MACINTOSH USER EDUCATION

Programming Macintosh Applications in Assembly Language /INTRO/ASSEM

See Also: Macintosh Memory Management: An Overview
The Memory Manager: A Programmer's Guide
The Segment Loader: A Programmer's Guide
The Operating System Utilities: A Programmer's Guide
Putting Together a Macintosh Application

Modification History: First Draft S. Chernicoff 2/27/84

ABSTRACT

This manual tells you what you need to know to write all or part of
your Macintosh application program in assembly language. The emphasis
here is on general principles and methods; details on specific OS and
Toolbox routines are given elsewhere.

2 Programming Macintosh Applications in Assembly Language

TABLE OF CONTENTS

3 About This Manual

3 Definition Files

4 Memory Organization

8 The Dispatch Table

10 The Trap Mechanism

10 Format of Trap Words

12 Trap Macros

12 Calling Conventions

12 Register-Based Calls

14 Stack-Based Calls

17 Register-Saving Conventions

18 Pascal Interface to the OS and Toolbox
19 Mixing Pascal and Assembly Language
23 Glossary

Copyright (c¢) 1984 Apple Computer, Inc. All rights reserved.
Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual tells you what you need to know to write all or part of
your Macintosh application program in assembly language. The emphasis
here 18 on general principles and wethods; details on specific OS and
Toolbox routines are given elsewhere.

The manual assumes you already know how to write assembly language for
the Motorola MC683@@ (or just "68@@¢" for short), the microprocessor
used in the Macintosh. It also assumes you're familiar with Lisa
Pascal and its assoclated software development tools, particularly the
Assembler, the Pascal Compiler, and the Linker. #*** (Currently, all
software for the Macintosh must be developed on a Lisa computer and
written on a Macintosh—-formatted disk for execution on the Macintosh.
Eventually development tools will be available on the Macintosh
itself.) ®a*

The manual begins by discussing the various files of definitions
pertaining to the 0S and Toolbox, and what they contain. Then it
describes the Macintosh's memory layout and organization. This is
followed by a description of the dispatch table and the trap mechanism,
which allow your program to use the 0S5 and Toolbox while remaining
independent of specific addresses in the Macintosh ROM. Next 1s a
discussion of the calling conventions for using the 0S and Toolbox from
assembly language and for mixing Pascal and assembly language in your
own programs. Finally, there's a glossary of terms used in this
manual.

DEFINITION FILES

The primary aids to assembly-language programmers are a set of
definition files that define various symbolic names for use in assembly-
language programs. By naming the definition files in an .INCLUDE
directive, you make the definitions available to your program.

The most important of the definition files are the equates files, which
use +EQU directives to define values for symbolic names. There are
separate gsystem, QuickDraw, and Toolbox equates files for definitions
related to the Operating System, QuickDraw, and the User Interface
Toolbox. There are also a number of specialized equates files, such as
the memory equates file, which contains definitions pertaining to
memory allocation. These specialized files are discussed in the
individual manuals that apply to them (for instance, the memory equates
file is covered in the Memory Manager manual).

The equates files define a variety of symbolic names for various
purposes, such as:

- Ugeful numeric quantities. For example, the constant maxMenu
stands for the maximum number of menus in & menu bar.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 2

4 Programming Macintosh Applications in Assembly Language

= Fixed memory addresses. For example, sysCom s the starting
address of the system communication area.

- Addresses of system variables. For example, ticks 1s the address
of a long-word integer variable containing the elapsed time in
ticks (sixtieths of a second) since the system was last started
up. Often the global variable in turn contains an address: for
example, sysEvtBuf is the address of a pointer to the system event
buffer (not the address of the buffer itself!).

- Masks. For example, tagMask is a mask for extracting the tag
field from the header of a memory block.

- Bit numbers. For example, lock is the bit number of the lock bit
in the first byte of a master pointer, defined for use with the
bit manipulation instructions BTST (Bit Test), BSET (Bit Set),
BCLR (Bit Clear), and BCHG (Bit Change).

- Codes. For example, inMenuBar is the code returned by the Window
Manager function FindWindow when the user presses the mouse button
inside the menu bar.

- Offsets into data structures. For example, wVisible is the offset
of a window's "visible" flag relative to the beginning of the
window record.

It's a good idea always to use the gymbolic names defined in an equates
file in place of the corresponding numerical values (even if you know
them), since some of these values may be subject to change. One thing
to watch out for is that the names of the offsets for a data structure
don't always match the field names in the corresponding Pascal
definition. In the OS and Toolbox documentation, the definitions are
normally shown in their Pascal form; the corresponding offset constants
for assembly-language use are listed in the summary at the end of each
manual.

In addition to the equates files, there's also a system errors file,
which defines symbolic names for all error codes returned by Operating
System routines. Finally, there are the system, QuickDraw, and Toolbox
macro files, which define the macros used to call 0S and Toolbox
routines from assembly language.

MEMORY ORGANIZATION

In its current configuration, the Macintosh has 128K bytes of volatile
read/write memory (RAM) and 64K bytes of permanent read-only memory
(ROM). The ROM contains the built-=in code of the Operating System and
User Interface Toolbox, which is available for use by any application
program. In the 680¢@'s l6-megabyte address space, RAM occupies
addresses $@-S1FFFF and ROM is at addresses $40000@-S4@FFFF.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.2

MEMORY ORGANIZATION 5

In addition, the various built-in input/output devices are "memory-
mapped"”, meaning that they appear to the processor as addressable

memory locations with special properties. The 6522 VIA (Versatile
Interface Adapter) occupies addresses in the range SEQ@@P@@-SEFFFFF, the
8530 SCC (Serial Communications Controller) $90¢@@@-S9FFFFF and SBEJGQ@-~
S$BFFFFF, and the IWM ("Integrated Woz Machine") disk interface $D@@@@¢-
SDFFFFF. You won't ordinarily need to know any details about these
memory-mapped devices, since you'll deal with them exclusively through
the Operating System.

(warning)
All specific zemory addresses given in this section refer
to the first—release, 128K Macintosh. The Lisa 2
Macintosh emulator uses a different memory layout, as
will future versions of Macintosh with different memory
capacities. For compatibility, always refer to these RAM
addresses by their symbolic names (given in a table
below) rather than their numeric values. For calls to 0S
and Toolbox routines located in ROM, use the 68¢@¢'s
unimplemented instruction trap, a8 described below under
"The Trap Mechanism". This ensures compatibility by
making all ROM references indirectly, through a dispatch
table kept in RAM.

The organization of RAM is shown in Figure 1. The first $1¢0 bytes
(addresses $@-S$FF) are reserved by the 68080 hardware for use as
exception vectors. The next $30@ bytes ($10@-$3FF), referred to as the
"system communication area", contain global variables used by various
parts of the Macintosh system software. The next $40¢ bytes (S40@-
$7FF) contain the dispatch table for 0S and Toolbox routines, discussed
below under "The Dispatch Table". This is followed by $30@ bytes ($8¢¢-
$AFF) of additional system globals.

At (almost) the very end of memory are the main sound buffer (S1FD@g-
$1FFE3), used by the Sound Driver to control the sounds emitted by the
built-in gpeaker, and the main screen buffer ($1A7¢@-$1FC7F), which
holds the bit image to be displayed on the Macintosh screen. If an
interactive debugger such as MacsBug is installed, it immediately
precedes the screen buffer. Then comes an area reserved for the
application's parameters and global variables, which normally also
includes a block of global variables belonging to QuickDraw. When the
Segment Loader starts up an application, it adjusts the size of this
area according to the application's needs and sets register A5 to point
to the boundary between the application's parameters and globals.
(This subject is covered in more detail in the Segment Loader manual.)

(note)
For special applications, there are an alternate screen
buffer ($127¢0-$17C7F) and an alternate sound buffer
($1A100-S1A3E3). If you use either or both of these, the
application parameters (or the debugger, 1f there is one)
end at $126FF or S1A@FF instead of the normal S1A6FF, and
the space available for dynamic allocation (see below) is
reduced accordingly.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 2

6 Programming Macintosh Applications in Assembly Language

$00
$100

$400

$800

$E00

$4D00

$1A700

$1FC7F

$1FD00

1FFE3
1FFFF

2/27/84 Chernicoff

Hardware exception vectors

System communication ares

System dispatch table

System globals

System heap

Application hesp

Stack

Application gicbels

Application perameters

Debugger (if any)

Mein screen buffer

.......................................
.......................................

...............

Figure 1. RAM Organization

CONFIDENTIAL

sysCom

dispatchTab

grafBegin

(sysZone)

{curStackBase)
(AS)
(butPtr)

screenlLow

/INTRO/ASSEM.2

MEMORY ORGANIZATION 7

All remaining space, between the end of the system globals ($B@@) and
the beginning of the application globals, 1s available for dynamic
allocation by the running program. This space is shared between the
stack and the heap, with the heap growing forward from the beginning of
the space and the stack growing backward from the end. (The stack and
the heap are discussed in general terms in the document "Macintosh
Memory Management: An Overview" *** yhich will be the chapter
preceding this one in the eventual "Inside Macintosh" manual *** and in
greater detail in the Memory Manager manual.)

Immediately following the system globals is the system heap, which is
initialized to a fixed size (currently 16.5K, or $420¢ bytes) when the
system is started up. The system heap is intended for the system's own
private use; your application program should use the application heap
for all of its heap allocation. (In particular, the code of the
application itself resides in the application heap.) The application
heap is initialized at the start of each new application program
(currently to 6K, or $18¢¢ bytes), and can then expand as required to
accommodate the application's needs. The stack grows and shrinks from
the other end of the space.

(warning)
Although the 680@¢ hardware provides for separate user
and supervisor stacks, each with its own stack pointer,
the Macintosh maintains only one stack. All application
programs run in supervisor mode and share the same stack
with the system; the user stack pointer isn't used.

The boundaries between the various areas of RAM are marked by global
constants and variables defined in the equates files. In the following
table (as well as in Figure 1), names not shown in parentheses are
constants that are equated directly to the designated address; those in
parentheses are variables containing long-word pointers that in turn
point to the address. Names identified as marking the end of an area
actually refer to the address following the last byte in that area.

2/27/84 Chernicoff CONF1DENTIAL / INTRO/ASSEM.2

Programming Macintosh Applications in Assembly Language

Name Meaning
sysCom Start of system communication area
dispatchTab Start of system dispatch table
grafBegin Start of additional system globals
(sysZone) Start of system heap
(applZone) Start of application heap
(heapEnd) End of application heap
(curStackBase) Base (end) of stack;

start of application globals
(bufPcr) End of application parameters
screenlow Start of main screen buffer
(scrnBase) Start of current screen buffer
soundLow Start of main sound buffer
(soundBase) Start of current sound buffer
(memTop) End of RAM
romStart Start of ROM

THE DISPATCH TABLE

The bulk of the Operating System and Toolbox resides in read-only
memory (ROM). However, to allow flexibility for future development,
application code must be kept free of any specific ROM addresses. So
all references to 0S and Toolbox routines are made indirectly, through
a dispatch table in RAM containing the addresses of the routines. As
long as the location of the dispatch table is known, the routines
themselves can be moved to different locationg in ROM without
disturbing the operation of programs that depend on them.

Information about the locations of the various 0S and Toolbox routines
is encoded in compressed form in the ROM itself. When the system is
started up, this encoded information is expanded to form the dispatch
table. Because the dispatch table resides in RAM (locations $4¢@-
$7FF), individual entries can be “patched" to point to addresses other
than the original ROM address. This allows changes to be made in the
ROM code by loading corrected versions of individual routines into RAM
at system startup and patching the dispatch table to point to them. It
also allows an application program to replace specific OS and Toolbox
routines with its own "custom" versions. A pair of utility routines
for manipulating the dispatch table, GetTrapAddress and SetTrapAddress,
are described in the Operating System Utilities manual.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.3

THE DISPATCH TABLE 9

15 14 0 Memory

. » Dispatch tabie eniry

‘)

y €

Routine

Q|0

Figure 2. Dispatch Table Entry

For compactness, entries in the dispatch table are encoded into one
word each, instead of a full long-word address (see Figure 2). Since
the dispatch table is 1024 ($40@) bytes long, it has room for 512 word-
length entries. The high-order bit of each entry tells whether the
routine resides in ROM (@) or RAM (1). The remaining 15 bits give the
offset of the routine relative to a base address. For routines in ROM,
this base address is the beginning of the ROM, address $40@00@; for
routines in RAM, it's the beginning of the system heap, currently at
address $B@@.

(note)
The two base addresses are kept in a pair of global
variables named romBase and ramBase.

The offset in a dispatch table entry is expressed in words instead of
bytes, taking advantage of the fact that instructions must always fall
on word boundaries (even byte addresses). To find the absolute address
of the routine, the system checks the high-order bit of the dispatch
table entry to find out which base address to use, doubles the offset
to convert it from words to bytes, and adds the result to the
designated base address.

Using 15-bit word offsets, the dispatch table can address locations
within a range of 32K words, or 64K bytes, from the base address.
Starting from romBase, this range is big enough to cover the entire
ROM; but only half of the 128K RAM lies within range of ramBase. Since
all RAM-based code resides in the heap, ramBase is set to the beginning
of the system heap to maximize the amount of useful space within range.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.3

10 Programming Macintosh Applications in Assembly Language

Locations below the start of the heap ($B@@#) are used to hold global
system data (including the dispatch table itself), and can never
contain executable code; but if the heap is big enough, it's possible
for some of the application's code to 1lie beyond the upper end of the
dispatch table's range (S1@AFF). Any such code is inaccessible through
the dispatch table.

(note)
This problem will become particularly acute on the Lisa 2
and on future versions of Macintosh with more than 128K
of RAM. To make sure they lie within range of ramBase,
patches to 0S and Toolbox routines are typically placed
in the system heap rather than the application heap.

THE TRAP MECHANISM

Calls to the 0S and Toolbox via the dispatch table are implemented by
means of the 68@@¢ processor's "101¢ emulator" trap. To issue such a
call in assembly language, you use one of the trap macros defined in
the system, QuickDraw, and Toolbox macro files. When you assemble your
program, the macro generates a trap word in the machine-language code.
A trap word always begins with the hexadecimal digit $A (binary 101¢);
the rest of the word identifies the routine you're calling, along with
some additional information pertaining to the call.

Instruction words beginning with $A don't correspond to any valid
machine-language instruction, and are known as unimplemented
instructions. They're used to augment the processor's native
instruction set with additional operations that are "emulated" in
software instead of being executed directly by the hardware. On the
Macintosh, the additional operations are the 0S and Toolbox routines.
Attempting to execute an unimplemented instruction causes a trap to the
Trap Dispatcher, which examines the bit pattern of the trap word to
determine what operation it stands for, looks up the address of the
corresponding routine in the dispatch table, and jumps to the routine.

Format of Trap Words

As noted above, a trap word always begins with the digit $A in bits 12-
15, the mark of an unimplemented instruction. Bit 11 tells whether the
call is to the Operating System (@) or the Toolbox (l1). The format of
the rest of the word depends on whether it's an OS or a Toolbox call.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 3

151413121110 9 8 72 6 5 4 3 2 1 0O

THE TRAP MECHANISM 11

1

0

1101

Fig

Trap number

Auto-pop

ure 3. Trap Word Format for Toolbox Calls

Figure 3 shows the trap word format for Toolbox calls. Bits @#-8 form a
9-bit trap number identifying the particular Toolbox routine being
Bit 9 is unused; bit 10 is called the "auto-pop" bit and is

called.

discussed below under "Pascal Interface to the 0S and Toolbox".

151413 12 1110 9 8 72 6 S 4 3 2 1 0

1i0:1:0:0
-] - -V d
l Trap number
Pass AD
Flags
Figure 4. Trap Word Format for 0S Calls

For Operating System calls, only the low-order 8 bits (bits @#-7) are
used for the trap number (see Figure 4).
the dispatch table, only the first 256 can be used for OS traps. Bit 8
of an OS trap has to do with register usage and is discussed below

under "Register—Saving Conventions".

Thus of the 512 entries in

Bits 9 and 1§ have specialized

meanings depending on which OS routine you're calling, and are covered
where relevant in other manuals.

2/27/84 Chernicoff

CONFIDENTIAL

/INTRO/ASSEM.3

12 Programming Macintosh Applications in Assembly Language

Trap Macros

The names of all trap macros begin with the underscore character (),
followed by the name of the corresponding routine. As a rule, the
macro name is the same as the name used to call the routine from
Pascal, as given in the OS and Toolbox documentation. For example, to
call the Window Manager routine NewWindow, you would use an instruction
with the macro name _NewWindow in the op code field. There are a few
exceptional cases, however, in which the spelling of the macro name
differs from the name of the routine itself; these exceptions are noted
in the documentation for the individual routines.

Trap macros for Toolbox calls take no arguments; those for 0S calls may
have as many as three optional arguments. The first argument, 1if
present, is used to load a register with a parameter value for the
routine you're calling, and is discussed below under "Register-Based
Calls". The remaining arguments control the settings of the various
flag bits in the trap word. The form of these arguments varies with
the meanings of the flag bits, and is described in the manuals on the
relevant parts of the Operating System.

CALLING CONVENTIONS

The calling conventions for Operating System and Toolbox routines fall
into two categories: register—~based and stack-based. As the terms
imply, register-based routines receive their parameters and return
their results in the processor's registers; stack-based routines
communicate via the stack, following the same conventions used by the
Pascal Compiler for routines written in Pascal. Before calling any 0S
or Toolbox routine, you have to set up the parameters in the way the
routine expects.

(note)
As a general rule, Operating System routines are register-—
based and Toolbox routines stack-based, but there are
exceptions on both sides. Throughout this documentation,
register-based calling conventions are given for all
routines that have them; if none is shown, then the
routine is stack-based.

Register—-Based Calls

By convention, register-based routines normally use register A@ for
passing addresses (such as pointers to data objects) and DJ for other
data values (such as integers). Depending on the routine, these
registers may be used to pass parameters to the routine, result values
back to the calling program, or both. For routines that take more than
two parameters (one address and one data value), the parameters are
normally collected in a parameter block in memory and a pointer to the
parameter block is passed in Af. However, not all routines obey these

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 4

CALLING CONVENTIONS 13

conventions; for example, some expect parameters in other registers,
such as Al. See the documentation on each individual routine for
details.

Whatever the conventions may be for a particular routine, it's up to
you to set up the parameters in the appropriate registers before
calling the routine. For instance, the Memory Manager utility
procedure BlockMove, which copies a block of consecutive bytes from one
place to another in memory, expects to find the address of the first
source byte in register A@, the address of the first destination
location in Al, and the number of bytes to be copied in D#. So to move
2¢ bytes beginning at address srcAddr to locations beginning at
destAddr, you might write something like

LEA srcAddr ,Ad ;source address in Af¢

LEA destAddr,Al ;jdestination address in Al
MOVEQ #2d,D¢ ;byte count in D@
_BlockMove strap to routine

Because many register—based routines expect to find an address of some
sort in register Af, the trap macros allow you to specify the contents
of that register as an argument to the macro instead of explicitly
setting up the register yourself. The first argument you supply to the
macro, if any, represents an address to be passed in A@. The macro
will load the register with an LEA (Load Effective Address) instruction
before trapping to the routine. So, for instance, to perform a Read
operation on a file, you could set up the parameter block for the
operation and then use the instruction

Read paramBlock

strap to routine with
; pointer to parameter
; block in Af

This feature is purely a convenience, and is optional: if you don't
supply any arguments to a trap macro, or if the first argument is null,
the LEA to A will be omitted from the macro expansion. Notice that A¢
18 loaded with the actual address denoted by the argument, not the
contents of that address.

(note)
You can use any of the 68@¢@'s addressing modes to
specify this address, with one exception: you can't use
the two-register indexing mode ("address register
indirect with index and displacement"). An instruction
such as

_Read offset(A3,D5)
won't work properly, because the comma separating the two

registers will be taken as a delimiter marking the end of
the macro argument.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 4

14 Programming Macintosh Applications in Assembly Language

Many register-based routines return a l6-bit result code in the low-
order half of register D@ to report successful completion or failure
due to some error condition. A negative result code always signals an
error of some kind; a code of @ denotes successful completion. (Some
routines also use D@ to return an actual data result. 1In these cases,
any nonnegative value in the low-order half of the register represents
a true result and implies successful completion of the routine.) The
system errors file defines symbolic names for all result codes reported
by the various 0S routines.

Just before returning from a register-based call, the Trap Dispatcher
tests the low-order half of D@ with a TST.W instruction to set the
processor's condition codes. You can then check for an error by
branching directly on the condition codes, without any explicit test of
your own: for example,

_PurgeMem ;trap to routine
BMI Error ;branch on error

sno error-—actual result
; in low half of D¢

(warning)
Not all register-based routines return a result code.
Some leave the contents of D@ unchanged; others use the
full 32 bits of the register to return a long-word
result. See the documentation of individual routines for
details.

Stack—-Based Calls

To call a stack-based routine from assembly language, you have to set
up the parameters on the stack in the same way the compiled object code
would if your program were written in Pascal. The number and types of
parameters expected on the stack depend on the routine being called.
The number of bytes each parameter occupies depends on its type:

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.4

CALLING CONVENTIONS 15

Parameter type Number of bytes Contents
BOOLEAN 1 byte Low-order bit =
@ (FALSE) or 1 (TRUE)
CHAR 1 byte ASCII character code
INTEGER 2 bytes Twos—complement integer
LongInt 4 bytes Twos-complement integer
REAL 4 bytes Sign bit, B-bit biased
exponent, 23-bit mantissa
String 4 bytes Pointer to string; first

byte pointed to gives length

of string in characters
Record, array 1-4 bytes Contents of structure 1if

{= 4 bytes; otherwise

pointer to structure

Pointer 4 bytes Address of value
Handle 4 bytes Address of master pointer
VAR parameter 4 bytes Address of variable,

regardless of type

If the routine you're calling is a function, the first step is to
reserve space on the stack for the function result. Then, for both
functions and procedures, push the parameters onto the stack in the
order they occur in the routine's Pascal definition. Finally, call the
routine by executing the corresponding trap macro. The trap pushes the
return address onto the stack, along with an extra word of processor
status information. The Trap Dispatcher removes this extra status
word, leaving the stack in the state shown in Figure 5 on entry to the
routine. The routine itself is responsible for removing its own
parameters from the stack before returning. If it's a function, it
leaves its result on top of the stack; if it's a procedure, it restores
the stack to the same state it was in before the call.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 4

(5P)
4(SP) —)

£

16 Programming Macintosh Applications in Assembly Language

Low memory :

Function result

Return address Previous stgck contents

Last paremeter High memory

+ . M
. . []

- On return-(functions)

1% progrphm‘qnyqiﬁéu*LGh a4~ leatione o fs

Function result (if any)

Previous stack contents

LA Low me.30 E oy OB
.45—4 (SP)._Q), s N
F R memory _ Previou tackcoments]
(5% _._.'}:.._‘__‘i.j e A;.‘.'__....l ? z Dage e e A e E
o £ - ve 4 . '
e i, _.--_gh. E?}!.yﬁ_s ‘ High memory

Lot pammemeie TR TR
L,M e e e ,

On return (procedures)
? DR oratuce dvenr leaes

‘ F'ﬂ—gE&:"'S'.” Stack Format for Stack-Based Calls

cmrts mEm e ——

I r'-‘:-qr..\v[“(!ﬂ’-,,
For eJan\gle, éﬁ;.}u ndey. Manage& function GrowWindow s defingé-j.un_,_hw_";
Pascal as’ follows. :

mrzgn GrogWindow “CtheWindow: ’Winhé"!’f:x:, starcPt ,Point, e
T ey 7eRect: Rect) : Longlnt;

To call this fupcp.op from assembly language, yau*d wrire somemn'rg“ -
like the following: ' .

SUBQ.L #4,SP ;make room,for LongInt . result .
MOVE.L theWindow,-(SP) ;push windé® pOinter”""' T
MOVE.L startPt,-(SP) ;a Point is a 4~byte record,
. - . wma: .. <3 .-50:BUSH agtual contents
*T=PEA gizeRect " T ;a Rect is an 8-byte record,
3 so push a pointer to it
» GrowWindow . Lrap. tp routipe;in.; -
For exauplic, CNOMBYEIDT (8BY4 pafunsrier Gfpgp regult frgm gt;ck

Pagsca 37 felicee

IR

FONCTIUN Ceowh: o Cihewitdovi WindowPoo: o stas

aiaehe st . Voo, . LOmgirt,
':1.‘ (_:..: t".;‘ HERSA TR | & f“rﬂ'ﬁ =3 'TT.?"'-‘ :3’1{ tIne Loy L [[:"‘.; R
1ins oo Tolloaaing
2/21/84 Chernicotf .. CONFIDENTIAL . . op :fINTRO/ASSEMe4 ..

cre e =lAT =t

. s o a0t B L
o PR ' . 2. v. [+ 4 Ty

CALLING CONVENTIONS 17

(warning)
Don't forget that the stack pointer must always be
aligned on a word boundary (that is, at an even byte
address). When pushing a value with an odd number of
bytes (such as a Boolean or a character), you have to add
a byte of "padding" to keep the stack pointer even.
Because all Macintosh application code runs in the
68¢0¢'s supervisor mode, an odd stack pointer will cause
a "double bus fault": a catastrophic system failure from
which the only escape is to turn the power off and
restart the machine.

(note)
To keep the stack pointer properly aligned, the 68@30¢
automatically adjusts the pointer by 2 instead of 1 when
you move a byte-length value to or from the stack. This
special case applies only when three conditiong are met:
a one-byte value is being transferred; either the source
or the destination is specified by predecrement or
postincrement addressing; and the register being
decremented or incremented is the stack pointer (A7).
For example, you can push the Boolean value TRUE onto the
stack with the instruction

ST.B -(SP) ;byte=length
; predecrement to
; stack pointer

and an extra, unused byte will automatically be added to
keep the stack pointer even.

However, when you use any other method to manipulate the
stack pointer, it's your responsibility to make sure the
pointer stays properly aligned. For instance, to reserve
space on the stack for a Boolean function result, you
have to remember to decrement explicitly by two bytes
instead of one:

SUBQ.L #2,SP ;make room for
; Boolean result

The function will return its result in the high-order

(even—addressed) byte of the two; the other byte is just
padding and should be ignored.

Register-Saving Conventions

All OS and Toolbox routines follow Lisa Pascal's register-saving
conventions, which require the routine to preserve the contents of all
registers except Ad, Al, and D@-D2 (and of course A7, which is
special). 1In addition, for register—based routines, the Trap
Dispatcher saves some of the remaining registers before dispatching to
the routine and restores them before returning to the calling program.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 4

18 Programming Macintosh Applications in Assembly Language

Registers Al, D1, and D2 are always saved and restored in this way, so
their contents are unaffected by a register-based trap even though the
routine itself is allowed to '"trash" them. A7 and DJ are never
restored: whatever the routine leaves in these registers is passed
back unchanged to the calling program, allowing the routine to
manipulate the stack pointer as appropriate and to return a result
code.

Whether the Trap Dispatcher preserves register A depends on the
setting of bit 8 of the trap word. If this bit is @, A# is saved and
restored; if it's 1, A@ is passed back from the routine unchanged.
Thus bit 8 of the trap word should be set to 1 only for those routines
that return a result in A@, and to @ for all other routines. The trap
macros automatically set this bit correctly for each routine, so you
never have to worry about it yourself.

Notice, however, that the Trap Dispatcher preserves these other
registers only on register-based traps. Stack-based traps preserve
only those registers required by the Pascal conventions (A2-A6, D3-D7).
1f you want to preserve any of the other registers, you have to save
them yourself before trapping to the routine--typically on the stack
with a MOVEM (Move Multiple) instruction-—and restore them afterward.

Pascal Interface to the 0S and Toolbox

Lisa Pascal doesn't know anything about the Macintosh trap mechanism.
When you call an 0S or Toolbox routine from Pascal, you're actually
calling an interface routine that performs the trap for you. For
register~based calls, the interface routine fetches the parameters from
the stack where the Pascal calling program left them, puts them in the
registers where the routine expects them, then traps to the routine.
On return, it moves the routine's result, if any, from a register to
the stack and then returns to the calling program. (For routines that
return a result code, the interface routine also moves the result code
to a global variable, where it can later be accessed with a special
Pascal utility routine.) For stack-based calls, there's nothing for
the interface routine to do except trap to the routine and then return
to the calling program.

Ordinarily this would mean that each stack-based interface routine
would be two instructions long: a trap word and an RIS (Return from
Subroutine) instruction. However, to save code, the interface routines
to the Toolbox dispense with the RTS and instead use the "auto-pop"
bit, bit 10 of the trap word for Toolbox traps. When this bit is set
to 1, the Trap Dispatcher doesn't return control to the interface
routine after the trap. Instead, it just removes the trap's return
address from the stack and returns directly to the calling program.
This halves the amount of memory space taken up by the Toolbox
interface routines——from two words per routine to only one, the trap
word itself. When you trap to a Toolbox routine from assembly
language, the trap macro sets the auto—pop bit to @, so that control
will return normally.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 5

MIXING PASCAL AND ASSEMBLY LANGUAGE 19

MIXING PASCAL AND ASSEMBLY LANGUAGE

You can mix Pascal and assembly language freely in your own prograus,
calling routines written in either language from the other. The Pascal
and assembly-language portions of the program have to be compiled and
assembled separately, then combined with the Lisa Pascal Linker. For
convenience in this discussion, we'll refer to such separately compiled
or assembled portions of a program as "modules', although this term
isn't actually used in Lisa Pascal. You can divide a program into any
number of modules, each of which may be written in either Pascal or
assembly language.

References in one module to routines defined in another are called
external references. The Linker resolves external references by
matching them up with their definitions in other modules. You have to
identify all the external references in each module so they can be
resolved properly. To call an assembly-language routine from Pascal,
you name the routine in a .DEF, .PROC, or .FUNC directive in the module
where it's defined and declare it with an EXTERNAL declaration in the
Pascal module that refers to it. To call a Pascal routine from
assembly language, you declare it in the INTERFACE section of a Pascal
unit to make it available to other modules and name it in a .REF
directive in the assembly-language module that uses it. The actual
process of linking the modules together is covered in the document
"Putting Together a Macintosh Application".

All calls from one language to the other, in either direction, must
obey Pascal's stack—based calling conventions (see "Calling Toolbox
Routines", above). To call a Pascal routine from assembly language,
you push the parameters onto the stack before the call and (if the
routine is a function) look for the result on the stack on return. In
an assembly-language routine to be called from Pascal, you look for the
parameters on the stack on entry and leave the result (if any) on the
stack before returning.

Under stack-based calling conventions, a convenient way to access a
routine's parameters on the stack 1s with a frame pointer, using the
680@¢'s LINK and UNLK (Unlink) instructions. You can use any address
register for the frame pointer (except A7, which is reserved for the
stack pointer), but on the Macintosh register A6 is conventionally used
for this purpose. The instruction

LINK Ab ,f#-12

at the beginning of a routine saves the previous contents of A6 on the
stack and sets A6 to point to them. The second operand specifies the
number of bytes of stack space to be reserved for the routine's local
variables: in this case, 12 bytes. The LINK instruction offsets the
stack pointer by this amount after copying it into Aé6.

(warning)

The offset is added to the stack pointer, not subtracted
from it. So to allocate stack space for local variables,

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.5

20 Programming Macintosh Applications in Assembly Language

you have to give a negative offset; the instruction won't
work properly if the offset is positive.
the stack pointer correctly aligned, be sure the offset
is even. For a routine with no local variables on the

stack, use an offset of #0.

Also, to keep

Register A6 now points to the routine's stack frame; the routine can
locate its parameters and local variables by indexing with respect to

this register (see Figure 6).

The register itself points to its own

saved contents, which are often (but needn't necessarily be) the frame

pointer of the calling routine.
found at positive offsets from the frame pointer.

Low memory

(SP) =}

Saved registers

.

Local variables

(AB) —>

Previous (A6)

4(AB) =D

Return address

8(AB) =—>

Last paremeter

First parameter

Function result (if sny)

Previous stack contents

mmeagmeee

High memory

Figure 6. Frame Pointer

The parameters and return address are

Since the saved contents of the frame pointer register occupy a long
word (4 bytes) on the stack, the return address is located at 4(A6) and

the last parameter at 8(A6).

This is followed by the rest of the

parameters in reverse order, and finally by the space reserved for the
The proper offsets for these remaining
parameters and for the function result depend on the number and types
of the parameters, according to the table above under "Stack-Based
Calls". 1If the LINK instruction allocated stack space for any local
variables, they can be accessed at negative offsets from the frame
pointer, again depending on their number and types.

function result, if any.

2/27/84 Chernicoff

CONFIDENTIAL

/INTRO/ASSEM. 5

MIXING PASCAL AND ASSEMBLY LANGUAGE 21

At the end of the routine, the instruction
UNLK A6

reverses the process: first it releases the local variables by setting
the stack pointer equal to the frame pointer (A6), then pops the saved
contents back into register A6. This restores the register to its
original state and leaves the stack pointer pointing to the routine's
return address.

A routine with no parameters can now just return to the caller with an
RTS (Return from Subroutine) instruction. But if there are any
parameters, it's the routine's responsibility to "strip" them from the
stack before returning. The usual way of doing this is to pop the
return address into an address register, increment the stack pointer to
remove the parameters, then exit with an indirect jump through the
register.

Another point to remember is that any routine that's called from Pascal
must observe Pascal register conventions and preserve registers A2-A6
and D3-D7. This is usually done by saving those registers the routine
will be using on the stack with a MOVEM (Move Multiple) instruction,
then restoring them before returning. Any routine you write that will
be accessed via the trap mechanism--for instance, your own version of
an 0S or Toolbox routine that you've patched into the dispatch table--
should observe the same conventions.

Putting all this together, the routine should begin with a sequence
like

MyRoutine LINK A6 ,#-dd set up frame pointer--

;se
3 dd = number of bytes
; of local variables

MOVEM.L A2-A5/D3-D7,-(SP) ;...or whatever subset of
; these registers you use

and end with something like

MOVEM.L (SP)+,A2-A5/D3-D7 ;restore registers

UNLK A6 ;restore frame pointer

MOVE.L (SP)+,Al ;save return address in a
; "trashable"” register

ADD.W #pp,SP ;strip parameters——

3 Pp = number of bytes
; of parameters
JMP (Al) jreturn to caller

Notice that A6 doesn't have to be included in the MOVEM instructions,
since it's saved and restored by the LINK and UNLK.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.5

22 Programming Macintosh Applications in Assembly Language

(warning)
Recall that the Segment Loader, when it starts up an
application, sets register A5 to point to the boundary
between the application's globals and parameters.
Certain parts of the system (notably QuickDraw and the
File Manager) rely on finding A5 set up properly--so you
have to be a bit more careful about preserving this
register. The safest policy is never to touch A5 at all.
If you must use it for your own purposes, just saving its
contents at the beginning of a routine and restoring them
before returning isn't enough: you have to be sure to
restore it before any call that might depend on it. The
correct setting of A5 is always available in the long-
word global variable currentAS.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 6

GLOSSARY 23

GLOSSARY

application heap: The portion of the heap available to the running
application program for its own memory allocation.

dispatch table: A table in RAM containing the addresses of all
Operating System and Toolbox routines in encoded form.

external reference: A reference to a routine or variable defined in a
separate compilation or assembly.

frame pointer: A pointer to a routine's stack frame, held in an
address register and manipulated with the LINK and UNLK instructions.

heap: The area of memory in which space is dynamically allocated and
released on demand, using the Memory Manager.

interface routine: A routine called from Pascal whose purpose is to
trap to a certain Operating System or Toolbox routine.

IWM ("Integrated Woz Machine"): The Macintosh's built-in custom disk
interface.

parameter block: A table of parameter values to an Operating System
routine, stored in memory and located by means of a pointer passed in
an address register.

QuickDraw equates file: The file defining global constants and
variables pertaining to QuickDraw.

QuickDraw macro file: The file defining trap macros for calling
QuickDraw routines.

register-based: Said of an Operating System or Toolbox routine that
receives its parameters and returns its results in the processor's
registers.

result code: A code returned by an Operating System routine to report
successful completion or failure due to some error condition.

SCC (Serial Communications Controller): The Macintosh's built-in 8530
serial communication interface.

stack: The area of memory in which space is allocated and released in
LIFO (last-in-first—out) order, used primarily for routine parameters,
return addresses, local variables, and temporary storage.

stack-based: Said of an Operating System or Toolbox routine that
receives its parameters and returns its results on the stack.

stack frame: The area of the stack used by a routine for its
parameters, return address, local variables, and temporary storage.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.6

»

24 Programming Macintosh Applications in Assembly Language

system communication area: An area of memory containing global
variables used by the Macintosh system software.

system equates file: The file defining global constants and variables
pertaining to the Operating System.

system errorg file: The file defining all result codes returned by
Operating System routines.

system heap: The portion of the heap reserved for use by the Macintosh
system goftware.

system macro file: The file defining trap macros for calling Operating
System routines.

Toolbox equates file: The file defining global constants and variables
pertaining to the User Interface Toolbox.

Toolbox macro file: The file defining trap macros for calling Toolbox
routines.

trap macro: A macro that assembles into a trap word, used for calling
an Operating System or Toolbox routine from assembly language.

trap number: The identifying number of an Operating System or Toolbox
routine.

trap word: An unimplemented instruction representing a call to an
Operating System or Toolbox routine.

unimplemented instruction: An instruction word that doesn't correspond
to any valid machine-language instruction but instead causes a trap;
used for calling Operating System and Toolbox routines via the 680¢@'s
trap mechanism.

VIA (Versatile Interface Adapter): The Macintosh's built-in 6522
parallel communication interface.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 6

.-

4 Jun 1962 20:10:1) SAFLE/BOXES. TEXT
p
{sx-}
PROGRAM Boxes;
USES {su-}
SU cbj/QuickDraw QuickDraw,
sU ob_]/DSInti 0SInt{,
SU obj/Toollntf Toollntf,
SU obj/Sane Sane,
SU ocbj/Elens Elens,
SU ob)/Grat3D Graf3D;
CONST
boxCount = 15;
E
Box3D = RECORD

ptl: PointlD;
pt2: Point3D:
dist: extended:

VAR
wyPort: GrafPtr;
myPort3D: Port3DPtr;
boxArragy: ARRAY [D..boxCount] OF Box3D;
nBoxes: INTEGER;
i: INTEGER;
etop, ebotton, eleft, eright, temp: extended;

PROCEDURE Distance(ptl, pt2: Point3D; VAR result: extended).

dx, dy. dz: extended;

BEGIN
dx : -ptZX, {dx'ptZX-ptlx }
SubX(pt1. X, dx

= pt2.Y; { dy:=pt2.Y - pt1.¥:)
SUX(pU1. Y, dy): 4

dz :s pt2.2; { dz:=pt2.2 - pt1.2; }
SubX(ptl.Z dz):

&llxsdx dx; { result: sSQRT(dx*dx + dy°®dy + dz"dz).)}

PROCEDURE DrowBrick(ptl,pt2: PointdD),
draws o 3D brick with shaded faces. }
only shades correctly in one direction }

VAR
tepRgn: Rgnliandle;

BEGIN
termpRgn : = NewRgn,

OpenRgn.

MoveTodD(ptl. X, pt1.Y,pt1.2Z); (front face, y=yl }
LineToldD(ptl. X, ptl1.Y, pt2.2);

LineTo3D(pt2.X, pt1.Y.pt2.2);

LineTo3D(pt2.X. ptl.Y, ptl Z);

LineTo3D(ptl. X, ptl.Y, pt1.2);

16-1

4 Jun 19682 20:3D:11 SAMPLE/BOXES. TEXT

-

CloseRgn(tempRgn);
FillRgn(terpRgn. white),

OpenRgn;
MoveTo3D(pt1.X,ptl1.Y,pt2.2).; { top face, 2022}
LineTo3D(ptl. X, pt2 Y,pt2.2);
LineTodD(pt2.X. pt2.Y,pt2.2);
LineTo3D(pt2.X. ptl.Y, pt2.2).;
LineTo3D(pt1.X, pt1. Y, pt2.2).;
CloseRgn{termpRgn);

FillRgn(tempRgn, gray):

OpenRgn.
MoveTodD(pt2.X.ptl.Y.pt1.2Z). { right face, x=x2 }
Lim‘l’oJDéptZ.x. ptl.Y,pt2.2);

LineTodD(pt2. X pt2.Y,pt2.2).

LineTodD(pt2.X, pt2.Y,pt1. 2);

LineTodD(pt2.X. pt1.Y,pt1.2);

CloseRgn(tempRgn).

FillRgn(terpRgn, black).

PanPat (white),

MoveTodD(pt2.X. pt2.Y,pt2.2); { outline right }
LimTomEptz. X, pt2.Y.ptl.2);

LineTo3D(pt2.X. ptl.Y, ptl.2);

PenNornal;

DisposeRgn(tempRon);

PROCEDURE MokeBox;

VAR
myBox: Box3JD;
i, j.h v: INTEGER:
pl, p2: PointlD;
myRect: Rect.
testRect: Rect,
temp: extended:

BEGIN
12X(Randon, pl1.X). {pl.x: *Rendon mod 70 -15.}
I2X(140, temp);
RenX(temp, pl.X. 1)
I2N(15, temp).
SubX(temp. pl. X);

I12X(Randon, p1.Y); {pl.y:*Randon mod 7D -10;)}
12X(140, temp).

RenX(temp,pl.Y, 1)

I2X(10, termp).

SubX(termp, pl.Y).

12%(0,p1.2). {pl.2:=0.0:}

I2X(Randon, p2.X).; {p2.x:=pl.x <+ 10 <« RBS ;
Iﬂgbﬂ.t@g: : p2.x:pl.x (Randon) W00 30: 3

RenX(temp, p2.X, 1),
Hbsxspﬁ);
12X(10, temp).

RddX(tenp, p2. X):

msz. pz.x;.-

1D(Randon, p2.Y).; {p2.y:*pl.y < 10 + RBS(Randon) MOD 45;
I2(90, teupg: L ¢))

RenX(temp, p2.Y,1):
m;x&?g)?)
I2X(10, temp).

4 Jun 1082 20:10:11 SAMPLE/BIMES. TEXT

—

RddX(tenp, p2.Y).
RdaX(pl.Y,p2.Y).

I2X(Randon, p2.2); {p2.z:=pl.z + 10 + ABS(Randon) MOD 35; }
12X(70, tenpg;

RenX(tenp, p2.2,1);

fAbsX(p2.2).

12X(10, tenp).

RddX(tenp, p2.2);

RAddX(pl.2.p2.2).

{ reject box if it intersects one already in list }
VITH myRect DO
BEGIN {
SetRect(nyRect, ROUND(pl. x), ROUND(pl. y). ROUND(p2. x), ROUND(p2.y)).

X21(p1.X. 1eft),
X21(pl.Y. top).
X21(p2 X, raght).
X21(p2.Y,botton)

END;
FOR i := D TO nBoxes-1 DO

BEGIN

WITH boxArray|i], testRect DO
BEGIN { SetRect(nyRect, ROUND(pil.x) ROUND(ptl.y) }
X21(ptl.X, left); { .ROUND(pt2.x), ROUND(pt2.y)). }
X21(ptl1.Y, top):
X21(pt2.X. raght).
X2I(pt2.Y, botton)
END;

g‘mSec:tRect (myRect, testRect, testiRect) THEN EXIT(MakeBox)

myBox.ptl := pl;
nryBox. pt2 := p2;

{ calc nidpoint of box and its distance fron the eye }

Addi(p2.X.p2.X); { pl.x:*(pl.x + p2.x)/2.0; }
I12X(2, terp);
DivX(terp, pl1.X);

AddX(p2.Y.p1.Y); { pl.y:=(pl.y + p2.y)/72.0; }
I2X(2, temp):
Divi(temp, p1.Y):

RADI(p2.2,.p1.2); { pl.z:*(pl.z + p2.2)72.0; }
12X(2, terp);
DivX(terp, p1.2);

'Irunstom(gl. p2).
Distance(p2. nyPort3D". eye, myBox. dist); { distance to eye }

i:=D
boxRrray [nBoxes].dist := myBox.dist. { sentinel }
WHILE CmpX(myBox.dist, GT, boxfirray{i].dist) { myBox.dist >
0o boxfirray[i).dist }
i :e j*1; { insert in order of dist }
FOR j := nBoxes DOWNTO i+l DO boxArray[))} :* boxArray[j-1]:
boxfirray(i] := myBox;
nBoxes : = nBoxes+l;
END;

2]

BEGIN { main progran }

16-3

16-4

4 Juz 1882 20:10:11 SAFLE/BOXES. TEXT

e

InitGraf(sthePort),;

HideCursor.
NEW(nyPort); OpenPort(myPort);
NEW(nyPort3D). Open3DPort(nyPortiD).

ViewFort(nyPort . portRect), { put the imoge in this rect)}
12X(-100, eleft),

12X(75, etop).

12%(100, eraght),

12X(-75, ebotton).

LookAt(eleft, etop, eright, ebotton); { cim the canera into 3D space }
12X(30. temp).

ViewAngle(termp). { choose lens focal length }

ldentity:

12X(20, terp).

Roll(temp);

12X(70, terp);
Pitch(te:;g; { roll and pitch the plane }
REPEAT

nBoxes := 0;
REPERT
MakeBox
UNTIL nBoxesrboxCount.

PenPat(white).
BackPat(black).
EraseRect(nyPort~. portRect);

FOR i := -10 TD 10 DO
BEGIN
I12((i®10, eleft);
12X(-100, etop).
12%X(0. terp).
MoveTodD(eleft. etop, temp).
12X(100, ebotton).
LineTo3D(eleft, ebotton, temp).

.

FOR i := -10 TO0 10 DO
BEGIN
I12X(i*1D, eleft);
MoveTo3D(etop, eleft, temp).
LineTo3D(ebotton, eleft, temp).

FOR i :» nBoxes-1 DOWNTO O DO DrawBrick(boxfArray[i].ptl, boxfirray[i].pt2).
UNTIL butten

————

4 Jun 1882 20:009: 23 SAPLE/EDIT. TEXT

Puge

7~

PRO

1

{Sx-)

GRAM Edit;

Edit -~ R small sample application written in Pascal
by Macintosh User Education

USES {sU-)
SU Obj/QuickDraw QuickDraw,
SU 0b)/0SInt{ 0SInt{,
SU 0bj/Toollntf Toollnts,
CONST

lastMenu = 3; { munber of nenus }

appledenu = 1; { menu ID for desk occessory menu }
fileMeru = 256; { memu ID for File menu

editMenu = 257; { menu ID for Edit menu

VAR
myMenus: ARRAY [1..lastHenu] OF MenuHandle.
screenRect, dragRect, pRect: Rect;
donefFlag. terp: BOOLERN,
nyEvent: EventRecord;
code, refNun: INTEGER:
wRecord: WindowRecord:
my¥Window, whichWindow: Hmdothr,
thelenu, thelten: 1
hIE: TEHandle;

PROCEDURE SetUpMenus;
{ Once-only initialization for menus)}

i: INTEGER;
appleTitle: SIRING[1).

BEGIN
InitHenus: { imtml:ze Heru nger }
appleTitle := ° appleTitle|l] :» CHR(ap leSynbol);
myMenus[1] := Nevﬂenu(appleuenu upple'l'nle
nddnes}!enu(nyﬁenuslll ‘DRVR"). { desk accessories }
nyHenus[] = GetHenu(hleHenug
myMenus [3] := GetMemu(editMenu

= 1 TO lastMenu DO InsertHenu(nyMenus|[i], D);

DeremaBur

END; { of SetUpMenus)}

PROCEDURE DoComnand(mResult: LongInt);

VAR
nane: STR25S:

BEGIN

theMenu := HiWord(mResult); thelten := LoWord(mResult).

CASE theMenu OF

appledenu:
BEGIN
Getlten(nyMenus{1], thelten, nane);
gnf)ﬂm : = OpenDeskAcc(nane):

fileMenu: doneFlag := TRUE; { Quit }
edi tHenu:
BEGIN
IF NOT SystenEdit(theltem-1) THEN
BEGIN

SetPort(myWindow),

16-5

16-6

4 Juo 1082 20.(8: 23 GAMPLE/INIT. TEXT

—
CASE thelten OF

1: TECut(hIE):
2: TECopy(hIE).
3: TEPaste(hlE),
END; { of iten case }
END;
END: { of editMenu }

END; { of menu case }
HiliteMemu(0),

END; { of DoCormand)

BEGIN { main progran }
InitGraf (athePort);
InitFonts;
FlushEvents(everyEvent, 0);
InitWindows;

SetUpMenus;
TEInit;
InitDialogs(NIL);
InitCursor.

screenRect : = screenBits. bounds,
SetRect(dragRect, 4, 24, screenRect. right-4, screenRect. botton-4),
doneFlag : = FRLSE:

myWindow := GetNewWindow(256, 8wRecord, POINTER(-1)).
SetPort(myWindow);

yl!ect := thePort™.portRect;
nsetRect(pRect, 4,0);
hIE := TENew(pRect, pRect).
REPERT
SystenTask.
TEIdle(hIE).
temp : = GetNextEvent(everyEvent, myEvent):
CASE myEvent.what OF

nouseDown:

BEGIN

code := FindWindow(nyEvent. where, whichWindow),

CASE code OF
inMenuBar: DoComnand(MenuSelect(myEvent.where)):
inSysWindow: SystenClick(myEvent, vhichWindow);
inDrag: DragWindow(whichWindow, nyEvent. vhere, dragRect).
inGrow, inContent:

BEGIN

IF whichWindow(>FrontWindow THEN
SelectWindow(whichWindow)

BEGIN
GlobalTolocal (nyEvent. where);
TEClick(myEvent. where, FALSE, hIE),
END;
EXD;
BND; [of code case
END; { of mouseDown

4

Jun 1862 20:08: D

SAMPLE/EDIT. TEXT Page 23

r—

keyDown, autcKey:

IF myWindow*FrontWindow THEN
TEXey(CHR(nyEvent. message MDD 256), hIE).

activateEvt:
IF CDD(myEvent.modifiers) {
THEN

TEActivate(hIE)
TEDeactivate(hIE);
updateEvt:
BEGIN

SetPort(myWindow),
BeginUpdote(myWindow),

wvindovw is becoming active }

TEUpdate(thePort”. gortRect, hIE),;

EndUpdate(myWindow),
EXD; { of updateEvt)

END; { of event case }

UNTIL doneFlog:
END.

16-7

16-8

4 Jun 1982 19:58: 47 SAPLE/FILE. TEXT

{ File -- Example code for printing, reading ond writing files, and Text Edit }
-- by Cary Clark, Mocintosh Technical Support }

PROGRAM MyFile:

Please reod ‘more about File, ° included on the Mac Master disk. }

SDECL BUG})

SSETC BUG := 0}
{One good way of debugging code is to write stotus information to one of the
serial ports. Even while debugging code which uses one of the ports, the other
can be used for transnitting infornction to an external ternincl.

In this program., the compile time variable BUG is set to either -1, Dor 1
according to the extent of the debugging infornation required. Since compile
tine variables or constants are used, setting a single flag should cause the
resulting program to have no more code than is required by the debugging level
requested.

1f BUG is set equal to -1, then no debugging information appears; this is as you
would want the end user to see your product.

BUG set to 0 provides an additional menu bar called ‘debug’ that can display the
anount of menory available, compact menory, and discard segnents and resources
resident in menory. You can do sonething similar to display sone debugging
infornation on the Mac itself if you do not have a terninal, but the penalty here
is that you may spend much of your time debugging the code which is intended to
debug some other part of the progran. UObviously, creating and mmintaining a
windov on a screen full of other windows in untested code is a difficult thing to
do.

BUG set to 1 adds an additional item to the ‘debug’ menu that writes various runtine
infornation to an external terminal. This is the preferred method of debugging.
since it does not interfere with the Hocintosh display. Even if you do not have

a separate terminal, you can use the LISR terminal progran to act as one. Since
writing a lot of debugging infornation to a serial port can slow the progran down,

1 would recomnend a way of turning the information on and off. 1n this progran,

the variable DEBUG is set to true or false in the beginning of one of the first
procedures executed, SETUP, to provide debugging information. The DEBUG variable
nay also be set by the botton item on the rightrost menu.}

SU- wn off the Lisa Libraries. This is required by Workshop.}
SX- urn off stack expansion. This is a Lisa concept. not needed on Mac.}

SIFC BUG > -1}
SD+} {Put the procedures nane just after it in the code, to help in debugging)}
- urn on range checking. Violating the range at runtine will produce a
check exception.)}
SELSEC)
’} Do not include the procedure name in the °production’ code)
] urn off range checking.}

USES {SU Obj/QuickDraw } QuickDraw,

SU 0Obj/0SIntf 0SIntf,

SU 0bj/Toollntf Toollntf,

SU Obj/PackIntf PackIntf,

SU Ob)/StdFile StdFile, {later, this will be part of Packlntf}
SU Obj/MacPrint MacPrint;

CONST

appledenu = 1.

FileMenu = 2;
EditMenu = 3.
DebugMenu = &;

{See the file Misc:Fileasn about the constants below.

In this exaple progran, 1 only use the first two.)
TEScrpLength = 0; ?he length of the private TextEdit scrap)
TEScrpHandle = 1; {the handle to the private TextEdit }

L _ X . 4

LT,]

4 Jun 1882 18:58: 47 SAFLE/FILE. TEXT

Page

~

ScrVRes = 3; {screen vertical resolution (dots/inch
ScrHRes * 4; {screen horizontal resoluticn (dots/inch)}
doubleTine = 5; {double click time in 4/6D's of a second)
caretTine = 6, {caret blink time in 4/60°'s of a second}
RANunber = 7; {the active alert}

RCount = 8; {the alert stage level}

{SIFC BUG = -1}

lastHenu = 3; { mmber of menus w/o debug}
{SELSEC}

lastMenu = 4; { munber of menus w/ debug)
{seNpC}

{SIFC BUG ¢ 1}
debug = FALSE; { compiler will discard code after ‘'If debug ...°)
{SENBC}

TYPE

ProcOrFune = (proc, func, neither);

edset = SET OF 1..9;

appParns = RECORD { parans set up by Finder at lounch }
nessage: INTEGER;
count: INTEGER; { how many icons did the user select }
vRefNun: INTEGER; { for each, the volune reference %, }
fIYPE: resType. { the file type, }
vByte: INTEGER. { the version mumber (should be) }
fNanme: Str255; { and the nome. See SetUp for use. }

digFont = 2; {the font used inside alerts and dinlog;}

03

B
pAppParms * “appParms;

MyData = RECORD {each document window keeps a handle to this in WRefCon
TERecord: TEHandle. {the text associagted with this docunent
changed: Boolean; {the document is ‘dirty’}
titled: Boolean; {the document has never been saved to disk}

MyDataPointer = “MyData;
MyDataHandle = “MyDataPointer;

16-9

16-10

4 Jun 1982 19:58: 47 SAMPLE/FILE. TEXT

Page

~

{¢<< this little beauty does a form feed when you print this out.
Copy and Paste it to move it to your source code}
{Here are o ton of global variables. This is not a good programing example.
You professionals, of course, will keep the mumber of globals in your own
prograns to a much snaller mumber than shown here.}

{these first six values are changed as vindows are activated}

VAR

- MyVWindow: WindowPtr;

HyPeek: WindowPeek. {MyPeek is the same as MyWindow}

WindowData: MyDataHandle; {this record is pointed to by the WRefCon.)}
hTE: TEHandle, {The active text edit handle)

vScroll: ControlHandle: {The active vertical scroll bar.)}

topline: INTEGER: {the value of VScroll, also the visible top line.}

printhdl: THPrint. {initialized in SetUp, used by MyPrint}

RyMenus: RRRAY {1..lastMenu] OF MenuHandle; {Handles to all of the menus}
growRect. {contains how big and snall the window can grow

dragRect: Rect; {contains where the window can be dragged

tempwindow: WindowPtr. {window referenced by GetNextEvent (bad pgrming.)}
theChar: CHAR; {keyboard input goes here}

myPoint: Point; {the point where an event took place)

laststate: INTEGER: {last scrap state, to see if it has changed)
doneFlag: Boolean: {set when the user quits the progranm}

nyEvent: EventRecord: {returned by GetNextEvent}

scrapwind: WindowPtr; {the ClipBoard.window, which contains the scrap}
iBeanHd): CursHandle; {the text editing cursor}

watchHdl: CursHandle; {the wait cursor?

wvindownun: Longlnt; {the ® of untitled windows opened}

windowpos: Longlnt; {the ® of windows opened)

txtfile: Flnfo, {'TEXT', the type of My Editor ‘s docunents)

MyFileTypes: SFIypelist: {same as txtfile, in a format for Standard File}
typelistptr: SFIListPir; inter to 'TEXT', as seen by Standard File}
firstchar: INTEGER: {position of first character on top visible line}
printflag: Boolean: {the user selected ‘Print ° from the File menu)
finderprint: Boolean; {the user selected 'Print' fron the finder)

{SIFC BUG > -1)
FreeVWind: WindowPtr; {the free memory window}
oldnen: Longint: {the last anount of free menory}

{sENDC)

{SIFC BUG = 1)

debug: Boolean

{SENDC)])
debugger: text; {the extermal terminal file)}
extdebughdl: StringHandle; {the mnenu entry}
1f: CHAR: (chr(10). linefeed)

FUNCTION Globalfiddr (routinefddr: INTEGER): Ptr.
EXTERNAL.

FUNCTION GlobalValue(valueAddr: INTEGER): Longlnt,
EXTERNAL;

{these routines, for nov, allows us to retrieve where the TextEdit private scrap
is, and allov us to set its size. They are defined in Misc:Filefisn.}

{SS Utilities)

PROCEDURE DebugInProc(prockind: ProcOrFunc: where: Str255; location: Ptr);
{This procedure writes the executing routine’s nane and location in memory on the
external terninal. The location is especially important in o progran like this

that has segnents.}

e

4 Jun 1982 19:58: 47 SAFLE/FILE. TEXT

-~

BEGIN
{SIFC BUG = 1}
WUrite(debugger, 'in °);
IF prockind=proc THEN Write(debugger. ‘Procedure ‘).
IF prockindsfunc THEN Write(debugger, ‘Function °).
Vriteln(debugger, where, * & °, ord4(location), 1£)
{SENDC})

END;

PROCEDURE CursorAdjust;

VAR
mousePt: Point.
tempport: GrafPtr;

BEGIN
{ Take care of application tasks which should be executed when the machine has }
{ nothing else to do, like changing the cursor from an arrow to an I-Bean when it
1s over text that can be edited. }
{SIFC BUG >-1}
{ 1f the acnount of frec memory is being displayed in its own window, and if it has
changed, then create an update event so that the correct value will be displayed.}
IF gggﬁwmdonu.) AND (FreeMen<>oldnen) THEN

oldnen := FreeMen;
GetPort(tempport);
SetPort(FreeWind):
InvalRect(FreeWind . portrect),;
SetPort(terpport)
B0,
{SENDC} .
GetMouse(nousePt); {vhe;: ;})u: cursor is, currently (local to the topnost
window
IF hTEONIL {if text edit is currently active, (document window is
toprost)}
THEN
BEGIN
TEIdle(hTE).
IF (PtlnRect(mousePt, hTE ~.viewrect)) {In the text edit viewrect

area,
THEN
SetCursor(iBeanHdl"") { moke the cursor an I-bean.)

SetCursor(arrow)

PROCEDURE InSystenaWindow;

DScrap: PScrapstuff.
tempport: GrafPtr;

BEGIN
{for desk accessories. service them with a SystemClick. HAlso, check to see if they
hove changed the scrap. If so, create an update event to redraw the clipboard.}
IF debug THEN DebuglnProc(proc, ‘InSystenWindow ', 8InSystenWindow),
SystenClick(myEvent, tempwindow),
DScrap := InfoScrap;
IF (DSt!:mp'.scrq:Stmeolnststme) AND (scrapwind<¢>NIL) THEN
BEGIN
GetPort(tempport).
SetPort(scrapwind).
InvalRect(scrapwind’. portrect);

16-11 -

16-12

4 Jun 1962 19:58: 47 SAFLE/TILE. TEXT

(SetPort(tempport)
END

PROCEDURE SetScrollMax,

E
txt = PACKED RRRAY {0..32000) OF O..255;

VAR
cr: INTEGER
txtptr: txt.
nax: INTEGER.

BEGIN
{This adjusts the scroll value so that the scroll bar range is not allowed to exceed
the end of the text. RAlso, the scroll bar is disabled if the nax is set equal to
;:e nir}x. vhich is zero. The formula for determining the range is sonevhat complex.
rry.
IF debug THEN DebuglnProc(proc, ‘SetScrollMax’, &SetScrollMax),
VITH hTE™ ", hIE"".viewrect DO
BEGIN
txtptr := pointer(htext”);
er := D;
IF telength>0 THEN IF txtptr”[telength-1)s13 THEN er := 1.
nax :° nlinesecr-(bottonm-top+l) DIV lineHeight.
IF nax<0 THEN nax := D;
SetCtlMax(vScroll, max).
IF debug THEN Writeln(debugger, ‘vscrollnax =', max, 1£);
topline := -destrect. top DIV lineHeight,
SetCtlValue(vScroll. topline);
IF debug THEN VWriteln(debugger, ‘topline =', topline, 1f)
END;

.

PROCEDURE ScrollText(showcaret: Boolean).

{called to either show the caret after an action like ‘Copy’:

also called to adjust the text within the window after the wingow is resized. The
sane formula used in SetScrollMax is used here as well. Don’t worry about how this
works, too much. This possibly could be made much simpler.}

txt = PAOXED ARRAY [0..32000] OF O..255;

VAR
bottonline, vievlines, Selline, scrlfinount, mmlines, blanklines,
newtop: INTEGER:
txtptr: “txt;

BEGIN
1IF debug THEN DebugInProc(proc, *ScrollText’, aScrollText).

scrifinount := 0;
txtptr :* pointer(htext”);
mmnlines := nlines; {if the last character is g carriage return, add 1

to nunlines)
IF telength>D THEN
IF txtptr®[telLength-1]=13 THEN mumlines :+ nunlines+l;
WITH hTE" ".viewrect DD viewlines := (botton-top+l) DIV lineHeight; {don't
count partial lines}
topline := -destrect. top DIV lineHeight.
bottonline :* toplineeviewlines-1;
IF debug THEN

-

4 Jun 1882 19:58: 47 SAMPLE/FILE. TEXT

r—

IF

IF

IF

IF

BEGIN

Write(debugger, 'nlines=',nlLines: 4, °; topline=", topline: 4§);

VWriteln(debugger, '; nunlines=’' mmlines: 4, °; botton:=’, bottoaline:
‘ .

Uriteln(d’ebug'ger, ‘viewlines=', viewlines: 4, °; showvcaret=',
showcaret, 1f)

END;
showcaret THEN
BEGIN
Selline := 0.
WHILE (Selline+lc<nlines) AND (selstart>=linestarts[SellLine-1}) DO
Selline : = Selline<};
{if selstart * selend is 8 a cr, then add 1 to selstline}
IF (selstarteselend) AND (selstart>0) THEN
IF (txtptr”[selstart-1]+13) THEN Selline := Selline-+l;
IF debug THEN
BEGIN
Write(debugger, ‘selstarte’, selstart: 5, °; selline=' Selline: 5);
IF selstart>0 THEN
Uriteln(debugger, °; txtptr-[selstart-1] = 13 is °,
txtptr " [selstart-1]:13, 1f)

END;
IF Selline>bottonline THEN
BEGIN

scrlfAnount ;= bottomline-Selline;
IF mmlines-Sellined>viewlines DIV 2 THEN
scrlfinount : = scrlinount-viewlines DIV 2

mscrl&nmt .= gerlRnount-mmlines+Selline«l
IF Sel.f.ine(topline THEN
BEGIN

scrlinount : = topline-Selline;
IF SellLine>viewlines DIV 2 THEN
scrlinount :+* scrlfAnmounteviewlines DIV 2

scrlfinount : = scrlfinount+Selline

END;

scrlifmount=0 THEN

BEGIN

blanklines :* viewlines-nunlines+topline;
IF blanklines<D THEN blanklines := Q.

IF l(!gétxn'}klinesm) AND (topline>D) THEN

scrlfinount := blanklines;
IF scrlfinount>topline THEN scrlfmount := topline

D,
IF NOT showcaret THEN

BEGIN

nevtop := 0;

WVHILE (nev‘lopdml.mes) RND (firstchar>=linestarts[newtop+1)) DO
nevtop :* newtopel.

IF (nev*topotnpune) AND (RABS(newtop-topline)>
lIBS(scrmmmt))
scrlfnount := topline-newtop

END;

debug THEN

BEGIN

Vrite(debugger, ncwtop- .nevtop: 4, '; blanklines=', blanklines: 4):
gételn(debugger. ; newtop -~ topline=’ .nawtop-toplme 1£)

scrlfnount<>0 THEN

BEGIN

IF selstart=selend THEN TEDeactivate(hIE).
TEScroll (0, scrlRmount®lineHeight, hTE).

IF selstartsselend THEN TERctivate(hIE)

L X

16-13

16-14

4 Jun 1082 19:88: 47 SAMPLE/FILE. TEXT

e

BEND;
IF debug THEN Writeln(debugger. ‘scrlfmount=’, scrifinount: 4,1f);
SetScrollMax

PROCEDURE ToggleScrap;

VAR
terppeek: WindowPeek.
getwhich: INTEGER;
shovhidehdl: StringHandle;

BEGIN
{The clipboard comes and goes, here. The last iten in the editmenu is alternately
made to read, 'Show Clipboard’ and ‘Hide Clipboard’.}
IF debug THEN DebuglnProc(proc. ‘ToggleScrap', 8ToggleScrap).
IF ;grsq:vind-ﬂll. THEN {(nacke it appear}
IN
scraopvind : s GetNewWindow(257, NIL, pointer(-1));
terppeek :* pointer(scrapwind);
temppeek . wvindowkind := 9;
SetPort(scrapwand);
InvalRect(scrapwind”. portrect).;
getwhich := 263 {hide clipboard}

END
ELSE {make it disappear)
BEGIN

DisposeWindow(scrapwind),;
scrapwind := NIL:
%eat]which 1= 262 {show clipboard}

shovhidehdl := GetString(getwhich):
Hlock(pointer(showhidehdl)).
Set]ten(myMenus [EditMenu], 9, showhidehdl”");
Hunlock(pointer (showhidehdl)).
mﬁelensekesource(pointer(showhidehdl))

{SIFC BUG > -1)

PROCEDURE ToggleFree;

VAR
terppeek: WindowPeek:
getvhich: INTEGER:
shovhidehdl: StringHandle.

BEGIN
{just about the same as ToggleClipboard, above. This is just for debugging fun.}

IF debug THEN DebuglnProc(proc, ‘ToggleFree", 8ToggleFree):

IF g;::ind-)ﬂl. THEN {make it appear)
FreeWind : = GetNewWindow(258, NIL. pointer(-1)).
tenppeek :* pointer(FreeWind);
tenppeek”. windowkind := 10;
SetPort(FreeWind);
InvalRect(FreeWind”.portrect);
%eut)vhich te 265;

ELSE {nake it disappear}
BEGIN
DisposeWindow(FreeWind).

FreeVWind := NIL;
getvhich := 264

4 Jun 1062 19:58:47 SAPLE/FILE. TEXT
—
END;
showhidehdl :* GetString(getvhich);
lnock(pointer(srnvhidehdl?);
Set1ten(nyHenus [DebugMenu], 1, showhidehdl “ 7).

Hunlock(pointer (showhidehdl));
ReleaseResource(pointer(showhidehdl))

END;
{sennc}

PROCEDURE SetViewRect.

BEGIN
{text edit's view rect is inset in the content of the window, to prevent it fron
nunning into the lefthand side or the scroll bar.
IF debug THEN DebuglnProc(proc, ‘SetViewRect ', 8SetViewRect);
WITH hIE™".viewrect DO
BEGIN
hIE"".viewrect := MyWindow™.portrect.
left := left+4;
right := right-15
BD

PROCEDURE MoveScrollBar.

BEGIN
{When the window is resized, the scroll bar needs to be stretched to fit.}
IF debug THEN DebuglnProc(proc. ‘MoveScrollBar ', afoveScrollBar).

WITH MyWindow™.portrect DO
BEGIN
HideControl(vScroll);
MoveControl(vScroll, right-15, top-1).
Sizelontrol(vScroll, 16, botton-top-13).
gnusv&ntrol(vs:ron)

{ ---------------------- ———- mecccsrsenccnemme————

PROCEDURE GrowWnd;
{ Handles groving and sizing the window and manipulating the update region.)

esult: Longlnt,
height, vidth, newvert.oldstart: INTEGER:
tRect, oldportrect: Rect;

BEGIN
IF debug THEN DebuglnProc(proc, "Growind', aGrowlind).
1 esult :* GrowWindow(MyWindow, myEvent.vhere, growRect),
IF gResult=0 THEN EXIT(Growiind).
SetCursor(watchidl”"); {beccuse the word wrap could tcke a second or two)
height := HiWord(longResult); width := LoWord(longResult);
SizeWindow(MyWindow, width, height, TRUE); { Now draw the newly sized

window. }
InvalRect(MyWindow". portrect); .
IF MyPeek”.windowkind=8 THEN {a document (not the clipboard) is being
BEGIN resized}

MoveScrollBar.

VITH MyWindow".portrect DO
BEGIN
width := right-left-19;
height :* botton-top

16-15

16-16

4 hun 1082 18:58: 47 SAMPLE/FILE. TEXT Page ©
END;
VITH hTE"" DO
BEGIN

destrect.right := destrect.leftswidth:
viewrect.right :s viewrect.leftewidth;
viewrect.botton :* viewrect. topsheight.
firstchar :® hTE ".linestarts{topline);
TECalText(hTE): {re-wrap the text to fit the new screen.}
{if the rectangle is grown such that there is now blank space on the botton
of the screen, backpedal the screen to £ill it back up, if there is enough
scrolled off the screen to do so. Dtherwise, the first character in the top line on
the screen should continue to be sonewhere on the top line after resizing}
égoll?ext(f‘ﬂl.SE):

END;
SetCursor(arrow
END: { of GrowWnd

PROCEDURE MyRctivate.

VAR
tRect: Rect.

BEGIN
{activate events occur when one window appears in front of another. This tckes care
of hiliting the scroll bar and deactivating the insertion caret or the text
selection.
F debug THEN DebuglnProc(proc. ‘MyActivate’®, tMyRctivate);
HyWindow := pointer(myEvent.nmessage);
MyPeek :* pointer(MyWindow);
IF MyPeek .windowkind IN [8,9] THEN
BEGIN {redraw the scrollbar area, if a docunent or the clipboard}
SetPort(MyWindow),
tRect := MyWindow".portrect; tRect.left := tRect.right-1¢;
InvalRect(tRect)

END.
IF MyPeek”. windowkind*8 THEN '
BEGIN {make glcbal variables point to the information associated with
this window}
VindowData := pointer(GetWRefCon(MyWindow)).
vScroll : = pointer(MyPeek™.Controllist);
hIE : = WindowData®".TERecord;
IF ODD(myEvent.modifiers) THEN
BEGIN {this window is now top most)
TEActivate(hIE),
ShowControl(vScroll).
é.orline : = GetCtlValue(vScroll)

ELSE
BEGIN {this window is no longer top most}
HRideControl(vScroll);
TEDeoctivate(hTE):
g :s NIL {0 document is no longer on top)}

BN
EXD; { of activateEvt }

PROCEDURE DialogueDeactivate;

temprect: Rect;
BEGIN

L{'l'l':is routine takes care of cases where. for instance, o modal dialog is about to

4 Jun 1962 19:58: 47 SAFLE/FILE. TEXT

Page 10

—

pop up in front of all the other windows. Since the Dialog Manager handles all
activate events for you. you do not get a chance to 'turn off{’ the controls associated
with the window. This routine is called just before the dialog box makes its
appearance, and takes care of the hiliting as if an activate event had occured.g

IF debug THEN DebuglnProc(proc, 'Dialoguabenctivcte'.IIJialogueDem:tivctc N

IF BEE‘;;;NIL THEN {for docunents, enly

TEDecctivate(hTE);
HideControl(vScroll);
SetCursor(arrow)

END;

IF (frontwindowONIL) RND (MyPeek”.windowkind IN [8,9]) THEN
BEGIN {this is a little kludgy, but it works.}
MyPeek .hilited := FALSE: {DrowGrowlcon will now umhilite.}
termprect := MyWindow .portrect;
tenprect. left := temprect.right-15;
Cliprect(temprect). {clapawgy the horizontal scrollbar part}
DrawGrowl con(MyWandow).
Cliprect(MyWindow . portrect):
%eek‘.hilited := TRUE {fax things back}

—~

16-17

16-18

4 Jun 1682 19:58: 47 SRPLE/FILE. TEXT

Page 11

f

{SS READFILE}

FUNCTION ReadFile(VrefNo: INTEGER: fName: Str255): Boolean:

VAR
refNo, io: INTEGER,
logEOF: Longlnt.
errin: Str2s5;

PROCEDURE DiskRErr(io: INTEGER).

str: Str2s5;
readfronmhdl, loadedhdl: StringHandle,
durmy: INTEGER:

BEGIN
{R generic error is reported to the user if something goes wrong. HAnazingly little can
go wrong, since the user does not get the chance to do things like type file nanes,
renove the disk hinself, and so on. fbeout the cnly errors that could happen are:

the disk is full (for the companion writing error handler.)
an error occured while reading/writing the disk (danaged nedig or hardware)

Can you think of anything else? An adlmost identical routine further down handles
writing to disk. Note that in both reading and writing. the entire file is handled

" by a single read/write call. and no ‘disk buffer’ needs to be specified by the
i progranner.}

IF debug THEN
BEGIN
DebuglnProc(func, ‘DiskREry‘, EDiskRErr).
gruijteln(dehugger. errin, ' err = ' io, 1f)

readfrorhdl := GetString(267); {this says ‘reading fron'}
loadedhdl :* GetString(269); (this says ‘loaded'}
Hlock(pointer(readfronhdl));
l-nock(pointerglondedhdl));
MakeNunString(io, str),
Pamtgxtgreudfronhdl °°, fNane, loadedhdl ™", str);
SetCursor(arrow);
duroty ;= StopRlert(256, NIL): {discribe error to user in generic way.}
Hunlock(pointer(readfronhdl));
Hunlock(pointer(loadedhdl)),
EXIT(ReadFile)

END;

BEGIN
IF debug THEN DebugInProc(func, ‘ReadFile’, aReadFile);
SetCursor (watchHdl ™ "),
ReadFile := FALSE;
io := FSOpen(fNane, VrefNo, refNo).
{SIFC BUG = 1} (ms; debugging statements are for the external terminal,
errin := ‘FSOpen’;
{seac) o
IF i0<>0 THEN D;skRErr(:og;
io := GetEOF(refNo, 1ogEOF
{SIFC BUG = 1)
errin :*= ‘GetEOF°;
{SENDC} .)
IF io<¢>0 THEN DiskRErr(io).

{add code here: if file is too large, then notify user and truncate}
SetHandleSize(hTE"". htext, logECF);

.

16-19

4 Jun 1882 19:58: 47 SAMPLE/FILE. TEXT Page 12
s ™~

IF debug THEN
IF menerror<>0 THEN Hnteln(debugger ‘memerr = ‘', menerror: 4);
: = FSRead(refNo, 1ogECF, hTE™ ".htext”);

(SIFC BUG = 1}

errin := 'FSRead';

{SENDC) . ,
IF io<>0 THEN DiskRErr(io).
:* FSClose(refNo).

{SIFC BUG = 1}

errin := ‘FSClose’;

{SENDC})

IF io¢>D THEN DiskRErr(io).

hIE"". telLength :* logEOF:

IF NOT fmderpnnt THEN {if printing from the finder, no window or
BEGIN editing information is needed)

TESetSelect(0, 0, hTIE),
TECalText (hIE).

InvalRect (hTE ~.viewrect):
SetScrollMax,

WindowDota™". titled := TRUE.
WindowDato™ . changed := FALSE

END;
ReadFile := TRUE {everything worked out CK}

PROCEDURE MakeAWindow(str: Str255; disk: Boolean).

bounds: Rect.

BEGIN
{R window is created here, and all associated datac structures are linked to it}

IF debug THEN DebugInProc(proc, 'MakeRWindow', BHakeAWindow),

windowpos :* windowpose+l; {this position it is created to on the screen}

bounds. left := windowpos MOD 16°20+5;

bounds. top :* windowpos MOD 11°20+45;

bounds. nght := bounds, left+200;

bounds.botton : = bounds. top+100;

MyWindow : = NewWindow(NIL, bounds, str, TRUE, 0, pointer(-1), TRUE, 0);

SetPort(MyVWindow).

MyPeek inter (MyVindow),

Text?mt(zgo {the pod ole application font}

MyPeek”. vindowkind : {mn: ;trary nunber identify the type of
window

hIE := TENew(MyWindow".portrect, MyWindow" portrect);

Vindowvlata :* pointer(NewHandle(8)). {1 handle plus 2 booleans}

SetWRefCon(HyWindow, ordA(HmdowData))

VindowData”~. TERecord :* hIE;

SetViewRect.

hTE" ".destrect := hTE “.viewrect;

Hxndovbata" dxmged » FALSE;

vScroll := GetNevControl(ZSb HyWindow),

MoveScrollBar;

topline := O

END;

PROCEDURE MyGetFile:

VRR
reply: SFReply.
vher: Point.
NaneHdl: StringHandle.
temprect: Rect.

16-20

4 Jun 1862 18:58:47 SAMPLE/TILE. TEXT

Page 13

—

terpport: GrafPtr;

BEGIN
{This calls Standard File to allow the user to choose the docunent on disk that she
wishes to edit.}
IF debug THEN DebuglnProc(proc, "‘MyGetFile', aMyGetFile).
wvher.h := 90:
wher.v := 100,
DialogueDeactivate.
SFGetFile(wher, "° NIL 1, typelistptr NIL, Sreply).
ReleaseResource(pointer (NaneHdl)).
WITH reply DO
IF ocli"m
MakeRWindow({Nane, TRUE).
IF NOT seadFile(vReme. {Nane) THEN
1

BEG
{ if nothing was recd. then dispose of the window, TEdata, etc, but then again,
you can’t g%e everything in an exanple program that you would like.}

PROCEDURE OpenAWindow,

s: Str255;
untitled: StringHandle,

BEGIN
{this creates a nev window that is untitled and enpty.}
IF debug THEN DebuglnProcc(proc, ‘Openfi¥indow’, 80penfAWindow),
{see if enough nem exists to open a window}
MakeNMunString(windowmun, s);
windownun : = windownurm+l.
untitled := GetString(256);
Hock(pointer(untitled)),
HakeAWi1ndow(Concat (untitled™ ", 5), FALSE).
wﬁnlock(pointer(mtitled))

{sS WRITFILE)}

FUNCTION WriteFile(VrefNo: INTEGER: fName: Str255): Boolean;

VAR
refNo, io: INTEGER;
txtlength: Longlnt.
speci : Charshandle;

errin: Str255;

PROCEDURE DiskWErr(io: INIEGER):

str: Str2ss;
writetold], sovedidl: StringHandle.
NTEGER;

domy: I

BEGIN
{this is just about the sane as DiskRErr (read). R good thing to add here would
be a separate error message for disk full occurances.)
IF debug THEN

) N

L X .]

4 Jwo 1962 19:58: 47 SPPLE/FILE. TEXT

14

—

BEGIN
DebuglnProc(proc, "DiskWErr°, aDiskWErr);
¥riteln(debugger, errin, ' err = ‘ io,1lf)

{read resource for writeto}
writetoHdl : = GetString(268);
{read resource for saved}
sovedid] := BetString(ng;
lnock(pointeréwritetoﬂdl)
Hlock(pointer(savedidl)).;
HakeMumString(io, str);
Parantext(writetoHdl ~, {Nane, savedidl ™", str);
SetCursor (arrow).

s Stopﬂlert(ZSb,Nng;
Hunlock(pointer (vritetoHdl));
Hunleck(pointer(savedtdl)).

mﬂ(ll‘(ﬂritd’ ile)

BEGIN

{this isn't very different from read file. The only complication is finding out
if the file exists. If it doesn’t, crecte it. Hflso, assign the information that
the finder needs to properly associate it with this application. One particularly
bad thing here: the volune reference munber is not associated with tge docunent.
This neans | do not know enough to write a file on the sane disk from which it was
read. GCh well, you'll loww better.)

IF debug THEN DebuglnProc(proc, ‘WriteFile’ SMriteFile);

SetCursor(watchHdl),

WriteFile :+= FALSE;

io := FSOpen(fNane, VrefNo, refNo),

{SIFC BUG = 1}

errin := °‘FSOpen’; (once again, these only benefit the external

debugger. }

{SENDC}
IF debug THEN Writeln(debugger, ‘file RefNum ="' refNo, 1)
IF ;Emfile not found Err} -43 THEN

i0 :® Create(fNane, VrefNo),
{SIFC BUG = 1}

errin :*= 'Create’.

{SENDC})

IF io¢>0 THEN DiskWErr(io).

io := SetFinfo(fNane, VrefNo, txtfile),
{SIFC BUG = 1)

errin := °‘Setflnfo’;

{sDC) _

IF io<>D THEN DiskWErr(io).

io := FSOpen(fNane, VrefNo, refNo).;
{SIFC BUG = 1}

errin := ‘FSOpen°.

SENDC)

gl’ debug THEN Writeln(debugger, 'file Reflum = °, refNo, 1£).
IF io¢>0 THEN DiskVWErr(io)
END {Create

ELSE IF joc>D DiskVWErr(io).

VITH hIE"" DO
BEG{II h (;
txtlength : = ord4(telength).
Hlock(htext),
io :* FSWrite(refdo, txtlength, htext”);
l;;lod(htext)

IF debug THEN Write(debugger, *. ');
{SIFC BUG « 1))
errin := ‘FSWrite’;

;SENDC}
F io¢>D THEN DiskWErr(io);
io : = SetEOF(refNo, txtlength).

.
.

.

16-21

16-22

4 Jun 1882 19:58: 47 SRFLE/TILE. TEXT

7

IF debug THEN VWrite(debugger, *. '),
{SIFC BUG = 1}

errin := ‘SetEOF’;

{SENDC}) .

IF io<>0 THEN DiskWErr(io).

io := FSClose(refNo).

IF debug THEN Urite(debugger, '. ‘).
{SIFC BUG = 1}

errin := 'FSClose’;

{ 1

IF i0¢>0 THEN DiskWErr(io);

io := FlushVol(NIL, VrefNo): {(this is important; without it, if the
progran died (not possible as a result of a
prograrning mistake, of course), the
directory infornation on the disk would not
be accurate. }

IF debug THEN Write(debugger, ‘. ")

{SIFC BUG = 1}

errin := 'FlushVol';

{SENDC}
IF {0<¢>0 THEN DiskWErr(io);
IF NOT WindowData™ . titled THEN SetWTitle(MyWindow, fNane);
WindowData™". titled := TRUE.
WindowData™". changed := FALSE:
WriteFile :» TRUE {everything is 0K.}
END;

FUNCTION MyPutFile(Filename: Str255): Boolean:

VAR
reply: SFReply.
wher: Point;
NaneHdl: StringHandle;
temprect: Rect.
tempport: GrafPtr:

BEGIN
{The user con select the name of the file that they wish to save the document with.}
IF debug THEN DebuglnProc(func, ‘MyPutFile’, sMyPutFile),;
MyPutFile :» FALSE;
NameHdl := GetString(257).
wher.h := 100;
vher.v := 100;
Hlock(pointer (NaneHdl)).
DialogueDeactivate;
SFPutFile{wher, NaneHdl " ", Filenane, NIL, 8reply);
Hunlock(pointer (Naneldl)):
VWITH reply DO
BEGIN
IF debug THEN Writeln(debugger, ‘reply.good = °, good, 1f);
gmpod THEN MyPutFile := WriteFile(vRefNun, {Nane)

Releas’eResource(pointer(NmeHdl));
IF debug THEN Writeln(debugger, ‘release reserror =

,reserror, 1f)

PROCEDURE CloseRWindow,;

VAR
itenhit: INTEGER:
DBoxPtr: DialogPtr.
str.strl: Str2ss.
Goodwrite: Boolean;
temprect: Rect.

——

4 Jun 1982 19:58: 47 SAPLE/FILE. TEXY

16

—~

NaneHdl: Handle;
NanePtr: °Str255;
typ: INTEGER:
itenhdl: Handle:
box: Rect.

BEGIN

{R11 sorts of windows can be closed through this single routine, which is eccessed
by th; user through the go-away box on the window, or the Close iten in the File
nenu.

IF debug THEN DebuglnProc(proc, "CloseAWindow’, 8CloseAWindow);

HyPeek := pointer(frontwindow).

CASE MyPeek".windowkind OF

a.

BEGIN

GetWTitle(MyVWindow, str);

itenhit := 0;

IF WandowData™". changed THEN {give the user the chonce to save his
BEGIN data before you throw it away.)}

DialogueDeactivate;
IF doneFlag THEN
BEGIN
Naneldl := Getresource(SIR °, 266).
Hlock(NaneHdl).
NanePtr := pointer(NameHdl"):
strl :* NanePtr~;
Hunlock(NameHdl),
gmdebug THEN Writeln(debugger, ‘err = ', reserror, 1f);

ELSE

strl := °°;
Parantext(str,strl, '°, ° '),
DBoxPtr := GetNewDinlog(256, NIL. pointer(-1));
REPERT

ModalDialog(NIL, itenhit) {this could have been an alert.)
UNTIL itenhit IN [OK {Yes) .Cancel.3 {No}].
Daius’posniulog(nsoxl’tr)

IF debug THEN Writeln(debugger, 'iteshit = ° itenhit, 1f);
Goodwrite := FALSE.

IF NOT WindowData"".titled THEN str := '°;

IF itemhit=0K {save} THEN Goodwrite :s MyPutFile(str);
IF B%g;rite OR (itemhit IN [0,3) {discard}) THEN

TEDispose(hIE),

hIE := NIL;

DisposHandle(pointer (WindowData));

IF debug THEN

lh'itcln(cllebugger, ‘dispose VindowDota: memerr = ° mensrror,

£);
KillControls(MyWindow). {do 1 need this? Why an I asking you?}
g.nsjposewindow(uyuindnw)

gm itenhitsCancel THEN doneFlag :* FRLSE

9: ToggleScrap.
{SIFC BUG > -1}
10: Togglefree.
{sennC
OTHERVISE
CloseDeskRcc(MyPeek” . windowkind) {can't be enything else)
mam {Case}

{SS AboutMyPgn)

16-23

16-24

4 Jun 1962 19:58: 47 SAPLE/FILE. TEXT

Page 17

—
PROCEDURE AboutMyEdi tor;

strihdl. strzhdl: StringHandle;
MyWindow: WindowPtr:

width height, counter: INTEGER:
newcount: Longlnt;

quit: Boolean.

txtinfo: fontinfo,

terprect, trectl: Rect;
terpbits: bitmap.

sz: size;

BEGIN
{this bit of fluff shows a totally wrang method of telling the user sonething about
my progran. but it was fun to do.}
IF debug THEN DebuglInProc(proc, ‘AboutMyEdi tor’, &flboutHyEditor).
Dialogueleactivate,
strlhdl := GetString(259).
IF debug THEN Writeln(debugger, ‘err = °, reserror. 1{);
str2hdl := GetString(260);
IF debug THEN ¥riteln(debugger, ‘err = ° reserror. 1f);
Hlock(pointer(strilhdl)).
Hlock(pointer(str2hdl)).
MyWindow :° GetNewWindow(256, NIL, pointer(-1)).
SetPort (MyWindow),
counter :°* 1;
width : = MyWindow".portrect.right-MyWindow™. portrect.left;
height :* MyWindow".portrect.botton-MyWindow .portrect. top;
TextFont(2):
TextMode(srcCopy).
quit := FALSE;
REPEAT
SystenTask,
nevcount :s tickcount+é,
TextSize(counter),
GetFontInfo(txtinfo),
WITH txtinfo DO
BEGIN
MoveTo((width-StringWidth(strlhdl™ ")) DIV 2 height DIV
2-descent-leading).
DrowString(strlhdl”");
MoveTo((width-StringWidth(str2hdl"")) DIV 2, height DIV 2+ascent);
DrawString(strzhdl” ")

IF EventRvail(10, myEvent) THEN quit := TRUE;

counter := counter+l,

WHILE newcount>tickcount DO;
UNTIL quit OR (counterr12);
newcount := tickcount+300; {5 seconds)
WIBLEGRST quit AND (tickcount<newcount) DO

1
SystenTask,
IF EventAvail(10.myEvent) THEN quit := TRUE;

END;
tenprect := MyWindow".portrect;
VITH txtinfo DO
BEGIN
terprect. top :* height DIV 2-ascent-descent-leading;
ggprcct.bonon := height DIV 2+ascentedescent

trectl := temprect;
OffsetRect(trectl, 0, -trectl. top).
tenmpbits. rowbytes := (width+7) DIV 8;
termpbits.bounds : = trectl:
WITH txtinfo DO
sz :* ord4(tempbits. rovbytes®(ascent®2+descent®2+1eading));
terpbits.baseaddr := pointer(NewPtr(sz)):

4 Jum 1982 19:58: 47 SAFLE/FILE. TEXT

18

~

IF debug THEN Writeln(debugger, ‘err = ° menmerror, 1f);
CopyBits(MyVindow™. portbits, tempbits, temprect, trectl, sreCopy, NIL),
insetrect(trectl, 8, 0):;
temprect. top :* temprect. top-2.
temprect.botton := terprect.bottome2:
HHILEGDIIET quit AND (trectl.right>width DIV 2) DO

BE

SystenTask; {the clock still ticks!'}

CopyBits(tempbits, MyWindow". portbits, trectl, tenprect, srcCopy, NIL):

IF temprect. top>MyWindow. portrect. top THEN

BEGIN

insetrect(trectl, 8, 0D);
ggetrect(tenprect, 0,-2)

ELSE
insetrect(trectl, 8, 2);
IDF"Dtventﬂvail(ID.nyEvem) THEN quit := TRUE

HBmlock(pointer(strihdl)).

thnlock(pointer(str2hdl)),
ReleaseResource(pointer(strihdl));
ReleaseResource(pointer(strzhdl));
DisposPtr(pointer(tenmpbits. baseaddr)).

IF debug THEN VWriteln(debugger, ‘err = ', menerror, 1{);
DisposeVindow(MyWindow)

.

{sS MyPrint }

PROCEDURE MyPrint(finderfirst: Boolean: Filename: Str255);

CONST
bottomnargin = 20; {amount of space on the margins of the page in pixels)
leftnargin = 30;
rightnargin = 10;

VAR
tempport: GrafPtr.
MyPPort: TPPrPort,
txt: Ptr;
pglen Hylngth, start, finish, counter, loop: INTEGER;
terprect, tmprect2, pagerect: Rect;
status: TPrStatus;
user0K: Boolean;
s: string{l]:
str: Str2ss;
dlogptr: DialogPtr;

BEGIN
{For heavyweight ::grmers only. Rll modes of printing are handled by Macprint. The
only things you e to do are:
inage each page, using QuickDraov (or sonething that uses QuickDraw);
Do it once for the mmber of copies the user specified in draft mode only.

You do not have to worry with:
copies in nornal or high res.
wvhich pages the user chose to print.
tall, wide, etc.

Renenber, these Page Setup dialog is printer specific. It will not always be the
sone, 80 don't write any code around it.

The reason this progron is heavily segnented is that printing normal or high-res
on line tokes s of memory (in this example., up to 25K.) You moy mininize the
by onitting 1 line below ond creating a spooled file instead.

Cne more thing. The dialog shown here (press comncnd-psriod to stop) is not the

\,

16-25

16-26

4 Jup 1962 19:58: 47 SBMPLE/FULE. TEXT

f

thing to do. You may choose to either:
run your progran in the background. This is not necessarily a hard thing to do.
put up a dialog with o button so the user noy press the button to stop. Then
the printing idle proc only needs to monitor that button.

Printing is not re-entrant. If your main progran loop is to he the
print idle proc, disable the Page Setup and Print items in the File menu.}

IF debug THEN DebuglnProc(proc ‘MyPrint’, aMyPrint).
printflag := FALSE
IF debug THEN
Writeln(debugger, ‘finderprint ', finderprint, '; finderfirst =°,
finderfirst, 1£),
IF NOT finderprint THEN DialogueDeactivate;
user0OK :s TRUE.
IF finderfirst THEN
BEGIN
SetCursor(arrov)
userCK :* PrJobDialog(printhdl)

BEND;

IF userOK THEN
BEGIN
Set(:msor(vatdﬂidl")

x

s[l] ::hr(cndsynbol). {gi;tii terrible, terrible, terrible. Don‘t
Parantext(Filename,s, '°, "*);

dlogptr := GetNevaalog(257 NIL, pointer(-1)).
DrawDialog(dlogptr),

{for now, approximate a full page)
GetPort(tenpport)

MyPPort := PrOpenDoc(printhdl, NIL, NIL):
SetPort (pomt er(MyPPort));

TextFont(2).

VITH printhdl .prinfo DO

BEGIN

lnodt(pointer(pnnthdl))

pagerect := rpage.

pagerect. left := pagerect. left+leftnargin;

pagerect.right : = pagerect.right-rightnargin;

pagerect. botton :* pagerect. botton-bottonnargin-(pagerect. botton-
bottonnargin) MOD hTE™".lineHeight {get rid of

partial line} ;

hIE"".destrect := pagerect.
TECanext(h‘l‘E)
WITH hIE"" DO

BEGIN

Hlock(pointer (hIE)).

Hlock(htext);

txt := htext':

termprect : = destrect.
wrectz *= viewrect,

HLJ (xcgc .botton-rpage. top-bottoanargin) DIV lineHeight.
tinish

ines.
IF debug
Hriteln(;u‘:hugger. ‘BJDocloop = ‘,printhdl” ", prjoh. BJDocloop,

IF {:mmn“. pr job. BJDocLoop*BSpoolLoop THEN
HLED |
loop := rinthdl“ pr job iCopies;
FOR eounterp. =17T01
BEGIN

start := 0,
WHILE start<finish DO
BEGIN

IF finish-start>pglen THEN
MylLngth := lmestarts(startopglenl linestarts[start)

-

4 Jun 1882 18:58: 47 SAMPLE/FILE. TEXT

7

MyLngth := telength-linestarts{start]:
IF debug THEN
BEGIN
Writeln(debugger, ‘Mylngth = °,Mylngth: 5, *; start = °,
start: 5, °; pglen = °,pglen: 5,61f);
Vriteln(debugger, ‘finish * °, finish: 5, ‘; telength = °,
telength: 5, °; orda(txt) = ° orda(txt), 1f)

END,
PrOpenPage (MyPPort, NIL);
TextBox(txt, MyLngth, pagerect, D),
PrClosePage(MyPPort),
txt :* pointer(ord4(txt)+MyLngth);
start := start+pglen
END {Vhile start ¢ finish}
END {For counter := 1 to loop}
END {with hIE}
END; {with PrintRdl" ", prjob}
PrCloseDoc(MyPPort),
Hunlock(pointer (hTE)).
Hunlock (hTE" . htext);
Hunlock(pointer{printhdl)).
IF printhdl”".prjob. BJDocLoop*BSpoolloop THEN
PRPicFile(printhdl, NIL, NIL, NIL, status); {gpit tl}'nis for spooled
iles.
SetPort(tempport);
hIE™ ".destrect := temprect;
hIE™".viewrect := tmprect2;
TECalText (hIE).
DisposDialog(dlogptr).
gmm finderprint THEN SetCursor(arrow)

END;
{sS Edit¥Menu)

PROCEDURE EditMain(thelten: INTEGER; comnandkey: Boolean):

CONST
undo = 1;
cut = 3;
kopy = 4; {copy is a Pascal string function}

clipboard = 9,
VAR
. DeskRccUp, dunny: Boolean:

DScrap: PScrapstuff.

off: glnt.

ticks: Longlnt.

tempport: GrafPtr;

box: Rect:

itenhdl, hdl: Handle;

typ. io, tempstart, tempend: INTEGER:
tempptr: Ptr:

TextScrap: Handle.
Textlength: INTEGER,
Ptr2Scraplength: “INTEGER;

BEGIN
{Since the Edit nenu does so much, it has been broken up into a separate procedure.
1t does not yet support undo, but does support Cutting. Copying and Pasting between
the Desk Scrap and the TextEdit Scrop.}
DeslkReeUp := FALSE;
IF theltenc¢selectAll THEN DeskRecUp := SystenEdit(thelten-1);

L X .

16-27

16-28

4 Jun 1582 18:58: 47 SAPLE/FILE. TEXT

n

IF ((thelten IN [undo, cut kopy]) OR DeskRccUp) AND (scrapwind<>NIL) THEN
BEGIN (invalidate clipboard
GetPort(tempport);
SetPort(scrapwind).
InvalRect(scrapwind . portrect);
SE%Port(twport)

IF thelten IN [cut, kopy] THEN
BEGIN
terpend := hTE"".selend:
tempstart := hIE™ ", selstaxt

END;
IF (theltem>clear) OR NUT DeskAccUp THEN
BEGIN

IF debug THEN Writeln(debugger, ‘not system edit’,1f):
f Delay so menu title will stoy lit g little only if Comnand key }
equivalent was typed. }
IF connandkey THEN
BEGIN
ticks := tickcount~l10;
REPERT
UNTIL ticks<¢stickcount

END.
{*® see if enough menory exists for move)
CASE thelten OF
undo: ; { no Undo/Z in this example }
cut: TECut(hTE)., { Cut/X }
kopy: TECopy(hIE). { Copy/C }
paste:
BEGIN { Paste/V }
DSerap : = InfoScrop;
IF DScrap”. scrapStatec>laststate THEN
BEGIN
laststote : = DScraop”. scrapState;
hdl := NewHandle(D).
io := GetScrap(hdl, 'TEXT ,off);
IF debug THEN Vriteln(debugger, ‘io = °,io);
IF io>0 THEN
BEGIN
TextScrap : = pointer(GlobalValue(TEScrpHandle)).
SetHandleSize(TextScrap. io).
Ptr2Scraplength : = pointer(GlebalfAddr (TEScrplength)).;
Ptr2ScrapLength” := io;
Hlock(hdl).
Hlock(TextScrap);
BlockMove(hdl®, TextScrap”, io),
hmlock(hdl);
Hunlock(TextScrap)
END;
DisposHandle(hdl)
END;

TEPaste(hIE);
END;

clear: TEDelete(hTE); { Clear }
selectAll: TESetSelect(0, 65535, hIE); { Select All/A }
clipbocard:
oggleSerap { Show, Hide Clipboard }

END; { of item case }

IF thelten IN [cut, kopy] THEN
BEGIN
io := ZeroScrap:
IF debug THEN Writeln(debugger, ‘zero scrap err =', io, 1f);
TextScrap : = pointer(GlobalValue(TES e)).
TextLength := GlobalValue(TEScrplength).
Hlock(TextScrap).
io := PutScrap(TextLength, ‘TEXT', TextScrap®).
IF debug THEN Writeln(debugger, ‘put scrap err =°, 3o, 1f);
Hmlock(TextSerap)

4 Jun 1882 109:58: 47 SAMPLE/FILE. TEXT

/~

END;
IF theltem IN [cut, clear, paste] THEN WindowDato™".changed := TRUE:
IF (thelten IN [cut..clear]) THEN ScrollText(TRUE)
END {not systemedit)}
END; { of editMain }

{sS Comnand }
PROCEDURE MyDiscble;

counter: INTEGER:

DScrap: PScrapstuff;
temppeek: WindowPeek:
stycount: styleiten;

PROCEDURE KillFE(fileitems. edititens: edset);

VAR
counter: INTEGER;

BEGIN
{This guy disables the itens in the File and Edit menus. This approach has a real
disadvantage: If an entire menu should be discbled at sone given tinme, there is
no convenient way to do a DrawMenuBar here to disable the itenm in the bar itself.)
IF debug THEN
BEGIN
DebugInProc(proc, "KillFE', aKillFE);
Vrite(debugger, ‘file: "),
FOR counter := 1 TO 9 DO
IF counter IN fileitems THEN Write(debugger, counter: 2,°,°);
Write(debugger, °; edit:‘);
FOR counter := 1 TO 9 DO
IF counter IN edititems THEN Write(debugger, counter: 2, ', °).
gui)teln(dabugger, 1f)

FOR counter := 1 TO 9 DO
BEGIN
IF counter IN fileitens THEN
Disablelten(nyHenus [FileHenu], counter).
IF counter IN edititems THEN
Disablelten(myMenus [Edi tHenu). counter),;

END;

BEGIN
{This part g::s through all of the applicable elenents of the frontmost window, if any
and fron t decides vhat operations are allowable at this time.}
IF debug THEN DebuglnProc(proc, ‘MyDisable’, &MyDisable),
FOR counter :* 1 T0 9 DO

BEGIN
Enablelten({FileMemu], counter);
IF counter IN [1.3..7,9) Enablel ten(myienus [Edi tHenu), counter)

BED;
IF frontwindowsNIL THEN
K4i1)FE([3..8).[1..7])
ELSE

BEGIN
MyPeek :+= pointer({rontwindow).:
CASE MyPeek’.windowkind OF

8:
BEGIN
KilIFE(E), [1)). .
IF NOT VandowData™". titled THEN KillFE([A. 6], IR;
IF NOT WindowData™~.changed THEN KillFE([4.6).[])):

- r 7 J

16-29

16-30

4 Jun 1882 10:58: 47 SAMPLE/FILE. TEXT

a2

7~

IF hTE"". telengthsD THEN KillFE([4.5,7, 8], {6, 7{)

IF hIE"".selstart=hTE" ~.selend THEN KillFE([]. [3.4.6]).
DScrap := InfoScrap.

IF DScrap”. scrapSizesD THEN KillFE([], [5]).

END,
9,10: KillFE([4..8).[1.3..7]):
x‘gif‘g([a 8). [7)) (syst indow)
..8), systen window

% {Cu;e] ve

e L L L L T T T e b ey

PROCEDURE DoComnand(comnandkey: Boolean),

VAR
nane, s, str: Str255;

tenppeek: WindowPeek,
nmresult, ticks: Longlnt;
dipeek: DialogPeek,
box: Rect.

iterhdl: Handle:

typ: INTEGER;

BEGIN
{This handles the actions that are initiated through the Menu Manager}
IF debug THEN DebuglnProc(proc. ‘DoConnand ‘., 8DoConnand).
MyDisable;
IF comnandkey THEN
aresult ;= HenuKey(theChar)
ELSE
aresult := MenuSelect(myEvent.where);
theMenu : = HiWord(mresult): theltem :+= LoWord(mresult),
CRSE theMenu OF
1: g;g;ugh nmenory to allow desk accessory to open?}
N

{unload all segnents)

IF thelten=1 THEN
BEGIN
AboutMyEdi tor,;
gumoadch(aaboutHyEditor)

Getlten(nyMenus [appleMenu], thelten, nane):
raeuf)mm : = OpenDeskAcc(nane)

BEGIN
IF frontwindow<>NIL THEN
IF MyPeek’ .windowkind=8 THEN
IF WindowData™". titled THEN
GetWTitle(frentwindow, str)
str := ',
CASE thelten OF
: DpenAWindow: { New }
M!Getl-'ilc; { Open
CloseAWindow: { Close ;
err := WriteFile(O, str); { Save }
err := MyPutFile(str). { Save s)}
IF Cautionflert(257, NIL)=OK THEN err :* ReadFile(D, str); {
Revert to Saved }

N eunrwNe

—— e ——— e e

4 I 1882 19:58: 47 SAMPLE/FILE TEXT

24

-
IF PrStlDialog(printhdl) { Page Setup }
THEN;

{eventually, store info in document resource fork}
8: printflag := TRUE; { Print }
9: doneFlag := TRUE: { Quit }

END,
UnloadSeg(&ReadFile).
UnloadSeg(aWriteFile).
%oadSeg(aHyPrmt)

3: EditMain(thelten, connandkey);

{SIFC BUG > -1}
100:
CASE thelten OF
1 ‘rogglefree

dunny : = HaxMen(duwny):
{SIFC BUG = 1)

BEGIN
debug : = NOUT deb
D‘lecklten(uyﬂenus?nebugﬁenu] 3, debug)

{sENDt}
END { of debug }
{SENDC}

END; { of menu case }
HiliteMenu(0)
END; { of DoComnand }

Rt et)
PROCEDURE DrawWindow,

VAR o
tempport: GrafPtr;
tempscrap: Handle;
scraplength, off: Longint.
temprect, rectlofrase: Rect,
str: Str2s5;
terppeek: VindowPeek,
whichwindow: WindowPtr,
terphTE: TEHandle;
tenpdata: MyDataHandle,

BEGIN
{ Draws the content region of the given window, after erasing whatever
was there before.

F debug DebuglInProc(proc. “DrawWindow, 8DrawWindow).:

wvhichwindow := pointer(myEvent.message);

IF ﬁtl::\mubvoml. THEN {*° why is this here °°®}
BeginUpdate(vhichwindow);
GetPortgtemport);
SetPort(vhichvindow),
temppeek : = pointer(wvhichwindow);
CHSE tu!ppeek .windowkind OF

BEGIN

terprect :*= vhichwindow'.portrect.

tenpdata .- pomtergﬁetmef&m(vm:hnm))

tenphTE : = tempdata”". TERecord;

IF tcappeek lnl:.tad THEN temprect. tcp : = temprect.botton-15;
temprect. left := temprect.right-15;

Chprect(tmprect)

DravGrowl con(whi chwindow);

Cliprect(whichwindow’. portrect):

LK .

16-31

16-32

4 Jun 1682 19:58: 47 SRMPLE/TLLE. TEXT

—

DrawControls(whichwindow);
{this only erases the window past the end of text, if any)
WITH temphTE™" DO
IF nlLines-toplinec(viewrect.botton-viewrect. top*
lineHeight) DIV lineHeight THEN
BEGIN
rectToErase : = viewrect:
rectToErase. top : = (nlLines-topline)*lineHeight.
g‘gseRect(rectToEmse)

TEUpdnte(;michvindou' .visRgn™". rgnBBox, tenphIL)
B,

.

BEGIN
tenpscrap : = NewHandle(D).
scraplength : = GetScrap(tempscrap, "TEXT ', off);
EreRcct(whichvindow’.?ortrect);
temprect : = whichwindow .portrect;
temprect. left = temprect.leftes;
terprect.right :s temprect.right-15;
IF scraplength>0 THEN
BEGIN

Hlock(tenpscrap).

TextBox(tempscrap”, scraplength, temprect, 0);
l!\.f.?lock(tmscmp)

DisposHondle(tempscrap).

temprect := whichwindow®.portrect;
termprect. left := temprect.right-15;
Cliprect(temprect);
DrawGrow] con(vhi chwindow);
Cliprect(whichwindow™. portrect)

END;
{SIFC BUG > -1}
10:

BEGIN
EraseRect (vhichwindow™. portrect).
MoveTo(5, 12);
MakeNunString(FreeMen, str);
DraovString(str)
END;
{seNoC}
END; {Case}
SetPort(tenpport).
ggllpdme(vm‘chwindow)

END; { of DrawWindow }

PROCEDURE ScrollBits.

VAR
oldvert: INTEGER:

BEGIN
{if the visible information has changed as a because of the scrollbar,
scroll the window Here.)
IF debug THEN DebuglInProc(proc, ‘ScrollBits’, aScrollBits).
oldvert := topline;
topline :* GetCtlValue(vScroll).
TEScroll(0, (oldvert-topline)®hIE"". lineHeight, hIE)

PROCEDURE ScrollUp(theControl: ControlHandle; partCode: INTEGER),

apyte awvgA

-

16-33

4 Jun 1882 19.50: 47 SRPLE/FILE. TEXT Page 28
()

BEGIN
s function is called by TrackControl in the Up button}
F debug THEN DebuglnProc(proc, ‘ScrollUp ', &ScrollUp):
IF urtgode'irﬂlpsutton THEN
1 .
SetCtlValue(theControl, GetCtlValue(theControl)-1); {VScroll}
ScrollBits

PROCEDURE ScrollDown(theControl: ControlHandle; partCode: INTEGER).

BEGIN
{This function is called by TrackControl in the Down button}
IF debug THEN DebuglnProc(proc, ‘Scrolllown’, 8ScrollDown),
IF m}ﬁode'inbomutton THEN

SetCtlValue(theControl, GetCt1Value(theControl)~1); {VScroll}
ScrollBits

PROCEDURE PageScroll(which: INTEGER);

nyPt: Point.
anount: INTEGER;

BEGIN
{This function is called by TrackControl in the Grey part of the scrollbar}
IF debug THEN DebuglnProc(proc. "PageScroll *, &8PageScroll);
IF which=InPageUp THEN
onount = -1
ELSE
amount := 1.
REPERT
GetMouse(nyPt),
IF gas;}ﬁontrol(chrou. nyPt)=which THEN
VITH hIE"".viewrect DO
SetCtlValue(vScroll, GetCtlValue(vScroll)+anount®(botton-
top) DIV hIE"". lineHeight);
ScrollBits
END

UNTIL NOT StillDown;

PROCEDURE MyControls.

VRR
t. code, vhichpart: INTEGER.
RAControl: ControlHandle.

BEGIN {controls)}
{This routine handles the scrollbar)
IF debug THEN DebuglnProc(proc, ‘MyControls’, sMyCentrols):
vhichpart :» FindControl(myPoint, MyWindow, RControl);
IF ug THEN VWriteln(debugger, ‘vhichpart = °, whichpart, 1f);
IF debug THEN Vriteln(debugger, ‘ord(AControl = °, ord4(RControl). 1f);
{adjust scrollbar range}
L IF RControl ¢>NIL THEN J

16-34

4 Jun 1882 19:58: 47 SAMPLE/F)LL. TEXT

Page

7

BEGIN
vScroll := RControl;
CASE whichpart OF
inlpButton: t := TrackControl(vScroll. myPoint, 8Scrolllp);
inDownButton: 1t ;= TrackControl (vScroll, myPoint, 8Scrolllown);
InPageUp: PageScroll(whichpart);
inPagellown: PageScroll(whichpart).
inThunb:
BEGIN
t := TrackControl(vScroll, myPoint, RIL),
ScrollBats

END
END [Cnse MyControl}
END {RControl <> NIL}
END; {cantrols}

{sS Initial)

- - > BB e = P e .

PROCEDURE SetlUp;

VAR
counter, vRefNum, nunfiles: INTEGER:
DScrap: PScrapstuff.
hdl, hAppparns: Handle:
off: Longlnt;
apNane: Str2ss;
NaneHdl: Handle;
strhdl: StringHandle.
dumnyrect: Rect.
terpptr: pRppParns;
dumy: Boolean.

BEGIN
{Initidlization for g variety of things is done here. This code is ‘discarded’
after it is executed by an UnloadSeg.}
{SIFC BUG = 1}
debug : = TRUE; {if you want debugging on as soon as the program starts,

set it here}
1f := chr(10).
Rewvrite(debugger, '.BOUT'); {the serial port not used for downloading fron

Lisa}
{sENDC}
IF debug THEN
BEGIN
Writeln(debugger, 1¢£,11);
!ggxgln?:o:(woc, ‘SetUp°, aSetUp)

InitGraf (8thePort),
InitVWindows;
InitFonts;
FlushEvents(everyEvent, 0).
TEInit;
InitDmlogs(NIL)
NaneHdl := NewHandle(1000000). (torc; MenMgr to allocote all ‘grow’ to
opp

Disposﬁatdle(ﬂmeﬂdl)
xnthdl := pointer(NewHandle(120));

Prinwefmlt(printhdl):

getRppParns(apNane, vRe{Nun, hiippparns),

{*" sonetine, get file info for apNane, to use folder info as appropriate)
tempptr := pointer(hfppparnas”).

iBeanHdl := pointer(GetCursor 1)3

watchldl := pomtet‘lietl:ursor 4)

mmfiles := tempptr .count;

IF debug THEN Ur:teln(debugger, ‘mmfilest’, mmnfiles, 1£);

finderprint := (tempptr’.message=1);

4 Jun 10682 19:508: 47 SAPLE/FILE. TEXT Page 28
()

IF finderprint THEN
BEGIN

{put sonething meaningful on nenmu bar:; use TextBox to say the op nane perhaps?)
Hlock(hfippparns),
FOR counter := 1 TO nunfiles DO
VITH terpptr” DO
BEGIN

IF {TYPE= 'TEXT" THEN
BEGIN
SetRect{dunnyrect, 0, 0, 100, 100);
hIE : = TENew(dunnyrect, dunnyrect);
dunny : = ReadFile(vRefNun, f{Nane). {assune that page setup is

read in as well}
UnloadSeg(8ReadFile);
IF counter=1 THEN
HyPrint (TRUE, fNane)
ELSE

MyPrint (FALSE, fNane),
TEDispose(hTE). (dispose of text edit stuff}
terpptr := pointer(ord4(tenpptr)+length{{Nane)«
10-length(fNane) MOD 2)

END
Bl:D{EI.SE clear the proper bytes in the appParnms handle?}
&mlock(hﬁpppums):
hIE := NIL.
doneFlag := TRUE;
END

ELSE
BEGIN
InitHenus; { initialize Menu Manager }
myHenus [appleienu] :* GetMenu(appleMenu);
myMenus [appleMenu] " ". nenudata[l] := chr(fipplesynbol);
AddResMenu(nyMenus (1], "DRVR"). { desk accessories)
FOR counter := FileMenu TO EditMenu DO
myMenus [counter] :s GetMenu(counter);
{SIFC BUG > -1}
uyllenu;[nebuymm] := GetMenu(100); { temporary debug menu }

SIFC BUG = 1)

extdebughdl := GetString(261);

S
endienu(myMenus ugtenu]). ext)

Hmnlock(pointer(extdebu dl);;

ReleaseResource(pointer(extdebughdl));

l{:w:klt(uynumlbeb\m].ldcbug ;

FOR counter := 1 TO lastMenu DO InsertMenu(myMenus [counter], D).
DrowMenuBar;

dragRect := gcreenbits. bounds;

dragRect. top : = dragRect. top+20; {leave roon for menu bar}

growRect := dragRect.

insetrect(drogRect, 4, 4); {leave some of drogged rectangle on screen)
growRect.left :* {replace this with the nax font width < constant) 80;
growRect. top := B0 {18 + 163 < slop?) .

doneFlag := FALSE;

printflag := FALSE;

vindowmm := 1;

windowpos := 0;

typelistptr = afyFileTypes,

typelistptr°[0] := ‘TEXT';

txtfile. fdlype := “TEXT'.

txtfile. fdCreator := ‘CARY’:

SetPt(txtfile. fdlocaticn, D, 0);

txtfile.fdFlags := 0.

txtfile. fdFldr := O;

laststate := 0: {eventually, init laoststate to scrapstate - 17)
Hlock(hAppparns).

.

16-35

16-36

4 Jun 1882 19:58: 47 SAPLE/FILE. TEXY

o~

FOR counter := 1 TO nunfiles DO
VITH tempptr™ DO
BEGIN

IF {TYPE="TEXT THEN
BEGIN
MakeAWindow(fNane, TRUE); {*"could async open while this is

' going on}

IF counter<nunfiles THEN DialogueDeactivate;
IF NOT ReadFile(vRefNun, fNane) THEN
BEGIN
{if nothing was read, then
daspose of the window, TEdata, etc, depending on how far we got)

END;
tempptr := pointer(ord4(terpptr)+length(fNane)«
- 10-1length({Nane) MOD 2)

END:
Hunlock(hRppparns).
IF frontwindow=NIL THEN
BEGIN
OpenRWindow,;
END,

{if sonething 'TEXT' is in deskscrap then allow paste}
DScrap := InfoScrap.

laststate := DScrap . scrapState;

IF DScrop”. scrapSize>0 THEN laststote :*= laststate-l;
{what acbout when scrapsize is too big?)

scrapwind := NIL.

{SIFC BUG > -1)

FreeWind := NIL

{SENDC}

END

END; { of Setlp)

PROCEDURE MainEventloop:

VAR
code: INTEGER; {the type of mousedown event}
dumry: Boolean:
str: S5tr255;

BEGIN
{This event loop handles most of the commmications between this progran and events
taking ploce in the outside world. This procedure could also be called as the printer
idle procedure so that the progran appears to be doing background printing.}
IF debug THEN DebuglnProc(proc, ‘MainEventLoop ', 8HainEventLoop).;
REPEAT

CursorfAdjust.

SystenTask;

IF printflag THEN

GIN {unload the vorld;

UnloadSeg(aCursorfid just),
lhloadSeg(aReadFileg;
UnloadSeg(sWriteFile).
UnloadSeg(aRboutMyEdi tor).
UnloadSeg(sMyDiscble).
UnloadSeg(aScrollBits). {*** segnenting badly out of date}
GetWTitle(MyWindow, str):
MyPrint (TRUE, str)

END;)
dunny : = GetNextEvent(everyEvent, myEvent).
CASE nyEvent.what OF
mouseDown:
BEGIN
code :* FindWindow(myEvent. where, tenpwindow);

aEpin SErTeAnr

— e ——

4 Jun 1982 18:56:47 SAMPLE/FILE. TEXT

o

7

CASE code OF
inNenuBar: DoCormand(FALSE):
inSysWindow: InSystemWindow;
inDrag: DragWindow(tempwindow, myEvent. where, dragRect);
inGoRway:
IF TreckGoRway(tempwindow, nyEvent. where) THEN
CloseRWindow.

inGrow:
IF MyPeek™.windowkind IN [8,9)} THEN
BEGIN

Growiind;
UnloadSeg(&Growiind)
Bo:

.

inContent:

BEGIN

IF tempwindow<>frontwindow THEN
SelectVindow(terpwindow)

ELSE 1F hTEONIL THEN
BEGIN
myPoint := myEvent.vwhere;
GlobalTolocal (nyPoint):
IF :éé?ﬁect(nyf‘omt, hIE"".viewrect) THEN

IF debug THEN
Writeln(debugger, ‘point in HIE viewrect’, 1f);
IF (BitAnd(myEvent.modifiers, 512)¢>0) { Shift key
pressed }

THEN
s'é'EClicJt(myPoint, TRUE, h1E)
TEClick(myPoint, FALSE, hTE)

MyControls

keyDown, autoKey:
BEGIN

theChar :* chr(myEvent.nessage MOD 256);
IF BitAnd(nyEvent.modifiers, 256)¢<>0 { Cormand key pressed)

DoComnand (TRUE)

ELSE IF hTECONIL THEN
BEGIN
TEXey(theChar, hTE).
WindowData“ °. changed := TRUE.
Sacéolchxt(TRl.E)

END; { of keyDown)}

activateEvt:
BEGIN
MyActivate.
glulloadSeg(myRct ivate)

updateEvt: Drawilindow;
nullEvent: IF doneFlag AND ({rontwindow<)NIL) THEN CloseRWindow
END: { of event case }
UNTIL doneFlag AND (frontwindow=NIL),
END;

16-37

16-38

4 Jun 1062 19:58: 47 SAMPLE/FILE. TEXT Page 31
-

BEGIN { main program }
{Please don't look ot this program as the the last word in exaiple programming, and
be very cautious about porting some portion of this progran over to your own code.}

etUp;
UnloadSeg(®SetUp).
IF NOT finderprint THEN MainEventloop.
SetCursor(watchHdl™ "),
PrClose

4 Jun 1882 20:07. 48 SAMPLE/GROM. TEXT

—
{sx-}
PROGRAM Grow;

Grow -- Scroll bars and o resizable window added to Edit
by Cary Clark, Mocintosh Technical Support

USES {su-)
SU Obj/QuickDraw QuickDraw,
SU Obj/0SIntf 0SInt{.
SU Obj/ToolInt{ } Toollntf;
CONST

lastMenu = 3; { munber of menus }

appleMenu = 1; { menu 1D for desk accessory menu }
fileMenu = 256; { menu ID for File menu

editMenu = 257; { menu 1D for Edit menu

VAR
nyMenus: RRRAY [1..lestMenu] OF MenuHandle.
growRect, dragRect, pRect tRect: Rect.
doneFlag, temp: BOOLERAN:
nyEvent EventRecord,
code, refNun, HyControl. t: INTEGER;
wRecord: WindowRecord;
theWindow, wvhichWindow: WindowPtr;
theMenu, thelten: INTEGER:
theChar: CHAR:
ticks: Longlnt.
hiE: TEHandle;
hCurs: Curslimdle.
iBean:
hScroll, chroll whichControl: ControlHandle:
ThelOrigin: point;

PROCEDURE SetUpMenus:
{ Once-only initiclization for menus }

VAR
i: INTEGER:
appleTitle: STRING([1):

BEGIN

InitMenus; { initialize Merm nam:ye }
wple'htle :- Y q:plehtle[l] UR(ZD;
mytlenus{1] Newllenu qnws apple‘l'nle
denesuem(nyuemxsu] VR'). { desk accessories }
nyi!enus[Z] . Getnenuznlenem ;
F&lﬂm := GetMenu(editHenn),

'm lastierm DO Insertllm(uyﬁum[ll D).

MemB
EXD; { of SetUpHems)

PROCEDURE Cursorfidjust;
f Mckes cursor be I-bemn inside the (active) application window's)
content region (except for size box and scroll bar areas). }

nousePt: point.

BEGIN
GetMouse(mousePt),
IF theVWindow=FrontWindow THEN
BEGIN
IF (PtlnRectsmusePt, pRect)) THEN
SetCursor(iBean)

SetCursor(arrow);

.
o

16-39

16-40

4 Jun 1962 20:7: 48 SHPLL/GROW, TEXT

—
END;
PROCEDURE Dolormand(mResult: Longlnt).:

VAR
nane: STR255;

BEGIN
theMenu : = HiWord(mResult); theltem := LoWord(mResult):
CASE theMenu CF

appleenu:
BEGIN
Getlten(myMenus([1], thelten nane);
géﬂun : = OpenDeskAcc(nane);

fileMenu: doneFlag := TRUE: { Quit }

edi tMenu:
BEGIN
1IF NOT SystemEdit(theltem-1) THEN
BEGIN

SetPort(theWindow);
ClipRect(pRect).

{ Delay so menu title will stay lit a little while if Connand key }
{ equivalent was typed. }
ticks := TickCount+30;
REPERT ’
UNTIL ticks<=TickCount.

CASE thelten OF
1: TECut(hTE);
2: TECopy(hTE).
3: TEPaste(hIE).
END: { of iten case }
END:
END: { of editMenu }

DD { of memu case }
HiliteMenu(D).

BXD; { of DoCaomnond }
. PROCEDURE MoveScrollBars;

BEGIN
VITH theVindow".portRect DO

BEGIN
HideControl(vScroll);
MoveControl(vScroll, right-15, top-1);
SizeControl (vScroll, 16, botton-top-13).
ShowControl (vScroll);
HideControl (hScroll);
)bveComrol.EhScron, left-1,botton-15);
SizeControl (hScroll, right-left-13,16):;
%@ntrol(hScroll)

BEND;
PROCEDURE ResizePRect.
BEGIN

4 Jun 1982 20:07:48 SHMPLE/GROW. TEXT

r~

pRect := thePort”.portRect;
pRect.left := pRect.left+4; pRect.right := pRect.right-15;
pRect.botton : = pRect.botton-15

cd

PROCEDURE GrowWnd(whichWindow: WindowPtr).
Handles growing and sizing the window and manipulating }
the update region. }

VAR
longResult: LongInt.
height, width: INTEGER;
tRect: Rect.

BEGIN
longResult := GrowWindow(whichWindow, nyEvent. where, growRect).
IF longResult=D THEN EXIT(GrowWnd).
height := HiWord(longResult): width := LoWord(longResult);

i fidd the old "scroll bar area” to the update region so it will }
be redrovn (for when the window is enlarged).

tRect : = vhichWindow™.portRect; tRect.left := tRect.right-16;
InvalRect(tRect).

tRect := whichWindow™.portRect; tRect.top :*= tRect.botton-16;
InvalRect(tRect).

{ Now draw the newly sized window. }
SizeWindow(whichWindow, width, height, TRUE).
MoveScrollBars.

ResizePRect;

{ Rdjust the view rectangle for TextEdit. }
hIE"".viewRect := pRect.

Add the new “scroll bar area™ to the update region so it will)}
be redrawn (for when the window is made smaller). }
tRect := whichWindow’.portRect. tRect.left := tRect.right-16;
InvalRect(tRect).
tRect := whichWindow™.portRect. tRect.top := tRect.botton-16.
lnvanect(tRect;;
END; { of Growiind

PROCEDURE DrawWindow(whichWindow: WindowPtr),
Draws the content region of the given window, after erasing whatever }
was there before. }

VAR
i: INTEGER:

BEGIN
ClipRect(vhichWindow". portRect).
EraseRect(vhichWindow”. portRect).
Dravﬁroulconswhidﬂlindovg;
DrawControls(whichWindow
TEUpdate(pRect. hTE

BENXD. { of DrawWindow

PROCEDURE ScrollBits:

VAR
oldOrigin: point;
dh, dv: INTEGER;

BEGIN
VITH theWindow™ DO
BEGIN
oldOrigin := TheDrigin;
TheOrigin.h := 4*GetCtlValue(hScroll);

-

16-41

16-42

4 Jun 1882 20:07:48 SAPLE/CROM. TEXT

—

TheOrigin.v := 4"GetCtlValue(vScroll).
dh := 0ldOrigin. h-TheOrigin. h;

dv := oldOrigin.v-TheOrigin.v;
TEScroll(dh, dv, hIE)

END

END.
PROCEDURE ScrollUp(whichControl: ControlHandle; theCode: INTEGER).

BEGIN
IF Btlz'nétligdﬁinllpauﬂon THEN
SetCtlValue(whichControl, GetCtlValue(whichControl)-1);
ScrollBits
END
END;

PROCEDURE ScrollDown(whichControl: ControlHandle; theCode: INTEGER).

BEGIN
IF ;ggtx::dvinnomsutton THEN
SetCtlValue(vhichControl, GetCt1Value(whichControl)+1);
ScrollBits
END
END;

PROCEDURE PageScroll(code, amount: INTEGER).

VAR
myPt: point;

BEGIN
REPEAT
GetMouse(myPt).
IF ﬁ}ﬁmtml(vlﬁdﬂmtnl, nyPt)scode THEN
SetCtlValye(whichControl, GetCtlValue(vhichControl)+anount).
ScrollBits

END
UNTIL ROT StillDown:

d

BEGIN { main progran }
InitGraf (athePort),
InitFonts;
FlushEvents(everyEvent, 0);
Ini tWindows;
SetUpMenus,;
TEInit;
InitDialogs(NIL),
SetCursor(arrow);
SetRect idrngﬁect. 4, 24, 508, 338).
SetRect(growRect, 100, 60, 512, 302),
doneFlag := FALSE;

theWindow : = GetNewWindow(256, swRecord, POINTER(-1));
SetPort(theWindow);
thellindow™. txFant := 2;

ResizePRect:
hIE := TENew(pRect, pRect);
hCurs := POINTER(ORD{GetCursor(256))). iBean := hCurs”";

vScroll := GetNewControl (256, theﬂindoug;
hScroll := GetNewControl (257, theWindow
TheOrigin.h := 0; TheOrigin.v := 0.

.

L o

4 Jwn 1962 20:07: 48 SAPLE /GROW. TEXT

[e

CursorfAdjust;

SystenTask.

TEldle(hIE),

terp := GetNextEvent(everyEvent, myEvent);
CASE myEvent.what OF

nousellown:
BEGIN
code := FindWindow(nyEvent. where, whichWindow);
CASE code OF
inMermBar: DoComnand(MenuSelect(myEvent. where));

inSysVindow: SystemClick(myEvent, vhichWindow),

inDrag: DragWindow(whichWindow, nyEvent. where, dragRect);

Rway:
IF TrockGoRway (whichWindow, myEvent. where) THEN
doneFlag : = TRUE.

inGrow:
IF whichV¥indow=FrontWindow THEN
Growlind(whichWindow)

ELSE
SelectWindow(whichWindow),

inContent:
BEGIN
IF vhichWindow<¢>FrontWindow THEN
SelectVWindow(whichWindow)

BEGIN {front}
GlobalTolocal (myEvent. where).
IF PtlnRect(nyEvent.vhere, pRect) THEN

Ir Bitf}hd(nyﬁvent.nodiﬁers, 812)>0 { Shift key pressed

THEN
ns‘éﬁtlid:(uyﬁvent .where, TRUE, hTE)
TEClick(nyEvent. where, FALSE, hTE)
BEGIN {controls)

MyControl := FindControl(myEvent.where, whichWindow,

vhichControl).
CASE MyControl OF
inUpButton:

t : = TrackControl(whichControl, myEvent. where,

8Scrolllp);
inDownBut ton:

t := TrackControl(whichControl. myEvent. where,

®ScrollDown);
inPageUP: PageScroll(MyControl, -10):
inPageDown: PageScroll(MyControl, 10);

BEGIN

t := TrockControl(whichControl, nyEvent. where,

NIL):
ScrollBits
END

END {Case MyControl}
END {controls)}
END {front}
BEND {in Content)
P { of code case)
END; { of mouseDown }

16-43

16-44

4 Jun 1882 20:07: 48 SAPLE/CROW. TEXT

r

keyDown, autcKey:
BEGIN

IF Btges‘xl'i‘ndov'l’rmtﬂindov THEN
theChar :+= CHR(myEvent. message MOD 256);
IF BitRnd(myEvent.modifiers, 256)¢<>0 { Comnnand key pressed }

DoComnand(MemuKey (theChar))
TEXey(theChar, hIE)
END
END: { of keyDown }

activateEvt:
BEGIN
DravGrowlcon(theWindow),
IF ggggyﬁvent.nodiiiers) THEN { window is beconing active }

TERctivate(hIE).
ShowControl (vScroll);
%ﬂtmtrol(lﬁcrol_l)

BEGIN
TEDeactivate(hIE);
HideControl(vScroll).
HideControl(hScroll)
END

END; { of activateEvt }

updateEvt:
BEGIN
BeginUpdate (theWindow).
DrawWindow(theWindow),
End!]pdu‘te(the"indow;
END { of updateEvt

END { of event case }
UNTIL doneFlag

4 hun 10682 20:07:30

SAMPLE /SOUNDLABX. TEXY Page 1

7

SEXEC
Psample/soundlad

GSH~
saple/soundlacd
Lsarmple/soundlad
ob j/quickDraw
cbj/ToolTraps
obj/0STraps
cbj/nocpaslib

saple/soundlabl

RRMaker
sanple/soundlabR

RSendone

Q
SENDEXEC

Mac/soundlab. RSRCaSound Lad. rsrc

Fdsanple/soundlad. 0BJ
Ydsanple/soundlab. i
¥dsmplelsomd.labl.. obj

16-45

MACINTOSH PUBLICATIONS

MACINTOSH CONTROL MANAGER TOOLBOX/CONTROLS
PROGRAMMER”S GUIDE

See also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
QuickDraw: A Programmer s Guide
The Window Manager: A Programmer”s Guide
The Resource Manager: A Programmer”s Guide
The Event Manager: A Programmer”s Guide (%*** To be written **%)

Modification History: First Draft C. Espinosa 8/13/82
Interim release (inaccurate) C. Espinosa 9/ 7/82

Second Draft S. Chernicoff 3/16/83

ABSTRACT

Controls are special objects on the Macintosh screen with which the
user, using the mouse, can manipulate information or control the way it
is displayed. The Macintosh Control Manager is a subroutine package,
part of the User Interface Toolbox, that enables application programs
to create and manipulate controls in a way that is consistent with the
User Interface Guidelines. This document describes the program
interface to version 2.1 of the Control Manager.

Summary of significant changes and additions since last version:

- Control definition functions are now treated as resources and
accessed through the Resource Manager.

- Control types are now identified with a control definitiom ID,
vhich includes both the resource ID of the definition function and
a 4-bit variation code. The variation code allows the same
definition function to implement several related control types as
“variations on a theme”. Built-in constants are provided for the
definition IDs of the standard control types.

- Templates for individual controls can be accessed as resources
with the new function GetNewControl.

- The contrlHilite field of a control record is now a one-byte part
code specifying the part of the control that is highlighted. A
code of 255 marks the control as inactive; it is displayed on the
screen in some distinctive way and will not respond to the mouse.

2 Macintosh Control Manager Programmer”s Guide

TABLE OF CONTENTS

XX
XX
xX
XX
XX
xx
XX
XX
XX
XX
XX
xx
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX

About

This Manual

About the Control Manager
Controls and Windows
Controls and Resources
Part Codes
Control Records

Control Handles

The
Using

ControlRecord Data Type
the Control Manager

Control Manager Routines
Initialization and Allocation
Control Display
Mouse Location
Control Movement and Sizing
Setting and Range of a Control
Miscellaneous Utilities
Format of a Control Template
Defining Your Own Controls
Format of a Control Definition Function

The
The
The
The
The
The
The
The
Notes

Draw Routine

Test Routine

Routine to Calculate Regions
Initialize Routine

Dispose Routine

Position Routine

Thumb Routine

Drag Routine

for Assembly-Language Programmers

Summary of the Control Manager
Glossary

Control records have am additional field, contrlAction, containing
a default action procedure for use by TrackControl. There are two
new Control Manager routines, SetCtlAction and GetCtlAction, for
accessing this field.

The contrlTitle field has been moved to the end of the control
record and is now a variable-length string instead of a pointer.

Title strings of three characters or fewer are no longer handled
specially.

The FindWindow function is now in the Window Manager; FindWindow
in the Control Manager has been replaced by FindControl.

Controls are kept in a separate linked list for each window, not a
single list for the entire system.

Dragging of a control”s indicator with the mouse is now handled by
TrackControl instead of DragControl.

DragControl now takes an additional parameter, slopRect, to allow
some "slop” in the user”s mouse movements.

SetCtlMin and SetCtlMax now do range checking against the
control”s current setting and "pin™ the setting, if necessary, to
the new endpoint of the range.

There are two new control messages: thumbCntl, to calculate the
constraint parameters for dragging the indicator, and dragCntl, to
perform custom dragging.

The control message calcCRgns requests the indicator region
instead of the whole control”s region if the high bit of the
parameter 1s set.

The part codes used by the standard control definition functions
have been modified and somewhat expanded; part codes > 127 (high
bit on) now denote moving indicators.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes version 2.1 of the Macintosh Control Manager.

*%% Tt will eventually become a chapter in the Macintosh User Ianterface
Toolbox Programmer”s Guide. #*** The Control Manager is the part of the
Toolbox that deals with controls, as defined in the Macintosh User
Interface Guidelines. Using it, your programs can create, manipulate,
and dispose of controls in a way that is consistent with the
Guidelines.

(eye)
This document applies specifically to the version of the
Control Manager in version 2.1 of the Macintosh ROM.
Earlier versions will not work exactly as described here.

Like all Toolbox documentation, this document assumes you are familiar
with the Macintosh User Interface Guidelines (particularly the section
on controls), the Lisa Pascal programming language and system, and the
memory management mechanism of the Macintosh Operating System. To
understand and use the information presented here, you should also be
familiar with:

- The basic principles of the QuickDraw graphics package,
particularly rectangles, regions, and grafPorts. (You don“t need
a detailed knowledge of QuickDraw, since programs that implement
controls through the Control Manager need not interface directly
with QuickDraw.)

- The Window Manager. Every control you create with the Control
Manager "belongs” to some window. The Window Manager and Control
Manager are designed to be used together, and their structure and
operation are parallel in many ways.

- The Event Manager. The essence of a control is to respond to the
user’s actions with the mouse. Your program finds out about those
actions (such as when and where the user pressed the mouse button)
by calling the Event Manager; it can then call various Control '
Manager routines to find out whether the button was pressed inside
a control and, if so, to respond in whatever way is appropriate.

- The basics of the Resource Manager. You“ll need this only if
you're defining your own "custom”™ controls or using predefined
templates for individual controls. If you use only controls of
the standard types and don“t create them from templates, you won’t
need to know any details about resources; the Control Manager
{itself will handle all dealings with the Resource Manager for you.

It would also be helpful to have some familiarity with a Macintosh
application program that uses controls, as an illustration of the
concepts presented here.

The manual begins with an introduction to the Control Manager and what
you can do with it. It then discusses some basic concepts about

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 2

4 Macintosh Control Manager Programmer”s Guide

controls: the relationship between controls and windows; that between
controls and resources; and how the various parts of a control are
fdentified. Following this is a discussion of control records, where
the Control Manager keeps all the information it needs about a control.

Next, a section on using the Control Manager introduces its routines
and tells how they fit into the flow of your application program. This
is followed by detailed descriptions of all Control Manager procedures
and functions, their parameters, calling protocol, effects, side
effects, and so on.

Following these descriptions are sections that will not be of interest
to all readers. Special information is given for programmers who want

to define their own controls and for those who will use the Control
Manager routines from assembly language.

Finally, there are a summary of the Control Manager data structures and
routines, for quick reference, and a glossary of terms used in this
manual.

ABOUT THE CONTROL MANAGER

The Control Manager is the part of the Macintosh User Interface Toolbox
that deals with controls. A control is a special object on the
Macintosh screen with which the user, using the mouse, can manipulate
information or control the way it is presented. Using the Control
Manager, your application program can:

- Create and dispose of controls;

- Display or hide controls on the screen;

- Change the size, position, or appearance of a control;

- Read or change the setting or other properties of a control; and

- Monitor the user”s operation of a control with the mouse and
respond accordingly.

Your program performs these actions by calling the appropriate Control

Manager routines. The Control Manager carries out the actual
operations, but it“s up to your program to decide when, where, and how.

3/16/83 Chernicoff CONFIDENTIAL JCMGR/CONTROLS .2

ABOUT THE CONTROL MANAGER 5

J

Button 1)

{ Button 2)

B Checx Box |
D Checx Box 3

D Kadio Tutton)
Radio Button 2
D Radio Botton 3

Figure 1. Controls

Controls may be of various types (see Figure 1), each with its own
characteristic appearance on the screen and responses to the mouse.
Each individual control has its own specific properties-—such as a
title, setting, location, and size-—but controls of the same type
behave in the same general way.

Certain standard types of control are predefined for you by the
Toolbox. Your program can easily create and use controls of these
standard types; you can also define your own "custom™ control types for
your program”s special needs. Among the standard control types are the
following:

= Buttons cause an immediate or continuous action when clicked or
pressed with the mouse. They appear on the screen as
rounded-corner rectangles with a title centered inside.

- Check boxes retain and display a setting, either checked (on) or
unchecked (off); clicking with the mouse reverses the setting. On
the screen, a check box appears as a small square with a title
alongside it; the box i3 either filled in with an "X" (checked) or
empty (unchecked). Check boxes are frequently used to control or
modify some future action, instead of causing an immediate action
of their owm.

- Radio buttons also retain an on-or-off setting. They“re organized
into groups, with the property that only one button in the group
can be on at a time: clicking any button on turns off all the
others in the group, like the buttons on a car radio. Radio
buttons are used to offer the user a “"multiple choice™ among

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS .2

6 Macintosh Control Manager Programmer”s Guide

several alternatives. On the screen, they look just like check
boxes, except that the button that”s on is marked with a round,
black dot instead of an "X".

(hand)
The Control Manager doesn”t know which radio buttons are
"connected”, and doesn”t automatically turn one off when

the user clicks another one on: i1it”s up to your program
to handle this.

(hand)
It“s a good idea to group radio buttons visually on the
screen to make it clear to the user which ones are
related. Each such group should be clearly labeled
“"Choose one of the following”™, or something similar.

Another important category of controls are dials. These display a
quantitative setting or value, typically in some pseudoanalog form such
as the position of a sliding switch, the reading on a thermometer
scale, or the angle of a needle on a gauge; the setting may be
displayed digitally as well. The moving part of the control that
displays the current setting is called the indicator. A dial wmay allow
the user to change its setting by dragging the indicator with the
mouse, or it may simply display a value not under the user”s direct
control, such as the amount of free space remaining on a disk.

The Toolbox predefines one type of dial for you: the scroll bars of
the standard document window, which represent the visible portion of
the document by the vertical or horizontal position of the scroll bar”s
thumb within its shaft. A scroll bar has five parts, as shown in
Figure 2: the up and down arrows scroll the window”s contents a line
at a time, the two paging regions scroll a "page” (windowful) at a
time, and the thumb can be dragged to any desired position within the
document. You can define other types of dial for yourself if your
progran needs them.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS. 2

ABOUT THE CONTROL MANAGER 7

Up arrow

upage . u” ']
Teqon

Thumb

“Fage down”
1eg1080

i Down asrow—

|]

Figure 2. Parts of a Scroll Bar

(hand)
The terms "up” and "down"” are used even when referring to
horizontal scroll bars. In this case, "up” really means
“left” and "down" means "right”.

(hand)
Although they behave like controls, a document window’s
close box and size box are not actually implemented as
controls, because the Window Manager can handle them with

greater efficiency and flexibility than the Control
Manager.

A control may be visible or invisible. As with windows, these terms
refer only to whether the control is drawn within its own plane. A
control may be “"visible” and still not appear on the screen, because it
is partially or completely obscured by overlapping windows or other
objects. Conversely, an invisible control never appears on the screen,
even if it”s completely exposed to view on the desk top.

A visible control may or may not be highlighted. A highlighted control
is displayed in some distinctive visual way, depending on its type (see
Figure 3). A common way of highlighting a control is to invert {t
(change white to black and vice versa), but some control types may use
other forms of highlighting, such as shading the control in gray or
making its outline heavier. 1It“s also possible for just a part of a
control to be highlighted: for example, when the user presses the
mouse button inside the up or down arrow of a scroll bar, the arrow

(not the whole scroll bar) becomes highlighted until the button is
released.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.2

Macintosh Control Manager Programmer”s Guide

Eutton 1

B Check Box |
8 Padic Button

Figure 3. Highlighted Controls

A control can also be active or inactive. Active controls respond to
the user”s actions with the mouse; inactive controls don"t. An
inactive control remains visible, but is highlighted in some special
way, depending on its control type (see Figure 4). For example, an

inactive button, check box, or radio button is "dimmed”™ with light gray
shading; an inactive scroll bar has no thumb.

Check oz |
Radio Button 1

Figure 4. Inactive Controls

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 2

ABOUT THE CONTROL MANAGER 9

CONTROLS AND WINDOWS

Every control "belongs™ to a particular window. When displayed, the
control appears within that window”s content region; when manipulated
with the mouse, it acts on the contents of that window. All
coordinates pertaining to the control (such as those describing its
location) are expressed in its window”s local coordinate system.

(eye)
In order for the Control Manager to draw a control
properly, the control”s window must have the top left
corner of its boundary rectangle aligned at coordinates
(9,8). 1f your program changes a window”s local
coordinate system for any reason, be sure to realign its
top left corner at (@,P) before drawing any of its
controls. Since almost all of the Control Manager
routines can (at least potentially) redraw a control, the
safest policy is simply to realign the window”s top left
corner at (9,8) before calling any Control Manager
routine.

CONTROLS AND RESQURCES

Each control type has a control definition function that determines how
controls of that type look and behave. The control definition function
performs all those actions that differ from one control type to
another, such as initializing or disposing of a control, drawing it on
the screen, testing whether the mouse button has been pressed inside
it, and responding to the user”s dragging of the mouse. The Control
Manager calls the control definition function whenever it needs to
perform one of these type-dependent actions.

Like menus, fonts, or icons, control definition functions are
considered resources of your application program: they“re kept in
resource files and accessed through the Resource Manager. The system
resource file includes definition functions for the standard control
types (buttons, check boxes, radio buttons, and scroll bars). In most
cases, these standard control types will be all your program will need,
and you can just use the built-in definition functions. I1If you want to
define your own, nonstandard control types, you“ll have to write your

own definition functions for them, as described later in the section
"Defining Your Own Controls”.

When you create a control, you specify its type with a control
definition ID, which tells the Control Manager the resource ID of the
definition function for that control type. The Control Manager
provides built-in constants for the definition IDs of the standard
control types:

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS .2

10 Macintosh Control Manager Programmer”s Guide

CONST PushButProc

= @; {simple button}
CheckBoxProc = 1; {check box}
RadioButProc = 2; {radio button}
ScrollBarProc = 16; {scroll bar}

(hand)

The control definition ID includes some other information
in addition to the resource ID of the control definition
function. Details on this other information and how it“s
combined with the resource ID are given later under
“"Defining Your Own Controls”. If you're using only the
standard control types, you don“t need to know the
details; you can just use the predefined constants listed
above.

To create a new control, you have to supply not only a control
definition ID, but also a lot of other information, such as the
control”s title (i1f any), the window it belongs to, its location within
the window, and so forth. If you“re creating lots of controls with the
same general characteristics, you may want to simplify the process by
defining a control template. This is a single resource, stored in a
resource file, that contains all the information needed to create a
control of a particular type. Instead of giving all the specifics
every time you create a control, you can just supply the resource ID of
the template. Control templates also allow you to isolate individual
control descriptions from the code of your program itself. Then if you
need to change the characteristics of a control--for example, to
translate its title into a foreign language==-you can just change the
template in the resource file, instead of modifying and recompiling
your whole program.

(hand)
You can create control templates and store them in
resource files with the aid #*** (eventually) #*** of the
Resource Editor. #*** In the meantime, you can use the
interim Resource Compiler; see your Macintosh software
coordinator for more information. *** The Resource
Editor relieves you of having to know the exact format of
a control template, but if you“re curious *** (or until
the Resource Editor is available) *** you“1ll find
details in the gection "Format of a Control Template”.

PART CODES

Some controls, such as buttons, are simple and straightforward. Others
can be complex objects with many parts: for example, a scroll bar has
two scroll arrows, two paging regions, and a thumb (see Figure 2). To
allow different parts of a control to respond to the mouse in different
ways, many of the Control Manager routines accept a part code as a
parameter or return one as a result.

'3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.2

PART CODES 11

A part code is an integer between ¢ and 255 that stands for a
particular part of a control. Each type of control has its own set of
part codes, assigned by the control definition function for that type.
A simple control such as a button or check box might have just one
“part” that encompasses the entire control; a more complex control such
as a scroll bar can have as many parts as are needed to define how the
control operates. Some of the Control Manager routines need to give
special treatment to the moving indicator of a dial (such as the thumb
of a scroll bar). To allow the Control Manager to recognize such
indicators, they always have part codes of 128 or greater.

The part codes for the standard control types are built into the
Control Manager as predefined constants:

CONST inButton = 1¢; {simple button}
inCheckBox 11; {check box or radio button}

inUpButton = 2@; {up arrow of a scroll bar}
inDownButton = 21; {dowm arrow of a scroll bar}

inPagelUp = 22; {"page up” region of a scroll bar}
inPageDown = 23; {"page down" region of a scroll bar}
inThumbd = 129; {thumb of a scroll bar}

(hand)

Notice that the Control Manager considers a radio button
to be a kind of check box. The part code inCheckBox
applies to both check boxes and radio buttons.

CONTROL RECORDS

Every control is represented internally by a control record containing

all pertinent information about that control. The control record
contains: .

= A pointer to the window the control belongs to.

A handle to the next control in the window“s control list.

A handle to the coatrol definition function.
= The control”s title, if any.

- The control”s position within its window.

An indication of whether the control is currently visible.

An indication of whether the control is currently active.

An indication of which part of the control, if any, 1is currently
highlighted.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS. 3

12 Macintosh Control Manager Programmer”s Guide

For controls that retain a setting, either a simple on-or-off (such as
a check box or radio button) or a quantitative value (such as a dial),
the current setting is kept in a field of the control record. The
control record also contains the minimum and maximum values the setting
can assume.

The control record also includes a 32-bit reference value field, which
is reserved for use by your application program. You specify an
initial reference value when you create a new control, and can then
access or change the reference value whenever you wish. The Control
Manager completely ignores the contents of this field; your program can
uge it in any way you like.

A control record is a dynamic data structure and is referred to by a
handle, as discussed further under "Control Handles” below. You can
access and store into most of its fields with Control Manager routines,
80 normally you don“t have to know the exact field names. However, if
you want more information about the exact structure of a control record
--for instance, if you“re defining your own control types--you“ll find
it below under "The ControlRecord Data Type”.

Control Handles

Storage space for control records is allocated from your program”s
relocatable heap zone. To allow the Operating System”s memory
management routines to move them as needed without creating dangling
pointers, they 're normally referred to by double indirection, through a
control handle (a pointer to a master pointer):

TYPE ControlPtr = “ControlRecord;
ControlHandle = “ControlPtr;

(eye) .
To maintain the integrity of the storage allocation
system, always create and dispose of control records with
the Control Manager routines provided for this purpose,
rather than the Pascal standard procedures NEW and
DISPOSE. The Control Manager functions for creating a
new control return a handle to a newly allocated control
record; thereafter, your program should normally refer to
the control by this handle. Most of the Control Manager
routines expect a control handle as their first
parameter.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 3

CONTROL RECORDS 13

For purposes of efficiency (for example, inside a loop that your
program executes many times), you may sometimes want to refer to a
control by single indirection, using a pointer instead of a handle.
For example,

VAR aPointer: ControlPtr;
aHandle: ControlHandle;
L] - L] ;
BEGIN
* > L] ;
aHandle := NewControl(. . .);
aPointer := agHandle";

END.

But BE CAREFUL! Any operation that allocates storage from the heap may
trigger a heap compaction, which would move (relocate) the underlying
control record and leave the pointer dangling. Not only is this type
of error usually disastrous, it“s also very difficult to diagnose and
correct. So you can safely use single indirection to refer to a
control record only if you“re sure you“re not doing anything that may

cause fresh storage to be allocated from the heap.

Handles don“t suffer from this problem: the handle points to a master
pointer, which in turn points to the control record. When the record
is moved during a heap compaction, the master pointer is updated to
point to the record at its new location; the master pointer itself is
never moved. Thus you can rely on the handle not to dangle, even after
a compaction.

The ControlRecord Data Type

This section contains detailed information on the gtructure of control
records, for thoge who need it (for example, to define their own
control types). The type ControlRecord is defined as follows:

TYPE ControlRecord = RECORD
nextControl: ControlHandle;
contrlOwner: WindowPtr;
contrlRect: Rect;
contrlVis: BOOLEAN;
contrlHilite: Byte;
contrlValue: INTEGER;
contrlMin: INTEGER;
contrlMax: INTEGER;
contrlProc: Handle;
contrlData: Handle;
contrlAction: ProcPtr;
contrlRfCon: Longlnt;
contrlTitle: Str255

END;

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS. 3

14 Macintosh Control Manager Programmer”s Guide

NextControl is a handle to the next control associated with this
control”s window. All the controls belonging to a given window are
kept in a linked 1list, beginning in the controlList field of the window
record and chained together through the nextControl fields of the
individual control records. The end of the 1list is marked by a NIL

value; as new controls are created, they are added to the beginning of
the 1list.

ContrlOwner is a pointer to the window to which this control belongs.
Notice that the contrlOwner field contains a pointer to the window, not
a handle. This is because a window record is actually a grafPort with
some extra fields added. Since the QuickDraw graphics package refers

to grafPorts by pointers rather than handles, the Toolbox follows the
same convention.

ContrlRect is the rectangle that completely encloses the control,
expressed in the local coordinates of the control”s window. You define
this rectangle when you create the control, and can change its size or
position at any time. When drawn, the control may be either scaled or
clipped to this rectangle, depending on its control type; the choice is
up to the control definition function.

When contrlVis is TRUE, the control is currently visible.

ContrlHilite is an integer between ¢ and 255 that specifies whether and
how the control is to be highlighted on the screen. A value of @ means
no highlighting; 255 means that the control is finactive and should be

highlighted accordingly. Any other value is interpreted as a part code
designating the part of the control that is highlighted.

ContrlValue is the control”s current setting. For two-state controls
such as check boxes and radio buttons, a value of ® means the control
is off and 1 means it“s on. For dials, the fields contrlMin and
contrlMax define the range of possible settings; contrlValue may take
on any value within that range. Other (custom) control types can use
these three fields as they see fit.

ContrlProc is a handle to the control definition function for this type
of control. When you create a mew control, you identify its type with

a control definition ID; this is converted into a handle to the control
definition function and stored into the contrlProc field. Thereafter,

the Control Manager uses this handle to access the definition function;
your program should never need to refer to this field directly.

(hand)
The high-order byte of the contrlProc field contains some
additional information that the Control Manager gets from

the control definition ID; for details, see the section
“Defining Your Own Controls”™.

(hand)
If you write your own control definition function and
will not be sharing it with other programs, you can
include it as part of your application program (instead

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS. 3

CONTROL RECORDS 15

of putting it in a resource file) and just store a handle
to it in the contrlProc field. See "Defining Your Own
Controls”™ for further information.

ContrlAction is a pointer to the control”s default action procedure,
used by the Control Manager function TrackControl to respond to the
user”s dragging the mouse inside the control. For more information on

action procedures, see the description of the TrackControl function,
below.

ContrlRfCon is the control”s reference value. This field is provided
strictly for the convenience of the application program, and you can
use it for any purpose you wish.

ContrlData is a utility field reserved for use by the control
definition function, typically to hold additional information specific
to a particular control type. For example, the standard definition
function for scroll bars uses this field for a handle to the region
containing the scroll bar“s thumb. If no more than four bytes of
additional information are needed, the definition function can store
the information directly in the contrlData field instead of using a
handle.

ContrlTitle is the control”s title, a variable-length string with a
maximum length of 255 characters.” The title is optional; some control
types (such as scroll bars) don“t display one. Notice that the title
is given as a plain ASCII string, without CoreEdit-style formatting;
the control definition function determines the type font, type size,
and character style to use in displaying the title.

USING THE CONTROL MANAGER

This section discusses how the Control Manager routines fit into the
general flow of your program and gives you an idea of which routines
you“ll need to use. The routines themselves are described in detail in
the next section.

To use the Control Manager, you must have previously called the
QuickDraw routine InitGraf to initialize QuickDraw. You should also
have called the Resource Manager routine OpenResFile to open any
resource files that you“ll be using (other than the system resource
file, which 1s opened automatically).

Where appropriate in your program, use NewControl or GetNewControl to
create any controls you need. NewControl takes descriptive information
about the new control from its parameters; GetNewControl gets the
information from a control template in a resource file. When you no
longer need a control, call DisposeControl to remove it from its
window”s control 1list and free the memory it occupies. To dispose of
all of a given window”s controls at once, use KillControls.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 3

16 Macintosh Control Manager Programmer”s Guide

(hand)

The Window Manager routines DisposeWindow and CloseWindow

automatically dispose of all the controls associated with
the given window.

When the Event Manager reports that an update event has occurred for a
window, your program should call DrawControls to redraw the window’s
controls as part of the process of updating the window.

After receiving a mouse-down event from GetNextEvent,

1. First call FindWindow to determine in which part of which window
the mouse button was pressed.

2. 1f it was in the content region of the active window, next call
FindControl for that window to find out whether it was in an
active control, and if so, in which part of which control.

3. Finally, take whatever action is appropriate when the user presses
the mouse button in that part of the control, using routines such
as TrackControl (to perform some action repeatedly for as long as
the mouse button is down, or to allow the user to drag the
control”s moving indicator with the mouse), DragControl (to allow
the user to drag the entire control with the mouse), and
HiliteControl (to change the way the control is highlighted on the
screen).

Wherever needed in your program, you can call HideControl to make a
control invisible or ShowControl to make it visible. Similarly,
MoveControl, which simply changes a control”s location without pulling
around an outline of it, can be called at any time, as can SizeControl,
which changes its size--though you shouldn”t surprise the user by
taking these actions unexpectedly.

Whenever necessary, you can read the current setting of a control with
GetCtlValue, or other attributes with GetCTitle, GetCtlMin, GetCtlMax,
GetCRefCon, or GetCtlAction; you can change them with SetCtlValue,
SetCTitle, SetCtlMin, SetCtlMax, SetCRefCon, or SetCtlAction.

3/16/83 Chernicoff CONFIDENTIAL JCMGR/CONTROLS . 4

CONTROL MANAGER ROUTINES 17

CONTROL MANAGER ROUTINES

This section describes the routines (procedures and functions) that
make up the Control Manager.

Initialization and Allocation

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect; title:
Str255; visible: BOOLEAN; value: INTEGER; min: INTEGER;
max: INTEGER; procID: INTEGER; refCon: LongInt) :
ControlHandle;

NewControl creates a new control record, links it to the beginning of
theWindow”s control list, and returns a handle to the new record. It
initializes the new record”s fields to the values passed as parameters,
setting the contrlHilite field to ¢ (no highlighting) and contrlAction
to NIL (no default action procedure; see TrackControl under "Mouse
Location”, below). It also calls the control definition function to
perforn any type-specific initialization that may be needed, such as
setting the contrlData field.

TheWindow is the window the new control will belong to. All
coordinates pertaining to the control will be interpreted in this
window”s local coordinate system.

BoundsRect, a rectangle expressed in theWindow”s local coordinates,
determines the control“s size and location.

Title is the control”s title. The string you supply as the value of
this parameter will be stored in the control”s contrlTitle field, but
some types of control will never use it. In this case, you can just
pass an empty string as the title.

If the visible parameter is TRUE, NewControl calls the control
definition function to draw the control.

The min and max parameters define the control”s range of possible
settings; the value parameter gives the initial setting, and zust fall
within the specified range. For controls that don“t retain a setting,
such as simple buttons, the values you supply for these parameters will
be stored into the corresponding fields of the control record, but will

never be used. So it doesn”t matter what values you give--@ for all
three parameters will do. For controls that just retain an on—~or-off
setting, such as check boxes or radio buttons, min should be § (meaning
the control {s off) and max should be 1 (meaning it“s on). For dials,
you can specify whatever numerical values are appropriate for min, max,
and value.

ProclD is the control definition ID, which leads to the control
definition function for this type of control. The control definition

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 4

18 Macintosh Control Manager Programmer”s Guide

IDs for the standard control types are listed above under “"Controls and
Resources™. Control definition IDs for custom control types are
discussed under "Defining Your Own Controls”, below.

RefCon is the control”s reference value, set and used only by your
application program.

FUNCTION GetNewControl (controllD: INTEGER; theWindow: WindowPtr) :
ControlHandle;

GetNewControl creates a new control record from a control template
stored in a resource file, 1links it to the beginning of theWindow’s
control list, and returns a handle to the new record. ControllD is the
resource ID of the template in the resource file. GetNewControl works
exactly the same as NewControl (see above), except that it gets the
initial values for the new control”s fields from the specified control
template instead of accepting them as parameters.

PROCEDURE DisposeControl (theCoantrol: ControlHandle);

DisposeControl erases theControl from the screen, deletes it from its
window”s control 1list, and disposes of its storage. It returns to the
heap all data structures associated with the control. It also calls
the control definition function to do any type-specific housekeeping
that may be needed, such as disposing of a data structure whogse handle
is kept in the contrlData field.

PROCEDURE KillControls (theWindow: WindowPtr);

KillControls disposes of all controls associated with theWindow by
calling DisposeControl (see above) for each. '

Control Display

The routines in this section affect the appearance of a control but not
its size or locationm.

PROCEDURE SetCTitle (theControl: ControlHandle; theTitle: Str255);

SetCTitle sets theControl”s title to theTitle. The control definition
function determines the type font, type size, and character style to
use in displaying the title; it may use the system font, that of the
control”s window, or any other font it chooses, or it may choose not to
display the title at all.

(hand)
Buttons, check boxes, and radio buttons all display their
titles in the standard system font; scroll bars don”t
display a title.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 4

CONTROL MANAGER ROUTINES 19

PROCEDURE GetCTitle (theControl: ControlHandle; VAR theTitle: Str255);

GetCTitle returns theControl”s current title string as the value of the
parameter theTitle, regardless of whether the definition function for
this control type actually uses the title.

PROCEDURE HideControl (theControl: ControlHandle);

HideControl makes theControl invisible. 1t sets the contrlVis field to
FALSE and fills the region the control occupies within its window with

the window”s background pattern. It also adds the control”s enclosing

rectangle to the window”s update region, so that anything else that was
previously obscured by the control will reappear on the screen. If the
control is already invisible, HideControl has no effect.

PROCEDURE ShowControl (theControl: ControlHandle);

ShowControl makes theControl visible. 1t sets the contrlVis field to
TRUE and calls the control definition function to do the actual
drawing. The control is drawn in its proper plane on the screen, and
may be completely or partially obscured by overlapping windows or other
objects. 1If the control is already visible, ShowControl has no effect.

PROCEDURE DrawControls (theWindow: WindowPtr);

DrawControls draws all controls currently visible in theWindow. The
controls are drawn in reverse order of creation; thus in case of
overlap the earliest-created controls appear frontmost in the window.

(hand)
Window Manager routines such as SelectWindow, ShowWindow,
and BringToFront do not automatically call DrawControls
to display the window”™s controls. They just add the
appropriate regions to the window”s update region,
generating an update event. Your program should always
call DrawControls explicitly on receiving an update event
for a window.

PROCEDURE HiliteControl (theControl: ControlHandle; hiliteState:
INTEGER);

HiliteControl changes the way theControl is highlighted on the screen.
HiliteState is an integer between @ and 255. A value of @ means no
highlighting; 255 means that the control is to be made inactive and
highlighted accordingly. Any other value is interpreted as a part code
designating the part of the control to be highlighted. HiliteControl
sets the contrlHilite field to the designated value, then calls the

control definition function to redraw the control with its new
highlighting.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 4

20 Macintosh Control Manager Programmer”s Guide

Mouse Location

FUNCTION TestControl (theControl: ControlHandle; thePoint: Point) :
INTEGER;

TestControl tests which part of theControl contains thePoint and
returns the corresponding part code, or § if the point is outside the
control. If the control is invisible or inactive, no test is performed
and TestControl returns a result of @.

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr; VAR
theControl: ControlHandle) : INTEGER;

FindControl finds which of theWindow”s active controls, if any,
contains thePoint. It returns a handle to the control as the value of
the parameter theControl; the function result is a part code
fdentifying the part of the control that contains the given point. The
point must be expressed in the window”s local coordinate system.

When a mouse down event occurs, you should normally call the Window
Manager function FindWindow to find out in which window, if any, the
mouse button was pressed. Next, if it was pressed in the window’s
content region, call FindControl to see whether it was in any of the
window’s controls. If so, you can then do whatever is appropriate for
a mouse down event in that control (for example, call TrackControl or
DragControl).

(eye) -
Notice that FindControl expects the mouse point in local
(window) coordinates, whereas FindWindow expects it in
global coordinates. Always be sure to convert the point
to local coordinates with the QuickDraw procedure
GlobalToLocal before calling FindControl.

FindControl calls TestControl (see above) for each of the window’s
active controls to see whether it contains the given point. In the
event of overlap, FindControl returns the frontmost control containing
the point. If the point doesn”t lie within any active control, it
returns NIL for the control and J for the part code. (It also returns
these values if the window is invisible or doesn”t contain the given
point. In these cases, however, FindWindow wouldn“t have returned this
window in the first place, so the situation should never arise.)

FUNCTION TrackControl (theControl: ControlHandle; startPt: Poiunt;
actionProc: ProcPtr) : INTEGER;
TrackControl is the routine that does the actual work of a control.

When called with the mouse button down, it keeps control until the
button is released, following the movements of the mouse and responding

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 4

CONTROL MANAGER ROUTINES 21

in whatever way is appropriate, depending on the type of control and
the part of the control in which the button was pressed.

The actionProc parameter is a pointer to an action procedure; it
defines some action to be performed repeatedly for as long as the user
holds down the mouse button. For example, when the mouse button is
pressed in the up or down arrow of a scroll bar, the action procedure
should scroll the contents of the window one line in the indicated
direction. This will cause the window”s contents to scroll

continuously, one line at a time, for as long as the button is held
down.

If the actionProc parameter is NIL, TrackControl simply retains control
until the mouse button is released, performing no action while the
button is down beyond highlighting the control or dragging its
indicator. If actionProc is POINTER(-1), TrackControl uses the

control”s default action procedure (if any), stored in the contrlAction
field of the control record.

(hand)
Actually, the default action procedure is used whenever
the value of the actionProc parameter is odd. This
causes no conflict, since genuine procedure pointers are
always even (aligned on a word boundary).

The parameter startPt is assumed to be the screen location where the
mouse button was pressed, expressed in local window coordinates.
TrackControl finds which part of the control contains the given point,
then focuses its attention only on that part. Its behavior depends on
whether the part is the indicator of a dial (that is, whether it has a
part code > 127).

If the part is an indicator, TrackControl drags a flickering outline of
the indicator to follow the mouse until the button is released. (The
process is similar to that described below under DragControl, except
that only the indicator i{s dragged and not the whole control. The
control definition function calculates the limiting rectangle, slop
rectangle, and axis parameter for this operation.) 1In this case, the
action procedure passed to TrackControl, if any, should take no
parameters. For example, if the name of the action procedure is
Action, it should be declared simply as

PROCEDURE Action;

When the user releases the mouse button, TrackControl calls the comntrol
definition function to reposition the control”s indicator, passing the
vertical and horizontal offset through which the mouse was dragged.
It°s up to the definition function to adjust the control”s setting,
redraw the control, or take whatever other action is appropriate. For
example, the standard definition function for scroll bars redraws the
scroll bar“s thumb, calculates its new relative position within the

shaft, and scrolls the window to the corresponding relative position in
the document.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 4

22 Macintosh Control Manager Programmer”s Guide

If the control is not a dial, or if the mouse button was initially
pressed in a part of a dial other than the indicator, the action
procedure (if any) should be of the form

PROCEDURE Action (theControl: ControlHandle; partCode: INTEGER);

In this case, TrackControl repeatedly reads the position of the mouse
for as long as the button remains down, testing whether it“s still in
the original part of the control. If so, TrackControl highlights the
part and passes its part code to the action procedure, along with a
handle to the control itself. If the mouse is outside the original
control part--that is, if the user has moved out of the part while
still holding down the button--TrackControl unhighlights the part and
passes a part code of @ to the action procedure. In either case,
TrackControl reads the mouse”s position again and repeats the process
until the mouse button is released.

When the user finally releases the button, TrackControl unhighlights
the control. 1If the button is released inside the same part of the
control in which it was originally pressed, TrackControl returns the
part code for that part; if not, it returns @. You can use this
information, for example, to allow the user to “back out” of an

operation by moving the mouse out of the control before releasing the
button.

Control Movement and Sizing

PROCEDURE MoveControl (theControl: ControlHandle; h, v: INTEGER);

MoveControl moves theControl to a new location within its window. The
top left corner of the control”s enclosing rectangle is moved to the
new horizontal and vertical coordinates h and v; the bottom right
corner is adjusted accordingly, to keep the size of the rectangle the

same as before. If the control is currently visible, it is hidden and
then redrawn at its new location.

PROCEDURE DragControl (theControl: ControlHandle; startPt: Point;
limitRect, slopRect: Rect; axis: INTEGER);

When called with the mouse button down, DragControl allows the user to
drag a flickering outline of theControl around the screen with the
mouse. It follows the movements of the mouse for as long as the button
is held down, then calls MoveControl (see above) to move the control to
the position where the button was released.

(hand)
Before beginning to follow the mouse, DragControl calls
the control definition function to allow it to do its own
“custom dragging” 1f it chooses. If the definition
function doesn”t choose to do any custom dragging,

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 4

CONTROL MANAGER ROUTINES 23

DragControl uses the default method of dragging described
here.

The startPt parameter is assumed to be the point where the mouse button
was originally pressed, expressed in the local coordinates of the
control“s window. The limitRect rectangle limits the travel of the
control, and should normally coincide with or be contained within the
window”s content region. DragControl will never move the top left
corner of the control outside this rectangle, regardless of where the
user drags the mouse. The second rectangle, slopRect, allows the user
some “"slop” in moving the mouse; it should completely enclose the
limiting rectangle. DragControl”s behavior while tracking depends on
the position of the mouse with respect to these two rectangles:

- When the mouse is inside limitRect, the control”s flickering
outline follows it normally; if the button is released, the
control will be moved to the mouse position,

- When the mouse is outside limitRect but inside slopRect, the
control”s outline “pins” at the edge of limitRect; if the button
is released, the control will be moved to this "pinned” location.

- When the mouse is outside slopRect, the control”s outline
disappears from the screen, but DragControl continues to follow
the mouse; 1f it moves back into slopRect, the outline reappears.
If the button is released outside slopRect, the control will not
be moved from its original position.

The axis parameter allows you to constrain the control”s motion to omnly
one axis:

Axis Parameter Meaning
9 No constraint
1 Horizontal motion only
2 Vertical motion only

If an axis constraint is in effect, the control will follow the mouse”s
movements along the specified axis only, ignoring motion along the
other axis. With or without an axis constraint, the mouse must still
be inside the slop rectangle for the control to move at all.

PROCEDURE SizeControl (theControl: ControlHandle; w, h: INTEGER);

SizeControl changes the size of theControl”s enclosing rectangle. The
bottom right corner of the rectangle is adjusted to set the rectangle’s
width and height to w and h; the position of the top left cormer is not
changed. 1f the control is currently visible, it is hidden and then
redravn in its new size. The actual drawing is done by the control
definition function, which may either scale or clip the control to {its
new enclosing rectangle.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . &

24 Macintosh Control Manager Programmer”s Guide

Setting and Range of a Control

PROCEDURE SetCtlValue (theControl: ControlHandle; theValue: INTEGER);
SetCtlValue sets theControl”s current setting (contrlValue) to theValue
and redraws the control to reflect the new setting. If the specified
value is out of range, it is forced to the nearest endpoint of the

current range. That is, 1f theValue < contrlMin, contrlValue is set to
contrlMin; if theValue > contrlMax, contrlValue is set to contrlMax.

FUNCTION GetCtlValue (theControl: ControlHandle) : INTEGER;

GetCtlValue returns theControl”s current setting (contrlValue).

PROCEDURE SetCtlMin (theControl: ControlHandle; minValue: INTEGER);
SetCtlMin sets theControl”s minimum setting (contrlMin) to minValue and
redraws the control to reflect the new range. If minValue is greater
than the control®s current setting (comtrlValue), the setting is
changed to the new minimum value.

FUNCTION GetCtlMin (theControl: ControlHandle) : INTEGER;

GetCtIlMin returns theContrel”s current minimum value (contrlMin).

PROCEDURE SetCtlMax (theControl: ControlHandle; maxValue: INTEGER);
SetCtlMax sets theControl’s maximum setting (contrlMax) to maxValue and
redraws the control to reflect the new range. If maxValue is less than

the control”s current setting (contrlValue), the setting is changed to
the new maximum value.

FUNCTION GetCtlMax (theControl: ControlHandle) : INTEGER;

GetCtlMax returns theControl”s current maximum value (contrlMax).

Miscellaneous Utilities

PROCEDURE SetCRefCon (theControl: ControlHandle; refVal: LonglInt);
SetCRefCon sets theControl’s reference value to refVal. The reference

value 1s reserved for use by your program, which can use it in any way
you wish; it is ignored by the Control Manager itself.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 4

CONTROL MANAGER ROUTINES 25

FUNCTION GetCRefCon (theControl: ControlHandle) : Longlnt;

GetCRefCon returns theControl”s current reference value.

PROCEDURE SetCtlAction (theControl: ControlHandle; actionProc:
ProcPtr);

SetCtlAction sets theControl”s default action procedure to actionProc.
TrackControl uses this procedure to respond to the user”s dragging the

mouse inside the control; for more information, see TrackControl under
"Mouse Location”, above.

FUNCTION GetCtlAction (theControl: ControlHandle) : ProcPtr;

GetCtlAction returns a pointer to theControl”s default action
procedure. TrackControl uses this procedure to respond to the user’s
dragging the mouse inside the control; for more information, see
TrackControl under "Mouse Location”, above.

FORMAT OF A CONTROL TEMPLATE

As described above, you can use the GetNewControl function to create a
new control from a template stored in a resource file. Such a template
contains the same information that the NewControl function gets from
eight of its parameters. The resource type for a control template is
“CTRL", and the resource data has the following format:

Number of bytes Contents
8 bytes Same as boundsRect parameter to NewControl
2 bytes Same as value parameter to NewControl
2 bytes Same as visible parameter to NewControl
2 bytes Same as max parameter to NewControl
2 bytes Same as min parameter to NewControl
4 bytes Same as proclD parameter to NewControl
4 bytes Same as refCon parameter to NewControl
n bytes Same as title parameter to NewControl

(1-byte length in bytes, followed by the
characters of the title)

DEFINING YOUR OWN CONTROLS

In addition to the standard, built-in control types (buttons, check
boxes, radio buttons, and scroll bars), the Control Manager allows you
to define “"custom” control types of your own. Maybe you need a
three-way selector switch, a disk-space indicator that looks like a
thermometer, or a thruster control for a spacecraft simulator--whatever

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 5

26 Macintosh Control Manager Programmer”s Guide

your particular application calls for. This section contains the
information you need to define your own control types to meet your
program”s special needs.

(hand)

For the convenience of your program”s user, remember to
conform to the Macintosh User Interface Guidelines for
controls as much as possible.

Every control type is defined by a control definition functiom, which
is normally stored in a resource file; its resource type is “CDEF”. To
define a control type of your own, you write a control definition
function and (usually) store it in a resource file, with a resource
type of “CDEF” and a resource ID of your own choosing. The resource
data is simply the compiled or assembled code of the control definition
function, which may be written in Pascal or assembly language; the only
requirement is that its entry point must be at the beginning.

(eye)
Resource IDs @ through 8 are reserved for predefined
control definition functions in the system resource file.
Unless you want to override one of the built-in
functions, the resource ID you choose for your own
control definition function should be greater than 8.

Whenever you create a new control, you specify its type by giving a
control definition ID. This is a 16-bit integer that coatains the
resource ID of the control definition function in its upper 12 bits,
along with a variation code in the lower four bits. Thus, for a given
resource ID and variation code, the control definition ID is:

16 * resource 1D + variation code

The variation code allows a single control definition function to
implement several related control types as “variations on a theme”.
For example, buttons, check boxes, and radio buttons all use the
standard definition function whose resource ID ig @, but they have
variation codes of P, 1, and 2, respectively.

The Control Manager calls the Resource Manager to find the resource of
type “CDEF” with the given resource ID. The Resource Manager searches
first in any application resource files, in the reverse order they were
opened, and last in the system resource file. When it finds the
requested resource, it reads the resource”s data (the code of the
control definition function) into memory and returns a handle to it.
The Control Manager stores this handle in the contrlProc field of the
new control record, along with the variation code in the high~order
byte of the field. Later, when it needs to perform a type-dependent
action on the control, it uses the handle to find the control
definition function and passes it the variation code as a parameter.
Figure 5 1illustrates this process.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 5

DEFINING YOUR OWN CONTROLS 27

Control definition ID supplied when control ie crested:

resourcelD { var {resource 1D of control
definition function
L] —_— 7) , ‘ . ‘
o 4 A vagia |
12 bits 4 bits and variation code)

Resource Manager call made by Control Manager:
defHandle = GetResousce ('CDER', sesourcelD);

Fiedd in conteal recosd:

]

vasL defHasdle
\

J-
pazzed to contenl definition funition

Figure 5. Control Definition Handling

(hand)
If you won“t be sharing your control definition function
with other application programs, you may find it more
convenient to include it with the code of your program
Instead of placing it in a resource file. If you do
this, you have to supply a dummy control definitfon ID
when you create a new control of this type, pointing to a
definition function that IS stored in a resource file--
for example, the definition ID of one of the standard
control types-—-and specify that the coantrol initially be
made invisible. Once the control is created, you can
replace the contents of the contrlProc field with a
handle to the actual control definition function (along
with a variation code, if needed, in the high-order byte
of the field). You can then call ShowControl, {if
necessary, to make the control visible within its window.

Format of a Control Definition Function

You can give your control definition function any name you like.
Here”s how you would declar: 512 named MyControl:

FUNCTION MyControl (varCode: INTEGER; theControl: ControlHandle;
theMessage: ControlMessage; param: LonglInt) : LoaglInt;

VarCode is the variation code, as described above.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.5

28 Macintosh Control Manager Programmer”s Guide

TheControl is a handle to the control that the operation will affect.

TheMessage 18 a control message identifying the desired operation:

TYPE ControlMessage = (drawCntl, testCntl, calcCRgns, initCntl,
dispCntl, posCntl, thumbCntl, dragCntl);

Message Operation

drawCntl Draw the control in its window

testCntl Test in what part of the control (if any) the
mouse button was pressed

calcCRgns Calculate the control”s region (or that of
its indicator) within its window

initCntl Do any special control initialization

dispCntl Take any special actions when the control is
disposed of

posCntl Reposition the control®s indicator and update

its value accordingly

thumbCntl Calculate the parameters for dragging the
control”s indicator with the mouse

dragCntl Drag the control (or its indicator) with the mouse

As described below in the discussions of the routines that perform
these operations, the value passed for param, the last parameter of the
control definition function, depends on the operation. Where it is not
mentioned below, this parameter is lgnored. Similarly, the coantrol
definition function is expected to return a function result only where
indicated; in other cases, the function should return @.

(hand)
“"Routine” here does not necessarily mean a procedure or
function. While 1it“s a good idea to set these up as
subprograms inside the window definition function, you
are not required to do so.

The Draw Routine

The message drawCntl asks the control definition function to draw all
or part of a control within its window. The value of param is a part
code specifying which part of the control to draw, or § for the entire
control. If the control is invigible (that is, if its contrlVis field
is FALSE), there”s nothing to do; if it“s visible, the definition
function should draw it (or the requested part), taking into account
the current values of its contrlHilite and contrlValue fields.

(eye)
The Control Manager procedures SetCtlValue, SetCtlMin,
and SetCtlMax all send the wmessage drawCntl with a part
code parameter of 128, asking the control definition
function to redraw a control”s moving indicator. For
control types using other part codes to represent
indicators, the definition function must detect a param

3/16/83 Chernicoff CONFIDENTIAL JCMGR/CONTROLS.5

DEFINING YOUR OWN CONTROLS 29

value of 128 as a special case and redraw all indicators,
tegardless of part code.

The Test ﬁoutine

The message testCntl asks in which part of a control, 1if any, a given
point lies. The point is passed as the value of param, expressed as a
four-byte record of type Point (not a pointer or a handle) in the local
coordinates of the control”s window. The control definition function
should return the part code for the part of the control that contains
the point; it should return ¢ if the point 18 outside the control”s
region or 1f the control is inactive (contrlHilite = 255).

The Routine to Calculate Regions

The control definition function should respond to the message calcCRgns
by calculating the region a control occupies within its window. Param
is a QuickDraw region handle; the definition function should update
this region to the shape, size, and position of the control, expressed
{a the local coordinate system of its window.

If the high-order bit of param is set, the region requested i1s that of
the control”s indicator, rather than that of the control as a whole.
The definition function should clear the high BYTE (not just the high
bit) of the region handle before attempting to update the region.

(hand)
Notice that the control and its indicator aren“t limited
to rectangular boxes, but may occupy reglons of any
shape, in the full generality permitted by QuickDraw.

The Initialize Routine

When it creates a nmew control, the Control Manager sends the message
initCntl to the control definition function. This gives the definition
function a chance to perform any type-specific initialization it may
require. For example, the standard definition function for scroll bars
allocates space for a region to hold the scroll bar“s thumb location
and stores the region handle in the contrlData field of the new control
record. The initialization routine for buttons, check boxes, and radio
buttons does nothing.

The Dispose Routine

The Control Manager”s DisposeControl procedure sends the message
dispCntl to the control definition function, telling it to carry out
any special "housekeeping” associated with disposing of a control. For
example, the standard definition function for scroll bars deallocates
the space occupied by the thumb region, whose handle is kept in the

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS. 5

30 Macintosh Control Manager Programmer’s Guide

control”s contrlData field. The dispose routine for buttons, check
boxes, and radio buttons does nothing.

The Position Routine

The message posCntl tells the control definition function to reposition
a control”s moving indicator and update the control”s setting
accordingly. The value of param is a point giving the vertical and
horizontal offset, in screen pixels, by which the indicator 1is to be
moved relative to its current position. (Typically, this is the offset
between the points where the user pressed and released the mouse button
while dragging the indicator.) The vertical offset is given in the
high-order word of the LongInt and the horizontal offset in the
low-order word. The definition function should calculate the control’s
new setting based on the given offset, update the contrlValue field,
and redraw the control within its window to reflect the new setting.

(hand)
If you use the Control Manager procedure SetCtlValue to
update the contrlValue field, the control will be redrawn
automatically.

The Thumb Routine

The control definition function should respond to the message thumbCntl
by calculating the limiting rectangle, slop rectangle, and axis
constraint for dragging a control”s indicator with the mouse (see the
descriptions of DragControl and TrackControl, above). Param is a
pointer to a data structure of type

RECORD

limitRect, slopRect: Rect;
axis: INTEGER

END;
On entry, param”~.limitRect.topLeft contains the point where the mouse

button was first pressed. The definition function should store the
appropriate values into the fields of the record pointed to by param.

The Drag Routine

The message dragCntl asks the control definition function to drag a
control or its indicator around on the screen to follow the mouse until
the user releases the mouse button. Param is a Boolean value
specifying whether to drag the indicator or the whole control: TRUE
means just drag the indicator.

The control definition function need not implement any form of “"custom
dragging”; if it returns a result of @, the Control Manager will use
its own default method of dragging (see the description of DragControl
above). Conversely, if the control definition function chooses to do

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.5

DEFINING YOUR OWN CONTROLS 31

its own custom dragging, it should signal the Control Manager not to
use the default method by returning a nonzero result.

If the whole control is being dragged, the definitiom function should
call MoveControl to reposition the control to its new location after
the user releases the mouse button. If just the indicator is being
dragged, the definition function should execute its own position
routine (see above) to update the control”s setting and redraw it in
its window.

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS

Information about how to use the User Interface Toolbox from assembly
language is given elsewhere. #%** For now, see the QuickDraw manual.
% This section contains special notes of interest to progrmmers who
will be using the Control Manager from assembly language.

The primary aid to assembly-language programmers is a file named
TOOLEQU.TEXT. If you name this file in an .INCLUDE statement when you
assemble your program, all the Control Manager constants, offsets to
locations of global variables, and offsets into the fields of
structured types will be available in symbolic form.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 6

32 Macintosh Control Manager Programmer”s Guide

SUMMARY OF THE CONTROL MANAGER

CONST PushButProc = §; {simple button}
CheckBoxProc = 1; {check box}
RadioButProc = 2; {radio button}
ScrollBarProc = 16; {scroll bar}
inButton = 10, {simple button}

inCheckBox = 11; {check box or radio button}

inUpButton = 2@; {up arrow of a scroll bar}
inDownButton = 21; {down arrow of a scroll bar}

inPagelp = 22; {"page up” region of a scroll bar}
inPageDown = 23; {“"page down" region of a scroll bar}
inThumb = 129; {thumb of a scroll bar}

TYPE ControlBandle = “ControlPtr;
ControlPtr = “ControlRecord;

CoatrolRecord = RECORD

nextControl: ControlHandle;
contrlOwner: WindowPtr;
contrlRect: Rect;
contrlVis: BOOLEAN;
contrliHilite: Byte;
contrlValue: INTEGER;
contrlMin: INTEGER;
contrlMax: INTEGER;
contrlProc: Handle;
contrlData: Handle;
contrlAction: ProcPtr;
contrlRfCon: Longint;
coantrlTitle: Str255

END;

ControlMessage = (drawCntl, testCntl, calcCRgns, initCntl,
dispCntl, posCntl, thumbCntl, dragCntl);

Initialization and Allocation

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect;
title: Str255; visible: BOOLEAN; value:
INTEGER; min: INTEGER; max: INTEGEK;
proclD: INTEGER; refCon: LonglInt) :
ControlHandle;

FUNCTION GetNewControl (controlID: INTEGER; theWindow: WindowPtr) :
ControlHandle;

PROCEDURE DisposeControl (theControl: ControlHandle);

PROCEDURE KillControls (theWindow: WindowPtr);

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 6

SUMMARY OF THE CONTROL MANAGER 33

Control Display

PROCEDURE SetCTitle (theControl: ControlHandle; theTitle: Str255);
PROCEDURE GetCTitle (theControl: ControlHandle; VAR theTitle:
Str255);

PROCEDURE HideControl (theControl: ControlHandle);

PROCEDURE ShowControl (theControl: ControlHandle);

PROCEDURE DrawControls (theWindow: WindowPtr);

PROCEDURE HiliteControl (theControl: ControlHandle; hiliteState:
INTEGER);

Mouse Location

FUNCTION TestControl (theControl: ControlRandle; thePoint: Point) :
INTEGER;

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr; VAR

theControl: ControlHandle) : INTEGER;
FUNCTION TrackControl (theControl: ControlHandle; startPt: Point;
actionProc: ProcPtr) : INTEGER;

Control Movement and Sizing

PROCEDURE MoveControl (theControl: ControlHandle; h, v: INTEGER);
PROCEDURE DragControl (theControl: ControlHandle; startPt: Point;

limitRect, slopRect: Rect; axis: INTEGER);
PROCEDURE SizeControl (theControl: ControlHandle; w, h: INTEGER);

Setting and Range of a Control

PROCEDURE SetCtlValue (theControl: ControlHandle; theValue: INTEGER);
FUNCTION GetCtlValue (theControl: ControlHandle) : INTEGER;
PROCEDURE SetCtlMin (theControl: ControlHandle; minValue: INTEGER);
FUNCTION GetCtlMin (theControl: ControlHandle) : INTEGER;

PROCEDURE SetCtlMax (theControl: ControlHandle; maxValue: INTEGER);
FUNCTION GetCtlMax (theControl: ControlHandle) : INTEGER;

Miscellaneous Utilities

PROCEDURE SetCRefCon {(theControl: ControlHandle; refVal: LonglInt);
FUNCTION GetCRefCon (theControl: ControlHandle) : LongInt;

PROCEDURE SetCtlAction (theControl: ControlHandle; actionProc: ProcPtr);
FUNCTION GetCtlAction (theControl: ControlHandle) : ProcPtr;

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS. 6

34 Macintosh Control Manager Programmer”s Guide

GLOSSARY

action procedure: A procedure passed as a parameter to the Control
Manager routine TrackControl, defining an action to be performed
repeatedly for as long as the mouse button is held down.

active control: A control that will respond to the user”s actions with
the mouse.

button: A standard Macintosh control that causes some {immediate ov
continuous action when clicked or pressed with the mouse.

check box: A standard Macintosh control that retains and displays a
setting, either checked (on) or unchecked (off). Clicking inside the
check box with the mouse reverses the setting.

control: An object in a window on the Macintosh screen with which the
user, using the mouse, can manipulate the information in the window or
control the way it is presented.

control definition function: A €Eunction called by the Control Manager
when it needs to perform certain basic operations on a particular type
of control, such as drawing the control {n {ts window.

control definition ID: A number passed to control-creation routines to

indicate the type of control; it consists of the control definition
function”s resource 1D and a variation code.

control handle: A referen:e to a control record by double indirection;
a pointer to the master pointer tn the record.

control 1list: A linked list of the controls associated with a given
window.

control message: A parameter passed to a control definition Functlon
to identify the operation desired.

control record: The internal representation of a control, where the
Control Manager stores all the information it needs for its operations
on that control.

control template: A resource that contains information from which the
Control Manager can create a control.

dial: A control with a moving indicator that displays a quantitative
satting nr value. Depending on the type of dial, the user may or may
not be able to change the setting by dragging the indicator with the
mouse.

highlight: To display a control or part of a control in some

distinctive visual way, such as inverting it or making its outline
heavier.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 6

GLOSSARY 35

inactive control: A control that will not respond to the user”s
actions with the mouse. An inactive control is highlighted in some
special way, such as "dimming”™ it with light gray shading.

indicator: The moving part of a dial that displays its current
setting.

invisible control: A control that {s not drawn in its window.

part code: An integer code, defined by the control definition
function, that stands for a particular part of a control.

radio button: A standard Macintosh control that retains and displays a
setting, either on or off, and is part of a group with the property
that only one button in the group can be on at a time. Clicking a
radio button on turns off all the others in the group, like the buttons
on a car radio.

reference value: In a control record, a 32-bit field which the
application program may stor into and access for any purpose.

variation code: A number that distinguishes closely related types of

controls and 1s passed as part of a control definition ID when a
control is created.

visible control: A control that is drawn in its window (but may be
completely overlapped by another window or other object on the screen).

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS . 6

MACINTOSH USER EDUCATION

The Desk Manager: A Programmer's Guide /DSKMGR/DESK

See Also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
QuickDraw: A Programmer's Guide
The Window Manager: A Programmer's Guide
The Resource Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide

Modification History: First Draft (ROM 2.0) C. Rose 2/3/83
Erratum Added C. Rose 2/28/83
Second Draft (ROM &) C. Rose 6/14/83
Third Draft (ROM 7) C. Rose 9/26/83

This manual introduces you to the Desk Manager, the part of the
Macintosh User Interface Toolbox that handles desk accessories such as
the Calculator. It describes the simple programmatic interface to the
Desk Manager and tells you how to define your own desk accessories.

Summary of significant changes and additions since last version:

- OpenDeskAcc is now a Desk Manager routine, as is the new procedure
CloseDeskAcc (page 7).

= A new function, SystemEdit, processes standard editing commands in
desk accessories (page 8). Four new messages are passed to a desk
accessory's control routine to handle this (page 13).

= Storing the window pointer in the Device Control Entry is now
optional for a desk accessory's open routine, and setting the
windowKind field to the driver's reference number is required
(page 13).

= A desk accessory may be displayed in a window created by the
Dialog Manager; if so, its control routine must respond to the
"cursor" wmessage in a special way (page l4). Applications
allowing access to desk accessories must initiaslize TextEdit and
the Dialog Manager.

2 Desk Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual

3 About the Desk Manager

5 Using the Desk Manager

6 Desk Manager Routines

7 Opening and Closing Desk Accessories
7 Handling Events in Desk Accessories
8 Performing Periodic Actions

9 Advanced Routines

1¢ Defining Your Own Desk Accessories

12 The Device Control Entry

12 The Driver Routines

15 A Sample Desk Accessory

16 Summary of the Desk Manager

17 Glossary

Copyright (c) 1983 Apple Computer, Inc.

All rights reserved.

Distribution

of this draft in limited quantities does not constitute publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Desk Manager, the part of the Macintosh User
Interface Toolbox that supports the use of desk accessories from an
application; the Calculator, for example, is a standard desk accessory
available to any application. #*** Eventually this will become part of
a large manual describing the entire Toolbox. **#* You'll learn how to
use the Desk Manager routines and how to define your own accessories.

(hand)
This manual describes version 7 of the ROM. If you're
using a different version, the Desk Manager may not work
as discussed here.

Like all documentation about Toolbox units, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and

the Macintosh Operating System's Memory Manager. You should also be
familiar with the following:

- The Toolbox Event Manager, the Window Manager, the Menu Manager,
and the Dialog Manager.

= The basic concepts behind the Resource Manager.

- 1/0 drivers, as discussed in the Macintosh Operating System
Reference Manual.

This manual begins with an introduction to the Desk Manager and desk
accessories. Next, a section on using the Desk Manager introduces you
to its routines and tells how they fit into the flow of your
application. This is followed by the detailed descriptions of all Desk
Manager procedures and functions, their parameters, calling protocol,
effects, side effects, and so on.

Following these descriptions is a section for prograumers who want to
define their own desk accessoriese.

Finally, there's a summary of the Desk Manager routine calls, for quick
reference, and a glossary of terms used in this manual. #*** The
glossary will eventually be merged with the glossaries from the other
Toolbox documentation. The many Operating System terms have not been
included in the glossary in this manual. ¥*#%*

ABOUT THE DESK MANAGER

The Desk Manager enables your application to support desk accessories,
vhich are "mini-applications" that can be run at the same time as a
Macintosh application. The standard Calculator desk accessory is shown
in Figure 1. #** The method of highlighting an active desk accessory
i3*CUtrent1y different from what's shown here and will probably change.

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.2

4 Desk Manager Programmer's Guide

Active inactive
Figure l. The Calculator Desk Accessory

The Macintosh user opens desk accessories by choosing them from the
standard Apple menu (the menu whose title is an Apple symbol), which by
convention is the first menu in the menu bar. When a desk accessory is
chosen from this menu, it's usually displayed in a window on the
desktop, and that window becomes the active window. (See Figure 2.)

An accessory is chosen
from the Apple menu.

Figure 2. Opening a Desk Accessory

After being selected, the accessory may be used as long as it's active.
The user can activate other windows and then reactivate the desk
accessory by clicking inside it. Whenever a standard desk accessory is
active, it has a close box in its title bar. Clicking the close box
wakes the accessory disappear, and the window that's then the frontmost
becomes active.

The window associated with a desk accessory usually resembles a
rounded—corner document window, as shown above. It also may look and

behave like a dialog window; the accessory can call on the Dialog
Manager to create the window and then use Dialog Manager routines to

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.2

ABOUT THE DESK MANAGER 5

operate on it. In either case, the window will be a system window, as
indicated by its window class.

Many applications will have an Edit menu that includes the standard
commands Cut, Copy, Paste, and Undo, which may be useful in desk
accessories as well as in the application's windows. The Desk Manager
provides a mechanism that lets those commands be applied to a desk
accessory when it's active. Even if the commands aren't particularly
useful for editing within the accessory, they may be useful for cutting
and pasting between the accessory and the application or even another
accessory. For example, the result of a calculation made with the
Calculator desk accessory can be copied into a document prepared in
MacWrite *** eventually **%,

A desk accessory may also have its own menu. When the accessory
becomes active, the title of its menu is added to the menu bar and menu
items may be chosen from it. Any of the application's menus or menu
items that no longer apply are disabled. A desk accessory can even
have an entire menu bar full of its own menus, which will completely
replace the menus already in the menu bar. When an accessory that has
its own menu or menus becomes inactive, the menu bar is restored to
normal.

Although desk accessories are usually displayed in windows (one per
accessory), this is not necessarily so. It's possible for an accessory
to have only a menu (or menus) and not a window. The menu includes a
command to close the accessory. Also, a desk accessory that's
displayed in a window may create any number of additional windows while
it's open.

You can define your own desk accessories. A desk accessory is actually
a special type of 1/0 driver--special in that it may have its own
windows and menus for interacting with the user. Desk accessories and
other I/0 drivers used by Macintosh applications are stored in resource
files.

USING THE DESK MANAGER

This section introduces you to the Desk Manager routines and how they
fit into the general flow of an application program. The routines
themselves are described in detail in the next section.

To allow access to desk accessories, your application must do the
following:

- Initialize TextEdit and the Dialog Manager, in case any desk
accessories are displayed in windows created by the Dialog Manager
(which uses TextEdit).

= Set up the Apple menu as the first menu in the menu bar. You can
put the names of all currently available desk accessories in a

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.2

6 Desk Manager Programmer's Guide

menu by using the Menu Manager routine AddResMenu (see the Menu
Manager manual for details).

When the user chooses a menu item from the Apple menu, you should call
the Menu Manager procedure GetItem to get the name of the corresponding
desk accessory, and then the Desk Manager function OpenDeskAcc to open
and display the accessory. You can close the desk accegsory with the
CloseDeskAcc procedure.

When the Toolbox Event Manager function GetNextEvent reports that a
mouse down event has occurred, the application calls the Window Manager
function FindWindow to find out where the mouse button was pressed. If
FindWindow returns the predefined constant inSysWindow, which means
that the mouse button was pressed in a system window, you should call
the Desk Manager procedure SystemClick. SystemClick handles mouse down
events in system windows, routing them to desk accessories where
appropriate.

(hand)
The application need not be concerned with exactly which
desk accessories are currently open, except when it wants
to use the accessory directly itself (such as the
Mini-Finder accessory).

When the active window changes from an application window to a system
window, the application should disable any of its menus or menu items
that don't apply while an accessory is active. It should enable them
again when one of {ts own windows becomes active.

When a mouse down event occurs in the menu bar, or a key down event
occurs when the Command key is held down, and the application
determines that one of the four standard editing commands Cut, Copy,
Paste, and Undo has been invoked, it should call SystemEdit. Only if
SystemEdit returns FALSE gshould the application process the editing
command itself; if the active window belongs to a desk accessory,
SystemEdit passes the editing command on to that accessory and returns
TRUE.

Certain periodic actions may be defined for desk accessories. To see
that they're performed, you need to call the SystemTask procedure at
least once every time through your main event loop-.

The two remaining Desk Manager routines—-SystemEvent and
SystemMenu-—-are never called by the application, but are described in
this manual because they reveal inner mechanisms of the Toolbox that
may be of interest to advanced Macintosh programmers.

DESK MANAGER ROUTINES

This section describes all the Desk Manager procedures and functions.
They 're presented in their Pascal form; for information on using them
from assembly language, see "Using the Toolbox from Assembly Language"

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R

DESK MANAGER ROUTINES 7

**% doegn't exist, but see "Using QuickDraw from Assembly Language' in
the QuickDraw manual **%,

Opening and Closing Desk Accessories

FUNCTION OpenDeskAcc (theAcc: Str255) : INTEGER;

OpenDeskAcc opens the desk accessory having the given name, displays
its window (1f any) as the active window, and returns its reference
number (or § if the accessory can't be opened). The name is the
accessory's resource name, which you get from the Apple menu by calling
the Menu Manager procedure GetItem. OpenDeskAcc calls the Resource
Manager to read the desk accessory from the resource file.

PROCEDURE CloseDeskAcc (refNum: INTEGER);

CloseDeskAcc closes the desk accessory having the given reference
aumber. Usually, though, the application won't close the desk
accessory; instead, it will be closed when the user clicks its close
box (or, if there's a menu instead of a window, when the user chooses
the command to close the accessory). Also, since the application heap
is deallocated when the application terminates, every desk accessory
goes away at that time.

Handling Events in Degsk Accessories

PROCEDURE SystemClick (theEvent: EventRecord; theWindow: WindowPtr);

When a mouse down event occurs and the Window Manager routine
FindWindow reports that the mouse button was pressed in a system
window, the application should call SystemClick with the event record
and the window pointer. If the given window belongs to a desk
accessory, SystemClick sees that the event gets handled properly.

SystemClick determines which part of the desk accessory's window the
mouse button was pressed in, and responds accordingly (similar to the
way your application responds to mouse activities in its own windows).

- 1f the mouse button was pressed in the content region of the
window and the window was active, SystemClick sends the mouse down
event to the desk accessory, which processes it as appropriate.

- If the mouse button was pressed in the content region and the
window was inactive, SystemClick makes it the active window.

- If the mouse button was pressed in the drag region, SysteaClick
calls the Window Manager routine DragWindow to pull an outline of

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R

8 Desk Manager Programmer's Guide

the window across the screen and move the window to a new
location. If the window was inactive, DragWindow also makes it
the active window (unless the Command key was pressed along with
the mouse button).

- If the mouse button was pressed in the go-away region, SystemClick
calls the Window Manager routine TrackGoAway to determine whether
the mouse is still inside the go-away region when the click is

completed: if so, it tells the desk accessory to close itself;
otherwise, it does nothing.

FUNCTION SystemEdit (editCmd: INTEGER) : BOOLEAN;

Call SystemEdit when the user invokes the editing command specified by
editCmd, which may be one of the following predefined constants:

CONST cutCmd = @; {Cut command}
copyCmd = 1; {Copy command}
pasteCud = 2; (Paste command}
undoCmd = 3; {Undo command}

If the active window doesn't belong to a desk accessory, SystemEdit
returns FALSE; the application should then process the editing command
as usual. If the active window does belong to a desk accessory,
SystemEdit asks that accessory to process the command and returns TRUE;
in this case, the application should ignore the command.

(hand)
It's up to the application to make sure desk accessories
get their editing commands. In particular, make sure
your application doesn't disable the Edit menu or any of
the four commands when a desk accessory is activated.

Performing Periodic Actions

PROCEDURE SystemTask;

For each open desk accessory, SystemTask causes the accessory to
perform the periodic action defined for it, if any such action has been
defined and if the proper time period has passed since the action was
last performed. For example, a clock accessory can be defined such
that the second hand is to move once every second; the periodic action
for the accessory will be to move the second hand to the next position,
and SystemTask will alert the accessory every second to perform that
action.

You should call SystemTask as often as possible, usually once every
time through your main event loop. Call it more than once if your

application does an unusually large amount of processing each time
through the loop.

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R

DESK MANAGER ROUTINES 9

(hand)

Preferably SystemTask would be called at least every 6@th
of a second.

Advanced Routines

FUNCTION SystemEvent (theEvent: EventRecord) : BOOLEAN;

SystemEvent is called only by the Toolbox Event Manager routine
GetNextEvent when it receives an event, to determine whether the event
should be handled by the application or by the system. If the given
event should be handled by the application, SystemEvent returns FPALSE;

otherwise, it calls the appropriate system code to handle the event and
returns TRUE.

In the case of a null, abort, or mouse down event, SystemEvent does
nothing but return FALSE. Notice that it responds this way to a mouse
down event even though the event may in fact have occurred in a system
window (and therefore may have to be handled by the system). The
reason for this is that the check for exactly where the event occurred
(via the Window Manager routine FindWindow) is made later by the
application and so would be made twice {f SystemEvent were also to do
it. To avoid this duplication, SystemEvent passes the event on to the
application and lets it make the sole call to FindWindow. Should
FindWindow reveal that the mouse down event did occur in a system
window, the application can then call SystemClick, as described above,
to get the system to handle it.

If the given event {s a mouse up, key down, key up, or auto-key event,
SystemEvent checks whether the active window belongs to a desk
accessory and whether that accessory can handle this type of event. If
80, it sends the event to the desk accessory and returns TRUE;
otherwise, it returns FALSE.

If SystemEvent i{s passed an activate or update event, it checks whether
the window it occurred in is a system window belonging to a desk
accessory and whether that accessory can handle this type of event. If
so, it sends the event to the desk accessory and returns TRUE;
otherwise, it returns FALSE.

(hand)
It's unlikely that a desk accessory would not be set up
to handle activate and update events.

Finally, if the given event is a disk inserted event, SystemEvent does
some low-level processing (by calling the Operating System routine
MountVolume) but passes the event on to the application by returning
FALSE, in case the application wants to do further processing.

9/26/83 Roge CONFIDENTIAL /DSKMGR/DESK.R

10 Desk Manager Programmer's Guide

PROCEDURE SystemMenu (menuResult: LongInt);

SystemMenu is called only by the Menu Manager routines MenuSelect and
MenuKey, when an item in a menu belonging to a desk accessory has been
chosen. The menuResult parameter has the same format as the value
returned by MenuSelect and MenuKey: the menu ID in the high-order word
and the menu item number in the low-order word. (The menu ID will be
negative.) SystemMenu directs the desk accessory to perform the
appropriate action for the given menu item.

DEFINING YOUR OWN DESK ACCESSORIES

To define your own desk accessories, you must create the corresponding
1/0 driver and include it in a resource file. Standard or shared desk
accessories are stored in the system resource file. Accessories
specific to an application are rare; if there are any, they're stored
in the application's resource file.

The resource type for 1/0 drivers is 'DRVR'. The resource ID for a
desk accessory is the driver's unit number and should be between 12 and
31 inclusive. The resource name should be whatever you want to appear
in the Apple menu, but should also include a nonprinting character; by
convention, the name should begin with a NUL character (ASCII code §).
The nonprinting character is needed to avoid conflict with file names
that are the same as the names of desk accessories.

The structure of an 1/0 driver is described in the Macintosh Operating
System Reference Manual. The rest of this section reviews some of that
information and presents additional details pertaining specifically to
1/0 drivers that are desk accessories.

(hand)
Usually drivers are created entirely from assembly
language, but you can use an assembly language-to-Pascal
interface that will enable you to write the body of the
driver routines in Pascal. An interface named ProtoOrn
has been created for this purpose at Apple; for more
information, see your Macintosh software coordinator.

As illustrated in Figure 3, the 1/0 driver begins with a few words of
flags and other data for the driver, followed by offsets to the
routines that do the work of the driver, an optional title, and finally
the routines themselves.

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R

DEFINING YOUR OWN DESK ACCESSORIES 11

O[™ Fiegs/descriptor]
4 Tick count
4 Event mask
6 Menu ID
8] Offset 1o open routine | > 1 word each
10{ Ofiset to prime routine
12{ Offset to control routine
14} Offset to stetus routine
18] Oftset to close routine | |
18] Titie length (1 byte)
19 “Title } optionel

< Actusl code of the driver 4

Figure 3. Desk Accessory 1/0 Driver

The first four words of the driver for a desk accessory contain the
following:

1. A flags/descriptor word. Bits ¢ through 7 and bit 12 are relevant
only to ROM-based drivers; they're ignored for desk accessories.
Bits 8 through 11 are the enable flags for the driver routines.
The following flags are especially for desk accessories:

Flag Name Meaning if set

bit 13 dNeedTime Driver needs time for performing a
periodic action for the desk accessory

bit 14 dNeedLock Driver will be locked in memory as soon

as it's opened

If you want to test one of these flags with the assembly-language
instruction BTST, remember that when the destination of BTST is a
memory location, the operation is performed on a byte read from
that location.

2. 1f the dNeedTime flag is set, a tick count indicating how often
the periodic action should occur. A tick count of J means it
should happen as often as possible, 'l means it should happen every
60th of a second, 2 means every 3¢th of a second, and so on. The
action itself is performed by the control routine in the driver
when it's called by the SystemTask procedure.

3. An event mask specifying which events the desk accessory can
handle. This should especially include update and activate events
and usually will include mouse down events.

4. 1If the desk accessory has its own menu (or menus), the ID of the

mwenu (or of any of the menus); otherwise, §. The menu ID will be
negative. For menus defined in resource files, it's the resource

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R

12 Desk Manager Programmer's Guide

ID; for menus created by the desk accessory, it's any negative
nusber (between -1 and -32767) that you choose to identify this

accessory's menu. It must be different from the menu ID stored
here for other desk accessories.

Following these four words are the offsets to the driver routines and,
optionally, a title for the desk accessory (preceded by its length in
bytes). You can use the title in the driver as the title of the

accessory's window, or just as a way of identifying the driver in
memory.

The Device Control Entry

When any of the routines in the I/0 driver is called, a pointer to the
driver's Device Control Entry is passed in Al. Most of the data in the
Device Control Entry is stored and accessed only by the Operating
System, but in some cases the driver routines themselves must store
into it. The structure of the Device Control Entry, which is discussed
in detail in the Operating System manual, is illustrated in Figure 4.

Notice that some of the data is taken from the first four words of the
1/0 driver.

o Pointer to stert of driver long
4| Flags (from driver, plus some dynamic flegs)] word
6 Driver input queue header: flegs word
8 Driver input queue header: QHead long
12 Driver input queue header: QTail long
16 Pasition pointer (position in file) long
20{Hendle 1o driver's private storage (optional)| long
24 Reference number for this driver word
z6 Counter for SystemTask timing long
30[Pointer 1o driver's window (optional) fong
34 Tick count (from driver) word
36 Event mask (from driver) word
38 Menu ID (from driver) word

Figure 4. Device Control Entry

The Driver Routines

Of the five possible driver routines, only three need to exist for desk
accessories: the open, close, and control routines. The other
routines (prime and status) may be used if desired for a particular
accessory.

The open routine opens the desk accessory.

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R

DEFINING YOUR OWN DESK ACCESSORIES 13

- It creates the window to be displayed when the accessory is
opened, if any, specifying that it be invisible (since OpenDeskAcc
will display it). The window can be created with the Dialog
Manager routine NewDialog (or GetNewDialog) if desired; the
accessory will look and respond like a dialog box, and subsequent
operations may be performed on it with Dialog Manager routines.

In any case, the open routine sets the windowKind field in the
window record to the reference number for the driver, which it
gets from the Device Control Entry. (The reference number will be
negative.) It also may store the window pointer in the Device
Control Entry if desired.

- If the driver has any private storage, it allocates the storage,
stores a handle to it in the Device Control Entry, and initializes
any local variables. It might, for example, create a menu or
menus for the accessory.

The close routine closes the desk accessory, disposing of its window
(1f any) and replacing the window pointer in the Device Control Entry
with NIL (if one was stored there by the open routine). If the driver

has any private storage, the close routine also disposes of that
storage.

The action taken by the control routine depends on information passed
in the parameter block pointed to by A#. A message is passed in the
"op code" field (a word located at 26(A¢)); this message is simply a
number that tells the routine what action to take. There are eight
such messages:

Megsage Name Action to be taken by control routine
64 accEvent Handle a given event
65 accRun Take the periodic action, if any, for
this desk accessory
66 accCursor Change the cursor shape if appropriate;

generate a null event {f the window was
created by the Dialog Manager

67 accMenu Handle a given menu item
68 accCut Handle the Cut command
69 accCopy Handle the Copy command
70 accPaste Handle the Paste command
71 aceUndo Handle the Undo command

Along with the accEvent message, the control routine receives as a
parameter a pointer to an event record (a long integer located at
28(A8)). It responds by handling the given event in whatever way is
appropriate for this desk accessory. SystemClick and SystemEvent call
the control routine with this message to send the driver an event that
it should handle--for example, an activate event that makes the desk
accessory active or inactive. When a desk accessory becomes active,
its control routine might install a menu in the menu bar. If the
accessory becoming active has more than one menu, the control routine
gshould respond as follows:

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R

14 Desk Manager Programmer's Guide

- Store the accessory's unique menu ID in the system global

mBarEnable. (This is the negative menu ID in the 1/0 driver and
the Device Control Entry.)

- Call the Menu Manager routines GetMenuBar to save the current menu
list and ClearMenuBar to clear the menu bar.

- Install the accessory's own menus in the menu bar.

Then, when the desk accessory becomes inactive, the control routine
should call SetMenuBar to restore the former menu list, call
DrawMenuBar to draw the menu bar, and set mBarEnable to §.

The accRun message tells the control routine to perform the periodic
action for this desk accessory. For every open driver that has the
dNeedTime flag set, the SystemTask procedure calls the control routine

with this message if the proper time period has passed since the action
was last performed.

The accCursor message makes it possible for the cursor to have a
special shape when it's inside an active desk accessory. The control
routine is called repeatedly with this message as long as the desk
accessory is active. If desired, the control routine may respond by
checking whether the mouse position is in the desk accessory's window
and then changing the shape of the cursor if so. Furthermore, if the
desk accessory is displayed in window created by the Dialog Manager,
the control routine should respond to the accCursor message by
generating a null event (storing the event code for a null event in an
event record) and passing it to DialogSelect. This enables the Dialog
Manager to blink the vertical bar in editText items.

(hand)
In assembly language, the code might look like this:

CLR.L -SP ; event code for null event is @
PEA 2(sp) ; pass null event

CLR.L =-SP ; pass NIL dialog pointer

CLR.L -SP ; pass NIL pointer

DialogSelect ; invoke DialogSelect

ADDQ.L #4,SP pop off result and null event

When the accMenu message is sent to the control routine, the following
information is passed in the parameter block: the menu ID of the desk
accessory's menu in a word at 28(A¢), and a menu item number in a word
at 30(A¢). The control routine takes the appropriate action for when
the given menu item is chosen from the menu, and then makes the Menu

Manager call HiliteMenu(@#) to remove the highlighting from the menu
bar.

Finally, the control routine should respond to one of the last four
messages——accCut through accUndo--by processing the corresponding
editing command in the desk accessory window if appropriate.
SystemEdit calls the control routine with these messages. For
information on cutting and pasting between a desk accessory and the

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R

DEFINING YOUR OWN DESK ACCESSORIES 15

application, or between two desk accessories, see the *** forthcoming
®*%% Serap Manager manual.

(hand)
If you use .INCLUDE to include a file named SysEqu.Text
when you assemble your program, the messages sent to the
driver's control routine will be available in symbolic
form, as will offsets into the fields of the I/0 driver
and Device Control Entry.

A Sample Desk Accessory

#*%% ro be supplied; meanwhile, see your Macintosh software coordinator
ARk

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R

16 Desk Manager Programmer's Guide

SUMMARY OF THE DESK MANAGER

CONST cutCmd = @; {Cut command}
copyCmd = 1; {Copy command}
pasteCmd = 2; {Paste command}
undoCmd = 3; {Undo command}

Opening and Closing Desk Accessories

FUNCTION OpenDeskAcc (theAcc: Str255) : INTEGER;

PROCEDURE CloseDeskAce (refNum: INTEGER);

Handling Events in Desk Accessories

PROCEDURE SystemClick (theEvent: EventRecord; theWindow: WindowPtr);
FUNCTION SystemEdit (editCmd: INTEGER) : BOOLEAN;

Performing Periodic Actions

PROCEDURE SystemTask;

Advanced Routines

FUNCTION SystemEvent (theEvent: EventRecord) : BOOLEAN;
PROCEDURE SystemMenu (menuResult: LongInt);

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK. S

GLOSSARY 17

‘GLOSSARY

desk accessory: A "mini-application", implemented as an 1/0 driver,
that can be run at the same time as a Macintosh application.

tick: A 6fth of a second.

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK .G

MACINTOSH USER EDUCATION

The Device Manager: A Programmer's Guide /DMGR/DEVICE

See Also: The Macintosh User Interface Guidelines
The Memory Manager: A Programmer's Guide
The File Manager: A Programmer's Guide
The Desk Manager: A Programmer's Guide
Inside Macintosh: A Road Map

Modification History: First Draft (ROM 7) B. Hacker 2/dd/84

®%% Review Draft. Not for distribution ##* ABSTRACT
This manual describes the Device Manager, the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and devices.

2 Device Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual

4 Adbout the Device Manager

7 Using the Device Manager

8 Device Manager Routines

8 Routines For Opening and Closing Drivers
9 High-Level Device Manager Routines

11 Low-Level Device Manager Routines
12 Routine Parameters

14 Routine Descriptions

19 The Structure of a Device Driver

20 A Device Control Entry

22 The Unit Table

23 Writing Your Own Device Drivers

24 Routines for Writing Drivers

66 Interrupts

66 Level-] (VIA) Interrupts

66 Level-2 (SCC) Interrupts

66 Writing Your Own Interrupt Handlers
66 A Sample Driver

68 Summary of the Device Manager

75 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Device Manager, the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and devices. #*** Eventually it will become part
of a larger manual describing the entire Toolbox and Operating System.
**% General information about using device drivers can be found in this
manual; specific information about the standard Macintosh drivers is
contained in separate manuals.

(eye)
This manual describes version 7 of the ROM. If you're
using a different version, the Device Manager may not
work as discussed here.

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal. You should also be familiar with the
following:

= the basic concepts behind the Macintosh Operating System's Memory
Manager i

- application data buffers, as described in the Macintosh Operating
System's File Manager manual

The manual is intended to serve the needs of both Pascal and
assembly-language programmers. Information of interest to assembly-
language programmers only is isolated and labeled so that Pascal
programmers can conveniently skip it.

This manual begins with an introduction to the Device Manager and what
you can do with 4t. It then discusses some basic concepts behind the
Device Manager: what devices and drivers are, and how they are used.

A section on using the Device Manager introduces its routines and tells
how they fit into the flow of your application. This is followed by
detailed descriptions of all the procedures and functions used to call
device drivers, their parameters, calling protocol, effects, side
effects, and 8o on.

Following these descriptions are sections that provide information for
programmers who want to write their own drivers, including a discussion
of interrupts and a sample driver.

Finally, there's a summary of the Device Manager, for quick reference,
followed by a glossary of terms used in this manual.

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE. 1

7-3

4 Device Manager Programmer's Guide

ABOUT THE DEVICE MANAGER

The Device Manager is the part of the Operating System that handles
communication between applications and devices. A device is a part of
the Macintosh, or a piece of external equipzent, that can transfer
information into or out of the Macintosh. Macintosh devices include
the keyboard, ecreen, disk drives, two asynchronous serial ports, the
sound generator, the mouse, and printers.

There are two kinds of devices: character devices and block devices.
A character device reads or writes a stream of characters, one at a
time: it can neither skip characters nor go back to a previous
character. A character device 1s used to get information from or send
information to the world outside of the Macintosh Operating System and
memory: 4t can be an input device, an output device, or an
input/output device. The mouse, keyboard, screen, sound generator, and
printers, are all character devices.

A dblock device reads and writes blocks of 512 characters at a time; it
can read or write any accessible block on demand. A block device is
used to store and retrieve {nformation: it's always an input/output
device. Disk drives are block devices.

Applications communicate with devices by calling Device Manager
routines. The Device Manager routines don't manipulate devices, but
they call device drivers that do. Device drivers are programs that
take streams or blocks of characters coming from the Device Manager and
convert them {nto actions of devices, and convert device actions into
streams or blocks of characters for the Device Manager to process.

All {nformation exchange between the Device Manager and devices occurs
via drivers; the Device Manager never communicates directly with a
device (see Figure 1).

Device Manager

(dri;rer) (rri;er)
(device) (device)

Figure 1. Communication with Devices

The Operating System includes three standard device drivers in ROM:
the Disk Driver, the Sound Driver, and the Serial Driver. There are
also a number of standard RAM drivers that are read from the system
resource file when the system starts up: the Printer Driver and desk
accessories. The keyboard and mouse don't have drivers, and are

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE. I

ABOUT THE DEVICE MANAGER 5

handled via the Keyboard/Mouse Handler. Other drivers can be added
i{ndependently or built on the existing drivers (for example, the
Printer Driver {s built on top of the Serial Driver); the section
"Writing Your Own Device Drivers" describes how to do this. Desk
accessories are a special type of device driver, in that they have
windows, their name should appear in the Apple menu, and they are
manipulated via the specialized routines of the Desk Manager.
Information about desk accessories covered in the Desk Manager manual
will not be repeated here.

A driver can be either open or closed. After a driver has been opened,
an application can read information from and write information to the
driver. Drivers that are no longer in use can be closed, and the
memory used by them recovered. The standard Macintosh drivers are
opened when the system starts up. Up to 32 drivers may be open at any
one time.

A driver 1s 4dentifi{ed by {ts driver name and, after it's opened, by
its reference number. A driver name consists of a period (.) followed
by any sequence of 1 to 255 printing characters. You can use uppercase
and lowercase letters when naming drivers, but the Device Manager

ignores case when comparing names (it doesn't ignore diacritical
marks). : B

(hand)
Although driver names can be quite long, there's little
reason for them to be more than a few characters in
length. Normally the user will never see a driver name
unless {t's displayed in a menu, and names in menus
should be short enough that the menu doesn't become
excessively wide.

The Device Manager assigns each open driver a driver reference number,
from -1 to =32, that is used instead of its driver name to refer to it.

In addition to data that's read from or written to drivers, drivers may
require or provide other information. Required information transmitted
to a driver by an application is called control information;
information provided by a driver is called status information. Control
information may select modes of operation, start or stop processes,
enable buffers, choose protocols, and 8o on. Status information may
indicate the current mode of operation, the readiness of the device,
the occurrence of errors, and 60 on.

2/un/84 Hacker CONFIDENTIAL /DMGR/DEVICE. 1

6 Device Manager Programmer's Guide

Each driver may respond to a number of different types of control
{nformation and may provide a nudber of different types of status
information. The standard Macintosh drivers receive control
information and provide status information via a predefined data
structure, of type OpParamType:

TYPE OpParasPtr = “OpParamType;
OpParamType = RECORD

CASE OpVariant OF
{control information}

sound: {Sound Driver}
(sndVal: INTEGER);

asyncRst: {Async Driver)
(asncConfig: INTEGER);

asyncInBuff:

(asncBPtr: Ptr;
asncBlen: INTEGER);
asyncShk:
(asncHndShk: Longlnt;
asncMisc: LonglInt);
printer: {Printer Driver)
(paraml: LongInt; :
param2: Longlnt;
param3: Longlnt);
fontMgr: {Font Manager}
(fontRecPtr: Ptr;
fontCurbDev: INTEGER);
diekDrv: .
(diskBuff: Ptr);
{status information}
asyncBuffBytes: {Async Driver}
(asyncNBytes: Longlnt);
asyncStatus:
(asncSl: INTEGER;
asncS2: INTEGER;
asncS3: INTEGER);
diskStat: {Disk Driver}
(dskTracklLock: INTEGER;
dskinfoBits: Longlnt;
dekQElem: drvrQEl1Rec;
dskPrime: INTEGER;
dskErrCnt: INTEGER);

{Disk Driver}

END;

The CASE statement selects which field(s) of the record will be used,
based on the OpVariant data type:

TYPE OpVariant = (sound, asyncRst, asyncInBuff, asyncShk, printer,
fontMgr, diskDrv, asyncBuffBytes, asyncStatus,
diskStat);

The maxinmum size of the OpParamType variant record i{s 22 bytes.

Explanations of the fields can be found in the manuals describing the

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE. 1

USING THE DEVICE MANAGER 7

different drivers.

USING THE DEVICE MANAGER

This secti{on discusses how the Device Manager routines fit into the
general flow of an application program and gives an idea of what
routines you'll need to use. The routines themselves are described in
detail {n the next section.

The Device Manager routines can be called via three different methods:
high-level Pascal calls, low-level Pascal calls, and assembly language.
The high-level Pascal calls are designed for Pascal programmers
interested in using the Device Manager {n a simple manner; they provide
adequate device 1/0 and don't require much special knowledge to use.
The low-level Pascal and assembly-language calls are designed for
advanced Pascal programmers and assembly-language programmers
interested in using the Device Manager to its fullest capacity; they
require some special knowledge to be used most effectively.

(hand)
The names used to refer to routines here are actually
assembly-language macro names, but the Pascal routine
names are very similar.

The Device Manager 1s automatically initialized each time the system is
started up.

Before an application exchanges information with a driver, the driver
must be opened. ROM drivers are opened when the system starts up; for
RAM drivers, call Open. (Desk accessories use OpenDegkAcc.) The
Device Manager will return the driver reference number that you'll use
every time you want to refer to that driver.

You can transfer data from an open driver to an application's data
buffer with Read, and send data from an application's data buffer to a
driver with Write. An application passes control information to a
driver by calling Control, and receives status information from a
driver by calling Status.

Whenever you want to stop 8 driver from completing 1/0 initiated by a
Read, Write, Control, or Status call, call Ki1110. Kil1lll0 halts the
curreatly executing 1/0, and ignores any pending 1/0 (if any).

When you're through using a driver, call Close. (Desk accessories use
CloseDeskAcc.) Close forces the driver to complete any pending 1/0,
and then deallocates all the memory used by the driver. #%#* Cyrrently,
you shouldn't cloge the Serial Driver. #=%

Advanced programmers who write their own device drivers may find the

Desk Manager routines SystemClick, SystemEdit, and SystemTask to be of
use.

2/an/84 Hacker CONFIDENTIAL /DMGR/DEVICE.R

8 Device Manager Programmer's Guide

DEVICE MANAGER ROUTINES

This section 18 divided into three parts that describe routines used to
call drivers. The first presents the two routines used to open and
close drivers; this part must be read by all programmers. The
second describes all the high~level Pascal routines of the Device
Manager, and the third presents information about calling the low~level
Pascal and assembly-language routines.

All Device Manager routines return a result code of type OSErr. Each
routine description 1lists all of the applicable result codes, along
with a short description of what the result code means. Lengthier
explanations of all the result codes can be found in the summary at the
end of this manual.

Routines For Opening and Closing Drivers

FUNCTION OpenDriver (name: 0SStr255; VAR teprm: INTEGER) : OSErr;

OpenDriver opens the driver specifi{ed by name and returns its reference
number in refNum.

Result codes noErr No error .
resErr Resource Manager error
badUnitErr Bad reference number
dSI10CoreErr Device control entry was purged
openErr Driver cannot perform reading
or writing
unitEmptyErr Bad reference number

FUNCTION CloseDriver (refNum: INTEGER)

: OSErr;

CloseDriver closes the driver having the reference number refNum. Any
pending 1/0 is completed, and the memory used by the driver is

deallocated.
Result codes noErr No error
badUnitErr Bad reference number
dS10CoreErr Device control entry was purged
resErr Resource Manager error
unitEmptyErr Bad reference number
2/nn/84 Racker CONFIDENTIAL /DMGR/DEVICE.R

DEVICE MANAGER ROUTINES 9

High-Level Device Manager Routines

FUNCTION FSRead (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr) :
OSErr;

FSRead attempts to read the number of bytes specified by the count
parameter from the driver having the reference number refNum, and
transfer them to the data buffer pointed to by buffPtr. After the read
is completed, the number of bytes actually read i{s returned in the
count parameter.

Result codes noErr No error
badUnitErr Bad reference number
dSI10CoreErr Device control entry was purged
notOpenErr Driver isn't open
unitEmptyErr Bad reference number
readErr Driver 4isn't enabled for read
calls

FUNCTION FSWrite (refNum: INTEGER; VAR count: LonglInt; buffPtr: Ptr) :
OSErr;

FSWrite attempts to take the number of bytes specified by the count
parameter from the buffer pointed to by buffPtr and write them to the
open driver having the reference number refNum. After the write is
completed, the number of bytes actually written is returned in the
count parameter.

Result codes noErr No error
badUnitErr Bad reference number
dS10CoreErr Device control entry was purged
notOpenErr Driver isn't open
unitEmptyErr Bad reference number
writErr Driver isn't enabled for write
calls

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.R

7-10

number refNum.
and the information itself 1s pointed to by opParams.

10 Device Manager Programmer's Guide

FUNCTION FSControl (refNum: INTEGER; opCode: INTEGER; opParams:

OpParamPtr) : OSErr;

FSControl sends control information to the driver having the reference

The type of information sent is specified by opCode,

The values

passed in opCode and pointed to by opParams depend on the driver being

called.

noErr
badUnitErr
dS10CoreErr
notOpenErr

Result codes

unitEmptyErr

controlErr

No error

Bad reference number

Device control entry was purged
Driver isn't open

Bad reference number

Driver isn't enabled for control
calls

FUNCTION FSStatus (refNum: INTEGER; opCode: INTEGER; Wi# opParams:

OpParamPtr) : OSErr;

FSStatus returns status information about the driver having the

reference number refNum.

The type of information returned is specified

by opCode, and the information itself is pointed to by opParams. The
values passed in opCode and pointed to by opParams depend on the driver

being called.

noErr
badUni{tErr
dS10Corekrr
notOpenErr

Result codes

unitEmptyErr

statusErr

FUNCTION FSKi11110 (refNum: INTEGER)

No error

Bad reference number

Device control entry was purged
Driver isn't open

Bad reference number

Driver isn't enabled for status
calls

OSErr;

FSK11110 terminates all 1/0 with the driver having the reference number

refNum.

Result codes noErr
badUnitErr
dS10CoreErr
unitEmptyErr
controlErr

2/nn/B84 Hacker

CONFIDENTIAL

No error

Bad reference number

Device control entry was purged
Bad reference number

Driver 4sn't enabled for control
calls

/DMGR/DEVICE.R

DEVICE MANAGER ROUTINES 11

Low-Level Device Manager Routines

This section contains special information for programmers using the
low-level Pascal or assembly-language routines of the Device Manager,
and then describes the routines in detail.

All Device Manager routines described in this section can be executed

either synchronously (meaning that the application must wait until the
routine is completed) or asynchronously (meaning that the application

is free to perform other tasks while the routine is executing).

When a Device Manager routine ie called asynchronously, an 1/0 request
is placed in the driver's 1/0 queue, and control returns to the calling
application--even before the actual 1/0 is completed. Requests are
taken from the queue one at a time (in the same order that they were
entered), and processed. Only one request may be processed at any
given time.

The calling application may specify a completion routine to be executed
as soon as the 1/0 operation has been completed.

Routine parameters passed by an application to the Device Manager and
returned by the Device Manager to an application are contained in a
parameter block, which is memory space in the heap or stack. All
low-level Pascal calls to the Device Manager are of the form

PBCallName (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

PBCallName is the name of the routine. ParamBlock points to the
parameter block containing the parameters for the routine. If async is
TRUE, the call will be executed asynchronously; i4f FALSE, it will be
executed synchronously.

Assembly-language note: All Device Manager routines are called
wvith A§ pointing to a parameter block containing the parameters
for the routine, and Al pointing to the driver's device control
entry. All routines return with DJ containing a result code.

You specify whether a routine will be executed synchronously or

asynchronously by clearing or setting bit 10 of the routine trap
instruction, as descrided in the Using Assembly Language manual

*t% doesn't exist yet Wwa%,

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.R

Ny

12 Device Manager Programmer's Guide

Routine Parameters qa

The lengthy, variable-length data structure of a thame:er block 1s

given below. The Rguite~Managec~fnd File Managerjuse’this same data
structure, but only the parts relevant to the Device Manager are

discussed here. Each kind of parameter block contains eight fields of
standard information and two to nine fields of additional information:

TYPE ParamBlkType = ({oParam, fi{leParam, volumeParam, controlParam);

ParamBlockRec = RECORD

dolink: Per; {next queue entry}
1oType: INTEGER; {always 5}

{oTrap: INTEGER; ({routine trap}
10CmdAddr: Ptr; {routine address}
{ioCompletion: ProcPtr; ({completion routine}
{oResult: OSErr; {result code}

ioNamePtr: 0S8StrPtr; {driver name}
{oVRefNum: INTEGER; ({not used)
CASE ParamBlkType OF

{ioParam:

« « « {I/0 routine parameters}

fileParam:

e ¢ o ({(file information routine parameters}

volumeParam:

e« « « f{volume information routine parameters}

controlParam:

e « « {Control and Status routine parameters}
END;

ParnBlkPtr = “ParamBlockRec;

The first four fields in each parazeter block are handled entirely by
the Device Manager, and most programmers needn't be concerned with
them; programmers who are interested in them should see the section
"The Structure of 8 Driver".

I0Completion contains the address of a completion routine to be
executed at the end of an asynchronous call; it should be NIL for
asynchronous calls with no completion routine, and is automatically set
to NIL for all synchronous calls. For asynchronous calls, ioResult is
positive while the routine is executing, and returns the result code.

IONamePtr 45 a pointer to the name of a driver.

An B8-field parameter block is adequate for opening a driver, but most
of the Device Manager routines require longer parameter blocks, as
described below. The parameters used with file and volume information
routines are described in the File Manager manual.

Control and Status routines use two additional fields:

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.R

DEVICE MANAGER ROUTINES 13

controlParam:
csCode: INTEGER; {type of Control or Status call}
csParam: OpParamType; {control or status information}

CSCode contains a number identifying the type of call. This number may
be interpreted differently by each driver. CSParam contains the
control or status information for the call.

1/0 routines use seven additional fields:

ioParam:
ioRefNum: INTEGER; {driver reference number}
{oVersNum: SignedByte; {not used}
ioPermssn: SignedByte; {read/write permission}

{oMisc: Ptr; {not used}

ioBuffer: Ptr; {data buffer}

{oReqCount: Longlnt; {requested number of bytes}
ioActCount: Longlnt; {actual number of bytes}

{oPosMode: INTEGER; {type of positioning operation}
ioPosOffset: LonglInt; {size of positioning offset])

10Permssn requests permission to read from or write to a driver:

I10Permssn 1/0 operation

@ Whatever the driver is capable of doing
1 Reading only

2 Writing only

3 Reading and writing

This request is compared with the capabilities of the driver (some
drivers are read-only, some are write-only). If the driver is
incapable of performing as requested, an error will be returned.

10Buffer points to an application's data buffer into which data is
written by Read calls and from which data is read by Write calls.
10ReqCount specifies the requested number of bytes to be read or
written. 1I0ActCount contains the number of bytes actually read or
written.

Advanced programmers: IO0PosMode and ioPosOffset contain positioning
information used for Read and Write calls by drivers of block devices.
Bits @ and 1 of ioPosMode indicate a byte position beyond the physical
beginning of the block-formatted medium (such as a disk):

I10PosMode Offset

¢ None

1 Relative to beginning of device
2 None

3 Relative to current position

10PosOffset specifies the byte offset beyond ioPogMode where the
operation {s to be performed.

2/nn/B4 Hacker CONFIDENTIAL /DMGR/DEVICE.R

7-14

14 Device Manager Programmer's Guide

Routine Descriptions

This section describes the procedures and functions. Each routine
description includes the low~level Pascal form of the call and the
routine's assembly-language macro. A list of the fi{elds in the
parameter block affected by the call i{s also given.

Assembly-language note: The field names given in these
descriptions are those of the ParamBlockRec data type; see
“Summary of the Device Manager" for the equivalent
assembly-language equates.

The number next to each parameter name indicates the byte offset of the
parameter from the start of the parameter block pointed to by A@; only
assembly-language programmers need be concerned with it. An arrow
drawn next to each parameter name indicates whether it's an input,
output, or input/output parameter:

Arrow Meaning

€-- Parameter is passed to the routine
-> Parameter 1s returned by the routine
<> Parameter is passed to and returned by the routine

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.R

FUNCTION PBRead (paramBlock:

Trap macro Read

Parameter block

DEVICE MANAGER ROUTINES 15

ParmBlkPtr; async: BOOLEAN) : OSErr;

€&- 12 {oCompletion pointer

-—> 16 {oResult word

€-—- 24 4oRefNum word

€= 32 dioBuffer pointer

€= 36 1oReqCount long word

—>» 4§ ioActCount long word

€~ 44 ioPosMode word

€&>» 46 1oPosOffset long word

Result codes noErr No error

badUnitErr Bad reference number
dSIOCoreErr Device control entry was purged
notOpenErr Driver isn't open
unitEmptyErr Bad reference number
readErr Driver isn't enabled for read

PBRead attempts to read ioRe
reference number ioRefNum, a
to by ioBuffer. After the r
bytes actually read is retur

Advanced programmers: If th

the byte offset from the pos
read should actually begin,

2/nn/84 Hacker

calls

qCount bytes from the driver having the

nd transfer them to the data buffer pointed
ead operation {8 completed, the number of
ned in ioActCount.

e driver i{s reading from a block device,

ition indicated by 2oPosMode, where the
is given by ioPosOffset.

CONFIDENTIAL /DMGR/DEVICE.R

7-15

16 Device Manager Programmer's Guide
FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
Trap macro _Write

Parameter block
€©«- 12 ioCompletion pointer

-=» 16 4oResult word
€&- 24 4oRefNum word
€&~ 32 ioBuffer pointer

€-- 36 1oReqCount long word
> 4§ 1oActCount long word
€— 44 1oPosMode word

€- 46 1o0PosOffset long word

Result codes noErr No error
badUnitErr Bad reference number
dSI10CoreErr Device control entry was purged
notOpenErr Driver isn't open
unitEmptyErr Bad reference number
writErr Driver isn't enabled for write
calls

PBWrite attempts to take {oReqCount bytes from the buffer pointed to by
ioBuffer and write them to the driver having the reference number
{oRefNum. After the write operation is completed, the number of bytes
actually written is returned in ioActCount.

Advanced programmers: 1If the driver is writing to a block device,
ioPosMode indicates whether the write should begin relative to the
beginning of the device or the current position. The byte offset from
the position indicated by 1oPosMode, where the read should actually
begin, 1s given by 41oPosOffset.

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.R

DEVICE MANAGER ROUTINES 17

FUNCTION PBControl (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Control

Parameter block
€- 12 1ioCompletion pointer

-—> 16 {oResult word

€= 24 ioRefNum word

€&- 26 csCode word

€&~ 28 csParam record

Result codes nokErr No error
badUn{tErr Bad reference number
dS10Corekrr Device control entry was purged
notOpenErr Driver isn't open
unitEmptyErr Bad reference number
controlErr Driver isn't enabled for control
calls

PBControl sends control information to the driver having the reference
number refNum. The type of information sent iB specified by csCode,
and the information itself is pointed to by csParam. The values passed
in c¢sCode and pointed to by csParam depend on the driver being called.

FUNCTION PBStatus (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
Trap macro _Status

Parameter block
€&- 12 1oCompletion pointer

-—>» 16 ioResult word

&= 24 {oRefNum word

€= 26 csCode word

€— 28 ceParanm variable

Regult codes noErr No error
badUnitErr Bad reference number
dS10CoreErr Device control entry was purged
notOpenErr Driver isn't open
unitEmptyErr Bad reference number
statusErr Driver isn't enabled for status
calls

PBStatus returns status information about the driver having the
reference number refNum. The type of information returned 1s specified
by csCode, and the information itself is pointed to by csParam. The
values passed in csCode and pointed to by csParam depend on the driver
being called.

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.R

7-17

7-18

18 Device Manager Programmer's Guide
FUNCTION PBKillIO (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
Trap macro Killlo

Parameter block
€- 12 1oCompletion pointer

—>» 16 {oResult word
«- 24 ioRefNum word
€~ 26 csCode word
€-- 28 cgParam variable
Result codes noErr No error
badUnitErr Bad reference number

dSIO0CoreErr Device control entry was purged

unitEoptyErr Bad reference number

controlErr Driver isn't enabled for control
calls

FSK1111I0 stops any current 1/0 request being processed, and removes all
pending 1/0 requests from the 1/0 queue of the driver having the
reference number refNum. The completion routine of each pending 1/0
request is executed. : .

THE STRUCTURE OF A DRIVER

This section and the next describe the structure of drivers and how to
write device drivers. If this information doesn't interest you, skip
ahead to the summary.

RAM drivers are stored in resource files. Drivers that will be used by
more than one application should be stored in the system resource file,
while those specific to an application should be stored in the
application's resource file.

The resource type for drivers is 'DRVR'. The resource 1D for a driver
18 its unit number (explained below) and should be between ¢ and 31
{nclusive. (The resource ID for a desk accessory must be greater than
11.) Don't use numbers of existing drivers unless you want the
existing driver to be replaced. The resource name should match the
driver name. (The resource name for a desk accessory must contain a
nonprinting character.)

As i1llustrated in Figure 2, a driver begine with a few words of flags

and other data, followed by offsets to the routines that do the work of
the driver, an optional title, and finally the routines themselves.

2/44/84 Hacker CONFIDENTIAL /DEVICE.D

7-19

THE STRUCTURE OF A DRIVER 19

byte 0 drvrfiogs wvord flogs

2 drvrDelay word number of ticks between SystemTask calls
4 darvrEMask vord desk accessory event mask
6 drvriMenu vord menu ID of menu associated with driver
8 drvrOpen wvord offset to open routine

10 drvrPrime vord offset to prime routine

12 drvrCti word offset to control routine

14 drvrStatus word offset to status routine

16 drvrClose word offset to close routine

18 drvrName word length byte and characters of driver name

f driver code]/

Figure 2. Driver Structure

The drvrFlags word contains the following:

Flag Name Meaning if set

bit 8 dReadEnable Driver enabled for Read calls
bit 9 dWritEnable Driver enabled for Write calls
bit 10 dCtlEnable Driver enabled for Control calls
bit 11 dStatEnable Driver enabled for Status calls

bit 12 dNeedGoodBye Driver needs to be called prior to
application heap compactions

bit 13 dNeedTime Driver needs time for performing a
periodic action
bit 14 dNeedLock Driver will be locked in memory as soon

as it's opened (always set for ROM drivers)

Bits 8 through 11 are the enable flags for the driver routines. Each
flag that corresponds to a Device Manager call that the driver can
respond to must be set.

RAM drivers that exist on the application heap will be destroyed every
time the heap is compacted (when an application starts up, for
example). If dNeedGoodBye is set, the control routine of the driver
will be called before the heap 18 compacted, and the driver can perform
any "clean-up" actions it needs to. The driver's control routine can
identify this "good=-bye" call by checking the c¢sCode parameter=--it will
be ~-l.

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

20 Device Manager Programmer's Guide

1f the dNeedTime flag is set, the drvrDelay word contains a tick count
indicating how often the periodic action should occur. A tick count of
¢ wmeans it should happen as often as possible, 1 means it should happen
every 6@cth of a second, 2 means every 3@th of a second, and so on. The
action {tself is performed by the control routine of the driver when
it's called by the Device Manager procedure SystemTask. The driver's
control routine can identify this periodic-action call by checking the
csCode parameter—it will be accRun. Normally only desk accessories
will use dNeedTime and drvrDelay.

DrvrEMask 4s used only for desk accessories and is discussed in the
Desk Manager manual. If the driver has its own menu (or menus),
drvrMenu contains the ID of the menu (or one of the menus); otherwise
{t contains @. Normally only desk accessories have menus.

Following these four words are the offsets to the driver routines, a

title for the driver (preceded by i1ts length in bytes), and the
routines that do the work of the driver.

A Device Control Entry

The first ti{me a driver {s opened, information about it is read into a
structure Iin memory called a device control entry. A device control
entry tells the Device Manager the location of the driver's routines,
the location of the driver's 1/0 queue, and other information. A
device control entry is a 4@-byte relocatable block located in the
system communication area of the heap. It's locked while the driver is
open, and unlocked and purgeable while the driver is closed.

The structure of a device control entry is illustrated in Figure 3.
Notice that some of the data is taken frow the first four words of the
driver. Most of the data in the device control entry is stored and
accessed only by the Device Manager, but in some cases the driver
{itself must store into it.

2/d4d/84 Hacker CONFIDENTIAL /DEVICE.D

byte 0

12
16
20
24
26
30
34
36
38

THE STRUCTURE OF A DRIVER 21

dCtiDriver long word mﬁﬁimﬁf ol
dCtiFlogs word flogs
dCtiQueue vord not used
dCtiQHead pointer pointer to first entry in driver’s | /0 queue
dCtiQTail pointer pointer {0 iast entry in driver's [/0 queue
dCtiPosition long word| byte position used by Reaod and Write calls
dCtiStorage handle handie to driver's private storage
dCtiRefNum word driver’s reference number
dCtiCurTicks long word| counter for timing, systemTask calls
dCiwindovw pointer pointer to driver's wvindow record {if any)
dCtiDelay word number of ticks between SysterTask calis
dCtiEMask word desk accessory event mask
dCtiMeru vord menu 1D of menu associated with driver

Figure 3. Device Control Entry

The dCtlFlags word contains the following (bits 8 through 14 are copied
from the drvrFlags word of the driver):

Flag Name

bit 5 dOpened

bit 6 dRAMBased
bit 7 drvrActive
bit 8 dReadEnable
bit 9 dWritEnable
bit 1¢ dCtlEnable
bic 11 dStatEnable
bit 12 dNeedGoodBye
bit 13 dNeedTime
bit 14 dNeedlock

Meaning if set
Driver is open

Driver 1s RAM-based

Driver 18 currently executing
Driver enabled for Read calls
Driver enabled for Write calls
Driver enabled for Control calls
Driver enabled for Status calls
Driver needs to be called prior to
application heap compactions
Driver needs time for performing a
periodic action

Driver will be locked in sewmory as
soon as it's opened (always set for
ROM drivers)

DCtlPosition is used only by drivers of block devices, and indicates
the current source or destination position of a Read or Write call.

2/4d/84 Hacker

CONFIDENTIAL /DEVICE.D

22 Device Manager Programmer's Guide

The position is given in number of bytes beyond the physical beginning
of the medium used by the device. For example, 1if one logical block of
data has just been read from a 3 1/2-inch digk via the Disk Driver,
dCtlPosition would be 512.

ROM drivers generally use low-memory reserved locations for their local
storage. RAM drivers may reserve space within their code space, or
allocate a relocatable block and keep a8 handle to it in dCtlStorage
(this memory is locked when the driver is opened, and unlocked when the
driver is closed).

DCtlCurTicks 18 used by the Device Manager to time SystemTask calls (if
any were indicated by the dNeedTime flag in the driver).

The Unit Table

The location of each device control entry is maintained in a list
called the unit table. The unit table is a 128-byte relocatable block
containing 32 4-byte entries. Each entry has a number, from ¢§ to 31,
called the unit number, and contains a handle to the device control
entry for a driver. The unit number can be used as an index into the
unit table to locate the handle to a specific driver's device control
entry; it's equal to minus (the driver's reference number - 1). For
example, the Sound Driver's reference number is =4, its resource 1D is
3.

Figure 4 shows the layout of the unit table created at startup time
with the standard Macintosh drivers.

2/4d4/84 Hacker CONFIDENTIAL /DEVICE.D

THE STRUCTURE OF A DRIVER 23

byte O not used unit number 0
4 not used 1
8 Printer Driver 2
12 Sound Driver 3
16 Disk Driver 4
20 | SerialDriverportAinput | S
24 | SerialDriverportAoutput | 6
28 SerialDriverportBinput | 7
32 | SerialDriver portBoutput | 8
not used 4
48 Caiculator 12
52 Alarm Clock 13
56 Key Caps 14
60 Puzzie 15
64 Note Pad 16
68 Scrapbook 17
72 - Control Panel 18
yd not used)
124 not used 3

Figure 4. The Unit Table

Assembly-language note: The system global uTableBase points to
the unit table.

Each driver contains an 1/0 queue with a list of routines to be
executed by the driver. There's one 1/0 queue for each device driver

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

7-24

24 Device Manager Programmer's Guide

(Figure 5). The queue's header is located in the device control entry

for the driver.

dCtiQueve word
dCtiHead pointer —-JToLir& pointer —N—-—)’ ioLink pointer
L L ioType word ioType word
dCtiTail pointer ioTrep I ToTrep l
queue header in ioCmdAddr ioCmdAddr
device control entry long word long word
rest of rest of
parameter parameter
block block
first queue last queue
entry entry

Figure 5. 1/0 Queue Structure

DCtlHead points to the first entry in the queue, and dCtlTail points to

the last entry in the queue.

Each queue entry consists of a parameter

block for the routine called-~an abbreviation of which 48 given below:

TYPE ParamBlockRec = RECORD
iolink: Ptr; {next entry}
1oType: INTEGER; {always 10QType}
ioTrap: INTEGER; {routine trap)}
{oCmdAddr: Ptr; {rest of block}

END;

I0Link points to the next entry in the queue, and ioType indicates the
queue type, which must be the value of the system global i10QType or 2.
10CadAddr contains the address of the Device Manager routine called.
10Trap contains the trap (of the form $AXnn) of the routine called.
The following system globals identify Device Manager traps:

Name Value Trap Routine
aRdCmd 2 SAPQ@2 Read
aWrCmd 3 $AQQ3 Write
aCtlCmd 4 SAGQ4L Control
aStsCod S $AQO5 Status

2/44/84 Hacker

CONFIDENTIAL

/DEVICE.D

WRITING YOUR OWN DEVICE DRIVERS 25

WRITING YOUR OWN DEVICE DRIVERS

This section describes what you'll need to do to write your own device
driver. The structure of the driver must match that shown in the
previous section. The routines that do the work of the driver should
be written to operate the device in whatever way you require.

Your driver must contain routines to handle Open and Close calls, and
may choose to handle Read, Write, Control, Status, and KilllO calls as
well. The driver routines that the Device Manager will execute when
one of these calls is made are as follows:

Device Manager call Driver routine

Open Open

Read Prime
Write Prime
Control Control
Killlo Control
Status Status
Close Close

When the Device Manager executes a driver routine to handle an
application call, it passes a pointer to the call's parameter dblock in
AQ, a pointer to the driver's device control entry in Al, and @ in D@.
From this information, the driver can determine exactly what operations
are required to fulfill the call's requests, and do them.

Open and close routines must be executed synchronously. They needn't
preserve any registers that they use. Open and Close routines should
place a result code in D@ and return via an RTS.

The open routine must allocate any private storage required by the
driver, store a handle to it 4n the device control entry (in the
dCtlStorage field), initialize any local variables, and then be ready
to receive a Read, Write, Status, Control, or KilllO call. It might
also install interrupt handlers, change interrupt vectors, and store s
pointer to the device control entry somewhere in its local storage for
its {nterrupt handlers to use. The close routine wust reverse the
effects of the open routine, by deallocating all used memory, removing
{nterrupt handlers, and replacing changed interrupt vectors. If
anything about the operational state of the driver should be saved
until the next time the driver 4s opened, it should be kept in the
relocatable block of memory pointed to by dCtlStorage.

Prime, control, and status routines are queueable (in other words, they
can be executed asynchronously), and should be interrupt-driven. They
can use registers A to A3 and D§ to D3, but must preserve any other
registers used. Prime, control, and status routines should place a
result code in D¢ and return via an RIS, unless the device completes
the 1/0 request immediately, in which case they should JMP to the
I0Done routine (explained below).

2/4d/84 Hacker CONFIDENTIAL /DEVICE.D

26 Device Manager Programmer's Guide

(eye)
Because they can be called as the result of an interrupt
during a previous 1/0 request, these routines should
never call Memory Manager routines that cause heap
compactions.

The prime routine must implement all Read and Write calls made to the
driver. You may want to use the Fetch and Stash routines described
below to read and write characters. 1f the driver is for a block
device, {t should update the dCtlPosition position after each read or
write. The control routine must accept the control information passed
to it, and manipulate the device as requested. The status routine must
return requested status information. As both the control and status
routines may be subjected to Control and Status calls sending and
requesting a variety of information, they must be prepared to respond
correctly to all types.

Routines For Writing Drivers

The Device Manager includes three routines that provide low-level
functions for drivers: Fetch, Stash, and 10Done. 1Include them in the
code of your device driver if they're useful to you. Fetch, Stash, and
10Done are {nvoked via jump vectors rather than macros (in the interest
of speed). These routines don't return a result code, as the only
result possible is dSIOCoreErr, which invokes the System Error Handler.

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

7-27
WRITING YOUR OWN DEVICE DRIVERS 27

FUNCTION Fetch (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Jump vector jFetch
On entry A@: pointer to device control entry
On exit DF: character fetched; bit 15=1 if ic's the

last character in the data buffer

Parameter block
€—- 12 1oCompletion pointer

- 16 ioResult vord
€~ 24 1oRefNum word
€— 32 ioBuffer pointer

€- 36 41oReqCount long word
€— 4@ doActCount long word

Fetch gets the next character from the data buffer pointed to by
ioBuffer and places it in D@. I0ActCount i8 incremented by 1. If
{oActCount equals ioReqCount, bit 15 of DJ 18 set. After receiving the
last byte requested, the driver should call 1I0Done.)

FUNCTION Stash (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Jump vector jStash
On entry A@: pointer to device control entry
D@: character to stash
On exit DF: bit 15=1 4f 1it'e the last character
requested

Parameter block

é&~ 12 1oCompletion pointer
—>» 16 4{oRegult word

€~ 24 4oRefNum word

€é— 32 ioBuffer pointer
€— 36 410oReqCount long word
€~ 4§ ioActCount long word

Stash places the character in DJ into the data buffer pointed to by
ioBuffer, and increments i1oActCount by l. If 1oActCount equals
ioReqCount, bit 15 of D@ 18 set. After stashing the last byte
requested, the driver should call IODone.

2/d4d4/84 Hacker CONFIDENTIAL /DEVICE.D

7-28
28 Device Manager Programmer's Guide

FUNCTION I0Done (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Jump vector j10Done
On entry Ag: pointer to device control entry
On exit D@: bit 15=1 if it's the last character

in the buffer

Parameter block
€— 12 1ioCompletion pointer

e o 16 4oResult word
€&~ 24 1oRefNum word
€~ 32 1oBuffer pointer

€-- 36 1oReqCount long word
€— 4@ 1oActCount long word

Result codes noErr No error
resErr Can't load driver from resource
file

unitEmptyErr Reference number specifies NIL
handle in unit table

I0Done removes the current 1/0 request from the driver's 1/0 queue, and
executes the completion routine (4f there's one). It marks the driver
inactive, and unlocks it and its device control entry (if it's allowed
to by the dNeedlLock bit of the dCtlFlags word). Then it begins
executing the next 1/0 request in the 1/0 queue.

Interrupts

This section discusses interrupts: how the Macintosh uses them, and
how you can use them if you're writing your own device driver. Only
programmers who want to write thelr own 1nterrupt-drivé¥ device drivers
need read this section. Programmers who want to build their own driver
on top of a built-in Macintosh driver may be interested in gome of the
information presented here.

An interrupt 18 a form of exception: an error or abnormal condition
detected by the processor in the course of program execution.
Specifically, an interrupt 1s an exception that is signaled to the
processor by a device, as distinct from a trap, which arises directly
from the execution of an instruction. Interrupts are used by devices
to notify the processor of a change in condition of the device, such as
the completion of an 1/0 request. An interrupt causes the processor to
suspend normal execution, save the address of the next instruct{on and
the processor's internal status on the stack, and execute an interrupt
handler.

The 68000 recognizes seven different levels of interrupts, each with

its own interrupt handler. The addresses of the various handlers,
called interrupt vectors, are kept in a vector table in the system

2/44/84 Hacker CONFIDENTIAL /DEVICE.D

WRITING YOUR OWN DEVICE DRIVERS 29

communication area. Each level of interrupt has its own vector found
at a definite fixed location in the vector table. When an interrupt
occurs, the processor fetches the proper vector from the table, uses it
to locate the interrupt handler for that level of interrupt, and jumps
to the handler. On completion, the handler exits with an RTE
instruction, which restores the internal state of the processor from
the stack and resumes normal execution from the point of suspension.

There are three devices that can create interrupts: the Synertek 6522
Versatile Interface Adapter (VIA), the Zilog 853¢ Serial Communications
Controller, and the debugging ewitch. They send a 3-bit number, from ¢
to 7, called the interrupt priority level, to the processor. The
interrupt level indicates which device is interrupting, and indicates
which interrupt handler should be executed:

Level Interrupting device

) None
1 V1A
2 SCC
3 Spurious

4-7 Debugging button

A level-3 interrupt occurs when both the VIA and SCC interrupt at the
same time; the interrupt handler for a level-3 interrupt is simply an

RTE instruction. Debugging interrupts shouldn't occur during the
normal execution of an application.

The interrupt priority level is compared with the processor priority in
bits 8, 9, and 1@ of the status register. If the interrupt priority
level is greater than the processor priority, the 68@¢@@ acknowledges
the interrupt and initiates interrupt processing. The processor

priority determines which interrupting devices are ignored, and which
are serviced:

Level Services

¢ All interrupts

1 SCC and debugging interrupts only
3-6 Debugging interrupts only

7 No interrupts

When an {nterrupt is acknowledged, the processor priority is set to the
interrupt priority level, to prevent additional interrupts of equal or

lower priority, until the interrupt handler has finished servicing the
interrupt.

The interrupt priority level is used as an index into the primary
interrupt vector table. This table contains 7 long words beginning at
address $64. Each long word contains the starting address of an
interrupt handler (Figure 6).

2/d4d/84 Hacker CONFIDENTIAL /DEVICE.D

7-30

30 Device Manager Programmer's Guide

$64 | autointt pointer to level-1 interrupt handler
$68 autoint2 pointer to ievel-2 interrupt handier
$6C | ‘autoInt3 pointer to level-3 interrupt handier
$70 | outoint4 | pointer to level-4 interrupt handier
$74 | outoIntS pointer to level-5 interrupt handier
$78 | autointé | pointer to level-6 interrupt handler
$7°C autoint? pointer to level-7 interrupt handler

Figure 6. Primary Interrupt Vector Table
6. Execution jumps to the interrupt handler at the address specified
in cthe table.
The interrupt handler then must identify and service the interrupt, and

restore the processor priority, status register, and program counter to
the values they contained before the interrupt occurred.

Level~-l (VIA) Interrupts

Level-] interrupts are generated by the VIA. You'll need to read the
Synertek manual describing the VIA to use most of the information
provided in this section. The level-l interrupt handler determines the
source of the interrupt (via the VIA's IFR and IER registers) and then
uses a table of secondary vectors in the system communication area to
determine which interrupt handler to call (Figure 7).

2/d4d/84 Hacker CONFIDENTIAL /DEVICE.D

WRITING YOUR OWN DEVICE DRIVERS 31

byte O one-second interrupt VIA CA2 control line
4 | vertical-retrace interrupt VIA CA1 control line

8 shift-register interrupt - VIA shift register

12 not used '

16 not used

20 T2 timer: Disk Driver VIA timer 1

24 T1 timer: Sound Driver VIA timer 2

28 | spurious (shouldn't ocour)

Figure 7. Level-] Secondary Interrupt Vector Table

The level-l secondary interrupt vector table is pointed to by the
system global 1v11DTI. Each vector in the table points to the interrupt
handler for a different source of {nterrupt. The interrupts are
handled in order of their entry i{n the table, and only one interrupt
handler is called per level-l interrupt (even if two or more sources
are interrupting). This allows the level=-l interrupt handler to be
reentrant, and interrupt handlers should lower the processor priority
as soon as possible in order to enable other pending interrupts to be
processed.

One-gecond interrupts occur every second, and simply update the system
global time. Vertical retrace interrupts are generated once every
vertical retrace interval; control is passed to the Vertical Retrace
Manager, which updates the system global ticks, handles changes in the
state of the cursor, keyboard, and mouse button, and executes tasks
installed in the vertical retrace queue.

Whenever the Digk Driver or Sound Driver aren't being used, you can use
the Tl and T2 timers for your own needs.

1f the cumulative elapsed time for all tasks on a level-] interrupt
exceed lémsec (one video frame), a level-l interrupt may itself be
interrupted by a vertical retrace interrupt. In this case, the
vertical retrace interrupt 18 cleared, and the vertical retrace tasks
are ignored.

The base address of the VIA (the system global vBase) is passed to each
interrupt handler 4in Al.

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

7-31

7-32

32 Device Manager Programmer's Guide

Level-2 (SCC)_Interrupts

Level-2 interrupts are generated by the SCC. You'll need to use the
Zilog manual describing the VIA to effectively use the information
provided in this section. The level-=2 interrupt handler determines the
source of the interrupt, and then uses a table of secondary vectors in
the system communication area to determine which interrupt handler to
call (Figure 8).

byte O channel B transmit buffer empty
4 channel B external/status change mouse vertical
8 | channel B receive character available
12 | channei B special receive condition
16 channel A transmit buffer empty
20 channel A external/status change mouse horizontal
24 | channel A receive character available
28 | channel A special receive condition

Figure 8. Level-2 Secondary Interrupt Vector Table

The level-2 gecondary interrupt vector table is pointed to by the
systea global 1vl2DT. Each vector in the table points to the interrupt
handler for a different source of interrupt. The interrupts are
handled according to the following fixed priority:

channel A receive character available and special receive
channel A transmit buffer empty

channel A external/status change

channel B receive character available and special receive
channel B transmit buffer empty

channel B external/status change

Only one interrupt handler is called per level-2 {nterrupt (even if two
or more sources are interrupting). This allows the level-2 interrupt
handler to be reentrant, and interrupt handlers should lower the
processor priority as soon as possible in order to enable other pending
interrupts to be processed.

External/status interrupts pass through a tertiary vector table (Figure

9) in the system communication area to determine which interrupt
handler to call (Figure 9).

2/dd /84 Hacker CONFIDENTIAL /DEVICE.D

WRITING YOUR OWN DEVICE DRIVERS 33

byte 0 | channel B nonmouse interrupt

4 mouse vertical interrupt

8 | channel A nonmouse interrupt

12 mouse horizontal interrupt

Figure 9. Level-2 External/Status Interrupt Vector Table

The external/status interrupt vector table {8 pointed to by the system
global extStsDT. Each vector in the table points to the interrupt
handler for a different source of interrupt. Nonmouse interrupts
(break/abort, for example) always handled before mouse interrupts.

When a level-~2 interrupt handler {s called, D§ points to the SCC read
register @ (external/status interrupts only), and Dl points to the SCC
read register @ containing the changed bits since the last
external/status interrupt. A@ points to the SCC channel A or channel B
control read address and Al points to SCC channel A or channel B
control write address, depending on which channel is interrupting. The
SCC's data read address and data write address are located 4 bytes
beyond A§ and Al, respectively. The following system globals can be
used to refer to these locations:

System global Value Refers to

sccRBase S9FFFF8 Base read address

sccWBase $BFFFF9 Base write address

bCtl ¢ Offset for channel B control
aCtl 2 Offset for channel A control
bData 4 Offset for channel B data
aData 6 Offset for channel A data

Writing Your Own Interrupt Handlers

You can write your own interrupt handlers to replace any of the
standard interrupt handlers just described. Be sure to place an
interrupt vector that points to your interrupt handler in one of the
interrupt vector tables.

Both the level-] and level-2 interrupt handlers preserve A@ through A3
and D@ through D3. Every interrupt handler (except for external/status
interrupt handlers) is responsible for clearing the source of the
i{nterrupt, and for saving and restoring any additional registers used.
Interrupt handlers should return directly via an RTS, or, 4if the 1/0
requested by the handler is completed immediately, via a JMP to IODone.

2/4d/84 RHacker CONFIDENTIAL /DEVICE.D

34 Device Manager Programmer's Guide

(hand)
Any software action indicating that interrupts are being
enabled should be taken before the corresponding hardware
action, lest an interrupt occur before the software has
been told such an event is possible.

Any software action indicating that {nterrupts are being
disabled should be taken after the corresponding hardware
action, lest one interrupt slip in with the software
thinking that interrupts are off.

A Sample Driver

Here's the skeleton of the Disk Driver, as an example of how a driver
should be constructed.

SonyDrvr
<WORD S$4FQQ ;read, write, control...
WORD ¢, sno delay of event mask
+WORD @ ;N0 menu

;Entry-point offset table

«WORD DiskOpen-DiskDrvr ;open

«WORD DisgkPrime-DiskDrvr sprime

«WORD DiskControl=-DiskDrvr ;control

+WORD DigkStatus-DigkDrvr ;status

+WORD DiskRTS-DiskDrvr ;close (just RTIS)

;Disk Driver routines

DiskOpen MOVEQ #<DiskVarLth/2>,Dd
DiskRTS i&é

DiskDone 3§§ 10Done

DiskControl éaaE.L JControl,=(SP)
DiskStatus &6§son #StatusErr, D¢
DiskPrime LBQE.L JDiskPrime,{-SP)

2/d4d4/84 Hacker CONFIDENTIAL /DEVICE.D

SUMMARY OF THE DEVICE MANAGER 37

SUMMARY OF THE DEVICE MANAGER

Constants

CONST goodByeCode = ~1;

Data Structures

TYPE ParmBlkPtr = “ParamBlockRec;
ParamBlkType = (ioParam, fileParam, volumeParam, controlParam);

ParamBlockRec = RECORD

iolink: Ptr;
ioType: INTEGER;
ioTrap: INTEGER;

ioCmdAddr: Ptr;
ioCompletion: ProcPtr;
ioResult: INTEGER;.
{oNamePtr: 0SStrPer;
ioVRefNum: INTEGER;
CASE ParamBlkType OF
ioParam:
fileParam:
volumeParam:
controlParam:
END;

TYPE OpVariant = (sound, asyncRst, asyncInBuff, asyncShk, printer,

fontMgr, diskDrv, asyncBuffBytes, asyncStatus,
diskStat);

2/nn/B4 Hacker CONF1DENTIAL /DMGR/DEVICE.S

TYPE OpParamPtr = “OpParauType;

OpParamType = RECORD
CASE OpVariant OF
{control information)}

sound: {Sound Driver}
(sndVal: INTEGER);

asyncRst: {Async Driver}
(asncConfig: INTEGER);

asyncInBuff:

(asncBPtr: Ptr;
asncBlen: INTEGER);
asyncShk:
(asncHndShk: LonglInt;
asncMisc: Longlnt);
printer: {Printer Driver)
(paraml: Longint;
param2: Longlnt;
paramd: Longlnt);
fontMgr: {Font Manager}
(fontRecPtr: Ptr;
fontCurDev: INTEGER);
diskDrv:] {Disk Driver)
(diskBuff: Ptr);
{status information]}
asyncBuffBytes: {Async Driver}
(asyncNBytes: Longlnt);
asyncStatus:
(asncSl: INTEGER;
asncS2: INTEGER;
asncS3: INTEGER);
diskStat: {Disk Driver}
(dskTracklock: INTEGER;
dskInfoBits: Longlnt;
dskQElem: drvrQElRec;
dskPrime: INTEGER;
dskErrCnt: INTEGER);
END;

Routines For Opening and Closing Drivers

FUNCTION OpenDriver (fileName: 0SStr255; VAR refNum: INTEGER) : OSErr;
FUNCTION CloseDriver (refNum: INTEGER) : OSErr;

2/nn/84 Macker CONFIDENTIAL /DMGR/DEVICE. S

High-Level Routines

SUMMARY OF THE DEVICE MANAGER 39

FUNCTION
FUNCTION
FUNCTION
FUNCTION

FUNCTION

FSRead
FSWrite
FSControl
FSStatus

FSKilll0

Low-Level Routines

(refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr)
: OSErr;

(refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr)
: OSErr;

(refNum: INTEGER; opCode: INTEGER; opParams:
OpParamPtr) : OSErr;

(refNum: INTEGER; opCode: INTEGER; VAR opParams:
OpParamPtr) : OSErr;

(refNum: INTEGER) : OSErr;

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
FUNCTION PBControl (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
FUNCTION PBStatus (paramBlock: ParmBlkPtr; async: PJOLEAN) : OSErr;
FUNCTION PBKillIO (paramBlock: ParmBlkPtr; async: BJOLEAN) : OSErr;
Routines For Writing Drivers

FUNCTION Fetch (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
FUNCTION Stash (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
FUNCTION 10Done (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Assembly-Language Information

Constants

i0QType -EQU 2 ;1/0 request queue entry type
aRdCnd +EQU 2 ;ioTrap type for Read call

aWrCmd +EQU 3 sioTrap type for Write call
aCtlCmd +EQU 4 ;ioTrap type for Control call
aStsCmd «EQU 5 ;ioTrap type for Status call
sccRBase «EQU S9FFFF8 $SCC base read address

sccWBase <EQU SBFFFF9 $sSCC base write address

bCtl «EQU ¢ ;0ffset for SCC channel B control
aCtl +EQU 2 ;0ffset for SCC channel A control
bData <EQU 4 ;10ffset for SCC channel B data
aData +EQU 6 10ffset for SCC channel A data

2/nn/84 Hacker

CONFIDENTIAL /DMGR/DEVICE. S

7-39

7-40

iolink
ioType
ioTrap
ioCmdAddr
ioCompletion
ioResult
ioFileName
ioVNPtr
{ioVRefNunm
ioDrviNum

Standard Parameter Block Data Structure

Next queue entry

Always fsQType

Routine trap

Routine address

Completion routine

Result code

File name (and possibly volume name too)
Volume name

Volume reference number

Drive number

Control and Status Parameter Block Data Structure

csCode
csParam

Type of Control or Status call
Parameters for Control or Status call

1/0 Parameter Block Data Structure

ioRefNum
ioFileType
ioPermssn
ioBuffer
ioReqCount
ioActCount
ioPosMode
ioPosOffset

Macro Names

Routine name

PBRead
PBWrite
PBControl
PBStatus
PBKilllO

System Globals

Name
uTableBase
unitNtryCnt

2/nn/84 Hacker

Driver reference number

Not used

Open permission

Data buffer

Requested number of bytes
Actual number of bytes

Type of positioning operation
Size of positioning offset

Macro name
_Read
_VWrite
_Control
_Status
_KillIio

Size Contents
4 bytes Pointer to the unit table
2 bytes Maximum number of entries in the unit

table

CONFIDENTIAL /DMGR/DEVICE. S

Result Codes

SUMMARY OF THE DEVICE MANAGER 41

Name Value Meaning
abortErr =27 10 call aborted by K{i11l10
badUnitErr -21 Reference number doesn't match

unit table
controlErr -17 Driver isn't enabled for control

calls

dInstErr =26

Couldn't find driver in resource file
dRemoveErr =25 Tried to remove an open driver ‘
dS10CoreErr 14 Device control entry was purged
memFullErr =198 Memory full
noErr ¢ No error
notOpenErr -28 Driver isn't open
openErr -23 Requested read/write permiasion

doesn't match driver's open permission
readErr -19 Driver isn't enabled for read calls
resErr Resource Manager error
statusErr -18 Driver isn't enabled for status calls
unitEmptyErr =22 Reference number specifies NIL

handle in unit table .

writErr -20 Driver isn't enabled for write calls

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE. S

GLOSSARY

asynchronous execution: During asynchronous execution of a routine,
the Device Manager is free to perform other tasks.

block device: A device that reads and writes blocks of 512 characters
at a time; it can read or write any accessible block on demand.

character device: A device that reads or writes a stream of
characters, one 3t a time: it can neither skip characters nor go back
to a previous character.

closed driver: A driver that cannot be read from or written to.

close routine: The part of a driver's code that implements Device
Manager Close calls.

completion routine: Any application-defined code to be executed when
an asynchronous call to a Device Manager routine is completed.

control information: Information transmitted by an application to a
driver; it can typically select modes of operation, start or stop
processes, enable buffers, choose protocols, and so on.

control routine: The part of a driver's code that implements Device
Manager Control and XillIO calls.

data buffer: Heap space containing information to be written to a
driver from an application, or read from a driver to an application.

device: A part of the Macintosh or a piece of external equipment, that
can transfer information into or out of the Macintosh.

device control entry: a 4@-byte relocatable block of heap space that
tells the Device Manager the location of a driver's routines, the
location of a driver's 1/0 queue, and other information.

device driver: a program that exchanges information between an
application and a device.

driver name: A sequence of up to 255 printing characters; driver names
are always prefixed by a period (.).

driver reference number: A number that uniquely identifies an
individual driver.

exception: An error or abnormal condition detected by the processor in
the course of program execution.

interrupt: An exception that is signaled to the processor by a device,

to notify the processor of a change in condition of the device, such as
the completion of an 1/0

1/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.G

GLOSSARY 43

interrupt handler: A routine that services interrupts.

interrupt priority level: A number identifying the importance of the
interrupt. It indicates which device {s interrupting, and which
interrupt handler should be executed.

interrupt vector: A pointer to an interrupt handler.

1/0 queue: A queue containing the parameter blocks of all 1/0 requests
for one driver. :

1/0 request: A request for input from or output to a driver; caused by
calling a Device Manager routine asynchronougly.

open driver: A driver that can be read from and written to.

open routine: The part of a driver's code that implements Device
Manager Open calls.

parameter block: An area of heap space used to transfer information
between applications and the Device Manager.

prime routine: The part of a driver's code that implemeﬁts Device
Manager Read and Write calls.

processor priority: Bits 8.‘9. and 1¢ of the status register, that
indicate which interrupts will be processed and which will be ignored.

status information: Information transmitted to an application by a
driver; it may indicate the current mode of operation, the readiness of
the device, the occurrence of errors, and so on.

status routine: The part of a driver's code that implements Device
Manager Status calls.

synchronous execution: During synchronous execution of a routine, the
Device Manager must devote all of its attention to the routine, and
isn't free to perform any other task.

unit number: The number of each driver's entry in the unit table.

unit table: A 128-byte relocatable block containing a handle to the
device control entry for each device driver.

vector table: A table of vectors in the system communication area.

1/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.G

MACINTOSH USER EDUCATION

The Dialog Hanager: A Programmer's Guide /DMGR/DIALOG

See Also: Macintosh User Interface Guidelines

Macintosh Operating System Reference Manual
QuickDraw: A Programmer's Guide

The Font Manager: A Programmer's Guide

The Resource Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Window Manager: A Programmer's Guide
Macintosh Control Manager Programmer's Guide
The Desk Manager: A Programmer's Guide
CoreEdit: A Programmer's Guide

TextEdit: A Programmer's Guide

Putting Together a Macintosh Application

Modification History: Preliminary Draft C. Rose 12/8/82
Preliminary Draft C. Rose 1/7/83

First Draft (ROM 2.1) C. Rose 3/22/83

Second Draft (ROM 4) C. Rose 6/13/83

Third Draft (ROM 7) C. Rose 11/16/83

ABSTRACT

The Dialog Manager is the part of the Macintosh User Interface Toolbox

that

supports dialog boxes and the alert mechanism. This manual tells

you how to manipulate dialogs and alerts with Dialog Manager routines.

Summary of significant changes and additions since last version:

The Return key (like Enter) now has the same effect as clicking
the default button in an alert box. Return and Enter also have
this effect in a modal dialog; the default button {s the first
button in the item list, normally the OK button (pages 5, 11, 22).

Changes have been made to the structure of a dialog record (page
14) and a dialog template (page 28).

The standard sound procedure now exists. Sounds 1 through 3 are
the corresponding number of short beeps (page 15).

The discussion of filterProcs for ModalDialog has changed (page
22).

Assembly-language programmers can change the font used in dialogs
and alerts (page 19).

2 Dialog Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual

4 About the Dialog Manager

6 Dialog and Alert Windows

8 Dialogs, Alerts, and Resources

9 Item Lists in Memory

9 Item Types

11 Item Handle or Procedure Pointer

12 Display Rectangle

12 Item Numbers

13 Dialog Records

13 Dialog Pointers

14 The DialogRecord Data Type

15 Alerts

16 Using the Dialog Manager

17 Dialog Manager Routines

17 Initialization

18 Creating and Disposing of Dialogs
20 Handling Dialog Events

23 Invoking Alerts

25 Manipulating Items in Dialogs and Alerts
27 Modifying Templates in Memory

28 Dialog Templates in Memory

29 Alert Templates in Memory

3¢ Formats of Resources for Dialogs and Alerts
3¢ Dialog Templates in a Resource File
31 Alert Templates in a Resource File
32 Items Lists in a Resource File

34 Summary of the Dialog Manager

38 Glossary

Copyright (e) 1983 Apple Computer, Inc. All rights reserved. Distribution
in limited quantities does not constitute publication.

—

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Dialog Manager of the Macintosh User
Interface Toolbox. *** Eventually it will become part of a
comprehensive manual describing the entire Toolbox and Operating
System. ¥%*** The Dialog Manager provides Macintosh programmers with
routines for implementing dialog boxes and the alert mechanism, two
means of communication between the application and the end user.

(hand)
This manual describes version 7 of the ROM. If you're
using a different version, the Dialog Manager may not
work as discussed here.

Like all documentation about Toolbox units, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and
the Macintosh Operating System's Memory Manager. You should also be
familiar with the following:

- The basic concepts and structures behind QuickDraw, particularly
rectangles, grafPorts, and pictures.

- The basic concepts behind TextEdit or CoreEdit, to understand
editing text in dialog boxes.

- Resources, as discussed in the Resource Manager manual.

= The Toolbox Event Manager, the Window Manager, and the Control
Manager.

This manual is intended to serve the needs of both Pascal and
assembly-language programmers. Information of interest to
assembly-language programmers only {8 isolated and labeled so that
Pascal programmers can conveniently skip it. ®** Some of that

~{nformation refers to the “Toolbox equates" file (ToolEqu.Text), which

the reader will have learned about in an earlier chapter of the final
comprehensive manual. **%

The manual begins with an introduction to the Dialog Manager and what
you can do with i{t. It then discusses the basics of dialogs and
alerts: their relatifonship to windows, their relationship to
regsources, and the information stored in memory for the items in a
dialog or alert. Following this is a discussion of the dialog record,
where the Dialog Manager keeps all the information it needs about a
dialog, and an overview of how alerts are handled.

Next, a section on using the Dialog Manager introduces its routines and
tells how they fit into the flow of your application. This is followed
by detailed descriptions of all Dialog Manager procedures and
functions, their parameters, calling protocol, effects, side effects,
and so on.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

4 Dialog Manager Programmer's Guide

Following these descriptions are sections that will not interest all
readers. There's a discussion of how to modify definitions of dialogs
and alerts after they've been read from a resource file, and a section
that gives the exact formats of resources related to dialogs and
alerts.

Finally, there's a summary of the Dialog Manager, for quick reference,
followed by a glossary of terms used {n this manual.

ABOUT THE DIALOG MANAGER

The Dialog Manager is a tool for handling dialogs and alerts in a way
that's consistent with the Macintosh User Interface Guidelines.

A dialog box appears on the screen when a Macintosh application needs
more information to carry out a command. As shown in Figure 1, it
typically resembles a form on which the user checks boxes and fills in
blanks.

Print the document
@81/2 n 11" paper
OB 1/2" & 14 paper

rr R Stop printing after each page

Title: |Annual Report

Figure 1. A Typical Dialog Box
By convention, a dialog box comes up slightly below the menu bar, is a
bit narrower than the screen, and is centered between the left and
right edges of the screen. It may contain any or all of the following:

- Informative or instructional text

~ Rectangles in which text may be entered (initially blank or
containing default text that can be edited)

- Controls of any kind

Graphics (icons or QuickDraw pictures)

-~ Anything else, as defined by the application
The user provides the necessafy i{nformation in the dialog box, such as
by entering text or clicking a check box. There's usually a button

marked "OK" to tell the application to accept the information provided
and perform the command, and a button marked "Cancel" to cancel the

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

ABOUT THE DIALOG MANAGER 5

command. Some dialog boxes contain more than one button that will
perform the command, each in a different way.

Most dialog boxes require the user to respond before doing anything
else. Clicking a button to perform or cancel the command makes the box
go away; clicking outside the dialog box only causes a beep from the
Macintosh's speaker. This type is called a modal dialog box because it
puts the user in the state or "mode" of being able to work only inside
the dialog box. It usually has the same general appearance as shown in
Figure 1. One of the buttons in the dialog box may be outlined boldly.
Pressing the Return key or the Enter key has the same effect as
clicking the outlined button or, {f none, the OK button; the particular
button whose effect occurs is called the dialog's default button and is
the preferred ("safest”) button to use in the current situation. If
there's no boldly outlined or OK button, pressing Return or Enter will
by convention have no effect.

Other dialog boxes do not require the user to respond before doing
anything else; these are called modeless dialog boxes. The user can,
for example, do work in document windows on the desktop before clicking
the appropriate button in the dialog box. Clicking the Cancel button
in this type of dialog box always makes the box go away, but clicking
the OK button may not: it may keep the box around so that the command
can be performed again. A modeless dialog box looks exactly like a
document window, as 1llustrated {n Figure 2.

—_— Chunge =
Find text: [Guide Lines (Cancel)

(_Change All)
Change to: [puidelines (Change Next)

Figure 2. A Modeless Dialog Box

Dialog boxes may in fact require no response at all. For example,
while an application is performing a time-consuming process, it can
display a dialog box that contains only a message telling what it's

doing; then, when the process is complete, it can simply remove the
dialog box.

The alert mechanism provides applications with a means of reporting
errors or giving warnings. An alert box is similar to a modal dialog
box, but it appears only when something has gone wrong or must be
brought to the user's attention. Its conventional placement is
slightly farther below the menu bar than a dialog box. To assist the
user who isn't sure how to proceed when an alert box appears, the

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

6 Dialog Manager Programmer's Guide

preferred button to use in the current situation is outlined boldly so
it stands out from the other buttons in the alert box (see Figure 3).
The outlined button is also the alert's default button; if the user
presses the Return key or the Enter key, the effect i{s the same as
clicking this button.

e ———————————————
—————=

IE CAUTION : -
Are you sure ‘

you want to erase all -

changes to your document?

Figure 3. A Typical Alert Box

There are three standard kinds of alert--Stop, Note, and Caution-—each
indicated by a particular icon in the top left corner of the alert box.
Figure 3 illustrates a Caution alert. The icons identifying Stop and
Note alerts are similar; instead of a question mark, they show an
exclamation point and an asterisk, respectively. Other alerts can have
anything in the the top left corner, including blank space if desired.

The alert mechanism also provides another type of signal: sound from
the Macintosh's speaker. The application can base its response on the
number of consecutive times an alert occurs; the first time, it might
simply beep, and thereafter it may present an alert box. The sound is
not limited to a single beep but may be any sequence of tones, and may
occur either alone or along with an alert box. As an error is
repeated, there can also be a change in which button is the default
button (perhaps from OK to Cancel). You can specify different
responses for up to four occurrences of the same alert.

With Dialog Manager routines, you can create dialog boxes or invoke
alerts. The Dialog Manager gets most of the descriptive information
about the dialogs and alerts from resources in a resource file. You
use a program such as the Resource Editor *** eventually *** to store
the necessary information in the resource file. The Dialog Manager
calls the Resource Manager to read what it needs from the resource [ile
into memory as necessary. In some cases you can modify the information
after it's been read into memory.

DIALOG AND ALERT WINDOWS

A dialog box appears in a dialog window. When you call a Dialog
Manager routine to create a dialog, you supply the same information as
when you create a window with a Window Manager routine. For example,
you supply the window definition ID, which determines how the window

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

DIALOG AND ALERT WINDOWS 7

looks and behaves, and a rectangle that becomes the portRect of the
window's grafPort. You specify the window's plane (which, by
convention, should initially be the frontmost) and whether the window
is visible or invisible. The dialog window is created as specified.

You can manipulate a dialog window just like any other with Window
Manager or QuickDraw routines, showing it, hiding it, moving {t,
changing its size or plane, or whatever——all, of course, in conformance
with the Macintosh User Interface Guidelines. The Dialog Manager
observes the clipping region of the dialog window's grafPort, so if you
want clipping to occur, you can set this region with a QuickDraw
routine.

Similarly, an alert box appears in an alert window. You don't have the
same flexibility in defining and manipulating an alert window, however.
The Dialog Manager chooses the window definition ID, so that all alert
windows will have the standard appearance and behavior. The size and
location of the box are supplied as part of the definition of the alert
and are not easily changed. You don't specify the alert window's
plane; it always comes up in front of all other windows. Since an
alert box requires the user to respond before doing anything else, and
the response makes the box go away, the application doesn't do any
manipulation of the alert window.

Figure 4 illustrates a document window, dialog window, and alert
window, all overlapping on the desktop. Note that if a dialog or alert
window comes up while a document window is active, the document window
becomes inactive; as shown in Figure 4, any scroll bars or size box in
the document window disappear until the window becomes active again.

Dialog window Alert window
in front of document window in front of dislog window

Figure 4. Dialog and Alert Windows

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG. 2

B Dialog Manager Programmer's Guide

DIALOGS, ALERTS, AND RESOURCES

To create a dialog, the Dialog Manager needs the same information about
the dialog window as the Window Manager needs when it creates a new
window: the window definition ID along with other information specific
to this window. The Dialog Manager also needs to know what items the
dialog box contains. You can store the needed information as a
resource in a resource file and pass the resource ID to a function that
will create the dialog. This type of resource, which is called a
dialog template, is analogous to a window template, and the function,
GetNewDialog, is similar to the Window Manager function GetNewWindow.
The Dialog Manager calls the Resource Manager to read the dialog
template from the resource file. It then incorporates the information
in the template into a dialog data structure in memory, called a dialog
record.

Similarly, the data that the Dialog Manager needs to create an alert is
stored in an alert template in a resource file. The various routines
for invoking alerts require the resource 1D of the alert template as a
parameter.

The information about all the items (text, controls, or graphics) in a
dialog or alert box is stored in an item list in a resource file. The
resource ID of the item list is included in the dialog or alert
template. The item list in turn contains the resource IDs of any icons
or QuickDraw pictures in the dialog or alert box, and possibly the
resource ILDs of control templates for controls in the box. After
calling the Resource Manager to read a dialog or alert template into
memory, the Dialog Manager calls it again to read in the item 1list, and
again to read in any individual items as necessary.

(hand)
To create dialog or alert templates and item lists and
store them in resource files, you can use the Resource
Editor *** eventually (for now, the Resource Cowpiler, as
described in the manual "Putting Together a Macintosh
Application'") ***, The Resource Editor relieves you of
having to know the exact format of these resources, but
for interested programmers this information is given in
the section "Formats of Resources for Dialogs and
Alerts".

1f desired, the application can gain some additional flexibility by
calling the Resource Manager directly to read templates, item lists, or
items from a resource file. For example, you can read in a dialog or
alert template directly and modify some of the information in it before
calling the routine to create the dialog or alert. Or, as an
alternative to using a dialog template, you can read in a dialog's item
list directly and then pass a handle to it along with other information
to a function that will create the dialog (NewDialog, analogous to the
Window Manager function NewWindow).

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

DIALOGS, ALERTS, AND RESOURCES 9

(hand)
The use of dialog templates is recommended wherever
possible; like window templates, they isolate descriptive
information from your application code for ease of
modification or translation to foreign languages.

ITEM LISTS IN MEMORY

This section discusses the contents of an {tem list once it's been read
into memory from a resource file and the Dialog Manager has set it up
as necessary to be able to work with it.

An item list in memory contains the following information for each
item:

= The type of item. This includes not only whether the item is a
control, text, or whatever, but also whether the Dialog Manager
should return to the application when the item is clicked.

- A handle to the item or, for special application-defined items, a
pointer to a procedure that draws the item.

- A disgplay rectangle, which determines the location of the item
within the dialog or alert box.

These are discussed below along with item numbers, which identify
particular items in the item list.

There's a Dialog Manager procedure that, given a pointer to a dialog
record and an item number, sets or returns that item's type, handle (or
procedure pointer), and display rectangle.

Item Types

The item type is specified by a predefined constant or combination of
constants, as listed below. Figure 5 illustrates some of these item
types.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

10 Dialog Manager Programmer's Guide

!cmltpm statText ctriltem
+ itemDisable + itemDisable <+ btnCtri
[

e &
eosre
—otee
e

ctriltem
+radCtr! “:'..8 g

ctriltem
+ chkCtrl
Title:

useritem

Print the document

—1—> & Stop printing after each page

172" % 11" paper

172" v 14° paper

Annual Report

+ [temDissble

> I |
L4

Progress of printing

editText

Figure 5. Item Types

Item type
ctrllitemtbtnCtrl

ctrllitem+chkCtrl
ctrlitemtradCtrl

ctrlitemtresCerl

statText

editText

iconlten
picltenm
userlitem

itemDisable+<any
of the above>

Meaning
A standard button control.

A standard check box control.
A standard “radio buttom" control.

A control defined in a control template in a
resource file.

Static text; text that cannot be edited.
(Dialogs only) Text that can be edited; the
Dialog Manager accepts text typed by the user
and allows editing.

An icon (a 32-by-32 bit image).

A QuickDraw picture.

(Dialogs only) An application-defined item,
such as a plcture whose appearance changes.

The item is disabled (the Dialog Manager
doesn't report events involving this item).

The text of an editText item may initially be either default text or
empty. Text entry and editing is handled {n the conventional way, as
in TextEdit and CoreEdit (in fact, the Dialog Manager calls TextEdit to

handle it):

11/16/83 Rose

CONFIDENTIAL /DMGR/DIALOG.2

1TEM LISTS IN MEMORY 11

= Clicking in the item displays a blinking vertical bar, indicating
an insertion point where text may be entered.

- Dragging over text in the item selects that text, and
double-clicking selects a word; the selection is inversely
highlighted and is replaced by what the user then types.

- Clicking or dragging while holding down the Shift key extends or
shortens the current selection.

- The Backspace key deletes the current selection or the character
preceding the insertion point.

The Tab key advances to the next editText item in the item list
(wrapping around to the first if there aren't any more). In an alert
box or a modal dialog box (regardless of whether it contains an
editText item), the Return key or Enter key has the same effect as
clicking the default button; for alerts, the default button is
identified in the alert template, whereas for modal dialogs it's always
the first item in the item list.

1f {temDisable is specified for an item, the Dialog Manager doesn't let
the application know about events involving that item. For example,
you may not have to be informed every time the user enters or edits
text in an editText item, but may only need to look at the text when
the OK button is clicked. In this case, the editText item would be
disabled. Standard buttons and check boxes should always be enabled,
so your application will know when they've been clicked.

(eye)
Don't confuse disabling a control with making one
"inactive” with the Control Manager procedure
HiliteControl: When you want a control not to respond at
all to being clicked, you make it inactive.

ltem Handle or Procedure Pointer

The {tem 1list contains the following information for the various types
of items:

Item type Contents

any ctrllitem A control handle

statText A handle to the text
editText A handle to the current text
iconltem A handle to the icon

picltem A picture handle

userltem A procedure pointer

The procedure for s userltem draws the {tem; for example, if the {item
is a clock, it will draw the clock with the current time displayed.
When this procedure is called, the current port is the dialog window's
grafPort. The procedure has two parameters:

11/16/83 Rose CONFIDENTI1AL /DMGR/DIALOG.2

12 Dialog Manager Programmer's Guide

= A windowPtr to the dialog window. In case the procedure draws in

more than one dialog window, this parameter tells it which one to
draw in.

- The item number. In case the procedure draws more than one item,
this parameter tells it which one to draw.

Display Rectangle

Each item in the item list is displayed within its display rectangle.
Icons and QuickDraw pictures are scaled to fit the display rectangle.
1f the procedure for a userltem draws outside the item's display
rectangle, the drawing is clipped to the display rectangle.

(eye)
Clicking anywhere within the display rectangle is
considered a click of that item.

A rectangle is drawn just outside the display rectangle around each
editText item. When a statText or editText item is displayed, the text
is clipped to the display rectangle and word wrap occurs as in
TextEdit.

Item Numbers

Each item {n an item list is identif{ed by an item number, which is
simply the index of the item in the list (starting from 1). By
convention, the first item in an alert's item list should be the OK
button (or, if none, then one of the buttons that will perform the
command) and the second item should be the Cancel button. The Dialog
Manager provides predefined constants equal to the item numbers for OK
and Cancel:

CONST OK -]1;
Cancel = 2;

In a modal dialog's item list, the first item is assumed to be the
dialog's default button; if the user presses the Return key or Enter
key, the Dialog Manager normally returns item number 1, just as when
that item {8 actually clicked. To conform to the Macintosh User
Interface Guidelines, the application should boldly outline the
dialog's default button if it isn't the OK button. The best way to do
this is with a userltem. To allow for changes in the default button's
size or location, the userItem should identify which button to outline
by its item number and then use that number to get the button's display
rectangle.

(eye))
If the first item in a modal dialog's item list {sn't an
OK button and you don't boldly outline it, you should set
up the dialog to ignore Return and Enter. To learn how
to do this, see ModalDialog under "Handling Dialog

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

DIALOG RECORDS 13

Events" in the "Dialog Manager Routines" sectionm.

DIALOG RECORDS

To create a dialog, you pass information to the Dialog Manager in a
dialog template and in individual parameters, or only in parameters; in
either case, the Dialog Manager incorporates the information into a
dialog record. The dialog record contains the window record for the
dialog window, a handle to the dialog's item list, and some additional
fields. The Dialog Manager creates the dialog window by calling the
Window Manager function NewWindow and then getting the window class in
the window record to indicate that it's a dialog window. The routine
that creates the dialog returns a pointer to the dialog record, which
you use thereafter to refer to the dialog in Dialog Manager routines or
even in Window Manager or QuickDraw routines (see "Dialog Pointers"
below). The Dialog Manager provides routines for handling events in
the dialog window and disposing of the dialog when you're done.

The data type for a dialog record {s called DialogRecord. You can do
all the necessary operations on a dialog without accessing the fields
of the dialog record directly; for advanced programmers, however, the
exact structure of a dialog record is given under "The DialogRecord
Data Type" below.

Dialog Pointers

There are two types of dialog pointer, DialogPtr and DialogPeek,
analogous to the window pointer types WindowPtr and WindowPeek. Most
users will only need to use DialogPtr.

The Dialog Manager defines the following type of dialog pointer:
TYPE DialogPtr = WindowPtr;

It can do this because the first thing stored in a dialog record is the
window record for the dialog window. This type of pointer can be used
to access fields of the window record or can be passed to Window
Manager routines that expect window pointers as parameters. Since the
WindowPtr data type is itself defined as GrafPtr, this type of dfalog
pointer can also be used to access fields of the dialog window's
grafPort or passed to QuickDraw routines that expect pointers to
grafPorts as parameters.

In some cases, a more direct way of accessing the dialog record may be
desired. For this reason, the Dialog Manager also defines the
following type of dialog pointer:

TYPE DialogPeek = “DialogRecortd;
Programmers who want to access the dialog record fields directly must

use this type of pointer.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

14 Dialog Manager Programmer's Guide

Assembly-language note: From assembly language, of course,
there's no type checking on pointers, and the two types of

pointer are equal.

The DialogRecord Data Type

For those who want to know more about the data structure of a dialog
record, the exact structure is given here.

TYPE DialogRecord = RECORD
window:
items:
textH:

editField:

editOpen:
aDefItem:
END;

WindowRecord;
Handle;
TEHandle;
INTEGER;
INTEGER;
INTEGER

The window field contains the window record for the dialog window. The
items field contains a handle to the item list for the dialog.

(hand)

Remember that to get or change information about an item
in a dialog, you pass the dialog pointer and the {item
number to a Dialog Manager procedure. You will never
access information directly through the handle to the

{tem list.

The Dialog Manager uses the next three fields when text is being

entered or edited in an editText item.

The textH field contains the

handle TextEdit uses; the data type TEHandle i{s defined in TextEdit.
EditField is 1 less than the item number of the editText item. The
editOpen field is used internally by the Dialog Manager.

The aDefltem field is used for modal dialogs and alerts, which are
treated internally as special modal dialogs. It contains the item
number of the default button. The default button for a modal dialog is
the first item in the item list, so this field contains] for modal
dialogs. The default button for an alert is specified in the alert
template; see the following section for more information.

Assembly-language note: The Toolbox equates file includes
dWindlLen, the length of a dialog record in bytes.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

ALERTS 15

ALERTS

When you call a Dialog Manager routine to invoke an alert, you pass it
the resource ID of the alert template, which contains the following:

- A rectangle, given in global coordinates, which determines the
alert window's size and location. It becomes the portRect of the
window's grafPort. To allow for the menu bar and the border
around the portRect, the top of the rectangle should be at least
25 pixels below the top of the screen.

= The resource ID of the item list for the alert.

- Information about exactly what should happen at each stage of the
alert.

There are four stages to every alert: the first three stages
correspond to the first three (consecutive) occurrences of the alert,
and the fourth stage corresponds to the fourth occurrence and any
beyond the fourth. The actions for each stage are specified by the
following three pieces of information:

- Which is the default button=--the OK button (or, if none, a button
that will perform the command) or the Cancel button

= Whether the alert box is to be drawn
= Which of four sounds should be emitted at this stage of the alert

The alert sounds are determined by a sound procedure that emits one of
up to four tones or sequences of tones. The sound procedure has one
parameter, an integer from @ to 3. It can emit any sound for each of
these numbers, which identify the sounds in the alert template. If you
don't write your own sound procedure, sound number ¢ represents no
sound and sound numbers 1 through 3 represent the corresponding number
of short beeps, each of the same pitch and duration. For example, if
the second stage of an alert is to cause a beep and no alert box, you
can just specify boxDrawn=FALSE and sound=l for that stage in the alert
template. If instead you want two successive beeps of different pitch,
for example, you need to write a procedure that will emit that sound
for a particular sound number, and specify that number in the alert
template. See the Sound Manager manual *** (doesn't yet exist) *** for
information about how to write a procedure that emits sound.

(hand)
When the Dialog Manager detects a click outside an alert
box or a modal dialog box, it emits sound number 1; thus,
for consistency with the Macintosh User Interface
Guidelines, sound number 1 should always be a single
beep.

Internally, alerts are treated as special dialogs. The alert routine
creates the alert window by calling NewDialog. The Dialog Manager

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

16 Dialog Manager Programmer's Guide

works from the dialog record created by NewDialog, just as when it
operates on a dialog window, but it disposes of the window before
returning to the application. Normally your application will not
access the dialog record for an alert; however, there is8 a way that
this can happen: for any alert, you can specify a procedure that will
be executed repeatedly during the alert, and this procedure may access
the dialog record. For details, see the alert routines under "Invoking
Alerts" in the '"Dialog Manager Routines" section.

USING THE DIALOG MANAGER

This section discusses how the Dialog Manager routines fit into the
general flow of an application program and gives you an idea of which
routines you'll need to use. The routines themselves are described in
detail in the next section.

Before using the Dialog Manager, you should initialize QuickDraw, the
Font Manager, the Window Manager, the Menu Manager, and TextEdit, in
that order. The first Dialog Manager routine to call is InitDialogs,
which initializes the Dialog Manager.

Where appropriate in your program, call NewDialog or GetNewDialog to
create any dialogs you need. Usually you'll call GetNewDialog, which
takes descriptive information about the dialog from a dialog template
in a resource file. You can instead pass the information in individual
parameters to NewDialog. In either case, you can supply a pointer to
the storage for the dialog record or let it be allocated by the Dialog
Manager. When you no longer need a dialog, you'll usually call
CloseDialog if you supplied the storage, or DisposDialog if not.

In most cases, you probably won't have to make any changes to the
dialogs from the way they're defined in the resource file. However, if
you should want to modify an item in a dialog, you can call GetDItem to
get the information about the item and SetDItem to change it. 1In
particular, SetDIitem is the routine to use for installing an
application-defined item. There are also two procedures specifically
for accessing or setting the content of a text item in a dialog box:
GetIText and SetIText. .

1f your application includes any modeless dialog boxes, call
IsDialogEvent to learn whether an event has occurred that needs to be
handled as part of a dialog, and then call DialogSelect if so. After
putting up a modal dialog box, just call ModalDialog.

Mouse activity in an editText item causes an insertion point to be
displayed or text to be selected accordingly. Your application may
want to bring up a dialog box with an editText item already selected,
or to cause an insertion point or text selection to appear after the
user has made an error in entering text. The SellText procedure lets
the application do this.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

USING THE DIALOG MANAGER 17

For alerts, if you want other sounds besides the standard ones (up to
three short beeps), write your own sound procedure and call ErrorSound
to make it the current sound procedure. To invoke a particular alert,
call one of the alert routines: StopAlert, NoteAlert, or CautionAlert
for one of the standard kinds of alert, or Alert for an alert defined
to have something other than a standard icon (or nothing at all) in its
top left corner. 1f you're going to invoke an alert when the resource
file might not be accessible, first call CouldAlert, which will make
the alert template and related resources unable to be purged from
memory; you can later make them purgeable again by calling FreeAlert.

Finally, in either dialogs or alerts, you can substitute text in
statText items with text that you specify in the ParamText procedure.
This means, for example, that a document name supplied at execution
time can appear in an error message.

DIALOG MANAGER ROUTINES

This section describes all the Dialog Manager procedures and functions.
They're presented in their Pascal form; for information on using them
from assembly language, see "Using the Toolbox from Assembly Language'
**% doesn't exist, but see "Using QuickDraw from Assembly Language" in
the QuickDraw manual *¥+%,

Injitialization

PROCEDURE InitDialogs (restartProc: ProcPtr);

Call InitDialogs once before all other Dialog Manager routines, to
initialize the Dialog Manager.

- It sets a pointer to a fail-safe procedure as specified by
restartProc; this pointer will be accessed when a system error
(such as running out of memory) occurs. RestartProc should point
to a procedure that will restart the application after a system
error. If no such procedure is desired, pass NIL as the:
parameter.

Assembly-language note: The Dialog Manager stores the address
of the fail-safe procedure in a system global named restProc.

~ It installs the standard sound procedure, which associates sound
number ¢ with no sound and sound numbers 1 through 3 with the
corresponding number of short beeps.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

18 Dialog Manager Programmer's Guide

— It passes empty strings to ParamText (described below under
"Manipulating Items in Dialogs and Alerts").

PROCEDURE ErrorSound (soundProc: ProcPtr);

ErrorSound sets the sound procedure for dialogs and alerts to the i
procedure pointed to by soundProc. The sound procedure should have one
parameter, an integer from ¢ to 3; these numbers identify the sounds
(such as in the stages field of an alert template).

(hand)
So that the dialog and alert routines will respond to
mouse activity in a way that conforms to the Macintosh
User Interface Guidelines (as described below), sound
number 1 should always be a single beep.

1f you don't call ErrorSound, the Dialog Manager uses a standard sound
procedure that causes sound number @ to represent no sound and sound
numbers 1 through 3 to be the corresponding number of short beeps. If
you pass NIL for soundProc, there will be no sound at all for sound
numbers @ through 3.

Assembly-language note: The address of the sound procedure
being used is stored in the system global daBeeper.

Creating and Disposing of Dialogs

FUNCTION NewDialog (dStorage: Ptr; boundsRect: Rect; title: Str255;
visible: BOOLEAN; proclD: INTEGER; behind: WindowPtr;
goAwayFlag: BOOLEAN; refCon: Longint; items: Handle) :
DialogPtr;

NewDialog creates a dialog as specified by its parameters and returns a
" pointer to the new dialog. The first eight parameters (dStorage
through refCon) are passed to the Window Manager function NewWindow,
which creates the dialog window; the meanings of these parameters are
summarized below. The items parameter is a handle to the dialog's item
list. You can get the items handle by calling the Resource Manager to
read the item list from the resource file into memory.

(hand)
Advanced programmers can create their own item lists in
memory rather than have them read from a resource file.

DStorage is analogous to the wStorage parameter of NewWindow; it's a
pointer to the storage to use for the dialog record. If you pass NIL

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

DIALOG MANAGER ROUTINES 19

for dStorage, the dialog record will be allocated on the heap.

BoundsRect, a rectangle given in global coordinates, which determines
the dialog window's size and location. It becomes the portRect of the
window's grafPort. Remember that the top of this rectangle should be
at least 25 pixels below the top of the screen for a modal dialog, to
allow for the menu bar and the border around the portRect, and at least
4@ pixels below the top of the screen for a modeless dialog, to allow
for the menu bar and the window's title bar.

Title is the dialog window's title. If the window has a title bar,
this title appears in it, centered and in the system font and system
font size.

If the visible parameter is TRUE, the dialog window is drawn on the
screen. If it's FALSE, the window is initially invisible and may later
be shown with a call to the Window Manager procedure ShowWindow.

ProcID is the window definition ID, which leads to the window
definition function for this type of window. The window definition IDs
for the standard types of dialog window are dBoxProc for the modal type
and documentProc for the modeless type.

The behind parameter specifies the window behind which the dialog
window is to be placed on the desktop. You should pass POINTER(-1) for
this parameter to bring up the dialog window in front of all other
windows.

if goAwayFlag is TRUE, the dialog window has a close box in its title
bar (if any) when the window is active.

RefCon is the dialog window's reference value, which the application
may store into and access for any purpose.

NewDialog also sets the font of the dialog window's grafPort to the
system font and sets the window class in the window record to indicate
a dialog window.

Assembly-language note: NewDialog actually sets the font to the
font number stored in the system globsl dlgFont. If you want a
different font to be used in a dialog box, you can set dlgFont
to the desired font number before creating the dialog.

FUNCTION GetNewDialog (dialoglID: INTEGER; dStorage: Ptr; behind:
WindowPtr) : DialogPtr;

Like NewDialog (above), GetNewDialog creates a dialog as specified by

its parameters and returns a pointer to the new dialog. Instead of
having the parameters boundsRect, title, visible, procID, goAwayFlag,

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

20 Dialog Manager Programmer's Guide

and refCon, GetNewDialog has a single dialogID parameter, where
dialogID i8 the resource ID of a dialog template that supplies the same
information as those parameters. The dialog template also contains the
resource 1D of the dialog's item list. After calling the Resource
Manager to read the item list into memory (if it's not already in
memory), GetNewDialog makes a copy of the item list and uses that copy;
thus you may have multiple independent dialogs whose items have the
same types, locations, and initial contents. The dStorage and behind
parameters of GetNewDialog have the same meaning as in NewDialog.

PROCEDURE CloseDialog (theDialog: DialogPtr);

CloseDialog removes theDialog's window from the screen and deletes it
from the window list, just as when the Window Manager procedure
CloseWindow is called. It returns to the heap the storage used by all
data structures associated with the dialog window (such as the window
regions) and all the ftems in the dialog's item list (except for
pictures and icons, which might be shared resources). It does not
dispose of the dialog record or the item list itself. Call this
procedure when you're done with a dialog 1f you supplied NewDialog or
GetNewDialog with a pointer to the dialog storage (in the dStorage
parameter) when you created the dialog.

(hand)
Even {f you didn't supply a pointer to the dialog
storage, you may want to call CloseDialog if you created
the dialog with NewDialog. You would call CloseDialog if
you wanted to keep the item list around (since, unlike
GetNewDialog, NewDialog does not use a copy of the item
list).

PROCEDURE DisposDialog (theDialog: DialogPtr);

DisposDialog calls CloseDialog (above) and then disposes of the
dialog's item list end dialog record. Call this procedure when you're
done with a dialog if you let the dialog record be allocated on the
heap when you called NewDialog or GetNewDialog (by passing NIL as the
dStorage parameter).

Handling Dialog Events

FUNCTION IsDialogEvent (theEvent: EventRecord) : BOOLEAN;

If your application includes any modeless dialogs, call IsDialogEvent
after calling the Toolbox Event Manager function GetNextEvent. Pass
the current event in theEvent. IsDialogEvent determines whether
theEvent needs to be handled as part of a dialog. If theEvent is an
update or activate event in a dialog window, a mouse down event in the
content region of an active dialog window, or any other type of event

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

DIALOG MANAGER ROUTINES 21

when a dialog window is active, IsDialogEvent returns TRUE; otherwise,
it returns FALSE. When TRUE is returned, the application should check
whether the event is one that should not in fact be handled as part of
a dialog, such as a key down event with the Command key held dowm: if
so, it should ignore the event; otherwise, it should pass the event to
DialogSelect (below).

FUNCTION DialogSelect (theEvent: EventRecord; VAR theDialog: DialogPtr;
VAR itemHit: INTEGER) : BOOLEAN;

After learning from IsDialogEvent that the current event needs to be
handled as part of a modeless dialog, pass the event to DialogSelect.
DialogSelect handles the event as described below. I1If the event
involves an enabled dialog item, DialogSelect returns a function result
of TRUE with the dialog pointer in theDialog and the item number in
{temHit; otherwise, it returns FALSE with theDialog and itemHit .
undefined. Normally when DialogSelect returns TRUE, you'll do whatever
is appropriate as a response to the event, and when it returns FALSE
you'll do nothing.

1f the event i{s an activate or update event in a dialog window,
DialogSelect activates or updates the window and returns FALSE.

If the mouse button is pressed in an editText item, DialogSelect
responds to the mouse activity as appropriate (displaying an insertion
point or selecting text). If a key down event occurs and there's an
editText {tem, text entry and editing are handled in the standard way
for such items. In either case, DialogSelect returns TRUE if the {tem
is enabled or FALSE if it's disabled. 1f a key down event occurs when
there's no editText item, DialogSelect returns FALSE.

(hand)
To treat a typed character in a special way (such as
ignore it, or make it have the same effect as another
character or as clicking a button), the application
should test for a key down event with that character
before calling DialogSelect.

If the mouse button ie pressed in a control, DialogSelect calls the
Control Manager function TrackControl. If the mouse button is released
ingide the control and the control is enabled, DialogSelect returns
TRUE; otherwise, it returns FALSE.

If the mouse button is pressed in any other enabled item, DialogSelect
returns TRUE. If it's pressed in any other disabled item or in no
itewm, or if any other event occurs, DialogSelect returns FALSE.
PROCEDURE ModalDialog (filterProc: ProcPtr; VAR {temHit: INTEGER);
Call ModalDialog after creating a modal dialog and bringing up its

window in the frontmost plane. ModalDialog repeatedly gets and handles
events i{n the dialog's window; after handling an event involving an

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

22 Dialog Manager Programmer's Guide

enabled dialog item, it returns with the {tem number in {temHit.
Normally you'll then do whatever is appropriate as a response to an
event in that item.

ModalDialog gets each event by calling the Toolbox Event Manager
function GetNextEvent. If the event {5 a mouse down event outside the
content region of the dialog window, ModalDialog emits sound number 1
(which should be a single beep) and gets the next event; otherwise, it
filters and handles the event as described below.

(hand)
Once before getting each event, ModalDialog calls
SystemTask, a Desk Manager procedure that needs to be
called regularly if the application is to support the use
of desk accessories.

The filterProc parameter determines how events are filtered. If it's
NIL, the standard filterProc is executed; this causes ModalDialog to
return 1 in itemHit if the Return key or Enter key is pressed. If
filterProc isn't NIL, ModalDiaslog filters events by executing the
function it points to. The filterProc should have three parameters and
should return a boolean value. For example, this is how it would be
declared if it were named MyFilter:

FUNCTION MyFilter (theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR {item: itemHit) : BOOLEAN;

A function result of FALSE tells ModalDialog to go ahead and handle the
event, which either can be sent through unchanged or can be changed to
simulate a different event. A function result of TRUE tells
ModalDialog to return immediately rather than handle the event; in this
case, the filterProc sets itemHit to the item number that ModalDialog
should return.

You can use the filterProc, for example, to treat a typed character in
a special way (such as ignore it, or make it have the same effect as
another character or as clicking a button); in this case, the
filterProc would test for a key down event with that character. If you
want it to be consistent with the standard filterProc, your filterProc
should at least check whether the Return key or Enter key was pressed
and, if so, return 1 in itemHit and a function result of TRUE.

As another example, suppose the dialog box contains a userltem whose
procedure draws a clock with the current time displayed. The
filterProc can call that procedure and return FALSE without altering

the current event.

ModalDialog handles the events returned by the filterProc as follows:

- If the mouse button is pressed in an editText item, ModalDialog
responds to the mouse activity as appropriate (displaying an
insertion point or selecting text). If a key down event occurs
and there's an editText {tem, text entry and editing are handled
in the standard way for such items. In either case, ModalDialog

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

DIALOG MANAGER ROUTINES 23

returns TRUE if the item is enabled or FALSE if it's disabled. If
a key down event occurs when there's no editText item, ModalDialog
does nothing.

- If the mouse button is pressed in a control, ModalDialog calls the
Control Manager function TrackControl. 1f the mouse button is
released inside the control and the control i{s enabled,
ModalDialog returns; otherwise, it does nothinge.

- If the mouse button i{s pressed in any other enabled item in the
dialog box, ModalDialog returns. 1f the mouse button is pressed
in any other disabled item or in no item, or if any other event
occurs, ModalDialog does nothing.

PROCEDURE DrawDialog (theDialog: DialogPtr);
DrawDialog draws the contents of the given dialog box. Since

DialogSelect and ModalDialog handle dialog window updating, this
procedure is useful only in unusual situations.

Invoking Alerts

FUNCTION Alert (alertlD: INTEGER; filterProc: ProcPtr) : INTEGER;

This function invokes the alert defined by the alert template that has
the given resource ID. It calls the current sound procedure, if any,
passing it the sound number specified in the alert template for this
stage of the alert. If no alert box is to be drawn at this stage,
Alert returns a function result of ~1; otherwise, it creates and
displays the alert window for this alert and draws the alert box.

(hand)
It creates the alert window by calling NewDialog, and
does the rest of its processing by calling ModalDialog.

Alert repeatedly gets and handles events in the alert window until an
enabled {tem 18 clicked, at which time it returns the item number.
Normally you'll then do whatever is appropriate in response to a click
of that item.

Alert gets each event by calling the Toolbox Event Manager function
GetNextEvent. If the event is a mouse down event outside the content
region of the alert window, Alert emits sound number 1 (which should be
a single beep) and gets the next event; otherwise, it filters and
handles the event as described below.

The filterProc parameter has the same meaning as in ModalDialog (see
above). If it's NIL, the standard filterProc is executed, which makes
the Return key or the Enter key have the same effect as clicking the
default button. If you specify your own filterProc and want to retain

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

24 Dialog Manager Programmer's Guide

this feature, you must include it in your filterProc. You can find out
what the current default button is by looking at the aDefltem field of
the dialog record for the alert (via the dialog pointer passed to the
filterProc).

Alert handles the events returned by the filterProc as follows:

= 1f the mouse button is pressed in a control, Alert calls the
Control Manager procedure TrackControl. 1If the mouse button is
released inside the control and the control is enabled, Alert
returns; otherwise, it does nothing.

= If the mouse button is pressed in any other enabled item, Alert
simply returns. If it's pressed in any other disabled item or in
no item, or if any other event occurs, Alert does nothing.

Before returning to the application with the item number, Alert removes
the alert box from the screen. (It disposes of the alert window and
its associated data structures, the item list, and the items.)

(hand)
The Alert function's removal of the alert box would not
be the desired result {f the user clicked a check box or
radio button; however, normally alerts contain only
static text, icons, pictures, and buttons that are
supposed to make the alert box go away. If your alert
contains other {tems besides these, consider whether it
might be more appropriate as a dialog.

FUNCTION StopAlert (alertID: INTEGER; filterProc: ProcPtr) : INTEGER;

StopAlert is the same as the Alert function (above) except that before
drawing the items of the alert in the alert box, it draws the Stop icon
in the top left corner of the box (within the rectangle (10¢,2¢,42,52)).
The Stop icon is the icon having the resource ID @. If the
application's resource file doesn't include an icon with that 1D
number, the standard Stop icon in the system resource file is used.

FUNCTION NoteAlert (alertID: INTEGER; filterProc: ProcPtr) : INTEGER;

NoteAlert is the same as the Alert function (above) except that before
drawving the items of the alert in the alert box, it draws the Note icon
in the top left corner of the box (within the rectangle (1¢,2¢,42,52)).
The Note icon is the fcon having the resource 1ID l. 1If the
application's resource file doesn't include an icon with that 1D
number, the standard Note icon in the system resource file is used.

FUNCTION CautionAlert (alertID: INTEGER; filterProc: ProcPtr) :
INTEGER;

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

DIALOG MANAGER ROUTINES 25

CautionAlert is the same as the Alert function (above) except that
before drawing the items of the alert in the alert box, it draws the
Caution icon in the top left corner of the box (within the rectangle
(1¢,2¢,42,52)). The Caution icon is the icon having the resource ID 2.
If the application's resource file doesn't {nclude an icon with that ID
number, the standard Caution {icon in the system resource file is used.

PROCEDURE CouldAlert (alertID: INTEGER);

CouldAlert ensures that the alert template having the given resource ID
is in memory and makes it unable to be purged. It does the same for
the alert window's definition function, the alert's item list, and any
items defined as resources. This is useful if the alert may occur when
the resource file isn't accessible, such as during a disk copy.

PROCEDURE FreeAlert (alertiD: INTEGER);

Given the resource ID of an alert template previously specified in a
call to CouldAlert (above), FreeAlert undoes the effect of CouldAlert.
It should be called when there's no longer a need to keep the resources
in memory.

Manipulating Items in Dialogs and Alerts

PROCEDURE ParamText (param{l,paraml,param2,param3: Str255);

ParamText provides a means of substituting text in statText items:
paramf through param3 will replace the special strings "“¢" through
"*3" {n all statText items in all subsequent dialog or alert boxes.
Pass empty strings for parameters not used.

Assembly-language note: Assembly-language programmers may pass
NIL for parameters not used or for strings that are not to be
changed .

For example, 1f the text i{s defined as "Cannot open document “@#" and
docName {s a string variable containing a document name that the user
typed, you can call ParamText(docName,'','','').

(eye)

All strings that will need to be translated to foreign
languages should be stored in resource files.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

26 Dialog Manager Programmer's Guide

Assembly-language note: The Dialog Manager stores handles to
the four ParamText parameters in a system global array named
daStrings.

PROCEDURE GetDItem (theDialog: DialogPtr; itemNo: INTEGER; VAR type:
INTEGER; VAR item: Handle; VAR box: Rect);

GetDItem returns in its VAR parameters the following information about
the item numbered itemNo in the given dialog's item list: in the type
parameter, the item type; in the item parameter, a handle to the item
(or, for item type userItem, the procedure pointer); and in the box
parameter, the display rectangle for the item.

Suppose, for example, that you want to change the title of a control in
a dialog box. You can get the item handle with GetDItem, convert it to
a control handle, and call the Control Manager procedure SetCTitle to
change the title.

(hand)
To access the text of a statText or editText item, pass
the handle returned by GetDItem to GetlText or SetlText
(see below).

PROCEDURE SetDItem (theDialog: DialogPtr; itemNo: INTEGER; type:
INTEGER; item: Handle; box: Rect);

SetDItem sets the item numbered itemNo in the given dialog's item list,
as specified by the parameters (without drawing the item). The type
parameter is the item type; the item parameter is a handle to the item
(or, for item type userltem, the procedure pointer); and the box
parameter is the display rectangle for the item.

Consider, for example, how to install an item of type userItem in a
dialog: In the item list in the resource file, define an item in which
the type is set to userItem and everything else is set to @. Specify
that the dialog window be invisible (in either the dialog template or
the NewDialog call). After creating the dialog, convert the item's
procedure pointer to a handle; then call SetDItem, passing that handle
and the display rectangle for the item. Finally, call the Window
Manager procedure ShowWindow to display the dialog window.

(hand)
Do not use SetDItem to change the text of a statText or
editText item; call GetDItem to get 8 handle to the item
and then call SetIText (see below).

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

DIALOG MANAGER ROUTINES 27

PROCEDURE GetIText (item: Handle; VAR text: Str255);

Given a handle to a statText or editText item in a dialog box, as
returned by GetDItem, GetIText returns the text of the item in the text
parameter.

PROCEDURE SetlText (item: Handle; text: Str255);

Given a handle to a statText or editText item in a dialog box, as
returned by GetDItem, SetIText sets the text of the item to the
specified text and draws the item. For example, suppose the exact
content of a dialog's text item cannot be determined until the
application is running, but the display rectangle is defined in the
resource file: Call GetDItem to get a handle to the item, and call
SetlText with the desired text.

PROCEDURE SellText (theDialog: DialogPtr; itemNo: INTEGER;
strtSel ,endSel: INTEGER);

Given a pointer to a dialog and the item number of an editText item in
the dialog box, SelIText does the following:

= If the item contains text, SelIText sets the selection range to
extend from character position strtSel up to but not including
character position endSel. The selection range is inversely
highlighted unless strtSel equals endSel, in which case a blinking
vertical bar is displayed to indicate an insertion point at that
position.

- If the item doesn't contain text, SellText simply displays the
insertion point.

For example, if the user makes an unacceptable entry in the editText
item, the application can put up an alert box reporting the problem and -
then select the entire text of the item so it can be replaced by a new
entry. (Without this procedure, the user would have to select the item
by dragging with the mouse before making the new entry.)

(hand)
You can select the entire text by specifying ¢ for
strtSel and a very large number for endSel. For details
about selection range and character position, see the
TextEdit manual or the CoreEdit manual.

MODIFYING TEMPLATES IN MEMORY

When you call GetNewDialog or one of the routines that invokes an

alert, the Dialog Manager calls the Resource Manager to read the dialog
or alert template from the resource file and return a handle to {t. If
the template {s already in memory, the Resource Manager just returns a

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.F

28 Dialog Manager Programmer's Guide

handle to it. If you want, you can call the Resource Manager yourself
to read the template into memory (and make it unpurgeable), and then
make changes to it before calling the dialog or alert routine. When
called by the Dialog Manager, the Resource Manager will return a handle
to the template as you modified it.

To modify a template in memory, you need to know its exact structure
and the data type of the handle through which it may be accessed.
These are discussed below for dialogs and alerts.

Dialog Templates in Memory

The data structure of a dialog template is as follows:

TYPE DialogTemplate = RECORD
boundsRect: Rect;
proclD: INTEGER;
visible: BOOLEAN;
fillerl: BOOLEAN;
goAwayFlag: BOOLEAN;
filler2: BOOLEAN;

refCon: LongInt;

items1D: INTEGER;

title: Str255
END;

The fillerl and filler2 fields are not used; they're there only to
ensure that the goAwayFlag and refCon fields begin on a word boundary.
The itemsID field contains the resource ID of the dialog's item list.
The other fields are the same as the parameters of the same name in the
NewDialog function.

You access the dialog template by converting the handle returned by the
Resource Manager to a template handle.

TYPE DialogTPtr = “DialogTemplate;
DialogTHndl = “DialogTPtr;

For example, if dHandle is a variable of type DialogTHndl, you can do
the following:

dHandle := POINTER(ORD(GetResource('DLOG',3)));
dHandle"“.visible := FALSE

The Resource Manager function GetResource takes the resource type and

resource ID as parameters and returns a handle to the resource. You
use ORD and POINTER to make it have the data type DialogTHndl.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG. F

MODIFYING TEMPLATES IN MEMORY 29

Alert Templates in Memory

The data structure of an alert template is as follows:

TYPE AlertTemplate = RECORD
boundsRect: Rect;
itemsID: INTEGER;
stages: Stagelist
END;

BoundsRect is the rectangle that becomes the portRect of the window's
grafPort. The itemsID field contains the resource ID of the item list
for the alert.

The information {in the stages field determines exactly what should
happen at each stage of the alert. 1It's packed into a word that has
the following structure:

TYPE Stagelist = PACKED ARRAY [l..4)] OF RECORD
boldItem: @..1;
boxDrawn: BOOLEAN;
sound : g..3
END;

The elements of the Stagelist array are stored in reverse order of the
stages: element 1 is for the fourth stage, and element 4 is for the
first stage.

BoldItem indicates which button should be the default button (and
therefore boldly outlined in the alert box). If the first two items in
the alert's item list are the OK button and the Cancel button,
respectively, @ will refer to the OK button and 1 to the Cancel button.
The reason for this i{s that the value of boldItem plus ! is interpreted
as an item number, and normally items 1 and 2 are the OK and Cancel
buttons, respectively. Whatever the item having the corresponding item
number happens to be, a bold rounded-corner rectangle will be drawn
around its display rectangle.

(eye)
When deciding where to place items in an alert box, be
sure to allow room for any bold outlines that may be
drawn.

BoxDrawn is TRUE if the alert box is to be drawn.

The sound field specifies which sound should be emitted at this stage
of the alert, with a number from @ to 3 that's passed to the current
sound procedure. You can call ErrorSound to specify your own sound
procedure; if you don't, sound number @ will represent no sound, and
sound numbers 1 through 3 will be the corresponding number of short
beeps.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.F

30 Dialog Manager Programmer's Guide

You access the alert template by converting the handle returned by the
Resource Manager to a template handle.

TYPE AlertTPtr = “AlertTemplate;
AlertTHndl = “AlertTPtr;

For example, if aHandle 1s a variable of type AlertTHndl, you can do
the following:

aHandle := POINTER(ORD(GetResource('ALRT',1))):;
aHandle”“.boxHeight := 5@

Assembly-language note: Rather than offsets into the fields of
the Stagelist data structure, the Toolbox equates file contains
masks for accessing the information stored for an alert stage in
a stages word. It also contains the system globals aNumber and
aCount, which provide information about the last occurrence of
a? alert: its resource ID and its stage (as a number from ¢ to
3 L]

FORMATS OF RESOURCES FOR DIALOGS AND ALERTS

Every dialog template, alert template, and item list must be stored in
a resource file, as must any icons or QuickDraw pictures in item lists
and any control templates for items of type ctrlltem+resCtrl. The
exact formats of a dialog template, alert template, and item list in a
resource file are given below. For icons and pictures, the resource
type is 'ICON' or 'PICT' and the resource data is simply the icon or
the picture. The format of a control template is discussed in the
Control Manager manual.

Dialog Templates in a Resource File

The resource type for a dialog template is 'DLOG', and the resource
data has the same format as a dialog template in memory.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.F

FORMATS OF RESOURCES FOR DIALOGS AND ALERTS 31

Number of bytes Contents

8 bytes Same as boundsRect parameter to NewDialog
2 bytes Same as proclD parameter to NewDialog
"1 byte Same as visible parameter to NewDialog
1 byte Ignored
1 byte Same as goAwayFlag parameter to NewDialog
1 byte Ignored
4 bytes Same as refCon parameter to NewDialog
2 bytes Resource 1D of item 1list
n bytes Same as title parameter to NewDialog

(1-byte length in bytes, followed by
the characters of the title)

Alert Templates in a Resource File

The resource type for an alert template is 'ALRT', and the resource
data has the same format as an alert template in memory.

Number of bytes Contents
8 bytes Rectangle enclosing alert window
2 bytes Resource ID of item list
2 bytes Stages

The resource data ends with a word of information about stages. As
illustrated in Figure 6, there are four bits of stage information for
each of the four stages, from the four low-order bits for the first
stage to the four high-order bits for the fourth stage. Each set of
four bits is8 as follows:

Number of bits Contents
1 bit Item number minus 1 of default button;
normally @ is OK and 1 is Cancel
1 bit 1 {f alert box is to be drawn; @ if not
2 bits Sound number (@ through 3)

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.F

32 Dialog Manager Programmer's Guide

4th stage 3rd stage 2nd stage 1st stage
1[1]1]1]oT1 111ET0 1[oJoJoJoJ1

e e

sound 3 somd:i I_aomdz Lsomch
draw
box

outline c;nnne

(value: hexadecimal F721)
Figure 6. Sample Stages Word

(hand)
So that the disk won't be accessed just for an alert that
beeps, you may want to set the resPreload attribute of
the alert's template in the resource file. For more
information, see the Resource Manager manual.

Item Lists in a Resource File

The resource type for an item list is 'DITL'. The resource data begins
with a word containing the number of items in the list minus 1. This
is what follows for each item:

Number of bytes Contents

4 bytes @ (placeholder for handle or procedure pointer)
8 bytes Display rectangle (local coordinates)

1 byte Item type

1 byte Length of following data in bytes

n bytes 1f {tem type is: Content is:

(n is even) ctrlltemtresCtrl Resource ID (length 2)
any other ctrlltem Title of the control
statText, editText The text
iconltem, picltem Resource ID (length 2)
userltem Empty (length @)

Ag shown here, the first four bytes serve as a placeholder for the
item's handle or, for item type userltem, its procedure pointer; the
handle or pointer i{s atored after the item list is read into memory.
The next eight bytes define the display rectangle for the item, and the
next byte gives the length of the data that follows: for a text item,
ict's the text itself; for an icon, picture, or control of type
ctrlltem+resCtrl, it's the two-byte resource ID for the item; and for

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.F

FORMATS OF RESOURCES FOR DIALOGS AND ALERTS i3

any other type of control, it's the title of the control. For
userltems, no data follows the item type. When the data is text or a
control title, the number of bytes it occupies must be even to ensure
word alignment of the next item.

Assembly-language note: The Toolbox equates file contains
offsets into the fields of an item list.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.F

34

Dialog Manager Programmer's Guide

SUMMARY OF THE DIALOG MANAGER

Constants

CONST ctrlltem = 4; {add to following four constants}
btnCtrl =g, {standard button control}
chkCtrl = 1; {standard check box control}
radCtrl -2 {standard "radio button" control}
resCtrl - 3 {control defined in control template}
statText - 8; {static text}
editText = 16; {editable text (dialog only)}
iconltem = 32; {icon}
picltem = 64; {QuickDraw picture}
userltem =@ {application—~defined item (dialog only)}
itemDisable = 128; ({add to any of above to disable}
OK = 13

Cancel = 2;

Data Structures

TYPE DialogPtr = WindowPtr;

DialogPeek = “DialogRecord;

DialogRecord = RECORD
window: WindowRecord;
items: Handle;
textH: TEHandle;
editField: INTEGER;
editOpen: INTEGER;
aDefltem: INTEGER

END;
DialogTHndl = “DialogTPtr;
DialogTPtr = “DialogTemplate;

DialogTemplate = RECORD
boundsRect: Rect;

proclD: INTEGER;
visible: BOOLEAN;
fillerl: BOOLEAN;
goAwayFlag: BOOLEAN;
filler2: BOOLEAN;
refCon: LongInt;
{temslD: INTEGER;
title: Str255
END;
AlertTHndl = “AlertTPtr;
AlertTPtr = “AlertTemplate;

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.S

SUMMARY OF THE DIALOG MANAGER 35

AlertTemplate = RECORD

boundsRect: Rect;

itemsID: INTEGER;

stages: Stagelist
END;

Stagelist = PACKED ARRAY [1..4] OF RECORD

boldItem: @..1;
boxDrawn: BOOLEAN;

gound : @..3
END;
Routines
Initialization

PROCEDURE InitDialogs (restartProc: ProcPtr);
PROCEDURE ErrorSound (soundProc: ProcPtr);

Creating and Disposing of Dialogs

FUNCTION

FUNCTION

NewDialog (dStorage: Ptr; boundsRect: Rect; title: Str25S5;
visible: BOOLEAN; procID: INTEGER; behind:
WindowPtr; goAwayFlag: BOOLEAN; refCon: LonglInt;
items: Handle) : DialogPtr;

GetNewDialog (dialoglID: INTEGER; dStorage: Ptr; behind:
WindowPtr) : DialogPtr;

PROCEDURE CloseDialog (theDialog: DialogPtr);
PROCEDURE DisposDialog (theDialog: DialogPtr);

Handling Dialog Events

FUNCTION
FUNCTION

IsDialogEvent (theEvent: EventRecord) : BOOLEAN;
DialogSelect (theEvent: EventRecord; VAR theDialog: DialogPtr;
VAR itemHit: INTEGER) : BOOLEAN;

PROCEDURE ModalDialog (filterProc: ProcPtr; VAR {temHit: INTEGER);
PROCEDURE DrawDialog (theDialog: DialogPtr);

Invoking Alerts

FUNCTION
FUNCTION
FUNCTION
FUNCTION

Alert (alertID: INTEGER; filterProc: ProcPtr) : INTEGER;
StopAlert (alertID: INTEGER; filterProc: ProcPtr) : INTEGER;
NoteAlert (alertID: INTEGER; filterProc: ProcPtr) : INTEGER;
CautionAlert (alertlD: INTEGER; filterProc: ProcPtr) : INTEGER;

PROCEDURE CouldAlert (alertID: INTEGER);
PROCEDURE FreeAlert (alertID: INTEGER);

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.S

36 Dialog Manager Programmer's Guide

Manipulating Items in Dialogs and Alerts

PROCEDURE ParamText (param@l,paraml,param2,param3: Str255);

PROCEDURE GetDItem (theDialog: DialogPtr; itemNo: INTEGER; VAR type:
INTEGER; VAR item: Handle; VAR box: Rect);

PROCEDURE SetDItem (theDialog: DialogPtr; itemNo: INTEGER; type:
INTEGER; item: Handle; box: Rect);

PROCEDURE GetIText (item: Handle; VAR text: Str255);

PROCEDURE SetIText (item: Handle; text: Str255);

PROCEDURE SellText (theDialog: DialogPtr; itemNo: INTEGER; strtSel,
endSel: INTEGER);

FilterProc for Modal Dialogs and Alerts

FUNCTION MyFilter (theDialog: DialogPtr; VAR theEvent: EventRecord;
VAR item: itemHit) : BOOLEAN;

Assembly-Language Information

Dialog Record Data Structure

dWindow Dialog window

items Resource 1D of dialog's item list
teHandle Handle to editable text for TextEdit
editField Item number minus 1 of editText item
editOpen Used internally

aDefltem Item number of default button
dWindLen Length of dialog record

Dialog Template Data Structure

dBounds Rectangle that becomes portRect of alert window's grafPort
dWindProc Window definition ID

dVisible Whether dialog window is visible

dGoAway Whether dialog window has a close box

dRefCon Dialog window's reference value

dltems Resource ID of dialog's item list

dTitle Dialog window's title

Alert Template Data Structure

aBounds Rectangle that becomes portRect of dialog window's grafPort
altems Resource ID of alert's item list
aStages Stages word; information for alert stages

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG. S

Item List Data Structure

d1gMaxIndex
{tmHndl
itmRect
itnType
itmData

SUMMARY OF THE DIALOG MANAGER 37

Number of items minus 1}

Handle or procedure pointer for this item
Display rectangle for this item

Item type for this item

Length byte followed by that many bytes of
data for this item (must be even length)

Masks for Alert Stages Word

volBits
alBit
okDismissal

System Global

«EQU
+EQU
«EQU

Name
restProc
daStrings
daBeeper
dlgFont
aNumber
aCount

11/16/83 Rose

Size

4 bytes
16 bytes
4 bytes
2 bytes
2 bytes
2 bytes

3
4
8

;sound number
swhether to draw box
sitem number minus 1 of default button

Contents

Address of restart fail-safe procedure
Handles to ParamText strings

Address of current sound procedure

Font number for NewDialog

Regource ID of last alert

Stage number of last alert (@ through 3)

CONFIDENTIAL /DMGR/DIALOG.S

38 Dialog Manager Programmer's Guide

GLOSSARY

alert: A warning or report of an error, in the form of an alert box,
sound from the Macintosh's speaker, or both.

alert box: A box that appears on the screen to give a warning or
report an error during a Macintosh application.

alert template: A resource that contains information from which the
Dialog Manager can create an alert.

alert window: The window in which an alert box is displayed.
default button: In an alert box or modal dialog, the button whose
effect will occur if the user presses the Return key or the Enter key.

In an alert box, it's boldly outlined; in a modal dialog, it's boldly
outlined or the OK button.

dialog: Same as dialog box.

dialog box: A box that a Macintosh application displays to request
information it needs to complete a command, or to report that it's
waiting for a process to complete.

dialog record: The internal representation of a dialog, where the
Dialog Manager stores all the information it needs for its operations
on that dialog.

dialog template: A resource that contains information from which the
Dialog Manager can create a dialog.

dialog window: The window in which a dialog box is displayed.

disabled: A disabled item in a dialog or alert box has no effect when
clicked.

display rectangle: A rectangle that determines where an fitem is
displayed within a dialog or alert box.

icon: A 32-by-32 bit image that graphically represents an object,
concept s Or messgsage.

item: In dialog and alert boxes, a control, icon, picture, or piece of
text, each displayed inside its own display rectangle.

{tem 1list: A list of information about all the items in a dialog or
alert box.

item number: The index, starting from 1, of an item in an item list.

modal dialog: A dialog that requires the user to respond before doing
any other work on the desktop.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.G

GLOSSARY 39

modeless dialog: A dialog that allows the user to work elsewhere on
the desktop before responding.

sound ptbcedure: A procedure that will emit one of up to four sounds
from the Macintosh's speaker. Its i{nteger parameter ranges from @ to 3
and specifies which sound.

stage: Every alert has four stages, corresponding to consecutive
occurrences of the alert, and a different response may be specified for

each stage.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.G

MACINTOSH USER EDUCATION

The Event Manager: A Programmer”s Guide /EMGR/EVENTS

See also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
QuickDraw: A Programmer”s Guide
The Window Manager: A Programmer”s Guide
The Desk Manager: A Programmer”s Guide
The Menu Manager: A Programmer”s Guide
The Control Manager: A Programmer”s Guide

Modification History: First Draft (ROM &) S. Chernicoff 6/20/83

ABSTRACT

The Macintosh Event Manager is your program”s link to its human user,
allowing it to monitor the user’s actions with the mouse, keyboard, and
keypad. A typical Macintosh application program is event~driven: it
decides what to do from moment to moment by asking the Event Manager
for events and responding to them one by one, in whatever way is
appropriate. The Event Manager is also used for various purposes
within the Toolbox itself, such as to coordinate the ordering and
display of windows on the screen. Finally, you can use the Event
Manager as a means of communication between parts of your own program.

2

Event Manager Programmer”s Guide

TABLE OF CONTENTS

W~NOWVL W

12

17
17
18
19
20
22

23
24
25
35
37

About This Manual
About the Event Manager
Event Types
Priority of Events
Keyboard Events
Event Records
Event Masks
Using the Event Manager
Event Manager Routines
Accessing Events
Posting and Removing Events
Reading the Mouse
Reading the Keyboard and Keypad
Miscellaneous Utilities
Journaling
Resource Format for Keyboard Configurations
Notes for Assembly-Language Programmers
Appendix: Standard Key and Character Codes
Summary of the Event Manager
Glossary

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Event Manager, the part of the Macintosh User
Interface Toolbox that allows your program to monitor the user”s
actions with the mouse, keyboard, and keypad. *#** Eventually it will
become part of a larger manual describing the entire Toolbox. #*** The
Event Manager is also used for various purposes within the Toolbox
itself, such as to coordinate the ordering and display of windows on
the screen. Finally, you can use the Event Manager as a means of
communication between parts of your own program.

(eye)
This manual describes version 4 of the Macintosh ROM. 1I1f
you“re using a different version, the Event Manager may
not work exactly as described here.

Actually, there are two Event Managers: one in the Operating System
and one in the Toolbox. The Toolbox Event Manager calls the onme in the
Operating System and serves as an interface between it and your
application program; it also adds some features that aren”t present at
the Operating System level, such as the window management facilities
mentioned above. This manual describes the Toolbox Event Manager,
which 1s ordinarily the one your program will be dealing with. All
references to "the Event Manager" should be understood to refer to the
Toolbox Event Manager. For information on the Operating System”“s Event
Manager, see the Macintosh Operating System Reference Manual.

Like all Toolbox documentation, this manual assumes you are familiar
with the Macintosh User Interface Guidelines and with Lisa Pascal. You
should also have at least a general notion of what the Window Manager,
Desk Manager, Menu Manager, Control Manager, and Resource Manager do.
It would also be helpful to have some familiarity with a Macintosh
application program as an illustration of the concepts presented here.

The manual begins with an introduction to the Event Manager and what
you can do with it. It then discusses the various types of event,
their relative priority, and how the user”s keyboard actions, in
particular, are reported in the form of events. Next come sections on
the structure of event records, which contain all the pertinent
information about each event, and event masks, which some of the Event
Manager routines expect as parameters.

A section on using the Event Manager introduces its routines and tells
how they fit into the flow of your application program. This is
followed by detailed descriptions of all Event Manager procedures and

functions, their parameters, calling protocol, effects, side effects,
and so on.

Following these descriptions are sections that will not be of interest
to all readers. Special information is given on the Event Manager”s
journaling mechanism, which allows your program”s interactions with the
user to be recorded and played back later; on the format used in
resource files for storing a keyboard configuration, which determines

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2

4 Event Manager Programmer”s Guide

what character each key on the keyboard stands for; and on how to use
the Event Manager routines from assembly language.

Finally, there are an appendix containing detailed information on the
standard Macintosh character set and keyboard configuration, a quick-
reference summary of the Event Manager data structures and routines,
and a glossary of terms used in this manual.

ABOUT THE EVENT MANAGER

The Macintosh Event Manager is your program”s link to its human user.
Whenever the user presses the mouse button, types on the keyboard or
keypad, or inserts a disk in a disk drive, your program is notified by
means of an event. A typical Macintosh application progam is event-
driven: it decides what to do from moment to moment by asking the
Event Manager for events and responding to them one by one, in whatever
way 1s appropriate.

Although the Event Manager”s primary purpose is to monitor the user’s
actions and pass them to your program in an orderly way, it also serves
as a convenient mechanism for sending signals from one part of a
program to another. For instance, the Window Manager uses events to
coordinate the ordering and display of windows as the user activates
and deactivates them and moves them around on the Macintosh screen.

You can also define your own types of event and use them in any way
your application calls for.

Events waiting to be processed are kept in the event queue. In
principle, the event queue is a FIFO (first-in-first-out) list: events
are added to the queue (posted) at one end and retrieved from the
other. You can think of the queue as a funnel that collects events
from a variety of sources and feeds them to your program on demand, in
the order they occurred. (There are a few exceptions to the strict
FIFO ordering, which will be discussed later.)

(eye)
The event queue has a limited capacity *** (currently 3¢
events, but may change) ***, When the queue becomes
full, the Event Manager begins throwing out old events to
make room for new ones as they“re posted. The event
thrown out is always the oldest one in the queue.

Using the Event Manager, your program can:

Retrieve events one at a time from the event queue

Control which types of event get posted and which are ignored

Post events of its own

Read the current state of the keyboard, keypad, and mouse button

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2

ABOUT THE EVENT MANAGER 5

- Monitor the location of the mouse

- Read the system clock to find out how much time has elapsed since
the system was last started up

Another important service provided by the Event Manager is journaling.

This feature enables your program to record all its interactions with
the Event Manager and play them back later.

EVENT TYPES

Events are of various types, depending on their origin and meaning.
Some report actions by the user, some are generated by the Window
Manager, some *** (not yet implemented) *** arise in the Macintosh’s
low-level input/output drivers, and some may be generated by your

program itself for its own purposes. Some events are handled by the
Desk Manager before your program ever sees them; others are left for
your program to handle in its own way.

The most important event types, the ones the Event Manager was created
to handle, are those that record actions by the user:

- Mouse down and mouse up events occur when the user presses or
releases the mouse button.

- Key down and key up events occur when the user presses or releases
a key on the keyboard or keypad. The Event Manager also
automatically generates auto—key events when the user presses and
holds down a repeating key. Together, these three event types are
called keyboard events.

- Disk inserted events occur when the user inserts a disk into a
disk drive.

Abort events occur when the user presses a special combination of
keys. *** Tentatively the combination is Command-period
(Command-.), but this may change; there”s also some possibility
that more than one key combination will be provided to interrupt a
running program in different ways or for different purposes. *¥*
An abort event signals the program to stop whatever it“s doing and
return control directly to the user, allowing the user to
interrupt a time-consuming process or regain control of a runaway
program. An abort event can also be generated by the Event
Manager”“s own journaling mechanism, signaling the program to reset
itself to some standard initial state before replaying a journal.

(hand)
Mere movements of the mouse are not reported as events.
I1f necessary, your program can keep track of them by
periodically asking the Event Manager for the current
location of the mouse.

6/20/83 Chernicoff CONFIDENTIAL JEMGR/EVENTS .2

6 Event Manager Programmer”s Guide

The following event types are used by the Window Manager to coordinate
the display of windows on the screen:

- Activate events are generated whenever an inactive window becomes
active or vice versa. They generally occur in pairs (that 1s, one
window is deactivated and another activated at the same time).

- Update events occur when a window”s contents need to be redrawn,
usually as a result of the user”s opening, closing, activating, or
moving a window.

Two more event types (I/0 driver events and network events) are
reserved for use by the low-level input/output system. #*** At present,
these types are not used at all. *** Tn addition, your program can

define as many as four event types of its own and use them for whatever
purposes you like.

One final type of event is the null event, which is what the Event
Manager returns if it has no other events to report.

PRIORITY OF EVENTS

It was stated earlier that in principle the event queue is a FIFO list—-
that is, events are retrieved from the queue in the order they were
originally posted. Actually, the way in which various types of event
are generated and detected causes some to have higher priority than
others. Furthermore, when you ask the Event Manager for an event, you
can specify a particular type or types that are of interest. This can
also alter the strict FIFQ order, by causing some events to be passed
over in favor of others that were actually posted later. Everything
sald in the following discussion is understood to be limited to the
event types you“ve specifically requested in your Event Manager call.

The Event Manager always returns the highest-priority event available
of the requested type(s). The priority ranking is as follows:

1. Activate (window becoming inactive before window becoming active)

2. Mouse down, mouse up, key down, key up, disk inserted, abort,
network, I/0 driver, application-defined (all in FIFO order)

3. Auto-key
4. Update (in front-to-back order)
5 . Null

Activate events take priority over all others; they are detected in a
special way, and are never actually placed in the event queue. The
Event Manager checks for pending activate events before looking in the
event queue, so it will always return such an event if one 1is
available. Because of the special way activate events are detected,

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2

PRIORITY OF EVENTS 7

there can never be more than two such events pending at the same time:
one for a window becoming inactive and another for a window becoming
active. If there”s one of each, the event for the window becoming
inactive is reported first.

Category 2 includes most of the possible event types. Within this
category, events are normally retrieved from the queue in the order
they were posted.

If no event is available in categories 1 and 2, the Event Manager next
checks to see whether the appropriate conditions hold for an auto-key
event. (These conditions are described in detail in the next section.)
If so, it generates one and returns it to your program.

Next in priority are update events. Like activate events, these are
not placed in the event queue, but are detected in another way. If no
higher-priority event is available, the Event Manager checks for
windows whose contents need to be redrawn. I1f it finds one, it
generates and returns an update event for that window. Windows are
checked in the order in which they“re displayed on the screen, from
front to back, so if two or more windows need to be updated, an update
event will be generated for the frontmost such window.

Finally, if no other event is available, the Event Manager returns a
null event.

KEYBOARD EVENTS

Every key on the Macintosh keyboard and the optional keypad generates
key down and key up events when pressed and released. (Exceptions are
the modifier keys-—-Shift, Caps Lock, Command *** name may change ***,
and Option. These keys are treated specially, as described below, and
generate no keyboard events of their own.) In addition, the Event
Manager itself generates auto-key events whenever you request an event
and all of the following conditions apply:

- No higher-priority event of the requested type(s) is available

= The user is currently holding down a key other than a modifier key

The appropriate time interval (see below) has elapsed since the
last keyboard event

Auto-key events are one of the types you“ve requested

Auto-key events are one of the types currently being posted into
the event queue

Two different time intervals are taken into account. Auto-key events
begin to be generated after a certain initial delay has elapsed since
the original key down event (that 1is, since the key was originally
pressed). Thereafter, they are generated each time a certain repeat

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2

8 Event Manager Programmer”s Guide

interval has elapsed since the last auto-key event. The initial
settings for these two intervals are 16 ticks (sixtieths of a second)
for the initial delay and 4 ticks for the repeat interval. The user

can adjust.these settings to individual preference with the control
panel desk accessory.

When the user presses, holds down, or releases a key, the resulting
keyboard event identifies the key in two different ways: with a key
code designating the key itself and a character code designating the
character the key stands for. Character codes are given in the
extended version of ASCII (the American Standard Code for Information
Interchange) used by Macintosh and Lisa; see the Appendix for further
information.

The association between keys and characters is defined by a keyboard

configuration. The particular character a key generates depends on
three things:

~ The key itself
- The keyboard configuration currently in effect

= Which, if any, of the modifier keys were held down when the key
was pressed

As mentioned earlier, the modifier keys don“t generate keyboard events
of their own. Instead, they modify the meaning of the other keys by
changing the character codes that those keys generate. For example,
under the standard Macintosh keyboard configuration, the "C" key
generates a lowercase letter c when pressed by itself; when pressed
with the Shift or Caps Lock key down, it generates a capital C; with
the Option key down, a lowercase ¢ with a cedilla (¢), used in French,
Portuguese, and a few other foreign languages; and with Option and
Shift or Option and Caps Lock down, a capital C with a cedilla (¢).

The state of each of the option keys is also reported in a field of the

event record (see next section), where your program can examine it
directly.

Keyboard configurations are handled as resources and stored in resource
files. The standard keyboard configuration gives each key its normal
ASCII character code according to the standard Macintosh keyboard
layout, as shown in the Appendix. When the Option key is held down,
most keys generate special characters with codes between 128 and 255
($8¢ and $FF), included in the extended character set for business,
scientific, and international use.

(hand)
Notice that under the standard keyboard configuration
only the Shift, Caps Lock, and Option keys actually
modify the character a key stands for: the Command key
has no effect on the character code generated. (Keyboard
configurations other than the standard may take the
Command key into account.) Similarly, character codes
for the keypad are affected only by the Shift key. To

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2

KEYBOARD EVENTS 9

find out whether the Command key was down at the time of
an event (or Caps Lock or Option in the case of one
generated from the keypad), you have to examine the
appropriate field of the event record.

Normally you“ll just want to use the standard keyboard configuration,
which is read from the system resource file every time the Macintosh is
started up. Other keyboard configurations can be used to reconfigure
the keyboard for foreign use or for nonstandard layouts such as the
Dvorak arrangement. In rare cases, you may want to define your own
keyboard configuration to suit your program”“s special needs. For
information on how to install an alternate keyboard configuration or
define one of your own, see "Resource Format for Keyboard
Configurations” and “"Notes for Assembly-Language Programmers”, below.

EVENT RECORDS

Every event is represented internally by an event record containing all
pertinent information about that event. The event record includes the
following information:

~ The type of event
- The time the event was posted
- The location of the mouse at the time the event was posted

- The state of the mouse button and modifier keys at the time the
event was posted

= Any additional information required for a particular type of

event, such as which key the user pressed or which window is being
activated

This information is filled into the event record for every event--even
for null events, which just mean that nothing special has happened.

Event records are defined as follows:

TYPE EventRecord = RECORD

what: INTEGER;

message: Longlnt;

when: LonglInt;

where: Point;

modifiers: INTEGER
END;

The what field contains an event code identifying the type of the
event. The Event Manager can handle a maximum of 16 different event
types, denoted by event codes from § to 15. The following standard
event codes are built into the Event Manager as predefined constants:

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3

10 Event Manager Programmer”s Guide

CONST nullEvent = @; {null}
mouseDown = 1; {mouse down}
mouseUp = 2; {mouse up}
keyDown = 3; {key down}
keyUp = 4; {key up}
autoKey - 5; {auto-key}
updateEvt = 6; {update}
diskEvt = 7; {disk inserted}
activateEvt = 8; {activate}
abortEvt = 9; {abort}
networkEvt = 1¢; {network}
driverEvt = 11; {1/0 driver}
applEvt = 12; {application-defined}
app2Evt = 13; {application-defined}
app3Evt = 14; {application-defined}
app4Evt = 15; {application-defined}

The when field contains the time the event was posted, in ticks
(sixtieths of a second) since the system was last started up.

The where field gives the location of the mouse at the time the event
was posted, expressed in global coordinates.

1514 13 121110 9 6 7 6 5 4 3 2 1 0

w \ -

l— Activste/desctivate
System/epplication window

Unused

Mouse button
Command key
Shift key
Caps Lock key
Option key

Unused

Figure 1. Modifier Bits

The modifiers field gives the state of the mouse button and the
modifier keys at the time the event was posted, as shown below and in
Figure 1. A 1l in any bit position means that that key or button was
down; @ means it was up. (Following the customary convention, the bit
positions are numbered from right to left, starting from @ at the low-
order end; see Figure 1l.) '

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3

EVENT RECORDS 11

Bit Meanigg
15-12 Unused

11 Option key

10 Caps Lock key
9 Shift key
8 Command key *** (name may change) %**
7 Mouse button

6-2 Unused

1-9 Used only by activate events (see below)

For activate events, the low-order bit of the modifiers field (bit @)
is set to 1 if a window is being activated, or to ¢J if it is being
deactivated. When one window is deactivated and another is activated
at the same time (as is usually the case), bit 1 of the modifiers field
is set to 1 if one of the windows involved belongs to your application
program and the other is a system window (a window not created by your
program, such as one containing a desk accessory); if they“re both
system or both application windows, this bit is set to §. You can use
this information to take some special action when the active window
changes frow an application window to a system window or vice versa:
for example, you might want to hide a menu or dim some of its items
when a system window becomes active and restore them when control
returns to one of your program s own windows.

k) 24 23 16 15 87 0

<
<

Figure 2. Event Message Format for Keyboard Events

The message field contains the event message, which conveys extra
information gpecific to a particular event type:

~ For keyboard events, the event message identifies the key that was
pressed or released, as shown in Figure 2. The low-order byte
(message MOD 256) contains the character code for the key,
depending on the keyboard configuration currently in effect and on
which, i{f any, of the modifier keys were held down. Under the

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3

12 Event Manager Programmer”s Guide

standard keyboard configuration this i1s just the normal ASCII code
associated with the key, which is usually the information your
program needs. The third byte (message DIV 256) gives the key
code, useful in special cases (a2 music generator, for example)
wvhere you want to treat the keyboard as a set of buttons unrelated
to specific characters. Detailed information on key and character
codes for the standard Macintosh keyboard configuration is given
in the Appendix. The first two bytes of the message are set to .

- For disk inserted events, the event message gives the drive number
of the disk drive: 1 for the Macintosh”s built-in drive, 2 for
the external drive, if any. Numbers greater than 2 denote
additional disk drives conmnected through the serial port. By the
time your program receives a disk inserted event, the system will
already have attempted to mount the volume that was inserted. If
for any reason the attempt was unsuccessful (for example, 1f the
user has inserted an unformatted disk), the high-order word of the
event message will contain the error code returned by the

Operating System; see the Operating System manual for further
details.

~ For activate and update events, the event message is a pointer to
the window affected.

- For abort events, the event message identifies the key that the
user pressed in order to interrupt the program. The format is the
same as described above for keyboard events. For abort events

generated by the Event Manager®s own journaling mechanism, the
message field is set to .

- For application~defined event types, you can use the event message
for whatever information your application calls for.

- For mouse down, mouse up, and null events, the event message is
meaningless and should be ignored.

EVENT MASKS

Several of the Event Manager routines can be restricted to a specific
event type or group of types. For instance, instead of just requesting
the next available event, you can ask specifically for the next
keyboard event.

You specify which event types a particular Event Manager call applies
to by supplying an event mask as a parameter. This is an integer in
which each of the 16 bit positions stands for an event type, as shown
in Figure 3. Notice that the bit position representing a given type
corresponds to the event code for that type. For example, update
events (type code 6) are specified by bit 6 of the mask, counting from
@ at the right (low-order) end. A 1l bit at that position means that
this Event Manager call applies to update events; a J means it doesn’t.

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3

EVENT MASKS 13

151413121110 8 6 7 6 5 4 3 2 1 O

i [S

Mouse up
Key down
Key up
Auto-key
Update

Disk inserted
Activete
Abort
Network

I/0 driver

Application-defined
Figure 3. Event Mask

Masks for each single event type are built into the Event Manager as
predefined constants:

CONST nullMask = 1; {null}
mDownMask = 2; {mouse down}
mUpMask = 4; {mouse up}
keyDownMask = 8; {key down}
keyUpMask = 16; {key up}
autoKeyMask = 32; {auto-key}
updateMask = 64; {update}
diskMask = 128; {disk inserted}
activMask = 256; {activate}
abortMask = 512; {abort}
networkMask = 1¢24; {network}
driverMask = 2048; {1/0 driver}
applMask = 4096; {application-defined}
app2Mask = 8192; {application-defined}
app3Mask = 16384; {application-defined}
app4Mask = -32768; {application-defined}

There”s also a predefined mask consisting of all 1 bits, to designate
every event type:

CONST everyEvent = -1;
You can form any mask you need by combining these mask constants with
integer addition and subtraction. For example, to specify any keyboard

event, you can use a mask of

keyDownMask + keyUpMask + autoKeyMask

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3

14 Event Manager Programmer”s Guide

For any event except an update, you can use

everyEvent - updateMask

(hand)
Recommended programming practice is always to use an
event mask of everyEvent unless there is a specific

reason not to. This ensures that all events will be
processed in their natural order.

In addition to the mask parameters to individual Event Manager
routines, there”s also a global system event mask, which controls which
event types get posted into the event queue. Only those events
corresponding to 1 bits in the system event mask are posted; those with
@ bits are ignored. When the system is started up, the system event

mask is initially set to post all except key up events--that is, it is
initialized to

everyEvent - keyUpMask

(Key up events are meaningless for most applications, and your program
will usually want to ignore them anyway.) 1If necessary for your
particular application, you can change the setting of the system event
mask with the Event Manager procedure SetEventMask.

USING THE EVENT MANAGER

This section discusses how the Event Manager routines fit into the
general flow of your program and gives you an i1dea of which routines
you”1ll need to use. The routines themselves are described in detail in
the next section.

Before using the Event Manager, you should call the Window Manager
procedure InitWindows: parts of the Event Manager rely on the Window
Manager”s data structures and will not work properly unless those
structures have been properly initialized. 1It“s also usually a good
idea to call FlushEvents(everyEvent,#), to empty the event queue of any
stray events left over from before your program was started up (such as
keystrokes typed to the Finder).

As noted earlier, most application programs are event-driven. Such
programs typically have a main loop that repeatedly calls GetNextEvent
to retrieve the next available event, then uses a CASE statement to
decide what type of event it is and take whatever action is
appropriate.

Your program is only expected to respond to those events that are
directly related to its own operations. Events that are of interest
only to the system, or that pertain only to system windows, are
intercepted and handled by the Desk Manager, but are still reported
back to your program by GetNextEvent. After calling GetNextEvent, you

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3

USING THE EVENT MANAGER 15

should test its Boolean result to find out whether your program needs

to respond to the event: TRUE means the event is of interest to your
program, FALSE means you can ignore it.

(hand)
Events handled by the system include activate and update
events for system windows; all keyboard and mouse up
events when a system window is active, if the window
contains a desk accessory that is prepared to handle the
event; and network events 1if there”s a desk accessory
present that will handle them. Further details are given
in the Desk Manager manual.

On receiving a mouse down event, you should first call the Window
Manager function FindWindow to find out where on the screen the mouse
button was pressed; you can then respond in whatever way is
appropriate. Depending on the part of the screen the button was

pressed in, this may involve calls to Toolbox routines such as the Menu
Manager function MenuSelect, the Desk Manager procedure SystemClick,

the Window Manager routines SelectWindow, DragWindow, GrowWindow, and
TrackGoAway, and the Control Manager routines FindControl,
TrackControl, and DragControl. See the relevant Toolbox manuals for
details.

(hand)
If your program attaches some special significance to
double mouse clicks, you can detect them by comparing the
time and location of each mouse down event with those of
the previous such event. 1f the two events are
sufficiently close to each other in time and space--~
separated by not more than, say, half a second (30 ticks)
and three pixels--you can consider them a double click
and respond accordingly.

When one of your own windows is active, you should respond to keyboard
and mouse up events in whatever way your application calls for. For
example, when the user types a character on the keyboard, you might
want to insert that character into the document displayed in an active
document window. For keyboard events, you should first check the
modifiers field to see whether the character was typed with the Command
key held down: 1if so, the user may have been choosing a menu item by
typing its keyboard equivalent. To find out, pass the character that
was typed to the Menu Manager function MenuKey. If that character,
combined with the Command key, stands for a menu item, MenuKey will
return a nonzero result identifying the item. You can then do whatever
is appropriate to respond to that menu item, just as if the user had
chosen it with the mouse. If MenuKey s result is ¢, the user has typed

a key combination that has no menu equivalent; your program may then
want to respond in some other way.

(hand)
Under the Macintosh User Interface Guidelines, the
keyboard”s usual auto-repeat property doesn’t apply to
Command-key combinations that stand for menu items. When

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3

16 Event Manager Programmer”s Guide

you receive a nonzero result from MenuKey, you should
execute the corresponding menu command only if the event
you“re responding to was a mouse down event; if it was an

auto-key event, just ignore it and go on to the next
event.

When you receive an activate event for one of your own windows, the
Window Manager will already have done all of the normal “housekeeping”
associated with the event, such as highlighting or unhighlighting the
window. You can then take any further action of your own that your

application may require, such as showing or hiding a scroll bar or
highlighting or unhighlighting a selection.

On receiving an update event for one of your own windows, you should
usually call the Window Manager procedure BeginUpdate, redraw the
window”s contents, then call EndUpdate.

When you receive a disk inserted event, the Desk Manager will already
have responded to the event by attempting to mount the new volume just
inserted in the disk drive. Usually there”s nothing more for your
program to do, but GetNextEvent returns TRUE anyway, giving you an
opportunity to take some further action if your application demands it.
If the attempt to mount the volume was unsuccessful, there will be a
nonzero error code in the high-order word of the event message; in this
case you might want to take some special action, such as displaying an
alert box containing an error message.

If the event you receive is an abort event, first check to see whether
it was generated by the user or by the Event Manager”s own journaling
mechanism. For user-generated abort events, your program should stop
whatever it"s doing and return to its main loop to process the next
available event; for those that originate in the journaling mechanism,
it should reset its internal state as appropriate to prepare for
replaying a journal.

(hand) .
During any particularly time-consuming operation, your
program should check for abort events periodically to

allow the user to interrupt the operation from the
keyboard.

Network events are handled by the Desk Manager as long as there’s a
desk accessory present that can respond to them. If GetNextEvent
returns a TRUE result for a network event, then no such desk accessory
is present; your program should normally just ignore the event.

*%% The exact meaning and use of I/0 driver events is not yet
specified, so (for the time being) you needn“t worry about how to
respond to them. ***

1f you“re using your own event types for internal communication between
parts of your program, you can use PostEvent to post them into the
event queue. When you receive them back from GetNextEvent, you can
respond to them in whatever way is appropriate for your application.

6/20/83 Chernicoff CONFIDENTIAL JEMGR/EVENTS.3

USING THE EVENT MANAGER 17

To "peek” at pending events without removing them from the event queue,
use EventAvail instead of GetNextEvent. To remove all events of a
given type or types from the queue, use FlushEvents. To control which
event types get posted into the queue, or to cause certain types to be
ignored, use SetEventMask.

In addition to receiving the user”s mouse and keyboard actions in the

form of events, you can directly read the keyboard (and keypad), mouse
location, and state of the mouse button by calling GetKeys, GetMouse,

and Button, respectively. To follow the mouse when the user drags it

with the button down, use StillDown or WaitMouseUp.

Finally, you can read the current setting of the system clock at any
time by calling TickCount.

EVENT MANAGER ROUTINES

This section describes all the Event Manager procedures and functions.
They are presented in their Pascal form; for information on using them
from assembly language, see "Using the Toolbox from Assembly Language"”
"% (doesn”t exist, but see QuickDraw manual) *** and also “"Notes for
Assembly-Language Programmers” in this manual.

Accessing Events

FUNCTION GetNextEvent (eventMask: INTEGER; VAR theEvent: EventRecord) :
BOOLEAN;

GetNextEvent returns the next available event of a specified type or
types and removes it from the event queue. The event is returned as
the value of the parameter theEvent; eventMask specifies which event
types are of interest. GetNextEvent will return the next available
event of any type designated by a1 bit in the mask, subject to the
priority rules discussed above under "Priority of Events”. Event types
corresponding to ¢ bits in the mask are ignored. If no event of any of
the designated types is available, GetNextEvent returns a null event,
regardless of the setting of the eventMask bit for null events.

(eye)
Since update events are never actually placed in the
event queue, GetNextEvent can”t remove them from the
queue before returning them, as it does with other
events. If your program doesn”t take some explicit
action to "clear” the update event, it will keep getting
the same event back again. The normal way of clearing an
update event is with BeginUpdate and EndUpdate; further
explanation can be found in the Window Manager manual.

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS .4

18 Event Manager Programmer”s Guide

Before reporting an event to your program, GetNextEvent first calls the
Desk Manager function SystemEvent to see whether the system wants to
intercept and respond to the event. If so (or if the event being
reported is a null event), GetNextEvent returns a function result of
FALSE to notify your program that it can ignore this event; a function
result of TRUE means that your program should handle the event itself.
The Desk Manager normally intercepts the following events:

= All activate and update events directed to a system window

= All keyboard and mouse up events if the currently active window is
a system window and contains a desk accessory that is prepared to
handle the event

- All network events if there is a desk accessory present that can
handle thenm

The Desk Manager also responds to disk inserted events by attempting to
mount the volume that has just been inserted; but in this case
GetNextEvent returns TRUE to allow your program to take some further
action if appropriate. All other events (including all mouse down
events, regardless of which window is active) are left for your program
to handle. See the Desk Manager manual for further details.

FUNCTION EventAvail (eventMask: INTEGER; VAR theEvent: EventRecord) :
BOOLEAN;

EventAvail returns in theEvent the next available event of the type or
types specified by eventMask, but does not remove the event from the
event queue. This allows you to "peek” at pending events while still
leaving them in the queue for later processing. 1In all other respects,
EventAvail works exactly the same as GetNextEvent (see above).

Posting and Removing Events

PROCEDURE PostEvent (eventCode: INTEGER; eventMsg: LongInt);

PostEvent places in the event queue an event of the type designated by
eventCode, with the event message specified by eventMsg. The main use
of this procedure is for posting events of your own application-defined
types. It"s also sometimes useful for placing an event back in the
queue after you“ve removed it with GetNextEvent. Notice, however, that
in this case the system clock time, mouse location, and state of the
mouse button and modifier keys will be changed from their original
values to those in effect at the time the event is reposted.

(eye) '

Be very careful about posting any but your own
application-defined events into the queue. For example,
attempting to post an activate or update event will

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4

EVENT MANAGER ROUTINES 19

interfere with the internal operation of the Event
Manager, since such events are detected in other ways and
are not normally placed in the queue at all. If you
repost a mouse event, the mouse location associated with
it will be changed, possibly altering its meaning;
reposting a keyboard event may cause modifier information
to be lost or characters to be transposed from the order
in which the user originally typed them. 1In general, you
should avoid using PostEvent for any but your own events
unless you“re sure you know what you“re doing.

PROCEDURE FlushEvents (eventMask,stopMask: INTEGER);

FlushEvents removes from the event queue all events of the type(s)
specified by eventMask, up to, but not including, the first event of
any type specified by stopMask. To remove all events of a particular
type or types, use a stopMask value of @#. You might use FlushEvents,
for example, on receiving an abort event, to remove any mouse Or
keyboard events that may have occurred before the program was
interrupted.

(hand)
When your program is first started up, it"s usually a
good idea to call FlushEvents(everyEvent,®) to empty the
event queue of any stray events that may have been left

lying around, such as unprocessed keystrokes typed to the
Finder.

Reading the Mouse

PROCEDURE GetMouse (VAR mouseLoc: Point);

GetMouse returns the current mouse location as the value of the
parameter mouseloc. The location is expressed in the local coordinate
system of the current grafPort (which might be, for example, the
currently active window). Notice that this differs from the mouse

location stored in the where field of an event record, which is given
in global coordinates.

FUNCTION Button : BOOLEAN;

The Button function returns the current state of the mouse button:
TRUE if the button is down, FALSE if it isn”t.

FUNCTION StillDown : BOOLEAN;

Called after a mouse down event, StillDown tests whether the mouse
button is still down. It returns TRUE if the button is currently down

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4

20 Event Manager Programmer”s Guide

and there are no more mouse events (mouse ups or later mouse downs)
pending in the event queue. This is a true test of whether the button
is still down from the original press--unlike Button (see above), which
returns TRUE whenever the button is currently down, even if it has been
released and pressed again since the original mouse down event.

FUNCTION WaitMouselUp : BOOLEAN;

WaitMouseUp works exactly the same as StillDown (see above), except
that if the button 1is not still down from the original press,

WaitMouseUp removes the corresponding mouse up event before returning
FALSE.

Reading the Keyboard and Keypad

PROCEDURE GetKeys (VAR theKeys: KeyMap);

GetKeys reads the current state of the keyboard (and keypad, if any)
and returns it in the form of a keyMap:

TYPE KeyMap = PACKED ARRAY [1..128] OF BOOLEAN;

Each element of the keyMap is TRUE if the corresponding key is down,
FALSE if it isn“t. The correspondence between elements of the keyMap
and keys on the keyboard and keypad is shown in Table 1. KeyMap
elements corresponding to blank entries in the table are unused.
Notice that GetKeys doesn”t distinguish between the two Shift keys or
the two Option keys.

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS .4

EVENT MANAGER ROUTINES 21

Element Key Element Key
9 A 48 Tab
1 s 49 Space bar
2 D 59 =
3 F 51 Backspace
4 H 52 Enter
5 G 53
6 z 54
7 X 55 Command *** (name may change) #***
8 c 56 Shift
9 v 57 Caps Lock
19 58 Option
11 B 59
12 Q 69
13 1} 61
14 E 62
15 R 63
16 Y 64
17 T 65 « (keypad)
18 1 66 * (keypad)
19 2 67
20 3 68
21 4 69
22 6 79 + (keypad)
23 5 71 Clear (keypad)
24 - 72 s (keypad)
25 9 73
26 7 74
27 - 75
28 8 76 Enter (keypad)
29] 77 / (keypad)
39] 78 = (keypad)
31 o 79
32)] 8¢
33 [81
34 1 82 @ (keypad)
as P 83 1 (keypad)
36 Return 84 2 (keypad)
37 L 85 3 (keypad)
38 J 86 4 (keypad)
39 g 87 5 (keypad)
49 K 88 6 (keypad)
41 ; 89 7 (keypad)
42 \ 90
43 » 91 8 (keypad)
44 / 92 9 (keypad)
45 N 93
46 M 94
47 . 95
96-127 (Unused)

Table 1. KeyMap Elements

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS. 4

22 Event Manager Programmer”s Guide

Miscellaneous Utilities

PROCEDURE SetEventMask (theMask: INTEGER);

SetEventMask sets the system event mask to the specified value. This
mask controls the posting of events into the event queue. Only event
types corresponding to 1 bits in the mask are posted; all others are

ignored. The initial setting for the system event mask is to post all
except key up events.

SetEventMask is useful if for some reason you want to know when keys
are released as well as when they“re pressed, or if you know that some
other event type is of no interest to your program and needn”t be
posted. For example, if your program attaches no special meaning to
mouse up events, you may want to dispense with them; or you might want

to eliminate keyboard repeat by preventing auto-key events from being
posted.

(hand)
Since space in the event queue is limited, it"s generally

a good idea to disable any event type that you know your
program has no use for.

The system event mask has no effect on activate or update events, since
these events are detected in other ways and are never actually posted
into the event queue.

FUNCTION TickCount : LonglInt;

TickCount returns the current value of the system clock, which gives
the elapsed time in ticks (sixtieths of a second) since the system was
last started up.

JOURNALING

Using the Event Manager”s journaling mechanism, all of a program’s
interactions with the Event Manager can be recorded and later played
back, just as if they were happening for the first time. A journal is
a record of all calls to the Event Manager routines GetNextEvent,
EventAvail, GetMouse, Button, GetKeys, and TickCount. When a journal
is being recorded, every call to any of these routines is sent to a
special input/output driver and recorded in the journal, along with the
result returned.

When the journal is played back, the same Event Manager calls read
their results back from the journal instead of directly from the mouse,
keyboard, keypad, and system clock. To the application program, the
results it receives from the Event Manager in response to these calls

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS .4

JOURNALING 23

look exactly as if they were coming directly from the user. Since the
program 1s event-driven, its behavior i{s completely determined by this
stream of results. In particular, the sequence of calls the program
issues to the Event Manager while replaying the journal will exactly
match those that occurred when the journal was originally recorded.
Since the results the Event Manager sends back are taken from the
journal, the same sequence of events that occurred when the journal was
recorded will be reproduced when the journal is played back.

(eye)
Null events are not fully recorded in the journal: the
fact that a null event was generated is recorded, but not
the contents of the event record”s fields. When the
journal is played back, this information-—-the time the
event was posted, the mouse location, and the state of
the mouse button and modifier keys--is lost; the contents
of the when, where, and modifiers fields are meaningless.

If there”s any chance your program may be executed from a
journal instead of by direct interaction with the user,

it should not rely in any way on the contents of a null
event s fields.

The user can control journal recording and playback with the journaling
desk accessory. It can also be controlled by the application program
itself, but only from the assembly-language level: see "Notes for
Assembly-Language Programmers”, below, for details. *** The exact
wmethod of controlling the journaling mechanism has not been finally
determined and will probably change. **%

RESOURCE FORMAT FOR KEYBOARD CONFIGURATIONS

The keyboard configuration, which translates the keys the user presses
on the keyboard and keypad into the characters they represent, is
treated as a resource and read from a resource file. The standard
Macintosh keyboard configuration is stored in the system resource file
and is read automatically when the Macintosh is started up. One way to
substitute an alternate keyboard configuration--for example, for
foreign use--is to use the Resource Editor *** (which doesn”t yet
exist) *** to replace the standard configuration with the new one in
the system resource file. Then the next time the Macintosh is
restarted, it will read the new keyboard configuration instead of the
standard one. .

(hand)
It°s also possible for a running program to install a new
keyboard configuration "on the fly”. This can only be
done in assembly language; details are given in the next
section.

Actually, the keyboard configuration is a pair of machine-~language
configuration routines, one for the keyboard and one for the keypad.
These routines accept a key code, along with the state of the modifier

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS .4

24 Event Manager Programmer”s Guide

keys, as input and return the corresponding character code as output.
The arguments and result are passed directly in machine registers, so
the routines must be written in assembly language, not in Pascal.

The keyMap index (see Table 1) for the key to be translated is passed
to the configuration routine in register D2. Register D1 contains the
fourth word (indices 48 to 63) of the current keyMap, which includes
the status bits for the four modifier keys at the positions shown in
Figure 4. All other bits in this word should be ignored. The
configuration routine is expected to return a character code in
register D@; it should preserve the contents of all other registers.
If the specified key combination doesn”t correspond to any character,

the configuration routine should return ¢J: 1in this case, no keyboard
event will be generated.

191413121110 8 6 7 6 S 4 3 2 1 O

Shift key
Ceps Lock key
Option key

| | I Command key

Figure 4. Modifier Bits for Configuration Routines

When the Macintosh is started up, two configuration routines are read
from the system resource file. Both have a resource type of “KEYC”;
the resource ID is 1 for the keyboard routine and 2 for the keypad
routine. The resource data for a resource of this type is just the
machine code for the routine. The first byte of code is assumed to be
the entry point for executing the routine.

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS

Information about how to use the User Interface Toolbox from assembly
language is given elsewhere. *** For now, see the QuickDraw

manual. *** Thig section contains special notes of interest to
programmers who will be using the Event Manager from assembly language.

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS . 4

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 25

The primary aid to assembly-language programmers is a file named
TOOLEQU.TEXT. 1If you use .INCLUDE to include this file when you
asgemble your program, all the Event Manager constants, offsets to
locations of global variables, and offsets into fields of structured
types will be available in symbolic form.

In assembly language, you can control the operation of the journaling
mechanism by setting the global variable JournalFlag. Setting this
variable to a positive, nonzero value turns on journal recording;

setting it negative turns on playback; setting it to J turns journaling
off.

The global variables KeylTrans and Key2Trans are used to hold pointers
to the keyboard and keypad configuration routines, respectively. You

can replace either or both of these routines “on the fly” by the
following steps:

l. Call the Resource Manager function GetResource (or
GetNamedResource) to find the new configuration routine in its
resource file, read it into memory, and get a handle to it.

2. Use the Operating System call RecoverHandle to convert the
existing routine pointer from KeylTrans or Key2Trans into a
handle.

3. Use the Operating System call DisposHandle to free the storage
occupied by the old routine.

4. Convert the handle you received from the Resource Manager into a
pointer and store it in KeylTrans (for a keyboard routine) or
Key2Trans (for a keypad routine).

APPENDIX: STANDARD KEY AND CHARACTER CODES

The following tables show the key and character codes used by Macintosh
and the characters assigned to keys on the keyboard and keypad under
the standard Macintosh keyboard configuration. All key and character
codes are given in hexadecimal; for the benefit of readers with only
ten fingers, there’s a hexadecimal/decimal conversion table at the end
of this Appendix.

Table 2 shows the extended ASCII character set used by Macintosh and
Lisa. The firset digit of the hexadecimal character code is shown at
the top of the table, the second down the left side. For example,
character code $47 stands for the capital letter G, which appears in
the table at the intersection of column 4 and row 7.

Character codes between $2¢ and $7E have their normal ASCII meanings.

Codes between $8¢ and $CA denote special characters included in the
extended character set for business, scientific, and international use;

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.S

26 Event Manager Programmer”s Guide

codes from $CB to $FF are unassigned. ASCII control characters ($6¢ to

$1F, as well as $20 and $7F) are identified in the table by their
traditional ASCII abbreviations:

Code Abbr. Meaning Code Abbr. Meaning

S@@ NUL Null §19 DLE Data Link Escape

$91 SOH Start of Header $11 DCl Device Control 1

$92 SIX Start of Text $12 DC2 Device Control 2

$@#3 EIX End of Text $13 DC3 Device Control 3

$p4 EOT End of Tape $14 DC4 Device Control 4

$#5 ENQ Enquiry $15 NAK Negative Acknowledge
$P6 ACK Acknowledge $16 SYN Synchronous 1ldle

$07 BEL Bell $§17 ETB End Transmission Block
$@P8 BS Backspace $18 CAN Cancel

$99 HT Horizontal Tab $19 EM End of Med{ium

$PA LF Line Feed $1A SUB Substitute

$¢B VT Vertical Tab $1B ESC Escape

SPC FF Form Feed $1C FS Field Separator

$¢D CR Carriage Return $1D GS Group Separator

$PE SO Shift Out $1E RS Record Separator

$OF SI Shift In S$1IF US Unit Separator

$20 sSP Space $7F DEL Delete

However, most of these characters have no special meaning on Macintosh

and cannot be generated from the Macintosh keyboard under the standard
keyboard configuration. The exceptions are the following:

Code Character Ke

sP3 ETX Enter (keyboard and keypad)
$98 BS Backspace

$99 HT Tab

$9D CR Return

$1B ESC Clear (keypad)

$1C FS Left arrow (keypad)

$1D GS Right arrow (keypad)

$1E RS Up arrow (keypad)

S1F Us Down arrow (keypad)

$20 SP Space bar

In addition, as shown in the table, codes from $11 to $15 denote
special characters used on the Macintosh screen, such as the open and
solid Apple characters. These characters are intended exclusively for

use on the screen, and have no keyboard or keypad equivalents under the
standard keyboard configuration.

The characters shaded in the table are accented letters used in various
foreign languages. Under the standard keyboard configuration, these
characters cannot be typed directly from the keyboard. Instead, they
are generated by first typing the accent or diacritical mark alone,
followed by the letter to be accented. For example, a lowercase letter
e with a grave accent (2, character code $8F) is produced by typing a
grave accent (*, code $68) followed by a lowercase e (code $65). The
Macintosh keyboard driver will #*#*%* (eventually) #*** translate such two-

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5

APPENDIX: STANDARD KEY AND CHARACTER CODES 27

character sequences involving diacriticals into the corresponding
single accented letters.

Tables 3 and 4 show the hexadecimal key codes corresponding to keys on
the Macintosh keyboard and keypad, respectively. Modifier keys are not
shown, since they never generate keyboard events of their own.

Table 5 shows the hexadecimal character codes generated by each key on
the keyboard under the standard keyboard configuration. Table 5a gives
the character generated when the key is pressed by itself, Table 5b
when it is pressed with the Shift key held down, Table 5c the Caps Lock
key, Table 5d the Option key, and Table 5e the Option and Shift or
Option and Caps Lock keys. Again, the modifier keys themselves are not
shown.

Table 6 shows the hexadecimal character codes for the keypad under the
standard keyboard configuration. Table 6a gives the character

generated when the key is pressed by itself, Table 6b when it is
pressed with the Shift key held down.

Finally, Table 7 is a conversion table between hexadecimal and decimal.
To convert a two-digit hexadecimal number to decimal, find its first
digit at the top of the table and its gsecond down the left side. The
decimal equivalent is found at the intersection of that column and row.
For example, hexadecimal $6C is equivalent to decimal 1¢8, found at the
intersection of column 6 and row C. To convert a decimal number to
hexadecimal, find the number in the body of the table and read its
first and second hexadecimal digits from the head of that column and
row, respectively. For example, decimal 227 is in column E and row 3,
so its hexadecimal equivalent is $E3.

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5

m o O o »

-

28

0 1

2

Event Manager Programmer”s Guide

(-}
o
o
v.)
>

o
0
O

InuL DLE (sP

-
—

BEL |[ETB

Q|3

| plAtE] 1 || &]
SO 0C1 et _:
! e %=1 :
STX oc\‘z/ . D ¢ -
3N €| =
ETX |DC3 ; Y i
= o |8 : 11 £ J
EOT [oC4 5 G
o |$ NETH§ i
ENO |NAK o : s
/O N [] —4 ".'_
ACK |SYN | -
& t' B

]

BS CAN
-

W0 INOIUW(EWIN|FIO]|w

n

L |SU8

1|0 |® |W

(& :
HT s _~
> ") O aee —
=

vT |ESC

+

o |o:

w3 |ISME [|V
\4

=l IN<IXIEl<|clHlnln|o |0]|«
I~ —~INK |X[g|<|c|t|n|~x|a|g]|-

v

/

lolz|lZlr|xla|=Tle[m|mlololw > e

;go-_-,g.-.xn....--:rkn-o-mo.oa'm

oo to (o [o|os o e |o | € for 20 (mofo [|3
kN r— =. H. | - wrarad

| & ‘ :
FF S il ¥

E1EK i
CR IGS g f
vleel-|= glal=|0
® [l . clal&le
ST [0S DEL | o :

. mors swn o samm e 00r

|

[

e :ummm.

Non-printing

Table 2.

6/20/83 Chernicoff

Printing characters

Macintosh and Lisa Extended ASCII Character Set

CONFIDENTIAL

/EMGR/EVENTS.5

Key:

Code:

Key:

Code:

Key:

Code:

Key:

Code:

Key:

Code:

APPENDIX: STANDARD KEY AND CHARACTER CODES 29
(71 11} (2] (3] (4] [5) (6] (7] [B) 9] [@] [~] [=] [Backspace]
$32 $12 $13 $14 $15 $17 $16 $1A $1C $19 $1D $1B $18 $33

[Tab] [Q] (W] [E] ([R) [T] [Y] ([u] [I]) [0) [P] ([I] []) I\)
$3¢ $AC $OD SPE SOF $11 $19 $20 $22 S1F $23 $21 S1E $2A

(A} [S] [D] [F] [6] [H] (3] (K] [L] [;] ("] [Return]
$P0 $P1 $B2 $P3 $O5 $P4 $26 $28 $25 $29 $27 §24

[2) [X] [c€]) (V) [B] [N] (M] (,) [.) (/]
$06 $O7 $P8 SP9 SAB $2D $2E $2B $2F $2C

[Space] [Enter]
$31 $34

Table 3. Key Codes for Macintosh Keyboard

Key: [Clear] [-=] [+] [*)
Code: $47 S4E $46 $42

Key: (7] (8) [9] (/]
Code: $59 $5B $5C $4D
Key: [4] (5] (6] [,]
Code: $56 $57 §$58 $48
Key: (1] [2] [3] [E)
Code: $53 $54 $55 [n)

(t]

[e]
Key: [¢ 11(.] (]
Code: $52 $41 $4cC

Table 4. Key Codes for Macintosh Keypad

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5

30

Key:

Code:
Char:

Key:

Code:
Char:

Key:

Code:
Char:

Key:

Code:
Char:

Key:

Code:
Char:

Event Manager Prog

rammer” s Guide

(71 1} (2] [3) [4) [5) (6] (7] (8) [9] (@) [-) [=]) [Backspace]
$60 $31 $32 $33 $34 $35 $36 $37 $38 $39 $39 $2D $3D $o8
. & 5 6 7 8 9 ¢ - = BS

1 2 3

[Tab) (Q) [¥W] [E] [R] [T} [¥] [U] (I} [O] [P] () (1] I\]
$P9 $T1 $77 $65 $72 $74 $79 $75 $69 $6F $79 $5B $5D ssc

HT q w e

r t y u {1

o p [1 A

(A] (s] [D) (F] (G} (H]} [J] [K] [L] [;] ["] [Return]
$61 $73 $64 $66 $67 $6B $6A $6B $6C $3B $27 $@D
‘ CR

(2] [X]
$7A $78
z x

[

d £ g h j

(C) [V] [B] [N) [M]
$63 $76 $62 S6E $6D
c v b n o
Space
$20
SP

(a) Unshifted

k 1 3
(] (-] [/]
$2C $2E $2F
» . /
] [Enter]

$03
ETX

Table 5. Standard Character Codes for Macintosh Keyboard

6/20/83 Chernicoff

CONF1DENTIAL

/EMGR/EVENTS.5

Key:

Code:
Char:

Key:’
Code:
Char:

Key:

Code:
Char:

Key:

Code:
Char:

Key:

Code:
Char:

Key:

Code:
Char:

Key:

Code:
Char:

Key:

Code:
Char:

Key:

Code:
Char:

Key:

Code:
Char:

APPENDIX: STANDARD KEY AND CHARACTER CODES 31

[7) (1] (2] [3) [4) [5] (6] (7] [B] [9] [@] [-] [=]) [Backspace]
$7E $21 $4P $23 $24 $25 $5E $26 $2A $28 $29 $5F $2B $08
S 1 @ # s x & % () _ 4 BS

[Taﬁl (Q] (W) [E] [R] [T] [Y] [u] (1] (O] [P) () {]) [\)
$09 $51 $57 $45 $52 $54 $59 $55 $49 S4F $SP $7B $7D $7C
BT Q W E R T Y v 1 o P? { 1}y |

(A] [s] [D] [F] [G] (H] (J] [K] [L] [;] [7] [Returm]
$41 $53 S44 $46 $47 $48 $S4A $4B $4C $3A $22 $PD
A s D F G H J K L ¢ - CR

(2) [X] (€] (V] [B) [N) (M) [,] [.] /]
$5A $58 $43 $56 $42 $4E $4D $3C $3E §3F
< >

Z X C v B N M ?
(Space] [Enter]
$29 $03
SP ETX

(b) Shift Key Down

[(*] 11) [2) [3) [4) 15) (6] [7] (8] [9]) [#) [-) [=) [Backspace]
$60 $31 $32 $33 $34 $35 $36 $37 $38 $39 $30 $2D $3D $08
1 2 3 4 5 6 1 8 9 @ - = BS

(Tab] [Q) [w] [E]) [R]} [T] (Y] [u] (X] [0) [P] ([] []) [\]
$89 $51 $57 $45 $52 $54 $59 §$55 $49 $4F $50 $5B $5D $5C
HT Q@ W E R T Y U 1 o P [1 \

(A) [s]) (D] [F]) [6]) [B] [J] [K] [L] [3] ["] ([Return]
$41 $53 $44 $46 $47 S4B $4A $4B $4C $3B $27 SPD
A S D F G H J K L ; ~° CR

(2] [X] (€] [v] (B) [(N) (M) [,] [.] (/]
$5A $58 $43 $56 $42 $4E $4D $2C $2E §2F
z X ¢ v B N M , . [/

| Space } [Enter)
$29 $03
SP ETX

(c) Caps Lock Key Down

Table 5. Standard Character Codes for Macintosh Keyboard (continued)

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5

32 Event Manager Programmer”s Guide

Key: [°] (1] [2]) [3] [4] [5) (6] (7] (8B) (9] (@) [-) [=]) [Backspace]
Code: $6¢ $C1 SAA $A3 $A2 S$BP $A4 SA6 $AS SBB SBC $Bl $SAD $98
Char: | m£ ¢ © § ¢ ¢+ 2 o + ¢ BS

Key: [Tab) [Q] [W] [E] [R] [T) (Y] [u] [I]) [O} [P} L[] []) IN\]
Code: $09 $Al $B7 SAB SAB $SAQ $B $AC $PP SBF $B9 $BS $C8 $¢@

Char: HT © ¢ ® 3 6 ¥ u <

Key: [a) [s] [D] [F) [G) [H]) [J]) [K] [L) [;) ["] [Return)
Code: $8C SA7 $B6 $SC& $A9 SSE $C6 SP@ $C2 $BD $BE $@D
Char: - P ° f © - A -~ & CR
Key: (z) [X) [c) [v} (B} [N) (M) [L,) [.) [/}

Code: $PP $CS5 $BD SC3 $BA $7E $90 $B2 $B3 $CP

Char:) ¢ ‘J' j £ 2 Z,

Key: [Space] [Enter]

Code: $29 $03

Char: SP ETX

(d) Option Key Down

Key: [7] (1] [2] [3]) [4) [5] (6] [7) (8] (9] [@) [-] [=]) [Backspace)
Code: ssa SCl SAA SA3 SA2 SBO SA4 SA6 SAS SBB SBC SB1 SAD $@8
Char: i ™ £ oY 2 o + 4 BS
Key: [Tab) [Q) (W] [E)} [R]) [T] (¥) [uU) [I]) (o) [P]) (() []) [\}
Code: $P9 SAl $B7 $AB $A8 SAQ $B4 SAC $90 $AF $B8 SBS $C7 $0¢

Char: Hr ¢ ¥ ® § \.(- o T >

Key: [A) [S) [D) [F] [G) (H] [J) [K] [L) [;} [] [Return]
Code: $81 $A7 $B6 $C4 $A9 sss $C6 $PP S$C2 $BD SAE $@D
Char: () ° f ® A - L E ¢
Key: (2] [X] [C] (V] [B) [N] (M] [,] () (/]

Code: $P $C5 $82 $CI $BA STE $PP $B2 $B3 $CO

Char: oy ¢ -—\r S - £ _>. L

Key: [Space] [Enter)

Code: $20 $@3

Char: SP ETX

(e) Option and Shift or Option and Caps Lock Keys Down

Table 5. Standard Character Codes for Macintosh Keyboard (continued)

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5

Table 6.

6/20/83 Chernicoff

APPENDIX: STANDARD KEY AND CHARACTER CODES a3

Key: [Clear] [-] [+]
Code: $1B $2D $1C

Char: ESC &=
Key: {71 (8) (9]
Code: $37 $38 $39
Char: 7 8 9
Key: [4] [5] [6)
Code: $34 $35 $36
Char: 4 5 6
Key: (1] (2] (3)
Code: $31 $32 $33
Char: 1 2 3
Key: [¢ 1(.)
Code: $3¢ §2
Char: g .

(a) Unshifted

Key: [Clear) {[-] [+]
Code: $1B $2D $2B
Char: ESC - +
Key: [7] (8] (9]
Code: $37 $38 $39
Char: 7 8 9
Key: [4] [5] [6]
Code: $34 $35 $36
Char: 4 5 6
Key: (1] f2) [3]
Code: $31 $32 $33
Char: 1 2 3
Key: [8)I.]
Code: $30 S$2E
Char: [] .

(b) Shift Key Down

CONFIDENTIAL

[*]
$1D
-

[/}
$1E

T

()
$1F

[E)
[n]
{t]
[e]
[r]
$93
ETX

[e]
(r]
$#83
ETX

Standard Character Codes for Macintosh Keypad

/EMGR/EVENTS.S

34 Event Manager Programmer”s Guide

Second
digit First digit
p 1 2 3 4 5 6 7 8 9 A B € D E F
) @ 16 32 48 64 8P 96 112 128 144 169 176 192 208 224 249

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

|

[

I

I
2 l 2 18 34 590 66 82 98 114 13@ 146 162 178 194 21@ 226 242
3 } 3 19 35 51 67 83 99 115 131 147 163 179 195 211 227 243
4 % 4 20 36 52 68 84 199 116 132 148 164 189 196 212 228 244
5 E 5 21 37 53 69 85 141 117 133 149 165 181 197 213 229 245
6 : 6 22 38 54 79 86 192 118 134 150 166 182 198 214 23p 246
7 | 7 23 39 55 71 87 1#3 119 135 151 167 183 199 215 231 247
8 } 8 24 49 56 72 88 194 129 136 152 168 184 209 216 232 248
9 E 9 25 41 57 73 89 1@5 121 137 153 169 185 201 217 233 249
Al 18 26 42 S8 74 99 196 122 138 154 179 186 2092 218 234 259
B i 11 27 43 59 75 91 1947 123 139 155 171 187 203 219 235 251
c : 12 28 44 60 76 92 108 124 149 156 172 188 294 229 236 252
D } 13 29 45 61 77 93 199 125 141 157 173 189 2¢5 221 237 253
E ‘ 14 30 46 62 78 94 119 126 142 158 174 199 206 222 238 254
F E 15 31 47 63 79 95 111 127 143 159 175 191 2@7 223 239 255

Table 7. Hexadecimal/Decimal Conversion Table

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.6

SUMMARY OF THE EVENT MANAGER

35

SUMMARY OF THE EVENT MANAGER

CONST nullEvent = {;
mouseDown =]
mouselUp - 2.
keyDown = 3
keyUp = 4
autoKey = 5;
updateEvt = 6;
diskEvt =7,
activateEvt = §8;
abortEvt - 9;
networkEvt = 10;
driverEvt s 11;
applEvt = 12;
app2Evt = 13;
app3Evt = 14;
app4Evt = 15;
nullMask = 13
mDownMask = 2,
mUpMask - 4,
keyDownMask = 8;
keyUpMask = 16;
autoKeyMask = 32;
updateMask = 64;
diskMask = 128;
activMask = 256;
abortMask = 512;
networkMask = 1024;
driverMask = 2048;
applMask = 4096;
app2Mask = B8192;
app3Mask = 16384;
app4Mask = ~32768;

everyEvent = ~1;

TYPE EventRecord = RECORD

{null}

{mouse down}

{mouse up}

{key down}

{key up}

{auto-key}

{update}

{disk inserted}
{activate}

{abort}

{network}

{1/0 driver}
{application-defined}
{application-defined}
{application-defined}
{application-defined}

{null}

{mouse down}

{mouse up)

{key down}

{key up}

{auto-key}

{update}

{disk inserted}
{activate}

{abort}

{network}

{1/0 driver}
{application-defined}
{application-defined}
{application-defined}
{application-defined}

what: INTEGER;

message: Longlnt;

when: LongInt;

where: Point;

modifiers: INTEGER
END;

KeyMap = PACKED ARRAY [1..128) OF BOOLEAN;

6/20/83 Chernicoff

CONFIDENTIAL

/EMGR/EVENTS.6

36 Event Manager Programmer”s Guide

Accessing Eventsg

FUNCTION GetNextEvent (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

FUNCTION EventAvail (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

2]

Posting and Removing Events

PROCEDURE PostEvent (eventCode: INTEGER; eventMsg: Longlnt);
PROCEDURE FlushEvents (eventMask,stopMask: INTEGER);

Reading the Mouse

PROCEDURE GetMouse (VAR mouseloc: Point);
FUNCTION Button : BOOLEAN;
FUNCTION StillDown : BOOLEAN;
FUNCTION WaitMouseUp : BOOLEAN;

Reading the Keyboard and Keypad

PROCEDURE GetKeys (VAR theKeys: KeyMap);

Miscellaneous Utilities

PROCEDURE SetEventMask (theMask: INTEGER);
FUNCTION TickCount : LonglInt;

6/20/83 Chernicoff CONFIDENTIAL JEMGR/EVENTS.6

GLOSSARY 37

GLOSSARY

abort event: An event generated when the user presses a special
combination of keys *#** (tentatively Command-.) *** or when the Event
Manager”s Journaling mechanism wants a program to prepare for replaying
a journal.

activate event: An event generated by the Window Manager when a window
changes from active to inactive or vice versa.

auto-key event: An event generated periodically when the user presses
and holds down a key on the keyboard or keypad.

character code: An integer representing the character that a key or
combination of keys on the keyboard or keypad stands for.

configuration routine: A machine-language routine that defines a
particular keyboard configuration by translating a key code, together
with the state of the modifier keys, into a corresponding character
code.

disk inserted event: An event generated when the user inserts a disk
in a disk drive.

event: A notification to an application program of some occurrence
that the program must respond to.

event code: An integer representing a particular type of event.

event mask: A parameter passed to an Event Manager routine specifying
which types of event the routine is to be applied to.

event message: A field of an event record containing information
specific to the particular type of event.

event queue: The Event Manager“s list of pending events waiting to be
processed.

event record: The internal representation of an event, where the Event
Manager stores all pertinent information about that event.

1/0 driver event: An event generated by one of the Macintosh”s input/
output drivers. *** (Not yet implemented.) %***

journal: A record of all of a program”s interactions with the Event
Manager over a period of time, which can be played back in order to
reproduce the original session.

keyboard configuration: A resource that defines a particular keyboard

layout by associating a character code with each key or combination of
keys on the keyboard or keypad.

6/20/83 Chernicoff CONFIDENTIAL JEMGR/EVENTS.6

kt:] Event Manager Programmer”s Guide

keyboard event: An event generated when the user presses, releases, or
holds down a key on the keyboard or keypad; any key down, key up, or
auto-key event.

key code: An integer representing a key on the keyboard or keypad,
without reference to the character that key stands for.

key down event: An event generated when the user presses a key on the
keyboard or keypad.

key up event: An event generated when the user releases a key on the
keyboard or keypad.

modifier key: A key (Shift, Caps Lock, Option, or Command) that
generates no keyboard events of its own, but changes the meaning of
those generated by other keys.

mouse down event: An event generated when the user presses the mouse
button.

mouse up event: An event generated when the user releases the mouse
button.

network event: An event generated by the Macintosh”s network driver.
%% (Not yet implemented.) ***

null event: An event returned by the Event Manager when it has no
other events to report.

post: To place an event in the event queue for later processing.

system event mask: A global event mask that controls which types of
event get posted into the event queue.

update event: An event generated by the Window Manager when a window’s
contents need to be redrawn.

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.6

MACINTOSH USER EDUCATION

The File Manager: A Programmer's Guide /0S/FS

See Also: The Macintosh User Interface Guidelines
The Memory Manager: A Programmer's Guide
Inside Macintosh: A Road Map
Macintosh Packages: A Programmer's Guide
Programming Macintosh Applications in Assembly Language

Modification History: First Draft (ROM 7) B. Hacker 3/82/84

®%% Roview Draft. Not for distribution #*# ABSTRACT

This manual describes the File Manager, the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and files.

2 File Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual

3 About the File Manager

4 Volumes

5 Accessing Volumes

5 Files

9 Accessing Files

10 File Information Used by the Finder
11 Using the File Manager

15 High-Level File Manager Routines

16 Accessing Volumes

18 Changing File Contents

22 Changing Information About Files
24 Low-level File Manager Routines

25 Routine Parameters

27 1/0 Parameters

29 File Information Parameters

29 Volume Information Parameters
3¢ Routine Descriptions

31 Initializing the File 1/0 Queue
31 Accessing Volumes .
37 Changing File Contents

47 Changing Information About Files
53 Data Organization on Volumes

55 Volume Information

56 Volume Allocation Block Map

56 File Directory

57 File Tags on Volumes

58 Data Structures in Memory

59 The File 1/0 Queue

60 Volume Control Blocks

62 File Control Blocks

64 File Tags in Memory

64 The Drive Queue

65 Using an External File System

67 Summary of the File Manager

74 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the File Manager, the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and files. *** Eventually it will become part of
a larger manual describing the entire Toolbox and Operating System.

#%* The File Manager allows you to create and access any number of
files containing whatever information you choose.

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal. You should also be familiar with the
following:

~ the basic concepts behind the Macintosh Operating System's Memory
Manager

= devices and device drivers, as described in the Inside Macintosh
Road Map

This manual is intended to serve the needs of both Pascal and
assembly~language programmers. Information of interest to assembly~
language programmers only is isolated and labeled so that Pascal
programmers can conveniently skip 1it.

The manual begins with an introduction to the File Manager and what you
can do with it. It then discusses some basic concepts behind the File
Manager: what files and volumes are and how they're accessed.

A section on using the File Manager introduces its routines and tells
how they fit into the flow of your application. This is followed by
sections explaining the File Manager's simplest, "high-level" Pascal
routines and then its more complex, "low-level" Pascal and assembly-
language routines. Both sections give detailed descriptions of all the
procedures and functions, their parameters, calling protocol, effects,
side effects, and so on.

Following these descriptions are sections that won't interest all
readers. The data structures that the File Manager uses to store
information in memory and on disks are described, and special
informatien is provided for programmers who want to write their own
file system.

Finally, there's a summary of the File Manager's data structures and
routines, for quick reference, followed by & glossary of terms used in
this manual.

ABOUT THE FILE MANAGER

The File Manager is the part of the Operating System that handles
communication between applications and files on block devices such as
disk drives. Files are a principal means by which data is stored and

3/02/84 Hacker CONFIDENTIAL /0S/FS.1

6-4

4 File Manager Programmer's Guide

transmitted on the Macintosh. A file is a named, ordered sequence of
bytes. The File Manager contains routines used to read and write to
files.

Volumes

A volume is a piece of storage medium, such as a disk, formatted to
contain files. A volume can be an entire disk or only part of a disk.
Currently, the 3 1/2-inch Macintosh disks are one volume.

(note)
Specialized memory devices other than disks can also
contain volumes, but the information in this manual
applies only to volumes on disks.

You identify a volume by its volume name, which consists of any
sequence of 1 to 27 printing characters. Volume names must always be
followed by a colon (:) to distinguish them from other names.

(note)
The colon (:) after a volume name should only be used
when calling File Manager routines; it should never be
seen by the user.

A volume contains descriptive information about itself, including its
name and a file directory listing information about files contained on
the volume; it also contains files. The files are contained in

allocation blocks, which are areas of volume space occupying multiples

of 512 bytes.

A volume can be mounted or un