apricot

Service Manual

PREFACE

This service manual contains all the information required for the after-sales service that is required to maintain the high quality and reliability of the ACT APRICOT executive micro-computer.

It is assumed throughout this manual that all service personnel involved in the maintenance of the ACT APRICOT already have an in-depth knowledge of digital electronics, with particular emphasis on micro-computer techniques.

This manual contains information relevant to the total APRICOT range. Illustrations and photographs used are of the twin floppy drive version. Please refer to relevant sections for variations.

ACT (International) Ltd. wishes to acknowledge the co-operation of the following companies for giving their permission in allowing the reproduction of their proprietry information:

SONY (UK) LTD.
National Panasonic (UK) Ltd.
Texas Instruments Ltd.
QED (Product Design) Ltd.
The information in this manual is subject to change without notice and does not represent a commitment on the part of ACT. The software description in this manual is furnished under a license agreement. The software may be used or copied only in accordance with the terms of the agreement. It is against the law to copy any disk supplied for any purpose other than the purchaser's personal use.
(C) Applied Computer Techniques PLC 1983.

CONTENTS

Chapter
1 General descriptionSpecification
2 Installation
3 Safety precautions
4 Recommended tools and equipment
5 Assembly and disassembly
6 Electrical system
7 Electronic system
Memory map
8 Set-up procedures
9 Trouble-shooting
Diagnostic programs
10 Expansion Boards
11 Winchester
AppendixA Monitor
B Disk drive
C Parts list
D PSU
E Circuit diagrams, wiring diagrams
Index

INDEX

Assembly and
Disassembly
AC Sub Assembly
Async Cable
Connection
Block Diagram Apricot 7.22
Conversion 240V-115V 6.4
Connectors Pin-Outs
Circuit Diagrams
Disassembly
Rear Panel
AC Sub Assembly
Motherboard
Chassis Bridge
Assembly
Disk Drives
Front Bezel and Door
Main Chassis
Power Supply
Handle
Speaker
Monitor
Keyboard

Diagnostic
Boot Prom
Documentation
Error Codes
Programs
Disk Drive
Electrical System
Earthing
Expansion Information
Electronic System

Features
1.2
5.1 Fuses
3.2
6.3 Floppy Disk Controller 7.13

Installation 2.1
Interconnection
Diagram
6.2

I/O Section 7.11
I/O Port Address $\quad 7.20$
I/C Catalogue $\quad 7.23$
Modem Cable
Connection 6.19
Memory $\quad 7.6$
Memory Map $\quad 7.38$
Monitor A. 1
Mnemonics $\quad 7.34$
Parts Description 1.5
Printer Cable Parallel 6.20

Serial 6.21
Processor Structure $\quad 7.7$
Parallel Interface $\quad 7.14$
Parts List C.I
Power Supply E. 1
5.13 Recommended Tools 4.1

Recommended
Equipment
4.1
9.1 Specification 1.4
9.5 Safety Precautions $\quad 3.1$
B. 1 System Outline 7.3

Sound Generator $\quad 7.11$
Serial Interface $\quad 7.18$
Set-Up Procedure 8.1
Timer 7.16

I Features
II Specifications
III Individual units

GENERAL DESCRIPTION

I FEATURES

Processor architecture

8086 running at 5 mHz
8089 I/O processor
8087 Optional Maths co-processor

Memory

256 Kbytes expandable to 768 Kbytes

Mass storage

One or two $3.5^{\prime \prime}$ Sony mirco-floppy disk drives 315 Kbytes each
or
One or two $3.5^{\prime \prime}$ Sony double sided micro-floppy disk drives -360 Kbytes each side

Display

9 " green P39 phosphor with antiglare filter
80 characters $\times 25$ lines
Resolution: 800×400 pixels

I/O

$1 \times$ RS232 (V-24) serial port
1×8-bit Centronics parallel printer port
Optional on-board modem with auto-dial
$2 \times$ expansion slots
$1 \times$ "Mouse" port

Keyboard

Soft QWERTY keyboard with 8 fixed function keys and 6 touch sensitive keys labelled by LCD Micro-
Screen (tm).
Built-in 4 function calculator.
Time/Date display with battery back-up.

Safety/radiation standards

Meets UL
VDE
BS415
CSA
FCC-B

1
 GENERAL DESCRIPTION

II SPECIFICATION

Physical dimensions

Systems box: $16.5^{\prime \prime}(43.5 \mathrm{~cm})$ wide $\times 4^{\prime \prime}(10.6 \mathrm{~cm})$ higg $\times 12.5^{\prime \prime}(33 \mathrm{~cm})$ deep
Monitor: $\quad 10.5^{\prime \prime}(27.7 \mathrm{~cm})$ wide $\times 8.5^{\prime \prime}(22.5 \mathrm{~cm})$ high $\times 10^{\prime \prime}(26.4 \mathrm{~cm})$ deep
Keyboard: $\quad 16^{\prime \prime}(42 \mathrm{~cm})$ wide $\times 2^{\prime \prime}(5.3 \mathrm{~cm})$ high \times $7^{\prime \prime}(18.5 \mathrm{~cm})$ deep

Weight

Systems box: $14.2 \mathrm{lbs}(6.5 \mathrm{~kg}$)
Monitor: $\quad 9.1 \mathrm{lbs}(4.1 \mathrm{~kg}$)
Keyboard: $\quad 3.3 \mathrm{lbs}(1.5 \mathrm{~kg})$

Power requirements

200 to 240 VAC 47 to 63 Hz
or
100 to 125 VAC 47 to 63 Hz

Power consumption

100 W at 115 V or 230 V input

Temperature range

Operating: 5 to $37^{\circ} \mathrm{C}$
Storage: $\quad-20$ to $60^{\circ} \mathrm{C}$

Humidity

Operating: 20 to $80 \% \mathrm{RH} @ 29^{\circ} \mathrm{C}$ non-condensing

GENERAL DESCRIPTIO 3

III INDIVIDUAL UNTS

1. Monitor
2. System Unit
3. Keyboard
4. Microscreen tm
5. Touch Sensitive Keys
6. Fixed Function Keys
7. Door Control
8. Brightness Control

9. Keyboard Cable
10. Keyboard Connector
11. Centronics Connector
12. Serial Connector
13. Video Connector
14. Mouse Port
15. Mains Switch

1 GENERAL DESCRIPTION

SYSTEMS UNIT External

GENERAL DESCRIPTION $\frac{1}{5}$

MONTTOR External

1. Monitor Bezel
2. Monitor Base
3. Monitor Cover
4. Pedestal

GENERAL DESCRIPTION

KEYBOARD External

1. Keyboard Bezel
2. Keyboard Base
3. Battery Cover
4. Contrast Wheel
5. Reset Button
6. Reset Plate

7. Disk Drive
8. Power Supply
9. Motherboard
10. AC Sub-Assembly
11. Main Chassis
12. Chassis Bridge
13. Expansion Slots
14. Loudspeaker

1 GENERAL DESCRIPTION

MONITOR UNIT Internal

1. Wire Frame Monitor
2. Top Screen
3. Bottom Screen
4. LH Monitor Bracket
5. RH Monitor Bracket
6. Video Cable
7. Brightness Control
8. Sunflex Screen

9. Keyboard Assembly
10. Keyboard Cable
11. Battery Connector
12. Battery
13. Reset Switch
14. Brightness Control
15. LCD Microscreen

INSTALLATION	2

Each computer is carefully adjusted and strictly inspected before it leaves the factory.

Correct installation is extremely important to maintain the high degree of reliability and performance in-built in the machine.

Note the following recommendations:

1. Ensure the line voltage is within the voltage marked on the outside of the systems unit.
2. To maintain data integrity, the computer should be operated in an electrical environment not subject to large voltage transients on the line. A normal office supply is perfectly adequate. Avoid close proximity with heavy industrial machinery such as presses, arc welders, etc.
3. Ensure the operating temperature is not exceeded, and that the temperature of the machine is allowed to stabilise (for approximately 30 mins.) if it is moved from one extreme to another.
4. Do not obstruct any of the ventilation grills.
5. Under no circumstances must any liquid be allowed to enter any of the units.
6. Operating the machine in an abnormally dusty atmosphere will substantially reduce the life of the disk drive and the media.
7. The plastic case of the machine can be cleaned with a damp cloth. Under no circumstances use an abrasive cleanser or solvent.
8. Although the Sony micro floppy disks are extremely robust, a few precautions will ensure a long and trouble-free life:
(i) Keep auto shutter closed at all times.
(ii) Never touch the oxide surface.
(iii) Do not exceed their temperature range $\left(10^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$.
(iv) Do not expose the disks to any magnetic field.
(v) Do not attempt to clean the disk surface. This may result in damage to the disk drive heads.

SAFETY PRECAUTIONS

I General Safety Precautions
II Fuses
III Power Supply

SAFETY PRECAUTIONS

1. The ACT Apricot has been designed to meet all international safety standards including UL, VDE, BS415, CSA and FCC-B radiation standards.
2. It is recommended that installation of any expansion boards or modifications, be carried out by an authorised dealer - the end user should not dismantle the units.
3. Replacement parts should be of the type and rating specified by the manufacturer, to prevent the risk of shock or fire.

Refer to appendix A for important safety precautions on the monitor.
4. All earth connections should be maintained to the original specification, refer to Chapter 6.

SAFETY PRECAUTIONS

II FUSES

1. There are three fuses within the whole computer. 2 in the system unit and 1 in the monitor.

WARNING - REMOVE POWER CABLE BEFORE SERVICING

2. System Unit:

The main system fuse is readily accessible on the rear panel. The carrier is of the screw-in type, and requires a flat bladed screwdriver to remove.

Type -20 mm slow blow
240V-T2 Amp-Part Number 11002121
115V-T3 Amp-Part Number 11002721
3. Power Supply:

The power supply is protected by its own fuse within the power supply casing. Since the power supply will automatically shut down in the case of an external fault, the failure of this fuse indicates a fault within the unit itself. Under no circumstances replace this fuse, but change the unit as an assembly-see overleaf for safety precautions concerning this assembly.
4. Monitor:

The monitor is powered from the +12 V rail off the systems unit power supply. This rail is protected by a fuse within the monitor itself. It is located on the P.C.B. under the High Voltage Block component.

Type-11/4" $\times 2$ Amp-Part Number 11040021

SAFETY PRECAUTIONS

III POWER SUPPLY

The ACT Apricot utilizes an ASTEC AC9335 power supply module. Appendix D gives a full specification of the unit.

The unit is of the switch-mode type, and very high voltages are present throughout. If it is envisaged that any kind of testing or servicing be carried out, with the top cover removed, the following precautions should be taken:

1. Use $1: 1$ isolation transformer in the line.
2. Service only in a "high-voltage" test area.
3. Incorporate an emergency off switch.
4. Disconnect all earths from test equipment.
5. Take every precaution to minimise shock hazard.

It is highly recommended that in the case of failure, this unit should be returned to the distributor for repair.

RECOMMENDED TOOLS AND EQUIPMENT

In addition to a standard service engineers tool kit the following equipment is required to maintain the ACT Apricot to component level:

Oscilloscope-double beam- 50 MHz
Frequency counter
To repair the Sony disk drive a tool kit is available either direct from Sony or from ACT, this comprises the following:

Description
MFD Checker II
Rotary Knob
Lead Screw Tool
Motor Speed Adjuster
Geared Driver
Level Disk
Alignment Disk
Cleaning Disk
Head Extension Cable
Std Disk Dummy
Pad Weight
Hex Torque Driver
Power Cable
Interface Cable
Tension Gauge
Tension Gauge

Sony
Part Number
J-609-182-0A
J-609-011-0A $\quad 11035791$
J-609-136-0A $\quad 11035891$
7-700-754-01 11035991
J-609-017-0A 11036091
8-960-009-31
8-960-009-32
8-960-009-39
J-609-123-0A 11036491
I-609-120-0A $\quad 11036591$
J-609-124-0A 11036691
J-609-125-0A 11036791
J-609-130-0A 11036891
J-609-129-0A 11036991
I-604-163-0A 11037091
7-732-050-10 11037191

Bench power supply giving $-12 \mathrm{~V} @ 1 \mathrm{~A},+5 \mathrm{~V} @ 1 \mathrm{~A}$.
Complete Kit order as
11102711

ASSEMBLY AND
 DISASSEMBLY

I Rear Panel and Top Cover
II AC Sub Assembly
III Motherboard
IV Chassis Bridge
V Disk Drives
VI Front Bezel and Door
VII Main Chassis, Power Supply, Loudspeaker and Handle
VIII Monitor
IX Keyboard

ASSEMBLY AND DISASSEMBLY
 GENERAL RECOMMENDATIONS

1. Disconnect from mains supply before disassembling machine.
2. Unless specifically noted, reassembly is the reverse of disassembly and will not be described unless necessary.
3. Do not mix screws (length, diameter).
4. A number in parenthesis thus (4) indicates the number of screws to be slackened or removed to remove that particular part.

5 ASSEMBLY AND DISASSEMBLY

2

I REAR PANEL

1. Remove $\mathrm{M} 4 \times 12 \mathrm{~mm}$ screws (3).
2. Allow rear panel to tilt backwards and remove top cover by lifting at rear slightly and disengaging lip from front bezel.
3. Remove AC input connector on P.S.U. and all earth leads.

Assembly
Reverse of above procedure.

II AC SUB ASSEMBLY

1. Remove back panel as in Section I.
2. Remove M3 $\times 6 \mathrm{~mm}$ screws (4).

Assembly

Reverse of above procedure.
For earthing arrangements refer to section 6 page 4.

III MOTHERBOARD

1. Disk Drive ' B ' Power
2. Disk Signal
3. Disk Drive 'A' Power
4. Loudspeaker
5. D.C. Power
6. Remove back panel and top cover as in Section I.
7. Remove $\mathrm{M} 3 \times 6 \mathrm{~mm}$ screws from rear edge of motherboard (5).
8. Remove power and ribbon cable from both disk drives.
9. Remove DC power cable.
10. Remove loudspeaker cable from motherboard.
11. Slide out motherboard while feeding ribbon cable under chassis.
12. Remove relevant cables as they become exposed.

Assembly

Reverse of above procedure.

5
 4
 ASSEMBLY AND DISASSEMBLY

IV CHASSIS BRIDGE ASSEMBLY

(i) Remove rear panel and top cover as in Section I.
(ii) Disconnect power and ribbon cables from disk drives.
(iii) Slacken M3 $\times 6 \mathrm{~mm}$ screws (4).
(iv) Lift chassis bridge assembly away from main chassis.

Assembly

Reverse of above procedure.

ASSEMBLY AND DISASSEMBLY

V DISK DRIVES

1. Remove chassis bridge assembly as in Section IV.
2. Remove M3 $\times 6 \mathrm{~mm}$ screws per drive (4).
3. With assembly tilted vertically as shown in above, slide out disk drive.
4. Eject button and spring will be left in front bezel-note orientation of button. These components are a loose fit-do not lose.
WARNING - Chassis is jigged in factory, do not move inner side cheeks.

Assembly

1. With assembly tilted vertically as shown, install eject button and spring orientating button correctly.
2. Slide disk drive between side cheeks, taking care the LED correctly locates in its aperture.
3. Reverse of above procedure.

VI FRONT BEZEL AND DOOR

1. Remove disk drives as in Section V.
2. Remove door springs (2) and door pivot screws (2).
3. Remove M3 $\times 6 \mathrm{~mm}$ screws securing chassis to front bezel (6).
4. Door can be separated from front bezel by carefully springing open the door slot.
Assembly
Reverse of above procedure.

ASSEMBLY AND DISASSEMBLY

VII MAIN CHASSIS, POWER SUPPLY, LOUDSPEAKER AND HANDLE

1. Handle
2. Loudspeaker
3. Power Supply

4. Remove rear panel and top cover as in Section I.
5. Remove chassis bridge assembly as in Section IV.
6. Remove M4 $\times 12 \mathrm{~mm}$ screws (4) securing main chassis to base moulding.
7. Remove DC power cable and loudspeaker cable.
8. Lift off main chassis taking care not to damage sliding handle.
9. Power supply is secured to the main chassis from beneath by M3 $\times 6 \mathrm{~mm}$ screws (4).
10. Loudspeaker is secured by self tapping screws (4).
11. Handle is secured by M4 $\times 18 \mathrm{~mm}$ screw (1).

Assembly

Reverse of above procedure.

VIII MONITOR

1. Brightness Control
2. $4 \mathrm{M} 3 \times 12 \mathrm{~mm}$

3. Brightness Control
4. $4 \mathrm{M} 3 \times 10 \mathrm{~mm}$
5. $4 \mathrm{M} 3 \times 6 \mathrm{~mm}$
6. 7 Self Tappers
7. Cable Assembly

ASSEMBLY AND DISASSEMBLY

1. Remove brightness knob.
2. Remove top cover $-\mathrm{M} 3 \times 12 \mathrm{~mm}$ screws -2 at rear of monitor, 2 within handle recess (4).
3. Slacken self tapping screws (8) securing top metal screen.
4. Remove brightness control from top screen.
5. Unplug cable assembly, and disengage grommet from base moulding. Detach screen from chassis (1).
6. Remove $\mathrm{M} 3 \times 10 \mathrm{~mm}$ screws securing front bezel to side cheeks (4).
7. Remove $\mathrm{M} 2 \times 6 \mathrm{~mm}$ screws securing base moulding to chassis (4).
8. Lift away front bezel together with Sunflex screen.
9. Lift away side cheeks and monitor assembly from base moulding.
10. Monitor assembly has a bottom screen plate secured by self tapping screws (2).
Assembly
Reverse of above procedure.

5
 ASSEMBLY AND DISASSEMBLY

10
IX KEYBOARD

1. Remove battery cover and battery.
2. Remove M3 screws securing base moulding to front bezel (7).
3. Carefully separate the two mouldings, unplug membrane keyboard and lift off front bezel.
4. Withdraw keyboard assembly disengaging brightness control and reset switch from reset plate.
5. Remove reset plate and grommet from base moulding.
6. Unplug cable from keyboard assembly, removing screw (1) securing earth to frame.

Assembly

Reverse of above procedure.

ASSEMBLY AND DISASSEMBLY

ELECTRICAL SYSTEM

I Interconnection Diagram
II AC Sub Assembly
III Conversion from 240 V to 115 V
IV Earthing
V Cable Connection
VI Expansion Details
VII Async Cable
VIII Printers

ELECTRICAL SYSTEM

I INTERCONNECTION DIAGRAM

2. Disk
3. Loudspeaker
4. PCB

Interconnection diagrams, cable forms and connector pin details are included to aid the engineer in providing a quick and efficient repair.
O.V. TO POWER SUPPLY CASING

POWER SUPPLY

II AC SUB ASSEMBLY

This assembly contains four parts which are mounted onto a metal plate. Two of these parts are dependent on the mains input voltage. Refer to section III of this chapter for conversion details.
(a) The fan is a 12 W device and designed to extract air from the unit.
(b) The switch will be illuminated when the unit is switched on.
(c) The fuseholder is a 20 mm type and made from fire retardant material.
(d) The filter has been designed to both reduce mains transients, and reduce the reflected noise from the power supply back to the mains. It will accept a standard IEC mains connector.

This chapter also contains the correct earthing diagram which should be adhered to at all times.

Refer to appendix E for the AC wiring diagram.

WARNING - REMOVE POWER CABLE BEFORE CONVERTING

It is recommended that this conversion should only be carried out by an authorised dealer.

There are only four parts which require either changing or modifying to convert the Apricot from 240V to 115 V .

	Modify	Change
Power Supply	Yes	No
Fan	No	Yes
Switch	No	Yes
Input Fuse	No	Yes

	ACT Part Number	
	Voltage	
Part	240 V	115 V
Fan	11001521	11002521
Switch	11001821	11002621
Input Fuse	11002121	11002721

The Input Fuse rating is: $\mathrm{T} 2 \mathrm{amp}-240 \mathrm{~V}$
T3 amp-115V

1. To modify the power unit remove Apricot covers as indicated in Chapter 5.
2. Remove screw located by the DC power cable (1).
3. This will allow the lid to be removed which is retained by 3 spring clips.
4. The $240 \mathrm{~V} / 115 \mathrm{~V}$ molex link can now be found at the rear edge of the PCB, adjacent to C5-C7.
5. Select required link and re-assemble.

ELECTRICAL SY			
V CONNECTOR PIN-OUTS			
1. Serial Port			
$\underbrace{13}+1$			
Pin	Signal		Direction
1		Frame Ground	
2	TXD	Transmit Data	Out
3	RXD	Receive Data	In
5	CTS	Clear to Send	In
4	RTS	Ready to Send	Out
6	DSR	Data Set Ready	In
7		Signal Ground	
8	DCD	Carrier Detect	In
15	RXC	Receive Clock	In
20	DTR	Data Terminal Ready	Out
24	TXC	Transmit Clock	Out

ELECTRICAL SYSTEM
2. Centronics Port

Pin	Signal	Direction	Pin	Signal	Direction
1	Data Strobe	Out	19	OV	
2	DO)		20	OV	
3	D1		21	OV	
4	D2		22	OV	
5	D3 88 bit	Bi Dir	23	OV	
6	D4 data bus		24	OV	
7	D5		25	OV	
8	D6		26	OV	
9	D7		27	OV	
10	Ack	In	28	OV	
11	Busy	In	29	OV	
12	Paper Empty	In	30	OV	
13	Select	Out	31	NC	
14	OV		32	Fault	In
15	Unallocated		33	OV	
	Output X	Out	34	Unallocated	
16	OV			Output Y	Out
17	Ground		35	NC	
18	NC		36	NC	

ELECTRICAL SYSTEM

3. Keyboard Cable-Motherboard End

Pin	Signal	Wire Colour
1	+12 V	RED
2	OUT	YELLOW
3	IN	WHITE
6	GROUND	SCREEN
7	$-12 V$	BLUE
8	OV	GREEN

4. Keyboard Cable-Keyboard End

Pin	Signal	Wire Colour
A	OV	GREEN
B	$+12 V$	RED
C	$-12 V$	BLUE
E	OUT	YELLOW
F	IN	WHITE

ELECTRICAL SYSTEM
5. Monitor Cable-Monitor End

Pin
1
2
3
4
5
6
7
8
9
10

Signal
OV
BRIGHTNESS CONTROL BRIGHTNESS CONTROL BRIGHTNESS CONTROL NC
HORIZONTAL SYNC $+12 \mathrm{~V}$ VIDEO VERTICAL SYNC VIDEO SCREEN

Wire Colour
GREEN
GREEN/YELLOW
BLUE
BROWN
-
YELLOW
RED
WHITE
BLUE
-
6. Monitor Cable-Motherboard End

$$
\begin{array}{cccc}
5 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
9 & 6 & 6
\end{array}
$$

Pin	Signal	Wire Colour
1	-12 V	RED
3	OV	GREEN
4	HORIZONTAL SYNC	YELLOW
5	VERTICAL SYNC	BLUE
6	GROUND	OUTER SCREEN
7		VIDEO SCREEN
9	VIDEO	-

7. Disk Drive-Power Cable

Drive

Motherboard

Pin	Signal	Wire Colour
1	+5 V	RED
2	OV	BLACK
3	OV	BLACK
4	+12 V	YELLOW

8. Disk Drive - Signal Ribbon Cable

Red Stripe Denotes Pin 1

Pin	Signal
2	DRIVE SELECT 0
4	DRIVE SELECT 1
6	DIRECTION
8	STEP
10	WRTDATA
12	WRTGATE
14	HDLOAD
16	SIDESELECT
18	INDEX
20	TRK 00
22	WRTPRT
24	RDDATA
26	READY
$1,3,5,7,9,11,13,15,17,19,21,23,25-$ OV	

9. DC-Power Cable - Power Supply End

Pin	Signal	Wire Colour
1	NC	-
2	+12 V	YELLOW
3	NC	-
4	-12 V	VIOLET
5	NC	-
6	+12 V	YELLOW
7	NC	-
8	+5 V	RED
9	+5 V	RED
10	NC	-
11	OV	BLACK
12	OV	BLACK
13	OV	YELLOW/GREEN

10. DC-Power Cable-Motherboard End

Pin	Signal	Wire Colour
1	OV	BLACK
2	OV	BLACK
3	$+5 V$	RED
4	$+5 V$	RED
5	+12 V	YELLOW
6	-12 V	VIOLET
7	+12 V	YELLOW

Figure 1. Expansion Connector

6 ELECTRICAL SYSTEM

12
Pin Definition

Pin	Description	Input/Output
AB0 to AB19	20-bit system address bus	Output
DB0 to DB15	16-bit system data bus	Bi-directional
BHE	Bus high enable	Output
ALE	Address latch enable	Output
DEN	Data enable	Output
DT/ \bar{R}	Data transmit/receive	Output
AMWC	Advanced memory write command	Output
$\overline{\text { MWTC }}$	Memory write command	Output
AIOWC	Advanced input/output write command	Output
$\overline{\text { IOWC }}$	Input/output write command	Output
$\overline{\text { MRDC }}$	Memory read command	Output
$\overline{\text { IORC }}$	Input/output read command	Output
MRDY	Memory ready	Input
IORDY	Input/output ready	Input
$\overline{\mathrm{RES}}$	System reset	Output
CLK15	15 MHz clock signal	Output
CLK5	5 MHz clock signal	Output
$\overline{\text { DMA1 }}$	DMA request for DMA channel 1	Input
$\overline{\text { EXTI }}$	External terminate for DMA channel 1	Input
$\overline{\text { DMA2 }}$	DMA request for DMA channel 2	Input
$\overline{\text { EXT2 }}$	External terminate for DMA channel 2	Input
$\overline{\text { INT2 }}$	Interrupt request (priority 2)	Input
INT3	Interrupt request (priority 3)	Input
$\overline{\mathrm{NMI}}$	Non-maskable interrupt	Input
+12V	System board supply rail	Output
-12V	System board supply rail	Output
$+5 \mathrm{~V}$	System board supply rail	Output

ELECTRICAL SYSTEM

Introduction

The two Expansion Slots are located on the System Board within the System Unit and provide an extension of the processing system for use by optional boards. The same system connections are wired to both Expansion Slots.

The extension connections wired to the Expansion Slots are:
(a) The 16 -bit system data bus.
(b) The 20-bit system address bus.
(c) Various control and timing signals.
(d) Power supply outputs.

Description
Electrical Specification
Current Consumption:
Maximum allowed current consumption of a circuit board fitted into an expansion slot is:
0.5 A from the +5 V rail.

50 mA from the +12 V and -12 V rails.
Signal Outputs:
All signal outputs (data, address, control and clocks) have the capability to drive a maximum of 2 LS TTL loads, i.e.

Logic high state voltage (Voh);
$2.0<$ Voh <5.25 with maximum high state output source current of 40 uA .

Logic low state voltage (Vol);
$-0.5<\mathrm{Vol}<0.8 \mathrm{~V}$ with maximum low state output sink current of 0.8 mA .

ELECTRICAL SYSTEM

Expansion Slots

Signal Inputs:
The signal inputs to the data bus require a tri-state driver stage meeting the following requirements.

Logic high state voltage (Voh);
$2.4<$ Voh $<5.25 \mathrm{~V}$ with maximum high state output source current of 400 uA .
Logic low state voltage (Vol);
$-0.5<\mathrm{Vol}<0.5 \mathrm{~V}$ with maximum low output state sink current of 8 mA .

All the remaining inputs are control inputs and require to be driven by an open collector driver stage. The input control lines on the System Board are fitted with pull-up resistors (3.3k).

Pin Detail

Both Expansion Slots are 64-way connectors (DIN 41612, 2 by 32 female, with a type B housing) and are identical with regard to the connections to the system buses, as illustrated on the diagram of an Expansion Connector on page 6-11.

VII DIRECT ASYNC CONNECTION CABLE

APRICOT	HOST	IBM Connector ' B '
Connector 'A'	Connector ' ${ }^{\text {B }}$	
Male DB-25	Male DB-25	Female 25
Pin	Pin	Pin
1	- 1	- 1
2	3	3
3	2	2
4	5	${ }^{5}$
	-	- 4
Wired together $\left[_{8}^{5}\right.$	4	4
6	20	20
7	7	7
20	6	6
Modem Connection		
APRICOT	HOST	
Connector ' ${ }^{\text {' }}$	Connector ' B '	
Male DB-25	Male DB-25	
Pin	Pin	
1	- 1	
2	- 2	
3	- 3	
4	- 4	
5	- 5	
6	- 6	
7	7	
8	8	
20	- 20	

VIII PRINTERS

The ACT Apricot will drive most printers currently on the market, with either Centronics compatible or RS232 interfaces.

Parallel

All ACT printers currently marketed, are of the parallel type, and will work with the Apricot, as long as the interface cable supplied with the printer is used.

The Apricot defaults to the parallel port on switch on, and no re-configuring of the operating system is required.

Below is given the wiring of the standard cable:

Pin No. Signal

1 Strobe

2 Data 0
3 Data 1
4 Data 2
5 Data 3
6 Data 4
7 Data 5
8 Data 6
$9 \quad$ Data 7
11 Busy
16 OV
17 Ground ELECTRICAL SYSTEM

In order to utilise the additional facilities built into the Apricot BIOS i.e. Fault, Select, Paper Empty, a new cable will be required, as below:

Pin No.	Signal
1	Strobe
2	Data 0
3	Data 1
4	Data 2
5	Data 3
6	Data 4
7	Data 5
8	Data 6

Pin No. Signal
9 Data 7
11 Busy
12 Paper Empty
13 Select
16 OV
17 Ground
32 Fault
33 Ground

Serial

Serial printers are also supported by the Apricot via the RS232 port, but certain things need to be done for correct operation.

1. Use a cable as specified by the printer manufacturer. Below is given a suggested wiring, but is by no means correct for every printer, and is only given as a possible starting point:

Apricot	Printer	Signal
1	1	Screen
2	3	Data
7	7	Ground
5	20	Busy

2. Re-configure the system to allow printing via the serial port. Use baud rates, number of stop bits, parity etc., as suggested by the printer manufacturer.
3. Change the switch settings, built into all serial printers, to match the parameters of the now changed system.
4. Certain printers use Pin 11 or 19 as 'Busy' or CTS'. Refer to the printers handbook for correct pin.
If any problems are encountered, consult either your dealer or printer manufacturer.

ELECTRONIC SYSTEM

I Outline of System

II Integrated Circuit Catalogue
III Mnemonics
IV Memory Map
V Ram Expansion Card Details
VI Modem Card Details

ELECTRONIC SYSTEM

This section of the manual is devoted to a brief outline of the Apricot electrical/electronic system. It is not intended to be an in-depth study, but an overview using block diagrams. For a more detailed insight into the circuitry, refer to the Apricot Technical Reference Manual.

In addition to block diagrams, section II is a catalogue of all the integrated circuits, their truth tables and functions within the machine.

Appendix E contains a complete circuit diagram of the motherboard.

I OUTLINE OF THE SYSTEM

The ACT Apricot can be broken down into 5 sections the display, memory, multiprocessor structure, I/O section and disk drive.

The monitor and keyboard will also be briefly described.

1. The Display

In essence the display consists of 4 parts - the CRT controller, static ram, dynamic ram and finally the video section.

All sections are configured in a "pipeline" structure, in that the output of one section forms the basic input to the next.

The CRT controller generates in addition to vertical and horizontal sync pulses, memory addresses MA0-MA10.

These addresses are sequentially generated and are the memory address lines for the static screen ram. As the screen consists of 80 characters by 25 lines, the static ram requires 2000 locations (80×25). Each character requires 2 bytes and hence the screen memory is a $4 \mathrm{~K} \times 8$ configuration.

The screen is accessed sequentially line by line, starting at the top left hand character position-this is location F000:0H in the memory map.

Since each character requires 2 bytes, characters can only be written on even address boundaries.

The 16 bits of data contained at each character location is split into 2 parts: D0-D10 is the character and forms the Font Cell Pointer, D11-D15 are the attributes attached to that character.

The Font Cell Pointer forms the basis of a 20 bit address in main memory where the pixel information to be displayed may be found.

First 6Addresses of One Character
The CRT controller generates 4 additional signals: RA0-RA3. These are the row addresses. There are 16 rows of pixels for each character and hence we access 32 contiguous memory locations.

The remaining address bits are made up as follows:
A16, A17, A18, A19 all are 0 since the fonts must be within the lower 64 K of the lower 128 K .
In character mode the first 10 pixels are displayable, the remaining 6 being 0 ; except the 2 high order bits which may be programmed for underline or strike through. In graphics mode all 16 are displayable.

The 10 or 16 bits, dependant on mode, are parallel loaded into 2 shift registers (IC69, 87) and are clocked out under the control of CLK15 and LES. The resultant serial stream is the raw video signal to be combined with the attributes previously "stripped off" from the screen ram and formed into the final video signal. Together with the horizontal and vertical sync pulses a direct drive set of signals is passed to the monitor.

ELECTRONIC SYSTEM

2. The Memory

The ACT Apricot has, as standard, 256 K of onboard memory implemented with $3264 \mathrm{~K} \times 1$ dynamic RAM chips type 3764-20. These are arranged as two banks of $64 \mathrm{~K} \times 16$, designated MA0-MA15. Data may be accessed 16 bits at a time but high and low order bytes may be written independantly.

The memory is dual-ported and memory access cycles occur on request for CPU cycles and continuously for video and refresh cycles. The state of the CCLK square wave determines the type of cycle performed, continuous RAS and CAS signals are generated by IC36.

The address source for the DRAMs is chosen from the following:
CPU (a) IC61 and 63 allow CPU to address the
memory, in conjunction with AB17
which routes the RAS and CAS signals
to the A or B 64K memory block.

SCREEN (b) IC55 and 60 allow the screen RAM output data to address the lower 64 K bytes of memory bank A.
REFRESH (c) Refresh addresses are supplied instead of screen RAM data during display blanking intervals. These are supplied by the 8 bit binary counter (IC37) and its associated buffer (IC48). Row addresses are enabled onto the DRAM address bus by IC 55 or IC61, or IC48 as selected by the cycle type, i.e. screen, CPU or refresh respectively. These are strobed into the DRAMS by the negative going edge of RAS and after a typical 30ns delay generated by the invertors within IC47 the column address is gated onto the address bus before CAS occurs.

The initial boot software, diagnostics and calculator are contained in $2 \times 64 \mathrm{~K}$ eproms (IC53 and 59) enabled by signal NCSP at memory locationFCOOOH .

3. The Multiprocessor Structure

8086

The ACT Apricot utilizes the 8086
microprocessor running at 5 MHz , making it a true 16 bit microcomputer. In conjunction with the main processor, an 8089 I/O co-processor is included as standard, together with an optional 8087 numeric data processor.
8089
The 8089 takes a substantial software overhead off the 8086 during disk operations and permits concurrent communications processing.

8288

The processors are wired in maximum mode and command and control timing is accomplished by means of a 8288 Bus Controller.

Status lines S0, S1, S2 from the processors are decoded by the 8288 and determine which command is to be issued, i.e. Read, Write etc.

The chart below, gives the meaning of each status "word":

S2	S1	S0	Processor State	Command
0	0	0	Interrupt Acknowledge	INTA
0	0	1	Read I/O Port	IORC
0	1	0	Write I/O Port	IOWC,
0	1	1	Halt	AIOWC
1	0	0	Code Access	None
1	0	1	Read Memory	MRDC
1	1	0	Write Memory	MRDC
1	1	1	Passive	MWTC

ELECTRONIC SYSTEM

The chart below, gives the control outputs:

Control Outputs	Command
DEN-Data enable	Determines when the external data bus is enabled onto the local bus by controlling octal transceivers (IC65, 66).
DT/R-Data Transmit/Receive	Controls the direction of data flow to or from the local bus (IC65, 66).
ALE-Address Latch Enable	Separates data and address by enabling address latches (IC64, 70, 72).
MWC-Memory Write Command	Not used within machine but is available at the expansion port.
AMWC-Advanced Memory Write Command	Write enable signal to memory.
MRDC-Memory Read Command	Enables data from memory to external data bus via LOE signal (IC62, 82).
IOWC-I/O Write Command	Instructs either sound generator or F/D controller to read the data bus.
AIOWC-Advanced I/O Write Command	Write signal to other I/O devices. Enables buffer from data bus to I/O data bus (IC54).
IORC-I/O Read Command	Enables data from any I/O device to I/O data bus. Enables buffer from I/O data bus to external data bus (IC54).
INTA-Interrupt Acknowledge	Acknowledges a device interrupt and places vectoring information onto the data bus.

8259A
For maximum efficiency, the system is interrupt driven, overall management being undertaken by a 8259A Programmable Interrupt Controller (PIC).

This device accepts interrupts from peripheral equipment and determines which of the incoming requests is of the highest priority and issues an interrupt to the CPU based on its determination. The chart below gives the assignment of the interrupt request lines:

Request Line	Pin No.	Device
IRO	18	8089
IR1	19	8089
IR2	20	Expansion
IR3	21	Expansion
IR4	22	F/D Controller
IR5	23	Z80/S10
IR6	24	Timer
IR7	25	8087

8284A

Clock signals for the system are generated by a 8284A. In addition to clock pulses this chip also provides a System Reset and Ready synchronization. A fundamental frequency of 15 MHz is derived from the crystal and is internally divided by 3 to form the 5 MHz system clock at a 33% duty cycle for maximum efficiency.

2 additional clock signals are generated: OSC on pin 12 is a buffered 15 MHz signal (CLK15) for use by the display circuitry, PCLK on pin 2 is a 2.5 MHz signal at 50% duty cycle used by the Z80/SIO as its fundamental frequency.

The reset input (RESIN) is synchronized to the falling edge of CLK and generates a system reset (RESET).

Generation of wait states, when necessary, is accomplished by READY signal under the control of RDY1 and RDY2 dependant on whether memory or I/O request it.

ELECTRONIC SYSTEM

Interrupt Controller

Figure 1. Interrupt Controller block diagram.
PIC Pin Definition

IRO to IR7	Interrupt request inputs
$\overline{\text { INT }}$	Interrupt output
$\overline{\mathrm{INTA}}$	Interrupt acknowledge
DO to D 7	Data bus connection
$\overline{\mathrm{RD}}$	Read control line
$\overline{\mathrm{WR}}$	Write control line
$\overline{\mathrm{CS}}$	Chip select input
A0	System address bus input

4. The I/O Section

(a) Sound Generator

The sound generator consists of a SN76489 together with an associated octal latch and clock circuitry.

The SN76489 contains 3 programmable tone generators, a noise generator, attenuation registers and an audio output stage. It is memory mapped at location 50 H and enabled by signals CSC or IW. Data is latched from the I/O bus via an octal latch (IC18), under the control of the same signals. When data is latched in, it raises WE (Pin 5) to confirm the data is in. The SN76489 uses a fundamental frequency of 2 MHz derived from a 4 MHz crystal oscillator module (IC81) divided by 2 (IC81).

A TBA820 (IC8) is used for the audio output stage. There is also an auxillary input to this amplifier, for reproduction of sound via the internal speaker.

For a detailed description of this interface, refer to the Apricot Technical Reference Manual.

ELECTRONIC SYSTEM

Sound Generation

Figure 1. Sound Generator block diagram.

SG Pin Definition

D0 to D 7	Data bus connection
CK	2 MHz clock input
$\overline{\mathrm{CE}}$	Chip enable input
$\overline{\mathrm{WE}}$	Write enable input
READY	Ready status output
AUDIO OUT	Audio drive signal

(b) The Floppy Disk Controller

The floppy disk interface consists of a WD2797 controller chip (IC68) and associated buffers (IC79, 73, 80).

The interface provides all the control functions necessary for formatting and transferring data to and from the Microfloppy Disks. Enabling of the FDC is by means of the CSA signal-mapped at position 40 H . Internal register locations are detailed below.

Register	Address
Command	40 H
Status	40 H
Track	42 H
Sector	44 H
Data	46 H

Head load is not derived from the FDC, but is generated separately from the 8255 parallel driver chip (refer to section C).

Signal DRQ indicates to the 8089 that the FDC is ready to accept data in a write operation or transfer data in a read operation.

For a detailed description of this interface refer to the Apricot Technical Reference Manual.

NOTE: Changing the motherboard, the WD2797 or the power supply requires this circuit to be set up as described in Chapter 8.

ELECTRONIC SYSTEM

(c) The Parallel Interface

The parallel port consists of an 8255A-5 Programmable Peripheral Interface (IC17) and two 8 bit buffers (IC5 and 6).

The PPI consists of 3,8 bit input/output ports with an associated control register, the control register determining the direction and mode of operation of each port. System software views the three ports and control register as peripheral devices, located as follows:

Port	Address
A	48 H
B	4 AH
C	4 CH
Control Register	4 EH

The interface performs the following functions within the system:

1. Provides a communications interface via the Centronics connector. PA0-PA7 form the 8 bit data path, PC5-the Strobe line, and Busy - an interrupt to the Z80-SI0 via DCDB.

The buffer (IC5), is bi-directional and allows the port to input information from the Centronics connector, the direction of data being controlled in this buffer by PB7.

7 ELECTRONIC SYSTEM

2. PB0-PB6 generate a series of signals under software control for use throughout the system and comprise:
PB0- Generates RESCRT to provide a general reset to the CRT controller chip.
PB1- Unused.
PB2 - A head load signal HLD. This signal allows software to be in total control of the head load for an efficient two drive system.
PB3-Generates DON to enable the display to be switched on and off.

PB4-Generates A/G to select either alphanumeric or graphics mode.
PB5 - Enables drive select gates (IC79).
PB6- Drive select signal. In conjunction with the above enable signal forms DSO and DS1.
For a detailed description of this interface, refer to the Apricot Technical Reference Manual.

Section 1.5 illustrates suitable interface cables for printer applications.

Figure 1. Parallel Interface block diagram.

PIO Pin Definition

PA0 to PA7	Port A
PB0 to PB7	Port B
PC0 to PC7	Port C
D0 to D7	Data bus connection
$\overline{\mathrm{RD}}$	Read control line
$\overline{\mathrm{WR}}$	Write control line
$\overline{\mathrm{CS}}$	Chip select input
A0, A1	System address bus inputs

(d) The Timer

The timer interface comprises of an 8253 Timer (IC16) an oscillator module (IC86) and an associated divider (IC81).

The interface is used to generate the relevant baud rates for the Z80/SIO under software control and is located at 58 H via chip select signal CSD.

The timer is organised as three independent, 16 bit counters each with an associated control word register which determines the operating mode of the counters.

The port address locations are detailed below:

Register	Address
Counter 0	58 H
Counter 1	5 AH
Counter 2	5 CH
Control Word	5 EH

CLK1 and CLK2 are 2 MHz signals derived from a 4 MHz crystal oscillator divided by 2 , and forms the fundamental frequency for 2 of the internal counters. A third counter is used to provide interrupts to the PIC every 20 ms and utilizes a basic 0.25 MHz signal, again derived from the oscillator but divided by 16.

For a more detailed description of this interface refer to the Apricot Technical Reference Manual.

Timer

Figure 1. Programmable Interval Timer block diagram.
TMR Pin Definition

CK0	Clock input for Counter 0
CK1	Clock input for Counter 1
CK2	Clock input for Counter 2
OUT 0	Output from Counter 0
OUT 1	Output from Counter 1
OUT 2	Output from Counter 2
D0 to D7	Data bus connection
$\overline{\mathrm{RD}}$	Read control line
$\overline{\mathrm{WR}}$	Write control line
$\overline{\mathrm{CS}}$	Chip select input
A0, A1	System address bus inputs

(e) The Serial Interface

The serial interface consists of a Z80/SI0 two channel, multi-protocol serial input/output controller (ICl5) together with its associated line driver buffers (IC1, 2, 3).

The Apricot uses this device to:
(i) Interface the equipment to a serial peripheral device i.e. serial printer, modem, other computer equipment etc., via a 25 way ' D ' type connector.
(ii) Provide a bi-directional serial link between the systems unit and keyboard, via a 9 way ' D ' type connector.
(iii) Generates interrupts to the CPU from the parallel port via ACK, BUSY and FAULT lines.
(iv) Provides a Ready function to the 8089 during DMA operations.
The device is located at position 60 H . The port locations are detailed below:

Port	Address
ChA Data	60 H
ChA Control	62 H
ChB Data	64 H
ChB Control	66 H

The Z80/SIO requires a clock frequency of 2.5 MHz derived from the 8284A clock generator. Due to the reduction in frequency, compared with the remainder of the system, 5 wait states are required to allow the internal registers to settle before the system is allowed to continue. The wait states are derived from a 74LS174 (IC90) wired as a shift register.

Signal LOCK from the CPU tells the Z80/SIO that there is about to be an interrupt acknowledge bus cycle.

Figure 1. Serial Interface block diagram.

ELECTRONIC SYSTEM

(f) I/O Port Assignments

I/O Address (Hex)	CS	Device	Register
0 2	CSI	PIC	Read: IRR, ISR or Int Level Write: ICW1, OCW2, OCW3 Read: IMR Write: OCW1, ICW2, ICW3, ICW4
$\begin{aligned} & \hline 40 \\ & 42 \\ & 44 \\ & 46 \end{aligned}$	CSA	FDC	Read: Status Write: Command Track Sector Data
$\begin{aligned} & \hline 48 \\ & 4 \mathrm{~A} \\ & 4 \mathrm{C} \\ & 4 \mathrm{E} \end{aligned}$	CSB	PIO	Port A Port B Port C Write: PIO control register
$\begin{aligned} & \hline 50 \\ & 52 \\ & 54 \\ & 56 \\ & \hline \end{aligned}$	CSC	Sound	Write: Sound generator command
$\begin{aligned} & \hline 58 \\ & 5 \mathrm{~A} \\ & 5 \mathrm{C} \\ & 5 \mathrm{E} \end{aligned}$	CSD	Time	Counter 0 Counter 1 Counter 2 Write: Control
$\begin{array}{\|l\|} \hline 60 \\ 62 \\ 64 \\ 66 \\ \hline \end{array}$	CSE	SIO	Channel A: data Channel A: control Channel B: data Channel B: control
$\begin{aligned} & 68,6 \mathrm{C} \\ & 6 \mathrm{~A}, 6 \mathrm{E} \end{aligned}$	CSF	CRTC	Address Register Control Register
$\begin{aligned} & 70,74 \\ & 72,76 \end{aligned}$	CA	8089	Channel Attention (Ch-1) Channel Attention (Ch-2)

78, 7A, 7C, 7EH-Not available for use-local peripheral bus.

80, 1FFH-Available for use via expansion slots.

IC	42,	78

74LS11

A	B	Y
0	0	0
1	0	0
0	1	0
1	1	1

IC	52

74LS32

A	B	Y
0	0	0
1	0	1
0	1	1
1	1	1

IC	23

$74 S 86$

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

ELECTRONIC SYSTEM

IC	9,	21,	34,	35,	36

74LS112
74S112

J-K FLIP-FLOP

Function Table						
Inputs					Outputs	
Preset	Clear	Clock	J	K	Q	Q
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H	H
H	H	\downarrow	L	L	Q	Q
H	H	\downarrow	H	L	H	L
H	H	\downarrow	L	H	L	H
H	H	\downarrow	H	H	TOGGLE	
H	H	H	X	X	Q	Q

IC9

Generates Write Enable to static rams when selected via CSS.

Switches multiplexers (IC 38, 39, 40) to screen.
Provides 1 wait state when static ram is accessed via internal property of J-K flip-flop.
IC36
Generates RAS and CAS.

ELECTRONIC SYSTEM

IC35

Generates CCLK whose mark-space ratio depends on whether alphanumerics or graphics.

Generates signals LES and LEC in antiphase, for enabling either processor or screen to drams.

IC34

Detects if there is enough time to do a processor access to ram. If not, 1 wait state via RDY1 is inserted.

IC21

Generates Display Enable from CRT controller.

IC	12,	90

74S74
74LS174
'D' TYPE FLIP-FLOP

CLEAR

Function Table					
Inputs				Outputs	
Preset	Clear	Clock	D	Q	Q
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H	H
H	H	\uparrow	L	H	L
H	H	\uparrow	H	L	H
H	H	L	X	Q	Q

ELECTRONIC SYSTEM

IC12

Provides 2 intensity levels under control of attributes.
IC90
Wired as a shift register and provides either 1 or 5 wait states.

IC	18,	$64 ;$	70,	72,	62,	82

74LS373
'D' TYPE LATCHES

ENABLE O/P ENABLE

Function Table			
Output	Enable		Outputs
Control	G	D	
L	H	H	H
L	H	L	L
L	L	X	Q
H	X	X	Z

ELECTRONIC SYSTEM

IC18

Latches data from I/O data bus to sound generator via signals IOWC and CSC.
IC64, 70, 72
Demultiplexes local address/databus and latches address via signal ALE.
IC62, 82
Enables data from drams to databus via signal LEC and LOC.

IC	55,	60

74LS374
'D' TYPE LATCHES

Function Table			
Output Control	CLOCK D	Outputs	
L	\uparrow	H	H
L	\uparrow	L	L
L	L	X	Q
H	X	X	Z

Latches 16 bits of data from srams to be multiplexed onto drams address bus via signals CCLK and RAS.

IC	5,	65,	54,	56,	57

74LS245 OCTAL BUS TRANSCEIVER

Function Table		
Enable G	Direction Control Dir	Operation
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

IC5

Bi-directional data bus from parallel driver circuit (8255) to Centronics connector.

IC65, 66
Bi-directional data bus to processors enabled by DEN and direction controlled by DIR.

IC54

Bi-directional buffer connecting main data bus to I/O data bus enabled by IOC and direction controlled by DIR.
IC56, 57
Bi-directional buffer enabling data to or from the srams and main data bus. Enabled by CSS and direction controlled by DIR.

ELECTRONIC SYSTEM

IC	6,	48

74LS244
BUS DRIVER

Function Table					
Inputs			Outputs		
G1	G 2	1 A	2 A	1 Y	2 Y
L	L	H	H	H	H
L	H	H	H	H	Z
H	L	H	H	Z	H
H	H	H	H	Z	Z

IC6

Driver chip for control inputs/outputs on Centronics parallel port.

IC48

Driver chip enabling refresh counter to address bus of drams under control of RAS.

7 ELECTRONIC SYSTEM

IC	38,	39,	40,	43,	61,	63

74LS257
MULTIPLEXERS

Function Table				
Inputs		Output Y		
Output Control	Select	A	B	LS257A
H				
L	X	X	X	Z
L	L	L	X	L
L	H	X	H	
L	H	L	L	

IC38, 39, 40
Selects whether the CRT controller or processor has access to srams under control of CSS.
IC43
Selects which bank of 128 K dram is selected by means of AB17 and switched by a delayed CCLK. Note - screen information can only be in the lower 128 K of ram.
IC61, 63
Multiplexes 16 address bits onto 8 bit dram address bus under control of RAS.

ELECTRONIC SYSTEM

IC	14

74LS153 MULTIPLEXER

Function Table							
Select Inputs	Data Inputs						
B	A	C0	Cl	C2	C3	G	Output
X	X	X	X	X	X	H	L
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
L	H	X	L	X	X	L	L
L	H	X	H	X	X	L	H
H	L	X	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Allows the switching, by software, between 2 independent baud rates in transmit or receive e.g. Prestel applications.

IC	58,	67

74LS138
3 TO 8 DECODER

Function Table												
Inputs					Outputs							
	ble		elec									
G1	G2	C	B	A	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L		H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

74LS139
2 TO 4 DECODER

Function Table						
Enable	Select			Outputs		
G	B	A	Y0	Y1	Y2	Y3
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	L	H	H	L	H	H
L	H	L	H	H	L	H
L	H	H	H	H	H	L

IC58, 67
Provides decoding of address lines to generate chip select signals for I/O devices.

ELECTRONIC SYSTEM

IC	81

74LS393
BINARY COUNTER

Count Sequence					
Count	Output				
		Q	Q	Q	Q
		Q			
0	L	L	B	A	
1	L	L	L	L	
2	L	L	L	H	
3	L	L	H	L	
4	L	H	L	H	
5	L	H	L	H	
6	L	H	H	L	
7	L	H	H	H	
8	H	L	L	L	
9	H	L	L	H	
10	H	L	H	L	
11	H	L	H	H	
12	H	H	L	L	
13	H	H	L	H	
14	H	H	H	L	
15	H	H	H	H	

Divides 4 MHz clock by 2 or 16 to provide fundamental frequencies to timer.

IC	26

74LS163
SYNCHRONOUS 4-BIT COUNTER
Loaded with either 8 or 11 depending on whether machine is in either alphanumeric or graphics mode by A/G.

Changes the mark to space ratio of CCLK and allows either 10 bits to be displayed in alphanumeric or 16 bits in graphics.

7 ELECTRONIC SYSTEM

IC	29

74LS377
OCTAL 'D' TYPE FLIP - FLOP

Function Table (Each Flip-Flop)				
Inputs			Outputs	
G	Clock	Data	Q	Q
H	X	X	Q	Q
L	\uparrow	H	H	L
L	\uparrow	L	L	H
X	L	X	Q	Q

Latches attributes before being gated together.

IC	37

74LS393 4 BIT BINARY COUNTER

Refresh counter clocked by CCLK gated by RAS.

| IC | 69,87 |
| :--- | :--- | :--- |

8 BIT SHIFT REGISTER
This pair of shift registers converts 16 bits of video information into a serial stream. Clocked by CLK15 and enabled by LES.

ELECTRONIC SYSTEM

III MNEMONICS

SIGNAL DESCRIPTION IC PIN
LEC Latch Enable Processor 8211
LES Latch Enable Screen 691

LOE Latch Enable Output $82 \quad 1$
DON Display Enable 748
WE 0-3 Write Enable 44
RAS 0-3 Row Address Strobe 45
CAS 0-3 Column Address Strobe 46
$\begin{array}{llll}\text { CUR Cursor } & 30 & 19\end{array}$

UNDL	Underline
REV	Reverse
BOLD	Bold
STK	Strike through

INVERT Invert
MRC Memory Read Command 19 1
AMWC Advanced Memory Write Command $19 \quad 9$
MWC Memory Write Command TP3
MC Memory Access Command $9 \quad 15$
$\overline{\mathrm{DE}} \quad$ Display Enable 21
DE Display Enable 216
HS Horizontal Sync 114
VS Vertical Sync 116
DIR Buffer Direction Control $66 \quad 1$
RDY 2 Ready 2 9 9
CSS Static Ram Chip Select 9

DB 0-15 Data Bus 66/65
PB 0-7 I/O Bus 30
E Enable Strobe R/W $30 \quad 23$
$\begin{array}{llll}\text { A } \emptyset & \text { Register Address Line } \emptyset & 72 & 15\end{array}$
$\begin{array}{llll}\text { A1 } & \text { Register Address Line } 1 & 72 & 16\end{array}$
$\begin{array}{llll}\text { A2 } & \text { Register Address Line } 2 & 72 & 19\end{array}$
RESCRT Reset CRT $30 \quad 2$

ELECTRONIC SYSTEM

SIGNAL	DESCRIPTION	IC	PIN
BHE	Bus High Enable	33	9
AB 0-19	20 Bit System Address Bus		
RDY 1	Ready 1	20	3
A/G	Alphanumeric/Graphics	26	3
CLK15	15 MHz Clock	25	1
CLK5	5 MHz Clock	84	2
CCLK	Character Clock	35	11
CLK15	15 MHz Clock After Nand	25	4
PU2	Logic High-from pull up resister	25	2
2MHZ	2 MHz Clock	7	14
4MHZ	4 MHz Clock	81	1
$\overline{\text { CCLK }}$	Inverse of Character Clock	35	6
PCLK	Peripheral Clock Z80 SI/0	92	2
FGND	Frame Ground		
VIDEO	Serial Video	TP5	
OVM	Zero Volts Monitor		
+12VM	+12 Volts Monitor		
GND	Ground		
HORSYNC	Horizontal Syn		
VERTSYNC	Vertical Syn		
DS 0-1	Disk Drive Select	79	3
WG	Write Gate	79	11
WD	Write Data	79	8
STEP	Step	73	3
DIRD	Direction Disk	73	6
SS	Side Select	73	11
HLD	Head Load	73	8
TRK \varnothing ¢	Track Zero	74	4
WRPR	Write Protect	74	2
RDY	Ready Disk	80	12
INDEX	Index Pulse	80	10
RD	Raw Read Data	TP4	

ELECTRONIC SYSTEM			
SIGNAL	DESCRIPTION	IC	PIN
IORC	Input Output Read Command	68	4
IOWC	Input Output Write Command	68	2
AIOWC	Advance Input Output Write Command	17	36
CSA	Disk Controller Chip Select	58	15
CSB	Centronics Port Chip Select	58	14
CSC	Sound Generator Chip Select	58	13
CSD	Interval Timer Chip Select	58	12
CSE	Z80 SI/0 Chip Select	58	11
CSF	Video Controller Chip Select	58	10
CSI	Interrupt Controller Chip Select	67	12
CSP	Boot Prom Chip Select	67	7
CSW	I/O Port Address	58	5
CA	Channel Attention (8089)	32	13
DBUS	Data Bus		
INT2	Interrupt Request 2 Ext	51	4
INT3	Interrupt Request 3 Ext	51	2
INT4	Interrupt Request 4 Floppy Disk	85	13
WPN	Write Precompensation Width	68	33
RPW	Read Pulse Width	68	18
VCO	Voltage Controlled Oscillator	68	26
RES	Master Reset	68	19
IOC	Input Output Command	42	8
RESET	Reset	77	21
RQGTO	Request Grant	91	31
PE	Paper Empty	6	8
FAULT	Printer Fault	6	6
ACK	Printer Ready to Receive	6	2
BUSY	Printer is Unable to Receive	6	4
DAT 1-8	Parallel Data	5	
SYNB	Sync Port B	17	16
CTS B	Clear to Send Port B	6	18
DCD B	Data Carrier Detect B	6	16

7. ELECTRONIC SYSTEM
SIGNAL DESCRIPTION IC PIN
SPK Speaker
ALE Address Latch Enable 89 5
DEN Data Enable
DMAI DMA Request 1 10
DMA2 DMA Request 2 3
NMI Non Maskable Interrupt 10
Ext 1 External Terminate CH1 10
Ext 2 External Terminate CH2 12
IORDY Input Output Ready 9
RESIN Master Reset from Keyboard 11
LOCK Indicates to Bus Controller that more than one contiguous cycle is required 15 8
MRDY Memory Ready 78 13
R/W Read/Write Control 30 22

ELECTRONIC SYSTEM

IV MEMORY MAP

SOFTWARE OVERVIEW
Table 1-Apricot Memory Map of the Lower 128K.

SET-UP PROCEDURES

I Keyboard Clock Set-Up Procedure
II Floppy Disk Controller Set-Up Procedure

SET-UP PROCEDURES

I KEYBOARD CLOCK OSCILLATOR SET-UP

1. Apply power to keyboard (no data).
2. Frequency counter/scope to pin 37 of 6301.
3. Adjust variable cap (C2) to give $976.562 \mathrm{uS} \pm .01 \mathrm{uS}$ i.e. 976.55-976.57 uS.

8
 SET-UP PROCEDURES

II FLOPPY DISK-CONTROLLER SET-UP REV E

1. Switch on.
2. Short out pins 1 and 2 .
3. Scope/frequency counter to pin 3.
4. Adjust variable capacitor (VCI) to give 2 uS period $(500 \mathrm{KHz}) \pm 100 \mathrm{nS}$.
5. Scope to pin 4.
6. Adjust WPW (Write Precompensation-VR2) to give $125 \mathrm{nS} \pm 10 \mathrm{nS}$.
7. Scope to pin 5.
8. Adjust RPW (Read Pulse-VR1) to give $250 \mathrm{nS} \pm 10 \mathrm{nS}$.

FLOPPY DISK-CONTROLLER SET-UP REV G

1. Switch on.
2. Short out pins 1 and 2.
3. Scope/frequency counter to pin 4.
4. Adjust variable capacitor (VCI) to give 2 uS period $(500 \mathrm{KHz}) \pm 100 \mathrm{nS}$.
5. Scope to pin 5.
6. Adjust WPW (Write Precompensation-VR2) to give $125 \mathrm{nS} \pm 10 \mathrm{nS}$.
7. Scope to pin 3.
8. Adjust RPW (Read Pulse-VR1) to give $250 \mathrm{nS} \pm 10 \mathrm{nS}$.

PIN 1
WD2797

Figure 1. Position of Molex and Adjustable Pots.

Figure 2. Date Rate.

Figure 3. Write Precompensation Pulse.

Figure 4. Read Pulse.

DIAGNOSTIC

I Diagnostic Boot Prom Documentation and Error Codes

II Diagnostic Programs

DIAGNOSTIC

I DIAGNOSTIC BOOT PROM DOCUMENTATION AND ERROR CODES

1. Display Layout

2. Operation

After a power-on reset, or a keyboard reset when no system has been booted, the boot PROM performs a series of diagnostic tests. (Total time approx 11 seconds.)

After the first 8 of these tests (approx 5 seconds), the screen is initialised, and the Apricot logo appears in the top right-hand corner of the screen, with the word 'Testing' in field (a).

If all tests pass, the field (a) is replaced with 'System OK', if there has been a diagnostic failure the (a) field is cleared, and the error number is displayed in the error field (f).

The RAM size field (c) is displayed, along with the disk logo (d), and flashing load prompt arrow (b).

A valid system disk can then be booted, the booting drive is indicated by the drive letter field (e), and the arrow symbol (b) is replaced by a clock icon to indicate 'please wait' whilst loading the system.

If there is a disk error this is displayed in the error field (f).

If calc mode is entered before boot then fields (b) -(f) are cleared,-fields (b)-(e) are restored on leaving calc mode.

On a reset after a system boot, none of the diagnostic tests are executed, and the program jumps straight to the 'load disk' prompt-field (a) is not used.

3. Error Numbers

> 02 - Drive Not Ready (disk removed during boot)

04- CRC Error (corrupt disk data)

06- Seek Error
(possible unformatted or corrupt disk)
07- Bad Media
(corrupt disk media block)
08 - Sector Not Found (unformatted or corrupt disk)
11- Bad Read (corrupt data field on disk)
12- Disk Failure (disk hardware or media fault)
20- Diagnostic PROM Checksum Error (corrupt boot PROM)
21 - Diagnostic Sound Generator Failure (suspect sound generator chip)
22- Diagnostic Serial I/O Failure (Z80 SIO fails read/write test)
23- Diagnostic Video Chip Failure (CRTC fails read/write test)
24 - Diagnostic Video Pointer RAM Failure (video pointer RAM test failed)
25- Diagnostic System RAM Failure (system RAM test failed)
26- Diagnostic Parallel Port Failure (parallel printer port test failed)

DIAGNOSTIC

27 - Diagnostic Interrupt Controller Failure (8259A PIC failed read/write test)
28 - Diagnostic Floppy Disk Controller Failure (FDC failed read/write/seek test)
29- Diagnostic Counter Timer Failure (CTC failed read/write test)
30- Diagnostic Serial Channel Failure (channel A of Z80 SIO failed test)
31- Diagnostic Keyboard Failure (keyboard initialisation test failed)
32- Diagnostic Timer Accuracy Failure (CTC accuracy check against timing loop failed)
33- Diagnostic Timer/PIC Interaction Failure (CTC/PIC timing interaction test failed)
34- Diagnostic IO Processor Failure (8089 IOP failed init/memory move test)
99 - Non-System Disk (disk is not a valid system disk)
Note: Tests 21, 26, 30 and 33 are not fully implemented and should never fail at present.

EXPANSION BOARDS

Comients

1. General Installation Instructions
2. Expansion Board Power Requirements
3. 256K RAM
4. $128 \mathrm{~K} / 512 \mathrm{~K}$ RAM
5. Modem
6. Lan Board

Gemeral Installation Imstructions.

1. General Recommendations
2. Apricot PC - Apricot Xi
3. Apricot F1-Apricot F1e
4. Apricot Portable

1. General Recommendations

1. It is recommended that installation of any expansion board be carried out by an authorised dealer. Warning - Remove Power Cable Before Attempting To Gain Access To The Expansion Slots.
2. Unless specifically noted, assembly is the reverse of disassembly.
3. Do not mix screws (length, diameter).
4. A number in parenthesis, thus (4) indicates the number of screws to be slackened or removed to remove that particular part.
5. The expansion slot is polarised to prevent incorrect insertion.
6. A single or double board may be installed into any Apricot.
7. Check all expansion board pins are straight before fitting into expansion slot.
8. Plug in all cables as per relevant instructions and jumper pins where necessary.

2. Apricot PC - Apricot Xi

Removal of top cover.

1. Remove $\mathrm{M} 4 \times 12 \mathrm{~mm}$ screws (3) on rear panel.
2. Allow rear panel to tilt backwards and remove top cover by lifting at rear slightly and disengaging lip from front bezel.
3. Expansion slots are adjacent to power supply.

When installing a single layer board, i.e., a ram expansion, the board may be plugged into any of the expansion slots. When installing an option with a daughter board attached, i.e., a colour or modem card, then it must be plugged into the slot adjacent to the power supply as shown above.
Plug in all cables as per relevant instructions and jumper pins where necessary.
The expansion plates on the rear panel may be pushed out if applicable.
Assemble machine as per previous instructions.
Refer to relevant section in this chapter regarding specific installation instructions.

3. Apricot F1-Apricot F1e

Removal of top cover

1. Remove $\mathrm{M} 3 \times 10 \mathrm{~mm}$ screws (2) on rear panel.
2. Allow rear panel to tilt backwards and remove top cover by lifting at rear slightly and disengaging lip from front bezel.
3. Expansion slot is adjacent to the power supply.

Plug in all cables as per relevant instructions and jumper pins where necessary.
The expansion plate on the rear panel may be pushed out if applicable.
Assemble the machine as per previous instructions.
Refer to relevant sections in this chapter regarding specific installation instructions.

4. Apricot Portable

Removal of Apricot Portable cable manager

Installation of expansion board into Portable

When installation is complete clip the cable manager in place.

Power Requirements

Expansion Board	+5 u	Construction
128K RAM	0.5 A	Single
256k RAM	0.5 A	Single
512K RAM	0.49 A	Single
Lan	0.35 A	Single
Winchester	0.6 A	Single
Modem	0.37 A	Double
Colour	1.3 A	Double

2564 RA

1. Installation
2. Theory of operation.
3. Integrated circiut catalogue.
4. Mnemonics
5. Parts list.

1. Installation

256K RAM expansion boards may be installed into the Apricot range. The Apricot PC/Xi range may have 1 or 2 boards fitted making a total capacity of either 512k or 768k.

NOTE This board can not be fitted to an F1e.
Any expansion slot may be used for individual boards.
A general description of installation procedure is contained at the beginning of this section.

Base Address

A jumper SW1 is provided, as detailed above, to set a base address for the board, of either 40000 H or 80000 H . Jumper ' B ' when one board is installed and ' A ' on the second, when two boards are fitted.

2. Theory of Operation

The design utilizes $8256 \mathrm{~K} \times 1$ dynamic ram chips (ICI-IC8) with on chip refresh. This allows most of the logic associated with the DRAM refresh function to be eliminated from the design.
The 16 bits of data is multiplexed onto an internal 8 bit wide data bus via IC 11 and IC 12 under the control of DMUX. Data from the ram chips is latched in as upper and lower bytes into IC9 and IC 10. Latching is accomplished at the correct time by LATCH 1 and LATCH2. Similarly, the address bus AB 1-AB 16 is multiplexed onto an internal 8 bit wide address bus via IC13 and IC14 under the control of AMUX.
IC19 with inputs DMUX and AB17 controls the selection of high or low memory pages. Board selection via SW1 is generated by the IC 18 and IC 19 combination, resulting in CS.
Timing for the circuit is accomplished using a counter, PROM and latch (IC15, IC 16, IC 17) in a novel form as shown below.

A valid CPU memory cycle synchronizes a 3 bit counter (IC15) by clearing it to zero during an ALE pulse, clocking of the counter is by CLK5. During each CPU memory cycle, IC 15 counts from 0 to 7 and drives a PROM (IC 16) - this chip is programmed with all the control signals necessary to access the memory and maintain DRAM refresh, even during repetative memory accesses.

3. Integrated Circuit Catalogue

IC	$1,2,3,4,5,6,7,8$.

HM50256-20 256K x 1 Dynamic Random Access Memory.

Forms 256K x 8 memory

IC	9,10

Function Table			
Output Control	Enable		D

Latches high and low order bytes to main data bus during a memory read, under control of LATCH 1, LATCH2, C5 and MRDC.

IC $\quad 11,12,13,14$.

74LS257 Multiplexers

Function Table				
Inputs		Outputs Y		
Output Control	Select	A	B	LS257A
H	X	X	X	Z
L	L	L	X	L
L	L	H	X	H
L	H	X	L	L
L	H	X	H	H

IC $11,12$.

Multiplexes 16 data bits onto 8 bit DRAM data bus during a memory write, under control of DMUX.

IC $13,14$.

Multiplexes 16 address bits onto 8 bit DRAM address bus under control of AMUX.

IC	15.

74LS163 Synchronous 4 Bit Counter
Counts from 0 to 7 under control of ALE, A18, A19 and clocked by CLK5. Generates input signals for PROM (IC16).

IC	16.

74 S288 256 Bit Programmable Read-Only Memory
Programmed with control signal and timing information.

IC	17.

74LS174

Clear

Function Table					
Inputs				Outputs	
Preset	Clear	Clock	D	Q	Q
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H	H
H	H	T	L	H	L
H	H	T	H	L	H
H	H	L	X	Q	Q

Latches timing and control signals RAS, CAS, LATCH 1 , LATCH2, ABO AND BHE, clocked by CLK5.

IC ${ }^{18}$				
74LS 10	NAND	A	B	Y
		0	0	1
		1	0	1
		0	1	1
		1	1	0

IC	19

74586

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

4. Mnemonics

Signal	Description	IC	Pin
CLK5	5 MHz Clock	18	1
ALE	Address Latch Enable	18	3
CS	Chip Select	20	2
MRDC	Memory Read Control	20	1
WE	Write Enable	16	5
BHE	Bus High Enable	16	14
RAS	Row Address Strobe	17	2
CAS	Column Address Strobe	17	5
LATCH1	Latch1	17	7
LATCH2	Latch2	17	10
DMUX	Data Multiplexer	16	6
AMUX	Address Multiplexer	16	7

5. Parts List	
Ref.	Description IC1-IC8 HM50256-20
IC9-IC10	74 LS373
IC11-IC14	74 LS257
IC15	74 LS163
IC16	74 S288
IC17	74 LS174
IC18	74 LS 10
IC19	74 LS86
IC20	74 LS32
C1-C6	Cap 0.01 mfd
C7,C14	Cap 100 mfd 6.3V.
D1	Diode OA47
R1	Resistor 3K3 1/4W
	3way SIL
RN1	Jumper Link
	330/390 Resistor
	Network
	Din 4162 64 Pin Plug
	P.C.B.

128K/512W RAR Expansion Board

1. Installation
2. Theory of operation
3. Intergrated circuit catalogue
4. Mnemonics
5. Parts list

1. Installation

128k Ram or 512K Ram expansion boards may be installed into the Apricot range.
The Apricot PC/Xi range may have 1 or 2 boards fitted making a total capacity of either $384 \mathrm{k}, 512 \mathrm{k}$ or 768 k .

$$
\text { Note The F1e ram upgrade is a special } 128 \mathrm{k} \text { ram board }
$$ with a base address of 128 k . The 512 K and 256 K ram board cannot be fitted at present.

Any expansion slot may be used for individual boards.
A general description of installation procedure is contained at the beginning of this section.

A Jumper P2/P3 is provided to select the base address of the memory board.

P2	$256 \mathrm{~K}-384 \mathrm{~K}$	A-B
P3	$384 \mathrm{~K}-512 \mathrm{~K}$	$\mathrm{~B}-\mathrm{C}$

No strap 512K

2. Theory of operation

The single P.C.B. is designed to use either 64 K or 256 K drams. This will allow two configurations 128 K or 512 K . Data is written directly into the memory with the RAS/CAS addresses being supplied by a single memory controller IC 1.
When data is read, it is first latched into IC8 and 9. These latches are gated by IC7 and enabled by MRDC from IC5.
IC3 is a memory controller interface and uses the Apricot control signals to provide RAS/CAS enable. AO and BHE are decoded to provide CAS enable for the upper and lower memory banks. After data transfer is completed the memory ready signal is returned to the Apricot. A wait state can be introduced by strapping D and E . This will allow slow dram to be used.

The address lines A17-19 are latched into IC4 by ALE and are decoded by IC7 as the base address for IC 1's chip select.

Electronic System

Test Points

TP1 on board 5Mhz clock
TP2 ready output
TP3 ALE
TP4 refresh clock.

Straps

$\left.\begin{array}{ll}\text { A-B } & 256 K-384 K \\ B-C & 384 K-512 K\end{array}\right\} 128 K$ Board

Not fitted 512K 512k Board
D-E 1 wait state for slow drams

3. Intergrated circuit catalogue		
IC No.	Component	Description
1	DP8409	Memory controller
2	DP84300	Memory programmable refresh timer
3	DP84332	Memory controller interface
4	$74 L S 375$	4-bit bistable latch
5	$74 L S 244$	Octal buffer line driver/receiver
6	$74 L S 74$	Dual D-type edge triggered
7A	74LS86	Qual 2-input exclusive -or
8	$74 L S 373$	Octal D-type latch
9	$74 L S 373$	Octal D-type latch
$7 B$	$74 S 10$	Triple 3 input pos nand gate
11-26	$4164-20$	64K/256K drams.

IC 4
74LS375

Function Table			
Inputs	Outputs		
D	G	Q	Q
L	H	L	H
H	H	H	L
X	L	Oo	Qo

IC4 latches Apricot address lines A17-19 to decode chip select for memory controller address latched by ALE.
IC 5

74LS244
Octal Buffer Line Drive/Receiver
IC5. Tri state buffers used to buffer control signals from expansion bus.
IC 6

74LS74
Dual D-Type Edge Triggered
IC6. Memory ready from IC3 syncronized and clock by Clk5 (5 Mhz). The signal is buffered by IC5 and enabled by Clk5.

IC	7

74LS86 Quadruple 2-Input Exclusive-OR

IC7 A/ 1 fitted on 512K memory boards to decode address lines A18-19 to give chip select for memory controller.
A/2 latches data into octal D-type from drams.
74LS 10
3 Input Positive NAND Gate

A	B	Y
0	0	1
1	0	1
0	1	1
1	1	0

IC7B/ 1 fitted on 128K memory boards to decode address lines A17-19 to give chip select for the memory controller. $B / 2$ latches data from drams into octal buffer.

IC	8.9

74LS373
Octal D-Type Latch

Enable O/P Enable

Function Table			
Output	Enable		Outputs
Control	G	D	
L	H	H	H
L	H	H	L
L	L	X	Q
H	X	X	Z

IC 8,9 latches data from drams, gated by NCAS and output enabled by memory read (MRDC).

4. Mnemonics

Signal	Description	IC	Pin No.
A1-19	Address lines		
ALE	Address latch enable	IC5	14
AMWRTC	Advanced memory write command	IC5	16
CLK5	5MHZ clock	IC5	18
AO	Address 0	IC3	2
BHE	Bus high enable	IC3	3
MRDY	Memory ready	IC5	17
MRDC	Memory read command	IC5	9
DO-7	Data bus low	IC9	
D8-15	Data bus high	IC8	
CAS	Column address strobe	IC1	15
RAS	Row address strobe	IC11	4
WE	Write enable	IC11	3

Signal	Description	IC	Pin No.
OE	Output enable	IC9	1
G	Gate enable	IC9	11
RO-8	Row address byte	IC1	
CO-8	Column address byte	IC1	
CS	Chip select	IC1	47
WIN	Write enable input	IC1	45
RGCK	RAS generator clock	IC1	2
RFCK	Refresh clock	IC1	1
RFSH	Refresh	IC1	5
MO	Mode control	IC1	3
RASIN	Row address strobe in	IC1	48
MAO-8	Memory address	IC1	
RFRQ	Refresh request	IC3	8
CASL	Column address strobe lower	IC3	13
CASU	Column address strobe upper	IC3	14
RDY	Ready	IC3	15
WAIT	Wait state	IC3	7

5. Parts list

128K Expansion Board
Part No. 11130511
Comp.Ref. Item Part No. Description Oty

PCO2/02	1	11130411	Printed circuit board	1
IC1	2	11130621	SN74S409 (8409)	1
IC2	3	11130721	IC 20x10 (84300)	1
IC3	4	11130821	IC 16RA8 (84332)	1
IC4	5	11130921	SN74LS375	1
IC5	6	11015121	SN74LS244	1
IC6	7	11131021	SN74LS74	1
IC7	8	11013521	SN74LS10	1.
			Fitted in Right Hand Position	
IC8,9	9	11015521	SN74LS373	2.

IC11-26	10	11012521	$4164-20$ Dram	16

RP1,2,3 $11 \quad 11131221$ Res Pak 47Rx4SIL 3
R1,5 $12 \quad 11131321$ Res 10ohm 1/4W 10\% Carbon 2
$\begin{array}{lllll}\text { R2, }, 4,4,6 & 13 & 11017021 & \text { Res } 3 K 3 & 1 / 4 W \\ 10 \% & \text { Carbon }\end{array}$
C1,2 $14 \quad 11131421$ Cap 100uF 10V Elec.Axial 2
C3 $15 \quad 11131521 \quad$ Cap 1uF 50V 20\% Cer.Radial 1
C4-23 $16 \quad 11131621 \quad$ Cap 0.1uF 50V 20\% Cer.Rad 20
PLabc $17 \quad 11131721 \quad 3$ Way Wafer (22-10-2031) 1
PLde 18 11131821 2 Way Wafer (22-03-2021) 1
$\begin{array}{llll}\text { Plug } & 19 & 11126521 & 64 \text { Way Conn.DIN } 41612 \\ 1\end{array}$
$\begin{array}{llll}\text { TP1-4 } & 20 & 11131921 & 4 \text { Way Wafer (22-10-2041) }\end{array}$
Link $21 \quad 11132081$ Jumper 1

Mhodem Board

1. Installation
2. Technical Details

1. Installation

Modem boards may be installed into the Apricot range. If the board is fitted into an Apricot PC or Xi, slot 2 (that nearest to the power supply) must be used.
A general description of installation procedure is contained at the beginning of this section. Warning - Do Not Connect the Telephone Cord To British Telecom Socket Until The Modem Has Been Correctly Installed In The Apricot Computer

Warning - Thiṣ Modem Is Not Suitable For Use With Some Call Connect Systems With Digital Setup And Cleardown Commands.

If the Modem is fitted into the Apricot PC, Xi, F1 or F1e the expansion plate on the rear panel must be removed and the modems telephone cord fed through the resultant hole. The expansion plate must then be replaced by a plate as shown in the diagram below - with a hole to allow the telephone cord to pass through it.

Expansion Plate

If the Modem is fitted into the Apricot Portable the telephone cord may be fed through the cable manager.
When the Modem has been correctly inserted into the machine the approval sticker must be fixed onto the rear panel.
Finally the telephone and Modem must be connected into the telephone socket.
Installation is now complete.

2. Technical Details

Electrical Details:

1. Modulation: Frequency Shifted Keyed (FSK) with the following frequency parameters:

Mode	Baud Rate	Transmit Space	Frequency* Mark	Receive Space	Frequency* Mark	Answer Tone*
CCITT V21						
Originate 300 1180 980 1850 1650	-					
Answer	300	1850	1650	1180	980	2225
CCITT V23						
Originate	$75 / 1200$	450	390	2100	1300	\ldots
Answer	$1200 / 75$	2100	1300	450	390	2100
CCITTV23 Half duplex	1200	2100	1300	2100	1300	2100
*Hz.						

2. Data Format: Serial Asynchronous.
3. Minimm Recieve Level: 43 dBm .
4. Maximum Transit Level:-13dBm.

Mechanical Details:

1. The Apricot Modem consists of two printed circuit boards linked together.
2. The physical dimensions of the Modem are as follows:

Length; 5.9 inches (147 mm .)
Max. Height; 3.0 inches (78 mm .)
Width; 1.1 inches (27 mm .)
Weight; 7 ounces. (200 grams)

Connect Details

Series 600 plug for connecting the Modem to the telehone network.

Modem Module

The modem is a communications facility to allow an Apricot computer to transmit and recieve data via the Public Switched Telephone Network (PSTN).
Inspect the modem module to make sure no damage has occured in transit. If damage has occured, return the complete package.
B.A.B.T. Approval No. S/1397/3/E/500039 Model No. ADM/4.

B.T. Circuit

The modem is only to be used with 2 wire PSTN circuits. The modem generates CCITT V25 answer sequences when set in auto answer mode and may be used on lines listed in British Telecom telephone directories. It must not be used with payphones, partylines or certain types of call connect systems that do not use two wire signalling systems.

Bell Tinkle

When the modem is used with telephones that use a mechanical bell 'bell tinkle' will be caused when dialling.

Ringer Equivalence

Equipment for attachment to the public telephone network is assesed to determin its 'ringer equivalence' number (REN). The REN indicates, in effect, the load that the telephone exchange sees when ringing the equipment. It is not permitted to put more than a total of 4 REN onto the exchange line. The modem has a REN of 3 and care must be taken not to use it with other telephone equipment that would result in the maximum figure of 4 REN being exceeded.

Important

The approval of this modem for connection to the British Telecom public switched telephone network is INVALIDATED if the apparatus is subject to any modifications in any way not authorised by BABT or it is used with or connected to:1. Internal software that has not been formally accepted by BABT.
2. External control software or external control apparatus which causes the operation of the modem or associated call set-up equipment to contravene the requirements of the standard set out in BABT/SITS/82/005s/B

Local Area Networls

1. Installation
2. Theory of Operation
3. Connector Pinouts
4. Integrated Circuit Catalogue
5. Mnemonics
6. Parts List
7. Network Diagram.

1. Installation

One local area network board (Lan) can be installed into the Apricot to create a structure so that files/programs can be shared with other people in a local area network.
Any expansion slot may be used for individual boards.
After checking the network device address follow the general installation instructions at the beginning of this section.
When the board has been correctly installed;

1. Connect the lan tap cable to the rear of the lan board.
2. Insert the tap cable into the lan tap box.

Network Device Addresses

The device address is set on a dip switch (SW1) shown as address 63.

Network Device Addresses (SW1)

Address	Switch Setting						Address	Switch Setting					
	1	2	3	4	5	6		1	2	3	4	5	6
0	\uparrow	\uparrow	\uparrow	\uparrow	1	1	32	\uparrow	\uparrow	\dagger	\uparrow	\dagger	-
1	-	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	33	-	\uparrow	\uparrow	\uparrow	\uparrow	-
2	1	-	\uparrow	\uparrow	\uparrow	\uparrow	34	\uparrow	-	\uparrow	\uparrow	\uparrow	-
3		-	\dagger	\uparrow	1	\uparrow	35	-	-	\uparrow	\uparrow	\uparrow	-
4	\uparrow	\uparrow	-	\uparrow	\uparrow	\uparrow	36	\uparrow	\uparrow	-	\uparrow	\uparrow	-
5		\uparrow	-	\uparrow	\uparrow	\uparrow	37	-	\uparrow	-	\uparrow	\uparrow	-
6	1	-	-	\uparrow	\uparrow	1	38	\uparrow	-	-	\uparrow	\uparrow	-
7	-	-	-	\uparrow	\uparrow	\uparrow	39	-	-	-	\uparrow	\uparrow	-
8	\uparrow	1	\uparrow	-	\uparrow	\uparrow	40	\uparrow	\uparrow	\uparrow	-	\uparrow	-
9	-	\uparrow	\uparrow	-	\uparrow	\uparrow	41	-	\uparrow	1	-	\uparrow	-
10	\uparrow	-	\uparrow	-	\uparrow	\uparrow	42	\uparrow	-	\uparrow	-	\uparrow	-
11	-	-	\uparrow	-	\uparrow	\uparrow	43	-	-	\uparrow	-	\uparrow	-
12	\dagger	\uparrow	-	-	\uparrow	1	44	\uparrow	\uparrow	-	-	\uparrow	-
13	-	\uparrow	-	-	\uparrow	\uparrow	45	-	\uparrow	-	-	\uparrow	-
14	1	-	-	-	\uparrow	\uparrow	46	\uparrow	-	-	-	\uparrow	-
15	-	-	-	-	\dagger	\uparrow	47	-	-	-	-	\uparrow	-
16	\uparrow	\uparrow	\uparrow	\uparrow	-	\uparrow	48	\uparrow	\uparrow	\uparrow	\uparrow	-	-
17	-	\uparrow	\uparrow	\uparrow	-	\uparrow	49	-	\uparrow	\uparrow	\dagger	-	-
18	\uparrow	-	\uparrow	\uparrow	-	\uparrow	50	\uparrow	-	\uparrow	\uparrow	-	-
19	-	-	\uparrow	\dagger	-	\uparrow	51	-	-	\uparrow	\uparrow	-	
20	\uparrow	\uparrow	-	\uparrow	-	\uparrow	52	\uparrow	\uparrow	-	\dagger	-	-
21	-	\uparrow	-	\uparrow	-	\uparrow	53	-	\dagger	-	\uparrow	-	-
22	\uparrow	-	-	\uparrow	-	\uparrow	54	\uparrow	-	-	\uparrow	-	-
23	-	-	-	\uparrow	-	\uparrow	55	-	-	-	\uparrow	-	-
24	\uparrow	\uparrow	\uparrow	-	-	\dagger	56	\dagger	\uparrow	1	-	-	-
25	-	\uparrow	\uparrow	-	-	\uparrow	57	-	\uparrow	\uparrow	-	-	-
26	\uparrow	-	\uparrow	-	-	\uparrow	58	\uparrow	-	\uparrow	-	-	-
27	-	-	\dagger	-	-	\uparrow	59	-	-	1	-	-	-
28	1	\uparrow	-	-	-	\uparrow	60	\uparrow	\uparrow	-	-	-	-
29	-	\uparrow	-	-	-	\uparrow	61	-	\uparrow	-	-	-	-
30	\uparrow	-	-	-	-	\uparrow	62	\uparrow	-	-	-	-	-
31	-	-	-	-	-	\uparrow	63	-	-	-	-	-	-
Address	1	2	3	4	5	6	Address	1	2	3	4	5	6
	Switch Setting							Switch Setting					
Switch on=Logic zero								$\uparrow=0 n$					

The above table displays the switch settings for all devices. The address range is split into three areas:

Address	Device
$0-9$	File Server
$10-63$	Network Station
63	Network Bank

Each network device must have a unique device address.
Maximum bit transfer rate 1 M bit/sec.

2. Theory Of Operation

Omninet

The network is based on RS 422, this protocol is used to achieve a high signaling rate over long distances. The trunk cable is a twisted pair and provides a balanced circuit.

Trunk Cable

Data is transferred along the trunk cable from one transporter to another by NRZI (non return to zero inverted).
All data information which travels over the network is in the form of a packet.

Leading Flags	Message Header	User Control	User Data	CRC	Trailing Flags

Network Controller

The design utilizes the corvus chipset which consists of an MC 6801 microprocessor, the MC 68A54 communications controller and a corvus gate array.
6801 Microprocessor
The 6801 is an eight bit microprocessor containing 2048 bytes of rom which stores the transporter operating program and 128 bytes of ram which are utilized for temporary storage by the program.
68A54 advance data link controller (ADLC)
The ADLC provides the interface between the RS422 tranceivers and the transporter. The main functions of the ADLC are bit serialization, zero insertion, packet framing, CRC generation and data byte buffering.
Corvus gate array
The gate array provides the timing and control for all data transfers occuring outside the 6801.

The connection to the trunk cable is via IC7, a RS422 transceiver which provides a balanced circuit for transmitting and receiving data. The driver accepts data bits from the ADLC and converts them into voltage differentials on the lines.
The led is used to indicate when the transporter is transmitting.
An open collector driver IC8 and SW1 (6/8 position dip switch) is used to set the node address and is read once at power on. Each address should be unique.
The 8 bits of data are latched to and from the computer data bus by IC9. The direction and enable is controlled by PAL2.
PAL2 decodes the address lines AB5 and AB8 to provide the base address 120 H , these addresses are latched by ALE and the read/write status is controlled by IORC/AIOWC.
A 4 K byte ram IC4/IC5 is used to store information from the host until required for transmission by the LAN controller. The opposite applies for data from the network to the host.

Network I/O Address

Function	$1 / 0$ Address	Read/Write Status
Read high nibble of counter and status bit	120 H	Read
Read ram location pointed to by counter	122H	Read
Read low byte of counter	124H	Read
Read ram and then increment counter	126 H	Read
Write high nibble of counter	120H	Write
Write to command address register	122H	Write
Write to low byte of counter	124H	Write
Write to ram and then increment the counter	120 H	Write

Block Diagram LAN Board

Board Block Diagram

3. Connector Pinouts

Lan Board

Network Station Cable

1. Standard station node box

Trunk cable should be a continious length where possible.
2. Termination box at each end. The termination box can be used as a standard node.

Network Cable

Cable Lengths

Cable	Network	Between Nodes	Beldon Cable Type Number
Unscreened	$2000 \mathrm{ft} / 620 \mathrm{~m}$	2 m	8205

Tap Cables

Part Number	Length	Function
11114841	3 m	Apricot to Apricot

4. Integrated Circuit Catalogue

IC No.		Component	
IC1		Description	
IC2	6801	Corvus gate array	
IC3	68 Corvis processor	Corvus ADLC	
IC4	6116	Skinny dip ram	
IC5	6116	Skinny dip ram	
IC6	TBP24510	Prom	
IC7	SN75176	RS422 line driver	
IC8	SN74LS05	Hex inverter	
IC9	SN74LS00	Quad pos-nand	
IC10	SN74LS04	Hex inverter	
IC11	SN74LS245	Octal bus transceiver.	

\section*{| IC | 8,9 |
| :--- | :--- |}

74LSO4
74LSO5

Hex Inverters

In	Out
0	1
1	0

IC	10

74LSOO
Quad Positive NAND

A	B	Y
0	0	1
1	0	1
0	1	1
1	1	0

IC	11

Octal Bus Transceiver

	Function Table	
Enable G	Direction Control DIR	Operation
L	L	B Data to A Bus A Data to B Bus
H	H X	Isolation

IC 11 bi-directional data bus from Apricot expansion bus to corvus gate array.

IC	7

SN75176
RS422 Balanced Line Driver
IC7 connects the twin twisted pair LAN network to the LAN board balanced non polorized signal.

IC	4,5

5. Nmemonics

Signal	Description	IC	Pin
AB0-8	Address bus 0-8	IC6	
AIOWC	Advanced I/O write command	IC6	9
IORC	I/O read command	IC6	8
DB0-7	Data bus 0-7	IC9	
INT3	Interupt 3	IC6	20
RESET	Reset	IC2	6
WE	Write enable	IC1	2
CS	Chip select	IC11	20
BRD	Buffer Read	IC6	14
ALE	Address latch enable	IC6	7
RAO-1	Ram Address	IC1	
RD0-7	Ram Address	IC1	
OE	Output enable	IC1	3
WR	Write request	IC1	4
HD0-7	Host Data	IC1	
TXENA	Transmit enable	IC1	61
RXD	Receive data	IC1	62
BITCK	1 MHz clock output	IC1	63
DSR	Data service request	IC1	55
RTS	Request to send	IC1	59
IN/OUT	Transfer IN or OUT of memory	IC1	64
EOUT	1.25 MHz clock output	IC1	57
IRO	Interrupt request	IC1	60
XTAL2	5 MHz clock	IC1	58
EIN	1.25 MHz clock IN	IC1	56
R/W	Read/Write	IC1	50
AUTO	Decodes which DMA mode is to begin	IC1	65
READY	Ready	IC2	17
A8-15	Address lines	IC2	
HDINT	Interrupt signal to host	IC2	18
XTAL1	Crystal Oscillator 10Meg	IC2	2
RDSR	Receive data service request	IC3	23
TDSR	Transmit data service request	IC3	24
TXC	Transmit data clock	IC3	5
RXC	Receive data clock	IC3	4
DCD	Data carrier detect	IC3	27
CTS	Clear to send	IC3	28
TXD	Transmit data	IC3	6

6 Parts List

Local Area Network Board Assembly Part No. 11156011

Comp.Ref.	Item	Part No.	Description	Qty
PC08	1	11138611	Printed Circuit Board	1
IC1	2	11156121	Corvus Gate Array	1
IC2	3	11156221	6801 Microprocessor	1
IC3	4	11156321	68A54 ADLC	1
IC4, 5	5	11133221	HM6116ALSP	2
IC6	6	11138921	TBP24S10N AM27521A (alternative) N825129N (alternative) DM745287 (alternative)	1
IC7	7	11139021	SN75176 or DS3695	1
IC8	8	11138721	SN74LS05	1
IC9	9	11013121	SN74LSOO	1
IC10	10	11013321	SN74LS04	1
IC11	11	11015221	SN74LS245	1
XTAL	12	11156421	10 MHz Oscillator	1
C1	13	11125521	Cap 47uF 10V Electrolytic	
C2-C11	14	11019021	Cap 0.1uF Decoupler	10
C12	15	11139421	Cap 220pF Ceramic	1
R1-4, R7-8	16	11017321	Res 1K 1/4W Carbon	6
R5, 6	17	11156521	Res 4K 1/4W 10\% Carbon	2
T1	18	11156621	Transformer PTABT	1
Q1	19	11140021	Transistor BC184	1
D1	20	11139521	Miniature LED	1
SW1	21	11139221	DIP Switch	1
J1	22	11126521	64 Way DIN 41612 Conn	
J2	23	11139921	3 Way Conn (22-05-2031)	1
SK1	24	11138821	68 Way Socket	1
SK2	25	11139321	40 Way Socket	1
	26	11139681	Washer M2.5	2
	27	11139781	Nut M2.5	2
	28	11139881	Screw M2.5	2

7. Network Diagrams

Basic (Unbranched) Network Configuration

Winchester

Contents

1. Assembly And Disassembly
2. Electrical System
3. Electronic System
4. Parts List
5. Circuit Diagrams

Assembly amd Disassembly

1 General Recommendations
2 Rear Panel And Top Cover
3 Chassis Bridge
4 Winchester Disk Drive

1 Assembly And Disassembly

1. General Recommendation

1. Disconnect from mains supply before disassembling machine.
2. Unless specifically noted, assembly is the reverse of Disassembly and will not be described unless necessary.
3. Do not mix screws (length, diameter)
4. A number in parenthesis thus (4) indicates the number of screws to be slakened or removed to remove that particular part.

Warning-

When bench testing or working on a drive, a foam mat should be placed underneath the unit to reduce the risk of accidental damage if the drive is dropped or topples over. It is recommended that a PVC skinned foam sheet approximately one inch thick is used.
Engineers are reminded that the Winchester module is a sealed unit. Removal of the module cover will render any returns void.

2 Rear panel and top cover

1. Remove M4 X 12mm screws (3).
2. Allow rear panel to tilt backwards and remove top cover by lifting at rear slightly and disengaging lip from front bezel.
3. Remove A.C input connector on P.S.U and all earth leads.

Assembly
Reverse of above procedure.

3. Chasis Bridge Assembly

1. Remove rear panel and top cover as in Section 1.
2. Disconnect power and ribbon cables from disk drives.
3. Slaken M3 $\times 6 \mathrm{~mm}$ screws (4)
4. Lift chassis bridge assembly away from the main chasis.

Assembly

Reverse of above procedure.
4. Winchester Disk Drive

1. Remove chassis bridge assembly as in Section II
2. Remove 9×36 unc screws (4)
3. Slide Winchester drive out.

Assembly
Reverse of above procedure.

Electrical System

1. Interconnection Diagram
2. Connector Pin-Outs
3. Interconnection Diagram

2. Connector Pin-Outs.				
Winchester Cable Controller End				
Red strip denotes pin 1.				
159				
2				60
2	RWC	28	Drive Select 2	
4	Head Select 2	30	Drive Select 3	
6	Write Gate	32	Drive Select 4	
8	Seek Complete	34	Dir	
	Track 00	36		
	Write Fault	38		
14	Head Select 0	40		
16		42		
18	Head Select 1	44		
	Index	47	+MWD	
	Ready	48	-MWD	
	Step	51	+MRD	
	Drive Select 1	52	-MRD	
$1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33$, $36,38,40,42,45,46,49,50,53,54$ Ground returns.				
55-60 not used				

Winchester Cable Drive End Control Interface

GND Pin Signal Pin Signal Name

1	2	Reserved
3	4	Reserved
5	6	Write gate
7	8	Seek complete
9	10	Track O
11	12	Write fault
13	14	Head select 0
15	16	Reserved
17	18	Head select 1
19	20	Index
21	22	Ready
23	24	Step
25	26	Drive Select 1
27	28	Drive Select 2
29	30	Drive Select 3
31	32	Drive Select 4
33	34	Direction IN

Winchester Drive Power Cable

Drive

Pin Signal
$\begin{array}{ll}1 & +12 \mathrm{~V} \\ 2 & 0 \mathrm{~V} \\ 3 & \mathrm{OV} \\ 4 & +5 \mathrm{~V}\end{array}$

Wire Colour
Yellow
Black/White Black
Red

Motherboard
Signal Wire Colour +5V Red OV OV
$+12 \mathrm{~V}$

Black Black/White Yellow

Electronic System

1. Outline Of Controller.
2. Integrated Circuit Catalogue
3. Mnemonics

1. Outline of Controller

Introduction
The Winchester disk drive controller is a single board expansion card which fits into either one of the system expansion slots and connected to the disk drive by a ribbon cable.
The board acts as the interface between the processing system and the Winchester disk drive.

Description

The controller is broken into seven parts; the WD 1010-05, Data seperator, write precompesation, addressing, RAM buffer control port and finally a data bus.

Winchester Disk Controller (WD1010-05)

The Winchester disk interface consists of a WD1010-05 and associated buffers.
The interface provides all the control functions necessary for formatting and transferring data to and from the winchester disk.

Winchester Controller Board Block Diagram

The WD 1010-05 is selected by WCCS from PAL1.
Head select is controlled by the control port (IC8).
The controllers registers are selected by AB1-3 from the Apricot.

Data Separator.

The DP8460 (IC2) data separator receives digital pulses from a differential line receiver which converts the data from balanced to TTL format. The data separators lock to the frequency of these input pulses and separates them into synchronized data and clock signals.

Write Precompensation

The Rodime RO350 does not require write precompensation although the controller is capable of producing early, normal and late data. Write data (WDATA) from the WD 1010-05 can be used to drive a delay line, (Not normally fitted). This generates two extra write data signals delayed by 10 ns and 20ns. These data signals are then selected by PAL2 which is controlled by RWC/EARLY and LATE from the WD1010-05.
The write data output of PAL2 is converted to balanced format by the differential line drive.

Addressing.

The PAL1 is used to interface the address bus from the Apricot to the Winchester controller. It receives address lines AB4-AB8 which allows the controller to detect accesses to the WD1010-05.

The control port and the data port ABO qualifies the device selects and ALE is used to prevent glitches as the addresses change.
When the WD 1010-05 isolates the local bus to perform a data transfer the PAL 1 would produce NRAMCS from the appropriate address. PAL1 is also enabled by BCS from the WD 1010-05.

The WD 1010-05 interrupt request output (INTRQ) is bufferd by PAL 1 and output as NINT2 to the Apricot.
To meet the address setup times of the WD 10 10-05, the read enable signal is delayed by qualifying it with the data enable signal whenever the controller is addressed by the Apricot IC8 also adds additional wait states by holding IRDY low until its Oc output goes high. This counter is clocked by the 5 MHz clock (CLK5).

The expansion bus is buffered by tri-state drivers to avoid contention with other expansion cards.

Control Port

The control port (IC6) is an 8 bit addressable latch enabled by the signal latch-CK from PAL 1.
The signals HSO-HS2 are used to select the winchester head.
CLKSEL defines if the system processor or the WD 1010-05 causes the sector pointer to be incremented.

XFERD is a handshaking protocol informing the WD1010-05 that data is available.

HBCR is used to reset both the sector pointer and the byte pointer to zero. It is controlled by the system processor.

Data Bus

The local data bus is isolated from the expansion bus by IC5 an octal bus transceiver. Its direction is controlled by NIORC from the Apricot and enabled by NDATAEN from PAL1.

Static Ram.

This $8 \mathrm{~K} \times 8$ or $2 \mathrm{~K} \times 8$ bit buffer acts as a temporary store for all data transfers. Data is written into the buffer from the Apricot and then access is passed to the WD 1010-05 which transferes the data to the winchester disk.

RAM chip select, read enable and write enable are controlled by PAL 1 .
The RAM addresses are generated by counters which form the byte pointer(IC7 +IC10) and sector pointer(IC8).
The byte counter is incremented by the byte clock from
PAL 1 and goes high whenever RE or WE is active from either the CPU or WD10105.
The sector counter is clocked by sector CLK from PAL2. This is derived from either the Byte counter reaching its maximum count or from the buffer data request of the WD1010-05.

The byte counter is reset by the signal BCR from IC4. This is generated by either the system (HBCR) or the WD 1010-05 (NWBCR).
The sector counter is only reset by the system (HBCR), this is to allow for a WD 1010-05 option to be implemented.

Individual Bytes within the buffer cannot be specified by the system or WD 1010-05.
Byte counter specify a particular byte within a 512 byte section. The sector counter specifies a particular 512 bytes.

2. Integrated Circuit Catalogue

IC No.	Component	Description
1	WD 1010-05	Winchester disk controller
2	DP8460-4	Data separator
3	PAL 20210	Program array logic
4	PAL 14H4	Program array logic
5	74LS245	Octal bus tranceiver
6	74LS259	8-bit addressable latch
7	74LS393	Dual 4 bit binary counter
8	74LS393	Dual 4 bit binary counter
9	26S02	Dual retriggerable monostable
10	74LS74	D-type edge triggered
11	74LS374	Octal D-type latch
12	74LS240	Octal buffered line driver/receiver
13	74LS240	Octal buffered line driver/receiver
14	HM6264P-15	$8 \mathrm{~K} \times 8$ static RAM
15	NOT FITTED	Delay line
16	SN75116	Differential line driver/receiver

IC	10

74S74 D-Type Flip-Flop

Clear
a) Produces the most significant bit of a 9 bit counter for the byte count.
b) Divides VCO by two to generate the read clock for the WD 1010-05.

IC	11

74LS374 Octal D-Type Flip Flop.

Latches write data and precompensation outputs from the Write data and precompensation outputs from the Winchester controller. It also latches write clock and buffer data request.

IC	12,13

74LS240 Octal Buffer Line Driver/Receiver
IC 12 Seven buffers are used to buffer controller signals to the Winchester disk drive. The remaining buffer is used as an input to a 4 bit binary counter for the sector clock.
IC 13. Buffers used to buffer Winchester controller signals from the Winchester disk drive.

IC	7,8

74LS393 4 Bit Binary Counter
IC 7 dual 4 bit counter used to produce 8 bits of a 9 bit byte counter.
IC8 One counter used for the sector counter and the second allows for the addition of extra wait states.

IC	6

74LS259 8 Bit Addressable Latch

Select Inputs		Latch	
C	B	A	Addressed
L	L	L	0
L	L	H	1
L	H	L	2
L	H	H	3
H	L	L	4
H	L	H	5
H	H	L	6
H	H	H	7

IC 6 Apricot address lines AB 1-3 are decoded by this control port to give head select, HBCR, XFERD and CLKSEL.
IC 9

AM26502 Dual Retriggerable Mono Stable.
Monostable triggered by read data will detect all O's or 1's and produces DRUN. DRUN is used by the WD1010-05 to indicate pre-amble (all O's)

IC	5

74 LS $245 \quad$ Octal Bus Transeiver

Function Table		
Enable G	DIR	Operation
L	L	B Data To A Bus L H Data To B Bus H
X	Isolation	

IC 5 Bi-directional buffer connecting expansion bus to Winchester controller bus enabled by DATEN.

IC	3,4

Pal Programable Array Logic

Description of PAL.

The programmable array logic is used to reduce the number of discrete TTL components to allow the complex circuitry to fit onto a smaller area.
IC 3 PAL 1. The main function is address decoding from the Apricot.
IC 4 PAL 2. This PAL operates as a data selector to choose early data (EDATA), normal data (NDATA) and late data(LDATA) from the delay line. This is controlled by RWC/EARLY/LATE.

3. Mnemonics

Signal	Description	IC	Pin
CIk5	5MHz clock		PAL1
B18			
AB0	System address bus	PAL1	
Ale	Address latch enable	PAL1	5
IORC	Input output read command	PAL1	2
DEN	Data enable	PAL1	3
IOWC	Input write command	PAL1	4
DB0-7	Data bus	IC5	2345
			6789
DATAEN	Data enable	PAL1	15
INTRQ	Interrupt request	PAL1	1
WCCS	Winchester controller chip select	PAL1	23
BSC	Buffered chip select	PAL1	19
RAMCS	Ram chip select	PAL1	18
Q2	Delayed read	PAL1	13
RDY	Ready	PAL1	17
IRDY	Input output ready	PAL1	
WE	Write enable	PAL1	21
INT2	Interrupt request 2 ext.	PAL1	22
RE	Read enable	PAL1	20
BYTECLK	Byte clock	PAL1	16
LATCHCK	Latch clock	PAL1	14
MR	Memory read	IC1	5
CLKSEL	Clock select	PAL2	13
XFERD	Data transferred	PAL2	8
SECTOR CK			
(SCLK)	Sector clock	PAL2	14
BYTE CTR			
(BCR)	Byte counter	PAL2	15

Signal	Description	IC	Pin
RAMA8	Ram address 8	PAL2	12
RES	Master reset	IC1	5
WBCR	Winchester buffer count reset	PAL2	9
BRDY	Buffer ready	ICl	35
BDRQ	Buffer data request	IC 1	36
STEP	Step	IC1	27
DIR	Buffer direction control	IC1	26
WG	Write gate	IC1	24
RWC	Reduced write current	IC 1	33
INDEX	Index pulse	IC1	29
TK00	Track zero	IC 1	31
READY	Ready disk	IC1	28
WF	Write fault	IC1	30
WC	Write clock	IC1	25
RCLK	Read clock	IC1	39
RDATA	Raw data	IC1	37
READ GATE	Read gate	IC 1	38
DRUN	Data run	IC 1	34
WDATA	Write data	IC1	21
LATE	Late (write precompensation)	IC1	22
EARLY	Early (write precompensation)	IC1	23
DS 1	Drive select	PL2	
DS2-4	Drive select	PL2	$\begin{aligned} & 2830 \\ & 32 \end{aligned}$
HSO-2	Horizontal sync	PL2	$\begin{aligned} & 1418 \\ & 4 \end{aligned}$
WCLK	Write clock	PP3	4
MFMRD	Modified frequency modulated read data	IC2	20
MWD+/-	Modified frequency modulated write data	IC16	4+2-
VCO	Variable crystal oscillator	IC2	8
EDATA	Early data	PAL2	1
NDATA	Normal data	PAL2	2
LDATA	Late data	PAL2	3

Parts List

PCB Bill Of Materials For Apricot Winchester Controller Options: Multiple sector transfers, 8 Kx 8 sector buffer, no write pre-compe

Part	Qty	Component
IC1	1	WD 1010-05
IC2	1	DP8460-4
IC3	1	PAL20L10
IC4	1	PAL14H4
IC5	1	74LS245
IC6	1	74LS259
IC7	1	74LS393
IC8	1	74LS393
IC9	1	26S02
IC10	1	74274
IC11	1	74LS374
IC12	1	74LS240
IC13	1	74LS240
IC14	1	HM6264P-15 8Kx8 RAM 200nS or less
IC15	0	Not fitted on this version
IC16	1	SN75116 (Texas)
X01	1	10MHz crystal oscillator
RP1	1	8-pin SIL Res Pak 220/330R
RP2	1	8-pin SIL Res Pak 10K
RP3	1	8-pin SIL Res Pak 1K
R1	1	4K99 0.5\% O.125W H8
R2	1	100K 1\% 0.25W MFR4
R3	1	1K5 1\% 0.25W MFR4
R4	1	1K5 1\% 0.25W MFR4
R5	1	4K7 1\% 0.25W MFR4
R6	1	200R 1\% 0.25W MFR4
R7	1	1K00 0.5\% O.125W
R8	1	47K 1\% 0.25W MFR4
R9	1	1R 5\%
R10	1	Not fitted to this version
RV1	0	Not fitted to this version
C1	1	47UF 10V electrolytic (axial)
C2	1	1uF 5\% 63V MKS4
C3	1	0.1uF 5\% 100V MKS4
C4	1	$1.0 n F$ 10\% FKC2
C5	1	1.OnF 10\% FKC2

Part	Qty	Component
C6	1	6.8nF 5\% FKP2
C7	1	150 pF 1\% 630v Polystyrene
C8	1	100pF 1\% 630V Polystyrene
C9	1	100pF 1\% 630V Polystyrene
C10	0	Not fitted to this version
C11-C20	10	O.01uF Ceramic
J1	1	64-way DIN 41612 right-angle plug
A1	1	Apricot Winchester Disk Interface A2
	1	Part no. 111115-41
Apricot Winchester Disk Power Cable		
A3	1	Part no. 111118-41
	2	Paxolin cable protector Part no. 111119-61
	1	M2.5x14mm screws
	3	M2.5x6mm screw
	3	M2.5 nuts
	1	M2.5 shakeproof washers
		Disk Drive or Chassis Bad Sector

Circuit Diagroms

1. Winchester Controller CCT
2. Component Layout

MONITOR

CONTENTS

SAFETY PRECAUTIONS 1
GENERAL INFORMATIONS 1
CRT DATA DISPLAY SPECIFICATIONS 2
CONNECTOR WIRING 4
TIMING CHART 4
BLOCK DIAGRAM 5
MONITOR CIRCUIT BOARD DETAIL COMPONENT LOCATION 6
CONTROL DESCRIPTION 7
ALIGNMENT PROCEDURE 8
PREASSEMBLY INSPECTION AND HANDLING INSTRUCTIONS 10
CAUTION FOR SERVICING 10
MONITOR CIRCUIT BOARD-SOLDER VIEW 11
SCHEMATIC DIAGRAM FOR K-907A9 12
TROUBLE SHOOTING HINTS 13
REPLACEMENT PARTS LIST 18

1-1 CAUTION:

No modification of any circuit should be attempted. Service work should only be performed after you are thoroughly familiar with all of the following safety checks and servicing guide lines.

1-2 SAFETY CHECK

Care should be taken while servicing this CRT display because of the high voltage used in the deflection circuits. These voltages are exposed in such areas as the associated flyback and yoke circuits.

1-3 FIRE \& SHOCK HAZARD

1-3-1 Insert an isolation transformer between the CRT display and $A C$ power line before servicing chassis.
1-3-2 In servicing pay attention to original lead dress especially in the high voltage circuit. If a short circuit is found, replace all parts which have been overheated as a result of the short circuit.
1-3-3 All the protective devices must be reinstalled per original design.
1-3-4 Soldering must be inspected possible for cold solder joints, frayed leads, damaged insulation, solder splashes or sharp solder points. Be certain to remove all foreign material.

1.4 IMPLOSION PROTECTION

All Panasonic picture tubes are equipped with an integral implosion protection system, but care should be taken to avoid damage and scratching during installation. Use only Panasonic replacement picture tubes.

1.5 X-RADIATION

WARNING: The only potential source of X-Radiation is the picture tube. However when the high voltage circuitry is operating properly there is no possibility of X-Radiation problem. The basic precaution which must be exercised is to keep the high voltage at the following factoryrecommended level.
Note: It is important to use an accurate periodically calibrated high voltage meter.
1-5-1 To measure the hig! voltage, use a high impedance high voltage meter.
Connect $\{-\rangle$ to chassis and $\{+\}$ to the CRT anode button.
1-5-2 Turn the Brightness control fully counterclockwise.
1-5-3 Measure the high voltage. The high voltage meter should indicate at the following factory-recommended level.
1-5.4 If the upper meter indication exceeds the maximum level, immediate service is required to prevent the possiblity of premature component failure.
1-5-5 To prevent X-Radiation possibility. it is essential to use the specified picture tube.
1-5.6 The nominal high voltage is 11 KV and must not exceed 14.5 KV at zero beam current at rated voltage.

There are special components used in Panasonic CRT displays which are important for safety. These parts are identified by the international symbol Δ on the schematic diagram and on the replacement parts list. It is essential that these critical parts should be replaced with manufacture's specified parts to prevent X RADIATION, shock, fire or other hazards. Do not modify the original design without written permission of the Panasonic company or this will void the original parts and labor guarantee.

GENERAL INFORMATIONS

[^0]Features:
CRT is exceptionally superb in quality and reliability and is of Polish type (direct etched CRT). Phospher P39.

The deflection coil is a yoke equipped with 4-P magnet and is of PANASONIC's own design that permits adjustment of geometric distortion on the raster.
In order to meet users' requirements, frame mechanism is employed for easy adjustment of CRT setting angle.
Angle can be changed by stages such as $0^{\circ}, 2.5^{\circ}, 5^{\circ}, 7.5^{\circ}$ and 10°
Chassis is fully equipped with ICs:
Vertical deflection
H.AFC/OSC
F.B.T is sealed up for assuring high quality and reliability.

All connections are equipped with connectors to make servicing easier.

1. PHYSICAL CHARACTERISTICS

Dimension:	
Height:	174 mm max.
Width:	$241 \pm 1.5 \mathrm{~mm}$
Depth:	$226 \pm 5.0 \mathrm{~mm}$
Weight:	$6.2 \mathrm{lbs}(2.8 \mathrm{~kg}$)
Picture Tube:	240AMB39 polish
Tilt:	Visual $9^{\prime \prime} 90^{\circ}$ def. 20 mm dia.
	$10^{\circ} \pm 1^{\circ}$
2. ELECTRICAL CHARACTERISTICS OF	
CRT DISPLAY MONITOR	
Power Requirements:	DC 11.8V 1.0A
Signal Input (cf. page 4)	
Video Input Signal Requirements	
	Black level $=0+0.4$
	-0.0V
	White level $=4 \pm 1.5 \mathrm{~V}$
Input Impedance:	300 ohms min 40 pF max.

VERTICAL INPUT SYNC SIGNAL REQUIREMENTS

Active Polarity:	Positive
Pulse Rate:	71.9 Hz
Pulse Width:	$158 \mu_{\mathrm{S}}$
Amplitude:	Low $=0+0.4$
	$-0.0 \mathrm{~V}$
	High $=4 \pm 1.5 \mathrm{~V}$

HORIZONTAL INPUT SYNC SIGNAL REQUIREMENTS

Active Polarity:	Positive
Pulse Rate:	15.79 kHz
Pulse Width:	$8.0 \mu \mathrm{~s}$
Amplitude:	Low $=0+0.4$
	$-0.0 \mathrm{~V}$
	High $=4 \pm 1.5 \mathrm{~V}$
Input Impedance:	2 Kohms min. 40 pF max.
Video Amplifier Band Width:	

25 MHz typ
Resolution: $\quad \geqq 800$ TV Lines at center
$\geqq 650$ TV Lines at corner
Character Area

Vertical:	$120 \pm 5 \mathrm{~mm}$
Horizontal:	$150 \pm 5 \mathrm{~mm}$

*According to the attached timing chart

* $+\mathrm{B}=11.8 \pm 0.05 \mathrm{~V}$

BLANKING TIME REQUIREMENTS

Vertical:	$1200 \mu \mathrm{smin}$.
Horizontal:	$10 \mu \mathrm{~s}$ min.
Deflection Linearity	
Vertical:	10\% (max-min $\times 100)$
Horizontal:	10\% $\max +\min ^{\text {max }}$)
Raster Distortion:	See Fig. 1
Centering:	See Fig. 2
H. Tilt:	See Fig. 3
Storage Temperature	$-40 \sim+65^{\circ} \mathrm{C}$
Humidity:	5~90\% (Non-Condensing)
Altitude:	$0 \sim 40,000$ Feet
Operating Ambient Temperature:	
	$0 \sim 55^{\circ} \mathrm{C}$
Humidity:	5~90\% (Non-Condensing)
Altitude:	$0 \sim 10,000$ Feet

[^1]
K-907A9

1. Trapezoid

$a_{1}, a^{\prime}{ }_{1} \leqq 2.4 \mathrm{~mm}$ $\mathrm{a}_{2}, \mathrm{a}_{2} \leqq 1.7 \mathrm{~mm}$

2. Pincushion
3. Barrelling

$\mathrm{b}_{1}, \mathrm{~b}^{{ }^{\prime}} 1 \leqq 0.9 \mathrm{~mm}$ $\mathrm{b}_{2}, \mathrm{~b}^{\prime}{ }_{2} \leqq 1.2 \mathrm{~mm}$

$c_{1}, c_{1}^{\prime} \leqq 0.9 \mathrm{~mm}$ $\mathrm{C}_{2}, \mathrm{c}^{\prime}{ }_{2}$: 1.2 mm

4. Parallelogram

$f_{1}, f_{2} \leqq 2.0 \mathrm{~mm}$

Fig. 1 GEOMETRIC DISTORSION

P.C.B. CARD EDGE CONNECTION

(Wiring side shown)

TIMING CHART

Vertical Sync. Timing

Note : Time tolerance : $\pm 0.1 \%$
Unit is adjusted according to this timing and frequency.
Example:
Dot freq. $\quad: 15.000 \mathrm{MHz}$
Character block: 10×16
Total characters : 80×25

MONITOR CIRCUIT BOARD DETAIL COMPONENT LOCATION

Rear Chassis View

Monitor Circuit Board Detail-Component Location

Vertical Hold (VR31):

Stabilizes the raster vertically.

Vertical Height (VR32):

Adjusts the height of the active display area.

Vertical Linearity (VR33):

Adjusts the height of the characters within the active display area.

Horizontal Hold (VR41):

VR41 can be considered a fine adjustment for the horizontal stability and position of the display area
Adjust VR4i to center the display area.

Horizontal Width (L403):

Adjusts the width of the active display area.

Sub Brightness (VR67): (Internal)

Adjusts the brightness of the raster.

Brightness: (User Supply)
Adjust the brightness of the raster.

Focus (VR64):

Adjusts the focus in the center of the active display area. Keep the whole picture uniform and then adjust it to the best point.

Tilt Adjustment (1):

The tilt adjustment entails the use yoke clamp.
Loosening the yoke clamp and rotating the yoke either clockwise or counter-clockwise corrects the tilt of the raster.

Centering Magnets (2):

(Located on the yoke between the yoke electrical termination and the yoke clamp.) These controis are used to center the raster vertically.

Geometric Positioning Magnets (4):

(Located around the yoke periphery) adjusts the geometric shape of the active display area.

ALIGNMENT PROCEDURE

PREPARATION

1. Connect the 10-Pin connector from the proper logic to the defined input signal.
2. Apply power to the CRT data display and allow the monitor to stabilize.
3. Adjust coils by means of a hexagonal tuning tool (nonmetalic).
Variable resister by - screw driver and deflection yoke (deflection distortion) by square tuning tool (nonmetalic).
4. All controls are set at optimum position prior to shipment.

ADJUSTMENT PROCEDURE

- Image Tilt Adjustment

Loosen the deflection yoke clamp and turn in the arrow directions to adjust tilt. (See Fig. 4).

Fig. 4

- Vertical Hold Adjustment

Adjust (VR31) until the image becomes stable vertically as shown in Fig. 5.

Fig. 5

Checking of height, width and bright should be performed more than 30 minutes after power is applied.
Measure the luminous intensity near the center of CRT and set at $50 \mathrm{Lx} \pm 20 \%$ (40 to 60 Lx). These adjustment are performed on the basis of the input signal of timing chart (page 4).

- Horizontal Hold Adjustment

Adjust the VR41 to get stable character (syncroning condition) as shown in below (See Fig. 6).
Under the condition of free running i. e. horizontal sync signal is disconnected.

Fig. 6

- Vertical Height Adjustment

Adjust the vertical height (VR32) to set the vertical height of the active character area as shown in Fig. 8.

Fig. 8

- Horizontal width Adjustment

Adjust the horizontal width coil (L403) to set the proper width of the active character area as shown in Fig. 9.

Fig. 9

- Vertical Linearity Adjustment

Adjust (VR33) for uniform character height within the active character area as shown in Fig. 10.

Fig. 10

- Centering Magnet Adjustments

Rotate the centering magnet tabs away from each other until the character area is centered on the screen as shown - in Fig. 11.

Before this adjustment, be sure to ascertain H . hold.

Fig. 11

- Focus Control Adjustment

Adjust (VR64) until optimum focus is seen on the characters displayed within the active character area.

- Sub Brightness Adjustment

Look at a place 30 cm distant from the CRT surface and set at a point where the raster slightly comes out, with the contrasts VR set at min.

- Correcting Magnet of Geometric Distortion (4)

Adjust each "Distortion Correcting Magnet" until the active character area is adjusted to the proper shape as shown in Fig. 12.

Abstract

Caution: Be sure all handling of the CRT Display is done by the CRT mounting brackets. At no time should the wires be used as a means of moving or carrying a given CRT Display. The CRT neck is the most fragile part of the CRT Display Module and extreme care should be taken not to bump. tap, or otherwise excert force on this neck. Before applying power to the CRT Display an inspection should be preformed to insure that any foreign material has not been dropped in any part of the CRT Display. i. Insure that the proper signal and power connections are made in accordance.

2. Apply power to CRT display under test and allow CRT display to stabilize for a minimum of 5 minutes.
Note: All adjustments have made at the factory. This procedure is to insure that these adjustments have been made correctly.
3. When turn External Brightness Control to maximum and raster should be slightly visible.
4. Check CRT display for proper centering.
5. Check CRT display for the specified active character area per Page 2 of this Manual.
6. Check Geometric Distortion.
7. Check focus.
8. Check Power Supply Voltages in accordance per Page 2 of this Manual.

CAUTION FOR SERVICING

Be sure to provide power supply sequence of more than 100 ms .

Power ON-OFF

Do not turn OFF power supply when the CRT heater is not sufficiently heated. Otherwise. CRT may be burned in spot.

In case of servicing or replacing CRT, high voltage sometimes remains in the anode of CRT. So. completely discharge high voltage before servicing or replacing CRT so as to prevent a shock to the serviceman.
In this case, discharge to thr external conductive coating (aquadag) of CRT.

Discharging to other places will cause troubles. The heat sink of horizontal output transistor is applied with + B. So. do not earth it in case of servicing.

In case of storaging or transporting it, be sure to take some countermeasures for static electricity. When using a soldering iron, be sure to connect it to the earth.
The unused terminal should be soldered without fail.

REPLACEMENT PARTS LIST

Important Safety Notice
Components identified by the international symbol \triangle have special characteristics important for safety. When replacing any of these components use only manufacturer's specified parts.

- K-907AS

Ref. No.	PART NO.	DESCRIPTION				Ref. No.	PART NO.	DESCRIPTION
C444 \triangle	ECEA25w12ze	Electrolytic	124F	-	25 V	VR33	EVTS3AA00814	Control (Vert. LIN)
C460	ECoE6104KZ	Polyester	0.14 F	K	600 V	VR41	EVTS3AA00813	Control (H. Hold)
C461 \triangle	ECEA IJSt01	Electrolytic	$100 \mu \mathrm{~F}$	-	63 V	VR64	EVT81US10826	Control (Focus)
C463	ECEA2VS3R3Y	Electrolytic	3.34F	-	350 V	VR67	EVLSS3AA00B25	Control (Sub. Bright)
C465	ECEA2VSR47Y	Electrolytic	0.47 F	-	350 V	SF1, SF3	TJC305-1	Fuse Holder
C491	ECEAICS 102	Electrolytic	1000 F	-	16 V		TJS25640V	CRT Socket
C602	ECKD2H102KB2	Ceramic	1000pF	k	500 V		тмK87516	CRT PCB Cover
C702	ECOE6223kZ	Polyester	$0.022 \mu \mathrm{~F}$	k	600 V		TMM31434	Revet
C705	ECEA1CS222	Electrolytic	$2200 \mu \mathrm{~F}$	-	16 V	\triangle	xbalf20nu. 4	Fuse (2A)
REsistors								
R143	ERD25FJ470K	Carbon	47Ω	J	v/w			
R144	ERD25FJ470k	Carbon	47Ω	J	\% w			
R146	ERD25FJ820k	Carbon		,	\%w			
R151	ERG2ANJ821	Metal	820Ω	J	2 w			
R161B	ERD25FJ222K	Carbon	$2.2 \mathrm{k} \Omega$	J	\%w			
R170	ERD25FJ:03k	Carbon	10кת	J	\%/w			
R171	ERD25FJ103k	Carbon	$10 \mathrm{~K} \Omega$	J	\%/w			
R172	ERD25FJ562K	Carbon	$5.6 \mathrm{~K} \Omega$	J	\% W			
R301	ERD25FJ392K	Carbon	$3.9 \mathrm{~K} \Omega$	J	\%w			
R302	ERD25FJ473K	Carbon	47K Ω	J	\%/w			
R303 \triangle	ERD25FJ6R8k	Carbon	6.8Ω	J	vw			
R304 ${ }^{\text {a }}$	ERD25FJR1K	Carbon		J	\%w			
R305	ERD25FJ563k	Carbon	$56 \mathrm{~K} \Omega$	」	\%w			
	ERD25FJ6R8K	Carbon		J	\%/w			
R307	ERD25FJ4R7k	Carbon		J	\%/w			
R310	ERD25FJ153K	Carbon	15kת	J	\%/w			
R401	ERD25FJJ333	Carbon	$33 \mathrm{~K} \Omega$	J	\%w			
R402	ERD25FJ332K	Carbon	$3.3 \mathrm{~K} \Omega$	J	\%w			
${ }^{\text {R403 }}$	ERD25FJ273K	Carbon	$27 \mathrm{~K} \Omega$	-	\%w			
R404	ER025ckg2201	Metal	$2.2 \mathrm{k} \Omega$	G	\%/w			
$R 423 \triangle$	ERD25FJ680K	Carbon	68Ω	J	\% W			
R432 \triangle	ERF2AJ100	Non. Flame		J	2w			
R441 ${ }^{\text {d }}$	ERD25FJ6R8K	Carbon	6.8Ω	J	\%w			
R 443 -	ERD25FJ122K	Carbon	$1.2 \mathrm{k} \Omega$	J	\% \% w			
R444	ERD25FJ122K	Carbon	$1.2 \mathrm{k} \Omega$	J	\%w			
R445	TLP408	Choke Coil						
R447	ERG1ANJ271	Metal	270Ω	J	1w			
R460 \triangle	ERD25FJ102k	Carbon		J	\%w			
R461 4 .	ERD25FJ6R8K	Carbon	6.8Ω	J	\% \%			
R465	ERD25FJ334K	Carbon	$330 \mathrm{k} \Omega$	J	\%/w			
R472	ERG1anjio4	Metal	$100 \mathrm{k} \Omega$	J	1w			
R601	ERC12GJ561	Solid	560Ω	J	\%/w			
R602 \triangle	ERD25FJ103K	Carbon	10Kת	J	\%/w			
$R 605$ $R 606$	ERD25FJ103K	Carbon Carbon	$10 \mathrm{k} \Omega$	J	\% $\%$ w			
R606 ©	ERD25FJJ03K	Carbon	10Kת	J	\%w			
R702	ERC12GJ104	Solid	$100 \mathrm{k} \Omega$	J	1/2w			
3401	ERD25FJ222K	Carbon	$2.2 \mathrm{~K} \Omega$,	\% $\%$			
J404 VR31	ERD25FJ221K	${ }^{\text {Carbon }}$	2208	J				
$\begin{array}{\|l\|l} \text { VR31 } \\ \text { VR32 } \end{array}$	EVTS3AA00B15 EVTS3MA00B54	Control IVert	Hold) Height)					

MICRO FLOPPYDISK DRIVE

OA-D32W 0A-D32V

$O A-D 32 W-90$

Specifications

	OA-D32W		OA-D32V	
	SINGLE DENSITY	DOUBLE DENSITY	SINGLE DENSITY	DOUBLE DENSITY
Capacity				
Unformatted Per Disk	500 Kbytes 1.0 Mbytes 3.125 Kbytes 6.25 Kbytes $250 \mathrm{Kbits} / \mathrm{sec}$ $500 \mathrm{Kbits} / \mathrm{sec}$		250 Kbytes 500 Kbytes 3.125 Kbytes 6.25 Kbytes $250 \mathrm{Kblts} / \mathrm{sec}$ $500 \mathrm{Kbits} / \mathrm{sec}$	
Unformatted Per Track				
Burst TRANSFER RATE				
Access Time				
Track to Track	12 msec .		12 msec .	
A verage*	350 msec .		350 msec.	
Settling Time	30 msec .		30 msec .	
Head Load Time	60 msec .		60 msec . 50 msec .	
Average Latency				
Functional				
Rotational Speed	600 RPM		600 RPM	
Recording Density (inside track)	4359 bpi \|	8717 bpi	$\text { approx. } 135 \text { TPI }$	
Track density	approx. 135 TPI			
Cylinders	80		80	
Tracks	160		80	
R/W Heads	2		1	
Encoding Method	FM, MFM		FM, MFM	
Hest Dissipation				
Operating Mode (Head Load)	6.0 W		6.0 W	
Standby mode (Head Unload)	3.9 W		3.9 W	
Media Requirements $3.5^{\prime \prime} \times 3.7^{\prime \prime}(90 \mathrm{~mm} \times 94 \mathrm{~mm})$	SONY OM-D4440		SONY OM-D3440	

*Average access time $=1 / 3 \times($ Track Nos.) \times (Track to track time) + (Settling Time)

Environmental Considerations

Relisbility and Maintainability

Preventive Maintenance (PM)
Not required
Meantime Between Failures (MTBF)
Meantime to Repair (MTTR)
Component Lifa
Media Life
8000 POH (Power On Hourtime)
30 min .
5 years or 15,000 POH

Disk Interchange
3.0×10^{6} passes $/ \mathrm{track}$
Soft Read Error
20,000 times

Hard Read Error
1 per 10^{9} bits read
Seek Error
1 per 10^{12} bits read

Environmental Limits

Temperature (Operating)	$40^{\circ} \mathrm{F}$ to $115^{\circ} \mathrm{F}\left(5^{\circ} \mathrm{C}\right.$ to $\left.45^{\circ} \mathrm{C}\right)$
Humidity	(Operating)
Vibration	(Operating)
	$\left(29^{\circ} \mathrm{C}\right)$ and no condensation.
	The unit shall perform all read/write operations (no seek) according to specifications, with continuous vibration of less than $0.5 \mathrm{G}(\pm 10 \%)$ from 5 Hz to 100 Hz (along the x, y, z plane).

Dimensional Data			
	Height	2.0 in.	$(51 \mathrm{~mm})$
Width	4.0 in.	$(102 \mathrm{~mm})$	
Depth	5.1 in.	$(130 \mathrm{~mm})$	
Weight	1.5 ibs	$(650 \mathrm{~g})$	

DC Power Requirements
Reading $+12.0 \mathrm{~V} \quad \pm 5 \% \quad 0.30 \mathrm{~A}$ (typical)
(Operating) $+5.0 \mathrm{~V} \quad \pm 5 \% \quad 0.48 \mathrm{~A}$ (typical)

RECORD OF REVISIONS		
REVISION		NOTES
1	ORIGINAL ISSUE	November, 1983

TABLE OF CONTENTS

Description Page
SECTION 1. INTRODUCTION 7
SECTION 2. TOOLS AND MEASURING INSTRUMENTS 8
2-1. GENERAL AND SPECIAL TOOL LIST 8
a. General Tools 8
b. Special Tools 8
c. Measuring Equipment 8
d. Disks. 8
e. Expendable and Chemical Supplies 8
2-2. SPECIAL TOOLS 9
2-2-1. MFD Checker II 9
2-2-2. Configuration of SMC-70 Drive Test System. 13
2-2-3. Disks 14
SECTION 3. TROUBLESHOOTING 15
3-1. BEFORE TROUBLESHOOTING 15
3-2. TYPES OF ERROR ON A SYSTEM LEVEL 15
3-2-1. Soft Error 15
3-2-2. Write Error 15
3-2-3. Seek Error 15
3-2-4. Interchange Error 15
3-3. FAULT DIAGNOSIS BY MFD CHECKER II 15
3-3-1. Normal Operation 15
3-3-2. Check Points to Abnormal Operation 20
3-4. FINAL CHECK 23
3-4-1. Setting of SMC-70 23
3-4-2. Set the Check Area 23
3-4-3. Check the Drive Unit 25
3-4-4. Error Message. 27
SECTION 4. PART REPLACEMENT 29
4-1. FC-9/FC-14 MOUNTED BOARD REPLACEMENT 29
4-1-1. Removal 29
4-1-2. Installation and Adjustment 29
4-2. FRONT PANEL ASS'Y REPLACEMENT 29
4-2-1. Removal 29
4-2-2. Installation 29
4-3. BLIND PANEL REPLACEMENT 30
4-3-1. Removal 30
4-3-2. Installation 30
Description Page
4-4. LED MOUNTED BOARD ASS'Y REPLACEMENT 30
4-4-1. Removal 30
4-4-2. Installation 30
4-5. MAIN COVER REPLACEMENT 31
3-5-1. Removal 31
3-5-2. Installation 31
32V 4-6. PAD ASS'Y REPLACEMENT 31
4-6-1. Removal 31
4-6-2. Installation and Adjustment 31
32W 4-7. DAMPER REPLACEMENT 31
4-7-1. Removal 31
4-7-2. Installation 32
4-8. HEAD LOAD ASS'Y REPLACEMENT 32
4-8-1. Removal 32
4-8-2. Installation and Adjustment 32
4-9. CASSETTE-UP ASS'Y REPLACEMENT 33
4-9-1. Removal 33
4-9-2. Installation and Adjustment 33
4-10. WP ARM / D-DETECTION ARM / COMPRESSION SPRING
(3-659-609-00) REPLACEMENT 34
4-10-1. Removal 34
4-10-2. Installation and Adjustment 34
4-11. DC DISK DRIVE MOTOR (BHC-2101A) REPLACEMENT 34
4-11-1. Removal 34
4-11-2. Installation and Adjustment 35
4-12. SENSOR MOUNTED BOARD REPLACEMENT: 35
4-12-1. Removal 35
4-12-2. Installation and Adjustment 35
4-13. LEAD SCREW ASS'Y (STEPPING MOTOR / LEAD SCREW / COUPLING ASS'Y/ COMPRESSION SPRING (4601-083-00)) REPLACEMENT 36
413-1. Removal 36
4-13-2. Installation and Adjustment 36
4-14. (32V) HEAD ARM ASS'Y REPLACEMENT, (32W) HEAD CARRIAGE ASS'Y REPLACEMENT 37
4-14-1. Removal 37
4-14-2. Installation and Adjustment 38
Description Page
SECTION 5. CHECK AND ADJUSTMENT 39
5-1. LEAD SCREW ECCENTRICITY 39
5-1-1. Tools and Measuring Equipment 39
5-1-2. Measurement 39
5-1-3. Adjustment 39
.32V 5-2. PAD PRESSURE 39
5-2-1. Tools and Measuring Equipment 39
5-2-2. Measurement 39
5-2-3. Adjustment 40
5-3. HEAD COMPLIANCE 40
5-3-1. Tools and Measuring Equipment 40
5-3-2. Measurement 40
5-3-3. Adjustment 41
5-4. RADIAL ALIGNMENT AND TRK 00 SENSOR 42
5-4-1. Tools and Measuring Equipment 42
5-4-2. Measurement 42
5-4-3. Adjustment 42
5-4-4. Set Up Command 42
5-4-5. Measurement Command 43
5-4-6. Adjustment Command 44
5-4-7. Error Message 46
:32V 5-5. STEPPING MOTOR LOAD TORQUE 46
5-5-1. Tools and Measurement Equipment 46
5-5-2. Measurement 46
5-5-3. Adjustment 46
5-6. INDEX PHASE 47
5-6-1. Tools and Measuring Equipment 47
5-6-2. Measurement 47
5-6-3. Adjustment 47
5-7. READ AMPLIFIER GAIN AND READ AMPLIFIER
OFF SET 47
5-7-1. Tools and Measuring Equipment 47
5-7-2. Measurement 47
5-7-3. Adjustment 48
5-8. DISK DRIVE DC MOTOR SPEED 48
5-8-1. Tools and Measuring Equipment 48
5-8-2. Measurement 48
5-8-3. Adjustment 49
Description Page
32 V 5-9. HL ARM HEIGHT 53
5-9-1. Tools and Measuring Equipment 53
5-9-2. Measurement 53
5-9-3. Adjustment 53
5-10. HEAD CLEARANCE 53
5-10-1. Tools and Measuring Equipment 53
5-10-2. Measurement 53
5-10-3. Adjustment 53
5-11. HEAD CLEANING 54
5-11-1. Tools and Measuring Equipment 54
32 V 5-11-2. Cleaning with Applicator 54
5-1 1-3. Cleaning with Cleaning Disk 54
SECTION 6. PARTS LOCATION AND LIST (OA-D32W) 55
6-1. PARTS ASS'Y LOCATION 55
6-2. MECHANICAL PARTS LIST 57
6-3. OVER ALL DIAGRAM 59
6-3-1. Interconnection Diagram 59
6-4. CIRCUIT DIAGRAM 61
6-4-1. Circuit Diagram on FC-9 Mounted Board 61
6-4-2. Parts Layout on FC-9 Mounted Board 65
6-4-3. Disk Motor Circuit Diagram 67
6-4-4. Parts Layout on Disk Motor Circuit Board 69
6-5. ELECTRIC PARTS 70
6-5-1. Chip Parts Replacement Procedure 70
6-5-2. Electric Parts List 71
SECTION 7. PARTS LOCATION AND LIST (OA-D32V) 75
7-1. PARTS ASS'Y LOCATION 75
7-2. MECHANICAL PARTS LIST 77
7-3. OVER ALL DIAGRAM 79
7-3-1. Interconnection Diagram 79
7-4. CIRCUIT DIAGRAM 81
7-4-1. Circuit Diagram on FC-14 Mounted Board 81
7-4-2. Parts Layout on FC-14 Mounted Board 85
7-4-3. Disk Motor Circuit Diagram 87
7-4-4. Parts Layout on Disk Motor Circuit Board 89
7-5. ELECTRIC PARTS 90
7-5-1. Chip Parts Replacement Procedure 90
7-5-2. Electric Parts List 91
SECTION 8. TRANSISTORS / DIODES / ICS PIN ARRANGEMENT 94

SECTION 1

INTRODUCTION

This manual is a maintenance guide for OA-D32W (Double sided) and OA-D32V (Single sided).

SECTION 2 describes disks and tools necessary for maintenance.

SECTION 3 provides fault diagnostic procedures that may require spare parts or some adjustments.

The overall check after removals and adjustments will be included in this section.

SECTION 4 and 5 cover parts replacements and adjustments, respectively.

SECTION 6 and 7 consist of circuit diagrams, ass'y drawings, and parts lists.

The cassette dummy (4-603-929-00) should be inserted in the OA-D32W when it is transported. Otherwise, its heads may be damaged.

Perform maintenance in accordance with the procedure specified in this manual as follows:
(Example)
e. Fasten the guide shaft with the two screws (PSW2.6 $\times 6$).

32V. f. Fasten the head board to the chassis on the bottom surface, and apply nut lock paint to the screw.
32V g. Connect the head board to the head harness (by four points) with a soldering iron. (Refer to Fig. 4-14 (c))
32W h. Connect the head board to the head harness (by six points) with a soldering iron. (Refer to Fig. 4-14 (d))
32W i. Fasten head board and terminal shield plate with a screw (PSW2.6 $\times 8$) on the chassis bottm, and then apply nut lock paint onto it.
:32V j. Perform the stepping motor load torque adjustment. (Refer to 5-5)
k. Install the cassette-up ass'y in place. (Refer to 4-9)

Steps $\mathrm{e}, \mathrm{h}, \mathrm{i}$, and k should be carried out in sequence for the OA-D32W.
Steps e, f, g, j and k should be carried out in sequence for the OA-D32V.

SECTION 2
 TOOLS AND MEASURING INSTRUMENTS

1. GENERAL AND SPECIAL TOOL LIST

The tools, and measuring instruments for performing laintenance on the OA-D32W/OA-D32V are listed below.

General Tools	
	SONY Parts No.
TOTSU Screw Driver (M2.6)	$(7-721-050-62)$
\oplus Driver 2 mm	$(7-700-749-01)$
Θ Driver 2 mm	$(7-700-750-01)$
Θ Driver 4 mm	$(7-700-750-04)$
Tweezers	$(7-700-753-02)$
Round Nose Plier	$(7-700-757-01)$
Adj Rod	$(7-700-733-01)$
Cutter	$(7-700-758-02)$

Soldering Iron (20W)
Desoldering Metal Braid
DC Power Supplier (+5 V DC $\pm 5 \%$, 0.8 A max., +12 V DC $\pm 5 \%, 1.5 \mathrm{~A}$ max.)
Tester
Special Tools
MFD Checker II
(J-609-182-0A)
SMC-70 System
SMI-7011 / SMI-701 1A / SMI-7012 / SMI-7012A
SMC-70
KX-13G 1
A/D Converter (J-623-002-0A)
25P/26P Conversion Cable (J-623-001-0A)
Radial Alignment System Disk (OR-D86VA)
(8-960-009-74)
Error Check System Disk (OR-D87VA)(8-960-009-75)
Rotatory Knob (for Stepping Motor) (J-609-011-0A)
Lead Screw Eccentricity Inspection Tool (J-609-136-0A)
Standard Disk Dummy
(for Cassette-Up Ass'y Installation) (J-609-120-0A)
Geared Driver (J-609-017-0A)
Pad Weight
Hexagon Wrench Torque Driver
Power Cable
Interface Cable
c. Measuring Equipment

Oscilloscope Dual Trace 20 MHz
Universal Counter Resolution 0.1 msec .
Tension Gauge (Max. 200 g) (J-604-163-0A)
Tension Gauge (Max. 20 g) (7-732-050-10)
d. Disks

Level Disk
32 V OR-D46VA (8960-009-31)
32W OR-D46WA (8960-009-40)
Alignment Disk
32V OR-D47VA (8-960-009-32)
32W OR-D47WA (8.960-009-41)
Dynamic Inspection Disk +30

32 V	OR-D51VA
32W	$(8-960-009-35)$
OR-DS1WA	$(8-960-009-44)$

Dynamic Inspection Disk - 30
32V OR-D52VA (8-960-009-36)
32W OR-D52WA (8.960-009-45)
Cleaning Disk
32V OR-D29VA
(8-960-009-15)
32W OR-D29WA (8-960-009-39)
e. Expendable and Chemical Supplies

Nut Lock Paint
Alcohol
Sony Oil (7-611-0.18-01)
Sony Grease (7-622-001-52)
Bamboo Stick
Applicator

2-2. SPECIAL TOOLS

2-2-1. MFD Checker II

(1) MFD Checker II configuration

Main Checker Board

I/F Cable	(26pin and 34pin)
Power Cable	(2 pieces)
Conversion Board	(26 pins-to-34pins)

NOTE: The Conversion Board and 34pin I/F Cable are required for the OA-D33W/OA-D33V.
(2) Micro Floppydisk Drive Connection (Refer to Fig. 2-1)
(3) MFD Checker II function switches STEP IN Steps the head inwards. STEP OUT Steps the head outwards. The head continously moves if the switch is kept pressed.
SIDE SELECT Selects one of two heads (side 0 or side 1) for a double sided. (This switch is invalid for single sided versions.)
WRITE . . . : Records, data specified by the OSC SEL switch, onto one track.
OSC SEL Selects such write data as "2F", "1F", "WCP" (worst case pattern), or EXT.

WCP W/M Selects upper and lower patterns when the OSC SEL switch is set to WCP. (Refer to Fig. 3-3 (c), (d))
HD LOAD This is used to set the plunger solenoid active.
MOTOR ON . \qquad This is used to operate the Disk Motor.
DRIVE SELECT ... Selects the disk drive. The DRIVE SELECT switch on the disk drive relates to the DRIVE SELECT switch on the checker as follows:

Drive (S101)	Checker	
	1	2
1	OFF	OFF
2	ON	OFF
3	OFF	ON
4	ON	ON

CHGRST Resets the DSKCHG signal.
$600 / 300$ SELECT (Located in the middle of the board) Set the 600/300 SELECT switch at " 600 " for the OA-D32W/OA-D32V. 80/70 SELECT (Located in the middle of the board) Set the 80/70 SELECT switch to " 80 " for the OA-D32W/OA-D32V.

Fig. 2-1 Drawing of Connection Between Disk Drive and MFD Checker II
(4) INDICATOR

OSC SEL (Four LEDs in the left of the board) They indicate the selected position on the OSC SEL switch.
I/F signals (Five LEDs in the middle of the board) They indicate at the states of TRK 00, WRTPRT, RDY, DSKCHG, and INDEX, respectively.
The TRK 00, WRTPRT, RDY, and DSKCHG indicators are lit when the respective I / F signals are low (true). The INDEX indicator blinks when the INDEX signal is applied to the board.

TRACK POSITION (Seven segment LED indicator in the right of the board)

Indicates the current track position.
(5) Test Points

TP-1; MOTOR ON
TP-2; WRT GATE
TP-3; $\overline{\text { RD DATA }}$
TP.5; INDEX
TP-6; $\overline{\text { STEP }}$
TP-7; $\overline{H D}$ LOAD
The GND terminal is marked by "GND".

MFD Checker II Block Diagram

2-2-2. Configuration of SMC-70 Drive Test System System configuration for Radial Alignment and TRK 00 Sencer measurement, adjustment, and error check with SMC-70 System is shown in Fig. 2-2 (a),

Dynamic Inspection Disk/Level Disk

(b) Radial Alignment/TRK 00 Senser Gain Control Knob

Fig. 2-2

2-2-3. Disks
(a) Level disk

32 V
 OR-D46VA OR-D46WA

These disks are used to check and adjust the read amplifier gain and off set. The self-read/write operation can be checked with both of these disks and the SMC-70 System.
(b) Alignment disk 32V OR-D47VA 32W OR-D47WA

These disks have prerecorded data such as Cat's eye pattern and INDEX signal to check and adjust the off-tracking and index position.

	OR-D47VA		OR-D47WA	
	SIGNAL	TRACK	SIGNAL	TRACK
	CAT'S EYE	$00,20,25,30,35$,	CAT'S EYE	$00,20,25,30,35$,
0	PATTERN	$40,45,50,55,79$	PATTERN	$40,45,50,55,79$
	INDEX	40	INDEX	40
SIDE	not applicable		CAT'S EYE	40
			PATTERN	40
		INDEX	40	

(c) DYNAMIC INSPECTION DİSK +30

32V OR-D51VA 32W OR-D51WA
DYNAMIC INSPECTION DISK - 30 OR-D52VA
OR-D52WA
These disks can be used in the final check for drive with the SMC-70 System.

NOTE: (+) indicates that data has been recorded in the inner side of tracks.
$(-)$ indicates that d
outer side of tracks.

Contents

	OR-D51VA	OR-D52VA	OR-D51WA	OR-D52WA
SIDE 0	Offset of $+30 \mu \mathrm{~m}$ for all formatted tracks	Offset of $-30 \mu \mathrm{~m}$ for all formatted tracks	Offset of $+30 \mu \mathrm{~m}$ for all formatted tracks	Offset of $-30 \mu \mathrm{~m}$ for all formatted tracks
SIDE 1	not applicable	not applicable	Offset of $+30 \mu \mathrm{~m}$ for all formatted tracks	Offset of $-30 \mu \mathrm{~m}$ for all formatted tracks

Before Troubleshootir

SECTION 3
 TROUBLESHOOTING

SECTION 3 describes the methods of troubleshooting. $3-2$ refers to several errors specfied in a system level. 3-3 describes normal operations and the check points for abnormal operations. These descriptions define the Error Spot under operating conditions.

3-1. BEFORE TROUBLE SHOOTING

The following procedures are recommended to see if the drive is really faulty or not:

1) Incorrect operational procedure
2) program error of host system
3) Poor connection with host system (esp. GNDrelated connection, frame GND, etc.)
4) Defective disk. Check that same trouble occurs with other disks.
5) Environmental conditions (where electrical noise easily jumps into signal)
6) Influence of strong magnetic field
7) Wrong supply voltage

3-2. TYPES OF ERROR ON A SYSTEM LEVEL

3-2-1. Soft Error

Soft error are caused by;

1) Dirty head
2) Electrical noise
3) Tracking error
4) Poor connection with system (GND-related connection)
5) Incorrect motor speed
6) Incorrect head compliance

Clean the head first. Check for index pulse interval and head compliance and then read error spot more than several times. If not readable, move the head to the adjacent track in the same direction as before, then return to the desired track, and read. If readable this time, check radial alignment. (Refer to 5-4) If not readable yet, the error is not recoverable.

3-2-2. Write Error

To determine whether the disk or the drive is failing, the disk should be replaced by other disks and check that there still exists write error. If write error does not exist any more, remove the old one. If write error exists with use of any risk, drive might cause write error.

3-2-3. Seek Error

Seek error comes from:

1) Head movement is incorrect because ellectrical noise jumps into signal.
2) Head driving system might be at fault. If it is not re-readable after re-calibration, drive might be at fault.
3-2-4. Interchange Error
If data written on one drive is readable correctly on another drive, but not by other drives, interchange error exists.

Interchange errors are caused by;

1) Head is not properly positioned.
2) Motor speed is not correct.
3) Optimum head output level and offset and head compliance are not obtained.
4) Chucking mechanism does not work.

3-3. FAULT DIAGNOSIS BY MFD CHECKER II
3-3-1 describes check method for normal operations in accordance with the predetermined procedures.

3-3-2 describes check points for abnormal operations which come out in accordance with the above procedures.

3-3-1. Normal Operation

Pre-setting:

1) Refering to Fig. 2-1 (Micro Floppydisk Drive Connection), connect the drive to MFD Checker II.
2) Set the slide switch (S101) on the disk drive to " 1 ".
3) Set all switches in the MFD Checker II to "OFF".

Procedure	Step	Operation
1	Power On	1. The head automatically returns to TRK 00 and stops there. 2. The disk motor remains stopped.
2	Drive Select Check after checked, the disk drive is to be kept selected.	1. The TRK $00, \mathrm{WP}$, and DSKCHG indicators light only when the DRIVE SELECT switch on the MFD Checker II and the slide switch (S101) on the disk drive are set as follows: Otherwise, these indicators go out.
3	Operation during CASSETTE IN (Alignment disk is to be inserted.)	1. When the cassette is inserted, the motor is rotating and the plunger is pulled out. The head is loaded and unloaded in sequence. The motor then stops operation.
4	MOTOR ON switch on	1. The motor rotates. (The INDEX indicator on the MFD Checker II blinks.) 2. The TRK 00, WRTPRT, RDY, and DSKCHG indicators light. (The RDY indicator, however, lights in about 1.5 seconds after the disk is inserted.)
5	CHGRST switch on	1. The DSKCHG.indicator goes out at the moment when the CHGRST switch is pressed.
6	HD LOAD switch on	32 V 1. The plunger Solenoid is set on, and the pad lifts down. 2. The plunger Solenoid is set active and the head lifts down. 3. The clearance between the HL arm and pad arm is set as shown in Fig. 5-9.
7	Stepping	1. When the STEPIN switch is pressed, the head is continuously stepped in until it arrives at TRK 79. When the STEP OUT switch is pressed, the head is continuously stepped out until it arrives at TRK 00. 2. When the head is set to any track other than TRK 00 , the TRK 00 indicator does not light.
8	Track positioning	1. Such a Cat's eye pattern signal as shipwn in Fig. 3-1 (a) can be obtained at CN107-1 on the disk drive when the head accesses TRK 20, TRK 30 or TRK 50. The oscilloscope is triggered by the signal at TP-5 of the MFD Checker II. Note: Such a signal as shown in Fig. 3-1 (b) can be obtained when the head accesses TRK 40. 2. SIDE SELECT switch to side 1. such a Cat's eye pattern signal as shown Fig. 3-1 (b) can be obtained at CN107-1 on the disk drive. When the head accesses TRK 40. 3. Set amplitude L in Fig. 3-1 (a) to 5 divisions, and then read amplitude R in Fig. 3-1 (a). Calculate the OFF TRACK value, refering to Table 3-1

Procedure	Step	Operation
10	Index position	1. The following waveform can be obtained on TRK 40. Fig. 3-2 Index Phase Specification
11	TRK 00 sensor level	1. Move the head until it arrives at TRK 01. (Do not move the head passing TRK 01. If the head arrives at TRK 00 , through the Cat's eye pattern signal is to be rechecked and then the head is to be set on the TRK 01.) The output signal level of CN107-5 is 3 V or more. 2. Move the head until it arrives at TRK 00. The output signal level of CN107-5 is 0.7 V or less.
12	Cassette out (When the alignment disk is ejected.)	1. The DSKCHG indicator lights.
13	Write (When the level disk is inserted)	1. When the WRITE switch is pressed and " 2 F ", " 1 F ", or "WCP (M/W)" are written, the corresponding waveform can be obtained at CN107-1. (Refer to Fig. 3-3) (a) $2 F$ (c) $W C P(M)$ (b) $1 F$ (d) $W C P(W)$ Fig. 3-3 2F, 1F and WCP Waveforms 32W 2. Set the SIDE SELECT switch to side 1 , and " $2 F$ ", " $1 F$ ", or "WCP (M/W)" are written, the corresponding waveform can be obtained at CN107-1. (Refer to Fig. 3-3)

Check Points to Abnormal Operation

3-3-2. Check Points to Abnormal Operation

Step	Abnormal Operation - for Each Step	Check Point (defective place)	Remarks
Power On	1. The head moves toward the center of the Drive.	1. TRK 00 sensing circuit.	The signal of CN103-2 is Low level
	2. The head is stepped out, but it is idling around the outmost track.	1. TRK 00 sensing circuit. 2. Check if the TRK 00 Sensor Mounted Board is installed a little bit outside.	The signal of CN103-2 is High level.
	3. The head moves uncertainly. (The head movement is not constant.)	1. Stepping motor drive system. NOTE: If no TRK 00 is detected in several seconds after power is tumed on, the CPU automatically stops the stepping motor and thereafter accepts no instruction.	A voltage of +12 V appears at CN 105-2 during normal operation. Voltages at 3 pin through 6 pin of of CN105 are switched in $10 \pm 0.1 \mathrm{msec}$ intervals.
	4. The disk motor rotates.	1. Disk motor drive system.	The signal CN101-5 and CN101-7 are Low level.
Drive Select Check after checked, the disk drive is to be kept selected.	1. The I/F indicators are put out for the selected combination, or they are lit for the unselected combination.	1. Drive select circuit system.	The signal of IC108-3 for the selected combination is High level during normal operation. The signal of IC108-3 is Low level for unselected combination.
Operation during CASSETTE IN (Alignment disk is to be inserted.)	1. After the cassette is inserted, the head is not loaded and the motor does not rotate.	1. The CSTIN signal does not appear at CN101-5, and it is not sent from the motor. 2. The cassette is not properly placed.	Refer to 5-8.
	2. The head is loaded, but the motor does not rotate.	1. The disk motor.	Refer to 5-8.
	3. The disk motor rotates, but the head is not loaded.	1. Plunger solenoid or its drive system. 2. Plunger stroke. 3. Head Clearance. 4. HL arm height.	The signal waveforms shown below appear of CN104-2, 3 . During normal operation. (Refer to Fig. 3-6) Refer to 5-10. Refer to 5-9.
MOTOR ON switch on	1. The disk motor does not rotate.	1. Disk motor drive system.	The signal of CN101-7 is High level, or the disk motor is defective.
	2. The I / F indicators do not light.	1. If no I / F indicators is lit, the drive select is not conducted. 2. If some I / F indicators are lit, the I / F signal circuit is defective.	Fig. 3-6

Step	Abnormal Operation for Each Step	Check Point (defective place)		Remarks		
CHGRST switch on	1. The DSKCHG indicator does not go out.	1. The CHGRST signal (CN109-3) is not sent to the CPU (IC101-9).				
HD LOAD switch on	1. The plunger solenoid is not energized.	1. The HD LOAD signal (at CN109-14) is not sent to the CPU (IC101-6). 2. IC 111 3. IC 101		Waveform are; hD LOAD IC101-33 IC101-34	s of normal \square , Fig. 3-7	operation
Stepping	1. The step operation does not function at all, or it is not smoothly functioned.	1. Stepping motor drive system or stepping motor itself.		rabout 1 msec after the STEP signal enters During this time, a DC voltage of +12 V is applied to the stepping motor.		
		TRACK	Po(IC106-5)	P1 (IC106-9)	$\mathrm{P}_{2}(\mathrm{IC106-11)}$	$\mathrm{P}_{3}(\mathrm{IC} 106-13$
		$\begin{array}{\|l\|} \hline 0,4,8, \ldots 72,76 . \\ 1,5,9, \ldots 73,77 . \\ 2,6,10, \ldots 74,78 . \\ 3,7,11, \ldots 75,79 . \\ \hline \end{array}$	\mathbf{H} L L H	H \mathbf{H} \mathbf{L} \mathbf{L}	L H H L	L L H
		2. The harness (i, e, the TRK 00 sensor) is internally attached to other mounting parts. 3. Obstacles are attached to the slide guide shaft.				
Track positioning	1. The ratio of the left to right signals does not meet the specification.	1. A voltage of +5 V is not applied to the stepping motor. (CN105-1, 2) 2. Radial alignment is incomplete.		Refer to 5-4.		
	2. No signal appears.	1. Read amplifier circuit.		Signal appeance must be confirme with the sequence of CN107-1, IC103-16, IC103-17, IC103-1, IC103-2, IC104-7, IC104-8.		

eck roints to Abnormal Uperation

Step	Abnormal Operation for Each Step	Check Point (defective place)	Remarks
tor speed	1. The motor speed does not meet the specification.	1. The disk motor 2. The pad pressure	Refer to 5-8. Refer to 5-2.
ex position	1. When the cassette is inserted twice or more, positions on each track is varied $\pm 40 \mu \mathrm{sec}$ or more.	1. The chucking mechanism of the disk moter is defective.	Refer to 4-11.
	2. When the cassette is set twice or more, positions on each track is varied $\pm 40 \mu \mathrm{sec}$ or less. The shifted positions, however, do not meet the specification.	1. The INDEX phase is mis-adjusted.	Refer to 5-6.
₹ 00 sensor level	1. The head returned from inside track does not stop at TRK 01 and it goes to TRK 00 where re-calibration is to be carried out.	1. The TRK 00 sensor positioning is improper.	The signal level of CN107-5 is 3 V or more at TRK 01 during normal operation. (Refer to 5-4.)
sette out en the alignment is ejected.)	1. When the casette is ejected, the DSKCHG indicator does not light.	1. Signal has not been detected cassette ejection. Check if the D-detected arm moves properly. 2. Check if the disk motor circuit board operates properly. 3. Signal appearance must be confirmed with the sequence of IC101-3, IC112-1, IC112-3, CN 109-3.	The signal of CN 101-5 remains Low level.
e in the level disk ;erted.)	1. The waveform signal cannot be re-written.	1. Write circuit 2. Check whether write data is applied or not.	32W Change the SIDE SELECT SWITCH to side 1 and then conduct the operation specified in item 13-1 of NORMAL OPERATION. In normal condition of write gate circuit, terminal voltage of CN109 -12 is Low level, terminal voltage of IC101-46 is High level, terminal voltage of IC115-4 is High level and 32V Collector voltage of Q106 is approx. +12 V . 32W When SIDE SELECT switch is set to side 0 , collector voltage of Q107 is approx. +12 V. When it is set to side 1 , collector voltage of Q106 is approx. +12 V .

Step	Abnormal Operation for Each Step	Check Point (defective place)	Remarks
Output level	1. The output signal level does not meet the specification.	1. Read amplifier gain adjustment is incomplete.	Refer to 5-7.
	2. Read data does not appear.	1. IC103 (MC3470AP)	Reak

3-4. FINAL CHECK

3-4-1. Setting of SMC-70

a. Place auto start switch located on the left side panel to "DISK".
b. A conversion cable for I/F (25 pin to 26 pin) is connected to rear panel of SMI-7012A(Drive Unit).
c. Connect the drive under test to the conversion cable and set the DRIVE SELECT switch (S101) of the unit to " 2 ".
d. Error check system disk is inserted into drive A of SMI-7012A and power is turned on.
e. After word "A $>$ " appears on CRT display, drive check program will start.

3-4-2. Set The Check Area

Description	Keying	Display
To display original test condition of the disk.	$\begin{gathered} \text { W } \mathrm{N} \text { 国 } 1 \text { C } \\ \text { RETURN } \end{gathered}$	***** Floppy Disk Analysis v3.0 ***** ***** Copyright (C) 1981. Sep. ***** [Test condition] Minimum track Maximum track
		Minimum Sector 1 Maximum sector 16
		Sector size 256
		Single or Double side? S
		Read \& Write retry 1 Seek \& Home retry 0
		\#Do you want to change these test conditions? $(\mathrm{Y}, \mathrm{N})=$
To change any of test conditions.	Y RETURN	+Minimum track $0[$ track $]=\Rightarrow$
Type the minimum track to be tested. [EX]		
In case it is TRK 00.	0 RETURN	+Maximum track 79 [track] $=\Rightarrow$

3-4-3. Check the Drive Unit

The test item from command table must be chosen.

Description
InX case it is random data. (all data random.)

Type any key.

The test ends.
[EX]
In case it is random data. (1st byte $=0 \mathrm{AAh}$)
Type any key.

The test ends.
[EX]
In case it is user definable.
Type the data to be written it.
[EX]
In case it is "DA".
OTE: Only 2 characters can be assigned for each byte; the character of more than two is disregarded. The Key RETURN must be depressed at the end of each byte. Maximum twenty (20) characters (ten kind of byte -10 th bytes) can be assigned.
The test ends.
3. To display the test condition.
4. To change any of test condition. (Refer to item 3-4-2)
5. To display the command table.
6. To end the test or retest from the first step.

Keying	Display
$\begin{aligned} & 1 \text { RETURN } \\ & \text { A } \\ & \text { RETURN } \end{aligned}$	$\begin{aligned} & \text { \#Now, You select pattern No: } 1 \\ & \text { \#Hit any key after few seconds }=\Rightarrow \\ & \text { \#Test disk ready? yes } \rightarrow \text { hit [Return] } \\ & \text { *** Write Test Start *** } \\ & \text { + Track = End } \\ & \text { *** Write Test End *** } \end{aligned}$
$\begin{gathered} 2 \text { RETURN } \\ \text { A } \\ \text { RETURN } \end{gathered}$	\#Now, You select pattern No: 2 \#Hit any key after few seconds $=\Rightarrow$ \#Test disk ready? yes \rightarrow hit [Return] *** Write Test Start *** +Track $=$ End *** Write Test End ***
4 RETURN	\#Now, You select pattern NO: 4 + Enter hex data [1st Bytes] $=\Rightarrow$
D A RETURN RETURN RETURN	```+Enter hex data [2nd Bytes] =} #Test disk ready?--hit [Return] Write Test Start *** +Track = End *** Write Test End ***```
L RETURN	[Test condition] drive C Minimum track 0 Maximum track 79
	Minimum sector 1 Maximum sector 16
	Sector size 256
	Single or Double side? S
	Read \& Write retry 1 Seek \& Home retry 0
S RETURN	+Minimum track 0 [track] \Rightarrow
H RETURN	*** Command table *** r : = read test w : = write test $1:=$ show disk condition s : = set test condition h : = help e : = finish \& exit to CP/M
E RETURN	A>

3-4-4. Error Message

Kind of Error	Error Message	Considerable Cause	Countermeasure (Confirmation / Adjustment)
SEEK ERROR	Seek CRC error Seek error	Stepping motor load torque is too high. Stepping motor circuit is out of order.	Confirm stepping motor load torque. (Refer to 5-5.) Confirm the function of stepping motor circuit.
	ID, data, ADM missing.	Read circuit is out of order.	Confirm the read circuit. (at first check RF out put)
	ID, data CRC error	Off track, chucking trouble, wrong head compliance.	Confirm head compliance, (Refer to $5-3) ~ c h u c k i n g ~ m e c h a n i s m ~ o r ~ r a d i a l ~$.
alignment and TRK 00 sensor			
(Refer to 5-4).			

MEMO

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SECTION 4
 PART REPLACEMENT

4-1. FC-9/FC-14 MOUNTED BOARD REPLACEMENT

4-1-1. Removal

a. Remove the three screws (PSW2.6 $\times 6$) which fasten both the FC-9/FC-14 Mounted Board and shield plate to the chassis ass'y. (Refer to Fig. 4-1 (a))
b. Remove all the connectors. Do not apply any excessive force to the head harness (CN106).
(Refer to Fig. $4-1$ (b))

Fig. 4-1 FC-9/FC-14 Mounted Board

4-1-2. Installation and Adjustment

a. Set the respective connectors to the FC-9/FC-14 Mounted Board.

3. BLIND PANEL REPLACEMENT

3-1. Removal

Remove the front panel ass'y. (Refer to 4-2)
Remove the blind panel by twisting it into the arrow while pressing its both edges. (Refer to Fig. 4-3)

3-2. Installation

Press the blind panel toward the cassette-up ass'y and latch the two tabs onto the disk holder. (Refer to Fig. 4-3)

Install the front panel ass'y. (Refer to 4-2)

Fig. 4-3 Blind Panel Replacement
4. LED MOUNTED BOARD ASS'Y REPLACEMENT

7-1. Removal

Remove both the FC-9/FC-14 Mounted Board and shield plate. Disconnect CN 102 connector.
(Refer to Fig. 4-4 (a))
Remove the front panel ass'y. (Refer to 4-2)
Remove the LED Mounted Board ass'y from the chassis ass'y.

4-4-2. Installation

a. Peel off remover from the cushion and set the LED Mounted Board as shown in Fig. 4-4 (b).
b. Install both the FC-9/FC-14 Mounted Board and shield plate. (Refer to 4-1)
c. Install the front panel ass'y. (Refer to 4-2)

(a)

(b)

Fig. 4-4 LED Mounted Board Ass'y Replacement

4-5. MAIN COVER REPLACEMENT

4-5-1. Removal
a. Remove the screw (B2.6 $\times 5$) which fastens the main cover from the chassis ass'y, and then remove the main cover. (Refer to Fig. 4-5)
4-5-2. Installation
a. Install the main cover so that the position marked is set in accordance with the arrow, and then install the main cover with the screw ($\mathrm{B} 2.6 \times 5$). (Refer to Fig. 4-5)

Fig. 4-5 Main Cover Replacement

132V: 4-6. PAD ASS'Y REPLACEMENT

4-6-1. Removal

a. Remove the main cover. (Refer to 4-5)
b. Lifting the pad arm tip so that any excessive force may not be applied to the pad arm ass'y, remove the pad ass'y by pressing its rear part. (Refer to Fig. 4-6 (a))

4-6-2. Installation and Adjustment

a. Pick up pad holder (not pad itself) of pad ass'y lightly and insert pad ass'y into the location on pad arm ass'y. (Refer to Fig. 4-6 (a))
b. Pull down the pad arm ass'y, and check if the pad is arranged in parallel with the head as shown in Fig. 4-6 (b).
c. Perform the pad pressure adjustment. (Refer 5-2)
d. Perform the head clearance adjustment. (Re to $5-10$)
e. Perform the HL arm height adjustment. (Refer 5-9)
f. Make the head clean. (Refer to 5-11)
g. Perform the head compliance adjustment. (Re to 5-3)
h. Install the main cover. (Refer to 4-5)

Fig. 4-6 Pad Ass'y Replacement

32W 4-7. DAMPER REPLACEMENT

4-7-1. Removal

a. Remove the main cover. (Refer to 4-5)
b. Manually set the machine into the Disk-In mod (Refer to Fig. 4-9 (a))
c. Remove the screw (PS2.6 $\times 6$) which fastens $t 1$ damper to the head load ass'y, and then remo the damper. (Refer to Fig. 4-7)

4.7-2. Installation

a. Insert the damper arm tip into between the cassette holder and HL arm, and set the damper to the head load ass'y. (Refer to Fig. 4-7)
b. Install the main cover. (Refer to 4-5)
c. Make the head clean. (Refer to 5-11)

Fig. 4-7 Damper Replacement

48. HEAD LOAD ASS'Y REPLACEMENT

48-1. Removal

a. Remove both the FC-9/FC-14 Mounted Baord and shield plate. (Refer to 4-1)
-b. Remove the main cover. (Refer to 4-5)
c. Manually set the machine into the Disk-In mode. (Refer to Fig. 4-9 (a))
32W d. Remove the damper. (Refer to 4-7)
e. Remove the two screws (PS2.6 x 6) which fasten the head load ass'y to the chassis so that an excessive force is not applied to the head arm, and then remove the head load ass'y, (Refer to Fig. 4-8 (a) (b))
4-8-2. Installation and Adjustment
a. Manually set the machine into the Disk-In mode. (Refer to Fig. 4-9 (a))
b. Pass the harness of the head load ass'y through the opening of the chassis. (Refer to Fig. 4-8 (a) (b))
c. Fasten both the head load ass'y and lug terminal to the chassis with the two screws (PS2.6 x 6). (Refer to Fig. 48 (a) (b))
d. Bend one tip of the lug terminal by 90° $\pm 10^{\circ}$. (Refer to Fig. 48 (c))

32W e. Install the damper in place. (Refer to 4-7)
f. Install both the FC-9/FC-14 Mounted Board and shield plate in place. (Refer to 4-1)
g. Perform the head clearance adjustment. (Refer to 5-10)
h. Perform the HL arm height adjustment. (Refer to 5-9)
i. Install the main cover in place. (Refer to 4-5)
j. Make the head clean. (Refer to 5-11)

Fig. 4-8 Head Load Ass'y Replacement

4-9. CASSETTE-UP ASS'Y REPLACEMENT

4-9.1. Removal

a. Remove both the FC-9 Mounted Board and shield plate. (Refer to 4-1)
b. Remove the front panel ass'y. (Refer to 4-2)
c. Remove the blind panel. (Refer to 4-3)
d. Remove the main cover. (Refer to 4-5)
e. Manually set the machine into the Disk-In mode. (Refer to Fig. 4-9 (a))

32W
f. Remove the damper. (Refer to 4-7)

32W g. Remove the head load ass'y. (Refer to 4-8)
h. Remove the four screws (PSW2.6 $\times 8$) from the bottom of the chassis, and then remove the cassette-up ass'y. (Refer to Fig. 4-9 (b))

(a) Steeling to Disk-In Mode

(b)

(c)

(d) TOP VIEW of Cassette-Up Ass'y

Positioning Pin
(e)

Fig. 4-9 Cassette-Up Ass'y Replacement

4-9-2. Installation and Adjustment
a. Place the cassette-up ass'y onto the chassis ass'y and fasten the bottom of the chassis ass'y lightly with the four screws (PSW2.6 x 8). (Refer to Fig. 4-9 (b))

VP Arm/D-Detection Arm/Compression ipring (3-659-609-00) Replacement

b. Insert the standard disk dummy (OA-120) into the cassette-up ass'y. Check if the standard disk dummy positioning hole aligns with the positioning pin on the chassis, and if the clearance shown in Fig. 4-9 (c) (d) are kept assured, and then fasten the four screws firmly.
32W c. Install the head load ass'y. (Refer to 4-8)
32W d. Install the damper in place. (Refer to 4-7)
e. Insert the level disk into the cassette-up ass'y. Check if disk positioning is properly located while touching the forefinger at the positioning holes in the left and right of the disk. (Refer to Fig. 4-9 (e)) Check if disk positioning is properly located even while placing each side of the disk drive downwards.
f. If any displacement is found during positioning test in item (e), repeat the operations defined in 4-9-2.
g. Press the eject lever and check if the level disk can smoothly be shifted up and down.
32W h. Install the both FC-9 Mounted Board and shield plate in place. (Refer to 4-1)
i. Make the head clean. (Refer to 5-11)
j. Install the main cover in place. (Refer to 4-5)
k. Install blind panel in place. (Refer to 4-3)

1. Install the front panel ass'y in place. (Refer to 4-2)

4-10. WP ARM/D-DETECTION ARM/COMPRESSION SPRING (3-659-609-00) REPLACEMENT

4-10-1. Removal

32W a. Remove both the FC-9 Mounted Board and shield plate. (Refer to 4-1)
b. Remove the front panel ass'y. (Refer to 4-2)
c. Remove the main cover. (Refer to 4-5)
d. Manually set the machine into the Disk-In mode. (Refer to Fig. 4-9 (a))
32W e. Remove the damper. (Refer to 4-7)
32W f. Remove the head load ass'y. (Refer to 4-8)
g. Remove the cassette-up ass'y. (Refer to 4-9)
h. Remove the E ring (E2.3), pull out both the WP and D-Detection arms, and remove the compression spring (3-659-609-00) from the chassis ass'y. (Refer to Fig. 4-10)

Fig. 4-10 WP Arm/D-Detection Arm/Compression Spring Replacement

4-10-2. Installation and Adjustment

a. Pass the compression spring (3-659-609-00) and WP arm or the compression spring (3-659-609-00) and D-Detection arm through the shaft in sequence. Then, clamp them with the E ring (E2.3). (Refer to Fig. 4-10)
b. Pressing with the fingers the portion indicated by arrow on the WP or D-Detection arm, check if the WP or D-Detection arm smoothly returns to home position by spring force.
c. Install both the FC-9 Mounted Board and shield plate in place. (Refer to 4-1)
d. Install the cassette-up ass'y in place. (Refer to 4-9)
32W e. Install the head load ass'y in place. (Refer to 4-8)
32W f. Install the damper in place. (Refer to 4-7)
g. Make the head clean. (Refer to 5-11)
h. Install the main cover in place. (Refer to 4-5)
i. Install the front panel ass'y in place. (Refer to 4-2)

4-11. DC DISK DRIVE MOTOR (BHC-2101A) REPLACEMENT

4-11-1. Removal

a. Connect the MFD Checker II, and then turn off the power switch. (Refer to Fig. 2-1)
b. Remove both the FC-9/FC-14 Mounted Board and shield plate. (Refer to 4-1)
c. Remove the front panel ass'y. (Refer to 4-2)
d. Remove the main cover. (Refer to 4-5)
e. Manually set the machine into the Disk-In mode. (Refer to Fig. 4-9 (a))

32W e. Remove the damper. (Refer to 4-7)
32W f. Remove the head load ass'y. (Refer to 48)
g. Remove the cassette-up ass'y. (Refer to 4-9)
h. Remove the WP arm, D-Detection arm and these compression springs. (Refer to 4-10)
i. Remove the two screws (PS2.6 x 8) which fasten the disk motor, and then remove the disk motor. (Refer to Fig. 4-11)

Fig. 4-11 Disk Drive DC Motor (BHC-2101A) Replacement

4-11-2. Installation and Adjustment

a. Pass the DC Disk motor harness through the opening in front of the chassis ass'y, and then fasten the DC Disk motor with the two screws (PS2.6 x 8). (Refer to Fig. 4-11)
b. Install the WP arm, D-Detection arm, and these compression springs in place. (Refer to 4-10)
c. Install the cassette-up ass'y in place. (Refer to 4-9)
d. Install the head load ass'y in place. (Refer to 4-8)
e. Install the damper in place. (Refer to 4-7)
f. Install both the FC-9/FC-14 Mounted Board and shield plate. (Refer to 4-1)
g. Make the head clean. (Refer to 5-11)
h. Perform the radial alignment and TRK 00 sensor adjustment. (Refer to 5-4)
i. Perform the index phase adjustment. (Refer to 5-6)
j. Install the main cover in place. (Refer to 4-5)
k. Install the front panel ass'y in place. (Refer to 4-2)

4-12. SENSOR MOUNTED BOARD REPLACEMENT

4-12-1. Removal
a. Connect the MFD Checker II, move the head until it arrives at TRK 79, and then turn off the power switch. (Refer to Fig. 2-1)
b. Remove both the FC-9/FC14 Mounted Board and shield plate. (Refer to 4-1)
c. Remove the front panel ass'y. (Refer to '4-2)
d. Manually set the machine into the Disk-In mode. (Refer to Fig. 4-9 (a))
32W e. Remove the damper (Refer to 4-7)
f. Remove the head load ass'y. (Refer to 4-8)
g. Remove the cassette-up ass'y. (Refer to 4-9)
h. Remove the screw (PSW2.6 x 6) which fastens the Sensor Mounted Board and remove the Sensor Mounted Board. (Refer to Fig. 4-12)

Fig. 4-12 Sensor Mounted Board Replacement

4-12-2. Installation and Adjustment

a. Feed the harness of Sensor Mounted Board as shown by the arrow, set the Sensor Mounted Board onto the chassis along the positioning pin, and fasten lightly it with the screw (PSW2.6 x 6). (Refer to Fig. 4-12)

NOTE: The sensor board should be placed near the disk motor as far as possible.
b. Install the cassette-up ass'y in place. (Refer to 4-9)
c. Install the head load ass'y in place. (Refer to 4-8)
32W
d. Install the damper in place. (Refer to 4-7)
e. Install both the FC-9/FC-14 Mounted Board and shield plate. (Refer to 4-1)
f. Make the head clean. (Refer to 5-11)
g. Perform the radial alignment and TRK 00 sensor adjustment. (Refer to 5-4)
h. Install the front panel ass'y in place. (Refer to 4-2)
i. Install the main cover in place. (Refer to 4-5)

4-13. LEAD SCREW ASS'Y (STEPPING MOTOR/ LEAD SCREW/COUPLING ASS'Y/COMPRESSION SPRING (4-601-083-00)) REPLACEMENT

4-13.1. Removal

a. Remove both the FC-9/FC-14 Mounted Board and shield plate. (Refer to 4-1)
b. Remove the front panel ass'y. (Refer to 4-2)
c. Remove the main cover. (Refer to 4-5)
d. Attach the rotary knob to the rear shaft of the stepping motor with hexagon wrench torque driver. (Refer to Fig. 4-13 (a)) Check if the gap between the motor bearing metal and rotary knob is approximately 0.5 mm .
e. Manually set the machine into the Disk-In mode. (Refer to Fig. 4-9 (a))
32W f. Remove the damper. (Refer to 4-7)
32W g. Remove the head load ass'y. (Refer to 4-8)
h. Remove the cassette-up ass'y. (Refer to 4-9)
i. Remove the two screws (PSW2.6 $\times 6$) which fasten the stepping motor. (Refer to Fig. 4-13 (b))

j. Turning the rotary knob, remove the lead screw ass'y. : During removal, hold with the tweezers the ball bearing which hold the lead screw, as shown in Fig. 4-13 (b)-1.
4-132. Installation and Adjustment
NOTE: If the replacement can be made with lead screw ass'y, steps a up to a should be skipped.
NOTE: Apply Sony grease (same quantity of watch tip) on whole area of lead screw before replacing it.
a. Stepping motor, lead screw, coupling ass'y and thrust bearing must be roughly assembled.
b. Pressing the coupling ass'y to the lead screw, fasten the setscrew near the lead screw with a hexagon wrench torque driver. (Refer to Fig. 4-13 (a))
c. Pressing the coupling ass'y to the stepping motor, fasten the setscrew near the stepping motor with a hexagon wrench torque dirver. (Refer to Fig. 4-13 (a))
d. Turning the rotary knob, pass the lead screw through the opening of the ball bearing along the path indicated by arrow. (Refer to Fig. 4-13 (b))
e. Fasten loosely the stepping motor with the two screws (PSW2.6 x 6).
f. Loosen the setscrew near the stepping motor so that the lead screw touches the ball bearing by the force of the compression spring.
g. Pulling the rotary knob lightly, fasten the setscrew near the stepping motor with a hexagon wrench torque driver.
h. Perform the lead screw eccentricity adjustment. (Refer to 5-1)
182 V
i. Perform the stepping motor load torque adjustment. (Refer to 5-5)
j. Install the cassette-up ass'y in place. (Refer to 4-9)
k. Install the head load ass'y in place. (Refer to 4-8)

1. Install the damper in place. (Refer to 4-7)
m. Install both the FC-9/FC14 Mounted Board and shield plate. (Refer to 4-1)
n. Make the head clean. (Refer to 5-11)
o. Remove the rotary knob from the stepping motor shaft.
p. Perform the radial alignment and TRK 00 sensor adjustment. (Refer to 5-4)
q. Install the main cover in place. (Refer to 4-5)
r. Install the front panel ass'y in place. (Refer to 4-2)

4-14. (32V) HEAD ARM ASS'Y REPLACEMENT (32W) HEAD CARRIAGE ASS'Y REPLACEMENT

NOTE: Do not disassemble or adjust the head arm ass'y or head carriage ass'y because these ass'y have precisely been adjusted in factory.
4-14-1. Removal
a. Remove both the FC-9/FC14 Mounted Board and shield plate. (Refer to 4-1)
b. Remove the front panel ass'y. (Refer to 4-2),
c. Remove the main cover. (Refer to 4-5)
d. Manually set the machine into the Disk-In mode. (Refer to Fig. 4-9 (a))
F32W e. Remove the damper. (Refer to 4-7)
H2W f. Remove the head load ass'y. (Refer to 4-8)
g. Remove the cassette-up ass'y. (Refer to 4-9)

E32V: h. Remove the screw (PSW2.6 x 6) which fastens the head harness to the chassis on the bottom surface. (Refer to Fig. 4-14 (a))
H2W i. Remove the screw (PSW2.6 x 8) which fastens the head harness to the shield plate on the bottom surface of the chassis, and remove the head harness that is adhesive to the chassis. (Refer to Fig. 4-14 (b))
NOTE: The head harness is contacted to the chassis via the adhesive tape with its both surface coated with adhesive agent.
j. Remove the two screws (PSW2.6 $\times 6$) which fasten the guide shaft. (Refer to Fig. 4-14 (a) (b))

P32V k. Smoothly pull out the head arm ass'y together with the guide shaft. (Refer to Fig. 4-14 (a))

(c)
(d)

Fig. 4-14 Head Arm Ass'y Replacement Head Carriage Ass'y Replacement

0Lv I ruau hrill Ass y neplacement 32W) Head Carriage Ass'y Replacement

32W 1. Smoothly pull out the head carriage ass'y together with the guide shaft. (Refer to Fig. 4-14 (b))
32V m. Disconnect the head board from the head hamess (by four points) with a soldering iron. (Refer to Fig. 4-14 (c))
32W n. Disconnect the head board from the head harness (by six points) with a soldering iron. (Refer to Fig. 4-14 (d))

4-14-2. Installation and Adjustment

NOTE: Apply Sony oil to the guide shaft before installing. Apply Sony oil to the openings of both the head arm ass'y and head carriage ass'y using the bamboo stick.
a. Pass the guide shaft through the opening of the head arm ass'y.
32W b. Pass the guide shaft through the opening of the head carriage ass'y.
32V c. Carefully install the head arm ass'y in place. (Refer to Fig. 4-14 (a))
32W d. Carefully install the head carriage ass'y in place. (Refer to Fig. 4-14 (b))
e. Fasten the guide shaft with the two screws (PSW2.6 x 6).
32 V .f. Fasten the head board to the chassis on the bottom surface, and apply nut lock paint to the screw.

32V g. Connect the head board to the head harness (by four points) with a soldering iron. (Refer to Fig. 4-14 (c))
h. Connect the head board to the head hamess (by six points) with a soldering iron. (Refer to Fig. 4-14 (d))

32W i. Fasten head board and terminal shield plate with a screw (PSW2.6 $\times 8$) on the chassis bottom, and then apply nut lock paint onto it. NOTE: The screw must not be tighten too hard. It may produce electrical short or crack of head board.

32V j. Perform the stepping motor load torque adjustment. (Refer to 5-5)
k. Install the cassette-up ass'y in place. (Refer to 4-9)
32W 1. Install the head load ass'y in place. (Refer to 4-8)
m. Install the damper in place. (Refer to 4-7)
n. Install both the FC-9/FC-14 Mounted Board and shield plate. (Refer to 4-1)
o. Perform the HL arm height adjustment. (Refer to 5-9)
p. Perform the head clearance adjustment. (Refer to 5-10)
q. Make the head clean. (Refer to 5-11)
r. Perform the radial alignment and TRK 00 sensor adjustment. (Refer to 5-4)
s. Perform the read amplifier gain and offset adjustment. (Refer to 5-7)
t. Perform the index phase adjustment. (Refer to 5-6)
u. Install the main cover in place. (Refer to 4-5)
v. Install the front panel ass'y in place. (Refer to 4-1)

Lead Screw tccentricrt

SECTION 5
 CHECK AND ADJUSTMENT

After measurement and adjustment in accordance with SECTION 5 , please surely clean the head.

5-1. LEAD SCREW ECCENTRICITY

Disassemble the following parts and then perform the measurement and adjustment.
a. Main Cover (Refer to 4-5)
b. Front Panel Ass'y (Refer to 4-2)

32W c. Damper (Refer to 4-7)
32W
d. Head Load Ass'y (Refer to 4-8)
e. Cassette-up Ass'y (Refer to 4-9)

5-1-1. Tools and Measuring Equipment
a. Lead Screw Eccentricity Inspection Tool
b. Hexagon Wrench Torque Driver
c. Rotary Knob
d. MFD Checker II

5-1-2. Measurement
a. Connect the MFD Checker II to the disk drive. (Refer to Fig. 2-1) and step in the head until it arrives at TRK 79.
b. Turn off the power.
c. Attach the rotary knob onto the rear shaft of the stepping motor shaft with hexagon wrench torque driver. (Refer to Fig. 4-13 (a)) Check if the gap between the motor bearing metal and rotary knob is approximately 0.5 mm .
d. Revolve the rotary knob 3 to 4 turns counterclockwise by hand.
e. Aligning the positioning hole of the lead screw eccentricity tool to the positioning pin on the chassis ass'y, set the lead screw eccentricity inspection tool in place. (Refer to Fig. 5-1)
f.-Turn the rotary knob clockwise or counterclockwise by hand. Check if the gap measures $50 \mu \mathrm{~m}$ (5 scales on the meter of the lead screw eccentricity inspection tool) or less.
5-1-3. Adjustmènt
a. Attach the rotary knob onto the stepping motor shaft. (Réfer to Fig. 4-13 (a))
b. Loosen with a hexagon wrench torque driver the two screws which-fasten the coupling ass'y.
c. Pressing the coupling ass'y to the lead screw, fasten the setscrew for the lead screw with a hexagon wrench torque driver. (with a torque of $0.7 \mathrm{~kg}-\mathrm{cm}$)
d. Pulling the stepping motor shaft, fasten the setscrew for the stepping motor. (With a torque of $0.7 \mathrm{~kg}-\mathrm{cm}$)
e. Measure the lead screw eccentricity in accordance with 5-1-2.
Unless the result meets the specification, measurement should be carried out again starting with item " a ".

Fig. 5-1 Lead Screw Eccentricity Adjustment

32V 5-2. PAD PRESSURE

Disassemble the following parts and then perform the measurment and adjustment.
a. Main Cover (Refer to 4-5)

5-2-1. Tools and Measuring Equipment

a. Tension Gauge

5-2-2. Measurement

a. Manually set the machine into the Disk-In mode. (Refer to Fig. 4-9 (a))
b. Install a string to the tension gauge at one end and tie the other end to the measuring point. (Refer to Fig. 5-2 (a))
c. Manually put down the HL arm, and then set the machine into the Head Load mode.
d. Lift the pad arm with the tension gauge, and then slowly put down the pad arm until the gauge reading becomes unchanged.

Identify as " A " the position where the stable reading can be obtained. (Refer to Fig. 5-2 (b))

(a) Pad Pressure Measuring Method

(b)

(c)

Fig. 5-2 Pad Pressure Adjustment
e. Put down the pad arm below point "A" until the point just before the pad arm touches the head, and then read the rising peak value at point "B". (Refer to Fig. 5-2 (b))
f. Check if the reading is within $11 \pm 1.5 \mathrm{~g}$ specified for adjustment.

5-2-3. Adjustment

a. Unless the reading is out of $11 \pm 1.5 \mathrm{~g}$, change the spring set-position.
b. If the reading is in excess of 12.5 g , move the position toward " A ". If the reading is less than 9.5 g , move the position toward " B ". Do not change position " C " where the string is set. (Refer to Fig. 5-2 (c))

5-3. HEAD COMPLIANCE

Disassemble the following parts and then perform the measurment and adjustment.

a. Main Cover (Refer to 4-5)

5-3-1. Tools and Measuring Equipment
a. Oscilloscope
b. MFD Checker II

32V c. Level Disk (OR-D46VA)
32W d. Level Disk (OR-D46WA)
e. Pad weight

32V f. $\Theta 2 \mathrm{~mm}$ Driver
g. Rotary Knob
h. Hexagon Wrench Torque Driver

5-3-2. Measurement
a. Connect the disk drive to the MFD Checker II. (Refer to Fig. 2-1)
b. Insert the level disk in place, and move the head onto TRK 79.
c. Set the HD LOAD switch on the MFD Checker II to "ON".
d. Attach the rotary knob onto the stepping motor shaft and fix it with a hexagon wrench torque driver. (Refer to Fig. 4-13 (a))
e. Write " 2 F " into the disk and check if the amplifier output waveform at CN107-1 is satisfactory.
f. When a pad weight is loaded as shown in Fig. 5-3 (a), (b);

1) The output signal level at that time should not be greater than that obtained when no pad weight is loaded.
2) The output signal level at that time should not be 95% or less of that obtained when no pad weight is loaded.

32V

(a) Weight Positioning

(c) Pad Ass'y Rotation
g. Take the pad weight, and move the head to TRK 03.
h. Write " 1 F " into the disk.
i. Turn the rotary knob clockwise until it arrives at the clicking point, move the head to TRK 04, and write "EXT" in to the disk.
j. Fully turn the rotary knob counterclockwise, move the head back to TRK 03, and check if the output signal level at that time is 5% or less of that obtained by item " h ".
.32W
k. Fully turn the rotary knob counterclockwise, move the head back to TRK 03, and check if the output signal level at that time is 10% or less of that obtained by item "e".

1. Write " $1 F$ " into the disk.
m. Turn the rotary knob counterclockwise until it arrives at the clicking point, move the head to TRK 02, and write "EXT" into the disk.
232 V :
n. Turn the rotary knob clockwise until it arrives at the clicking point, move the head back to TRK 03, and check if the output signal level at that time is 5% or less of that obtained by item " 1 ".
$32 W$ o. Turn the rotary knob clockwise until it arrives at the clicking point, move the head back to TRK 03, and check if the output signal level at that time is 10% or less of that obtained by item " 1 ".
5-3-3. Adjustment
32Vi a. If the output signal level does not meet item 5-3-2 " f ", perform adjustment by turning the pad ass'y as shown in Fig. 5-3 (c).
$32 W$ b. If the output signal level does not meet item 5-3-2 " f ", replace the head carriage ass'y. (Refer to 4-14)
c. If the output signal level doesnot meet item 5-3-2 " n ", perform adjustment by turning the pad ass'y as shown in Fig. 5-3 (c).

NOTE: Check if the head compliance is satisfactory after this adjustment.

32W d. If the output signal level doesnot meet item 5-3-2 "o", replace the head carriage ass'y. (Refer to 4-14)

Fig. 5-3 Head Complience

kaaial Aıgnment and Trk 00 Sensor

5-4. RADIAL ALIGNMENT AND TRK 00 SENSOR

Dissassemble the following parts and then perform the measurement and adjustment.

> a. Main Cover (Refer to 4-5)

5-4-1. Tools and Measuring Equipment
a. SMC-70 System
b. Radial Álignment System Disk

32V c. Alignment Disk (OR-D47VA)
32W d. Alignment Disk (OR-D47WA)
e. Rotary Knob
f. Geared Driver
g. TOTSU Screw Driver (M2.6)
h. $\Theta 4 \mathrm{~mm}$ Driver
i. Hexagon Wrench Torque Driver

5-4-2. Measurement

a. Insert the Radial Alignment system disk into the SMI-7012A drive A.
b. Turn on the power switch. After approximately 15 seconds, "off set measurement/ adjustment ver $1.0^{\prime \prime}$ is displayed.
c. Connect the disk drive (under test) to the cable which leads to the A/D converter,
insert the alignment disk, and set the DRIVE SELECT switch (S10I) to 4. (Refer to Fig. 2-2)
d. Execute the Set Up command. (Refer to 5-4-4)
e. Execute the Measurement command. (Refer to 5-4-5)
f. If adjustment is necessary, the Adjustment command is to be executed. (Refer to 5-4-6)

5-4-3. Adjustment

a. Perform adjustment in accordance with 5-4-2 (a) up to (d).
b. Attach the rotary knob to the stepping motor shaft and fix it with a hexagon wrench torque driver. (Refer to Fig. 4-13 (a))
c. Execute the Adjustment command. (Refer to 5-4-6)
NOTE: For resuming the state of SMC-70 System to the initial state (that apprears immediately after power goes on), press the reset button.

5-4-4. Set Up Command

Function	Keying	Display
1. Select the Set Up command.	$1]$	COMMAND NUMBER? 1. HUMIDITY $20-80 \%$: 50.0 [\%] 2. SPECIFICATION : 26.0 [micrometer] 3. TIME/4DIVISIONS : $100 \quad$ [ns] 4. R/W CORE WIDTH : 120 [micrometer] 5. QUIT
2. Asks for the command number at display center.		COMMAND NUMBER?
3. The initial value for the relative humidity is to be set at 50%.	11)	HUMIDITY [\%]?
[EX] In case a relative humidity of 60% is keyed in,	6 R RETURN	COMMAND NUMBER?
4. The initial value for the specified off track is to be set at $26 \mu \mathrm{~m}$.	2	SPECIFICATION?
[EX] In case an off track of $30 \mu \mathrm{~m}$ is keyed in,	30 RETURN	COMMAND NUMBER?

Function	Keying	Display
5. The initial value for the INDEX signal period is to be set at 100 msec .	3	TIME/4 DIVISIONS?
[EX] In case an INDEX signal period of 100 msec is keyed in,	1000 RETURN	COMMAND NUMBER?
6. The initial value for the R / W core width is to be set at $120 \mu \mathrm{~m}$.	4	R/W CORE WIDTH?
[EX] In case a R / W core width of $131 \mu \mathrm{~m}$ for the OA-32V is keyed in. (Specify a R/W core width of $120 \mu \mathrm{~m}$ for the $\mathrm{OA}-32 \mathrm{~W}$.)	1031 RETURN 100 RETURN	COMMAND NUMBER?
7. When the Set Up command execution ends, (control to the main menu.)	5	MAIN MENU [1] SET UP [2] MEASUREMENT [3] ADJUSTMENT

5-4-5. Measurement Command

Function	Keying	Display
1. Select the Measurement command.	2	SET DRIVE SELECT 4 INSERT ALIGNMENT DISK HIT [RETURN] KEY
Insert the Alignment disk.	RETURN	ADJUST CAT'S EYE SIGNAL LEVEL [MIN (L, R) >2 div] AND $[\operatorname{MAX}(L, R)<4$ div] AND $[\mathrm{MAX}(\mathrm{L} / \mathrm{R}, \mathrm{R} / \mathrm{L})<1.5]$ HIT [RETURN] KEY
2. Set the A/D converter gain by adjustment so that the peak values at both edges of the Cat's eye pattern signal may range from 2 to 4 divisions. (Refer to Fig. 5-4 (a)) NOTE: If gain adjustment cannot be done, key in 0 to execute step 9. Thereafter, perform the radial alignment adjustment. (Refer to 5-4.6.)	RETURN	
		-
		4+
		(a)
3. Measure the off track.		MEASURING
4. Calculate the off track. NOTE: When "NO GOOD" is indicated on the CRT, key 0 to execute step 9 . Thereafter, perform adjustment in accordance with 5-4-6.		Calculating
		ADJUST 00 SENSOR HIT [RETURN] KEY

5-4-6. Adjustment Command

Function	Keying	Display
1. Select the Adjustment command.	3	COMMAND NUMBER ? SET DRIVE SELECT 4 INSERT ALIGNMENT DISK HIT [RETURN] KEY
Insert the Alignment disk.	RETURN	ADJUST CAT'S EYE [MIN(L, R) >3 div]. AND [MAX(L, $\mathrm{R}<4$ div] AND $[\operatorname{MAX}(L / R, R / L)<1.2]$ HIT [RETURN] KEY
2. Turn the rotary knob clockwise until the head arrives at the outmost position. Thereafter, turn the rotary knob counter clockwise while stopping and starting at each clicking point until the Cat's eye pattern signal appears. Turning the stepping motor with the geared driver within the range that the screw fastening the stepping motor is not dropped from the stepping moter flange, set the amplitude ratio of the peak signals on the Cat's eye pattern signal at $1: 1.2$ or less. NOTE: A ratio of $1: 1.2$ is defined by identifying the smaller one as unity. NOTE: If adjustment of the stepping motor cannot be conducted by using the geared driver, first find the appropriate position in accordance with the		(b) (c) Fig. 5-4

Function	Keying	Display
9. Measure the off track.		MEASURING
10. Calculate and check the off track.	\qquad	CALCURATING GOOD ! HIT [RETURN] KEY SET DRIVE SELECT 4 INSERT ALIGNMENT DISK HIT [RETURN] KEY

5-4.7. Error Message

One of the following errors can occur during measurement, adjustment, or setting of the machine for radial alignment:
a) Not Ready ... Indicates that READY signal is not issued. Check for disk drive connection or check for the DRIVE SELECT switch position.
b) Not Index Pulse ... Indicates that INDEX signal is not issued. Check for diskdrive connection.
c) Cat's Eye Error ... Indicates that the Cat's eye pattern signal is abnormal. Check for the alignment disk.

In addition to these messages in above, one of the following statements is also displayed.

Statement 1:

[0] CONTINUE / [1] RETRY

Statement 2:

[RETURN] FIRST STEP / [1] RETRY

Key in 0 when statement is displayed, and then control adyances the step to the next, disregarding the error which has occurred.

Thereafter, key in and then the same measurement item is executed again.

Key in RETURN when statement 2 is displayed, and then control performs the radial alignment measurement and returns to the initial step in the Adjustment mode. Thereafter; key in 1] and then the same measurement item is executed again.
NOTE: Check for the disk drive in accordance with confirmation items to the message displayed before retrying the key-in 1] operation.

5-5. STEPPING MOTOR LOAD TORQUE

Disassemble the following parts and then perform the measurement and adjustment.
a. FC-9/FC-14 Mounted Board. (Refer to 4-1)

5-5-1. Tools and Measurement Equipment
a. Oscilloscope
b. MFD Checker II

32 V c. Alignment Disk (OR-D47VA)
d. Tention Gauge
e. \oplus Driver 2 mm

5-5-2. Measurement
a. Push up the steel plate near the lead screw with a spring balance. (Refer to Fig. 5-5)
b. Check if the spring balance indicates a value in the range of 50 g to 80 g at the point where the head arm is just separated from the lead screw.

Fig. 5-5 Stepping Motor Load Torque
5-5-3. Adjustment
a. If the spring balance indicates a force of 50 g or less, fasten the setscrew ($+\mathrm{P} 2 \times 3$). If it indicates 80 g or more, loosen the setscrew. (Refer to Fig. 5-5)
b. Fix the setscrew (+ P2 $\times 3$) for the steel plate with nut lock paint.
c. Perform the radial alignment and TRK 00 sensor adjustment. (Refer to 5-4)

5-6. INDEX PHASE

5-6-1. Tools and Measurement Equipment
a. Oscilloscope
b. MFD Checker II

32V:
c. Alignment Disk (OR-D47VA)

32W
d. Alignment Disk (OR-D47WA)
e. Adj rod.

5-6-2. Measurement

a. Connect the disk drive to the MFD Checker II. (Refer to Fig. 2-1)
b. Insert the alignment disk in place.
c. Connect the oscilloscope probe tip to CN 107-1 and trigger the oscilloscope at TP5 of the MFD Checker II.
d. Move the head to TRK 40.
e. Check if the phase relation between the INDEX signal and output signal meets the specification shown in Fig. 5-6 (a).

Fig. 5.6 (a) Index Phase Specification

5-6-3. Adjustment

a. If the phase relation described above does not meet the specification, adjust RV101 on the FC-9/FC-14 Mounted Board with an adj rod tool.
NOTE: If adjustment of RV101 does not satisfy the specification, the disk drive motor may be damaged. For the replacement, please refer to 5-8.

Fig. 5-6 (b) Index Phase Adjustment

5-7. READ AMPLIFIER GAIN AND READ AMPLIFIER OFF SET

5-7-1. Tools and Measuring Equipment
a. Oscilloscope
b. MFD Checker II
.32Vi c. Level Disk (OR-D46VA)
32W d. Level Disk (OR-D46WA)
e. Adj rod

5-7-2. Measurement
a. Connect the disk drive to the MFD Checker II. (Refer to Fig. 2-1)
b. Connect the oscilloscope probe tip (CH-1) to CN107-1 built in the disk drive and other tip (CH-2) to TP-5 of the MFD Checker II.

NOTE: The vertical sensitivities are set at 0.2 $\mathrm{V} /$ div on $\mathrm{CH}-1$ and at $2 \mathrm{~V} /$ div on $\mathrm{CH}-2$ with a timing range of $10 \mathrm{~ms} /$ div. The oscilloscope is triggered by the signal on CH-2.
c. Select display only for CH-1 .
d. Insert the level disk in place and move the head to TRK 79.
e. Set the SIDE SELECT switch on the MFD Checker II to side 0 .
f. Press the WRITE switch, and then " $2 F$ " is written into the disk.
g. Check if the peaksto-peak value of the output waveform for " 2 F " is $0.6 \pm 0.2 \mathrm{~V}$ (32 W $0.35 \pm 0.15 \mathrm{~V}$). (Refer to Fig. 5-7 (a))
$32 W \mathrm{~h}$. Set the SIDE SELECT switch on the MFD Checker II to side 1 .
$32 W$ i. Press the WRITE switch, and then " 2 F " is written into the disk.

32W j. Check if the peak-to-peak value of the output waveform for " 2 F " is $\mid 0.35 \pm 0.15 \mathrm{~V}$ (Refer to Fig. 5-7 (a))
k. Connect the oscilloscope probe tip (CH-2) to TP-3 on the MFD Checker II.

1. Operate the oscilloscope in the chop mode with a timing range of $0.5 \mu \mathrm{sec} / \mathrm{div}$.

(a)

32V

(b)

32W

(c)

Fig.5-7
m. Select "Uncal" on the timing axis of the oscilloscope and then such a waveform as shown in Fig. 5-7 (b) can be obtaind.
n. Check if no jittery pulse follows the triggered one. (Refer to Fig. 5-7 (b))
o. Check if the pulses are issued from side 0 or 1 every $2.0 \pm 0.2 \mu \mathrm{sec}$. (Refer to Fig. 5-7 (c))

5-7.3. Adjustment

Read amplifier gain adjustment

a. If the peak-to-peak value of the " 2 F " Read signal output is other than $0.6 \pm 0.2 \mathrm{~V}$ ($32 \mathrm{~W} 0.35 \pm 0.15 \mathrm{~V}$), set the output signal at $0.6 \pm 0.05 \mathrm{~V}$ ($32 \mathrm{~W} 0.35 \pm 0.15 \mathrm{~V}$) by adjusting RV102 on the FC-9/FC-14 Mounted Board with an adj rod tool.
b. If the peak-to-peak value of output waveform for " 2 F " in item j of the above is not $0.35 \pm 0.15 \mathrm{~V}$, replace the head carriage ass'y. (Refer to 4-14)
c. Perform the Head compliance adjustment. (Refer to 5-3)

Read amplifier off set adjustment
a. If any jittery pulses follow the triggered one, stop jittering at the pulse edge as far as possible by adjusting RV103 on the FC14 Mounted Board with an adj rod tool.
b. If the pulses are issued from side 0 or 1 at any interval other than $2.0 \pm 0.2 \mu \mathrm{sec}$, set the pulse interval on both sides 0 and 1 at $2.0 \pm 0.2 \mu \mathrm{sec}$ by adjusting RV103 on the FC-9 Mounted Board with an adj rod tool.
c. If adjstment of \mathbf{a} and \mathbf{b} above does not satisfy the spec, FC-9/FC-14 Mounted Baord must be replaced. (Refer to 4-1)
NOTE: After completion of the read amplifier gain adjustment, perform the read amplifier offset adjustment.

Fig. 5.7 (d) Read Amplifier Gain and Off set Adjustment

5-8. DISK DRIVE DC MOTOR SPEED
5-8-1. Tools and Measuring Equipment
a. MFD Checker II
b. Level Disk (OR-D46VA)
c. Level Disk (OR-D46WA)
d. Universal Counter

5-8-2. Measurement
a. Connect the disk drive to the MFD Checker II. (Refer to Fig. 5-8 (a))
b. Insert the level disk in place.
c. Move the head until it arrives at TRK 35.
d. Connect the universal counter probe tip to TP-5 on the MFD Checker II.
e. Check if the pulses are generated every 100 $\pm 1.5 \mathrm{msec}$.

Disk Drive LC iViotor Spee

a. If the pulses are generated other than every $100 \pm 1.5 \mathrm{msec}$ in the measurement (5-8-2), disassemble the following parts and then perform the adjustment.

1. Main cover (Refer to 4-5)
2. Front panel ass'y (Refer to 4-2)

32W 3. Damper (Refer to 4-7)
32W. 4. Head load ass'y (Refer to 4-8)
5. Cassette-up ass'y (Refer to 4-9)
6. Disk motor (Refer to 4-11)
7. WP arm, D-Detection arm (Refer to 4-10)
b. Connect the disassembled disk motor board as shown in Fig. 5-8 (b).

Fig. 5-8 (b) Motor Speed Adjustment
c. Set disk motor control switch (S102) located on FC-9/FC-14 Mounted Board, to side "A".
d. Turn on the unit. Read the value of the universal counter.
e. The value may be falled in one of the followings.

1. 0 (Not rotate)
2. $100 \pm 10 \mathrm{msec}$
3. 90 msec or less

Replace the parts in accordance with the flowchart or expression below:
i) When the disk motor does not rotate: (Refer to flowchart 5-8 (a))
ii) When the pulses are generated every 100 $\pm 10 \mathrm{msec}$:
Change the value of R9 and R8 in the following manner:

- PULSE INTERVAL - $100<0$ R9 $(\mathrm{k} \Omega)=1.5 \times[100-\operatorname{PULSEINTERVAL}(\mathrm{msec})]$ $R 8=150 \mathrm{k} \Omega$
- PULSE INTERVAL - $100>0$

R8 $(\mathrm{k} \Omega)=150-1.5 \times$ [PULSEINTERVAL $(\mathrm{msec})-100]$
$R 9=0 \Omega$
NOTE: Figures marked with \# are for a disk motor having the lot number of XXXX2. For detail, refer to the circuit diggram and electrical parts list.

- PULSE INTERVAL - $100<0$ R9 $(\mathrm{k} \Omega)=1.5 \times[100-$ PULSEINTERVAL (msec) $]$ \#R8 $=160 \mathrm{k} \Omega$
- PULSE INTERVAL-100>0 \#R8 $(\mathrm{k} \Omega)=160-1.5$ [PULSEINTERVAL (msec) - 100] $\mathrm{R} 9=0 \Omega$
iii) When the motor speed is abnormally high: (Refer to flowchart 5-8 (b))
f. Install all the assembled parts.
g. Remeasure the motor speed interval and confirm that it is $100 \pm 1.5 \mathrm{msec}$.
h. If it is not $100 \pm 1.5 \mathrm{msec}$, repeat the steps from the beginning of 5-8-3. Adjustment.
NOTE: Don't forget to put disk motor control switch (S102) located on FC-9/FC-14 Mounted Board, back to original position.

$$
-52-
$$

5-9. HL ARM HEIGHT
Disassemble the following parts and then perform the adjustment.
a. Main Cover (Refer to 4-5)

5-9-1. Tools and Measuring Equipment
a. MFD Checker I
b. $\oplus 2 \mathrm{~mm}$ Driver
c. $\Theta 2 \mathrm{~mm}$ Driver

5-9-2. Measurement

a. Connect the disk drive to the MFD Checker II. (Refer to Fig. 2-1)
b. Move the head until it arrives at TRK 79.
c. Manually set the machine into the Disk-In mode. (Refer to Fig. 4-9 (a))
d. Push down the plunger core of the head. load ass'y at point A. (Refer to Fig. 5-9)

Fig. 5-9 HL Arm Height Adjustment
e. Check if clearance B between the HL Arm and pad arm is set at a value within the and pad arm is set at a value within the
range of 0.3 to 0.9 mm . (Refer to Fig. 5-9)

5-9-3. Adjustment
a. If the gap is not within 0.3 to 0.9 mm , loosen the screw which fastens the plunger solenoid and once push down the plunger solenoid.
b. Insert a Θ driver beneath the plunger solenoid and slowly push up the plunger solenoid until clearance B becomes the specified value. (Refer to Fig. 5-9)
c. Fasten the screw and check again if clearance B meets the specification.

5-10. HEAD CLEARANCE
Disassemble the following parts and then perform the adjustment.
a. Main Cover (Refer to 4-5)

5-10-1. Tools and Measuring Equipment
a. MFD Checker II
b. Round Nose Plier
c. Hexagon Wrench Torque Driver

5-10-2. Measurement

a. Connect the disk drive to the MFD Checker II. (Refer to Fig. 2-1)
b. Move the head until it arrives at TRK 79.
c. Manually set the machine into the Disk-In mode. (Refer to Fig. 4-9 (a))
After pressing the HL Arm twice or more, visually check if the clearance between the head and pad is within 0.1 to 0.4 mm . (Refer to Fig. 5-10 (a))
Afer pressing the HL Arm twice or more visually check if the clearance between oth heads is within 0.1 to 0.4 mm . (Refer to Fig. 5-10 (b))

5-10-3. Adjustment

If the clearance is greater than 0.4 mm , bend the HL Arm mounting plate downwards. (Refer to 5-10 (a)) If the clearance is less than 0.1 mm , bend the HL Arm mounting plate upwards. (Refer to Fig. 5-10 (a))
If the clearance is out of the specified range, turn the HL Arm adjusting screw until the clearance is in the specification. (Refer to Fig. 5-10 (b))
After completion of the adjustment, fix the adjusting screw with nut lock paint. (Refer to Fig. 5-10 (b))

(a) OA-D32V

(b) OA-D32W

Fig. 5-10 HL Arm Height Adjustment

5-11. HEAD CLEANING
Disassemble the following parts and then make the head clean.
a. Main Cover (Refer to 4-5)

5-11-1. Tools and Measuring Equipmen
32V a. Applicator
2327: b. Alcohol
[32Vi c. Cleaning Disk (OR-D29VA)
32W: d. Cleaning Disk (OR-D29WA)
e. MFD Checker II

32V: 5-11-2. Cleaning with Applicator
a. Mànually lifting the pad arm, scrub the head surface lightly with an applicator containing alcohol.
b. Scrub the head surface with a dry applicator. Do not leave fine cotton fibers on the head surface.

5-11-3. Cleaning with Cleaning Disk
a. Connect the disk drive to MFD Checker II. (Refer to Fig. 2-1)
b. Move the head until it arrives at an unused track of the cleaning disk.
c. Set the cleaning disk in place, and hold it for about 10 seconds. Thereafter, eject the cleaning disk.
NOTE: Do not use any scratched cleaning disk Do not reuse any used track because effect on the head. effect on the head.
NOTE: Cross out numbers of the used tracks on a cleaning disk label, shown in the example, for avoiding reusage.

6-2. MECHANICAL PARTS LIST
NOTE: 1. Parts printed in Bold-Face type are normally stocked for replacement purposes. The remaining parts shown in this list are not normally required for routine service work. Orders for parts not shown in Bold-Face type will be processed, but allow for additional delivery time.

No.	Parts No.	Description	Parts No.	Description
1	A-8010-049-A	Lead Screw Ass'y	7-621-972-25	SCREW, TOTSU PS2.6×6
2	A-8010-014-B	Coupling Ass'y	7-621-972-45,	SCREW, TOTSU PS2.6×10
3	4601-076-00	Lead Screw	7-621-981-15	SCREW, TOTSU PSW2.6×6
4	4-601-083-00	Compression Spring	7-621-981-25	SCREW, TOTSU PSW2.6 $\times 8$
5	4-601-097-00	Thrust Bearing	7-621-912-20	SCREW, TOTSU B2.6 $\times 5$
6	8-838-025-11	Stepping Motor (SNS-1100A)	7-621-731-08	SET-SCT, HEX. 2×2.5,
	8-838-061-01	Stepping Motor (SNS-1500A)		FLAT POINT
7	A-8010-024-A	Head Carriage Ass'y	7-621-733-08	SET-SCT, HEX. 2×4
8	A-8010-025-A	Head Load Ass'y		FLAT POINT
9	4-603-921-00	HL Arm	7-624-102-04	STOP RING 1.5, TYPE-E
10	4-603-922-00	HL Arm Shaft	7-624-105-04	STOP RING 2.3, TYPE-E
11	4-603-923-00	Torsion Spring		
12	A-8010-026-A	Cassette-up Ass'y		
13	4-601-096-00	Tention Spring		
14	4603-901-00	Tension Spring		
15	4-604-062-00	Eject Arm		
16	4-847-057-00	Tension Spring		
17	A-8050-001-A	Sensor Mounted Board		
18	3-659-609-00	Compression Spring		
19	4-601-003-00	Slide Guide Shaft		
20	4-601-008-03	Guide Retainer (A)		
21	4-603-926-00	Guide Retainer (C)		
22	4-601-009-03	WP Arm		
23	4-601-050-04	Blind Panel		
24	4-601-098-00	Ball Bearing (No Flange)		
25	4603-916-00	HC-Hamess Holder		
26	4-603-924-00	Damper		
27	4603-925-02	Terminal Shield Plate		
28	4-603-927-00	D-Detection Arm		
29	7-623-520-01	Lug, 3		
30	8-838-050-01	Disk Drive Motor (BHC-2101A)		
31	A-8050-002-B	LED Mounted Board Ass'y		
32	1-605-400-00	LED Mounted Board		
33	4-601-027-00	Cushion		
34	8-719-900-92	GL-9PR20		
35	A-805 1-042-A	FC-9 Complete PCB		.
36	4-601-026-11	Main Cover		
37	4603-928-00	Shield Plate		
38	4603-929-00	Transport Cassette Dummy		
39	X-4601-029-1	Front Panel Ass'y (OA-D32W)		
	X-4601-043-1	Front Panel Ass'y (OA-D32W-10)		
40	4-601-052-12	Eject Button		
41	4-601-060-00	Compression Spring		

MEMO

\qquad

6-3. OVER ALL DIAGRAM

6.3-1. Interconnection Diagram

Circuit Diagram Circuit Diagram

6-4-2. Parts Layout on FC-9

- Component Side -

Remark:

1. Numbers between FC-14/FC-9 and Disk Motor Circuit Board indicate the color of the cable.
2. A part marked with $[$ in the diagram is factory selected. For the replacement, please refer to $5-8$.
3. Part name or part's value of part reference no marked with \# may be differed from this diagram for a disk motor having the lot number of XXXX2, that is rubber-stampped on the metal cover. As to the actual part name and part's value for these parts, please refer to electrical parts list.

6-5. ELECTRIC PARTS

65-1. Chip Parts Replacement Procedure

This unit uses chip components such as carbon resistor, ceramic capacitor, transistor and diode in some circuits. It also uses IC's of flat-pack type.

As the appearance of carbon resistor and ceramic capacitor are identical, destinguishment of each can be possible by visual check of reference address of silk-screen print on the printed circuit board.

As the shape of transistor and diode are same, they also are distinguished by the reference address of silkscreen print.
Tools:

- Soldering iron; 20 W
(If possible, use soldering tip with heat-controller of $270 \pm 10^{\circ} \mathrm{C}$)
- Desoldering metal braid ("SOLDER TAUL" or
- Solder (of 0.6 mm dia. is recommended.)
- Tweezers

Soldering Conditions:

Tip temperature; $270 \pm 10^{\circ} \mathrm{C}$
Solder within 2 sec . per an electrode
Higher temperature or longer tip application than specified may be damaged to the chip component.

(1) Resistor and Capacitor

1) Add heat onto the chip-part by the top of soldering iron tip and slide the chip-part aside when the solder is melted.
2) Confirm visually with care that there is no pattern peeling, damage, and/or bridge where the part was removed or its surrounding.
3) Presolder the pattern into thin where the part was removed.
4) Place a new chip-part onto the pattern and solder both sides.
CAUTION: Do not use the chip-part again once used.
(2) Transistor and Diode
5) Cut the leads of the semiconductor part to be removed with a cutter
6) Remove the leads cut as the above, and confirm visually that there is no pattern peeling, any damage and/or bridge where the part was removed or its surrounding.
7) Presolder the pattern into thin where the part was removed.
8) Place a new chip-part onto the pattern and solder the leads.

(3) IC (Flat-pack type)
9) Cut the leads of the IC to be removed with a cutter.
10) Remove the each pin of IC from the pattern by tweezers while heating the pin by soldering iron.
11) Confirm visually with care that there is no pattern peeling, damage, and/or bridge where the part was removed or its surrounding.
12) Place a new IC onto the pattern and solder it.
13) Confirm by tester that each conduction between IC's terminal and upper port is surely made.
14) If not, resolder the portion.

6-5-2. Electric Parts List
NOTE: 1. All capacitors are in micro farads unless other-
wise specified.
2. All inductors are in micto henries unless other-
wise specified.
3. All resistors are in ohms.
4. "CHIP" stands for chip component.

FC-9 BOARD

Ref. No.	Parts No.	Description			
	CAPACITORS				
C101	1-163-251-00	CERAMIC (CHIP)	100PF	5\%	50 V
C102	1-163-259-00	CERAMIC (CHIP)	220PF	5\%	50 V
C103	1-163-017-00	CERAMIC (CHIP)	0.0047	10\%	50 V
C104	1-163-035-00	CERAMIC (CHIP)	0.047		50 V
C105	1-163-011-00	CERAMIC (CHIP)	0.0015	10\%	50V
C106	1-163-021-00	CERAMIC (CHIP)	0.01	10\%	50V
C107	1-163-021-00	CERAMIC (CHIP)	0.01	10\%	50 V
C108	1-163-038-00	CERAMIC (CHIP)	0.1		25 V
C109	1-123-821-00	ELECT	47	20\%	16V
C110	1-163-035-00	CERAMIC (CHIP)	0.047		50V
C111	1-123-621-41	ELECT	10	20\%	25V
C112	1-163-038-00	CERAMIC (CHIP)	0.1		25 V
C113	1-163-038-00	CERAMIC (CHIP)	0.1		25 V
C114	1-163-035-00	CERAMIC (CHIP)	0.047		50 V
C115	1-163-259-00	CERAMIC (CHIP)	220PF	5\%	50 V
C116	1-163-259-00	CERAMIC (CHIP)	220PF	5\%	50 V
C117	1-163-035-00	CERAMIC (CHIP)	0.047		50 V
C118	1-163-035-00	CERAMIC (CHIP)	0.047		50 V
C119	1-163-035-00	CERAMIC (CHIP)	0.047		50 V
C120	1-123-621-41	ELECT	10	20\%	25 V
C121	1-123-821-00	ELECT	47	20\%	16V
C122	1-123-821-00	ELECT	47	20\%	16V
C123	1-131-345-00	TANTALUM	0.47	10\%	35V
C124	1-163-037-00	CERAMIC (CHIP)	0.022	10\%	25 V
C125	1-131-357-00	TANTALUM	4.7	10\%	25 V
C126	1-131-371-00	TANTALUM	10	10\%	16V
C127	1-163-038-00	CERAMIC (CHIP)	0.1		25V
C128	1-163-038-00	CERAMIC (CHIP)	0.1		25V
C129	1-163-038-00	CERAMIC (CHIP)	0.1		25 V
C130	1-163-038-00	CERAMIC (CHIP)	0.1		25 V
C131	1-163-038-00	CERAMIC (CHIP)	0.1		25V
C132	1-163-247-00	CERAMIC (CHIP)	68PF	5\%	50V

Ref. No. Parts No. \quad Description

CN101	$1-560-618-00$	CONNECTOR POST HEADER, ILG
CN102	$1-560-357-00$	CONNECTOR POST HEADER, ILG
CN103	$1-560-357-00$	CONNECTOR POST HEADER, ILG
CN104	$1-560-357-00$	CONNECTOR POST HEADER, ILG
CN105	$1-560-360-00$	CONNECTOR POST HEADER, ILG
CN106	$1-560-360-00$	CONNECTOR POST HEADER, ILG
CN107	$1-560-619-00$	CONNECTOR POST HEADER, ILG
CN108	$1-560-542-00$	POST HEADER, EI CONNECTOR
CN109	$1-564-244-00$	CONNECTOR (M) 26P

D101	$8-719-100-05$	1 S 2837 (CHIP)
D102	$8-719-101-23$	1 SS 123 (CHIP)
D103	$8-719-101-23$	1 SS 123 (CHIP)
D104	$8-719-100-05$	1 S 2837 (CHIP)
D105	$8-719-100-05$	1 S 2837 (CHIP)
D106	$8-719-101-07$	RD33EB3
D107	$8-719-912-25$	1 S 2348 HTD
D108	$8-719-106-43$	RD9.1M-B1 (CHIP)
D109	$8-719-912-25$	1 S2348HTD
D110	$8-719-912-25$	1 S 2348 HTD
D111	$8-719-912-25$	1S2348HTD
D112	$8-719-912-25$	1S2348HTD
D113	$8-719-981-01$	ERA81-004
D114	$8-719-105-64$	RD4.3M-B2 (CHIP)
		ICS

IC101	$8-759-908-30$	IC MB8847-1199M
IC102	$8-759-120-03$	IC μ PA2003C
IC103	$8-759-000-07$	IC MC3470AP
IC104	$8-759-005-92$	IC NE592N
IC105	$8-759-900-14$	IC SN74LS14N
IC106	$8-759-974-06$	IC SN7406N
IC107	$8-759-900-26$	IC SN74LS26N
IC108	$8-759-974-38$	IC SN7438N
IC109	$8-759-902-74$	IC SN74LS423N
IC110	$8-759-902-21$	IC SN74LS22IN
IC111	$8-759-900-74$	IC SN74LS74AN
IC112	$8-759-974-38$	IC SN7438N
IC113	$8-759-178-05$	IC μ PC78L05
IC114	$8-759-612-04$	IC M51204L
IC115	$8-759-902-66$	IC SN74LS266N

f. No.	Parts No.	Description			
		coils			
31	1-408-442-21	MICRO INDUCTOR $10 \mu \mathrm{H}$			
TRANSISTORS					
01	8-729-900-53	DTC114EK (CHIP)			
02	8-729-900-53	DTC114EK (CHIP)			
03	8-729-271-23	2SC2712G (CHIP)			
04	8-729-162-45	2SB624-BV5 (CHIP)			
05	8-729-103-43	2SB734-2			
06	8-729-162-45	2SB624-BV5 (CHIP)			
07	8-729-162-45	2SB624-BV5 (CHIP)			
08	8-729-162-45	2SB624-BV5 (CHIP)			
09	8-729-271-23	2SC2712G (CHIP)			
10	8-729-900-53	DTC114EK (CHIP)			
11	8-729-159-64	2SD596-DV5 (CHIP)			
12	8-729-900-53	DTC114EK (CHIP)			
13	8-729-900-53	DTC114EK (CHIP)			
114	8-729-900-53	DTC114EK (CHIP)			
		RESITORS			
101	1-216-049-00	METAL (CHIP)	1K	5\%	1/10W
102	1-216-049-00	METAL (CHIP)	1K	5\%	1/10W
103	1-216-049-00	METAL (CHIP)	1K	5\%	1/10W
104	1-216-049-00	METAL (CHIP)	1K	5\%	.1/10W
105	1-216-049-00	METAL (CHIP)	1K	5\%	1/10W
106	1-216-049-00	METAL (CHIP)	1K	5\%	1/10W
107	1-216-049-00	METAL (CHIP)	1 K	5\%	1/10W
108	1-216-049-00	METAL (CHIP)	1K	5\%	1/10W
109	1-216-073-00	METAL (CHIP)	10K	5\%	1/10W
110	1-214-140-00	METAL	2.2 K	1\%	1/4W
111	1-216-057-00	METAL (CHIP)	2.2K	5\%	1/10W
112	1-214-140-00	METAL	2.2 K	1\%	1/4W
113	1-216-057-00	METAL (CHIP)	2.2K	5\%	1/10W
. 114	1-216-077-00	METAL (CHIP)	15K	5\%	1/10W
. 115	1-216-077-00	METAL (CHIP)	15K	5\%	1/10W
. 117	1-216-057-00	METAL (CHIP)	2.2K	5\%	1/10w
. 118	1-216-021-00	METAL (CHIP)	68	5\%	1/10w
119	1-216-073-00	METAL (CHIP)	10K	5\%	1/10W
.120	1-216-073-00	METAL (CHIP)	10K	5\%	1/10W
[121	1-216-049-00	METAL (CHIP)	1K	5\%	1/10W
:122	1-216-089-00	METAL (CHIP)	47K	5\%	1/10W
[123	1-216-089-00	METAL (CHIP)	47K	5\%	1/10W
[124	1-216-057-00	METAL (CHIP)	2.2K	5\%	1/10W
1125	1-216-057-00	METAL (CHIP)	2.2K	5\%	1/10W
2126	1-216-057-00	METAL (CHIP)	2.2K	5\%	1/10W

Ref. No.	Parts No.	Description			
R127	1-216-065-00	METAL (CHIP)	4.7K	5\%	1/10W
R128	1-216-049-00	METAL (CHIP)	1K	5\%	1/10W
R129	1-216-041-00	METAL (CHIP)	470	5\%	1/10W
R130	1-216-041-00	METAL (CHIP)	470	5\%	1/10W
R131	1-216-049-00	METAL (CHIP)	1 K	5\%	1/10W
R134	1-216-067-00	METAL (CHIP)	5.6 K	5\%	1/10W
R135	1-216-061-00	METAL (CHIP)	3.3K	5\%	1/10W
R136	1-216-033-00	METAL (CHIP)	220	5\%	1/10W
R137	1-216-073-00	METAL (CHIP)	10K	5\%	1/10W
R138	1-216-057-00	METAL (CHIP)	2.2 K	5\%	1/10W
R140 ${ }^{\circ}$	1-216-081-00	METAL (CHIP)	22K	5\%	1/10W
R141	1-216-065-00	METAL (CHIP)	4.7K	5\%	1/10W
R142	1-2'16-065-00	METAL (CHIP)	4.7K	5\%	1/10W
R143	1-216-065-00	METAL (CHIP)	4.7K	5\%	1/10W
R144	1-216-065-00	METAL (CHIP)	4.7K	5\%	1/10W
R145	1-216-049-00	METAL (CHIP)	1K	5\%	1/10W
R146	1-216-049-00	METAL (CHIP)	1K	5\%	1/10W
R147	1-216-083-00	METAL (CHIP)	27K	5\%	1/10W
R148	1-216-081-00	METAL (CHIP)	22K	5\%	1/10W
R149	1-216-077-00	METAL (CHIP)	15K	5\%	1/10W
R150	1-216-077-00	METAL (CHIP)	15K	5\%	1/10W
R151	1-216-061-00	METAL (CHIP)	3.3K	5\%	1/10W
R152	1-216-081-00	METAL (CHIP)	22K	5\%	1/10W
R153	1-216-073-00	METAL (CHIP)	10K	5\%	1/10W
R154	1-216-061-00	METAL (CHIP)	3.3 K	5\%	1/10W
R155	1-216-083-00	METAL (CHIP)	27K	5\%	1/10W
R156	1-216-061-00	METAL (CHIP)	3.3K	5\%	1/10W
R157	1-216-061-00	METAL (CHIP)	3.3K	5\%	1/10W
R158	1-212-515-00	METAL	180	1\%	1/2W
R159	1-216-097-00	METAL (CHIP)	100K	5\%	1/10W
R160	1-216-085-00	METAL (CHIP)	33K	5\%	1/10W
R161	1-216-053-00	METAL (CHIP)	1.5K	5\%	1/10W
R162	1-216-033-00	METAL (CHIP)	220	5\%	1/10W
R163	1-216-043-00	METAL (CHIP)	560	5\%	1/10W
R164	1-216-073-00	METAL (CHIP)	10K	5\%	1/10W
R165	1-216-077-00	METAL (CHIP)	15K	5\%	1/10W
R166	1-216-077-00	METAL (CHIP)	15K	5\%	1/10W
R167	1-216-073-00	METAL (CHIP)	10K	5\%	1/10W
R168	1-216-009-00	METAL (CHIP)	22	5\%	1/10W
R169	1-216-037-00	METAL (CHIP)	330	5\%	1/10W
R170	1-216-037-00	METAL (CHIP)	330	5\%	1/10W
R171	1-216-081-00	METAL (CHIP)	22K	5\%	1/10W
R172	1-216-061-00	METAL (CHIP)	3.3K	5\%	1/10W
R173	1-216-081-00	METAL (CHIP)	22K	5\%	1/10W
R174	1-216-061-00	METAL (CHIP)	3.3K	5\%	1/10W

MEMO
\qquad

7-2. MECHANICAL PARTS LIST

NOTE: 1. Parts printed in Bold-Face type are normally stocked for replacement purposes. The remaining parts shown in this list are not normally required for routine service work. Orders for parts not shown in Bold-Face type will be processed, but allow for additional delivery time.

No.	Parts No.	Description
1	A-8010.049-A	Lead Screw Ass'y
2	A-8010-014-B	Coupling Ass'y
3	4601-076-00	Lead Screw
4	4601-083-00	Compression Spring
5	4601-097-00	Thrust Bearing
6	8-838-025-11	Stepping Motor (SNS-1100A)
	8.838-061-01	Stepping Motor (SNS-1500A)
7	A-8010-028-A	Head Arm Ass'y
8	A-8010.020.A	Pad Ass'y
9	4-603-936-00	Tension Spring
10	A-8010-030-A	Cassette-up Ass'y
11	4601-096-00	Tension Spring
12	4603-901-00	Tension Spring
13	4.604-062-00	Eject Arm
14	4-847-057-00	Tension Spring
15	A-8050-001-A	Sensor Mounted Board
16	A-8010-032-A	Head Load Ass'y
17	1-454-289-21	Plunger Solenoid
18	4601-017-00	HL Arm
19	4-601-060-00	Compression Spring
20	3-659-609-00	Compression Spring
21	4-601-003-00	Slide Guide Shaft
22	4-6-1-008-03	Guide Retainer (A)
23	4-603-926-00	Guide Retainer (C)
24	4601-009-03	WP Arm
25	4-601-050-04	Blind Panel
26	4601-098-00	Ball Bearing (No Flange)
27	4603-927-00	D-Detection Arm
28	7-623-507-01	Lug, 2.6
29	8-838-050-01	Disk Drive Motor, (BHC-2101A)
30	A-8050-002-B	LED Mounted Board Ass'y
31	1-605-400-00	LED Mounted Board
32	4-601-027-00	Cushion
33	8-719-900-92	GL-9PR20
34	A-8051-044-A	FC-14 Complete PCB
35	4-601-026-11	Main Cover
36	4-603-928-00	Shield Plate
37	X-4601-029-0	Front Panel Ass'y
38	4-601-052-12	Eject Button

Parts No.	Description	
$7-621-972-25$	SCREW, TOTSU	PS2.6 $\times 6$
$7-621-972-45$	SCREW, TOTSU	PS2. $\times 10$
$7-621-981-15$	SCREW, TOTSU	PSW 2.6×6
$7-621-981-25$	SCREW, TOTSU	PSW 2.6×8
$7-621-912-20$	SCREW, TOTSU	B2.6 $\times 5$
$7-628-253-05$	SCREW +PS $\times 4$	
$7-621-731-08$	SET-SCT. HEX. 2×2.5,	
	FLAT POINT	
$7-624-105-04$	STOP RING 2.3, TYPE -E	
$7-688-001-01$	W2, SMALL	

\qquad

Over All Diagram Over All Diagram

7.3. OVER ALL DIAGRAM

7-3-1. Intorconnection Diagram

Circuit Diagram Circuit Diagram

7.4. CIRCUIT DIAGRAM

7-4-1. Circuit Diagram on FC-14

R159

Parts Layout on FC-14
 Parts Layout on FC-14

Disk Motor Circuit Diagram Disk Motor Circuit Diagram

7-4-3. Disk Motor Circuit Diagram

Remark:

1. Numbers between FC-14/FC-9 and Disk Motor Circuit Board indicate the color of the cable.
2. A part marked with \square in the diagram is factory selected. For the replacement, please refer to 5-8.
3. Part name or part's value of part reference no marked with \# may be differed from this diagram for a disk motor having the lot number of XXXX2, that is rubber-stampped on the metal cover. As to the actual part name and part's value for these parts, please refer to electrical parts list.

※ Hall Element HTS - 103 A

7-5. ELECTRIC PARTS

7.5.1. Chip Parts Replacement Procedure

This unit uses chip compone.ats such as carbon resistor, ceramic capacitor, transistor and diode in some circuits. It also uses IC's of flat-pack type.
As the appearance of carbon resistor and ceramic capacitor are identical, destinguishment of each can be possible by visual check of reference address of silk-screen print on the printed circuit board.
As the shape of transistor and diode are same, they also are distinguished by the reference address of silkscreen print.
Tools:

- Soldering iron; 20 W
(If possible, use soldering tip with heat-controller of $270 \pm 10^{\circ} \mathrm{C}$)
- Desoldering metal braid ("SOLDER TAUL" or equivalent)
- Solder (of 0.6 mm dia. is recommended.)
- Tweezers

Soldering Conditions:
Tip temperature $; 270 \pm 10^{\circ} \mathrm{C}$
Solder within 2 sec . per an electrode
Higher temperature or longer tip application than specified may be damaged to the chip component.

(1) Resistor and Capacitor

1) Add heat onto the chip-part by the top of soldering iron tip and slide the chip-part aside when the solder is melted.
2) Confirm visually with care that there is no pattern peeling, damage, and/or bridge where the part was removed or its surrounding.
3) Presolder the pattern into thin where the part was removed.
4) Place a new chip-part onto the pattern and solder both sides.

CAUTION: Do not use the chip-part again once used.
(2) Transistor and Diode

1) Cut the leads of the semiconductor part to be removed with a cutter.
2) Remove the leads cut as the above, and confirm visually that there is no pattern peeling, any damage and/or bridge where the part was removed or its surrounding.
3) Presolder the pattern into thin where the part was removed.
4) Place a new chip-part onto the pattern and solder the leads.

(3) IC (Flat-pack type)

1) Cut the leads of the IC to be removed with a cutter.
2) Remove the each pin of IC from the pattern by tweezers while heating the pin by soldering iron.
3) Confirm visually with care that there is no pattern peeling, damage, and/or bridge where the part was removed or its surrounding.
4) Place a new IC onto the pattern and solder it.
5) Confirm by tester that each conduction between IC's terminal and upper port is surely made.
6) If not, resolder the portion.

7-5-2. Electric Parts List
NOTE: 1. All capacitors are in micro farads unless otherwise specified.
2. All inductors are in micro henries unless otherwise specified.
3. All resistors are in ohms.
4. "CHIP" stands for chip component.

FC-14 BOARD

Ref. No. Parts No. $\frac{\text { Description }}{\text { CAPACITORS }}$

C101	$1-163-251-00$	CERAMIC (CHIP)	100 PF	5%	50 V
C102	$1-163-259-00$	CERAMIC (CHIP)	220 PF	5%	50 V
C103	$1-163-017-00$	CERAMIC (CHIP)	0.0047	10%	50 V
C104	$1-163-035-00$	CERAMIC (CHIP)	0.047		50 V
C105	$1-163-011-00$	CERAMIC (CHIP)	0.0015	10%	50 V
C106	$1-163-021-00$	CERAMIC (CHIP)	0.01	10%	50 V
C107	$1-163-021-00$	CERAMIC (CHIP)	0.01	10%	50 V
C109	$1-123-821-00$	ELECT	47	20%	16 V
C110	$1-163-035-00$	CERAMIC (CHIP)	0.047		50 V
C111	$1-123-621-41$	ELECT	10	20%	25 V
C112	$1-163-038-00$	CERAMIC (CHIP)	0.1		25 V
C113	$1-163-038-00$	CERAMIC (CHIP)	0.1		25 V
C114	$1-163-035-00$	CERAMIC (CHIP)	0.047		50 V
C115	$1-163-259-00$	CERAMIC (CHIP)	220 PF	5%	50 V
C116	$1-163-259-00$	CERAMIC (CHIP)	220 PF	5%	50 V
C117	$1-163-035-00$	CERAMIC (CHIP)	0.047		50 V
C118	$1-163-035-00$	CERAMIC (CHIP)	0.047		50 V
C119	$1-163-035-00$	CERAMIC (CHIP)	0.047		50 V
C120	$1-123-621-41$	ELECT	10	20%	25 V
C121	$1-123-821-00$	ELECT	47	20%	16 V
C122	$1-123-821-00$	ELECT	47	20%	16 V
C123	$1-131-345-00$	TANTALUM	0.47	10%	35 V
C124	$1-163-037-00$	CERAMIC (CHIP)	0.022	10%	25 V
C125	$1-131-357-00$	TANTALUM	4.7	10%	25 V
C126	$1-131-371-00$	TANTALUM	10	10%	16 V
C127	$1-163-038-00$	CERAMIC (CHIP)	0.1		25 V
C128	$1-163-038-00$	CERAMIC (CHIP)	0.1		25 V
C129	$1-163-038-00$	CERAMIC (CHIP)	0.1		25 V
C130	$1-163-038-00$	CERAMIC (CHIP)	0.1		25 V
C131	$1-163-038-00$	CERAMIC (CHIP)	0.1		25 V
C134	$1-131-356-00$	TANTALUM	3.3	10%	25 V
C15					

D101	8-719-100-05	1S2837 (CHIP)
D102	8-719-101-23	1 SS 123 (CHIP)
D103	8-719-101-23	1SS123 (CHIP)
D105	8-719-100-05	1 S 2837 (CHIP)
D106	8-719-101-07	RD33EB3
D107	8-719-912-25	1S2348HTD
D108	8-719-106-43	RD9.1M-B1 (CHIP)
D109	8-719-912-25	1S2348HTD
D110	8-719-912-25	1 S 2348 HTD
D111	8-719-912-25	$1 \mathrm{~S} 2348 \mathrm{HTD}$
D112	8-719-912-25	1S2348HTD
D113	8-719-981-01	ERA81-004
D114	8-719-105-64	RD4.3M-B2 (CHIP)
		FILTER
FLI01	1-235-269-00	FILTER, LOW PASS
		ICS
IC101	8-759-908-30	IC MB8847-1199M
IC102	8-759-120-03	IC μ PA2003C
IC103	8-759-000-07	IC MC3470AP
IC104	8-759-005-92	IC NE592N
IC105	8-759-900-14	IC SN74LS14N
IC106	8-759-974-06	IC SN7406N
IC107	8-759-954-52	IC SN75452BP
IC108	8-759-974-38	IC SN7438N
IC109	8-759-902-74	IC SN74LS423N
IC110	8-759-902-21	IC SN74LS221N
IC111	8-759-900-74	IC SN74LS74AN
IC112	8-759-974-38	IC SN7438N
IC113	8-759-178-05	IC μ PC78L05
IC114	8-759-612-04	IC M51204L
IC115	8-759-902-66	IC SN74LS266N

Ref. No. Parts No. $\frac{\text { Description }}{\text { CONNECTORS }}$

CN101	$1-560-618-00$	CONNECTOR POST HEADER, ILG 7P
CN102	$1-560-357-00$	CONNECTOR POST HEADER, ILG (3F
CN103	$1-560-357-00$	CONNECTOR POST HEADER, ILG (3F
CN104	$1-560-357-00$	CONNECTOR POST HEADER, ILG (3F
CN105	$1-560-360-00$	CONNECTOR POST HEADER, ILG (6F
CN106	$1-560-359-00$	CONNECTOR POST HEADER, ILG (5F
CN107	$1-560-619-00$	CONNECTOR POST HEADER, ILG 7P
CN108	$1-560-542-00$	POST HEADER, EI CONNECTOR 4P
CN109	$1-564-244-00$	CONNECTOR (M) 26P
		DIODES

ef. No.	Parts No.	Description
		COIL
101	1-408-442-21	MICRO INDUCTOR 1
	TRANSISTORS	
101	8-761-621-00	2SC1636-21
102	8-729-900-53	DTC114EK (CHIP)
103	8-761-621-00	2SC1636-21
104	8-729-162-45	2SB624-BV5 (CHIP)
105	8-729-103-43	2SB734-2
. 06	8-729-162-45	2SB624-BV5 (CHIP)
07	8-729-162-45	2SB624-BV5 (CHIP)
08	8-729-162-45	2SB624-BV5 (CHIP)
09	8-729-900-53	DTC114EK (CHIP)
11	8-729-159-64	2SD596-DV5 (CHIP)
12	8-729-900-53	DTC114EK (CHIP)
13	8-729-900-53	DTC114EK (CHIP)
14	8-729-900-53	DTC114EK (CHIP)

RESISTORS

01	$1-216-049-00$	METAL (CHIP)	1 K	5%	$1 / 10 \mathrm{~W}$
02	$1-216-049-00$	METAL (CHIP)	1 K	5%	$1 / 10 \mathrm{~W}$
03	$1-216-049-00$	METAL (CHIP)	1 K	5%	$1 / 10 \mathrm{~W}$
04	$1-216-049-00$	METAL (CHIP)	1 K	5%	$1 / 10 \mathrm{~W}$
05	$1-216-065-00$	METAL (CHIP)	4.7 K	5%	$1 / 10 \mathrm{~W}$
36	$1-216-049-00$	METAL (CHIP)	1 K	5%	$1 / 10 \mathrm{~W}$
37	$1-216-049-00$	METAL (CHIP)	1 K	5%	$1 / 10 \mathrm{~W}$
38	$1-216-049-00$	METAL (CHIP)	1 K	5%	$1 / 10 \mathrm{~W}$
39	$1-216-073-00$	METAL (CHIP)	10 K	5%	$1 / 10 \mathrm{~W}$
10	$1-214-122-00$	METAL (CHIP)	390	1%	$1 / 4 \mathrm{~W}$
11	$1-216-057-00$	METAL (CHIP)	2.2 K	5%	$1 / 10 \mathrm{~W}$
12	$1-214-122-00$	METAL (CHIP)	390	1%	$1 / 4 \mathrm{~W}$
13	$1-216-053-00$	METAL (CHIP)	1.5 K	5%	$1 / 10 \mathrm{~W}$
14	$1-216-061-00$	METAL (CHIP)	3.3 K	5%	$1 / 10 \mathrm{~W}$
5	$1-216-061-00$	METAL (CHIP)	3.3 K	5%	$1 / 10 \mathrm{~W}$
7	$1-216-053-00$	METAL (CHIP)	1.5 K	5%	$1 / 10 \mathrm{~W}$
8	$1-216-021-00$	METAL (CHIP)	68	5%	$1 / 10 \mathrm{~W}$
9	$1-216-073-00$	METAL (CHIP)	10 K	5%	$1 / 10 \mathrm{~W}$
0	$1-216-073-00$	METAL (CHIP)	10 K	5%	$1 / 10 \mathrm{~W}$
1	$1-216-049-00$	METAL (CHIP)	1 K	5%	$1 / 10 \mathrm{~W}$
2	$1-216-089-00$	METAL (CHIP)	47 K	5%	$1 / 10 \mathrm{~W}$
3	$1-216-089-00$	METAL (CHIP)	47 K	5%	$1 / 10 \mathrm{~W}$
4	$1-216-057-00$	METAL (CHIP)	2.2 K	5%	$1 / 10 \mathrm{~W}$
5	$1-216-057-00$	METAL (CHIP)	2.2 K	5%	$1 / 10 \mathrm{~W}$
6	$1-216-065-00$	METAL (CHIP)	4.7 K	5%	$1 / 10 \mathrm{~W}$

Ref. No.	Parts No.	Description			
R127	1-216-065-00	METAL (CHIP)	4.7K	5\%	i/10w
R128	1-216-049-00	METAL (CHIP)	1K	5\%	1/10w
R129	1-216-041-00	METAL (CHIP)	470	5\%	1/10W
R130	1-216-041-00	METAL (CHIP)	470	5\%	1/10W
R131	1-216-049-00	METAL (CHIP)	1K	5\%	1/10W
R134	1-216-067-00	METAL (CHIP)	5.6K	5\%	1/10W
R135	1-216-061-00	METAL (CHIP)	3.3K	5\%	1/10w
R136	1-216-033-00	METAL (CHIP)	220	5\%	1/10W
R137	1-216-073-00	METAL (CHIP)	10K	5\%	1/10W
R138	1-216-057-00	METAL (CHIP)	2.2 K	5\%	1/10W
R140	1-216-041-00	METAL (CHIP)	470	5\%	1/10W
R141	1-216-065-00	METAL (CHIP)	4.7 K	5\%	1/10w
R142	1-216-065-00	METAL (CHIP)	4.7K	5\%	1/10W
R143	1-216-065-00	METAL (CHIP)	4.7K	5\%	1/10W
R144	1-216-065-00	METAL (CHIP)	4.7 K	5\%	1/10W
R145	1-216-049-00	METAL (CHIP)	1K	5\%	1/10w
R146	1-216-049-00	METAL (CHIP)	1K	5\%	1/10W
R147	1-216-065-00	METAL (CHIP)	4.7K	5\%	1/10W
R148	1-216-041-00	METAL (CHIP)	470	5\%	1/10W
R149	1-216-077-00	METAL (CHIP)	15K	5\%	1/10W
R150	1-216-077-00	METAL (CHIP)	15K	5\%	1/10W
R151	1-216-061-00	METAL (CHIP)	3.3K	5\%	1/10W
R152	1-216-081-00	METAL (CHIP)	.22K	5\%	1/10W
R154	1-216-061-00	METAL (CHIP)	3.3K	5\%	1/10W
R155	1-216-065-00	METAL (CHIP)	4.7K	5\%	1/10w
R156	1-216-061-00	METAL (CHIP)	3.3K	5\%	1/10W
R157	1-216-061-00	METAL (CHIP)	3.3 K	5\%	1/10W
R158	1-212-517-00	METAL (CHIP)	220	10\%	1/2W
R159	1-216-097-00	METAL (CHIP)	100K	5\%	1/10W
R160	1-216-085-00	METAL (CHIP)	33K	5\%	1/10W
R161	1-216-053-00	METAL (CHIP)	1.5 K	5\%	1/10W
R162	1-216-033-00	METAL (CHIP)	220	5\%	1/10W
R163	1-216-043-00	METAL (CHIP)	560	5\%	1/10W
R164	1-216-073-00	METAL (CHIP)	10K	5\%	1/10W
R165	1-216-053-00	METAL (CHIP)	1.5 K	5\%	1/10W
R166	1-216-053-00	METAL (CHIP)	1.5 K	5\%	1/10W
R167	1-216-059-00	METAL (CHIP)	2.7K	5\%	1/10W
R168	1-216-009-00	METAL (CHIP)	22	5\%	1/10W
R169	1-216-037-00	METAL (CHIP)	330	5\%	1/10W
R170	1-216-037-00	METAL (CHIP)	330	5\%	1/10W
R171	1-216-073-00	METAL (CHIP)	10K	5\%	1/10W
R172	1-216-061-00	METAL (CHIP)	3.3K	5\%	1/10W
R173	1-216-073-00	METAL (CHIP)	10K	5\%	1/10W
R174	1-216-061-00	METAL (CHIP)	3.3K	5\%	1/10W
R175	1-216-057-00	METAL (CHIP)	2.2 K	5\%	1/10W
R176	1-216-057-00	METAL (CHIP)	2.2K	5\%	1/10W

TRANSISTORS / DIODES / ICS PIN ARRANGEMENT
R05.1827

1SS123
TOP view ischle atl)

152837
TOP VIEW (SCALE 4/1)

SPI201-20

RDP7M
TOP VIEW (SCALE 4/1)

SN74LS266N (T)
TTL 2-INPUT EXCLUSIVE - NOR GATE WITH OPEN - COLLECTOR OUTPUT - TOP VIEW -

SN74LS423N (TI)
TTL RETRIGGERABLE MONOSTABLE MULTIVIBRATOR WITH DIRECT RESET - TOP VIEW -

4PA2003C (NEC) HIGH GAIN AMPLIFIER - TOP VIEW -

TA7245BP
TA7245BP (TOSHIBA)
MOTOR DRIVER
-TOP VIEW -

NJM4558S
NJM4558S (JRC)
HIGH PERFORMANCE DUAL OPERATIONAL AMPLIFIER

- SIDE VIEW -

MC3470AP (MOTOROLA)

- TOP VIEW -

NE592N (MOTOROLA)

- TOP VIEW -

CX069
CXO69 (SONY)
-SIDE VIEW -

Iransistors/Diodes/ICs Pin Arrangement

SN74LS14N (TI)

- TOP VIEW -

SN74LS74AN (TI)

- TOP VIEW -

μ PC78L05A (NEC)
POSITIVE VOLTAGE REGULATOR (100 mA)

M51204L (MITSUBISHI)
VOLTAGE COMPARATOR

- SIDE VIEW-

2 SC 2712
2SD596
TOP VIEW (SCALE 4/1)

2SB624
TOP VIEW (SCALE 4/1)

Transistors/Diodes/ICs Pin Arrangemen

DTC114EK
TOP VIEW (SCALE 4/1) SN7438N (TH)

2SB734

2SA937-R

2SC2021-R

2SC1636-21

MB8847 (FUJITSU) (FLAT PACKAGE) 4-BIT ONE-CHIP MICROCOMPUTER - TOP VIEW -

RO~R3: RO PORT R4~R7; RI PORT R8~R11: R2 PORT R12~RIS: R3 PORT KO~K3:K PORT KO~K3:K PORT O4~O7:OH PORT PO~P3:P PORT

\qquad

MICRO FLOPPYDISK DRIVE

SUPPLEMENT 1

This supplement covers some change of reference disks for servicing of models 0A-032W/0A-D32V.

We have changed signal composit method and phase relationship for alignment disk, in order to increase the accuracy of the adjustments to be required in the field service.
In addition to the above, system disks to be emploped for both radial alignment adjustment/ measurement and final error check are modified in each content, to utilize the field available soft-wares CP/M (SONY model name SMW-7002) and SONY BASIC (SONY model name SMW-7011). The new syatem disk, we prepare, is named as R / E systm disk (OR-D114VA, P/N 8-960-010-18).
In the actual procedure, the following disks must be prepared for necesary adjustment and final check.

1. As for radial alignment adjustment/measurement, a SONY BASIC and our new system disk OR-D114VA are required.
2. As for final check, 2 CP/M disk, a CP/M disk and our new system disk OR-D114VA are required.

The change of P / N for apolicable disks are as followa.

1 tem	P/N of orlalnal disk	P/N of new disk
a) Aligrment disk	QR-D\&TVA $8-960-009-32$	$\begin{aligned} & \text { OR-D123VA } \\ & 8-960-010-26 \\ & \hline \end{aligned}$
b) Radial aligment system diak	$\begin{aligned} & \text { CR-D86A } \\ & 8-960-009-74 \\ & \hline \end{aligned}$	none
c) Etror check system disk	$\begin{aligned} & \text { OR-D87VA } \\ & 8-960-009-75 \\ & \hline \end{aligned}$	none
d) $C P M$ disk	none	SMW-7002
e) SCNY BASIC	none	SMP-7011
f) R / E systom disk	none	$\begin{aligned} & \text { CR-D114VA } \\ & 8-960-010-18 \\ & \hline \end{aligned}$

The following sections (pages on original service manual) should be replaced with attached revised pages.

Section 2-1 General and special tool	(page 8)
Section 3-3-1 Procudure Ttack positioning	(pages 16-17)
Section 3-4 Final check	(pages 23-27)
Section 5-4 Radial aligment	(pages 42-46)

2-1 GENERAL AND SPECIAL TOOL LIST
The tools and measuring instruments for perform maintenance on the OA-D32W/OA-D32V are listed below.
a. General Tools

	SONY parts No.
TOTSU screw driver (M 2.6)	(7-721-050-62)
+ driver 2mm	(7-700-749-01)
- driver 2 mm	(7-700-750-01)
- driver 4mm	(7-700-750-04)
Tweezers	(7-700-753-02)
Round nose plier	(7-700-757-01)
Adj. rod	(7-700-733-01)
Cutter	(7-700-758-02)
CP/M (SMH-7002)	
SONY DISK BASIC (SMW-7011)	
Soldering iron (20W)	
Desoldering Metal Braid	
DC power supplier	
+5VDC+5\%, 0.8A min.,	
+12VDC $+5 \%, 1.5 \mathrm{Amin}$.	
Tester	

b. Special Tools

MFD Checker II
(J-609-182-0A)
SMC-70 System
SMI-7011/SMI-7011A/SMI7012/SMI7012A
SMC-70
KX-13HG1

A/D Converter	(J-623-002-0A)
25P/26P Conversion Cable	(J-623-001-0A)
R/E System Disk (OR-D114VA)	(8-960-010-18)
Rotatory Knob (for stepping motor)	
	(J-609-011-0A)
Lead Screw Eccentricity Inspection Tool	
	(J-609-136-0A)
Standard Disk Dummy (for Cassette-Up Ass'y	
Installation)	(J-609-1 20-0A)
Geared Driver	($\mathrm{J}-609-017-0 \mathrm{~A}$)
Pad Weight	(J-609-124-0A)
Hexagon Wrench Torque Driver	(J-609-125-0A)
Power Cable	(J-609-130-0A)
Interface Cable	(J-609-200-0A)

c. Heasuring Equipment
Oscilloscope Dual Trace 20MHz
Universal Counter Resolution 0.1 msec.
Tension Gauge (Max. 200g)
(J-604-163-0A)
Tension Gauge (Max. 20g)

d. Disks	
Level Disk	
32V OR-D46VA	$(8-960-009-31)$
32W OR-D46WA	$(8-960-009-40)$
Alignment Disk	
32V OR-D123VA	$(8-960-010-26)$
32W OR-D47WA	$(8-960-009-41)$
Dynamic Inspection Disk +30	
32V OR-D51VA	$(8-960-009-35)$
32W OR-D51WA	$(8-960-009-44)$
Dynamic Inspection Disk -30	
32V OR-D52VA	$(8-960-009-45)$
32W OR-D52WA	
Cleaning Disk	$(8-960-009-15)$
32V OR-D29VA	$(8-960-009-39)$
32W OR-D29WA	

e. Expendable and Chemical Supplies Nut Lock

Alcohol
Sony Oil (7-611-018-01)
Sony Grease
(7-622-001-52)
Bamboo Stick
Applicator


```
3-4 FINAL CHECX
3-4-1 Setting of SMC-70
a. Refering to Fig. 2-2 (a), connect the
    drive to SMC-70 system.
b. Place auto start switch located on the
    left side panel to "DISK".
c. Set the DRIVE SELECT switch (S101) of the
    unit to "2".
3-4-2 Set the Chock Area
```


The test item from command table must be chosen.

Description	Keying	Display
1. To read dynamic inspection disk or pre-recorded data disk. Type the number of pass count for reading tracks and sectors pre-set in item 3-4-2. [EX] In case it is once. Insert the disk to be tested. Read test starts under the test condition pre-set in item 3-4-2. The test ends.	RETURN 1 RETURN RETURN	```*** Read Test * Enter pass-count = # Test disk ready ? yes --> hit [Return] Pass-count = 1 In-ward (trkmin ->- trkmax) +Track= Out-ward (trkmax }->\mathrm{ trkmin) +Track= *** Read Test End *** [1] Total of Seek error : O times during 00160 times seek. + Seek CRC error : O times + Seek error : 0 times``` [2] Total of Read error : 0 times during 02560 times read. + ID, DATA ADM missing : 0 times + ID CRC error : 0 times + DATA CRC error : 0 times + Lost data error: 0 times + Byte data verify Err: 0 times [3] Total of Write error: 0 times during 00000 times write. + ID, ADM missing : 0 times + ID CRC error : 0 times + Lost data error : 0 times + Write Protect error : 0 times + Write Fault error : 0 times
2. To write the data on a level disk Hote: Before writing data pattern on a level disk, formatting (initialization) can be mode automatically. If the some error occurs during the processing, the error will be displayed under title of "Initialize Test End".	W RETURN	```*** Write Test *** *** Write data pattern *** Pattern No.1 --- Random data (all data random) Pattern No.2 --- Random data (1st byte-0AAh) Pattern No.3 --- Worst pattern (DBh, 6Dh, B6h) Pattern No.4 --- User definable * Select pattern number : [1,2,3,4]=```

3-4-4 Error Message

KIND OF ERROR	ERROR MESSAGE	CONSIDERABLE CAUSE	COUNTERAEASURE (CONF IRMATION/ADJUSTHETNT)
SEEX ERROR	Seek CRC error Seek error	Stepping motor load torque is too high. Stepping motor circuit is out of order.	Confirm stepping motor load torque. (Refer to 5-5) Confirm the function of stepping motor circuit.
READ ERROR	ID, data, ADM missing	Read circuit is out of order.	Confirm the read circuit. (at first check RF output)
	ID, data CRC error	Off track, chucking trouble, wrong head compliance.	Confirm head compliance, (Refer to 5-3) chucking mechanism or radial alignment and TRX 00 sensor (Refer to 5-4).
WRITE ERROR	ID ADM missing	No write function. (write circuit is out of order, no formatting)	Confirm the waveform of RF output. (CN107-1)
	ID CRC error	Off track wrong head compliance, chucking trouble, or disk.	Confirm the radial alignment and TRK 00 sensor (Refer to 5-4), head compliance (Refer to 5-3), or chucking mechanism.
	Write protect error	Condition is set to write protect.	Confirm Media, write protect circuit or write protect mechanism.
CONNECTION ERROR	Disk not ready	Disk is not inserted, or the insertion is not detected.	Confirm disk detect circuit.
	Drive not connect, ed	DC power is not supplied, or a drive is not selected.	Confirm DC power supplier, drive select switch position and drive select circuit.

5-4 RADIAL ALIGMENT AND TRK 00 SENSOR Disassemble the following parts and then perform the messurement and adjustment.
a. Main Cover (Refer to 4-5)

5-4-1 Tools and Heasuring Equipment
8. SMC-70 System
b. R/E System Disk
(OR-D114VA)
32V c. Alignment Disk
(OR-D123VA)
32W d. Alignment Disk
(OR-D47WA)
e. CP/M Disk
f. SONY Disk Basic
8. Rotary Knob
h. Geared Driver
i. TOTSU Screw Driver (M2.6)
j. - Driver 4 mm
k. Hexagon Wrench Torque Driver

1. A/D Converter

5-4-2 Measurement and adJustment
a. Insert the CP/M Disk into the drive "A" of SMI-7012A.
b. Turn on the power switch. "A" is displayed on screen.
c. Eject the CP/M Disk and then insert the SONY Disk Basic.
d. Perform keying B, A, S, I, C and RETURN.
e. Eject the SONY Disk Basic and then insert TSE R/E system disk.

g. Connect the disk drive (under test) to the cable which leads to the A/D converter, insert the alignment disk, and set the DRIVE SELECT switch (S101) to 4. (Refer to Fig. 2-2)
h. Execute the Set Up command. (Refer to 5-4-3)
i. Execute the Measurement command. (Refer to 5-4-4)
j. Execute the Adjustment command. (Refer to 5-4-5)
Hote: For resuming the state of SMC-70 system to the initial state (that appears immediately after power goes on) press the reset button.

5-4-3 Set Up Command

Function	Keyling	Display
1. Select the Set Up command. Asks for the command number at display center. 2. The initial value for the relative humidity is to be set at 50\%. [EX], In case a relative humidity of 60% is keyed in,	1 1 6 RETURN	Main Menu [1] Set Up [2] Measurement [3] Adjustment COMMAND NUMBER? 1. HUMIDITY $20-80 \%$: 50.0[\%] 2. SPECIFICATION : 26.0 [micrometer] 3. TIME/4DIVISIONS : 100 [ms] 4. R/W CORE WIDTH : 120 [micrometer] 5. QUIT COMMAND NUMBER? HUMIDITY[\%]? COMMAND NUMBER?

5-4-4 Measurement Comand

Function	Keylng	Display
1. Select the Measurement command. Insert the Alignment disk.	RETURN	SET DRIVE SELECT 4 INSERT ALIGNMENT DISK HIT [RETURN] KEY ADJUST CAT'S EYE SIGNAL LEVEL [MIN (L, R) 2div] AND [MAX (L, R) 4div] AND [MAX (L/R, R/L) 1.5] HIT [RETURN] KEY
2. Set the A / D converter gain by adjustment so that the peak values at both edges of the Cat's eye pattern signal may range from 2 to 4 divisions. (Refer to Fig. 5-4 (a)) Wote: If gain adjustment cannot be done, key in to execute step 9. Thereafter, perform the radial alignment adjustment. (Refer to 5-4-5)	RETURN	

5-4-5 Adjustment Comand

Function	KeyIng	Display
1. Select the Adjustment command. Insert the Alignment disk.	3 RETURN	COMMAND NUMBER? SET DRIVE SELECT 4 INSERT ALIGMMENT DISK HIT [RETURN] REY ADJUST CAT'S EYE SIGNAL LEVEL [MIN (L,R) 3div] AND [MAX (L,R) 4div] AND [$\operatorname{MAX}(L / R, R / L) 1.2]$ HIT [RETURN] KEY

5-4-6 Error Message
One of the following errors can occur
during measurement, adjustment, or setting
of the machine for radial alignment:
a) Not Ready...Indicates that READY signal
is not issued. Check for disk drive
connection or check for the DRIVE SELECT
switch position.
b) No Index Pulse.....Indicates that INDEX
signal is not issued. Check for disk
drive connection.
c) Cat's Eye Error.....Indicates that the
Cat's eye pattern signal is abnormal.
Check for the alignment disk.
In addition to these messages in above, one
of the following statements is also. dis-
played.
5-4-6 Error Message
One of the following errors can occur
during measurement, adjustment, or setting
of the machine for radial alignment:
) Not Ready...Indicates that READY signal
is not issued. Check for disk drive
connection or check for the DRIVE SELECT
switch position.
) No Index Pulse......Indicates that INDEX
signal is not issued. Check for disk
drive congection.
Cat's eye pattern signal is abnormal.
In addition to these messages in above, one
played.

Statement 1: [0] CONTINUE/[1] RETRY
Statement 2: [RETURN] FIRST STEP/[1] RETRY Key in 0 when statement 1 is displayed, and then control advances the step to the next, disregarding the error which has occurred:
Thereafter, key in and then the same measurement item is executed again.
Key in RETURN when statement 2 is displayed, and then control performs the radial alignment measurement and returns to the initial step in the Adjustment mode. Thereafter, key in 1 and then the same measurement item is executed again.

Hote: Check for the disk drive in accordance with confirmation items to the message displayed before retrying the key-in (1) operation.

PARTS LIST

ACT PART NUMBERING SYSTEM

Comprises eight numeric digits.
ACT numbers will provide a restricted identification by major category only and no further attempt will be made to try and produce a comprehensive descriptive part number.

Material Control will maintain a register of part numbers and will be the sole authority for issuing new numbers.

The numbering system is as follows:

X L'Finish identification (see note). Major category identification (see reference). -Straight sequential number from 0001 to 9999.
These two will always be ' 11 ' (this identifies the number as ACT).

Note

Finish identification. This is used to define a part which may have several types of finishes.

Essentially the number ' 1 ' will be used as standard. However, options such as plating, painting . . . will be defined by ' 2 ' or ' 3 ' etc.
References Finish

Major Category Reference
1 Sub Assemblies
2 Components
3 (Spare)
4 Cabling
5 Metalworking
6 Plastics
7 Packaging
8 Fasteners/Connectors
9 Drawings/Miscellaneous

1 Standard
2 Plating
3 Paint
4
5
6 Spare
7
8
9 Drawing

PARTS LIST

Sample Part Number

Assume the part to be numbered is the plastic bevel for the monitor, and that this was the first part to have a number assigned. The part number would be: 110001-61.

STOCK	
NUMBER	DESCRIPTION
11000141	Fan Earth Cable
11000241	Cable (DC Power)
11000341	D/Disk Signal Cable
11000441	Chassis Earth
11000541	Sw/Fuse Wire
11000641	Cable (Speaker)
11000741	Cable (Disk DC)
11000841	Cable (PSU AC)
1100091	8089 MICRO
11000941	S/Disk Signal Cable
11001041	Wire (PSU Ch To PCB)
1100141	Keyboard Cable
11000241	Video Cable
11001411	AC Sub Chassis 240V
11001521	Fan 240V
11001621	Nut M3
11001753	Chassis AC
11001821	Switch 240V
11001921	RFI Filter
11002021	Fuse Holder
11002121	Fuse 2A 240V
11002221	Mains Lead 240V
11002321	Screw M3 12
11002411	AC Sub Chassis 115V
11002521	Fan 115V
11002621	Switch 115V
11002721	Fuse 3A 115V
11002811	Disk Assembly
11002911	Monitor
11003511	CRT
11003621	Glare Filter
11003752	Base Screen
11003852	LHS Screen
11003952	RHS Screen
11004052	Top Screen

PROD
 UOM GROUP

EA 4
EA 9
EA 4
EA 4
EA 4
EA 4
EA 1
EA 2
EA 8
EA 5
EA 2
EA 2
EA 2
EA 2
EA 4
EA 8
EA 1
EA 2
EA 2
EA 2
EA 1
EA 1
EA 1
EA 2
EA 5
EA 5
EA 5
EA 5

PARTS I		
STOCK		PR
NUMBER	DESCRIPTION	UOM GR
11004121	Screw M3×6	EA 8
11004221	Screw No 4×6.4 Self Tap	EA 8
11004321	Screw M3 $\times 10$	EA 8
11004411	Processor 240V Dual Disk	EA 1
11004511	Motherboard Assy	EA 1
11004611	Power Supply 240V	EA 1
11004791	Label (Warn) Monitor	EA 9
11004891	Label (Serl) CPU	EA 9
11005091	Label (Hi Volt) Monitor	EA 9
11005191	Label (Warn) CPU 250V	EA 9
11005291	Label (Ser No) K-Board	EA 9
11006052	Chassis (Main)	EA 5
11006152	Bridge	EA 5
11006221	Loudspeaker	EA 2
11006321	Spring (Disk)	EA 2
11006421	Spring (Door)	EA 2
11006521	Rubber Feet	EA 2
11006791	Label (Ser No) Monitor	EA 9
11006891	Label (Warn) Pow Sup	EA9
11006991	Label (Earth Pow Sup	EA 9
11007021	Screw M4×8	EA 8
11007121	Screw No 10×6.4 Self Tap	EA 8
11007221	Screw M 4×12	EA 8
11007421	Screw (Shoulder)	EA 8
11007521	Screw M 4×18	EA 8
11007621	Nut M4	EA 8
11007721	Washer M4	EA 8
11007821	Grooved Pins	EA 2
11007921	Star Washer M3	EA 8
11008091	Label (ACT) Proc/Mon	EA 9
11008121	Ring Tag	EA 2
11008211	Bridge (Dual Disk)	EA 1
11008311	Chassis PSU/Speaker 240V	EA 1
11008411	Keyboard Assembly	EA 1
11008521	Screw M3 $\times 16 \mathrm{~mm}$	EA 8
11008611	Keyboard	EA 1
11008991	Membrane Switch	EA 2
11009421	2764 Eprom (Non Blown)	EA 2
11009721	PP3 Battery	EA 2
11009821	2764 Eprom (Low)	EA 2
11010251	Retaining Ring	EA 8

		RTS LIST	C_{5}
STOCK		PROD	
NUMBER	DESCRIPTION	UOM GROUP	
11100471	MS DOS Quick Ref Card	EA 7	
11100571	BASIC Quick Ref Card	EA 7	
11100671	BOS Voucher	EA 7	
11100771	TDI p-System Voucher	EA 7	
11100871	Apricot Disk Wallet	EA 7	
11101091	Sys Carton Ser No Label	EA 9	
11101191	Apricot Insp Label	EA 9	
11101271	Pulsar Voucher	EA 7	
11443061	Monitor Top (PI)	EA 6	
11443161	Swivel/Ped (PI)	EA 6	
11443261	Mon Base (PI)	EA 6	
11443361	Mon Bezel (PI)	EA 6	
11443461	Key Top (PI)	EA 6	
11443561	Key Base (PI)	EA 6	
11443661	Sys Top (PI)	EA 6	
11443761	Sys Base (PI)	EA 6	
11443861	Sys Rear Panel (PI)	EA 6	
11443961	Sys Front Panel (PI)	EA 6	
11444561	Door (PI)	EA 6	
11444661	Handle (PI)	EA 6	
11445621	Keyboard Cable Cover (PI)	EA 6	
11445761	Expansion Cover (PI)	EA 6	
11445861	Button Disk (PI)	EA 6	
11445961	Battery Cover (PI)	EA 6	
11446061	Switch Housing (PI)	EA 6	
11446161	Reset Button (PI)	EA 6	
11446162	Brightness Wheel (PI)	EA 6	
11446261	Keyboard Button (PI)	EA 6	
11446262	Keyboard Clip (PI)	EA 6	
11447061	Knob (PI)	EA 6	
11447161	Sys Cable Clip (PI)	EA 6	

POWER SUPPLY

D

Electrical Specifications

PARAMETER	MIN	TYP	MAX	UNIT NOTES	
Input Voltage	90	115	135	VAC	
	180	230	270	VAC	
Input Frequency	47	$50 / 60$		Hz	
Outputs: VO_{1}	4.9	5.0	5.1	V	+5 V Output
IO_{1}	1.35		6.0	A	
IO_{1}	2.50^{*}		5.0^{*}	A	
VO_{2}	11.4	12.0	12.6	V	
IO_{2}	0.60		1.50	A	
VO_{3}	11.4	12.0	12.6	V	
IO_{3}	0.40		2.10	A	
IO_{3}	0.75^{*}		3.50^{*}	A	
VO_{4}	-11.40	-12	-12.60	V	-12 V Output
IO_{4}	0		0.25	A	

${ }^{*}$ Loading condition if VO_{2} and VO_{3} are paralleled.

PARAMETER	MIN	TYP	MAX	UNIT	NOTES
Efficiency	65			\%	At full load
					115/230 VAC in
Operating					
Temperature	0		50	${ }^{\circ} \mathrm{C}$	Ambient Temp
Output Power			50	W	Max Continuous
Output Ripple			1	\%	1 Hz to 10 MHz
Line Regulation		0.1	0.2	\%	
Load Regulation					
VO_{1}		0.2	2.0	\%	
$\mathrm{VO}_{2}, \mathrm{VO}_{3}, \mathrm{VO}_{4}$			5.0	\%	
Over Voltage					
Protection	5.9		6.9	V	+5V Supply
Hold-up Time	16	24		mS	Full load at
					115/230V

Short Circuit Loads
Open Circuit Loads
EMI Requirements

Safety Requirements

Indefinite period on all outputs
Indefinite period on all outputs
Meets the conduction limits of VDE 0871 ' B ' rules for 230 VAC and FCC 'B' rules for 115 VAC in

Meets UL 1012 safety standard for power supplies

CIRCUIT DIAGRAM

CIRCUIT DIAGRAM

CIRCUIT DIAGRAM	\mathbf{E}

CIRCUIT DIAGRAM

NOTE :- MAXIMUM SIGNAL LOADING IS
2 LS TTL GATES PER SLOT.
2 EXPANSION SLOTS PER BOARD.

JOB TITLE	APRICOT	COMPUTER		$\begin{array}{\|l\|} \text { SHEET NO } \\ \\ 4 \text { OF } 4 \end{array}$		
DRG fille				drg no		Rev
APRICOT EXPANSION SLOT				ACT	PCøI	C
DRAWN CASMU 						

[^0]: Here is an outline of Model K-907A9.
 These a model are CRT DATA DISPLAY of metal frame type.
 K-907A9 uses P39 (Green) phosphor and Polish Cathode Ray Tube.
 For improke the interlace, add High Voltage block and make stabilization of High Voltage.
 Input signal is separate type and each input signal is put through 10 pin-cardedge connector on the P.C. Board.

 When connecting to equipment, directly connect it to printed circuit board input terminal through 10-pin card edge connector.

 Input signal is for TTL level.
 In additon, $+B$ is supplied from the outside through 10-pin card edge connector, operating the monitor on +11.8 DC .

[^1]: NOTE: - Be sure not to power-off within 10 seconds after power-on to avoid spot-burn.

 - SG and FG (Franme ground) are separated by 100 K ohm resister.

