. Much attention has been paid to this group of features
over the past few years.

Many of the new features of COBOL-80 will greatly ease
the use of COBOL in structured programming environments.
Some of the new features specifically useful in structured pro-
grams are included in the following sections.

EVALUATE

The EVALUATE verb provides a means of testing multiple

EVALUATE AGE-OF-DEBT ALSO
WHEN 0 THRU 30 ALSO
WHEN 0 THRU 30 ALSO
WHEN 31 THRU 60 ALSO
WHEN 31 THRU 60 ALSO
WHEN 31 THRU 60 ALSO
WHEN 61 THRU 90 ALSO
WHEN 61 THRU %0 ALSO
WHEN 61 THRU 90 ALSO
WHEN 91 THRU 999 ALSO
WHEN 91 THRU 999 ALSO

END-EVALUATE

conditions and specifying multiple control branches (see Fig-
ure 1).
i

PERFORM

An in-line version of the PERFORM statement is now per-
mitted. In addition “DO-while” and “DO-until” constructs
can now be written with the addition of the WITH TEST
BEFORE and WITH TEST AFTER clauses.

PERFORM WITH TEST AFTER UNTIL X > = 100
ADD1TOX
MOVE TABLE-ITEM (X) TO TABLE-ITEM ( X+ 1)
END-PERFORM

Note the new relational operator GREATER THAN OR
EQUAL, and the new relative subscript (X + 1).

STRUCTURED CONDITIONAL STATEMENTS

With the inclusion of 19 scope terminators (i.e., END-IF,
END-READ, END-ADD, etc.), constructs of nested condi-
tional statements may be written with clarity.

IF FINAL-RECORD-PROCESSED
THEN PERFORM LAST-TRANSACTIONAL-PROC.

READ BATCH-KEY-FILE
AT END EXIT PROGRAM
END-READ
IF BATCH-KEY = “D”
THEN  PERFORM DELETION-PROC.
ELSE  PERFORM MODIFY-PROCEDURE
END-IF
ELSE PERFORM NORMAL-RECORD-PROCEDURE
CONTINUE
END-IF
CREDIT-RATING
“A” THRU “B” PERFORM NO-NOTICE
“C PERFORM MILD-NOTICE
“A” PERFORM MILD-NOTICE
“«B” PERFORM NORMAL-NOTICE
“c” PERFORM FIRM-NOTICE
“A” PERFORM NORMAL-NOTICE
«B” PERFORM FIRM-NOTICE
g PERFORM COLLECTIONS
“A” PERFORM FIRM-NOTICE
“B” THRU “C” PERFORM COLLECTIONS

Figure 1—The EVALUATE Statement
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FALSE CONDITION BRANCH

To add structured symmetry to all conditional clauses (AT
END, ON SIZE ERROR, etc.) a negative version of the
clause is also allowed as in:

READ MASTER-FILE
AT END EXIT PROGRAM
NOT AT END PERFORM PROCESS-RECORD
END-READ
NESTED PROGRAMS

Complete programs may be wholly contained within other
programs. This permits, among other things, the outside pro-
gram to specify GLOBAL data items, which may be shared by
any of the contained (inside) programs; as in this example:

01 SHARED-DATA IS GLOBAL PIC X(20).

Additionally, GLOBAL USE procedures may be specified
in the DECLARATIVE section of the outer program that
allows for file error processing in the contained programs to
be centralized and controlled by the outer (Master) program:

USE GLOBAL AFTER STANDARD ERROR
PROCEDURE ON INPUT.

CALL

Data items that are passed to “sub-programs” may protect
their contents from being modified by the addition of the BY
CONTENT phrase of the CALL statement.

CALL PAYROLL USING BY CONTENT WEEKLY-PAY,
YTD-PAY.

INITIALIZING SUB-PROGRAMS

When the PROGRAM-ID of a subprogram contains the
phrase IS INITIAL after its program name, the programmer
can be assured that all data values will be initialized before it
starts executing.

PROGRAM-ID. ACCOUNTS-PAYABLE IS INITIAL.

OCCURS-VALUES AND SUBSCRIPTS

Seven dimensions (seven levels of subscripting) may now be
specified (previously only three levels were provided). Also,
initial values may now be specified for table elements without
the need to REDEFINE the table.

0i.
03 TABLE-ELEMENT PIC 999V99 OCCURS 100
TIMES VALUE ZERO.

SYMBOLIC CHARACTERS

The symbolic character clause in the SPECIAL-NAMES
paragraphs provides a means for a programmer to specify a
user-defined name for nonprintable characters in the ASCII
(or other) character sets.

SYMBOLIC CHARACTER BELL IS 8 IN ASCII
In this example 8 refers to the eighth ordered character in the
ASCII character set, and BELL is a user-defined figurative
constant.

FILLER

The word FILLER is optional and is no longer restricted to
elementary data items.

01.
02 COUNTER-1 PIC 999V99.
02 PIC X.
02 COUNTER-2 PIC 999V99.
DE-EDITING

Numeric-edited data items (PIC $$$,$$$) may be moved to a
purely numeric data item (PIC 9(6)V99). This results, for
example, in moving a data item that contains $1,234 to a data
item containing 00123400.

SORT

Multiple output files are permitted. In addition, the WITH
DUPLICATES IN ORDER clause now allows the pro-
grammer to specify that duplicate sort keys appearing on the
input file will be in the same sequence on the output file.

SORT SORT-WORK FILE
ON ASCENDING KEY WORK-ORDER-NUMBER
WITH DUPLICATES IN ORDER
INPUT PROCEDURE IS  EDIT-INPUT-PROCESS
GIVING DAILY-WORK-SEQ
DAILY-WORK-REL
DAILY-WORK-INDX.

Note also that the SORT input procedure (EDIT-INPUT-
PROCESS) may reference procedures outside of the SORT
section. Likewise, procedures within the SORT may be refer-
enced by procedures in the main program.

REFERENCE MODIFICATION

Programmers may now reference a portion of a data item
without needing to REDEFINE that portion previously in the
DATA DIVISION.

MOVE TELEPHONE (4:3) TO EXCHANGE



COBOL-80: The New Structured Language 221

In the above example only the fourth, fifth, and sixth position
of the data item TELEPHONE are moved (starting in posi-
tion 4: for a length of 3). I suggest that programmers be
careful when using this feature because its misuse can lead to
poorly documented programs.

INITIALIZE
A series of subordinate elementary data items may be initial-
ized all at once using the INITIALIZE verb. Given the follow-

ing group data item:

01 SCREEN-PAGE.

03 NAME PIC X(20).

03 TELEPHONE PIC 999B999B9999.
03 BALANCE-DUE  PIC 9999V99.

03 CUST-STATUS PIC A.

if a programmer writes INITIALIZE SCREEN-PAGE, all
numeric data items will be cleared to zero and all nonnumeric
data items will be cleared to spaces. There are facilities to
restrict the initializing process to certain classes of data (nu-
meric only, alphanumeric-edited only, etc.) as well as to ini-
tialize fields to values other than zero and spaces.

INSPECT. . .CONVERTING

The CONVERTING clause of the INSPECT statement per-
mits a shorthand way of writing multiple character replace-
ment clauses.

01 BOTTLE PIC X(5) VALUE “WATER”.

INSPECT BOTTLE CONVERTING “ATR” TO “IN”
This INSPECT statement results in three character replace-
ments (“A” to “I”, “T” to “N”, and “R” to space). It is a

cheap way to PERFORM miracles in COBOL-80 by con-
verting WATER to WINE.

REPLACE

To aid the programmer in dealing with possible conflicts in
new reserved words with COBOL-74/68 programs, the RE-

PLACE statement operates on source text and converts the
source program before it is compiled.

REPLACE

==END-READ== BY ==END-READ-PROCEDURE==
==CLASS== BY ==DATA-CLASS==
==ALPHABETIC== BY ==ALPHABETIC-UPPER==,

I expect that this will be most useful where COBOL installa-
tions create standard conversion library routines that can be
copied into individual programs.

RECORD DELIMITER

A means of specifying Variable Length Record conventions is
provided in the FILE-CONTROL paragraph.

SELECT INDEXED-FILE A
ASSIGN TO DISC
ORGANIZATION IS INDEXED
RECORD DELIMITER IS STANDARD-1.

DAY-OF-WEEK

This reserved word DAY-OF-WEEK represents a one digit
character: 1 =Monday, 2 = Tuesday, 3 = Wednesday, etc. It
is used as follows:

ACCEPT DAY-CODE FROM DAY-OF-WEEK

CLASS

A new CLASS clause in the SPECIAL-NAMES paragraph
allows a programmer to name his own class of characters.

CLASS FIRST-HALF-ALPHA-UPPER IS “A” THRU “M”

These new features, along with some other more subtle addi-
tions and changes, contribute to an up-to-date application
language complementing current trends in structured pro-
gramming methodologies. *

* Those with questions regarding the revised COBOL 80 standard are invited to
contact the author at Jerome Garfunkel Associates, Inc., Cobble Court, Litch-
field, Connecticut 06759.
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ABSTRACT

The purpose of the study is to assess the estimated costs and benefits to the federal
government that would result from adoptien of the proposed revision of American
National Standard COBOL as a Federal Information Processing Standard (FIPS).
Potential benefits of $90.2 million have been identified, stemming primarily from
improved productivity in both the development and maintenance of COBOL pro-
grams. Estimated costs of $17.9 million have been identified, arising principally
from the effort needed to convert old COBOL programs to the new specification,
which is incompatible in some respects with the current one. In support of the study,
we conducted interviews with federal ADP managers and officials, and also ana-
lyzed more than one thousand federal COBOL programs for various syntactic
characteristics.
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STUDY SCOPE AND QUALIFICATIONS

The scope of this study is limited to COBOL-related effects on
the federal ADP community. Of course similar effects may be
expected in the private sector insofar as the characteristics of
its COBOL usage resemble those of the federal government.

In this analysis, we are concerned with effects that may
result if the proposed changes to ANSI COBOL-74 are also
adopted in the Federal Information Processing Standard
(FIPS) for COBOL. Data available on applications software
development and maintenance in the federal government are
general and approximate in nature, and are particularly lim-
ited regarding any one specific programming language such as
COBOL (although COBOL is by far the most commonly used
language within the government, and therefore can hardly be
regarded as atypical). We augmented the available general
data with staff interviews at nine federal agencies and with a
detailed analysis of a sample of 1068 COBOL programs from
eleven federal agencies.

BASE CASE STATISTICS

The base case statistics are derived from various reference
materials, cited in this document, and the study survey and
program sample.

Programmer Pool

For the past 10 years the number of federal agency staff
programmers has remained fairly steady—in the range of
118,000~120,000 staff-years.! Of those work-years, roughly
60% were primarily for COBOL-related activities in 1980,
with a growth to 65% projected for 1985.% Depending upon
the federal agency, the annual programmer turnover rate will
vary from a low of 10% to a high of 30%. A reasonable
average appears to be 20%. In most installations, more than
half of the staff are devoted to maintenance (corrective, adap-
tive, and perfective) activities, which reflect the life cycle
distribution of application software costs.>” Based on very
limited data, it appears that on the average a programmer
spends 15% to 25% of available time performing coding
functions.

COBOL Program Inventory
There are roughly 500,000 application software programs in

the federal inventory. Of these, 50% to 60% are in some form
of COBOL. Very few, 5-10%, of these 250,000-300,000

COBOL programs are in full conformance with the current
COBOL FIPS 21-1. The average COBOL program in our
sample contains about 1270 lines of source code and was de-
veloped about six years ago. This latter figure compares rea-
sonably well with the 5.4-year estimate given in Reference 4.

In our sample of 1068 COBOL programs, with more than
1.3 million lines of code from 11 federal agencies, we learned
that 80% use one or more of the 50 proposed incompatible
changes analyzed in this study. If we discount the somewhat
special case of the incompatibility concerning the DISPLAY
verb (see below), this figure drops to about 40%.

. An important point about interpretation of the statistics is
that the detection of incompatibilities was done by a syntactic
scan of the source code. Where the incompatibility involves a
syntactic change (e.g., the deletion of ENTER), this is a
reliable procedure. In those cases where the semantics are
being changed or clarified (EXIT PROGRAM closing out
PERFORMs, for example), however, the best that can be
done is to look for source code where such a change might
make a difference. This analysis represents, therefore, only a
worsi-case estimate. The DISPLAY incompatibility is an es-
pecially striking example of this. Syntactically, we counted
every occurrence of DISPLAY as an incompatibility, even
though the great majority of vendors currently implement this
verb as described in the revision.

The age of programs was determined simply by the contents
(if any) of the DATE-WRITTEN paragraph. This is, of
course, not a foolproof metric. Nonetheless, we feel the data
are worth presenting, and they do agree with a previous Gen-
eral Accounting Office estimate. We were able to find a
DATE-WRITTEN entry in 58% of the sample programs.

Application Program Conversion and Maintenance

In the current setting, the source code for application pro-
grams is updated for a variety of reasons:

1. Conversion to a new or modified host system (hardware
or software)

2. Accommodation of modified functional requirements

3. Correction of errors detected in the code

4. Reprogramming to reduce the number of compilers used
or to improve processing efficiency

The interviews with federal ADP managers revealed that
COBOL programs are recompiled at least once a year be-
cause of maintenance activities, and sometimes as often as six
times annually. A reasonable average is two or three times per
year.
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COSTS AND BENEFITS

Program Development

The proposed revised standard COBOL features that have
the potential to enhance programmer productivity include the
following:

1. Nested programs provide a facility for segmenting large
programs into smaller logical units

2. Scope delimiters assist in the generation of structured
code

3. Reference modification allows the programmer to access
any part (substring) of a character field without having
to redefine the item

4. EVALUATE statements incorporate a well-known con-
struct from structured programming practices, the multi-
way conditional

5. Other constructs that should prove useful in clearing up
previously awkward aspects of COBOL are the ability to
PERFORM routines in-line, set up tables with more
than three dimensions, accept as well as generate num-
bers in edited form, and INITIALIZE the values in
tables.

Of the above, we were able to search the sample programs for
programming practices in which features 3 and 4 could have
been used and would have saved time for the programmer.
For feature 3, we searched for data items defined as PIC X
(one character only) with an OCCURS clause. For feature 4,
we searched for GO TO ... DEPENDING ON. In our sam-
ple, roughly 22% of the programs could have employed fea-
ture 3, and 5% could have used feature 4.

Feature 1 will be especially useful for organizing large pro-
grams. In our sample, programs with more than 1500 lines of
source code account for approximately 65% of all the lines of
code (even though they constitute only 25% of all programs).
We note that all COBOL programs can make use of feature
2. Moreover, in the interviews conducted with representatives
of various federal agencies, this enhancement was the one
most often cited as potentially improving programming prac-
tice. Thus, we anticipate that the enhancements to COBOL
will apply to some degree to virtually all programs in the
federal inventory. For a considerable percentage of the code,
the effect will be quite significant.

We make the following conservative assumptions: First that
COBOL-8x will be adopted by federal agencies at the rate of
approximately 10% per year, and second, that the use of the
advantageous features will result in a 5% increase in produc-
tivity during the coding phase of development. These assump-
tions generate a savings of $36.1 million over the next ten
years.

Program Maintenance

Program maintenance concerns those activities ir)volving
correcting, perfecting, and adapting existing application soft-
ware, and currently represents 50-70% of the program life

cycle costs.>™®

The principal ways in which the proposed changes to stan-
dard COBOL would affect the maintenance function are by
increasing the understandability of COBOL programs and by
reducing the error-prone features of COBOL-74. The en-
hancements to the language cited above under program devel-
opment apply strongly to program maintenance as well, since
they make it easier to read and write code. Many of the
proposed 50 incompatibility changes are intended to eliminate
or clarify certain error-prone or ambiguous features of the
current COBOL standard.

Again, assuming that federal agencies adopt COBOL-8x at
the rate of 10% per year, and that the advantages of COBOL-
8x generate a 1% savings in maintenance activities, the re-
sulting savings will be $54.1 million over the next 10 years.

Program Conversion

Software conversion is the transformation, without func-
tional change, of computer programs and data elements to
new hardware or software processing environments. The
greater the degree of incompatibility between the source and
target systems and the setting, the more difficult the
conversion.

Clearly, there will be an extra cost associated with moving
programs from a COBOL-74 compiler to a COBOL-8x (this
is the name sometimes used to refer to the proposed new
standard) compiler insofar as there are incompatibilities be-
tween the two. This cost is the object of the quantitative
analysis. It is also true, however, that in those cases involving
the definition by the proposed revision of features that had
been ambiguous or implementation-defined, there will be an
associated benefit. This is because future conversions within
the COBOL-8x standard will not be vulnerable to different
implementation of these features.

Programs may be brought into conformance with COBOL-
8x in the following ways:

1. Recoding for the sole purpose of conforming to the new
standard

2. Recoding in conjunction with a system conversion to a
new host system

3. Recoding in conjunction with normal software mainte-
nance requiring recompilation

4. Reprogramming to meet new functional requirements of
the application

In assessing the effect of the incompatibilities, it is useful to
consider the federal COBOL inventory as a whole, and to ask
how many of these programs will eventually be converted to
COBOL-8x (as opposed simply to being left as-is until no
longer needed), and in which of the four ways listed above this
will occur. The list is ordered from greatest to least effect per
program. At one extreme, if a program is converted purely for
the sake of conformance, then the entire cost of conversion is
attributable to the adoption of the new standard. At the other
extreme, if a program is completely redesigned anyway, there
is no measurable additional cost in seeing that it conforms to
the standard. Midway between these cases would be bringing
a program into conformance in conjunction with some other
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form of updating, be that conversion or maintenance. While
there is some extra effort involved, much of the conversion
overhead (e.g., recompilation, retesting) is “free,” in that it
would be done even if the two versions of the standard were
completely compatible. It is worth recalling that programs are
recompiled rather frequently (at least once a year) for routine
maintenance, and so there is plenty of opportunity for re-
coding in category 3.

The cost effect is the additional effort expended in each of
the above categories. Based on interviews with federal agen-
cies, and also on a review of the transition process from
COBOL-68 to COBOL-74, we conclude that very few, if any,
conversions will be done merely for the sake of conformance.

Also, the previous experience in making the transition from
COBOL-68 to COBOL-74 indicates that installations will
continue to maintain the compiler for the previous version of
the standard for a considerable time after introduction of the
new version. We conclude, then, that the cost of achieving
conformance in categories 1 and 4 is negligible, because virtu-
ally no conversion will be done in category 1 and there is no
effect on conversion in category 4.

Measurable costs, then, are confined to categories 2 and 3,
which we will treat together. The key questions are how many
conversions will be done this way (as opposed to category 4 or
not being done at all), and how much extra effort will be
introduced by the incompatibilities.

The first question, about the percentage of programs to be
converted, may be approached by noting some of the charac-
teristics of the age of programs. The statistics on age allow us
to formulate only a rough idea about the pattern of longevity
for the current federal inventory. Note that the statistics are
for the age of existing programs. This age distribution would
directly reflect longevity only if we assumed that COBOL
programs were being created at a constant rate over the past
15 years or so—clearly not the case. Nonetheless, almost any
reasonable model one can develop that assumes an average
age of six years for federal COBOL programs will yield a
result no greater than 70~75% for the share of programs that
will be converted to COBOL-8x over the next 10 years.

Next, we must consider the degree of extra effort entailed
by the incompatibilities. For this analysis, we decided to use
various parts of the Federal Conversion Software Center mod-
el.® Its formulation is exclusively oriented to and based on
federal ADP systems. Also it provides reasonable definitions
of the conversion complexity classes and of average conver-
sion cost per line of code by class. Through the use of this
model, we can express in a precise way the intuitively natural
notion that the costliness of a given incompatibility will de-
pend strongly on how often the incompatibility is used (as
measured by the sample) and how complex is the conversion
that it entails. Based on this model, the cost of converting to
COBOL-8x over the next 10 years is $17.9 million.

Sensitivity Analysis

The principal objective of a sensitivity analysis is to assess
the degree of variation in the cost-benefit effect estimates
generated by changes in the study assumptions, and to pro-
vide insight about the validity of the study findings (see Table

I for a summary). Therefore, we will discuss in greater depth
those assumptions that are most subject to doubt and that
affect the outcome most strongly.

Benefits

The benefits, as is typically the case for standards, are broad
but shallow. Estimating the breadth (i.e., scope) of the bene-
fit is relatively simple: Clearly, the effect extends throughout
the use of COBOL in the federal government. The difficulty
is in arriving at a reasonable estimate for the depth: How
much good will the new standard do in an “average” federal
agency? We have tried to be cautious in our estimates of the
programming savings factor (PSF=5%) and maintenance
savings factor (MSF = 1%). The less precise of these is prob-
ably MSF. If we assume that MSF is 2%, instead of 1%, the
maintenance benefit increases by $54 million. Such value is
well within reason, but cannot be demonstrated with the avail-
able data.

Cost

We now examine those assumptions upon which depend the
most likely cost estimate of $17.9 million. Clearly, the bulk of
the cost stems from those incompatibilities that both occur
frequently and force a more severe modification. There are
four of these that deserve somie individual comment:

1. Deleting MEMORY SIZE from the standard
2. Deleting ENTER from the standard
3. Defining the effect of EXIT PROGRAM on

PERFORMSs
4. Defining the order of evaluation of subscripts within
PERFORMs
TABLE I—Sensitivity analysis
(figures in § millions)
| Assume Assume
| MSF = 1% MSF = 2%
most likely | Benefit: 90.2 144.3
assumptions | Cost: -17.9 -17.9
| Net: 72.3 126.4
assume ENTER | Benefit: 81.2 129.9
unchanged, 10% | Cost: ~-11.3 -11.3
benefit loss | Net: 69.9 118.6
Conversion of | Benefit: 90.2 144.3
50% of Program | Cost: -12.8 -12.8
Inventory | Net: 77.4 131.5
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Items 3 and 4 cannot reasonably be changed back to the
original specification of COBOL-74. They simply define the
semantics of two cases that were not described in COBOL-74.

For item number 1, the effect was completely dependent on
the implementation in any event; almost all modern systems
accept such information as part of their system control lan-
guage. For item 2, it is technically feasible to keep the
specifications of COBOL-74. If this were done, the cost esti-
mate would shrink to $11.3 million. There would also be,
however, an adverse effect on the benefit side. ENTER was
deleted precisely because it encourages the development of
the code that is error-prone and difficult to maintain. It would
take only a 7% reduction of the benefits to cancel out the $6.6
million cost savings.

It is worth noting that in all four cases above, programs
depending on the COBOL-74 specification were not guaran-
teed to be portable by that specification; all four changes are
examples of taking aspects of the COBOL-74 standard that
were ill-defined (purposely or not) to begin with, and either
deleting the feature outright, or simply defining its effect. In
none of these cases is a truly well-defined portable feature
being affected.

The final issue is which policy federal agencies will adopt
governing coding practices in the years leading up to the actual
transition to a COBOL-8x implementation. We have some-
what pessimistically assumed that as new code replaces dis-
carded programs, it will have the same degree of incompat-
ibility. If, on the other hand, new code under development
were monitored for conformance to COBOL-8x, then the
effective percentage of code actually needing to undergo con-
version would shrink from 70% to 50% within a few years. A
figure of 50% implies conversion costs of $12.8 million.

FINDINGS AND RECOMMENDATIONS

This study shows that the effect of revising the COBOL stan-
dard as proposed should not be dramatic, either for good or
ill. There is a real opportunity to improve certain features of
the language, which should not be ignored, but the changes
will hardly revolutionize COBOL programming in the federal
sector. At the same time, there will be some problems created
by incompatibility. These are not unusual, either in kind or in
degree. Nor should it be surprising that the effect is relatively
small; the proposed revision is just that: a revision of an
existing standard—and not that markedly different from it.

It is important to put the projected costs and benefits into
perspective. An effect of $100 million, spread out over 10
years, represents 0.3% of the salaries (unadjusted) of federal
programmers over that same period. Concerning incompat-
ibility, there was virtual consensus among the ADP personnel
we interviewed that modifying source code was among the

easier aspects of conversion. They had experienced far more
difficulty with conversion of data and of job control code.
Some agencies actually had to write their own input—output
routines, rather than use those of the new system, because of
data incompatibility. When asked what their biggest problem
was, most answered, “the lack of documentation.” One inter-
viewee characterized this as the problem of “portability of
programs between programmers.”

There is no need to improve compatibility between the
current and proposed versions of COBOL. While there are
theoretical problems, the way in which COBOL is actually
used in the federal government renders them relatively minor.
The introduction of any further incompatibilities, however,
should be subject to careful evaluation to ensure that their
effects are no more adverse than those considered in this
study.

The benefits of revising the COBOL standard are largely
associated with the COBOL programs yet to be written. The
costs are associated with those that already exist and depend
on features unique to COBOL-74. Therefore, the sooner the
standard becomes known and adopted, the better. The prob-
lems of incompatibility, real as they are, do not justify de-
laying the ongoing maintenance and improvement of the
COBOL language.
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Technology transfer in the maintenance environment
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ABSTRACT

In 1982 The Equitable Life Assurance Society of the United States recognized that
software maintenance requires major management attention, and established a
maintenance producivity project (MPP). Maintenance was defined as any pro-
gramming effort that requires at least 25% of a programmer’s time to be spent
understanding an existing system. Three potential areas were identified for tech-
nology transfer: the maintenance function, the maintenance environment, and
maintenance metrics. Ongoing programs include cooperation with vendors in devel-
oping an integrated environment for the maintenance programmer and manager, a
maintenance management handbook, and a maintenance managers’ round table.
Maintenance is becoming an established and recognized area of specialization for
systems professionals at The Equitable.
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INTRODUCTION

The Equitable Life Assurance Society of the United States is
the third largest mutual life insurance company in the U.S.,
with assets of more than $45 billion and about $230 billion of
life insurance in force. The company installed its first main-
frame, an IBM 650, in 1956, and at that time established its
systems development department, with a total complement of
three people. Twenty-seven years later The Equitable had a
total of eight mainframes with over 60 mips capacity, 750
systems professionals, an annual systems budget of $100 mil-
lion, and an inventory of approximately 350 major systems
with 7000 program modules. '

In 1974, in keeping with a general decentralization of the
company’s management, the systems development depart-
ment was divided into five independent units, whose heads
reported to line management. By 1983 there were nine auton-
omous systems departments. When the systems development
department was decentralized, an EDP coordinating commit-
tee was formed, composed of the officers who headed each of
the systems departments, the head of the data processing
department, and the technology officer. The committee was
responsible for ensuring that the systems needs of the cor-
poration as a whole were met; specifically that hardware sup-
port was available, that well-qualified systems professionals
were recruited, trained, and developed, that advances in hard-
ware and software technology and in systems development
management were introduced into the company, and that the
economies of scale of an EDP installation as large as The
Equitable’s were not lost through the decentralization.

In 1980 the EDP coordinating committee established an
application productivity group (APG) with the charter of
technology transfer, specifically to increase the productivity
of The Equitable’s systems effort by a factor of ten within a
period of five years. Within its first two years, the APG intro-
duced interactive computing throughout all systems areas,
selected and installed the hardware and operating systems for
the interactive testing environment, and established a special
interactive testing support organization. The group also intro-
duced the concept of end-user systems development, brought
the FOCUS language and database management into the
company, and conducted extensive user training.

In 1982, the EDP coordinating committee conducted an
off-site planning session to set the direction for future efforts
of the APG. At this time, maintenance, methodology, and
prototyping were identified as primary areas of concern. Of
these, maintenance—which at the beginning of the session
had little support—emerged as the top priority, primarily be-
cause of an awareness that although maintenance used over
half of the systems resources, it had been disregarded in the
systems development methodology installed 10 years earlier.

INITIAL SURVEY

Between September and December of 1982, the APG con-
ducted its initial survey of the maintenance effort throughout
the company. The purpose of this survey was to define the
specific goals of a maintenance productivity project (MPP), to
estimate the realizable benefits, and to establish a level of
effort and a timetable.

As a first step, the group contracted for the services of
Julien Green, a senior consultant with wide systems experi-
ence and a thorough knowledge of The Equitable’s systems
environment. With him, we reviewed current literature and
interviewed managers in most of the systems areas to identify
the specific needs of The Equitable’s maintenance managers
and programmers.

The results of this investigation were published in De-
cember 1982, and can be summarized under the following
headings:

1. Definition of the maintenance function

2. Definition of the maintenance environment
3. Definition of maintenance metrics

4. Project deliverables

Definition of the Maintenance Function

The industry has developed what is now a generally agreed
upon terminology in describing maintenance, based upon
Swanson’s original classification: corrective, adaptive, and
perfective maintenance." Corrective maintenarice is fixing er-
rors. Adaptive maintenance is changing software to accom-
modate changes in the computing or business environments
without affecting the software’s function. Perfective mainte-
nance is enhancing function.

These three quite dissimilar activities have in common the
requirement that the programmer spend a considerable por-
tion of time (estimated by Fjeldstad and Hamlen at 50%) in
understanding existing materials (code, documentation and
procedures).? It is this requirement that distinguishes systems
maintenance from systems development.

For the purposes of our MPP we define maintenance as any
programming effort that requires at least 25% of the pro-
grammer’s time to be spent understanding an existing system.
We believe this is the point at which programmers begin to
benefit from maintenance-specific tools, which facilitate the
analysis of systems as opposed to their synthesis. If we were
to set this cut-off at a lower percentage, we would include
some clearly development-type programming, which in a ma-
ture EDP environment such as ours usually requires inter-
facing with, and therefore understanding, existing systems.
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We had reviewed other operational definitions used by sys-
tems managers; some distinguish small jobs (maintenance) vs.
large ones (development); others distinguish modification of
existing code (maintenance) vs. the creation of new modules
(development); still others, following Barry Boehm,? include
redesign of less than 50% of existing code (maintenance) vs.
redesign of more than 50% (development). We noted how-
ever that some small jobs are free-standing, while some large
jobs are large precisely because they involve manipulation
(i.e., maintenance) of a large existing system; that some
projects that require little or no modification of existing sys-
tems nevertheless require a major effort in understanding
them; and that the redesign of a larger percentage of an exist-
ing system requires a greater maintenance effort than the
redesign of a smaller percentage.

Accordingly, we concluded that the level of effort required
by a technician to understand an existing system is a more
fundamental criterion than others that have been proposed.
Furthermore, it appears that an operational definition of
maintenance from the systems manager’s point of view must
factor in the cost of understanding code. From this viewpoint,
defining maintenance in terms of the effort required to under-
stand existing code makes sense.

Definition of the Maintenance Environment

Our initial survey also identified three components of the
maintenance environment, each with its own needs. The first
component is the programmers’ environment. We found that
many tools used in development work were used by mainte-
nance programmers, but that there was a need for tools that
addressed the maintenance-specific function of understanding
existing code. We also found that, although there were useful
maintenance tools, no single product purported to provide an
integrated environment—a situation quite different from that
on the development side of the house, where it has long been
recognized that the greatest productivity gains come not from
the sum of the tools, but from the integration of the tools into
a structured environment.

The second component of the maintenance environment is
the managers’ environment. Here we found a need for man-
agement tools—packages to assist in estimating programming
effort, scheduling and controlling maintenance work, budget-
ing, and reporting. Again some tools used for development
were useful, but some, such as an effort estimator for mainte-
nance work, were not available. In addition there was a need
for a description of the sequential steps in maintenance work,
and for a checklist with which to determine the accomplish-
ment of each step.

The third component of the maintenance environment is
the institutional environment, which encompasses the issues
of the image of maintenance, selection and training of
maintenance personnel, and career paths for maintenance
professionals.

Finally, the initial survey identified the need for a good set
of maintenance metrics upon which to base rational mainte-

nance decisions. Two types of metrics are needed: First are
macro-metrics—used to provide a multidimensional profile of
our software inventory. These metrics will allow us to estimate
the size, complexity and state of deterioration (or health) of
our existing software portfolio, predict the resources needed
to maintain our inventory, estimate the cost of maintenance,
and identify areas of largest payoff. An example of a macro-
metric is the number of man-months required to maintain the
‘““average” program module.

Second are the micro-metrics—used to provide information
needed for decisions concerning the maintenance of individ-
ual systems. These metrics will serve as a basis for determining
when to retire, restructure, or retrofit a system, for measuring
productivity trends, for estimating the time and cost of
specific maintenance jobs, for preparing an annual mainte-
nance budget, and for evaluating proposed new software
tools. An example of a micro-metric is an algorithm to esti-
mate the man-months required to implement a specific pro-
gram enhancement.

Project Deliverables ‘

Maintenance improvement is an unusually difficult environ-
ment for technology transfer. Installed systems cannot be eas-
ily adjusted to use a predefined tool or component; nor can an
abrupt change of method be implemented by a staff carrying
a full load of projects already in progress. A maintenance
productivity project does not consist of installing tools, or
adopting a methodology, or establishing management poli-
cies. Instead, it requires continuing of action on several levels.

Therefore, the initial survey defined our objective as intro-
ducing technology transfer into an integrated maintenance
environment upon a foundation of sound maintenance met-
rics. A set of project deliverables for each component of the
environment was developed.

These included, for the programmers’ environment, a
maintenance workbench, i.e., a set of software tools inte-
grated through a common gateway or front end.

Project deliverables specified for the managers’ environ-
ment were a handbook containing an inventory of the tools in
the maintenance workbench, with guidelines for their appro-
priate use, costs, and expected benefits, a description of the
maintenance process, and a milestone checklist; and a set of
software tools, probably resident on a personal computer, for
estimating, scheduling, controlling, and budgeting mainte-
nance work.

Finally, for the institutional environment, a maintenance
managers’ round table was recommended. This is a periodic
meeting of systems managers to define common maintenance
concerns, exchange successful solutions, and channel tech-
nical advance. The round table is designed to build a commu-
nity of interest and to be the main line of communication for
technology transfer, for evaluating and integrating tools, for
drafting the handbook, and for originating new avenues of
investigation.

In November 1982, the Application Productivity Group began
to address the programmer’s environment. There were many
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reasons why we chose to begin our maintenance project with
this activity.

Evaluating and installing software tools is the easiest task
for us to work at. Tools pre-exist our efforts, are concrete, and
demonstrate measurable results. The APG has had consider-
able experience in finding, piloting, and evaluating software.
Good results are readily realizable through the installation of
these tools. Therefore, although we believe that in the long
run activities other than the installation and even the integra-
tion of tools will prove more important, we started our
implementation effort by identifying and evaluating mainte-
nance tools.

Seven types of software tools for the Maintenance Work-
bench were identified for further investigation. They were
retrofitters, restructurers, static code analyzers, interactive
debuggers, test data generators, automated documentors, and
specialized editors. From among these, we selected a new
interactive code analyzer to evaluate and pilot.

INTERACTIVE STATIC ANALYZER BETA TEST

James Martin and Carma McClure had written that “the tool
the maintainer most needs is an interactive code analyzer that
will help him to understand how the code works, and to pre-
dict the side-effects of modification.””* At the time we com-
pleted our initial survey, a vendor was preparing to beta-test
an interactive analyzer.

The APG’s preliminary evaluations at the vendor’s site indi-
cated that the product had powerful functionality. On the
basis of this evaluation, The Equitable agreed in February
1983 to be a beta site.

The product loaded COBOL source code to an on-line

database, which a maintenance programmer could then access.

interactively. It presented three views of the program: the
structure chart view, which gave the programmer an overview
of the design of the program; a source code view, which
allowed a programmer to look at selected units of code; and
a source code difference view, which presented different ver-
sions of the program. In each of these views the programmer
could select and trace data flows and control logic. It was at
the time the only interactive static analyzer that we were able
to find.

Objectives of the Beta Test
The objectives of the beta test were to:

1. Confirm the functionality of the product. Would it ef-
fectively trace the logic and data flows of actual produc-
tion systems, provide accurate flow charts, and com-
pare differences in source code?

2. Determine the quality of the product. How many bugs
would be encountered during the beta test, and how
seriously would they affect the product’s functionality?

3. Evaluate the usefulness of the product in a production
environment. Would it provide answers to real mainte-
nance questions, and information actually needed to
modify programs?

4. Ascertain training requirements. How long would it
take programmers to learn to use the product?

5. Determine the practicality of using the product with
programs written for the non-IBM-compatible systems.
Could minicomputer programs be analyzed?

6. Evaluate the acceptance of the product by The Equita-
ble’s maintenance professionals. If installed, would the
product become the systems community’s Edsel?

7. Evaluate the support given by the vendor during the
beta test. What level of support might we expect when
the product was released?

8. Evaluate the system resources required by the product.
What effect would its use have on our data centers?

9. Estimate the transfer charges that systems areas would
incur for the use of the product. What would it cost to
analyze code with it?

10. Estimate the actual productivity gains that could be
expected. Would benefits outweigh costs?

Results of the Beta Test

The beta test ran from Feb. 2 through April 15, 1983. Dur-
ing the course of the beta test 100 program modules were
analyzed, and approximately 250 hours of interactive testing
were logged.

At its conclusion, the functionality of the static analyzer was
confirmed. On all other factors, except quality, the product
received an acceptable or better rating (Figure 1). However,
the vendor withdrew the package.

We learned three major lessons from this experience: First,
an interactive static analyzer is a valuable tool, and will be well
received by programmers. Since the beta test, whenever pro-
grammers evaluate a software tool, they invariably compare it
to the analyzer and begin their evaluations, “Well, it isn’t a
(product), but . . .” We found that a static analyzer can reduce
the time a programmer spends understanding code by
20-50%. In our environment a 23% reduction in programmer
time for this function would have offset the machine charges.
We look forward to the day when a viable interactive static
analyzer is on the market.

FACTOR RATING

Functionality XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Quality XXXXXXXXXX
Usefulness XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Training Requirements XXXXXXXXXXXXXXXXXXXXXXXXXXXX
Mini-computer programs XXXXXXXXXXXXXXXXXXX
Programmer Acceptance XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Vendor Support XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Resource Requirements KXXXXXXXKXXXXXXXXXXXXXXXXXXX
Running Costs XXXXXXXXXXXXXXXXXXXXXXXXXXXX

Productivity Gains XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Legend: 1. Poor; 2. Acceptable; 3. Satisfactory; 4. Very Good; 5. Excellent

Figure 1—Evaluation of interactive static analyzer
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Second, we learned more about evaluating maintenance
tools. Although most of our criteria had been defined before
the test, others emerged during the weekly review meetings
we held with the programmers. It was at these meetings that
the distinction between functionality, quality, and usefulness
was hammered out. We will evaluate other tools against these
criteria, as well as against additional criteria that may apply.
We expect other maintenance products to appear on the mar-
ket in the near future, and we intend to integrate the best of
them into our environment.

Third, we conclude that the maintenance workbench is a
facility whose time has come. The productivity improvement
realized by having static analysis functions available in an
interactive harness demonstrated the potential benefits of
putting many other maintenance functions in such a harness.

CONTINUING ACTIVITIES

At the time of this writing, The Equitable’s maintenance
productivity improvement program is progressing along the
lines laid out in the initial survey. For the programmers’ envi-
ronment, maintenance tools continue to be evaluated. We are
particularly looking at packages that restructure and re-
document existing code.

For the managers’ environment, a maintenance effort esti-
mator has been developed by another consultant to the
project, Howard Rubin, as a component of the ESTIMACS
package.® The maintenance management handbook is being
outlined by Julien Green. For the institutional environment,
Nicholas Zvegintzov® is working with us as a consultant to
coordinate the initial meetings of the maintenance managers’
round table.

A new software metrics project has been established. Its

team will develop the metrics for maintenance specified by the
maintenance productivity project, as well as software develop-
ment measurements.

CONCLUSION

Software maintenance has been a major systems function at
The Equitable for many years. It is now recognized as a func-
tion whose contribution to the systems and corporate effort
deserves the serious attention of upper management. A main-
tenance productivity improvement program has been devel-
oped, approved, and funded. Maintenance is becoming an
established and recognized area of specialization for systems
professionals at The Equitable.
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ABSTRACT

Software maintenance is a difficult task under the best of circumstances. Having
work performed by an on-site contractor adds an additional layer of complexity to
the customer’s task. This type of relationship places greater emphasis on formal
work procedures and detailed reports of the work in progress. It also promotes the
use of performance norms for evaluating contractor performance. These factors are
all on the positive side. However, such a relationship also calls for a special aware-
ness of contractor ploys calculated to increase their performance evaluation.

From the contractor’s point of view, being on-site imposes a more disciplined
environment and places special importance on the manner and means of dealing
with the customer. Another special feature is that the contractor receives formal
feedback from the users, through periodic performance evaluations, indicating how
well the software maintenance group measures up to expectations.

This paper describes the lessons learned by one customer and one on-site
contractor.
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USTOMER'’S VIEW

contracting is likely to become more pervasive due to
hasis in the federal government' (a la the Office of
ment and Budget Circular A-76) as well as in state
aents and municipalities. An account is given here of
irge data processing facility with extensive experience
acting out software maintenance has learned to cope.
lata processing installation is a large, multisystem gov-
t facility, comprised of a mix of manufacturers and
ncluded are on-line systems, database systems, batch
and intercomputer systems. Types of hardware in-
3M (370, 4341), UNIVAC (1100, Varian), SEL (32),
neywell (Sigma). Altogether, there are 20 stand-alone
that require software maintenance support. A large
> of the applications run on these systems deal with
¢ data; however the operational mode is akin to a
wltistep production process. Other applications relate
1ction control, cost accounting, inventory control, and
e maintenance.

ized vs. Decentralized Support

lly, our technical control over the work performed by
tractor was split along application and functional lines.
| to several independently run units, both on our side
the contractor’s side. However, we exercised overall
1l stewardship over the contractor’s activities for evalu-
:rfformance.

arrangement, while providing us with a close working
ship and a strong grasp of the technical details, natu-
1 to parochial viewpoints on both sides. If a key sys-
Tson in one area resigned, contractor personnel could
ily call upon another area for temporary assistance
: of reluctance by the latter to dilute their level of
. Support problems, resulting from poor management,
ienced or inadequate numbers of personnel, and the
nded to be prolonged and not pursued aggressively.
irly 1982, we reorganized to centralize all software
1ance within a single unit. The contractor’s organiza-
0 was reconstituted on a centralized basis. A number
fits—some obvious and some not so obvious—were
d, including

iniform reporting of maintenance activities

miform and tighter configuration control

nore effective communications channels

mproved response in correcting or resolving problems
eparation and independence of programming and test-
ng groups

6. improved documentation (due to configuration control
oversight)
more effective control within the program library
8. more effective establishment of priorities and better
allocation of resources
9. more consistent manner evaluation of contractor per-
formance and determination of award fees
10. more availability of the information to build a central-
ized database for deriving work performance metrics

=~

Establishing an Effective Working Relationship

Because software maintenance cannot easily or readily be
translated into a set of well-defined products, the connection
between customer and contractor needs special emphasis.
This is a critical factor in determining the quality and cost
effectiveness of the support provided by the contractor. The
key elements characterizing the customer—contractor relation-
ship can be labeled as the three Cs: credibility, coverage, and
clout. Credibility hinges largely on the competence of cus-
tomer personnel. The level of competence should be such as
to convince the contractor personnel that the customer is fully
aware of work factors—do’s and don’ts—and that expecta-
tions of the contractor’s performance are reasonable. Cus-
tomers need to be candid in their dealings with contractors
and to view them as co-workers rather than as subordinates or
in a potentially adversarial position. Unfortunately, this can
easily lead to a “chummy” relationship, which can be harm-
ful. Customer personnel should not forget that, basically, this
is a business relationship that calls for critical assessment of
the contractor’s performance. In particular, customer person-
nel need to distinguish between legitimate extenuating cir-
cumstances and groundless excuses. Otherwise, the contrac-
tor will not make a concerted effort to correct deficiencies.

Coverage, as used here, refers to the organizational or func-
tional level at which the customer—contractor connection
takes place, as well as the depth of reporting detail. Good
starting points are the systems and methods for selecting and
controlling the jobs to be performed. These come under the
general heading of configuration control. In our case, a formal
system was agreed upon that would govern the submission,
review, disposition, and reporting of change requests. These
include system and application software errors, deficiencies,
enhancements, and new system releases. Also included are
special tasks that compete for the programming group’s
resources.

At least weekly status meetings should be held and should
include contractor line managers (the heads of system soft-
ware, applications software, and testing), along with the cus-
tomer technical monitors. Coverage is really a corollary of
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credibility in that it is meant to ensure that the technical
discussions are substantive and are more likely to flush out
causes, rather than treat symptoms.

Clout is a two-edged sword. It can be and should be used
both to reward the contractor for better-than-expected per-
formance and to penalize for below-expected performance.
One way to accomplish this is by way of a cost-plus-award-fee
contract, with the award ranging from 0% to 10% of the cost.
Expected performancs results in a fee in the 4% to 6% range,
thereby leaving ample allowance for award level variations
based either on positive or negative factors. Another impor-
tant consideration is the level of management—both sides—
that is involved in or is made aware of the fee determination.
On the customer side, this should mean the top person in
charge of the data processing facility; on the contractor’s side,
it should mean at least cne level above the on-site manager,
depending on whether scftware maintenance represents part
or all of the contract. If the latter, the involvement should be
at least two levels above the contract manager.

What You Need to Know

What do customers need to know about the contractor’s
activities in order to monitor and evaluate the contractor’s
performance effectively? In our case, we have stipulated that
reporting should be at the functional (or third) level with
system and project reporting being the higher levels.

For our purposes functional reporting was broken down as
follows: validation and assessment of the effects of a proposed
change (prior to approval by the configuration control board);
programming (analysis, coding, and unit testing); acceptance
testing; and implementation. This breakdown is predicated on
the objective of closely monitoring the work in progress so as
to be conversant with current problems and to assess effec-
tively whether proper and timely actions are being taken to
resolve them.

Some might argue that on a routine basis it is only necessary
to monitor the contractor’s activities at either the system or
project levels and thereby reduce the cost of monitoring. It is
further argued that either periodic or unannounced audits can
be made to determine the contractor’s performance at the

functional level. The problem with this argument is, ¢
that substantive deficiencies are uncovered by an a
customer monitors are not in a position to assess i
dently whether the contractor is taking the proper c
measures—and doing so in a timely manner. Waiting
next audit takes place to make such a determination

effective way to deal with such problems.

It should not be inferred that effective monitoring
an item-by-item review. One suggestion is to have an
placed in the margin of a report to highlight those i
which actual hours exceeded estimated hours or for
data change was made since the last report period. Thi
the monitor’s attention to the items that require clos
vation and that should be accompanied by a writte
nation. A complementary tactic is to specify the t
important items in a separate report, which is distribt
higher level of management than is the full detailed

Specifying the detailed items to be reported on is ¢
the battle. The reports must be reviewed carefully f
racy, completeness, and currency. Contractor perso:
prone to adopt a casual attitude toward reporting if
not held closely and consistently accountable for th
contents. Figures 1 and 2 are sample formats of monti
mary reports by system, showing, respectively, the ct
status of all work in progress and the actual hours e
by type of job.

Games Contractors Play

‘Wherever there are performance-type contracts, the
inclination to “shade” the reporting of activities and e
a way that is advantageous to the contractor. Althoug
ing can, in reality, be a euphemism for fraudulent p1
it is more likely to manifest itself in more subtle ¢
odious forms. Also, on-site contractors are less likel
gage in these practices than off-site contractors, bec
the more personal relationship in the former case.

Noted here are both known and suspected tactics tl
tractors have used. These tactics represent an over:
pilation drawn from a number of different contracto:

NUMBER OF JOBS FIXES

OPERATING SYSTEMS
ENHANCE.

APPLICATIONS PROGRAMS SPE(

OTHER FIXES  ENHANCE. OTHER _J

Open - Beginning of Month
Added During Month
Ciosed During Month
Open - End of Month

Figure 1—Monthly change in work status
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TOTAL HOURS EXPENDED FOR FIXES

OPERATING SYSTEMS
ENHANCE.

APPLICATIONS PROGRAMS
FIXES  ENHANCE.

SPECIAL

OTHER OTHER JOBS

Analysis
Code and Unit Test
Implementation

FOR CLOSED JOBS

Analysis Hours - Est.
Act.
Code & UT Hours - Est.
Act.
Implementation Hours-Est.
Act.
Total Hours - Est.
Act.

Figure 2—Manhours expended during month

Creative bookkeeping

To prevent actual hours from exceeding estimated hours on
a given job, time is charged to “miscellaneous.” A variation
of creative bookkeeping is where the contractor in the process
of trying to correct an error takes a shortcut, e.g., bypassing
testing, in order to stay on schedule. Should this in turn cause
additional errors, these are reported as new errors and are
disposed of expeditiously. This, of course, leads to “favor-
able” measured performance.

Technical obfuscation

‘When analysis or diagnosis of a persistent problem does not
turn up anything definite, or when an embarrassing event
occurs, the contractor might try to talk his way around it.
Jargon and vague but technically imposing reasons might be
offered to convince customer monitors that the problem is not
due to any fault of the contractor.

All in the family

Here, contractors try to be particularly responsive to the
customer monitor’s pet projects. This is coupled with ego-

boosting tactics, which together are an attempt to foster the
impression that “we are all family” and we ought to be protec-
tive of the other party’s interests. A variation of this game is
to seek the company monitor’s advice and suggestions about
how to handle a given problem. This tends to compromise the
company monitor’s objectivity in assessing the contractor’s
performance.

End-around play

Should the customer monitors prove rather astute in deal-
ing with the contractor’s games, or if the customer monitors
are frequently critical of the contractor’s performance, a play
can be made to a higher level of management. An attempt is
made first to establish a close liaison with higher management
and then to convince them that the monitors are biased and
unreasonable.

Old standbys

Briefly noted here are the more familiar excuses and tactics
used by software personnel.

1. overly generous padding of estimates to perform jobs
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blame it on the vendor’s documentation

blame it on the operating system

blame it on the hardware

blame it on the person no longer employed by the
contractor

T REN

Performance Measurement

Under an incentive-type contract, it is necessary to face the
issue of performance measurement squarely. First to be ad-
dressed is the formulation of which elements and factors are
to be evaluated and measured. The candidate elements are
those from which one can derive the desired factors. Exam-
ples of such factors include management, productivity, re-
sponsiveness, timeliness, communication, planning, and ini-
tiative. Factors such as management, communication, and
planning are highly subjective in nature and are evaluated in
an indirect or on an event basis. Others, such as productivity,
responsiveness, and timeliness, are adaptable to objective
measurement, and these are the ones discussed herein.

Before qualifying a set of metrics for performance evalua-
tion, it is necessary to define and establish a database. In our
case, pertinent information is collected from all jobs including
application software changes, operating systems mainte-
nance, and special software tasks. Information about these
jobs is collected from the individual programmers, and en-
tered into a database. Weekly reports compiled from this
information are carefully reviewed both by the contractor
supervisors and the monitors to assure complete reporting and
overall accountability. A list of the metrics that we observe is

~ shown in Table I.

Each of the metrics in the table can be further categorized
by computer system, language, type (i.e., systems or applica-
tion software), and so forth. Such breakdowns enable com-
parisons to be made within the given category; e.g., how does
the average time per fix for system A compare with that for
system B?

After a sufficient amount of time has elapsed to compile a
substantial database and to analyze and interpret the derived
metrics, the final step can begin. This is to establish the norms
for each of the selected metrics. Here again, contractor per-
sonnel should participate in this determination in order to
arrive at a set of norms that is deemed to be fair and reason-
able to both parties.

Such objective performance measures can be weighed and
coupled with the subjective factors referred to earlier so as
to arrive at the contractor’s overall technical performance
assessment.

THE CONTRACTOR’S VIEW

Interfacing with Customer Personnel

The role of the software professional within a company that
o foni

performs facility management services is somewhat different
from that of a programmer nestled comfortably in a corporate

structured arena. Being on-site readily exposes a casual or

TABLE I—Performance Metrics

Metric Derivation

Average time to make a fix or
enhancement

Total hours for analysis,
coding, unit testing di-
vided by total number of
fixes and enhancements

Average elapsed time to make
a fix or enhancement

No. of days from start to im-
plementation divided by
total number of fixes and
enhancements

Total actual hours divided by
total estimated hours for
fixes and enhancements

Actual vs. estimated time per
fix or enhancement

Elapsed time of highest prior-
ity fixes vs. others

Average elapsed time to make
highest priority fixes di-

vided by average of

elapsed time to make all
other fixes

Trend analysis of reported
software failures

Comparison of distributions
of failure occurrences for
different systems

Correlation of number of
fixes with size of program

Dependent variable is the
number of fixes for each
program; independent
variable is the size of each
program

Standard error of actual vs.
estimated hours for each
fix, grouped by program
size

Standard deviation of esti-
mates of large vs. small
programs

Ratio of analysis time per fix
to coding and unit testing

Total hours for analysis of all
fixes divided by total

hours for coding and unit
testing

sloppily managed working group and calls for an awareness or
presence that should be calculated to command the respect of
the customer. Sloppy personal demeanor, unoccupied desks,
persons reading newspapers, and so on, are perceived by the
customer as indicators that the contractor is unreliable, un-
professional, or underworked. In effect, the contractor has
two “bosses”—the on-site customer as well as company man-
agement. This presents a unique dilemma—how to please
both factions and maintain proper professional perspective
(and sanity) in successfully fulfilling job requirements.

Acquiring the confidence of customer-monitoring person-
nel is an important goal that must be achieved quickly if
successful performance ratings are to be attained. The ability
to grasp the technical jargon and the complexities of the cus-
tomer’s subject matter makes customer communication a nat-
ural extension of the monitor’s working environment.

When special requirements are addressed, the contractor
should obtain customer concurrence on how the workload
should be adjusted to saiisfy ali affected users. Too oiten,
additional task requirements are accepted by the contractor
without informing the customer of current manpower con-
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straints and the effects of new tasks on current completion
schedules. The contractor must not be afraid to oppose addi-
tional customer requests and should be prepared to convey to
customer management that in reality there is no free lunch.
‘When possible, suitable alternatives should be recommended.

Effective communication of task performance appraisals is
an area that requires special contractor attention. The cus-
tomer needs appropriate status information to provide a suf-
ficient base for pointing out shortcomings, giving plaudits for
tasks well done, and recommending an appropriate award
fee. Formats for contractually required reports should be
determined mutually, at the beginning of the contract, and
should be reviewed periodically for possible alteration to re-
spond to changing customer management reporting require-
ments. In addition to these reports, regularly scheduled status
meetings between software management and key customer-
management-technical-monitoring personnel should be es-
tablished. These meetings, which are by design less formal
and in the nature of committee sessions, are multipurpose.
They not only provide a forum for presenting firsthand status
information, but also are an excellent opportunity for dis-
cussing customer priorities and perceived deficiencies prior to
their being written into the customer’s evaluation report.
Another helpful measure is to provide a self evaluation—
representing the software management’s view of task per-
formance—to the customer for consideration in determining
periodic award fees.

How Work is Divided and Allocated

As noted in the first part of this paper, we are a centralized
software organization, responsible for maintaining more than
50 software systems functioning on more than 20 mainframes,
and for all developmental work. Major functions are sepa-
rated into applications programming, systems programming,
and software acceptance testing. By definition, applications
programmers are responsible for maintaining the production
software (primarily FORTRAN coding, with some assembly
language) and the systems programmers are the caretakers of
all operating system software. Systems analysts, however,
provide the necessary expertise for assuring the validity of
both new and modified software through the development and
execution of detailed acceptance test plans.

Because of the size of this organization—approximately 85
software professionals—the numerous specially developed
computer systems, and the frequency of software changes
attributable to data-related and user requirement variances, it
is difficult to impose conventional software management tech-
niques. An internal task-tracking system has been developed
to monitor several hundred tasks ranging from discrepancy
reports (something doesn’t look right) to change requests
(modifications to accommodate specific problems or require-
ments). Included within this range are customer-initiated
tasks (often new requirements) and tasks generated internally
by software management (usually related to normal mainte-
nance activities, such as evaluating release tapes for existing
operating systems). Due to the high volume of tasks, com-
. plexities of interorganizational interface, and management

requirements for up-to-date status reporting, a full-time ad-
ministrator is employed to maintain and coordinate all trans-
actions and report generation attributed to this tracking
system.

Assignment of programmers to support each system can
often be a difficult process. Software management must be
prepared to evaluate the overall complexity of the system, be
familiar with the intricacies of various program components,
and be knowledgeable about the stability or volatility of the
software. These variables are then matched against individual
programmer experience profiles to determine the most appro-
priate manpower allocation.

Acquiring and Retaining Technical Personnel

Our typical maintenance programmer has almost five years
of college training and more than six years of technical experi-
ence. Turnover, however, is surprisingly low in our case, be-
cause of an unusual phenomenon known as incumbency.
Many of our software professionals have selected this area
because of the nature of the work—it is highly scientific and
very interesting; the physical plant is conveniently located and
easily accessible; there is no charge for parking; etc. Even
though the contract is bound by a prenegotiated amount of
time, the technically oriented employee has little fear of losing
a position due to contract expiration. Obviously, even under
a new contractor, the job must continue to be performed.
Who else, other than those currently doing the job, could
satisfy customer requirements with no untoward effect on
daily operations? Of course, if there is a new contract
awarded, management must be sensitive to the apprehension
programmers are likely to exhibit during the recompetion
and, if necessary, the changeover periods.

Programmers, like many other skilled professionals, con-
sider themselves creative and take special pride in developing
“eternal” systems. There exists, then, an innate stigma at-
tached to the label of “maintenance programmer.” This is a
difficult but not insurmountable hurdle for software manage-
ment to overcome. One of the ways to maintain good person-
nel morale is by offering diversification in mainframes, oper-
ating systems, and programming languages. For example, in
our case the opportunity to use FORTRAN, assembly lan-
guage, or PL/I may be found on IBM (370/145 and 4341) using
VS1, VM, or MVS; IBM (Series-1) using EDX; UNIVAC
(1100/82) using EXEC-8 38R2; SEL (32/77 and 32/75) using
RTM and MPX-32; VARIAN 77 using VORTEX; SIGMA
5/9 using BPM and CP-V; and various other special purpose
image-processing systems.

Although the term maintenance is used to describe the
main functions, many tasks require such extensive systems
analysis prior to making appropriate changes that the pro-
grammer receives as much challenge and satisfaction as if the
program was actually being developed. Another factor is
training. In order to keep the staff abreast with state-of-the-
art developments, management encourages formal vendor-
supplied training classes. Specific analytical and systems-
oriented techniques and skills are addressed in these courses.
Attendance at user and general conferences is also an added
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incentive provided to the programming professional for ac-
quiring and dispensing information.

Dealing with Newly Developed Software

Almost all software maintenance groups encounter the
problem of assuming responsibility for new software devel-
oped by another organization. In our case, this problem is
compounded by the fact that the new programs are developed
by another contractor. To deal effectively with this situation
requires getting involved well before the software is delivered.
Plans and interface definitions should be mutually agreed
upon and include acceptance testing, documentation, and for-
mal sessions for acquainting the maintenance personnel with
the inner workings of each program.

The development of the acceptance test plan requires ex-
tensive communication between the maintenance and the de-
velopment groups. Program design walk-throughs are highly
recommended for this purpose, as well as for familiarizing the
maintenance personnel with the software. This should be
done prior to the turn-over of the program since afterwards
development personnel are reassigned to other tasks and of-
ten are not easily accessible.

As on-site contractors, we need to be particularly con-
cerned with the way information concerning our dealings with
development personnel is presented to the customer. Group
interaction problems, such as competing for computer time,
should if possible be transparent to the customer. When these
problems need to be brought to the customer’s attention, it is
best to avoid a finger-pointing session. Such sensitivity and
awareness contribute measurably to harmonious relations
with the customer.

CONCLUSION

Overall, the use of on-site contractors can be a viable and
effective means for accomplishing software maintenance in a
large data processing facility. To achieve these ends, however,
calls for a proper appreciation by both the customer monitors
and the contractor management personnel of the factors and
considerations described herein.
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Prolonging the life of software
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ABSTRACT

Presented here are methods for successfully controlling software maintenance activ-
ity so that present systems will be more useful and less expensive to support. While
it is based on experience at Los Alamos National Laboratory, it is not based on
solutions developed and implemented there. Los Alamos is presently struggling
with the problems identified in this paper and is impacted by them to the same
extent as the rest of industry. An idea has emerged from this struggle: The deteri-
oration of production software is basically a quality control problem the rate of
which can and should be minimized. Many data processing shops currently have two
options concerning old (over five years), marginally useful systems; pay the high
cost of supporting them or undertake a rewrite. If the principles presented in this
paper are applied, a third option may become available; prolonging the useful life
of software by making it more cost-effective to support.
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INTRODUCTION

The Administrative Data Processing Division of the Los Ala-
mos National Laboratory supports over 70 production soft-
ware systems for various users within the laboratory. Each
system represents a particular financial, personnel, or inven-
tory application consisting of a related set of software mod-
ules. Altogether there are about 900 computer programs in
production, most of them written in COBOL. The systems
reside on both minicomputers and mainframes. There are 50
programmer/analysts involved in developing, implementing,
and maintaining the systems.

When new systems are developed or old ones rewritten, a
cost/benefit analysis is required prior to design. Assumptions
must be made about the expected economic life of a proposed
new system in order to estimate future operating costs and
determine the payback period. The current standard is to
design for a minimum five year economic life. Extrapolating
to a ten-year goal for keeping software alive, return on invest-
ment is doubled and slack is built in for unanticipated chang-
ing requirements that can necessitate premature rewrites.

To prolong the life of software, it is necessary to maximize
the continuing maintainability, operability, and usability of
current systems. This paper contains suggestions, based on
experience at Los Alamos, for that maximization. No new
software engineering concepts are introduced. Instead an ex-
tant body of knowledge is drawn upon and related to manag-
ing the maintenance of current systems in a cost-effective
manner.

THE EFFECT OF UNSTRUCTURED MAINTENANCE

Entropy of Structure

Programmer productivity aids such as structured tech-
niques, introduced in the last few years, are now in use in
many DP installations and are expected to ease the future
maintenance burden. However, many installations have been
slow in adopting such techniques and those that have still
experience the entropy problem. One of the worst effects that
maintenance work can have on production software systems is
the deterioration of the original structure of the system. Doz-
ens to hundreds of small, seemingly insignificant patches ap-
plied during the life of a system can cause degeneration of
even the most structured, modular, top-down original code.
The author of an old program is rarely able to tell the current
maintenance programmer what the code is doing, primarily
because the author cannot remember. Many times the author
cannot be located, or even identified. A little-considered fac-
tor in the general maintenance dilemma is that the program is

really co-authored by all of the programmers who have ever
worked on it. Given that many different styles and design
philosophies have been incorporated, there is little chance
that the current code bears much resemblance to the original.

Introduction of Defects

Many good maintenance programmers might take offense
at the suggestion that defects are inserted into systems as they
perform their valuable work. They might argue that they al-
ways conduct thorough tests before putting changes into pro-
duction. It should be pointed out that the term thorough,
when applied to testing of maintenance changes, is probably
a contradiction in terms. As an example, suppose three lines
of code in one program of a sixty-program system are
changed. Should the entire system be tested as thoroughly as
it was during the development phase of the life cycle? If not,
is there some chance that although the modified program will
work fine, other unsuspected parts of the system will be nega-
tively impacted? Might the system work perfectly for the first
several production runs after the changes are put in place,
only to have the inserted defect surface and cause trouble
months later? Problems involving the worth of regression
testing and phenomena such as the ripple effect are well-
documented.’

The above questions are difficult if not impossible to an-
swer. In many cases, the maintenance programmer has no
time to do complete, thorough testing for the same reason that
there is no time for elegant coding; the fix is made in a crisis
mode. It is not even clear that rigorous, extensive testing is
cost-effective for minor changes. On the other hand, it should
be assumed that the lack of such testing will guarantee the
insertion of defects into the system in at least some cases. It
is not pessimism but the logical conclusion that, over time, a
system will become increasingly bug-ridden.

Introduction of Psychological Complexity

Psychological complexity can be defined as elements of pro-
gramming style which make programs difficult to understand.
Complexity increases the effort required to make successful
maintenance changes and thus increases maintenance costs.
An example well documented and measured mathematically
is use of the GO TO statement. Use of GO TO’s is a violation
of structured programming concepts and has been discour-
aged for some time. At the same time, a GO TO is the easiest,
quickest way to modify the control flow of a program and is
frequently done, on the fly, to correct a logic flaw. In some
cases to do otherwise would involve extensive rewriting of
major portions of the program.
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Again, a good programmer would be offended at the sug-
gestion that some maintenance changes introduce psycho-
logical complexity into the system. Nevertheless, it must be
true that at some point in our career all of us have been guilty
of making a quick fix with a GO TO, neglecting to thoroughly
document a midnight maintenance change, or adding another
level of nesting to an already complicated IF statement to
incorporate a new requirement. Several years of this type of
activity will make the simplest program almost impossible to
follow.

Increase in Future Maintenance Costs

As an old application system begins to deteriorate due to
entropy of structure and the insertion of defects and psycho-
logical complexity, the cost of maintaining that system will
begin to rise. At first the increase will be very slight, but as the
factors mentioned above are compounded the rate of increase
for maintenance cost will become geometric. The level of pain
experienced in maintaining a production system can and
should be measured; at some point it will become cheaper to
scrap the old system and build a new one from scratch. This
theory is suggested graphically in Figure 1.

In most data processing organizations, it is politically ad-
vantageous and more satisfying to the users to devote develop-
ment resources to desired new applications than to the rewrite
of existing systems, even when it can be demonstrated that
there would be a cost/benefit payoff derived from a rewrite.
After all, it is somewhat embarrassing to confess to the user
that his system has been damaged such that it is no longer
maintainable and will have to be frozen for a period of time
while it is being rewritten. Therefore, considerable benefits
could be derived from putting into place goals, objectives and
procedures that would help to delay the necessity for a rewrite
by minimizing the rate of deterioration of applications sys-
tems. Zvegintzov® has stated the desirability of this succinctly
in a recent article in Datamation, where he says, “Replace-
ment of functions incurs a development cost that more DP
organizations will not bear. ‘Add on, not replace’ is the trend
in software.” (p. 110)

COMPARISON OF COSTS FOR MAINTENANCE VERSUS
REWRITE

COMPLETED
RE\A‘RITE

-
-

DOLLARS ———»

MAINTAIN

TIME———*

Figure 1—Breakeven/payoff

A BRIEF METHODOLOGY FOR MAINTENANCE
WORK

Impact of Changes on Previous Analysis

Analysis documents, if they are accurate, can serve as valu-
able maintenance aids. If the maintenance programmer un-
derstands what the system is supposed to do and what the
significance of the implemented functions is to the user, then
s/he will have a good basis for knowing how to respond to
emergencies that might arise. A document such as an essential
requirements definition will also help the maintenance pro-
grammer know when the system is or is not successfully per-
forming its required functions.

There are three direct implications of the above assertion.
First, it implies that analysis documents such as a System
Requirements Definition should become part of the retained
system documentation for implemented systems. Second, the
portions of this documentation which map the current system,
such as Data Flow Diagrams, should be accurately revised
when the user’s changing requirements result in maintenance
changes that modify the functions of the system. Third, to
understand and be able to modify an analysis document cor-
rectly, a maintenance programmer must also be somewhat of
an analyst.

External documentation such as control flows and run pro-
cedures also helps to identify the impact of changes to one
program on other parts of the system. Such documentation is
helpful in testing systems and in returning them to production
upon successful test. Like requirements specifications, if the
external documentation is to be useful and reliable, it must
be revised accurately when maintenance changes affect its
correctness.

Structured Maintenance Walkthroughs

Actually coding changes to production source code files can
be a frightening activity. Statistics indicate that a line of main-
tenance code costs 10 to 100 times what a line of development
code costs.” For the reasons given above, each new line of
maintenance code contributes to destroying the viability of a
system that cost thousands, maybe millions of dollars to de-
velop. A worthy goal is to minimize mistakes made during this
activity.

Walkthroughs are becoming more common in the data pro-
cessing profession. Managers have been accepting the fact
that walkthroughs save time and money by discovering errors
more efficiently than any known testing method. Unfor-
tunately, current opinion seems to be that this is a process
applicable only to the development phase of the system life
cycle. It is true that walkthroughs are critically important
during the early phases of development because errors are
much less expensive to correct at that time than they are later.
This does not constitute proof that walkthroughs would not be
effective during the maintenance phase. If walkthroughs are
to be successful, they should contain the following elements:
checklists, criteria, objectives, trained coordinators, estab-
lished roles, feedback and feed-forward. The reader is re-
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ferred to other works®** for more information on the walk-
through concept.

Applying Maintenance Walkthroughs

The following explains how maintenance is organized at the
Los Alamos National Laboratory. Each system is identified
with a unique two-digit number, e.g. General Ledger = 70.
The table shown in Figure 2 shows how maintenance re-
sponsibility is allocated between these systems where primary
responsibility is in the center column, secondary responsibility
is in the column labeled backupl, and the person responsible
for the system in the event that the first two are unavailable is
shown in the rightmost column labeled backup2. In actual
operation, systems are not maintained in a fashion as clean as
the table suggests. In many cases the secondary backup knows
nothing about the system and simply hopes it will never break
at a time when neither the primary nor the backup are
present. The backup often only has a passing acquaintence
with the system, gained when the primary was sick or on
vacation and a problem occurred. Even the primary’s knowl-
edge may be limited because staff shortages and large service
request backlogs mean assigning too much maintenance re-
sponsibility to too few programmers.

A suggested format for walkthroughs of maintenance
changes under the above circumstances is: the programmer
making the change assumes the role of presentor/imple-
mentor; the other two programmers are responsible for the
review and critique; and a fourth person with appropriate
training becomes the coordinator/moderator/scribe. Such
walkthroughs do not always have to be as comprehensive as a
walkthrough for a major development project. A 15-minute
walkthrough for a change that took 8 hours to make would
seem sufficient. Such a process would simultaneously accom-
plish three objectives: insertions of defects and psychological
complexity and deterioration of structure would be min-
imized; maintenance of external documentation would be
maintained; and the members of the walkthrough team would
be educated through the preparation and attendance neces-
sary for the walkthrough. If such walkthroughs were always
required, systems would (we hope) live longer, break less
often, and be easier to maintain. In addition, the terms back-
up and secondary backup would come to have a more reliable
meaning.

system_id system_name primary backupl backup2
12 payroll hastings smith mcdonald
20 commitments tompkins jobnson zeindt
25 materials dist. benjamin garfunkle conners
30 employee info. hastings temple roberts
36 travel hunker lowe stamp
40 stores halpert arfunkle albertson
70 general ledger lowe avis hunker
71 accounts payable zeindt schutz tompkins
75 operating plans marks wacker lake

79 operating budget schmidt lake wacker

Figure 2—System responsibility

Summarizing the Top-Down Approach to Maintenance

Good maintenance work requires a maintenance analyst
who is just as professional in terms of software engineering
know-how as a good senior programmer/analyst in the devel-
opment area. The same basic activities are involved: analyze
the program, develop a solution, test the solution, implement
the solution. The ideas presented in the preceding sections
suggest a miniature life cycle approach to making mainte-
nance changes as follows:

1. Do a thorough analysis of the change request to deter-
mine needed modifications to system functionality.

2. Study the old functional analysis to determine the impact
of the proposed changes on the total system.

3. Revise functional analysis as appropriate.

4. Revise design and internal specification documents as
appropriate. )

5. Make the changes according to the new analysis and
design.

6. Test the changes using both dynamic (standard test beds)
and static (walkthroughs) procedures.

7. Implement the changes when they pass all tests.

CONTROLLING THE QUALITY OF MAINTENANCE
WORK

Given the above means for doing quality maintenance work,
what controls should be put in place to assure that quality will
improve? It is recommended that controls consist of workable
mechanisms for measurement, evaluation, and feedback. A
non-workable mechanism is micro-management, whereby the
line manager watches the maintenance programmer carefully
and constantly to ensure that mistakes are avoided. If, in-
stead, meaningful measurement of the quality of maintenance
work is taking place, it can provide the basis for effective
performance evaluations and feedback that should produce
the desired results. Ways of evaluating quality include: user
surveys; tracking of maintenance costs via measurement of
reliability; and counting defects.

User Surveys

Since most data processing professionals belong to organi-
zations whose budget or income is derived by providing a
service perceived to be useful by users outside of their organi-
zation, user satisfaction surveys should be one of the most
important means of measuring quality. Figure 3 shows a por-
tion of such a survey that was taken of users of administrative
applications software systems at Los Alamos. Users were
asked to give their degree of satisfaction for different classes
of services on a numeric scale, providing a means for mea-
suring the degree of user satisfaction quantitatively.

Because users have different personality profiles, some are
easier to please than others. Ideally, user personnel would be
held constant while the surveys were taken in a time-series
fashion, allowing for measurement of change in degree of
satisfaction over time. The program of personnel turn-over in
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The following systems are supported by ADP for your organization.
Please fill in the blanks rating ADP services using: 1 = poor, 2 =
below average, 3 = average, 4 = above average, 5 = excellent. You
need only rate those systems with which you have personal knowledge
and experience.

SYSTEM DEVELOPMENT MAINTENANCE

1 NAME QUALITY QUALITY PRODUCTIVITY
71 ACCTS PAYABLE 3 _3__ _b__

12 PAYROLL 5 a T

30 EIS . A T 3

20 COMMITMENTS i - 3T

70 GENERAL LEDGER 1 4 )

36 TRAVEL 4 4 2

Figure 3—User satisfaction survey

the user organization can be circumvented if a profile for the
entire organization can be developed. Data relating to quality
of maintenance work should come from feedback on the use-
ability, operability, and usefulness of the user’s system.

The Importance of Measuring Maintenance Costs

Accurate measurement of maintenance effort in pro-
grammer hours is critically important for several reasons. Our
goal is to control the quality and the expense of software
maintenance, and it has been pointed out that you can’t con-
trol what you can’t measure.® Maintenance effort measure-
ment can be used for cost/benefit analysis of proposed re-
writes.” If maintenance effort is decreasing dramatically on a
particular system, the decrease may be an indication that high
quality maintenance work is being performed. Useful mea-
surement should differentiate between bug-fixing and making
changes necessitated by changing user requirements. This
would provide a means for knowing when the quality of a
production system was deteriorating if bug-fixing effort begins
to rise significantly.

Measuring Sofi"ware Reliability

Aborts, reruns, and user trouble calls are costly. They can
also be reduced by the performance of high quality mainte-
nance work, although recognition of quality can sometimes be
difficult. It is possible to force a program to execute success-
fully under almost any circumstance, but if the output is not
correct this will usually be caught either by production control
or the user, resulting in a rerun or a trouble call. Careful
records of aborts, reruns, and user trouble calls in production
logs must be kept and published. The objective of this mea-
surement is to evaluate the quality of maintenance with re-
spect to software reliability.

Measuring Insertion of Defects

We should be very concerned about the rate of insertion of
defects into a production system. The walkthrough pio-
cedures discussed above should help reduce the insertion of
defects, but it provides no guarantee that zero defects will be
inserted. Furthermore, it provides no measurement of the

insertion of defects since the walkthrough team must stipulate
that they are unable to find any defects before a change will
be put into production. A measure of defects is the count of
fix-a-bug requests from users. Defects reported by users must
be differentiated according to the sources of the problem;
original code or a maintenance change. The important mea-
sure here is the actual number of such requests, not the
amount of effort spent on them. Increases in the receiving rate
of these requests should be an indictment of the walkthrough
team as well as the responsible programmer. Decreases in the
receiving rate would indicate that high quality maintenance
work is being performed.

Evaluating Maintenance Performance

To effectively implement the controls suggested above, cri-
teria for acceptable performance of maintenance work should
be published and distributed among the maintenance pro-
grammers. In order to do high quality maintenance work, the
staff needs to know what the goals are, how goal achievement
will be measured, what constitutes a satisfactory level of per-
formance and how his/her level of performance compares to
the rest of the group. Figure 4 shows suggested performance
evaluation guidelines for maintenance programmers.

CAREER PATHS FOR MAINTENANCE
PROGRAMMERS

Who should do maintenance work? How long should they do
it? What should appropriate rewards be for successful mainte-
nance programmers? What should the organizational goal be
for maintenance activity as a whole? These topics could serve
as the basis for further research, but they deserve at least brief
attention within the scope of this paper.

Criteria Description Measurement Satisfactory Level
1. Encourages a free Walkthru Effectively participates
exchange of ideas. reports. in structured walkthrus.

Gives and accepts
criticism and
comments .

2. Contributes in a User satisfaction does
positive manner to not deteriorate over
user satisfaction time.
with production
systems .

User Survey.

Maintenance
effort
statistics.

3. Makes changes which
do not cause systems
to be more difficult
to maintain.

Effort required to make
changes does not
increase.

Problem incidents
decrease over time.

4. Makes changes in a
manner which tends to
increase the
reliability, opera-
bility and usability
of systems.

Aborts, reruns
and trouble
calls.

Number of user
requests for
enhancement
changes .*

5. Makes changes in a
manner which tends to
greserve the

unctionality of the
system.

Receiving rate of
incoming enhancement
service requests does
not increase.

*Note that a burst of changes may indicate a need for a new system.

Figure 4—Acceptable performance criteria for maintenance work
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Maintenance As a Training Experience

In many organizations, maintenance work serves as an ini-
tiation period for programmer trainees. This is not an entirely
bad idea. Recent graduates have been schooled in the latest
structured programming techniques and may have an inclina-
tion to keep the code they are responsible for as clean as
possible. Also, it provides a series of little problems for the
trainee to solve before being faced with a big problem. It
becomes a bad idea when an organization has only green
recruits supporting its production systems. This situation usu-
ally signifies an organizational attitude that maintenance work
is not as important or technically demanding as development
work. It has been pointed out recently® that this attitude is not
appropriate since it is software maintenance that keeps the
business running smoothly by supporting critical applications.

Maintenance Trouble-Shooters

In most medium- to large-size organizations, it is possible to
find several maintenance experts. These software “doctors”
are proficient at quickly identifying and solving very complex
problems. They usually derive a great deal of enjoyment from
it. This is not hard to understand since people usually enjoy
doing things at which they excell. These people should be
provided with career paths and monetary rewards which en-
courage them to keep doing what they enjoy and do well.
They should not be “promoted” to development projects,
which among other negative results, starve them of the plea-
sure of immediate feedback present in problem-fixing. These
seasoned professionals can provide excellent supervision and
guidance for the trainees mentioned above.

Maintenance Groups as a Separate Entity

If it makes sense to have different types of employees doing
the maintenance work, then it may follow that it is also sensi-
ble to have a separate maintenance group in the data pro-
cessing organization chart. This group would have a different
set of talents and/or interests than those doing development
work and would be evaluated on a somewhat different basis.
Trainees could work on teams with more experienced mainte-
nance analysts supporting production systems. Very success-
ful maintenance analysts could be promoted to team leaders.
Those who are very successful and have valuable management
talent (proven as team leaders) become likely candidates for
line manager of the maintenance group.

Performance Rewards and Appropriate Goal Setting

A suggested goal for the organization is to minimize re-
quired maintenance effort and the occurrence of problems
with production software on a per-system basis over all pro-
duction systems. Hopefully, some of the ideas detailed above

will prove useful in accomplishing this goal. If all these ideas
are implemented, how should a successful maintenance ana-
lyst be rewarded? This person has improved the degree of user
satisfaction with data processing service, reduced the amount
of effort required to maintain systems, extended the useful life
of critical applications, and provided excellent guidance and
training for new hires. It doesn’t take much imagination to see
that this is one of the most valuable people in the entire
organization, who should receive monetary rewards and ca-
reer opportunities accordingly. If, for example, most data
processing organizations are spending the largest portion of
their budget on software maintenance, then an effective data
processing manager is one who has demonstrated that s/he can
control this activity successfully.

CONCLUSION

Each modification made to a software system carries a risk of
weakening it through the introduction of defects or the com-
pounding of psychological complexity or both. As systems
become more complex and defect-ridden, they become more
costly to maintain. A data processing organization will accom-
plish its mission more effectively if it is able to prolong the life
of the software it supports.

Solutions to the application systems maintenance dilemma
include: the retention and maintenance of design documents;
the conducting of dynamic system tests; and the conducting of
static tests in the form of team walkthroughs. Via walk-
throughs the maintenance programmer can share responsi-
bility, maintain external documentation, educate others in the
functioning of the system, and minimize entropy.

The methods of controlling the solution include: conducting
user surveys; measurement of the maintenance effort; mea-
surement of insertion of defects; measurement of system re-
liability; establishment of proper criteria by which to evaluate
maintenance performance; and creation of a separate mainte-
nance group where motivation and incentives are consistent
with talents and interest.
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Software maintenance in fourth-generation
language environments
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ABSTRACT

It is often asserted that fourth-generation languages will resolve the problems
associated with software development in traditional languages, and in particular the
technical and morale problems of software maintenance. The analysis of this paper
suggests that fourth-generation languages do not solve all of the present problems
of maintenance, and indeed they can introduce problems of their own. The success-
ful user of fourth-generation languages will be the organization that takes appropri-
ate countermeasures.
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INTRODUCTION

The evolution of software technology coupled with the de-
mand for more productivity from data processing organiza-
tions has prompted a widespread appeal for fourth-generation
languages (4GL). The term fourth-generation language is ap-
plied to a class of DP languages developed in the mid-1970s
that offer simplified expressions for common DP tasks. These
languages allow for system development in significantly less
time than third-generation languages such as COBOL, FOR-
TRAN, and PI/I. Advocates of these new languages are con-
fident that they will lessen many of the problems that have
burdened traditional language environments.'? Such prob-
lems include a heavy backlog of requests, lack of maintain-
ability, lack of adaptability, and human resource issues. High
expectations, however, especially in the area of software
maintenance, could lead to disappointment for many profes-
sionals who are seeking to escape the frustrations encountered
in third-generation systems.’ The overconfidence in a fourth-
generation language’s ability to eliminate most of the software
maintenance issues could seriously jeopardize the recent ef-
forts to improve software maintenance attitudes. An untimely
eagerness to abandon concern for software maintenance could
also compound maintenance problems in current systems as
well as initiate maintenance problems in systems using fourth-
generation software.

This paper focuses on several fundamental issues of soft-
ware maintenance that will continue to exist in many fourth-
generation language environments. It is not the intention of
this paper to critique the overall effectiveness of fourth-
generation languages or to evaluate the necessity of their use,
but rather to discuss the impact of these new languages on the
software maintenance process.

' éACT 'ORS INFLUENCING THE USE OF
FOURTH-GENERATION LANGUAGES

Before examining maintenance issues in fourth-generation
language environments, it would be advantageous to review
the following factors that are promoting the spread of these
new language systems:

1. System development problems

2. Maintenance problems and request backlogs
3. Increased DP knowledge by users

4. Pressure for productivity/accountability

System Development Problems

Apportioning of monetary resources and time has been an
inherent consideration in traditional system development.

Software costs may account for as much as 80% of the total
cost of system development.* Much of this cost is attributed to
escalating programmer salaries; further, many user groups
resent department budget cuts because of the high expenses
incurred by data processing.® Often the time required to re-
place and/or develop a system is much longer than is accept-
able to end users. Fourth-generation languages offer system
development with less effort than traditional development
techniques, thus offering a savings in time and cost.

Maintenance Problems and Request Backlogs

Software maintenance problems have been a well-known
stumbling block for years. Negative attitudes about mainte-
nance work are held by DP managers, programmers, and end
users.’ These attitudes inhibit the necessary effort needed to
perform maintenance work successfully. Maintenance prob-
lems also include unmaintainable, unadaptable programs and
systems. Some systems do not fulfill user requirements and
specifications. Numerous corrective measures within these
systems have left them in an unmaintainable state. Other
systems have been poorly designed, and modifying or enhanc-
ing their capability is only possible through rewriting large
portions of the system. Software maintenance accounts for as
much as 50%—-80% of the software activities performed by
programmers.®

System maintenance problems have created a flood of user
requests. Often users submit requests for replacement sys-
tems even though there are already numerous outstanding
requests for maintenance work on these systems. Request
backlogs in some companies may be as high as 2 years.>”®
Vendor advertising of fourth-generation systems emphasizes
the vast improvement in application development over tradi-
tional programming methods. These advertising claims sup-
port the premise that maintenance problems and lengthy
request backlogs, which are attributed to traditional pro-
gramming, will be reduced.

Increased DP Knowledge by Users

With new technological applications in industry, many end-
user professionals have sought to become more computer lit-
erate. Much of this need for literacy is due to an increased
number of automated business functions that require data
processing knowledge to use with them. In other instances,
professionals have educated themselves in preparation for the
new technology of the personal computer. With this increased
knowledge of computing technology, end users are becoming
less dependent on data processing professionals and com-
puting resources.’> Many users want to apply their new found
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computing knowledge at the workplace in an attempt to make
their jobs easier. Numerous vendors claim that their fourth-
generation language allows writing a program to be a simple
and uncomplicated task. This simplicity gives the non-data-
processing professional the ability to use computing resources
advantageously.’

Pressure for Productivity/ Accountability

The problems of development, maintenance, and request
backlogs have been apparent to many non-data-processing
professionals in the computer-based organization. User
groups are expressing dissatisfaction with budgetary spending
as more funds are being allocated to data processing de-
partments rather than to user departments. The reaction from
upper management in response to this dissatisfaction has been
to allow end users to write their own application programs.
Upper management would ultimately be making end-user de-
partments more accountable and productive in relation to
data processing activities. It has already been recognized that
end users have a tremendous optimism toward the use of
fourth-generation software products.” Vendors of these prod-
ucts propose that the simplicity and ease associated with pro-
gramming will allow the end user the time to write more
programs and thus increase productivity.

EXAMINING THE MAINTENANCE ISSUES

In a previous paper, the author suggested that the software
maintenance process could be segmented into the three fol-
lowing areas: maintenance management, maintenance pro-
gramming, and maintenance attitudes.” Maintenance man-
agement is defined as the management process necessary
when performing maintenance tasks. Maintenance pro-
gramming is defined as the technical methodology in which a
correction, modification, or enhancement takes place. Fi-
nally, the maintenance attitude is defined as the position that
programmers, managers, and users take toward maintenance
tasks.

The fourth-generation language environment will not solve
all the problems associated with the three areas of the mainte-
nance process. More specifically, the remaining problem
areas of the fourth-generation language environment with re-
spect to the three maintenance segments are the following:

software ownership responsibility
documentation

software selection and quality assurance
product releases and software warranty
software standards

S

Software Ownership and Responsibility

Software ownership/responsibility is defined as a poiicy for
maintaining the programs and systems written in fourth-
generation languages.® The need for such a policy becomes
evident when consideration is given to several facts that will be

present in the fourth-generation language environment. First,
there will be a diverse population of potential language users
that include data processing and non-data-processing profes-
sionals with varied technical skills. Second, there will be a
need to make changes to fourth-generation application pro-
grams for product release changes, for business changes, and
for ensuring hardware efficiency. Although the last issue was
present in third-generation systems, it was usually resolved by
a narrower population of language users—programmers.
With a broader population of fourth-generation language us-
ers, there is concern as to how capable end users are in making
the changes to application programs described above.**

Software ownership/responsibility can be categorized as
part of maintenance management. It will require the cooper-
ation and coordination of upper management, data pro-
cessing, and end-user departments. Without formal agree-
ment on software ownership/responsibility, the maintenance
management function would be ineffective and more com-
plex. In addition, required changes to fourth-generation lan-
guage programs might be circumvented by the data processing
and end-user departments as a result of the conflict over which
group is better prepared to perform maintenance tasks. Nu-
merous companies who have already implemented fourth-
generation language systems may still be in the process of
developing ownership/responsibility policy.'

One of the more popular ownership/responsibility methods
is found in the information center concept that numerous
companies are implementing.'* In this method, the informa-
tion center serves both as a product support group for vendor
changes and as a consulting group for end-user applications.
‘While this approach has merit, there is still a need to manage
the end-user application system more carefully. A suggested
method of ownership/responsibility that will help the mainte-
nance management function is the designation of end-user
department specia