[”P HEWLETT

PACKARD

3

o Domain Pascal
Language Reference

Domain Pascal Language Reference

Order No. 000792-A01

Apollo Systems Division
A subsidiary of

HEWLETT
PACKARD

© Hewlett-Packard Co. 1981, 1990.

First Printing: September 1981
Last Printing: December 1990

UNIX is a registered trademark of AT&T in the USA and other countries.

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett—Packard assumes no responsibility for the use or reliability of its software on equipment that is not
furnished by Hewlett—-Packard.

This document contains proprietary information which is protected by copyright. All rights reserved. No part
of this document may be photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions
as set forth in subdivision (c¢) (1) (ii) of the Rights in Technical Data and Computer Software Clause at
DFARS 252.227.7013. Hewlett—-Packard Co., 3000 Hanover St., Palo Alto, CA 94304

10987654321

Preface

The Domain Pascal Language Reference explains how to code, compile, bind, and execute
Domain Pascal programs.

We’ve organized this manual as follows:

Chapter 1 Introduces Domain Pascal and provides an overview of its extensions.

Chapter 2 Defines Domain Pascal building blocks (like the length of an identi-
fier) and describes the structure of the main program.

Chapter 3 Explains all the Domain Pascal data types.

Chapter 4 Contains alphabetized listings describing all the functions, procedures,
statements, and operators that you can use in the code portion of a
program.

Chapter 5§ Explains how to declare and call procedures and functions.

Chapter 6 Details compiling, binding, debugging, and executing.

Chapter 7 Describes how you can break your program into two or more sepa-

rately compiled modules (which can be in Domain Pascal, Domain
FORTRAN, or Domain/C).

Chapter 8 Contains an overview of the I/O resources available to Domain Pascal
programmers.

Chapter 9 Covers compiler diagnostic messages and how to handle them.

Appendix A Contains a table of Domain Pascal reserved words and predeclared
identifiers.

Appendix B Contains an ISO Latin-1 table that includes ASCII characters.

Appendix C Describes Domain Pascal’s extensions to ISO/ANSI standard Pascal.

Appendix D Describes Domain Pascal’s deviations from ISO/ANSI standard Pascal.

Preface iii

Appendix E Describes built~in routines available for systems programmers.

Appendix F Describes how to obtain the best floating-point performance on
MC68040-based Domain workstations.

Audience

We wrote this manual to serve programmers at a variety of levels of Pascal expertise. Our
goal is to keep the writing as simple as possible, but to assume that you know the funda-
mentals of Pascal programming. If you are totally inexperienced in a block-structured lan-
guage like Pascal or PL/I, you probably should study a Pascal tutorial before using this
manual. If you have a little experience with a block-structured language, you will probably
benefit most by experimenting with the many examples we provide (particularly in Chapter
4). If you are an expert Pascal programmer, turn to Appendix C first for a list of our ex-
tensions to standard Pascal.

Summary of Technical Changes

This manual describes Version 8.8 of the Domain Pascal compiler. The last update to the
Domain Pascal manual was at SR10. The following list summarizes the features added to
Domain Pascal since SR10:

® The introduction of new Boolean operators and then and or else

® Modified operator precedence rules (to accommodate the and then and or else Boolean
operators)

® The following new compiler directives:
— %begin_inline and %end_inline
— %push_alignment and %pop_alignment
® The following new compiler options:
— -bounds_violation and —no_bounds_violation
— —compress and —-ncompress

— The -cpu arguments mathlib_sr10, mathlib, mathchip, fpal, a88k, and
mé68k

— -nclines

— =—prasm and -nprasm

iv Preface

Compatibility with NFS (Network File System)
Larger maximum set size

Enforcement of name compatibility when assigning the address of an actual routine
to a procedure or function pointer

Change bars in the margin indicate technical changes since the last revision of this manual.
Because Appendix F is completely new with this revision, it does not have change bars.

Related Manuals

The file /install/doc/apollo/os.v.latest_software_release_number__manuals lists current ti-
tles and revisions for all available manuals.

For example, at SR10.3 refer to /install/doc/apollo/os.v.10.3__manuals to check that you
are using the correct version of manuals. You may also want to use this file to check that
you have ordered all of the manuals that you need.

(If you are using the Aegis environment, you can access the same information through the
Help system by typing help manuals.)

Refer to the Apollo Documentation Quick Reference (002685) for a complete list of related
documents. For more information on topics related to the Domain Pascal compiler, refer
to the following documents:

Getting Started with Domain/OS (002348) explains the fundamentals of the Domain sys-
tem.

The Domain/OS Call Reference, Volume 1 (007196) and Volume 2 (012888) describe the
system service routines provided by the operating system and explain how to call these
routines from user programs.

Programming with Domain/OS Calls (005506) covers writing Domain Pascal programs
that use stream calls and many other important system calls.

The Domain/C Language Reference (002093) describes the Domain implementation of
the C language.

The Domain FORTRAN Language Reference (000530) describes the Domain implemen-
tation of FORTRAN.

The Domain/C++ Programmer’s Guide (017874), the AT&T C++ Language System
(017823), and the C++ Primer by Stanley Lippman (017997) describe the Domain imple-
mentation of C++.

The Domain Floating-Point Guide (015853) describes floating—point calculations on
Domain systems.

Preface v

The Aegis Command Reference (002547) describes the Aegis environment.
The BSD Command Reference (005800) describes the BSD environment.
The SysV Command Reference (005798) describes the SysV environment.

The Domain/OS Programming Environment Reference (011010) describes how to use the
bind utility to link object modules and the librarian utility to create library files.

The BSD Unix Programmer’s Manual (017272) and the SysV Programmer’s Guide, Vol-
ume II (017625) describe the make and dbx utilities and the Source Code Control Sys-
tem (SCCS).

The Domain Distributed Debugging Environment Reference (011024) describes the high-
level language debugger.

The Domain Software Engineering Environment (DSEE) Reference (003016), Getting
Started with DSEE (08788), and Engineering in the DSEE Environment (008790) de-
scribe the DSEE product.

The Domain/Dialogue User’s Guide (004299) describes the Domain/Dialogue product.
The Open Dialogue Reference (012807), Creating User Interfaces with Open Dialogue
(011167), the MOTIF Style Guide (017153), and Customizing Open Dialogue (011166)
describe the Open Dialogue product.

Analyzing Program Performance with Domain/PAK (008096) describes the Domain Per-
formance Analysis Kit.

Using NFS on the Domain Network (010414) describes the use of the Network File
System (NFS).

You can order Apollo documentation by calling 1-800-5290. If you are calling from out-
side the U.S., you can dial (508) 2566600 and ask for Apollo Direct Channel.

Pascal Tutorials

vi

Preface

Jensen, K. and N. Wirth, revised by Mickel, A. and J. Miner. Pascal User Manual and
Report. Third Edition. Springer—Verlag, New York: 198S.

Grogono, Peter. Programming in Pascal. Revised Edition. Reading, Massachusetts: Ad-
dison-Wesley, 1980.

Cooper, D., and M. Clancy. Oh! Pascal! New York: WW Norton, 1982.

Does This Manual Support Your Software?

This manual was released with Version 8.8 of Domain Pascal. Domain Pascal Version 8.8
runs on Software Release 10.0 or a later version of Domain/OS.

To verify which version of operating system software you are running, type

bldt

If you are running Domain/IX on a release of the operating system earlier than SR10.0,
then type

/com/bldt

To check the version of Domain Pascal, type:

/com/pas -version

If you are using a later version of software than that with which this manual was released,
use one of the following ways to check if this manual was revised or if additional manuals
exist:

® Read Chapter 3 of the release document that shipped with your product. The release
document is online. It has one of the following pathnames:

/install/doc/apollo/pas.v.version_number.m__notes
/install/doc/apollo/pas.v.version_number.mpx__notes
/install/doc/apollo/pas.v.version_number.p__notes
/install/doc/apollo/pas.v.version_number.pmx__notes

® Telephone 1-800-225-5290. If you are calling from outside the U.S., dial (508)
256-6600 and ask for Apollo Direct Channel.

® Refer to the lists of manuals described in the preceding section, “Related Manuals.”

To determine which of two versions of the same manual is newer, refer to the order num-
ber that is printed on the title page. Every order number has a 3-digit suffix; for example,
-A00. A higher suffix number indicates a more recently released manual. For example, a
manual with suffix ~A02 is newer than the same manual with suffix -A01.

Preface vii

Problems, Questions, and Suggestions

If you have a question or problem with our hardware, software, or documentation, please
contact either your HP Response Center or your local HP Representative.

You may call the Tech Pubs Connection with your questions and comments about our doc-
umentation:

® In the USA, call 1-800-441-2909

® Outside the USA, call (508) 256-6600 extension 2434

The recorded message that you will hear when you call includes information about our new
manuals.

You may also use the Reader’s Response Form at the back of this manual to submit com-
ments about documentation.

Documentation Conventions

viii

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

literal values Bold words or characters in formats and command descriptions repre-
sent commands or keywords that you must use literally. Pathnames
are also in bold. Bold words in text indicate the first use of a new
term.

user-supplied values Italic words or characters in formats and command descriptions repre-
sent values that you must supply.

sample user input In samples, information that the user enters appears in color.

Domain extensions Domain-specific features of Pascal appear in color.

output Information that the system displays appears in this
typeface.
[] Large square brackets enclose optional items in formats and command

descriptions.

[| Regular sized square brackets in Pascal statements assume their Pascal
meanings.

Preface

Braces enclose a list from which you must choose an item in formats
and command descriptions. In sample Pascal statements, braces as-
sume their Pascal meanings.

A vertical bar separates items in a list of choices.
Angle brackets enclose the name of a key on the keyboard.

The notation CTRL/ followed by the name of a key indicates a control
character sequence. Hold down <CTRL> while you press the key.

Horizontal ellipsis points indicate that you can repeat the preceding
item one or more times.

Vertical ellipsis points mean that irrelevant parts of a figure or exam-
ple have been omitted.

Change bars in the margin indicate technical changes from the last
revision of this manual. Because Appendix F is completely new with
this revision, it does not have change bars.

This symbol indicates the end of a chapter.

Preface ix

Contents

Chapter 1 Introduction
1.1 A Sample Programoovteieintiurnitenenecnaenenneensans 1-1
1.2 Online Sample Programscciiiiiierrnnnnneneerennnans 1-2
1.2.1 What You Get When You Install Sample Programs 1-2
1.2.2 Creating Links to the Sample Programsc0v... 1-3
1.2.3 Invoking getpas oottt ittt i i e i e s 1-3
1.3 Overview of Domain Pascal Extensionso, 1-4
1.3.1 Extensions to Program Organization, 1-4
1.3.2 Extensions to Data Typescouttiiiinteninennneeeeenanns 1-5
1.3.3 Extensions to Codettt e e e 1-5
1.3.4 Extensions to Routinesciiiitiiininnneeeeeennnns 1-6
1.3.5 Extensions to Program Developmentcovv... 1-7
1.3.6 External Routines and Cross-Language Communication 1-7
1.3.7 Extensions to /O i e 1-7
1.3.8 Diagnostic MeSSages . .o vviiiit it it i e 1-7
Chapter 2 Blueprint of a Program
2.1 Building Blocks of Domain Pascalcviiiiiiiiinnina., 2-1
2.1.1 Identifierso oot e e 2-1
2.1.2 L0 o123 2-2
2.1.3 Real NUmMbeErsiiuutiiiiiii ittt iiiininneeeeos 2-2
2.1.4 COMMENES .+ ot vvtt ittt iniennetnaosnatonoosnnesnnneennnsos 2-3
2.1.5 SriNgS ..o e i e 2-4
2.1.51 Embedding Special Characters in Strings 2-4
2.1.6 Case—-Sensitivitycoiiiiiiiiinii i i i e 2-6
2.1.7 Spreading Source Code Across Multiple Lines 2-6

Contents

xi

2.2 Organmizationcotttiiiiinretinnnettiennnaneeeerennoneeass 2-7
2.2.1 Program Headingoiiiitiiiiiiiiiiiiiiiiiiiniinnnses 2-10
2.2.2 Declarationsov ittt e e e et e 2-11
2.2.21 Label Declaration Partooiiiiiiiiiiiiiiiinenans 2-11
2.2.2.2 Const Declaration Partcvviiiiniiiniinneennens 2-12
2.2.2.3 Type Declaration Part it iiiiiinnnnnans 2-13
2.2.2.4 Var Declaration Partoiiuiiuiiiininnnenns 2-14
2.2.2.5 Define Declaration Part—Extension 2-15
2.2.2.6 Attribute Declaration Part—Extension 2-15
2.2.3 Routinesov ittt [2-15
2.2.3.1 Routine Headingcoiiiniiiiiiiniiiiiiiiinennans 2-16
2.2.3.2 Declaration Part of a Routine vt 2-16
2.2.3.3 Nested ROULINES . ..ot viit i inniiinennneanoeeeneennns 2-17
2.2.34 Action Part of aRoutine i, 2-17
2.2.4 Action Part of the Main Programo, 2-17
2.3 Global and Local Variablescciititiiiiiinirnneeenenn. 2-17
2.4 Nested ROULINES ... oo vttt ittt i ie e i i i 2-19
Chapter 3 Data Types
31 Data Type OVEIVIEW . ..t oo vvi ittt inn et enneenneos 3-1
3.2 TNtEEEIS & vttt ittt ittt ittt it i e e e 3-3
3.2.1 Declaring Integer Variablescvviviiiiiiniiiiiiine., 3-4
3.2.2 Initializing Integer Variables—Extension 3-4
3.2.3 Defining Integer CONStantso.ouvttt e rineeennneanss 3-5
3.24 Internal Representation of Integerscoviieinieinn.. 3-5
33 Real NUMDbEISoviii it i it ii ittt 3-6
3.3.1 Declaring Real Variables, 3-6
3.3.2 Initializing Real Variables—Extension............. ... oovvvvuonn. 3-6
3.3.3 Defining Real Constantscoovuviuinninnnnenneanenn. 3-7
3.3.4 Internal Representation of Real Numbers 3-7
3.4 Unsigned Types ...ttt ittt it iniiiinieennreeneenns 3-9
3.5 BOOIEANS ... v viiii it e e e e e 3-10
3.5.1 Initializing Boolean Variables—Extension 3-10
3.5.2 Defining Boolean Constantscouiuteeenvnnnnnnenerans 3-11
353 Internal Representation of Boolean Variables 3-11
3.6 Characters ... ov vt iit ittt i e i e e e 3-11
3.6.1 Declaring Character Variables i, 3-11
3.6.2 Initializing Character Variables—Extension 3-12
3.6.3 Defining Character CONStantscvuvvievntenuneonneeennens 3-12
3.6.4 Internal Representation of Char Variables 3-13
3.7 Enumerated Datacoivuvnennnn, S O 3-13
3.7.1 Internal Representation of Enumerated Variables 3-13
3.8 Subrange Datac.iiiiiii i i i e e 3-14
3.8.1 Internal Representation of Subranges 3-14

xii

Contents

3.9 0] 3-15

3.9.1 Declaring Set Variables i i, 3-15
3.9.2 Initializing Set Variables—Extensionceviuuvennnn.n 3-15
3.9.3 Internal Representation of Setst iiiinnennan.. 3-16
310 ReCOIAS vt iii it it i e e e e e e 3-17
3.10.1 Fixed Recordsc.iniiiniiniiiiiiiiiiiitiienennenn. 3-17
3.10.2 Variant Records it e 3-19
3.10.3 Unpacked Records and Packed Records 3-21
3.10.4 Initializing Data in a Record—Extension 3-21
3.10.5 Internal Representation of Unpacked Records 3-22
3.10.5.1 Alignment e e e e 3-23
3.10.5.2 Natural Alignmentitiinintininnrneeeeenennns 3-23
3.10.5.3 Guaranteed Default Alignment of Record Fields 3-23
3.10.5.4 Default Alignmentci ittt nnn.. 3-26
3.10.5.5 Layout of Unpacked Recordscoiuieeinnnnnnnn. 3-26
3.10.5.6 Memory Allocationcoiii i ittt 3-27
3.10.5.7 Arranging Record Fields in Descending Order by Size 3-29
3.10.6 Aligned Record and Unaligned Record Data Type 3-33
3.10.7 Internal Representation of Packed Records 3-35
311 AITAYS L e e e 3-37
3.11.1 Initializing Array Variables—Extension 3-38
3.11.1.1 Initializing Multiple Components with a Single

ExXpression—EXtensionc.oeiiitiinnnnnreneerennnan 3-39
3.11.1.2 Initializing Components to Individual Values—Extension 3-39
3.11.1.3 Initializing Arrays Using Repeat Counts—Extension 3-40
3.11.1.4 Initializing Components in Any Order—Extension 3-41
3.11.1.5 Defaulting the Size of an Array—Extension 3-42
3.11.1.6 Mixing Methods of Array Initialization—Extension 3-43
3.11.2 Variable-Length Arrays—Extensiono, 3-44
3.11.3 Packed AITaysoiiiiiin i iiieieineiii et 3-45
3.11.4 Internal Representation of Arrayscceeiununnnenonens 3-45
3.11.4.1 Non-Packed Arrays0 ittt 3-45
3.11.4.2 Packed AITays cvvviiiii ittt 3-47
3012 FaleS i vttt 3-48
3013 POINEIS .ottt e e e e 3-49
3.13.1 Standard Pointer Type ottt rnnnennn 3-49
3.13.2 Univ_ptr—EXtension i, 3-50
3.13.3 Procedure and Function Pointer Data Types—Extension 3-50
3.13.4 Initializing Pointer Variables—Extension 3-51
3.13.5 Internal Representation of Pointers 3-51
3.14 Putting Variables into Overlay Sections—EXtension 3-52
3.15 Autributes for Variables and Types—Extension 3-53
3.15.1 Volatile—Extensionttt 3-56
3.15.2 Atomic—EXtension it i i e e 3-56
3.15.3 Device—EXteNSION . .o oot vttt iie it it 3-57
3.15.4 Address—EXtensionuiuiitiiiaiiitiaieeneeeens 3-59
3.15.5 Size—EXteNSION vvviitt ittt e e e 3-60

Contents

xiii

3.15.6 Alignment—EXtensionoiuitiiiiiiiiiiiietinniaieesa, 3-62

3.15.6.1 Format for the aligned and natural Attributes 3-63
3.15.6.2 Aligning Objects on Natural Boundaries 3-64
3.15.6.3 Using the aligned Attribute to Prevent Padding 3-69
3.15.6.4 Ensuring the Same Layout in All Alignment Environments 3-72
3.15.6.5 Suppressing Informational Messages about Alignment 3-74
3.15.6.6 Informing the Compiler that an Object Is Not Naturally Aligned
(Series 10000 Only) . ..voviiiine ettt et e einannnanns 3-74
3.15.6.7 Dereferencing Pointersoovitiinintieniennenns 3-75
3.15.6.8 Passing Arguments by Reference 3-76
3.15.7 Attribute Inheritance—Extension, 3-76
3.15.8 Special Considerations—Extensioncviivivinineen. 3-77
3.16 Attribute Declaration Part—Extensioncocvvivuiieineenn.. 3-78
Chapter 4 Code
4.1 Overview: Conditional Branching i i 4-1
4.2 Overview: Loopingovtiitii it ittt 4-2
4.3 Overview: Mathematical Operatorscvviiverinnnnneaens 4-2
4.3.1 Expansion of Operandscooivii it 4-5
4.3.2 Predeclared Mathematical Functions vt 4-5
4.3.3 Mixing Signed and Unsigned Operands in Expressions 4-6
4.4 Overview: I/O ... it it i it i e e e 4-8
4.5 Overview: Miscellaneous Routines and Statements 4-8
4.6 Overview: Systems Programming Routines 4-10
4.7 Encyclopedia of Domain Pascal Codec.ovviiiennine.n. 4-10
N T 4-12
Addr (EXtension)cc.iuitieiinenneniinroneennnnennens 4-13
Align (EXtenSion)viiitintiiintenernnenteneennennonnns 4-16
And, And Then ittt itiitinaananns 4-18
Append (EXension)ouvueiiennnntonnrnteneeneensnasss 4-21
7. N 1 4-23
AITay Operations vvt vt iiie i ittt ans 4-25
Arshft (EXtension)c.ouuiiueerenernneennnennnennnns 4-29
BN ... e e e e 4-31
Bit Operators (EXtension)ovuvnininenennnnenenenenn. 4-33
L O T 4-36
L1 1T O 4-39
Close (EXIENSION) .. .v vttt neetntieneenvanennnnnnn 4-41
Compiler Directives (Extension)coovtiiiiiiineennn.. 4-43
GOS8 it e e e e 4-59
Ctop (EXteNSION) ...t vinttn it ittt ennneenneeaneess 4-61
Discard (EXtension)cvuiuitintnneinennnraenuenenas 4-62
DS POSe . oottt e e e 4-64
DV i e e e e e 4-66
o 4-68

xiv Contents

PP 4-70

0 T 4-71

7 4-73

0 4-75

ExXit (EXteNnsion)vtiivvueneenonnenensoenoannonennaens 4-77

D54 + AP et e 4-79

EXPresSiONS ..o ovuuvtttninueteonnnnotsennsessononnnonnssess 4-81

T T 4-83

Firstof (EXtension)cciueiiuvneinrornoocesonesnoonenns 4-87

0 4-89

7 O 4-92

L€ L 4-95

PP 4-99

In e e e e e e e e 4-102
In_range (EXtension)ciiuiiniiiineniniiniaienanes 4-104
Lastof (EXtension)c.uieiuiiininienennininnonenenn. 4-106
% P 4-107
Lshft (EXtension)iuitiniiininmneennnnennenneans 4-109
Max (EXtENSION)iiiuittiieneeennnnrenseronnnnneeees 4-111
Min (EXIenSION) ... vuttiinnnereueeneerosnneatsnneesneess 4-113
Mod .. e e e e e e e e 4-115
|3 =) 2 4-117
Next (EXteNnSiON)iueiiuienneenneenernoeeeenneeeneess 4-123
Nl L i i i e e i e e e 4-125
3+ 2 4-126
Odd .. i e e e e e 4-128
L0] 4-129
Open (EXteNSiON) .. .vvvvvvteenereneennenneennerennneeanasss 4-130
Or, Or Else......cooniuiiiiiiiiii ittt 4-134
0 7 s 4-137
] 4-139
Page . ottt it i et e et e e e 4-142
Pointer Operationsooiiiiiiittiinnit i ieeranraaeesess 4-144
Pred ... e e e 4-147
Ptoc (EXtENSION) .. v vvvv ittt int it i neenns 4-149
2T 1 4-152
Read, ReadInttt 4-155
Record Operationsoooviiiin i inin i inisiennenenans 4-158
Repeat/Until i ittt ity 4-161
Replace (EXteNSiON)viiittnirinneniennnoeennneennnnes 4-163
RSt ittt ittt e i e 4-164
Return (EXtension)cvuiuiininiinineennnnennnnneans 4-166
REeWEHIte ...ttt ittt et it e 4-168
Roundttt et i e e 4-170
Rshft (EXtENSiON) .. .vvvvviitnntrintennenneennneennneennnnes 4-171
Set Operationscouiiiiiiitiiie it ireneenienneaneanss 4-173
11+ T 4-179

Contents

XV

Sizeof (EXtENSiON)ocoivinininrneneenrornonenasoraseas 4-181

1o e 4-184
17 o 2 4-186
StatemMENtSt vvvt ittt ientenntioetoortansststartcataenans 4-188
Substr (EXtension)c.ooveeeieeenesnienesnecaronnsasaas 4-189
SUCC «vvvvviiiiieinne, Ceeens P 4-191
1+ T TN 4-193
)+ J 4-194
B o Y 4-195
Type Transfer Functions (Extension)coevveenennenn 4-197
Unpackivvieiiinnrnncennnas et ee et 4-200
L0 2 4-203
Variable-Length String Operationsocoviiniiivninnnnn 4-204
While .. .o i i i i ittt 4-208
With . i i e e e e e 4-211
Write, WriteIn ittt iinttreenetonensennns 4-215
Xor (EXteNSION) . .vvvtvntvnnneneraetotonsansonssaannsoanns 4-221
Chapter § Procedures and Functions
5.1 Parameter Listc0iiiniiiiiiiiiiirieiinerrnieerinnennnnss 5-1
5.2 Argument Passing Conventions ottt 5-3
5.3 Parameter TYPES .« oot v vt vt vttneoreanoeensonesntsnecnesanennens 5-5
5.3.1 Variable Parameters and Value Parameters 5-6
5.3.2 In, Out, and In Out—Extensionccooviiireiinnrnnes 5-7
5.3.3 Univ—Universal Parameter Specification—Extension 5-10
5.3.4 Pointers to Routines—Extensioncvviiiiiiiiiine.s 5-11
5.3.4.1 Data Type Checkingcoviiiiiiii i i innnennnes 5-13
5.4 Procedures and Functions as Parameterscccivvuuna., 5-13
5.5 Routine Optionst itiiiii ittt itnneronnteenneennnonnses 5-15
5.5.1 Routine Option Syntaxccouitienueinivernrernneennens 5-15
55.2 forwardttt i i e ettt e 5-16
5.5.3 extern—EXtension ottt ittt it i e e 5-17
5.5.4 internal—Extensioncvuiiiiiiiiiini it 5-17
5.5.5 variable—EXtensioncciiiieiiiiiiiiiiiiiiiaina.s 5-17
5.5.6 abnormal—EXtensioncciiittiiiiiiiiiiiiiiiiiaaaes 5-19
5.5.7 val_param—EXtension ittt i 5-19
5.5.8 Nosave—EXtensionttt i i et i e 5-19
5.5.9 noreturn—EXtension i i i e 5-20
5.5.10 dO_return—EXtensionciiiiiiii it 5-20
5.5.11 a0_return—EXtensionc.iiiiiiiiiiii it 5-20
5.5.12 C_param—EXtensionc.itiiiiiiiniiiit i 5-21
5.6 Defining Your Own Routine Optionsociiiviiiiiinnnss 5-21
5.6.1 Syntax of the routine_option Declaration Part 5-21
'5.6.2 Examples of the routine_option Declaration Part 5-22

xvi Contents

5.6.3 Rules for Using the routine_option Declaration Part 5-22
5.6.4 Using default_routine_options 5-22
5.7 Attribute List—Extension ittt 5-24
5.7.1 SeCtion—EXteNSION .. o.vttiint et e 5-24
5.8 Recursion i i e 5-26
Chapter 6 Program Development

6.1 Program Development in a Domain Environment 6-1
6.2 Compiler Variantso oottt ittt ittt 6-3
6.3 Compiling ... vit i e e e 6-4
6.3.1 Compiler QULPULttt i i i e e e, 6-4
6.4 Compiler OPtiONS ... oottt tii ettt et tienee e ennnnaen 6-5
6.4.1 -ac and -pic: Memory Addressing 6-9
6.4.2 -alnchk: Displaying Messages about Alignment 6-9
6.4.3 -b and -nb: Binary Output i, 6-9
6.4.4 -bounds_violation and —no_bounds_violation: Array Bounds

Checking ... it i i e e 6-10
6.4.5 —-comchk and -ncomchk: Comment Checking 6-11
6.4.6 —compress and -ncompress: Object File Storage 6-12
6.4.7 -cond and -ncond: Conditional Compilation 6-12
6.4.8 —config: Conditional Processingc.oovuuiviniinennenn .. 6-12
6.4.9 —cpu: Target Workstation Selection 6-14
6.4.9.1 Choosing an Appropriate —cpu Argument: The cpuhelp Utility . 6-17
6.4.10 -db, -ndb, -dba, -dbs: Debugger Preparation 6-18
6.4.11 -exp and -nexp: Expanded Listing File 6-18
6.4.12 —-frnd and -nfrnd: Floating-Point Rounding 6-19
6.4.13 -idir: Search Alternate Directories for Include Files 6-20
6.4.14 —-imap and -nimap: Generate Symbol Table Maps for Include Files. 6-21
6.4.15 —-index! and -nindexl: Array Reference Index 6-21
6.4.16 —-info n and -ninfo: Information Messages 6-21
6.4.17 —-inlib: Library Files, 6-22
6.4.18 —iso and -niso: Standard Pascal0 i, 6-23

- 6.4.19 -land -nl: Listing Files o i i, 6-24

6.4.20 -map and -nmap: Symbol Table Map 6-24
6.4.21 -msgs and —nmsgs: Messagesiiiiiiiiiii i i 6-25
6.4.22 -natural and -nnatural: Setting the Environment to Natural

Alignmentt i i e e 6-25
6.4.23 -nclines: COFF Line Number Tables 6-26
6.4.24 -opt: Optimized Code ittt 6-26
6.4.24.1 Using the Debugger at Higher Optimization Levels 6-32
6.4.25 ~prasm and -nprasm: Expanded Listing Format 6-33
6.4.26 -slib: Precompilation of Include Files 6-33
6.4.27 -std and -nstd: Nonstandard References 6-35
6.4.28 -subchk and -nsubchk: Subscript Checking 6-35
6.4.29 —version: Version of Compiler i, 6-35

Contents

xvii

6.4.30 -warn and -nwarn: Warning Messages i, 6-35
6.4.31 -xrs and -nxrs: Register Saving L 6-36
6.5 Linking Programsouviiniiitinntinineennneoneennnesnnain, 6-36
6.5.1 The Id Utilityo it i i e e 6-36
6.5.2 The bind Commandiiinitiiiii it ennns 6-37
6.6 Archiving and Using Librariescovutiiiiiiiinnennan.. 6-38
6.7 Executing @ Programciiiiiiitiittiieeneneenennnnnns 6-39
6.8 Debugging Programs in a Domain Environment 6-39
6.8.1 The Domain Distributed Debugging Environment Utility 6-39
6.8.2 The dbx Utilityot i it e iinaaen 6-40
6.9 Program Development TOOISo.utiiiiiiniinnennnnneans 6-40
6.9.1 Traceback (tb) R 6-40
6.9.2 The DSEE Productcoviiiuiininiiiiiiniinnieinneeeans 6-41
6.9.3 Open Dialogue and Domain/Dialogue oo, 6-42
6.9.4 Domain/PAK it i e 6-43
6.10 Program Development Using the Network File System (NFS) 6-43
Chapter 7 External Routines and Cross-Language
Communication
7.1 Modulesttt i e e e 7-1
7.1.1 Module Headingcoiiiiiiii it 7-2
7.2 Accessing a Variable Stored in Another Pascal Module 7-3
7.2.1 Method 1 i i i e it e e i 7-4
7.2.2 Method 2 ... i e e 7-4
7.2.2.1 Initializing Extern Variable Arrays 7-5
7.2.3 Method 3 .. it i e i i i e 7-6
7.2.4 Methoddt i i i i e .77
7.3 Accessing a Routine Stored in Another Pascal Module 7-8
7.3.1 25 =3 s + 7-8
7.3.2 Internalttt e e e 7-8
7.3.3 Method 1 ...ttt i i ittt c i 7-8
7.3.4 Method 2 ...ttt e e e e 7-10
7.4 Calling a FORTRAN Routine from Pascal 7-13
7.5 Data Type Correspondence for Pascal and FORTRAN 7-14
7.5.1 Boolean and Logical Correspondence, 7-15
7.5.2 Simulating FORTRAN’s Complex Data Type 7-15
7.5.3 Array Correspondencettt 7-16
7.6 Passing Data Between FORTRAN and Pascal 7-17
7.7 Calling FORTRAN Functions and Subroutines 7-17
7.7.1 Calling a FuNCtion . ..ottt i i 7-18
7.7.2 Calling a Subroutine i 7-19
7.7.3 Passing Character Argumentsc.ouvuveeeennnnnnen.. 7-20
7.7.4 Passing a Mixture of Data Typesc.oviiueiiiinn.. 7-21
7.7.5 Passing Procedures and Functions i, 7-24
xviii ~ Contents

7.8 Calling a C Routine from Pascalccoiiiiiiininiinnnnns 7-28
7.8.1 Reconciling Differences in Argument Passing 7-29
7.8.2 Case—Sensitivity Issueso iv ittt ittt ieeennannnesooas 7-29
7.8.3 USing RegIStErS . . oo vt v ittt ittt eiii i 7-29
7.9 Data Type Correspondence for Pascaland C....................... 7-30
7.9.1 Passing Integers and Real Numberso, 7-30
7.9.2 Passing Stringscvuitiitiiitinnietinnnerenarinnnenns 7-32
7.9.3 PasSing AITaysvvvnit ittt iiani e antnnennns 7-36
7.9.4 Passing PoIntersovutiv it rienoersroeennaneanssons 7-38
7.9.5 Passing Procedures and Functionsc i, 7-41
7.9.6 Data Sharing Between C and Pascal vivven, 7-43
7.9.6.1 Declaring .data and .bss Global Variables 7-43
7.9.6.2 Creating Overlay Data Sections i, 7-45
Chapter 8 Input and Output
8.1 Some Background on Domain I/O00, 8-1
8.1.1 Input/Output Stream (IOS) Callsciviiiiiiniintenennn. 8-1
8.1.2 VEMT Calls ..o oiv ittt it et ieieneneaeaenaeinnneens 8-2
8.1.3 File Variables and Stream IDscoiiiiii e, 8-3
8.1.4 Default Input/Output Streamsovvtiit it innnneenns 8-3
8.1.5 Interactive I/O e e e 8-4
8.1.6 Stream Markersoot ittt e e 8-5
8.1.7 File Organizationiitiiiiiiitiiniiiaiieenennn, 8-6
8.2 Predeclared Domain Pascal I/O Procedures 8-6
8.2.1 Creating and Opening a New File, 8-6
8.2.2 Opening an Existing File i, 8-7
8.2.3 Reading froma File it 8-7
8.2.4 Writingtoa Fileo.iiiiii i i i 8-8
8.2.5 Closinga Filettt 8-9
Chapter 9 Diagnostic Messages
9.1 Errors Reported by Open and Find i, 9-1
9.1.1 Printing Error Messagescuuviiniininnenenenennonnn 9-2
9.1.2 Testing for Specific Errors i, 9-3
9.2 Compiler Error, Warning, and Information Messages 9-4
9.2.1 Error, Fatal Error, Warning, and Information Message Conventions . 9-§
9.2.2 Error, Warning, and Information Messages 9-5
9.3 Run-Time Error Messagesvviiiiinni it ennees 9-50
9.3.1 Causes of Run-Time Errorscociiiiiiniiinnnne.n 9-50
9.3.2 Debugging Run-Time Errorsc.viiiiiiiiiinnnn, 9-52
9.3.3 Operating System Error Messagesccovvviineinnerenness 9-52
9.3.4 Floating-Point Errorsci i innnerneenn, 9-54

Contents

xix

Appendix A

Reserved Words and Predeclared Identifiers

Reserved Words and Predeclared Identifiersccovviivinn v renrnnns A-1

Appendix B

ISO Latin-1 Table

ISO Latin=1 Tableot it ettt st e s tee et e eneaneens B-1

Appendix C

C.1
C.1.1
C.1.2
C.1.3
C.1.4
C.1.5
C.1.6
C.1.7
C.2
Cc.2.1
C.2.2
C.2.3
C.2.4
C.2.5
C.2.6
C.2.7
c.2.8
C.3
C.3.1
C.3.2
C.3.3
C.3.3
C.3.4
C.3.5
C.3.6
C.3.7
C.3.8
C.3.9
C.3.10
C.3.12
C.3.13
C.3.14

XX Contents

Extensions to Standard Pascal

Extensions to Program Organization C-1
Identifierso v vttt e e e e C-1
Integers ..ottt e e e e C-1
(000 0441 7=) o 114 C-2
SECLIONS v ittt e e e e C-2
Declarationso v v vttt i i i i e e e e C-2
L0003 0111 o1 - J C-3
I 7= (3t C-3

Extensions to Data Typescoiuiuiiiiiiiiirenrinnneneeens C-4
Initializing Variables in the Var Declaration Part Cc-4
01 2= T3 T C~4
Reals e e Cc-4
Pointer TyYPes . oo v vt e i i e e e C-4
Variable—Length StringSvuuteeetnunnneeeennneeeeunneeens C-5
Named Sectionscov ittt it i C-5
Variable and Type Attributeso, C-5
Aligned Record and Unaligned Record C-6

Extensions to Codec.i it i C-6
Exponentiation Operatoroovtti it C-6
Bit Operatorsouvvuntivntinnntonnonnoeanaeonnneennens C-6
Boolean Short-Circuit Operators, C-6
Bit-Shift Functionsouuiieiiiiiiiiiiieeennnn C-6
Compiler DIreCtives . ..o v vvi v ittt it it Cc-7
Addr Functionttt C-7
Align Functiont C-7
Max and Min Functionsot innnnennns Cc-7
Discard Procedurecouiiineiiiiniiiiiinnieennes C-7
Routines for Variable-Length Strings, C-8
T/O Proceduresoviviiieninnnenntnneennneenneenness C-8
oo) o C-9
Range of a Specified Data Typecoiiviiiiiiiiennnen. c-9

Integer Subrange Testingccvitiiiiiiiiin e, C-9

C.3.15
C.3.16
C.3.17
C.3.18
C.3.19
C.3.20
C.4
C.4.1
C.4.2
C.4.3
C.4.4
C.5
C.6

Extensions to Read and ReadIn c-9
Premature Return from Routinescoiiiiniieeeeeenns C-9
Memory Allocation of a Variable C-10
Extensions to With ittt C-10
Type Transfer Functionsttt C-11
Extensions to Write and Writeln C-11
EXtensions t0 ROULINES v vt iiiinn ittt ittt iieeennnns C-11
Direction of Data Transferc..0 i innnns C-11
Universal Parameter Specification v, C-12
Routing Optionsttt ittt ittt e i es C-12
Routine Attribute Listttt it C-13
Modulamty . oo v e e e e e C-14

Other Features of Domain Pascalcoiviinininnnennn. C-14

Appendix D

D.1
D.2

Deviations from Standard Pascal

Deviations from the Standard i i D-1
Deviations from Specific Sections of the Standard D-2

Appendix E

E.1
E.2

Systems Programming Routines

(02773 0 1= 2 E-1
ReStrictions fOr USE . v vt v ittt ittt et ittt ettt E-2

Appendix F

F.1
F.2

F.3
F.3.1

F.3.2
F.3.3
F.4
F.4.1
F.4.2
F.5

Optimizing Floating-Point Performance on
MC68040-Based Domain Workstations

Instruction Emulation i e e F-2

How to Determine If an Application Relies Heavily on Instruction

Emulation e e Ve e " F-2

How Instruction Emulation Affects Performance F-3
Changing from -cpu 3000 (-cpu mathchip) to ~cpu mathlib or
~cpumathlib_sr10 i F-4
Changing from -cpu any to —-cpu mathlib or —~cpu mathlib_sr10 ... F-4
Changing from -cpu any to -cpu mathchip (-cpu 3000) F-4

What Steps to Take for Your Application F-4
Should You Recompile?o F-4
If You Recompile, Which ~cpu Argument Should You Use? F-5

If You Get Different Results on the 68040 and the 68020/68030 F-7

Index

Contents

xxi

Figures

xxii

Contents

Sample Program it iiiiiit ittt e e e

Format of Main Program in Domain Pascal
Labeled Main Programcoiuiiniutinnnrenneennneennns
Global Variables Exampleiiiiiiiiiniiniininnenns
Nesting Examplecouiiiiiiiiinntiinnernneennneeennnnns

Program Declaring All Available Data Typesu..
16-Bit Integer Formatttt ittt ittt i e
32-Bit Integer FOrmatviiuitiiietteinenunnnoeneneennns
Single-Precision Floating-Point Formatcovuu...
Double-Precision Floating-Point Format,
Storage of Sample Set vvvr ittt e i e e
Natural Alignment for Pascal Simple Data Types
Default Layout of Record S1
Layout of Record S2 i i i
Naturally Aligned Record S3 with 1-Byte Padding
Layout of S4 Using Word Alignment,
Memory Arrangement for Record with Poorly Arranged Fields
Memory Arrangement According to Decreasing Size of Fields
Array of S1 Records, Not Naturally Aligned
An Aligned Record Type Record,
An Unaligned Record Type Recordo,
Sample Packed Recordttt iiiinnnnnns
Pointer Variable Formato ittt
Naturally Aligned Record S..........oiiiiiiiiiiii i,
Array of S RecOordsvvvvin et iniii i
Naturally Aligned Record S.......... ... i,
Naturally Aligned Record S1....... ittt
Default Layout for S1 ittt ittt
Layout for S1 with Byte Alignment Specified
Layout for S1 with Natural Alignment Specified
Layout for S1 with Word Alignment Specified
Layout for S1 with Word Alignment for B Specified
Naturally Aligned Structure S2 ...ttt
Word Aligned Structure S2ottt i

Program Illustrating Variable Parameters: var_parameter_example .
Program Illustrating Value Parameters: value_parameter_example
Program Illustrating in, out, and in out Value Passing:
in_out_example i
Program and Module Illustrating Pointers to Routines:
pass_routine_ptrs and SQUArettt i

5-5. Program Illustrating the forward Option: forward_example 5-16
5-6. Program Illustrating the variable Option: variable_attribute_example 5-18
6-1. Program Development in a Domain System 6-2

6-2. A Program Illustrating Conditional Variables: config_example 6-13
7-1 Formatof aModule i 7-2

7-2 Method 1 for Accessing an External Routine 7-9

7-3. Method 2 for Accessing an External Routine 7-10
7-4. Another Example of Calling External Routines 7-12
7-5. An Example of Calling FORTRAN: pas_to_ftn_hypo_func......... 7-18
7-6. An Example of Calling FORTRAN: hypotenuse 7-18
7-17. An Example of Calling FORTRAN: pas_to_ftn_hypo_sub 7-19
7-8. An Example of Calling FORTRAN: hypot sub................... 7-20
7-9. An Example of Calling FORTRAN: pas_to_ftn_mixed 7-22
7-10. An Example of Calling FORTRAN: mixed_types 7-23
7-11. An Example of Calling FORTRAN: pass_func_to_fortran_p 7-25
7-12. An Example of Calling FORTRAN: funcs_for fortran_p 7-26
7-13. An Example of Calling FORTRAN: sort_ array f 7-27
7-14. An Example of Calling C: pas_to_c_hypo....................... 7-31
7-15. An Example of Calling C: hypot_c...........cciiiiien.. 7-31
7-16. An Example of Calling C: pas_to_c_stringsl 7-32
7-17. An Example of Calling C: capitalize 7-33
7-18. An Example of Calling C: pas_to_c_strings2 7-34
7-19. An Example of Calling C: pass char 7-35
7-20. An Example of Calling C: pas_to_c_arrays 7-37
7-21. An Example of Calling C: single_dim 7-37
7-22. An Example of Calling C: pas_to_c_ptrs0. .. 7-39
7-23. An Example of Calling C: appendcciiiiiiinuenn.. 7-40
7-24. An Example of Calling C: sort_array ¢, 7-41
7-25. An Example of Calling C: pass_func_to_cp 7-42
9-1 System Memory and Run-Time Errors 9-51
F-1 Which -cpu Argument Is Best for Your Application? F-6

Tables

2-1 Domain Pascal Mathematical Operatorso, 2-13
3-1 Representation of an Enumerated Variable 3-14
3-2 Guaranteed Default and Natural Alignment for Simple Data Types 3-24
3-3 Storage of Packed Record Fieldso, 3-36
3-4 Size of One Element of an Arraycooiiiviiiii .. 3-46
3-5 Storage of Packed Array Elementsccoviiinnn.. 3-47
3-6. Summary of Attributes for Variables and Types 3-55
3-7. Size of Simple Data Typescuoiiiii it rennirenneennns 3-61

Contents xxiii

xXXiv

[U

|
== O 00 NN R W

-

-

(I
—
S W

(.1
1
p—

Contents

Domain Pascal Operatorscoitiiiiiinntinnnnnennns 4-3
Exponentiation EXpressionsooiiiiiiiiiiirinienen. 4-4
Order of Precedence in Evaluating Expressions 4-4
Mathematical Functionsoiiiiiiiiiiiiinnennnn. 4-6
Predeclared 1/0 Procedurescoeiiivinnnunnennenanns 4-8
Miscellaneous Elementsovvii ittt ininienennenenns 4-9
Systems Programming Routines oo v, 4-10
Truth Table for & (Bitwise And Operator)cvvvvuunn.. 4-33
Truth Table for ! (Bitwise Or Operator)coevveenenn.. 4-34
Truth Table for ~ (Bitwise Not Operator)cevvuvuvn.n. 4-34
Compiler Directivesottt iiiiiiaaaens 4-44
Truth Table for Logical or Operatorcovviviiinnn. 4-134
Set OPerators &« vt viii ittt ieeeteereenoaseeenenseneennnns 4-174
Truth Table for xor Function i, 4-221
Argument Passing Conventionsciiiiiitiiiinennn, 5-5
Sample Object File Names e 6-5
Domain Pascal Compiler Optionscoiiiiiiiinenna.. 6-6
Arguments tothe =cpu Optiono iiiiiiii i 6-16
Relative Performance with Different -cpu Arguments 6-17
Domain Pascal and Domain FORTRAN Data Types 7-14
Domain Pascal and Domain/C Data Types 7-30
The Default Streamso..oeuseneneeneneenenneneenenn.. 84
Common Error Codes Returned by open 9-3
Common Error Codes Returned by find 9-3
Reserved Wordsciviiiiiiiiiiiiiiii et EEEEEE A-1
Predeclared Identifiers i A-2
ISO Latin=1 Codesccvitiniitiiiiniiiiiiiiiiiiinneneann B-2
Systems Programming Routineso, E-1
Emulated Intrinsic Functions i, F-3
88

Chapter 1

Introduction

You should be somewhat familiar with Pascal before attempting to use this manual. If you
are not, please consult a good Pascal tutorial. (We've listed some good tutorials in the
Preface.) If you are somewhat familiar with Pascal or if you are expert in a highly block-
structured language such as PL/I, then you should be able to write programs in Domain

Pascal after reading this manual.

1.1 A Sample Program

The best way to get started with Domain Pascal is to write, compile, and execute a simple
program. Figure 1-1 shows a simple program that you can use to get started.

VAR

BEGIN

readln(x);
Yy 1= x ¥ 2;
writeln;
writeln(y:1,
END.

X : integeril6;
Yy : integer32;

”,

PROGRAM getting started;
{A simple program to try out.}

is twice

write(“Enter an integer -- “);

T, x:1);

Figure 1-1. Sample Program

Although you are welcome to type in this program yourself, it is also available through the
getpas utility. The following section contains details about using getpas to run sample pro-

grams.

Introduction

1-1

Suppose you store the program in the file easy.pas. (Although it is not required that the
filename end with the .pas extension, we recommend its use so that you can readily iden-
tify Pascal source programs.)

To compile a program, simply enter the shell command pas followed by the filename. If
you do use the .pas extension, you can include or omit that extension at this step. Domain
Pascal doesn’t care which way you type it. For example, to compile easy.pas, you can en-
ter either of the following commands:

$ pas easy
or

$ pas easy.pas

The compiler creates an executable object in filename easy.bin. To execute this object you
merely enter its name. For example:

$ easy.bin
Enter an integer -- 15

30 is twice 15

1.2 Online Sample Programs

Many of the programs from this manual are stored online, along with sample programs
from other Domain manuals. These programs come automatically with the Domain Pascal
product. They illustrate features of the Domain Pascal language, and demonstrate pro-
gramming with Domain graphics calls and system calls. You retrieve these online sample
programs with the getpas utility.

1.2.1 What You Get When You Install Sample Programs

When you (or your system administrator) load the Domain Pascal product, the install pro-
cedure will ask if you want to install sample programs. We recommend that you answer
“y” (for yes). If you answer “y”, the install program will store the following three files in
the /domain_examples/pascal_examples directory:

examples This is a master file containing all the sample Pascal programs.
list_of_examples This is a help file describing all the sample Pascal programs.

getpas This is the utility that retrieves the sample programs out of the exam-
ples file.

Note that the sample programs take up a lot of disk space (> 600 Kbytes), so we recom-

mend that you install the sample programs in only one site on the network and have users
link to them. ‘

1-2 Introduction

1.2.2 Creating Links to the Sample Programs

If you want to be able to invoke getpas from any directory on the system, you must create
the appropriate links. The links differ according to your type of environment. Also, be-
fore you can set up the links, you must find out the name of the disk on which the exam-
ples are stored, and use that name as node in the command lines shown below.

If you are in the Aegis environment, you can set up the following link:

$ crl “/com/getpas //node/domain_examples/pascal_examples/getpas

If you are in a UNIX environment, you can set up the following link:

$ In -s //node/domain_examples/pascal_examples/getpas a_dir/getpas

where node is the name of the disk where the examples are stored and a_dir is the name
of a directory in your path.

If node is not your node, then you should also create one of the following links, depending
on your operating system environment:

$ crl /domain_examples/pascal_examples //node/domain_examples/pascal_examples

$ In -s //node/domain_examples/pascal_examples /domain_examples/pascal_examples
NOTE: Instead of creating links you can set your working directory to the

/Inode/domain_examples/pascal_examples directory and in-
voke getpas from there.

1.2.3 Invoking getpas

You invoke getpas in the same manner regardless of the operating system environment.

There are two different ways to invoke getpas. The first, and simplest, way is to specify
its name on any shell command line.

For example, in an Aegis environment:

$ getpas

After you invoke getpas, the utility will prompt you for the appropriate information.

The second way to invoke getpas is to indicate the desired information on the command
line itself. To do so, issue a command with the following format:

$ getpas sample_program_name output_file_name

Introduction 1-3

For example, the following command line finds the sample program named getting_started
and writes it to pathname //dolphin/pascal_programs/getting_started.pas:

$ getpas getting_started //dolphin/pascal_programs/getting_started.pas

For full details on using getpas, issue the following command:

$ getpas -usage

1.3 Overview of Domain Pascal Extensions
Domain Pascal supports many extensions to ISO/ANSI standard Pascal. The purpose of
this section is to provide an overview of these extensions. For a complete list of all the ex-
tensions, see Appendix C. All extensions to the standard are marked in color like this or

are noted explicitly in text as an extension. For a list of omissions from standard Pascal,
see Appendix D.

Naturally, the more you take advantage of Domain Pascal extensions, the less portable
your code will be. Therefore, if you are very concerned with portability, you should avoid
using the extensions. '

1.3.1 Extensions to Program Organization

Chapter 2 describes the organization of a Domain Pascal program contained within one
file. Following is an overview of the extensions described within the chapter. You can

® Specify an underscore (_) or dollar sign (8) in an identifier.
® Specify integers in any base from 2 to 16.
® Specify comments in three ways.

® Specify that the compiler assign the code or data in your program to nondefault
named sections.

® Declare the label, const, type, and var declaration parts in any order.
® Declare define and attribute parts in addition to the standard declaration parts.

® Use constant expressions when declaring constants, as long as the components of
the expressions are constants.

@ Use both identifiers and integers as labels.

1-4 Introduction

1.3.2 Extensions to Data Types

Chapter 3 describes the data types supported by Domain Pascal. Domain Pascal supports
the following extensions that allow you to

Specify two additional pointer types. The first is a special pointer to procedures
and functions. The second is a universal pointer type that will hold a pointer to a
variable of any data type.

Initialize static variables in the var declaration part of your program.
Group variables into named sections for better run-time performance.

Specify variable and type attributes that let you better control compiler optimiza-
tion and data layout.

Embed unprintable characters in string constants.
Create variable-length strings.

Specify two additional record types—aligned record and unaligned record. You
can use the first type to make sure that records are always naturally aligned, and
you can use the second to make sure that records are always aligned on word
boundaries.

1.3.3 Extensions to Code

Chapter 4 describes the action portion of your program. Domain Pascal supports the fol-
lowing extensions to executable statements:

An addr function that returns the address of a specified variable

An align function that returns a correctly aligned copy of an expression passed as
a routine parameter

An append procedure for concatenating strings
Bit operators or functions for bitwise and, not, or, and exclusive or operations
Three bit-shift functions (rshft, arshft, and Ishft)

Many compiler directives that enable features like include files and conditional
compilation

A ctop procedure for converting a C-style string into a Domain Pascal variable-
length string

A discard procedure for explicitly discarding an expression’s value and so sup-
pressing some compiler optimizations

Introduction 1-5

An exit statement for jumping out of the current loop
An exponentiation operator (**)
A find procedure for locating a specified element in a file

A firstof and a lastof function for returning the first and last possible value of a
specified data type

Some additional capabilities for the if statement

An in_range function for determining whether a specified value is within the de-
fined range of an integer subrange or enumerated type

A max and a min function for finding the greater and lesser of two specified ex-
pressions

A next statement for skipping over the current iteration of a loop
An open procedure for opening files and a close procedure for closing files

A ptoc procedure for converting a Domain Pascal variable-length string into a C-
style string

A replace procedure that allows you to modify an existing element in a file

A return statement for causing a premature return to a calling procedure or func-
tion

A sizeof function for returning the size (in bytes) that a specified data type re-
quires in storage

A substr function for extracting a substring from a string

Additional type transfer functions that transform the data type of a variable or
expression into some other data type

Some additional capabilities for the with statement

1.3.4 Extensions to Routines

1-6

Chapter 5 describes procedures and functions (routines). This chapter documents exten-
sions that allow you to:

Specify the direction of parameter passing with the special in, out, and in out
keywords.

Use the univ keyword to suppress parameter type checking.

Specify routine attribute clauses, routine options clauses, and a routine option dec-
laration part to control how the compiler processes a routine.

Specify argument lists on both the forward declaration and the routine heading of
routines declared past the calling statement.

Introduction

1.3.5 Extensions to Program Development

Chapter 6 explains how to compile, bind, debug, and execute your program. Program de-
velopment tools are an implementation—-dependent feature of a Pascal implementation; that
is, there is no standard for these tools.

1.3.6 External Routines and Cross-Language Communication

Chapter 7 explains how to write a program that accesses code or data written in another
separately compiled module or library. It also describes how to access routines written in
Domain FORTRAN or Domain/C. The entire chapter describes features that are
implementation-dependent.

1.3.7 Extensions to I/0

Chapter 8 describes input and output from a Domain Pascal programmer’s point of view.
Domain Pascal supports all the standard 1/0 procedures. In addition, it supports the open,
close, find, and replace procedures. As a further extension to the standard, Domain
Pascal permits you to access the operating system’s I/O and formatting system calls.

1.3.8 Diagnostic Messages
Chapter 9 lists compile-time and run-time messages and explains how to deal with them.

Diagnostic messages are an implementation-dependent feature of Pascal.

oo
]

Introduction 1-7

Chapter 2

Blueprint of a Program

This chapter describes the building blocks and organization of a Domain Pascal program.

2.1 Building Blocks of Domain Pascal

In this section we describe the basic building blocks or elements of the Domain implemen-
tation of Pascal. We define identifiers, integers, real numbers, comments, and strings, and
we explore case-sensitivity and spreading source code across multiple lines.

2.1.1 Identifiers

In this manual, the term “identifier” refers to any sequence of characters that meets the
following criteria:

® The first character is a letter (ASCII values 65 through 90 and 97 through 122)
® The remaining characters are any of the following:

A...Z and a...z (ASCII values 65 through 90 and 97 through 122)
0...9

_ (underscore)

$ (dollar sign)

Identifiers are case—insensitive. An identifier can have up to 4096 characters.

Blueprint of a Program 2-1

2.1.2 Integers

The first character of an integer must be a positive sign (+), a negative sign (=), or a digit.
Each successive character must be a digit. (See the “Integers” section in Chapter 3 for a
description of the range of various integer data types.)

An unsigned integer must begin with a digit. Each successive character must be a digit.

Note that Pascal prohibits two consecutive mathematical operators. If you want to divide 9
by -3, you might be tempted to use the following expression:

9 DIV -3 {WRONG! }

However, this produces an error, since Pascal interprets the negative sign as the subtraction
operator (and that makes two mathematical operators in a row). Where the sign of an inte-
ger can be confused with an addition or subtraction operator, enclose the integer within
parentheses. Thus, the correct expression for 9 divided by -3 is:

9 DIV (-3) {RIGHT!}

Pascal assumes a default of base 10 for integers. If you want to express an integer in an-
other base, use the following syntax:

base#value

For base, enter an integer from 2 to 16. For value, enter any integer within that base. If
the base is greater than 10, use the letters A through F (or a through f) to represent digits
with the values 10 through 15.

For example, consider the following declarations of integer constants:

half life := 5260; /* default (base 10) */
hexagrams := 16#1c6; /* hexadecimal (base 16) */
luck = 2#10010; /* binary (base 2) */
wheat 1= 8#723; /* octal (base 8) */

2.1.3 Real Numbers

Domain Pascal supports the standard Pascal definition of a real number literal, which is
integer.unsigned_integerEinteger
In other words, a valid real number literal may contain a decimal point, but it doesn’t

have to. If the real number literal contains a decimal point, you must specify at least one
digit to the left of the decimal point and at least one digit to the right of the decimal point.

2-2 Blueprint of a Program

To express expanded notation (powers of 10), use the letter e or E followed by the expo-
nent; for example:

5.2 means +5.2
5.2E0 means +5.2
-5.2E3 means -5200.0
5.2E-2 means +0.052

Compare the right and wrong way for writing decimals in your program:

.5 {wrong}
0.5 {right}
5E-1 {right}

Note that although using .5 in your source code causes an error at compile time, entering
.5 as input data to a real variable does not cause an error at run time.

2.1.4 Comments

You can specify comments in any of the following three ways:

{ comment }
(* comment *)
“comment”

For example, here are three comments:

{ This is a comment. }
(* This is a comment. ¥)
"This is a comment."

The spaces before and after the comment delimiters are for clarity only; you don’t have to
include these spaces.

NOTE: If you use a compiler directive within comment delimiters you
cannot use spaces. Also, surrounding a compiler directive by
comment delimiters does not necessarily cause it to be treated as
a comment by the compiler. This is because you can specify a
compiler directive anywhere a comment is valid by specifying its
name inside a comment or as a statement; see the listing for
“Compiler Directives” in Chapter 4 for details.

Unlike standard Pascal, the comment delimiters of Domain Pascal must match. For exam-
ple, a comment that starts with a left brace doesn’t end until the compiler encounters a

right brace. Therefore, you can nest comments, for example:

{ You can (*nest*) comments inside other comments. }

Blueprint of a Program 2-3

Standard Pascal does not permit nested comments. If you want to use unmatched comment
delimiters, as standard Pascal allows, you must compile with the —iso option. (See Section
6.4.18 for details about this option.)

The Domain Pascal compiler ignores the text of the comment, and interprets the first
matching delimiter as the end of the comment. Use quotation marks to set off comments
only if you are converting existing applications to the Domain system. In all other pro-
grams, you should use either of the other two methods.

Note that Pascal comments can stretch across multiple lines; for example, the following is a
valid comment:

{ This is a comment
that stretches across
multiple lines. }

NOTE: You can use the —comchk compiler option (described in Chapter
6) to warn you if a new comment starts before an old one finishes.
This option can help you find places where you forgot to close a
comment.

2.1.5 Strings

We refer to strings throughout this manual. In Domain Pascal, a string is a sequence of
characters. A string can be represented by a string literal, which is formed by enclosing a
sequence of characters in single quotes (*’). Strings differ from identifiers in that you can
use any character within a string. Here are some sample strings:

“This is a string.”’
118I

‘b2~ {a"%pl-
lcan/ltl

To include a single quote in a string, write the single quote twice; for example:

‘I can”’t do it.~
“Then don”“t try!”

NOTE: Within a string, Domain Pascal treats the comment delimiters as
ordinary characters rather than as comment delimiters.

2.1.5.1 Embedding Special Characters in Strings

The Domain Pascal compiler allows you to embed any ISO Latin-1 character in a string by
placing the decimal ISO Latin-1 value in parentheses. This is especially useful for embed-
ding unprintable characters. (The ISO Latin-1 character set, described in Appendix B,
includes the ASCII character set.)

2-4 Blueprint of a Program

For example, the following statements cause the compiler to output a tab (ISO Latin-1
value 9) following the text line:

CONST
TAB = 9;

writeln(’Print a tab: “(TAB));

In essence, the compiler concatenates two string literals, one designated by the normal
single quotes, and the other designated by the new ISO Latin-1 code syntax. There is no
limit to the number of special characters and strings that you can concatenate provided
that the total number of characters is not greater than 1024 and that the first component is
a string within single quotation marks. For example, all of the following definitions are
legal:

CONST
NUL = O;
LF = 10;
CR = 13;
S1 = “newline” (CR) (LF);
S2 = “three carriage returns’ (13) (CR) (13) “followed by more text~;

S3 = ‘A null-terminated string’ (NUL);

However, it is illegal to begin a string with an ASCII code:

S3

(CR) (LF) “newline’; {ILLEGAL!}

The compiler supports an alternative syntax that allows you to specify more than one ISO
Latin-1 code at a time by enclosing all of the ISO Latin-1 codes in parentheses, separated
by commas.

For instance, the expression

‘newline” (CR) (LF)

can also be written

‘newline’ (CR,LF)

Blueprint of a Program 2-5

The following example illustrates some uses of embedded characters:

PROGRAM print_special_strings;

CONST"
NUL
BEL =
TAB =
LF =1
CR = 13;

O © N0

BEGIN
writeln(“Output four bells” (BEL) (BEL) (BEL) (BEL));
writeln(’Print two tabs” (TAB,TAB) “followed by text’);
writeln(“Print a carriage return’ (CR) “and linefeed’ (LF));
END.

2.1.6 Case-Sensitivity

Domain Pascal, like standard Pascal, is case-insensitive to keywords and identifiers (i.e.,
variables, constants, types, and labels), but case—sensitive to strings. That is, Domain Pascal
makes no distinction between uppercase and lowercase letters except within a string. For
example, the following three uses of the keyword begin are equivalent:

BEGIN
begin
Begin

However, the following two character strings are not equivalent:

“The rain in Spain’;
“THE RAIN IN SPAIN‘;

NOTE: At SR10, Domain/OS is case-sensitive for pathnames. Be sure
that strings containing pathnames store the pathnames in the cor-
rect case.

2.1.7 Spreading Source Code Across Multiple Lines

In Pascal, you can start a statement or declaration at any column and spread it over as
many lines as you want. However, note that you cannot split a token (keyword, identifier,
or string) across a line. For example, consider the writeln statement which can take char-
acter strings as an argument. The following use of writeln is wrong because it splits the
string across a line:

WRITELN(“This is an uninteresting
long string’);

2-6 Blueprint of a Program

Instead, the line should appear this way:

WRITELN(’This is an uninteresting long string’);

You can also break the string into two strings and separate them by a comma:

WRITELN(“This is an uninteresting”
,” long string’);

This works because the writeln procedure takes more than one argument.

NOTE: By default, any text file you open for reading can have a maxi-
mum of 256 characters per line. You can specify an optional
buffer size when you open the file, however, to change that de-
fault.

2.2 Organization

You can write a Domain Pascal program in one file or across several files. This section ex-
plains the proper structure for a program that fits into one file. Chapter 7 details the struc-
ture for a program that is spread over several files.

A Domain Pascal program takes the format shown in Figure 2-1. Note that routines are
themselves declarations.

Blueprint of a Program 2-7

declaration part

Const
A Type declaration part
Var declaration part

Define declaration part

Attribute declaration part

> Label declaration part <

program heading
<< declarations
routines >
routine heading
Begin
declarations >
action
nested routines
End.
Begin
action
End;

Figure 2-1. Format of Main Program in Domain Pascal

Figure 2-2 is a labeled program designed to help you understand the structure of a
Domain Pascal program. The following subsections detail the parts of a program.

2-8 Blueprint of a Program

PROGRAM labeled; {program heading}

{start of the declaration part of the main program. }
{These declarations will be global to the entire program.}
LABEL {LABEL declaration part}
finish;
CONST {CONST declaration part}

axiom = ‘Clarity is wonderful!”;

TYPE {TYPE declaration part}
flavors = (mint, lime, orange, beige);

VAR {VAR declaration part}
X, ¥, z : integer;
ice_cream : flavors;
{End of the declaration part of the main program. }

{start of the roots procedure.}
Procedure roots; {routine heading}

{Start of the declaration part of roots.}
{These declarations will be local to roots.}
VAR {VAR declaration part}
q : real;
{End of the declaration part of roots.}

BEGIN {start of the action part of roots.}
write(“Enter a number - “); readln(q);
writeln(’The square root of “,q, ~ is “,sqrt(q)); I
END; {End of the action part of roots.}
{End of the roots procedure.}

BEGIN {start of the action part of the main program.}
writeln(axiom) ;
X :=5;, y:=17; 2z :=x+ 5;
if z > 100 then goto finish;

for ice_cream := mint to beige do
writeln(ice_cream);
roots;
finish:
END. {End of the action part of the main program.}

Figure 2-2. Labeled Main Program

Blueprint of a Program 2-9

2.2.1 Program Heading

Your program must contain a program heading. The program heading has the following
format:

program name [(file_list)] [, code_section_name] [, data_section_name];

In Domain Pascal, as in standard Pascal, you must supply a name for the program. Name
must be an identifier. This identifier has no meaning within the program, but is used by
the binder, the librarian, and the loader. (See the Domain/OS Programming Environment
Reference manual for details on these utilities for Aegis. For the UNIX utilities Id and ar,
refer to the SysV Command Reference and the BSD Command Reference.)

In standard Pascal you can supply an optional file_list to the program heading. The
file_list specifies the external files (including standard input and output) that you are going
to access from the program. However, unlike standard Pascal, the file_flist in a Domain
Pascal program has no effect on program execution; the compiler ignores it. (For details
on I/O, see Chapter 8.)

Code_section_name and data_section_name are optional elements of the program heading.
Use them to specify the names of the sections in which you want the compiler to store
your code and data. A section is a named contiguous area of memory in which all entities
share the same attributes. (See the Domain/OS Programming Environment Reference for
details on sections and attributes.) By default, Domain Pascal assigns all the code in your
program to the .text section and all the data in your program to the .data section. To as-
sign your code and data to nondefault sections, specify a code_section_name and a
data_section_name.

NOTE: In addition to nondefault code and data section names for the
entire program, you can also specify a nondefault section name
for a procedure, a function, or a group of variables. See the “Sec-
tion” section of Chapter S for an explanation of how to assign
section names to procedures and functions, and see the “Putting
Variables into Sections” section of Chapter 3 to learn how to
assign section names to groups of variables.

To specify the default .text section together with an alternate .data section, use the follow-
ing syntax:

program name [(file_list)], , data_section_name;

2-10 Blueprint of a Program

Let’s now consider some sample program headings. Despite the options available, most Do-
main Pascal program headings can look as simple as the following:

Program trapezoids;

Those of you desiring to write standard Pascal programs will also probably want to supply a
file_list as in the next example:

Program trapezoids (input, output, datafile);

Finally, those of you wanting to capitalize on certain run-time features may wish to define
your own section names. For example, if you want the compiler to store the code into sec-
tion mycode and the data into section mydata, you would issue the following program
heading:

Program trapezoids, mycode, mydata;

2.2.2 Declarations

The declarations part of a program is optional. It can consist of zero or more label decla-
ration parts, const declaration parts, type declaration parts, var declaration parts, define
declaration parts, and attribute declaration parts. Domain Pascal allows you to specify
these parts in any order.

2.2.2.1 Label Declaration Part

You define labels in the label declaration part. A label has only one purpose—to act as a
target for a goto statement. (See Chapter 4 for a description of the goto statement.) In
other words, the statement

GOTO 40;

works only if you have defined 40 as a label.
The format for a label declaration part is

label

labell [, IabelN];

A label is either an identifier or an unsigned integer. If there are multiple labels, you must
separate them with commas. Remember, though, to put a semicolon after the final label.

For example, the following is a sample label declaration:

LABEL
40, reprompt, finish, 9999;

Blueprint of a Program 2-11

2.2.2.2 Const Declaration Part

You define constants in the const declaration part. A constant is a synonym for a value
that will not (and cannot) change during the execution of the program.

The const declaration part takes the following syntax:

const
identifierl = valuel;

identifierN = valueN ;]

An identifier is any valid Domain Pascal identifier. A value must be a real, integer, string,
char, or set constant expression. Value can also be the pointer expression nil.

For example, here is a sample const declaration part:

CONST
pi = 3.14; {A real number}
cup = 8; {An integer}
key = "Y”; {A character}
blank = * *; {A character}
words = “To be or not to be’; {A string}
vowels = [“a’, “e’, “i’, ‘07, ‘u’}]; - {A set}
ptrl = nil; {A pointer}

The preceding sample involves simple expressions; however, you can also specify a more
complex expression for value. Such an expression can contain the following types of terms:

® A real number, an integer, a character, a string, a set, a Boolean, or nil

® A constant that has already been defined in the const declaration part (note that
you cannot use a variable here)

® Any predefined Domain Pascal function (for example, chr, sqr, Ishft, sizeof, but
only if the argument to the function is a constant)

® A type transfer function

You can optionally separate these terms with any of the operators shown in Table 2-1.

2-12 Blueprint of a Program

Table 2-1. Domain Pascal Mathematical Operators

Operator Data Type of Operand
+, - * Integer, real, or set

/ Real

mod, div, |, &, ~ Integer

b Exponentiation

Chapter 4 describes these operators.

For example, the following const declaration part defines eight constants:

CONST
X = 10;
y = 100;
zZ =X+ Y;

current_year = 1994;

leap_offset (current_year mod 4);
bell = chr(7);

pathname *//et/go_home”;
pathname_len sizeof (pathname) ;

2.2.2.3 Type Declaration Part

Chapter 3 details the many predeclared data types Domain Pascal supports. In addition to
these Pascal-defined data types, you can create your own data types in the type declara-
tion part. After creating your own data type, you can then declare variables (in the var
declaration part) that have these data types. The format for a type part is as follows:

type
identifierl = typenamel;

[

identifierN = typenameN;]

An identifier is any valid Domain Pascal identifier. A typename is any predeclared Domain
Pascal data type (like integer or real), any data type that you create, or the identifier of a
data type that you created earlier in the type declaration part.

Blueprint of a Program 2-13

For example, here is a sample type declaration part:

type .
long = integer32; {A predeclared Domain Pascal data type}
student_name = array[l..20] of long; {A user-defined data type}
colors = (magenta, beige, mauve); {A user-defined data type}
hue = set of colors; {A user-defined data type}
table = array[magenta..mauve] of real; {A user-defined data type}

2.2.2.4 Var Declaration Part

Declare variables in the var declaration part. A variable has two components - a name
and a data type. The format for the var declaration part is:

var
identifier_listl : typenamel;

[;

identifier_listN : typenameN;]

An identifier_list consists of one or more identifiers separated by commas. Each identifier
in the identifier_list is assigned the data type of typename. Typename must be one of
these:

® A predeclared Domain Pascal data type
® A data type you declared in the type declaration part

® An anonymous data type (that is, a data type you define for the variables in this
identifier_list only)

2-14 Blueprint of a Program

For example, consider the following type declaration part and var declaration part:

type
names = array[l..20] of char;
colors = (red, yellow, blue);
var
counter, x, y:integer;

{integer is a predeclared Domain Pascal data type.}
angles:real; {real is a predeclared Domain Pascal data type.}
a_letter:char; {char is a predeclared Domain Pascal data type.}
couch_colors:colors; {colors is defined in the type part.}
evil;boolean; {boolean is a predeclared Domain Pascal data type.}
mystery_guest:names; {names is defined in the type part.}
seniors:67..140; {An anonymous subrange data type.}
pet: (cat, dog); {An anonymous enumerated data type.}

In the preceding example, note that counter, x, and y are three variables that have the
same data type (integer).

2.2.2.5 Define Declaration Part—Extension

In addition to the const, type, var, and label declaration parts of standard Pascal, Do-
main Pascal also supports an optional define declaration part, which is described in the
first three sections of Chapter 7.

2.2.2.6 Attribute Declaration Part—Extension

Domain Pascal supports an optional attribute declaration part, which is described in the
“Attribute Declaration Part” section of Chapter 3.

2.2.3 Routines

A program can contain zero or more routines. There are two types of routines in Domain
Pascal: procedures and functions. A routine consists of three parts: a routine heading, an
optional declaration part, and an action part.

Blueprint of a Program 2-15

2.2.3.1 Routine Heading

Routine headings take the following format:

[attribute_list] procedure name [(parameter_list)];[routine_options;]

or

[attribute_list] function name [(parameter__list)] : typename;[routine_options;]
where:

® artribute_list is optional. Inside the attribute_list, you can specify nondefault sec-
tion names for the routine’s code and data. For a description, see Chapter §.

® name is an identifier. You call the routine by this name.

® parameter_list is optional. It is here that you declare the names and data types of
all the parameters that the routine expects from the caller. See Chapter 5 for de-
tails on the parameter_list.

® (ypename is the data type of the value that the function returns. The difference
between a procedure and a function is that the name of a procedure is simply a
name, but the name of a function is itself a variable with its own typename. You
must assign a value to this variable at some point within the action part of the
function. (It is an error if you don’t.) You cannot assign a value to the name of a
procedure. (It is an error if you do.)

® routine_options is an optional element of the routine heading. You can specify
characteristics of the routine such as whether or not it can be called from another
routine. Chapter 5 describes the routine_options.

2.2.3.2 Declaration Part of a Routine

The optional declaration part of a routine follows the same rules (with one exception) as

the optional declaration part under the program heading. The constants, data types, vari-

ables, and labels are local to the routine declaring them and to any routines nested within
them. (See the “Global and Local Variables” and “Nested Routines” sections at the end

of this chapter for details.)

One difference between the declaration part of a routine and the declaration part of the
main program is that the declaration part of a routine cannot contain a define declaration
part. Another difference is that you cannot initialize non-static variables in a routine,
though you can initialize them in the main program.

2-16 Blueprint of a Program

2.2.3.3 Nested Routines

You can optionally nest one or more routines within a routine. See the “Nested Routines”
section at the end of this chapter for details.

2.2.3.4 Action Part of a Routine

The action part of a routine starts with the keyword begin and finishes with the keyword
end. Between begin and end you supply one or more Domain Pascal statements. (See
Chapter 4 for a description of Domain Pascal statements.) You must place a semicolon
after the final end in a routine.

For example, consider the following sample action part of a routine:

BEGIN
X := X * 100;
writeln(x);
END;

2.2.4 Action Part of the Main Program

The action part of the main program is almost identical to the action part of a routine.
Both start with begin, both finish with end, and both contain Domain Pascal statements in
between. The only difference is that you must place a period (rather than a semicolon)
after the final end in the main program. For example, consider the following sample action
part of the main program:

BEGIN
X := x * 100;
writeln(x);
END.

2.3 Global and Local Variables

The declarations in the declaration part of the main program are global to the entire pro-
gram. The declarations in the declaration part of a routine are local to that routine (assum-
ing no nesting). For example, consider the following program. In it, variable g is global
and variable 1 is local to procedure add100.

Blueprint of a Program 2-17

Program scope;
VAR
g : integeril6;

Procedure addi00;
VAR

1l : integerl6;
BEGIN

1l :=g + 100;

{variable 1 is accessible within this procedure only,}

{while g is global and so is accessible anywhere. }
END;

BEGIN :
g = 10; {variable g is accessible because it is global. }
add100; {call the procedure. }

{variable 1 is not accessible here because it is}
{local to procedure add100. }
END.

What happens when you specify a local variable with the same name as a global variable?
To answer this question, see Figure 2-3 for two more programs. In the program on the
left (global_example), x is declared as a global variable. In the program on the right (lo-
cal_example), x is declared twice. The first declaration specifies x as a global variable.
The second declaration declares x as local to procedure convert.

Program global_ example;

VAR {global declarations}
X : integerils;

PROCEDURE convert;

BEGIN

X = -10;

writeln(’In convert, x=",x:1);
END;

BEGIN {main}

X := +10;

convert;

writeln(’In main, x=",x:1);
END.

Figure 2-3

2-18 Blueprint of a Program

Program local_example;

VAR {global declarations
x : integeris; :

PROCEDURE convert;
VAR {local declarations}
X : integerils;

BEGIN

x = -10;

writeln(’In convert, x=",x:1);
END;

BEGIN {main}

X = +10;

convert ;

writeln(In main, x=", x:1);
END.

. Global Variables Example

If you execute the programs in Figure 2-3, you get the following results:

Execution of global_example Execution of local_example
In convert, x= -10 In convert, x= -10
In main, x= -10 In main, x= 10

In program local_example, within procedure convert, the declaration of the local variable
x overrides the global declaration of x. Within convert, the fact that the local variable and
the global variable have the same name (x) prevents procedure convert from accessing the
global variable x at all.

Both programs are available online and are named global_example and local_example.

2.4 Nested Routines

A nested routine is a routine that is declared inside another routine. A nested routine can
access any declared object (label, constant, type, or variable) in a routine outside it, pro-
vided that the object is not hidden by a local declaration. The reverse is not true; that is,
a routine cannot access an object in a routine nested inside it. Thus, the purpose of nest-
ing routines is to create a hierarchy of access. You might view declared objects in the fol-
lowing way:

® Global to the entire program.

® Local to a single routine.

® Local to the routine it is defined in and to all routines nested within it (that is,
neither truly local nor truly global). This is termed an “intermediate level” object.

Note that the main program is itself a routine, and that all routines are nested at least one
level inside it. A routine can call any routine nested one level inside it, but cannot explic-
itly call any routine nested two or more levels inside it. A routine can also call any routine
at its level or outside it, though a routine cannot explicitly call the main program.

For example, consider the program in Figure 2-4. Procedure one is nested inside the main
program. Procedures twoa and twob are both nested inside procedure one. The most-
nested procedures (twoa and twob) can access the most variables. The least-nested proce-
dure (the main program) can access the least number of variables.

Blueprint of a Program 2-19

Program nesting_example;

VAR
g : integerl6;

procedure one;
VAR
1 : integeril6;

procedure twoa;

VAR
nl : integerl6;

BEGIN {twoa}

{can access g, 1, and nl.}
nl :=1+ g + 500;

END; {twoa}

procedure twob;
VAR
n2 : integeril6;
BEGIN {twob}
{can access g, 1, and n2.}
n2 :=1 + g + 1000;
END; {twob}

BEGIN {one}

{can access g and 1.}
1l :=g + 10;
twob;

END; {one}

BEGIN {main program}
{can only access g.}

g :=1;
g =8 * 2;
one;

END. {main program}

Figure 2-4. Nesting Example

2-20 Blueprint of a Program

Note that the main program can call procedure one, but cannot call procedure twoa or
twob (since they are nested two levels inside it). Procedure one can call procedure twoa
or twob. Procedure twob can call procedure twoa or one. In Pascal, you cannot make a
forward reference to a routine unless you declare the routine with the forward option (de-
scribed in Chapter 5). If you used forward in this example, procedure twoa could call
twob or one.

Blueprint of a Program 2-21

Chapter 3

Data Types

This chapter explains Domain Pascal data objects. It tells you how to declare variables us-
ing the predeclared Domain Pascal data types and how to define your own data types. The
chapter also shows how Domain Pascal represents each data type internally. Finally, the
chapter describes attributes for variables and types and an attribute declaration part. You
can use these attributes to define characteristics in addition to the data type.

3.1 Data Type Overview

Domain Pascal supports data types that can be sorted into three groups—the simple, struc-
tured, and pointer data types. Furthermore, Domain Pascal provides extensions to the
standard in each category of data type. In this section, we list all the Domain Pascal data
types according to category.

The following list shows the simple data types:

® Integers—Domain Pascal supports the three predeclared integer data types integer,
integer16, and integer32.

® Real numbers—Domain Pascal supports the three predeclared real number data
types real, single, and double.

® Boolean—Domain Pascal supports the predeclared data type boolean.
® Character—Domain Pascal supports the predeclared char data type.
® Enumerated—Domain Pascal supports enumerated data types.

® Subrange—Domain Pascal supports a subrange of scalar data types. The scalar
data types are integer, Boolean, character (char), and enumerated.

Data Types 3-1

3-2

You can use the simple data types to build the following structured data types:

Sets—Domain Pascal permits you to create a set of elements of a scalar data type.

Records—Domain Pascal supports the record, aligned record, unaligned record,
and packed record data types.

Array—Domain Pascal supports the array and packed array data types. It also
supports a predeclared character array type called string, and variable-length ar-
ray type declared with the varying keyword.

Files—Domain Pascal supports the file and text data types.

You can declare any of three kinds of pointer data types:

Type-specific pointer—points to any previously defined data type.

Universal pointer—Domain Pascal supports univ_ptr, a predeclared pointer data
type that is compatible with any pointer type.

Procedure and function pointers—Domain Pascal supports a special data type that
points to procedures and functions.

The program shown in Figure 3-1 contains sample declarations of the above data types.
This program is available online and is named sample_types.

Data Types

PROGRAM sample_types;

TYPE
real_pointer = “real; {This is a pointer type. }
writers = (Amy, Phil, Janice); {This is an enumerated type.}
element = record {This is a record type. }
atomic_number : INTEGER16;
atomic_weight : SINGLE;
half life : DOUBLE;
end;
VAR
i1 : INTEGER;
i2 : INTEGER16;
i3 : INTEGER32;
rl ¢ REAL;
r2 : SINGLE;
r3 : DOUBLE;
consequences : BOOLEAN;
onec : CHAR;
teenage_years ¢ 13..19; {teenage_years is a subrange variable.}
good_writers : writers; {good_writers is an enumerated variable.}
tw : SET OF writers; {tw is a set variable.}
e : element; {e is a record variable.}
cat_nums : array[l..5] of INTEGER16;
{cat_nums is an array variable.}
a_sentence : STRING;

{a_sentence is an array variable of 80 characters.}
hamlets_soliloquy : TEXT; {hamlets_soliloquy is a text file variable.}

periodic_table : FILE OF element;

{Periodic_table is a file variable.}
rl_ptr : real_pointer; {r1_ptr is a pointer variable.}
Any Ptr : UNIV_PTR;

{Any _ptr is a universal pointer variable.}
) o) : “PROCEDURE (IN x : INTEGER);
{pp is a pointer to a procedure variable.}
BEGIN
writeln(’Greetings.”);
END.

Figure 3-1. Program Declaring All Available Data Types

3.2 Integers
This section explains how to declare variables as integers, how to initialize integer variables,

and how to define integer constants. It also explains how Domain Pascal represents integers
internally.

Data Types 3-3

3.2.1 Declaring Integer Variables

Domain Pascal supports the following predeclared integer data types:

® Integer—Use it to declare a signed 16-bit integer. A signed 16-bit integer variable
can have any value from -32768 to +32767.

® Integer16—Use it to declare a signed 16-bit integer. (Integer and integer16 have
identical meanings.)

® Integer32—Use it to declare a signed 32-bit integer. A signed 32-bit integer vari-
able can be any value from -2147483648 to +2147483647.

For example, consider the following integer declarations:

VAR
X, ¥, z : INTEGER;
quarts : INTEGER16;
social_security_number : INTEGER32;

If you want to define unsigned integers, you must use a subrange declaration. (Refer to the
“Subrange” section later in this chapter.)

3.2.2 Initializing Integer Variables—Extension

3-4

Domain Pascal permits you to initialize the values of integers within the variable declaration
in most cases. You initialize a variable by placing a colon and equal sign (:=) immediately
after the data type. For example, the following excerpt initializes X and Y to 0, and Z to
7000000:

VAR
X,Y : INTEGER16 :
A : INTEGER32 :

0;
7000000;

If the variable declaration occurs within a procedure or function, you cannot initialize the
variable at the declaration unless it has been declared static. This is because storage within
routines is dynamic and so variables in them do not necessarily retain their values between
executions.

For example, the following is incorrect:

FUNCTION do_nothing (IN OUT x : INTEGER) : BOOLEAN;
VAR
init_value : INTEGER := O; {wrong!}

This is the correct way to initialize the variable at its declaration in a routine:

init_value : STATIC INTEGER := O; {Right!}

Data Types

See the “Accessing a Variable Stored in Another Pascal Module” section of Chapter 7 for
more information on the static attribute.

3.2.3 Defining Integer Constants

When you declare an integer constant, Domain Pascal internally represents the value as a
32-bit integer. For example, in the following declarations, Domain Pascal represents both
poco and grande as 32-bit integers.

CONST
poco = 6;
grande = 6000000;

You can specify an integer constant anywhere in the range -2147483648 to +2147483647.

It is also possible to compose constant integers as a mathematical expression. (Refer to the
“Const Declaration Part” section in Chapter 2 for details.)

The predeclared integer constant maxint has the value +32767.

3.2.4 Internal Representation of Integers

Domain Pascal represents a 16-bit integer (types integer and integer16) as two contiguous
bytes, as shown in Figure 3-2. Bit 15 contains the most significant bit (MSB), and bit 0
contains the least significant bit (LSB). If the integer is signed, bit 15 contains the sign bit.
15 (MSB) 0 (LSB)

Byte 0 Byte 1

Figure 3-2. 16-Bit Integer Format

Domain Pascal represents a 32-bit integer (type integer32) in four contiguous bytes as il-
lustrated in Figure 3-3. The most significant bit in the integer is bit 31; the least significant
bit is bit 0. If the integer is signed, bit 31 contains the sign bit.

31 (MSB) 16
Byte O Byte 1

Byte 2 Byte 3
15 0 (LSB)

Figure 3-3. 32-Bit Integer Format

By default, Domain Pascal aligns freestanding 16-bit integers on word boundaries and
32-bit integers on longword boundaries. (See the “Internal Representation of Records”
section of this chapter for details about alignment for integers that are part of records.)

Data Types 3-5

3.3 Real Numbers

This section describes how to declare variables as real numbers, how to define real num-
bers as constants, and how Domain Pascal represents real numbers internally.

3.3.1 Declaring Real Variables

Domain Pascal supports the following real data types:

® Real—Use it to declare a signed single-precision real variable. Domain Pascal rep-
resents a single-precision real number in 32 bits. A single-precision real variable
has approximately seven significant digits.

® Single—Same as real.

® Double—Use it to declare a signed double-precision real variable. Domain Pascal
represents a double-precision real number in 64 bits. A double-precision real vari-
able has approximately 16 significant digits.

For example, consider the following declarations:

VAR
1, m, n : REAL;
winning_time : SINGLE;
cpu_time : DOUBLE;

3.3.2 Initializing Real Variables—Extension

Domain Pascal permits you to initialize the values of real numbers within the variable dec-
laration in most cases. You initialize a value by placing a colon and equal sign (:=) imme-
diately after the data type. For example, the following excerpt initializes variable pi to
3.14:

VAR
pi : SINGLE := 3.14;

If you declare a variable as single or real, and if you attempt to initialize it to a number
with more than seven significant digits, then Domain Pascal rounds (it does not truncate)
the number to the first seven significant digits.

For example, if you try to initialize pi this way:

VAR
pi : SINGLE := 3.1415926535;

Domain Pascal rounds pi to 3.141593.

3-6 Data Types

As with integers, if the variable declaration occurs within a procedure or function, you can
initialize the variable at the declaration only if it has been declared static. This is because
storage within routines is dynamic and so variables in them do not necessarily retain their

values between executions. For example, the following is incorrect:

FUNCTION do_nothing(IN OUT x : REAL) : BOOLEAN;
VAR
init_value : REAL := 0.0; {wrong!}

This is the correct way to initialize the variable at its declaration in a routine:

init_value : STATIC REAL := 0.0; {Right!}

See the “Accessing a Variable Stored in Another Pascal Module” section of Chapter 7 for
more specific information on the static attribute.

3.3.3 Defining Real Constants

When you use a real number as a constant, Domain Pascal automatically defines the con-
stant as a double-precision real number. This is true even if the constant can be accurately
represented as a single—precision real number. However, when you use a real constant in a
mathematical operation with a single-precision number, Domain Pascal automatically
rounds the constant to a single-precision number to produce a more accurate result. The
following fragment defines four valid (and one invalid) real constants:

CONST

N = 24.57; { valid real number. }

N2 = 2E19; { valid, symbolizes 2.0 * (109) }

G = 6.67E-11; { valid, symbolizes 6.67 * (10-11) }

X =.5; { Not a valid real literal because it does }

{ not contain a digit to the left of the }

{ decimal point. }

X2 = 0.5; {valid real literal.}

3.3.4 Internal Representation of Real Numbers

Single—-precision floating-point numbers (types real and single) occupy four contiguous
bytes of a longword, as shown in Figure 3-4. Domain Pascal uses the IEEE standard for-
mat for representing 32-bit real values. Bit 31 is the sign bit with “1” denoting a negative
number. If the value is normalized, the next eight bits contain the exponent plus 127, and
the remaining 23 bits contain the mantissa of the number without the leading 1. (Domain
Pascal stores the mantissa in magnitude form, not in two’s—complement.)

Data Types 3-7

31 30 22 16

$ Exponent + 127 Mantissa

Mantissa (cont.)

15 0

Figure 3-4. Single-Precision Floating-Point Format

For example, Pascal represents +100.5 in the following manner:

0100001011001001
0000000000000000

The number breaks into sign, exponent, and mantissa as follows:

sign 0 (positive)
exponent 10000101 (133 in decimal)
significant part of mantissa 1001001

The exponent is 133; 133 is equal to 127 plus 6. Therefore, you can view the mantissa bits
as follows:

bit 22 represents 2 to the fifth power
bit 21 represents 2 to the fourth power
bit 20 represents 2 to the third power

bit 16 represents 2 to the negative first power.

You get 100.5 by adding (26 + 25 + 22 + 2-1). (The implicit leading 1 of the mantissa
corresponds to 26.)

A number with a negative exponent is stored differently. Pascal represents SE-2 (+0.05)
as follows:

0011110101001100
1100110011001101

The number breaks into sign, exponent, and mantissa as follows:

sign 0 (positive)
exponent 01111010 (122 in decimal)
significant part of mantissa 10011001100110011001101

3-8 Data Types

The exponent is 122; 122 is equal to 127 plus -5. Therefore, you can view the mantissa
bits as follows:

bit 22 represents 2 to the -6 power
bit 21 represents 2 to the -7 power
bit 20 represents 2 to the -8 power

bit O represents 2 to the -29 power

You get SE-2 by adding 2-5 + 2-6 + 2-9 and so on.

Domain Pascal represents double-precision floating—point numbers (type double) in eight
bytes of a longword (64 bits). Figure 3-5 illustrates the format. The first bit (bit 63) con-
tains the sign bit. If the value is normalized, the next 11 bits contain the exponent plus

1023. The remaining 52 bits hold the mantissa, without the leading 1.

63 62 51 48
$ | Exponent + 1023 Mantissa

Mantissa (cont.)

Mantissa (cont.)

Mantissa (cont.)

15 0

Figure 3-5. Double-Precision Floating—Point Format

By default, Domain Pascal stores single-precision floating-point numbers (types real and
single) on longword boundaries. It stores double—precision floating-point numbers (type
double) on quadword boundaries. (See the “Internal Representation of Records” section
of this chapter for details about alignment for real numbers that are part of records.)

For complete information about floating—point formats, see the Domain Floating—Point
Guide.

3.4 Unsigned Types
Although Domain Pascal does not have a true unsigned data type, it does offer unsigned

ranges. Through the use of large unsigned subranges (from 0..230 up to 00..231-1), you
can achieve much of the effect of having true unsigned types.

Data Types 3-9

The following code fragment illustrates the simulation of unsigned types through the use of
unsigned subranges:

TYPE
signed_32
unsigned_32

-2147483648..2147483647;
0..2147483647;

VAR
s32 : signed_32; { signed 32-bit integer. }
u32 : unsigned_32; { Unsigned 31-bit integer. Not
exactly the full 32 bits, but
enough to convince the compiler
that u32 is much like an unsigned
32-bit integer. }

NOTE: The true full range of unsigned 32-bit integers cannot be ex-
pressed because constants larger than 2147483647 are not valid.
You cannot get around this restriction by using constants with an
explicit base with the signed bit set because the compiler treats
them as negative numbers (for example, 16#FFFFFFFF).

When you have an unsigned subrange that is large enough to re-
quire 31 bits, the compiler allocates 32 bits.

3.5 Booleans

A Boolean variable can have only one of two values—true or false. This section describes
how you declare Boolean variables, how you define Boolean constants, and how Domain
Pascal represents Boolean variables internally.

3.5.1 Initializing Boolean Variables—Extension

3-10

Domain Pascal permits you to initialize the values of Boolean variables within the variable
declaration in most cases. You initialize a value by placing a colon and equal sign (:=) im-
mediately after the data type. For example, the following excerpt declares liar to be a
Boolean variable with an initial value of false:

VAR
liar : boolean := false;

If the variable declaration occurs within a procedure or function, you cannot initialize the
variable at the declaration unless it has been declared static. This is because storage within
routines is dynamic and so variables in them do not necessarily retain their values between
executions. For example, the following is incorrect:

FUNCTION do_nothing(IN OUT x : INTEGER) : BOOLEAN;
VAR
liar : BOOLEAN := false; {wrong!}

Data Types

This is the correct way to initialize the variable at its declaration in a routine:

liar : STATIC BOOLEAN := false; {Right!}

See Chapter 7 for information on the static attribute.

3.5.2 Defining Boolean Constants

To define a Boolean constant, simply write the name of the constant, followed by an equal
sign, and concluding with either true or false. For instance, the following excerpt defines
constant virtue and sets it to true:

CONST
virtue = true;

Notice that you do not enclose true or false inside a pair of apostrophes.

3.5.3 Internal Representation of Boolean Variables

Domain Pascal represents Boolean values in one byte. The system sets all eight bits to 1
for true and sets all eight bits to 0 for false. By default, Domain Pascal stores freestanding
Boolean objects on byte boundaries. However, a Boolean field in a packed record will
have a different allocation (see the “Internal Representation of Packed Records” section
later in this chapter for details).

3.6 Characters

This section describes how you declare a variable as a character data type, how you define
characters as constants, and how Domain Pascal represents characters internally.
3.6.1 Declaring Character Variables

Use the char type to declare a variable that holds one character; for example:

VAR
a_letter, a_better_letter : CHAR;

To declare a variable that holds more than one character you must use an array or the

predefined type string (both of which are detailed in the “Arrays” section later in this
chapter).

Data Types 3-11

3.6.2 Initializing Character Variables—Extension

Domain Pascal permits you to initialize the values of character variables within the variable
declaration in most cases. You initialize a value by placing a colon and equal sign (:=) im-
mediately after the data type. For example, the following excerpts each declare cl as a
char variable with an initial value of a:

VAR ,
cl : CHAR := “a’; {you must enclose the character in single quotes}

VAR
cl : CHAR :

chr (65);

If the variable declaration occurs within a procedure or function, you cannot initialize the
variable at the declaration unless it has been declared static. This is because storage within
routines is dynamic and so variables in them do not necessarily retain their values between
executions.

For example, the following is incorrect:

FUNCTION do_nothing (IN OUT x : INTEGER) : BOOLEAN;
VAR
best_grade : CHAR := “A”; {wrong!}

This is the correct way to initialize the variable at its declaration in a routine:

best_grade : STATIC CHAR := “A’; {Right!}

See the “Accessing a Variable Stored in Another Pascal Module” and “Accessing a Rou-
tine Stored in Another Pascal Module” sections of Chapter 7 for more information on the
static attribute.

3.6.3 Defining Character Constants

3-12

There are two common methods of assigning character constants. The first is to simply en-
close a character inside a pair of single quotes. For example:

CONST
cl = “b’;

This first method works only if the character is printable, but the second method works for
all 1SO Latin-1 characters (printable or not). The second method uses the chr function
(which is detailed in Chapter 4). As an example, suppose you want constant bell to con-
tain the bell ringing character. The bell ringing character has an ISO Latin-1 value of 7, so
to assign this value to constant bell you can make the following declaration:

CONST
bell = CHR(7);

Data Types

3.6.4 Internal Representation of Char Variables

Domain Pascal stores the ISO Latin-1 value of a char variable in one 8-bit byte. By de-
fault, freestanding char variables are byte aligned.

3.7 Enumerated Data

An enumerated data type consists of an ordered group of identifiers. The only value you
can assign to an enumerated variable is one of the identifiers from its group of identifiers.
Here are declarations for four enumerated variables:

VAR
citrus : (lemon, lime, orange, carambola, grapefruit);
primary_colors : (red, yellow, blue);
Beatles : (John, Paul, George, Ringo);

German_speaking countries : (Germany, Switzerland, Austria);

In the code portion of your program, you can only assign the values red, yellow, or blue
to variable primary_colors.

Notice that the elements of an enumerated type must be identifiers. Identifiers cannot be-
gin with a digit, so, for example, the following declaration produces an “Improper enumer-
ated constant syntax” error:

VAR
first_six_primes : (2, 3, 5, 7, 11, 13); {error}

3.7.1 Internal Representation of Enumerated Variables

Domain Pascal represents an enumerated variable in one 16-bit word. In this word, Do-
main Pascal stores an integer corresponding to the ordinal position of the current value of
the enumerated variable. For example, consider the following declaration:

VAR
pets : (cats, dogs, dolphins, gorillas, pythons);

Pets has five elements; Domain Pascal represents those five elements as integers from 0 to
4 as shown in Table 3-1.

Data Types 3-13

Table 3-1. Representation of an Enumerated Variable

Variable Representation

pets := cats 0000000000000000
pets := dogs 0000000000000001
pets := dolphins 0000000000000010
pets := gorillas 0000000000000011
pets := pythons 0000000000000100

3.8 Subrange Data

A variable with the subrange type has a valid range of values that is a subset of the range
of another type called the base type. When you define a subrange, you specify the lowest
and highest possible value of the base type. You can specify a subrange of integers, charac-
ters, or any previously defined enumerated type. The following fragment declares four dif-
ferent subrange variables: o

TYPE
mountains = (Wachusett, Greylock,
Washington, Blanc, Everest); {Mountains is an enumerated type.}
VAR {The following four variables all have subrange types.}
teenage_years : 13..19; {Subrange of INTEGER. }
positive_integers : 1..MAXINT; {Subrange of INTEGER.}
capital_letters : “A’..°Z%; {Subrange of CHAR.}
small_mountains : Wachusett..Washington; {Subrange of MOUNTAINS. }

Currently, Domain Pascal does not support subrange checking. For example, if you try to
assign the value 25 to teenage_years, Domain Pascal does not report an error. However,
you can use the in_range function to determine whether 25 is within the declared sub-
range. (See the “In_range” section of Chapter 4 for information on the in_range func-
tion.)

3.8.1 Internal Representation of Subranges

The storage allocation for subrange variables is the same as that for their base types. How-
ever, a subrange field in a packed record will have a different allocation. (See the “Inter-
nal Representation of Packed Records” section later in this chapter for details.)

3-14 Data Types

3.9 Sets

A set in Domain Pascal is similar to a set in standard mathematics. For instance, Domain
Pascal can compute unions and intersections of Domain Pascal set variables just as you can
find unions and intersections of two mathematical sets. Refer to the “Set Operations” list-
ing in Chapter 4 for information on using sets in the action part of your program.

3.9.1 Declaring Set Variables

The format for specifying a set variable is as follows:
set of boolean | char | enumerated_type | subrange_type

For example, consider the following set declarations:

TYPE
very = (ochen, sehr, tres, muy);
lowints = 0..100;

VAR

: ASCII_values : set of char; {Char is base type.}
possibilities : set of boolean; {Boolean is base type.}
capital_letters : set of “A’..°Z"; {Subrange of CHAR is base type.}
lots : set of very; {Enumerated type is base type.}
digits : set of lowints; {lowints is base type.}

If the base type is a subrange of integers, then the low end of the subrange cannot be a
negative number. Also, the high end of the subrange cannot exceed 1023. |

NOTE: Although Domain Pascal lets you declare packed set variables or
packed set types, the compiler ignores the designation. (That is,
the packed designation does not affect the amount of memory
the compiler uses to represent the set.) See Section 3.9.3 for
further information about the internal representation of sets and a
description of a technique for the packing of small sets.

3.9.2 Initializing Set Variables—Extension

In most cases, you can initialize set variables with an assignment statement in the variable
declaration. For example, consider the following set variable initializations:

TYPE
unstable_elements = (U, Pl, Ei, Ra, Xe);

VAR

letters : set of CHAR := [“A°, “E’, “I’, “0’, “U’];
humanmade_elements : set of unstable_elements := [Pl, Ei];

Data Types 3-15

If the variable declaration occurs within a procedure or function, you cannot initialize the
variable at the declaration unless it has been declared static. This is because storage within
routines is dynamic and so variables in them do not necessarily retain their values between
executions. For example, the following is incorrect:

FUNCTION assign_grades(IN OUT score : INTEGER) : BOOLEAN;
VAR
grades : set of CHAR := ["A°, °B’, ‘C’, °D’, “E’]; {wrong!}

This is the correct way to initialize the variable at its declaration in a routine:
grades : STATIC set of CHAR := [“A’, “B’, °C’, “D”, “E’]; {Right!}

See the “Accessing a Variable Stored in Another Pascal Module” and “Accessing a Rou-
tine Stored in Another Pascal Module” sections of Chapter 7 for more information on the
static attribute.

Refer to the “Set Operations” listing in Chapter 4 for more information on set assignment.

3.9.3 Internal Representation of Sets

A set can contain up to 1024 elements; their ordinal values are 0 to 1023. Sets are stored
as bit masks, with one bit representing one element of the set. The number of bits that
Domain Pascal allocates to a set is the number of elements in the set, rounded up to a
multiple of 16 bits. That is, a set occupies the minimum number of words that provides
one bit per element. Consequently, the minimum storage size for a set is one word (16
bits) and the maximum size is 64 words (1024 bits). The one exception to this is small
sets within a packed records. See Section 3.10.7 for a technique that packs small sets
within a packed record.

For example, suppose you define an enumerated type named Greek_letters, with values
Alpha, Beta, Gamma, and so forth, up to Omega. You can then declare a set of
Greek_letters as follows:

VAR ,
Greek_alphabet : SET of Greek_letters

Greek_alphabet has 24 values, and therefore, Greek_alphabet requires at least 24 bits.
The nearest word boundary is 32 bits, so Domain Pascal allocates 32 bits (2 words) for the
variable. It then stores the values as shown in Figure 3-6:

15 7 . 015 3 2 1 0

Omega Gamma | Beta Alpha

Word 1 Word 2

Figure 3-6. Storage of Sample Set

Data Types

If the base type of the set is a subrange of integers or a subrange of char, then the ordinal
value of the high end of the subrange determines the amount of space required to store
the set. For example, consider the following two set declarations:

TYPE
possible_values = 80..170;
small_letters = ‘a’..’z";

VAR
pos : set of possible_values;
sma : set of small_ letters;

Domain Pascal stores variable pos in 11 words (176 bits). That is because the highest ordi-
nal value of the base type (possible_values) is 170. The next word boundary up from 170
is 176.

Domain Pascal stores variable sma in eight words (128 bits). In the base type (small_let-
ters), the ordinal value of z is 122. The next word boundary up from 122 is 128.

3.10 Records

A record variable is composed of one or more different components (called fields) which
may have different types. Domain Pascal supports the two standard kinds of records: fixed
records and variant records. The following subsections describe both kinds.

3.10.1 Fixed Records

A fixed record consists of zero or more fields. Each field can have any valid Domain Pas-
cal data type. To declare a fixed record type, issue a declaration of the following format:

type
record_name = record
Jieldl

fieldN
end;

Each field has the following format:

field_namel, ... field_nameN : typename;

Data Types 3-17

For example, consider the following three record declarations:

TYPE

student = record {Contains two fields.}
name : array[l..30] of char;
id : INTEGER16;

end;

element = record {Contains four fields.}
name : array(l..15] of char;
symbol : array[l..2] of char;
atomic_number : 1..120;
atomic_weight : real;

end;

weather = record {Contains five fields.}
station : array[l..3] of char;
sky_condition : (fair, ptly_cloudy, cloudy);
windspeed : 1..100;
winddirection : 1..360;
pressure : single;

end;

VAR

new_students : student;

noble_gases : element;

wl : weather;

Note that you can declare a record type as the data type of a field. For example, notice
the changes in the declaration of the record weather:

TYPE
wind = record
speed : 1..100;
direction : 1..360;
end;

weather = record

station : array[l..3] of char;
sky_condition : (fair, ptly_cloudy, cloudy);
gradient : wind;

pressure : single;

end;

3-18 Data Types

NOTE: A common mistake is to misuse the equal sign (=) and the
colon (:). When declaring a record in the type declaration part,
put an equal sign between the name of the record and the key-
word record. For example:

type

weather = record...
When declaring a record in the var declaration part, put a colon
between them. For example:

var

wl : weather;

3.10.2 Variant Records

A variant record is a record with multiple data type possibilities. When you declare a vari-
ant record, you specify all the possible data types that the record can have. You also spec-
ify the condition for selecting among the multiple possibilities.

In other words, at run time a fixed record variable has the same group of data types from
one use of the variable to another. However, a variant record variable has a flexible group
of data types from one use of the variable to another.

The variant record has the following format:

type
record_name = record
fixed_part;
variant_part;
end;

The fixed_part of a variant record is optional. It looks just like a fixed record. In other
words, the fixed_part consists of one or more fields each having the following format:

field_namel, ... field_nameN : typename;

The variant_part of a variant record takes the following format:

case [tag _field] typename of
constantlistl : (field; ... fieldN);

constantlistN : (field; ... fieldN);

The constantlist is one or more constants that share the same data type. For instance, if
typename is integer, then every constant in constantlist must be an integer. You associate
one or more fields with each constantlist. With one exception, each field has the same
syntax as a field in the fixed part. The one exception is that fieldN can itself be a vari-
ant_part.

Data Types 3-19

3-20

Note that you can optionally associate a tag_field with the typename. The tag_field is sim-
ply an identifier followed by a colon (:). You can use the tag_field to select the desired
variant at run time. For more information on tag_fields, see the “Record Operations” list-
ing in Chapter 4.

Consider the following declaration for variant record type worker. Worker contains a fixed
part and a variant part. The fixed part contains two fields (employee and id_number).
The typename of the variant part is worker_groups, which is an enumerated type. Wo has
two possible values, exempt and non_exempt. When wo is exempt, the field name is
yearly_salary which is an integer32 data type, and when wo is non_exempt, the field
name is hourly_wage which has a real data type.

TYPE
worker_groups = (exempt, non_exempt); {enumerated type}
worker = record {record type}
employee : array[l..30] of char; {field in fixed part}
id_number : integerl6; {field in fixed part}
CASE wo : worker_groups OF {variant part}
exempt : (yearly_salary : integer32);
non_exempt : (hourly wage : real);
end:

Consider the following declaration for my_code, a variant record that does not contain a
fixed part. The data type of the variant part is integer, so the case portion declares integer
constants. Choosing 1, 2, 3, and 4 as the constants is totally arbitrary; you could pick any
four integers. These constants serve no purpose except to establish the fact that there are
four choices. The fields themselves provide four different ways to view the same 4-byte
section .of main memory.

my_code = record
CASE integer OF {variant part}
1 : (all : array[l..4] of char);
2 : (first_half : array(l..2] of char;
second_half : array[l..2] of char);
3 : (x1 : integerl6;
x2 : boolean;
x3 : char);
4 : (rall : single);
end;

NOTE: The preceding example shows four parts that take up exactly four
bytes. However, it is perfectly valid to declare parts that take up
differing numbers of bytes.

Data Types

3.10.3 Unpacked Records and Packed Records

Domain Pascal supports regular (unpacked) records and “packed” records. You declare a
packed record by putting the keyword packed prior to record in the record declaration;
for example:

VAR
student : PACKED record
ages : 10..20;
grade : (seventh, eighth, ninth, tenth, eleventh, twelfth);
graduating : boolean;
end;

The advantage to declaring a packed record is that it can save space. The disadvantage is
that you cannot pass a field from a packed record as an argument to a procedure (includ-
ing predeclared procedures like read). The next subsection details the space savings of
packing. Note that you should not directly manipulate fields in a packed record. If you
want to perform some operation that changes the value of an existing field in a packed
record, use the following steps:

1. Assign the value of the field to a variable of the same type.

2. Perform the operation on the variable.

3. Assign the value of the variable to the field of the packed record.

3.10.4 Initializing Data in a Record—Extension

Domain Pascal permits you to initialize a record in the variable declaration portion of the
program unless that declaration comes within a procedure or function and the record has
not been declared static. (See the “Accessing a Variable Stored in Another Pascal Mod-
ule” and *Accessing a Routine Stored in Another Pascal Module” sections of Chapter 7
for more information on the static attribute.) You can initialize some or all of the fields
in a record.

To initialize a field in a record, enter a declaration with the following format:

var
name_of _record_variable : type_of record :=
[init,
’
’

b

im't. 1;
where init is a statement having one of the following formats:
field_name := initial_value
or

initial_value

Data Types 3-21

If you use the second format, Domain Pascal assumes that the initial_value applies to the
next field_name in the record definition. For example, consider this record initialization:

TYPE

messy = record

VAR
very

rX : real;
c : char;
abc : array[l..3] of integer;
case integer of
0 : (i32 : integer32);
1 : (il6 : integer);
2 : (hb, 1b : char);

end;
: MESSY :=

[c := "X",
(-1, -2, =31,
rx := 123.456,
‘¥’
1b := ‘a’,
hb := “2°];

The preceding example initializes field ¢ to ‘X’. The next declaration [-1, -2, -3] applies
to field abc (because it follows field c). Field rx gets initialized to 123.456. Then, field c
gets reinitialized to ‘Y’ (because it follows field rx). Finally, the third field in the variant

portion of the record gets initialized, with field 1b getting the value ‘a’ and field hb getting

set to ‘z’.

3.10.5 Internal Representation of Unpacked Records

In order to understand the internal representation of unpacked records, you need to un-
derstand the following concepts:

® Alignment

® Natural alignment

® Guaranteed default alignment

® Default alignment

® Layout of records

® Memory allocation

® Arranging record fields in descending order by size

We describe each of these concepts in the following sections.

3-22 Data Types

3.10.5.1 Alignment

An object’s alignment is the set of addresses at which the compiler can allocate the ob-
ject. For example, the compiler can allocate byte aligned objects on any byte boundary;
it can allocate word aligned objects only at addresses that are evenly divisible by 2 (word
boundaries, or shortword boundaries); and it can allocate longword aligned objects only
at addresses that are evenly divisible by four (longword boundaries).

3.10.5.2 Natural Alignment

An object is naturally aligned if it begins at an address that is a multiple of its size in
bytes. For example, a 2-byte integer is naturally aligned if it starts on an even address
boundary. Similarly, an 8-byte double-precision floating-point number is naturally aligned
if it starts on an address divisible by 8. A record is considered to be naturally aligned when
it starts on a boundary that results in natural alignment for its fields.

Since char and boolean type values are one byte long, their natural alignment is byte
aligned. Similarly, since integer and integer16 values are two bytes long, their natural
alignment is word aligned. Since real, single, integer32, and pointer types are four bytes
long, their natural alignment is longword aligned. And, since double types are eight bytes
long, their natural alignment is quadword aligned. Figure 3-7 illustrates natural alignment
for these simple data types.

3.10.5.3 Guaranteed Default Alignment of Record Fields

A type’s guaranteed default alignment is not necessarily the same as its natural alignment.
A type’s guaranteed default alignment is the alignment it is guaranteed if a field of that
type is a component of a record. The guaranteed default alignment of types char and
boolean is byte alignment, which also happens to be the natural alignment for these types.
However, the guaranteed default alignment for the other unstructured types (integer, inte-
gerl6, real, single, integer32, pointer, and double) is word alignment. Table 3-2 com-
pares the guaranteed default and natural alignments of the simple data types.

Data Types 3-23

Table 3-2. Guaranteed Default and Natural Alignment for Simple Data Types

Guaranteed .
Data Type Default Alignment Natural Alignment

char byte byte
boolean byte byte
integer word word
integer16 word word
real word longword
single word longword
integer32 word longword
pointer word longword
double word quadword

3-24 Data Types

longword ¢ 1 word »

boundary

char1 char2
shortword
boundary

bool1 bool2

BYTE ALIGNMENT
longword
boundary natural_integer

shortword
boundary natural_integer16

WORD ALIGNMENT

longword
boundary

shortword _ .
boundary natural_pointer

longword
boundary

shortword
boundary natural_real

longword
boundary

shortword __ natural_single
boundary

longword
boundary

shortword __ .
boundary natural_integer32

LONGWORD ALIGNMENT

quadword
boundary

shortword __
boundary

longword ____ natural_double
boundary

shortword ___
boundary

QUADWORD ALIGNMENT

Figure 3-7. Natural Alignment for Pascal Simple Data Types

Data Types 3-25

3-26

3.10.5.4 Default Alignment

The default alignment of a simple data type is the same as its natural alignment.

For the structured data types, such as records, default alignment is somewhat complex.
The default alignment rules affect two properties of records:

® How fields are laid out in the record (whether padding is inserted between fields).

e How memory for the entire record is allocated.

We describe these two properties in the next two sections.

3.10.5.5 Layout of Unpacked Records

Domain Pascal follows these rules for the layout of unpacked records:

® The size of a record must be an even number of bytes. There is no way to over-
ride this rule. This means that the smallest possible record is 2 bytes.

® The default alignment of the beginning of a record is at least word aligned.

® By default, Domain Pascal allocates the same amount of space for each field in a
record that the field would have required if it were not part of the record. For
example, the compiler allocates one byte for a char field.

® By default, the compiler lays out record fields based on their guaranteed default
alignment. Thus, all objects longer than a byte are aligned on word boundaries.
Objects which are chars and booleans may be aligned on byte boundaries.

® By default, the compiler aligns a record according to the largest alignment of its
fields. ’

® A byte aligned field may not cross two word boundaries. This means that a
32-bit object, such as an integer32 type variable, cannot be byte aligned.

The default alignment rules for the layout of records can produce padding (also called
“holes” or “gaps”) in a structure. However, each gap is never larger than one byte.

For example, consider the following record declaration:

S1 = record
a: integer32;
b: char;
c: integerl$
end;

Figure 3-8 shows how the fields for S1 records are laid out. Note that there is a byte of
padding inserted after b to ensure that c is aligned on a word boundary.

Data Types

4— 1word —>

c

Figure 3-8. Default Layout of Record S1

Since the total size of a record must be a multiple of two bytes, records sometimes have a
byte of padding at the end. Figure 3-9 shows the layout of a record that contains a gap in
the middle and a gap at the end as a result of the default alignment rules.

S2 = record

cl: char;
sl: integerl6;
c2: char

end;

4— {word —®

Figure 3-9. Layout of Record S2

3.10.5.6 Memory Allocation

Domain Pascal always allocates a record on at least a word boundary. It allocates a record
on a larger boundary if that larger allocation produces natural alignment for any of the re-
cord’s fields. Specifically, the compiler uses the following algorithm to allocate records:

1. It assumes that the starting address of the record is zero.

2. It lays out the fields in the order they are declared, noting which fields are natu-
rally aligned.

3. It looks for the largest naturally aligned field.

4. The compiler allocates the entire record on a boundary that matches the natural
alignment for the field it identified in Step 3.

Data Types 3-27

Note that the compiler must lay out the record before it allocates memory for it.
Consider the following record type:

S3 = record
a : integer32;
b : char;
c : integerl6
end;

4— | word — >

0
2 a
—
W7 7%
6
c

Figure 3-10. Naturally Aligned Record S3 with 1-Byte Padding

Figure 3-10 shows the layout for S3. The compiler assumes a beginning address of 0 and
lays out the fields according to the default alignment rules. For this record, the default
alignment rules produce a layout in which all elements are naturally aligned. The compiler
then searches for the largest field that is naturally aligned, which is a. Since a’s natural
alignment is longword, the compiler allocates records of type S3 on longword boundaries.

Consider a second example:

S4 = record
a : integeril6;
b : integer32
end;

Figure 3-11 shows the layout for S4. In this case, a is naturally aligned. However, b is
not naturally aligned because its offset from the start of the record, which is 2, is not
evenly divisible by its size, which is 4. The largest field in S4 that is naturally aligned,
therefore, is a. The compiler uses word alignment, which is the natural alignment of a, to
allocate records of type S4.

3-28 Data Types

Figure 3-11. Layout of S4 Using Word Alignment

3.10.5.7 Arranging Record Fields in Descending Order by Size

You can usually improve the efficiency of memory accesses significantly by carefully arrang-
ing fields within records. The best guideline to improve access efficiency when you set up

natural alignment for records is to arrange record fields in descending order by size. Con-
sider the following example:

FOO = record
a:char;
b:integerl6;
c:char;
d:double;
e:integer32
end;

By default, this declaration will produce the memory arrangement shown in Figure 3-12.
Due to a poor ordering of fields, there are 4 bytes of gaps and members d and e are not
naturally aligned.

Data Types 3-29

4—— {word —

© 7

b

10

12

14

16

Figure 3~12. Memory Arrangement for Record with Poorly Arranged Fields

Following the preceding rule of arranging fields according to descending order by size, you
change the declaration to:

FOO = record
d: double;
e: integer32;
b: integerl6;
a, c: char
end;

The above declaration produces the memory arrangement shown in Figure 3-13. All fields
are naturally aligned and padding fields are not necessary to achieve natural alignment for
the record.

3-30 Data Types

4— 1word —»

10

12

14

Figure 3-13. Memory Arrangement According to Decreasing Size of Fields

NOTE: You can usually guarantee that all fields of a record will be natu-
rally aligned by arranging the fields in descending order of size.
This will always work if all the fields are scalar objects. This tech-
nique may not work if one or more of the record fields is a record
or array. Arranging fields in decreasing order of size also guaran-
tees that there will be no padding between record fields, although
there might still be a byte of padding at the end of the record to
make it an even number of bytes.

In some instances, a record that would normally be allocated on a longword or quadword
boundary receives a different allocation because the record is part of a larger aggregate
type (e.g., a record or array). For example, consider the declaration of S1:

S1 = record
X: integer32;
y: integerilé6
end;

The compiler can guarantee that an individual record of type S1 will be allocated on a
longword boundary (so that x and y will be naturally aligned), but if you declare an array
of three S1 records, only two-thirds of them will be aligned on longword boundaries:

array_of_sl records : array [1..3] of S1;

Data Types 3-31

3-32

Figure 3-14 shows the layout of an array of three S1 records. Note that the second ele-
ment is aligned on a word (2-byte) boundary, not a longword (4-byte) boundary, and so

the second element is not naturally aligned.

44— {word —»

10

12

14

16

Figure 3-14. Array of SI1 Records, Not Naturally Aligned

To ensure that all elements of array_of_sl_records are naturally aligned, you need to in-

sert an additional word of padding at the end of S1.

shown in the following declaration:

S1 = record
X: integer32;
y: integerl6;
padding: integerl6
end;

You could do this explicitly, as

You could also tell the compiler to add the padding by using the natural or aligned attrib-
utes in the record declaration or by specifying a %natural_alignment compiler directive.
See the “Attributes” section of this chapter for details about the natural and aligned at-
tributes. See the “Compiler Directives” section of Chapter 4 for details about the %natu-

ral_alignment compiler directive.

Data Types

3.10.6 Aligned Record and Unaligned Record Data Type

To make sure that records are always naturally aligned regardless of the alignment environ-
ment, you can use the aligned record data type. The alignment environment is the align-
ment that you set when you use compiler directives or the default alignment that is set by
the compiler.

For example, the %natural_alignment directive tells the compiler to use natural alignment
for any data that does not have an alignment attribute in its declaration. (See the “Com-
piler Directives” section of Chapter 4 for more details about the %natural_alignment and
%word_alignment directives.)

To declare an aligned record data type, use the following syntax:

type

record_name = aligned record
fieldl;
field2;
fieldN;
end;

Note that the aligned record data type sets alignment for records only. The aligned and
natural attributes set alignment for records and fields.

The syntax for the aligned record data type is just like the syntax for a regular Domain
Pascal record except that you use aligned record instead of record. For example, con-
sider the following declaration:

TYPE
nat_rec = ALIGNED RECORD
a : integer;
b : integer32; -
END; :

The above declaration defines an object of type nat_rec to be a record laid out as shown
in Figure 3-15.

Data Types 3-33

3-34

¢— {1 word —>

07002

Figure 3-15. An Aligned Record Type Record

All nat_rec type objects will have the layout shown in Figure 3-15 even if they are in pro-
grams compiled with a %word_alignment directive.

To make sure that records are aligned according to word alignment rules regardless of their
alignment environment, use the unaligned record data type. To declare an unaligned
record type, use the following syntax:

type
record_name = unaligned record
Jieldl;
Jield2;
JieldN;
end;

Note that the syntax for the unaligned record data type is just like the syntax for a regu-
lar Domain Pascal record except that you use unaligned record instead of record. For
example, consider the following declaration:

TYPE
not_nat_rec = UNALIGNED RECORD ..
a : integer;
b : integer32;
END;

The preceding declaration defines an object of type not_nat_rec to be a record laid out as
shown in Figure 3-16.

Data Types

4+— 1word —

A I I I I N AR S A A P SR I N

Figure 3-16. An Unaligned Record Type Record

All not_nat_rec type objects will have the layout shown in Figure 3-16 even if they are in
programs compiled with a %natural_alignment directive.

3.10.7 Internal Representation of Packed Records

Table 3-3 shows the space required for fields in packed records.

Domain Pascal always starts the first field of a packed record on a word boundary. After
the first field, if the exact number of bits required for the next field crosses zero or one
16~bit boundary, the field starts in the next free bit. If the field would cross two or more
16-bit boundaries, it starts at the next 16-bit boundary. Pascal allocates fields left to right
within bytes and then by increasing byte address.

The minimum size of a packed record is 16 bits.
In packed records, characters are byte aligned. Structured types, except for sets, are

aligned on word boundaries. Sets are aligned only if they cross two or more 16-bit
boundaries.

Data Types 3-35

Table 3-3. Storage of Packed Record Fields

Data Type of Field Space Allocation

Integer; Integer16 16 bits; word aligned.

Integer32, Real, Single 32 bits; word aligned.

Double 64 bits; word aligned.

Boolean 1 bit; bit aligned.

Char 8 bits; byte aligned

Enumerated Number of bits required for largest ordinal value;

bit aligned.

Subrange Subrange of char fields require eight bits; all

other subrange fields take up the number of bits
required for their extreme values. Subrange of char
fields are byte aligned. All other subrange fields are
bit aligned.

Set If fewer than 32 elements, then exactly one bit per
element; if more then 32 elements, then same size as
set. Bit aligned.

Array May or may not be packed; requires the same space
as an array outside of a packed record. (See the
“Internal Representation of Arrays” section.)

Pointer 32 bits; word aligned.

The following type declaration, along with Figure 3-17, illustrates the storage of a packed
record type.

TYPE
Shapes = (Sphere, Cube, Ovoid, Cylinder, Tetrahedron);
Uses = (Toy, Tool, Weapon, Food);
Characteristics = PACKED RECORD

Mass : Real;
Shape : Shapes;
B : Boolean;

Purpose : SET OF Uses;

Low_temp : -100..40;

Class T YA, .°Z7,
end;

3-36 Data Types

The fields require the following number of bits:

Mass 32 bits (word aligned)
Shape 3 bits (bit aligned)
B 1 bit (bit aligned)
Purpose 4 bits (bit aligned)
Low_temp 8 bits (bit aligned)
Class 8 bits (word aligned)

(The variable low_temp requires eight bits because it can take a range of 140 values (-100
to +40) and seven bits can represent only 128 values.)

Domain Pascal represents fields in the same order you declared them, as shown in
Figure 3-17.

15 1312 11 87 0
Mass
Mass
Shape | B| Purpose Low_temp
Class Unused

Figure 3-17. Sample Packed Record

In this example, the order of field declaration has been chosen very carefully. The whole
record takes up only eight bytes, and out of the eight bytes, only eight bits are unused. If
the fields had been declared in a different order, the record might have taken up 10 or 12
bytes.

3.11 Arrays

Like standard Pascal, Domain Pascal supports array types. An array consists of a fixed
number of elements of the same data type. This data type is called the component type.
The component type can be any predeclared or user-declared data type.

Use an index type to specify the number of elements the array contains. The index type
must be a subrange expression. Domain Pascal permits arrays of up to eight dimensions.
Specify one subrange expression for each dimension.

Data Types 3-37

This fragment includes declarations for five arrays:

TYPE .
elements = (H, He, Li, Be, B, C, N, O, Fl, Ne);
{elements is an enumerated type.}

VAR
{Here are the five array declarations.}
test_data : array[1l..100] of INTEGER16;
atomic_weights : array[H..Be] of REAL; {Range defined in TYPE}
{declaration. }
last_name : array[l..15] of CHAR;
a_thought ¢ STRING;
lie_test : array[l..4,1..2] of BOOLEAN; {2-dimensional array.}

Notice that variable a_thought is of type string. String is a predefined Domain Pascal ar-
ray type. Domain Pascal defines string as follows:

TYPE
string = array[l..80] of CHAR;

In other words, string is a data type of 80 characters. Use string to handle lines of text
conveniently.

See the “Array Operations” listing. in Chapter 4 for a description of array bound checking.

3.11.1 Initializing Array Variables—Extension

3-38

If an array has been declared static or its declaration is not in a function or procedure,
you can initialize array components in Domain Pascal in a variable declaration statement.
(See the “Accessing a Variable Stored in Another Pascal Module” and “Accessing a Rou-
tine Stored in Another Pascal Module” sections of Chapter 7 for more information on the
static attribute.) Domain Pascal initializes only those components for which it finds initiali-
zation data; it does not initialize the other components. For example, if an array consists
of 10 components and you specify six initialization constants, Domain Pascal initializes the
first six components and leaves the remaining four components uninitialized.

This section describes the following three basic methods of initializing single-dimensional
and multidimensional arrays:

® [Initializing multiple components to a single value

® [Initializing components individually

® Initializing using repeat counts

In addition, this section describes controlling the order of initialization and setting a default
for the size of the array.

Data Types

3.11.1.1 [Initializing Multiple Components with a Single Expression—Extension

To initialize multiple components with a single expression, specify an assignment operator
(:=) followed by the value. This initialization method is especially useful for components of
type char, where the value is a string of characters. You can also initialize the char com-
ponents individually, but it’s usually easier to do it as a string.

For example, consider the following single-dimensional initializations:

CONST
msgl = “This is message 1°;

VAR
sl : array[l..40] of CHAR :
s2 : array[l..30] of CHAR :
blank_line : STRING

‘Quoted strings are ok’;
msgl;
chr(10); {Newline}

These initializations assign elements 1 through 21 of array sl with the string “Quoted
strings are ok”, elements 1 through 17 of array s2 with “This is message 1”, and element
1 of blank_line with the newline character.

You can also use this method to initialize multidimensional arrays. To do this, you must
assign the value to each row. For example the following initialization statement initializes
columns 1 through 6 in rows 1 and 2 to 0O:

VAR
I2 : array[l1..2, 1..6] of INTEGER16 := [
[1..6 :
[1..6
1

01,
01,

3.11.1.2 [Initializing Components to Individual Values—Extension

To initialize array components individually, specify an assignment operator (:=) followed by
the values to which the components should be initialized. You must enclose the values in-
side a pair of brackets and separate each value with a comma.

For example, consider the following single-dimensional array initializations:

VAR
I : array([l..6] of INTEGER16 := [1, 2, 4, 8, 16, 32];
R : array([l..3] of SINGLE := [-5.2, -7.3, -2E-3];
B : array[l..5] of BOOLEAN := [true, false, true, true, true];

Data Types 3-39

3-40

You can also use this method (and the method described in Section 3.11.1.1) to initialize
multidimensional arrays. For example, the following fragment initializes two multidimen-
sional arrays (I2 and B2). I2 has two subrange index types (1..2 and 1..6). The first index
type consists of two values, so you must supply two rows of brackets. The second index is
1..6, so you must specify six values for each row, initializing a total of 12 components.

VAR
I2 : array[l1..2, 1..6] of INTEGER16 := [
[1’
[7

2, 3, 4, 5
, 5, 1, 2

3 ’6]!
9, 1, 2, 8],

1

B2 : array[l..4, 1..3] of BOOLEAN := [
[true, true, true],
[true, false, false],
[false, true, false],

(false, false, false],

1;

3.11.1.3 Initializing Arrays Using Repeat Counts—Extension

Repeat counts let you initialize groups of elements in an array. There are two forms of
repeat counts.

The first form takes the following syntax:
n of constant

where of is a keyword, n is an integer, and constant is any valid constant that corresponds
to the data type specified in the declaration of the array.

This form tells the compiler to initialize n components of the array to the value of con-
stant. n can be an integer or an expression that evaluates to an integer. The following
initializations demonstrate this form of the repeat count:

CONST
x = 50;

VAR
a : array[l..1024] of INTEGER16 := [512 OF O, 512 OF -1];
b : array[l..400] of REAL := [x of 3.14, 400-x OF 2.7];

In the preceding example, Domain Pascal initializes the first 512 values of array a to 0 and
the second 512 values to —1. Domain Pascal also initializes the first 50 components of ar-
ray b to 3.14 and the remaining 350 components to 2.7.

The second form of the repeat count takes the following syntax:

* of constant

Data Types

The asterisk (*) tells Domain Pascal to initialize the remainder of the components in the
array to the value of constant. The following initializations demonstrate this form of the
repeat count:

VAR
¢ : array[l..2000] of INTEGER16 := [* of O];
d : array[l..50] of BOOLEAN := [12 of true, * of false];

In the preceding example, Domain Pascal initializes all 2000 components in array c to 0.
Domain Pascal also initializes the first 12 components of array d to true and the remaining
38 components to false.

You can use repeat counts to initialize multidimensional arrays. You must initialize a mul-
tidimensional array column by column rather than all at once. For example, compare the

right and wrong ways to initialize a 2-dimensional array:

VAR

x : array[l..2, 1..5] of INTEGER16 [10 of 0]; {Wrong!}

y : array[l..2, 1..5] of INTEGER16 := [* of 0]; {wrong!}
z : array[l..2, 1..5] of INTEGER16 := [
[5 of 0],
[5 of 0],
1 {Right!}
q : array{l..2, 1..5] of INTEGER16 := [
[* of 0],
[(* of 0],
1; {Right!}

3.11.1.4 Initializing Components in Any Order—Extension

You can initialize array components in any order. Consider the following initialization
statements:

VAR
Cl : array[l..7] of INTEGER :=
[
4 =2,
= -1
=3

H 3 W
[}

1

These statements produce the following initializations:

Component 1 = 3
Component 2 = undefined
Component 3 = 2
Component 4 = 2
Component 5 = undefined
Component 6 = undefined
Component 7 = -1

Data Types 3-41

3.11.1.5 Defaulting the Size of an Array—Extension

When you initialize an array in the var declaration part of a program, you can let Domain
Pascal determine the size of the array for you. To do this, put an asterisk (*) in place of
the upper bound of the array declaration.

For example, in the following fragment, the upper bound of init4 is 18; the upper bound
of init5 is 22; and the upper bound of inité is 4. The compiler defines the upper bound
once it has counted the number of initializers.

CONST
msg5 = “And this is message 5.°;

VAR
init4 : ARRAY[1l..*]) of CHAR := ‘This is message 4.°;
init5 : ARRAY[1l..*] of CHAR := msg5;
init6é : ARRAY[1l..*] of INTEGER16 := [1, -17, 35, 46];

NOTE: You can use an asterisk in the index type only if you supply an
initialization value for the array. For example, the following frag-

ment causes a “Size of TABLE1 is zero” warning:

VAR
tablel : array[l..*] of integerl6;

3-42 Data Types

3.11.1.6 Mixing Methods of Array Initialization—Extension

You can combine all methods of array initialization described in this section. The follow-
ing example illustrates the use of the methods to initialize an array named array_example:

CONST
x = 100;
TYPE
subr = (one, two, three, four, five, six, seven, eight, nine,
ten, eleven, twelve);
VAR
array_example ; ARRAY [subr] OF integer :=
[
2 of -1, {repeat count method}
four..five := 47, {initializing multiple components

to a single value}

2 of x, {repeat count method}

42, {initializing components
individually}

ten..* := 814 {initializing multiple components

to a single value}

13

The results of the preceding declarations are:

Component 1 = -1
Component 2 = -1
Component 3 = undefined
Component 4 = 47
Component 5 = 47
Component 6 = 100
Component 7 = 100
Component 8 = 42
Component 9 = undefined
Component 10 = 814
Component 11 = 814
Component 12 = 814

Data Types 3-43

3.11.2 Variable-Length Arrays—Extension

3-44

Domain Pascal supports an array data type that enables you to construct and manipulate
variable~length strings. A variable-length string is a string whose length can change dy-
namically during program execution. This is in contrast to a fixed-length string whose
length is specified by the subrange expression in its declaration. Although the size of a
variable-length string can change, it cannot exceed a maximum, which you specify in the
declaration. '

The syntax for declaring a variable-length string is:
varying[max_length] of char;

where max_length is a positive integer between 1 and 65535.

For example, the following are legal declarations:

VAR
short_string : VARYING[10] of CHAR;
long_string ¢ VARYING[10000] of CHAR;
array_of_var_str : ARRAY[1l..5] of VARYING[20] of CHAR;

It is illegal to use the varying type specifier with any type other than char.

When you declare a variable-length string, the compiler allocates enough memory to hold
a string of the maximum length. You can assign strings of any length not greater than the
maximum to the array. When the variable-length string is read, only as many characters

as indicated by the current length are accessed.

Internally, the compiler translates the varying type into a record of the form:

RECORD
length : 0..65535;
body : PACKED ARRAY[1l..max_length] of CHAR;
{unnamed filler}

END;

The length field contains the current length of the string. When you assign a string to a
variable-length character array, the compiler adjusts the value of length to reflect the size
of the assigned string. The body field contains the actual string.. Following the body field,
the compiler allocates additional bytes, if necessary, for a trailing null character and pad-
ding. The trailing null character and pad bytes are described in the following section.

You can reference the length and body fields explicitly by using the same syntax and se-
mantics you would use for a normal record. For example:

cur_length := short_string.length;
last_char := short_string.body[short_string.length];

Data Types

Be aware that if you update the character string in the body field, it will not automatically
update the value in the length field.

It is illegal to subscript a variable-length array. For example:

VAR
var_string ¢ VARYING[100] of CHAR;

var_string[5] := ‘a”; { ILLEGAL }

To access a particular element in a variable-length string, subscript into the body field.

3.11.3 Packed Arrays

Like standard Pascal, Domain Pascal allows you to use packed arrays to store sequences of
characters, byte integers, and boolean variables. To declare a packed array, use the fol-
lowing format:

var

name_of_array : packed array [low_value..high_value] of variable_type;

For example, consider the following variable declarations:

VAR
switches : PACKED ARRAY [1..100] OF boolean;
names : PACKED ARRAY [1l..25] OF char;
numbers : PACKED ARRAY [0..100] OF integer;

Although you can save space by using packed arrays, you may pay a price in the efficiency
of loading from and storing to elements in the arrays.

3.11.4 Internal Representation of Arrays

Packed arrays usually require less storage space than arrays that are not packed. In this
section we describe how both types of arrays are represented internally.

3.11.4.1 Non-Packed Arrays

With two exceptions, the total amount of memory required to store an array that is not
packed equals the number of elements in the array times the amount of space required to
store one element. The amount of space for one element depends on the component type
of the array, as shown in Table 3-4.

Data Types 3-45

3-46

Table 3-4. Size of One Element of an Array

Base Data Type Size of One Element
Integer16 or Integer 16 bits

Integer32 32 bits

Single or Real 32 bits

Double 64 bits

Boolean 8 bits

Char 8 bits

Subrange size of base type of subrange
Enumerated 16 bits

The two exceptions to this rule are arrays of booleans and varying arrays of chars.

If the component type of an array is boolean and an odd number of elements are de-
clared, the compiler adds an extra pad byte to the storage space for the array so that the
storage is an even number of bytes. For example, if you declare boolean array b as

VAR
b : array([l..5] of boolean;

Domain Pascal reserves six bytes of memory for b.

A variable-length string always begins with a 2-byte length field, followed by the body
field, followed by padding. The body field must always be capable of holding a null char-
acter at the position just beyond the current length. Consequently, the compiler always
allocates to the body field one byte more than the maximum length specified in the decla-
ration. The compiler adds 2 or 3 bytes of padding to make the total size of the string an
even number of longwords (4 bytes).

In summary, to figure the total number of bytes allocated for a variable-length string: add
either 5 or 6 bytes to the number of bytes specified as the maximum length for the string
such that the total number of bytes is an even number. For instance:

VAR
v2: VARYING[2] OF CHAR; {8 bytes are allocated}
v7: VARYING[7] OF CHAR; {12 bytes are allocated}
v8: VARYING[8] OF CHAR; {14 bytes are allocated}

Multidimensional Arrays

Multidimensional arrays are stored in row major order. Given a 2-dimensional array of
the following declaration:

a : array[l..2, 1..3] of integerl6;

Data Types

Domain Pascal represents it in the following order:

a[l,1] first
a[l,2] second
a[l,3] third
af[2,1] fourth
af[2,2] fifth
a[2,3) sixth

3.11.4.2 Packed Arrays

Table 3-5 shows the space required for each type of element in a packed array.

Table 3-5. Storage of Packed Array Elements

Type of Element Space Allocation

Subranges of integers Exact number of bits required *;

Enumerated bit aligned **

Subrange of enumerated

Integer 16 bits; word aligned

Integer16

Boolean 1 bit; bit aligned

Real 32 bits; word aligned

Integer32

Pointer

Double 64 bits; word aligned

Character 8 bits; byte aligned

Subrange of character

Character array Exact number of bytes required; byte
aligned

Record Exact number of words required; word

Array of non-characters aligned

Set Exact number of bits required 1;

bit aligned 2

1 If the element size is less than 16 bits, the element is padded up to the nearest
power of 2 bits.
2 If the element size is greater than 16 bits, then the elements are word aligned.

In packed arrays, if the element size is less than 16 bits, then the element is padded up to
the nearest power of 2 bits. Thus, in the following example, 4 bits would be used to store
each element of arrayl and 2 bytes would be used to store the entire arrayl:

arrayl: PACKED ARRAY [1..3] OF 0..7

Data Types 3-47

Contrast this to the following declaration:

array2: ARRAY [1..3} OF 0..7

Each element of array2 requires 16 bits of storage, and 48 bits would be used to store the
entire array2.

3.12 Files

3-48

When you open a file for I/O access, you must specify a file variable that will be the pseu-
donym for the actual pathname of the file. Thereafter, you specify the file variable (not
the pathname) to refer to the file. Domain Pascal supports the file data type and the text
data type. (Throughout this manual, the word “file,” in boldface type, means the file data
type, and the word “file,” in roman type, means a disk file.) Files of both file type and
text type are stored as Domain unstruct (unstructured ISO Latin-1) files. These files are
compatible with text files produced under UNIX systems.

The following declaration establishes variable f1 as an identifier of a text file:

VAR
f1l : text;

A text file contains sequences of ISO Latin-1 characters representing variable-length lines
of text. You can read or write entire lines of a text file. You can read from or write to a
text file the values of a variable of any type (except pointer and file). Chapter 8 describes
text files in more detail.

You specify a file variable with the following format:
variable : file of base_type;

A variable with the file type specifies an unstruct binary file composed of values having
the base_type. That is, the only permissible values in such a file all have the same data
type, that of the base_type. The base_type can be any type except a pointer, file, or text
type. For example, the following declaration creates a file type corresponding to a file that
consists entirely of student records:

TYPE
student = record
name : array[l..30] of char;
id : integer32
end;
U of M : FILE OF student;

The Domain/OS operating system stores each occurrence of student in 34 bytes: 30 bytes
for name and 4 bytes for id.

Data Types

NOTE: Older versions of Domain Pascal created special record struc-
tured Domain files (called “rec” files) when you opened a file
with file type. For compatibility with older versions, the current
version of Domain Pascal allows you to manipulate rec files, but
you cannot create them. When you open an existing file with the
file type, Domain Pascal checks whether it is a rec or unstruct
file, and accesses it appropriately. Whenever you open a new file,
however, Domain Pascal creates an unstruct file.

3.13 Pointers

- A pointer variable points to a dynamic variable. In Domain Pascal, the value of a pointer
variable is a variable’s virtual address. Domain Pascal supports the pointer type declaration
of standard Pascal as well as a special univ_ptr data type and procedure and function
pointer types. This section details the declaration of pointer types. You should also refer to
the “Pointer Operations” listing of Chapter 4 for information on using pointers in your pro-
grams.

3.13.1 Standard Pointer Type

To declare a pointer type, use the following format:

type
name_of _type = “typename;

You can specify any data type for typename. The pointer type can point only to variables
of the given typename. For example, consider the following pointer type and variable dec-

larations:

TYPE
ptr_to_intl6é = “integeril6; {Points only to integerl6 variables.}
ptr_to_real = “real; {Points only to real variables.}
studentptr = “student; {Points only to student record variables.}

student = record
name : array[l..25] of char;
id : integer;
next_student : studentptr;
end;

VAR
X : integerl$;
p_x : ptr_to_intl6;
half life : real;
p_half life : ptr_to_real;
Brown_Univ : student;

Data Types 3-49

3.13.2 Univ_ptr—Extension

The predeclared data type univ_ptr is a universal pointer type. A variable of type
univ_ptr can hold a pointer to a variable of any type.

You can use a univ_ptr variable only in the following contexts:

e Comparison with a pointer of any type
® Assignment to or from a pointer of any type
® Formal or actual parameter for any pointer type

® Assignment to the result of a function

Note that you cannot dereference a univ_ptr variable. Dereferencing means finding the
contents at the logical address that the pointer points to. You must use a variable of an
explicit pointer type for the dereference. Please see the “Pointer Operations” listing in
Chapter 4 for more information on univ_ptr.

3.13.3 Procedure and Function Pointer Data Types—Extension

3-50

Domain Pascal supports a special pointer data type that points to a procedure or a func-
tion. By using procedure and function data types, you can pass the addresses of routines
obtained with the addr predeclared function. (See the addr listing of Chapter 4 for a de-
scription of this function.) You may obtain the addresses only of top-level procedures and
functions; you cannot obtain the addresses of nested or explicitly declared internal proce-
dures and functions. Note that the compiler checks pointers for data type and name com-
patibility when addresses are assigned to a pointer or procedure. (See Chapter 5 for details
about declaring internal procedures and details about compatibility checking of pointers.
See Chapter 7 for details about using internal.)

Procedure and function pointer type declarations are the same as regular procedure and
function declarations, except for the following:

® The procedure or function has no identifier; in other words, the procedure or
function does not have a name.

® The type declaration begins with a caret (*), as in standard pointer type declara-
tions.

You can declare procedure and function pointers in either of two ways: in the type and
var declaration parts or just in the var declaration part.

Here is an example of declaring a procedure pointer and a function pointer using both the
type and var declaration parts:

TYPE
“procedure (a,b,c: integer);
~function (x,y: real): real;

proc_ptr
func_ptr

VAR
my_proc_ptr: proc_ptr;
my_func_ptr: func_ptr;

Data Types

And here is an example of declaring the same pointers as above in just the var declaration
part:

VAR
my_proc_ptr: “procedure (a,b,c: integer);
my_func_ptr: “function (x,y: real): real;

See the “Pointers to Routines—Extension” section of Chapter 5§ for a sample program
showing how to pass function pointers as parameters.

3.13.4 Initializing Pointer Variables—Extension

Domain Pascal permits you to initialize the values of pointer variables within its variable

_ declaration in most cases. You initialize a value by placing a colon and equal sign (:=) im-
mediately after the data type. For example, the following fragment declares my_ptr as a
type ptr_to_int16 with an initial value of NIL:

TYPE

ptr_to_intl6é = “integerl6;
VAR

my_ptr : ptr_to_intl6é := NIL;

If the variable declaration occurs within a procedure or function, you cannot initialize the
variable at the declaration unless it has been declared static. This is because storage within
routines is dynamic and so variables in them do not necessarily retain their values between
executions. For example, the following is incorrect:

TYPE
ptr_to_intl6é = “integerl6;

FUNCTION do_nothing(IN OUT x : INTEGER) : BOOLEAN;
VAR
my_ptr : ptr_to_intl6 := NIL; {wrong!}

This is the correct way to initialize the variable at its declaration in a routine:

my_ptr : STATIC ptr_to_intl6 := NIL; {Right!}

See Chapter 7 for information on the static attribute.

3.13.5 Internal Representation of Pointers

Domain Pascal stores pointer variables in the 32-bit record shown in Figure 3-18.

31 ; 16
Address

Address
15 0

Figure 3-18. Pointer Variable Format

Data Types 3-51

By default, pointer-type objects are stored on longword boundaries.

A pointer to a procedure or function (a Domain Pascal extension) points to the starting
address of that routine.

3.14 Putting Variables into Overlay Sections—Extension

3-52

A section is a named area of code or data. An overlay section is a section whose contri-
bution from a module “overlays” that of other modules. A Domain Pascal overlay section
is just like a named common block in FORTRAN.

At run time, the code or data in a particular section occupies contiguous logical addresses.
By default, all variables that you declare in a var declaration part are stored in the .data
section. However, Domain Pascal lets you assign variables to sections other than .data.

To specify an overlay data section, place the section name inside a set of parentheses after
the reserved word var. The section name can be any valid identifier or a string within quo-
tation marks. For example, both of the following are valid names for a section:

this_is_a_section_name
“this is a section name”

The following is the format to declare a section name for a var declaration part.

var (section_name)
identifier_listl : typenamel;

[

identifier_listN : typenameN;]

All the variables named in all the identifier_lists will be stored in section_name. Since
you can put multiple var declaration parts in the same program, you can create multiple
named sections. If you do not specify a section_name, Domain Pascal puts the variables in
the .data section.

Domain Pascal allocates variables defined in a var declaration part sequentially within the
specified section. If more than one var declaration specifies the same section name, the
subsequent declarations are considered to be continuations of the first declaration.

By forcing certain variables into the same section, you can reduce the number of page
faults and thus make your program execute faster. For example, suppose you declare the
following three variables:

VAR
X : integerl6;
b_data : array([l..5000] of integerl6;
y : single;

Data Types

Further suppose that whenever you need the value of x, you also need the value of y. By
default, Domain Pascal places x, b_data, and y inside the .data section. The .data section
encompasses 10 pages (1 page = 1024 bytes). There is no way to ensure that x and y will
be on the same page in .data because Domain Pascal might place b_data in between x
and y. However, by putting x and y in the same named section, you can improve the odds
to over 99%. For example, to put x and y into section important, you must issue the fol-
lowing declarations:

VAR (important)
X : INTEGER16; {will go into section "important"}
¥y : REAL; {will go into section "important"}

VAR
b_data : array[l..5000] of INTEGER16; {will go into section ".data"}

See the “Section—Extension” section of Chapter S for information about using sections
within routines. Sections are important at bind time. For complete information on the Do-
main binder, see the Domain/OS Programming Environment Reference.

3.15 Attributes for Variables and Types—Extension

Domain Pascal supports attributes for variables and types. These attributes supply additional
information to the compiler when you declare a variable or a type. The attribute names

are:
® volatile
® atomic
® device
® address
® bit, byte, word, long, quad (size attributes)
e aligned(n), natural (alignment attributes)

The volatile, atomic, and device attributes enable you to turn off certain compiler op-
timizations that would otherwise ruin programs that access device registers or shared mem-
ory locations. The address attribute associates a variable with a specific virtual address.
Alignment and size attributes enable you to enhance your program’s performance by speci-
fying storage allocation and data layout information.

Specify volatile, device, alignment, and size attributes inside a pair of brackets immedi-
ately before the type in the type or var declaration. For example:

TYPE
int_array = [VOLATILE] array(l..10] of integer;

VAR
X : [DEVICE] integerl6;

Data Types 3-53

Specify address and atomic attributes inside a pair of brackets immediately prior to the
type in the var declaration. For example:

VAR
x: [ATOMIC] integer;

To specify more than one attribute for a particular data type or variable, separate the at-
tributes with commas. - For example:

VAR
X: [ATOMIC, DEVICE] integer;

Table 3-6 summarizes the attributes that Domain Pascal supports. The following subsec-
tions provide details about the attributes.

3-54 Data Types

Table 3-6. Summary of Attributes for Variables and Types

Attribute Example of Syntax Purpose
volatile TYPE Prevent certain default optimiza-
int_array = [volatile] tions based on assumptions about
array(1l..10}Jof integer; value.
VAR

x: [volatile] integer;

atomic VAR Implies volatile. Also perform up-
x: [atomic] integer; dates with single instruction when
possible.
device TYPE Implies volatile. Also prevent addi-
keyboard = [device] char; tional optimizations.
VAR

Xx: [device] integerl6;

address VAR Bind a variable to a specified virtual
peb_page: [address address (use with volatile or de-
(16#££7000) ,device]char; vice). '
SIZE
ATTRIBUTES
bit TYPE Specify amount of storage for types
byte big_boo = and/or objects.
word [longlboolean;
long VAR
quad large_boo:
[longlboolean;
ALIGNMENT
ATTRIBUTES
aligned TYPE Control the data layout.
natural word_aligned_integer32 =

[aligned(1)] integer32;
VAR
natural_int: [natural] integer;

Data Types 3-55

3.15.1 Volatile—Extension

Volatile informs the compiler that memory contents may change in a way that the compiler
cannot predict. There are two situations, in particular, where this might occur:

® The variable is in a shared memory location accessed by two or more processes.

® The variable is accessible through two different access paths. (That is, multiple
pointers with different base types refer to the same memory locations.)

In both of these situations, it is crucial that you tell the compiler not to perform certain
default optimizations.

For example, the following module causes optimizations leading to erroneous behavior:
Module volatile_example;

VAR
p : “integer;

Procedure Init(VAR v : integer);
BEGIN

p := addr(v);
END;

Procedure Update;

BEGIN
p~

END;

:= p~ + 1; {anonymous path.}

Procedure Top;

VAR
i : integer;
BEGIN
Init(i);
i:=0; {visible modification. }
while i < 10 do {Visible reference. }
update; {Hidden modification to i.}
END;

However, you can prevent these destructive optimizations if you change the declaration of
variable i to: :

VAR
i : [volatile] integer;

3.15.2 Atomic—Extension

3-56

You declare a variable to be atomic if you want to make sure that its value does not

change unpredictably as a result of multiprocessing. Atomic prevents the same optimiza-
tions as volatile. In addition, the compiler handles any assignment statements whose left
side is a variable specified as atomic and whose right side contains the same variable in a
special way that protects the value of the variable from being changed by other processes.

Data Types

Atomic attributes can only be used with scalar variables. The scalar data types are integer,
Boolean, character, and enumerated.

For example, consider the following dec‘:laration;

VAR
x: [atomic] integer;

The above declaration tells the compiler to make sure that the value of x is not changed
by other processes while it completes an assighment statement such as the following:

3.15.3 Device—Extension

Device informs the compiler that a device register (control or data) is mapped to a specific
virtual address. Device registers are memory locations bound to a specific device, such as
a disk drive. The device attribute prevents the same optimizations that volatile prevents,
and it also prevents two other optimizations, which are described below.

By default, the compiler optimizes certain adjacent references by merging them into one
large reference. The device attribute prevents this optimization.

For example, consider the following fragment:

VAR

a,b : integerl$;
BEGIN

a :=0;

b := 0;

By default, the compiler optimizes the two 16-bit assignments by merging them into one
32-bit assignment. (That is, at run time, the system assigns a 32-bit zero instead of assign-
ing two 16-bit zeros.) By specifying the device attribute, you suppress this optimization.

The device attribute also prevents the compiler from generating gratuitous read—-modify—
write references for device registers. That is, specifying a variable as device causes the
compiler to avoid using instructions that do unnecessary reads.

Now, consider an example. Suppose kb in the following fragment is a device reglster that
accepts characters from the keyboard.

TYPE
keyboard = char;

VAR

c, cl : char;

kb : “keyboard;
BEGIN

c := kb";

cl := kb";

Data Types 3-57

3-58

The purpose of the program is to read a character from the keyboard and store it in c,
then read the next character and store it in c1. However, the compiler, unaware that the
value of kb can be changed outside of the block, optimizes the code as follows: it stores
the value of kb in a register, and thus assigns the same value to both ¢ and c1. Obviously,
this is not what the programmer intended since Domain Pascal assigns the same character
to both c and cl. To ensure that Domain Pascal reads kb twice, declare it as:

TYPE
keyboard = [DEVICE] char;

Another situation when normal optimization techniques can change the meaning of a pro-
gram is in loop-invariant expressions. For instance, using the keyboard example again, sup-
pose you have the program segment:

TYPE
keyboard = char;

VAR
X : integer;
¢ : char;
kb : “keyboard;

while (x < 10) do
begin
c := kb";
foo(c);
X =X + 1;
end;

The purpose of the block is to read 10 successive characters from the keyboard and pass
each to a function called foo. However, to the compiler, it looks like an inefficient pro-
gram since ¢ will be assigned the same value 10 times. To optimize the program, the com-
piler may translate it as if it had been written as follows:

c := kb*;

while (x<10) do
begin
foo(c);
X =X+ 1;
end;

To ensure that the compiler does not optimize your program in that manner, declare kb as
follows: '

TYPE

keyboard = [DEVICE] char;
VAR

kb : “keyboard;

Data Types

In addition to suppressing optimizations, you can also use device to specify that a device is
either exclusively read from or exclusively written to. You achieve this by using the read
and write options which have the following meanings:

® Device(read)—This attribute specifies read—only access for this variable or type.
That is, if you attempt to write to this variable, the compiler flags the attempt as
invalid and issues an error message.

® Device(write)—This attribute specifies write—only access for this variable or type.
That is, if you attempt to read from this variable, the compiler flags the attempt as

invalid and issues an error message.

® Device(read, write)—This attribute specifies both read and write access for this
variable. This attribute is identical to the device attribute without any options.

® Device(write, read)—Same as device(read, write).

For example, here are some sample declarations using the device attributes:

TYPE
truth_array : [DEVICE] array(l..10] of boolean;

VAR i
c : [DEVICE(read)] char; {read-only access.}
c2 : [DEVICE(write)] char; {write-only access.}
t : truth_array; {read and write access.}

3.15.4 Address—Extension

Address takes one required argument.

The address specifier binds a variable to the specified virtual address, specified by a con-
stant. You can only use address in a var declaration, not in a type declaration.

Address is useful for referencing objects at fixed locations in the address space, such as
device registers, the PEB (Performance Enhancement Board) page, or certain system data
records. Typically, the compiler generates absolute addressing modes when accessing such
an operand. You cannot specify define, extern, or static when you use this option.

Using address by itself (without device or volatile) does not suppress any compiler op-
timizations. You should use it in conjunction with volatile or device. The example below
associates the variable peb_page with the hexadecimal virtual address FF7000.

_ VAR
peb_page : [ADDRESS(16#FF7000), DEVICE(read)] char;

Data Types 3-59

3.15.5 Size—Extension

3-60

Size attributes specify the amount of storage to be reserved for the following:

® Variables

® Formal parameters
® Function results

® Record fields

® Array components

You declare size attributes in either of two ways—as part of a type-identifier or as part of
an object. Declaring a size attribute as part of a type identifier indicates the amount of
storage to be reserved for every object of that type. Declaring a size attribute as part of
an object declaration specifies the amount of storage reserved for that particular object.

Domain Pascal supports five size attribute-names:
e bit (1 bit)
® byte (8 bits)
® word (16 bits)
® long (32 bits)
® quad (64 bits)

Each attribute-name represents a unit of storage. You indicate the number of units of
storage to be reserved by including an integer-expression, n, in parentheses immediately
after the attribute-name, as follows:

lattribute-name [(n)] 1 typename

If (n) is missing, then the compiler uses a default value of 1.

For example, each of these two variable declarations reserves 32 bits of memory for
original_value:

TYPE

big_number = [long] integerl6;
VAR

original_value : big_number;
and ‘
VAR

original_value : [long] integerl6;

Data Types

Compare the above declarations to the following declaration, which reserves 16 bits for
original_value:

VAR
original_value: integerl6;

In Domain Pascal, the following size rules apply:

® Every data type has a minimum size.

® A size attribute must specify at least the number of bits required for the 'type to
which it is applied.

® A size attribute can specify a number of bits greater than the minimum for inte-
ger, boolean, and set data types. If you use a size attribute to specify a size
larger than the minimum for a data type, then the compiler uses all of the bits in
the larger object to represent the value of an object of that type.

Table 3-7 shows the minimum number of bits for Domain Pascal data t)?pes.

Table 3-7. Size of Simple Data Types

Data Type Minimum Size

Integer16 or Integer 16 bits

Integer32 32 bits

Single or Real 32 bits

Double 64 bits

Boolean 8 bits

Char 8 bits

Subrange Number of bits needed
to store subrange

Enumerated 16 bits

Data Types 3-61

You can use size attributes to create bit arrays. Domain Pascal supports arrays of 1-, 2-,
and 4-bit elements. The order of elements within words is from most significant bit to
least significant bit. The only aggregate bit array operation that Domain Pascal supports is
aggregate assignment. The following program illustrates the use of bit arrays:

program bit_array;
type
element = [bit (4)] O0..1;
{Declares a subrange type that occupies 4 bits.}
arr = packed array [1..6] of element;
{You need to say °“PACKED’ to get the intended size, 3 bytes}

VAR
al : arr;
begin
al[4) := 2;
writeln(’The size of al is: °, sizeof(al):4, ° bytes’):
writeln(’ al[4] = 7, al[4]:4);
end.

The output of this program is as follows:

The size of al is: 3 bytes
al{4] = 2

You can also use size attributes to declare an array of byte integers, such as:

TYPE
byte_integer = [byte] 0..255;
byte_int_array = array([l1..1000] of byte_integer;

Finally, size attributes are useful for declaring variables in Domain Pascal that you want to
correspond to data types in other languages. For example, the Domain Pascal type

[byte] 0..255 corresponds to the unsigned char data type in Domain/C. (See Chapter 7
for a more detailed discussion of cross-language communication.)

Notice that you use size attributes in the declaration part of your program, whereas you use
type transfer functions in the action part of your program. (See the “Type Transfer Func-
tions” listing in Chapter 4 for details about type transfer functions.)

3.15.6 Alignment—Extension

Domain Pascal supports two alignment attributes: aligned and natural. In the following
sections we tell you:

® The format for the aligned and natural attributes.
¢ How to use natural and aligned to align objects on natural boundaries.

® How to use aligned to prevent padding by default.

3-62 Data Types

® How to use aligned to ensure the same record layout in all alignment environ-
ments.

e How to suppress informational messages about alignment by using the alignment
attributes.

® How and why to use alignment attributes to inform the compiler that an object is
not naturally aligned. This is especially important in connection with dereferenc-
ing pointers and passing arguments by reference.

3.15.6.1 Format for the aligned and natural Attributes

The format for the aligned attribute is:

[aligned [(n)] 1 typename;

where 7 is the number of low order zeros in the address (in binary representation). If you
omit a value for n, then the compiler will default to a value of 0 (byte aligned). Note
that:

aligned specifies byte alignment
aligned(1) specifies word alignment
aligned(2) specifies longword alignment
aligned(3) specifies quadword alignment
aligned(4) specifies octaword alignment

Thus, aligned(n) implies 2**n-byte alignment. For example, the declaration

TYPE
word_aligned_integer32 = [ALIGNED(1)] integer32;

tells the compiler that all objects of type word_aligned_integer32 are at least word
aligned.

The format for the natural attribute is as follows:
[natural] typename;
For example, the declaration

TYPE
natural_integer32 = [NATURAL] integer32;

tells the compiler that all objects of type natural_integer32 are at least longword aligned.

Data Types 3-63

3-64

The natural attribute has one main use:

® Overriding the default alignment rules to ensure that objects are stored on natural
-boundaries. -

Similarly, you can use the aligned attribute to ensure natural alignment by specifying the
correct value for n. In addition, the aligned attribute has these uses:

® Preventing the compiler from inserting padding in records.
® Ensuring the same layout in all alignment environments.

® Suppressing informational messages.

® Dereferencing pointers to unaligned objects.

® Passing arguments by reference.

Each of these uses is described in the following sections.

3.15.6.2 Aligning Objects on Natural Boundaries

In general, natural alignment produces faster executable code, although the efficiency sav-
ings vary a great deal from one processor to another. (See Section 3.10.5 for a descrip-
tion of natural alignment.) Code for the 68000 family of processors runs slightly faster if
objects are naturally aligned. Code for the Series 10000 workstations runs significantly
Jaster if objects are naturally aligned. Moreover, on the Series 10000, if the compiler as-
sumes that an object is naturally aligned when it is not, then the loss of efficiency is se-
vere.

Although natural alignment often results in faster code, it can also produce holes in struc-
tures such as arrays and records, which can have an impact on memory efficiency. Before
naturally aligning record fields, you need to weigh these two efficiency concerns.

The aligned and natural attributes override the default alignment rules (described in the
“Internal Representation of Unpacked Records” section of this chapter) as well as the
alignment rules specified by any compiler alignment directive that is currently in effect.
(See Chapter 4 for more information about specifying alignment rules with compiler direc-
tives.)

Note that if all of the record fields are scalar, it is always possible to guarantee natural
alignment of the entire record by arranging the fields in decreasing order of size. This
method is preferable to using the aligned and natural attributes because it is portable.
(See the “Internal Representation of Unpacked Records” section of this chapter for an
example of using this rule.)

Data Types

Although it is usually possible to align record fields naturally by arranging them in descend-
ing order of size, the arrangement of fields does not guarantee that a record will remain

aligned if it is used within another aggregate (that is, in an array or record).

following example:

TYPE
‘ S = record
a: integer32;
b: integerlé
end;

Consider the

The layout is shown in Figure 3-19. Note that both a and b are naturally aligned, and

that the entire record is aligned on a longword boundary.

04—— 1word —

Figure 3-19. Naturally Aligned Record S

Note what happens, however, if we declare an array of three S records:

VAR
bunch_of_records: ARRAY [1..3] OF S;

The memory layout for this array is shown in Figure 3-20.

Data Types

3-65

3-66

44— {word —P

Figure 3-20. Array of S Records

Note that the second element of the array, which starts at address 6, is not naturally
aligned. This alignment results from the fact that each element is six bytes long and array

elements must be laid out contiguously in memory. There are several solutions to this
problem. They are as follows:

® Explicitly enter a word of padding in the record so that the total size of the re-
cord is divisible by four. Specifically, change the declaration of S-type records to:

TYPE
S = record
a: integer32;
b: integerl6;
padding: integerl6
end;

® Use the natural attribute for the record. Specifically, change the declaration to:

TYPE
S = [NATURAL] record
a: integer32;
b: integerlé
end;

Data Types

® Use the aligned attribute for the record. Specifically, change the declaration to:

TYPE
S = [ALIGNED(2)] record
a: integer32;
b: integeril6
end;

® Use the natural attribute for field a. This works because a record inherits the
largest alignment specification of its fields. Since a is declared to be aligned on a
longword boundary, the entire record will be also be longword aligned. Specifi-
cally, change the declaration to:

TYPE
S = record
a: [NATURAL] integer32;
b: integerlé
end;

® Use the aligned attribute for field a. This method also works because of the rule
that a record inherits the largest alignment specification of its fields. Specifically,
change the declaration to:

TYPE
S = record
a: [ALIGNED(2)] integer32;
b: integerl6
end;

Figure 3-21 shows the memory allocation for S records resulting from all of the above
methods of declaring S.

——— { word —

Figure 3-21. Naturally Aligned Record S

The principal difference between declaring a padding field and using an alignment attribute
is that the padding word is accessible if you explicitly declare it. It is inaccessible if the
compiler includes it to satisfy an alignment attribute. Furthermore, if you use padding in-
stead of the attribute, your record declaration is portable.

Data Types 3-67

NOTE: Assigning attribute specifications to a record or field can have
unexpected repercussions. Consider the following declarations:

TYPE
S = record
a: [NATURAL] integer32;
b: integerilé6
end;
S1 = record
X: integerl6;
S;
z: integerl6

>

end;

The layout for record S is shown in Figure 3-21 and the layout
for S1 is shown in Figure 3-22. Note that record S inherits the
alignment of field a (longword alignment) and that this alignment
requirement causes an additional word of padding to be inserted
between x and y. In addition, record S1 inherits longword align-
ment from record S, causing a word of padding to be added at the
end of S1.

¢———— 1{ word

I
I
i

Figure 3-22. Naturally Aligned Record S1

3-68 Data Types

3.15.6.3 Using the aligned Attribute to Prevent Padding

In the previous example, we used the aligned attribute to insert padding in a record so
that the size of the record would be evenly divisible by the size of its largest field (four
bytes). You can also use the aligned attribute to prevent the compiler from inserting pad-
ding. This is particularly useful if you need to declare a record that maps onto an existing
layout (for example, a shared memory area).

Suppose, for example, that you want to declare a record that consists of a char followed
by two integers:

TYPE
S2 = record
a: char;
b, c: integerl6
end;

By default, the compiler produces the layout shown in Figure 3-23.

4— 1 word

b

Figure 3-23. Default Layout for S1

The compiler inserts a byte of padding after a to ensure that b starts on a word boundary.
If you want to create a record without padding at this position, you need to use the
aligned specifier as shown in the following declaration:

TYPE
S2 = record
a: char;
b, c: [ALIGNED(0O)] integerl6
end;

The aligned(0) attribute tells the compiler that these fields may be aligned on byte
boundaries. This declaration results in the layout shown in Figure 3-24.

Data Types 3-69

3-70

%

Figure 3-24. Layout for S1 with Byte Alignment Specified

Note that the compiler still inserts a byte of padding so that the size of the record is evenly
divisible by two. There is no way to suppress this trailing byte. Records created by Do-
main Pascal are always 2-byte multiples.

Suppressing padding sometimes becomes more important if a %natural_alignment directive
is in effect. The %natural_alignment directive tells the compiler to use natural alignment
for any data that does not have an alignment attribute in its declaration. (See the “Com-
piler Directives” section of Chapter 4 for more details about the %natural_alignment
directive). Consider the following declaration:

%NATURAL_ALIGNMENT

TYPE
S1 = record
a: char;
b: integer32;
c¢: char

end;

The %natural_alignment directive applies not only to each field, but also to the entire

record. A record is considered to be naturally aligned if it starts on a boundary that en-
sures natural alignment for its largest field (and every other field). The layout for S1 is

shown in Figure 3-25.

Data Types

4—— 1 word —

s
M

T

Figure 3-25. Layout for S1 with Natural Alignment Specified

By specifying word alignment for the record, we can remove the final word of padding, as
shown in Figure 3-26.

%NATURAL_ALIGNMENT
TYPE
= [ALIGNED(1)] record
a: char;
b: integer32;
c¢: char
end;

T
YW

Figure 3-26. Layout for S1 with Word Alignment Specified

Data Types 3-71

To remove at least some of the padding between a and b, we need to specify word align-
ment for b. Figure 3-27 shows the layout if we specify word alignment for b as well as for
the whole record.

%NATURAL_ALIGNMENT

TYPE
S1 = [ALIGNED(1)] record

a: char;

b: [ALIGNED(1l)] integer32;

c: char

end;

- 1 word >

0 7,
T

Z
2
4 b

Figure 3-27. Layout for S1 with Word Alignment for B Specified

Note that specifying byte alignment for b produces the same layout as specifying word
alignment for b—namely, the layout in Figure 3-27. The results are the same because of
the rule that a byte aligned object may not cross two word boundaries. (See the “Internal
Representation of Unpacked Records” section of this chapter for more details about the
rules for record layout.)

3.15.6.4 Ensuring the Same Layout in All Alignment Environments

Alignment attributes can be particularly useful for ensuring that a record receives the same
layout regardless of what alignment environment is in effect due to a compiler directive or
a compiler option.

Suppose, for example, that you want to declare a record that consists of an integer16 fol-
lowed by an integer32, and you want to guarantee that there is no padding in the structure
regardless of the alignment environment. Consider the following declaration:

S2 = record
a: integerl6;
b: integer32
end;

3-72 Data Types

If the alignment environment is natural alignment, then the layout of S2 type records will
be the layout shown in Figure 3-28. If the alignment environment is word alignment, then
the layout will be that shown in Figure 3-29.

Y

Figure 3-28. Naturally Aligned Structure S2

4+— fword —®

0

a
2
4 b

Figure 3-29. Word Aligned Structure S2

You can use the aligned attribute to ensure that S2 never receives padding between a
and b:

S2 = record
a: integerl6;
b: [ALIGNED(1l)] integer32
end;

NOTE: You can also use the aligned record data type or the unaligned
record data type to ensure that your records have the same layout
in all alignment environments.

Data Types 3-73

3-74

3.15.6.5 Suppressing Informational Messages about Alignment

In general, the compiler assumes that all objects are naturally aligned. If the compiler en-
counters an object that it knows is not naturally aligned, it issues an informational message.
This happens, for example, when the compiler is forced to use word alignment rules for a
record field that is larger than a word, or when a record cannot be aligned because it is
embedded in another aggregate object. The following declarations, for example, will pro- .
duce two informational messages:

TYPE
S3 = record
a: integeril6;
b: integer32;
c: double
end;

The messages inform you that b and c are not naturally aligned. If you attempt to declare
an array of S3 records, you will receive another informational message telling you that the
array elements are not naturally aligned.

The best way to suppress these messages is to rearrange the record so all the fields are
naturally aligned. If rearrangement is impossible, however, you can suppress these mes-
sages by specifying the alignment and telling the compiler that the objects are not naturally
aligned:

TYPE
S3 = record
a: integerl6;
b: [ALIGNED(1l)] integer32;
c: [ALIGNED(1l)] double
end;

Note that these alignment specifications do not affect the record’s layout—they merely reaf-
firm that the compiler should use word alignment rules rather than natural alignment rules.

NOTE: If you compile with -info 4, you will receive informational mes-
sages even if you specify alignment. See Chapter 6 for more in-
formation about the -info option.

3.15.6.6 Informing the Compiler that an Object Is Not Naturally Aligned
(Series 10000 Only)

In many instances, the compiler can determine whether an object is naturally aligned.
When the compiler knows that an object is not naturally aligned, it produces code that ac-
cesses the object as if it consisted of separate parts, where each part is naturally aligned.

For example, suppose a program accesses a 4-byte integer that starts on a 2-byte bound-
ary. Because the computer can’t access the entire integer at once, the compiler treats the
4-byte integer as if it were composed of two contiguous 2-byte integers, each of which is

Data Types

naturally aligned. The compiler produces code that accesses each half of the 4-byte object
and then recombines the two halves to obtain the 4-byte integer value.

Obviously, this decomposition and recomposition of objects is less efficient than accessing
the object in a single instruction. Still, it is considerably better than taking a hardware
trap, which is what occurs if the compiler assumes that an object is naturally aligned when,
in fact, the object is not naturally aligned. The trap invokes a software routine to handle
the unaligned data, which results in a significant loss of efficiency.

There are some situations where the compiler cannot determine whether an object is or is
not naturally aligned:

® You declare a pointer to point to a naturally aligned object, and then assign it the
address of an object that is not naturally aligned.

® You pass an argument to a routine by reference.

In both of these cases, the compiler assumes that the object is naturally aligned. If you
know that this is not the case, you should inform the compiler with the aligned attribute or
with the align function. (See the “Align” listing in Chapter 4 for details about the align
function). This causes the compiler to use the decomposition/recomposition technique
instead of suffering a hardware fault at run time.

NOTE: If you run your Domain Pascal program on a Series 10000 work-
station, you should make sure that the compiler is informed about
any objects that are not naturally aligned. If the compiler as-
sumes that an object is naturally aligned when, in fact, the object
is not naturally aligned, your program will suffer a severe loss of
efficiency when you run it on Series 10000 workstations.

3.15.6.7 Dereferencing Pointers

When you declare a pointer to an object, the compiler assumes that the object pointed to
is naturally aligned unless you tell it otherwise. Consider the following declarations:

TYPE
rec = record
int16é : integerl$6;
int32 : [ALIGNED (1)] integer32
end;
VAR
iptr : “integer32;
Tr: rec
BEGIN
iptr := ADDR (rec.int32)
END;

In this example, the assignment of addr(rec.int32) to iptr will cause a compile-time warn-
ing. The program declared iptr as a pointer to an integer32 type, which is assumed to be
naturally aligned. However, the address of rec.int32 has been declared to be word
aligned.

Data Types 3-75

You can correct this problem by declaring iptr as pomtmg to a word aligned integer32
type variable, as follows:

VAR
word_int32 : [ALIGNED (1)] integer32;
iptr : “word_int32
{iptr is a longword aligned pointer; it points
to a word aligned 4-byte integer}

Note that the above declaration tells the compiler that iptr-points to a word aligned
integer32-type variable. It is different from the following declaration, which tells the com-
piler that iptr is a word aligned pointer variable and also that what it points to is a word
aligned integer32-type variable:

VAR
word_int32 : [ALIGNED (1)] integer32;
int_ptr: “word_int32;
iptr : [ALIGNED(1)] int_ptr;
A{iptr is a word aligned pointer variable;
it points to a word aligned 4-byte integer}

3.15.6.8 Passing Arguments by Reference

The compiler is unable to. determine the alignment of objects passed by reference as argu-
ments to routines. By default, the compiler assumes that such objects are naturally
aligned. Therefore, if you know that an argument passed by reference is not naturally
aligned, you should specify its alignment.

3.15.7 Attribute Inheritance—Extension

3-76

Types and variables inherit the device attribute, and in some cases the volatile attribute,
from more primitive data types. If you define a data type in terms of a more primitive data
type declared with device or volatile, the new data type may inherit the attributes of that
more primitive data type. For example, in the following declarations, resource inherits the
volatile attribute from semaphore:

TYPE
semaphore
resource

[VOLATILE] integer;
array[l..10] of semaphore;

Data Types

If you define a record type as volatile or device, all the fields within the record inherit the
attribute. And if you designate any one field within a record as having the device attribute,
the entire record itself inherits the device attribute. However, the same is not true for a
volatile field within a record; the entire record is not considered volatile just because one
field is declared that way. Consider the following: .

TYPE
lock = [VOLATILE] integer;
queue = RECORD
key : lock;
users : integer;
end;
VAR

wait : queue;

In this example, all references to wait.key are volatile, because the lock type is declared
as volatile, but references to wait.users are not volatile. If you want all the fields to be
volatile, insert the following after the record definition:

volque = [VOLATILE] queue;

NOTE: Pointer types do not inherit the device or volatile attributes of
their base type. However, when pointer variables are
dereferenced, the system applies any attributes of their base type.

3.15.8 Special Considerations—Extension

A common mistake is to associate an attribute with a pointer type. For example, we do not
recommend that you use the following declaration:

VAR
iodata : [DEVICE] “integerl6;

The memory location of iodata is normally on the stack or in the .data section. You don’t
want to make the local variable a device; you want to make the local variable a pointer to
a device. Specify the following declarations instead:

TYPE
DevInt = [DEVICE] integer;

VAR
iodata : “DevInt;

Data Types 3-77

3.16 Attribute Declaration Part—Extension

Domain Pascal supports an attribute declaration part that allows you to define your own
attributes. The syntax for the attribute declaration part is as follows:

attribute

identifierl = attribute_namel [, e s attribute_nameN];

identifierN = attribute_namel [, v s attribute_nameN]:

An identifier is any valid Domain Pascal identifier. An attribute_name is any predeclared
Domain Pascal attribute (such as aligned(0) or long) or the identifier of an attribute that
you created earlier in the attribute declaration part.

For example, the following is a sample attribute declaration part:

ATTRIBUTE
integer_attributes = long, natural;
keyboard_attributes = device;
array_attributes = volatile;
peb_page_attributes = address(16#f££7000), keyboard_attributes;

And here is an example of type and var declaration parts that correspond to the above
attribute declaration part:

TYPE
intl = [integer_attributes] integer32;
int2 = [integer_attributes] integerl6;
VAR
i,j: int1;
k: int2;

peb_page: [peb_page_attributes] char;
int_array: [array_attributes] ARRAY[1..10] of intl;

You can use attributes that you define in an attribute declaration part in any context that
you can use the predeclared attributes that are included in the definition. The compiler
follows the same scope rules for attributes as it does for variables; the compiler evaluates
attributes when they are declared.

3-78 Data Types

Chapter 4
Code

This chapter describes the statements, procedures, functions, and operators constituting the
action part of a Domain Pascal program or routine. The beginning of the chapter provides
an overview of what’s available. The remainder of the chapter is a Domain Pascal encyclo-
pedia complete with many examples. If you are a Pascal begmner, you should read a good
Pascal tutorial before trying to use this chapter.

The overview of Domain Pascal is divided into the following categories:

@ Conditional branching

® Looping

® Mathematical operators

e Input and output

® Miscellaneous functions and procedures

e Systems programming functions and procedures

4.1 Overview: Conditionai Branching

Domain Pascal supports the two standard Pascal conditional branching statements—if and
case.

Code 4-1

4.2 Overview: Looping

Domain Pascal supports for, repeat, and while—the three looping statements of standard
Pascal. All three looping statements support the next and exit extensions. Next causes a
jump to the next iteration of the loop, and exit transfers control to the first statement fol-
lowing the end of the loop.

4.3 Overview: Mathematical Operators
Domain Pascal supports all the standard arithmetic, logical, and set operators, as well as

three additional operators for bit manipulation, two additional Boolean operators, and one
additional operator for exponentiation. Table 4-1 lists these operators.

4-2 Code

Table 4-1. Domain Pascal Operators

Data Types Operator Meaning
Numeric + Addition
- Subtraction
* Multiplication
/ Division (real values)
div Division (integer values)
mod Modulus (returns remainder of
integer division)
o Exponentiation
Integer & Bitwise and
' ! Bitwise or

Bitwise negation

Set + Set union

Set intersection
- Set exclusion

= Set equality

< Set inequality
= First operand is subset of second
>= First operand is superset of second
in First operand is element of second
Boolean and Logical and
and then Logical and (short—circuit)
or Logical or
or else Logical or (short-circuit)
not Logical negation
Non-pointer > Greater than
types >= Greater than or equal to
< Less than
<= Less than or equal to
All types = Equal to
< Not equal to

NOTE: For the Boolean “short-circuit” operators, if the system can de-
termine the value of the expression after evaluating the first oper-
and, it does not check the second operand.

The exponentiation operator has the following syntax:

mantissa ** exponent

Code 4-3

Table 4-2 shows the meaning of various expressions that use the exponentiation operator.

An important restriction on the exponentiation operator is that you may not use a negative
mantissa with a noninteger exponent.

Table 4-2. Exponentiation Expressions

Expression Meaning
y .
x **y . Raise x to the power y
X **y*ty z Raise y to the power z;
X y then raise x to the result
X ** (y + 2) (y + z) Evaluate (y + z); then
X raise x to the result

When evaluating expressions, Domain Pascal uses the order of precedence rules found in
Table 4-3. The operators grouped together have the same precedence. Note that some
operators work as both mathematical operators and as set operators. Nevertheless, the
precedence rules are the same no matter how the operator is used.

Table 4-3. Order of Precedence in Evaluating Expressions

Operator Order of Precedence
not highest precedence

& * / div

mod and

! + - or

= < ><

>= <=

in

and then '

or else lowest precedence

4-4 Code

Domain Pascal permits the mixing of real and integer types in arithmetic expressions. For
such mixed operations, Domain Pascal promotes the integers to reals before performing the
operation.

4.3.1 Expansion of Operands

The compiler computes operands smaller than 32 bits with 32 bits of precision when neces-
sary to achieve correct arithmetic. This means integer16 operands sometimes are expanded
to integer32 before calculations. These data expansions produce more accurate results;
however, the compiler tries to avoid the extra code produced by data expansion.

4.3.2 Predeclared Mathematical Functions

In addition to the mathematical operators, you can use any of the predeclared mathemati-
cal functions listed in Table 4-4. Note that although the arctan, cos, exp, In, sin, and
sqrt functions permit integer arguments, the compiler converts an integer argument to a
real number before calculating the function. Therefore, when possible, it is better to supply
real, rather than integer, arguments to these functions.

Code 4-5

Table 4-4. Mathematical Functions

Function Argument(s) Result Meaning

abs(x) integer or real same type as x Absolute value of x.

arctan(x) integer or real real Arctangent of x.

arshft(x,n) both are integer integer Shifts the bits in x to the right n
places. Preserves the sign of x.

cos(x) integer or real real Cosine of x.

exp(x) integer or real real Raises exponential function e to
the x power.

In(x) integer or real real Natural log of x; x >0

Ishft(x,n) both are integer integer Shifts the bits in x to the left n places.

odd(x) integer boolean True if x is an odd value.

round (x) real integer Bounds x up or down to nearest
integer.

rshft(x,n) both are integer integer Shifts the bits in x to the right
n places.

sin(x) integer or real real Sine of x.

sqr(x) integer or real same type as x Square of x.

sqrt(x) integer or real real Square root of x.

trunc(x) real integer Truncates the fractional part of x
(rounds x towards zero).

xor(x,n) both are integer integer Bit exclusive or.

4.3.3 Mixing Signed and Unsigned Operands in Expressions

Although Domain Pascal does not have an unsigned type, it does support unsigned ranges.
(See Section 3.4 for further information on unsigned types.)

Mixing signed and unsigned integer operands is tricky for the following operations:

4-6 Code

® max
e div
® mod

The compiler interprets these operations as signed except under the following circum-
stances:

® Both operands are unsigned run-time values.

® One operand is an unsigned run-time value and the other is a constant in the pos-
itive subrange 0..2147483647.

For these two cases, the compiler uses unsigned operations.

You can use a type transfer to force the desired type of operation if it does not result from
the above rules. (See the section on “Type Transfer Functions” later in this chapter for
further information.) The following code fragment illustrates the use of type transfer for
operations involving mixed signedness:

TYPE v
u_type = 0..2147483647;

VAR

s32 : integer32;

u32 : u_type;

a . integer32;

a := s32 DIV integer32(u32); { Compiler generates a signed
divide. } '

{ or }

a := u_type(s32) DIV u32; { Compiler generates an unsigned
divide. }

Code 4-7

4.4 Overview: 1/0

Domain Pascal supports the 1/O procedures described in Table 4-5. For details on these
routines, consult the encyclopedia later in this chapter and Chapter 8.

Table 4-5. Predeclared 1/0 Procedures

Name Action

close Closes a file.

eof Tests whether the stream marker is pointing to the end of the file.
eoln Tests whether the stream marker is pointing to the end of a line.
find Sets the stream marker to the specified record.

get ' Reads from a file.

open Opens a file for future access.

page Inserts a formfeed (page advance) into a file.

put Writes to a file.

read Reads information from the specified file (or from the keyboard) into

the specified variables. After reading the information, read positions
the stream marker so that it points to the character or component im-
mediately after the last character or component it read.

readin Similar to read except that after reading the information, readln posi-
tions the stream marker so that it points to the character or component
immediately after the next end-of-line character.

replace | Substitutes a new record component for an existing record.
reset Specifies that an open file be open for reading only.
rewrite Specifies that an open file be open for writing only, or tells the

system to open a temporary file.

write Writes the specified information to the specified file (or to the screen).
writeln Same as write except that writeln always appends a linefeed to its
output.

4.5 Overview: Miscellaneous Routines and Statements

Table 4-6 lists several Domain Pascal elements that do not fit neatly into categories.

4-8 Code

Table 4-6. Miscellaneous Elements

Element Action

addr Returns the address of the specified variable.

append Concatenates two or more strings.

chr Finds the character whose ISO Latin-1 value equalshe specified number.

ctop Converts a C-style string into a Domain Pascal variable-length string.

discard Explicitly discards a computed value.

dispose Deallocates the storage space that a dynamic record was using.

exit Transfers control to the first statement following a for, while, or repeat loop.
firstof Returns the first possible value of a type or a variable.

goto Unconditionally jumps to the first command following the specified label.
in_range Tells you if the specified value is within an enumerated variable’s defined range.
lastof Returns the last possible value of a type or a variable.

max Returns the larger of two expressions.

min Returns the smaller of two expressions.

new Allocates spacé for storing a dynamic record.

next Transfers control to the test for the next iteration of a for, while, or repeat loop.
nil A special pointer value that points to nothing.

ord Finds the ordinal value of a specified integer, Boolean,enumerated, or char type.
pack Copies unpacked array elements to a packed array.

pred Finds the predecessor of a specified value.

ptoc Converts a Domain Pascal variable-length stringinto a C-style string.

return Causes program control to jump back to the callingprocedure or function.
sizeof Returns the size (in bytes) of the specified data type.

substr Extracts a substring from a string.

succ Finds the successor of a specified value expression in the code portion of your

type transfer
functions

unpack

with

program.

Permits you to change the data type of a variable orexpression in the code
portion of your program. '

Copies packed array elements to an unpacked array.

Lets you abbreviate the name of a record. With is standard, but Domain Pascal
includes an extension that supports a name tag.

Code

4.6 Overview: Systems Programming Routines
Several Domain Pascal routines are available for systems programmers’ use. Table 4-7 lists
these routines. Because only a few programmers will need to use these routines, they are

not described in the encyclopedia section that follows. Instead, they appear in Appendix E.

Table 4-7. Systems Programming Routines

Routine Action

disable Turns off the interrupt enable in the hardware status register.

enable Turns on the interrupt enable in the hardware status register.

set_sr Saves the. current value of the hardware status register and then
inserts a new one.

4.7 Encyclopedia of Domain Pascal Code

The remainder of this chapter contains an explanation of the concepts and keywords that
you can use in the action part of a Domain Pascal program or routine. These items are
listed alphabetically.

The concepts that we include are as follows:

® Array operations

® Bit operators

® Compiler directives

® Expressions

® Pointer operations

® Record operations

® Set operations

® Statements

® Type transfer functions

® Variable-length string operations

4-10 Code

The keywords that we include are:

abs
addr
align
and
and then
append
arctan
arshft
begin
case
chr
close

cos
ctop
discard
dispose
div

end

eof

eoln
exit
exp
find
firstof

for
get
goto
if

in
in_range
lastof
In
Ishft
max
min
mod

new
next
nil

not
odd
open
or

ord

or else

pack

page
pred

ptoc

put

read, readln
repeat/until
replace
reset

return
rewrite
round

rshft

sin

sizeof

sqr

sqrt

substr

succ

trunc

unpack

while

with

write, writeln

xXor

Code 4-11

Abs

Abs Returns the absolute value of an argument.

FORMAT

abs(number) {abs is a function.}

ARGUMENTS

number Any real or integer expression.

FUNCTION RETURNS

The abs function returns a real value if number is real and an integer value if number is
an integer.

DESCRIPTION

The abs function returns the absolute value of the argument. The absolute value is the
number if it is nonnegative, and the negative of the number if it is negative. Note that
number cannot be -2147483648 (which is the lowest negative integer).

EXAMPLE

program abs_example;
{ This program displays the absolute values for two numbers }

VAR
X : INTEGER;
Y : REAL;
BEGIN
X = -3; X := ABS(x);
y := -456.78; y := ABS(y);

WRITELN(X,¥):
END.

USING THIS EXAMPLE

If you execute the sample program named abs_example, you get the following output:

3 4.567800E+02

4-12 Code

Addr

Addr Returns the address of the specified variable. (Extension)

FORMAT
addr(x) {addr is a function.}
ARGUMENTS
x Can be a variable declared as any data type except as a procedure or

function data type having the internal attribute. x can also be a string
constant but it cannot be a constant of any type other than string.

FUNCTION RETURNS

The addr function returns an univ_ptr value. (Chapter 3 describes the univ_ptr data
type.)

DESCRIPTION

Use addr to return the address at which variable x is stored. If x is a variable-length
string, addr returns the address of the entire record, not the address of the string compo-
nent. Addr is particularly useful with variables defined as pointers to functions or proce-
dures.

Using addr can prevent some compiler optimizations. If you apply addr to a variable that
is local to a routine, and the variable is not a set, record, or array, you do not get op-
timizations and register allocation for that variable or any expressions using the variable.
This means the routine’s code might be larger and slower than it otherwise would be.

Applying addr to a variable is equivalent to declaring the variable volatile. See Chapter 3
for more information on volatile.

Refer to the “Pointer Operations” listing later in this chapter for an example of addr.

Code 4-13

Addr

NOTE: The compiler issues a warning if you assign the result of addr toa
pointer type variable that expects an alignment greater than the
alignment of the addr result. For example,

TYPE
natural_integer = [natural] integer32;
rec = record
int16 : integeril6;
int32 : [ALIGNED (1)] integer32;
end;
VAR
iptr : “natural_integer;
Tr: rec
BEGIN
iptr := ADDR (r.int32)
END;

In this example, the assignment of addr(r.int32) to iptr causes a
compile-time warning. The code in the example declares iptr as
a pointer to a naturally aligned integer32 type, but assigns to it the
address of a word-aligned object, r.int32. (See the “Internal
Representation of Records” and “Alignment” sections of Chap-
ter 3 for further details about alignment.)

EXAMPLE

4-14

Program addr_example;)
{This program displays the contents stored at an address returned}
{by the addr function}

TYPE .
ptr_to_real = “real;
VAR
Yy, y2 : real;
ptr_to_y : ptr_to_real;
BEGIN
write(’Enter a real number -- “);
readln(y);

ptr_to_y := ADDR(Y);
{ set ptr_to_y to the address at which y is stored. }
y2 := ptr_to_y";

{ Sset y2 to the contents stored at y’s address; }
{ i.e., set y2 equal to y. }
writeln(y2);

END.

Code

Addr

USING THIS EXAMPLE

Following is a sample run of the program named addr_example:

Enter a real number -- 5.3
5.300000E+00

Code 4-15

Align

Align Causes the compiler to copy an expression that is being passed as a parameter. (Extension)

FORMAT
align (expression); {align is a function.}
ARGUMENTS
expression Any valid Domain Pascal expression that is being passed as an input

parameter to a routine.

FUNCTION RETURNS

The align function returns a correctly aligned copy of expression.

DESCRIPTION

The align function tells the compiler to make a copy of an expression passed as an in pa-
rameter to an external routine. The alignment of the copy matches the alignment specified
for the formal parameter. The compiler uses the copy as the actual parameter when the
external routine is called.

The align function is useful for making sure that expressions are correctly aligned when
they are passed as arguments to functions and procedures. An expression is correctly
aligned if its alignment matches the alignment specified for it in the formal parameter defi-
nition.

The main use of the align function is to pass a record field that is not naturally. aligned to
a routine that expects the parameter to be naturally aligned. This use is illustrated in the
example.

Although correct alignment for parameters passed by reference generally produces at least
somewhat faster executable code on all Apollo workstations, the improvement is very sig-
nificant on Series 10000 workstations. If you run your program on a Series 10000 work-
station and the compiler assumes that an object is naturally aligned when in fact, it is not
naturally aligned, your program will suffer a severe loss of efficiency.

4-16 Code

Align

EXAMPLE

PROGRAM align_example;

{This program shows how to use the ALIGN function, a Domain Pascal }
{extension that causes parameters passed as IN parameters to external }
{functions to be aligned according to the expectations of the called }
{routine. }
{NOTE: You must also compile the add_em Pascal program and bind it }
{ with align_example to get an executable file. }
TYPE
rec = record
short_num : integeril6;
long num : integer32; {this field is not naturally aligned}
end;
VAR
sum : rec;
i,j : integer32;
FUNCTION add_em (IN x : integer32;
¥y, z : integer32) :integer32; extern;
BEGIN
with sum do
begin
short_num := 7;
long num := 3;
end;
i::=1;
J = 1942;

write(’The sum of the numbers is °);
writeln(add_em(ALIGN(sum.long_num), i,j));
{use the ALIGN function to make sure that sum.long_num is }
{naturally aligned when it is passed to the add_em function}
{If you omit the ALIGN function, you get a warning from }
{the compiler. }
END.

MODULE add_em;
{ThisvfunctiOn is called by the align_example program}
FUNCTION add_em (IN x : integer32;
¥,z : integer32) : integer32;
BEGIN
add_em:= x+y+z;
END;

These programs are available online and are named align_example and add_em. A sam-
ple run of the program is shown below:

The sum of the numbers is 1946

Code 4-17

And, And Then

l And, And Then Calculate the logical and of two Boolean arguments.

B FORMAT
| x and y ‘ {and is an operator.}
| x and then y {and then is an operator.}
ARGUMENTS
X,y Any Boolean expressions.

OPERATOR RETURNS

[| The result of an and or an and then operation is a Boolean value.

DESCRIPTION

Sometimes and is called Boolean multiplication. Use it to find the logical and of expres-
sions x and y. Here is the truth table for and:

X y Result
true true true
true false false
false true false
false false false

(See also the listings for the logical operators or and not later in this encyclopedia).

NOTE: Some programmers confuse and with &. & is a bit operator; it
causes Domain Pascal to perform a logical and on all the bits in
its two arguments. For example, compare the following results:

the result of (true and false) is false
the result of (75 & 15) is 11

(Refer to “Bit Operators” later in this encyclopedia.)

4-18 Code

And, And Then

The Boolean operator and then is a Domain extension to standard Pascal. You can use
and then in any statement where you use and in standard Pascal. The choice between
and and and then, however, affects the run-time evaluation of a statement.

When and then appears between two Boolean operands in an expression, the system be-
gins evaluating the operands in the order in which they appear. If the first operand is
false, the system does not evaluate the second. If one operand is false, then the entire
expression is false.

Hence, and then guarantees “short-circuit” evaluation. That is, at run time, the system
evaluates an operand only if necessary.

For example, in the statement

IF boolean_l1 AND THEN boolean_2
THEN

the system first evaluates boolean_1. If boolean_1 is false, the system does not evaluate
boolean_2. In this statement, the operands boolean_1 and boolean_2 can be any valid
Pascal Boolean expressions.

The operator and then can be more efficient than and. For example, in the statement

IF boolean_1 AND boolean_2
THEN

the system may evaluate both boolean_1 and boolean_2 to test if the statement is true.
Also, there is no guarantee that the system will evaluate the two operands in the order in
which they appear.

The and then operator helps you avoid nested constructions. For example, compare the
standard Pascal code on the left with the equivalent Domain Pascal code on the right:

Standard Pascal - - Domain Pascal
WHILE cl DO - WHILE cl AND. THEN c2 DO
WHILE c2 DO o , . sl;
sl;

In this example, the standard Pascal code contains one while loop nested within another.
The Domain Pascal code, however, contains only one loop.

Code 4-19

And, And Then

The following example illustrates how to avoid referencing a NIL pointer through the use
of the and then operator:

WHILE p <> NIL AND THEN NOT p“.flag DO

P := D".next;

EXAMPLE

The following example uses an and operation to calculate the gravitational force between
two objects.

Program and_example;

CONST

g = 6.6732e-11;
VAR

massl, mass2, radius, force : single;
BEGIN

write(’This program finds the gravitational force between two “);
writeln(‘objects.”);

write(’Enter the mass of the first object (in Kg) -- 7);
readln(massl);
write(’Enter the mass of the second object (in Kg) -- *);
readln(mass2);
write(“Enter the dist. between their centers (in M) -- 7);
readln(radius); ‘
if (massl > 0.0) AND (mass2 > 0.0)

then force := (g * massl * mass2) / sqr(radius)

else begin
writeln(’The data you have entered seems inappropriate’);
return;
end; ‘
writeln(’The force between these two objects is “, force:9:7, ° N°);
END.

USING THIS EXAMPLE

This program is available online and is named and_example.

4-20 Code

Append

Append Concatenates two or more strings. (Extension)

FORMAT

append(dst_string, sl, s2, 53, s4, §5, 6, 57, 58, $9); {append is a procedure.}

ARGUMENTS
dst_string A variable-length character string.
sl A variable-length string, character array, or character-string constant that
will be appended to the destination string.
52..59 Optional arguments. Up to nine variable-length strings, character arrays,
and character-string constants may be appended to the destination string.
DESCRIPTION

append builds a destination string by concatenating the destination string and up to nine
additional strings.

An error trap is generated if concatenating the source string(s) with the destination string
results in a string that is larger than the maximum size of the destination string.

EXAMPLE

PROGRAM append_example;

VAR
strl : varying[100] of char;
str2 : varying([20] of char;
str3 : array([l..20] of char;
BEGIN
strl := “one...";
str2 := “two...”’;
str3 := “three...”;
append(strl, str2, str3, “four’);
writeln(strl);
END.

Code 4-21

Append

USING THIS EXAMPLE

Executing this program, named append_example, results in the following output:

one...two..,three... four

Note that the fixed-length array, str3, is padded with spaces, whereas the variable-length
strings are not padded. Also note that the first parameter must be a variable~length string.

4-22 Code

Arctan

Arctan Returns the arctangent of a specified number.

FORMAT

arctan (number) {arctan is a function.}

ARGUMENTS

number Any real or integer expression.

FUNCTION RETURNS

The arctan function returns a real value for the angle in radians.

DESCRIPTION

The arctan function returns the arctangent (in radians) of number. The arctangent of a
number has the following relationship to the tangent:

y = arctan(x) means that x = tan(y)

Note that Pascal does not support a predeclared tangent function. However, you can find
tangent(x) by dividing sin(x) by cos(x).

Code 4-23

Arctan

EXAMPLE

PROGRAM arctan_example; ;
{ This program demonstrates the ARCTAN function. }

CONST
degrees_per_radian = 180.0 / 3.14159;

VAR
q, answer_in_radians : REAL;
answer_in_degrees : INTEGER16;
BEGIN
qQ := 2.0;
{First, find the arctangent of 2.0 in radians. }
answer_in_radians := ARCTAN(q);

writeln(°The arctan of “, q:5:3, ° is’, answer_in_radians:6:3,
‘ radians’);
{Now, convert the answer to degrees. }
answer_in_degrees := round(answer_in_radians * degrees_per_radian);
writeln(“The arctan of “, q:5:3, * is “, answer_in_degrees:1,

 degrees’);
END.

USING THIS EXAMPLE

If you execute the sample program named arctan_example, you get the following output:

The arctan of 2.000000E+00 in radians is 1.107149E+00
The arctan of 2.000000E+00 in degrees is 63

4-24 Code

Array Operations

Array Operations

Chapter 3 explains how to declare and initialize an array. In this listing, we explain how to
use arrays in the code portion of your program. See “Variable-Length String Operations”
in this chapter for information about accessing varying arrays of chars.

ASSIGNING VALUES TO ARRAYS

To assign a value to an array variable, you must supply the following information:

® The name of the array variable.

® An index expression enclosed in brackets. The value of the index expression must
be within the declared subrange of the index type.

® A value of the component type.
For example, the following program fragment assigns values to four arrays:

TYPE
{elements is an enumerated type.}
elements = (H, He, Li, Be, B, C, N, 0, Fl, Ne);
student = record
name : packed array [1..50] of char;
id : integerl6;
class : (freshman, sophomore, junior, senior);

end;
VAR
{Here are four array declarations.}
test_data : array([l..100] of INTEGER16;
atomic_weights : array[H..Be] of REAL;
lie_test : array[l..4, 1..2] of BOOLEAN; {2-dimensional array}
enrollment : array[l..500] of student;
BEGIN
test_data{37] = 9018;
atomic_weights[He] := 4.0;
lie_test([3, 2] := true;
enrollment [30] .name := “Betsy Ross”;
enrollment [30].id 1= 8245;
enrollment [30].class := senior;

Code 4-25

Array Operations

There are a few exceptions to the rule that you must supply an index expression.

The first exception is that you can assign a string to an array of char variable without
specifying an index expression; for example, consider the following assignments to greeting
and farewell:

CONST
hi = “aloha’;

VAR
greeting, farewell : array[l..12] of CHAR;

BEGIN
greeting := hi;
farewell := ‘a bientot’;

The only restriction on this kind of assignment is that the number of bytes in the string
must be less than or equal to the declared number of declared components in the array.
For example, you cannot assign the string ‘auf wiedersehen’ to farewell because the string
contains 15 bytes and the array is declared as only 12 bytes. If you do try that assignment,
the compiler will give you the following error message:

Assignment statement expression is not compatible with the
assignment variable.

There is a second exception to the rule that you must specify an index expression when
assigning a value to an array. The exception is that you can assign the value of one array
to another array if both arrays are char arrays that contain the same number of bytes. For
example, in the following program fragment, a, b, and e are the same size, while ¢ and d
are uniquely declared:

CONST
quote = “Ottawa!”’;

VAR

: array[l..20] of CHAR;
. array[l..20] of CHAR;
: array(l..21] of CHAR;
. array[l..19] of CHAR;
: array[21..40] of CHAR;

o Q0o

BEGIN

:= quote; {Assign the string ‘Ottawa!’ to array a.

= a; {This is a valid assignment.

:= a: {This is a valid assignment.

i= a; {WRONG!}) :
{This is not a valid assignment because a and c
{ have different declared lengths.

coow
)

) et g Nt

4-26 Code

Array Operations

d := a; {WRONG!}
{This is not a valid assignment because a and d }
{ have different declared lengths. }

The assignment b := a causes Domain Pascal to assign all components of array a to the
corresponding indices in array b; that is, b := a is equivalent to the following 20 assign-
ments:

b[20] := a[20];

NOTE: Instandard Pascal, before assigning a string to an array, you must
explicitly pad the string to the length of the array. Domain Pascal
automatically pads with spaces any string of fewer than 4096 char-
acters.

USING ARRAYS

You can specify an array component wherever you can specify a component variable of the
same data type. In other words, if the compiler expects a real number, you can specify any
real expression including a component of an array of real numbers.

Code 4-27

Array Operations

EXAMPLE

PROGRAM array_example;

{This simple example reads in five input values, assigns the values to}

{elements of an array, and then finds their mean.

CONST
number_of_elements = 5;

VAR
a : array[l..number_of_elements] of single;
running_total : single := 0.0;
n : integerl$;
BEGIN
for n := 1 to number_of_elements do
begin
write(’Enter a value -- 7);
readln(a[n]);
end;

for n := 1 to number_of_elements do
running_total := running_total + a[n];

}

writeln(chr(10),“The mean is ‘, running_total/number_of_elements:3:1);

END.

USING THIS EXAMPLE

4-28

Following is a sample run of the program named array_example:

Enter a value -- 4.3
Enter a value -- 10.3
Enter a value -- 9.5
Enter a value -- 6.2
Enter a value -- 1.5

The mean is 6.4

Code

Arshft

Arshft Shifts the bits in an integer to the right by a specified number of bits. Preserves the sign of
the integer. (Extension)

FORMAT

arshft(num, sh) {arshft is a function.}
ARGUMENTS
num, sh Must be integer expressions. sh should be nonnegative.

FUNCTION RETURNS

The function returns an integer value.

DESCRIPTION

Arshft does an arithmetic right shift of an integer. The arshft function tells the compiler
to preserve the sign bit of num and shift the other bits sh positions to the right. The ex-
pression num can be any integer expression smaller than 32 bits.

Say, for example, num is a 16-bit integer and the result of the function is to be stored in
a 16-bit integer variable. In this case, arshft expands num to a 32-bit integer, performs
the shift, and then converts it back to a 16-bit integer.

First examine how arshft shifts a positive integer. Consider the effect of arshft on the
16-bit positive integer +100 in the following table:

unshifted 0000000001100100 = +100
ARSHFT (+100,1) 0000000000110010 = +50
ARSHFT (+100,2) 0000000000011001 = +25
ARSHFT (+100, 3) 0000000000001100 = +12

Notice three things in the preceding table. First, the sign bit (the leftmost bit) never
changes. Second, notice that the bits move to the right. Third, notice that the bits do not
wrap around from right to left; the absolute value always gets smaller.

Code 4-29

Arshft

Now, examine how arshft shifts a negative integer. Consider the effect of arshft on the
16-~bit negative integer ~100 in the following table:

unshifted 1111111110011100 = -100
ARSHFT (-100,1) 1111111111001110 = -50
ARSHFT (-100,2) 1111111111100111 = -25
ARSHFT (-100, 3) 1111111111110011 = -13

In contrast to the preceding table, notice that arshft fills the leftmost bits with ones rather
than zeros as the rightmost bits are shifted off the right end of the number.

Results are unpredictable if sh is negative.

EXAMPLE

PROGRAM arshft_example;

{ This program compares ARSHFT with RSHFT. }

VAR

original_number, spaces_to_shift, r, ar : integer32 := 0;
BEGIN

write(’Enter a positive or negative integer -- “);

readln(original_number);

for spaces_to_shift := 1 to 5§ do
BEGIN
writeln;
writeln(’When shifted “, spaces_to_shift:1, ° spaces.’);

r := RSHFT(original_number, spaces_to_shift);
writeln(” The rshft result is 7, r:1);

ar := ARSHFT(original_number, spaces_to_shift);
writeln(”’ The arshft result is ’, ar:1);

END;
END.

USING THIS EXAMPLE

This program is available online and is named arshft_example.

4-30 Code

Begin

Begin Marks the start of a compound statement.

FORMAT

begin is a reserved word.

DESCRIPTION

Begin and end establish the limits of a sequence of Pascal statements. A program must
contain at least as many ends as begins. (Note that a program can contain more ends then
begins.) You must use a begin/end pair to indicate a compound statement. (Refer to the
“Statements” listing later in this encyclopedia.)

EXAMPLE

PROGRAM begin_end_example;

{This program does very little work, but does have lots of BEGINs }

{and ENDs. }
TYPE
student = record
age . 6..12;

id : integerils6;
end; {student record definition}
VAR
X : integer32;

PROCEDURE do_nothing;
BEGIN {do_nothing}
writeln(“You have triggered a procedure that does absolutely nothing.’);

writeln(’Though it does do nothing with elan.”).
END; {do_nothing}

FUNCTION do_next_to_nothing(var y : integer32) : integer32;
BEGIN {do_next_to_nothing}

do_next_to_nothing := abs(y);
END; {do_next_to_nothing}

Code 4-31

Begin

BEGIN {main procedure}
write(’Enter an integer -- °); readln(x);
if x< 0
then BEGIN
writeln(’You have entered a negative number!!!”);
writeln(’Its absolute value is “, do_next_to_nothing(x):1);
END)
else if x =0
then BEGIN
writeln(“You have entered zero’);
do_nothing;
END
else
writeln(“You have entered a positive number!!!”);
END. {main procedure}

USING THIS EXAMPLE

This program is available online and is named begin_end_example.

4-32 Code

Bit Operators

Bit Operators Calculate and, or, and not on a bit-by-bit basis. (Extension)

FORMAT
opl & op2 {& (an ampersand) is bit and.}
opl ! op2 {! (an exclamation point) is bit or.}
“opl {" (a tilde) is bit not.}
ARGUMENTS
opl, op2 Must be integer expressions.

OPERATOR RETURNS

All three operators return integer results.

DESCRIPTION

Domain Pascal supports three bit operators, all of which are extensions to standard Pascal.
The operators perform operations on a bit-by-bit level using the following truth tables:

Table 4-8. Truth Table for & (Bitwise And Operator)

& (and)

bit x bit x bit x of
of opl of op2 result

—_ =0 O
_0 = O
-0 OO

Code 4-33

Bit Operators

4-34

Table 4-9. Truth Table for ! (Bitwise Or Operator)

! (or)

bit x bit x bit x of
of opl of op2 result

e OO
—_—0 = O
—_— = O

Table 4-10. Truth Table for = (Bitwise Not Operator)

“ (not)

bit x bit x of
of opl result

Don’t confuse these bit operators with the logical operators. Bit operators take integer op-
erands; logical operators take Boolean operands.

In addition to the three bit operators, Domain Pascal supports the following bit functions:
Ishft, rshft, arshft, and xor. All of these functions have their own listings in the encyclo-
pedia.

NOTE: If one of the operators is declared as integer32, and the other
operator is declared as integer16, Domain Pascal extends the in-
tegerl6 to an integer32 before calculating the answer.

When performing these bitwise operations, Domain Pascal treats
the sign bit just as it treats any other bit.

Code

Bit Operators

EXAMPLE

PROGRAM bit_operators_example;
{ This program demonstrates bitwise AND, OR, and NOT. }

CONST

{ The 2# prefix specifies a base 2 number. }
X = 2#0000000000001010; {10}
¥y = 2#0000000000010111; {23}

VAR
resultl, result2, result3 : integeril$;

BEGIN
resultl := x & y; writein(x:1, - AND “, y:1, ~ = °, resultl:l);
result2 := x ! y; writeln(x:1, ~ OR °, y:1, -~ =, result2:1);
result3d := “x; writeln(’NOT “, x:1, ° = 7, result3:1);

END.

USING THIS EXAMPLE

If you execute the sample program named bit_operators_example, you get the following
output:

10 AND 23 = 2
10 OR 23 = 31
NOT 10 = -11

Code 4-35

Case

Case A conditional branching statement that selects among several statements based on the value of
an ordinal expression.

FORMAT

There are two different forms of the case statement. Here, we describe the use of case in
the body of your program. The other use of case is in the variable or type declaration por-
tion of the program. (See the “Variant Records” section in Chapter 3 for details on this

use.)

Case takes the following syntax:

case expr of

{case is a statement.}

constantlistl : stmntl;

constantlistN : stmntN;
otherwise stmnt_list;

end;

ARGUMENTS

expr

constantlist

stmnt

stmnt_list

4-36 Code

Any ordinal expression (variable, constant, etc.) The ordinal types are
integer, Boolean, char, enumerated, and subrange. You cannot specify an
array as an expr, though you can specify an element of an array (assum-
ing the element has an ordinal type). Also, you cannot specify a record,
though you can specify a field of the record (assuming the field has an
ordinal type).

One or more values (separated by commas) having the same data type as
expr.

A simple statement or a compound statement (refer to the “Statements”
listing later in this encyclopedia).

One or more statements associated with the optional otherwise clause.
(The otherwise clause tells the system to execute stmnt_list if expr
matches none of the constants in any of the constantlists.) The stmnt_list
differs from a compound statement in that you do not have to bracket
the stmnt_list with a begin/end pair (though doing so does not cause an
error).

Case

DESCRIPTION

The case statement performs conditional branching. It is very useful in situations involving
a multi-way branch. When the value of expr equals one of the constants in a constantlist,
the system executes the associated stmnt.

Note that case and if/then/else serve nearly identical purposes. The differences between
case and if/then/else are:

® Case can compare only ordinal values. If/then/else can compare values of any
data type.

® The system can sometimes execute a case statement faster than an equivalent if/
then/else statement. That’s because the Domain Pascal compiler sometimes trans-
lates a case statement into a dispatch table and always translates an if/then/else
statement into a series of conditional tests.

Also, note that a case statement is often more readable than an if/then/else statement.
For instance, compare the following if/then/else statement to its equivalent case statement:

IF grade = “A° THEN CASE grade OF
write(’Excellent’) ‘A’ : write(’Excellent’);
ELSE IF grade = “B” THEN ‘B’ : write(“Good’);
write(“Good”) “C’ : write(’Average’);
ELSE IF grade = “C” THEN ‘D’ : write(’Poor’);
write(”Average’) “F’ : write(’Failing’);
ELSE IF grade = ‘D’ THEN end;

write(’Poor”)
ELSE IF grade = “F’ THEN
write(’Failing’);

Otherwise—Extension

As an extension to the case statement, Domain Pascal supports the otherwise clause. The
otherwise clause tells the compiler to execute stmnt_list if expr matches none of the con-
stants in any of the constantlists. For example, you can write the preceding case example
as follows. Notice that you do not put a colon (:) after the keyword otherwise.

CASE grade OF
“A” : write(’Excellent”);
‘B’ : write(’Good’);
“C” : write(’Average’);
‘D’ : write(“Poor”);
OTHERWISE write(’Failing”);
end;

Code 4-37

Case

As mentioned earlier, the begin/end pair is optional in an otherwise clause. Therefore,
these two case statements are equivalent:

CASE number OF CASE number OF
1, 2, 3 : writeln(“Good’); 1, 2, 3 : writeln(’“Good’);
OTHERWISE writeln(’Great.’); OTHERWISE begin
writeln(“Encore.’); writeln(’Great’);
end; writeln(’Encore’);
' end;
end;

EXAMPLE

PROGRAM case_example;
{ This program demonstrates the use of the case statement }

VAR
a_letter : char;
sale : boolean;
price : array[l..5] of char;
BEGIN
write(’Is whole wheat bread on sale today? -- 7);

readln(a_letter);
CASE a_letter OF

‘y’, Y . sale := true;
‘n’, ‘N : begin
sale := false;
writeln(“Remember to tell them it““s organic.”);
end;

OTHERWISE begin
writeln(“You have made a mistake.”);
writeln(’The correct response was YES or NO’);
writeln(’Please rerun the program’);
return;
end;
end; {CASE}
if sale then
price := “$1.99°
else
price := "$2.99°;
writeln(“Mark it as “, price:5);
END.

USING THIS EXAMPLE

This program is available online and is named case_example.

4-38 Code

Chr

Chr Returns the character whose ISO Latin-1 value corresponds to a specified ordinal number.

FORMAT

chr(number) {chr is a function.}

ARGUMENTS

number An integer.

FUNCTION RETURNS

The chr function returns a value with the char data type.

DESCRIPTION

The chr function returns the character that has an ISO Latin-1 value equal to the value of
the low eight bits of number. Appendix B contains a table of ISO Latin-1 values.

Chr produces a character with the bit pattern

number & 16#FF

Usually, number is between 0 and 127, in which case the character that chr returns is sim-
ply the character that has the ISO Latin-1 value of number. If number is greater than 127,
chr returns the character having the ISO Latin~1 value of

number MOD 256

See the mod listing later in this encyclopedia.

Note that the ord function is the inverse of chr when ord’s argument type is char. (See
the ord listing later in this encyclopedia.)

Code 4-39

Chr

EXAMPLE
PROGRAM chr_example;
{ This program demonstrates three uses for the CHR function. }
VAR
capital_letter : 65..90;
y : CHAR;

age : 10..99;
c_array : array[l..2] of char;

BEGIN
{ First, we’1l use CHR to convert an integer to its ISO Latin-1 value.}
write(’Enter an integer from 65 to 90 -- “);

readln(capital_letter);
Yy := CHR(capital_letter);

writeln(capital_ letter:1, corresponds to the °, y:1, ° character’);
writeln;

{ second, we’1ll use CHR to ring the node bell. }

write(chr(7));

{ The graphics primitive function gpr_S$text writes character arrays }
{ to the display. But suppose you want gpr_S$text to write an }
{ integer. In order to accomplish this task, you would write a }
{ routine similar to the following. which converts a 2-digit integer}
{ into a 2-character array. Note that 48 is the ISO Latin-1 value }
{ for the ‘0’ character, 49 for the “1‘ character, and so on up to }
{ 57 for the ‘9’ character. }

write(’Enter an integer from 10 to 99 ~-- “); readln(age);
c_array[l] := CHR((age DIV 10) + 48);

c_array[2] := CHR((age MOD 10) + 48);

writeln(“The first digit is 7, c_array[1]:1);
writeln(’The second digit is “, c_array(2]:1);
writeln(“The entire array is “, c_array);
END.

USING THIS EXAMPLE

Following is a sample run of the program named chr_example:

Enter an integer from 65 to 90 -- 83
83 corresponds to the S character

Enter an integer from 10 to 99 -- 71
The first digit is 7

The second digit is 1

The entire array is 71

4-40 Code

Close

Close Closes the specified file. (Extension)

FORMAT

close(filename) {close is a procedure.}

ARGUMENTS

filename A file variable.

DESCRIPTION

Use the close procedure to close the file filename that you opened with the open proce-
dure. By closing, we mean that the operating system unlocks it. When a program termi-
nates (naturally or as a result of a fatal error), the operating system automatically closes all

open files. So the close procedure is optional.

You cannot close the predeclared files input and output, but if you try, Domain Pascal

does not issue an error.
If filename is a temporary file, close(filename) deletes it.

Please see Chapter 8 for an overview of 1/0.

NOTE: For permanent text files, your program should issue a writeln to
the file just before closing it in order to flush the file’s internal
output buffer. If you don’t include that writeln, the last line of
the file may not be written.

EXAMPLE

PROGRAM close_example;
{ This program demonstrates the CLOSE procedure. }

CONST
pathname = “primates’;

VAR
class : text; {a file variable}
name : array[l..20] of char;

status : integer32;

Code

4-41

Close

begin

{
{

writeln(“This program writes data to file "primates"’);

open(class, pathname, °NEW’, status); {Open a file for writing.}
if status = 0 then

rewrite(class)
else

return;

writeln(’Enter the names of the children in your class -- 7);
writeln(’The last entry should be "end"’);
repeat
readln(name) ;
if name <> “end” then
writeln(class, name)
else
exit;
until false;

CLOSE(class); {Close the file for writing.}

}

{ Execute some time-consuming routines that do not access ‘primates’. }

}

{Now, re-open the file for reading.}

open(class, pathname, °“OLD’, status);
reset (class);

writeln;
writeln(’Here are the names you entered:’);
repeat
readln(class, name);
writeln(name) ;
until eof(class);

CLOSE(class);

end.

USING THIS EXAMPLE

This program is available online and is named close_example.

4-42 Code

Compiler Directives

Compiler Directives Specify a variety of special services including conditional compilation and
include files. (Extension)

FORMAT

The Domain Pascal compiler understands the directives shown in Table 4-11. All directives
begin with a percent sign (%). You can specify a directive anywhere a comment is valid.
To use a directive, specify its name as a statement or inside a comment. (There is one
exception: directives associated with the —config option cannot be used as comments.) For
example, all of the following formats are valid:

%directive
{%directive}
(*%directive*)

If you specify a directive within a comment, the percent sign must be the first character
after the delimiter (where spaces count as characters). In addition, you do not need to put
a semicolon at the end of the directive. ‘

You must place a semicolon after some directives if you use them as statements. Those
directives are:

® %begin_inline;

® %begin_noinline;
® %debug;

® %eject;

® %end_inline;

® %end_noinline;

® %include ‘pathname’;

o %list;
® %natural_alignment; |
® %nolist;

Code 4-43

Compiler Directives

® %slibrary ‘pathname’;

| ® %word_alignment;
Table 4-11. Compiler Directives

Directive Action

%begin_inline; Directs the compiler to expand subsequent routines inline,
if —opt 3 or -opt 4 is specified.

%begin_noinline; Directs the compiler not to expand subsequent routines
inline, even if —opt 4 is specified.

% %config Lets you easily set up a warning message if you forget
to compile with the ~config compiler option.

%debug; Directs Domain Pascal to compile lines prefixed with this
directive when you use the -cond compiler option. If
you do not use —cond when you compile, lines prefixed
with %debug are not compiled.

%eject; Directs Domain Pascal to put a formfeed in the listing file
at this point.

% %else Specifies that a block of code should be compiled if
the preceding %if predicate %then is false.

% %elseif predicate %then Directs the compiler to compile the code until the
next %else, %elseif, or %endif directive, if and
only if the predicate is true.

% %elseifdef predicate %then Checks whether additional predicates have been
declared with a%var directive.

% %enable; Sets compiler directive variables to true.

%end_inline; Directs the compiler to stop inline expansion, if —opt 3 or
-opt 4 is specified.

%end_noinline; Allows the compiler to resume inline expansion, if —opt 4
is specified.

w %endif Marks the end of a conditional compilation area of
the program.

w %error ‘string’ Prints ‘string’ as an error message whenever you compile.

¥ is a directive described in “Directives Associated with the —Config Option” later in this chapter.

(Continued)
4-44 Code

Compiler Directives

Table 4-11. Compiler Directives (Cont.)

Directive Action
* %exit Directs the compiler to stop conditionally processing
the file.
% %if predicate %then Directs the compiler to compile the code until the next

%else, %elseif, or %endif directive, if and only if the
predicate is true.

Y% %ifdef predicate %then Checks whether a predicate was previously declared with
a %var directive.
%include ‘pathname’; Causes Domain Pascal to read input from the specified file.
Plist; Enables the listing of source code in the listing file.
%natural_alignment; Sets environment to natural alignment.
%nolist; Disables the listing of source code in the listing file.
%slibrary ‘pathname’; Causes Domain Pascal to incorporate a precompiled

library into the program.

%pop_alignment; Saves the current alignment by pushing it onto a stack.
%push_alignment; Restores the alignment saved by the last %push_alignment.
% %var Lets you declare variables that you can then use as

predicates in compiler directives.
%warning ‘string’ Prints ‘string’ as a warning message whenever you compile.

%word_alignment; Sets environment to default alignment.

% is a directive described in “Directives Associated with the —Config Option” later in this chapter.
g Up p

DIRECTIVES ASSOCIATED WITH THE -CONFIG OPTION

This subsection describes the following compiler directives: %if, %then, %elseif, %else,
%endif, %ifdef, %elseifdef, %var, %enable, %config, %error, %warning, and %exit.

The conditional directives mark regions of source code for conditional compilation. This
feature allows you to tailor a source module for a specific application. You invoke condi-
tional processing by using the —config option when you compile. Unlike the other compiler
directives, conditional directives cannot be used as comments.

Code 4-45

Compiler Directives

Several of the directives take a predicate. A predicate can contain any of the following:

® Special variables that you declare with the %var directive
® Optional Boolean keywords not, and, or or
® A predeclared conditional variable, _BFMT__COFF

_BFMT__COFTF is a Boolean variable. The value of _BFMT__COFF is set
to true whenever the compiler is generating COFF (Common Object File For-
mat) files. Otherwise, the value of _BFMT__COFF is set to false.

Beginning with SR10, the Domain Pascal compiler generates COFF files when-
ever it compiles your source code.

NOTE: There are two underscore (_) characters between ‘BFMT’ and
‘COFF’ in the name of this variable.

® A pair of predeclared conditional variables that you can use to find out whether
the compiler is generating code for the 68000 family of workstations or for the
Series 10000. These variables are:

_ISP__M68K (for 68000 code generation)

_ISP__AB88K (for Series 10000 code generation)

NOTE: There are two underscore (_) characters after ‘_ISP’ in the
names of these variables.

For example, given that color and mono are special variables that you defined using %var,
here are some possible predicates:

® color

® not(color)

® mono or color

® (mono and color)

® not (BFMT__COFF)

4-46 Code

Compiler Directives

%if predicate %then

If the predicate is true, Domain Pascal compiles the code after %then and before the next
%else, %elseif, or %endif directive.

For example, to specify that a block of code is to be compiled for a color node, you might
choose an attribute name such as color to be the predicate. Then write:

%VAR color {Tell the compiler that ‘color’ can be used in a predicate.}
%if color %THEN

Code
%ENDIF;

To set color to true, you can either use the %enable directive in your source code or the
—config option in your compile command line.

%else

The %else directive is used in conjunction with %if predicate %then. %Else specifies a
block of code to be compiled if the predicate in the %if predicate %then clause evaluates
to false. For example, consider the following fragment:

%VAR color ({Tell the compiler that ‘color’ can be used in a predicate.}
%IF color %THEN
Code

%ELSE {Compile this code if color is false.}
Code

%ENDIF ;

%elseif predicate %then

%Elseif predicate %then is used in conjunction with %if predicate %then. It serves an
analogous purpose to the Pascal statement

else if cond then statement

Code 4-47

Compiler Directives

For example, suppose you want to compile one sequence of statements if the program is
going to run on a color node, and another sequence of statements if the program is going
to run on a monochromatic node. To accomplish that, you could organize your program in
the following way:

%VAR color mono {Tell the compiler that “color’ and ‘mono’ can be }
{used in a predicate. }

%IF color %THEN {Compile the following code if color is true.}
Code for color nodes

%ELSEIF mono %THEN {Compile the following code if mono is true.}
Code for monochromatic nodes

%ENDIF ;

To set color or mono to true, you can either use the %enable directive in your source
code or the —config option in your compile command line. If color and mono are both
true, Domain Pascal compiles the code for color nodes since it appears first. Note that you
can put multiple %elseif directives in the same block.

Or, suppose that you want to tailor a source module for a specific application, depending
on whether the compiler is generating code for the 68000 family of workstations or the
Series 10000. Consider the following fragment:

%IF _ISP__M68K %THEN PROCEDURE do_68K ..
%ELSEIF _ISP__A88K %THEN PROCEDURE do_100000

%ENDIF ;

The above fragment tells the compiler to compile the do_68K procedure if it is generating
68K code and to compile the do_10000 procedure if it is generating code for the Series
10000.

NOTE: Since _ISP__M68K and _ISP__A88K are predeclared, you
cannot use the %enable directive or the —config option with
them.

%endif

The %endif directive tells the compiler where to stop conditionally processing a particular
area of code.

4-48 Code

Compiler Directives

%ifdef predicate %then

Use %ifdef predicate %then to check whether a variable was already declared with a %var
directive. If you accidentally declare the same variable more than once, Domain Pascal
issues an error message. %Ifdef is a way of avoiding this error message. %Ifdef is espe-
cially helpful when you don’t know if an include file declares a variable.

For example, consider the following use of %ifdef:

%INCLUDE “bitmap_init.ins”;{Source code that may or may not have used }

{#VAR to declare the variable “color”. }
%IFDEF not(color) %THEN {1f color has not been declared }
%VAR color {with %VAR, declare it now. }

%ENDIF;

NOTE: The difference between %if and %ifdef is the following. Vari-
ables in an %if predicate are considered true if you set them to
true with %enable or —config; however, variables in an %ifdef
predicate are considered true if they have been declared with
%var.

%elseifdef predicate %then

%Elseifdef is to %ifdef as %elseif is to %if. Use %elseifdef predicate %then to check
whether or not additional variables were declared with %var; for example:

%INCLUDE “bitmap_init.ins’; {Source code that may or may not have }

{used %VAR to declare the variables }

{’color’ or ‘mono.~ }

%IFDEF not (color) %THEN {1f color has not been declared with }

%VAR color {#%VAR, declare it now. }

%ELSEIFDEF not (mono) %THEN {If mono has not been declared with }

%VAR mono {%VAR, declare it now. }
%ENDIF;

Code 4-49

Compiler Directives

%var

%enable

%config

4-50

The %var directive lets you declare variable and attribute names that will be used as predi-
cates later in the program. You cannot use a name in a predicate unless you first declare it
with the %var directive. The following example declares the names code.old and code.new
as predicates:

%VAR code.old code.new

The compiler preprocessor issues an error if you attempt to declare with %var the same
variable more than once. (Use %ifdef or %elseifdef to avoid this error.)

Use the %enable directive to set a variable to true. (%Enable and the —config compiler
option perform the same function.) You create variables with the %var directive. If you do
not specify a particular variable in an %enable directive or ~config option, Domain Pascal
assumes that it is false.

For example, the following example declares three variables named code.sr9, code.sr8,
and code.sr7, then it sets code.sr9 and code.sr7 to true:

%VAR code.sr9 code.sr8 code.sr7
%ENABLE code.sr9 code.sr7

The compiler preprocessor issues an error message if you attempt to set (with %enable or
—config) the same variable to true more than once.

The %config directive is a predeclared attribute name. You can use %config only in a
predicate. The Domain Pascal preprocessor sets %config to true if your compiler command
line contains the —config option, and sets %config to false if your compiler command line
does not contain the —config option. The purpose of the %config directive is to remind
you to use the —config option when you compile; for example:

%IF color %THEN
{This is the code for color nodes.}

%ELSEIF mono %THEN

Code

Compiler Directives

{This is the code for monochromatic nodes.}

%ELSEIF %config %THEN
%warning (“You did not set color or mono to true.”);

%ENDIF

NOTE: You cannot declare %config in a %var directive.

%error ‘string’

This directive causes the compiler to print ‘string’ as an error message. You must place this
directive on a line all by itself.

For example, suppose you want the compiler to print an error message whenever you com-
pile with the —config mono option. In that case, set up your program like this:

%VAR color mono
%IF color %THEN
iééde for color node.}
%ELééiF mono %THEN
%ERROR ‘I have not finished the code for a monochromatic node.”

%ENDIF

If you do compile with the —config mono option, Domain Pascal prints out the following
error message:

(0011) %ERROR ‘I have not finished the code for a monochromatic node.~
*xxkxx**x [,ine 11: Conditional compilation user error.
1 error, no warnings, Pascal Rev n.nn

Because of the error, Domain Pascal does not create an executable object.

%warning ‘string’

This directive causes the compiler to print ‘string’ as a warning message. You must place
this directive on a line all by itself. For example, suppose you want the compiler to print a

Code 4-51

Compiler Directives

warning message whenever you forget to compile with the —config color option. In that
case, set up your program like this:

%VAR color mono
%IF color %THEN
iééde for color node.}
ELSE
%WARNING “You forgot to use the -CONFIG color option.

%ENDIF

Then, if you don’t compile with the —config color option, Domain Pascal prints out the
following error message:

(0011) %WARNING “You forgot to use the -CONFIG color option.
xxkkxx J.ine 11: Warning: Conditional compilation user warning.
No errors, 1 warning, Pascal Rev n.nn

A warning does not prevent the compiler from creating an executable object.

%exit

%Exit directs the compiler to stop processing the file. For example, if you put %exit in an
include file, Domain Pascal only reads in the code up until %exit. (It ignores the code that
appears after %exit.)

%Exit has no effect if it is in a part of the program that does not get compiled.

DIRECTIVES NOT ASSOCIATED WITH THE -CONFIG OPTION

The remaining compiler directives are not specifically associated with the ~config compiler
option.

%begin__inline; and %end_inline;

The %begin_inline and %end_inline directives are delimiters that define routines for inline
expansion. Inline expansion means that the compiler generates code for a given routine
wherever a call to that routine appears.

4-52 Code

Compiler Directives

Inline expansion of a given routine allows you to avoid the overhead of a procedure or
function call. When used with small routines, inline expansion can increase execution
speed. It also increases the size of the executable code, however.

Follow these rules when using %begin_inline and %end_inline:

® Place %begin_inline on a line in the source file before you begin any appropriate
procedure or function definitions.

® Place %end_inline on the line following the last routine that you define for inline
expansion.

Suppose that a program contains this function declaration:

%begin_inline;
function test_pos (number: real) : boolean;
begin
test_pos := (number >= 0.0);
end;
%end_inline;

Whenever you call the function test_pos in your main program, the compiler generates
code for the function at that point, instead of transferring control to the function.

You cannot nest these directives, and you must have matching pairs to begin and end the
specification. The compiler detects recursion and will not use inline expansion if doing so
would cause the compiler to loop indefinitely.

The %begin_inline and %end_inline directives are effective only if you compile with an
optimization level of 3 or 4. With Domain Pascal, level 3 is the default.

At optimization level 3, the compiler expands all routines that are enclosed between
%begin_inline and %end_inline directives, so long as they are not recursive. At optimiza-
tion level 4, the compiler expands all of these functions, and also selects other functions
that are suitable for inline expansion.

%begin_noinline; and %end_noinline;

The %begin_noinline and %end_noinline directives are delimiters for routines that the
compiler must never expand inline. These delimiters are the converse of %begin_inline
and %end_inline. Use %begin_noinline and %end_noinline if you specify an optimiza-
tion level of 4, but want to restrict inline expansion of certain functions.

Code 4-53

Compiler Directives

%debug;

4-54

Follow these rules when using %begin_noinline and %end_noinline:

® Place %begin_noinline on a line in the source file before you begin any appropri-
ate procedure or function definitions.

® Place %end_noinline on the line following the last routine that you define for no
inline expansion.

The following code fragment tells the compiler not to use inline expansion for the for_loop
procedure under any circumstances.

%begin_noinline;
procedure for_loop;
var
i : integer32;
begin
for i := 1 to 100 do
writeln(’i is -, 1i);
end;
%end_noinline;

The %debug directive marks source code for conditional compilation. The “condition” is
the compiler option, —cond. If you compile with the —cond option, then the compiler
compiles the lines that begin with %debug. If you do not compile with the —cond switch,
Domain Pascal does not compile the lines that begin with %debug. The reason this direc-
tive is called %debug is that it can help you debug your program.

For instance, consider the following fragment:

value := data + offset;
%DEBUG ; writeln(’Current value is “, value:3);

The preceding fragment contains one %debug directive. If you compile with the -cond
option, then the system executes the writeln statement at run time. If you compile without
the —cond option, the system does not execute the writeln statement at run time. There-
fore, you can compile with the —~cond option until you are sure the program works the way
you want it to work, and then compile without the ~cond option to eliminate the (now)
superfluous writeln message.

The %debug directive applies to one physical line only, not to one Domain Pascal state-
ment. Therefore, in the following example, % debug applies only to the for clause. If you

" compile with —cond, Domain Pascal compiles both the for statement and the writeln pro-

Code

%eject;

Compiler Directives

cedure. If you compile without ~cond, Domain Pascal compiles only the writeln procedure
(and thus there is no loop).

%DEBUG ; FOR j := 1 to max_size do
WRITELN (barray[j]);

If you %debug within a line, text to the left of the directive is always compiled, and text
to the right of the directive is conditionally compiled.

The %eject directive does not affect the .bin file; it only affects the listing file. (The -1
compiler option causes the compiler to create a listing file.) The %eject directive specifies
that you want a page eject (formfeed) in the listing file. The statement that follows the
%eject directive appears at the top of a new page in the listing file.

%include ‘pathname’;

Use the %include directive to read in a file (‘pathname’) containing Domain Pascal source
code. This file is called an include file. The compiler inserts the file where you placed the
%include directive.

Many system programs use the %include directive to insert global type, procedure, and
function declarations from common source files, called insert files. The Domain system
supplies insert files for your programs that call system routines. The insert files are stored
in the /sys/ins directory; see Chapter 6 for details.

Domain Pascal permits the nesting of include files. That is, an include file can itself con-
tain an %include directive.

The compiler option ~idir enables you to select alternate pathnames for insert files at com-
piletime. See Chapter 6 for details.

NOTE: This directive has no effect if it’s in a part of the program that
does not get compiled.

%list; and %nolist;

The %list and %nolist directives do not affect the .bin file, they only affect the listing file.
(The -1 compiler option causes the compiler to create a listing file.) %List enables the list-

Code 4-55

Compiler Directives

ing of source code in the listing file, and %nolist disables the listing of source code in the
listing file.

For example, the following sequence disables the listing of the two insert files, and then
re-enables the listing of future source code:

%NOLIST;

%INCLUDE ‘/sys/ins/base.ins.pas’;
%INCLUDE ’/sys/ins/ios.ins.pas’;
%LIST;

%List is the default.

%slibrary ‘pathname’;

The %slibrary directive is analogous to the %include directive. While %include tells the
compiler to read in Domain Pascal source code, %slibrary tells it to read in previously-
compiled code.

The %slibrary directive tells the compiler to read in a precompiled library residing at
‘pathname’. The compiler inserts the precompiled library where you place the %slibrary
directive. The compiler acts as if the files that were used to produce the precompiled li-
brary were included at this point, except that any conditional compilation will have already
occurred during precompilation.

Precompiled libraries can only contain declarations; they may not contain routine bodies
and may not declare variables that would result in allocating storage in the default data
section, .data. This means the declarations must either put variables into a named section,
or must use the extern variable allocation clause. See Chapter 3 for more information
about named sections, and Chapter 7 for details on extern.

Use the -slib compiler option (described in Chapter 6) to precompile a library and then
insert —slib’s result in ‘pathname’. For example, if you create a precompiled library called

mystuff.ins.plb, this is how to include it in your program:

%SLIBRARY “mystuff.ins.plb”;

Precompiled library pathnames by default end in .plb.

4-56 Code

Compiler Directives

%natural_alignment; and %word_alignment;

Use the %natural_alignment and %word_alignment directives to tell the compiler how to
align any data that does not have an alignment attribute in its declaration. (See the
“Alignment—Extension” section of Chapter 3 for details about the alignment attributes).
Specifically,

e Use the %natural_alignment directive to set data alignment to natural.

® Use the %word_alignment directive to set all data in the environment to word
alignment.

By default, the Domain Pascal compiler aligns all objects larger than a byte in word-
alignment mode. If you want to change this, you can use the %natural_alignment direc-
tive. Conversely, if you want the compiler to resume word-alignment mode, you can spec-
ify the %word_alignment directive, which overrides the previous directive. In any case,
the alignment directive you specify stays in effect until you specify another one.

You can use these directives in combination with the predeclared conditional variables
_ISP__68K and _ISP__AS88K to compile source modules according to whether they will
be run on 680x0 or Series 10000 workstations. For example, one way to compile your
program so that it will run efficiently on a Series 10000 workstation would be to add these
lines to the beginning of the program:

%IF _ISP__A88K
%THEN

%NATURAL_ALIGNMENT;
%ENDIF

NOTE: You can use an alignment directive to set the alignment for pro-
grams or program modules written prior to SR10 that did not in-
clude alignment attributes. Thus, you can gain the improved per-
formance that results from natural alignment without rewriting all
your variable and type declarations.

However, you must be careful when using these directives with
files on disk that have pre-SR10 record formats. The %natu-
ral_alignment and %word_alignment directives change record
layout. This means that the fields of records are in different posi-
tions and you may be unable to access them. (See the “Internal
Representation of Unpacked Records” section of Chapter 3 for
details about the alignment of data in records.)

Code 4-57

Compiler Directives

%push_alignment; and %pop_alignment;

The %push_alignment and %pop_alignment directives are designed to save and restore
the current alignment mode while another alignment mode is used by a particular structure
or file. The %push_alignment directive saves the current alignment mode by pushing it
onto a stack. The %pop_alignment directive restores the alignment mode saved by the
last %push_alignment by popping it off the stack.

These directives are useful for controlling the alignment of %include files. For example, a
%push_alignment directive placed at the top of an %include file tells the compiler to save
the current alignment mode by pushing it onto the stack. A %pop_alignment directive
placed at the end of the %include file restores the alignment mode saved by the last
%push_alignment.

4-58 Code

Cos

Cos Calculates the cosine of the specified number.

FORMAT

cos(number) {cos is a function.}
ARGUMENTS

number Any real or integer value in radians (not degrees).

FUNCTION RETURNS

The cos function returns a real value (even if number is an integer).

DESCRIPTION

The cos function calculates the cosine of number.

EXAMPLE

PROGRAM cos_example;
{ This program demonstrates the COS function. }

CONST
pi = 3.1415926535;

VAR
degrees : INTEGER;
qQ, cl, c2, radians : REAL;

BEGIN
q := 0.5;
cl := C0S(q); { Find the cosine of one-half radi

’

writeln(’The cosine of “, q:5:3, ° radians is -,

ans. }
cl:5:3);

Code

4-59

Cos

{The following statements show how to convert from degrees to radians.}
{More specifically, they find the cosine of 14 degrees.}

degrees := 14;

radians := ((degrees * PI) / 180.0);

c2 := COS(radians);

writeln(°The cosine of ’, degrees:1l, ° degrees is °, ¢2:5:3);

END. ;

USING THIS EXAMPLE

If you execute the sample program cos_example, you get the following output:

The cosine of 0.500 radians is 0.878
The cosine of 14 degrees is 0.970

4-60 Code

Ctop

Ctop Converts a C-style string to a variable-length string. (Extension)

FORMAT

ctop(string); {ctop is a procedure.}

ARGUMENTS

string A variable-~length string.

DESCRIPTION

The ctop procedure converts a C-style null-terminated string into a variable-length string
by searching the body field of the string for a terminating null byte and setting the string’s
length field accordingly. (See the “Variable-~Length Arrays—Extension” section of Chapter
3 for details about variable-length strings.) Note that this function does not remove the
null byte; it simply sets the length field to one less than the null byte position.

See the description of ptoc for information about converting a variable-length string into a
null-terminated string.

EXAMPLE

(See the description of the ptoc procedure.)

Code 4-61

Discard

Discard Explicitly discards the return value of an expression. (Extension)

FORMAT

discard (exp) {discard is a procedure.}

ARGUMENTS

exp Any expression, including a function call.

DESCRIPTION

In its effort to produce efficient code, the compiler sometimes issues warning messages con-
cerning optimizations it performs. Those optimizations might not be right for your particular
situation. For example, if you compute a value but never use it, the compiler may elimi-
nate the computation, or the assignment of the value, and issue a warning message.

However, there are times when you call a function for its side effects rather than its return
value. You don’t need the value, but a Pascal function always returns a value to retain
legal program syntax. You must keep the function call in your program, but if you don’t
use the value, the compiler’s optimizer automatically discards the return value and issues a
warning message.

Since you know the return value is useless, in such a case you may want to eliminate this
particular warning message. Domain Pascal’s discard procedure explicitly throws away the
value of its exp and so gets rids of the warning. For example, to call a function that re-
turns a value in argl without checking that value, use discard as follows:

DISCARD (my_function(argl));

EXAMPLE

PROGRAM discard_example;

VAR
payment, monthly_sal : real;

{ The following function figures out whether a user can afford the }

{ mortgage payments for a given house based on the rule that no more }
{ than 28% of one’s gross monthly income should go to housing costs. }

4-62 Code

Discard

FUNCTION enough(in payment : real;
in out monthly sal : real) : boolean;
VAR
amt_needed : real;

BEGIN
writeln;
amt_needed := monthly_sal * 0.28;

if amt_needed < payment then
begin
enough := false;
monthly_sal := payment / (0.28);
writeln (“Your monthly salary needs to be °, monthly_sal:6:2);

end
else
begin
enough := true;
writeln(“Amazing! You can afford this house.’);
end
END; {end function enough}
BEGIN {main program}

write (“How much is the monthly payment for this house? ’);
readln (payment);

write (“What is your gross monthly salary? °);

readln (monthly sal);

{ The function enough can change the value of the global variable }
{ monthly_sal, so the function call is important, but its return }
{ value is not. DISCARD that return value. }

DISCARD (enough(payment,monthly_sal));
END.

USING THIS EXAMPLE

Following is a sample run of the program named discard_example:

How much is the monthly payment for this house? 928
What is your gross monthly salary? 2400

Your monthly salary needs to be 3314.29

Code 4-63

Dispose

Dispose Deallocates the storage space that a dynamic variable was using. (Refer also to New.)

FORMAT
Dispose is a predeclared procedure that takes one of two formats. The format you choose
depends on the format you use to call the new procedure. If you create a dynamic vari-
able with the short form of new, then you must use the short form for dispose, which is:

dispose(p) {dispose is a procedure.}

If you create a dynamic variant record with the long form of new, then you must use the
long form of dispose, which is:

dispose(p, tagl..tagN);

ARGUMENTS
tag One or more constants. The number of constants in a dispose call must
match the number of constants in the new call.
D A variable declared as a pointer. After you call dispose(p), Domain Pas-
cal sets p to nil.
DESCRIPTION

If p is a pointer, then dispose(p) causes Pascal to deallocate space for the occurrence of
the record that p points to. Deallocating means that Pascal permits the memory locations
occupied by the dynamic record to be occupied by a new dynamic record. For example,
consider the following declarations:

TYPE
employeepointer = “employee;
employee = record
first_name : array[l..10] of char;
last_name : array[l..14] of char;
next_emp : employeepointer;
end;

VAR
current_employee : employeepointer;

4-64 Code

Dispose

To store employee records dynamically, call new(current_employee) for every employee.
If an employee leaves the company, and you want to delete his or her record, you can call
dispose(current_employee). Dispose returns the storage occupied by that record for reuse
by a subsequent new call.

If you create a dynamic record using a long-form new procedure, then you must call dis-
pose with the same constants. For example, if you create a dynamic record by calling
new(widget, 378, true), then to deallocate the stored record, you must call dispose(wid-
get, 378, true).

Note that the dispose procedure merely deallocates the record. If this disconnects a linked
list, then it is up to you to reset the pointers. If some other variable points to this record
and another program uses dispose to deallocate the record, then you get erroneous results.

NOTE: If you call dispose(p) when p is nil, Domain Pascal reports an
error. It is also an error to call dispose when p points to a block of
storage space that you already deallocated with dispose. Finally,
if you use a pointer copy that points to deallocated space, the
results are unpredictable.

EXAMPLE

For a sample program that uses dispose, refer to the new listing later in this encyclopedia.

Code 4-65

Div

Div Calculates the quotient (excluding the remainder) of two integers.

FORMAT

dl div d2 {div is an operator.}

ARGUMENTS

dl, d2 Any integer expression.

OPERATOR RETURNS

The result of a div operation is always an integer.

DESCRIPTION

The expression (d1 div d2) produces the integer (nonfractional) result of dividing d1 by
d2. The div operator uses the division rules of standard mathematics regarding negatives.
For example, consider the following results:

9 DIV 3 is equal to 3 -9 DIV 3 is equal to -3
10 DIV 3 is equal to 3 -10 DIV 3 is equal to -3
11 DIV 3 is equal to 3 -11 DIV 3 is equal to -3
12 DIV 3 is equal to 4 -12 DIV 3 is equal to -4
13 DIV 3 is equal to 4 -13 DIV 3 is equal to -4

9 DIV (-3) is equal to -3 -9 DIV (-3) is equal to 3
10 DIV (-3) is equal to -3 -10 DIV (-3) is equal to 3
11 DIV (-3) is equal to -3 -11 DIV (-3) is equal to 3
12 DIV (-3) is equal to -4 -12 DIV (-3) is equal to 4
13 DIV (-3) is equal to -4 -13 DIV (-3) is equal to 4

To find the remainder of an integer division operation, use the mod operator. (See the
mod listing later in this encyclopedia.)

See the “Expressions” listing later in this encyclopedia for information on using binary and
unary operators together.

4-66 Code

Div

EXAMPLE

PROGRAM div_example;

{ This program converts a 3-digit integer to a 3-character array. }
{ Note that the character 0 has an ISO Latin-1 value of 48, the }
{ character 1 has an ISO Latin-1 value of 49, and so on up until the }
{ character 9, which has an ISO Latin-1 value of 57. }
VAR
X ¢ 100..999;
digits : array[l..3] of char;
BEGIN
write(“Enter a three-digit integer -- °);
readln(x);

digits[1l] :=chr(48 + (x DIV 100));
X := X MOD 100;

digits[2] := chr(48 + (x DIV 10));
digits[3] := chr(48 + (x MOD 10));

writeln(digits);
END.

USING THIS EXAMPLE

This program is available online and is named div_example.

Code 4-67

Do

Do Refer to the For or While listings later in this encyclopedia.

4-68 Code

Downto

Downto Refer to For later in this encyclopedia.

Code 4-69

Else

Else Refer to If later in this encyclopedia.

4-70 Code

End

End Signifies the end of a group of Pascal statements.

FORMAT

End is a reserved word.

DESCRIPTION

End is the terminator for a sequence of Pascal statements. A Pascal program must contain

an end to match every begin.

Pascal requires a begin/end pair to indicate a compound statement. (Refer to the “State-

ments” listing later in this encyclopedia.)
Pascal requires end (without an accompanying begin) in the following situations:

@ To terminate a case command.

® To terminate a record declaration.

EXAMPLE

PROGRAM begin_end_example;

{This program does very little work, but does have lots of BEGINs }

{and ENDs. }
TYPE
student = record
age : 6..12;

id : integerl6;
end; {student record definition}
VAR
X : integer32;

PROCEDURE do_nothing;
BEGIN {do_nothing}

writeln(’You have triggered a procedure that does absolutely nothing.”);

writeln(“Though it does do nothing with elan.”).
END; {do_nothing}

Code

4-71

End

FUNCTION do_next_to_nothing(var y : integer32) : integer32;
BEGIN {do_next_to_nothing}

do_next_to_nothing := abs(y);
END; {do_next_to_nothing}

BEGIN {main procedure}
write(’Enter an integer -- “); readln(x);
if x <0
then BEGIN
writeln(’You have entered a negative number!!!”);
writeln(“Its absolute value is “, do_next_to_nothing(x):1);
END
else if x =0
then BEGIN
writeln(’You have entered zero”);
do_nothing;
END
else
writeln(“You have entered a positive number!!!”);
END. {main procedure}

USING THIS EXAMPLE

This program is available online and is named begin_end_example.

4-72 Code

Eof

Eof Tests the current file position to see if it is at the end of the file.

FORMAT
eof (filename) {eof is a function.}
ARGUMENTS
filename A file variable symbolizing the pathname of an open file. The filename

argument is optional. If you do not specify filename, Domain Pascal as-
sumes that the file is standard input (input).

FUNCTION RETURNS

The eof function returns a Boolean value.

DESCRIPTION

The eof function returns true if the current file position is at the end of file filename; oth-
erwise, it returns false. With one exception, filename must be open for either reading or
writing when you call eof. The one exception occurs when filename is input; for a descrip-
tion of this exception, see the “Interactive I/O” section in Chapter 8.

Code 4-73

Eof

EXAMPLE

PROGRAM eof_example;
{NOTE: Before running this program, you must obtain file "annabel lee" }

{ and store it in the same directory as the program. }
CONST
title_of poem = “annabel_lee’;
VAR
poetry : text;
stat : integer32;
a_line : string;
BEGIN

{Open file anabel lee for reading.}
open(poetry, title of poem, “OLD’, stat);
if stat = 0 then

reset (poetry)
else

return;
{Read each line from the file and write each line to the screen. }
{Halt execution when end of file is reached. }
while not EOF(poetry) do

begin

readln(poetry, a_line);
writeln(output, a_line);
end;

END.

USING THIS EXAMPLE

This program is available online and is named eof_example.

4-74 Code

Eoln

Eoln Tests the current file position to see if it is pointing to the end of a line.

FORMAT
eoln(f) {eoln is a function.}
ARGUMENTS
f A variable having the text data type. f is optional; if you do not specify

it, eoln tests the standard input (input) file.

FUNCTION RETURNS

The function returns a Boolean value.

DESCRIPTION

The eoln function returns true when the stream marker points to an end-of-line character;
otherwise, with two exceptions, eoln returns false. The two exceptions are:

® Eoln causes a run-time error if f was not opened for reading (with reset) or for
writing (with rewrite). However, you do not need to open input or output for
reading or for writing. (See the “Interactive I/O” section in Chapter 8 for details
on input and output.)

® Eoln causes a run-time error if eof(f) is true.

EXAMPLE

PROGRAM eoln_example;
{NOTE: Before running this program, you must obtain file "annabel_lee" }
{ and store it in the same directory as the program. }

CONST
title_of poem = “annabel_lee’;

VAR
poetry : text;
stat : integer32;
a_char : char;

Code 4-75

Eoln

BEGIN
{ Open file annabel_lee for reading. }
open(poetry, title_of poem, °OLD’, stat);
if stat = 0
then reset (poetry)
else return;
{ Read in the first line of the poem one character at a time, }
{ and write each character to the screen. }
repeat
read(poetry, a_char);
writeln(output, a_char);
until EOLN(poetry);
END.

USING THIS EXAMPLE

This program is available online and is named eoln_example.

4-76 Code

Exit

Exit Transfers control to the first statement following a for, while, or repeat loop. (Extension)

FORMAT

Exit is a statement that neither takes arguments nor returns values.

DESCRIPTION

Use exit to terminate a loop prematurely; that is, to jump out of the loop you’re in. In
nested loops, exit applies to the innermost loop in which it appears. You can use exit
within a for, while, or repeat loop only. If exit appears elsewhere in a program, Domain
Pascal issues an error.

It is preferable to use exit for jumping out of a loop prematurely rather than goto. That’s
because goto inhibits some compiler optimizations that exit does not.

EXAMPLE

PROGRAM exit_example;
{This program demonstrates the exit statement. }
VAR
i, 3
- data
geiger
BEGIN
for i := 1 to 4 do
begin
writeln;
for j := 1 to 3 do
begin
writeln(chr(10), “Enter the data for coordinates”, i:2, °,”, Jj:1);
write(’ (or enter -1 to jump down to the next row) -- -
readln(data);
if data = -1 then
EXIT
else
geiger([i,j] := data;
end; {for j}
end; {for i}
END.

integerl6;
real;
array[l..5, 1..3] of real :

It

ee ee es

[[* of 0.0],[* of 0.0],];

Code 4-77

USING THIS EXAMPLE

Following is a sample run of the program named exit_example:

Enter the data for coordinates 1,1

(or enter

Enter the
(or enter

Enter the
(or enter

Enter the
(or enter

Enter the
(or enter

Enter the
(or enter

Enter the
(or enter

Enter the
(or enter

Enter the
(or enter

4-78 Code

-1 to jump down to the next
data for coordinates 1,2
-1 to jump down to the next
data for coordinates 2,1

-1 to jump down to the next

data for coordinates 2,2
-1 to jump down to the next

data for coordinates 2,3

-1 to jump down to the next

data for coordinates 3,1
-1 to jump down to the next

data for coordinates 4,1
-1 to jump down to the next

data for coordinates 4,2
-1 to jump down to the next

data for coordinates 4,3
-1 to jump down to the next

TOwW)

TOW)

TOoW)

TOwW)

TOW)

TOW)

TOow)

TOW)

TOW)

1.2

3.2

1.2

4.3

1.3

4.2

Exp

Exp Calculates the value of e, the base of natural logarithms, raised to the specified power.
(See also Ln.)

FORMAT

exp(number) {exp is a function.}

ARGUMENTS

number Any real or integer expression.

FUNCTION RETURNS

The exp function returns a real value.

DESCRIPTION

The exp function returns e raised to the power specified by number.
e to 16 significant digits is 2.718281828459045.

Note that Domain Pascal supports an exponentiation operator. (See the “Overview: Mathe-
matical Operators” section earlier in this chapter for details about the exponentiation op-
erator.)

EXAMPLE

PROGRAM exp_example;
{This example demonstrates the use of EXP in calculating the}
{exponential growth of bacteria. }

CONST

cl = 0.3466;
VAR

starting quantity : INTEGER;
ending_quantity, elapsed_time : REAL;

Code 4-79

Exp

BEGIN

write(“How many bacteria are there at zero hour? -- 7);
readln(starting_quantity);

write(’How many hours pass? -- “);

readln(elapsed_time);
ending_quantity := starting_quantity * EXP(cl * elapsed_time);
writeln(’There will be approximately “, ending quantity:1,’ bacteria.’);

END.

USING THIS EXAMPLE

Following is a sample run of the program named exp_example:

How many bacteria are there at zero hour? -- 10500
How many hours pass? -- 5.6
There will be approximately 7.313705E+04 bacteria.

4-80 Code

Expressions

Expressions

Throughout this encyclopedia, we refer to expressions. Here, we define expressions. An
expression can be any of the following:

® A constant declared in a const declaration part

® A variable declared in a var declaration part

® A constant value

® A function call

® Any one of the above preceded by a unary operator appropriate to its data type

® Any two of the above separated by a binary operator appropriate to their data
types

You can organize expressions into more complex expressions with parentheses. For exam-
ple, the odd function requires an integer expression as an argument. The following pro-
gram fragment demonstrates several possible arguments to odd:

CONST
century := 100;

VAR
X, ¥ : integer;
result : boolean;

BEGIN
result := ODD(century); {a constant}
result := ODD(X); {a variable}
result := ODD(15); {a value}
result := ODD(sqr(25)); {a function}
result := ODD(X + ¥); {an operation}
result := ODD((x * 3) + sqr(y)); {several operations}

. .

Code 4-81

Expressions

4-82

Code

NOTE:

You cannot follow a binary operator with a unary operator of
lower precedence. For example, consider the following proper
and improper expressions:

9 DIV -3 {improper expression}
9 DIV (-3) {proper expression}
5 * -100 {improper expression}
5 * (-100) {proper expression}

Table 4-3 shows the order of precedence of operators.

Find

Find Sets the file position to the specified record. (Extension)

FORMAT

find (file_variable, record_number, error_status); {find is a procedure.}
ARGUMENTS

Jile_variable Must be a variable having the file data type. The file_variable argument

cannot be a variable having the text data type.

record_number Must be an integer between 1 and n or between -1 and -n, where 1 de-
notes the first record of the file and n denotes the last record.

error_status Must be declared as a variable with the integer32 data type. Domain Pas-
cal returns a hexadecimal number in error_status which has the following
meaning:

0 - no error or warning occurred.

greater than 0 — an error occurred.

less than 0 — a warning occurred.

NOTE: Your program is responsible for handling the error. We detail er-
ror handling in Chapter 9.

DESCRIPTION

Before reading this, make sure you are familiar with the description of I/O in Chapter 8.

When you open a file for reading, the operating system sets the stream marker to the be-
ginning of the file. You can call read to move this stream pointer sequentially, or you can
call find to move it randomly.

Before you can call find, you must have first opened the file symbolized by file_variable
for reading. (See Chapter 8 for a description of opening files for reading.) When you call
find, Domain Pascal sets the stream marker to point to the record specified by
record_number.

Code 4-83

Find

If you specify a record_number between 1 and n, where n is the number of records in the
file, find locates that number record. If record_number is between -1 and -n, find counts
backward from the end of the file to locate the proper record. For example, if there are
five records in the file and you specify -4 for record_number, Domain Pascal counts back
four from the end of the file and retrieves record number 2.

If you specify record_number as zero, the compiler returns an error code in error_status.

If you specify a record_number that is one greater than the number of records stored in
the file, Domain Pascal does not return an error code, but does not change the stream
marker either.

After executing a find, Domain Pascal sets the stream marker to point to the beginning of
the next record. For example, if record_number is 2, then after executing a find, Domain
Pascal sets the stream marker to point to record 3.

Frequently, programmers use the find procedure with the replace procedure (which is de-
scribed later in this encyclopedia).

NOTE: The term “record,” as it applies to files of file type, refers to a
data object of the file’s base type. This is not necessarily a Do-
main Pascal record type.

EXAMPLE

PROGRAM find_and_replace_example;

{This program demonstrates the FIND and REPLACE procedures.
{ NOTE: File “hisl01° must exist before you run get_example.
{ To create “hisl0l’, you must run put_example.

L Syt Syt et

%NOLIST; { We need these include files for error checking.
%INCLUDE ‘/sys/ins/base.ins.pas’;

%INCLUDE ‘/sys/ins/error.ins.pas’;

%INCLUDE ‘/sys/ins/streams.ins.pas’;

%LIST;

CONST
pathname = “hisl01”;

TYPE
student = RECORD
name : array[l..12] of char;
age : integerl6;
END;

4-84 Code

VAR

class : FILE OF student;
a_student ¢ student;

st : status_$t;
more_corrections : char;
particular_record : integerl6 := 0;
n : integeril6;

PROCEDURE print_records;

BEGIN
n := 0;
writeln(chr(10), ‘Here are the records stored in the file:’);
reset (class);
repeat
n:=n+ 1;
read(class, a_student);
writeln(’record °, n:2, ° ‘, a_student

END;

until eof(class);

PROCEDURE correct_errors;
BEGIN

END;

write(’Enter the number of the record you wish
readln(particular_record);
if particular_record = n+l then
writeln (“There are only “, n:2, “ records
else
BEGIN
FIND(class, particular_record, st.all);
if st.code = 0 then
BEGIN
write(“What should this name be -- “);
readln(a_student.name) ;
write(’What should this age be -- 7);
readln(a_student.age);
class® := a_student;
REPLACE (class) ;
END
else if st.code = stream_$end_of_file then
BEGIN

.name, a_student.

Find

age);

to change -- °);

in the file.”’)

write(’You specified a number greater than the number of °);

writeln (‘records in the file.”);
END

else
error_S$print(st);

END;

Code

4-85

Find

BEGIN {main procedure}
open(class, pathname, °“OLD’, st.all);
if st.code = 0 then
BEGIN
repeat
print_records;
write (‘Do you want to correct any records? (enter y or n) —- °);
readln(more_corrections);
if more_corrections = “y” then
correct_errors
else
exit;
until false;
END
else if st.code = stream_$name_not_found then
writeln(’Did you remember to run put_example to create hisl01?”)
else
error_$print(st);
END.

USING THIS EXAMPLE

Following is a sample run of the program named find_and_replace_example :

Here are the records you have entered:

record 1 Kerry 28
record 2 Barry 26
record 3 Jan 25
Do you want to correct any records? (enter y or n) --y
Enter the number of the record you wish to change -- 2

what should this name be -- Sandy
What should this age be -- 27

Here are the records you have entered:

record 1 Kerry 28
record 2 Sandy 27
record 3 Jan 25
Do you want to correct any records? (enter y or n) -- n

4-86 Code

Firstof

Firstof Returns the first possible value of a type or a variable. (Extension)

FORMAT
firstof(x) {firstof is a function.}
ARGUMENTS
b Is either a variable or the name of a data type. The data type can be a

predeclared Domain Pascal data type, or it can be a user-defined data
type. x cannot be a record, file, or pointer type.

FUNCTION RETURNS

The firstof function returns a value having the same data type as x.

DESCRIPTION

The firstof function returns the first possible value of x according to the following rules:

Data Type of x Firstof Returns

integer or integerl6 -32767

integer32 -2147483647

char The character represented by chr(0)
called nul.

boolean False.

enumerated The first (leftmost) identifier in the
data type declaration.

array The lower bound of the subrange that
defines the array’s size.

varying array 1

The firstof function is particularly useful for finding the first element of an enumerated
type (as in the example).

Code 4-87

Firstof

EXAMPLE

PROGRAM firstof_ lastof_example;

{This program demonstrates the use of the firstof and lastof functions}
TYPE
astronomers = (aristotle, galileo, newton, tycho, kepler);
VAR
stargazers : astronomers;
BEGIN
writeln(’The following is a list of great astronomers:’);
for stargazers := firstof(astronomers) to lastof(astronomers) do
writeln(stargazers);
END,

USING THIS EXAMPLE

If you execute the sample program named firstof_lastof_example, you get the following
output:

The following is a list of great astronomers:
ARISTOTLE
GALILEO
NEWTON
TYCHO
KEPLER

4-88 Code

For

For Repeatedly executes a statement a fixed number of times.

FORMAT

for index_variable := start_exp to | downto stop_exp do
stmnt; {for is a statement}

ARGUMENTS

index_variable Any variable declared as an ordinal type. The ordinal types are enumer-
ated, subrange, integer, Boolean, and char. Note that index_variable can-
not be a real number. As an extension to standard Pascal, Domain Pascal
permits the index_variable to be declared in a scope other than the scope
of the routine immediately containing the for loop.

Start_exp An expression matching the type of the index_variable.
stop_exp An expression matching the type of the index_variable.
stmnt A simple statement or compound statement. (Refer to the “Statements”

listing later in this encyclopedia.)

DESCRIPTION

For, repeat, and while are the three looping statements of Pascal. With for, you explicitly
define both a starting and an ending value to the index_variable.

When executing a for loop, Pascal initializes the index_variable to the value of the
start_exp, and then either increments (to) or decrements (downto) the value of the in-
dex_variable by 1 until its value equals that of the stop_exp. When the index_variable
equals the value of the stop_exp, Pascal executes the statements in the loop one final time
before exiting the loop. You may not assign a value to index_variable within the body of
the for loop.

.

If index_variable is an integer or subrange variable, for increments or decrements its
value by 1 for each cycle. If index_variable is a char variable, then for increments or
decrements its ISO Latin~1 value by 1 for each cycle. If index_variable is an enumerated
variable, then incrementing means selecting the next element in sequence and decrement-
ing means selecting the preceding element. If index_variable is a Boolean, then true has a
value greater than false.

Code 4-89

For

The keyword to causes incrementing; the keyword downto causes decrementing.

If you want to jump out of a for loop prematurely (i.e., before the value of the in-
dex_variable equals the value of the stop_exp), you have the following choices:

e Execute an exit statement to transfer control to the first statement following the
for loop.

o Execute a goto statement to transfer control to outside of the loop.

® Execute a return statement to transfer control back to the calling routine.

In addition to these measures, you can also execute a next statement to skip the remain-
der of the statements in the loop and proceed to the next iteration. Here are some tips for
using the for statement:

® Within the stmnt, you are not allowed to change the value of the index_variable.
o If you set up a meaningless relationship between the start_exp and the stop_exp

(for example, for x := 8 to § or for x := 10 downto 20), Pascal does not execute
the loop even once.

EXAMPLE

PROGRAM for_example;
{This program demonstrates several uses of for loops}

VAR
time, year, zeta : integerl6 := 0;
hurricanes : (king, donna, cleo, betsy, inez);
scores : array[l..5, 1..3] of integerl6;
i, jJ : integerl6;
BEGIN

{If you do not use a BEGIN/END pair, FOR assumes that the loop }
{consists of the first statement following it. }
FOR time := 1 TO 3 DO
writeln(time);

4-90 Code

For

{To create a loop consisting of multiple statements, enclose the }
{ loop in a BEGIN/END pair. } ‘
FOR time := 21 TO 30 DO

begin

year := year + time;

writeln(year:5); { Write a running total. }
end;

{Here’s an example of DOWNTO. }
FOR time := year DOWNTO (year - 100) DO

zeta := zeta + (time * 3);
writeln;
writeln(zeta,” is the result of the downto for loop’);
writeln;

{Here’s an example of an enumerated index_variable. }
FOR hurricanes := donna TO inez DO
writeln(hurricanes);

{And finally, we use nested FOR loops to load a 2-dimensional array. }
FOR i := 1 TO 5 DO
begin {for i}
FOR j := 1 TO 3 DO
begin {for j}
write(’Enter the score for player “,i:1,” game “,j:1,” —-- “);
readln(scores[i,j]);
end; {for i}
writeln;
end; {for i}
END.

USING THIS EXAMPLE

This program is available online and is named for_example.

Code 4-91

Get

Get Advances the stream marker to the next component of a file.

FORMAT

get(H {get is a procedure.}
ARGUMENTS

I A variable having the file or text data type.
DESCRIPTION

If f is a file variable, calling get causes the operating system to advance the stream marker
so that it points to the next record in the file. If f is a text variable, calling get causes the
operating system to advance the stream marker so that it points to the next character in
the file.

After calling get to advance the stream marker, you can use another statement to read in
the data that the stream marker points to and assign it to a variable from your program.
Therefore, the sequence for reading in data looks like the following:

GET(f); { Advance the stream marker. }
variable := £*; { Set variable equal to whatever the stream marker }
{ points to. }

For example, the following program fragment demonstrates input via the get procedure:

VAR
primes : file of integerl6;
poem ¢ text;
a_number : integerl6;
a_letter : char;

BEGIN

GET (primes) ;
a_number := primes”; {Set a_number equal to next record in primes}
GET (poem) ;
a_letter := poem*; {Set a_letter equal to next character in poem}

4-92 Code

Get

Note that the two statements

GET (poem) ; :
a_letter := poem"; {Set a_letter equal to next character in poem }

are identical to the single statement

READ (poem, a_letter);

Also notice that unlike read, get allows you to save the contents of f*.

You must open f for reading (with reset) before calling get. If eof(f) is true, calling get()
causes a “read past end of file” error trap.

EXAMPLE

PROGRAM get_example;

{ This program demonstrates the GET procedure. }
{ File “hisl101’ must exist before you run get_example. }
{ To create “hisl01’, you must run put_example. }

%NOLIST;

%INCLUDE ‘/sys/ins/base.ins.pas’;
%INCLUDE ‘/sys/ins/error.ins.pas’;
%INCLUDE “/sys/ins/streams.ins.pas’;
%LIST;

CONST
file_to_read_from = “hisl01”;

TYPE
student =
record
name : array[l..12] of char;
age : integerl6;
end;
VAR
class : file of student;
a_student : student;
st : status_$t;

Code 4-93

Get

BEGIN
{Open a file for reading.} S
open(class, file_to_read_from, “OLD’, st.all);
if st.code = 0
then reset(class)
else if st.code = stream_$name_not_found
then begin
writeln(’Did you forget to run put_example?”);
return;
end
else error_$print(st);

{Now that the file is open, read all the records from it. }
repeat
a_student := class”;
GET(class);
write(chr(10), a_student.name);
writeln(a_student.age:2);
until eof(class);
END.

USING THIS EXAMPLE

This program is available online and is named get_example.

4-94 Code

Goto

Goto Unconditionally jumps to a specified label in the program.

FORMAT
goto /bl; {goto is a statement.}
ARGUMENTS
Ibl Is an unsigned integer or identifier that you have previously declared as a
label. (For information on declaring labels, see the “Label Declaration
Part” section in Chapter 2.)
DESCRIPTION

A goto statement breaks the normal sequence of program execution and transfers control
to the statement immediately following Ibl.

A declared /bl usually is local to the block in which it is declared. That is, if you know
you declared a label, but the compiler still reports the following error, you must move your
label declaration to the correct procedure or function:

(Name_of_Label) has not been declared in routine (name_of_routine)

It is illegal to use goto to jump inside a structured statement (for example, a for, while,
case, with, or repeat) from outside that statement. This means a fragment like this pro-
duces an error:

if error_flag = true then
goto cleanup;

.

for i := 1 to 10 do

begin
cleanup: {WRONG! }
end; {close for statement}

It is illegal to jump into an if/then/else statement if you compile with the ~iso option. See
Chapter 6 for more details.

Code 4-95

Goto

Gotos are useful for handling exceptional conditions (such as an unexpected end of file).

Nonlocal gotos, whose target /bl is in the main program or some other routine at a higher
level, have a great effect on the generated code. They generally shut off most compiler
optimizations on the code near the target /bl. In order to produce the most efficient code,
you should try to use goto as infrequently as possible.

You cannot jump into a structured statement from outside that statement. For example,
the goto 100 statements in the bad_gotos program below are illegal. This program also
contains a goto 900 statement that is illegal if you compile with the -iso option.

4-96 Code

PROGRAM bad_gotos;

VAR
z,x,value : integerl6;
a_char : char;
LABEL 900;

PROCEDURE foo0;
LABEL 100;

BEGIN
for x :=1 to 100 do

begin

writeln (“value ’, x);
100: write (’Enter a value 7);

readln(value) ;
z := z + value;
end;
GOTO 100; {ILLEGAL: cannot jump to a label inside}
{the for loop. }
END;
BEGIN

write (‘Do you want to use the program? “);
readln (a_char);
if a_char = “y” then
GOTO 100 {ILLEGAL: cannot jump to a label in }
{another routine. }
else if a_char = ‘n’ then
GOTO 900 {ILLEGAL IF COMPILED WITH -ISO SWITCH:}
{cannot jump to a label that’s inside }
{another statement. }
else if a_char = “0” then
writeln (‘o is not a legal response’)
else
900: writeln (“ok, we won““t use the program’);
END.

Goto

Note that you can use goto to jump directly from a nested routine to an outer routine. For
example, procedure xxx issues a valid goto in the following program:

Program non_local_goto;
Label
900;

Procedure xxx;
BEGIN
éOiO.QOO;
END;
BEGIN
900: Qritéln(’back in main program.’);

END.

EXAMPLE

PROGRAM goto_example;
{This program demonstrates the use of the goto statement}

TYPE
possible_values = 10..25;
VAR
X : possible_values;
LABEL
100;
BEGIN
writeln(’You will now enter the experimental data.”’, chr(10));
100:
write(’Please enter the obtained value for x —- 7);
readln(x);

if in_range(x) then
writeln(’This value seems possible.”’)
else
begin
writeln(’This value seems suspicious.”);
GOTO 100;
end;

END.

Code 4-97

Goto

USING THIS EXAMPLE

Following is a sample run of the program named goto_example:

You will now enter the experimental data.

Please enter the obtained value for x -- 35
This value seems suspicious.
Please enter the obtained value for x -- 17

This value seems possible.

4-98 Code

If

If Tests one or more conditions and executes one or more statements according to the outcome of
the tests.

FORMAT

You can use if, then, and else in the following two ways:

if cond then stmnt; {first form}
if cond then stmntl else stmnt2; {second form}
ARGUMENTS
cond Any Boolean expression.
stmnt A simple statement or a compound‘ statement. (Refer to the “Statements”
listing in this encyclopedia.) Note that stmnt can itself be another if state-
ment.
DESCRIPTION

The if and case statements are the two conditional branching statements of Pascal.

In an if/then statement, if cond evaluates to true, Pascal executes stmnt. If cond is false,
Pascal executes the first statement following stmnt.

In an if/then/else statement, if cond is true, Pascal executes stmntl. However, if cond is
false, Pascal executes stmnt2.

You often use an if statement to evaluate multiple conditions. To do so, just remember
that a stmnt can itself be an if statement. For example, consider the following if statement
which evaluates multiple conditions:

IF age < 3 THEN
price = 0.0

ELSE IF (age >= 3) AND (age <= 6) THEN
price = 1.00

ELSE IF (age > 6) AND (age <=12) THEN
price = 2.00

ELSE
price = 4.00;

Code 4-99

If

EXAMPLE

PROGRAM if example;

{This program demonstrates IF/THEN and IF/THEN/ELSE.}

VAR
y, age, of_age, root_ratings : integerl6;
tree : (ficus, palm, poinciana, frangipani, jacaranda);
grade : char;

BEGIN

write(’Enter an integer -- “);

readln(y); {USAGE 1}

IF y < 0O THEN
writeln(“Its absolute value equals °, (abs(y)):3);

write(“Enter an age —-— 7);
readln(age); {USAGE 2}
IF age > 18 THEN
writeln(” An adult’)
ELSE
begin
of_age := 18 - age; ,
writeln(® A minor for another °, of age:1,” years.”);
end;

write(’Enter a grade -- “);
readln(grade); {USAGE 3}
IF (grade = “A’) OR (grade = “B’) THEN
writeln(” Good work’)
ELSE IF (grade = “C”) OR (grade = “D’) THEN
begin
writeln(” Satisfactory work’);
writeln(® Though improvement is indicated.”);
end
ELSE IF (grade = “F”) THEN
writeln(” Failing work”);

4-100 Code

If

write(’Enter the name of a tropical tree -- °);

readln(tree); {USAGE 4}
IF (tree = poinciana) OR (tree = jacaranda) THEN
begin
writeln(” Blossoms in June and July.’);
root_ratings := 9;
end
ELSE IF tree = palm THEN
root_ratings := 8
ELSE
root_ratings := 2;
END.

USING THIS EXAMPLE

Following is a sample run of the program named if_example:

Enter an integer -- -10
Its absolute value equals 10
Enter an age -- 13
A minor for another 5 years.
Enter a grade -- B
Good wo