
C)

o

o

Programming with DOMAIN Advanced System Calls

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 008542
Revision 00

Software Release g.o

Copyright © 1985 Apollo Computer Inc.

All rights reserved.

Printed in U.S.A.

First Printing: November, 1985

This document was produced using the SCRmE document .preparation system. (SCRffiE is a
registered trademark of Unilogic, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/Bridge, DO:MAIN/Dialogue, DOMAIN/IX, DOMAIN/Laser-26,
DOMAIN/PCI, DOMMN/SNA, DOMAINjVACCESS, D3M, DPSS, DSEE, GMR, and GPR are
trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE

PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE

SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. A.ND ITS CUSTOMERS. NO

REPRESENTATION OR OTHER AFFffiMATION OF FACT CONTAINED IN TInS PUBLICATION, INCLUDING

BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,

SUITABIT..ITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A

WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABIT..ITY BY

APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING

OUT OF OR RELATING TO nus PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO

COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBIT..ITY OF SUCH

DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN TIllS DOCUMENT ARE CONFIDENTIAL INFORMATION AND

PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

- ---------

o

o

---------~-----~-~----- ------------------"---

Preface

This manual describes newly released DOMAIN system calls. These calls are in addition to those
released in the DOMAIN System Call Reference. This manual is intended to provide adequate
documentation and syntax inCormation Cor many existing system calls. This reCerence material is
intended for programmers who have experience programming with DOMAIN system routines and
insert Ciles.

This manual is divided into two parts. Part I contains a general overview of a separate operating
subsystem (e.g., the Command Line Handler, File and Tree Utility). Most chapters conclude with
a sample program in Pascal demonstrating the calls.

Part II consists of reCerence inCormation similar to the DOMAIN SYIJtem Call Reference. Each
subsystem has its own section, which contains the data types the subsystem uses, the syntax of its
programming calls, and the error messages it generates.

Some calls described in this book belong to released subsystems (PM, PROC2, and RWS) that are
described in the DOMAIN System Call Reference manual. To make it easy for you to
incorporate this information, we repeated the entire sections, marking the new material with
revision bars. This way, you can replace the entire section in your copy of the manual.

For easy organization, the sections in Part II are in alphabetical order by subsY8tem name. Vle
numbered the pages of Part IT by subsystem. For example, the third page in the CL section is
page CL-3.

You should use this manual with the programming handbooks listed under Related Documents.
These programming handbooks give detailed instructions about using these programming calls.

Audience

This manual is intended for advanced programmers who are writing application programs using
DOMAIN system calls. Readers of this manual should be familiar with general DOMAIN system
calls as described in Programming with General System Calls. They should also have experience
with FORTRAN, Pascal, or C and the operating system as described in the DOMAIN System
User's Guide. This manual is not intended as a tutorial document, but as a reference Cor
programmers who need to use operating system calls.

Related Documents

The Programming With General System Calls handbook (005506), documents how to write
programs that use standard DOMAIN system calls including the ACLM, CAL, EC2, ERROR,
MTS, NAME, PAD, PBUFS, PFM, PGM, PM, PROCI, PROC2, RWS, SIO, STREAM:, TIME,
TONE, TPAD, and VFMT calls.

The Programming With SYIJtem Calls for Interproce88 Communication handbook (005696),
documents how to write programs that use the DOMAIN interprocess facilities including the
MBX, MS, IPC, MUTEX, and EC2 calls.

The Programming With DOMAIN eD Graphics Metafile ReIJource handbook (005097),
documents how to write programs that use the DOMAIN 2D Graphics Metafile Resource.

The Programming With DOMAIN Graphic Primitives handbook (005808), documents how to

write graphics programs that use the DOMAIN Graphics Primitive Resource.

Apollo Confidential PREFACE-l PREFACE

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE

lowercase

{

<

CTRL/Z

]

}

>

Uppercase words or characters in formats and command
descriptions represent keywords that you must use
literally. '

Lowercase words or characters in formats and command
descriptions represent values that you must supply.

Square brackets enclose optional items.

Braces enclose a list from which you must choose an
item.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the
keyboard.

'The notation CTRL/ followed by the name of a key
indicates a control character sequence. Hold down
<CTRL> while you type the character.

Horizontal ellipsis points indicate that you can
repeat the preceding item one or more times.

Vertical ellipsis points mean that we have omitted
irrelevant parts of a figure or example.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader's Response form for documentation comments. By using these formal
channels, you make it e3.SY for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System
Oommand Reference manual. Refer to the CRUCR (Create User Change Request) Shell
command description. You can view the same description on-line by typing:

$ HELP CRUCR <RETURN>

For documentation comments, a Reader's Response form is located at the back of each manual.

PREFACE PREFACE-2 Apollo Confidential

/

. , .•.

-------- . __ •.. _-_._ .. -..... .

o

o

Contents

Part I. Using the DOMAIN Advanced System Calls

Chapter 1 Parsing the Command Line 1-1

1.1. System Calls, Insert Files, and Data Types 1-1
1.2. Overview of the CL Manager 1-1
1.3. Initializing the CL Manager 1-4

1.3.1. Defining CL Options 1-5
1.3.2. Defining Wildcard Options 1-8
1.3.3. Example of Initializing the CL Manager 1-8

1.4. Getting Flags 1-11
1.4.1. Example of Handling Synonymous Flags with CL _ $GET _ENUM_FLAG 1-12

1.5. Reading Arguments 1-13
1.5.1. Getting Arguments Associated with Flags 1-14
1.5.2. Getting Derived Names 1-15

1.6. Using Miscellaneous CL Calls 1-17
1. 7. Sample Program Using CL System Calls 1-18

Chapter 2 Using the File and Tree Utility 2-1

2.1. System Calls, Insert Files, and Data Types
2.2. Overview of the FU System Calls

2.2.1. Setting FU Options
2.2.2. Releasing Storage with FU_$RELEASE_STORAGE

2.3. Sample Program Using the FU System Calls

Chapter 3 Logging In and Changing the Registry

3.1. System Calls, Insert Files, and Data Types
3.2. Overview of the LOGIN System Calls
3.3. Tailoring a Log-In Operation

3.3.1. Sample Program Using LOGIN_$LOGIN
3.4. Changing User Account Files in the Network Registry

3.4.1. Sample Program - Changing the Registry ACCOUNT Files

Chapter" More Process Manager System Calls

4.1. System Calls, Insert Files, and Data Types
4.2. Loading and Calling a Program with LOADER System Calls

4.2.1. Sample Programs Using LOADER System Calls
4.3. Setting a Process Priority
4.4. Assigning a Name to a Process
4.5. Sample Programs Using PM, PROC2 System Calls

Apollo Confidential

2-1
2-1
2-2
2-6
2-6

3-1

3-1
3-1
3-2
3-4

3-12
3-13

4-1

4-1
4-1
4-4
4-6
4-6
4-6

Chapter 5 Handling Dynamic Storage

5.1. System Calls, Insert Files, and Data Types
5.2. Overview of the RWS System Calls
5.3. Overview of the BAF System Calls

5.3.1. Improving Performance Under Current Implementatio,n
5.4. Sample Program Using RWS and BAF System Calls

Part ll. DOMAIN Advanced System Can Reference

Index

ii

5-1 /,- -,

5-1
\

5-1
5-4
5-5
5-5

Index-l

/

Apollo Confidential

(
._,"

~

\
I

o

o

Illustrations

Figure 1-1. Structure of a Command Line Token List
Figure 1-2. Model for Parsing the Command Line
Figure 3-1. Using LOGIN System Calls in Proper Sequence

Apollo Confidential

1-2
1-3

3-12

Tables

Table 1-1. System Calls to Initialize the CL Manager
Table 1-2. CL Options
Table 1-3. Setting Wildcard. Options
Table 1-4. Miscellaneous CL System Calls
Table 2-1. FU System Calls to Operate on Files and Trees
Table 2-2. FU Options To Provide Shell·Command Options
Table 4-1. Difference Between LOADER and PGM_$INVOKE System Calls
Table 4-2. PM_$LOAD Options
Table 5-1. RWS System Calls to Allocate Dynamic Storage
Table 5-2. Summary of Types of Storage Allocation

Apollo Confidential

/'

\,

1-4

1-6

1-8

1-17

2-2
2:-3
4-2
4-2
5-2
5-3

("

\ '-_ .. '

o

o

Examples

Example 1-1. Redefining the CL Options Set
Example 1-2. Initializing CL with CL_$SETUP and CL_$PARSE_LINE
Example 1-3. Initializing CL with CL_$SETlTP and CL_$PARSE_INPUT
Example 1-4. Using CL_$GET _ENUM_FLAG
Example 1-5. Getting Arguments Associated with Flags
Example 1-6. Reading Arguments from the Token List
Example 1-7. Sample Program Using CL System Calls
Example 2-1. Setting FU Options
Example 2-2. Operating on Files and Trees with FU Calls
Example 3-1. Declaring External I/O Routines for LOGIN _ $LOGIN
Example 3-2. Writing LOGIN External I/O Routines for LOGIN _ $LOGIN
Example 3-3. Performing a Log-In Operation with LOGIN _ $LOGIN
Example 3-4. Providing I/O Routines for LOGIN _ $LOGIN
Example 3-5. Using LOGIN Calls to Change ACCOUNT Files
Example 4-1. Returning a 16-Bit Value with PM_$CALL
Example 4-2. Loading and Calling a Program
Example 4-3. Setting Name and Priority of a Process
Example 5-1. Allocating Storage with BAF System Calls

Apollo Confidential

1-7

1-9
1-10
1-13
1-15
1-16
1-18

2-5

2-6

3-2

3-3
3-5

3-8

3-14
4-3
4-4

4-7

5-6

\ ..

1'----

U
Part I. Using the DOMAIN Advanced System Calls

o

o
Apollo Confidential

\ _-

C)

o

o

Chapter 1
Parsing the Command Line

The Common Command Line Handler (CL) is a set of DO:MAIN system routines that provides an
easy and consistent way to read tokens from the command line. CL can perform the following:

• Expand wildcards to existing pathnames

• Handle derived names

• Handle names-file input when the user specifies the ••• operator

• Parse command lines from the keyboard or specified files.

Before reading this chapter, you should be familiar with the user-visible features of CL. These
features are described in detail in the DOMAIN System Command Reference manual and the
DOMAIN System User's Guide.

CL calls are often used in conjunction with File & Tree Utility (FU) calls. For more examples of
the CL, you might want to refer to Chapter 2, Using the File and Tree Utility (FU).

1.1. System Calls, Insert Files, and Data Types

To use the CL manager,· use the system calls with the CL prefix. This chapter describes how
most of these calls work. For details on CL call syntax, da.ta types, and error messages, see Part
II of this manual.

'Vhen using CL system calls in your program, you must specify the appropriate insert file for the
language your are using. The CL insert files are

/SYS/INS/CL.INS.C
/SYS/INS/CL.INS.FTN
/SYS/INS/CL.INS.P AS

for C.
for FORTRAN.
for Pascal.

1.2. Overview or the CL Manager

Before we describe how the CL manager works, we need to define a few terms that it uses.

A token is a text string that CL reads from the command line and parses according to the Shell
parsing rules.

A names-tile is a text file containing pathnames. CL rea.ds the contents of a names-file as if it
appeared on the command line. Tokens in a names-file can be delimited by spaces, or the
NEWLINE character.

A nag is a token beginning with the hyphen, -. - Flags allow you to specify special actions so
that the user can make optional choices on the command line.

Apollo Confidential 1-1 Parsing the Command Line

While we refer to hyphenated words as flags, the DOMAIN System Oommand Reference manual
refers to them as options. Also, some CL system calls refer to nags as keywords.

An argument is any token that is not a nag.

A wildcard-name is an argument that represents one or more existing pathnames. CL accepts
wildcard characters as part or pathname arguments, and expands them to pathnames. These
wildcard characters are listed in the DOMAIN System Oommand Reference manual.

A derived name is a name that is derived from another name. For example, Shell commands

handle derived names with the = wildcard. The Shell command line $ cpr name =.derived
copies the file -name- to -name.derived. - For details on derived names, see the DOMAIN
System Oommand Reference manual.

When the CL manager reads the command line, it places each token from the command line and
any names-files into an individual token record. The token records form a linked list or token

list, which resides in scratch space. Initially, the token pointer points to the head of the list.
When using CL system calls to read tokens rrom the list, the token pointer keeps track of the
most recent token read.

Figure 1-1 shows the structure of a token list.

Command line: comma.nd a.rgument argument -flag *names-f1le

Token List:

Command Argument Argument -Flag Name from Name from
names-file names-file

t Token Pointer

Figure 1-1. Structure or a Command Line Token List

Once you initialize the CL, you make other CL calls to read the flags and names from the
command line. When making these calls, the CL refers to the token list, not the command line or
names-files.

NOTE: CL does not expand wildcards at ini t1alization because 1 t
cannot determine which tokens represent names. Wildca.rd
names and derived names are expanded later.

When you make calls to get tokens, CL checks the token list ror the token and marks it ·used.
Usually, once CL marks a token used, you cannot rerer to it again. You can refer to a used token
when handling derived names, or using any or the CL _ $REREAD system calls. See Part IT of
this manual for details.

When using the CL manager to parse your command line, you usually perform the following
steps:

Parsing the Command Line 1-2 Apollo Confidential

o

o

1. Use CL _ $INIT to initialize the token list on which all subsequent CL calls operate.

2. Use the appropriate GET _FLAG system call to read the token list for flags.

3. If flags require arguments, get the associated arguments using the appropriate call:
CL _ $GET NM1E for pathnames, CL $GET Nm1 for numbers, or
CL _ $GET _ARGS for character strings.

4. Check the token list for unclaimed flags with CL_$CHECK_ UNCLAIMED.

5. Establish a loop to read the token list for arguments using the appropriate system
call: CL _ $GET _ NAME for pathnames, CL _ $GET _ NUM for numbers, or
CL _ $GET _ARGS for character strings.

Figure 1-2 shows the basic model of for parsing the command line using CL calls. The next few
sections describe these calls in detail.

{ List include files. CONST. VAR sections}

BEGIN { Main }

eI $init (. . .);

{ Get speCified flags. }

IF eI_$get_nag (..)THEN ..

{ Get argument associated with flag. }

IF eI_ $get _ nag (. . .) THEN BEG IN

IF NOT cl_$get_arg (...)
THEN error_routine

ELSE { Convert to desired type. if necessary.
Handle arguments. }

END; { if }

{ Check for any erroneous options that the user spEcified. }

cl Scheck _ unelaimed;

{ Establish a loop to read names or other arguments. }

DO BEGIN

{ Do work here. }

END; { do begin}
END . {Program}

Figure 1-2. Model for Parsing the Command Line

Apollo Confidential 1-3 Parsing the Command Line

If an error occurs during a CL system call, CL prints an error message and performs a
PGM_$EXIT and terminates your program. To prevent your program from terminating, you
can set up a clean-up handler, as described in the Programming with General System Call8
manual.

The next sections describe how to use specific CL calls to initialize the CL manager and get
tokens from the token list.

1.3. Initializing the CL Manager

When using the CL manager to handle the command line, you must first initialize it by calling
CL _ $INIT or CL _ $ SETUP . CL _ $INIT initializes CL and parses the command line according
to the Shell parsing rules.

CL _ $SETUP is like CL _ $INIT in that it initializes CL manager, but it doesn't parse the
command line. It allows you to supply a dirrerent source for the tokens, for example, from a file
or interactively from the keyboard. You supply the additional CL parsing routines to perform the
parsing. (For details, see Section 1.3.3.)

When you initialize CL, you can specify certain options to control how CL reads the tokens from
the command line. These options affect how CL interacts with the user. For example, you can
tell CL not to expand any wildcards, or to verify each pathname it reads with the user.

Table 1-1 lists the various CL calls that you can use to initialize CL and set up options. Sections
1.3.1 and 1.3.2 describe the options you can specify when initializing the CL manager. Section
1.3.3 is an example of initializing CL.

Table 1-1. System Calls to Initialize the CL Manager

System Call Name

CL_$INIT

CL_$SETUP

CL _ $P ARSE _LINE

CL_ SPARSE _INPUT

Parsing the Command Line

Description

Initializes the command line handler, parsing the
command line according to the Shell parsing rules.

Initializes the command line handler, but does not
load anything to parse. Use this call when the
tokens come from a file or keyboard instead of
the command line. You call one of the following
CL parse calls to specify where the tokens are.

Supplies the line for CL to parse. On
subsequent calls, CL returns information from
this line. It discards any previous arguments.

Reads a line from the specified stream ID
and hands it to CL_$PARSE_LINE.
Returns TRUE if successful, FALSE if it
encounters the end-of-file character.

1-4 Apollo Confidential

\...

o

o

Table 1-1. System Calls to Initialize the CL Manager, Cont.

System Call Name

CL _ $P ARSE _ARGS

CL _ $SET _ WILD _ OPTIONS

CL _ $SET _DERIVED _ COUNT

CL _ $SET _ OPTIONS

CL _ $RESET _ OPTIONS

1.3.1. Defining CL Options

Description

Gets arguments from the keyboard. Use
this after getting arguments with
CL _ $GET _ARG. This call disregards the
first argument, because it assumes that it is the
command name.

Defines the wildcard options for the
wildcard manager.

Defines a character string prefIX to add before
each name specified on the command line. For
example, you might want to add the prefIX
/sys/print, to names on a print queue command.

Specifies the number of derived names allowed
to follow each wildcard name. The default value
is!.

Adds specified options to the OL option set defined
in the CL $INIT or CL $SETUP call.

Replaces the previously defined OL option set
with the specified CL option set.

You can control how the CL reads the command line by specifying OL options with the
OL _ $INIT or CL _ $SETUP call. You can let CL define a set of these options automatically, by
specifying the default empty brackets, []. Or, you can specify alternative OL options, by listing
the CL options in the brackets.

Table 1-2 lists the default set of options, and their alternatives. Note that you can specify only
one alternative per default option; the alternatives are mutually ~xclusive.

Apollo Confidential 1-5 Parsing the Command Line

Table 1-2. CL Options

Default Option

CL _ $WILDCARDS
Causes CL_$GET_NAME to expand
wildcards and return the expanded
names.

CL_$NO_MATCH_ WARNING
Displays a warning message on
error output when a wildcard
does not match existing
pathnames.

CL_$VERIFY_NONE
CL _ $GET _ NAME does not
verify any names with the
by user.

CL_$STAR_N~S

Allows the user to specify
names-files with the
.. *.. operator.

CL_$KEYWORD _DELIM
Prevents CL_SGET_ARG
and CL _ $ GET _NAME
from returning an II unused II
flag as an argument. The
calls return FALSE if they
fmd a flag.

CL_SDASH_NOP
CL treats the hyphen 11- II as a
name. Normally, the hyphen is an
identifier for the standard
input stream.

Parsing the Command Line

Mutually-Exclusive Alternatives

CL_$NO_ WILDCARDS
Causes CL_$qET_N~ to return
wildcard-names verbatim; it does
not expand them.

CL_SNO_MATCH_OK
Displays no warning or error
message when a wildcard does not
match existing pathnames.

CL_SNO_MATCH_ERROR
Displays an error message on
error output, and terminates
the program when a wildcard
does not match an existing
pathname.

CL _ $VERIFY _WILD
CL _ $GET _ N~ verifies
only names expanded
wildcards with the user.

CL_$VERIFY _ALL
CL _ $GET _ N~ verifies all
names with the user.

CL_SNO _STAR_N~S
Does not allow users to
specify names-files. Treats the
• *. just like any other character.

CL _ SNO _KEYWORD _DELIM:
Causes no special treatment
of unread flags by
CL_SGET_ARG and
CL_SGET _N~. The procedures
return the flags as if they
were arguments.

CL_SDASH_NAMES
CL reads names from
l:itandard input when it finds
a hyphen.*

1-6 Apollo Confidential

o

o

_ .. _- •. _--.. ,,----.. _--

Table 1-2. CL Options, Cont.

Default Option

CL_$DASH_DFT _NOP
Suppresses any special action when
there are no arguments on the
command line.

CL _ $NO _ COMMENTS
Causes no special treatment
of characters enclosed
in brackets.

Mutually· Exclusive Alternatives

CL_$NAME_DFT_STDIN
Causes CL to read names
from standard input if no arguments
appear on the command line. *

CL _ $COMMENTS
Causes CL to ignore all
characters enclosed in brackets
when reading a names-file. Do not
use this in commands that accept
derived names because you must
use brackets to specify the
tag expressions you want to
use in a derived name.

* Made available to remain compatible with previous software releases.
Obsolete for new software development.

-._----- ------. - ---

You can add options to the current CL option set at another time during your program by using
the CL _ $SET _ OPTIONS call. H you want to remove options from the current CL option set,
you can specify an entirely new set of CL options with CL _ $RESET _ OPTIONS.
CL $RESET OPTIONS replaces the previously defined CL option set with the option set
specified in the call.

Example 1-1 shows how a program changes the set of CL options.

Initialize CL with specified CL options:

This CL options set contains CL _ $NO _ WILDCARDS, plus
the default options: CL_$VERIFY _NONE, CL_$STAR_NAMES,
CL_$KEYWORD_DELIM, CL_$DASH_NOP, CL_$DASH_DFT_NOP,
CL $NO COMMENTS.

cl_$init ([cl_$no_wildcards). {Returns wildcards literally}
program name. { Name of program }
sizeof(program_name»; { Length of program name}

Add to the current set or CL options:

This CL options set adds 01_ $~RIFY _ALL to the option set listed above:

{ Verify all names }

Example 1-1. Redefining the CL Options Set

Apollo Confidential 1-7 Parsing the Command Line

----_.

Replace the cW'rent list of options with a new set:

This CL options set contains the default set of options: CL _ $WILDCARD S,
CL_$VERIFY _NONE, CL_$STAR_NAMES, CL_$KEYWORD_DELIM,
CL_$DASH_NOP, CL_SDASH_DFT_NOP, CL_$NO_CO~NTS.

Example 1-1. Redef'"ming the CL Options Set, Cont.

1.3.2. Deiming Wildcard Options

When you initialize the CL manager, it defines a deCault set of wildcard options that determine
how the wildcard manager expands wildcards. You can change how the CL wildcard manager
expands wildcards by specifying other wildcard options with the CL _ $SET _ WILD _ OPTIONS
system call.

Table 1-3 lists the wildcard options available. You can list any combination of wildcard options
with CL _ $SET _ WILD _ OPTIONS. Note that you must specify all the wildcard options you
want in efrect, including the default options.

Table 1-3. Setting Wildcard Options

Default! Wildcard Option Wildcards match:

Yes CL $WILD FILES Names of files. - -
Yes CL $WILD DmS Names of directories. - -
Yes CL $WILD LINKS Names of links. - -

No CL - $WILD - EXCLUSIVE Only the highest directory
of a given wildcard. This is useful for
commands that operate on entire
directories such as COpy TREE. -
Since it operates on all
subdirect.ories, there's no
need to match further.

No CL_$WILD_ CHASE - LINKS
Files and directories pointed to by links.

No CL - $WILD_ FffiST Only the first name of a given
wildcard rather than expanding
all names.

1.3.3. Example of Initialising the CL Manager

Normally, you initialize the CL manager with CL _ $INIT so that CL can parse the command line
automatically. (See Example 1.7 for a sample program using CL_$INIT.) Examples in this
section show how to initialize the CL manager with CL _ $SETUP, and supply the lines to parse.

Parsing the Command Line 1-8 Apollo Confidential

o

o

o

Example 1-2 is a program segment using CL _ $SETUP to initialize the CL, and
CL _ $P ARSE _ LINE to supply the arguments for parsing. Instead of reading the command line
for arguments, this program asks the user to supply a filename that contains the arguments to
parse. It gets the file with STREAM calls, and then parses each line in the file with
CL $PARSE_LINE.

Inolist;
'include '/sys/ins/base.ins.pas';
'include '/sys/1ns/streams.1ns.pas';
'include '/sys/1ns/cl.1ns.pas';
linclude '/sys/1ns/Vfmt.ins.pas';
linclude '/sys/1ns/pgm.1ns.pas';
linclude '/sys/ins/error.ins.pas';
Ilist;

CONST
program_name = 'cl_parse_line';

VAR
pathname
name len
buf
ret_ptr
ret len
seek_key
stream id
status

name _ $pname _ t ;
integer;
name _ $pname _ t ;
-name _ $pname _ t ;
integer32;
stream_$sk_t;
stream_$id_t;
status_$t;

PROCEDURE check_status; { Error handling procedure ====--=--===--=========== }

BEGIN { Main ==========--=======--==------------ :===- ---}

{ Initialize CL with the default options. but don't parse the command line. }

cl_$setup([]. program_name. sizeof(program_name));

{ Set wildcard options. Note. if you want more than the default wildcard
options. you must specify all the wildcard options that you want. }

cl_$set_wild_options ([cl $wild files.
Cl-$Wild-dirs.
cl-$Wild-links.
Cl=$Wild=firstJ);

{ Ask user for the file containing the lines. }

writeln C' Enter the file containing the command line arguments.');

Example 1-2. Initialising CL with CL_$SETUP and CL..;.,$PARSE_LINE

Apollo Confidential 1-9 Parsing the Command Line

vfmt_$read2 (·I--Iekal.·, count, status. pathname. name_len);
check_status;

{ Open file to parse and get lines. }

stream_$open (pathname, name len, stream $read. stream_$no_conc_wr1te.
stream_1d, status); -

WHILE (status.all = status_$ok) DO BEGIN {Read lines until end-of-fi1e. }

stream $get rec(stream 1d, addr(buf), sizeof(buf). ret_ptr.
- - ret_len. seek_key. status);

END.

IF (status.code = stream Send of file) AND
(status.subsys = stream $SUbS) THEN EXIT;

check_status;

{ Parse the line before the NEWLINE character. }

cl_$parse_11ne' (ret-ptr-.
ret len -1);

END; {while}

stream_$close (stream_1d. status);
check_status;

Example 1-2. Initializing CL with CL_$SETUP and CL_$PARSE_LINE, Cont.

While CL _ $P ARSE _LINE is useful for getting command line arguments from a file,
OL _ $P ARSE _ INPUT is useful for getting command line arguments interactively. The
advantage of using CL _ $P ARSE _ INPUT over CL _ $P ARSE _ LINE is that it gets the line to
parse and parses it in one step. (CL_$PARSE_LINE requires that you supply the line to
parse.)

Example 1-3 is an example of initializing the CL with CL_$SETUP and CL_$PARSE_INPUT.

"nolist;
"include ·/sys/1ns/base.1ns.pas·;
"include ·/sys/1ns/streams.1ns.pas·;
"include ·/sys/ins/cl.1ns.pas·;
"include ·/sys/ins/vfmt.ins.pas·;
"include ·/sys/1ns/pgm.1ns.pas·;
"include ·/sys/ins/error.1ns.pas·;
"list;

CONST
program_name = 'cl-PLrSe_input';

Example 1-3. Initialising CL with CL_$SETUP and CL_$PARSE_INPUT

Parsing the Command Line 1-10 Apollo Confidential

()

o

o

VAR
ok
null line

boolean;
boolean;

BEGIN { Main }

{ Initialize the CL. but don"t parse the command line. }

cl_$setup ([cl_$no_match_error]. {Terminate program when wildcards
do not match any existing pathname. }

program_name. { Name of program }
sizeof(program_name»; { Length of program name}

{ Get the line to parse from standard input. }

END.

writeln (, Enter a command option or NEWLINE.');

{ Parse the input. }

ok := cl_$parse_input (stream $stdin.
nUll_line);

IF null line THEN
vriteln ('No input. Terminating program. e);

Example 1-3. Initializing CL with CL_SSETUP and CL_$PARSE_INPUT, Cont.

1.4. Getting Flags

After initializing t.hp. CJ, manager, you usually check for any flags the user might have specified.
The three CL calls that check for flags are the following:

CL $GET _FLAG
Checks for a specified flag, marks it used, and counts the number of tokens
following it, up to the next flag or the end of the list.

CL $CHECK_FLAG
Checks for a specified flag, marks it used, and checks for correct number of
tokens following it.

CL $GET ENUM FLAG
Scans the token list for one of several flags the caller might have specified. It
counts the number of tokens following it, up to the next flag or the end of the
list.

Your program can accept an abbreviated or full version of any flag by using brackets. For
example, the string --br[ief]- allows the user to specify either --br- or --brief.- CL will return
an error if the user specifies --brie.-

Apollo Confidential 1-11 Parsing the Command Line

NOTE: You must use lowercase letters when defining flags with a GET_FLAG
system call. CL will not recognize uppercase letters. However.
the user can type either uppercase or lowercase letters.

Another way to get arguments associated with a flag is to specify CL _ $NEXT as the first
argument in the CL_$GET _ARGS or CL_$GET _NAME system calls. See Section 1.5 for
details.

CL_$GET _FLAG and CL_$GET _ENUM_FLAG returns the number of tokens following the
flag, up to the next flag. Note that these calls count the number of tokens on the command line
only. The count does NOT include names expanded from wildcards.

Normally, you use the GET_FLAG calls to get the nags from the token list before getting the
names. In this case, after you make the calls to get the flags, you call
CL_$CHECK_UNCLAIMED. CL_$CHECK_UNCLAIMED checks for any invalid flags the
user might have specified. CL prints an error message on error output and aborts the program if
it finds any unclaimed flags.

There is one case where you might not want to call CL_$CHECK_ UNCLAIMED: When you
use the CL_$GET _FLAGGED _DERIVED _NAME call to associate a flag with a particular
name, you cannot call CL _ $CHECK_ UNCLAIMED before getting the names. For more
information on this call, see Section 1.5.

Sections 1.4.1 and 1.5.1 include Pascal examples of getting flags. Section 1.4.1 shows how to use
the CL_$GET _ENUM_FLAG system call to define synonymous options that require the same
program action. Section 1.5.1 shows how to get an argument associated with a specific flag. See
Section 1.7 for a sample program using other GET _FLAG system calls.

1.4.1. Example of Handling Synonymous Flags with CL_$GET _ENUM_FLAG

Example 1-4 shows how to use the CL_$GET _ENUlvf_FLAG system call to define
synonymous options that require the same program action. The CL _ $GET _ ENUM _ FLAG
allows you to specify an action if the user typed one of several flags. For example, the flags
--error- and --fault!" wight both require the same action. Each time you call
CL_$GET _ENUM_FLAG system call, CL looks for the specified flags on the token list. If it
finds any flag specified, it returns the index of the flag in the list, and stops searching. If it does
not find a specified flag, it returns a zero.

You can find out which flag the user actually typed in one of the the following ways: You can
manipulate the index, since the CL_$GET _ENUM_FLAG call returns the index of the flag
found. Or you can use the CL_$GET _FLAG_INFO system call to get the exact text that the
user wrote. This example uses the CL_$GET_FLAG_INFO system call to see what the user
actually typed.

Parsing the Command Line 1-12 Apollo Confidential

,/

i--'"
I

\ ..

') C
"

o

o

PROGRAM cl get enum flag;
~include 7/syS/ins7cl.ins.pas';

VAR
report
number
flag_ptr
flag_len

integer;
integer;
-string;
integer;

{ Report message if the user types the -mes[sage) or -rep[ort) flags. }

report := cl_$get_enum_flag (cl_$first, '-mes[sage) -rep[ort) X', number);

{ Check for any undefined flags that the user might have typed. }

IF report <> 0
THEN BEGIN

vriteln (, This is the message you requested .•);

cl_$get_flag_info (flag_ptr,
flag_len);

vriteln ('You typed the option: • flag_ptr- flag_len);

END;

1.5. Reading Arguments

After you get the flags to handle the options that the user specified, you get the remaining
arguments on the token list. To do so, call one of the following system calls:

CL $GET NUM
Gets the next unused integer from the token list; converts it from a decimal to

a 4-byte integer.

CL $GET NMm
Gets the first or next unused name from the token list. It expands wildcards.

CL $GET_ARG
Gets the first or next unused argument from the token list, in character string
format.

Apollo Confidential 1-13 Parsing the Command Line

To get the arguments, you normally use the system call within a loop. This way, CL will
continue to scan through the token list and return arguments until there are none left.

Where the CL _ GET calls begin the search depends on whether you set the first argument of the
call to CL _ $FIRST or CL _ SNEXT. If you specify CL _ SFmST, CL begins searching from the
head of the list each time it scans the token list. If you specify OL _ SNEXT, it begins the search
at the token pointer, which is set to the last token read. Normally, you use CL_SNEXT when
you want the argument adjacent to the last token read.

Sections 1.5.1 and 1.5.2 demonstrate ways to get arguments from the command line.

1.5.1. Getting Arguments Associated with Flags

You can get arguments associated with nags by using a either the CL_SGET _ARG,
CL_SGET _NAME, or CL_SGET _NUM system call.

Use CL _ SGET _ NAME if you expect a pathname, and CL _ SGET _ NUM if you expect a
decimal number. If you want to accept both names or numbers, you can use CL_$GET _ARG.
Since CL _ $GET _ARG returns argumentS in character string format, it will accept any
argument. You can then convert the argument to the desired type. (The system call
VFMT _ SDECODE2 allows you to convert variables to another type.)

Example 1-5 uses a CL_$GET _ARG, specifying CL_SNEXT as the first argument, so that
CL _ $GET _ARG 'will get the next argument after the --copies- flag. Then it uses a
VFMT _ $DECODE system call to convert the string into a number. Note that we could have
used CL_$GET_NUM: to get the number directly, but CL_SGET_ARG assures that we get
the token immediately following the flag.

Parsing the Command Line 1-14 Apollo Confidential

,/

"'.. ./

--------------------_. _ ... _--_ ... _------_. ----_._--_._-

o

o

~include '/sys/ins/cl.ins.pas';

VAP.
num_args
copies_string
copies_len
copies_num
hunoz
hucares

integer;
string;
integer;

integer;
integer;

: integer;

BEGIN { Main }

IF cl_$get_flag ('-cop[ies]'. num_args) THEN
BEGIN
IF NOT cl_$get_arg (cl_$next.

copies_string,
copies_len.
sizeof(copies_strlng»

THEN BEGIN
writeln (' You must specify a number after --copies. N

');

pgm $set severity (pgm $error) ;
pgm=$exit -
END;

{ Convert copies_string to a number. }
hunoz := vfmt_$decode2 ('~wd%.', { control string}

copies_string, { To convert}
copies_len,

END;

hucares,
status,
copies_num, {converted}
o);

Example 1-5. Getting Arguments Associated with Flags

1.5.2. Getting Derived Names

If your program expects derived names, you can retrieve them using one of the following
GET _DERIVED NAME calls:

CL $GET_DERIVED NAME
Gets the next derived name associated with the last name returned from
CL $GET NAME.

CL $GET _FLAGGED _DERIVED NAME
Gets the next derived name associated with the specified flag, and the last
name returned from CL $GET NM1E.

Apollo Confidential 1-15 Parsing the Command Line

The following example shows how to use the CL _ $GET _ NAME,
CL_$GET_DERIVED_NAME, and CL_$GET_FLAGGED_DERIVED_NAME system
calls. This program expects two arguments, the second name is a derived name from the first
argument. If the user supplied the -·list- nag, it prints out the second name.

~include '/sys/ins/cl.ins.pas';

VAR
select
count
name
len
num_args

cl_$arg_select_t;
integer;
array [1 .. 2] of name_$pname_t;
array [1 .. 2] of integer;
integer;

BEGIN { Main }
{ Initialize the CL manager}

{ Get flags except '-l[ist]'}

{ Get first argument. }
select := cl $first;
WHILE cl_$get_name (select.

DO BEGIN

name [1].
len [1].
sizeof(name [1]»

{ Get second argument. Check to see if it is a derived
name. If it is. change name to derived name. }

select := cl $next;
IF cl_$get_derived_name (name [2].

len [2].
sizeof(name [2]»

THEN {Use FU manager to copy file }

IF cl_$get_flagged_derived_name (·-l[ist]·.

THEN BEGIN

cl $required.
name[2].
len[2].
sizeof(name[2]»

IF len[2] = 0 THEN { Command line error}
vriteln ('You can supply only one derived name per flag ..)

ELSE {Write name }
vfmt $wri te2 ('Ilal.'.

- name[2].

END; { begin }
END; { begin }

len[2]);

Example 1-8. Reading Arguments trom the Token List

Parsing the Command Line 1-16 Apollo Confidential

\
\.

r--',
(

\.

c)

o

o

--- ---

1.6. Using Miscellaneous CL Calls

The following is a list of miscellaneous CL calls that may be useful. The sample program in
Section 1.7, as well as other examples in this chapter, shows how many of these calls work.

Table 1-4. Miscellaneous CL System Calls

System Call

CL_$VERIFY

CL_$SET_ VERB

CL $GET FLAG INFO

I
I I CL_$GET_NAME_INFO

I

CL_$MATCH

I CL_$GET_SET

CL_$SET_STREAMS

CL_$REREAD

CL _ $REREAD _NAMES

Apollo Confidential

")escription

Verifies with the user that the program
is supposed to operate on this name.

Defines a verb for CL to display before
each pathname when querying the user for
names.

Returns the actual text of the previously
returned flag.

Returns information about the previously
returned name. Determines whether the user
supplied a full pathname or wildcard name on
the command line.

Compares a token against a specified string.
Useful for cases where the command line
logic is too complicated for CL to handle.

Creates a set to compare two
character strings.

Tells CL to use the specified streams
as the defa.ult input and output channels.

Ma.rks the entire token list • unused U so the
flags, names and arguments can be read again.

Marks all names II unused U so the
names can be read again. The next
CL _ $GET _ NAME call returns the
first name on the list.

Marks all the flags • unused • so the
flags in the token list can be read again.

1-17 Parsing the Command Line

1.7. Sample Program Using CL System Calls

Example 1-7 uses CL system calls to parse the command line. It also uses File and Tree Utility
(FU) system calls to copy a file. This program checks to see if the user specified a derived name,
and copies the file to the new extension. For more information on FU system calls, see Chapter
2, Using the File and Tree Utility (FU).

"nolist;
"include
"include
"include
"include
"include
"include
"list;

·/sys/ins/ubase.ins.pas·;
·/sys/ins/vfmt.ins.pas·;
·/sys/ins/error.ins.pas·;
·/sys/ins/pgm.ins.pas·;
·/sys/ins/cl.ins.pas·;
·/sys/ins/fu.1ns.pas·;

CaNST

VAR

name_max = 32;
program_name = 'copy_derived_names';

select
count
name
len
no_args
status

fu_opts
fu context

cl_$arg_select_t;
integer;
array [1 .. 2] of name_$pname_t;
array [1 .. 2] of integer;
integer;
status_t;

fu_$opt_set_t;
fu_$context_t;

{ Internal Procedure -- Print_error ========--==--==================}
PROCEDURE print_error;

BEGIN

END;

pgm_$set_severity (pgm_$error);
pgm_$exit;

{ *** }

BEGIN { Main }

{Initialize CL with the default set of CL options. }

cl_$ini t ([].
program_name.
sizeof (program_name));

Example 1-7. Sample Program Using CL System Calls

Parsing the Command Line 1-18 Apollo Confidential

- - - -- .. _- -.. - -- ._-_ .. ,~-~ ····· __ ··~_.~. __ .·.4.~ .•• ~._.~ ~. __ ~.~~. __ .~ __ ~~_ ~ ___ .. ____ ~. __ •. ~ ... _~ .,,~._._ ~~._.

o

o

o

. .. _ ... _-_._-.--_._--._._----------_ .. _-_ .. _--------

fu_$set_prog_name (program_name, sizeof (program_name));
fu_opts := ([fu_$coe,

fu_$print_errors,
fu $dacl,
fU=$SUbS]);

{ Set verb for query in case user uses wildcards. }
cl_$set_verb ('Copy', 4); {Verb, length of verb}

{ Allow the user to specify only 1 derived name after each wildcard name. }
cl_$set_derived_count (1);

{ Set the verify option that the user specifies. }

IF cl_$get_flag ('-qa[]', no_args) THEN {Query all names}
cl_$set_options([cl_$verify_all]);

IF cl_$get_flag ('-qw[]', no_args) THEN {Query names expanded by wildcards}
cl_$set_options ([cl_$verify_wild]);

IF cl_$get_flag ('-nq[]', no_args) THEN {No Query}
cl_$set_options ([cl_$verify_none]);

{ Check for any invalid flags; exit if the user specified any. }
cl_$check_unclaimed;

{ Get first name from the token list. }
select := cl $first;
WHILE cl_$get_name (select.

DO BEGIN

name [1].
len [1].
sizeof(name [1]»

{ Get second name. Copy the first name to the
second name. }

select :=cl_$next;
IF cl_$get_derived_name (name [2].

THEN BEGIN

len [2].
s1zeof(name [2]»

fu_$copy_file (name [1].
len [1].
name [2].
len [2].
fu_opts.
fu context.
status);

IF status.all <> 0 THEN
BEGIN

print_error; { FU error message}
END;

writeln (name[2] :len[2] , • created. '); { Confirm}
END; { then begin}

END; { while }
END . {Program}

Example 1-7. Sample Program Using CL System Calls, Cont.

Apollo Confidential 1-19 Parsing the Command Line

Output

The following is a sample output from the above program.

create_existing_fi1e created.

?(copy_derived_names) -nO_file- - name not found (OS/naming server)

test derived.chek created.

1$
I Verify wildcard -test?*-:

I Copy "test2" ? y

I (file) -test2.a11" deleted. {* Replaced contents of existing file. *}

I
TEST2.a11 created.

Copy "test2.a11" ? n {* Queries file just created. *}

Copy -test fu.chek- ? y

TEST FU.CHEK.al1 created.

Copy -test_tree" ? y

?(copy_derived_names) "test_tree" - object must be a leaf (US/file utility)

Example 1-7. Sample Program Using CL System Calls, Cont.

Parsing the Command Line 1-20 Apollo Confidential

o

o

Chapter 2
Using the File and Tree Utility

The File and Tree Utility (FU) is a set of DOMAIN system routines· that provides a consistent
way to handle files and directories. By using FU system calls, your program can handle certain
operations in the same way the Shell handles them so that you can provide your users with a
consistent interface. FU allows you to perform the following operations:

• Copy files.

• Copy, merge, and replace files and directories.

• Delete files and directories.

• Compare directories.

• Move files.

• Make a unique pathname by appending today's date.

Most of these system calls correspond to individual Shell commands. For more information on
these commands, see the DOMAIN System Oommand Reference manual.

This chapter provides an overview on using the FU subsystem and a sample program in Pascal.
It concludes with system call syntax, data type, and error information.

Since FU calls are often used in conjunction the Command Line Handler (CL), you might want to
see Chapter 1, Parsing the Command Line for more information on the CL.

2.1. System Calls, Insert Files, and Data Types

To use the File and Tree Utility, use the system calls with the FU prefix. This chapter describes
how most of these calls work. For details on FU call syntax, data types, and error messages, see
Part n of this manual.

When using FU system calls in your program, you must specify the appropriate insert file for the
language your are using. The FU insert files are

/SYS/INS/FU.INS.C
/SYS IINS /FU .INS.FTN
/SYS/INS/FU .INS.P AS

for C.
for FORTRAN.
for Pascal.

2.2. Overview of the FU System Calls

The File and Tree Utility (FU) allows you to perform common operations on files and trees using
DOMAIN system routines. When using FU, you often use the calls in the following order:

Apollo Confidential 2-1 Handling Files and Trees with FU

1. Initialize FU with FU _ $INIT to allocate temporary storage space required to perform
subsequent FU operations.

2. 'Identify your program name with FU _ $SET _PROG _NAME so that FU can
identify your program by name when reporting errors.

3. Use the various calls to operate on files and trees.

4. Release the storage space used by FU with FU _ $RELEASE _ STORAGE.

Table 2-1 lists the operations you can perform on files and trees. It also' lists each call's
corresponding Shell command.

Table 2-1. FU System Calls to Operate on Files and Trees

System Call Corresponding Operation

Shell Command

FU _$mJP - TREE CMT Compares a source tree to a target tree.

FU - $COPY_FILE CPF Copies a file from, the source pathname to
the target pathname.

FU - $COPY - TREE CPT Copies, merges, and replaces files,
directories, and links.

FU - $DELETE_FILE DLF Deletes a specified file.

FU $DELETE TREE DLT Deletes a tree and all its descendants. - -

FU - $MOVE_FILE MVF Moves a file to a different location in
the naming tree.

FU_$RENAME_UNIQUE CHN-U Renames a pathname to create a unique
name by appending today's date.

The FU system calls require that you specify the source and, where applicable, target pathnames
and pathname lengths. In addition, most calls require that you set FU options. The options
control how FU performs the operation. For example, you can set FU options to list files as they
are operated, or to set the ACL of the target files.

2.2.1. Setting FU Options

I

By setting FU options, you can provide users with options similar to those on the standard Shell
commands. To do so, use the CL_$GET_FLAGsystem call to check for the option; then set
FU options by assigning the appropriate predefined values to the FU _ OPTIONS variable. (See
Example 2-1.)

Table 2-2 lists the predefined FU options and their corresponding Shell options.

Handling Files and Trees with FU 2-2 Apollo eonfidential

Table 2-2. FU Options To Provide Shell Command Options

o FU Option Corresponding Operation
Shell Option

FU - $AFT - TTh1E -AFDATE Operates on only those objects
whose dtm (date/time last modified)
is after the given date and time.

FU - $BEF - TIME -BE DATE Operates on only those objects
whose dtm (date/time last modified)
is before the given date and time.

FU _$COE Not specifying If an error occurs while
-AE (Abort on processing a file, continues to
error) the next file. Most programs set

this option.

FU - $DACL -DACL Assigns default ACL to target files.
Target gets the same ACL as the parent
(destination) directory.

FU - $DEL - \VHEN - UNLKD -DU Deletes object when it becomes unlocked.

FU - $FORCE None Forces a copy in FU _ $MOVE if the
source and target files are not located

o on the same volume.

FU - $FORCE - DEL -F Forces deletion of a target during a
replace operation if user has protect
(apa) rights.

FU - $HELP None Displays detailed usage information.
(This has no affect under AEGIS, but
was added to provide help in a Boot
Shell utility.)

FU - $LIST - DffiS -LD Lists directories operated on.

FU - $LIST _FILES -LF Lists files operated on.

FU _ $LIST _LINKS -LL Lists links operated on.

FU - $LIST _D _DffiS -LDL Lists directories deleted as a
result of a replace operation.

o
Apollo Confidential 2-3 Handling Files and Trees with FU

Table 2-2. FU Options To Provide Shell Command Options, Cont.

FU Option

FU _ SLIST _D _FU,ES

FU _ SLIST _D _LINKS

FU_SLIST_DEL

FU~$MERGE

FU $MERGE DST

FU SPRESERVE DT

FU _ SPRINT _ERRORS

FU_SQUIT

FU_$RENAME

FU _ $REPLACE

FU_$SACL

FU_SSUBS

. Corresponding Operation
Shell Option

-LF Lists files deleted as a result
of a replace operation.

-DLL -L

-LDL -L

CPT-MS

CPT-MD

-PDT

None

None

-CHN

'-R

-SACL

-SUBS

Lists links deleted as a result
of a replace operation.

Lists objects deleted as a result of
a replace operation. This is
obsolete for new development; use
FU_SLIST_D_FU,ES, FU_$LIST_D_DmS
and FU _ $LIST _D _LINKS instead.

Merges source and target if both are
directories. For files and links with the same
name in source and target, it deletes the
target, and replaces it with a copy of
the source.

Merges source and target if both are
directories. For files and links with
the same name in source and target,
the target remains unchanged.

Preserves the source dtm (date/time last
modified) and dtu (date/time last used).

Prints errors on the error output stream.
Use this to report FU errors.

Terminates the program. (This has
no affect under AEGIS, but was added
to provide help in a Boot Shell utility.)

Changes the name of an existing object with
the target pathname before creating a copy.
If the target name exists, it appends
today's date to the target pathname.

Replaces target with a copy of the source.

Assigns ACL of source file to target file.
Target gets the same ACL as the source
file.

Retains the source ACL for objects that
belong to protected subsystems.

Handling Files and Trees with FU Apollo Confidential

I

\.

o

o

o

-----_. __ . __ .-._-_. __ ... __ ._. __ .. _---.. _-_._--_._ ------- .. -- .. ~ ..

Example 2-1 shows how to set FU options. After initializing FU, the program sets up a default set
of FU options. It then uses the CL_$GET _FLAG system call to check for the options on the
command line. H the user specified an option, it sets the appropriate FU option.

linclude '/sys/ins/base.ins.pas';
~include '/sys/ins/cl.ins.pas';
linclude '/sys/ins/fu.ins.pas';

CONST
program_name = 'fu_handle_f1les';

VAR
pathname
pathname_len
num_args
status
fu_opts

BEGIN { Main }

name _ $pname _ t ;
integer;
integer;
status $t;
fU_$opt_set_t;

{ Initialize the CL. }

{ Initialize FU. Set the program name so that FU calls can
identify the program name when reporting errors. }

fu_$set_prog_name (program_name,
sizeof(program_name));

{ Set up default FU options. }

fu $coe, { Continue on error}
fU-$print errors, {Print FU errors}
fU=$dacl,- { Target gets ACL of destination directory}
fu $subs]); {Retain source ACL for objects in protected

- sUbsytems }

{ Get options from command line and set FU options accordingly_ }

IF cl_$get_flag ('-r[]', num_args) THEN {Replace target with copy}
fu_opts := fu_opts + [fu_$replace]; { of source}

IF cl_$get_flag ('-sacl[]', num_args) THEN
BEGIN

fu_opts := fu_opts - [fu $dacl]; { Remove default option}
fu_opts := fu_opts + [fu-$sacl]; { Target gets same ACL as source}

END;
IF cl_$get_flag ('-dacl[)', num_args) THEN

fu_opts := fu_opts + [fu_$dacl]; { Target gets ACL of dest directory}
IF « [fu_$dacl. fu_$sacl] * fu_optS) = [fu_$dacl. fu_$sacl]) THEN

BEGIN
vriteln ('Invalid options: -dacl a.nd -sa.cl ar'e mutually exclusive.');
error_routine;

END;

Example 2-1. Setting FU Options

Apollo Confidential 2-5 Handling Files and Trees with FU

2.2.2. Releasing Storage with FU _ $RELEASE _ STORAGE

FU allocates read/write(RWS) storage space when copying files during the FU _ $OOPY _FILE,
FU _ $OOPY _ TREE and FU _ $MOVE _ FILE routines. (It needs this space for tables to keep
track or ACLs.)

This storage gets released automatically when your program 'terminates.
program performs numerous copy operations, we recommend
FU _ $RELEASE _ STORAGE to release the storage more often.

2.3. Sample Program l.Jsing the FU System Calls

However, if your
that you call

Example 2-2 is a sample program that uses FU system calls to perform common operations on
files and directories. It also uses Command Line Handler (OL) calls to parse the command line.
For more information on CL system calls, see Chapter 1, Parsing the Command Line.

This program allows the user to perrorm various FU operations. It asks the user to specify which
operation to perform, then it prompts the user for pathnames and options.

~nolist;

~include '/sys/ins/base.ins.pas';
~include '/sys/ins/streams.ins.pas';
~include '/sys/1ns/cl.ins.pas';
~include '/sys/ins/fu.ins.pas';
11nclude '/sys/ins/vfmt.ins.pas';
~include '/sys/1ns/pgm.ins.pas';
linclude '/sys/ins/error.ins.pas';
linclude '/sys/ins/time.ins.pas';
11nclude '/sys/ins/cal.ins.pas';
~list;

CONST
program_name = 'fu_handling_files_trees';

VAR
select
pathna.me
pathname len
num_ugs
st.a.t.us
comma.nd
comma.nd_len
ok
null_line
fu_opts ,
fu_context
fu_error
fu_error_len

cl_$arg_select_t;
name _ $pna.me _ t ;
integer;
integer;
sta.tus_$t;
string;
integer;
boolea.n;
boolea.n;
fu_$opt_set_t;
fu_$context_t;
name _ $pname _ t;
integer;

Example 2-2. Operating on Files and Trees with FU Calls

Handling Files and Trees with FU 2-6 Apollo Confidential

\
'-,

o

o

o

{ Internal Procedure -- Check_status =======================================
PROCEDURE check_st~tus;

BEGIN

IF status.all <> status_$ok THEN
BEGIN

error_$print (status);
pgm_$set_severity (pgm_$error);
pgm_$exit;

END;

END; { check_status }

{ Internal Procedure Get time

PROCEDURE get_time (OUT int clock

VAR
readable dt
date_string
date len
time_string
time len

BEGIN

cal_$timedate_rec_t;
string;
integer;
string;
integer;

{ Convert command line date string to readable format.
Date must be in year/month/daY'(85/09/15) format. }

cal_$decode_~scii_date (date_string. date_len. readable_dt.year.
readable_dt.month. readable_dt.day. status);

{ Convert command line time string to readable format.
Time must be in hr/min/sec 24-hour format (17:33:55). }

}

cal_$decode_ascii_time (time_string. time_le~ readable_dt.hour.
readable_dt.minute. readable_dt.second. status);

{ Convert re~dable date and time to internal time. }

cal $encode time (readable dt. int clock);
cal=$remove=local_offset (tnt_clock);

END; { get time}

Example 2-2. Operating on Files and Trees with FU Calls, Cont.

}

Apollo Confidential 2-7 Handling Files and Trees with FU

{ Internal Procedure -- Copy_file - - }

{ Copies source pathname to target pathname. By default. the target gets
the ACL of the destination directory. unless user specifies -SACL.
User can also preserve source's dtm/dtu times by typing -PDT. }

PROCEDURE copy_file;

VAR
new_pathname
new_pathname_len

BEGIN

name _ $pname _ t;
integer;

{ Set wildcard options. }
cl_$set_wild_opt1ons ([Cl_$wi1d_f11es]);

{ Re1n1t1al1ze default FU options. }

fu_opts := ([fu_$coe. { Continue on error}
fu_$print_errors. {Print FU errors}
fu $dacl. < { Target gets ACL of destination directory}
fU=$SUbS]); {Retain source ACL for objects in sUbsytems }

{ Get the filenames. }

wr1teln;
writeln (' Enter the name of the file you want to copy. then .);
writeln (' the name of the new file you want created .•);
writeln;
writeln;

_ wr1teln ('
writeln (.
writeln ('
wr1teln;
writeln ('
writeln (.
writeln ('
writeln;

Type --r(eplace]- if you want to replace the target with .);
the source. If target exists. it will be deleted. ');
If it doesn"t exist. it will be created. ');

Type --sacl- if you want the target file to have the .);
same ACL as the source file; otherwise the target .);
file will have the same ACL as its parent directory. ');

writeln (' Type--pdt- if you want to preserve the source file"s ');
writeln (. modification and used times. ');
writeln;

ok := cl_$parse_input (stream_$stdin. null line);

IF null_line THEN
wr1teln ('No input. Type CTRL/Q to quit.');

{ Get keywords. set appropriate FU options. Check for any invalid keywords;
and exit if user specified any. }

IF cl_$get_flag ('-r(eplace]I. num_args) THEN
fu_opts := fu_opts + [fu_$replace]; {Replace target with source}

Example 2-2. Operating on Files and Trees with FU Calls, Cont.

Handling Files and Trees with FU 2-8 Apollo Confidential

(
" \,

0

o

IF cl_$get_flag (·-sacl[]·. num_args) THEN
BEGIN

fu_opts - fu_opts - [fu_$dacl]; { Remove default option}
iu_opts - fu_opts + [fu_$sacl]; { Target gets same ACL as source }

END;
{ Preserve source's} IF cl_$get_flag ('-pdt [] • • num_args) THEN

fu_opts := fu,::..opts + [fu_$preserve_dt]; { mOdification and used times}

{ Get first argument. }

select

WHILE cl_$get_name (select. pathname. pathname_len. sizeof(pathname))
DO BEGIN

{ Get second argument and copy the file. }

select := cl_$next;

IF cl_$get_derived_name (nev_pathname. _nev_pathname_len.
sizeof(new_pathname))

THEN BEGIN
fu_$copy_file (pathname. { Source file }

pathname_len. { Length of source
{ Target file }

file }

nev_pathname.
nev_pathname_len. { Length of target file }
fu_opts. { FU options in effect
fu context. { Error context }
status); { Completion status }

check_status;

IF status.all = status_$ok THEN

vfmt_$vrite2 ('Copied to file named. "%a" %.' .
nev_pathname. new_pathname_len);

END; { then begin}
END; { while}

END; {copy_file}

}

{ Internal Procedure -- Copy_tree ==============-==== }

{ Copies source pathname to target pathname. }

PROCEDURE copy_tree;

new tree len
bef time
aft_time

name _ $pname _ t ;
integer;
time $clock t;
time:$clock:t;

Example 2-2. Operating on Files and Trees with FU Calls,. Cont.

Apollo Confidential 2-9 Handling Files and Trees with FU

BEGIN

{ Set verb for query in case user uses wildcards. }
cl_$set_verb ('Copy'. 4); {Verb. length of verb}

{ Set wildcard options. }
cl_$set_wild_options ([cl_$Wild_files. cl_$Wild_dirs. cl_$wild_exclusive]);

{ Reinitialize default FU options. }
fu_opts := ([fu $coe. { Continue on error}

fU=$print_errors. {Print FU errors}
fU_$dacl. { Target gets ACL of destination directory}
fU_$subs]); {Retain source ACL for Objects in subsytems }

{ Get the filenames. }

writeln (' Enter the name of the directory you want to copy. then ');
writeln (, the name of the new directory you want created. ');
writeln;
writeln (, Type --ms[]- if you want to merge the source and target ');
writeln C' if both are directories. ');
writeln;
writeln (, Type --r[eplace]- if you want to replace the target with ');
wri teln (, the source. If target exists. it will be deleted. ');
writeln (' If it doesn"t exist. it will be created. ');
writeln;
writeln (,
wri teln (,
writeln;
writeln (,
wr1teln (,
vriteln;
wr1teln (,
vr1teln ('
writeln;

Type --bef date time- if you want to copy only those files
modified· before a·certain date and time. ,) ;

Type --aft date time- if you want to copy only those files
modified after a certain date. ,) ;

Use this format for date time: yr/month/day hr:m1n:sec.
Example: -bef 85/11/27 12:35:09 source target ');

ok := cl_$parse_ihput (stream_$stdin. null line);

IF null line THEN
writeln ('No input. Type CTRL/Q to quit.');

{ Get keywords. set appropriate FU options. then check for any invalid
keywords; exit if user speCified any. }

{ Get flags and set appropriate FU options. }

IF cl_$get_flag (·-ms[]'. num_args) THEN {Merge target and source

,) ;

fu_opts := fu_opts + [fu_$merge]; if they are directories}
IF cl_$get_flag ('-r[eplace]'. num_args) THEN

,) ;

,) ;

fu_opts := fu_opts + [fu_$replace]; { Replace target with source}
IF cl_$get_flag ('-bef[]", num_args) THEN

BEGIN
get_time (bef_time); { Operate on files modified
fu_opta :=fu_opta + [fu_$bf_~1me]; before date}

END;

Example 2-2. Operating on Files and Trees with FU Calls, Cont.

Handling Files and Trees with FU 2-10 Apollo Confidential

i-----...'
1\
"

-----------_._----_ .. _----- -.-- ---------_._.

o

()

o

IF cl_$get_flag ('-aft[]'. num_args) THEN
BEGIN

get_time (aft time); .
fu_opts := fu_opts + [fu_$af_time];

END;
cl_$check_unclaimed;

{ Get first argument. }

select := cl_$first;

{ Operate on files modified
a.fter date }

WHILE cl_$get_name (select. pathname. pathname_len. sizeof(pathname))
DO BEGIN

{ Get second argument and copy the tree. }

select := cl_$next;

IF cl_$get_derived_name (new_tree. new_tree_len. sizeof(new_tree
THEN BEGIN

fu_$copy_tree (pathname. { Source pathname }

pathname_len. { Source pathname length
new_tree. { Target pathname }

new_tree_len. { Target pathname length
fu_opts. { Options }
bef_time.high. { Before time }
aft_time.high. { After time }
fu_error. { Error pathname }

fu error len. { Error pathname length
status); { Completion status }

check_status;

IF status.all = status $ok THEN
vfmt_$write2 ('Copied to directory named.·%a" %.' .

new_tree. new_tree_len);

END; { then begin}
END; { while}

END; {copy_tree}

}

}

}

{ Internal Procedure -- Delete file == }
PROCEDURE delete_file;

{ Delete specified file. }

VAR
force boolean;
del unlkd boolean;

Example 2-2. Operating on Files and Trees with FU Calls, Cont.

))

Apollo Confidential 2-11 Handling Files and Trees with FU

BEGIN

{ Set wildcard opt1ons. }
cl_$set_w1ld_opt1ons ([cl_$W1ld_f1les]);

{ Reinitia11ze default FU opt1ons. }
fu_opts := ([fu $coe, { Cont1nue on errqr }

fU:$pr1nt_errors, {Pr1nt FU errors }
fu_$dacl, { Target gets ACL of dest1nat1on d1rectory }
fu_$sUbs]); {Reta1n source ACL for Objects 1n sUbsytems }

{ Get the f1lename. }

wr1teln (' Enter the name of the f1le(s) you want to delete. ');
wr1teln (' Type -f[orce] 1f you want to force the delete. ,);
wr1teln (' Type -du 1f you want to delete a locked Object. ');

IF null l1ne THEN
wri teln ('No 1nput. Term1nat1ng program. ') ;

Get keywords and check for any 1nva11d keywordS;
exit if user specif1ed any. }

force := cl $get flag ('-f[orce]', num args);
del_unlkd :~ cl_$get_flag ('-du[]'. num_args);

{ Set verb for query 1n case user uses wildcards. }

cl_$set_verb ('Delete', 6); {Verb. length of verb}

{ Get first argument. }

select := cl_$first;

WHILE cl_$get_name (select. pathname. pathname_len. sizeof(pathname))
DO BEGIN

fu_$delete_file (pathname. { File to be deleted}

check status;

pathname_len. { Length of file }
force, { ~f TRUE, deletes file

del_unlkd.

status);

1f user has owner rights,
but not delete r1ghts. }

{ If TRUE, deletes file
even 1f 1t 1s locked. }

IF status.all = status $ok THEN

END; { wh11e }
END; {delete_f11e}

vfmt_$vr1te2 ('Deleted f1le named,-Ia- I.' ,
pathname, pathname_len);

Example 2-2. Operating on Files and Trees with FU Calls, Cont.

Handling Files and Trees with FU 2-12 Apollo Confidential

\""- .. '

o

o

o

{ Internal Procedure -- Delete_tree

PROCEDURE delete_tree;

{ Delete specified directory. }

BEGIN

{ Set verb for query in case user uses wildcards. }
cl_$set_verb ('Delete', 6); {Verb, length of verb}

{ Set wildcard options. }

}

cl_$set_wild_options ([Cl_$wild_files, .cl_$Wild_dirs, Cl_$wild_exclusive]);

{ Reinitialize default FU options. }

fu_opts := ([fu_$coe. { Continue on error}
fu_$print_errors. {Print FU errors}
fu_$dacl. { Target gets ACL of destination directory}
fu_$sUbs]); {Retain source ACL for Objects in sUbsytems }

{ Get the filenames. }

writeln;
writeln (' Enter the name of the directory you want to delete. ');
writeln (' Note that you will delete all the files. links and ');
writeln (' subdirectories located in this directory. ');
writeln;
writeln (' Type --l[ist]- if you want to list all the Objects as ');
writeln (' they are deleted. ');
writeln;
writeln (' Type --If- if you want to list only files as they are deleted. ');
writeln;

{ Get keywords. set appropriate FU options, then check for
any invalid keywords; exit if user specified any. }

IF null line THEN
writeln ('No input. Type CTRL/Q to quit. ');

IF cl_$get_flag ('-l[ist] I, num_args) THEN
fu_opts := fu_opts + [fu $list links.

fu-$list-dirs,
fU-$list-fi1es];

IF cl_$get_flag ('-If[)', num_args) THEN
fu_opts := fu_opts + [fu_$list_files);

{ Get first argument. }

select := cl_$first;

Example 2-2. Operating on Files and Trees with FU Calls, Cont.

Apollo Confidential 2-13 Handling Files and Trees with FU

WHILE cl_$get_name C select, pathname, pathname_len, sizeofCpathname))
DO BEGIN

fu_$delete_tree C pathname,
pathname len,
fu_opts,
fu_error,
fu error len,
status);

IF status.all = status $ok THEN

{ Source pathname }
{ Source pathname length }
{ Options }
{ Error pathname }
{ Error pathname length }
{ Completion status }

vfmt_$vrite2 C °Delete directory named,-Ia- I. ° ,
pathname, pathname_len);

END; { while}

END; {delete_tree}

{ Internal Procedure -- Compare_tree ================

{ Compare source tree to target tree. }

PROCEDURE compare_tree;

VAR
tar_pathname
tar_pathname_len

name _ $pname _ t;
integer;

BEGIN

{ Set verb for query in case user uses wildcards. }

cl_$set_verb C ° Compare 0,

7);

{ Set the wildcard options. }

{ Verb }
{ Length of verb }

{ Reinitialize default FU options. }

fu_opts := C[fu_$coe, { Continue on error}

--- }

fu Sprint errors, {Print FU errors}
fu-$dacl,- { Target gets ACL of destination directory}
fU:SSUbS]); {Retain source ACL for objects in sUbsytems }

{ Get the filenames. }

vriteln Co Enter the name of the two directories you want to compare. 0);
writeln Co Type --lor -list- if you want to compare all the directories .);
writeln Co and files. 0);
writeln;
vriteln (0 Type --If- if you want to compare all the files .•);
writeln;

Example 2-2. Operating on Files and Trees with FU Calls, Cont.

Handling Files and Trees with FU 2-14 Apollo Confidential

o

o

o

IF null line THEN
writeln ('No input. Type CTRL/Q to qUit. ');

{ Get keywords. set appropriate FU options. then check for any invalid
keywords; exit if user specified any. }

IF cl_$get_flag ('-l[ist]'. num_args) THEN
fu_opts := fu_opts + [fu $list links.

fU-$list-d1rs.
fU-$list-files];

IF cl_$get_flag ('-If[]'. num args) THEN
fu_opts := fu_opts + [fU_$list_files];

{ Get first argument. }

select := cl_$first;

WHILE cl_$get_name (select. pathname. pathname_len. sizeof(pathname))
DO BEGIN

{ Get second argument and copy the tree. }

select := cl_$next;

IF NOT cl_$get_derived_name (tar_pathname. tar_pathname_len.
sizeof(tar_pathname))

THEN BEGIN

vfmt_$write2 ('No pathname to compare with ·~a· ~. •
pathname.
pathname_len);

pgm_$set_severity (pgm_$error);
pgm_$exit
END; {then begin}

lu_$cmp_tree (pathname.
pathname_len.
tar_pathname.
tar_pathname_len.
fu_opts.
fu_error.

END; { while }

END; {compare_tree}

fu error len.
status);

{ Source pathname }
{ Source pathname length
{ Target pathname }

{ Target pathname length
{ Options }
{ Error pathname }
{ Error pathname length
{ Completion status }

Example 2-2. Operating on Files and Trees with FU Calls, C~nt.

}

}

}

Apollo Confidential 2-15 Handling Files and Trees with FU

{ Internal Procedure -- Move file ==================================
PROCEDURE move_file; { Move file to another location. }

VAR
tar_pathn~e

tar_pathname_1en

BEGIN

name _ $pname _ t;
integer;

{ Set verb for query in case user uses wildcards. }

c1 $set verb ("Move". 4);
c1:$set=derived~count (1);

{ Verb. length of verb }

{ Set wildcard options. }
c1_$set_wi1d_options ([cl_$Wild_fi1es]);

{ Reinitia1ize default FU optionL }

fu_opts := C[fu $coe, { Continue on error}
fU:$print_errors. {Print FU errors }
fu_$dac1. { Target gets ACL of destination directory}

}

fu_$subs]); {Retain source ACL for objects in sUbsytems }

{ Get the filenames. }

write1n (" Enter the name of the file you want to move, then ");
write1n (" the pathname where you want to move it to. ");

Type --l[1st]- if you want to list the files. ');
write1n;
wr1te1n ("
write1n ("
wr1te1n ("
wr1te1n ("
wr1te1n C"
wr1te1n C"
wr1teln;

Type --r[ep1ace]- to replace the target file with the ");
source file if it exists. ');

Type --chn- to change the name of the target file. ');
Type --fdl- to delete the target file if it exists, ');

if you have owner rights. ');

ok := c1_$parse_input (stream_$stdin. null line);

IF null line THEN
write1n ('No input. Type CTRL/Q to quit. ');

{ Get keywords. set appropriate FU options. then check for any invalid
keywords; exit if user specified any. }

IF c1_$get_f1ag ('-l[ist] ". num_args) THEN
fu_opts := fu_opts + [fu_$list_files];

IF cl_$get_flag ("-r[eplace]". num_args) THEN
fu_opts := fu_opts + [fu_$replace];

IF cl_$get_flag ("-chn[]". num_args) THEN
fu_opts := fu_opts + [fu_$rename];

IF cl_$get_flag ("-fdl[]". num_args) THEN
fu_opts := fu_opts + [fu~$force_del];

Example 2-2. Operating on Files and Trees with FU Calls, Cont.

Handling Files and Trees with FU 2-16 Apollo Confidential

(J

o

o

..... --.~ .. -------------

{ Get first argument. }

select .- cl_$first;

WHILE cl_$get_name C select. pathname. pathname_len. sizeof(pathname))
DO
BEGIN

{,Get second argument and copy the tree. }

select := cl_$next;

IF cl_$get_derived_name (tar_pathname.tar_pathname_len.
sizeof{tar_pathname))

THEN
BEGIN

{ Source pathname } fu_$move_file C pathname.
pathname_len.
tar_pathname.
tar_pathname_len.
fu_opts.

{ Source pathname length
{ Target pathname }

{ Target pathname length

check status;
END; { then begin}

END; { while }

END; {move file}

fu context,
stitus);

{ Options }
{ Error pathname }
{ Completion status }

{ Internal Procedure -- Rename file '==-= ======== }

{ Rename a pathname to create a unique pathname. }

PROCEDURE rename_file;

BEGIN

{ Reinitialize default FU options. }

fu_opts := C[fu_$coe, { Continue on error}
fu_$print_errors. {Print FU errors}
fu $dacl. { Target gets ACL of destination directory}
fU=$SUbS]); {Retain source ACL for Objects in sUbsytems }

{ Get the filename. }

vriteln C' Enter the name of the file you want to make unique. It .);
vriteln C' will append a period and tOday"s date to the filename ..);
writeln;

Example 2-2. Operating on Files and Trees with FU Calls, Cont.

}

}

Apollo Confidential 2-17 Handling Files and Trees with FU

) ;

IF null line THEN
writeln ('No input. Type CTRL/Q to quit. ');

{ Get first argument. }

select := cl_$first;

WHILE cl_$get_name (select. pathname. pathname_len. sizeof(pathname))
DO BEGIN

fu_$rename_unique (pathname.
pathname_len.
fu_opts.
status);

END; { while}

{ Source pathname }
{ Source pathname length }
{ Options }
{ Completion status }

END; {rename file}

{ =-------------------=========== }
BEGIN { Main }

{ Initialize the CL. but don't parse the command line. }

{ Terminate program when wildcards

cl_$ver1fy_all].
program_name.
sizeof(program_name»;

do not match any existing pathname. }
{ Verify all names with user. }
{ Name of program }
{ Length of program name }

{ Initialize FU. set the program name so that FU calls can
identify the program name when reporting errors. }

fu_$set~rog_name (program_name.
sizeof(program_name));

{ Set up default FU options. }

fu_opts := ([fu_$coe. { Continue on error}
fu_$print_errors. {Print FU errors}
fu $dacl. { Target gets ACL of destination directory}
fU:$SUbS]); {Retain source ACL for objects in sUbsytems }

{ Get the line to parse from standard input. }

vriteln;
vriteln (8This program allows you to handle files and trees. ');
writeln;

Example 2-2. Operating on Files and Trees with FU Calls, Cont.

Handling Files and Trees with FU 2-18 Apollo Confidential

0

o

o

REPEAT { user types CTRL/Q }

writeln ('Enter the option and files you want

writeln ('Type -cpf- to copy a file. ') ;
writeln ('Type -cpt- to copy a tree. ') ;
writeln ('Type -dlf- to delete a file. ') ;
vr1teln ('Type -cUt- to delete a tree. ') ;
wr1teln ('Type -mvf- to move a file. ,) ;

vriteln ('Type -cmt- to compare a tree. ') ;
wr1teln ('Type -ren- to rename a file. ') ;

{ Parse the input. }

ok := cl_$parse_1nput (stream $std1n.
nUll_line);

IF null line THEN
BEGIN

END;

writeln ('No input. Terminating program. ');
pgm_$exit~

to operate on.

{ Get keywords. then check for any invalid keywords;
exit if user speCified any. }

') ;

IF cl_$get_arg (cl_$first. command. command_len. sizeof(command» THEN
BEGIN

IF cl_$match (, cpf [] , . command, command_len) THEN
copy_file;

IF cl_$match (, cpt [] , . command. command_len) THEN
copy_tree;

IF cl_$match ('dlf[]' . command. command_len) THEN
delete_file;

IF cl_$match (' dl t [] , , command, command_len) THEN
delete tree;

IF cl_$match ('mvf [] , . command. command_len) THEN
move_file;

IF cl_$match ('cmt [] '. command. command_len) THEN
compare_tree;

IF cl_$match ('ren [] , . command, command_len) THEN
rename_file;

END;

UNTIL FALSE; { User types CTRL/Q }
END.

Example 2-2. Operating on Files and Trees with FU Calls, Cant.

Apollo Confidential 2-19 Handling Files and Trees with FU

I

i---'

\ ,,'

(~,

\
'.

---------------~ -----------

o

o

o

Chapter 3
Logging In and Changing the Registry

The LOGIN Manager is a set of D011.AIN system routines that allows you to tailor a log-in
operation or change a user's registry ACCOUNT file. You might want to change a log-in
operation to provide stricter log-in requirements You can change a registry ACCOUNT file to
change a user's password or home directory.

Before using the LOGIN system calls, you should be familiar with registry PERSON, PROJECT,
ORGANIZATION (PPO) and ACCOUNT files. For more information, see the Admini8tering
Your DOMAIN SY8tem manual.

3.1. System Calls, Insert Files, and Data Types

To use the LOGIN manager, use the system calls with the prefix LOGIN. This chapter describes
how most of these calls work. For details on LOGIN call syntax, data types, and error messages,
see Part II of this manual.

When using LOGIN system calls in your program, you must specify the appropriate insert file for
the language your are using. The LOGIN insert files are

/SYS/INS/LOGIN.INS.C
/SYS /INS /LOGIN .INS.FTN
/SYS/INS/LOGIN.INS.P AS

for C.
for FORTRAN.
for Pascal.

In addition, you might need to bind your program with the source file, NLOGm.BIN because the
entry points to most LOGIN system calls are not in a global library.

3.2. Overview of the LOGIN System Calls

The LOGm subsystem contains system calls that allow you to write a tailored log-in procedure,
or change a user's password or home directory.

To tailor a log-in operation, use the system call, LOGIN _ $LOGIN.

To change a user's registry ACCOUNT file, use the LOGIN system calls:

• LOGIN _ SOPEN

• LOGIN $CHP ASS

• LOGIN_SCHHDm

• LOGIN_SCKPASS

• LOGIN _ SCLOSE

Sections 3.3 and 3.4 describes the two log-in operations.

Apollo Confidential 3-1 Logging In and Changing the Registry

3.3. Tailoring a Log-In Operation

Use the LOGIN _ $LOGIN system call to tailor a LOGIN operation. For example, you can require
users to have different PPO identities to access a particular program. That is, the user
DARLENE.MARKETING might need . to log in as
DARLENE.MARKETING.NEW _PRODUCTS.SPHINX to have ,ull rights to an object:

To write your own LOGIN procedure using the LOGIN _ $LOGIN system call, you supply
LOGIN _ $LOGIN with an open stream, and pointers to your own log-in I/O routines. Your
program passes an open stream to LOGIN_$LOGIN, LOGIN_$LOGIN checks the password the
user supplied against the registry's password for that PPO. If they match, the program logs the
user in.

NOTE: Your program must be a protected subsystem in the LOGIN sUbsystem.
(See the DOMAIN System User's Guide for more information
on protected sUbsystems.)

Since LOGIN _ $LOGIN is designed to be device-independent, you must supply your own
input/output routines. LOGIN_$LOGIN requires four routines: a read, write, help, and an open
log routine. LOGIN _ $LOGIN uses these routines to get the user's input and display messages.

Example 3-1 shows how you declare pointers to your routines. The second parameter,
LOGIN_$LOG_EVENTS, indicates that you are supplying an open log routine so that
LOGIN _ $LOGIN records any user's attempts to log in.

To get the addresses of these routines in Pascal, you must put the I/O routines in a module
separate from your main log-in program. Bind the two binary files to execute your log-in
program.

{ Get addresses of external I/O procedures for LOGIN_$LOGIN. }

login_procedures.pread := addr(my_read);
login-procedures.pvrite := addr(my_vrite);
login_procedures.help := addr(my_help);
login_procedures.open_log := addr(my_open_log);

IF NOT login_$login (stream_in. { Stream ID where user vill log in }

THEN

[login_$log_events].{ Logging events}
login_procedures. {Address of your I/O routines}
status) { Completion status }

IF (status.&ll = login_$err_shut) THEN
BEGIN

err_exit(status);
END;

Example 8-1. Declaring External I/O Routines lor LOGIN_$LOGIN

You are not restricted in how you write your I/O routines, except that each routine's parameters
must correspond to those arguments that LOGL~_$LOGIN expects. The routines must also
perform the operation that LOGIN _ $LOGIN expects:

Logging In and Changing the Registry 3-2 Apollo Confidential

o

o

o

• MY _READ gets the PPO string and password for logging in. It also prompts for a
new password if the user types --P-, or for a new home directory if the user types
--H.· H MY _READ does not provide a way to get this information,
LOGIN _ $LOGIN prompts for it.

• MY_WRITE writes any error messages to output.

• MY _HELP provides a message for when a user types --h[elp]- at the log-in prompt.

• MY_OPEN _ LOG records all 8ucessful and unsuccessful log-in attempts if you
specified the LOGIN_$LOG_EVENTS option when you called LOGIN_$LOGIN.

When you specify LOGIN _ $LOG _EVENTS, LOGIN _ $LOGIN calls your log event routine at
each log-in attempt. It passes the name of its log file to your routine, opens the file, records the
event, and closes the file. LOGIN $LOGINwill record both sucessful and unsucessful log-in
attempts in the file, 'NODE_DATA/SIOLOGIN_LOG. Your log-in routine can create its own
log file simply by ignoring the file name that LOGIN _ $LOGIN passed. However, note that
LOGIN _ $LOGIN will close your file after each log-in attempt .

•
Example 3-2 shows how to write the parameters for the I/O routines in Pascal.

{ Login read procedure -- }

{ LOGIN_$LOGIN calls this procedure to get a PPO string and password. Also.
if the user types a --P- or --H.- it prompts for a new password or home
directory respectively. This procedure can supply the prompt string that
LOGIN_$LOGIN will use to prompt for PPO and password. }

FUNCTION my_read(
IN stream

OUT inbuf

IN inlen
IN pstr
IN plen
IN echo

IN fillbuf
IN fillbuflen

): integer;
EXTERN;

integer;
UNIV login_$string_t;
integer;
boolean;

UNIV login_$string_t;
integer

{ Stream IO on which to log user
in. usually stream_$stdin }

{ Returns string to supply to
LOGIN $LOGIN }

{ Maximum length of string buffer }
{ Prompt string }
{ Length of -pstr- }
{ Indicates whether to echo characters

Used to prevent the OM from
displaying a password.}

{ Not used. specific to the OM }
{ Not used. specific to the OM }
{ Returns length of the PPO string }

{ Login write procedure }

PROCEDURE my_write(
IN stream

) ;

IN pstr
plen

EXTERN;

stream_$id_t; {Stream IO on which to display user's
output. usually stream $stdout }

UNIV login_$string_t; { Message to write-}
integer { Length of message }

Example 8-2. Writing LOGIN External I/O Routines for LOGIN $LOGIN

Apollo Confidential 3-3 Logging In and Changing the Registry

{ Login help procedure

{ LOGIN $LOGIN calls this procedure when a user types h[elp] at the
prompt. }

PROCEDURE my_help(

}

IN stream stream_$id_t { Stream 10 on which to write
help messag·e·}

EXTERN;

{ Login open log ~rocedure ===================================== }

{ LOGIN_$LOGIN calls this procedure whenever ~ user attempts to log in.
if the LOGIN_$LOG_EVENTS option was set. }

FUNCTION my_open_log(
IN log_file UNIV login_$string_t; { Pathname of log file }

{ Length of -log_file- } IN log_flen integer;
OUT logstr stream_$id_t

) : boolean;
EXTERN;

{ Returns stream 10 of log file }
{ Returns TRUE if successful }

•

Example 3-2. Writing External I/O Routines for LOGIN_$LOGIN, Cant.

3.3.1. Sample Program Using LOGIN _ $LOGIN

Examples 3-3 and 3-4 show how to use the LOGIN _ $LOGIN system call in Pascal. The first
example is a main procedure that performs a log-in operation. The second example is a module
containing the input/output routines (or LOGIN_$LOGIN.

The main program gets the addresses of the external I/O routines, and calls LOGIN _ $LOGIN.
Note that when calling LOGIN _ $LOGIN, the LOGIN _ $LOG _EVENTS option was specified,
so that LOGIN _ $LOGIN will record each log-in attempt.

LOGIN_$LOGIN calls MY _READ when it needs log-in information - the login string and
password, and, if the user typed a --P, - or --H, - the new password or home directory
respectively. It calls MY_WRITE when it needs to write error messages. It calls MY _ HELP
when the user asked for help at the prompt. It calls MY _ OPEN_LOG, (because we set the
LOGIN_$LOG_EVENTS option), after each log-in attempt. When calling MY _OPEN_LOG,
it records whether the attempt was successful or not, then closes ~he file.

Each call to MY_OPEN _LOG passes an open stream to LOGIN _ $LOGIN.

The external procedures, located in MODULE LOGIN_PROCEDURES (Example 3-4), must be
bound with LOGIN _LOGIN (Example 3-3) before the log-in program can be executed.

Logging In and Changing the Registry 3-4 Apollo Confidential

~--....,

I

"'-. /

C)

o

o

--- -----------------

PROGRAM login_login;

"nolist;
"include
"include
"include
"include
"include
"include
"include
"include
"list;

CONST

'/sys/ins/base.ins.pas';
'/sys/ins/pfm.ins.pas';
'/sys/ins/streams.ins.pas';
'/sys/ins/vfmt.ins.pas';
'/sys/ins/error.ins.pas';
'/sys/ins/pgm.ins.pas';
'/sys/ins/cl.ins.pas';
'/sys/ins/login.1ns.pas';

prog_name = 'login_login';

VAA
cl_opts cl_$opt_set_t;

string; inv_prog
inv_prog_len
cleaner
status
login_procedures
stream in

integer;
pfm_$cleanup_rec;
status_$t;
login_$proc_rec_t;

conny

handle

stream $id t stream $stdin;
pgm_$connv- .- [stream=$stdin.

: pgm_$proc;

stream $stdout. -
stream-$errin.
stream=$errout];

{ Login read procedure
{ LOGIN_$LOGIN gets input via this procedure. }

}

FUNCTION my_read(
IN stream
OUT inbuf

stream $id t;
UNIV login=$string_t;
integer;

{ Stream 10 where user logs in }
{ Login string to pass to LOGIN }

IN inlen
IN pstr
IN plen
IN echo mode

UNIV login_$string_t;
integer;
boolean;

{ Maximum length of string buffer }
{ Prompt string}
{ Length of prompt string }
{ Indicates whether to echo

characters on input pad.
used to prevent password echo }

IN fillbuf UNIV login_$string_t; { Not used. specific to OM }
IN fillbuflen integer { Not used. specific to OM }

): integer;
EXTERN;

{ Login write procedure }
{ LOGIN_$LOGIN writes output via this procedure. }

PROCEDURE my_write(
IN stream
IN pstr
plen

) ;
EXTERN;

stream $1d t; { Stream 10 for user's output}
UNIV login=$string_t; { Message to write to output}
integer { Length of message }

Example 3-3. Performing a Lorin Operation with LOGIN _ $LOGIN

Apollo Confidential 3-5 Logging In and Changing the Registry

{ Login help pro~edure }
{ LOGIN_$LOGIN calls this procedure when a user unsucessfully attempts to

log in. MY_HELP supplies the message by passing the stream 10 of the
help file to LOGIN_$LOGIN. }

PROCEDURE my_help(
IN stream stream_$id_t { Stream 10 on which to write

help message }
) ;
EXTERN;

{ Login open log procedure }
{ LOGIN_$LOGIN calls this procedure whenever a user attempts to log in.

if the LOGIN_$LOG_EVENTS option was set. }

FUNCTION my_open_log(
IN log_file UNIV login_$string_t; { Pathname of log file}
IN lOS_flen integer; { Length of -log_file- }
OUT logstr stream $id t {Returns stream 10 of log file }

) : boolean; - - { Returns TRUE if successful }
EXTERN;

{ Exit on error INTERNAL procedure ====== }
PROCEDURE err exit (IN status: UNIV status_$t);

VAR
stat

BEGIN

IF status.all <> status_$ok THEN
BEGIN

error $std format (status. 'IS');
pgm_$set_severity(pgm_Serror);
pfm_$rls_cleanup(cleaner. stat); {Reset cleanup handler}
pgm_$exit;

END;
ENO; {err exit}

BEGIN { Main =:=========
.,

{ Set CL options and initialize the Command Line Handler. }

cl_opts := [cl_$no_wildcardS. cl_$no_keyword_delim];
cl_$in1t eCl_opts. prog_name. sizeof(prog_name»;
status := pfm_$cleanup(cleaner);

IF status.all <> pfm_$cleanup_set THEN
BEGIN

END;

pga_$set_severity(pgm_$error);
pgm_$exit;

--- }

Example 3-3. Perlorming a Log-In Operation with LOGIN_$LOGIN, Cont.

Logging In and Changing the Registry 3-6 Apollo Confidential

(
(

u

o

o

writ.eln;
writeln ('
writeln ('
writeln ('
writeln;
writeln ('
wri teln ('
writeln ('
vriteln;

This program allows you to log in to a running process ');
under a different SID. It will invoke a new process using ');
the /com/sh command. ');

Before logging you in. LOGIN_$LOGIN prompts for your ppo ');
and password. and checks t.he password you supplied against ');
the password in the registry. '); .

{ Assign values t.o invoke shell program. }
inv_prog' .- '/com/sh';
inv_prog_len := 7;

{ Get addresses of ext.ernal I/O procedures for LOGIN_$LOGIN. }

login_procedures.pread
login_procedures.pwrit.e
login_procedures.help
login_procedures.open_log

.- addr(my_read);

.- addr(my_vrit.e);

.- addr(my_help);

.- addr(my_open_log);

IF NOT login_$login (stream in. { Stream ID in which to log in }
[login=$log_events]. {No log event.s file}
login_procedures. { Address of my login procs }
status) { Completion stat.us }

THEN
BEGIN

IF (status.all = login_$err_shut) THEN
BEGIN

err_exit(status);
END;

END;

IF status.all = status_$ok THEN
BEGIN

writeln;
writeln (' Creating a new shell process: ');
writeln;
writeln (. Type CTRL/Z to terminate program .•);
writeln;

pgm_$invoke (inv_prog. { Invoke program }
inv_prog_len. { Number of characters
O. O. { No argument.s }
4. { Number of streams }

of program }

conny. { Pass standard st.reams }

[]. { New process in wait mode }

handle. { Process handle }
status); { Completion st.atus }

IF status.all <> stat.us_$ok THEN
err_exit(stat.us);

END;

END. { Main}

Example 8-8. Penorming a LorIn Operation with LOGIN_$LOGIN, Cant.

Apollo Confidential 3-7 Logging In and Changing the Registry

MODULE login_procedures;

{ This contains I/O procedures for login.pas. }

%nolist;
%include
%include
%include
%include
"include
"include
%include
%include
"include
"include
"include
"list;

·/sys/ins/base.ins.pas·;
·/sys/ins/pfm.ins.pas·;
·/sys/ins/streams.ins.pas·;
·/sys/ins/vfmt.ins.pas·;
·/sys/ins/error.ins.pas·;
·/sys/ins/pgm.ins.pas·;
·/sys/1ns/cl.ins.pas·;
·/sys/ins/pad.ins.pas·;
·/sys/ins/cal.ins.pas·;
·/sys/ins/time.ins.pas·;
·/sys/ins/login.ins.pas·;

CONST
newline
back_sp
car ret
log_name

= chr(10);
= chr(8);
= chr(13);
= 'login_log_file';

VAP.
stream in stream $id t .- stream $stdin;
stream out stream-$id-t .- stream=$stdout;
status : status_$t; - -

{ Login read function }

{ This procedure supplies LOGIN_$LOGIN with user input. }

FUNCTION my_read(
IN stream
OUT inbuf
IN inlen
IN pstr
IN plen
IN echo
IN fillbuf
IN fillbuflen

): integer;

VAR
my_buffer
inptr
size
seek_key
i
status

BEGIN { .my_read }

{ Prompt }

stream $id t;
UNIV login-$string t; - -integer;
UNIV login_$string_t;
integer;
boolean;
UN1V login_$string_t;
integer

array[l .. 4] of char;
-string;
integer32;
stream_Ssk_t;
integer;
status_$t;

stream_$put_chr (stream_out. addr(pstr). plen. seek_key_ status);

Example 8-4. Providing I/O Routines tor LOGIN _ $LOGIN

Logging In and Changing the Registry 3-8 Apollo Confidential

. /'

C)

o

--_ __ _

{ Turn off echo on user·s 1nput p~d. }

IF NOT echo THEN
BEGIN

pad_$raw (stream_1n. status);
i := 1;

{ Echo off }

REPEAT { Get input from user }
stream_$get_rec(stream_in. ~ddr(my_buffer). 1. inptr.

size. seek_key. status);

IF status.all <> status_$ok THEN exit;
IF inptr-[1] = back_sp THEN
BEGIN

END;

IF i > 1 THEN i := 1 - 1;
next;

inbuf[1] := inptr-[l];
IF (1nbuf(i] = car ret) OR

(1nbuf(i] = newline) THEN exit;
i := i + 1;

UNTIL FALSE;

inbuf [i]
my_read

newline;
i; {Count includes NEWLINE }

{ Allow pad to echo input again. }
pad_$cooked(stream_1n. status);

{ Write a NEWLINE after message. }

stream_$put_rec(stream_out. addr(newline). 1. seek_key. status);
END {NOT echo mode }
ELSE BEGIN { echo mode }

{ Get input from user }
stream_$get_rec(stream_in.

addr(inbuf).
inlen.
1nptr.
size.
seek_key.
status);

IF status.all <> 0 THEN
my_read := 0

ELSE my_read .- size;
END; { eCho_mode }

return;

Example 8-4. Providing I/O Routines for LOGIN_$LOGIN, Cant.

Apollo Confidential 3-9 Logging In and Changing the Registry

{ Login write procedure -==
{ Writes output}

PROCEDURE my_write(
IN strea.m strea.m Sid t;

VAR

IN pstr
IN plen

status
seek_key

UNIV login=Sstring_t;
1nteger);

status St;
strea.m=SSk_t;

BEGIN
strea.m Sput chr(strea.m out. addr(pstr). plen. seek_key. status);
strea.m=Sput=rec(strea.m=out. addr(new11ne). 1. seek_key. status);
return;

END; { my_write}

}

{ Login help procedure }
{ Th1s is the message that gets typed when user types h[elp] at the

Login prompt. }

PROCEDURE my_help(
IN strea.m strea.m_Sid_t);

CONST
helplinel
help11ne2
helpline3
helplenl
helplen2
helplen3

VAR
status
seek_key

BEGIN

= This is the help message that';
= gets displayed when the user';
= types h[elp] at the prompt.';
= 31;
= 30;
= 28;

status St;
strea.m=Ssk_t;

my wr1te(stream_out. help11ne1. helplenl);
my-wr1te(stream_out. helpline2. helplen2);
my-write(strea.m out. helpline3. helplen3);

ENO;-{ my_help} -

{ Login open log procedure }
{ Open the log f1le. write the date and t1me 1n .1t.and return the stream 10. }

FUNCTION my_open_log(
IN 10g_f11e UNIV 10g1n_$str1ng_t;
IN log_flen 1nteger;
OUT logstr stream_$1d_t

) : boolean

CONST
lIly_los_f1le =
my_log_flen =

'LOGIN_loS_f11e';
14;

Example 3-4. Providing I/O Routines for LOGIN_$LOGIN, Cont.

Logging In and Changing the Registry 3-10 Apollo Confidential

u

o

o

VAA
td cal $timedate rec t ;
da ARRAY [1 .. 10]-OF char
mon ARRAY [1 .. 10] OF char
d cal_$weekday_t
st sta.tus_$t;

my_open_log := FALSE;

{ Ignore the log file pa.ssed by LOGIN_$LOGIN. and open my own log
file. return its stream ID to LOGIN $LOGIN. (If I don't specify
log_file. LOGIN_$LOGIN writes to ·node_data/siologin_log.) }

stream_$create(my_log_file.my_log_flen.stream_$append.
stream_$no_conc_VTite.logstr.st);

IF st.all <> 0 THEN return;

{ Get decoded local time. }
cal_$decode_local_time(td); { Time stamp }

WITH td DO BEGIN
d := cal_$weekday (year. month. day);
CASE d OF { Determine day

cal $sun: da.- 'Sunday';
cal-$mon: da.- 'Monday';
cal-$tue: da.- 'Tuesday';
cal-$wed: da.- 'Wednesday';
cal=$thU: da 'Thursday';
cal $fri: da.- 'Friday';
cal=$sat: da.- 'Saturday';
OTHERWISE da := 'Doomsday';

of week. }

END; { case day}
CASE month OF { Determine month of year. }

1: mon.-
2: mon

, January' ;
'February' ;
'March' ; 3:

4:
5:
6:

·7:
8:
9:
10:

mon
mon
mon
mon
mon
mon
mon
mon

.- 'April';
'May' ;
, June' ;
'July' ;

.- 'August';

.- 'September';

.- 'October';
11: mon .- 'November';
12: mon .- 'December';
END; {case month}

vfmt_$wsl0(logstr. 'Ia. la Iwd, Iwd Iwd:%2zwd:12zwd%. '.
da, 10. mon, 10, day, year, hour, minute, second, 0);

END; {WITH td }
my_open_log := TRUE;

END; { my_open_log }

Example 3-4. Providing I/O Routines tor LOGIN_$LOGIN, Cont.

Apollo Confidential 3-11 Logging In and Changing the Registry

3.4. Changing User Account Files in the Network Registry

The LOGIN manager provides a set of LOGIN system calls that allow you to edit user account
files in the network registry. Network account riles associate usernames with log-in passwords
and home directories. For details on the network registry, see the Admini8tering Your DOMAIN
System manual.

When using LOGIN system calls, you must follow a specific order. Figure 3-1 shows the sequence
or using these calls.

Program

Initialize LOGIN.

Set the PPO to user
whose account file

you will change.

Check user password
(optional) .

Change user
password.

Change user home
directory.

Yes

Close LOGIN manager.

LOGIN
System call

LOGIN_$CKPASS

LOGIN_$CHPASS

LOGIN_$CHHDIR

LOGIN_ SCLOSE

System

Sets up storage for
LOGIN internal data types ,
and assigns a LOGIN
pointer to that storage.

Converts the PPO string
to internal form, and
"remembers" it.

Checks the registry to see if
the given password is the
same as the one listed for the
current PPO.

Changes the password of the
current PPO to the specified
password. •

Changes the home directory
of the current PPO to the
specified home directory. *

Updates registry ACCOUNT
files. and releases storage.

* Note that changes are not finalized until LOGIN_SCLOSE closes successfully.

Figure 3-1. Using LOGIN System ,Calls in Proper Sequence

Logging In and Changing the Registry 3-12 Apollo Confidential

\..,- "

C)

o

o

------------------------------------ ------------------------

When you initialize the LOGIN manager with LOGIN_$OPEN, it allocates heap storage for its
private datatypes and returns a pointer value to -that storage. Use the LOGIN pointer as an
input parameter in subsequent LOGIN system calls.

When you open LOGIN, specify either of two modes: LOGIN_$READ, or LOGIN_$UPDATE.
LOGIN _ $READ allows you to read the user's password but you cannot change it.
LOGIN _ $UPDATE allows you to change a user's account file. Note that to change a user's
account file, you must be a protected subsystem.

After initializing the LOGIN manager, set the PPO to the user whose account file you want to
view or chaIfge with LOGIN _ $SET _PPO. A user's PPO has four fields: the user's -name,
project name, organization name, and the hexadecimal ID of the user's node. The following are
two examples of PPO's: WALLY _ W.CURRENT.WRITERS.2713, ZACH.NONE.NONE.3541.

IT you do not set the PPO with this call, the LOGIN manager will automatically set the PPO to
the user who is currently logged in. Even if you want the current user, it's good programming
practice to set the PPO explicitly with this call. You can specify the current user efficiently by
specifying a null PPO and a PPO length of zero. LOGIN $SET _PPO sets the PPO to the
current user.

To check a user's password use LOGIN _ $CKP ASS, specify the LOGIN pointer (returned by
LOGIN _ $OPEN), the password you want to check, and its length.-· It returns the error message
LOGIN_$BAD _PASSWD if the password check failed.

To change a user's password use LOGIN _ $CHP ASS, specifying the LOGIN pointer (returned by
LOGIN _ $OPEN), the new password, and its length.

To change a user's home directory, use LOGIN _ $Cmmffi, specifying the LOGIN pointer
(returned by LOGIN_$OPEN), the new home directory, and its length.

Use LOGIN _ $CLOSE to close the LOGIN manager. At this time, The LOGIN manager updates
the account files in the network registry. IT a previous LOGIN system call had difficulty with an
account file, a LOGIN _ $CLOSE can fail, which means the registry will not be updated
accurately. You will have to repeat the entire LOGIN sequence since you opened LOGIN with
LOGIN _ $LOGIN. Use LOGIN _ $CLOSE even if LOGIN $OPEN failed, because when
LOGIN _ $OPEN fails it can leave LOGIN partially opened.

3.4.1. Sample Program -- Changing the Registry ACCOUNT Files

Example 3-5 shows _how to use the various LOGIN system calls to check and change a password
and to change a home directory.

Apollo Confidential 3-13 Logging In and Changing the Registry

~no11st;

~1nclude

~1nclude

~include

~include

"include
~1nclude

~11st;

'/sys/ins/base.ins.pas';
'/sys/ins/vfmt.ins.pas';
'/sys/ins/error.ins.pas';
'/sys/ins/pgm.1ns.pas';
'/sys/ins/cl.1ns.p&S';
'/sys/ins/log1n.ins.pas';

CONST
prog_name = 'LOGIN_chng_pass_dir';

VAR
command
command len
ok
null line
ppo
ppo_len
ver1fy
num_args
login_p~r

bad_pname
bad_pname_len
errout
err status
status

string;
integer;
boolean;
boolean;
string;
integer;
boolean;
integer;
login_$ptr;
name _ $pname _ t ;
integer;
stream $1d t - stream_$errout;
status-$t;-
status=$t;

{ *** }

PROCEDURE check err (IN status
IN msg

status $t;
UNIV str1ng);

BEGIN
IF (status.code = 0) THEN

RETURN;
error_$std_forma.t (status. msg);
pgm_$set_severity (pgm_$error);
pgm_$ex1t

END; { check_err}

{ *** }

PROCEDURE chn-pass; {Go here if user spec1fied chpass }

{ If the user specifies the -v[erify] option with a password. this
procedure checks the specified pa.ssword; otherwise. it changes the
user's password to the specified password. }

VAR
old-pass
n.w-P
opass_len
npass_len

string;
.tring;
integer;
integer;

Example 8-&, U.ing LOGIN Calla to Change ACCOUNT Files

Logging In and Changing the Registry 3-14 Apollo Confidential

o

C)

BEGIN { chn_pass }

{ Get password. If user wants ~o verify current password. ~he nex~ argument
is the password ~o check. If the user wants ~o change ~he password.
the next argument is the new password. }

IF verify THEN
ok .- cl_$get_arg (cl_$nex~. old-pass. opa~s_len. sizeof(old_pass»

ELSE
ok .- cl_$get_arg (cl_$next. new-pass. npass_len. sizeof(new_pass»;

cl_$check_unclaimed;

{ If verifying old password. open LOGIN for read access. since you are
not changing the registry. }

IF verify THEN
BEGIN

{ Open LOGIN manager for updates }
{ Pointer to LOGIN datatypes }
{ Completion status }

login_$open (login_$read.
login_ptr.
status);

check err (status. ' Cannot perform LOGIN open. 1$');

{ Set the PPO to operate on. }

END

login_$set_ppo (login_ptr.
ppo.
ppo len.
status);

check err (status. ' Cannot
{ Check old password. }
login_$ckpass (login_ptr.

old_pass.
opass len.
status);

{ Pointer to LOGIN datatypes }
{ PPO file specified by user }
{ Length of PPO file }
{ Completion status }

set user"s PPO. 1$');

{ POinter to LOGIN datatypes }
{ Old password }
{ Length of old password }
{ Completion status }

IF status.all = login_$bad_passwd THEN BEGIN
vfmt_$ws2(errout. 'Old password is incorrect.I.'. O. 0);
pgm_$set_severity (pgm_$false);
pgm_$exit;
END

ELSE vfmt_$write2(' Password verified.I.'. O. 0);

ELSE BEGIN {Change current password to specified password. }

login_$open (login_$update. login_ptr. status);
check_err (status. ' Cannot perform LOGIN open. 1$');

{ Set the PPO ~o operate on. }
10gin_Sset_ppo (login_ptr.

ppo.
ppo_len.
status);

check err (s~atus. ' Cannot
10gin:Schpass (login_ptr.

new-PliLss.
npliLss_len.
status);

{ Pointer to LOGIN datatypes }
{ PPO file specified by user }
{ Length of PPO file }
{ Completion status }

set user"s PPO. 1$');
{ Pointer to LOGIN datatypes }
{ New password }
{ Length of new password }
{ Completion status }

Example 3-5. Using LOGIN Calls to Change ACCOUNT Files, Cont.

Apollo Confidential 3-15 Logging In and Changing the Registry

I

END;

IF status.a11 <> status_$ok THEN
BEGIN

END;

10gin_$err_context (10gin-ptr. { POinter to LOGIN datatypes }
err_status. { Returns error status}
bad_pname. { Pathname of user that failed}
bad_pname_1en. { Length of bad pathname }
status); { Completion status}

vfmt_$ws2 (errout. • Cannot change password for: •
bad_pname. sizeof(bad-pname));

10gin_$c10se (10gin_ptr. status);
check_err (status. ' Cannot perform LOGIN close. 1$');

END; { chn_pass }

PROCEDURE chn_dir; {** }

{ This procedure changes the user's home directory listed in
the user's ACCOUNT file to the speCified home directory. }

I
VAR

new_dir string;
integer; I dir len

I -
!BEGIN { chn_dir }

I{ Get the new home directory. }

ok := cl_$get_arg (cl_$next. new_dir. dir_len. sizeof(new_dir»;
cl_$check_unclaimed;

login_$open (login_$update.
10gin_ptr.

{ Open LOGIN manager for updates }
{ Pointer to LOGIN datatypes }
{ Completion status } status);

check_err (status. • Cannot perform LOGIN open. ~$');

{ Set the PPO to operate on. }

login_$set_ppo (login_ptr. {Pointer to LOGIN internal data}
ppo. { PPO }
ppo_len. { Length of PPO }
status); {Completion status}

check err (status. • Cannot set user"s PPO. 1$');
10gin=$chhdir (login-ptr. {Pointer to LOGIN internal data}

new_dir. { Name of new home directory}
4ir_len. { Length of new home directory }
status); { Completion status}

IF status.a11 <> status_$ok THEN
BEGIN

10gin_$err_context (10gin-ptr •
err_status.
bad-pname.
bad_pname_len.
status);

{ Pointer to LOGIN datatypes }
{ Returns error status }
{ Pathname of user that failed }
{ Length of bad pathname }
{ Completion status }

Example 3-5. Using LOGIN Calls to Change ACCOUNT Files, Cont,

Logging In and Changing the Registry 3-16 Apollo Confidential

._----- .. _ .. ----

-...... _.-'

-- __ . __ _-_._-----.- -------------------

o

o

o

vfmt_$ws2 (errout, ' Cannot home directory for: '
bad_pname, sizeof(bad_pname));

END;

check_err (status. ' Cannot perform LOGIN close. 1$');

END; { chn dir }

{ *********~*** }

BEGIN { Main }

{ Initialize the CL, but don't parse the command line. }

cl_$setup ([], { Default CL options in effect}
{ Name of program } prog_name,

sizeof(prog_name»; { Length of program name }

{ Get the line to parse from standard input. }

writeln;
writeln ('
writeln;
writeln ('
wri teln ('
writeln;

***** ') ;

This program allows you to change a user"s ');
password or home directory. ~;

REPEAT {until user types CTRL/Q }

writeln;
writeln (,
wri teln (,
writeln;

{ Get the PPO. }

Enter the user"s PPO whose password or home ');
directory you want to change. ');

ok := cl_$parse_input (stream_$stdin, nUll_line);
ok:= cl_$get_arg (cl_$first. ppo. ppo_len. sizeof(ppo»;

writeln;
writeln (,
writeln (,
writeln;
vri teln (,
vri teln (,
vriteln;

Type ·chpass -v [erify] "password " • if you want to check');
the current password. ');

Type ·chpass "password"· to change the current password');
to the specified password. ');

vriteln ('Type ·chhdir "dir" • to change current home directory');
vriteln (, to the specified home directory. ');

Example 3-5. Using LOGIN Calls to Change ACCOUNT Files, Cont.

Apollo Confidential 3-17 Logging In and Changing the Registry

{ Get the operation. }

{ Check if user supplied the verify option on the command line.
Check for any invalid keywords; exit if user specified any. }

{ Get the operations. }
IF cl_$get_arg (cl_$f1rst, command, command_len, s1zeof(command» THEN

BEGIN

END;

IF cl_$match ('chpass[]', command, command_len) THEN
chn_pass;

IF cl_$match ('chhd1r[]', command, command_len) THEN
chn_d1r;

UNTIL FALSE; { User types CTRL/Q }

END. { Main}

Example 3-5. Using LOGIN Calls to Change ACCOUNT Files, Cant.

Logging In and Changing the Registry 3-18 Apollo Confidential

o

o

o

Chapter 4
More Process Manager System Calls

This chapter describes DOMAIN system calls for managing programs. These calls allow you to

• Load and call a program or library object nodule.

• Assign a name given its process UID.

• Set the priority given its process UID.

These system calls are part of the DO:MAIN subsystems for managing programs. For details on
other calls in these subsystems, see the chapter on managing programs in the Programming with
General System Oalls manual.

4.1. System Calls, Insert Files, and Data Types

To load and call object modules or libraries, use the LOADER manager. These calls are located
in the LOADER insert file. Note that they have the PM prefix.

To assign a name to a given process UID, use PM_ $SET _N.A1v1E, which is in the PM insert file.

To set the priority of a given process UID, use PROC2_$SET _PRIORITY, which is in the
PROC2 insert file.

When using these system calls in your program, you must specify the appropriate insert file for
the language your are using. Where prerlX is the desired subsystem, the insert files are

/SYS/INS/prefix.INS.C
/SYS /INS /prefix.INS.FTN
/SYS/INS/prefix.INS.P AS

for C.
for FORTRAN.
for Pascal.

For details on the system call syntax, data types, and error messages, Part IT of this manual. For
details on other system calls in these subsystems, see the DOMAIN System Oall Reference
manual.

4.2. Loading and Calling a Program with LOADER System Calls

The two system calls in the LOADER manager allow you to load a program or library object
module into memory so that it can, be executed. PM_ $LOAD converts a specified object module
and returns its starting address. PM_ $CALL invokes the loaded object module.

These calls work similarly to PGM_ $INVOKE, except that PGM_ $INVOKE performs some
operations automatically. Table 4-1 highlights the differences between PGM $INVOKE and the
LOADER calls. The resources referred to in this table include read/write Sk>rage, mark release
handlers, address space, and stream descriptors.

For details on using PGM_ $INVOKE, see the Programming with General System Oa1l8
manual.

Apollo Confidential 4-1 Managing Programs

Table 4-1. Ditf'erence Between LOADER and PGM_$INVOKE System Calls

Condition A Loads & Calls B (PM) A Invokes B (PGM)

Program Level: Not created. Created.

Resources that B Released when Released when
acqUires: A terminates.* B terminates.

Storage unmapped,: When A terminates. When B terminates.

* Note that if A continues to load programs that terminate abnormally~
you can run out of resources (such as stream descriptors or address
space) Since they don't get released until A terminates.

PM_$LOAD and PM_$CALL are most commonly. used to load libraries. You would also use
them when you want to control how the object module gets loaded. For example, you can have
PM_$LOAD make a writable copy of.he object module so that you can set breakpoints without
changing the original object module. Or you can have PM_SLOAD report an error if the object
module contains any unresolved global variables.

When you use PM_SLOAD, you control how the object module gets loaded by setting the
options of a variable in PM _ SLOADER _ OPTS format. Table 4-2 lists the options you can
specify.

Table 4-2. PM_SLOAD Options

PM _ SLOAD Option Description

PM _SCOPY_ PROC Copies the object module into read/write storage
so that you can write to the object module without
changing the original object module. If you do not
specify this option, PM_SLOAD maps the object
module directly.

PM _SINSTALL Indicates that you are loading a library.
PM_SLOAD makes all the global entry points,
which were marked at binding, available to other
programs. Specify this option when loading libraries.

PM _SINSTALL_SECTIONS Indicates that you are loading a library
containing global sections. PM _ $LOAD makes these
global sections, which were marked at binding,
available to all programs. Specify this option
when loading libraries.

PM _$LOAD_ WRITABLE Allows you to write to the object module.
Specify this option when you want to write to the
object module without making a copy of it first.
The debugger provides this with its -NC option.

PM _$NO_UNRESOLVEDS Returns an error message if the object module
contains any unresolved global variables.

Managing Programs 4-2 Apollo Confidential

o

o

o

After you load the program with PM_$LOAD, use PM_$CALL to invoke it. When using
PM_ $ CALL , you give it a pointer to the routine you want to call. This is the start address of
the object module' returned by PM_ $LOAD, which is the first field in the predefined record,
PM $LOAD INFO.

Section 4.2.1 is a sample program using PM_$LOAD and PM_$CALL to load and invoke a
program.

Even though PM_ $ CALL is a function, you usually load a procedure, so the value it returns is
meaningless. However, you can use PM_$CALL to return a value from the object module;
PM_ $ CALL will pass a 32-bit integer value along to the main program as its return value. Note
that you cannot pass any arguments to the routine you are invoking.

You can have PM_$CALL return data types other than a 32-bit integer, so long as the data fits
in 32 bits or fewer. To do so, create a variant record with a 32-bit integer as one variant, and
the actual data type returned by the target routine as another variant. Pad the second variant
out to 32 bits. Assign the 32-bit integer value from PM_ $ CALL to the 32-bit integer variant,
and take your desired data from the other variant. Example 4-1 shows how you would use
PM $CALL with a variant record.

{ This Pascal example uses PM $CALL to call a function that returns a
16-bit integer data 1tem: }-

VAR

re t : RECORD CASE INTEGER OF

END;

load info

BEGIN

1: (long: 1nteger32);
2: (pad : Integer;
wanted_I : Integer);

pm $load info; - -

{ Load my_integer16_function. }

{ Filler }
{ Desired data }

{ Call my_integer16_function using the start address returned by
the PM_$LOAD_INFO data type in PM_$LOAD. }

{Write out the returned value as a 16-b1t 1nteger. }

wr1teln (ret.wanted_I);

Example 4-1. Returning a 18-Bit Value with PM _ $ CALL

Apollo Confidential 4-3 Managing Programs

4.2.1. Sample Programs Using LOADER System Calls

Example 4-2 is a sample program that loads and calls a second program
(PM_LOAD_TlllS.BIN) using PM_$LOAD and PM_$CALL. It gets the load options from
the command line.

%nolist;
~include "/sys/ins/base.ins.pas";
~include "/sys/ins/streams.ins.pas";
linclude "/sys/ins/cl.ins.pas";
%include "/sys/ins/loader.ins.pas";
~include ·/sys/ins/vfmt.ins.pas";
~include ·/sys/1ns/pgm.ins.pas";
%include "/sys/ins/error.ins.pas";
~list;

CONST
prog_name
prog_to_loa.4

VAR
name
len
num_args
load_opts
sec info
status
pm_status
ok
null line
junk

{ -

= "pm_load";
= "pm_load_this.bin";

name _ $pna.me _ t ;
integer;
integer;
pm_$loader_opts;
pm_$load_info;
status_$t;
status_$t;
boolean;
boolean;
integer32;

PROCEDURE check_status;

BEGIN

IF status.all <> status_$ok THEN
BEGIN

END;

error_Sprint (status);
pgm_$exit;

END; { check_status}

========== }

{ = }

Example 4-2. Loading and Calling a Program

Managing Programs 4-4 Apollo Confidential

o

o

o

BEGIN { Main }

cl_$setup ([], { Default CL options in effect}
prog_name, { Name of program }
sizeof(prog_name»; { Length of program name}

{Initialize empty set of loader options. }
load_opts .- [];

writeln (• This program loads the object module, •
prog_name : sizeof(prog_name));

writeln;
writeln C • You can specify the following options: •);
writeln;
writeln (• -c[copy] to copy the object module so you can write to it .•);
writeln C • -w[rite] to make the original object module writable .•);
writeln C • -nr[esolveds] to terminate program with an error if .);
writeln C' global variables are unresolved .•);
writeln C · -lib[rary] to load a library .•);
writeln;

ok := cl_$parse_input C stream_$stdin, null line);

{ Get keywords, then check for any invalid keywords;
exit if user specified any. }

IF cl_$get_flag C'-c[oPY]', num_args)
THEN load_opts := [pm_$copy_proc];

IF cl $get flag C'-w[write]', num args)
THEN load opts := [pm $load writable];

IF Cl_$get_flag C'-nr[esolveds]~, num_args)
THEN load_opts := [pm_$no_unresolveds];

IF cl_$get_flag C'-lib[rary]', num_args)
THEN load_opts := [pm_$install + pm_$install_sections];

pm_$load C prog_to_load,
sizeofCprog_to_load),
load_opts,
0,

{ Name of program to load }
{ Length of program }
{ Load options }
{ Get start address only }

sec info,
status);

{ Returns sta;·. address of obj ect module }
{ Completion s~atus }

check_status;

IF status.all = status_$ok THEN
BEGIN

END·

vriteln;
writeln ('Program loaded sucessfully. ');
junk := pm_$callC seC_info.start_addr);

END. { pm_load}

Example 4-2. Loading and Calling a Program, Cont.

Apollo Confidential 4-5 Managing Programs

4.3. Setting a Process Priority

The process priority is an integer ranging from 1 (low) to 16 (high). When the operating
system decides which process to run next, it chooses the process that currently has the highest
priority.

The priority changes while a process executes. Its priority increases as the process waits for
events, and decreases as it computes for long periods without waiting. To find out the priority
range of a running process, use the PST (process_status) Shell comand.

By default, a process will have a priority range of 3 to 14. You can change this range by
specifying different high and low values in the PROC2_ SSET _PRIORITY system call. These
values must be between of 1 to 16. The PPRI (process_priority) Shell command uses the
PROC2 _ SSET _PRIORITY system call.

Note that the Display Manager (DM) process has a priority range of 16, 16. See Section 4.5 for
an example of PROC2 _ SSET _PRIORITY in a program.

4.4. Assigning a Name to a Process

When the operating system creates a process, it assigns a number or unique identifier (UID) to
the process. You might want to refer to the process by name rather than number so that you can
identify it more easily. You do so with the PM_$SET _NAME system call. You supply the
name, its length, and process UID; the call returns a completion status.

After assigning a name to a process with PM_ SSET _NA11E, Shell commands, such as PPRI
(process_priority), PST (process_status), and SIGP (signal_process) refer to the process by its
name.

Server programs such as • alarm _ server· or • mail- use PM _ $SET _ NAME to name their
server processes. Users can name a process they create by using the -N option with the Shell
command CRP (create_a_process), and the DM commands, CP (create_process), CPO
(create_process_only), and CPS (create_process_server).

NOTE: A process can be assigned a name only once. You cannot
rename or remove a name once it is assigned.

If you try to name a process that already has a name, you will get the error,
PM_SALREADY _NAMED.

4.5. Sample Programs Using PM, PROC2 System Calls

Example 4-3 is a sample program using PM_SSET _NAME to assign a name to a process, and
PROC2_SSET_PRIORITY to change its priority. The program first creates an unnamed
process using PGM_$INVOKE, and then sets the name. Before it sets the name, it must first
get its process UID using the PGM _ $GET _ PUID system call.

Managing PrograDl8 4-6 Apollo Confidential

o

o

"nolist;
"include '/sys/ins/base.ins.pas';
"include '/sys/ins/proc2.ins.pas';
~include '/sys/ins/pm.1ns.p~s';

"include '/sys/ins/streams.ins.pas';
linclude '/sys/ins/error.1ns.pas';
%include '/sys/ins/pgm.ins.pas';
Ilist;

CONST
10 bound = 9;
hi bound = 5;

{ Lov bound of process priority r~nge }
{ High bound of process priority r~nge }

VAR
uid
status
connv
handle
prog_name

Uid_$t;
status_$t;
pgm_$connv;
pgm_$proc;
name_$name_t

{ Process UID }

{ Connection vector }
{ Process handle }

:= 'invoke_clock'; {Name to give process}

PROCEDURE check_status; {======- ===---- -----============= }
BEGIN

IF status.all <> status_$ok THEN
BEGIN

END;

error $print (status);
pgm_$exit;

END; { check status}

BEGIN { Main ============================.~~~~= -- }

vriteln;
vriteln (,
vriteln (,
vri teln (,
vri teln (,
vriteln;

This program invokes a process to run a digital clock. ');
names the process. INVOKE_CLOCK. ~nd sets its priority. ');
You can see the process listed by name by invoking the ');
Shell command PST (process_status). ');

{ Load the standard streams to pass to the invoking program. }

connv[O] - stream $stdin;
conny [1] - stream-$stdout;
connv[2] - stream-$errin;
connv[3] - stream:$errout;

{ Cre~te ~n unnamed child process using PGM_$INVOKE. }

Example 4-3. Setting Name and Priority or a Process

Apollo Confidential 4-7 Managing Programs

_ __ ... _.-." .. __ ._._ _. _. _ .. _ .. _._._._----

pgm_$invoke (• digclk . bin • • { P~thname of program to invoke
10. { Length of p~thname }
O. { Number of ~rguments.to pass }
O. { Argument vector }
4. { Number of streams to pass }
connv. { Arr~y of stream IDs to p~ss }

n. { Invoke program }
h~ndle. { Returns process h~ndle for UIO
status); { Completion status }

check_status;

{ Get the UIO of the child process. }

pgm_$get_puid (handle.
uid.
st~tus);

{ Process handle }
{ Returns UIO }
{ Completion status }

{ Set name of the child process. }

pm_$set_name (prog_name. { Name to give process}
sizeof(prog_name). { Length of name}
uid. { UIO of the process }
status); { Completion status}

writeln;
writeln (. The name of this process is: '.

prog_name sizeof(prog_name»;

{ Change the priority of the child process. }

{ UIO of current process }

}

}

proc2_$set_priority (uid.
lO_bound.
hi bound.
status);

{ Low bound of priority range }
{ High bound of priority range }
{ Completion status }

writeln;
writeln (' The new priority is: ' lO_bound. hi bound);

END.

Example 4-3. Setting Name and Priority ot a Process

Managing Programs 4-8 Apollo Confidential

(--.~

()

o

o

... _-------_ .. _ _-_._---- -------_.

Chapter 5
Handling Dynamic Storage

The DO:MAIN system contains two managers that allocate dynamic storage. The Read/Write
Storage Manager (RWS) is a set of DOMAIN system routines that allocates dynamic storage.
These system calls allow you to request a specific amount of storage during the execution of your
program. Each call returns a pointer to the address of the new storage space.

The Basic Allocate/Free Heap Manager (BAF) allows you to create a heap and perform allocate
and free operations on that heap. You would use the BAF manager when you want to specify
where the storage comes from, or have a stricter control over allocating and releasing storage.

We describe both the RWS and BAF managers in this chapter.

5.1. System Calls, Insert Files, and Data Types

To use the RWS manager, use the system calls with the prefix RWS. To use the BAF manager,
use the system calls with the prefix BAF. This chapter describes how most of these calls work.
For details on system call syntax, data types, and error messages, see Part n of this manual. See
also the DOMAIN System Gall Reference manual for details on previously released RWS calls.

When using RWS or BAF system calls in your program, you must specify the appropriate insert
file for the language your are using. Where prefix is the desired subsystem (RWS for read/write
storage, BAF for basic allocate/free heap storage), the insert files are RWS insert files are

/SYSjINSjprefix.INS.C
/SYS /INS / prefix.INS.FTN
/SYS/INS/prefix RWS.INS.PAS

for C.
for FORTRAN.
for Pascal.

5.2. Overview of the RWS System Calls

RWS system calls provide a few different ways to allocate storage. Which method you should use
depends on

• How long you want to keep the storage.

• How much system overhead you can afford.

• How you want to the storage to be accessed, for example, within the calling process or
among all processes.

Table 5-1 lists the RWS system calls you can use to allocate storage dynamically. Details on each
type of storage follow.

Apollo Confidential 5-1 Handling Dynamic Storage

Table 5-1: RWS System Calls to Allocate Dynamic Storage

System Call

RWS_$ALLOC

RWS _ $ALLOC_HEAP

RWS_$ALLOC_HEAP _POOL

RWS _ $ALLOC _RW

RWS _ $ALLOC _RW _POOL

RWS $RELEASE HEAP

Description

Allocates read/write storage for FORTRAN
or Pascal programs.

Allocates heap· (releasable read/write)
storage for programs.

Allocates heap· (releasable read/write)
storage in a specified pool.

Allocates read/write storage for
Pascal programs only.

Allocates read/write storage in a
specified pool.

Releases the storage you allocated with
RWS_$ALLOC_HEAP or
RWS_$ALLOC_HEAP _POOL.

* When these calls allocate read/write storage. they provide you with
pOinters to storage that can be released when you no longer need it.
To distinguish this from unreleasable read/write storage. we refer to
)this as heap storage. Note that this differs from a BAF heap described
in Section 5.3.

You can use all the above systems calls in Pascal and C programs. However, in C programs, you
might want to use the C Library routine, MALLOC. Note that due to FORTRAN calling
conventions, the only RWS call you can use in FORTRAN programs is RWS _ $ALLOC. This
limitation will be corrected in a future AEGIS Software Release.

Whether you allocate read/write storage or heap storage depends on how long you want to keep
the storage. Once you allocate read/write storage, the storage exists until the program
terminates. However, you can explicitly release heap storage once you have finished using it.

The heap requires more system overhead initially. Currently, an allocation from the RWS heap
requires between 4 to 16 bytes of overhead - to keep track of the allocated storage. Note that
the amount of overhead is subject to change, so your program should not depend on an exact
amount of system overhead. The system requires no overhead to allocate .read/write storage.

You usually want to allocate heap storage during your program if you need a substantial amount
of storage for a limited period of time, or if you want to keep your working set as small as
possible.

For example, the CL allocates heap storage to hold the tokenS while parsing the command line.
It Crees the storage after parsing the line. The CL uses heap storage because it can tell when it no
longer needs the storage. Also, if it doesn't free the storage, it would eventually run out.

You would allocate read/write storage if the amount of overhead for a heap is unacceptable, or if
you do not. need to release the storage before terminating the program.

Handling Dynamic Storage 5-2 Apollo Confidential

'--'. (,

'

o

o

o

.-.~--- ... -.-------------- ------

If you want to control how the dynamic storage can be accessed, specify the appropriate option in
the RWS _ SPOOL system calls. You can allocate both read/write storage and heap storage in
these pools so that you can

• Limit storage to local access within the calling process. Specify the standard pool
option (RWS_$STD _POOL) in most cases.

• Make storage accessible to all processe... Specify the global pool option
(RWS_$GLOBAL_POOL) to share information among processes. For example, you
might want to implement a global queue to pass messages between processes. Note
that pointers are valid in all processes because all processes have a reserved identical
portion of address space.

• Make storage accessible to the calling process and to an overlay process. Specify the
stream pool option (RWS_$STREAM_ TM_POOL) when your program needs to
pass information to a program invoked with a UNIX EXEC system call. For example,
the STREAM manager uses RWS_$STREAM_ TM_POOL to pass an open stream
to a program invoked with an EXEC call. It stores information about that stream in
the stream pool.

Table 5-2 summarizes the aspects of each type of storage allocation.

Table 5-2. Summary of Types of Storage Allocation

Read/Write Storage

Standard Storage kept until program
Pool exits or until it invokes

a program with a UNIX
EXEC system call.

No system overhead.

Heap Storage

Storage kept until you

release it with
RWS_$RELEASE_HEAP. the
program exits. or the
program invokes a program
with a UNIX EXEC call.

About 16 bytes of
system overhead.

Storage available to local process only.

Global

Pool

Storage kept until reboot.

About 4 bytes of system
overhead.

Storage kept until

you release it with
RWS_$RELEASE_HEAP or reboot.

About 4 bytes of system
overhead.

Storage available to all processes.

Apollo Confidential 5-3 Handling Dynamic Storage

Table 5-2. Summary of Types of Storage Alloeation, Cont.

Stream

Pool

Read/Write Storage

Storage kept until
program exits.

No system overhead.

Heap Storage

Storage kept until
you release it with
RWS_$RELEASE_HEAP.

About 16 bytes of
system overhead.

Storage available to the local process or to a
program invoked with a UNIX EXEC system call.

NOTE: Do not depend on the exact amount of system overhead
used in RWS system calls. The amount of overhead is
sUbject to change.

5.3. Overview of the BAF System Calls

The basic allocate/Cree (BAF) heap manager allows you to create a heap to handle dynamic
storage allocation yourself. The advantage to handling storage with the BAF manger is that you
can specify from where BAF gets the storage. You also have tighter control over allocating and
freeing the storage you use.

For example, you could allocate storage with BAF system calls to control the size of your working
set by subdividing your heap into smaller heaps. Place storage referenced closer in time in the
same heap.

To use the BAF manager, you follow this sequence:

1. Create a heap with BAF _ $CREATE.

2. Allocate storage from the heap with BAF _ $ALLOC.

3. Release the storage and return it to the heap with BAF _ $FREE when your program
is through using the storage.

4. Add storage space to the heap, if necessary, with BAF _ $ADD _ SPACE.

When creating the heap, you can specify the storage space in many ways, for example, declaring
an array in a program, using an RWS_$ALLOC_RW or MS_$CRA1APL system call.

If the storage is shared, you must specify the BAF _ $SHARED option in the first parameter of
BAF _$CREATE. By setting the BAF _$SHARED option, subsequent calls to BAF _$ALLOC
and BAF _ .FREE will obtain locb before performing their operation. This is necessary to
prevent two processes from corrupting the heap by using it at the same time.

Handling Dynamic Storage 5-4 Apollo Confidential

o

o

o

Once you have created the heap, you can perform any number of allocate and free operations.
Use BAF _ $ALLOC to allocate storage from the heap. BAF _ $ALLOC allocates a contiguous
region of storage up to a maximum of 32K bytes. If you require more storage, you can make
subsequent calls to BAF _ $ALLOC.

BAF _ $ALLOC could fail if there's not enough storage space left in the heap (it returns the error
BAF _$NO_ROOM). You can add space to the heap with BAF _$ADD_SPACE.

BAF _ $ALLOC and BAF _ $FREE could fail if the heap overwrites the overhead information
(pointers, size) which is located before each block. This can occur if your program ·refers to an
array beyonds its bounds.

5.3.1. Improving Performance Under Current Implementation

This section describes some characteristics of the BAF manager that might help you improve
performance. We reserve the right, however, to change details of this implementation in the
future to improve efficiency.

The following implemenation details might help you use a BAF heap more efficiently:

• The current implementation of BAF manager uses a single tag before the block of
storage to keep track of the block.

• BAF _ $ALLOC combines adjacent free items while searching for the free list for a
large enough block to perform the allocate operation.

• When you free items, BAF _ $FREE puts the free blocks on a free list. Therefore,
freeing is very efficient.

• Allocating and freeing blocks of the same size is very fast.

• The BAF manager tends to reuse recently freed blocks, so you get desirable working
set behavior.

5.4. Sample Program Using RWS and BAF System Calls

The program in Example 5-1 shows how to use BAF system calls to allocate storage. It uses the
MS _ $CRMPL system call to create a temporary file to store the heap. (You might want to use a
file to maintain storage at different program levels in a single process.) The program then
performs allocates and frees from the file using BAF system calls.

Apollo Confidential 5-5 Handling Dynamic Storage

%include '/sys/1ns/base.1ns.pas';
%include '/sys/1ns/baf.1ns.pas";
%include '/sys/1ns/cl.1ns.pas';
~include '/sys/1ns/pgm.1ns.pas";
%include '/sys/1ns/rvs.ins.pas·;
~include ·/sys/1ns/error.ins.pas";
~1nclude '/sys/ins/vfmt.ins.pas·;
%1nclude '/sys/ins/ms.ins.pas";

CONST
heap_chunk_size = 32 * 1024;

TYPE
stack_pointer = -stack_item;
stack item = RECORD

stack data string;
next link stack pointer;
END;-{ record} -

VAR
stack
amount
command
command len
name
new name
name len
address
old_top
null line
stack_ptr
stack address
status
ok

univJtr;
integer;
string;
integer;
string;
string;
integer;
stack_pointer .- NIL;
stackJointer;
boolea.n;
stack_pointer .- NIL;
baf_$t;
status_$t;
boolea.n;

{ Exit on error procedure ===-----------------=============== }

PROCEDURE check status (IN status: UNIV status_$t);

BEGIN

IF status.all <> status_$ok THEN
BEGIN

END;

error $std format(status. '1$');
pgm_$set_sever1ty(pgm_$error);
pgm_$exit;

END; {err exit }

Example 5-1. Allocating Storage with BAF System Calls

Handling Dynamic Storage 5-6 Apollo Confidential

("
I

0

o

{ Allocate storage for new top of stack ===================== }
PROCEDURE add_storage (IN new_name : string;

IN OUT top: stack_pointer);
VAR

temp_ptr

BEGIN {add_storage}

{ Allocate enough storage for the new name. }
temp_ptr := BAF_$ALLOC (stack_address, { Address of heap from

which to get storage }
sizeof (stack item), { Size of storage to allocate}
status); - { Completion status}

check_status(status);

IF temp_ptr = NIL THEN
BEGIN

{ Create another temporary file to get more storage. }

stack := MS_$CRMAPL ({ Object to be mapped}
{ Length of Object} 0,

0,
heap chunk size,
ms $nr xor-lw,
status-); -

{ First byte to be mapped }
{ Number of bytes to map }

check status (status);

BAF_$ADD_SPACE (stack_address,

stack,

{ Allow 1 writer, any readers}
{ Completion status }

{ Address of heap to which to add
storage }

{ Address of added storage }

heap_chunk_size, { Amount of storage to add }

status); { Completion status }
check_status(status);

temp_ptr := BAF_$ALLOC (stack_address, { Address of heap from which

check_status(status);
END;

to get storage }
sizeof(stack item),{ Size of storage to allocate}
status); - { Completion status}

temp_ptr-.stack_data
temp_ptr-.next_link
top := temp_ptr;

new_name;
top;

{Link new name }
{ Connect to previous top }
{ Redefine top of stack }

END; { add_storage }

Example 6-1. Allocating Storage with BAF System Calls, Cont.

Apollo Confidential 5-7 Handling Dynamic Storage

{ Check for empty stack - }

FUNCTION empty_stack (IN top stack_pointer) boolean;

BEGIN { empty_stack}

empty_stack := top = NIL

END; {empty_stack}

{ Pop name off stack and free storage ==============================- }
PROCEDURE free_storage (OUT del name string;

stack_pointer); IN OUT top
BEGIN {free_storage}

IF empty_stack(top) THEN
writeln (" Cannot remove name from empty list, ")

ELSE BEGIN
del name := top-.stack_data; { Get name to delete}
old_top top; { Save old top of stack}
top ,- top-,next_link; {Make next name top of stack}

END;

Old_top.
status);

check_status(status);

END; {free_storage}

{ Main procedure
BEGIN { Main }

{ Address of storage from which to free
block }

{ Address of block of storage to be freed }
{ Completion status }

-================ }

{ Allocate file to hold stack info then create a heap to handle the stack.
MS_$CRMAPL creates a temporary file and points to the first byte. }

stack := MS_$CRMAPL (

check_status (status);

IF stack <> NIL THEN
BEGIN

0,
0,
heap_chunk_size,
ms $nr xor lw,
status-); -

{ Object to be mapped}
{ Length of object}
{ First byte to be mapped }
{ Number of bytes to map }
{ Allow 1 writer, any readers}
{ Completion status }

stack_address := BAF_$CREATE ([]. { No options}
stack. { Address of storage to use }
heap_chunk_size. { Maximum size of stack}
status); { Completion status}

check_status(status);
END' .

Example 5-1. Allocating Storage with BAF System Calls, Cont.

Handling Dynamic Storage 5-8 Apollo Confidential

/-,
("',
(
'\

o

o

{ Get the line to parse from standard input. }

writeln;
writeln ('This program allows you to add or free storage from the heap. ');
writeln;

REPEAT {user types CTRL/Q }

writeln ('Type -ADD name- to th& top of the list. ');
writeln ('Type -FREE name- from the top of the list. ');
writeln ('Type -Q[Uit]- to qUit. ');

{ Parse the input. }

ok := cl_$parse_input (stream $stdin.
nUll_line);

IF null line THEN
BEGIN

END;

writeln ('No input. Terminating program. ');
pgm_$exit;

{ Get keywords. then check for any invalid keywords;
exit if user specified any. }

IF cl_$get_arg (cl_$first. command. command_len, sizeof(command» THEN
BEGIN

END;

IF cl $match ('add[]', command, command len) THEN
IF cl_$get_arg (cl_$next, name, name_len, sizeof(name» THEN

add_storage (name. address);

IF cl $match ('free[]', command, command len) THEN
IF cl_$get_arg Ccl_$next, name, name=len. sizeof(name» THEN

free_storage (name, address);

IF cl_$match ('q[Uit]', command, command_len) THEN
pgm_$exit;

UNTIL FALSE; { User types CTRL/Q }

Example 6-1. Allocating Storage with BAF System Calls, Cont.

Apollo Confidential 5-9 Handling Dynamic Storage

........... _-----_.- ... _ .. _ .. _ _ ... _-- ._--------

Part ll. DOMAIN Advanced System Call Reference

o

o
Apollo Confidential

· _ ... _ .•.. _ ..• _ .. _-_ .. _--------_._---_. __ ._-----

o

o

o

Introduction

This part of Programming with DOMAIN Advanced System Calls is the Reference Section. It
describes the data types, call syntax, and' error messages for the programming calls described in
Part I of this book. For your convenience, we structured this part like the DOMAIN System
Call Reference manual: The sections are divided by system manager, arranged alphabetically
by system manager name.

H you prefer, you can insert these pages in the proper place within the reference manual. In cases
where this book documents additional system calls to existing subsystems (for example, RWS) we
duplicated the entire data types and error sections of the subsystem, marking the new material
with change bars.

The rest of this introduction describes the D01-1A.IN system insert files and the format of the
information found in the sections that follow.

DOMAIN Insert Files

The D011AIN system provides insert files that define data types, constants, values, and routine
declarations. The insert files also define the exact form of each system call or routine. (Even the
FORTRAN version does this using comments, although the FORTRAN compiler doesn't check
the forms that you use.)

To use system calls of a particular subsystem, you must specify the include file for that
subsystem in your program. All insert files are located in the directory /SYS/INSj. For example,
if you are using system error routines in a Pascal program, you include the insert file~

/SYSjINSjERROR.lNS.PAS. Using the same routines in a FORTRAN program, you include
ISYS/INS/ERROR.lNS.FTN. All insert files are specified using the syntax

ISYS IINS I su bsystem-prefix .INS .language-ab breviation

where the language abbreviation is PAS (Pascal), FTN (FORTRAN), or C (C). The listing ,on
the next page shows all the available insert files.

In addition to including required subsystem insert files in a program, you must always include the
BASE insert file for your programming language. These files contain some basic definitions that
a number of subsystem routines use.

You specify BASE insert files using the syntax

/SYS IINS /BASE.INS.language-abbreviation

Apollo Confidential INTRo-l INTRODUCTION

Insert File

/SYS/INS/BASE. INS. la.n

/SYS/INS/ACLM.INS.la.n
/SYS/INS/BAF.INS.lan
/SYS/INS/CAL.INS.lan
/SYS/INS/CL. INS. lan
/SYS/INS/ERROR. INS. lan
/SYS/INS/EC2. INS. lan
/SYS/INS/FU. INS. lan
/SYS/INS/GM. INS. lan
/SYS/INS/GMF.INS.lan
/SYS/INS/GPR. INS. lan
/SYS/INS/IPC. INS. lan
/SYS/INS/KBD.INS.lan
/SYS/INS/LOADER.INS.lan
/SYS/INS/LOGIN.INS.lan
/SYS/INS/MBX.INS.lan
/SYS/INS/MS. INS. lan
/SYS/INS/MTS.INS.lan
/SYS/INS/MUTEX.INS.lan
/SYS/INS/NAME.INS.lan
/SYS/INS/PAD.INS.lan
/SYS/INS/PBUFS.INS.lan
/SYS/INS/PFM. INS. lan
/SYS/INS/PGM. INS. la.n
/SYS/INS/PM.INS.lan
/SYS/INS/PROC1.INS.PAS
/SYS/INS/PROC2.INS.lan
/SYS/INS/RWS. INS. la.n
/SYS/INS/SIO.INS.la.n
/SYS/INS/SMDU.INS.lan
/SYS/INS/STREAMS.INS.lan
/SYS/INS/TlME.INS.lan
/SYS/INS/TONE.lon
/SYS/INS/TPAD.INS.lan
/SYS/INS/VEC. INS. la.n
/SYS/INS/VFMT.INS.lan

INTRODUCTION

Summary of Insert Files

Operating System Component

Base definitions -- must always be included

Access Control List manager
Basic Allocate and Free manager
Calendar manager
Command Line Handler
Error reporting manager
Eventcount manager
File and Tree Utility
Graphics Metafile Resource
Graphics Map Files manager
Graphics Primitives manager
Interprocess Communications datagrams
[Useful constants for keyboard keys]
Object module loader
Login manager
Mailbox manager
Mapping server
Magtape/streams interface
Mutual exclusion lock manager
Naming server
Display manager
Paste buffer manager
Process fault manager
Program manager
User process routines
Process manager (Pascal only)
User process manager
Read/write storage manager
Serial I/O interface
Display driver
Stream manager
Time manager
Speaker manager
Touchpad manager
Vector arithmetic routines
Variable forma~ter

INTRo-2 Apollo Confidential

(~
' " .. '

(J

o

o

Organizational Information

This introductory section is followed by sections for each subsystem. The material for each
subsystem is organized into the following three parts:

1. Detailed data type information (including illustrations of records for. the use of
FORTRAN programmers).

2. Full descriptions of each system call. Each call within a subsystem is ordered
alphabetically.

3. List of possible error messages.

Data Type Sections

A subsystem's data type section precedes the subsystem's individual call descriptions. Each data
type section describes the predefined constants and data types for a subsystem. These
descriptions include an atomic data type translation (i.e., TTh1E_$REL_ABS_T = 4-byte
integer) for use by FORTRAN programmers, as well as a brief description of the type's purpose.
Where applicable, any predefined values associated with the type are listed and described. The
following is an example of a data type description for the RWS _ $POOL _ T type.

DATA TYPES

RWS SPOOL_T A 2-byte integer. Types of pools to allocate
read/write or heap storage. One of the following
pre-defined values:

RWS _ SSTD _ POOL

Standard pool makes storage accessible to
calling process only.

RWS _ .STREAM_ TM_POOL
Stream pool makes storage accessible to
calling program and to a program invoked
with the UNIX EXEC system call.

RWS _ • GLOBAL _POOL

Global pool makes storage accessible to all
processes.

In addition, the record data types are illustrated in detail. Primarily, we have geared these
illustrations to FORTRAN programmers who need to construct record-like structures, but we've
designed the illustrations to convey as much information as possible for all programmers.

Apollo Confidential INTRo-3 INTRODUCTION

Each record type illustration does the following:

• Clearly shows FORTRAN programmers the structure of the record that they must
c~nstruct using standard FORTRAN data type statements. The illustrations show the
size and type of each field.

• Describes the fields that make up the record.

• Lists the byte offsets for each field. These offsets are used to access fields
individually.

• Indicates whether any fields of the record are, in turn, predefined records.

The following is the description and illustration of the PM_ $SECT _INFO predefined record:

Total
Size: 40

Predefined
Record:

PM_ $SECT -,NFO

byte:
offset

0:

32:

36:

31

field name

15 0

I char I name

~ ~
integer loc

integer len

NAME
The name of the section, a character array of up
to 32 elements.

LOC
A 4-byte integer. Location of section
information.

LEN
A 4-byte integer. Length of section.

FORTRAN programmers, note that a Pascal variant record is a record structure that may be
interpreted differently depending on usage. In the case of variant records, as many illustrations
will appear as are necessary to show the number of interpretations.

INTRODUCTION INTRo-. Apollo Confidential

C)

o

System Call Descriptions

We have listed the system call descriptions alphabetically for quick reference. Each system call
description contains:

• An abstract of the call's function.

• The order of call parameters.

• A brief description of each parameter.

• A description of the call's function and use.

These descriptions are standardized to make referencing the material as quick as possible.

Each parameter description begins with a phrase describing the parameter. If the parameter can
be declared using a predefined data type, the descriptive phrase is followed by the phrase II ,in
XXX format" where XXX is the predefined data type. Pascal or C programmers, look for this
phrase to determine how to declare a parameter.

FORTRAN programmers, use the second sentence of each parameter description. for the same
purpose. The second sentence describes the data type in atomic terms that you can use, such as
II This is a 2-byte integer. II In complex cases, FORTRAN programmers are referenced to the
respective subsystem's data type section.

The rest of a parameter description describes the use of the parameter and the values it may
hold.

The following is an example of a parameter description:

heap_ptr
Address of the created heap, in BAF _ $T format. This is a 4-byte integer. A returned address
of zero (NIL) means that BAF _$CREATE could not create a heap.

Error Sections

Each error section lists the status codes that may be returned by subsystem calls. The following
information appears for each error:

• Predefined constant for the status code.

• Text associated with the error.

Apollo Confidential INTRo-S INTRODUCTION

(~
\.

(
/ ~.

\
'-.

---~------------- --~.---.-.--
...•. _-_.- .. - .. ------.. --.. --.-.. -- ._- .---.--~----.-~- ----.-~.-......... _-.... _ ... _._. __ .. __ ._.. . .. _---

BAF o

o

o
Apollo Confidential BAF-l BAF

BAF DATA TYPES

DATA TYPES

BAF $OPTS_T

BAF _$T

Total byte:
Size: 4 offset

Predefined :0 I Record:

UNIV_PTR

Total byte:
Size: 4 offset

0:

0:

1 :

2:

EAF

31

31

A 4-byte integer. A set of BAF _ $SHARED types.
Indicates that the storage supplied to BAF is
shared.

A record of UNN pointers which point to internal
data structures. The diagram below illustrates the
BAF _ $T data type:

field name
15 o

integer rep

Field Description:

REP
Pointer to BAF internal data structures.

A status code. The diagram below illustrates the
STATUS_$T data type:

field name
o

integer all

or

fail

subsys

mode
1---'--'-- 0

integer code

Field Description:

ALL
All 32 bits in the status code.

FAIL
The fail bit. If this bit is set, the error was not

BAF-2 Apollo Confidential

o

UNIV _PTR

o

Apollo Confidential

BAF DATA TYPES

within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

SUBSYS
The subsystem that encountered the error (bits
24 - 30).

110DC
The module that encountered the error (bits 16 -
23).

CODE
A signed number that identifies the type of error
that occurred (bits 0 - 15).

A 4-byte integer. A pointer to allocated storage.

BAF-3 BAF

BAF _SADD SPACE

BAF $ADD SPACE

Adds more storage space to a basic allocate/free (BAF) heap that was previously created
with BAF $ CREATE.

FORMAT

BAF_$ADD_SPACE (heap. area. size. status)

INPUT PARAMETERS

heap

area

size

The address of the heap to which the storage will be added, in BAF _ $T format. This
address is the return value of the function, BAF _$CREATE.

The address of the storage space to be added to the heap, in UNIV _PTR format. This is a
4-byte integer.

The amount of space to be added. This is a 4-byte integer. The maximum size you can
add at one time is 32K bytes. If you want to add more than 32K bytes, add the space in a
separate call to BAF _$ADD _SPACE.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the BAF
Data Types for more information.

USAGE

BAF

Use this call to add storage to a basic alloc/free heap that you previously created with
BAF _ $CREATE. You can add up to 32K bytes per call. If you want to add more space to
the heap, make another call to BAF _ $ADD _SPACE.

BAF-4 Apollo Confidential

\ '- , .. ~

o

o

o

----- -.. __ ._---------- -----

BAF _SALLOC

BAF $ALLOC

Allocates a contiguous region of storage from a basic allocate/free (BAF) heap.

FORMAT

pointer := BAF $ALLOC (heap. size. status)

RETURN VALUE

pointer
Address of the allocated storage space, in UNIV _PTR format. This is a 4-byte integer. A
returned address of zero (NIL) means that BAF _ $ALLOC could not allocate the desired
storage from the specified heap.

INPUT PARAMETERS

heap

size

Address of the heap from which storage will be allocated, in BAF $T format. This
address is the return value of the function, BAF _ $CREATE.

Size of the new storage space to be allocated from the heap. This is a 4-byte integer. The
maximum amount of space you can allocate at one time is 32K bytes.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the BAF
Data Types section for more information. STATUS $T will always return
STATUS $OK unless BAF $ALLOC returns a value of NIL in the return parameter,
"pointer ...

USAGE

Use this call to allocate storage from the basic alloc/free heap that you created with
BAF _$CREATE. This call allocates a contiguous region of storage of "size" bytes long.
The storage space will be aligned on a 4-byte boundary. The overhead per allocation is
currently 4 bytes long, but is subject to change.

Apollo Confidential BAF-5 BAF

BAr $CREATE

BAF $CREATE

Create a basic alloc/free heap.

FORMAT

heap_ptr := BAF_$CREATE (options. area. size. status)

RETURN VALUE

beap_ptr
Address of the created heap, in BAF _$T format. This is a 4-byte integer. A returned
address of zero (NIL) means that BAF _$CREATE could not create a heap.

INPUT PARAMETERS

options

area

size

BAF options in BAF _ $OPS _ T format. This is a 4-byte integer. Specify the predefined
value:

BAF $SHARED

Indicates that the storage space you supply to BAF is shared. Therefore, BAF _ $ALLOC
and BAF _ $FREE must obtain a lock during their operations to prevent another process
from corrupting the heap. For greater efficiency, specify BAF _ $ SHARED only when the
storage is shared.

Address of storage space that BAF _$CREATE will use to create a heap in UNIV _PTR
format. This is a 4-byte integer.

Size of the heap. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data typP. is 4 bytes long. STATUS _ $T
will always return STATUS_$OK unless BAF _$CREA'l~ returns a value of NIL in the
return parameter, -heap _ptr.-

See the BAF Data Types section for more information.

USAGE

BAF

Use this call to create a basic alloc/free heap. You can use subsequent BAF system calls to
allocate storage space from the heap (with BAF _ $ALLOC), free storage space (with
BAF _ $FREE), and add more storage space to the heap (with BAF _ $ADD _ SPACE).

BAF-6 Apollo Confidential

C)

o

BAF _'FREE

BAF $FREE

Returns a region of storage to a basic allocate/free (BAF) heap that was previously
allocated with BAF $ALLOC.

FORMAT

BAF_$FREE (heap. block. status)

INPUT PARAMETERS

heap
The address of the heap from which storage will be freed, in BAF _ $T format. This
address is return value of the Cunction BAF $CREATE.

block
The address of the block of storage to be Creed. This address is the return value of the
function, BAF _ $ALLOC. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. See the BAF Data Types section for more
information. This data type is 4 bytes long. STATUS $T will always return
STATUS _ $OK unless the specified block is not located in the sp;ifie'ci heap.

USAGE

Use this call to free storage from the basic alloc/free heap that you previously allocated
with·BAF $ALLOC. This call fails if the block was not located in the heap, or if it was
already free.

Apollo Confidential BAF-7 EAF

BAF ERRORS

ERRORS

BAF $FREED TWICE
BAF _ $FREE returns this error if you attempted to free a block that was previously
freed.

BAF _$NO_ROOM
BAF $ALLOC returns this error if there was not enough storage in the heap to

allocate the blocks you specified.

BAF $FORMAT _ VIOLATED

BAF

This error occurs if the block overhead gets overwritten. It gets overwritten when
another process overflows the bounds of an array, because the overhead is located just
before each block.

BAF-8 Apollo Confidential

/~

\

(

---------- _ .. _ .. __ ._._._---_._--------_._---- ------_ .. _- _._--_ _ .. _ _--_. -

CL o

•

o

o
Apollo Confidential CL-l CL

CL DATA TYPES

DATA TYPES

CL $OPT_T

OL

A 2-byte integer. Set of options that control how
the CL reads the command line. List some of the
following predefined values. (Note ~hat some of
these options are mutually exclusive; see the CL call
syntax for details.)

CL _ swn.oCARDS
Causes CL $GET NAME to resolve
wildcards and return the resolved names
(default).

CL _ $NO wn..DCARDS
Causes CL $GET _NAME to return
wildcard names verbatim, it does not resolve
them.

CL_SVERIFY NONE
CL $GET NAME does not verify any
names with the user. (default).

CL-2

CL _SVERIFY _ALL
CL $GET NAME verifies all names with
the user.

CL _ SVERIFY wn..D
CL $GET NAME verifies only names
resolved by wildcards with the user.

CL_SDASH_NOP
Causes CL to treat the hyphen as a name.
Normally, the hyphen is an identifier for the
standard input stream (default).

CL SDASH NAMES
Causes CL to read names from standard input
if no arguments appear on the command line.
(Obsolete for new program development.)

CL_SDASH_DFT_NOP
Suppresses any special action when there are
no arguments on the command line (default).

CL_SNAME_DFT STDIN
Causes CL to read names from standard input
if no arguments appear on the command line.

CL_SNO_MATCH_OK
Displays no warning or error message when a
wildcard does not match existing pathnames.

CL_SNO MATCH_WARNING
Displays a warning message on error output

Apollo Confidential

o

o

CL SOPT SET T

Apollo Confidential

CL DATA TYPES

when a wildcard does not match existing
pathnames (default).

CL_SNO_MATCH_ERROR
Displays an error message on error output and
terminates the program when a wildcard does
not match an existing pathname.

CL_ SKEYWORD _DELIM
Prevents CL_$GET_ARG and
CL _ $GET NAME from returning an
-unused- keyword as an argument. The calls
return FALSE if they encounter a keyword.
(default).

CL_ SNO _KEYWORD _DELIM
Causes no special treatment of unread
keywords by CL_$GET _ARG and
CL_$GET _NAME. CL procedures return
the keywords as if they were arguments.

CL _ SCOMMENTS
Causes OL to ignore all characters enclosed in
brackets when reading a names-file. Do not
use this option for commands that accept
derived names.

CL SNO COMMENTS
Causes no special treatment of characters
enclosed in brackets (default).

CL SST AR NAMES
Allows the user to specify names-files on the
command line for CL to resolve (default).

CL _ SNO STAR NAMES
Does not allow the user to specify names-files
on the command line; CL treats the .. * II like
any other character.

A 4-byte integer. A set of CL options in
CL _ $OPT _ T format. For a list of options, see
CL $OPT T above.

CL-3 CL

CL DATA TYPES

CL $ARG SELECT T

CL SANSWER_ T

OL

A 2-byte integer. Determines whether CL begins a
search at the current token pointer or at the top of
the token list. One of the following pre-defined
values:

CL SFIRST
Search begins before the first unused token on
the token list.

CL_SNEXT
Search begins at the current token pointer on
the token list.

A 2-byte integer. The answer that the user supplies
when CL performs a query. One of the following
pre-defined values:

CL_SYES
User confirms pathname.

CL SNO
User cancels pathname, so CL ignores it.

CL_SQUIT
User tells CL to verify any names.

CL_SGO
User tells CL to continue processing names
without verifying them.

A 2-byte integer. Determines whether the user
needs to supply a derived name after a keyword in
the CL $GET _FLAGGED _DERIVED NM1E
call. One of the following pre-defined values:

CL-4

CL _ SREQUIRED

Requires that the user supplies a derived name
after the specified flag. If absent, the program
terminates.

CL _ SOPTION ... ~a.L

User has the option to specify a derived name
after a specified keyword. If the user supplies
a derived name, it returns TRUE, and the
derived name. If the user does not supply a
derived name, it returns TRUE, but with no
name.

Apollo Confidential

o

o

o

CL $Wll..D SET T

CL $ARGV

Total
Size: 128

Apollo Confidential

byte:
offset

0:

2:

127:

CL DATA TYPES

A 2-byte integer. Set of wildcard options that
determine how the wildcard manager resolves
wildcards. One of the following pre-defined values:

CL_ swn.O _ FILES
Returns the names of files.

CL_Swn.O _oms
Returns the names of directories.

CL_ swn.o _ LINKS

Returns the names of links.

CL _ swn.o _ EXCLUSIVE

Traverses each branch of the naming tree as
far as the first wildcard match. This is useful
for commands that operate on entire
directories, such as COpy _ TREE, or
WRITE BACKUP.

CL _ SWll..O _ CHASE _LINKS

Chases links that point to directories.

CL_$Wll..O _FmsT
Stops at the first match of a given wildcard,
rather than resolving all names.

A 2-byte integer. A set of wildcard options in
CL _ $WILD _ T format. For a list of options see
CL $WILD T above.

An argument returned by CL_$PARSE_ARGS.
The diagram below illustrates the CL _ $ARV data
type: The diagram below illustrates the
CL _ $ARGV data type:

field name
15 0

integer len

char chars

~ ~
I char I

Field Description:

LEN
Length of the argument.

CL-5 CL

CL DATA TYPES

CL $A TTR SET T

CL

CHARS
The text of the argument, a character array of
up to 128 elements.

A 2-byte integer. An element set, 0 .. 15, based on
the contents of two character strings.

Apollo Confidential

o

o

o

CL _ 'CHECK_FLAG

CL_ $CHECK_FLAG

Checks the command line to see if the user specified a flag. It counts the number of tokens
following it that are not flags.

FORMAT

RETURN VALUE

found
Returns TRUE if flag _ string is found; returns FALSE if not.

INPUT PARAMETERS

nag_string
The flag (a token preceded by a hyphen) you want the CL to search for. This is a lowercase
character string in the UNN character string format. You specify the flag in the form of
"-required [optional] ."

II-required II represents the characters of the flag that the user must type. .. [optional] II
represents those characters that are optional. If the user specifies any optional characters,
they all must be specified.

If you do not specify any optional characters, you must supply an empty bracket, [].

For example, "-arg[uments] II matches "-arg" or "-arguments." "-ld[] II matches "-Id. II

tokens _ expected
The number of tokens that you expect to follow the specified flag. This is a 2-byte integer.
If you supply a negative number, the CL assumes that you want at least that many
arguments, but will accept more.

USAGE

Use this call to check if the user supplied the correct number of options.

The call searches the token list for a specified flag an·: returns a Boolean indicating whether
the flag was found. It also tests for the expected number of arguments following the flag.

H the user does not supply the number of tokens expected, the CL returns an error and calls
PGM_ $EXIT to terminate the program. If it finds the nag, the CL marks it "used, II and
moves the token pointer to the flag. Otherwise, the token pointer remains unchanged.

Normally, you do not need to know whether the user typed the abbreviated or full flag.
However, you can find out what the user typed with the CL _ $GET _ FLAG _ II\TFO system
call.

NOTE: Do not use this call if tokens can go a.nywhere on a command line
because you might get unexpected results. In this case,
use CL_$GET_FLAG.

"Apollo Confidential CL-7 CL

CL SCHECK_UNCLAIMED

Checks the token list for any unread flags. IT it finds any, this call prints an error message
and terminates the program.

FORMAT
CL_$CHECK_UNCLAlMED

USAGE

CL

Use this call to check if the user specified any options that your program does not handle.
IT so, the program aborts.

Most programs use this call before calling CL _ $GET _ NA1v1E. Do not use this call if you
plan to use CL_$GET_FLAGGED_DERIVED_NAME:

CL-8 Apollo Confidential .

\

o

o

CL_SGET_ARG

CL $GET_ARG

Gets the first or next unused argument from the token list.

FORMAT

RETURN VALUE

found
Returns TRUE if it finds an argument; returns FALSE if not.

INPUT PARAMETERS

selector
Determines where the CL begins to scan the token list, in CL _ $ARG _ SELECT _ T
format. This is a 2-byte integer.

You must specify one of the following:

CL $FmST

CL $NEXT

Directs the CL to return to the first unused token on the token list to
begin the search.

Directs the CL to scan the token list beginning with the argument
following the token pointer.

max_len
The maximum number of characters to place into "arg. II This is a 2-byte integer. If the
argument contains too many characters, the CL prints an error message and calls
PGM_ $EXIT to terminate the program.

OUTPUT PARAMETERS

arg
Returns the argument that CL finds on the token list, in character string format.

arg_len
Returns the actual length of the argument, as a 2-byte integer.

USAGE

Use this call to get arguments from the command line. You can then convert the character
strings to the· desired type. If you expect pathnames from the command line, use
CL _ $GET _ NM1E because CL _ $GET NAME resolves wildcards. If you expect
numbers from the command line, use CL_$GET_NUM.

CL_$GET_ARG reads a token from the token list. If it finds an argument, the CL
marks it used, and moves the token pointer to it. If it doesn't find any arguments, the CL
sets the token pointer to top of the list, before the first token.

Apollo Confidential CL-9 GL

CL_SGET ARG

OL

If the token is a flag and the default CL option CL_$KEYWORD _DELIM: is in effect, the
CL returns FALSE. IT the token is a flag and you set the CL option
CL _ $NO _KEYWORD _DELIM: the call returns TRUE, and the value of • arg." This is
useful if you want to read tokens that begin with a hyphen but you don't want to treat
them as flags.

CL-IO Apollo Confidential

\

c .. ·

o

o

o

CL $GET DERIVED NAME

Gets the next derived name that applies to the name most recently read by
CL $GET NAME.

FORMAT

RETURN VALUE

found
Returns TRUE if it finds a name; returns FALSE if not.

INPUT PARAMETERS

max len
The maximum number of characters to place into IIname." This is a 2-byte integer. If the
name contains too many characters, the CL prints an error message and calls PGM_ $EXIT
to terminate the p~ogram.

OUTPUT PARAMETERS

name
Returns the name the CL found, in character string format. This is valid only if "found ll is
TRUE.

name_len
Returns the actual length of the name, as a 2-byte integer.

USAGE

Use this call after CL_$GET _NAME to get a derived name. Do not use in programs if
you do not expect derived names.

Each time you call CL_$GET _NAME, the CL sets a "derived-name pointer II next to the
token pointer. Each subsequent call to CL_$GET _DERIVED _NA.:ME, advances the
derived-name pointer to the next derived name, until there are none left.

A single derived name may be seen by a program a number of times. For example, the
command line, cpf 1* .pas =.05.31, matches all instances in the working directory of files
ending with the .pas extension. The program sees the derived name, not the token. For
example, if it finds the pathname foo.pas, CL $GET _DERIVED NM1E returns
foo.pas.05.31.

CL_$GET _DERIVED _NAME does not change the token pointer. Once a token is used
as a derived name, it is marked ·used,· and is not returned by CL_$GET _NAME or
CL_$GET_ARG again.

Apollo Confidential CL-ll CL

Scans the token list for any member of a list of nags that you supply. It counts the number
of tokens following it which are not nags.

FORMAT

RETURN VALUE

index
Returns the index of the flag in the -nag_list, - if found; returns zero if it does not find
any of the specified flags.

INPUT P AR.AMETERS

selector
Determines where the CL begins to scan the token list, in CL $ARG SELECT T
format. This is a 2-byte integer.

You must specify one of the following:

CL $FmST

CL $NEXT

Directs the CL to return to the first unused token on the token list to
begin the search.

Directs the CL to scan the token list beginning with the argument
following the token pointer.

flag_list
The nags you want the CL to search for. This is a lowercase character string, where each
nag is in the form of --required [optional] . II

"-required- represents the characters of the nag that the user must type. "optional"
represents those characters that are optional. If the user specifies any optional characters,
they all must be specified.

If you do not specify any optional characters, you must supply an empty bracket, []. For
example, "-arg[uments] II matches "-arg" or "-arguments." "-Id[]" matches "-Id ".

You must separate each nag by spaces, and terminate the string with any non-space
character other than a hyphen. For example, "-br[ief] -l[ist] X·.

OUTPUT PARAMETERS

token _ count

OL

Returns the number of tokens that follow the nag up to the next flag. This 2-byte integer is
valid only if -index- does not equal zero.

Note that this is the number of tokens listed on the command line only. It does not count
the number of names resolved from a wildcard name.

CL-12 Apollo Confidential

o

o

o

USAGE

Use this call when the user can supply different options that require the same program
action.

The call searches the token list for specified flags from the • flag _list.· H the user specifies
more than one flag that is on the list, the CL returns only the first one it matches.

If it finds the flag, the CL marks it ·u~ed,· and moves the token pointer to the flag.
Otherwise, the token pointer remains unchanged.

Normally, you do not need to know whether the user typed the abbreviated or full flag,
However, you can find out what the user typed with the CL_$GET _FLAG_INFO call.

Apollo Confidential CL-13 CL

CL SGET _ FLAG

CL $GET _FLAG

Checks the command line to see if the user specified a flag, which is a token preceded by a
hyphen. It counts the number of tokens following it which are not flags.

FORMAT

RETURN VALUE

found
Returns TRUE if -flag_string- is round; returns FALSE if not.

INPUT PARAMETERS

flag _ string
The flag you want the CL to search for. This is a lowercase character string in the form of
"-required [optional] . II

It-required II represents the characters of the flag that the user must type. II optional II
represents those characters that are optional. If the user specifies any optional characters,
they all must be specified.

If you do not specify any optional characters, you must supply an empty bracket, [].

For example, "-arg[uments]" matches --arg" or a-arguments"; "-ld[]" matches II-Id II .

OUTPUT PARAMETERS

token _ count
Returns the number of tokens that follow the flag up to the next flag. This 2-byte integer is
valid only if the call returns TRUE.

Note that this is the number of tokens listed on the command line only. It does not count
the number of names resolved from a wildcard name.

USAGE

CL

Use this call when you want to get any specific flag from the command line. This call
searches the token list for the specified flag and returns a Boolean indicating whether the
flag was found.

If it finds the flag, the CL marks it • used,· and moves the token pointer to the flag. If not,
the token pointer remains unchanged.

This is the most commonly used call for getting flags rrom the command line. See also
OL _ $CHECK_FLAG and CL~ $GET _ENUM_FLAG for other ways of getting flags.
You can use CL _ $GET _ INFO to see which flags the user provided.

CL-14 Apollo Confidential

o

o

o

CL_$GET_FLAGGED_DERIVED_NAME

Scans the token list for a specified flag followed by a derived name. If a derived name
follows the flag, it returns the name found.

FORMAT

found := CL_$GET_FLAGGED_DERlVED_NAMECflag. required_name. name.
name_len. max_len)

RETURN VALUE

found
Returns TRUE if it finds a name; returns FALSE if not.

INPUT PARAMETERS

nag
The flag you want the CL to search for. This is a lowercase character string in the form of
"-required [optional]. II

"-required II represents the characters of the flag that the user must type. II optional II
represents those characters that are optional. If the user specifies any optional characters,
they all must be specified.

If you do not specify any optional characters, you must supply an empty bracket, [].

For example, "-arg[uments] u matches "-arg" or "-argumentsN; "-Id[] II matches N-Id ".

required _ name
Specifies whether a derived name must follow the flag, in CL _ $REQUffiED _ T format.
This is a 2-byte integer.

If you supply CL _ $REQumED, and a derived name does not follow the flag, the CL
returns an error message and terminates the program. IT you supply CL _ $OPTIONAL,
and a derived n~:r.e does not follow the flag, the CL returns TRUE, but does not return a
name.

max_len
The maximum number of characters to place into II name. II This is a 2-byte integer. If the
name contains too many characters, the CL prints an error message and calls PGM_ $EXIT
to terminate the program.

OUTPUT PARAMETERS

name
Returns the derived name the CL found, in character string format. This is valid only if
-found" is TRUE.

name_len
Returns the actual length of the name. This is a 2-byte integer. IT CL_ $OPTIONAL is
specified and a derived name does not follow the flag, uname_Ien" is set to zero.

Apollo Confidential CL-15 CL

USAGE

CL

Use this call after CL _ $GET _ NAME to check for a specific flag followed by a derived
name. You can call CL_$GET _FLAGGED _DERIVED _NAME either before or after
calling CL ~ $GET _DERIVED _ NAME.

A single derived name may be seen by a program a number of times. For example, the
command line, emf' {1*}.04.30 @1 -r @l.rpt is handled by three calls:
CL _ $GET _ NAME resolves the wildcard to· match all instances of files in the working
directory ending with the .04.30 extension. CL_ $GET _DERIVED _NAME gets each
derived name, which is the wildcard match without the extension. Then
CL _ $GET _FLAGGED _ DERIVED _ NAME adds the rpt extension.

CL_ $GET _FLAGGED _DERIVED _NAME does not change the token pointer, or
derived-name token pointer. Once a token is used as a derived name, the CL marks it
II used,· and does not return it to by CL _ $GET _ NAME or CL _ $GET _ ARG again.

NOTE: Do not search for th~s flag with CL_$GET_FLAG if
you plan to use this call.

CL-16 Apollo Confidential

(~)

o

e]

CL $GET FLAG INFO

Returns a pointer to the text of the last flag found by CL_$GET _FLAG,
CL_$CHECK_FLAG, CL_$GET_ENUM_FLAG.

FORMAT

OUTPUT PARAMETERS

nag_ptr
Returns pointer to the character string containing the text of the flag. H the user did not
specify a flag, it returns NIL.

nag_len
Number of characters in the character string pointed to by ·nag_ptr. II This is a 2-byte
integer. This value is undefined if ·flag_ptr ll is NIL.

USAGE

Use this call to see which flag the user actually specified. You might want to return this
text with an error message.

Apollo Confidential CL-17 CL

CL SGET NAME

CL _ $GET _ NAME

Gets the first or next unused name from the token list.

FORMAT

RETURN VALUE

found
Returns TRUE if it finds a name; returns FALSE if not.

INPUT PARAMETERS

selector
Determines where the CL begins to scan the token list, in CL $ARG SELECT T
format. This is a 2-byte integer.

You must specify one of the following:

CL $FmST

CL $NEXT

Directs the CL to return to the first unused token on the token list to
begin search.

Directs the CL to scan the token list beginning with the argument
following the token pointer.

max_len
The maximum number of characters to place into -name. - This is a 2-byte integer. If the
name contains too many characters, the CL prints an error message and calls PGM_ $EXIT
to terminate the program.

OUTPUT PARAMETERS

name
Returns the name the CL found, in character string format. This is valid only if II found II is
TRUE.

name_len,
Returns the actual length of the name, as a 2-byte integer.

USAGE

OL

Use this call to get names from the command line. If it finds a name, the CL marks it
·used· and moves the token pointer to it. IT it doesn't find any names, theCL moves the
token pointer to top of the list, before the first token.

CL_$GET _NAME reads a token from the token list. If the token is a pathname, it
returns the pathname verbatim. IT it is a wildcard name and the default
CL _ $WILDCARD option is in effect, the CL resolves the wildcard and returns the first
pathname that matches. Subsequent calls to CL $GET NAME return successive
pathnames resulting from the wildcard.

CL-18 Apollo Confidential

(
"-'"

~

o

o

"-----------

CL_ • GET _NAME

H the token is a flag and the default CL _ $KEYWORD _DELIM option is in effect, the call
returns FALSE; therefore, preventing the call from returning an unused flag as a name.

H CL_$NO _KEYWORD _DELIM option is set and the token is a flag, the call returns
TRUE, and the flag verbatim.

H you set one of the CL verify options VERIFY _ $WILD or VERIFY _ $ALL, this call
queries the user for a yes/no approval. If the user answers -no, - the CL ignores the name
and processes the next name.

If the call does not find a match for a wildcard-name, CL consults the current state of the
CL match option to determine whether it should terminate the program with a warning or
error message, or should continue.

Normally, you do not need to know whether the token was a pathname or wildcard-name.
However, you can find out exactlly what the user typed with the CL_$GET _INFO system
call.

Apollo Confidential CL-19 CL

CL_$GET_NAME_INFO

Determines if the previous CL $GET NAME operated on a wildcard. If so, the call
returns a pointer to the wildcard name.

FORMAT

CL_$GET_NAME_INFO{Wild_ptr. Wild_len)

OUTPUT PARAMETERS

wild_ptr
Returns a pointer to the character string containing the wildcard name. If the user did not
specify a wildcard name, it returns NIL. This is a UNIV _PTR.

wild len
Length of the character string pointed to by ·wild_ptr.· This is a 2-byte integer. This
value is undefined if "wild_ptr" is NIL.

USAGE

OL

Use this call to determine whether the user supplied a full pathname or a wildcard name on
the command line.

CL-20 Apollo Confidential

(

'"

' .. - .-,'

,-, '

/--'-"
(
\'--- "

(J

o

o

CL_ ,GET _NUM

CL $GET NUM

Checks the token list for a decimal numeric argument and converts it to a 4-byte integer.

FORMAT

RETURN VALUE

found
Returns TRUE if it finds a number; returns FALSE if not.

OUTPUT PARAMETERS

number
Returns a long integer (integer32) containing the decimal numeric argument. This is a
4-byte integer.

USAGE

Use this call to convert the argument following the token pointer to a long decimal. If the
argument is not a decimal number, CL _ $GET _ NUM prints an error message and calls
PGM_$EXIT to terminate the program.

If the CL finds a number, the CL marks it ·used" and moves the token pointer to it.
Otherwise, the token pointer remains unchanged.

Apollo Confidential CL-21 OL

CL $GET SET

CL $GET SET

Builds a 16-element set from a character string.

FORMAT

RETURN VALUE

set
Returns the set, in the CL_ SATTR_SET _ T format. This is a 2-byte integer.

INPUT PARAMETERS

char _ string
Character string that defines the allowable token characters and their order in the returned
set. This is in UNN string format. The first character corresponds to the returned set
element "0", the second element, to element -I, - and so on.

string_len
Number of characters in. -char _string. - This is a 2-byte integer.

token
Token, usually read from the token list, with which to build the set. This IS a UNIV
character string.

token len
Number of characters in -token. - This is a 2-byte integer.

USAGE

CL

Use this call to build a set from a character string. For example, EDACL turns the
character string -PGNDWRX- into a set for setting ACLs.

CL-22 Apollo Confidential

o

o

o

CL_*INIT

CL $INIT

Initializes the command line handler that parses command lines. You must use this call
before any other CL calls.

FORMAT

INPUT PARAMETERS

c:I_option
Set of options, in CL _ $OPT _ SET _ T format, that tells the CL how to read the command
line. This is a 4-byte integer. The options control how the CL interacts with the user.

You can specify a default set of options with empty brackets, []. You need to specify only
the options that are not default. The chart below lists the default CL options and their
alternatives. Note that you can either take the default option, or specify one of its
corresponding alternatives.

Default Option

CL $WILDCARDS
Causes CL $GET NM1E to resolve
wildcards and return the resolved
names.

CL $NO MATCH WARNING
Displays a warning message on
error output when a wildcard
does not match existing
pathnames.

CL_$VERIFY _NONE
CL $GET NAME does not
verify any names with the
user.

Apollo Confidential

Mutually-Exclusive Alternatives

CL _ $NO _ WILDCARDS
Causes CL _ $GET _ NAME to return
wildcard-names verbatim; it does
not resolve them.

CL_$NO_MATCH_OK
Displays no warning or error
message when a wildcard does not
match existing pathnames.

CL_$NO_MATCH_ERROR
Displays an error message on
error output, and terminates
the program when a wildcard
does not match an existing
pathname.

CL _ $VERIFY _ WILD
CL $GET NAME verifies
only names resolved by
wildcards with the user.

CL_$VERIFY _ALL
CL $GET N.A1v1E verifies all
names with the user.

CL-23 CL

CL $INIT

Default Option

CL_$STAR_NAMES
Allows user to specify
names-files with the
.. • II operator.

CL_$KEYWORD _DELIM
Prevents CL _ $GET _ARG
and CL_$GET_NAME
from returning an • unused •
flag as an argument. The
calls return FALSE if they
find a flag.

CL $DASH NOP
The CL treats the hyphen ._. as a
name. Normally, the hyphen is an
identifier for the standard
input stream.

CL $DASH DFT NOP
Suppresses any special action when
there are no arguments on the
command line.

CL $NO CO:M:MENTS
Causes no special treatment
of characters enclosed
in brackets.

MutuaUy-Exclusive Alternatives

CL_$NO _STAR_NAMES
Does not allow user to
specify names-files. Treats the
••• just like any other character .

O1_$NO _KEYWORD _DELIM
Causes no special treatment
of unread flags by
CL_$GET_ARG and
CL_$GET _NAME. The procedures
return the flags as if they
were arguments.

CL_$DASH_NAMES
The CL reads names from
standard input when it finds
a hyphen.·

CL $NAME DFT STDIN
Causes the CL to read names
from standard input if no arguments
appear on the command line.·

CL $COMMENTS
Causes CL to ignore all
characters enclosed in brackets
when reading a names-file. Do not
use this in commands that accept
derived names because you must
use brackets to specify the
tag expressions you want to
use in a derived name.

* Made available to remain compatible with previous software releases.
Obsolete for new software development.

I
!
I

I

I

program _ Dame
Name of program, in character string format. CL uses this name when reporting any
errors.

program _len
Length of ·program_name·. This is a 2-byte integer.

USAGE

CL

Use this call to initialize the 01. This call reads the command line and any names-files that
the user supplies and builds an internal token list that contains these tokens. All
subsequent CL calls refer to this token list, not the command line.

CL-24 Apollo Confidential

o

o

o

------------------------------------- - ----------------------------------

CL_$MATCH

CL $:MATCH

Compares a token against a specified string and returns TRUE if they match.

FORMAT

match := CL_$MATCH(pattern. token. token_len)

RETURN VALUE

match
Returns TRUE if it finds a match; returns FALSE if not.

INPUT PARAMETERS

pattern
Pattern with which to compare the token. This is a lowercase UNN character string in the
form of "required[optional]. I.

"required" represents the characters of the flag that the user must type. "optional"
represents those characters that are optional. H the user specifies any optional characters,
they all must be specified.

H you do not specify any optional characters, you must supply an empty bracket, [].

For example, -q[uit)1I matches "q" or -quit.· -go[]· matches -go.-

token
Character string to compare against the pattern. This is a lowercase character string in
UNIV character string format.

token len
The number of characters to place in ·token." This is a 2-byte integer.

USAGE

Use this call to compare a string against a specification. For example, this allows you to
perform an action as soon as the user types the command. The following example uses
CL _ $:MATCH in an interactive parsing loop to exit the program as soon as the user types
a response:

{ Terminate program if user types a q[uit]. }

IF cl_$match ('q[uit], . token. token len THEN
pgm_$exit

ELSE IF cl_$match (...

Apollo Confidential CL-25 CL

CL SP ARSE _ ARGS

CL _ $P ARSE _ARGS

Takes the specified argument vector, and makes it the current vector for the CL to parse.
The CL discards any previous arguments. All subsequent CL calls operate on this argument
list.

FORMAT

INPUT pARAMETERS

arg_count
Number of arguments in the argument vector. This is a 2-byte integer.

arg_ vector
Address of the argument vector to parse, in CL_$ARGV format. This is a 4-byte integer.
It is a UNN array of pointers to arguments in a record.

USAGE

CL

Use this call when you use PGM_$GET _ARGS to get arguments from the command line.
Use CL _ $SETUP to initialize the CL when you want to supply the lines to parse.

Note that this call disregards the first argument on the command line because it assumes it
is the command name.

CL-26 Apollo Confidential

o

'0

----""----~

CL _ SPARSE _INPUT

CL $PARSE_INPUT

Parses a line of text from a specified stream and passes the line to CL_$PARSE_LINE.

FORMAT

RETURN VALUE

ok
Returns TRUE if it reads the line from the stream successfully; returns FALSE if it
encounters an end-of-file. If any other errors occur, the CL prints an error message, and
calls PGM _ $EXIT to terminate the program.

INPUT PARAMETERS

stream_id
Stream ID of the stream from which the line is read J in STREAM_$ID"_ T format.

OUTPUT PARAMETERS

null line
Indicates whether the line is NULL (that iS J the line contains only the NEWLINE
character). This is a Boolean value.

The call returns TRUE if the line read is NULL; returns FALSE if the line is not NULL.

USAGE

You can use this call and CL _ $P ARSE _ LINE so that you can use other CL calls to read
tokens that the user inputs interactively.

Use CL _ $ SETUP to initialize the CL when you want to supply the lines to parse.

Apollo Confidential CL-27 OL

CL _ $P ARSE _ LINE

CL _ $P ARSE _LINE

Parses a line of text and creates a new token list. All subsequent CL calls operate on this
line.

FORMAT

INPUT PARAMETERS

text
Character string to be parsed. This is in UNIV c~aracter string format.

text len
Number of characters in -text. - This is a 2-byte integer.

USAGE

Use this call if the lines of text you want to parse are contained in files. Use CL $SETUP
to initialize the CL when you want to supply the lines to parse.

CL CL-28 Apollo Confidential

I

'--. '

(
~--.'.

o

\
I C"\

CL SREREAD

CL $REREAD

Marks the entire token list ·unused,· so that you can reread the entire token list.

FORMAT

CL_$REREAD

USAGE

Use this call to reread the entire command line. H you want to reread only the flags on the
token list, use CL _ $REREAD _ FLAGS. H you want to reread only the names, use
CL $REREAD NAMES.

Apollo Confidential CL-29 CL

CL $REREAD _ FLAGS

CL_$REREAD_FLAGS

Locates all the ·used· flags on the token list and marks them • unused. II This allows you
to reread all the flags.

FORMAT

CL_$REREAD_FLAGS

USAGE

Use this call to reread the flags on token list after having read them using
CL_$GET_FLAG, CL_$CHECK_FLAG or CL_$GET_ENUM_FLAG.

To reread the entire token list, use CL_$REREAD.

CL CL-30 Apollo Confidential

.... ... ,/

-------------------- ------------------------.--------------- -

o

o

o

CL _ 'REREAD _NAMES

CL $REREAD NAMES

Locates all the • used· names on the token list and marks them • unused. • This allows you
to reread all the names using CL _ $GET _ NAME.

USAGE

-Use this call to reread the names on the token list after having read them with
CL $GET_NAME.

When you call CL_$GET _NAME after this call, it returns the first name on the token
list.

To reread the entire token list, use CL_$REREAD.

Apollo Confidential CL-31 CL

CL SRESET OPTIONS

CL _ $RESET _ OPTIONS

Replaces the previously dermed CL option set with the set specified in this call.

FORMAT

CL_$RESET_OPTIONS([cl_opt1on])

INPUT PARAMETERS

c1_option

OL

Set of options, in CL _ $OPT _ SET _ T format, that tells the CL how to read the command
line. This is a 4-byteinteger. These options control how the CL interacts with the user.

You must specify all the options you want in effect, except the default options.

The chart below lists the default CL options and their alternatives. Note that you can take
either one of the default options, or specify one of the corresponding alternatives.

Default Option

CL $WILDCARDS
Causes CL $GET NAME to resolve
wildcards and return the resolved
names.

CL_$NO_MATCH_ WARNING
Displays a warning message on
error output when a wildcard
does not match existing
pathnames.

CL_$VERIFY _NONE
CL_$GET_NAME does not
veriry any names with the
user.

Mutually· Exclusive ,Alternatives

CL $NO WILDCARDS
Causes CL _ $GET _ NAME to return
wildcard-names verbatim; it does
not resolve them.

CL_$NO_MATCH_OK
Displays no warning or error
message when a wildcard does not
match existing pathnames.

CL_$NO_MATCH_ERROR
Displays an error message on
error output, and terminates
the program when a wildcard
does not match an existing
pathname.

CL-32

CL _ $VERIFY _ WILD
CL _ $GET _ NAME verifies
only names resolved by
wildcards with the user.

CL_$VERIFY _ALL
CL _ $GET _NAME verifies all
names with the user.

Apollo Confidential

\,
'-'-

C
","
)

J

o

o

Default Option

CL $STAR NAMES
Allows user to specify
names-files with the
• •• operator.

CL _ $KEYWORD _DELIM
Prevents CL _ $GET _ARG
and CL_$GET_NAME
from returning an ·unused·
nag as an argument. The
calls return FALSE if they
find a nag.

CL $DASH NOP
The CL treats the hyphen ._. as a
name. Normally, the hyphen is an
identifier for the standard
input stream.

CL $DASH DFT NOP
Suppresses any special action when
there are no arguments on the
command line.

CL $NO COMMENTS
Causes no special treatment
of characters enclosed
in brackets. .,

CL_SRESET OPTIONS

Mutually-Exclusive Alternatives

CL $NO STAR NAMES
Does not allow user to
specify names-files. Treats the
••• just like any other character.

CL _ $NO _KEYWORD _DELIM
Causes no special treatment
of unread nags by
CL $GET _ARG and
CL _ $GET _ NAME. The procedures
return the nags as if they
were arguments.

CL_$DASH_NAMES
The CL reads names from
standard input when it finds
a hyphen.·

CL_$NAME_DFT _STDIN
Causes the CL to read names
from standard input if no arguments
appear on the command line. *

CL $COMMENTS
Causes CL to ignore all
characters enclosed in brackets
when reading a names-file. Do not
use this in commands that accept
derived names because you must
use brackets to specify the
tag expressions you want to
use in a derived name.

* Made available to remain compatible with previous software releases.
Obsolete for new software development.

USAGE

Use this call to replace the set of CL options defined with the calls CL _ $INIT,
CL_ $ SETUP , or CL_ $SET _ OPTIONS. CL_ $RESET _ OPTIONS replaces the
currently defined CL option set with the set specified in this call. IT you want to simply
add to the existing set of options, use CL _ $SET _ OPTIONS.

Apollo Confidential CL-33 CL

----- •. _ .. __ ._ .. _._._------_._ .. _._ _ ••.... -

CL_$SETUP

Initializes the command line handler, but does not load anything to parse. Use this call
instead of CL _ $INIT when you want to use one of the CL parse routines.

You must use either this call or CL _ $INIT before any other CL calls.

FORMAT

INPUT PARAMETERS

el_option

OL

Set of options, in CL _ $OPT _ SET _ T format, that tells the CL how to read the command
line. This is a 4-byte integer. These options control how the CL interacts with the user.

You can specify a default set of options with empty brackets, []. You need to specify only
the options that are not default. The chart below lists the default CL options and their
mutually-exclusive alternatives.

Default Option

CL $WILDCARDS
Causes CL _ $GET _ NAME to resolve
wildcards and return the resolved
names.

CL_$NO_MATCH_WARmNG
Displays a warning message on
error output when a wildcard
does not match existing
pathnames.

CL_$VERIFY _NONE
CL _ $GET _ NAME does not

verify any names with the
user.

Mutually-Exclusive Alternatives

CL_$NO_ WILDCARDS
Causes CL $GET NMiE to return
wildcard-names verbatim; it does
not resolve them.

CL_$NO_MATCH~OK
Displays no warning or error
message when a wildcard does not
match existing pathnames.

CL_$NO_MATCH_ERROR
Displays an error message on
error output, and terminates
the program when a wildcard
does not match an existing
pathname.

CL _ $VERIFY _ WILD
CL _ $GET _ NMiE verifies
only names resolved by
wildcards with the user.

CL_$VERIFY _ALL
CL_$GET_NAME verifies all
names with the user.

""

CL-34 Apollo Confidential

Ir-""

\.

(
'/"-",

\.,

o

o

o

CL_.SETUP

Derault Option

CL_$STAR_NAMES
Allows user to specify
names-files with the
• * II operator.

CL _ $KEYWORD _DELIM
Prevents CL _ $GET _ARG
and CL $GET NAME
from returning an • unused •
flag as an argument. The
calls return FALSE if they
find a flag.

CL_$DASH_NOP
The CL treats the hyphen ._. as a
name. Normally, the hyphen is an
identifier for the standard
input stream.

CL $DASH DFT NOP
Suppresses any special action when
there are no arguments on the
command line.

CL $NO COMMENTS
Causes no special treatment
of characters enclosed
in brackets.

Mutually-Exclusive Alternatives

CL_$NO _STAR_NAMES
Does not allow user to
specify names-files. Treats the
• *. just like any other character.

CL _ $NO _KEYWORD _DELIM
Causes no special treatment
of unread flags by
CL_$GET_ARG and
CL _ $GET _ N.A11E. The procedures
return the flags as if they
were arguments.

CL_$DASH_N.A11ES
The CL reads names from
standard input when it finds
a hyphen.*

CL $N.A11E DFT STDIN
Causes the CL to read names
from standard input if no arguments
appear on the command line. *

CL $COMMENTS
Causes CL to ignore all
characters enclosed in brackets
when reading a names-file. Do not
use in commands that accept derived
names; you must use brackets to
specify tag expressions.

* Made available to remain compatible with previOUS software releases.
Obsolete for new software development.

program_name
Name of program, in UNIV character string format. CL uses this name when reporting any
errors.

program _len
Length of ·program_name.· This is a 2-byte integer.

USAGE

Use this call to initialize the CL when you want to provide the arguments to parse, rather
than having the OL read arguments from the command line. You provide the OL with the
arguments to parse by making subsequent calls to OL parse routines,
CL_$PARSE_ARGS, CL_$PARSE_INPUT, or CL_$PARSE_LINE. You could use
OL _ $INIT to initialize the OL and then call a parsing routine, but this is a cleaner and
faster method.

Apollo Confidential CL-3S CL

CL _ $SET _ DERIVED _ COUNT

CL _ $SET _DERIVED _ COUNT

Tells the CL how many derived names follow each wildcard-name or pathname on the
command line.

FORMAT

CL_$SET_DERlVED_COUNT{count)

INPUT PARAMETERS

count
Number of derived names that you expect to follow a wildcard-name or pathname. This is a
2-byte integer.

USAGE

CL

Use this call when you expect derived names. Usually, you specify a ·count· of one; but
potentially, you can have several derived names from one source name.

This call is optional, but recommended.

CL-36 Apollo Confidential

r'" ',,-/

o

o

o

----------_._. __ ._--._-----_ ... _-_ .. _--_ .. -

CL _.SET _NAME _ PREFIX

CL $SET NAME PREFIX

Defines a character string that the CL adds to the beginning of each name read from the
token list.

FORMAT

INPUT PARAMETERS

prefix
Prefix to insert in front of the name read from the token list. This is a UNIV character
string.

prefix_len
Number of characters in • prefix. II This is a 2-byte integer.

USAGE

Use this call to add text before a name read by CL_$GET _NAME. For example, use this
call to add II /sys/print" before a file to be queued. The CL adds this prefix to the
beginning of each argument read by CL_$GET _NAME before it resolves wildcards.

Apollo Confidential CL-37 CL

CL $SET OPTIONS

CL _ $SET _ OPTIONS

Adds specified options to the set of CL options defined in the CL _ $INIT or CL _ $ SETUP
call.

FORMAT

CL_$SET_OPTIONS([cl_opt1on])

INPUT PARAMETERS

cl_option
Set of options, in CL _ $OPT _ SET _ T format, that tells the CL how to read the command
line. This is a 4-byte integer. These options control how the CL interacts with the user.

OL

You must specify all the options you want, except the default options.

The chart below lists the default CL options and their mutually-exclusive alternatives.

Default Option

CL _ $WILDCARDS
Causes CL $GET NAME to resolve
wildcards and return the resolved
names.

CL_$NO_MATCH_ WARNING
Displays a warning message on
error output when a wildcard
does not match existing
pathnames.

CL_$VERIFY _NONE
CL _ $GET _NAME does not
verify any names with the
user.

Mutually-Exclusive Alternatives

CL _ $NO _ WILDCARDS
Causes CL $GET NAME to return
wildcard-names verbatim; it does
not resolve them.

CL_$NO_MATCH_OK
Displays no warning or error
message when a wildcard does not
match existing pathnames.

CL_$NO_MATCH_ERROR
Displays an error message on
error output, and terminates
the program when a wildcard
does not match an existing
pathname.

CL _ $VERIFY _ WILD
CL ~ $GET _NAME verifies
only names resolved by
wildcards with the user.

CL_$VERIFY _ALL
CL $GET NAME verifies all
names with the user.

Apollo Confidential

o

o

o

CL _ $SET _ OPTIONS

Default Option

CL $STAR NAMES
Allows user to specify
names-files with the
••• operator.

CL_$KEYWORD _DELIM
Prevents CL _ $GET _ARG
and CL_$GET_NAME
from returning an • unused
flag as an argument. The
calls return FALSE if they
find a flag.

CL $DASH NOP
The CL treats the hyphen ._- as a
name. Normally, the hyphen is an
identifier for the standard
input stream.

CL $DASH DFT NOP
Suppresses any special action when
there are no arguments on the
command line.

CL $NO COMMENTS
Causes no special treatment
of characters enclosed
in brackets.

Mutually-Exclusive Alternatives

CL_$NO _STAR_NAMES
Does not allow user to
specify names-files. Treats the
••• just like any other character .

CL _ $NO _KEYWORD _DELIM
Causes no special treatment
of unread flags by
CL_$GET_ARG and
CL _ $GET _ NAME. The procedures
return the flags as if they
were arguments.

CL_$DASH_NAMES
The CL reads names from
standard input when it finds
a hyphen.·

CL_$NAME_DFT _STDIN
Causes the CL to read names
from standard input if no arguments
appear on the command line.·

CL $COMMENTS
Causes CL to ignore all
characters enclosed in brackets
when reading a names-file. Do not
use this in commands that accept
derived names because you must
use brackets to specify the
tag expressions you want to
use in a derived name.

* Made available to remain compatible with previous software releases.
Obsolete for new software development.

USAGE

Use this call to add options to the set of CL options that you defined when you initialized
the CL with a call to CL _ $INIT or CL $SETUP. If you want to remove any options
from the set, use CL _ $RESET _ OPTIONS.

Apollo Confidential CL-39 CL

CL _ $SET STREAMS

CL $SET STREAMS

Tells the CL to use the specified names as the default input and output channels.

FORMAT

INPUT PARAMETERS

stream_in
Name of stream used for standard input, in STREAM_$ID _ T format. The default value
is stream_ $stdin (0).

error _in
Name of stream used for error input, in STREAM_$ID _ T format. The default value is
stream _ $errin (2).

stream_out
Name of stream used for standard output, in STREAM SID T format. The default
value is stream_$stdout (1).

error _out
Name of stream used for error output, in STREAM $ID T format. The default value is
stream_$errout (3). - -

USAGE

OL

Use this call to redirect the default input and output channels to the specified streams. This
allows the user to specify another file for input or output.

CL-40 Apollo Confidential

c~

-- -- - --- -- ---- -------------~- - -- - -.-- ---------_._----_._---------

o

o

o

CL _ ,SET _ VERB

CL $SET VERB

Defines a verb that the CL displays before each query message.

FORMAT

INPUT PARAMETERS

verb
Text that the CL prints before each pathname in user query messages. This is a UNIV
character string.

verb_len
Number of characters in ·verb.· This is a 2-byte integer.

USAGE

Use this call to add text before a pathname read by CL_$GET _NMiE when you are
expecting the CL to query users. When the CL queries users, it will write the verb, the
pathname, and then a question mark.

The CL verifies all pathnames when you specify the CL_$VERIFY _ALL CL option, or
when you use the CL _ $VERIFY system call. It verifies wildcard matches if you specify
CL $VERIFY WILD.

Apollo Confidential CL-41 CL

CL _ SSET _ WlLD OPTIONS

CL _ $SET _ WILD _ OPTIONS

Defines the wildcard options that tell the wildcard manager how to expand wildcards.

FORMAT
CL_$SET_WILD_OPTIONS([Vild_op~10n])

INPUT PARAMETERS

wild _ option
Set of options, in CL _ $WILD _ SET _ T format, that tells the CL wildcard manager how
to expand wildcard options. This is a 2-byte integer.

IT you want to change the default set of wildcard options that the CLestablished at
initialization, you must specify the all the options you want to set.

The CL wildcard options are:

CL $WILD FILES
Matches names of files (default).

CL $WILD_DffiS
Matches names of directories (default).

CL $WILD LINKS
Matches names of links (default).

CL $WILD _EXCLUSIVE
Matches the highest directory of a given wildcard. This is useful for
commands that operate on entire directories, such as COpy _ TREE, or
WRITE_BACKUP. Since they operates on all subdirectories, there's no
need to match further.

CL $WILD CHASE LINKS
Chases links that point to directories or files.

CL $WILD FffiST
Stops at the first match of a given wildcard; otherwise, subsequent calls
to CL_$GET_NAME expand all names that match the wildcard.

USAGE

Use this call to change the default set of CL wildcard options.

CL CL-42 Apollo Confidential

c

o

o

o

CL_$VERIFY

CL $VERIFY

Prompts the user for a yes/no response. This call adds a question mark after the specified
prompt.

FORMAT

answer := CL_$VERIFY(name. name_len)

RETURN VALUE

answer
Returns the user's repsonse to the yes/no query in CL _ $ANSWER _ T format. This is a
2-byte integer.

The user's response can be either of the following values:

CL $YES Include this pathname on the token list.

CL $NO Ignore this pathname.

CL_$QUIT Stop prompting user to verify pathnames.

CL $GO Include all the pathnames that you find on the token list without further
query.

INPUT PARAMETERS

name
Name with which the user is prompted. This is a UNIV character string.

name_len
Number of characters in "name." This is a 2-byte integer.

USAGE

Use this call to prompt the user for a yes/no response. It writes the name followed by a
question mark. You can call CL _ $SET _VERB before this call to include a text string
with the prompt.

Apollo Confidential CL-.f3 CL

CL ERRORS

ERRORS

CL $ARG TOO_LONG
User supplied an argument that is longer than allowed. You specify the maximum
length required at the time of the call.

CL $DUPLICATE SET _ELIDviENT
User supplied a duplicate character, detected by the CL _ $GET _ SET call.

CL $INVALID_DECIMAL_NUMBER
User supplied an invalid decimal number to be converted by the CL _ $GET _ NUM
call.

CL $INVALID SET ELEMENT
User supplied an invalid character, detected by the CL_$GET _SET call.

CL _ $MISSING _REQ _DERIVED _NAME
User did not supply the required derived name after a keyword for the
CL $GET FLAGGED _DERIVED NAME call.

CL $NO _MATCH_FOR_ WILDCARD
There are no pa.thnames in the user's working directory that match the wildcard
specified.

CL $NOT_ENOUGH_ARGUMENTS
User did not supply enough arguments, detected by the CL_$CHECK_FLAG ca.ll.

CL $TOO_MANY_ARGUMENTS
User supplied more arguments than the program can handle, detected by the
CL $CHECK FLAG call.

CL $UNPARSED KEYWORD

CL

User supplied a keyword that cannot be handled by program, detected by the
CL $CHECK_ UNCLAIMED call.

Apollo Confidential

/~
I
~

FU

(J

o

o
Apollo Confidential FU-l FV

FU DATA TYPES

CONSTANTS

NAME SPNAMLEN MAX 256

DATA TYPES

NAME_SPNAME_T

FU _ $CONTEXT _ T

FU

Maximum length of a pathname.

An array of up to NAME $PNAMLEN_MAX
(256) characters.

A 2-byte integer. Location of error returned by
some FU calls. One of the following pre-defined
values:

FU_$SRC
Error occurred in the source object or tree.

FU_$DST
Error occurred in the target object or tree.

FU_$UNK
Unknown whether the error occurred. in the
source or target object or tree.

A 2-byte integer. FU options passed to many FU
calls. One of the following pre-defined values:

FU $LIST _FILES
List files operated on.

FU _ $LIST DIRS

List directories operated on.

FU-2

FU $LIST _LINKS
List links operated on.

FU _ SREPLACE

Replace target with a copy of the source.

FU_'MERGE
Merge source and target if both are
directories. For files and links with the same
name in source and target, it deletes the
target and replaces it with a copy of the
source.

FU_SCOE

Continue to the next object if an error occurs
while processing an object.

FU _ SPRINT _ERRORS

Print errors on the error output stream.

Apollo Confidential

\

o

o

o
Apollo Confidential

------------_ .. _----.--_.-._---

FU DATA TYPES

FU _ $LIST _ DEL

List objects deleted as a result of a replace
operation. Obsolete; use
FU_$LIST_D_DffiS,
FU _ $LIST _D _FILES,
FU_$LIST_D_LINKS instead.

FU_$HELP
Display detailed -usage information. It has no
meaning under AEGIS, used_ for a Boot Shell
utility only.

FU_$QUIT
Has no meaning under AEGIS, used for a
Boot Shell utility only.

FU _ $BEF _ TIME

For copy tree, copy only those objects whose
dtm (date/time last modified) is before the
given date and time.

FU _ SAFT TIME

For copy tree, copy only those objects whose
dtm (date/time last modified) is after the
given date and time.

FU _ SFORCE _ DEL

Force deletion of a target during a replace
operation if user has owner upu rights.

FU_SFORCE
Force a copy in FU _ $MOVE if the source
and target files are not located on the same
volume.

FU_SDACL

Assign default ACL to target files. Target. gets
the default ACL of the parent (destination)
directory.

FU_SSACL
Assign ACL of source object to target object.
Target gets the same ACL as the source
object.

FU_$RENAME

FU-3

Change the name of existing object with the
target pathname before creating copy. If
target name is in use and cannot be deleted
during a replace operation, it appends today's
date to the target pathname.

FU _ $LIST _ D _FILES

List deleted files.

FU

FU DATA TYPES

FU $OPT_SET_ T

STATUS $T

Total byte:
Size: 4 offset

0:

0:

1:

2:

FU

31

FU_$LIST_D_Dms
List deleted directories.

FU _ $LIST _ D _LINKS
List deleted links.

FU _ lMERGE_DST
Merge source and target if both are
directories. For files and links with the same
name in source and target, the target remains
unchanged.

FU _ IUSE _PRESERVE
Reserved.

FU_$SUBS
Retain the Source ACL for objects which
belong to protected subsystems.

FU _ $PRESERVE_DT
Preserve the source dtm (date/time last
modified) and dtu (date/time last used).

FU_SSPARSE
Reserved.

FU SDEL_ WHEN _ UNLKD
Delete object when it becomes unlocked.

A 2-byte integer. A set of FU options in
FU _ $OPT _ T format. For a list of options, see
FU $OPT T above.

A status code. The diagram below illustrates the
STATUS_$T data type:

field name
o

integer all

or

fail

subsys

mode
t-----'---, 0

integer code

Apollo Confidential

o

TIME _ $CLOCKH T

Total byte:

0 Size: 6 offset

Predefined 31 Record:

time_$clockh_t 0:

4:

o
Apollo Confidential

FU DATA TYPES

Field Description:

ALL
All 32 bits in the status code.

FAIL
The fail bit. H this bit is set, the error was not
within the 8cope of the module invoked, but
occurred within a lower-level module (bit 31).

SUBSYS
The subsystem that encountered the error (bits
24 - 30).

MODC
The module that encountered the error (bits 16 -
23).

CODE
A signed number that identifies the type of error
that occurred (bits 0 - 15).

Internal representation of time. The high 32 bits of
the TIME_$CLOCK_ T data type. The diagram
below illustrates the TIME $CLOCKH T data
type:

field name

15 0

integer high

integer low

Field Description:

mGH
High 32 bits of the clock.

LOW
Low 16 bits of the clock.

FU-S FV

FU _ $CMP _TREE

FU _ $CMP _ TREE

Compare a source tree to a target tree.

FORMAT

FU_$CMP_TREE(source-pa~hname. source_name_len. ~arge~-pa~hname. ~arge~_name_len.
fu_op~1ons. error-pa~hname. error-pa~hname_len. s~a~us)

INPUT PARAMETERS

source pathname
Pathname of the sOurce file to be compared, in NAME _ $PNAME _ T format. This is an
array of up to 256 characters.

The source file must be the same type of object as the target.

source name _len
Number of characters in ·source_pathnaIIie." This is a 2-byte integer.

target _ pathname
Pathname of the target file to be compared,in NAME_$PN.MvfE_ T format. This is an
array of up to 256 characters.

The target file must be the same type of object as the source.

target _ name _len
Number of characters in IItarget_pathname. 1I This is a 2-byte integer.

fu_options

FU

FU compare options in FU _ $OPT _ SET _ T format. This is a 2-byte integer. Specify any
combination of the following predefined values:

FU_$COE Continues to the next file, if an error occurs while processing a file.

FU_$LIST DIRS
Lists directories as they are compared.

FU _ $LIST _ FILES
. Lists files as they are compared.

FU _ $LIST _LINKS
Lists links as they are compared.

FU _ SPRINT _ERRORS
Displays errors to the error output stream.

FU-6 Apollo Confidential

c

r~
\. '

o

o

o

FU ,eMP _TREE

INPUT/OUTPUT PARAMETERS

error _ pathname
Pathname of the file where an error occurred, if any, in NAME_$PNAME_ T format.
This is an array of up to 256 characters.

This is valid only if ·status· does not equal zero.

error _ pathname _len
Length of • error _ pathname. • This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the FU
Data Types section for more information.

USAGE

Use this call to compare all the objects of a source tree against all objects in a target tree.
This call reports any objects catalogued in the source that do not also appear in the target.
However, it does not compare the target to the source, so it does not list objects that appear
in the target that do not appear in the source.

FU _ $CMP _ TREE compares objects byte-by-byte. If it encounters a difference, it reports
the difference, stops comparing that file and goes on to compare the next objects in the tree.

Apollo Confidential FU-7 FV

FU $COPY _FILE

FU $COPY _FILE

Copies a file from the source pathname to the target pathname.

FORMAT

FU_$COPY_FlLE(source_pathname. source_name_len. target_pathname.
target_name_len. fu_options. error_context. status)

INPUT PARAMETERS

source _ pathname
Pathname of the source file to be copied, in NAME _ SPNAME _ T format. This is an

. array of up to 256 characters.

If the source name is a link name, it resolves the link, and copies the file to which the link
refers.

source _ name len
Number of characters in "source_pathname. II This is a 2-byte integer.

target _ pathname
Pathname of the target file, in NAME _ SPNAME _ T format. This is an array of up to
256 characters.

If pathname is a directory, it copies the source to the target directory . You cannot specify a
link as a target name.

target _ name _len
Number of characters in "target_pathname. II This is a 2-byte integer.

fu_options

F'U

FU copy options in FU _ SOPT _ SET _ T format. This is a 2-byte integer. Specify any
combination of the following predefined values:

FU $COE

FU $DACL

Continues to the next file, if an error occurs while processing a file.

Assigns the target file's ACL. The target file gets the default ACL of the
parent (destination) directory. Invalid if FU $SACL is set.

FU $DEL_ WHEN UNLKD
Deletes object when it becomes unlocked as a result of a replace
operation. (That is, if the user set the FU _ SREPLACE option.)

FU_SFORCE_DEL
Forces deletion of a target during a replace operation if user has protect
(-P-) rights. (That is, if the user set the FU _ $REPLACE option.)

FU _ SLIST _D _ FILES
Lists files deleted as a result of a replace operation. (That is, if the user
set the FU _ $REPLACE option.)

FU SLIST _FILES
Lists files copied.

FU-8 Apollo Confidential

o

o

FU _ .COPY _FILE

FU $PRESERVE_DT
Preserves the source file's dtm (date/time last modified) and dtu
(date/time last used) if the user set the FU _ $REPLACE option and the
file was copied.

FU $PRINT ERRORS
Displays errors to the error output stream.

FU $RENAME Changes the name of existing object with the target pathname before
making a copy. If target name is in use and cannot be deleted during a
replace operation, it appends today's date to the· target pathname.

FU _ $REPLACE Replaces the target with a copy of the source.

FU $SACL

FU $SUBS

Assigns the target file's ACL. The target file gets the same ACL as the
source file. Invalid if FU _ $DACL is set.

Retains the source ACL for objects which belong to protected subsystems.

OUTPUT PARAMETERS

error _ context
Indicates where an error occurred, in FU _ $CONTEXT _ T format. This is a 2-byte
integer. On error, the call can return anyone of the following predefined values:

FU $SRC Error occurred in the source object.

FU $DST Error occurred in the target object.

FU $UNK Error undefined.

This is valid only if ·status" does not equal zero.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the FU
Data Types fer more information.

USAGE

Use this call to copy a source file to a target file. This call copies only files; use
FU _ $COPY _ TREE to copy directories and their subordinate objects.

Apollo Confidential FU-9 FU

FU _ $COPY _ TREE

FU _ $COPY _ TREE

Copies, merges, and replaces files, directories, and links.

FORMAT

FU_$COPY_TREE(source-pathname. source_name_len. target-pathname.
target_name_len. fu_options. before_time. after_time.
error_pathname. error_pathname_len. status)

INPUT PARAMETERS

source _ pathname
Pathname or the source file, link, or directory tree to be copied, in NAME _ $PNA}..{E _ T
format. This is an array of up to 256 characters.

source _ name _len
Number of characters in ·source_pathname.· This is a 2-byte integer.

target _pathname
Pathname of the target file to be created, replaced, or merged, in NAME _ $PNAME _ T
format. This is an array of up to 256 characters.

The target pathname can be derived from the source pathname. It cannot be a link, logical
volume entry directory, or network root directory.

target _ name _len
Number of characters in ·target_pathname. II This is a 2-byte integer.

fu_options

FU

FU options, in FU $OPT SET T format. This is a 2-byte integer. Specify any
combination of the following predefined values:

FU _$AF _ TIME Copies only those objects whose dtm (date/time last modified) is after the
given date and time, in TIME _ $CLOCKH _ T format.

FU _$BF _ TIME Copies only those objects whose dtm (date/time last modified) is before
the given date and time, in TTh1E _ $CLOCKH _ T format.

FU $COE

FU_$DACL

Continues to the next file, if an error occurs while processing a file.

Assigns the target directory's ACL. Each directory has its own ACL plus
two default ACLs, one for its files and another for its subdirectories. Each
subdirectory and file gets the target directory's default ACLs.

FU $DEL_~N_UNLKD
Deletes the object when it becomes unlocked as a result of a replace
operation. (That is, if the user set the FU _$REPLACE option.)

FU_$FORCE_DEL
Forces deletion of a target during a replace operation if user has protect
(-p.) rights. (That is, if the user set the FU _ $REPLACE option.)

FU _ $LIST _ D _ FILES
Lists files deleted as a result of a replace operation.

FU-10 Apollo Confidential

I/....--~\

II,

.'-..~ .,./

('"
\....... ,~

o

o

o

--------------------~.-.---- ------------------ -------

FU _ $COPY _ TREE

FU $LIST _D DmS
Lists directories deleted as a result of a replace operation.

FU $LIST D LINKS
Lists links deleted as a result of a replace operation.

FU _ $LIST _DffiS
Lists directories as they a:e copied.

FU _ $LIST _FILES
Lists files as they are copied.

FU $LIST LINKS
Lists links as they are copied.

FU $:MERGE Merges the source and target if both are directories. If the target exists,
it merges the source into the target, replacing files and links, and
combining directories. If the target does not exist, FU _ $COPY _ TREE
duplicates the source as the target.

If both source and target are directories, FU _ $COPY _ TREE compares
their contents, object by object. Objects that exist in the source but not
in the target are created in the target. Objects that exist in the target
but not in the source remain unchanged.

If files and links have the same name in the source and target,
FU _ $COPY _ TREE deletes the target and replaces it with a copy of the
source. If directories have the same name in both source and target, it
merges them.

If the source and target are not both directories, FU $COPY TREE
deletes the target and replaces it with the source.

FU $:MERGE DST
Merges source and target if both are directories. It works the same as
FU _ $:MERGE except that files and links with the same name in both
the source and target remain unchanged in the target.

FU $PRESERVE DT
Preserves the source file's dtm (date/time last modified) and dtu
(date/time last used) if the user set the FU _ $REPLACE option and the
file was copied.

FU $PRINT ERRORS
Displays errors to the error output stream.

FU $RENAME Changes the name of existing object with the target pathname before
making a copy. If target name is in use and cannot be deleted during a
replace operation, it appends today's date to the target pathname.

FU _ $REPLACE Replaces the target with the source. It deletes the tree starting at. the
target pathname and copies the entire source tree i~ its place. If the
target pathname does not exist, it creates one and duplicates the source.

Apollo Confidential FU-ll FU

FU _ $COPY _ TREE

FU $SACL

FU $SUBS

Assigns the target directory's ACL. Each subdirectory and file gets the
same ACL as the source directory.

Retains the source ACL for objects which belong to protected subsystems.

before _ time
Specified time, in TIME_$CLOCKH_ T format. This data type is 4 bytes long.

Copies only those files whose dtm (date/time last modified) is before the given date and
time.

afer _time
Specified time, in TIME_$CLOCKH_ T format. This data type is 4 bytes long.

Copies only those files whose dtm (date/time last modified) is after the given date and time.

OUTPUT PARAMETERS

error _ pathname
Returns the pathname of the file where an error occurred, in NAME _ $PNAME _ T format.
This is an array of up to 256 characters.

This is valid only if II status II does not equal zero.

error _ pathname _len
Length of II error _pathname. II This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the FU
Data Types section for more information.

USAGE

FU

Use this call to copy directories, subordinate objects, and links to a target directory. This is
most useful in ca.ll~ where you want to copy any pathname, and do not care whether the
pathname is a file or tree.

If you want to copy files only, use FU _$COPY _FILE.

FU-12 Apollo Confidential

o

o

o

FU _ .DELETE _ FILE

FU $DELETE FILE

Deletes a specified file.

FORMAT

INPUT PARAMETERS

pathname
Pathname of the source file to be deleted, in NAME _ $PNAME _ T format. This is an
array of up to 256 characters.

pathname _len
Number of characters in ·pathname.· This is a 2-byte integer.

force
If TRUE, forces file deletion if user has owner rights, even if user does not have delete
rights. This is a Boolean value.

delete _ when _ unlocked
If TRUE, it deletes delete the file when it becomes unlocked. This is a Boolean value.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the FU
Data Types section for more information.

USAGE

Use this call to delete a file. It is similar to NAME_$DELETE_FILE except that it
allows you to delete locked objects.

Apollo Confidential FU-13 FU

FU _ SDELETE _ TREE

FU $DELETE TREE

Deletes a directory and all its descendants.

FORMAT

FU_$DELETE_TREE(pa~hname. pa~hname_len. fu_op~1ons.
error-pathname. error-pa~hname_len. s~a~us)

INPUT PARAMETERS

pathname
Pathname of the directory to be deleted, in NAME _ $PNAME _ T format. This is an
array of up to 256 characters.

If IIpathname ll is a directory, it deletes the directory and all subordinate objects
(subdirectories, links, and files). If IIpathname ll is a link, it deletes the link, but has no
effect on the files and directories named by the link.

pathname _len
Number of characters in ·pathname. 1I This is a 2-byte integer.

fu_options

F'U

FU delete options in FU _ $OPT _ SET _ T format. This is a 2-byte integer. Specify any
combination of the following predefined values:

FU_$COE - Continues to the next file, if an error occurs while processing a file.

FU _ $DEL WHEN _ UNLKD
Deletes object when it becomes unlocked.

FU $FORCE_DEL
Forces deletion if user has protect (.p.) rights.

FU $LIST _ D FILES
Lists riles deleted.

FU $LIST D DIRS
Lists directories deleted.

FU_$LIST_D LINKS
Lists links deleted.

FU _$LIST _DffiS
Lists directories as they are copied.

FU_$LIST_Dms
Lists directories as they are deleted.

FU _ $LIST _FILES
Lists files as they are deleted.

FU $LIST _LINKS
Lists links as they are deleted.

FU-14 Apollo Confidential

.r-'
\.

o

o

o

FU _ ,DELETE _ TREE

FU $PRINT ERRORS
Displays errors to the error output stream.

OUTPUT PARAMETERS

error _ pathname
Returns the pathname of the file where an error occurred, in NAME _ $PNAME _ T format.
This is an array of up to 256 characters.

This is valid only if ·status· does not equal zero.

error _ pathname _len
Length of -error _pathname.· This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the FU
Data Types section for more information.

USAGE

Use this call to delete a directory, and all the files, links and subdirectories within it. This
call is most useful when you want to delete a pathname, and you do not care if the
pathname is a file or directory.

Apollo Confidential FU-15 FU

FU SINIT

FU $INIT

Initializes the file and tree utility (FU). You must use this call before any other FU calls.

FORMAT
FU_$INIT

USAGE

Use this call to initialize the FU. This call allocates read/write storage space for subsequent
FU calls. You can release the storage with FU _ $RELEASE STORAGE before
terminating your program.

FU FU-16 Apollo Confidential

o

o

FU $MOVE_FILE

Moves a file to a different location in the naming tree.

FORMAT

FU_$MOVE_FlLE(source_pathname. source_name_len. target_pathname.
target_name_len. fu_options. error_context. status)

INPUT PARAMETERS

source _pathname
Pathname of the source file to be moved, in N.A}.1E _ $PNAME _ T format. This· is an
array of up to 256 characters.

source _ name _len
Number of characters in ·source_pathname.· This is a 2-byte integer.

target _ pathname
Pathname of the new file location, in NAME _ $PNAME _ T format. This is an array of up
to 256 characters.

target _ name _len
Number of characters in IItarget_pathname." This is a 2-byte integer.

fu_options
FU options in FU $OPT SET T format. This is a 2-byte integer. Specify any
combination of the following predefined values:

FU $COE Continues to the next file, if an error occurs while processing a file.

FU $DACL Assigns the target file's ACL. The target file gets the default ACL of its
parent (destination) directory. Invalid if FU _$SACL is set.

FU $DEL WHEN UNLKD
Deletes the object when it becomes unlocked as a result of a replace
operation. (That is, if user set the FU _ $REPLACEoption.).

FU $FORCE Forces a copy of the target if the source and target are not located on the
same volume.

FU $LIST _ D FILES
Lists riles deleted as a result of a replace operation.

FU $LIST _D DmS
Lists directories deleted as a result of a replace operation.

FU $LIST _D LINKS
Lists links deleted as a result of a replace operation.

FU $LIST DmS
Lists directories moved.

FU $LIST _FILES
Lists files moved.

Apollo Confidential FU-17 FV

FU _ $MOVE _ FILE

FU $LIST _LINKS
Lists links moved.

FU $PRESERVE DT
Preserves the source file's dtm (date/time last modified) and dtu
(date/time last used) if the user set the FU _ $REPLACE option and the
fue was copied.

FU _ $PRINT _ERRORS
Displays errors to the error output stream.

FU $RENAME Changes the name of existing object with the target pathname before
making a copy. H the target object is in use and cannot be deleted
during a replace operation, it appends today's date to the target
pathname.

FU _ $REPLACE Replaces the target with a copy of the source.

FU~$SACL

FU $SUBS

Assigns the target file's ACL. The target file gets the same ACL as the
source file. Invalid if FU $DACL is set.

Retains the source ACL for objects that belong to protected subsystems.

OUTPUT PARAMETERS

error _ context
Indicates where an error occurred, in FU _ $CONTEXT _ T format. This is a 2-byte
integer. On error, the call can return anyone of the following predefined values:

FU_$SRC

FU $DST

FU $UNK

Error occurred in the source object.

Error occurred in the target object.

Error undefined.

This is valid only if ·status· does not equal zero.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the FU
Data Types section for more information.

USAGE

Use this call to move a specified file to another location in the naming tree. You can also
, use FU _$MOVE_FILE to move a directory name, if the directory is located on the same

volume.

FU FU-18 Apollo Confidential

~ ..
I
\

'.

\

o

o

o

FU $RELEASE STORAGE

Releases read/write storage used by FU calls.

FORMAT

USAGE

Use this call to release the read/write storage used by FU calls. FU allocates storage during
copy operations, so you would usually use this call after your program performs numerous
copy operations.

You can use this call any time after you initialize the FU with a FU _ $INIT system call.

Apollo Confidential FU-19 FU

FU _ SRENAME _ UNIQUE

FU _ $RENAME _ UNIQUE

Renames a pathname to create a unique name by appending today's date to the pathname.

FORMAT

INPUT PARAMETERS

pathname
Pathname to be changed, in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

pathname _len
Number of characters in ·pathname.· This is a 2-byte integer.

fu_options
FU options in FU $OPT SET T form,at. This is a 2-byte integer. Specify any
combination of the following predefined values:

FU $COE Continues to the next file, if an error occurs while processing a file.

FU $LIST _DffiS
Lists directories operated on.

FU $LIST _FILES
Lists files operated on.

FU $LIST _LINKS
Lists links operated on.

FU $PRINT ERRORS
Displays errors to the error output stream.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the FU
Data Types section for more information.

USAGE

FU

Use this call to rename a file so it will have a unique pathname. The call appends a period
and today's date and time to the specified pathname.

FU-2Q Apollo Confidential

c

o

o

FU _ ,SET _PROG _NAME

FU $SET PROG NAME

Identifies the program name when the FU manager reports any errors.

FORMAT

INPUT PARAMETERS

pathname
Name of program, in NAME $PNAME T format. This is an array of up to 256
characters.

pathname _len
Number of characters in ·pathname.· This is a 2-byte integer.

USAGE

Use this call to identify your program. The FU manager returns this program name when
reporting any errors that occur.

Apollo Confidential FU-21 F'U

FU ERRORS

ERRORS

FU $ CANT _PROCESS
Cannot delete or copy system directory.

FU $COMPARE_FAILED
Compare failed, detected by FU _ $CMP _ TREE.

FU $DEST _IN SOURCE
Target file of FU _ $COPY _ TREE contained in source.

FU $DIFF _ VOLS
Cannot move objects across volumes, detected by FU _ $MOVE _FILE.

FU $NOT LEAF
File is a directory, detected by FU _ $COPY _FILE.

FU $SAME OBJECT
Cannot copy source over itself.

FU $UNREC NSTYPE
Naming server entry type is unknown.

FU $UNREC SYSTYPE
Type of system object is unknown, detected by FU _$CMP _ TREE.

('
"'-.....

FU FU-22 Apollo Confidential

----_ .. _._---_ --- - --------_ .. _ _.

o LOADER

o

o
Apollo Confidential LOADER-l LOADER

LOADER DATA TYPES

CONSTANTS

LOADER TABLE_SIZE 2048

NAME_ $PNAMLEN MAX 256

DATA TYPES

NAME_ $PNAME ~ T

PM_$OPTS

PM $LOADER_ OPTS

LOADER

Maximum number of sections allowed in an array of
the data type, PM _ $SECT _ INFO.

Maximum length of a pathname.

An array of up to NAME $PNAMLEN_MAX
(256) characters.

A 2-byte integer. Set of options that define how an
object module gets loaded with PM_ $LOAD. One
of the following pre-defined values:

PM_ $COPY _PROC
Causes PM $LOAD to copy the object
module into read/write storage so that you
can write to the object module without
changing the original.

PM_ $INST ALL
Tells PM_ $LOAD that it is loading a library
containing global variables, not a program.
PM _ $LOAD makes all the global entry
points that were marked at binding available
to other programs.

PM_ SNO _ UNRESOL VEDS
Causes PM_ $LOAD to report an error if
there are any unresolved global variables.

PM_SLOAD GLOBALS
Reserved.

PM_SINSTALL SECTIONS
Tells PM_ $LOAD that it's loading a library
containing global sections. PM $LOAD
makes these global sections, which were
marked at binding, available to all programs.

PM_ SLOAD _ WRITABLE

Causes PM $LOAD to load the object
module with read/write access. Normall~, the
object module has read/only access. Specify
this option when you want to write to the
object module without copying it first.

A 4-byte integer. A set of LOADER options in
PM $OPTS format. For a list of options, see
PM=SOPTS above.

LOADER-2 Apollo Confidential

o

o

o

-- ---- -------------------------

PM_,SECT _INFO

Total
Size: 40

Predefined
Record:

PM_SSECT JNFO

Total
Size: 81926

Predefined
Record:

PM_SLOAD_INFO

Predefined
Record:

PM_SSECT JNFO

Apollo Confidential

byte:
offset

0:

32:

36:

byte:

31

LOADER DATA TYPES

A record of information within the
PM_$LOAD_INFO data type. The diagram
below illustrates the PM _ $SECT INFO data
type:

field name

15 o
I char I name

~ ~
integer loc

integer len

NAME
The name of the section, a character array of up
to 32 elements.

LOC
A 4-byte integer. Location of section
information.

LEN
A 4-byte integer. Length of section.

An argument returned by PM_$LOAD. The
diagram below illustrates the PM_ $LOAD _ll\Tf'O
data type:

field name
offset 31 1 5 0

0:

4:

6:

81886:

integer start_addr

integer n_sects

~ ~ sects:

I char name

integer loc

integer len

(6 + (2048 x 40) -40)

LOADER-3 LOADER

LOADER DATA TYPES

STATUS ST

Total byte:
Size: 4 offset

0:

0:

, :
2:

WADER

31

Field Description:

START _ADDRESS
A UNN _ PTR indicating the start address of
the object module; i.e., the first instruction to
execute. If the object is a library, the first
instrl'ction is the initialization point; if the
object is a program, it is the main entry point.

N_SECTS
Number of sections contained in object module.

SECTS
Location of sections. An array of
PM_$SECT _INFO records, up to
LOADER_ TABLE_SIZE (2048 bytes).

A 4-byte integer. The address of a returned
PM_$LOAD INFO record.

A status code. The diagram beiow illustrates the
STATUS _ $T data type:

field name
o

integer all

or

fail

subsys

mode
t---.-.I..--, 0

code

Field Description:

ALL
All 32 bits in the status code.

FAIL
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

SUBSYS
The subsystem that encountered the error (bits
24 - 30).

LOADER-4 Apollo Confidential

o

o

o
Apollo Confidential

LOADER DATA TYPES

MODC
The module that encountered the error (bits 16 -
23). .

CODE
A signed number that identifies the type of error
that occurred (bits 0 - 15).

A 4-byte integer. A pointer to allocated storage.

LOADER-5 LOADER

PM_$CALL

PM $CALL

Invokes a program at the start address returned by PM_$LOAD.

FORMAT

long_1nt := PM_$CALL(start address)

RETURN VALUE

long_int
Returns a 32-bit integer. This value has no meaning unless you expect a return value from
the invoked program. For details, see the chapter on process manager system calls in Part I
of this manual.

INPUT PARAMETERS

start _ address
Starting address of the object module. This is a UNN _PTR, which is the first field of the
PM _ $LOAD _ INFO record, returned by PM _ $LOAD.

USAGE

This call invokes a program at the current program level, at the start address returned by
PM_$LOAD. The start address is the first field of the PM_$LOAD _INFO data type.
For example, if you declare ·sec_info· of the type PM_$LOAD _INFO, you would
invoke the object module with the following statement:

Before using this call, You must load the program with the PM_$LOAD system call.
Using these two system calls is similar to using PGM_ $INVOKE, except that
PGM_ $INVOKE creates a new program level and performs cleanup handling.

WADER LOADER-6 Apollo Confidential

o

o

PM_$LOAD

PM $LOAD

Loads a specified object module or library at the current program level.

FORMAT

INPUT PARAMETERS

program
Name of the object to load, in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

program_len
Number of characters in -name. - This is a 2-byte integer.

loader _ options
Loader options in PM_$LOADER_ OPTS format. This is a 2-byte integer. Specify any
combination of the following predefined values:

PM $COPY PROC
Causes PM_ $LOAD to copy the object module procedure text to avoid
changing the original object module. If you do not specify this option,
PM _ $LOAD maps the object module directly.

PM $INSTALL Indicates that PM_$LOAD is loading a library containing global
variables, not a program. The entries are marked at binding.

PM $INSTALL_SECTIONS
Causes PM $LOAD to define global sections so that you can share
information among programs.

PM $LOAD WRITABLE
Causes PM _ $LOAD to load the object module as writable, allowing you
read/write access. Normally, the object module has read/only access.

PM $NO UNRESOLVEDS

num_8eets

Causes PM_ $LOAD to report an error if there are any unresolved global
variables.

Number of sections. This is a 2-byte integer. If -num_sects- is greater than zero, it is the
maximum number of sections that you want information on, which is returned in
-load_info.- If -num_sects· is zero, PM_$LOAD returns only the start address of the
object module.

OUTPUT PARAMETERS

load info
Returns the start address of the object module in PM $LOAD INFO format. If
-num_sects- does not equal zero, it also returns the name -;;:nd locat~n of each section in
the object module. For more information on this da.ta type, see the LOADER Data Types
section.

Apollo Confidential LOADER-7 LOADER

PM SLOAD

status
Completion status, in STATUS _ $T Cormat. This data type is 4 bytes long. See the
LOADER Data Types section Cor more inCormation.

USAGE

Loads a library or program object module at the current program level. It converts the
object module on the disk to executable Corm and returns the starting address of the
module. You must invoke the " program with the PM_$CALL system call.

Using these two system calls is similar to using PGM _ $INVOKE, except that
PGM_ $INVOKE creates a new program level and perCorms cleanup handling.

WADER LOADER-8 Apollo Confidential

I

\

o

o

o

LOADER ERRORS

ERRORS

KG $NO SPACE
Not enough storage space for global entry points exported by this module for a
read/write section.

LOADER $BKPTS IN OBJ
Leftover breakpoints exist in object module. This occurs when you set breakpoints in
the original object module by using PM~$WRITABLE rather than making a copy
with PM $COPY _PROC. The breakpoints remain in the object module if it
terminates abnorally.

LOADER _ $DNx60 _REQUIRED
Attempted to execute an object that contains instructions specifically for the Dnx60
series on a non Dnx60 machine.

LOADER_ $M020 _REQUIRED
Attempted to execute an object that contains instructions specifically for the M020
series on a non M020 machine.

LOADER_$M881_REQUIRED .
Attempted to execute an object that contains instructions specifically for the M881
series on a non M881 machine.

LOADER $NO COPY SPACE
Not enough read/write storage space to copy the object module, detected because the
PM_$COPY _PROC option was set.

LOADER $NO PROC SPACE
Not enough address space to map the object module.

LOADER $NO RW SPACE
Not enough read/write storage space to load the object module.

LOADER $NOT_A_PROGRAM
The name you supplied is not an object module.

LOADER _ $PEB _ REQUIRED
Attempted to execute an object that contains instructions specifically for the floating
point performance enhancement board (PEB), on a machine that does not have the
board. .

LOADER $TOO _MANY SECTIONS
Too many sections in object module.

LOADER STOO _MANY _ UNDEFINED
Too many undefined references in object module.

LOADER $UNDEF GLBL
Made reference to an unresolved global at runtime.

LOADER $UNDEF GLBL IN_LID
Library contains unresolved global variables, detected because the
PM_$NO_UNRESOLVEDS option was set.

Apollo Confidential LOADER-g WADER

LOADER ERRORS

LOADER_$UNIX_INIT _REQUffiED
C library initialization required; no C library is installed. /Lm/CLm must always be
present to run a C program. In practice, you should never see this error, since you
cannot boot a node without installing CLm.

LOAnER $WRONG _ VERSION

WADER

The LOADER could not understand the object module format because the version
differed.

LOADER-IO Apollo Confidential

~,
I,

\"- .-

LOGIN

o

o

o
Apollo Confidential LOGIN-l LOGIN

LOGIN DATA TYPES

CONSTANTS

DATA TYPES

NAME _ SPNAME_ T

LOGIN _ SSTRING _ T

LOGIN _ SOPT _ T

LOGIN SPROC _ REC _ T

Total
Size: 16

Predefined
Record:

LOGIN_$PROC_REC_T

LOGIN

256

byte:
offset

31

0:

4:

8:

12:

Maximum length of a pathname.

An array of up to NAME_$PNAMLEN_MAX
(256) characters.

An array of up to 256 characters.

A 2-byte integer. Options for LOGIN _ $LOGIN
system call. One of the following pre-defined
values:

LOGIN _ SLOCAL CONN

Reserved.

LOGIN _ SLOG _EVENTS
Indicates that you are supplying a procedure
to record user's attempts to log in.

A 4-byte integer. A set of LOGIN options in
LOGIN _ $OPT _ T format. For a list of options,
see LOGIN $OPT T above.

A record of pointers to LOGIN functions and
procedures that you supply to LOGIN _ $LOGIN.
The diagram below illustrates the
LOGIN _ $PROC _REC _ T data type:

field name
0

integer pread

integer pwrite

integer help

integer openJog

Field Description:

LOGIN-2 Apollo Confidential

STREAM _ SID _ T

STATUS ST

Total byte:
Size: 4 offset

0:

0
0:

1 :

2:

o
Apollo Confidential

31

- -------.--- .. ------------~ ~~-

LOGIN DATA TYPES

PREAD
Pointer to read function that you supply to
LOGIN $LOGIN.

PWRITE
Pointer to write procedure that you supply to
LOGIN _ $LOGIN.

HELP
Pointer to help procedure that you supply to
LOGIN _ $LOGIN.

OPEN_LOG
Pointer to open log function that you supply to

LOGIN _ $LOGIN.

A 2-byte integer. Open stream identifier.

A status code. The diagram below illustrates the
STATUS_$T data type:

field name
o

integer all

or

fail

subsys

modc
1----"'---,0

integer code

Field Description:

ALL
All 32 bits in the status code.

FAIL
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

SUBSYS
The subsystem that encountered the error (bits
24 - 30).

LOGIN-3 WGIN

LOGIN DATA TYPES

LOGIN

MODC
The module that encountered the error (bits 16 -
23).

CODE
A signed number that identities the type of error
that occurred (bits 0 - 15).

A 4-byte intege~. A pointer to allocated storage.

LOGIN-4 Apollo Confidential

\
\' ,.

o

o

o

LOGIN _ SCHHDffi

LOGIN $CHHDffi

Changes the home directory that is listed in the registry ACCOUNT file.

FORMAT

INPUT PARAMETERS

login_ptr
Pointer to internal LOGIN datatypes in LOGIN_$PTR format. This is a UNIV _PTR
data type, and is 4 bytes long.

home_dir
Name of the supplied home directory. This is a UNIV character string.

home dir len
Number of characters in -home_dir.- This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
LOGIN Data Types section for more information.

USAGE

Use this call to change a user's home directory listed in the network registry account file.
Before using this call, you must use LOGIN _ $OPEN to initialize the LOGIN manager, and
LOGIN _ $SET _PPO to set the PPO (person, project, organization) files to the user whose
home directory you want to change. Use LOGIN _ $LOGIN when you are finished changing
registry ACCOUNT files.

Apollo Confidential LOGIN-S WGIN

LOGIN _ .CHP ASS

LOGIN $CHP ASS

Change the password that is listed in the registry account file.

FORMAT

LOGIN_$CHPASS (log1n-ptr. password. pass~len. status)

INPUT PARAMETERS

login_ptr
Pointer to internal LOGIN datatypes in LOGIN_$PTR format. This is a UNN _PTR
data type, and is 4 bytes long.

password
Name of the supplied password. This is a UNN character string.

pass_len
Number of characters in "password." This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long.
LOGIN Data Types section for more information.

USAGE

See the

Use this call to change the user's password in the registry account file. Before using this
call, you must use LOGIN _ $OPEN to initialize the LOGIN manager, and
LOGIN_ $SET _PPO to set the PPO (person, project, organization) files to the user whose
password you want to change. Use LOGIN $LOGIN when you are finished changing
registry ACCOUNT files.

WGIN LOGIN-6 Apollo Confidential

\ ,.

u

o

o

LOGIN _ $CKP ASS

LOGIN $CKP ASS

Checks the supplied password against the one listed in the registry ACCOUNT file.

FORMAT

INPUT PARAMETERS

login_ptr
Pointer to internal LOGIN datatypes, in LOGIN _ $PTR format. This is a UNIV _PTR
data type, and is 4 bytes long.

password
Name of the supplied password. This is a UNN character string.

pass_len
Number of characters in "password.· This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
LOGIN Data Types section for more information.

USAGE

Use this call to check the supplied password against the password listed in the registry
ACCOUNT file. Before using this call, you must use LOGIN _ $OPEN to initialize the
LOGIN manager, and LOGIN_$SET _PPO to set the PPO (PERSON, PRJECT,
ORGANIZATION) files to the user whose password you want to check. Use
LOGIN _ $LOGIN when you are finished changing registry ACCOUNT files.

Apollo Confidential LOGIN-7 LOGIN

LOGIN $CLOSE

LOGIN $CLOSE

Closes a LOGIN operation.

FORMAT

INPUT PARAMETERS

login_ptr
Pointer to internal LOGIN datatypes in LOGIN_$PTR format. This is a UNN _PTR
data type, and is 4 bytes long.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
LOGIN Data Types section for more information.

USAGE

Use this call to release the resources that the LOGIN manager used for LOGIN operations.
The LOGIN manager updates the account files at this time. IT a previous LOGIN call had
difficulty with an account file, a LOGIN _ $CLOSE can fail, which means that the registry
will not be updated accurately. You will have to repeat the entire sequence since you
opened LOGIN with LOGIN $LOGIN. Call this routine even if the LOGIN $OPEN
fails.

LOGIN LOGIN-8 Apollo Confidential

~.-'.

(
\ ---

,~.

\
\..

o

o

o

LOGIN _ 'ERR CONTEXT

LOGIN $ERR CONTEXT

Locates the file that failed during LOGIN operation.

FORMAT

INPUT PARAMETERS

login_ptr
Pointer to internal LOGIN datatypes, in LOGIN_$PTR format. This is a UNIV _PTR
data type, and is 4 bytes long.

OUTPUT PARAMETERS

err status
Error status, in STATUS_$T format. This data type is 4 bytes long. See the LOGIN Data
Types section for more information.

bad name
Pathname of the file that failed, in N~_$PNAME_ T format. This is an array of up
to 256 characters.

name len
Number of characters in "bad_name. II This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type IS 4 bytes long. See the
LOGIN Data Types section for more information.

USAGE

Use this call to locate the pathname of the PPO file failed during a LOGIN operation.

Apollo Confidential LOGIN-9 LOGIN

LOGIN .LOGIN

LOGIN $LOGIN

Allows a user to log in to a program.

FORMAT
ok := LOGIN_$LOGIN (stream, login_opt, login-procedures, status)

RETURN VALUE

ok
Returns TRUE if LOGIN _ $LOGIN is successful, returns FALSE if not.

INPUT PARAMETERS

stream
Number of the stream where the user will log in, in STREAM_$ID _ T format. This is a
2-byte integer.

login_opt
Option you can specify in your log in procedure, in LOGIN _ $OPT _ SET _ T format. This
is a 2-byte integer. Specify the predefined value:

LOGIN SLOG EVENTS

login _procedures

Tells LOGIN _ $LOGIN that you are supplying a procedure to record log
in events.

Pointers to input/output routines that you supply to LOGIN _ $LOGIN, in
LOGIN SPROC REC T format.

The following are the procedures and functions you supply to LOGIN _ $LOGIN with their
input and output para.meters.

N()~E: The INPUT parameters are the parameters that LOGIN_$LOGIN supplies
to the routines. The OUTPUT parameters are the parameters that the
routines pass to LOGIN $LOGIN.

YOUR_READ Rea.ds input line and passes it to LOGIN_$LOGIN.

Format

int := YOUR_READ(stream, inbuf, inlen, pstr, plen, ech,o, tillbuf, fillbuflen)

RetUJ'D Value

int Returns an integer indicating the length of the message in -inbuf.-

Input Parameters

WGIN

Number of stream associated with input, in STREAM_$ID _ T format.
This is usually STREAM_ $STDIN.

LOGIN-10 Apollo Confidential

u

o

--")
C·

inlen

pstr

plen

echo

fillbuf

fillbunen

LOGIN _ SLOGIN

Maximum length of -inbuf. - This is a 2-byte integer.

Prompt string in LOGIN _ $ STRING _ T rormat. This is a UNIV
character array of 256 characters.

Length of ·pstr.· This is a 2-byte integer.

Indicates whether the input should be echoed. LOGIN _ $LOGIN returns
TRUE when prompting ror a PPO, FALSE when prompting for .a
password.

Pre-fill buffer with string in LOGIN _ $STRING _ T format. This is a
UNN character array of 256 characters. Do not use this parameter, as it
is specific to the Display Manager.

Length of -fillbuf.· This is a 2-byte integer. Do not use this parameter,
as it is specific to the Display Manager.

Output Parameters

inbuf
Login string that YOUR _ READ passes to LOGIN _ $LOGIN, in
LOGIN _ $STRING _ T format. This is a UNN character array of 256
characters.

YOUR WRITE Writes error and help messages to output.

Format

YOUR_ WRITE (stream, pstr, plen)

Input Parameters

stream Number of stream associated with output, in STREAM_ $ID _ T format.
This is usually STREAM_$STDOUT.

pstr Message to output, in LOGIN_$STRING_ T format. This is a UNIV
character array of 256 characters.

plen Length of -pstr.· This is a 2-byte integer.

YOUR _HELP Provides help message that LOGIN _ $LOGIN supplies when user types
h[elp] at the prompt.

Format

YOUR_HELP (stream)

Input Parameters

stream

Apollo Confidential

Number of stream on which to output help procedure, in
STREAM $ID T format.

LOGIN-ll LOGIN

LOGIN .LOGIN

YOUR_OPEN_LOG
Records log in events in a log file.

Format

Return Value

ok Returns TRUE if YOUR_ OPEN_LOG opened successfully, returns
FALSE if not.

Input Parameters

10K_file Name of your log file, in LOGIN _ SSTRING _ T format. This is a
UNN character array of 256 characters.

10K_file_len Length of ulog_file. u This is a 2-byte integer.

Output Parameters
10K_stream
Number of the stream associated with -log_file,- in STREAM_$ID_ T
format.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ ST format. This data type is 4 bytes long.
LOGIN Data Types section for more information.

USAGE

See the

Use this call to write a log-in procedure that allows you to limit user's access to a specified
program. LOGIN_$LOGIN does not handle input/output directly. Rather, you supply
your own input/output routines so you can handle the special input/output needs of your
application. The arguments of these routines must correspond to the parameters listed
above.

To supply LOGIN_SLOGIN with the addresses of your input/output procedures, you must
compile them in a separate module.

When the user supplies a PPO and password to LOGIN _ SLOGIN, the system call checks
the supplied password against the password listed in the registry. IT the passwords match,
LOGIN _ $LOGIN will log the user in.

This system call corresponds to the Shell LOGIN command.

WGIN LOGIN-12 Apollo Confidential

\, _- .'

o

o

o

LOGIN _ ,OPEN

LOGIN _ $OPEN

Initializes the LOGIN manager.

FORMAT

LOGIN_$OPEN (mode. login_ptr. status)

INPUT PARAMETERS

mode
Mode of LOGIN operation, in LOGIN _ $MODE _ T format. This is a 2-byte integer.
Specify one of the following predefined values:

LOGIN _ $READ Initializes LOGIN in read access mode only. Allows user to view registry
account files only.

LOGIN $UPDATE
Initializes LOGIN in read/write access mode. Allows user to view and
change registry account files.

OUTPUT PARAMETERS

login_ptr
Pointer to internal LOGIN datatypes in LOGIN _ $PTR format. This is a UNIV PTR
data type, and is 4 bytes long.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
LOGIN Data Types section for more information.

USAGE

LOGIN _ $OPEN sets up storage for internal LOGIN datatypes. Use this call before using
the following LOGIN system calls:

• LOGIN $CHKP ASS

• LOGIN $CHPASS

• LOGIN $CHHDffi

Even if LOGIN _ $OPEN fails, you must also call LOGIN _ $CLOSE.

Apollo Confidential LOGIN-13 LOGIN

LOGIN $SET PPO

Sets the PPO (person, project, organization) files of the user whose account file you want to
check or change.

FORMAT

LOGIN_$SET_PPO (log1n_ptr. ppo. ppo_len. status)

INPUT PARAMETERS

Iogin_ptr

ppo

Pointer to internal LOGIN datatypes, in LOGIN_$PTR format. This is a UNIV _PTR
data type, and is 4 bytes long.

Name of user's PPO file. This is a UNN character string.

ppo_Ien
Number of characters in IppO." This is a 2-byte integer. If "ppo_len" is zero,
LOGIN _ $SET _PPO uses the PPO files of the user who is currently logged in.

OUTPUT PARAMETERS

status
Completion status, in STATUS $T format. This data type is 4 bytes long. See the
LOGIN Data Types section for more information.

USAGE

Use this call to set the PPO files before checking or making· any changes to the registry. If
you do not call this routine explicitly, the LOGIN manager automatically sets the PPO files
to the user who is currently logged in.

LOGIN LOGIN-I4 Apollo Confidential

\

"

LOGIN ERRORS

ERRORS

o LOGIN $BAD PASSWD
User supplied an invalid password, detected by LOGIN _ $CKP ASS.

LOGIN $ERR EXIT
User wants the call to exit.

LOGIN $ERR SHUT
User wants the caller to shut down.

LOGIN $NO ROOM
Not enough storage to initialize LOGIN's internal datatypes.

o

o
Apollo Confidential LOGIN-IS LOGIN

(~

\........ ,

--------_ .. _-------_ .. _._._-------_ .. _-------

PM

o

o

o
Apollo Confidential PM-l PM

PM DATA TYPES

CONSTANTS

32

DATA TYPES

NAME_ SNAME_ T

UID_ST

Total byte:
Size: 8 offset

Predefined 0:
Record:

UID_$T 4:

STATUS ST

Total byte:
Size: 4 offset

0:

0:

1 :

2:

PM

31

31

Maximum length of a name.

An array of up to NAME_$CO:MPLEN_MAX
(32) characters.

A process UID. The diagram below illustrates the
UID _ $T data type:

field name
0

integer high

integer low

Field Description:

HIGH
The high four bytes of the urn.

LOW
The low four bytes of the UID.

A status code. The diagram below illustrates the
STATUS_$T data type:

field name
o

integer all

or

fail

subsys

mode
1-----'---, 0

integer eode

PM-2 Apollo Confidential

o

o

o
Apollo Confidential

PM DATA TYPES

Field Description:

ALL
All 32 bits in the status code.

FAlL
The fail bit. H this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

SUBSYS
The subsystem that encountered the error (bits
24 - 30).

MODO
The module that encountered the error (bits 16 -
23).

CODE
A signed number that identifies the type of error
that occurred (bits 0 - 15).

PM-3 PM

PM_$GET_HOME_TXT

Returns the home directory of the calling process as a string.

FORMAT

INPUT PARAMETERS

maxlen
Maximum number of characters to be returned (at most, the size of the buffer you assign
for home). This is a 2-byte positive integer. This parameter need not exceed 256.

OUTPUT PARAMETERS

home

len

Pathname of the home directory for the SID (log-in identifier) of this process. This is an
array of up to 256 characters.

Number of characters returned in the home parameter. This is a 2-byte positive integer.

USAGE

PM

The home directory is obtained from the network registry when you log in and is inherited
by all your processes.

PM-4 Apollo Confidential

-------_.- _ .. _- ._._ .. _-_.- .- --_._ .. -._._----_ .. __ ._--_. __ ._--_._ _._---

o

o

o

PM _ $GET _ SID .;... TXT

PM $GET SID TXT

Returns the SID (log-in identifier) of the calling process as a string.

FORMAT

INPUT PARAMETERS

maxlen
Maximum number of characters to be returned (at most, the size of the buffer you assign
for home). This is a 2-byte positive integer. This parameter need not exceed 140.

OUTPUT PARAMETERS

sid

len

String containing the person, project, organization and node ID of the SID (log-in identifier)
of this process, in the form:

person.group.project.nodeid

This is an array of up to 140 characters.

Number of characters returned in the log-in identifier. This isa 2-byte positive integer.

USAGE

Your SID is the full identifier obtained from the network registry when you log in and is
inherited by all your processes.

Apollo Confidential PM-5 PM

PM SSET _NAME

PM $SET NAME

Assigns a name to a given process DID.

FORMAT

PM_$SET_NAME(name. length. process uld. status)

INPUT PARAMETERS

name
The name you want to give to the process in NAME _ $NAME _ T format. This is an array
of up to 32 characters.

length
Number of characters in -name. - This is a 2-byte integer.

process _ uid
The DID or the process that you want to name in urn _ $T rormat. This data type is 8
bytes long. See the PM Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the PM
Data Types ror more information.

USAGE

PM

Use this call to assign a name to a given process. Once a process has a name, you cannot
rename or remove the name from the process.

PM-6 Apollo Confidential

i--'-
1\

\ ~

o

o

o

PM ERRORS

ERRORS

PM $ALREADY NAMED
Attempted to assign a name to a process UID that was already named. You cannot
change the name of a process already named by the Shell CRP command, or the DM
commands, CP, CPO, or CPS.

PM $NOT_FOUND
The process manager cannot find the process specified in the call.

Apollo Confidential PM-7 PM

(~

\' ,.

PROC2 o

o

o
Apollo Confidential PROC2-1 PROC2

PROC2 DATA TYPES

DATA TYPES

PROC2 SINFO T

PROOf

Total
Size: 36

Predefined
Record:
uid_St

. byte:
offset

0:

4:

8:

12:

14:

16:

20:

24:

28:

32:

34:

31

Process information record. The diagram below
illustrates the PROC2 _ $INFO _ T data type:

o
integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

field name

stack _ uid. high

stack_uid.low

stack_base

state

usr

upc

usp

usb

cpu_total. high

priority

Field Description:

STACK UID
UID of user stack.

STACK BASE
Base address of user stack.

STATE
Process state - ready, waiting, etc.

USR
User status register.

UPC
User program counter.

USP
User stack pointer.

USB
User stack base pointer (A6).

PROC2-2 Apollo Confidential

o

PROC2 $STATE_ T

UID $T

0 Total byte:
Size: 8 offset

31

Predefined 0:
Record:

UID_$T 4:

STATUS ST

Apollo Confidential

PROC2 DATA TYPES

CPU TOTAL
Cumulative cpu time used by process.

PRIORITY
Process priority.

An array of UIDs (in UID _ $T format) of up to 24
elements.

A 2-byte integer. State of a user process. Any
combination of the following pre-defined values:

PROC2 _ tW AlTING
Process is waiting.

PROC2 _ tSUSPENDED
Process is suspended.

PROC2_$SUSP _PENDING
Process suspension is pending.

PROC2_SBOUND
Process is bound.

A type UID. The diagram below illustrates the
UID_$T data type:

field name
0

integer high

Integer low

Field Description:

mGH
The high four bytes of the UID.

LOW
The low four bytes of the UID.

A status code. The diagram below illustrates the
STATUS_$T data type:

PROC2-3 PROOf

PROC2 DATA TYPES

Total byte:
Size: 4 offset 31

0:

0:

1 :

2:

PROOf

field name
0

integer all

or

fail

subsys

modc
0

integer code

Field Description:

ALL
All 32 bits in the status code.

FAIL
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

SUBSYS
The subsystem that encountered the error (bits
24 - 30).

MODC
The module that encountered the error (bits 16 -
23).

CODE
A signed number that identifies the type of error
that occurred (bits 0 - 15).

PROC2-4 Apollo Confidential

(~,

(,,- .'

(-"
i,
\" _. -'~'

o

o

o

----_._--_.- .. _._._ _ .. - . ----------. __ _---_._--_. -------

PROC2 _ .GET _INFO

PROC2 $GET _INFO

Returns information about a process.

FORMAT
PROC2_$GET_INFO (process-uid. info. info-buf-length. status)

INPUT PARAMETERS

proeess-uid
The UID of the process for which you want information, in UID _ $T format. This data
type is 8 bytes long. See the PROC2 Data Types section for more information.

You can get process UIDs by calling PROC2_$WHO_AM_I and PROC2_$LIST.

H the process-uid in the call is the caller's own process, the only information returned is the
stack UID and virtual address. If you want to find out the amount of CPU time used by
the caller's process, use PROCl_ $CPU _ TIME.

info-buf-Iength
Length of the information buffer allotted for returned information, in bytes. This IS

normally 36 bytes.

OUTPUT PARAMETERS

info
Information about the process, in PROC2 _ $INFO _ T format. This data type is 36 bytes
long. See the PROC2 Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
PROC2 Data Types section for more information. Possible values are:

STATUS_$OK Completed successfully.

PROC2 $18 CURRENT
Specified calling process UID (success).

PROC2 $UID NOT FOUND
Specified UID is not on node.

USAGE

GET _ $INFO returns information about a process when supplied with a process UID. The
information returned consists of the following:

Apollo Confidential PROC2-5 PROOf!

PROC2 _ $GET INFO

• The program state (ready, waiting, suspended, SUSP _PENDING, bound).

• The User Status Register (USR).

• The User Program Counter (UPC).

• The user stack pointer (A7).

• The stack base pointer (A6).

• The amount of CPU time used.

• The CPU scheduling priority.

/-~

(
\,~.. ,,~/

PRooe PROC2-6 Apollo Confidential

o

o

o

PROC2 _ SLIST

PROC2 $LIST

Returns a list of existing level 2 (user) processes on the caller's node.

FORMAT

PROC2_$LIST (uid-list. max-num-uids. nUmber-u1ds)

OUTPUT PARAMETERS

uid-list
The UIDs of the active level 2 processes on the system, in PROC2 _ $UID _LIST _ T
format. This is a 24-element array of UIDs. Each UID is a 4-byte integer in UID _ $T
format.

INPUT PARAMETERS

max-num-uids
Maximum number of process UIDs to be returned. (At most, the size of the buffer you
assign for lIuid-list. II This is a 2-byte integer.

OUTPUT PARAMETERS

number-uids
Number of active level 2 processes on the node, even if that number IS greater than
IImax-num-uids. II This is a 2-byte integer.

USAGE

The UIDs of all level 2 processes (user processes) on the caller's node, up to
.. max-num-uids, II are returned.

Apollo Confidential PROC2-7 PROC2

PROC2 ,SET _PRIORITY

PROC2 $SET _PRIORITY

Sets the priority of a pocess.

FORMAT

PROC2_$SET_PRIORITY(process uid. low. high. status)

INPUT PARAMETERS

process _ uid

low

high

The UID of the process that you want to change the priority level, in UID _ $T format.
This data type is 8 bytes long. See the PROC2 Data Types section for more information.

The lower boundary of the priority. This is a 2-byte integer within the range of 1 to 16.
The default lower boundary is 3.

The higher boundary of the priority. This is a 2-byte integer within the range of 1 to 16.
The default higher boundary is 14

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the
PROC2 Data Types section for more information.

USAGE

Use this call to change the priority of a program. The process priority is an integer ranging
from 1 (low) to 16 (high). The Display Manager runs at a priority of (16,16). When the
operating system decides which process to run next, it chooses the process that currently has
the highest priority.

The priority cha.nges while a process executes. Its priority increases as the process waits for
events, and decreases as it computes for long periods without waiting.

PROOf PROC2-8 Apollo Confidential

c

o

o

o

PROC2 $WHO _AM I

Returns the UID of the calling process.

FORMAT

PROC2_$WHO_AM_I (my-uid)

OUTPUT PARAMETERS

my-uid
. The UID of the calling processJ in UID _ $T format. This data type is 8 bytes long. See the
PROC2 Data Types section for more information.

USAGE

You can use a UID obtained through this call to find out information about your process
from the PROC2 $GET INFO call.

Apollo Confidential PROC2-0 PROG2

PROC2ERRORS

ERRORS

PROC2 $BAD STACK_BASE
Bad stack base.

PROC2 $IS CURRENT
Request is for current process.

PROC2 $UID NOT_FOUND
UID of given process not found.

PROC2 $UID NOT _LEVEL 2
Not a level 2 process.

STATUS $OK
Successful completion.

PRooe PROC2-10 Apollo Confidential

(~

\
'-•..

RWS

o

o

o
Apollo Confidential RWS-l RWS

RWS DATA TYPES

DATA TYPES

RWS SPOOL_T

STATUS ST

Total byte:
Size: 4 offset

0:

0:

1 :

2:

RWS

31

A 2-byte integer. Types of pools to allocate
read/write or heap storage. One of the following
pre-defined values:

RWS _ *STD _POOL
Standard pool makes storage accessible to
calling process only.

RWS * STREAM_ TM_POOL
Stream pool makes storage accessible to
calling program and to a program invoked
with the UNIX EXEC system call.

RWS_*GLOBAL_POOL
Global pool makes storage accessible to all
processes.

A status code. The diagram below illustrates the
STATUS_$T data type:

field name
o

integer all

or

fail

subsys

modc
.....--------. 0

integer code

Field Description:

ALL
All 32 bits in the status code.

FAlL
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

SUBSYS
The subsystem that encountered the error (bits
24 - 30).

RWS-2 Apollo Confidential

/~-"
(.

\" .,.,'

----------._-- ~---.-------------------

RWS DATA TYPES

MODC

o The module that encountered the error (bits 16 -
23).

CODE
A signed number that identifies the type of error
that occurred (bits 0 - 15).

UNN_PTR A 4-byte integer. A pointer to allocated storage.

o

o
Apollo Confidential RWS-3 RWS

RWS SALLOe

RWS $ALLOC

Allocates read/write storage for FORTRAN or Pascal programs.

FORMAT

RWS_$ALLOC (nbytes, pointer)

INPUT PARAMETERS

nbytes
The number of bytes of storage needed. This is a 4-byte integer.

OUTPUT PARAMETERS

pointer
The address of the new storage ~~~a.ce, in UNN _PTR format. This is a 4-byte integer. A
returned address of zero means that RWS _ $ALLOC could not allocate the desired storage.

USAGE

RWS

RWS _ $ALLOC allocates the specified number of bytes of read/write storage to the calling
process and returns the address of the storage area.

This routine is useful for allocating different quantities of dynamic storage, depending on a
run-time factor.

RWS-4 Apollo Confidential

C' .J

o

o

RWS tALLOC_HEAP

RWS $ALLOC HEAP

Allocates heap storage for programs.

FORMAT

pointer = RWS_$ALLOC_HEAP (nbytes)

RETURN VALUE

pointer
The address of the new storage space, in UNIV _PTR format. This is a 4-byte integer. A
returned address of zero means that RWS _ $ALLOC _HEAP could not allocate the desired
storage.

INPUT PARAMETERS

nbytes
The number of bytes of storage needed. This is a 4-byte integer.

USAGE

RWS _ $ALLOC _HEAP allocates the specified number of bytes of read/write storage to
the calling process and returns the address of the storage area.

This routine is useful for allocating different quantities of dynamic storage, depending on a
run-time factor.

Apollo Confidential RWS-S RWS

RWS _ SALLOe _HEAP _POOL

RWS_$ALLOC_HEAP _POOL

Allocates heap storage in a specified pool.

FORMAT

RETURN VALUE

pointer
The address or the new storage space, in UNIV _PTR rormat. This is a 4-byte integer. A
returned address or zero (NIL) means that RWS $ALLOC _HEAP POOL could not
allocate the desired storage.

INPUT PARAMETERS

alIce_pool
Pool where storage will be allocated, in RWS_$POOL_ T format. This is a 2-byte
integer. Specify one of the following following predefined values:

RWS $GLOBAL POOL
Global pool makes storage accessible to all processes.

RWS $STD POOL
Standard pool makes storage accessible to calling program only.

RWS $STREAM TM POOL
Stream pool makes storage accessible to calling program and to a
program invoked with a UNIX EXEC system call.

nbytes
Number of bytes of storage needed. This is a 4-byte integer.

USAGE

RWS

RWS _ $ALLOC _HEAP _POOL allocates a specified number of bytes of heap storage to
the calling process and returns the address of the storage area.

Use this call when you want to control storage access. You can specify that the storage be
accessed by the calling process only, by the calling program and a program invoked with a
UNIX EXEC system call, or by all programs.

Due to a current limitation, you cannot use this call in FORTRAN programs due to
FORTRAN calling conventions. This will be corrected in the next AEGIS Software Release.

RWS-6 Apollo Confidential

,~
\
'-.

C)

o

o

RWS_$ALLOC_RW

RWS $ALLOC _RW

Allocates read/write storage for Pascal programs.

FORMAT

pointer = RWS_$ALLOC_RW (nbytes)

RETURN VALUE

pointer
The address of the new storage space, in UNIV _PTR format This is a 4-byte integer. A
returned address of zero means that RWS _ $ALLOC _ RW could not allocate the desired
storage.

INPUT PARAMETERS

nbytes
The number of bytes of storage needed. This is a 4-byte integer.

USAGE

RWS _ $ALLOC _RW allocates the specified number of bytes of read/write storage to the
calling process and returns the address of the storage area.

This routine is useful for allocating different quantities of dynamic storage, depending on a
run-time factor. .

Apollo Confidential RWS-7 RWS

RWS $ALLOC _RW _POOL

Allocates read/write storage in a specified pool.

FORMAT

RETURN VALUE

pointer
The address of the new storage space, in UNN _PTR format. This is a 4-byte integer. A
returned address of zero (NIL) means that RWS $ALLOC_RW POOL could not
allocate the desired storage.

INPUT PARAMETERS

alloe_pool
Pool where storage will be allocated, in RWS _ SPOOL _ T format. This is a 2-byte
integer. Specify one of the following following predefined values:

RWS $GLOBAL_POOL
Global pool makes storage accessible to all processes.

RWS $STD POOL
Standard pool makes storage accessible to calling program only.

RWS_$STREAM_TM_POOL
Stream pool makes storage accessible to calling program and to a
program invoked with a UNIX EXEC system call.

nbytes
Number of bytes of storage needed. This is a 4-byte integer.

USAGE

RWS

RWS _ $ALLOC _RW _POOL allocates a specified number of bytes of read/write storage
to the calling process and returns the address of the storage area.

Use this call when you want to control storage access.' You can specify that the storage be
accessed by the calling process only, by the calling program and a program invoked with a
UNIX EXEC system call, or by all programs.

Due to a current limitation, you cannot use this call in FORTRAN programs due to
FORTRAN calling conventions. This will be corrected in the next AEGIS Software Release.

RWS-8 Apollo Confidential

o

o

RWS 'RELEASE_HEAP

RWS_$RELEASE_HEAP

Releases storage allocated using the RWS _ $ALLOC _HEAP call.

FORMAT

RWS_$RELEASE_HEAP

INPUT PARAMETERS

pointer
The address heap storage space, in UNIV _PTR format. This is a 4-byte integer.

This must be a pointer returned by a call to RWS_SALLOC_HEAP.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the RWS
Data Types section for more information.

USAGE

RWS_$RELEASE_HEAP is used in conjunction with the RWS_$ALLOC_HEAP call.
RWS _ $ALLOC _HEAP dynamically allocates storage for a program, returning a pointer
to the new storage. When you no longer need the storage, you release it by passing the
pointer to RWS_SRELEASE_HEAP.

Apollo Confidential RWS-g RWS

RWSERRORS

ERRORS

RWS $LEVEL_FAILURE
User program wrote over the storage where the system stored the program level
information.

RWS $NOT_HEAP_ENTRY
Argument to RWS_$RELEASE_HEAP did not refer to storage allocated with
RWS $ALLOC_HEAP.

RWS $SCRffiBLED OVER
User program wrote over the storage where the system stored the heap's process
information.

RWS $WRONG_LEVEL

RWS

Attempted to release storage that was allocated by a program at a superior (lower)
program level. This error can occur when using RWS $STD POOL or
RWS $STREAM TM POOL.

RWS-IO Apollo Confidential

~~---- ------------------

C)

o

'NODE_DATA/SIOLOGIN_LOG 3-3

ACCOUNT file

changing with LOGIN calls 3-1

ACL

tables ror, in FU system calls 2-6

Argument

definition 1-2

BAF system calls

handling dynamic storage with 5-1

improving perrormance 5-5

insert files 5-1

overview or 5-4

using in proper sequence 5-4

BAF SADD SPACE 5-4

BAF _ SALLOC 5-4

BAF _SCREATE 5-4

BAF _ SFREE 5-4

BAF _SNO_ROOM 5-5

BAF SSHARED 5-4

Binding

LOGIN bin files 3-1

Brackets

ignoring on command line 1-7

Breakpoints

setting in copy or object module 4-2

C

storage allocation in 5-2

CAL_ SDECODE_ASCII_DATE 2-7

CAL_SDECODE_ASClI_ TIME 2-7

CAL_SDECODE_LOCAL_ TIME 3-11

CAL_SENCODE_TIME ·2-7

CAL _ SREMOVE _ LOCAL _ OFFSET 2-7

Changing

registry account files 3-12

CL Options 1-5

adding to current set 1-7

obsolete 1-7

removing rrom current set 1-7

CL system calls

abbreviated options 1-11

Apollo Confidential

Index

Index-l

CL options 1-5

error on invalid nags 1-12

errors during 1-4

getting arguments 1-14

letting next token in list 1-14

initializing CL 1-4

initializing, examples 1-8

insert files 1-1

miscellaneous 1-17

obsolete CL options 1-7

parsing file 1-4

parsing the command line 1-2

parsing user input 1-4

sample program 1-18

using in proper sequence 1-2

verirying names 1-6

CL_SCHECK_FLAG 1-11

CL_SCHECK_UNCLAIMED 1-3,1-12

CL_SCO~NTS 1-7

CL_*DASH_DFT_NOP 1-7

CL_SDASH_NAMES 1-6

CL_SDASH NOP 1-6

CL_SFmST 1-14

CL_SGET _ARG 1-13,2-7,2-19,3-18

CL_SGET_ARGS 1-3

CL_SGET_DERIVED_NAME 1-15

CL_SGET_ENUM_FLAG 1-ll

CL_SGET _FLAG 1-11,2-2,2-5,4-5

CL_SGET _FLAG_INFO 1-12,1-17

CL_SGET _NAME 1-3,1-13

CL_*GET_NAME_INFO 1-17

CL_*GET _NUM 1-3,1-13

CL_*GET_SET 1-17

CL_ SINIT 1-3, 1-4

CL_ *KEYWORD _DELIM 1-6

CL_SMATCH 1-17,2-19,3-18

CL_*MATCH_ERROR 1-6

CL_*NAME_DFT_STDIN 1-7

CL_*NEXT 1-14

CL_*NO_COMMENTS 1-7

CL_*NO_KEYWORD_DELIM 1-6

CL_*NO_MATCH_OK 1-6

CL_$NO_MATCH_WARNING 1-6

CL_$NO STAR_NAMES 1-6

CL_$NO WILDCARDS 1-6

CL_$PARSE_ARGS 1-5

CL_$PARSE_INPUT 1-4,1-10,4-5

program example 1-10

CL_$PARSE_LINE 1-4

program example I-V

CL_$REREAD 1-17

CL $REREAD _FLAGS 1-17

CL _ $REREAD _NAMES 1-17

CL_$RESET_OPTIONS 1-5,1-7

CL_$SET_DERIVED COUNT 1-5

CL_$SET_NAME_PREFIX 1-5

CL_$SET_OPTIONS 1-5,1-7

CL $SET STREAMS 1-17

CL_$SET_ VERB 1-17

CL_$SET _ Wll.D OPTIONS 1-5,1-8

CL_$SETUP 1-4,2-18

CL_ $STAR_NAMES 1-6

CL_$VERIFY 1-17

CL_ $VERIFY _ALL 1-6

CL $VERIFY _NONE 1-6

CL_$VERIFY _ WILD 1-6

CL $ WILD CARD S 1-6

Command line

CL system calls to read 1-3

how CL parses 1-2

ignoring brackets 1-7

initializing 1-3

model for parsing, figure 1-3

parsing 1-1

reading tokens from 1-1

Command Line Handler

See also CL system calls

Comparing

source tree to a target tree 2-2

Copying

file, eX&IDple 2-8

files and trees 2-2

CP (create_procell) 4-6

CPO (create_procell_only) 4-6

CPS (create_procell_Iener) 4-6

CRP (create_a_procell) 4-6

Index-2

Date

appending to a file 2-2

Deleting

files and trees 2-2

Derived names 1-7

definition 1-2

getting, command line 1-15

getting, program example 1-16

handling 1-2

DM commands

CP (create_process) 4-6

CPO (create _ process _ only) 4-6

CPS (create_process_server) 4-6

DTM/DTU

preserving 2-8

Dynamic storage

handling 5-1

Error reporting

unresolved global variables 4-2

Errors

CL 1-4

Example

returning 16-bit

File and Tree Utility

value

See also FU system calls

Flags

checking for CL 1-11

definition 1-1

with

getting arguments associated with,

program example 1-15

lowercase letters for defining 1-11

specifying synonymous nags 1-11

synonymous, example 1-12

FORTRAN

allocating storage 5-2

storage limitation 5-2

FU options

providing Shell Command options with

2-3

setting, example 2-5

FU system calls

controlling operations by setting

options 2-2

Apollo Confidential

/'----"

1\

".,--

I

C)

o

corresponding Shell comma.nds 2-2

insert files 2-1

overview 2-1

relea.sing stora.ge 2-6

using in proper sequence 2-1

FU _ SAFT _ TIME 2-3

FU _ SBEF _ TIME 2-3

FU_SCMP _TREE 2-2,2-15

FU_SCOE 2-3

FU_SCOPY_FILE 2-2,2-g

FU _ SCOPY _ TREE 2-2, 2-11

FU_SDACL 2-3

FU_SDEL_ WHEN_UNLKD 2-3

FU_SDELETE_FILE 2-2,2-12

FU _ SDELETE _ TREE 2-2, 2-14

FU_SFORCE 2-3

FU_SFORCE_DEL 2-3

FU _ SHELP 2-3

FU_SINIT 2-2,2-5,2-18

FU_SLIST _D_DIRS 2-3

FU _ SLIST _D _FILES 2-4

FU _ SLIST _D _LINKS 2-4

FU _ SLIST _ DEL 2- 4

FU _ SLIST _DIRS 2-3

FU SLIST _FILES 2-3

FU _ SLIST _ LINKS 2-3

FU_SMERGE 2-4

FU_SMERGE_DST 2-4

FU_SMOVE_FILE 2-2,2-17

FU _ SPRESERVE _ DT 2-4

FU _ SPRINT _ERRORS 2-4

FU_SQUIT 2-4

FU_SRELEASE_STORAGE 2-2

FU _ SRENAME 2-4

FU_SRENAME_UNIQUE 2-2,2-18

FU_SREPLACE 2-4

FU _ SSACL 2-4

FU _ SSET _PROG _NAME

2-18

FU _ SSUBS 2-4

Global sections

loa.ciing library with 4-2

Global va.ri&.bles

2-2, 2-5,

reporting error on unresolved 4-2

Apollo Confidential Index-3

Handling

Hea.p

dynl.mic storaae 5-1

liles &.nd trees with FU system ca.lIs

2-1

liles, trees, FU exa.mple 2-6

combining a.cija.cent Cree items 5-5

crel.ting with BAF 5-1

Cree list 5-5

onrhea.ci 5-2

ltoraae Cor initializing LOGIN 3-13

I/O routines

ror LOGIN_SLOGIN 3-2

Insert files

BAF system calls 5-1

CL system calls 1-1

FU system calls 2-1

loa.der (PM) system ca.lIs 4-1

LOGIN system ca.lIs 3-1

PM system calls 4-1

PROC2 system ca.lIs 4-1

RWS system ca.lIs 5-1

Installing

a. Iibra.ry with LOADER system ca.lIs

4-1

Invoking

process with /com/shell 3-7

Keywords

definition 1-1

Libra.ry

insta.lling 4-2

inst&iling with LOADER system calls

4-1

LOADER system c&lls

controlling loa.d opera.tion with options

4-2

converting object module to executa.ble

rorma.t 4-1

dirrerence between PGM_SINVOKE

4-1

installing &. library with 4-1

Loa.ding

&.nd calling &. progra.m 4-1

libn.ry cont&ining global sections 4-2

Loading object module

See also LOADER system calls

Local storage a.ecess

limiting a.ecess within calling process

5-3

Logging in

See alao LOGIN system calla

LOGIN system calla

changing registry 3-1

closing file 3-13

insert files 3-1

overview 3-1

proper sequence ror cha.nging account

file 3-12

tailoring LOGIN operation with 3-1

See also LOGIN _ ,LOGIN

LOGIN_SCHHDm 3-1,3-13,3-16

LOGIN_SCHPASS 3-1,3-13,3-15

LOGIN_SCI<PASS 3-1,3-13,3-15

LOGIN _ SCLOSE 3-1, 3-13

LOGIN_SERR_CONTEXT 3-16

LOGIN_SLOG_EVENTS 3-2,3-3,3-4

LOGIN _ $LOGIN 3-1, 3-7

exa.mple 3-2

examples or 3-4

I/O routines ror 3-2

recording all LOGIN attempts 3-3

writing external I/O routines ror 3-3

LOGIN_,OPEN 3-1,3-15

LOGIN _ SREAD 3-13

LOGIN_,SET _PPO 3-13,3-15

LOGIN_,UPDATE 3-13

MALLOC 5-2

Managing programs

system calla 4-1

Moving

files 2-2

Multiple proceaaes

sharing information among processes

5-3

sharing storage among 5-4

Names-file

definition 1-1

Index-4

specirying with· 1-6

Naming

a process 4-6

a process once only 4-6

a process, example 4-6

file, appending a date to 2-2

Object module

writing on copy 4-2

writing on original 4-2

Options

checking ror user-specified, CL 1-11

command line, definition 1-1

FU 2-2

ignoring user-specified command line

options 1-6

LOADER 4-2

Overhea.d

BAF heap 5-5

RWS heap 5-2

RWS system ca.lls 5-4

Overlay process

sharing storage with 5-3

PAD _ $COOKED 3-9

PAD $PUT_REC 3-9

PAD $RAW 3-9

Perrormance

improving BAF heap 5-5

PGM SGET _PUID 4-8

PGM_$INVOKE 3-7,4-8

alternative to 4-1

PM system calls

insert files 4-1

sample program 4-6

PM_ ,ALREADY _NAMED 4-6

PM _ ,CALL 4-5

returning 16-bit value with 4-3

returning a value using 4-3

PM SCOPY PROC 4-2 - -
PM SINSTALL 4-2 -
PM SINSTALL SECTIONS 4-2 - -
PM SLOAD 4-5 -
PM SLOAD INFO 4-3 -
PM SLOAD WRIATABLE 4-2 -
PM SLOADER OPTS 4-2 - -

Apollo Confidential

/ r

(j

,,r'.' .. _'"\

't
\
\~'~

PM_SNO UNRESOLVEDS 4-2

PM_$SET _NAME 4-1,4-6,4-8

Pointers

allocating heap for managing 5-2

Pool

storage, controlling access with 5-2

PPO file 3-13

and LOGIN system calls 3-1

requiring special 3-2

PPRI (process_pirority) 4-6

PROC2 system calls

insert files 4-1

sample program 4-6

PROC2_tSET _PRIORITY 4-1,4-6,4-8

Process

assigning a name to 4-6

naming once 4- 6

Process priority

Display Manager 4-6

example 4-6

setting a 4- 6

Process UID 4-1

Program level

executing program at same 4-2

Protected subsystem

LOGIN 3-2

PST (proces_status) 4-6

PST (process_status) Shell command 4-6

Recording

log-in attempts 3-3

Registry

changing with LOGIN calls 3-1

Renaming

files 2-2

Reporting

error, unresolved global variables 4-2

log-in attempts 3-3

Reporting errors

wildcard expansion 1-6

RWS system calls

handling dynamic storase with 6-1

insert files 6-1

when to use 5-1

RWS SALLOC 6-2

Apollo Confidential Index-5

RWS_'ALLOC~HEAP 6-2

RWS_*ALLOC_HEAP _POOL 5-2

RWS *ALLOC _RW 6-2

RWS_*ALLOC_RW _POOL 5-2

RWS_,GLOBAL_POOL 6-3

RWS_'RELEASE_HEAP 5-2

RWS_,STD_POOL 6-3

RWS_'STREAM_TM_POOL 6-3

Sample programs

cl_ copy _file 1-18

fu_handlins_files_trees 2-6

login_cbange_pus_dir 3-14

login_login 3-5

login_procedures 3-8

PM_LOAD 4-4

pm _ proc2 _ set _ name _ priority 4- 6

Shared storage 5-4

Shell

invoking 3-7

Shell command

PST (process_status) 4-6

Shell commands

and corresponding FU system calls

2-2

CRP (create_a_process) 4-6

PPRI (process_pirority) 4-6

PST (proces_status) 4-6

SIGP (signal_process) 4-6

SIGP (signal_ process) 4- 6

Stack

allocating storage for 5-2

Sta.ndard input

reading names from 1-6, 1-7

Sta.rt address

of loaded program 4-3

Storage

allocating for FORTRAN programs

6-2

allocating for Pascal programs 5-2

allocating in C programs 6-2

handling dynamic 6-1

maintaining strick control with BAF

6-1

releasing 4-2

releaaing FU 2-6

requesting specific amount 6-1

shared 5-4

specirying where storage comes rrom

with BAF 6-4

summary or types or allocation 6-3

using a pool to control &CCe88 6-2

when to allocate heap 6-2

when to allocate read/write 6-2

STREAM_'CREATE 3-11

STREAM_'GET _REC 3-g

STREAM_ 'PUT _ CHR 3-8

Tailoring

LOGIN operation 3-1

Token

definition 1-1

marked used when read 1-2

rererring to used 1-2

Token list

definition 1-2

figure or 1-2

Token pointer

definition 1-2

Token record

definition 1-2

UNIX EXEC system call 5-3

Verirying pathnames 1-6

Wildcard- name

definition 1-2

Wildcards

expanding 1-2, 1-6

how CL expands 1-8

returning verbatim 1-6

Working set

eontrolling size or 6-4

desirable behayior 6-5

using heap to control 6-2

(

Index-6 Apollo Confidential

