
Jun 15 10:34 1988 spec Page 1

Service. Processor Module

General:

The Service Processor Module (SPM) attaches to the system
bus and provides various service funtions for the system.
These functions include system console interfaces, front panel
interface, real time clock, system clock interrupt source,
power supply controls, floppy disk controller, system wide
interrupt dispatcher, various system monitor functions (power,
temperature), and system diagnostic capabilities.

Hardware:

The Service Processor Module is a special purpose computer consisting
of two boards, the main board, which plugs into the CSS bus backplane,
and the real world interface board, which contains all connectors
for the serial ports, the power supply control connectors, and the
temperature sensor connectors. The real world interface board is
connected to the main board via a third 96pin din connector
at the bottom of the main board. The real world interface board
resides behind the CSS backplane in the interface slot behind the
Service Processor Main board.
The SPM contains the following elements:

* 68020 processor operating at lOMhz (1/2 the system clock rate)

* 32 or 64 or 128 kbytes of EPROM organized bytewise.

* 256 kbytes of static RAM organized as 64 k x 32 bits
(8 32k x 8 RAM chips)

floppy disk controller (WD37C65)

* (RWI) Z8030 secs (2) for 4 console ports

* Z8036 CIO for internal timing

* (RWI) additional Z8036 CIOs (2) for various input/output bits

* Real time clock and calendar chip (MK48Tl2) (also contains
2K bytes of RAM for nonvolatile storage) and battery

* (RWI) RS232 drivers and receivers

* A/D converter chip for voltage and a temperature sensor

* {RWI) a second A/D converter for system temperature sensors

* {RWI) relays for power supply controls

css bus interface

Jun 15 10:34 1988 spec Page 2

state machine and queuing registers for interrupt dispatcher

* Clock controller for switching between a local CPU clock
and the CSS bus clock

Mapping RAM (16 x 8 RAM for mapping the entire systems
address space in 1/4 Gbyte segments into the 68020s
address space).

all sections marked with a (RWI) are located on the real world interface

Power:

Part of the SPM is powered separately from the rest of the
system (all sections marked with an*).
This separate power supply must be capable of supplying +5V
at 3.5 A and +12V at .25 A and -12V at .25 A. This power
supply is ored with the main power supply, so that,
after the main power is on, the SPM can continue to function,
even in the event of a failure of the separate SPM power supply.

Physical:

The Service Processor consists of two physical PC boards.
The main board is a standard size CSS board which resides
in the CSS cardcage. The real world interface board contains
the serial port drivers and receivers, the serial controller
chips (SCCS), an Analog to Digital converter chip for
sensing temperatures, a parallel I/O chip (CIO) and relays
and optoisolated input receivers for controlling power
supplies and all necessary connectors to support these
funcions.
The real world interface board receives power from the main board and
is powered whenever the SPMs CPU is powered, i.e. even when
the system's main power is turned off (see above).

68020 Processor:

The SPMs CPU is a 12.5 MHz 68020 which operates either from
the CSS bus system clock divided by two (10 MHz)
or its own 10 MHz clock source. (See below for clock select
information).

Address Decoding:

The address bits of the 68020 are numbered Add.00 to Add.31
with Add.CO as the least significant bit and Add.31 the
most significant bit. Add.31 is used to differentiate between
CSS bus accesses and local board acesses. Add.31 = n means
the CPU is accessing a local resource. The local resources
are further decoded as follows:

Add.31 30 29 28 27 26 25 24

Jun 15 10:34 1988 spec Page 3

EPROM (or SRAM)
SRAM (or EPROM)
Z-bus Peripherals

0 x x x 0 0
0 x x x. 0 0
0 x x x 0 0
0 x x x 0 0
0 x x x 0 1
0 x x x 0 1
0 x x x 0 1
0 x x x 0 1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

0
1
2
3
4
5
6
7

Real Time Clock & NV RAM
reserved
Clock control
reserved
Status and Control Registers

0 y y y 1 0
0 x x x 1 0
0 x x x 1 0
0 x x x 1 0
0 x x x 1 1
0 x x x 1 1
0 x x x 1 1
0 x x x 1 1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

8
9
A
B
c
D
E
F

Map RAM location (yyy)
Floppy disc
reserved
Interrupt
Interrupt
Interrupt
Interrupt
reserved

x are not decoded and are don't cares.

EPROM:

Dispatcher
Dispatcher
Dispatcher
Dispatcher

The EPROM is 8 bits wide and can be read by the processor
on data bits 24 to 31. There are 2 sockets for the EPROM, one
or both can be populated with either 27256s (32k x 8 each),
or 27512s (64k x 8 each) or 271001s (128k x 8 each). Address
bits Add.00 to Add.15 or Add.16 or Add.17 are used to address
the EPROM. The decoding of the high bit is controlled by
the Promsize field in control register 2. This allows the
two EPROM chips to be contiguous regardless of their size.
(See Control register 2 desciption for details).

SRAM:

The SRAM is 32 bits wide and consists of 8 or 4 32k x 8
static RAM chips for 64k x 32 or 32k x 32 bits of memory.
It is addressed with address bits Add.02 to Add.17.

z - Bus Peripherals

There are 7 peripherals attached to the Z - bus. 2 of them
are located on the main board, and 5 are on the auxiliary
board. When the Z-bus is selected (Add.31 = 0 and Add.27 to
Add.24 = 2), Add.11 to Add.08 are further decoded as follows:

Add.11 10 9 8

0 0 0 0 0 reserved

Idle Que
Queue
Pointer
Misc.

0 0 0 1 1 Local Analog to Digital Converter
0 0 1 0 2 Local CIO

3 - 7 reserved for local devices

1 0 0 0 8 Auxiliary sec 0
1 0 0 1 9 Auxiliary sec 1
1 0 1 0 A Auxiliary CIO 0

Jun 15 10:34 1988 spec Page 4

1 0
1 1
1 1

1 1 8
0 0 c
0 1 D

E - F

Auxiliary Analog to Digital Converter
Auxiliary CIO 1
Auxiliary Temperature mux
reserved for auxiliary devices

Local Analog to Digital Converter:

The local A/D converter is an MC14442 and a REF02 voltage
reference. It is used to measure the temperature on the
Service Processor (i.e. the cardcage) and the 6 voltages
present on the SPM (i.e. +5V main, +SV aux., +12V main,
+12V aux., -12V main, and -12V aux.).

Local CIO:

The local CIO is a Zilog 8036, it is used
for various timing functions including the CSS bus timeout
and the main System clock interrupt.

Auxiliary z-sus Peripherals

The Auxiliary z-bus peripherals are covered as part of the
Real world Interface board (see separate spec)

Real Time Clock:

The real time clock is a MK48T12 chip. This chip has a built in
crystal oscillator and a lithium battery. In addition to a real
time clock, it has 2K bytes of nonvolatile RAM. This RAM can be
used to keep configuration information. The service processor
does not have any switches.

Clock Control:

The Clock control port is a single bit port which is written
with data bit 0. Data.00 = 0 means the CPU is using its on
board 10 MHz clock, Data.00 = 1 means the CPU is using the css
bus clock divided by two as its clock source. When switching
from one clock source to the.other, approximately 1 us after
the write to the clock control port, the hardware will issue
a reset to the CPU, hold the reset for approximately 500 us,
and switch clocks during the reset. This is required to meet
the timing specifications of the 68020. In the process, the
entire board will be reset, so any VLSI chips will have to be
reinitialized. The memory, however, will keep its data valid.
If the main power is turned on, the state of the clock bit
(i.e. which clock is being used)
can be read in the status register. If the CSS bus clock is
not running (e.g. the CSS bus is powered down), the hardware
will not select the CSS clock. If the CSS bus clock is selected
and fails, the clock select mechanism will switch to the local
clock.

Status and Control Registers:

Jun 15 10:34 1988 spec Page 5

There are 3 Status reg~sters and 3 control registers.
The status registers are read by the CPU, and the control
registers are written by the CPU. When the Status/Control
is selected (Add.31 = 0 and Add.27 to Add.24 = 7), Add.07
to Add.OS are further decoded as follows:

Add. 07 06 05

0 0 0 0 Read Write control register
0 0 1 2 Read Write control register
0 1 0 4 Read Write control register
0 1 1 6 Read reserved
1 0 0 8 Read css command register
1 0 1 A Read Status register

0 readback
1 readback
2 readback

1 1 0 c Read CSS Error information register
1 1 1 E Read Dispatcher Error Register

0 0 0 0 Write Write control register 0
0 0 1 2 Write Write control register 1
0 1 0 4 Write Write control register 2

6-E Write reserved for other control

css Command Register:

The CSS command register is a 32 bit register which allows
the local CPU to read the value written to the SPM via a
CSS write to address OxXXXX AAYY by any other css module.
x are don"t care and AA will be captured by the SPM and can
be read in the Status register. YY must be of the form
lOOX xxxx. The SPM only decodes the top three bits
of the least significant byte of CSS address. When another
module writes to an address of the form described above on
the SPM, the 68020 receives an interrupt informing it that
css command has been received. The 68020 will read the css
command register and the status register to determine the
data of the command.

Status Register:

The Status register is a 32 bit register, data bits 00 to 31
can be read by the 68020. The bits mean the following:

bits

data.00
data.01
data.02

= CSS bus nak at last CSS error (active high)
CSS bus ack at last css error (active high)

data.03

data.04
data.05
data.06
data.08

to 07
to 15

= CSS bus granterror at last css error
(active low)
Protocol violation (if= 1, there is
a violation, e. g. bad parity or illegal
type, if = 0, there is no violation, but
another error, e. g. missino ack.)

= reserved
= CSS bus active at last CSS error

reserved
= CSS data byte 6 at last CSS command write

Jun 15 10:34 1988 spec Page 6

data.16 to 19

data.20 to 23
data.24 to 27

data.28

data.29

data.30
data.31

=

Source slot of the originator of the last
CSS command write
reserved
The SPM's own slot id as read from the
backplane
Idle full. If 0, indicates that the dispatcher
idle queue is full.
status of clock (if= 1, clock is local,
if = 0, clock is CSS clock divided by 2)
Floppy ready (active low)
CPU dispatcher access allowed (if= O,
the interrupt dispatcher has suspended its
dispatching function and the CPU is allowed
to access the interrupt dispatcher RAMs. If
= 1, the dispatcher is running normally and
cannot be accessed by the CPU.)

CSS Error information register:

When the SPM detects an error on the CSS bus, the hardware
will interrupt the 68020. The 68020 will read the CSS error
information register to determine the nature of the error.
The conditions which cause such an error are: bad data parity,
bad type parity, destination error, source error, invalid type,
bus nack, or granterror. All error conditions
will latch in valid data for the css error information
register as follows:

data.00 to 07 bus data parity O to 7 (bit x = O means

data.08 to 13
data.14
data.15
data.16 to 19
data.20 to 23
data.24
data.25 to 26
data.27 to 31

=

=
=

=

=

parity error on byte x)
bus type 0 to 5
source error (bit = 1 means error)
destination error (bit 1 means error)
bus source 0 to 3
bus destination 0 to 3
bus type parity (bit = 0 is error)
reserved
CSS data bits 57 and 40 to 43.

Additional error information is captured in the Status register
(see above). When a bus error condition has been latched in the
error register, no new error conditions can be latched until
after the bus error register has been read by the 68020.

Dispatcher Error Register:

When the Interrupt Dispatcher detects an error, it will
suspend its operation and latch error information in this
register. This register is a 32 bit register with the meaning
of the bits as follows:

data.00 to 06 I/O bus source slot (only valid if

Jun 15 10:34 1988 spec Page 7

data.07

data.OB to 11

data.12 to 15

data.16 to 17

data.18 to 19

data.20 to 22

22 21 20

0 0 0
0 0 1

0 1 0

0 1 1

1 0 0
1 0 1

1 1 0
1 1 1

data.23

data.24 to 31

data.07 = 1, don't care otherwise)

I/O bus interrupt. When this bit is a 1,
the interrupt came from an I/O bus module
attached to the CSS bus module. If this
bit is a 0, the interrupt came from a
CSS bus module.

css bus source slot

css bus destination slot

Interrupt Priority

reserved

error code:

reserved for hardware failure
Interrupt acknowledge received without
pending interrupt
Request error (timeout or error on attempted
Interrupt level request)
Receive error (new interrupt arrived, but queue
is full)
reserved for hardware failure
Interrupt acknowlegde response error (timeout
or error on attempted acknowledge response)
same as 010.
same as 011.

Directed Interrupt.

Interrupt Vector number

When the Dispatcher detects an error, it will assert a level
1 autovector interrupt at the 68020. The interrupt service routine
must assert the cpu.disp.req* bit to gain access to the dispatcher,
remove the cause of the error, and reenable the dispacher by
deasserting the cpu.disp.req* bit.
Removing the cause is recommended as follows:

error code recommended action
001 assert, then deassert forc.res.ack*.
010 or 110 identify the intended target of the

error interrupt and remove this slot
number from the CFIG RAM. Examine the
pointers for directed interrupts pending
for this slot number and compute their
difference. Decrement the counters for
these directed interrupts by these differences.
Set the pointers to be-equal. This has
the effect of flushing all directed interrupts
pending for the target on which the attmpted
request failed.

Jun 15 10:34 1988 spec Page 8

011 or 111 assert, then deassert forc.res.recv*.

Write Control Register 0:

The Control register 0 is a 32 bit register with the meaning
of the bits as follows:

data.00 to 05 = Forced type (this is used instead of the
hardware generated type, if Use.forced.type is
active (see control register 1)).

data.06 to 07 = forced address bits 00 and 01. When
'use.forced.type' is active, these two bits
are used as the low address bits (CSS data
bits 70 and 71).

data.OB to 11 = slot id for use of the interrupt dispatcher.
data.12 to 15 =slot id for use of the CSS backplane .(This is

the value which is used as the SPMs slot id
for comparison with the destination of a css bus
command from another module. if the destination
address on the bus matches this field, the SPM
will assume that it is being adressed).

data.16 to 19 = out.src O to 3. This is the source id which the
SPM will use as the source when it is issueing
a command on the CSS bus.

data.20 to 23 = out.src 0 to 3*. This is the complement of the
source id. (It is separately settable in order
to facilitate the forcing of errors).

data.24 = forc.ack.nak*, when asserted (=0), forces
a single (50ns) occurrence of busack, if
diag.any.type is false (=1) or a single
occurrence of busnack, if diag.any.type is true

data.25 =fore.grant.err*, when asserted (=0), forces a
single occurrence of granterr. This and the
preceeding signal are edge sensitive; i.e. the
true going (transition form 1 to 0) edge causes
the descibed action.

data.26 = forc.bad.dest*, when asserted, forces a mismatch
between dest(0 ... 3) and dest(0 ... 3)* on any
css bus access.

data.27 = freeze = 1 and css.res.ready* = 1 together
cause the bus.freeze* to be true (=0).

data.28 =inhibit*, when asserted (=0), causes the css
bus error capturing to be inhibited.

data.29 to 31 = reserved

Write Control Register 1:

Write Control Register 1 is a 32 bit register with the meaning
of the bits as follows:

data.00 to 07 =out data.parity 0 to 7. These bits set the
polarity of the parity bits for each byte of
the CSS data bytes. (0 = paritv even, 1 = parity
odd. This is used to force data parity errors).

data.08 to 11 = fake.urb.dest 0 to 3. These bits are presented
to the arbiter as the intended destination
of a requested command if the use.fake.dest* bit

Jun 15 10:34 1988 spec Page 9

data.12
data.13

data.14
data.15
data.16 to 17

data.18

data.19

data.20

data.21

data.22

data.23

data.24

data.25

data.26

is on (= 0) .
terminal count - used by the floppy controller.

= force.response*. this bit is used to force
the response signal at the arbiter when
arbiter request is asserted. It is used for
memory emulation.
fdack*. used by the floppy controller.

= floppy.motor*. Used by the floppy controller.
= These two bits are used to indicate to the

hardware what type of reads are to be done
when the CSS bus is selected for a read.
data.17 16 CSS reads performed:

0 0 4 byte
O 1 8 byte
1 0 16 byte
1 1 32 byte

= int.disp.res*. This signal, when asserted,
resets the interrupt dispatcher, if the
CSS bus clock is active.

=Use.forced.type*. When this bit is a 0, the
forced type from control register 0, bits 0 to
5 is used as the bus type. If the bit is 1,
the hardware will generate the bus type
according to the access being performed. (This
bit must be 1 for proper operation of the
interrupt dispatcher).

= Type.polarity. This bit sets the polarity of thE
type field (normally= 1).

= force.reset.receive*. This bit resets the
received flag to the interrupt dispatcher.
It must be used when the dispatcher has caused
an error during the reception of an interrupt.
Idle.reset*. This is the reset for the Idle
FIFO. It must be written with a 0, then a 1,
for proper operation of the interrupt
dispatcher. It can be used during operation
of the dispatcher, if the CPU wishes to clear
the idle FIFO.
CSS.reset*. This bit, when O, holds the reset
line on the CSS backplane at 0. It must be
asserted (= 0) during main power up, and = 1
during normal operation.

= cpu.disp.req*. When 0, this bit indicates to the
interrupt dispatcher staternachine that the 6802(
wishes to access the dispatcher RAMs. The state
machine will suspend normal dispatcher operatior
and turn on (set= 0) bit 31 in the status
register. When 1, the interrupt dispatcher
resumes its dispatching function.
diag.frc.int.rec*. When 0, this bit indicates
to the hardware that it is to decode a CSS CPU
interrupt request level ·3.S ci. CSS command 0nd
treat it as such. This bit is used for
diagnosing the interrupt dispatcher only, it
is normally= 1.
diag.any.type*. When 0, this bit indicates to

Jun 15 10:34 1988 spec Page 10

data.27

data.28

data.29

data.30

data.31

the hardware that it is to accept any CSS bus
action as a valid response to a SPM initiated
read request. It is only used for diagnostic
purposes and is normally = 1. If there is a
response, the response data will be latched
in the css command register and the CSS command
interrupt will be asserted.

= use.fake.dest*. When this bit is 0, the
destination at the arbiter is forced to be
bits 08 to 11 of control register 1. If this
bit is a 1, the destination at the arbiter is
the same as the destination which will be used
on the css bus with the requested css bus
transaction. This bit is normally 1.

= force.modify*. When 0, this bit forces a modify
cycle on the CSS bus as long as it is asserted
(= 0). This bit is normally 1.

= cpu.res.ready*. This bit resets all pals
associated with CSS activity. It also resets
the ready count. If asserted (=0), all css
interrupt sources are disabled. It is
recommended, that this bit be = 0, when
switching to the CSS clock.

= cpu.inc.ready*. This bit increments the ready
count in the arbiter for the SPM. It must be
used after the SPM receives a CSS command
addressed to it which caused a 68020 interrupt
to increment the ready count for the SPM. The
SPM only has a single register for receiving
commands, so the ready count is either 0 or 1.
This bit and the cpu.res.ready* are egde
sensitive, i.e. a transition from a 1 to a 0
causes the assertion of the corresponding bit
on the arbiter for one css bus cycle. A
transition from a 0 to a 1 has no effect.

= forc.res.ack*. This bit is used with dispatcher
error handling, see above.

Write Control Register 2

This is a 8 bit register writeable with data bits 24 to 31.
Their meaning is as follows:

data.24 = prom.at.1. When 0, the EPROM is located at
starting address OxOOOO 0000. When this bit is
1, the EPROM starting address is OxOlOO 0000.

data.25 to 26 = promsiz.O and promsiz.1. These two bits are used
to indicate the size of the EPROM chips to be
used: 0 0 = EPROMs are 27256s (32k x 8)

0 1 = EPROMs are 27512s (64k x 8)
1 0 = EPROMs are 27010s (128k x 8)
1 1 reserved - do not use.

data.27 to 30 = LED.0 to LED.3. When a bit is 0, the LED is
on, when the bit is 1, the LEO is off.
LED.O, 2, and 3 are red, LED.1 is green.

data.31 = bd.reset*. When 0 this bit holds the hardware
of the SPM, with the exception of the 68020

Jun 15 10:34 1988 spec Page 11

Map RAM:

in reset. On power up or when the 68020 has
been reset, this bit will be 0. To allow
operation of the board, the CPU must write this
bit with a 1.

The map RAM consists of two 16 x 4 RAM chips which are used as
an 8 x 8 RAM. It is addressed with address bits add.28 to 30.
When address bit add.31 = 1, the SPM is performing a css access,
and the map RAM is read. CPU Address bits 28 to 30 select one
of eight locations in the map RAM. The top four bits of the
map RAM output give the destination (i.e. the slot id of the
board being accessed) and the bottom four bits are mapped
to address bits bus data 44 to bus data 47 for the CSS bus.
The lower 28 bits oI the-68020s adaress-are directly mapped
to address bits bus data 40 to 43 and bus data 50 to 77 in
the conventional manner.-
The map RAM is written when add.31 = 0 and add.24 to 27 = 8.
It is written with data.24 to 31 at the location selected by
add.28, 29, and 30. Before accessing the CSS bus, the 68020
must initialize the map RAM.

Floppy Disc Controller:

The floppy disc controller is a WD37C65 single chip controller.
It controls a single 5 1/4 in floppy drive.

Interrupt Dispatcher CPU Access:

The CPU has four decoded address ranges for accessing the
various RAMs present in the interrupt dispatcher. This
allows the CPU to initialize the interrupt dispatcher and
full diagnostic capabitily for analyzing any dispatcher
malfunctions.

Interrupt Dispatcher Idle Queue:

This is a 16 deep by 4 wide FIFO. It is written with data bits
24 to 27. If there are valid data in the Idle FIFO, the interrupt
dispatcher will consider the data slot ids of CPUs which are
preferred to receive the next interrupt request. When an interrupt
is requested from the CPU corresponding to the first entry on the
FIFO, that entry is taken off the FIFO. The SPMs 68020 will normally
use this FIFO to indicate to the interrupt dispatcher, which CSS CPUs
are idle.

Interrupt Dispatcher Queue:

The main queue is a 4k x 32 bit RAM which contains all
the information attached to an interrupt as it is defined
on the CSS bus (see the interrupt dispatcher description
for details). It is adressed wiEh add~02 to 13. It aoes
not need to be intialized, however it is recommended that
it is initialized with a known value for diagnostic reasons.

Jun 15 10:34 1988 spec Page 12

Interrupt Dispatcher Pointer:

There are two pointer RAMs, each 256 x 7 bits, called the
incoming pointer RAM and the outgoing pointer RAM. These
pointer RAMs allow the main queue to function as multiple
FIFOs. The pointer RAMs are acessed together with
add.02 to 09. Data.24 to 30 are for the incoming pointer,
data.16 to 22 for the outgoing pointer. The ponters must
be initialized in such a way that at all address locations,
the incoming pointer equals the outgoing pointer (e.g. all
0) •

Interrupt Dispatcher Miscellaneous RAMs:

There are three other RAMs in the interrupt dispatcher, they
are the counter RAM, the service pending RAM, and the
CPU configuration RAM.
They are all simultaneously addressed as a 32 bit port, with
different data bits going to the different RAMs as follows:

name
counter
serv.pend
config.

size
8 x 10

128 x 1
16 x 5

address
02 to 04
02 to 08
02 to 05

data
00 to 09
15
24 to 28

The counter must be initialized to all ls, the service pending
must be initialized to all Os, and the configuration RAM must
be initialized with all slot ids of CPUs present in the css
backplane which are available for receiving interrupts as follows:

address data (24 to 27) data.28
CPU slot id n CPU slot id 1 x
CPU slot id 1 CPU slot id 2 x

CPU slot id n-1 Cpu slot id n x
n+l CPU slot id 1 x .

16 CPU slot id 1 x

X = 1 means the CPU slot number at this address can be the
target of any interrupt, X = 0 means the CPU slot number at
this address must be the Service Module itself.

Interrupt Dispatcher:

The action of dispatching an interrupt consists basically of three
parts:
1.) Receive an interrupt request. The interrupting device issues a CSS
write to address FFFF FFAO on the SPM.

2.) Request a CPU interrupt service. The SPM issues 0 CSS write tn a
CSS CPU at address FFFF FFFC with data = xyxx xxxx where x = don't care
and y = lppp where ppp is the requested CPU interrupt priority level.

Jun 15 10:34 1988 spec Page 13

3.) Acknowledge an interrupt. The requested CSS CPU issues a read
to the SPM at address FFFF FFYY where YY = OOpp plOO where ppp is the
CPU interrupt priority level which is acknowledged. The SPM responds to
the read with the interrupt data corresponding to the interrupt
pending at the priority level which is being acknowledged.

General Description:

The Interrupt dispatcher hardware consists of the following:

Incoming interrupt register (32 bits)

Pointer RAM (two 256 x 8 RAMs with latches and +1 adders for
pointing into the main queue RAM and over- and underflow
comparators (full and empty indicators)).

Main queue RAM (2 2k x 32 RAMs, one for up to 22 queues of length 64
for 2 levels of directed interrupts for up to 11 CPUs, one for
4 queues of length 128 for 4 levels of nondirected interrupts.

Interrupts present counter RAM (8 x 10 RAM keeps a count of the number
of interrupts present at each interrupt level). Attached to it
is a latch with a priority encoder which indicates the level of
the highest priority interrupt present.

Interrupt service request state machine

CPU configuration RAM (16 x 5 RAM initialized by 68020 with all
CPUs physically present at initial power up or reset)

Service pending RAM (128 x 1 RAM. Only up to 66 bits are actually used,
one for each of 6 CPU levels one for each of up to 11 CPUs).

Interrupt information register (32 bits to be read by CPU in response
to an Interrupt acknowlege read request).

Functional Description:

1.) Receive an Interrupt Request.

When an Interrupt request(CSS write to address FFFF FFAO) is received
by the SPM, the interrupt information is written to the incoming
register. If the incoming register is full, the SPM will be not ready
and therefore will not be issued any CSS writes.
The receive logic will look at the CSS priority level, the directed/non
directed bit, and if directed, the CPU number. select the appropriate
queue in the main queue RAM, and if the rointe1: RAH indicates not full,
write the interrupt information into the main queue RAM into the proper
queue. It will increment the incoming pointers in the pointer RAM and
the count in the proper location in the counter RAM. The proper queue in

Jun 15 10:34 1988 spec Page 14

the main queue RAM is selected by the CSS interrupt priority level
(2 bits) and the CPU number (4 bits) and the Directed/Nondirected bit.

2.) Request a CPU Interrupt Service.

The Interrupt service request state machine will cycle thru the CPU
numbers given by the CPU configuration RAM. At each CPU number, it will
look at the output of the interrupt present indicator. If the highest
interrupt present is a CPU level 5 or 6 (a directed interrupt) it will
access the pointer RAM to determine if this level 5 or 6 is pending
for this CPU number. If yes, it will attempt to issue the service
request (see below). If this level 5 or 6 is pending for a different CPU
the state machine will disable CPU levels 5 and 6 from the interrupt
present indicator priority encoder and determine which is the highest
CPU level interrupt present from CPU levels 4 and below. If there is one
present, it will attempt to issue the service request.
Attempting the service request means the state machine will access the
Service pending RAM with the CPU interrupt level and the CPU number and
test the service pending bit. if the bit is already set, an interrupt
service is already pending at that CPU level on that CPU and no further
service requests can be made. In this case, no service request will be
made and the state machine will look at the next CPU number. If the bit
is reset, no service request is pending, the bit will be set and the
service request will be issued to the given CPU (write to FFFF FFFC with
the level as data). The appropriate location in the counter RAM will be
written with the decremented number of interrupts present at that level,
and the level latch will be written.
After issueing the service request, the state machine will look at
the next CPU number.

3.) Acknowledge an interrupt.

When the SPM receives an interrupt acknowledge read request, the
acknowledge logic will access the service pending RAM with the
acknowledging CPU number and CPU level and reset the service pending
bit. Using the CPU number and level information it accesses the main
queue RAM, and latches the interrupt information into the interrupt
information register ready to send to the acknowledging CPU. It will
also increment the outgoing pointers in the pointer RAM.

Arbitration

All three processes will access most of the elements of the dispatch

Jun 15 10:34 1988 spec Page 15

logic. It is therefore necessary to arbitrate among the three functions
of the interrupt dispatcher. At any time, there can only be one of
acknowledge response or interrupt request pending, because both of these
actions are caused by a CSS bus transaction from another CSS bus board.
The SPM will be not ready until the condition has been taken care of.
Normally, the CPU service request state machine will always be running,
attempting to request service for any interrupts which are present in
the SPM. When one of the above functions is requested, the state machine
will complete its current CPU service request attempt and then allow
the requested function (ack response or interrupt request).

Timing

All timings assume a SOns bus clock.

To receive an interrupt request into the incoming register takes one
bus cycle (SOns). To receive an interrupt request into the main queue
RAM takes S bus cycles (250ns).

The Service request state machine runs at 1 x bus cycle (50ns/tick).
The following are projections based on a preliminary version of the
state machine code and are subject to change:
If there are interrupts present at all CPU levels in tne main queue
RAM, an interrupt service can be requested every 6 ticks (300ns).
This is the maximum rate at which interrupt service can be requested.
Since interrupt requests need to be received, and service requests
need to be acknowledged, this rate can only be sustained for short
bursts. The maximum sustained rate is one interrupt dispatched every
800ns (250ns to receive the request, 300ns to request service, 250ns
to respond to the acknowledge)
The longest delay occurs when there is only one directed interrupt
present in the main queue RAM and no other interrupts present. It
takes 300ns x (n-1) + 300ns max., where n is the number of CPUs
in the system, that is 3.3us for an 11 CPU system. It will take
300ns x (n-1/2) + 300ns average, or l.8us for an 11 CPU system.

The acknowledge response takes 250ns (5 bus cycles).

All these times, if they are taken for a single transaction, must
have the typical CSS bus latency added to it (lSOns when there is no
other bus traffic).

Clock Interrupts

The SPM is the source for system wide clock interrupts. Every 20ms,
an interrupt will be requested from each CPU. This will be done bv
the SPM with a directed interrupt request tor th~ given CPU via ~
interrupt request write to the SPM itself.

Jun 15 10:34 1988 spec Page 16

css Bus Access:

CSS Bus Commands by other Modules Addressed to the SPM:

For the purpose of recognizing and responding to CSS bus commands,
the SPM decodes only three CSS bus address bits, bus.data75, 76,
and 77. They are decoded as follows:

bus.data.77 76

0
0
1
1
0
0
1
1
1

75

0
1
0
1
0
1
0
1
1

read/write recognized

0
0
0
0
1
1
1
1
1

write

write
read

write
read

Command Register

Interrupt Request (Dispatcher)
Interrupt Acknowledge (Dispatcher)

Interrupt Vector
Status Register (Board ID only)

The Command Register is a general purpose 32 bit register which
can be written by any other module. When this register is written by
another module, the SPMs 68020 is interrupted. In response to such
an interrupt, the 68020 will read the Command register, and force
an increment ready count to the CSS bus arbiter.

The Interrupt Request Register is a 32 bit register. It is the input
register for the interrupt dispatcher. Any other module may write to
this register. When another module writes to the Interrupt Request
Register, the hardware sets a bit to indicate to the dispatcher
statemachine that an interrupt has been requested. The dispatcher
will read the register into the appropriate queue and increment
ready for the CSS bus arbiter. The meaning of the bits in the
Interrupt Request Register is as follows:

bus.data.DO to 07

bus.data.lo to 11

bus.data.12 to 16

bus.data.17

bus.data.20 to 23

bus.data.24 to 27

bus.data.30 to 36

bus.data.37

Interrupt Vector number

Interrupt Priority

reserved

Directed Interrupt. When this bit is on,
the interrupt must be sent to the
specified destination slot. If this bit
is off, the interrupt may be sent to any
css bus CPU.

css bus source slot

CSS bus destination slot (only used if
bus.data.17 = l, ignored otherwise)

r /0 01JS SOlJCCC' ~;J.ot (('111V used if
bus.data.37 = l, ignored- otherwise)

I/0 bus interrupt. When this bit is a 1,

Jun 15 10:34 1988 spec Page 17

the interrupt came from an I/O bus module
attached to the CSS bus module. If this
bit is a 0, the interrupt came from a
CSS bus module.

The Interrupt Acknowledge location is a range of addresses which can
be read by any other CSS bus module. It is normally used by a CSS bus
processing module after it has reveived an interrupt level request
to acknowledge this request. Address bits bus.data.72 to 74 are
further decoded to determine the interrupt level which is being
acknowledged:

bus.data.74 73 72 acknowledge level

0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1

When a read to the Interrupt Acknowledge location is received, a bit
is set for the dispatcher state machine and it will read the interrupt
information from the appropriate queue and respond to the read with
this information in the format given above. It will also take other
actions to indicate to itself that this interrupt has been acknowledged.
If a CSS bus module reads an interrupt acknowledge location without
having first received an interrupt level request, this will disrupt
the normal function of the interrupt dispatcher. This should be done
for diagnostic purposes only.

The Interrupt Vector Register is not a physical register. In normal
mode, a CSS write to this location causes a level 3 auto vector. For
diagnostic purposes only, this is a feature which allows the SPMs
68020 to test the function of the interrupt dispatcher. (See the
description of the diag.frc.int.rec* bit in the Control register 1
for more).

The Status Register allows any other CSS bus module to read the SPMs
board id.

css Bus Commands Initiated by the SPM:

There are two sources of SPM initiated CSS bus commands, the
interrupt dispatcher and the SPMs 68020.

The interrupt dispatcher can initiate CSS writes and CSS read responses.
When the dispatcher wishes to request an interrupt level, it will
request the CSS bus for a write. The formnt of this ·~~ite is as outlined
above.

The SPMs CPU can initiate CSS read requests and CSS writes as well as
any other CSS command including invalid commands. Normal reads and

Jun 15 10:34 1988 spec Page 18

writes, e.g. to a memory module, are transparent to the SPMs CPU. It
needs only to select the system bus (address bit 31 = 1) and the map
RAM will map the high order address bits as descibed above. The low
order address bits are used directly. All CSS bus writes are one or
2 or 3 or 4 byte writes. The type field is automatically encoded from
the size field of the 68020. All CSS bus reads are 4 or 8 or 16 or 32
byte reads. If none of the 8.byte, 16.byte, or 32.byte read bits are
set in the control register, the normal default CSS bus read is a 4
byte read. If one of the control bits is set, the all css bus reads
intitiated while the bit is set will be of the length given by the
bit. For example if the 32.byte.read bit is set, a read by the SPMs
68020 - of necessity 4 bytes - with address bits 2, 3, and 4 = 0,
will cause a 32 byte CSS bus read. The next 7 reads by the 68020, if
not all of address bits 2, 3, and 4 are 0, are assumed to be part of
the 32 byte CSS bus read and will give the data obtained during the
32 byte read response back to the 68020 in the order given by the
address bits 2, 3, and 4. The 16.byte and 8.byte CSS reads operate
in a similar manner. To do css bus accesses other than reads or
writes, the SPM can set the CSS type field directly. See the forced
type field in control register 0 and the Use.forced.type bit in
control register 1. While the Use.forced.type bit is asserted (=0),
any css bus access will use the forced type as the css bus type.

68020 Interrupt Levels

There are 7 interrupt levels on the 68020. The processor on the
Service Module uses 6 of them as follows:

Level 1 =
Level 2 =
Level 3 =
Level 4 =
Level 5 =
Level 6 =
Level 7 =

LEDs

Interrupt Dispatcher Error
css Bus Command Write
css Interrupt received
Local Timer (CIO)
Real World Interface Interrupt
Floppy Controller
CSS Bus Error

Auto vector
Auto vector
Auto vector
Programmable vector
Programmable vector
Auto vector
Auto vector

There are 10 LEDs on the front panel of the Service Module
The meaning of the LEDs is as follows:

LED 1) (red) Software LED 0. Udes as fault indicator

LED 2) (green) Software LED 1. Used as go indicator.

LED 3) (red) Software LED 2. Uncomitted.

LED 4) (red) Software LED 3. uncomitted.

LED 5) (red) 68020 Address Strobe.

LED 6) (red) css Bus Active.

LED 7) (red) css Clock present.

Jun 15 10:34 1988 spec Page 19

LED 8) (red) Interrupt present in Dispatcher not yet dispatched

LED 9) (red) Interrupt present in Dispatcher not yet dispatched
and interrupt pending on same level for the same
Interrupt target (PM).

LED 10) (red) css bus Ready.

APPENDIX 1:

Translation table for css data bits to local address and data
bits:

css local

byte bit byte bit

00 data 24
01 data 25
02 data 26

0 03 0 data 27
04 data 28
05 data 29
06 data 30
07 data 31

10 data 16
11 data 17
12 data 18

1 13 1 data 19
14 data 20
15 data 21
16 data 22
17 data 23

20 data 08
21 data 09
22 data 10

2 23 2 data 11
24 data 22
25 data 23
26 data 24
27 data 25

30 data 00
31 data 01
32 data 02

3 33 3 data 03
34 data 04
35 data 05
36 data 06
37 data. 07

40 addr 24
41 addr 25

Jun 15 10:34 1988 spec Page 20

42 addr 26
4 43 o addr 27

44 addr 28
45 addr 29
46 addr 30
47 addr 31

50 addr 16
51 addr 17
52 addr 18

5 53 1 addr 19
54 addr 20
55 addr 21
56 addr 22
57 addr 23

60 addr 08
61 addr 09
62 addr 10

6 63 2 addr 11
64 addr 12
65 addr 13
66 addr 14
67 addr 15

70 addr 00
71 addr 01
72 addr 02

7 73 3 addr 03
74 addr 04
75 addr 05
76 addr 06
77 addr 07

Jul 28 10:37 1988 spm.h.doc Page 1

/***
* * Service Processor Module
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

The Service Processor Module (SPM) attaches to the system bus and
provides various service functions for the system. These functions
include system console interfaces, front panel interface, real time
clock, system clock interrupt service, power supply controls, floppy
disk controller, system wide interrupt dispatcher, various system
monitor functions (power, temperature), and system diagnostic capabil
ities.
The SPM consists of two boards, the main board which plugs into the CSS
bus backplane, and the real world interface board which contains all
connectors for the serial ports, the power supply control connectors,
and the temperature sensor connectors. The real world interface board
is connected to the main board via a third 96pin din connector at the
bottom of the main board. The real world interface board resides behind
the CSS backplane in the interface slot behind the Service Processor
Main board.

**/

/***
* Service Processor Memory Map
**
* * 31302928 27262524 23222120 19181716 15141312 111098 7654 3210 - address bits
* *---* 0 x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 Eprom
* 0 x x x 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 11 1111 1111 - 512k <---
* 0 x x x 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 11 1111 1111 - lM
--- 0 x x x 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0000 0000 Spare
* 0 x x x 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 1111
*---
* OxOlOOOOOO
* Ox0103ffff
* 0 x x x 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 Sram (256k)
* 0 x x x 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 11 1111 1111
--- 0 x x x 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0000 0000 Spare
* 0 x x x 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 1111
*---
* 0 x x x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 reserved
* 0 x x x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0000 0000 local A/D conv
* 0 x x x 0 0 1 0 0 O 0 O O O O O O O O O O O 10 0000 0000 local CIO
--- 0 x x x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0000 0000 reserved for
* 0 x x x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 0000 0000 local devices
*---
* 0 x x x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 0000 0000 aux. sec 0
* 0 x x x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 01 0000 0000 aux. sec 1
* 0 x x x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 0000 0000 aux. CIO
* 0 x x x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 11 0000 0000 aux. A/D conv
*---

Jul 28 10:37 1988 spm.h.doc Page 2

* 0 x x x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 00 0000 0000 reserved for
* 0 x x x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 11 0000 0000 aux. devices
*---
* 0 x x x 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 real time clock
* 0 x x x 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 1111 and NV ram
*---
* 0 x x x 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 reserved
* 0 x x x 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 1111
*---
* 0 x x x 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 clock control
*---
* 0 x x x 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0001 reserved
* 0 x x x 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 1111
*---
* 0 x x x 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 reserved
* 0 x x x 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 1111
*---
* 0 x x x 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 Wr cntl 0

* 0 x x x 0 1 1 1 0 0 0 0 0 0 a 0 0 0 0 0 0 0 00 0000 0000 Wr cntl 0 (read)
* 0 x x x 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0010 0000 Wr cntl 1

* 0 x x x 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0010 0000 Wr cntl 1 (read)
* 0 x x x 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0100 0000 Wr cntl 2
* 0 x x x 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0100 0000 Wr cntl 2 (read)
* 0 x x x 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0110 0000 Reserved
* 0 x x x 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1000 0000 css command reg
* 0 x x x 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1010 0000 Status reg
* 0 x x x 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1100 0000 css error reg
* 0 x x x 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1110 0000 Dispatcher error
* register
*---
* 0 x x x 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1110 0001 Spare
* 0 x x x 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 1111
*---
* 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 Map RAM loc 0

* 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 " " " 1

* 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 fl fl " 2

* 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 II II II 3

* 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 " " II 4

* 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 II II II 5

* 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 " " " 6
* 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 ii " fl 7
*---
* 0 x x x 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 Floppy Disk
* 0 x x x 1 0 0 0 1 1 1 1 ,

1 1 1 1 1 1 1 1 1 11 1111 1111 ..I-

*---
* 0 x x x 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 reserved
* 0 x x x 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 1111
*---
* 0 x x x 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 I.D. Idle Queue
* 0 x x x 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 1111
*---
* 0 x x x 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0001 0000 unused
* 0 x x x 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 1111
*---
* 0 x x x 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 I.D. Queue Ram
* 0 x x x 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 11 1111 1111

Jul 28 10:37 1988 spm.h.doc Page 3

--- 0 x x x 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0000 0000 unused
* 0 x x x 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 1111
*---
* 0 x x x 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 I.D. Pointer Ram
* 0 x x x 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 1111
*---
* 0 x x x 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0000 0000 Int Dispatcher
* 0 x x x 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 1111 Misc. Rams
*---
* 0 x x x
* 0 x x x

1 1 1 1
1 1 1 1

0 0 0 0
1 1 1 1

0 0 0 0
1 1 1 1

0 0 0 0
1 1 1 1

0 0 00 0000 0000 reserved
1 1 11 1111 1111

*---
/**
* * EPROM
* * The EPROM is 8 bits wide and can be read by the processor on data bits
* 24 to 31. There are 2 sockets for the EPROM, one or both can be populat
* ed with either 27256s (32k x 8 each), or 27512s (64k x 8 each) or
* 271001s (128k x 8 each). Address bits Add.00 to Add.15 or Add.16 or
* Add.17 are used to address the EPROM. The decoding of the high bit is
* controlled by the Promsize field in control register 2. This allows the
* two EPROM chips to be contiguous regardless of their size. (See Control
* register 2 description for details).
*
**/

#define PROMSIZ OxlOOOO /* cpu monitor prom*/
#define PROMSTART OxOOOOOOOO /* start of prom area */

/***
* * Static Ram
* * The SRAM is 32 bits wide and consists of 8 or 4 32k x 8 static RAM chips
* for 64k x 32 or 32k x 32 bits of memory. It is addressed with address
* bits Add.02 to Add.17.
*
**/

#define SRAMSTART Ox01000000
#define SRAMSIZE Ox40000

/* NOVRAM ...
*/

#define NOVRAM ((struct novram *)(Ox03000000))

/***
* * Real Time Clock
* * The real time clock is a MK48Tl2 chip. This chip has a built in crystal
* oscillator and a lithium battery. In addition to a real time clock, it
* has 2K bytes of nonvolatile RAM. This RAM can be used to keep config-
* uration information. The service processor does not have any switches.

Jul 28 10:37 1988 spm.h.doc Page 4

*
**/

#define RTC ((struct rte *)(Ox030007f8))

/***
*
* Local A/D converter
* * The local A/D converter is an MC14442 and a TL431A voltage reference.
* It is used to measure the temperature on the Service Processor (i.e. the
* cardcage) and the 6 voltages present on the SPM(i.e. +5V main, +5V aux.,
* +12V main, +12V aux., -12V main, and -12V aux.)
*
**/

#define ADC CNTL ((unsigned short*)(Ox02000102))
#define ADC-ADATA ((unsigned short*)(Ox02000100))
#define ADC-SC OxOlOO
#define ADC-CHO OxOOOO I* measures +5v for master system */
#define ADC-CHl OxOOOl I* reference voltage 4.5v must read FF *I
#define ADC-CH2 Ox0002 I* Measure +Sv. aux */
#define ADC-CH3 Ox0003 I* Measure +12v */
#define ADC-CH4 Ox0004 I* Measure +12v aux *I
#define ADC-CHS Ox0005 I* Measure -12v *I
#define ADC-CH6 OxOOOe I* Measure -12v aux *I
#define ADC-CH7 OxOOOf I* measure on board temperature. *I
#define ADC-EOC Ox8000
#define ADC-MASK OxOOff I* mask for valid data. *I

/***
* * Local CIO
* * The local CIO is a Zilog 8036, used for various timing functions includ-
* ing the CSS bus timeout and the main system clock interrupt.
*
**/

#define LOCCIO ((struct cio *)(Ox02000200))

/***
* * sec
*
**/

#define ASCC ((struct ascc *)(Ox02000800))
#define AUXASCCOB ((struct ascc *)(Ox02000800))
#define AUXASCCOA ((struct ascc *)(Ox02000820))
#define AUXASCClB ((struct ascc *)(Ox02000900))
#define AUXASCClA ((struct ascc *)(Ox02000920))

/***
*
* Clock Control (write only)

Jul 28 10:37 1988 spm.h.doc Page 5

* * The Clock control port is a single bit port which is written with data
* bit 0. Data.00 = 0 means the CPU is using its on-board lOMhz clock,
* Data.00 = 1 means the CPU is using the CSS bus clock divided by two as
* its clock source. When switching from one clock source to the other,
* approximately lus after the write to the clock control port, the hard-
* ware will issue a reset to the CPU, hold the reset for approximately
* 500us, and switch clocks during the reset. This is required to meet the
* timing specifications of the 68020. In the process, the entire board
* will be reset, so any VLSI chips will have to be reinitialized. The
* memory, however, will keep its data valid. The state of the clock bit
* (i.e. which clock is being used) can be read in the status register. If
* the CSS bus clock is not running(e.g. the CSS bus is powered down), the
* hardware will not select the CSS clock.
*
* 31 ---------- 1 0
* +---------------+-+
* I x I c I
* +---------------+-+
* I I
* I +-------------- 0 - on board lOMhz clock
* I 1 - CSS bus clock
* +----------------------- unused
**/

#define CLKCNTL ((unsigned *)(Ox05000000))

/***
* * css Command Register (read only)
* * The css command register is a 32 bit register which allows the local CPU
* to read the value written to the SPM via a CSS write to addr OxXXXXAAYY
* by any other CSS module. X's are don't cares and AA will be captured by
* the SPM and can be read in the Status register. YY must be of the form
* OOOX xxxx. The SPM only decodes the top three bits of the least signif
* icant byte of CSS address. When another module writes to an address of
* the form described above on the SPM, the 68020 recieves an interrupt
* informing it that a css command has been received. The 68020 will read
* the CSS command register and the status register to determine the data
* of the command.
* * 31 ---------- 0
* +---------------+
* I command I
* +---------------+
* I
* +----------------------- command to SPM via CSS write
*
**/

#define CSSCMD ((unsigned *)(Ox07000080))

/***
*

Jul 28 10:37 1988 spm.h.doc Page 6

* Status Register (read only)
* * The status register is a 24 bit register, data bits 00 to 07 and 16 to
* 23 and 24 to 31 can be read by the 68020. Bits 24 to 27 are the bus slot
* number given by the position of the SPM in the backplane. For diagnostic
* purposes, the SPM does not have its slot id hardwired, so for the board
* to function properly, the slot id must be read in the status register
* and written in write control registers 0 and 1. Bit 31 in the Status
* register is a status bit from the interrupt dispatcher state machine.
* When this bit is 0, the interrupt dispatcher has suspended its dispatch-
* ing function and the CPU is allowed to access the various RAMs in the
* interrupt dispatcher. This is needed for initializing the interrupt
* dispatcher and for diagnostic purposes. When the bit is a 1, the
* interrupt dispatcher is in its normal operating mode and the CPU must
* not access any of the dispatcher RA.Ms. Bit 30 is an indicator from the
* floppy disk, floppy ready. Bit 29 is a status bit from the clock select
* mechanism. When this bit is a 1, the 68020 is using the local clock,
* when 0, the 68020 is using the CSS clock divided by 2. Bit 28 is reserv-
* ed. Bits 00 to 07 are part of the css error register as follows:
* Bit 00 has the state of the css bus nack signal at the time of the last
* CSS bus error, bit 01 has the state of the css bus ack, bit 02 has the
* state of the CSS arbiter grant error, bit 03 is the bad command bit.
* This bit is a 0 if the SPM has detected a CSS bus protocol violation
* (e.g. data parity is bad), it is a 1 if the SPM has not detected such
* a violation but it has nevertheless detected a CSS bus error. Bit 04
* is the state of the CSS arbiter burst signal. Bits 05 to 07 are reserv-
* ed. Bits 16 to 23 are the CSS data byte 6 at the time of the most recent
* css command write.
*
*
*
*
*
*
* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

31 30 29 28 27 - 24 23 - 16
+--+----+--+--+-------+-------+
IIDIFRDYI cl xlslot # I byte 61
+--+----+--+--+-------+-------+

I I I I I I
I I I I I +-----
1 I I I I
I I I I +-------------
1 I I I
I I I +------------------
! I +---------------------
! I
I +-------------------------+------------------------------

15-8 7-6 5 4 3

CSS data byte 6 at the time of the most
recent CSS command write.
bus slot # determined by position of
SPM in backplane
reserved
1 = local clock
0 = css clock
floppy ready
from Interrupt Dispatcher state machine
O - dispatcher has been suspended and

the cpu is allowed access to ID rams
1 - Int Dispatcher normal mode, cpu

should not access dispatcher RAM's

2 1 0
+----+---+--------+------+-------+-----+----+----+
I x I I active lburst*lbad cmdlgerr*lback!nackl
+----+---+--------+------+-------+-----+----+----+

I I I I I I I I
I I I I I I I +-state of css bus nack
I I I I I I I signal at the last
I I I I I I I CSS bus error

Jul 28 10:37 1988 spm.h.doc Page 7

* I +-- state of css bus ack
* I +--------- state of css arbiter
* I grant error
* I +---------------- bad command bit
* I 0 - SPM has detected a css bus
* I protocol violation(data
* I parity is bad)
* I 1 - SPM has not detected a
* I violation, but detected a
* I CSS bus error
* I +----------------------- state of css arbiter
* I burst signal
* +------------------------------- always a 1 except during
* force ack,nack,grant errors
* +------------------------------------- reserved
* +-- unused
* **/

#define STATUSREG ((unsigned *)(Ox070000a0))
#define STAT SLOTMASK OxOfOOOOOO
#define STAT-SLOTSH 24
#define STAT-REG !DRAM Ox80000000
#define STAT-IDLE FULL OxlOOOOOOO /* if set, idle-que is not full. */

/***
* * css Error Register (read only)
* * When the SPM detects an error on the CSS bus the hardware will interrupt
* the 68020. The 68020 will read the CSS error information register to
* determine the nature of the error. The conditions which cause such an
* error are: bad data parity, bad type parity, destination error, source
* error, invalid type, bus nack, or grant error. All error conditions
* except the last two will latch in valid data for the css error informa
* tion register as shown below. Additional error information is captured
* in the status register. When a bus error condition has been latched in
* the error register no new error conditions can be latched until after
* the bus error register has been read by the 68020.
*
* 31 - 27 26-25 24 23-20 19-16 15 14 13-8 7-0
* +--------+-----+----+-----+-----+----+-----+----+----+
* ICSS data! x lbparldest I src lderrlserrlbtypelbparl
* +--------+-----+----+-----+-----+----+-----+----+----+
* I I I I I I I I I
*
*
*
*
*
*
*
*
*
*
*

I I I I I I I I +- bus data parity
I I I I I I I I o - 7
I I I I I I ! +------ bus type o - 5
I I I I I I +----------- source error
I I I I I +---------------- destination error
I I I I +---------------------- bus source 0 to 3
I I I +---------------------------- bus dest 0 to 3
I I +--------------------------------- bus type parity
I +--------------------------------------- reserved +--- css data bits 57,40-43

Jul 28 10:37 1988 spm.h.doc Page 8

**/

#define CSSERROR
#define DERR
#define SERR
#define BTYPE SH
#define SRC SH
#define DEST SH
#define BPAR-SH
#define BPAR-MASK
#define DEST-MASK
#define SRC MASK
#define BTYPE MASK
#define TYPE SH
#define TYPE-MASK
#define SIZE-MASK
#define SIZE-SH

((unsigned *)(Ox070000c0))
15
14
8
16
20
24
OxOlOOOOOO
OxOOfOOOOO
OxOOOfOOOO
Ox00003f00
Ox Ob
Ox3800
Ox0700
Ox08

/***
* Dispatcher Error Register
*
* When the Interrupt Dispatcher detects an error it will suspend its
* operation and latch error information in this register.
*
* 31 - 24 23 22-20 19-18 17-16 15-12 11-8 7 6-0
* +--------+----+-----+-----+-----+-----+-----+---+---+
* I Int Vecjdintl err I x I pri jdest I src jintjsrcl
* +--------+----+-----+-----+-----+-----+-----+---+---+
*
* +-- i/o bus source slot
* (only valid if bit 7=1)
* +------- i/o bus int
* 1 - int came from an
* i/o module
* 0 - int came from a CSS
* bus module
* +------------ CSS bus source slot
* +----------------- css bus dest slot
* +----------------------- Interrupt priority
* +----------------------------- reserved
* +---------------------------------- error code
* (see below for codes)
* +-- Directed interrupt
* +-- Int vector number
*
*
*
*
*
*
*
*
*
*

error information bits 22 21 20

x x O - request error
1 0 x - ack error, bus error on ack response
0 0 x - ack error, no previous requests
x 1 1 - recieve error, fix pointers or reset

recieve

**/

Jul 28 10:37 1988 spm.h.doc Page 9

#define DISPERROR ((unsigned *)(0x070000e0))
#define DISP ACK ERR 1 I* insane ack, an ack for no good reason */
#define DISP-REQ-ERR 2 I* request with no int. pending *I
I* unused - 3 I* recieve err */
I* unused 4 I* */
#define DISP ACK TOUT 5 /* timeout on ack response */
#define DISP-REQ-TOUT 6 I* timeout on request */
#define DISP-RCV-ERR 7
#define DI SP-ERR-SH 20

/***
*
*
*
*

Write Control Register 0 (write only)

31-29 28 27 26 25 24 23-20 19-16
* +-----+-----+-----+------+-----+-----+------+-----+
* I jinh7 lfreezl dest jgrantj ack jsrcID*lsrcIDI
* +-----+-----+-----+------+-----+-----+------+-----+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

+------ out.src 0-3 source id
used by SPM when it is
issuing a command

+------------ out.src 0 to 3*
complement of source id

+------------------- force ack/nak error.

+------------------------- force grant error.

+------------------------------- force bad dest.

+------------------------------------- Freeze CPU bit:
active 1 (Must have
css Reset rdy 1)

+--- Inhibit level 7
CSS int's.

* +---
*
*
* * 15-12 11-8 7-6 5-0
* +------+------+---+-----+
* !slotID!slotID!flOjFtypel
*
*
*
*
*
*
*
*
*
*
*

+------+------+---+-----+
I I I I
I I I +----
1 I I

I I +---------
1 +--------------
1

I
+---------------------

forced type
(used if "use.forced.type" bit is active)
forced address bits 00 & 01
slot id used by int dispatcher
(tells SPM where to place pointers for
non-dir ints 0-3)
slot id used with CSS backplane
(to pretend to be a CPU)

**/

Jul 28 10:37 1988 spm.h.doc Page 10

#define WRCNTLO ((unsigned *)(Ox07000000))
#define WRO FTYPE MASK Ox0000003f
#define WRO-FADDOT MASK OxOOOOOOcO
#define WRO-FADDOl-SH Ox06
#define WRO-PRETEND MASK OxOOOOfOOO
#define WRO-PRETEND-SH 12
#define WRO-FRC ACK- OxOlOOOOOO
#define WRO-FRC-GRANT Ox02000000
#define WRO-FRC-DEST Ox04000000
#define WRO-FRC-FREE Ox08000000
#define WR0-FRC-INH7 OxlOOOOOOO

/***
*
*
*
*

Write Control Register 1 (write only)

31 30 29 28 27 26 25 24
* +---+---+----+----+-----+----+----+----+
* !ackjrdyjrrdy!fmodlfdestldiagldiagjdreql
* +---+---+----+----+-----+----+----+----+
*
* +-- cpu.disp.req*
* 0 - indicates to int dispatcher that
* 68020 wants to access its rams.
* 1 - int dispatcher resumes normally.
* +------- diag.frc.int.rec*
* 0 - decode a CSS cpu int request
* level as a css command.
* 1 - normal mode.
* +------------ diag.any.type*
* 0 - accept any CSS bus action as a
* valid response to a SPM
* initiated read request.
* 1 - normal mode.
* +------------------ use.fake.dest*
* 0 - destination at arbiter is forced
* to be bits 8 to 11 of cntl req 1
* 1 - normal - dest at arbiter is tfie
* same as the dest which will be
* used on the CSS bus with the
* requested CSS bus transaction.
* +----------------------- force.modify*
* 0 - forces a modify cycle on the CSS
* bus as long as the bit is 0
* 1 - normal mode.
* +----------------------------- cpu.res.ready*
* 1 to 0 resets the ready count in the
* arbiter for the SPM.
* Normally a 1.
* +--------------------------------- cpu.inc.ready*
* 1 to 0 increments the ready count
* in the arbiter for the SPM.
* Normally a 1.
* +------------------------------------- frc.reset.ack*
* use to reset ACK request during ACK
* error interrupt service.

Jul 28 10:37 1988 spm.h.doc Page 11

* Normally a 1.
* * 23 22 21 20 19 18 17 16
* +---+---+---+---+----+-----+----+----+
* lrstlrstlrstlpolltypelidrstl ml I mo I
* +---+---+---+---+----+-----+----+----+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

+------------ m_byteO.
+-------- m bytel.

- 0 1
1 0
1 1
0 0

+------------ int.disp.res*

8 byte
16 byte
32 byte

4 byte

read
read
read
read (default)

interrupt dispatcher reset(active low)
if above 3 bits are 0 CSS bus reads are
4 bytes. Normally a 1.

+----------------- Use.forced.type*
0 - forced type from cntl reg 0 (0-5)

is used as the bus type.
1 - hardware will generate the type.

Normally a 1.
+---------------------- Type.polarity

sets the polarity of the type field
for forcing errors on the type.
Normally a 1.

+-------------------------- force.reset.recieve*
resets the recieved flag to the int
dispatcher (active low)
Normally a 1.

+------------------------------ Idle.reset*
reset for the Idle FIFO (0 then 1)
Normally a 1.

+---------------------------------- CSS.reset

15 14 13 12 11-8 7-0

0 - normal.
1 - holds reset line to 0 on

CSS backpllane.

* +-----+-----+-------+--+----+-----+
* !motorlfdacklfrespon!tpldestl pol I
* +-----+-----+-------+--+----+-----+

*
*
*
*
*
*
*
*
*
*
*
*
*
*

+---- out.data.parity 0 to 7
sets the polarity of the parity bits
for each byte of the CSS data bytes.
0-even, 1-odd

+--------- fake.arb.dest 0 to 3
these bits are presented to the arbiter
as the intended destination of a req'd
command if the fake dest bit is 0.
Default to our own slot id.

+------------- terminal count - used by the floppy
controller.

+------------------- force.response*
force the response signal at the arbiter

Jul 28 10:37 1988 spm.h.doc Page 12

* (active low)
* +-------------------------- fdack* used by floppy controller
* +-------------------------------- floppy.motor*
* motor on or off *
*
**/

#define WRCNTLl ((unsigned *)(0x07000020))
#define WRl DIAG ANY TYPE Ox04000000

#define WRl FRC RST ACK
#define WRl-IRDY
#define WRl-RRDY
#define WRl-FMOD
#define WRl-FDEST
#define WRl-DATYPE
#define WRl-FINTREC
#define WRl-DREQ
#define WRl-CSSRST
#define WRl-IDLERST
#define WRl-FRC RST RCV
#define WRl-RSTREC
#define WRl-TPOL
#define WRl-UFTYPE
#define WRl ID RST
#define WRl-CSSRD MASK
#define WR1-32BYTE RD
#define WR1-RD32
#define WR1-16BYTE RD
#define WR1-RD16
#define WR1-8BYTE RD
#define WR1-RD8
#define WR1-4BYTE RD
#define WRl-MOTOR
#define WRl-FDACK
#define WRl-FRES
#define WRl-TP
#define WRl-DEST SH
#define WRl-POL -

Ox80000000
Ox40000000
Ox20000000
OxlOOOOOOO
Ox08000000
Ox04000000
Ox02000000
Ox01000000
Ox00800000
Ox00400000
Ox00200000
Ox00200000
Ox00100000
Ox00080000
Ox00040000
Ox00030000
Ox00030000
Ox00030000
Ox00020000
Ox00020000
Ox00010000
OxOOOlOOOO
OxOOOOOOOO
Ox00008000
Ox00004000
Ox00002000
OxOOOOlOOO
8
OxOOOOOOf f

/***
*
*
*
*

Write Control Register 2 (write only)

31 30 29 28 27 26-25 24
* +---+----+----+----+----+----+----+
* lrstJledOlledll grnJ redJsizeJproml
* +---+----+----+----+----+----+----+
* I I I I I I
* I I I I I +------
* I I I I I
* I I I I I
* I I I I +-----------
* I I I I
* I I I I
* I I I I

prom. at.1
0 - eprom at OxOOOOOOOO
1 - eprom at Ox01000000
promsiz.O and promsiz.1
prom size 00 - 27256 (32k x 8)

01 - 27512 (64k x 8)
10 - 27010 (128k x 8)

Jul 28 10:37 1988 spm.h.doc Page 13

* 11 - reserved
*
* +---------------- red fault* led (top of board)
* +--------------------- green led* (second from top)
* +-------------------------- red led l* (third from top)
* +------------------------------- red led O* (fourth from top)
* +------------------------------------ bd.reset*
* board reset when 0, cpu must set to
* 1 on power up
*
**/

#define WRCNTL2 ((unsigned char *)(Ox07000040))

#define WR2 BDRST Ox80
#define WR2-LED0 Ox40
#define WR2-LED1 0x20
#define WR2-GRNLED OxlO
#define WR2-REDLED Ox08
#define WR2-LED01 SH Ox05

/***
*

Map Ram

When the SPM is performing a CSS access, add.31 = 1, the map ram is
read. CPU address bits 28 to 30 select one of eight locations in the
map ram. The top 4 bits of the map ram output give the destination
(i.e. the slot id of the board being accessed) and the bottom four bits
are mapped to address bits bus data 44 to bus data 47 for the CSS bus.
The lower 28 bits of the 68020$ address are dTrectTy mapped to address
bits bus data 40 to 43 and bus data 50 to 77. Before accessing the CSS
bus, the-68020 must initialize-the map ram.

*
*
*
*
*
*
*
*
*
*
*
* 31 30 29 28 27 26 25 24
* +---+----+----+----+----+----+----+----+
* I destination slot I CSS add 44 - 47 I
* +---+----+----+----+----+----+----+----+
*
**/

#define MAPBASE (unsigned char *)Ox08000000
#define MAPO (unsigned char *)Ox08000000
#define MAPl (unsigned char *)Ox18000000
#define MAP2 (unsigned char *)Ox28000000
#define MAP3 (unsigned char *)Ox38000000
#define MAP4 (unsigned char *)Ox48000000
#define MAPS (unsigned char *)Ox58000000
#define MAP6 (unsigned char *)Ox68000000
#define MAP7 (unsigned char *)Ox78000000

/***
*
* Interrupt Idle Queue
*
* The queue is a 16 character fifo, where the programmed character is an

Jul 28 10:37 1988 spm.h.doc Page 14

* "idle 11 cpu board. This should cuase the next non-directed interrupt to
* be passed off to this cpu, rather than the next cpu in the main queue.
*
* 31 30 29 28 27 26 25 24 23 - 0
* +---+----+----+----+----+----+----+----+-----------+
* I Not used I idle cpu I Not used I
* +---+----+----+----+----+----+----+----+-----------+
*
**/

#define IDLEREG
:!fdefine IDLESHFT

(unsigned int *)OxObOOOOOO
24

/***
* * Interrupt Dispatcher Queue
* * The main queue is a 4k x 32 bit RAM which contains all the information
* attached to an interrupt as it is defined on the CSS bus. It is
* recommended that it is initialized with a known value for diagnostic
* reasons. Below is a map describing where interrupt data is placed in
* the Queue Ram.
*
*
*
*

loc interrupt type

* +------------+--+
* I OxOcOOOOOO I non-directed level 0 I 128
* I OxOcOOOlf c I I ints
* +------------+--+
* I Ox0c000200 I reserved I
* I OxOc0007f c I I
* +------------+--+
* I Ox0c000800 I non-directed level 1 I
* I OxOc0009fc I I
* +------------+--+
* I OxOcOOOaOO I reserved I
* I OxOcOOOffc I I
* +------------+--+
* I OxOcOOlOOO I non-directed level 2 I
* I OxOcOOllfc I I
* +------------+--+
* I Ox0c001200 I reserved I
* I Ox0c0017fc I I
* +------------+--+
* I Ox0c001800 I non-directed level 3 I
* I OxOcOOl9fc I I
* +------------+--+
* I OxOcOOlaOO I reserved I
* I OxOcOOlffc I I
* +------------+--+
* I Ox0c002000 I directed level 4, CPU 0 I 64
* I Ox0c0020fc I I ints
* +------------+--+
* I Ox0c002100 I directed level 4, CPU 1 I
* I OxOc0021f c I I

Jul 28 10:37 1988 sprn.h.doc Page 15

* +------------+--+
* ! Ox0c002200 ! directed level 4, CPU 2 I
* I OxOc0022f c I I
* +------------+--+
* I Ox0c002300 I directed level 4, CPU 3 I
* I Ox0c0023f c I I
* +------------+--+
* I Ox0c002400 I directed level 4, CPU 4 I
* I Ox0c0024fc I I
* +------------+--+
* I Ox0c002500 I directed level 4, CPU 5 I
* i Ox0c0025fc I I
* +------------+--+
* I Ox0c002600 I directed level 4, CPU 6 I
* I OxOc0026fc I I
* +------------+--+
* I Ox0c002700 I directed level 4, CPU 7 I
* I OxOc0027fc I I
* +------------+--+ * I Ox0c002800 I directed level 4, CPU 8 I
* I Ox0c0028fc I I
* +------------+--+
* I Ox0c002900 I directed level 4, CPU 9 I
* I Ox0c0029fc I I
* +------------+--+
* I Ox0c002a00 I directed level 4, CPU A I
* I Ox0c002af c I I
* +------------+--+
* I Ox0c002b00 I directed level 4, CPU B I
* I Ox0c002bfc I I
* +------------+--+
* I Ox0c002c00 I directed level 4, CPU C I
* I Ox0c002cfc I I
* +------------+--+
* I Ox0c002d00 I directed level 4, CPU D I
* I Ox0c002df c I I
* +------------+--+
* I Ox0c002e00 I directed level 4, CPU E I
* I Ox0c002efc I I
* +------------+--+
* I Ox0c002f00 I directed level 4, CPU f I
* I OxOc002ff c I I
* +------------+--+
* I Ox0c003000 I directed level 5, CPU 0 I
* I oxocoo3ofc I I
* +------------+--+
* I Ox0c003100 I directed level 5, CPU 1 I
* I Ox0c0031f c I I
* +------------+--+ * I Ox0c003200 I directed level 5, CPU 2 I
* I Ox0c0032fc I I
* +------------+--+
* I Ox0c003300 I directed level 5, CPU 3 I
* I OxOc0033fc I I
* +------------+--+
* I Ox0c003400 I directed level 5, CPU 4 I

Jul 28 10:37 1988 spm.h.doc Page 16

* I OxOc0034f c I I
* +------------+--+
* I Ox0c003500 I directed level 5, CPU 5 I
* I OxOc0035fc I I
* +------------+--+
* I Ox0c003600 I directed level 5, CPU 6 I
* I OxOc0036f c I I
* +------------+--+
* I Ox0c003700 I directed level 5, CPU 7 I
* I Ox0c0037fc I I
* +------------+--+
* I Ox0c003800 I directed level 5, CPU 8 I
* I OxOc0038fc I I
* +------------+--+
* I Ox0c003900 I directed level 5, CPU 9 I
* I Ox0c0039fc I I
* +------------+--+
* I Ox0c003a00 I directed level 5, CPU A I
* I Ox0c003afc I I
* +------------+--+
* I Ox0c003b00 I directed level 5, CPU B I
* I OxOc003bf c \ I
* +------------+--+
* I Ox0c003c00 I directed level 5, CPU C I
* I Ox0c003cfc I I
* +------------+--+
* I Ox0c003d00 I directed level 5, CPU D I
* I Ox0c003df c I I
* +------------+--+
* I Ox0c003e00 I directed level 5, CPU E I
* I Ox0c003ef c I I
* +------------+--+
* I Ox0c003f00 I directed level 5, CPU f I
* I Ox0c003ffc I I
* +------------+--+
*
*
**/

#define QUEUE RAM (unsigned *)(OxOcOOOOOO)
#define QUEUE-LEN Ox4000
#define QUEUE-LWORDS OxlOOO
#define VECTOR MASK Oxf fOOOOOO
#define VECTOR-SH 24
#define Q DEST-MASK OxOOOOf 000
#define Q-DEST-SH 12
#define Q-SRC MASK OxOOOOOf 00
#define Q=SRC=SH 8

/***
*
* Interrupt Dispatcher Pointer
*
* There are two pointer RAM's, each 256 x 7 bits, called the incoming
* pointer RAM and the outgoing pointer RAM. These pointer RAM'S allow the
* main queue to function as multiple FIFOs. The incoming and outgoing

Jul 28 10:37 1988 spm.h.doc Page 17

* pointer associated with a particular long word in the Pointer RAM will
* either point to a queue for directed level 4 or 5 interrupts for a CPU
* in slot x, or if a SPM is in slot x, the pointers are used to maintain
* interrupt info for non-directed level 0 to 3 interrupts.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 - 0
+---+--------------------+---+---------------------+------+
I x I incoming pointer I x I outgoing pointer I x I
+---+--------------------+---+---------------------+------+

loc · pointer type

+------------+--+
I OxOdOOOOOO I directed level 4, CPU 0 I
I I or non-directed level 0 I
+------------+--+
I Ox0d000004 I directed level 4, CPU 1 I
I I or non-directed level 0 I
+------------+--+
I Ox0d000008 I directed level 4, CPU 2 I
I I or non-directed level 0 I
+------------+--+
I OxOdOOOOOc I directed level 4, CPU 3 I
I I or non-directed level 0 I
+------------+--+
I Ox0d000010 I directed level 4, CPU 4 I
I I or non-directed level O I
+------------+--+
I Ox0d000014 I directed level 4, CPU 5 I
I I or non-directed level 0 I
+------------+--+
I Ox0d000018 I directed level 4, CPU 6 I
I I or non-directed level 0 I
+------------+--+
I OxOdOOOOlc I directed level 4, CPU 7 I
I I or non-directed level 0 I
+------------+--+
I Ox0d000020 I directed level 4, CPU 8 I
I I or non-directed level 0 I
+------------+--+
I Ox0d000024 I directed level 4, CPU 9 I
I I or non-directed level 0 I
+------------+--+
I Ox0d000028 I directed level 4, CPU A I
I I or non-directed level 0 I
+------------+--+
I Ox0d00002c I directed level 4, CPU B I
I I or non-directed level 0 I
+------------+--+
I Ox0d000030 I directed level 4, CPU C I
I I or non-directed level 0 I
+------------+--+
I Ox0d000034 I directed level 4, CPU D I
I I or non-directed level 0 I
+------------+--+

Jul 28 10:37 1988 spm.h.doc Page 18

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

I OxOd000038 I
I I

directed level 4, CPU E
or non-directed level 0

I
I

+------------+--+
I Ox0d00003c I directed level 4, CPU F I
I I or non-directed level 0 I
+------------+--+
I Ox0d000040 I directed level 5, CPU 0 I
I I or non-directed level 1 I
+------------+--+
I Ox0d000044 I directed level 5, CPU 1 I
I I or non-directed level 1 I
+------------+--+
I Ox0d000048 I directed level 5, CPU 2 I
I I or non-directed level 1 I
+------------+--+
I Ox0d00004c I directed level 5, CPU 3 I
I I or non-directed level 1 I
+------------+--+
I Ox0d000050 I directed level 5, CPU 4 I
I I or non-directed level 1 I
+------------+--+
I Ox0d000054 I directed level 5, CPU 5 I
I I or non-directed level 1 I
+------------+--+
I Ox0d000058 I directed level 5, CPU 6 I
I I or non-directed level 1 I
+------------+--+
I Ox0d00005c I directed level 5, CPU 7 I
I I or non-directed level 1 I
+------------+--+
I Ox0d000060 I directed level 5, CPU 8 I
I I or non-directed level 1 I
+------------+--+
I Ox0d000064 I directed level 5, CPU 9 I
I I or non-directed level 1 I
+------------+--+
I Ox0d000068 I directed level 5, CPU A I
I I or non-directed level 1 I
+------------+--+
I Ox0d00006c I directed level 5, CPU B I
I I or non-directed level 1 I
+------------+--+
I Ox0d000070 I directed level 5, CPU C I
I I or non-directed level 1 I
+------------+--+
I Ox0d000074 I directed level 5, CPU D I
I I or non-directed level 1 I
+------------+--+
I Ox0d000078 I directed level 5, CPU E I
I I or non-directed level 1 I
+------------+--+
I Ox0d00007c i directed level 5, CPU F I
I I or non-directed level 1 I
+------------+--+
I Ox0d000080 I non-directed level 2 (if SPM in slot 0) I
+------------+--+

Jul 28 10:37 1988 spm.h.doc Page 19

* I Ox0d000084 I non-directed level 2 (if SPM in slot 1) I
* +------------+--+
* I OxOdOOOOBB I non-directed level 2 (if SPM in slot 2) I
* +------------+--+ * I Ox0d00008c I non-directed level 2 (if SPM in slot 3) I
* +------------+--+ * I Ox0d000090 I non-directed level 2 (if SPM in slot 4) I
* +------------+--+
* I Ox0d000094 I non-directed level 2 (if SPM in slot 5) I
* +------------+--+
* I Ox0d000098 I non-directed level 2 (if SPM in slot 6) I
* +------------+--+
* I Ox0d00009c I non-directed level 2 (if SPM in slot 7) I
* +------------+--+
* I OxOdOOOOaO I non-directed level 2 (if SPM in slot 8) I
* +------------+--+
* I Ox0d0000a4 I non-directed level 2 (if SPM in slot 9) I
* +------------+--+
* I Ox0d0000a8 I non-directed level 2 (if SPM in slot A) I
* +------------+--+
* I OxOdOOOOac I non-directed level 2 (if SPM in slot B) I
* +------------+--+ * I OxOdOOOObO I non-directed level 2 (if SPM in slot C) I
* +------------+--+
* I Ox0d0000b4 I non-directed level 2 (if SPM in slot D) I
* +------------+--+
* I Ox0d0000b8 I non-directed level 2 (if SPM in slot E) I
* +------------+--+
* I OxOdOOOObc I non-directed level 2 (if SPM in slot F) I
* +------------+--+
* I OxOdOOOOcO I non-directed level 3 (if SPM in slot 0) I
* +------------+--+
* I Ox0d0000c4 I non-directed level 3 (if SPM in slot 1) I
* +------------+--+
* I Ox0d0000c8 I non-directed level 3 (if SPM in slot 2) I
* +------------+--+
* I OxOdOOOOcc I non-directed level 3 (if SPM in slot 3) I
* +------------+--+
* I OxOdOOOOdO I non-directed level 3 (if SPM in slot 4) I
* +------------+--+
* I Ox0d0000d4 I non-directed level 3 (if SPM in slot 5) I
* +------------+--+
* I Ox0d0000d8 I non-directed level 3 (if SPM in slot 6) I
* +------------+--+
* I OxOdOOOOdc I non-directed level 3 (if SPM in slot 7) I
* +------------+--+
* I OxOdOOOOeO I non-directed level 3 (if SPM in slot 8) I
* +------------+--+
* I Ox0d0000e4 I non-directed level 3 (if SPM in slot 9) I
* +------------+--+
* i Ox0d0000e8 I non-directed level 3 (if SPM in slot A) I
* +------------+--+
* I OxOdOOOOec I non-directed level 3 (if SPM in slot B) I
* +------------+--+ * I OxOdOOOOfO I non-directed level 3 (if SPM in slot C) I
* +------------+--+

Jul 28 10:37 1988 sprn.h.doc Page 20

*
*
*
*
*
*
*

I Ox0d0000f4 I non-directed level 3 (if SPM in slot D) I
+------------+--+
I Ox0d0000f8 I non-directed level 3 (if SPM in slot E) I
+------------+--+
I OxOdOOOOfc I non-directed level 3 (if SPM in slot F) I
+------------+--+

*
**/

#define POINTER RAM (unsigned
#define POINTER-LEN
#define POINTER-LWORDS
#define POINTER-MASK
#define OUT PNTR SH
#define IN PNTR SH

*)(OxOdOOOOOO)
OxlOO
Ox40
Ox7f7f0000
16
24

/***
*
* Interrupt Dispatcher Miscellaneous RAMs
* * The miscellaneous RAMs consist of the counter RAM, the service pending
* RAM, and the CPU configuration RAM. They are all simultaneously address-
* ed as a 32 bit port, with different data bits going to the different
* RAMs as follows:
*
*
*
*
*
*
*
*

31 - 28 27 - 24 23 - 16 15 14 - 10 9 - 0
+-------+-------+---------+------------+---------+---------+
I x I configl x I serv. pend I x I counter I
+-------+-------+---------+------------+---------+---------+

16 128 8
deep deep deep

* The counter must be initialized to all ls, the service pending must be
* initialized to all Os, and the configuration RAM must be initialized
* with all slot ids of CPUs present in the css backplane which are avail-
* able for recieving interrupts as follows:
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Counter

note:

address

CPU slot id n
CPU slot id 1

CPU slot id n-1
n+l

16

data

CPU slot id 1
CPU slot id 2

CPU slot id n
CPU slot id 1

CPU slot id 1

negative true logic is used to store the count
(Ox3ff corresponds to 0)

Jul 28 10:37 1988 spm.h.doc Page 21

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Address Bits 9 - 0
+---------------+-----------------------+
I OxOeOOOOOO I count level 0 I
+---------------+-----------------------+
I Ox0e000004 I count level 1 I
+---------------+-----------------------+
I Ox0e000008 I count level 2 I
+---------------+-----------------------+
I OxOeOOOOOc I count level 3 I
+---------------+-----------------------+
I OxOeOOOOlO I count level 4 I
+---------------+-----------------------+
I Ox0e000014 I count level 5 I
+---------------+-----------------------+
I Ox0e000018 I reserved I
+---------------+-----------------------+
I OxOeOOOOlc I reserved I
+---------------+-----------------------+
Service Pending Ram

Address Bit 15
+---------------+-----------------------+
I OxOeOOOOOO I CPU 0, level 0 I
+---------------+-----------------------+
I Ox0e000004 I CPU 1, level 0 I
+---------------+-----------------------+
I OxOeOOOOOB I CPU 2, level 0 I
+---------------+-----------------------+
I OxOeOOOOOc I CPU 3, level 0 I
+---------------+-----------------------+
I OxOeOOOOlO I CPU 4, level 0 I
+---------------+-----------------------+
I Ox0e000014 I CPU 5, level 0 I
+---------------+-----------------------+
I Ox0e000018 I CPU 6, level 0 I
+---------------+-----------------------+
I OxOeOOOOlc I CPU 7, level 0 I
+---------------+-----------------------+
I Ox0e000020 I CPU 8, level 0 I
+---------------+-----------------------+
I Ox0e000024 I CPU 9, level 0 I
+---------------+-----------------------+
I Ox0e000028 I CPU A, level 0 I
+---------------+-----------------------+
I Ox0e00002c I CPU B, level 0 I
+---------------+-----------------------+
I Ox0e000030 I CPU C, level 0 I
+---------------+-----------------------+
I Ox0e000034 I CPU D, level 0 I
+---------------+-----------------------+
I Ox0e000038 I CPU E, level 0 I
+---------------+-----------------------+
I Ox0e00003c I CPU F, level 0 I

Jul 28 10:37 1988 spm.h.doc Page 22

* +---------~-----+-----------------------+
* I Ox0e000040 I CPU 0, level 1 I
* +---------------+-----------------------+
* I Ox0e000044 I CPU 1, level 1 I
* +---------------+-----------------------+
* I Ox0e000048 I CPU 2, level 1 I
* +---------------+-----------------------+
* I Ox0e00004c I CPU 3, level 1 I
* +---------------+-----------------------+
* I Ox0e000050 I CPU 4, level 1 I
* +---------------+-----------------------+
* I Ox0e000054 I CPU 5, level 1 I
* +---------------+-----------------------+
* I Ox0e000058 I CPU 6, level 1 I
* +---------------+-----------------------+
* I Ox0e00005c I CPU 7, level 1 I
* +---------------+-----------------------+
* I Ox0e000060 I CPU 8, level 1 I
* +---------------+-----------------------+
* I Ox0e000064 I CPU 9, level 1 I
* +---------------+-----------------------+
* I Ox0e000068 I CPU A, level 1 I
* +---------------+-----------------------+
* I Ox0e00006c I CPU B, level 1 I
* +---------------+-----------------------+
* I Ox0e000070 I CPU C, level 1 I
* +---------------+-----------------------+
* I Ox0e000074 I CPU D, level 1 I
* +---------------+-----------------------+
* I Ox0e000078 I CPU E, level 1 I
* +---------------+-----------------------+
* I Ox0e00007c I CPU F, level 1 I
* +---------------+-----------------------+
* I Ox0e000080 CPU 0, level 2 I
* +---------------+-----------------------+
* I Ox0e000084 I CPU 1, level 2 I
* +---------------+-----------------------+
* I Ox0e000088 I CPU 2, level 2 I
* +---------------+-----------------------+
* I Ox0e00008c I CPU 3, level 2 I
* +---------------+-----------------------+
* I Ox0e000090 I CPU 4, level 2 I
* +---------------+-----------------------+
* I Ox0e000094 I CPU 5, level 2 I
* +---------------+-----------------------+
* I Ox0e000098 I CPU 6, level 2 I
* +---------------+-----------------------+
* I Ox0e00009c I CPU 7, level 2 I
* +---------------+-----------------------+
* I OxOeOOOOaO I CPU 8, level 2 I
* +---------------+-----------------------+
* I Ox0e0000a4 I CPU 9, level 2 I
* +---------------+-----------------------+
* I Ox0e0000a8 I CPU A, level 2 I
* +---------------+-----------------------+
* I OxOeOOOOac I CPU B, level 2 I

Jul 28 10:37 1988 spm.h.doc Page 23

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

+---------------+---------------~-------+
I OxOeOOOObO I CPU C, level 2 I
+---------------+-----------------------+
I Ox0e0000b4 I CPU D, level 2 I
+---------------+-----------------------+
I Ox0e0000b8 I CPU E, level 2 I
+---------------+-----------------------+
I OxOeOOOObc I CPU F, level 2 I
+---------------+-----------------------+
I OxOeOOOOcO I CPU 0, level 3 I
+---------------+-----------------------+
I Ox0e0000c4 I CPU 1, level 3 I
+---------------+-----------------------+
I Ox0e0000c8 I CPU 2, level 3 I
+---------------+-----------------------+
I OxOeOOOOcc I CPU 3, level 3 I
+---------------+-----------------------+
I OxOeOOOOdO I CPU 4, level 3 I
+---------------+-----------------------+
I Ox0e0000d4 I CPU 5, level 3 I
+---------------+-----------------------+
I Ox0e0000d8 I CPU 6, level 3 I
+---------------+-----------------------+
I OxOeOOOOdc I CPU 7, level 3 I
+---------------+-----------------------+
I OxOeOOOOeO I CPU 8, level 3 I
+---------------+-----------------------+
I Ox0e0000e4 I CPU 9, level 3 I
+---------------+-----------------------+
I Ox0e0000e8 I CPU A, level 3 I
+---------------+-----------------------+
I OxOeOOOOec I CPU B, level 3 I
+---------------+-----------------------+
I OxOeOOOOfO I CPU C, level 3 I
+---------------+-----------------------+
I Ox0e0000f4 I CPU D, level 3 i
+---------------+-----------------------+
I Ox0e0000f8 I CPU E, level 3 I
+---------------+-----------------------+
I OxOeOOOOfc I CPU F, level 3 I
+---------------+-----------------------+
I Ox0e000100 I CPU 0, level 4 I
+---------------+-----------------------+
I Ox0e000104 I CPU 1, level 4 I
+---------------+-----------------------+
I Ox0e000108 I CPU 2, level 4 I
+---------------+-----------------------+
I Ox0e00010c I CPU 3, level 4 I
+---------------+-----------------------+
I OxOeOOOllO I CPU 4, level 4 I
+---------------+-----------------------+
I Ox0e000114 I CPU 5, level 4 I
+---------------+-----------------------+
I Ox0e000118 I CPU 6, level 4 I
+---------------+-----------------------+
I OxOeOOOllc I CPU 7, level 4 I

Jul 28 10:37 1988 spm.h.doc Page 24

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

+---------------+-----------------------+
! Ox0e000120 I CPU 8, level 4 I
+---------------+-----------------------+
I Ox0e000124 I CPU 9, level 4 I
+---------------+-----------------------+
I Ox0e000128 I CPU A, level 4 I
+---------------+-----------------------+
I Ox0e00012c I CPU B, level 4 I
+---------------+-----------------------+
I Ox0e000130 I CPU C, level 4 I
+---------------+-----------------------+
I Ox0e000134 I CPU D, level 4 I
+---------------+-----------------------+
I Ox0e000138 I CPU E, level 4 I
+---------------+-----------------------+
I Ox0e00013c I CPU F, level 4 I
+---------------+-----------------------+
I Ox0e000140 I CPU 0, level 5 I
+---------------+-----------------------+
I Ox0e000144 I CPU 1, level 5 I
+---------------+-----------------------+
I Ox0e000148 I CPU 2, level 5 I
+---------------+-----------------------+
I Ox0e00014c I CPU 3, level 5 I
+---------------+-----------------------+
I Ox0e000150 I CPU 4, level 5 I
+---------------+-----------------------+
I Ox0e000154 I CPU 5, level 5 I
+---------------+-----------------------+
I Ox0e000158 I CPU 6, level 5 I
+---------------+-----------------------+
I Ox0e00015c I CPU 7, level 5 I
+---------------+-----------------------+
I Ox0e000160 I CPU 8, level 5 I
+---------------+-----------------------+
I Ox0e000164 I CPU 9, level 5
+---------------+-----------------------+
I Ox0e000168 I CPU A, level 5
+---------------+-----------------------+
I Ox0e00016c I CPU B, level 5
+---------------+-----------------------+
I Ox0e000170 I CPU C, level 5
+---------------+-----------------------+
I Ox0e000174 I CPU D, level 5
+---------------+-----------------------+
I Ox0e000178 I CPU E, level 5
+---------------+-----------------------+
I Ox0e00017c I CPU F, level 5
+---------------+-----------------------+

*
**/

#define MISC RAM (unsigned *)(OxOeOOOOOO)
#define MISC-LEN Ox200
#define MISC-LWORDS Ox80

Jul 28 10:37 1988 spm.h.doc Page 25

#:define MISC MASK Ox0f0083ff
#define CNTR-MASK Ox000003ff
#:define CNTR-LWORDS 8
#define CNTR-ZERO BIT Ox00000400
#define SERV-MASK- Ox00008000
#define SERV-LWORDS Ox60
#define CONFIG LWORDS 16
#define CONFIG-MASK OxOfOOOOOO
#define CONFIG-SH 24

#define PIPEDATA (unsigned *)(Ox80000018)
#define PIPEADDR (unsigned *)(Ox8000001c)

#define DATARESP 4

/***
* * Translation table for CSS data bits to local address and data bits.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

CSS BUS DATA
+------+------+------+------+------+------+------+------+
100 07110 17120 27130 37140 47150 57160 67170 771
+------+------+------+------+------+------+------+------+
124 31116 2318 1510 7124 31116 2318 1510 71
+------+------+------+------+------+------+------+------+
!<--------IN DATA-------->!<-------- IN ADDR -------->!

IN DATA
31 - 24 23 22-18 17 16 15 - 12 11 - 8 7 6 - 0

+----------+-+------+-----+----------+----------+-+-------------+
I Vector# IDI x JleveljDest. Slot! Src. Slot!III/O Src. Slot!
+----------+-+------+-----+----------+----------+-+-------------+
Vector #

read by the 68020 during the interrupt acknowledge cycle.

Directed Bit

directed interrupt if a 1, the interrupt must be sent to the
specified destination slot. If a 0, the interrupt may be sent to
any computational module accepting interrupts.

Int Priority

determines the priority of the interrupt, which increases with value.

Destination Slot

If the directed bit is on, the interrupt is sent to the slot specified
by this value. If a non-directed interrupt, this field is ignored.

Source Slot

The interrupt request came from the slot specified by this value.

Jul 28 10:37 1988 spm.h.doc Page 26

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

I/O Bus Interrupt

If a 1, the interrupt came from an i/o bus attached to the S-bus
module. The I/O bus slot requesting the interrupt is specified by
"I/O Bus Src Slot". If this bit is 0, the interrupt request came from
the S-bus module.

I/0 Bus Source Slot

If the I/O Bus Interrupt bit is set, the interrupt came from the I/O
bus slot specified by this value. If the I/O bus Interrupt bit is 0,
this field is ignored(set to zero}.

D bit Priority Level Use
----- --------------

1 Ox07 - Ox04 High priority directed interrupts;
mapped into 68020 interrupt level 6.

1 Ox03 - OxOO Low priority directed interrupts;
mapped into 68020 interrupt level 5.

0 Ox Of - OxOc Highest priority i/o interrupts;
mapped into 68020 interrupt level 4.

0 OxOb - Ox08 High priority i/o interrupts;
mapped into 68020 interrupt level 3.

0 Ox07 - Ox04 Low priority i/o interrupts;
mapped into 68020 interrupt level 2.

0 Ox03 - OxOO Lowest priority i/o interrupts;
mapped into 68020 interrupt level 1.

* **/

/*

*I
Number of slots in a css back plane.

#define MAX CSS SLOT 16

