
APR 15,981

apollo computer

APOLLO DOMAIN
ARCHITECTURE

(February 1981)

apollo computer inc.
5 Executive ParK Drive, N. Billerica, MA 01862617-667-8800

ARCHITECTURE EVOLUTION (1960-80)

l.tARCHITECTURE EVOLUTION:
This figure depicts the evolution of architecture over the
past 20 years. In the center diamonD at the top we show
batch computing of the 1960's which is characterb:ed by,
first, very littte or n~ interactivenessand, second, very
ritfle or no sharing of peripherals and data fifes. tn the late
1960's computer architecture evolved into two distinct
forms. On the one hand there was timesharing which was
intended for people who, needed/arge machine
architecture, but could sacrifice certain degrees of
performance and interactive ness. Timesharrng systems
are characterized by poor interactiveness but very good
sharing characteristics and also large machine
architecture. On the other hand batch evolved into a form

1980s

called dedicated minicomputers. Minicomputers are
characterized by having goodinteractiveness t good
human interfaces, and very good performance, but
lacked in the· sharing of peripherals and data among a
community of users.

The Apollo DOMAIN system has evolved as a direct result
of improvements in technology and is widely h.eld to be
the architecture of the 1960's. It combines the goOd parts
of both timesharing and dedicated minicomputers, but
eliminates Ute disadvantages of both of these earlier
forms. The ApolfoDOMAIN system has good sharing
capabilities provided by a high speed interactive network
as well as interactiveness provided by a dedicated
computer available to each user.

GOVERNING PRINCIPLES

• DEDICATED CPU PER USER

• INTEGRAL WIDE BAND LOCAL NETWORK

• HIGH LEVEL DESIGN (ISP, VAS, PMS INDEPENDENCE)

• USE OF ADVANCED TECHNOLOGIES
(VLSI CPU, WINCHESTER DISKS, etc.)

1.2 GOVERNING PRINCIPLES:
There are several principles that have been used to
govern the design < of the Apollo computer system. First,

. and foremost, is the notion that there exists a dedicated
CPU for each user. Second, each user is interconnected
with a high performance local area network. third, the

design of the architecture is based on high level
abstractions .so that we may independently evolve lower
level components (slJCh as the instruction set. or internal
buses) with minimum impact. Fourth,is the use of
advanced technologies, such as VLSI,Winchester.disks.
and so .on.

HIGH LEVEL
OESIGN/IMPLEMENTA liON

MACHINE LEVEL
INSTRUCTION SET

(ISP)

MACHINE LEVEL
ADDAESS SPACE

(VAS)

PROCESSOR-MEMORY
BUSOR GA ZA NI TION

(PMS)

HIGH lEVEL

IMPLEMENTATION

LAN.GUAGE

96 BIT NETWORK
GLOBAL' OBJECT
ADDRESS. SPACE

PACKET NETWORK
INTERCONNECT

IEEE PROPOSED
STANDARD

/
110 BUS

SYSTEM 110 B~S
(1/0)

1.3 HIGH LEVEL DESIGN/IMPLEMENTATION:
The Apollo system incorporates deSigns which are
uniformly advanced, or appear at a higher Jevel thsn
conventional cornputers. A conventional computer is
characterized by: (1) a machine level instruction set or
what we call an ISP, (2) a machine leveJaddress space or
a virtual address space which is a measure of the range of

. addressing that the computer can span, (3) the processor
memory bus organization, orwhatwe call PMS, including

. the memory buses, the attachment ofprocessor$, the
attachment of multiple mam,ory unifsand so on, and (4)
the 110 system of the computer, or the 110 bus.

The Apollo system is designed around higher level
abstractions in each of these particular areas. For
example, rather than an instruction set, we talk about a
high level language implementation, namely PASCAL
Similarly, instead of a machine level address space, such
as the 24 bit address space of the Motorola 68000, we talk
about a 96 bit network wide global object address space.
Our thinking here is that objects are very large entities

that are 32 bits in length and whose location should be
anywhere on the network. This 96 bit network wide object
address space is the fundamental. sy·stem address in the
Apollo DOMAIN system, and is designed to
accommodate various machine level addressspace:s.
Similarly. rather than designing the system around .8

processor memory bus organization. the Apoffo system is
designed around a two address packet network. This
network is used to attachcomputStion units, peripheral
unit$and gateways to other systems. It is the backbone of
the system allowing us-etS tointercomm.unlcate, to
accessstlared programs and data fifes·and for access to
shared peripherals. Finally, our 1/0 bus is noUn integral
part o#our internal system, but rather an tEEE proposed
standardMUL TtSUS . which is externally available to
usersand is widely acknowledged as a standard for small
computers in the computertndustry,

ADVANCED CONCEPTS

SYSTEM ENVIRONMENT
• NETWORK ORGANIZATION
• RING NETWORK PROTOCOL
• NODE ARCHITECTURE

PROCESSING ENVIRONMENT
• NETWORK WIDE VIRTUAL MEMORY
• PROCESS STREAMING
• SHELL PROGRAMMING
• COMPILATIONlBINDING/EXECUTION

USER ENVIRONMENT
• USER NAME SPACE
• CONCURRENT PROCESSING
• BITMAP DISPLAY MANAGEMENT

1.4 ADVANCEO CONCEPTS:
There are many advanced concepts that have ~n
applied to the Apoflo architecture and theYC8n be
roUghly broken down into three general categories: <")
those pertaining to the overall system environment. (2).
those pertaining to the program environment. (3) thOSe
pertaining tothe user environment. It is useful to point out
certain particular features that have been incorporated
into the DOMAIN system in each of these environments.

The Apollo system environment is unique in the sense
that the architecture is based on a network as opposed to
acennal systems architecture. This network allows
shared data and peripherals, and is controlled by an
object or.ented operating system thatwill be described in
more .detail later ..

Tneprocessing environment for the Apollo system
includes: (1) a ~erylargelinear address space for virtual
memory . management, (2) advanced concepts, such as
s1ream flO which will be described laler, and (3) new
ideas $lICh as shell programming which allow people to
buildproc.edur.esat the command level.

The user environment of the Apollo OOMAIN system i.s
radically different from conventional systems. Rather
thana chara.cter oriented dumb terminal. the Apollo
system has for each user an integral bit map display. This
parallel device allows many concurrent programs to be
executing on behalf of each individual user, which is
accompHshed by dividing the display into multiple
independent window areas.

SYSTEM ENVIRONMENT OBJECTIVES

NETWORK MODULARITY
• WIDE PERFORMANCE RANGE
• HIGH AVAILABILITY

RING NETWORK
• HIGH SPEED / LONG DISTANCE
• MULTIPLE TECHNOLOGIES

MAXIMIZE NETWORK INTERACTIVENESS
• NO SUPERFLUOUS MESSAGE BUFFERING
• MAXIMUM DMA DATA RATES.

11.1 SYSTEM ENVIRONMENT OBJECTIVES:
Network modularity was a principal design objective of
the Apollo computer system, providing a wide range in
performance, a wide range in growth capability, and a
wide range in system level availability. Modularity at the
network level allows users to incrementCllly expand their
system by themselves on their site, and without
substantial programming. It means that they can
replicate nodes to obtain very high availability. It furtner
means that the overall system configurations can
conform to the usersspecific application in the most cost
effective way he chooses. From a manufacturer's point of
view. network modularity significantly eases system
maintenance, allowing the replacement of entire nodes
as we!1 as the ability for one node to diagnose another.

A second design objective for the Apollo system
environment was to incorporate a high performance
coaxial local area network. Although our system IS
designed to accommodate any two address packet
transport mechanism, the specific Implementation that

Apollo has chosen involves a ring topology. Rings have
numerous advantages over alternative approaches: They
generally allow higher data bandwidths and longer
distances, they allow migration to new technologies such
as fiber optics, they are very interactive allowing very fast
network arbitration, and finally they incorporate a tree
acknowledgement function with the circulation of each
packet.

A third system environment obje.cllve was to maXimize
network InteracUveness In thiS regard, our design
eliminates all superfluous message buffering between
nodes. allowing a message generated from one process
to be transmitted d:rectly to another process on a
separate machine. Secondly, our network controller
transmits data through the block multiplexor channel
which allows all high performance OMA devices to have
access to the total memory bandwidth of both machines
Consequently, when a message is transmilting from one
machine to another. the data rate is at the maximum
possible permitted by the two msmory systems.

SYSTEM ORGANIZATION

REMOTE
FACILITY
ACCESS

COMPUTING

11.2 SYSTEM ORGANIZATION:

••••
GROWTH

The system level organization of the Apollo system is
based on the Apollo DOMAIN network. This network
allows an extremely wide range in performance. growth
and system availability. Moreover, Llsers attached to the
system can intercommunicate, can access shared
programs and data files across the network, can access

common pools of peripherals, and can finally access
remote facilities, including large foreign machines or
other Apollo DOMAIN systems. Consequently, the
Apollo DOMAIN network together with the per user
computing node is intended to provide an entire
computingfacifity to each user.

RING NETWORK PROTOCOL

o
s

TOKEN

TOKEN=t>11111100
FRAME=011111101

MESSAGE HEADER=011111110
MESSAGE SE·PARATOR=011111111

11.3 RING NETWORK PROTOCOL:
The Apollo DOMAIN system is designed around a two
address packet transport network. The ~pecific
implementation of this network can take various forms,
and the .system is specifically designed to be able to
migrate from one form to another as the technology
requires.

The topology of the Apollo network is in the form of a
circular ring Access to this ring is arbitrated through the
passing of a TOKEN which is a specific encoding of bits
passed from one node on the network to another. The
system allows oneand onlyone TOKEN lobe on the ring
at any given instant, and the possession of this single
TOKEN gives a particular node exclusive use of the
network for the duration of a message transmission.

The format of the message on the ring includes the
destination node address, the source node address,

header information, data. a CRC check, and finally an
acknowledgement field. The acknowledgement field is
adjusted by the destination node. thereby acknowledging
the correct receipt of the packet to the source node.

The encoding on the ring uses.a conventional bit stuffing
technique whereby the occurrence of five consecutive 1 's
causes the insertion of a 0 on transmIssion and a
corresponding removal of the 0 upon reception. Several
special flag characters are used to establish packet
synchronization and are encoded as a string Of six
consecutive ,'s tollowed by two identifier bits. One of
these is the TOKEN which deviates from other flag
characters by only the last bit thereby allowing a node to
exclusively acquire a TOKEN bysimplyaltering.a single
bit. Th,S allows minimal buffering in each node and
therefore maximizes network responsiveness.

32 BIT SYSTEM HIERARCHY

. 1 BIT PACKET NETWORK __________ _

SYSTEM ------------
PERIPHERAL 1/0

PERIPHERAL -------'----
MEMORY BUS, HI PERFORMANCE 1/0 16 BITS

BOARD ----------
CPU REG ISTER S. ALU.;. ____ Hc~ __ ...:3::2:..:B:.:I:..:.T..:S----... 1o\ CHIP

~L ___________ -----------JJ -
WIDTH OF DATA PATH

11.4 32 BIT SYSTEM HIERARCHY:

The Apollo central processing unit is built around a VLSI
microprocessor with 32 bit architecture. The instruction
set of the processor includes both 32 bit data types as well
as a 24 bit linear virtual address space. The physical
parameters of the system, most notably the width of the
data path, can be viewed in a hierarchical arrangement.
At the system level computer nodes are interconnected
with a , bit serial packet network. Certain peripherals
attached to an individual computer node are
interconnected with 8 bit (1 byte) .data paths, whereas. the

memory system and high performance peripherals
operate on a '6 bit data path. Internal CPU registers and
an arithmetic logic unit are all implemented with full 32 bit
data paths.

Consequently, the CPU is generally 32 bits wide, the
memory system is 'generally 16 bits wide, while the
network system is only a single bit wide. The width of the
data path varies inversely with the physical distance from
the internal processing registers.

NODE ORGANIZATION

MEMORY
MEMORY MANAGEMENT I----~

UNIT
CPU

DISPLAY DISPLAY
MEMORY

BLOCK
t---t MUl TIPLEXORI---"-!' ---_

BIT
MOVER

11.5 NODE ORGANIZATION:
The internal Apollo node organization is comprised of
several key parts. First, there is the central processing
unit comprised of multiple Motorola 68000·s. This central
processing unit is connected to a memory management
unit which translates the 24 bit virtual address out of the
CPU into a 22 bit physical address on the physical
memory bus. The memory management unit is actually
comprised oftwoparts: one for the CPU and another part
for the 1/0 system which wiU be. described later. The
memory system is comprised of multiple Unl!S .. each unit
contain1n9 a 1,4 megabyte. This unit is fully protected with
error correction codes and is available in sizes up to'
megabyte. The 1/0 system of the ApoJlo node is broken
down into two parts. The first part is for those peripherals
that are integral to the Apollo system. suchasthe integral
Winchester disk andtheintegralnetwork node controller.
These devices are connected toa block multiplexor
channel. Other peripherals., such as user supplied
peripherals, line printers. magtapes and so on, are
connected to th.eMULTIBUS controller.

The useofablock multiplexor channel through which at!
disk and network traffic goes represents an essential part
of the Apollo system. The system was designed to
sp.ecificatly maximiZe the node-to-node responsiveness
across the network. Todo this we wanted to guarantee
that there would be no superfluo\JS buffering of packet
messages as they left a transmitting process and entered
a receiving process on another machine; and. secondly.
we wanted the transfer of this packet to operate at near

MULTIBUS
CONTROLLER

memory speeds, To accomplish this responsiveness we
allow the network full (100%) bandwidth access to
primary memory, disallowing aft other block transfer
d~vices, such as the Winchester disk. Consequently, the
dIsk and the packet network actuaUysharea Common
DMA channel into primary memory so that both of these
devices can transfer at data rates of nearly 100% memory
bandwidth. Occassionally, a disk transfer will overJap a
networ4< transfer requiting that either device make one
additional revolution. But the system level performance
consequences of this interference are negligible.

Frnatly, the d.isplay system is comprised of a separate
autonomous 1/8 megabyte bit map memory which is
organiled into. a.square array of i024 bilS on each side.
The display memory. is constantly refreshed ontoan 800 x
1024 bit map CRT. There is·a separate bit mover which is
capable of moving rectangles from one part otthe display
onto another part of the display at a data rate of 32
megabits per second.

Although the display memory and the program memory
are in separate pnysical bus organizations. they actually
share the same address space so that the CPU can
instantaneously access display memory and alter its
contents. Furthermore, the bit mover can move diSplay
areas (rectangle.s) into and out of program memory. The
system is designed so the CPU can access program
memory and the display memory can refresh to the CRT
display. and the bit mover C:lll be moving rectangles all in
parallel and wrtr.viJi Interference.

BIT MAP DISPLAY

1024

800

1024

DISPLAYED
. AREA

A
8

E

------Ii-- H

T

8fT MAP
MEMORY

TO/FROM PROGRAM
MEMORY

BIT ALIGNED IBfT RESOLUTION RECTANGLES

Do'SPLAY MEM~, 0
PROGRAM MEMORY

32 MBITS/SEC

11.6 BIT MAP DISPLAY:
The bit map display system is comprised of a '024 bit by
1024 bit array. A rectangular region of 800 by 1024 is
physically transferred onto the CRT display. The
remaining area is used as temporary storage for
character font tables. The bit mover is a hardware
primitive which is capable of moving a rectangular area
from any place on the display to any other place on the
display, This primitive is used to move windowS into and
out of main memory. to movethem relative to the display

itself, to implement scrolling and to create characte'
strings from character fonts. The bit mover operates at (
32 megabit per second data rate when moving entire!:
within the display memory.

The bit mover can move bit aligned rectangles fro,
display memory to/from word aligned buffers in prograr
memory where the CPU can efficiently perform rastE
operations, such as exclusive ORing two or more graphi:
representations.

PROCESSING ENVIRONMENT
OBJECTIVES

• 32 BIT OBJECT ADDRESS SPACE (NETWORK GLOBAL)

• DEMAND PAGED I/O (NETWORK & DISK)

e UNIQUE OBJECT NAMES (64 BIT UlDs)

e PROCESS - PROCESS STREAMING

eSHELL PROGRAMMING

o EFFICIENT COMPILING/BINDING/EXECUTION

111.1 PROCESSING ENVIRONMENT
OBJECTives:
A principal objective in designing a system processing was to provide a demand paged operating system to
environment was to abstract common entities, like implement a network wide virtual memory. A third
programs and data files, into a uniform abstraction which objective was t€lprovlde an environment for efficient
we call an object. The totality of objects across a network process to proce'SS streaming and the control of this
forms a 96 bit virtual address space which is comprised of streaming through shell prqgrams.Finally,anefficient
two fields: auniqueobject name conSisting of 64bits. and compiler, binding and execution. procedure whereby
a 32 bit byle address witt11n an object. A second objective network wideprogfams can be run interactively.

SYSTEM NAME SPACE

USER GLOBAL
NAME SPACE

SYSTEM GLOBAL
NAME SPACE
(96 BIT ADDRESS.
UNIOUE IN SPACE
& TIME)

OBJECT ADDRESS
SPACE

PROCESS ADDRESS
SPACE

PHYSICAL ADDRESS
SPACE

NETWORK ADDRESS
SPACE

DISK ADDRESS
SPACE

111.2 SYSTEM NAME SPACES:
We now turn to the operating system design in the Apollo
DOMAIN system. One way of viewing a complex system
is to enumerate and describe the various name spaces
that occur in the system. First, there is the user global
namespace, or what the user would normally type at a
terminal to execute a program or access a data file.
Second, there is the system global namespace, or the
namespace that the operating system uses at a network
level. Third, there is an object address space, which is 32
bits long and contains programs and files as well as other
entities in the operating system which will be described
later. Fourth. there is a process virtual address space that
represents an address space in which a Motorola 68000
process executes. Fifth, there is the physical address
space which represents the amount of physical memory
that can be placed on the system. Sixth, there is the
network address space or the maximum numberof nodes
that can be placed on the network And, finally, there is
the disk address space or the maximum bytes or pages
that the disk can hold.

In the Apollo system the user global namespace is
syntactically represented as a stream of characters
separated by slashes. This actually represents a
hierarchical tree space which will be described later The
system global namespace is a 96 bit address space

IJONES/PROGRAM/SORT

---------96--------__
UID

I 32_1

I SEGMENT I I
1S

1-24-1
I I

1--22--1
I PAGE I I

10

1-20-1
I I

32

comprised of a unique ID (UID) which is 64 bits and a~
offset which is 32 bits wide. The 64 bit UfD is unique i,
space and time. It is unique in space in that it includes a"
encoding of the machine's serial number and it is uniquf
in time in the sense that it includes the time at which thE
name was created. This guarantees that for all time in th~
future and for all machines that Apollo builds, no twc
machines will ever create the same UfD, hence the terri
unique ID.

UID's are names of objects. Objects are used to hole
programs, files and various other entities in the Apolle
system. An object is a linear 32 bit address space, bytE
addressable, and can be located generally any place o~
the network. Objects are the primary focus for the Apollo
DOMAIN system and are cached into the process address
space provided by the Motorola 68000. This process
address space, while very large,is still considerably
smaller than the 32 bit object address space
Consequently, address regions of an object are mapped
into regions of a process in much the same way thal
regions of physical memory are frequently mapped intc
regions of a cached memory. The process address spacE
is a 24 bit virtual address which is converted to a22 bi:
physical address by memory management hardware. The
unit of allocatIon in the phYSical address space is 102~
byte pages.

SYSTEM RELATIONSHIPS

• Ill. :~E~::::L~M' rEA II PATHNAME UID

USER

MEMORY
MANAGEMENT

UNIT

111.3 SYSTEM RELATIONSHIPS:
The execution of a user command on the ApoUo DOMAIN
system is a very complex process and involves many
steps. First 01 all the user types a command which. is
translated by the naming server into a UIO. ihe UtO is a
64 bit address whIch identifies one. particular object on
the network. These objects then are dynamic.ally mapped
by the operatihg system jntoa processes virtual memory.
Once mapped no data is transferred until the CPU actually
requests it.' When a page fault occurs the operating
system wilf retrieve the requested page from some disk
structureacros$ the network and transfer it into the
physical memory of the local processor, It will then set up
the memory management unit to translate the virtual
address into the physical address of the requested page
and then allow processing to continue:

vrRTUAL
MEMORY

tn thissC(:lOario we have four .areas which are of interest.
':irst is the operating system mapping structure. which
maPS object address spaces into process address spaces.
Second Is the memory management hardware which
translates process Yirtualaddress spaces into physical
memory address spaoes. Third is the paging system
which transfers pages of physical memory into and out of
the memory system onto either .foCal disk or across the
network to some remote disk. And. fourth. is the disk
structure thatphysicaHy relates objects onto dis-k data
blocks. ihese circular relationships are dynam';caHy and
under system. control managed by the Apollo operating
system.

OPERATING SYSTEM MAPPING

22' ,...---.....

GLOBAL

PER
PROCESS

SUPERVISOR

PER
PROCESS

USER

o "'-___J

SINGLE NODE
PROCESS
VIRTUAL ADDRESS
SPACE

111.4 OPERATING SYSTEM MAPPING:
The network global object spaces are mapped selectively
into a process virtual address space of a particular node.
Once the mapping occurs no data is transferred until the
processor actually requests it. Consequently, the
mapping of a large address space trom an object into a
large region ota process is a relatively inexpensive
procedure. The objects, of course, are network wide;
whereas, the processes are all in a particular node
running on behalf of a particular user. The process

0"'-___ ...

NETWORK
GLOBAL
OBJECT SPACE

address space is subdivided into an area which is glob~
to all processes and then further divided into an af£;:
which is per process supervisor and per process USE'

This address space mapping represents the or..
primitive in which processes can relate '0 objects, Fortr
most part the operating system and all higher level viel'
of the system relate to objects rather than processes, at
consequently a great deal of network transparency
attained.

MEMORY MANAGEMENT UNIT

CHECK

PHYSiCAL
MEMORY - - -~-- '"===:c::::::::1~ --- ...

111.5 MEMORY MANAGEMENT UNIT:
The memory management unit (MMU) isapiece of
hardware which translates the 24 bit virtual address
spaces out of the Motorola 68000 CPU onto the 22 bit
physical .address in the Apollo node. The MMU works on
1024 byte physfcalpage sizes and has separate
protection and Statistics information 101'" each page. there
exists a separate entry in a page frame table for each
individual page so that when the hardware faults out of
the page frame table {i.e.cannottind an appropriate
requested page}, an ihterrupt is taken to move the
requested page in from secondary storage. The MMU is
actually a two level hierarchy, the page frame table beihg
at the highest leve! . A lower level cache, called the page
translation table contains the most recently usc j pages
and aetsas a speed up mechanism to search the page
frame table.
The translation of a virtual address into a physical
address proceeds roughly as follows. The. 24 bit virtual
address is broken down into three fields: (1) ahigh order
virtual page number, (2) a page number. and (3) a byte
offset within the page. The 10 bit page number is us.ed as

an index into the page. translation table. The page
translation table contains a 12.bit pointer which pOints
directly to the physical requested pag~. Concurrent to the
.memory system beginning a memoryrequest, this 12 bft
pOinter is.also used t.o index into the page frame table
from which the high order virtual page numbers are
checked. If the check is okay. the protection is aHowed
and the process 10. agrees, then the memory reference
proc.eeds .l/ninterrupted. If. however, there is no
agreemen1 on any of these accounts, the memory request
is aborted and a search is made in the page frame table for
all entries corresponding to this particular value of page
number. All possible values for this page number are
linked together in a circular list and the hardware
automa1ically searches for the requested page number
until: {1} it finds it and continues. or (2}does n01 find it
and causes a CPU interrupt. If the requesting page is
found in the pagetrame table, the location within the
page frame tsbfe is update.o 10 the page translation table
so that subsequent references can proceed without
researching the page frame table.

MEMORY MANAGEMENT UNIT
PROTECTION/STATISTICS

PROTECTION HARDWARE(PER PAGE)

LEVEL RIGHTS AT THIS LEVEL AND HIGHER

00 USER DOMAIN 0

01 USER DOMAIN 1

10 SPVR DOMAIN 0

11 SPVR DOMAIN 1

STATISTICS (PER PAGE)

X - ACCESSED
X - MODIFIED

x X X

"\:-"- EXECUTE
READ ACCESS
WRITE ACCESS

(USED BY PAGE REPLACEMENT LOGIC)

111.6 MEMORY MANAGEMENT UNIT·
PROTECTION/STATISTICS:
At each access to a page a set of rights (execute, read,
write) are checked as a function of a particular level that
the process is running at. The protection hardware
specifies the particular rights at this level and all higher
levels. The levels are two supervisor levels and two user
levels.

The memory management hardware automatically
records and maintains certain statistics about the page
access. In particular a bit is set every time a page is
accessed and a second bit is set when that page is
modified. The operating system nucleus scans these bits
periodically to maintain knowledge of the statistical
usage of the pages for the purpose of page replacement.

MEMORY MANAGEMENT
UNIT -110 MAPPING

WIRED
PER DEVICE

MUL TIBUS ADDRESS
16 BIT WORD BYTE ;:r

0a I II t \ \ /I!I--~fi:---~.~-----:o BYTE DEVICE '/ I ..--- WORD DEVICE

I~ ~I ~I____ I

V>
UJ

c:
~

B SfT PAGE-

LO MAP

~ 12 BIT PAGE

w
~ }---...----I
Q.

4C

'" '"

9 BIT'WORD 11

22 BfT APOLLO PHYSICAL ADDRESS

111.7 MEMORY MANAGEMENT UNIT - 1/0
MAPPING:
Peripherals on the MUL TIBUS are mapped in!o the 22 bit
Apollo physical address bus by means of an 1/0 map. The
I/O map consists of 2.56 page entries, each entry pointing
to a particular Apollo page. A peripheral on the
MUL TIBUS can generate a 16 bit word or byte address

and have the high order bits indexed into the page map
and the low order bits indexed relative to the page. In this
way MUL Tl8US peripherals can direclIy address
themselves into the virtual memory of a process.

..

111.8 PAGING SYSTEM:

VTOC

UID MAP

PAGE

PHYSICA~

MEMORY

PAGING SYSTEM

OS
MAP

PRIMITIVE

To implement the network wide virtual memory system, (AST). This table contains a cache of pointers to the
several tables are maintained within the operating system actual location of the pages, be they in physical memory.
nucleus. As objects are mapped into process address on local disk or on a remote network node. In this way,
spaces, entries are made into the mapped segment table objects that are logically mapped into a process are being
(MST). When a CPU fault occurs for that virtual address, constantly swapped in and out of memory across the
the operating system scans the active segment table network solely on a demand basis.

DISK STRUCTURE

111.9 DISK STRUCTURE:

PHYSICAL VOLUME
LABEL

LOGICAL VOLUME
LABEL

VTOCMAP

Objects are mapped onto physical disks using a rather
dynamfc storageatlocation. First of all.a disk structure
containsaphysical volume label which is a list of pOinters
which. point to multiple fogical volume labels. The
division of a physical VOlume into multiple logical
volumes is a means whereby fixed partitions can be
created which do not compete. for common storage. In
other words. one can create a logical volume and
guarantee it has a certain minimum amounl01 allocation.

Each logical volume label contains a volume tab/eot
contents map. The volume table of contents is a list of all
of theobject VIO'S in that volume and fOf each object a set
of object attributes. The object attributes consist Of the
object type, access control information, accounting
information (last date accessed, last date modified), and a

VTOC {VOLUME TABLE OF CONTENTS)

UID
(HASH)

•
OBJECT TYPE
ACCESS CONTROL
ACCOUNTING
MAP

• ••

... .

map to all of the various data blO'cks which comprise the
object. The map is cO'mprised of 35 pointers. The first 32
pointers PO'int directly to data blocks each of which
consists of asingle page. The 33rd pOinter points to a
block of.s$condlevet pointers (2560fthem) whichin turn
point to actua! data blocks. The 34th pointer expands into
three olevets of storage and the 35th pOinter expands into
four levels of storage. Consequently, for small objects
data access is very.efficient; andJorlarge objects storage
allocation is veryetficient.

Eachbloc:k contains not only 1024 bytes of data, but also
the U I 0 and Object page nu mber that this page represents.
Consequently if a failure should occur, the entire
mapping structure can be recreated by a sing~e passover
all of the data pages.

1/0 HIERARCHY

LANGUAGE I/O

STREAM I/O

MAPPED I/O

PAGE I/O

111.10 1/0 HIERARCHY:

-

•

INDUSTRY COMPATIBLE,
SYSTEMINDEPENDEN~

OBJECT TYPE INDEPENDENT,
PROCESS-PROCESS, FILE, DEVICE,
ETC.

OBJECT LOCATION (NETWORK
WIDE) INDEPENDENT. ASSOCIATES
OBJECT - PROCESS ADDRESSING
ONLY. NO DATA TRANSFERRED
UNTIL REFERENCE IS MADE.

PHYSICAL I/O TO LOCAL AND
REMOTE DISKS ACROSS NETWORK.
DATA TRANSFERRED "ON DEMAND,"
RESULTING FROM CPU PAGE FAULT.

There are four levels of abstraction in the 1/0 system of described earlier. The map primitives have the
the Apollo DOMAIN. "rhe highest level is the language characteristic of being object location independent
level which is supported by the standard language thereby allowing streams to go across the network. The
compilers. such as Fortran read and write. The mapped primitive associates object to process
implementation of this language level is done by what we addressing only. No data is transferred until the reference
call the stream level. The stream level has the is made. All data transfer in the entire system occurs at
characteristic of being object type independent and can the page level. The page level is the physical 1/0 to local
accordingly talk to files. peripheral devIces. or to other and remote disks across the network. This data is .
processes. The implementation of the stream level is transferred on demand. resulting exclusively from a CPU
accomplished through the map primitives which were page fault.

STREAM I/O

INPUT
STREAM

STREAM FIL TER:

PROCESS NETWORK:

111.11 STREAM 1/0:
The stream I/O level deals with the interconnection of
objects, including process to file operations, and process
to process operations. It has the principal characteristic
of being object type independent. Since it is implemented
through the mapped 1/0 level, objects can be
conceptually interconnected by streams both within the
same node and across the network.

When streams are used to interconnect processes. the

"""

FILES

~~

--------.. DEVICES " ,
OUTPUT "
STREAM ''4..

PROCESS

output of one process isconnected to the input of another
process. This multiple process application can acquire
the form of a stream filter whereby every process forms
some transformation on its input and then passes the
output to another process. When applications are
encoded in this manner, programmers are encouraged to
write processes as simple, modular programs that perform
some primitive function Frequently, these functions can
be reused across many applications.

SOFTWARE TOOLS

APPLICA nON:

111.12 SOFTWARE TOOLS:
A large co!lection of program modules designed to
perform some primitive function has evolved over years
of use by a large collection of users. These modules are
referred to as Software Tools and are widely distributed
throughout the user community. Software Tools follows
the methodo:ogy laid out In the book entitled "Software
,ools' by Kernlga:-, and Plauger. published by Addison
'.\lesley

Applications car) be easily formed by rnterconnectrng

••••
.0

streams of data through a coliection of Software Tools.
The collection of standard Software Tools is derived from
a library of programs - a "toolbox" of Software Tools. In
this way complex applications can frequently be formed
with little or no programming. The time required to
develop anew application is significantly reduced.
Furthermore. users are encouraged to write programs
that are small conceptually simple, and usable for many
applications and by many users.

SHELL PROGRAMS

1If.13 SHELL PROGRAMS:
Ashellprogramis a higher level flow of control above the
conventional program level (e.g. Fortran orPascal). Shell
programs are .written in a shell programming la!"lguage
that hasa rich set of cons1ructsthat are. in many respects.
similar to a conventional Janguage. However. an
executabLe statement within a shell program frequently
involves the complete execution of one or more
conventional programs. In this regard. a ,shell program

\ can be thoughtof asa sophisticated command processor
,whictf'coordinates the execution of multi.ple program
steps.

CONVENTIONAL
COMMAND LEVEL

EXECUTE PROG 1
EXECUTE PROG 2

IF CO'NOfTtON

THEN
£XEC11T.E PROG 3

INVOKE SHELL PROCEDURE

. ELSE
EXECUTE PflOG4

etc.

The abiHfyof users to program ap.plicBtions in a ;shell
programminy language relieve.sa great d.eal Of
complexity that would otherwise be required within a
Fortran or F>ascal program. Consequently, programs
written in these languages tend tobe simpler anphave
fewer lnpulbptlons.

The concept of shell programminggoeshand-lI1-hand
with the concept of Software Tools. Here, the shell
programs repr.esent the interconnect of streams between
various programs. andean' be extended to richly
interconnect small programs in order to form complex
appltcations.

COMPILATION/BINDING/EXECUTION

OPERATINC
SYSTEM

PURE P.l C
CODE

IMPURE
DATA

111.14 COMPILATION/BINDING/EXECUTION:
We now shift 10 the higher level organization of objects in
the system as they relate to user programs, compilers,
binders and loaders

The compiler translates a source program object into a
compiled object The compiled object has a format which
is suitable for direct execut!on if there are no unresolved
references (I e . no o!tler SUDroutln8S which need to be
bound togettler) Ii the ap::::Jilcal:or: contained several
source program objects, these compiled objects must be
bou:1d together priOr te execution, a process
accomplished by the BINDER The process of loading
and executing a compllec object consists of (1) mapping
the pure POSition IndeDendent code Into a region of a
process address space (2; creating an impure data
object and mapping that data Object Into an Impure
section of the process address space, and (3)

SOURCE
PROCRAM
OBJECTS

COMPILED
OBJECTS

DATA
OBJECTS

dynamically linking operating system references to the
operating system during execution.

There are three important points in this procedure: (1l
The output of a compiler can be directly executed ifthere
are no external references to be resolved. (2) A runnable
Object. once formed, is paged into memory at run time, on
demand (3) Source program objects, compiled objects
and bound objects can be resident anywhere on tn ..
netv,,'ork.

The compiled object format is comprised of two parts
The first major part is pOSition independent code ana
pure data which IS directly mapped and executed intce
process address space. The second part IS a databas~~
used by the loader to create an Impure temporary aa~
object which IS subsequently mapped into the impurtl

part of a process address space

.USERENVIRONMENT OBJECTIVES

i
OUNIFORM NAME SPACE

OBIT MAP DISPLAY (TEXT, GRAPHICS)

GCONCURRENT PROCESSING PERUSER

IV.1 USER ENVIRONMENT .OBJECTIVES:
A key objective in designing the ApoHo user environment
is tocombinesimplicity and uniformity with ahighdegree
of functionality.

All objects that the system is capable of referencing can
be expressed ir, a untform name spact! that tral"l$cends

the entire network Further, a bitm.ap display. as opposed
to a eharac1er display. is used to represent text and
graphics ovtpu1. The output from mu11iple programs can
be COl"lcurrenHydisplayed through multiple windows.
thereby providing a degree .01 .funC1ionahty unavailable
on conventlonal.systems.

USER NAME SPACE

NETWORK

NODE

SYNTAX

IIA/B/C ... NETWORK WIDE
IB/C/D ... LOCAL ROOT RELATIVE
C/D/E ... WORKING DIRECTORY RELATIVE
@F/G "@"E"/user/name,.dirl"

DIRECTORY OBJECT

NAME

IV.2 USER NAME SPACE:
The namespace seen by a user is organized as a
hierarchical tree structure. The highest node of the
network in the tree represents the most global portions of
the network. Whereas. the leaves at the bottom of the tree
represent particular objects, such as programs. files and
devices. Intermediate nodes are used to represent
collection of objects that have some common
association. For example. an entire node on thE' network
may be represented by an entire subtree In the tree
hierarchy. The overall namespace hierarchy !S intenced
to represent a logical organization of the network AI!
leaves. or the lowest level of the tree, represent objects
and the user has a variety of syntactical forms in which 10

express the location of an object. First of all there is the
network wide syntax which IS comprised of two leading
slashes followed by a full path name to reach the object.
Second, there is the local root relative syntax which can

OR

POINTS TO NEXT
DIRECTORY OR
TARGET OBJECT

UID L
PATHNAME PATHNAME

SUBSTITUTED
IN NAME (LINK)

be used to express objects that are local to a particular
user's node. Syntactically this is expressed by one leading
slash followed by a relative path name. For convenience,
the user may attach himself or his working directory to
any point in the tree name hierarchy; and, consequently.
he may express a path name which is relative to his
working directory He does this byexpressing the relative
path name without a leading slash. Each node in the
network is represented as a directory object and contams
a list of associations. For each name at a lower level there
is contained within the directory a U1D or a path name. If it
is a U I 0 It points to the next lower level directory orto the
object itself. If it is a path name, the path name is
syntactically substituted into the name being searched
and the search continues This latter path name is used
for linking names across the network.

CONCURRENT USER ENVIRONMENT

SEQUENTIAL ---1~
OUTPUT

ACCUMULATED-....-......
OUTPUT

--
.... -- COMPILATION

DOMAIN
NETWORK

EDITING

ON-LINE HELP

PROGRAM EXECUTiON

ELECTRONIC MAlL

DOCUMENTATION

r. __ .J~-- QUERIES

IV.3 CONCURRENT USER ENVIRONMENT:
The notion Of concurrency is a new concept on the Apollo window can contain the output of related or unrelated
DOMAtN.system unavailable on conventional applications. For e><ample, one window can contain the
timesharing systems. On these latter systems users are sequential output of a program white.a second window
generally required to execute one function at a time. graphically displsysthe accumulated output of the same
When a user switches from one function to anothe.r. program. Similarty,program development, comp.i\atio.n.
general.ly the context of the previous function is tostand editing and an on·tine help system cansll be concurrently
hasto be subsequently recreated. The Apo:ll0 integral bit displayed.
map display provides th.e user with the capability of ConsequenHy.theApolto system is designed to
displaying muttipfe windows simultaneously. Each accommod.atea total user environment. whichwebelieve

always. involves a number Of concurrent fl-lnctions.

DISPLAY MANAGER

IV.4 OrSPLA Y MANAGER:
The display manager represents the outer most layer of displayed concurrently, each of whiCh can be executing
logic within the Apollo system -- that which controls the an independent shell or command environment. The
relationship among the many windows projected onto the philosophy of the display manager is to allow programs to
CRT display. Accordingly, .the Apollo system adds two output data in a logical format, while aHowing the user to
additional layers above the conventional programming independently control what is physically displayed.
level. As mentioned earlier, a programmable shell The display manager is controlled by the use of function
coordinates the activity of many programs (in both keys on the user keyboard. Pushing a function key cause.s
paraiieland s.equential relationships); The output of this the execution (interpretation} of a user programmable
shell is written ir"lto a virtual terminal. called a PAD. sequence of cisplay manager primitives. Consequently,
Portions of this PAD are displayed through a rectangular. the user can define function keys to perform complex
window which is then projected onto the CRT display. display manager functions.
The display manager permits multiple windows to be

PADS
(VIRTUAL TERMI"IALSJ

IV.S USER ENVIRONMENT:

USER ENVIRONMENT

PROCESSES

OISPLAY

WINDOWS

The Apollo DOMAIN operating system creates a degree Programs create the pad by writing command and data
of independence between application programs and sequences through a stream. The window image created
what IS actually viewed on the terminal display. In by the display manager from the pad can be placed
particular. application programs create virtual terminals anywhere in the CRT and can be overlayed by other
which we call pads The padS are independently window images Wmdow images contain lines and
windowed onto the CRT display totally under user frames. A line is a SIngle line sequence ofcharacteTs and
control \Vindow images are superimposed on the pads has only one dimension.A frame has two dimensions and
and can be moved relative to the pad ineither a horizontal has a rectangular formaL It contains characters and/or
or a vertical direction. Window images from various pads graphic data. Finally. frames may also contain user
are stacked logically on top of the display SO that only the created bit maps. These bit maps may reside either within
one on top is displayed. Consequently the user the pad or within a separate user supplied object. Pad
environment is actually a three dimensional volume: 800 information normaily accumulates over the life of a
bits going across, 1024 bits going down and many levels process. This allows a user to scroll either in reverse or in
of windows deep The user can also move window areas forward directions over the entire life of the process.
up or down relative to the physical display and finally can However. for effiCiency sake certain commands may be
move wi:ldow areas into and out of the display relative to emitted from the program 10 delete an or part of the pad as
other window areas approprIate

SUMMARY OF KEY POINTS

• HIGH PERFORMANCE LOCAL NETWORK OF
DEDICATED COMPUTERS

• LARGE MACHINE ARCHITECTURE

• LARGE MACHINE LANGUAGES/COMPILERS

• OBJECT ORIENTED NETWORK OPERATING SYSTEM

• ADVANCED USER INTERFACE COMBINING
TEXT,.GRAPHICS, CONCURRENT PROCESSING

• ADVANCED VLSI, WINCHESTER, COMMUNICATIONS
TECHNOLOGIES

V.1 SUMMARY OF KEY POINTS:

An Apollo computer system is comprised of a number of
high performance dedicated computers interconnected
over a local area network. Each of these nodes contains a
large machine architecture which implements a demand
paged network wide virtual memory system, allowing a
large number Of processes for each user. each process
having a very large linear virtual address space
Languages that rljn on the Apolio system includeFortran
77 anc Pascal a:"1o are tmplemented to take advantage of
the machine's 32 bit Of/entation.

An c r:jec: cr I e nt8C network· ope rat i ng system
coordinates the user's access to network wide facilities

Objects themselves, representing programs and data
files, etc .. are independent of their network. location. and
given appropriate access rights, can be accessed
uniformly by anyone on the system,

The user's display terminal is capable of displayingmulti~
foni text graphics and can be divided into multiple
\"ilndows each displaying Independent program output.

The Apollo system is designed around high technology, It
incorporates VlSI CPU chips. a large capacity
Winchester disk. and advanced communication
technologies.

	001
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01

