

©1988 AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

DEC is a registered trademark and VT100 is a trademark of Digital
Equipment Corporation.
IBM is a registered trademark of International Business Machines Corporation.
MS-DOS is a registered trademark of Microsoft Corporation.
Tektronix is a registered trademark of Tektronix, Inc.

1

2

3

4

Contents

Getting Started
Overview
What Is In This Guide
Other ESCORT Documentation

Programming in ESCORT
Overview
Program Structure
Character Set
Reserved Words
Constants and Variables
Operators and Expressions
Local Session Screens
Special Features
Synchronous and Asynchronous

Host Programming Considerations

Sample Programs
Overview
Synchronous Host Sample Program
Asynchronous Host Sample Program

Commands and Functions
How to Use This Section
Command Directory
Function Directory

1-1
1-3
1-9

2-1
2-3
2-7
2-9
2-11
2-21
2-29
2-35

2-41

3-1
3-3
3-39

4-1
4-3
4-137

5

6

ESCORT Utilities
Overview 5 -1
Upload and Download 5 -3
Generating Screen Field Variables 5 -17
Get Fields 5 -25
Asynchronous Host Soft Function Keys 5 -29

Local Screen Generator
Utility Program
Overview
Accessing and Quitting LSGEN
Creating and Editing Fields
Defining Fields
LSGEN Error Messages
LSGEN Key Sequences

Appendix A: Error Messages

Appendix B: Debugging
Facilities

Appendix C: AID Subroutines
Library
Appendix D: Interpretation of
Attribute Bytes

Appendix E: Key Sequences

Appendix F: Environment
Variables and Customization

Appendix G: Additional
Programs

6 -1
6-3
6-9
6-19
6-27
6-29

A-1

8-1

C-1

D-1

E-1

F -1

G -1

Glossary

Index

1 Getting Started

Overview 1 -1

What Is In This Guide 1-3
Organization of This Guide 1 -3
Conventions 1 -5

Other ESCORT Documentation 1 -9

Overview

This programmer's guide contains the information you need to
know to program in ESCORT™.

The guide assumes that you have some previous programming
experience and, for example, that you know how to use an
IF . . . THEN statement or a WHILE . . . DO loop. It does not
contain basic instructions on how to program, rather, this
programmer's guide describes the rules and conventions that are
particular to the ESCORT language.

Before you begin programming in ESCORT, you should have an
understanding of

o the rules and requirements of the language

o the methods of constructing local session screens

o the ESCORT system global variables

o the method of handling multiple transmissions from a
synchronous host

o the initialization of asynchronous communication ports

o the synchronization of data transmissions to an asynchronous
host.

Overview 1-1

What Is In This Guide

Organization of This Guide
This guide is divided into nine parts:

Getting Started
contains information about this programmer's guide. Read this
chapter to learn how the guide is organized, and what
conventions and definitions are used throughout the guide.

Programming in ESCORT
covers the rules and conventions of the ESCORT language.
Read this chapter to learn how to structure an ESCORT program
and what types of variables, operators, and expressions are
permissible in this language. Special features of the ESCORT
language are also presented here.

This chapter contains information on how to handle specific host
system situations, such as partial system responses in the
synchronous environment, the initialization of asynchronous
communication ports, and the synchronization of data
transmission to and from an asynchronous host.

Sample Programs
demonstrates how ESCORT works. Read this chapter to
understand ESCORT program structures and how to execute
programs in both the synchronous and asynchronous
environments.

Commands and Functions
presents an alphabetic listing of all ESCORT commands and
functions. Use this chapter as a reference manual to look up the
correct format of all commands and functions. Examples for each
listing, which demonstrate the use of a particular command or
function, are also provided.

What Is In This Guide 1-3

ESCORT Utilities
contains information on the utility scripts provided on the
ESCORT installation diskette.

Local Screen Generator Utility Program
describes the operation of the local screen generator utility
program provided on the ESCORT installation diskette.

Appendices

Appendix A: Error Messages
contains an error message directory.

Appendix B: Debugging Facilities
provides debugging information.

Appendix C: AID Subroutines Library
consists of a program library of the AID subroutines provided on
the ESCORT installation diskette.

Appendix D: Interpretation of Attribute Bytes
contains information on reading attribute bytes.

Appendix E: Key Sequences
consists of tables that present functions and the associated keys
and/or key sequences for specific terminal types.

Appendix F: Environment Variables and Customization
provides information on setting environment variables and on
terminal customization procedures.

Appendix G: Additional Programs
contains advanced ESCORT program scripts which can be
modified to suit your particular application needs.

Glossary
contains definitions for terms and acronyms used in this guide.

Index
lists page references for locating specific items in this guide.

1-4 Getting Started

Conventions

Documentation Conventions
The conventions listed below are used throughout this guide:

o Special function keys on your terminal keyboard are enclosed
in a rectangle with rounded corners; for example, (ESC).

o Standard alphabetic and numeric keys on your terminal
keyboard are printed in bold; for example, f.

o Two or more keys separated by spaces indicate tfat YjU
should press each key sequentially; for example, ESC f 1.

o Two keys separated by a hyphen indicate that you should
hold down the first key while simultaneously pressing the
second key; for example, (CTRL) - d.

o Commands, functions, and keyword operands are printed in
bold capital letters. Functions always start with a dollar sign
($). For example, $SCAN is a function.

o ESCORT specific key functions and other key functions are
printed in capital letters; for example, CLEAR.

o The following type is used to indicate data that the user types
at the terminal:

escort script---..name

o The following type is used to indicate information that the
system displays on the screen:

auto script generation started

o The following type is used to indicate program text:

CONNECT (HI)

o Multi .. word operands are separated by an underscore. For
example, str_expr represents the words, string expression.

o Brackets [] indicate optional operands.

o Braces { } indicate a choice of operands.

o The UNIX file path names are shown with the standard slash
character (/). Scripts are portable between the UNIX
operating system and the MS .. DOS® operating system
versions of ESCORT and you may, therefore, substitute the

What Is In This Guide 1-5

standard UNIX operating system slash character with the
MS .. DOS operating system back .. slash (\) file name separation
character.

Note
Throughout this guide, default key combinations are shown for
ESCORT specific functions, for example, the ESCORT
Interrupt/Resume (IIR) key combination is shown as the key
sequence @ f 2. These default key combinations may be
amended by the System Administrator for your particular
environment.

If the ESCORT default key combinations are
amended you must substitute the amended
key combinations for the default
combinations shown in the document text,
the example scripts and the sample programs
in this programmer's guide.

Data Entry Conventions

o ESCORT is case insensitive, which means that it treats
lowercase characters the same as uppercase. The exception
to this is string constants.

o The UNIX shell is case sensitive, which means that it treats
lowercase characters differently from uppercase. Thus, when
you invoke ESCORT with parameters from the UNIX shell
command line, the parameters, such as file names, must be
exactly the same as those in the file system.

1-6 Getti ng Started

Definitions
The following terms are used throughout this programmer's guide.

Integer An integer may include an integer constant,
integer variable, integer array element, or an
integer function. An integer constant may have
any value between 231 _1 and -231 +1,

String

Host

(± 2,147,483,647).

A string may include a string constant, string
variable, string array element, or a string
function. It may also be a combination of these
operands separated by a concatenation operator.

A host session refers to either a synchronous
session or an asynchronous session, unless
otherwise specifically noted.

What Is In This Guide 1-7

Other ESCORT
Documentation

This Programmer's Guide is part of the ATm 3270 Emulator+
ESCORT documentation. The entire documentation package
includes the following:

I

o AT&T 3270 Emulator+ ESCORT User's and
Programmer's Guides
AT&T publication number 308A02.
This binder contains the following three documents:

ESCORT Overview

ESCORT User's Guide

ESCORT Programmer's Guide

o ESCORT Quick Reference Card and Key Sequence Card,
AT&T publication number 308 .. 389.

Other ESCORT Documentation 1-9

2 Programming in ESCORT

Overview

Program Structure

Character Set

Reserved Words

Constants and Variables
Constants
Variables

Operators and Expressions
Operators
Expressions

Local Session Screens
Local Screen Formats

2-1

2-3

2-7

2-9

2-11
2-11
2-13

2-21
2-22
2-25

2-29
2-29

Special Features 2-35
System Global Variables 2-35
Screen Buffers 2 -37
Parameter Passing 2 -38

Synchronous and Asynchronous
Host Programming Considerations 2-41
Synchronous Response/No~Response

Mode Transactions 2-41
Asynchronous Communication

Port Initialization 2 -47
Asynchronous Host Terminal Specification 2 -48
Synchronizing Data Transmissions 2 -49

Overview

Read this chapter to learn how to structure" an ESCORT
program.

The first five sections of this chapter contain the rules and
requirements of the language: the program structure, allowable
character set, reserved word restrictions, and types of constants,
variables, operators, and expressions you may use.

The next section, entitled "Local Session Screens," contains
information on how to define and use local screen formats in
ESCORT.

The section, "Special Features," contains important notes that
you should read before programming in ESCORT. The features
covered are: use of screen buffers, the system global variables
available, and parameter passing.

The final section in this chapter contains information on how to
handle partial synchronous host system responses, the
initialization of asynchronous communications ports, and on the
method of synchronizing data transmissions for non~screen
oriented asynchronous host data applications in ESCORT.

When you have read this chapter you will be able to create
programs that automate tasks that previously had to be completed
manually and you will be able to design local session screens that
provide an interface between you and the host system
application.

Overview 2-1

Program Structure

The required structure for an ESCORT program is very simple.
Each program consists of a series of program statements stored in
a file.

Program Requirements
Every ESCORT program must meet these criteria:

o Contain at least one script. The first script is the main
program. Additional scripts are similar to subroutines in
other programming languages.

o Begin with a PROG (program) statement. You may enter
comments before the PROG statement if you wish.

o End with an ENDP (end of program) statement.

Some rules for structuring ESCORT programs follow:

o Begin each script section with a SCRIPT statement and end
it with an ENDS statement.

o You must declare variables before they can be used in a
script.

Optional sections in ESCORT programs include the following:

o You may use local or global variables within your program.
The section, "Declaring Global and Local Variables," in this
chapter discusses this in more detail. Global variables may
be accessed by any script within your program and must be
declared in a global variables declaration section following
the PROG statement. This section is optional and may
contain only variable declaration statements such as INT,
CHAR, and FIELD. Local variables are valid only within a
particular script and must be declared at the beginning of
each script following the SCRIPT statement.

o You may define local screen formats. The section, "Local
Session Screens," in this chapter provides additional
information. Local screen formats are defined in the local

Program Structure 2-3

screen format definition section following the PROG
statement. This section is optional and may contain only
local screen definition statements such as BEGFMT,
ENDFMT and FIELD.

Summary
This diagram outlines the structure of an ESCORT program.

ESCORT Program Structure

ABCD PROG S1
Global Variable Declarations

INT
CHAR statements only
FIELD

Local Screen Format Definitions

BEGFMT
FIELD
ENDFMT

statements only

S1 SCRIPT
Local Variable Declarations
Executable Statements
ENDS

S2 SCRIPT
Local Variable Declarations
Executable Statements
ENDS

S3 SCRIPT
Local Variable Declarations
Executable Statements
ENDS

ENDP

o The program begins with a PROG statement followed by an
optional global variables declaration section and an optional
local screen format definition section.

2-4 Programming in ESCORT

o The first script, which is required, follows the optional
declaration and format definition sections. Additional scripts
are optional.

o Each script begins with a SCRIPT statement.

o Declaration of local variables follows the SCRIPT statement.

o The executable commands and statements of your program
follow the local variables declaration. (An exception is the
preprocessor command, COPY, which may be used anywhere
between the PROG and ENDP statements in your program.)

o Each script ends with an ENDS statement.

o The program ends with an ENDP statement.

Program Structure 2-5

Character Set

ESCORT allows use of the following characters:
o Upper case alphabetic characters (A .. Z)
D Lower case alphabetic characters (a .. z)
D Numeric characters (0 .. 9)
o Special characters (as defined in standard ASCII code).

Some characters or combinations of characters have a specific -
meaning in ESCORT.

Character Use

$ First character in a function name (e.g., $DATE)
1* Starting marker for a comment in a program
() Delimiters for expressions or operand lists
- Minus sign operator
+ Plus sign or string concatenation operator

* Multiplication sign operator, or
default attribute (FIELD)

1 Division sign operator
% Remainder divide (modulo) operator
= Equal sign or assignment
!-.- Not equal sign
< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to
& And (logical)
I Or (logical)
! Unary Not (e.g., If !«a .. b) = 2) ... Then)

&&n Preprocessing parameters (n = 1 to 9)
? Comparison operator ($EV AL)

Character Set 2-7

Reserved Words

Reserved words have a special meaning in the ESCORT language
and. should not be used as variable names, program names, labels,
or script names.

Listed below are the reserved words:

ABEND DISCON FRESH RESET
AID DNLOAD GETFMT RETURN
ASSIGN(=) DO GOTO RUN
ATTN DUMP HOME SCREEN
BEEP DUMMY IF SCRIPT
BEGFMT DUP IGNORE SERINIT
BREAK EJECT INS SHOW
BTAB ELSE INT SWITCH
CALL ENDC LBREAK SYSAID
CAPTURE ENDFMT LOG SYSPRMT
CASE ENDIF MODE SYSREQ
CHAR ENDO NL SYSRET
CHGATTR ENDP OPEN TAB
CHKPT ENDS PAl TEXT
CLEAR ENTER PA2 THEN
CLOSE ERASEW PA3 TIMEOUT
COLOR ERIN PFl .. 24 TRACE
CONNECT EROF PGMDMP UPLOAD
COpy EXIT PMSG WAIT
CURSOR FIELD PRINT WHILE
CYCLE FM PROG WINDOW
DEFAULT FOR PROMPT WRITE
DEL FORMAT READ WTO

Reserved Words 2-9

I

I

I

Constants and Variables

This section contains information on the types of constants and
variables you may use. Any restrictions on their use are also
noted in this section.

Constants
You may use two types of constants in ESCORT. They are

D Integer Constants

D String Constants.

Integer Constants
An integer constant may have any value between 231 - 1 and
- 231+ 1, (± 2,147,483,647), inclusive. A unary minus sign is
permitted on an integer constant. Examples of integer constants
are

String Constants

1256
-126

13
o

A string constant (or a character string) is a sequence of
characters enclosed in double quotation marks. A maximum of
132 characters is permitted in a string constant. Examples of
string constants are

"HELLO WORLD"
"$10,000.00 / year"
"a"
"I am a string"

A string constant may contain upper .. and/or lowercase letters.

Constants and Variables 2-11

However, the string constant "HELLO WORLD" and the string
constant "hello world" or "Hello World" are not equivalent to
each other.

A string can be continued on two or more lines by using the
concatenation operator (+). If you use the concatenation
operator, you must enclose the expression in parentheses. Below
is an example:

ADDRESS =

2-12 Programming in ESCORT

("26 Bloom Drive, " +
"Manchester, N.J. 07728")

Variables
A variable is a symbolic name used to represent a value. This
section contains the rules for using variables in an ESCORT
program. The value contained in a variable can be changed
during execution of a program.

The maximum allowable size for all variables is 64K.

Naming Variables

o The name of a variable may be up to eight characters long.

o The first character of a name must be alphabetic. The
remaining characters may be either alphabetic or numeric.

o An underscore (_) is permitted in a variable name.

o A number sign (#) is permitted in a variable name.

o A field variable name may be prefixed by a format name
separated from the simple field name with a period (.).

Note
A reserved word may not be used as a variable name.

Declaring Variables

o You must declare your variables at the beginning of your
program before they are used in a command statement.

o Integer variables are initialized to zero when you first declare
them.

o String variables are initialized to null (no characters) when
you first declare them.

Declaring Global and Local Variables
The scope of a variable may be either global or local.

o Global Variables

Declare global variables within the optional declarations
section of your program, which starts right after the PROG
statement and ends at the first SCRIPT statement. Once
you declare a variable as global, it can be used by any script

Constants and Variables 2-13

within the entire program. A global variable must have a
unique name within a program.

o Local Variables

Declare local variables within the script section of your
program. Once a variable is declared it is defined for that
particular script only . You may use the same variable name
again in another script within the same program.

An example of the use of local and global variables follows:
ABCO PROG scriptl

INT globall
CHAR (10) globa12

script! SCRIPT
INT local!
CHAR (10) loca12

ENDS
script2 SCRIPT

INT local!
CHAR (20) loca12

ENDS
ENDP

In the above example, two global variables are declared, globall
and global2. These variables can be used by both scriptl and
script2. No other variable may be declared using these names.

In scriptl, two local variables are declared, locall and Zocal2.
These two variables are also declared as local variables in script2.

Using Different Variable Types
There are five types of variables used to represent values in
ESCORT. They are

o Integer

o Integer Array

o String

o String Array

o Field.

2-14 Programming in ESCORT

Integer Variables
An integer variable is a four,byte signed integer that may have a
value between - 231 + 1 and 231 _1, inclusive. Fractional values
(decimal numbers) are not allowed; refer to the $EV AL function
in Chapter 4 for detailed information on how ESCORT handles
decimal numbers.

You can declare an integer variable by using an INT statement.
The INT statement is described in detail in Chapter 4.

The value of an integer variable may be changed at any time
during program execution.

Listed below are examples of integer declaration statements:
INT A
INT B
INT C
INT X

A = 20
B = 5
C = (A/4)
X = «A·B) I C)

I*Integer A is declared.
I*Integer B is declared.
I*Integer C is declared.
I*Integer X is declared.

I*Value of A equals 20.
I*Value of B equals 5.
I*Value of C equals 5.
I*Value of X equals 3.

The above example first declares variables A, B, C, and X as
integers. When you declare the variables they are initialized to
zero. Next, the value of each variable is changed by using an
assignment statement (=).

Integer Array Variables
An array is a table of integer variables referenced by the same
variable name. An integer array may have a maximum of 2048
elements. These elements can be referred to with subscripts 1 to
2048. Each element in the array must be a four,byte signed
integer.

You can declare an integer array by using the INT statement.
The INT statement is described in detail in Chapter 4.

Constants and Variables 2-15

Below is an example of an integer array named table. This
example shows you how to declare and initialize an array and
how to access an array element.
INT table (5) 1* table contains 5 elements

1* each element has zero value

table = (10,20,30,40,50) 1* each element in the array named table
1* is initialized (set to a specific value)

table(2) = - 255 1* the 2nd element in the array
1* is set to - 255

The first statement in the example declares an integer array of
five elements. Each element in the array table is automatically
set to zero when it is first declared.

The second statement initializes the array by setting each
element to a specific value:

1st array element = 10
2nd array element = 20
3rd array element = 30
4th array element = 40
5th array element = 50

After execution of the third statement in the example, the value
of the second element in the array changes from 20 to - 255.

1st array element =
2nd array element =
3rd array element =
4th array element =
5th array element =

String Variables

10
-255

30
40
50

A string variable may have a maximum of 2048 characters. You
specify the maximum length of a variable in the declaration
statement.

The value and length of string variables change during program
execution depending on the assignment statements in your
program. When a string variable is first declared, its length is set
to zero and it contains a null string or no data.

2-16 Programming in ESCORT

You may declare a string variable by using a CHAR (character)
statement. The CHAR statement is described in detail in
Chapter 4.

The example below shows how a string variable is declared:
CHAR (20) name
CHAR (60) address

1* 20 character string
1* 60 character string

name "Anderson, G.A."
address = (" 26 Bloom Dr., "+

"Manchester, N.J. 07728")

In the above example, name and address are declared as string
variables. The name has a maximum length of 20 characters.
The address has a maximum length of 60 characters. When the
strings are first declared, they are null strings and therefore have
zero length.

In the second part of the example, name is assigned a character
string constant (Anderson, G.A.) and the current length is
therefore set to 14. The address is assigned a character string
constant (26 Bloom Dr., Manchester, N.J. 07728) and its length
is set to 36 (Note that spaces count as characters).

String Array Variables
A string array is a table of string variables of the same maximum
length. Each string array may have a maximum of 2048
elements. These elements can be referred to with subscripts 1 to
2048. Only single dimension arrays may be implemented in
ESCORT.

Each element in a string array may contain a character string or
a null string. Each element in an array is automatically
initialized to null upon declaration.

You can declare a string array by using the CHAR statement.
The CHAR statement is described in detail in Chapter 4.

Below is an example of a string array declaration statement:
CHAR (2) tables (5) 1* array declaration statement

tables = ("AB" ,"CO ,"E" ,"GH" ,"IJ") 1* array initialization

tables (2) = "CD" 1* assignment of string
1* "CO" to element 2.

Constants and Variables 2-17

The first statement declares a string array. Each element in the
array may contain a character string of up to 2 characters. Each
element is initialized with zero length.

The second statement uses a special form of the assignment
statement for string array initialization to assign specific values to
each element of the array. Elements in the array have the
following string values and lengths:

Value Length

tables (1) "AB" 2
tables (2) "c" 1
tables (3) "E" 1
tables (4) "GH" 2
tables (5) "1]" 2

The last statement in the example sets the second element to
"CD." It previously held the value "C."

Field Variables
The field variable concept is unique to ESCORT. A field
variable is a user .. defined area in the screen buffer that is
associated with a particular screen format. It is also known as a
screen field variable.

The FIELD statement has two formats. The first FIELD format
is used to assign a symbolic name (a screen field variable) to a
specified area on the screen. This format is used primarily to
declare field variables for formatted screens in a host session. See
Chapter 4 for further information on this type of FIELD
statement.

The second FIELD format is used to create formatted screens for
local sessions and is described more fully in the section, "Local
Session Screens", in this chapter.

2-18 Programming in ESCORT

Both formats use the same naming convention for the field
variable:

lformat·lf1eld~ame

Format and field may each be up to eight alphanumeric
characters, and the first character must be alphabetic. The
format name is optional, but when it is included it must be
separated from the field name by a period (.). See the FIELD,
FORMAT, BEGFMTIENDFMT, GETFMT and ASSIGN(=)
statements in Chapter 4 for more detailed information.

Below are examples of field variables:

mainord.ordemo
ordemo
abc.xl
a.b
racflog.pwd

Screen .. field names may be chosen arbitrarily. However, we
recommend that you use the actual screen and field names
defined for your host application (by, for example, the IMSNS
Message Format Services (MFS) or the CICSNS Basic Mapping
Support (BMS) utility in the synchronous environment). Screen ..
field names may be used in a string expression or string relational
expression. Below are examples:
FIELD (5,10,9) mainord.orderno 1* field declaration
CHAR (3) prefix 1* character string

prefix = • 000·
mainord.orderno = (prefiX + "000034")

The above statement has the same effect as using
CURSOR (5,10)
TEXT ('000000034")

However, the code written using the CURSOR and TEXT
commands is more difficult to maintain since code updates must
be made manually when the host application's screen format
changes.

Constants and Variables 2-19

In addition, multiple scripts may need revision since they may all
use the same screen. To save time and effort you can define the
screen as fields in a separate file which you copy into each script
as needed. When an application screen format changes, you have
to make only one change to the screen definition file.

2-20 Programming in ESCORT

Operators and
Expressions

This section contains information on the types of operators and
expressions you may use in ESCORT. Definitions of operators,
operands, and expressions follow:

o Operators are characters that designate mathematical or
relational operations.

o Operands are constants or variables that are acted upon by
operators.

o Expressions are combinations of operators and operands.
Individual operands may also be considered expressions.

Below is an example of how operators and operands relate to one
another:

~
operators

(a + b) > (d - 256)

t~t_ t-----,-t __ operands

In this example, a, b, d, and 256 are operands and +, -, and >
are operators. The whole statement is an expression as well as its
components such as (a + b) and (d - 256). In addition, single
operands, such as a, b, d, and 256 can be considered expressions.

Operators and Expressions 2-21

Operators
You may use three types of operators in ESCORT. They are

o Arithmetic

o Relational

o String Concatenation.

Arithmetic Operators
These are characters that designate mathematical operations.

Operator Definition

+ addition
- subtraction or unary minus (e.g., -1)

* multiplication
/ division {The result is always truncated (e.g., 36/5 = 7.)

% remainder division (modulo). For example, 36 % 5 = 1.
The remainder of 36 divided by 5 equals 1.

Relational Operators
These are characters that compare two values and yield either a
true (non .. zero) value or a false (zero) value.

Operator Definition

= equal
1-.- not equal
< less than
> greater than

<= less than or equal
>= greater than or equal
& logical AND {IF (a> b) & (c=d) THEN)
I logical OR (WHILE (£1 = "xyz") I (y=230) DO)
! unary NOT (WHILE !«£1 = "XVZ")I (v =230)) DO)

2-22 Programming in ESCORT

The operands compared by relational operators must be both
integers or both strings. You may not compare integers to
strings.

Comparison of strings is based on ASCII collating sequence
order. For example, the following operations will return a true
(non .. zero) value:

"AA"
"I AM A STRING"
II Kg II

!=
=

>

"AB"
III AM A STRINGII
II KG II

Comparison of integers is based on the values of the two
expressions compared. For example, the following operation will
return true (non .. zero) since the value of the first expression is less
than the value of the second expression.

(4 + 2) < (5 * 2)

Use the $EV AL function to compare floating point values. The
$EV AL function is described in detail in Chapter 4.

String Concatenation Operators
You may use a concatenation operator to chain (or link) together
string operands. A string operand can be a string constant, string
variable, string array element, screen .. field variable, or string
function.

Either a plus sign (+) or a space can be used as a concatenation
symbol. If you use a concatenation operator, you must enclose
the expression in parentheses.

These two statements are equivalent:

PRINT ($DATE + II II + $TIME + II TEST0024 ENDEDII)

PRINT ($DATE II II $TIME II TEST0024 ENDEDII)

The first statement uses a plus sign (+) as a concatenation
operator and the second statement uses a space. Additional
spaces between operands are ignored.

Operators and Expressions 2-23

Precedence of Operators
Operators in an expression are evaluated in the order shown in
the table below. Operators on the same line of the table have
the same precedence; rows are in order of decreasing precedence.
Operators with the same precedence are evaluated from left to
right as they appear in an expression.

Operator Definition

() parentheses
unary - ! unary minus, unary NOT

* / multiplication, division
% remainder division (modulo)

+ - addition, subtraction
= 1-.- < > <= >= equal, not equal, less than,

greater than, less than or
equal,
greater than or equal

& logical AND
I logical OR

2-24 Programming in ESCORT

Expressions
You may use three types of expressions in ESCORT. They are

o Integer

o Relational

D String.

Integer Expressions
An integer expression consists of a single integer operand or
multiple operands separated by arithmetic operators. Expressions
containing multiple operands must be enclosed in parentheses.
An integer operand may be an integer constant, integer variable,
integer array element, or integer function.

An integer expression that has multiple operands is known as a
compound expression. Compound expressions must be enclosed
in parentheses.

Below are examples of integer expressions:

Expression

256
-1
a
i

c(2)
(a+(b .. 256) * 8)
($GETCUR + 1)

Definition

integer constant
integer constant
integer variable
integer variable
integer array element
compound expression
compound expression
using an integer function

The result of an integer expression is a signed integer.

Refer to the $EV AL function in Chapter 4 for detailed
information on how ESCORT handles decimal numbers.

Relational Expressions
A relational expression is any expression containing a relational
operator (=,1=, <, >, < =, > =, &, 1,1). The operands in
the expression can be either string type or integer type. The
result of a relational expression is true (non .. zero) or false (zero).

Operators and Expressions 2-25

Relational expressions are usually used in the clause of an IF or
WHILE statement. However, they can also be assigned to an
integer variable or an integer array element.

Below are examples of relational expressions:

D Two integer expressions separated by a relational operator.
In this example, a, b, c, and d are integer variables.

IF 8=2 Tt£N •••
WHILE (8+2) 1= cOO ••.
IF b< =d TI£N •••

D Two strings separated by a relational operator. In this
example, /1, /2, and /3 are character or field variables.

IF fl=" xyz" TI£N ...
IF f2= f3 TI£N •..

D Two or more simple relational expressions separated by & or
I operators. In this example, a and b are integer variables
and /1 and f2 are string variables.
IF «8=b) I (fl="23OQ"» & (f2 > fl) THEN ..•

String Expressions
A string expression consists of a single string operand or multiple
string operands separated by a string concatenation operator (a
plus sign or blank space). A string expression containing
multiple string operands must be enclosed in parentheses. A
string operand can be a string constant, string variable, string
array element, screen field variable, or string function.

Below are examples of string expressions:

Expression

"a"
"I am a string"
("HELLO" + "WORLD")
("time is " + $TIME)
(A B "string")

2-26 Programming in ESCORT

Definition

single character
one string
two strings concatenated
string and a string function
two variables and a string constant

The result of a string expression is a character string.

In the next example, the variable name contains the character
string AT&T ~ Information Systems.

CHAR (30) name
CHAR (20) division

division = "Information Systems"
name = (" AT&T . " DIVISION)

Operators and Expressions 2-27

Local Session Screens

Local Screen Formats
The local session feature of ESCORT allows the user to develop
a UNIX operating system,based, front' end to a host application,
known as a Local Screen Fonnat.

The local session screen feature of ESCORT allows you to create
local session screens tailored to specific user's needs. Local
screens can be created using various attributes that provide
enhanced characteristics similar to host application screen
fonnats.

Local Screen Format Definition Area
Local screen fonnats are defined in the local screen fonnat
definition section of a script. The local screen fonnat definition
section is optional, but if local screen fonnats are to be defined
the definition section starts after the PROG statement and ends
at the first SCRIPT statement.

It is good programming practice to define local screen fonnats
immediately after declaring global variables.

The BEGFMT statement indicates the beginning, and the
ENDFMT statement indicates the end of local screen fonnat
definition areas for each screen fonnat name.

ESCORT allows for up to 100 local screen fonnats in a single
script, each screen fonnat name must, therefore, be unique
within a script.

Each local screen fonnat may have up to 500 FIELDs.

Local Session Screens 2-29

An example of the use of BEGFMT and ENDFMT follows:
progl PROG main

BEGFMT orderJ
(Field statements)

ENDFMT

BEGFMT order-2
(Field statements)

ENDFMT

main SCRIPT

In the above example, two local screen formats, named order_l
and order~, are defined.

Local screen formats can be defined either locally within a script,
or externally in another file. A COpy command can be used to
include externally defined local screen formats in the script at
run time. See the COpy command in Chapter 4 for additional
information.

You may create an unformatted screen by using a BEGFMT and
an ENDFMT statement without an intervening FIELD
statement. An unformatted screen does not contain any
attribute characters and therefore appears as one unprotected
field of 1920 characters.

Multiple Format Files
Of the 100 local screen formats that you can define in ESCORT,
six formats are retained in memory. The remaining formats are
spilled and are written to individual format files. Spilled formats
are loaded into memory upon demand.

ESCORT creates one file for each spilled format in your current
directory. The file name of each spill file is

screen_name.$fm

where screen_name is the screen name defined by each
BEGFMT statement.

You should delete spilled local screen format files from your
current directory following execution of your script.

Do not delete spilled local screen format files that are produced
when a script is parsed and an executable run,time script is

2-30 Programming in ESCORT

created. You must ensure that the appropriate spilled local screen
format files are available in your current directory when
interpreting (executing) a run,time script. Execution of a run'
time script will fail if the expected spilled files are not found.
These spilled files may be deleted after the run,time script has
been interpreted (executed).

Defining Local Screen Formats
Individual fields within a local screen format are defined by the
FIELD statement.

You can design a local screen format that contains almost all of
the characteristics of the actual host application screen. The
FIELD statement used for local screen formatting has an
attribute list that allows for the definition of Primary Attributes
and Extended Field Attributes, similar to the IBM® 3270 screen
formats.

The Primary Attributes allow you to define data fields as
protected, unprotected, numeric, alphabetic, highlighted, non'
displayable, or with a pre,modified data tag. The Extended Field
Attributes provide enhancement to the field by defining such
characteristics as blinking, reverse video and underlining. See
the FIELD statement in Chapter 4 for a complete list of
definable attributes.

See Chapter 6 for information on using the Local Screen
Generator Utility Program provided on the ESCORT installation
diskette.

To create a local formatted screen, the FIELD statement must be
defined within a local screen format definition area that starts
with a BEGFMT and ends with an ENDFMT statement.

You should define local screen format fields carefully since
ESCORT will not check for overlapping field definitions. Results
may be unpredictable if data fields overlap. Areas on screen that
are not defined by a FIELD statement are automatically treated
by ESCORT as protected, numeric fields.

A field variable is used to name the screen area defined by the
FIELD statement. See the section "Field Variables" in this
chapter for further information on naming field variables.

You may also use the FIELD statement to define literal fields to
make your local application screen more readable. Literal fields

Local Session Screens 2-31

are defined using the keyword DUMMY in place of the field
variable. The literal field narrative is established by adding an
argument to the DUMMY keyword. Literal fields should be
created as protected fields to prevent users from overwriting the
literal field narrative.

An example of the use of the FIELD statement follows:
prog1 PROG main

BEGFMT logon
FIELD (10,12,9,(P,*,H,*,*,*,*» DUMMY "PASSWORD:"
FIELD (10,22,8,(*,*,0,*,*,*,*» passwd

ENDFMT
main SCRIPT

In the above example, a local screen format, logon, is declared. A
literal field that is Protected and Highlighted, and contains the
prompt narrative, PASSWORD: is followed by the screen
variable, passwd. The passwd screen variable has a non~
displayable (dark) field attribute which means that, when entered
by the operator, the characters typed will not be echoed back to
the terminal screen.

Loading Local Screen Formats
A local screen format is loaded into the screen buffer in memory
by use of the GETFMT command in an ESCORT script.

The GETFMT command loads the specified local screen format
into the associated local session's presentation space. Only one
local screen format can be loaded within a local session's
presentation space at any given time. However, you can change
the format in a presentation space by executing another
GETFMT command.

ESCORT allows you to load the same local screen format into
more than one local session's presentation space. See the
GETFMT command in Chapter 4 for further information.

In the following example the local screen format, logon, is loaded
into local session Ll and the script enters Interactive mode to
allow the user to enter the required data.

2-32 Programming in ESCORT

progl PROG main

BEGFMT logon
FIElO (10,12,9,(P,*,H,*,*,*,*» OUMMY"PASSWORO:"
FIELD (10,22,8,(*,*,0,*,*,*,*» passwd

ENOFMT
main SCRIPT

GETFMT (ll, logon)
EXIT

Local Session Screens 2-33

Special Features

System Global Variables
The following system global variables are available to users of
ESCORT.

SCREEN
The value of SCREEN is a 1920,character string that contains
the screen image. ESCORT converts nulls, attributes, and
nondisplayable characters to blanks while copying the current
screen image to the specific screen buffer. For more details, see
the following section, "Screen Buffers" .

SYSAID
The value of SYSAID is an integer. It contains the code for the
last AID key pressed by the operator while in Tutorial (or
Interactive) mode. See the EXIT command for more
information about using SYSAID.

SYSPRMT
SYSPRMT is a string variable. It contains the asynchronous host
system prompt, and optionally, the screen column and row
position for the first character in the prompt string. The
SYSPRMT variable is initialized by the PROMPT command.
See the PROMPT and WAIT commands in Chapter 4 for
information on initializing and using the SYSPRMT variable.

Special Features 2-35

SYSRET
The value of SYSRETis an integer. It contains the return code
after

D OPEN, CLOSE, READ, WRITE, and CHKPT file
operations

o the asynchronous environment WAIT command

o the CAPTURE ON, CONNECT, DISCON, LOG, RUN
and PUTENV commands

D the Interactive or Tutorial mode TIMEOUT command

D the DUMP debugging command.

See the appropriate commands in Chapter 4 for more
information about using SYSRET.

2-36 Programming in ESCORT

Screen Buffers
ESCORT maintains an image of the last refreshed screen for
each host and local session in separate presentation spaces or
screen buffers.

ESCORT is able to manipulate data in the screen buffer of the
currently connected host or local session. Data can be moved
between the presentation spaces of separate sessions by use of the
CONNECT command and ASSIGNMENT statement.
ESCORT can perform the following functions on the data
contained in the connected session screen buffer:
D Retrieve data from the buffer.
D Write data into the buffer.
D Compare a screen field to a literal.
D Search the buffer for a particular character string.
D Get a substring from a screen field.
D Find out the length of a screen field.
D Find out the current cursor position.
D Log the screen image to a file.
D Print the screen image.
D Examine field attributes.

In addition to the features listed above, you can use all standard
terminal key functions with the connected session screen buffer.

A special, internally declared string variable (or system global
variable), SCREEN, is available to you to access the connected
session screen buffer. This variable may be used in the same way
as any other string except that it may not be the target of an
assignment.

For further information on screen buffers, see the SHOW and
CONNECT commands in Chapter 4.

Special Features 2-37

Parameter Passing
You may pass up to nine parameters by specifying the parameters
on the command line when executing a non .. run .. time ESCORT
script.

For example,

escort script IMSCMD," LOGON.S" " 5, X_ YZ

The preprocessing parameters are named &&1, &&2, &&3,
&&4, &&5, &&6, &&7, &&8, and &&9. The string "&&" is
reserved by ESCORT to identify preprocessing variables.

The values assigned by the above example are:

Parameter

&&1
&&2
&&3
&&4
&&5
&&6
&&7
&&8
&&9

Value

IMSCMD
"LOGON.S"
null string
5
~YZ
null string
null string
null string
null string

Each parameter may contain a maximum of 100 characters. No
blanks may be used within parameters or to separate parameters.
You may use an underscore (_) character within a parameter as
a blank (space character).

The parameters passed on the command line are substituted by
ESCORT before it performs syntax checking on each command.
The values for these parameters are determined strictly by
position on the command line. Refer to the section, "Command
Line" in Chapter 2 in the ESCORT User's Guide for information
on passing parameters to a run .. time script.

2-38 Programming in ESCORT

This program code relates to the above example and shows you
how to use parameter passing in ESCORT.
COPY &&2 /* Copies "LOGON.S"
TEXT ("/for &&1")
FORMAT &&1
x . fie1d1
y . fie1d2
j &&4 /* j = 5
a "&&5" /* a = "X yZ"

Special Features 2-39

Synchronous and
Asynchronous
Host Programming
Considerations

Synchronous Response/No-Response
Mode Transactions
No,response mode transactions permit multiple transmissions
from a synchronous host before returning a full response. When
the active synchronous host system receives such a transaction, it
may send a keyboard unlock command to the originating
terminal.

This unlock response poses a special problem for ESCORT
applications since proper execution of a script depends on getting
the full transaction response.

Ten scripts, known as AID subroutines, are available on your
installation diskette. Each one is a complete ESCORT script and
can be used to deal with the problem of the early unlock sent by
the synchronous host.

By using the AID subroutines, you are able to specify a set of
parameters that define a particular condition. Each subroutine
executes a specified AID key and then monitors the screen for
the defined condition. Control is returned to the calling script
only when the condition has been satisfied.

For example, the AID subroutine, aiLcc
o moves the cursor to the last position on the screen (row 24,

column 80),
o sends the specified AID key,
o waits for the cursor position on the screen to change,
o returns control to the calling script when the cursor position

changes.

You can add the necessary subroutines to your program by using
the preprocessor command, COPY.

Synchronous and Asynchronous Host Programming Considerations 2-41

For example, to copy the AID subroutine, aiLee, use the
following code:

COPY "/usr/escortlslib/aid_cc"

This statement copies aiLcc from the subroutine library in the
directory named /usr/escort/slib.

A copy of the complete text of each AID subroutine script is
available in Appendix C.

The special key sequence, ~ f 0, activates or deactivates
AID subroutine substitution while in Automatic Script
Generation in Interactive mode, when connected to an active
synchronous host session. Each time an AID key is encountered
in the automatically generated script, ESCORT generates a
subroutine call to the script named aid_resp. Refer to the
section, "Automatic Script Generation" in Chapter 2 in the
ESCORT User's Guide for further information on the use
of ASG.

2-42 Programming in ESCORT

AID Subroutines
Following is a list of the ten AID subroutines that are available
on your installation diskette, along with the proper format for
invoking each subroutine in your program. The AID key codes
are listed at the end of this section.

aiLgc

aiLcc

aiLOlc

aiL24c

Wait for tag to disappear.

CALL ai~c (key_code)

Writes a tag character at the next to last position
on the screen. Sends an AID key and waits until
the tag has disappeared. In order for this routine
to work properly, screen position 1919 (row 24,
column 79) must be unprotected.

Wait for cursor position to change.

CALL aiLcc (key_code)

Moves cursor to the last position on the screen.
Sends an AID key and waits until the cursor is
no longer in that position.

Wait for line 1 to change.

CALL aiL01c (key_code)

Sends an AID key and waits until any character
on line 1 has changed.

Wait for line 24 to change.

CALL aiL24c (key_code)

Sends an AID key and waits until any character
on line 24 has changed.

Synchronous and Asynchronous Host Programming Considerations 2-43

aiLlc

aiLfc

aiLsma

aiLsmd

Wait for specified line to change.

CALL aiLlc (key_code, row)

Sends an AID key and waits until the specified
line has changed. The row is the line in which
the contents must change when the full response
arrives from the synchronous host. It can be an
integer constant or an integer variable.

Wait for field to change.

CALL aicLfc (key_code, fielLname)

Sends an AID key and waits until the specified
field has changed. The field_name is the name
of the field in which the contents must change
when the full response arrives from the
synchronous host. It can be a screen,field_name
or a short name.

Wait for specified message to appear.

CALL ai~ma (key_code, msg, row, col,
length)

Sends an AID key and waits until a specified
message has arrived in the screen buffer. The
msg is the expected message and can be either a
string constant or a string variable. The row and
col specify the row and column address where the
search begins. The length specifies the number of
characters.

Wait for specified message to disappear.

CALL aiLsmd (key_code, msg, row, col,
length)

Sends an AID key and waits until the specified
message has disappeared from the screen. The
msg is the expected message and can be either a
string constant or a string variable. The row and
col specify the row and column address where the
search begins. The length specifies the number of
characters.

2-44 Programming in ESCORT

aiLkc

aiLresp

Wait for tag field to be overwritten by
synchronous host system response.

CALL aiLkc (key_code)

Writes a PF key in row 24, column 74, sends an
AID key, and waits until the tag has been
overwritten by a response from the synchronous
host system. In order for this routine to work
properly, the five characters starting at screen
position 1914 (row 24, column 74) must be
unprotected.

Wait for cursor position to change (used in
Automatic Script Generation.)

CALL aiLresp (key_code)

This is a generic subroutine which may be
modified to suit your particular application
environment. Currently, this subroutine moves
the cursor to the last position on the screen,
sends the AID key, and waits until the cursor has
moved to another location on the screen. This
subroutine is used when you press ~ f 0 to
activate or deactivate AID subroutine substitution
while in Automatic Script Generation (ASG)
mode.

Synchronous and Asynchronous Host Programming Considerations 2-45

AID Key Codes
The key codes representing the AID keys are:

AID key Code

ENTER 0
PFl 1
PF2 2
PF3 3

PF23 23
PF24 24
CLEAR 25
PAl 26
PA2 27
PA3 28
ATTN 29
SYS~EQ 30

2-46 Programming in ESCORT

Asynchronous Communication
Port Initialization
The ESCORT statement, SERINIT, is used to define all of the
parameters necessary for establishing the line connection to an
asynchronous host. These parameters must be provided before
the asynchronous host session is physically connected by a
CONNECT command.

The system global variable, SYSRET, returns the result of a
CONNECT command. A failed CONNECT (SYSRET value of
-1) may indicate one of several error conditions: either the
communication port parameters have not first been provided
using a SERINIT statement, or one or more of the initialization
parameters is incorrect. To assist you in correcting the
initialization parameters, ESCORT writes various error messages
to the file named escort.pr{proc,id} created in the directory
defined by the ESCDIR environment variable.

If you specify an asynchronous session as the session~id parameter
to a PROG command, the ESCORT script is initially connected
to the associated screen buffer only, since a CONNECT
command, preceded by a SERINIT statement, is required to
make the physical connection.

The first CONNECT command, to a particular asynchronous
host, in a script makes the connection to the host using the
parameters provided by the preceding SERINIT statement. The
connection is not dropped when, for example, a connection to
another host system is made, (logoff procedures and a DISCON
command are used if the connected session is to be dropped).
Subsequent connections to the asynchronous host reactivate the
existing connection.

If new parameters are provided by a second or subsequent
SERINIT statement, a succeeding CONNECT command
establishes a new connection using the second set of parameters.

Refer to the CONNECT and SERINIT commands in Chapter 4
for information on the command format and for an example.

Synchronous and Asynchronous Host Programming Considerations 2-47

Asynchronous Host
Terminal Specification
Some asynchronous applications request terminal type
information. You should specify your terminal as a DEC®
VT100™ on these remote asynchronous hosts, regardless of the
actual terminal type being used.

2-48 Programming in ESCORT

Synchronizing Data Transmissions
ESCORT provides you with the ability to scan the data received
from an asynchronous host in order to synchronize the sending of
data and commands from a script.

Scanning Asynchronous Host Data
The synchronization of data transmission problem is similar to
response/no,response mode transactions in the synchronous
environment. Proper script execution depends on receiving an
entire transaction response from the asynchronous host.
However, unlike the synchronous host system response where a
complete screen can be scanned for the anticipated string, data
from an asynchronous host is transmitted in a stream; that is, it
is not screen oriented, and the exact location of a particular
transaction response may not be known.

Two ESCORT commands, PROMPT and WAIT, are available
to assist with the scanning of a stream of asynchronous host data.

The special asynchronous version of the WAIT command
provides for up to eight search string parameters, control is
returned from the command when one of the search string
parameters is detected in the incoming data stream. If none of
the search string parameters is detected within the WAIT
command timeout period, control is automatically returned to the
script. ESCORT assigns the positional number of the search
string detected in the asynchronous host response, to the global
system variable, SYSRET. A value of -1 is returned in SYSRET
if no parameter is detected.

Asynchronous Host System Prompts
A specialized parameter is also available to assist in detecting
asynchronous host system prompts. The PROMPT command is
used to initialize the system global variable, SYSPRMT. The
parameters to the PROMPT command allow you to define the
asynchronous host system prompt, for example, the UNIX
operating system default dollar sign ($) prompt, and to define the
column only, or column and row, screen position of the prompt.

ESCORT automatically assigns the PROMPT command
parameters to the system global variable, SYSPRMT which, in
tum, is used as a search string parameter in the WAIT

Synchronous and Asynchronous Host Programming Considerations 2·49

command. Use of this special parameter, SYSPRMT, in your
script provides increased flexibility; if, for example, the
asynchronous host system prompt is altered, you need only
change the parameter in a single PROMPT command to
effectively amend all necessary WAIT commands in your script.

Refer to the PROMPT and WAIT commands in Chapter 4 for
detailed information on command format.

Automatic Script Generation
ESCORT automatically includes suitable PROMPT commands
that specify a dollar sign ($) in screen column 1 as the
asynchronous host response in scripts generated using Automatic
Script Generation in an asynchronous environment. In addition,
the generated script includes aWAIT command referencing the
system prompt, following every TEXT statement. Refer to the
section, "Automatic Script Generation" in Chapter 2 in the
ESCORT User's Guide for further information on the use
of ASG.

2-50 Programming in ESCORT

3 Sample Programs

Overview 3 - 1

Synchronous Host Sample Program 3 -3
Program Execution 3 -5
Program and File Listings 3 -24

Asynchronous Host Sample Program 3 -39
Program Execution 3 -41
Program and File Listings 3 -60

Overview

This chapter contains the program listings for two complete
sample programs. Sections of program listings are discussed, local
session and host screens are shown, and important functions,
such as error handling, are reviewed.

The programs demonstrate how ESCORT works in both the
synchronous and asynchronous environments, provide examples
of program structures, and show how ESCORT programs are
executed.

Complete listings of all scripts and files are given at the end of
both sections. Logical sections of program are also presented in
the chapter, with explanations of their operation and sample
screens.

These samples are provided to demonstrate how ESCORT works
and are dependent on specific host applications. For this reason
the programs are not included on your ESCORT installation
diskette.

Refer to Appendix G for information on additional ESCORT
scripts that you may be able to modify for your particular
application.

Overview 3-1

Synchronous Host
Sample Program

This sample program provides a new front,end for users who are
responsible for adding customer information to a synchronous
host data base. The program performs the login procedure,
prompts for customer information, takes corrective action if the
user enters an invalid zip code, and logs the user off when
necessary.

This sample program is similar to the asynchronous host sample
program provided in this chapter. Compare the two samples to
review the differences in the code necessary in the two
environments.

The sample comprises two scripts, a main program, addcust.p and
a subroutine, loginims.s; together with two local screen format
files, addcust.l and login.l; and two host screen format files,
custadd./ and chkzip.f.

The login subroutine, loginims.s, accepts login information from
the user via a local session screen and automates the synchronous
host login procedure. The main program, addcust.p, takes
customer information, entered by the user in a local session
screen, and updates a synchronous host data base.

Synchronous Host Sample Program 3-3

Execution of the program is subdivided into six main sections:

o Declaration of variables and definition of screen formats.

D Log in to synchronous host application.

o Collect new customer information.

D Update synchronous host data base with new customer
information.

D Log off from host.

o Copy subroutines.

Two error routines are demonstrated:

D Failure to log in to host.

D Zip code entered does not match customer's city and state .

. 3-4 Sample Programs

Program Execution

Declarations and Definitions
The first section of the addcust.p program comprises the Global
Variable Declarations section and the Local and Host Screen
Format Definition sections.

Global Variable Declarations
The three subsections in the Global Variables declaration section
declare variables for use with the synchronous host login and
customer information procedures, and for general use.

Five host login variables are declared, each 8 characters in
length:
char(8) appl1c
char(8) racfid
char(8) racfpwd
char(8) cssid
char(8) csspwd

/* host application id
/* RACF User id
/* RACF User password
/* application User id
/* application User password

Ten customer information variables are declared with the
character lengths indicated:
char(8) branch
char(40) name
char(30) street
char(9) geocd
char(lS) city
char(2) state
char(S) zip
char(S) areacd
char(3) nnx
char(4) exch

Two miscellaneous variables are declared:
int
char(l)

fldpos
tryagain

Local Screen Format Definitions
The two local screen formats, addcust.l and login.l, are defined in
this section:
copy " addcust. 1"
copy " login .1"

1* customer information screen
1* login parameters screen

The COpy preprocessor command inserts the content of the
addcust.l and login.llocal screen format files into the main
program.

Both local screen format files use the DUMMY keyword and a
literal to produce field narratives on the screen. The attribute

Synchronous Host Sample Program 3-5

lists define certain fields as Protected or Unprotected, and reverse
video or normal display. Refer to the FIELD command in
Chapter 4 for a complete list of definable attributes.

The addcust.llocal screen format has the defined screen name,
addcust:
begfmt addcust

endfmt

field (l,30,20,(P,A,H,R,R,7,0» DUMMY "CUSTOMER ADD SCREEN"
field (3,5,16, (P,A,H,R,N,7,0» DUMMY "Service Branch: "
field (3,22,8, (U,A,H,R,R,7,0» addcust.branch
field (5,5,9, (P,A,H,R,N,7,0» DUMMY "Name:
field (5,15,35,(U,A,H,R,R,7,0» addcust.name
field (7,5,9, (P,A,H,R,N,7,0» DUMMY "Street: "
field (7,15,35,(U,A,H,R,R,7,0» addcust.street
field (9,5,7, (P,A,H,R,N,7,0» DUMMY "City: "
field (9,15,15,(U,A,H,R,R,7,0» addcust.city
field (9,32,7, (P,A,H,R,N,7,0» DUMMY "State: "
field (9,40,2, (U,A,H,R,R,7,0» addcust.state
field (9,44,10,(P,A,H,R,N,7,0» DUMMY "Zip Code: "
field (9,55,5, (U,A,H,R,R,7,0» addcust.zip
field (ll,5,12,(P,A,H,R,N,7,0» DUMMY "Phone No.: "
field (ll,18,3,(U,A,H,R,R,7,0» addcust.areacd
field (ll,23,3,(U,A,H,R,R,7,0» addcust.nnx
field (ll,28,4,(U,A,H,R,R,7,0» addcust.exch
field (15,5,2l,(P,A,H,R,N,7,0» DUMMY" Press PFl2 to EXIT. "
field (24,2,70,(P,A,H,R,N,7,0» addcust.status

The login.llocal screen format has the defined screen name,
login. Note that this local screen format makes use of the non'
displayable (dark) attribute for the two password fields:

begfmt :~~~~ " ... ,. , ... ft " _ ... ,' MM ___ • ___ .. _____ ...

endfmt

I.LC.LU \.L,LU,LJ,\r,M,n,I"\,I"\,I,U)) UUI"I"IT "nU.::I1 Luu.LI'I.::II..I'\I:.I:.I'f'

field (3,5,16, (P,A,H,R,N,7,0» DUMMY "Application Id: "
field (3,22,8, (U,A,H,R,R,7,0» login.applic
field (5,5,16, (P,A,H,R,N,7,0» DUMMY "RACF User Id:
field (5,22,8, (U,A,H,R,R,7,0» login.racfid
field (7,5,16, (P,A,H,R,N,7,0» DUMMY "RACF Password: "
field (7,22,8, (U,A,D,R,N,7,0» login.racfpwd
field (9,5,16, (P,A,H,R,N,7,0» DUMMY "CSS User Id:
field (9,22,8, (U,A,H,R,R,7,0» login.cssid
field (ll,5,16,(P,A,H,R,N,7,0» DUMMY "CSS Password:
field (ll,22,8,(U,A,D,R,N,7,0» login.csspwd
field (24,2,70,(P,A,H,R,N,7,0» login.status

Host Screen Format Definitions
Two host screen formats are also inserted into the main program
by the following COpy commands:
copy " custadd.f"
copy " chkzip.f"

/* customer administration screen
/* zip code screen

The listings for these two files are shown at the end of this
section.

3-6 Sample Programs

Log in to Synchronous Host
Execute Main Program
To run this sample program, at the UNIX shell prompt, the user
types

escort addcust.p

and presses (RETURN). The following ESCORT banner screen is
displayed briefly

AT&T
AT&T
AT&T
AT&T 3270 EMULATOR+
AT&T ESCORT
AT&T
AT&T
AT&T

Copyright e 1985, 1986, 1987, 1988 by AT&T, All Rights Reserved.

The first program line
ad~ust prog main (ll)

indicates the beginning of the program, identifies the first script
named main and connects to local session, Ll. A local variable
is declared in the first script:
main script

int rtncode /* subroutine return code

Synchronous Host Sample Program 3-7

Load Formats and Enter Data
The next section of program loads the two local screen formats,
login.l and addcust.l into local sessions, Ll and L2 respectively.
The login.l screen is activated and displayed:

Application Id :
RACF User Id :
RACF Paaa'AOf'd :
ess User Id:
CSS Password:

N •• <~ f':""''''''' -"~>7 "'
1 ' , ' ~

.~> L ,~~ ~ .. m'; ; :

The program exits to Tutorial mode to allow the user to enter
the appropriate login data:

getfmt (ll, login)
getfmt (l2, addcust)
rtncode = 1

while (rtncode 1= 0)
do

show (ll)
exit

3-8 Sample Programs

1* as soc local scrn fmt with II
1* assoc local scrn fmt with l2

1* while log in failed

1* display local session 1
1* exit to tutorial mode

Assign Data
When program execution is resumed, after the login data is
entered and (RETURN) is pressed, the program saves the data
entered via the login local screen format by assigning the data to
global variables for later use. The FORMAT command defines
the default format as login; it is not necessary, therefore, to assign
the format name to individual fields.

format login
appl1c = . appl1c
racfid = . racfid
racfpwd = . racfpwd
cssid = . cssid
csspwd = . csspwd

1* host application id

Activate Synchronous Host Session
The main program activates synchronous host session H 1. The
value of the system global variable, SYSRET, is checked to
determine whether the connection to the host is successful. If
the connection failed, the attributes for the status field, initially
defined as Protected to prevent users from writing to this area,
are changed to Unprotected to allow the program to write the
Host System Not Available error message to the status field. The
status field attributes are changed back to Protected after the
error message is written. If the connection is successful, the
program waits for the following synchronous host session sign,on
screen to appear:

Synchronous Host Sample Program 3-9

WELCOME TO lHE NETWORK

ENTER YOUR APPLICATION CODE:

connect (HI) /* activate host session 1
if (sysret = -I)
then

connect (ll)
fldpos = $fldaddr(login.status)
chgattr (ll, fldpos, (U,*,H,*,R,*,*»
login.status = ("Host System Not Available.")
chgattr (ll, fldpos, (P,*,H,*,R,*,*»
rtncode = 2
cycle

endlf
show (HI) /* display host session I

while 1($scan("WElCOME"» /* wait for sign-on screen
do

fresh
endo

3-10 Sample Programs

The addcust.p program calls the loginims subroutine and passes six
parameters:

call loglnlms(appllc,
racfld,
racfpwd,
cssld,
csspwd,
rtncode)

Log in Procedure
Review the program listing for the loginims.s subroutine at the
end of this section. The CALL command invokes the loginims
subroutine to log in to the IMS application. The loginims
SCRIPT statement has a declaration list corresponding to the
parameter list in the addcust CALL command.

The loginims subroutine returns one of three codes to the addcust
program via the rtncode variable:

o = successful login
1 = login rejected
2 = system not available.

The loginims subroutine

1 Enters the application code.

2 Waits for the sign .. on screen.

3 Checks for system failure. If the synchronous host system is
not available, the return code is set to 2, an image of the
screen is logged, a message is issued, and the login local screen
is redisplayed.

Synchronous Host Sample Program 3-11

4 Enters login information. The following screen shows the
login data automatically entered by the ESCORT subroutine:

ENTER LOGIN PARAMETERS BELOW:

USER ID __ a> cssuser 1
PASSWORD __ a>

USER GROUP __ a> cssgrp 1

DFS2002 09:50:21 TERM INAL CONNECTED TO IMSIVS

Note the use of the BTAB and TAB commands. These
commands ensure that data is entered in the correct fields
when the length of data entered would cause automatic
skipping.

3·12 Sample Programs

5 Waits for the synchronous host application screen and enters
the user identification and password data. The following
screen shows sample data automatically entered by the
subroutine:

USER ID cssld1
USER PASSWORD
SYSTEM PASSWORD

, " #
, ,

' ''" #####
, , ,

"'"

CUSTOMER SUPPORT SYSTEM

Synchronous Host Sample Program 3-13

6 Waits for the following LOGIN COMPLETED screen:

ess LOGIN COMPLETED

If the loginims subroutine logs in to the application successfully,
the return code is set to 0; an unsuccessful login sets the return
code to 1.

Login Failed
The main program checks the value of the rtncode variable set in
the loginims subroutine. If the value of rtncode is not 0, the
program logs off from the synchronous host and waits for the
sign .. on screen. The local session, L1, is activated and the login
local screen is displayed.

The status field is initially defined as Protected to prevent users
from writing to this area. The attributes for this field are
changed to Unprotected to allow the main program to write the
Login Failed error message to the status field. The main program

3-14 Sample Programs

immediately changes the status field attributes back to Protected
after the error message is written.

if (rtncode 1= 0) 1* did log in fail?
then

clear /* log off IMS
text "/rcl"
call aidLresp (0)
while 1($scan("WELCOME"» 1* wait for sign-on sGreen

do
fresh

endo
connect (Ll)
fldpos = $fldaddr(login.status)
chgattr (Ll, fldpos, (U,*,H,*,R,*,*»
if rtncode = 2

then
login.status = ("Host Login Failed. "+

"System Not Available.")
else

login.status = ("Host Login Failed. "+

endif
"Please Verify Login Parameters.")

chgattr (LI, fldpos, (P,*,H,*,R,*,*»
home

else
clear

endif
endo

The following shows the login local screen and the error message:

Application Id :

RACF User Id :

RACF Password :
CSS User Id:
CSS Password:

L._~:J~thqglfi§1::Bg§~~::]
:im.sysf ".. j

.. psaUS4Jr L_*.*_J

Synchronous Host Sample Program 3-15

Add New Customer
Enter Data
Following successful login to the synchronous host session, the
addcust screen is activated and displayed:

Street:
City:

The program exits to Tutorial mode to allow the user to enter
the appropriate customer data. The program terminates and logs
off from the synchronous host session if PF12 is pressed.

connect (L2)

while (1)
do

show (L2)
exit
if (sysaid = 12)

then
break

endif

3-16 Sample Programs

1* activate local session 2

1* display local session 2
1* exit to tutorial
1* exit addc~st, log off IMS

The screen below shows the CUSTOMER ADD SCREEN after
data has been entered by the user. Note that the zip code
entered, 07601, is incorrect for the customer's city, Red Bank.

Service Branch: , ussonlee

Name: "johnRobinson " . :

Street: ; 123 Main Street "

City : :J~.~ Ba'1k j '~-"~St~t;": ~1;J~r~ZpQide: ~" .. :.91.§~.L~
Phone No.: :?Q.1J l~~?l Ll~j

Synchronous Host Sample Program 3-17

Assign Data
When program execution is resumed, after the customer data is
entered and (RETURN) is pressed, the program saves the data
entered via the addcust local screen format by assigning the data
to global variables for later use.

format addcust
branch . branch
name
street
geocd
city
state
zip
areacd
nnx
exch

3-18 Sample Programs

. name

. street

. city

. state

.zip

.areacd

.nnx

.exch

Update Synchronous Host
Populate Host Fields
The main program activates and displays the synchronous host
session. When the host application screen is displayed, the
addcust program calls the popuflds script. Review the popuflds
script listed within the addcust program at the end of this section.
The popuflds script assigns data entered from the local screen,
together with hard,coded values, to the host field variables
detailed in the custadd host screen format file.

connect (HI)
show (HI)

1* activate host session
1* display host session

call aidLresp(25)
text ("/for custadd")
call aidLresp(O)
tryagain = "y"
while (tryagain = "y.)

do
1* ok to add customer

call popuflds
call aid...kc(4)

1* populate host fields

tryagain = • n" 1* init to good ending first

The following screen shows the host application populated with
data:

CSS CUSTOMER SUPPORT
CUSTOMER ACCOUNT ADM INISTRATION

CUSTOMER ID BRANCHES: CONTROL ussonlee SERVICE ussonlee
CUSTOMER NAME John Robinson
ADDRESS

STREET 123 Maln Street GEOCODE
CITY Red Bank STATE NJ ZIP 07001
COUNTRY
PHONE# 201 5551234 EXT COUNTRYCODE

CONTACT SIC 1111 STAlUS a (ACTIVE OR INACTIVE)

PRIMARY AE SSN 123456789

CHU ID 3140 aa DESC dimension

CONTRACT TYPE: EQ EFFECTIVE DATE MTC EFFECTIVE DATE

NAT PC NATIONAL CONTRPCT USE FPC LCAC
COMMENTS

MENU CAN INST BU CAR GEO EBT PADM MI REV·FPCE
add

Synchronous Host Sample Program 3-19

Successful Update
The main program scans the host application screen for the
successful update message and, if found, activates the addcust
local screen format and displays a suitable message:

if $scan("ADO COMPLETE" (24,1,80» 1* success?
then
connect (L2)
addcust. zip = zip
fldpos = $fldaddr (addcust. status)
chgattr (L2, fldpos, (U,*,H,*,R,*,*»
addcust. status = "CUSTOMER ADO SUCCESSfUL."
chgattr (L2, fldpos, (P,*,H,*,R,*,*»
home
break

endif

Zip Code Error Routine
In this example, the zip code entered does not match the
customer's city and state. The main program scans the host
application screen for the relative fail message and calls the fixzip
script. Refer to the fixzip script within the addcust.p program at
the end of this section.

The fixzip script uses the host screen format file chkzip.f, also
listed at the end of this section, to access a host zip code
reference screen to retrieve the correct zip code.

If the host process is unable to correct the error, the program
activates the addcust local screen format and displays a suitable
message:

if $scan("INVALID ZIP WITHIN STATE" (24,I,BO»
then
call fixzip 1* try to fix zip code
clear
text ("/for custadd")
call aiuesp(O)

else
connect (L2)
addcust. zip = zip
fldpos = $fldaddr(addcust.status)
chgattr (L2, fldpos, (U,*,H,*,R,*,*»
addcust.status = "CUSTOMER ADO FAILED."
chgattr (L2, fldpos, (P,*,H,*,R,*,*»
home

endif
en do

endo

3-20 Sample Programs

In this example, the host process is able to correct the zip code.
The corrected zip code is stored in a global variable, the program
repopulates the host field variables and adds the customer
information to the data base. The following shows the addcust
local screen and message after the customer information has been
added to the data base:

Note that the zip code field has been amended by the host
process and the correct zip code, 07701, is automatically entered
in the relative local screen field.

Synchronous Host Sample Program 3-21

Log off from Synchronous Host
The next section of the addcust program reactivates and
redisplays the synchronous host session and automatically enters
the IMS log off procedure.

ends

connect (HI)
show (HI)
call aidLresp(2S)
text ("/rcl")
call aidLresp(O)

3-22 Sample Programs

/* activate host session
/* display host session

Copy Subroutines
The final section of the addcust program uses the COpy
preprocessor command to copy the various subroutines and the
loginims.s file:

copy "/usr/escort/slib/ai~esp"
copy "/usr/escort/slib/ai~c"
copy "/loginims.s"

Synchronous Host Sample Program 3-23

Program and File Listings
This section contains program listings for the addcust.p program
and the loginims.s subroutine; the local screen format files,
addcust.l and login.l; and the host screen format files, custadd.f
and chkzip.f.

3-24 Sample Programs

addcust.p Program

1***
1* *
1 * ADO-.CUST *
1* *
1***

addLcust prog main (Ll)
1*************************************1
1* GLOBAL VARIABLE DECLARATIONS * 1
1*************************************1

1* Host Log in Variables *1

char(8) appllc 1* host application id
1* RACF User id char(8) racfid

char(8) racfpwd
char(8) cssid
char(8) csspwd

1* RACF User password
1* application User id
1* application User password

1* Customer Info Variables *1

char(8) branch
char(40) name
char(30) street
char(9) geocd
char(lS) city
char(2) state
char(S) zip
char(S) areacd
char(3) nnx
char(4) exch
1* Miscellaneous Variables *1

int fldpos
char(l) tryagain
1*************************************1
1* LOCAL SCREEN FORMAT OEFINITIONS *1
1*************************************1

copy
copy

"addcust .1"
"login.l"

1* customer information screen
1* login parameters screen

1**1
1* HOST SCREEN FORMAT DEFINITIONS *1
1**1

copy
copy

"custadd . f"
"chkzip. f"

1* customer administration screen
1* zip code screen

1*************************** MAIN SCRIPT *********************************1

main script
int rtncode 1* subroutine return code
1**1
1* Set Up Local Sessions 1: (Login Parameters) 2:(Customer Info) *1
1**1

getfmt (Ll, login)
getfmt (L2, addcust)
rtncode = 1

while (rtncode 1= 0)
do

1* assoc local scrn fmt with Ll
1* assoc local scrn fmt with L2

1* while log in failed

Synchronous Host Sample Program 3-25

show (Ll)
exit

1* display local session 1
1* exit to tutorial mode

1***1
1* Assign log in Parameters to Variables *1
1***1

format login
appllc = . appllc
racfld = .racfid
racfpwd = . racfpwd
cssid = . cssid
csspwd = . csspwd

1* host application id

1***************************************1
1* log in to IMS Host Application *1
1***************************************1

connect (HI)
if (sysret = ·1)
then

connect (Ll)

1* activate host session 1

fldpos = $fldaddr(login.status)
chgattr (ll, fldpos, (U,*,H,*,R,*,*»
login.status = ("Host System Not Available.")
chgattr (ll, fldpos, (P,*,H,*,R,*,*»
rtncode = 2
cycle

endif
show (HI) 1* display host session 1

while 1($scan("WElCOME"» 1* wait for sign-on screen
do

fresh
endo

call loginims(applic,
racfld,
racfpwd,
cssid,
esspwCl,
rtncode)

if (rtncode
then

clear

1= 0)

text "/rel"
call aidLresp (0)

1* did log in fail?

1* log off IMS

while 1($scan("WElCOME"» 1* wait for sign-on screen
do

fresh
endo

connect (Ll)
f ldpos = $fldaddr (login _ status)
chgattr (ll, fldpos, (U,*,H,*,R,*,*»
if rtncode = 2

then
login. status

else
login. status

endif

("Host login Failed. "+
"System Not Available.")

("Host login Failed. "+
·Please Verify login Parameters.")

chgattr (ll, fldpos, (P,*,H,*,R,*,*»
home

else
clear

3·26 Sample Programs

end if
endo

/****************************/
/* Log in to IMS successful */
/****************************/
connect (L2)
while (1)

/* activate local session 2

do
show (L2)
exit
if (sysaid

then
break

endif

12)

/* display local session 2
/* exit to tutorial
/* exit addcust, log off IMS

/**/
/* Assign Customer Information to Variables */
/**/
format addcust
branch . branch
name . name
street . street
geocd
city . city
state . state
zip .zip
areacd .areacd
nnx .nnx
exch .exch
/***/
/* Update Host DB with Customer Information */
/***/
connect (HI)
show (HI)
call ai~esp(25)
text ("/for custadd")
call ai~esp(O)
tryagain = "y"
while (tryagain = " y.)

do
call popuflds
call aicl.kc(4)

/* activate host session
/* display host session

/* ok to add customer

/* populate host fields

tryagain = "n" /* init to good ending first
if $scan("ADD COMPLETE" (24,1,80» /* success?
then
connect (L2)
addcust. zip = zip
fldpos = $fldaddr(addcust.status)
chgattr (L2, fldpos, (U,*,H,*,R,*,*»
addcust.status = ·CUSTOMER ADD SUCCESSFUL."
chgattr (L2, fldpos, (P,*,H,*,R,*,*»
home
break

endif
/*******************/
/* If bad zip code */
/*******************/
if $scan("INVALID ZIP WITHIN STATE" (24:1,80»

Synchronous Host Sample Program 3-27

ends

then
call fixzip /* try to fix zip code
clear
text ("/for custadd")
call aid....resp(O)

else
connect (L2)
addcust . zip = zip
fldpos = $fldaddr (addcust . status)
chgattr (L2, fldpos, (U,*,H,*,R,*,*»
addcust.status = "CUSTOMER ADO FAILED."
chgattr (L2, fldpos, (P,*,H,*,R,*,*»
home

endif
en do

endo
/********************/
/* Log off from IMS */
/********************/
connect (Hl)
show (HI)
call aid....resp(2S)
text (" /rc!")
call aid....resp(O)

/* activate host session
/* display host session

3-28 Sample Programs

/******************** POPUFLDS SCRIPT ************************************/
/* The purpose of this script is to populate all the necessary fields on */
/* host screen in order to add a customer into the host. */
/* These fields will be derived from what was entered in the local */
/* session in addition to hard-coded values. */
/***/

popuflds script
format custadd
.clctrbr branch
.clsvcbr branch
.clname name
.clstr street
.clgeo
.clcity city
.clstate state
.clzip zip
.clarcd areacd
.clnnx nnx
.clexch exch
.clsic "1111"
.clstat "a"
.claessl "123"
.claess2 "45"
.claess3 "6789"
.clpricel= "nat"
.clcmu "3l40aa"
.cldesc " dimension"

ends
/***/

Synchronous Host Sample Program 3-29

1******************** FIXZIP SCRIPT **************************************1
1* The purpose of this script is to determine the valid zip code for the *1
1* city and state specified on the local screen. *1
1***1

fixzip

ends

script
clear
text ("/for chkzip")
call aicLresp(O)
chkzip.city = city
chkzip.state = state
call aiOc(l)
if $scan(" COMPLETE" (24,l,80»
then

geocd = chkzip. rgeocoOI
zip = chkzip. rzipmiOI
tryagain = " y"

else
endif

1* save the found geo code
1* save the found matching zip

1***1

3-30 Sample Programs

copy "/usr/escort/slib/aidLresp"
copy "/usr/escort/slib/aidJkc"
copy "/loginims.s"

1***1
endp

Synchronous Host Sample Program 3-31

loginims.s Subroutine

1**
1* *
1* LOGINIMS.S *
1* *
1**
1* *
1* FUNCTIONAL DESCRIPTION: *
1* log in to IMS *
1* INPUT PARAMETERS: *
1* applic -> host application id *
1* racfid -> racf user id *
1* racfpwd -> racf user password *
1* cssid -> css user id *
1* csspwd -> css user password *
1* OUTPUT PARAMETERS: *
1* rtncode -> 0 = successful log in *
1* 1 = log in rejected *
1* 2 = system not available *
1* *
1**
loginims script (char(8) appl,

char(8) usrid,
char(8) usrpwd,
char(8) csid,
char(8) cspwd,
int rtncode)

text appl
enter

1* load RACF application

while 1($scan("USER ID"»
do

1* wait for sign-on screen

t!_~$scan("BOUND"»
1..111::11

rtncode = 2
log screen
return

endif
fresh

endo

1* check for system down

1* set return code
1* save screen image
1* quit login script

1**************** HOST LOG IN PROCEDURE ************************
text usrid
btab
tab
text usrpwd
btab
tab
text ("cssgrpl")
call aidJesp(O)
clear
text ("/for custlog")
call aidJesp(O)

1* load userid on screen
1* position to start of field
1* go to start of next field
1* load user password
1* position to start of field
1* go to start of next field
1* load system password on screen
1* hit enter to log in to IMS

while 1($scan("PASSWORD"» I*wait for sign-on screen
do

fresh
endo

3-32 Sample Programs

text csid
btab
tab
text C"cssgrpl")
btab
tab

1* load userid on screen
1* position to start of field
1* go to start of next field
1* load system password on screen
1* position to start of field
1* go to start of next field

text cspwd 1* load user password
call aidLrespCO) 1* hit enter to log in to CSS
if $scanC"LOGIN COMPLETED") 1* check for log in completed
then

rtncode = 0 1 * set good return code
else

rtncode = 1 1 * set log in rejected return code
endlf

endlog: ends 1* end of log in script

Synchronous Host Sample Program 3·33

addcust.l Local Screen Format File

begfmt addcust

endfmt

field (1,30,20, (P ,A,H,R,R, 7 ,0» DUt+1Y "CUSTOt-£R ADD SCREEN"
field (3,5,16, (P,A,H,R,N,7,0» DUt+1Y "Service Branch: "
field (3,22,8, (U,A,H,R,R,7,0» addcust.branch
field (5,5,9, (P,A,H,R,N,7,0» DUMMY "Name:
field (5,15,35,(U,A,H,R,R,7,0» addcust.name
field (7,5,9, (P,A,H,R,N,7,0» DUMMY "Street: "
field (7,15,35,(U,A,H,R,R,7,0» addcust.street
field (9,5,7, (P,A,H,R,N,7,0» DUMMY "City: "
field (9,15,15,(U,A,H,R,R,7,0» addcust.city
field (9,32,7, (P,A,H,R,N,7,0» DUMMY "State: "
field (9,40,2, (U,A,H,R,R,7,0» addcust.state
field (9,44,10,(P,A,H,R,N,7,0» DUMMY "Zip Code: "
field (9,55,5, (U,A,H,R,R,7,0» addcust.zip
field (11,5,12,(P,A,H,R,N,7,0» DUMMY "Phone No.: "
field (11,18,3,(U,A,H,R,R,7,0» addcust.areacd
field (11,23,3,(U,A,H,R,R,7,0» addcust.nnx
field (11,28,4,(U,A,H,R,R,7,0» addcust.exch
field (15,5,2l,(P,A,H,R,N,7,0» DUMMY " Press PF12 to EXIT. "
field (24,2,70,(P,A,H,R,N,7,0» addcust.status

3-34 Sample Programs

login.1 Local Screen Format File

begfmt 10g1n

endfmt

field (1,28,23,(P,A,H,R,R,7,O» DUMMY "HOST LOGIN SCREEN"
field (3,5,16, (P,A,H,R,N,7,O» DUMMY "Application Id: "
field (3,22,8, (U,A,H,R,R,7,O» login.applic
field (5,5,16, (P,A,H,R,N,7,O» DUMMY "RACF User Id:
field (5,22,8, (U,A,H,R,R,7,O» login.racfid
field (7,5,16, (P,A,H,R,N,7,O» DUMMY "RACF Password: •
field (7,22,8, (U,A,D,R,N,7,O» login.racfpwd
field (9,5,16, (P,A,H,R,N,7,O» DUMMY ·CSS User Id:
field (9,22,8, (U,A,H,R,R,7,O» login.cssid
field (11,5,16,(P,A,H,R,N,7,O» DUMMY "CSS Password:
field (11,22,8,(U,A,D,R,N,7,O» login.csspwd
field (24,2,70,(P,A,H,R,N,7,O» login. status

Synchronous Host Sample Program 3-35

custadd.f Host Screen Format File

field (04,48,0008) custadd.c1ctrbr
field (04,66,0008) custadd.c1svcbr
field (05,15,0040) custadd.c1name
field (08,10,0030) custadd.c1str
field (08,51,0009) custadd.c1geo
field (09,10,0020) custadd.c1city
field (09,41,0002) custadd.c1state
field (09,56,0010) custadd.c1zip
field (11,11,0005) custadd.c1arcd
field (11,17,0003) custadd.c1nnx
field (11,21,0004) custadd.c1exch
field (12,34,0004) custadd.c1sic
field (12,59,0001) custadd.c1stat
field (14,17,0003) custadd.c1aess1
field (14,21,0002) custadd.c1aess2
field (14,24,0004) custadd.c1aess3
field (14,72,0003) custadd.c1price1
field (16,09,0006) custadd.c1cmu
field (16,21,0030) custadd.c1desc

3·36 Sample Programs

chkzip.f Host Screen Format File

field (04,27,0015) chkzip.city
field (04,19,0002) chkzip.state
field (05,07,0005) chkzip.rzipmiOl
field (05,65,0009) chkzip.rgeocoOl

Synchronous Host Sample Program 3-37

Asynchronous Host
Sample Program

This sample program provides a new front .. end for users who are
responsible for adding customer information to an asynchronous
host data base. The program performs the login procedure,
prompts for customer information, takes corrective action if the
user enters an invalid zip code, and logs the user off when
necessary.

This sample program is similar to the synchronous host sample
program provided in this chapter. Compare the two samples to
review the differences in the code necessary in the two
environments.

The sample comprises two scripts, a main program, addcust.ap
and a subroutine, login.s; together with two local screen format
files, addcust.l and login.l; and two host screen format files,
custadd.f and chkzip.f.

The login subroutine, login.s, accepts login information from the
user via a local session screen and automates the asynchronous
host login procedure. The main program, addcust.ap, takes
customer information, entered by the user in a local session
screen, and updates an asynchronous host data base.

Asynchronous Host Sample Program 3-39

Execution of the program is subdivided into six main sections:

o Declaration of variables and definition of screen formats.

o Log in to asynchronous host application.

o Collect new customer information.

o Update asynchronous host data base with new customer
information.

o Log off from host.

o Copy subroutines.

Four error conditions are demonstrated:

o Failure to log in to host.

o Line drop.

o Time out.

o Zip code entered does not match customer's city and state.

3-40 Sample Programs

Program Execution

Declarations and Definitions
The first section of the addcust.ap program comprises the Global
Variable Declarations section and the Local and Host Screen
Format Definition sections.

Global Variable Declarations
The three subsections in the Global Variables declaration section
declare variables for use with the asynchronous host login and
customer information procedures, and for general use.

Two host login variables are declared, both 8 characters in
length:
char(8) userid
char(8) userpwd

1* application User id
1* application User password

Ten customer information variables are declared with the
character lengths indicated:
char(8) branch
char(40) name
char(30) street
char(9) geocd
char(lS) city
char(2) state
char(S) zip
char(S) areacd
char(3) nnx
char(4) exch

Two miscellaneous variables are declared:
int fldpos
char(l) tryagain

Local Screen Format Definitions
The two local screen formats, addcust.l and login.l, are defined in
this section:
copy " addcust. 1"
copy "login.l"

1* customer information screen
1* login parameters screen

The COpy preprocessor command inserts the content of the
addcust.l and login.llocal screen format files into the main
program.

Both local screen format files use the DUMMY keyword and a
literal to produce field narratives on the screen. The attribute
lists define certain fields as Protected or Unprotected, and reverse
video or normal display. Refer to the FIELD command in

Asynchronous Host Sample Program 3-41

Chapter 4 for a complete list of definable attributes.

The addcust.l local screen format has the defined screen name,
addcust:
begfmt addcust

endfmt

field (1,30,20,(P,A,H,R,R,7,0» DUMMY "CUSTOMER ADD SCREEN"
field (3,5,16, (P,A,H,R,N,7,0» DUMMY "Service Branch: "
field (3,22,8, (U,A,H,R,R,7,0» addcust.branch
field (5,5,9, (P,A,H,R,N,7,0» DUMMY "Name:
field (5,15,35,(U,A,H,R,R,7,0» addcust.name
field (7,5,9, (P,A,H,R,N,7,0» DUMMY "Street: "
field (7,15,35,(U,A,H,R,R,7,0» addcust.street
field (9,5,7, (P,A,H,R,N,7,0» DUMMY "City: "
field (9,15,15,(U,A,H,R,R,7,0» addcust.city
field (9,32,7, (P,A,H,R,N,7,0» DUMMY "State: "
field (9,40,2, (U,A,H,R,R,7,0» addcust.state
field (9,44,10,(P,A,H,R,N,7,0» DUMMY ·Zip Code: "
field (9,55,5, (U,A,H,R,R,7,0» addcust.zlp
field (11,5,12,(P,A,H,R,N,7,0» DUMMY "Phone No.: "
field (11,18,3,(U,A,H,R,R,7,0» addcust.areacd
field (11,23,3,(U,A,H,R,R,7,0» addcust.nnx
field (11,28,4,(U,A,H,R,R,7,0» addcust.exch
field (15,5,21,(P,A,H,R,N,7,0» DUMMY • Press F8 to EXIT. •
field (24,2,70,(P,A,H,R,N,7,0» addcust.status

The login.llocal screen format has the defined screen name,
login. Note that this local screen format makes use of the non ..
displayable (dark) attribute for the password field:
begfmt login

field (1,28,23,(P,A,H,R,R,7,0» DUMMY "HOST LOGIN SCREEN"
field (3,5,16, (P,A,H,R,N,7,0» DUMMY ·User Id: "
field (3,22,8, (U,A,H,R,R,7,0» login.userid
fiF!lrl (r; r; 1~ (P A 1-1 ~ N 7 n\\ nillAUV "c .. .,..,., rf.

fi~ld (5:22~8:(u:A:D:R:N:7:0» i~gi~.u~;;p;d·w.
field (24,2,70,(P,A,H,R,N,7,0» login.status

endfmt

Host Screen Format Definitions
Two host screen formats are also inserted into the main program
by the following COpy commands:
copy " custadd.f"
copy " chkzip.f"

1* customer administration screen
1* zip code screen

The listings for these two files are shown at the end of this
section.

3-42 Sample Programs

Log in to Asynchronous' Host
Execute Main Program
To run this sample program, at the UNIX shell prompt, the user
types

escort addcust.ap

and presses (RETURN). The following ESCORT banner screen is
displayed briefly:

AT&T
AT&T
AT&T
AT&T 3270 EMULATOR.
AT&T ESCORT
AT&T
AT&T
AT&T

Copyright e 1985.1986.1987. 1988 by AT&T. All Rights Reserved.

The first program line
ad~ust prog main (ll)

indicates the beginning of the program, identifies the first script
named main and connects to local session, Ll. A local variable
is declared in the first script:
main script

int rtncode /.* subroutine return code

Asynchronous Host Sample Program 3-43

Load Formats and Enter Data
The next section of program loads the two local screen formats,
login.l and addcust.l into local sessions, Ll and L2 respectively.
The login.l screen is activated and displayed:

User Id:
Password:

The program exits to Tutorial mode to allow the user to enter
the appropriate login data:

getfmt (ll, login)
getfmt (l2, addcust)
rtncode = 1

while (rtncode 1= 0)
do

show (ll)
exit

3-44 Sample Programs

1* assoc local scrn fmt with II
1* assoc local scrn fmt with l2

1* while log in failed

1* display local session 1
1* exit to tutorial mode

Assign Data
When program execution is resumed, after the login data is
entered and (RETURN) is pressed, the program saves the data
entered via the login local screen format by assigning the data to
global variables for later use. The FORMAT command defines
the default format as login; it is not necessary, therefore, to assign
the format name to individual fields.

format login
userid = .userid
userpwd = . userpwd

Activate Asynchronous Host Session
The main program activates asynchronous host session AI. The
value of the system global variable, SYSRET, is checked to
determine whether the connection to the host is successful.

If the connection failed, the attributes for the status field,
initially defined as Protected to prevent users from writing to this
area, are changed to Unprotected to allow the program to write
the System Not Available Connect Failed error message to the
status field. The status field attributes are changed back to
Protected after the error message is written.

Asynchronous Host Sample Program 3·45

serinit (1,1200,e,1,7,full,"5551234" ,no)
connect (AI) 1* activate host session 1
if (sysret = -1)

then
connect (ll)
fldpos = $fldaddr (login. status)
chgattr (ll, fldpos, (U,*,H,*,R,*,*»
login.status = ("System Not Available. "+

"Connect Failed.")
chgattr (ll, fldpos, (P,*,H,*,R,*,*»
rtncode = 2
cycle

endif
show (AI) 1* display host session 1

The addcust.ap program calls the login subroutine and passes
three parameters:

call login(userid,
userpwd,
rtncode)

Log in Procedure
Review the program listing for the login.s subroutine at the end
of this section. The CALL command invokes the login
subroutine to log in to the application. The login SCRIPT
statement has a declaration list corresponding to the parameter
list in the addcust CALL command.

The login subroutine returns one of three codes to the addcust
program via the rtncode variable:

o Successful login.
1 Login rejected.
2 System not available ..

The login subroutine

1 Waits for the login prompt.

2 Checks for system failure. If the asynchronous host system is
not available, the return code is set to 2 and the login local
screen is redisplayed.

3-46 Sample Programs

3 Enters login information. The following screen shows the
login data automatically entered by the ESCORT subroutine:

LOGIN: abc
USER ID: user1
PASSWORD:

Asynchronous Host Sample Program 3-47

4 Waits for the following asynchronous host menu screen:

CUSTOMER SUPPORT SYSTEM

custadd - Add Customer
custdel - Delete Customer
bill - Billing Information
sales - Sales Support
mail - Check Mailbox

ENTER MENU OPTION:

If the login subroutine logs in to the application successfully, the
return code is set to 0; an unsuccessful login sets the return code
to 1.

Login Failed
The main program checks the value of the rtncode variable set in
the login subroutine. If the value of rtncode is not 0, the program
disconnects from the asynchronous host. The local session, Ll,
is activated and the login local screen is displayed.

The status field is initially defined as Protected to prevent users
from writing to this area. The attributes for this field are
changed to Unprotected to allow the main program to write the
Login Failed error message to the status field. The main program
immediately changes the status field attributes back to Protected

3-48 Sample Programs

after the error message is written.
if (rtncode 1= 0)

then
discon (AI)
connect (ll)

1* did log in fail?

fldpos = $fldaddr(login.status)
chgattr (ll, fldpos, (U,*,H,*,R,*,*»
if rtncode = 2

then
login. status = (" Host login Failed. "+

"System Not Available.")
else

login.status = ("Host login Failed. "+

endif
"Please Verify login Parameters.")

chgattr (ll, fldpos, (P,*,H,*,R,*,*»
home

endif
endo

The following shows the login local screen and the error message:

User Id:
Password:

Asynchronous Host Sample Program 3-49

\

Add New Customer
Enter Data
Following successful login to the asynchronous host session, the
addcust local screen is activated and displayed:

Name:
Street:
City:

The program exits to Tutorial mode to allow the user to enter
the appropriate customer data. The program terminates and logs
off from the asynchronous host session if @) is pressed.

connect (L2)

while (1)
do

show (L2)
exit
if (sysaid = 8)

then
break

end if

3·50 Sample Programs

1* activate local session 2

1* display local session 2
1* exit to tutorial
1* exit addcust, log off

The screen below shows the CUSTOMER ADD SCREEN after
data has been entered by the user. Note that the zip code
entered, 07601, is incorrect for the customer's city, Red Bank.

Asynchronous Host Sample Program 3·51

Assign Data
When program execution is resumed, after the customer data is
entered and (RETURN) is pressed, the program saves the data
entered via the addcust local screen format by assigning the data
to global variables for later use.

format addcust
branch . branch
name
street
geocd
city
state
zip
areacd
nnx
exch

3-52 Sample Programs

. name

. street

. city

. state

.zip

.areacd

.nnx

.exch

Update Asynchronous Host
Populate Host Fields
The main program activates and displays the asynchronous host
session. The main program calls the send~id script. The
send~id script is listed within the addcust.ap program at the end
of this section.

The send~id subroutine sends a specified soft function key to
the host. The subroutine scans the asynchronous data received,
using aWAIT command and the strings passed to it as
parameters in the CALL statement, and returns one of four
values to the main script via the SYSRET variable.

In this case, only one string is passed to the send_aid subroutine
and, therefore, one of the following three values is returned to
the main script via the SYSRET variable:

1 The last line of the host
screen, containing the string,
MI REV FACE, detected.

- 99 The LOGIN prompt detected,
line dropped.

- 1 WAIT command timed out.

If the value of SYSRET is less than zero, that is, the line dropped
or the WAIT command timed out, the main program calls the
err _msg script. The err _msg script is listed within the
addcust.ap program at the end of this section.

The err_msg subroutine activates the addcust local screen and
tests the value of SYSRET. If the line is dropped or the script
times out, the attributes for the status field, initially defined as
Protected to prevent users from writing to this area, are changed
to Unprotected to allow the program to write either the Host
Connection Failed Line Dropped or the Host Connection Failed
Timed Out error messages to the status field. The status field
attributes are changed back to Protected after the error message is
written and the login local screen is redisplayed.

Line drops do not occur frequently, they are included in this
sample program to demonstrate possible solutions to detect such
problems.

When the host application screen is displayed, the addcust

Asynchronous Host Sample Program 3-53

program calls the popuflds script. Review the popuflds script
listed within the addcust program at the end of this section. The
popuflds script assigns data entered from the local screen,
together with hard .. coded values, to the host field variables
detailed in the custadd host screen format file.

connect (AI) 1* activate host session
show (AI) 1* display host session
text "custadd"
call sendLaid (O,"M! REV fACE" ,no)
if (sysret < 0)

then
call err....msg
break

endif
tryagain = "y"
while (tryagain = " y")

do
1* ok to add customer

call popuflds 1* populate host fields

The following screen shows the host application populated with
data.

CSS CUSTOMER SUPPORT
CUSTOMER ACCOUNT ADMINISTRATION

CUSTOMER ID BRANCHES: CONTROL ussonlee SERVICE ussonlee
CUSTOMER NAME John Robinson
ADDRESS

STREET 123 Main Street GEOCODE
CITY Red Bank STATE NJ ZIP 07001

PHONE 1# 201 555 1234 EXT COUNTRY CODE
CONTACT SIC 1111 STATUS a (ACTIVE OR INACTIVE)

PRIMARY AE SSN 123456789

CHU ID 3140 aa DESC dimension

CONTRACT TYPE: EQ EFFECTIVE DATE MTC EFFECTIVE DATE

NAT AC NATIONAL CONTRACT USE FPC LCAC
COMMENTS

MENU CAN INST BU CAR GEO EBT PADM MI REV " FACE
add

3-54 Sample Programs

Successful Update
The main program calls the send_aid script. The send~id
subroutine returns one of the following four values to the main
script via the SYSRET variable:

1 Successful update message,
ADD COMPLETE, detected.

2 INVALID ZIP WITHIN
STATE error message detected.

- 99 The LOGIN prompt detected,
line dropped.

- 1 WAIT command timed out.

If the value of SYSRET is less than zero, the main program calls
the err _msg script.

If the successful update message, ADD COMPLETE, is detected
the main program activates the addcust local screen format and
displays a suitable message:

call sen~id (4,
• ADD COtwPLETE" ,
"INVALID ZIP WITHIN STATE")

if (sysret < 0)
then

call err.JIlsg
break

endif
tryagain = On" 1* init to good ending first
if (sysret = 1) 1* success?

then
connect (L2)
addcust . zip = zip
fldpos = $fldaddr (addcust. status)
chgattr (L2, fldpos, (U,*,H,*,R,*,*»
addcust.status = ·CUSTOMER ADD SUCCESSFUL."
chgattr (L2, fldpos, (P,*,H,*,R,*,*»
home
break

endif

Zip Code Error Routine
In this example, the zip code entered does not match the
customer's city and state. The send~id subroutine returns a
SYSRET value of 2 and the main program calls the fixzip script.
Refer to the fixzip script within the addcust.ap program at the
end of this section.

Asynchronous Host Sample Program 3-55

The /ixzip script uses the host screen format file chkziP./, also
listed at the end of this section, to access a host zip code
reference screen to retrieve the correct zip code.

The main program again calls the send_aid script to go back to
the addcust screen. The send_aid subroutine returns one of the
following three values to the main script via the SYSRET
variable:

1 The last line of the host
screen, containing the string,
MI REV FACE, detected.

- 99 The LOGIN prompt detected,
line dropped.

- 1 WAIT command timed out.

If the value of SYSRET is less than zero, the main program calls
the err _msg script.

If the host process is unable to correct the error, the program
activates the addcust local screen format and displays a suitable
message:

if (sysret = 2)
then

call fixzip 1* try to fix zip code
call sen~id (5, 1* go back to

"MI REV FACE", 1* addcust screen
"")

if (sysret < 0)
then

call err-IDsg
break

endif
else

connect (L2)
addcust . zip = zip
fldpos = $fldaddr(addcust. status)
chgattr (L2, fldpos, (U,*,H,*,R,*,*»
addcust.status = "CUSTOMER ADD FAILEO."
chgattr (L2, fldpos, (P,*,H,*,R,*,*»
home

endif
endo

endo

3-56 Sample Programs

In this example, the host process is able to correct the zip code.
The corrected zip code is stored in a global variable, the program
repopulates the host field variables and adds the customer
information to the data base. The following shows the addcust
local screen and message after the customer information has been
added to the data base:

Note that the zip code field has been amended by the host
process and the correct zip code, 07701, is automatically entered
in the relative local screen field.

Asynchronous Host Sample Program 3-57

Log off from Asynchronous Host
The next section of the addcust program reactivates and
redisplays the asynchronous host session and calls the send--..aid
script. The send--..aid subroutine waits for the ENTER MENU
OPTION prompt. The main program logs off from the
asynchronous host session.

connect (AI) 1* activate host session
show (AI) 1* display host session
call sen~id (a,"ENTER MENU OPTION","")
text "exit"
enter
discon (AI)

ends

3-58 Sample Programs

Copy Subroutines
The final section of the addcust program uses the COPY
preprocessor command to copy the login.s file:

copy • Ilogin. s·

Asynchronous Host Sample Program 3·59

Program and File Listings
This section contains program listings for the addcust.ap program
and the login.s subroutine; the local screen format files, addcust.l
and login.l; and the host screen format files, custadd.f and
chkzip.f.

3-60 Sample Programs

addcust.ap Program

1***
1* *
1* ADD...,CUST *
1* *
1***

addLcust prog main (Ll)
1*************************************1
1* GLOBAL VARIABLE DECLARATIONS *1
1*************************************1

1* Host Log in Variables *1

char(8) userid 1* application User id
char(8) userpwd 1* application User password
1* Customer Info Variables *1

char(8) branch
char(40) name
char(30) street
char(9) geocd
char(lS) city
char(2) state
char(S) zip
char(S) areacd
char(3) nnx
char(4) exch
1* Miscellaneous Variables *1

int fldpos
char(l) tryagain
1*************************************1
1* LOCAL SCREEN FORMAT DEFINITIONS *1
1*************************************1

copy
copy

" addcust.l"
"login.l"

1* customer information screen
1* login parameters screen

1**/
1* HOST SCREEN FORMAT DEFINITIONS */
1**/

copy
copy

" custadd. f"
"chkzip. f"

1* customer administration screen
1* zip code screen

1*************************** MAIN SCRIPT *********************************1

main script
int rtncode 1* subroutine return code
1**1
/* Set Up Local Sessions 1: (Login Parameters) 2:(Customer Info) *1
1**1

getfmt (Ll, login)
getfmt (L2, addcust)
rtncode = 1

while (rtncode 1 = 0)
do

show (Ll)
exit

1* assoc local scrn fmt with Ll
1* assoc local scrn fmt with L2

1* while log in failed

1* display local session 1
1* exit to tutorial mode

Asynchronous Host Sample Program 3-61

1***1
1* Assign log in Parameters to Variables *1
1***1

format login
userid = .userid
userpwd = . userpwd
1***********************************1
1* log in to Host Application *1
1***********************************1

serinit (1,1200,e,1,7,full,"555l234" ,"H)
connect (AI) 1* activate host session 1
if (sysret = ·1)

then
connect (Ll)
fldpos = $fldaddr (login. status)
chgattr (ll, fldpos, (U,*,H,*,R,*,*»
login. status = (" System Not Available. "+

"Connect Failed.")
chgattr (ll, fldpos, (P,*,H,*,R,*,*»
rtncode = 2
cycle

endif
show (AI) 1* display host session 1
call login(userid,

userpwd,
rtncode)

if (rtncode 1= 0)
then

discon (AI)
connect (ll)

1* did log in fail?

fldpos = $fldaddr(login. status)
chgattr (ll, fldpos, (U,*,H,*,R,*,*»
if rtncode = 2

then
, __ ~ _ _ .L._.&.. •• _

.LU!:j.LII. ~ ,-a '-U~

else
login.status

endif

'.'1 __ '- I __ ~_ r-_~'_-I

" nu~ I. L.U!:j.L11 r a.L.LCu. .,.

·System Not Available.")

("Host login Failed. "+
"Please Verify Login Parameters.")

chgattr (Ll, fldpos, (P,*,H,*,R,*,*»
home

endif
endo

1*********************1
1* Log in successful *1
1*********************1

connect (l2)
while (1)

do
show (L2)
exit
if (sysaid

then
break

endif

3·62 Sample Programs

8)

1* activate local session 2

1* display local session 2
1* exit to tutorial
1* exit addcust, log off

1**1
1* Assign Customer Information to Variables *1
1**1

format addcust
branch . branch
name . name
street . street
geocd
city . city
state . state
zip .zip
areacd .areacd
nnx .nnx
exch .exch
1***1
1* Update Host DB with Customer Information *1
1***1

connect (AI)
show (AI)

1* activate host session
1* display host session

text "custadd"
call sen~id (O,"MI
if (sysret < 0)

REV FACE", " ")

then
call err-IDsg
break

endif
tryagain = "y"
while (tryagain Ny") 1* ok to add customer

do
call popuflds 1* populate host fields
call sen~id (4,

"ADD CO~LETE" ,
"INVALID ZIP WITHIN STATE")

if (sysret < 0)
then

call err-IDsg
break

endif
tryagain = "n" 1* init to good ending first
if (sysret = 1) 1* success?

then
connect (L2)
addcust . zip = zip
fldpos = $fldaddr(addcust.status)
chgattr (L2, fldpos, (U,*,H,*,R,*,*»
addcust.status = "CUSTOMER ADD SUCCESSFUL."
chgattr (L2, fldpos, (P,*,H,*,R,*,*»
home
break

endif
1*******************1
1* If bad zip code *1
1*******************1

if (sysret = 2)
then

call fixzip
call sen~id (5,

1* try to fix zip code
1* go back to

"MI REV FACE", 1* addcust screen

Asynchronous Host Sample Program 3-63

ends

"")
if (sysret < 0)

then
call err-IDsg
break

end if
else

connect (L2)
addcust . zip = zip
fldpos = $fldaddr(addcust.status)
chgattr (L2, fldpos, (U,*,H,*,R,*,*»
addcust.status = "CUSTOt.£R AOO FAILED."
chgattr (L2, fldpos, (P,*,H,*,R,*,*»
home

endif
endo

en do
1*********************1
1* Log off from host *1
1*********************1

connect (AI) 1* activate host session
show (AI) 1* display host session
call sen~id (a,"ENTER MENU OPTION" ,no)
text "exit"
enter
discon (AI)

3-64 Sample Programs

1******************** POPUFLDS SCRIPT ************************************1
1* The purpose of this script is to populate all the necessary fields on *1
1* host screen in order to add a customer into the host. */
1* These fields will be derived from what was entered in the local */
1* session in addition to hard·coded values. */
1***/

popuflds script
format custadd
.clctrbr branch
.clsvcbr branch
.clname name
.clstr street
.clgeo
.clcity city
.clstate state
.clzip zip
.clarcd areacd
.clnnx nnx
.clexch exch
.clsic "1111"
.clstat "a"
.claessl "123"
.claess2 "45"
.claess3 "6789"
.clpricel= "nat"
.clcmu "3l40aa"
.cldesc " dimension"

ends
/***/

Asynchronous Host Sample Program 3-65

1******************** FIXZIP SCRIPT **************************************1
1* The purpose of this script is to determine the valid zip code for the *1
1* city and state specified on the local screen. *1
1***1

fixzip

ends

script
call sen~id (5,"CUST ADMIN",·")
if (sysret < 0)

then
call err....msg
return

endif
chkzip.city = city
chkzip. state = state
call sen~id (I ," COMPLETE" ,"")
if (sysret < 0)

then
call err....msg
return

else
geocd = chkzip . rgeocoOI
zip = chkzip . rzipmiOI
tryagain = " y"

endif

1* save the found geo code
1* save the found matching zip

1***1

3-66 Sample Programs

/******************** SE~ID SCRIPT ************************************/
/* The purpose of this script is to determine whether specified data */
/* strings are detected in the asynchronous host data stream. */
/***/

sen~id script (int key, char(*) strl, char(*) str2)
int i

ends

aid(key)
wait (60, strl, str2, "LOGIN")
if (sysret 3) /* line drop

then
sysret -99

endif

/***/

Asynchronous Host Sample Program 3-67

/******************** ERR-MSG SCRIPT ************************************/
/* The purpose of this script is to determine whether the async host */
/* connection failed due to a line drop or a time out. */
/**/
err...lIlsg

ends

script
if (sysret = -99)

then
connect (L2)
fldpos = $fldaddr(addcust.status)
chgattr (L2, fldpos, (U,*,H,*,R,*,*»
addcust.status = ("Host Connection Failed. "+

"Line Dropped.")
chgattr (L2, fldpos, (P,*,H,*,R,*,*»

else
if (sysret = -1)

then
connect (L2)
fldpos = $fldaddr (addcust . status)
chgattr (L2, fldpos, (U,*,H,*,R,*,*»
addcust.status = ("Host Connection Failed. • +

"Timed Out.")
chgattr (L2, fldpos, (P,*,H,*,R,*,*»

endif
endif

/***/

3-68 Sample Programs

copy • Ilog1n. s·
1***1
endp

Asynchronous Host Sample Program 3-69

login.s Subroutine

1**
/* *
/* LOGIN.S *
/* *
/**
/* *
/* FUNCTIONAL DESCRIPTION: *
/* log in to async host *
/* INPUT PARAMETERS: *
/* userid . > user id *
/ * userpwd· > user user password *
1* OUTPUT PARAMETERS: *
/ * rtncode· > 0 = successful log in *
1 * 1 = log in rejected *
/* 2 = system not available *
/* *
/**
login

ends

script (char(*) usid,
char(*) uspwd,
int rtncode)

enter
wait (30,"LOGIN:")
if (sysret 1= 1)

then
rtncode = 2
return

endif
text (usid)
enter
wait (30,"PASSWORD:")
if (sysret 1= 1)

then
rtncode = 2
return

endif
text (uspwd)
enter
wait (30,"ENTER MENU OPTION" ,"LOGIN INCORRECT")
if (sysret = 1)

then
rtncode 0

else
rtncode 1

endif

3-70 Sample Programs

addcust.1 Local Screen Format File

begfmt addcust

endfmt

field (1,30,20,{P,A,H,R,R,7,0» DUMMY ·CUSTOMER ADD SCREEN"
field {3,5,16, (P,A,H,R,N,7,0» DUMMY "Service Branch: "
field {3,22,8, (U,A,H,R,R,7,0» addcust.branch
field {5,5,9, (P,A,H,R,N,7,0» DUMMY "Narne:
field (5,15,35,{U,A,H,R,R,7,0» addcust.name
field {7,5,9, (P,A,H,R,N,7,0» DUMMY • Street: "
field (7,15,35,(U,A,H,R,R,7,0» addcust.street
field {9,5,7, (P,A,H,R,N,7,0» DUMMY "City: "
field (9,15,15,{U,A,H,R,R,7,0» addcust.city
field {9,32,7, (P,A,H,R,N,7,0» DUMMY • State: "
field {9,40,2, (U,A,H,R,R,7,0» addcust.state
field (9,44,10,{P,A,H,R,N,7,0» DUMMY ·Zip Code: •
field {9,55,5, (U,A,H,R,R,7,0» addcust.zip
field (11,5,12,{P,A,H,R,N,7,0» DUMMY ·Phone No.: "
field (11,18,3,{U,A,H,R,R,7,0» addcust.areacd
field (11,23,3,{U,A,H,R,R,7,0» addcust.nnx
field (11,28,4,{U,A,H,R,R,7,0» addcust.exch
field (15,5,21,{P,A,H,R,N,7,0» DUMMY • Press F8 to EXIT.
field (24,2,70,{P,A,H,R,N,7,0» addcust.status

Asynchronous Host Sample Program 3-71

login.l Local Screen Format File

begfmt login

endfmt

field (1,28,23,(P,A,H,R,R,7,O» OUMMY "HOST LOGIN SCREEN"
field (3,5,16, (P,A,H,R,N,7,O» DUMMY "User Id: "
field (3,22,8, (U,A,H,R,R,7,O» login.userid
field (5,5,16,(P,A,H,R,N,7,O» DUMMY "Password:
field (5,22,8,(U,A,D,R,N,7,O» login.userpwd
field (24,2,70,(P,A,H,R,N,7,O» login.status

3-72 Sample Programs

custadd.f Host Screen Format File

field (04,48,0008) custadd.clctrbr
field (04,66,0008) custadd.clsvcbr
field (05,15,0040) custadd.clname
field (08,10,0030) custadd.clstr
field (08,51,0009) custadd.clgeo
field (09,10,0020) custadd.clcity
field (09,41,0002) custadd.c1state
field (09,56,0010) custadd.clzip
field (11,11,0005) custadd.c1arcd
field (11,17,0003) custadd.clnnx
field (11,21,0004) custadd.clexch
field (12,34,0004) custadd.c1sic
field (12,59,0001) custadd.clstat
field (14,17,0003) custadd.c1aess1
field (14,21,0002) custadd.claess2
field (14,24,0004) custadd.c1aess3
field (14,72,0003) custadd.clprice1
field (16,09,0006) custadd.c1cmu
field (16,21,0030) custadd.c1desc

Asynchronous Host Sample Program 3-73

chkzip.f Host Screen Format File

field (04,27,0015) chkzip.city
field (04,19,0002) chkzip.state
field (05,07,0005) chkzip.rzipmi01
field (05,65,0009) chkzip.rgeoco01

3-74 Sample Programs

4 Commands and Functions

How to Use This Section 4-1

Command Directory 4-3
ABEND 4-8
AID 4-9
ASSIGN (=) 4-11
ATIN 4-16
BEEP 4-17
BEGFMTIENDFMT 4-18
BREAK 4-20
BTAB 4-21
CALL 4-22
CAPTURE ON/OFF 4-26
CHAR 4-28
CHGATTR 4-30
CHKPT 4-32
CLEAR 4-34
CLOSE 4-35
COLOR 4-36
COMMENT(/*) 4-38
CONNECT 4-39
COpy 4-43
CURSOR 4-45
CYCLE 4-46
DEL 4-47
DISCON 4-48
DUP 4-50
EJECT 4-51
ENDP 4-52
ENDS 4-53
ENTER 4-54
ERASEW 4-55

ERIN 4-57
EROF 4-58
EXIT 4-59
FIELD 4-63
FM 4-71
FOR 4-72
FORMAT 4-75
FRESH 4-77
OETFMT 4-79
OOTO 4-80
HOME 4-81
IF 4-82
INS 4-84
INT 4-85
LBREAK 4-86
LOO 4-87
NL 4-89
OPEN 4-90
PAn 4-92
PFn 4-93
PRINT 4-94
PROO 4-95
PROMPT 4-98
PUTENV 4-100
READ 4-101
RESET 4-104
RETURN 4-105
RUN 4-106
SCRIPT 4-107
SERINIT 4-110
SHOW 4-114
SWITCH 4-116
SYSREQ 4-118
TAB 4-119
TEXT 4-120
TIMEOUT 4-122
WAIT 4-124
WHILE 4-127
WINDOW 4-129
WRITE 4-132
WTO 4-134

Function Directory 4-137
$ATTR 4-141
$CHDATE 4-143
$ DATE 4-144
$DATES 4-145
$DAY 4-146
$EVAL 4-147
$FLDADDR 4-150
$GETCUR 4-151
$GETENV 4-152
$GETPID 4-153
$GSUBSTR 4-154
$HEX 4-156
$ITOS 4-157
$LENGTH 4-158
$MONTH 4-160
$NEXTFLD 4-161
$RESP 4-163
$SCAN 4-165
$SEC2TIM 4-168
$STOI 4-169
$STRIP 4-170
$TAB 4-171
$TIMDIFF 4-172
$TIME 4-173
$TIM2SEC 4-174
$YEAR 4-175

How to Use
This Section

. This reference section contains a complete alphabetical listing of
all ESCORT commands and functions as well as a numerical
listing of all error messages.

Listings in the command and function directories contain

D the name of the command or function

D the purpose or definition

D the format or syntax

D comments or remarks about using the command or function

D an example of how to use the command or function.

At the beginning of each directory, the conventions used
throughout, are listed.

Tables indicating which commands and functions are effective in
each session type are provided. All commands and functions are
effective in all three session types, unless otherwise specifically
noted in the remarks section in the command and function
directories.

How to Use This Section 4-1

Command Directory

This command directory contains a complete alphabetical listing
of all ESCORT commands.

Conventions Used
Most commands have the following format:

[label:] COMMAND operands

Optional fields are noted in brackets. The label in the above
example is optional.

Braces indicate a choice of operands. In the following example,
you must enter either a string expression or the keyword operand
SCREEN.

[label:] PRINT {str_expr}
{SCREEN}

Commands and keyword operands are printed in capital letters,
but may be entered in either capital or lowercase letters.

Multi,word operands are separated by an underscore. In the
following example, the operand exit_code represents an exit code
number:

[label:] ABEND [(exiL-code)]

Operands are separated by commas, as in the example below:

[label:] WRITE (nickname, buffer)

Parentheses must be entered where indicated. In the example
above, the entries for nickname and buffer must be enclosed in
parentheses.

String and integer expressions with multiple operands must be
enclosed in parentheses.

The text of a string constant must be entered iri double

Command Directory 4-3

quotation marks, as shown below:

WTO "This is a window."

The names of all scripts, files, programs, variables, and labels
must be 1 to 8 characters. The first character must be
alphabetic.

Many commands in ESCORT permit you to use a label. A label
is a name used to branch to a specified statement during
execution. Use of a label is optional.

Upon declaration, a string (or each element in a string array) is
initialized to a null string. The term null string means a string of
length zero.

Upon declaration, an integer variable (or each element in an
integer array) is initialized to zero.

Most examples listed in this directory are program sections.
Many examples use a dot (.) on a line by itself to denote
additional code.

All of the examples listed in this directory show only one
command, with in some cases a COMMENT marker, on each
script line. ESCORT is a free,format programming language and
therefore you may write more than one command on each script
line. You are limited to a maximum number of commands on a
line by the capabilities of your editor.

Warning
If you write more than one command on a script line, each
command must be separated by either a blank space or a tab. Do
not use a delimiter other than a blank space or tab, such as a
semi,colon (;), to separate commands otherwise syntax errors may
occur.

4-4 Commands and Functions

Command Summary
In the following table, a bullet (•) indicates the session type,
(synchronous, asynchronous or local) in which each command is
effective.

Synchronous Asynchronous
Command Host Host Local

ABEND • • •
AID • t
ASSIGN (=) • • •
ATIN •
BEEP • • •
BEGFMT/ENDFMT •
BREAK • • •
BTAB • • •
CALL • • •
CAPTURE •
CHAR • • •
CHGATTR •
CHKPT • • •
CLEAR • •
CLOSE • • •
COLOR
COMMENT • • •
CONNECT • • • COpy • • •
CURSOR • • •
CYCLE • • •
DEL • •
DISCON • •
DUP •

t In the asynchronous environment, AID keys, corresponding to codes 0 to 8
inclusive and code 25, are effective.

Command Directory 4-5

Synchronous Asynchronous
Command Host Host Local

EJECT
ENDP • • •
ENDS • • •
ENTER • •
ERASEW • • •
ERIN • •
EROF • •
EXIT • • •
FIELD • • •
FM •
FOR • • •
FORMAT • • •
FRESH • •
GETFMT •
GOTO • • •
HOME • • •
IF • • •
INS • •
INT • • •
LBREAK •
LOG • • •
NL • • •
OPEN • • •

4-6 Commands and Functions

Synchronous Asynchronous
Command Host Host Local

PAn •
PFn • t
PRINT • • •
PROG • • •
PROMPT •
PUTENV • • •
READ • • •
RESET •
RETURN • • •
RUN • • •
SCRIPT • • •
SERINIT •
SHOW • • •
SWITCH • • •
SYSREQ •
TAB • • •
TEXT • • •
TIMEOUT • • •
WAIT • • •
WHILE • • •
WINDOW • • •
WRITE • • •
WTO • • •

t In the asynchronous environment, keys PFI to PFB inclusive, are effective.

Command Directory 4-7

ABEND

Purpose

Format

Remarks

Example

Terminates execution of ESCORT abnormally
and returns an exit code to the UNIX shell.

[label:] ABEND [(exiLcode)]

exit_code specifies a code that is sent to the
UNIX shell. This exit code can be tested in a
UNIX shell script. A zero (normal) exit code is
returned if this operand is not specified.

The exit code can be an integer constant or an
integer variable with a value between 0 and 255.
ESCORT returns a zero (normal) exit code to the
UNIX shell when the ENDP statement is
encountered (the last statement in the program).

WTO "Failed To Add Order· Program Abend 512"
ABEND (12) 1* terminate with user code 12

4-8 Commands and Functions

AID

Purpose

Format

Simulates the action of one of the attention,
identifier (AID) keys on the keyboard. The AID
keys are:

o in the synchronous environment
ENTER
PFI .. PF24
CLEAR
PAl .. PA3
ATTN
SYS~EQ

D in the asynchronous environment
ENTER
PFI .. PF8 (co7es5ondtng)to soft
function keys F1 to F8)

CLEAR

[label:] AID (n)

n specifies the code representing the AID key you
want to simulate. The key code can be an
integer constant or an integer variable. The
following values have been assigned:

AID key Code

ENTER 0
PFI 1
PF2 2

PF24 24
CLEAR 25
PAl 26
PA2 27
PA3 28
ATTN 29
SYS~EQ 30

Command Directory 4-9

Remarks

See also

Example

FOR i=1 TO 12
00

This command is effective in synchronous and
asynchronous sessions.

After an AID command is executed, when
connected to an active synchronous host session,
script execution is suspended until the keyboard
is unlocked.

ATTN, CLEAR, CONNECT, ENTER, PAn,
PFn, and SYSREQ commands.

The following example sends PFI to PF12 to the
synchronous host. After each response from the
synchronous host system, the PF key number is
printed.

AID (i) 1* send PFi and wait for host response
PRINT ("AF" + $ITOS(i»

ENOO

4-10 Commands and Functions

ASSIGN (=)

Purpose

Format

Variable

Assigns a value returned from an expression to a
variable. The assignment operation is a data
move operation. On the left side of the equal
sign is the name of the destination variable. It
receives data evaluated from the right side
expression (source data).

Expression

inL-var
inL-expr
inL-array
inL-const
inL-array(i)
str_var
str_expr
str_array
str_const
str_array(i)
scrD-fld

Assignment Type

specifies an integer variable.
specifies an integer expression.
specifies an integer array.
specifies an integer constant.
specifies an integer array element.
specifies a string variable.
specifies a string expression.
specifies a string array.
specifies a string constant.
specifies a string array element.
specifies a screen field variable.

Command Directory 4-11

Remarks A string expression may contain a string
constant, string variable, string array element,
string function, screen field variable, or more
than one of the above operands separated by the
concatenation operator (+ sign).

An integer expression may contain an integer
constant, integer variable, integer array element,
integer function or more than one of the above
operands separated by an integer operator.

A relational expression, when evaluated, always
returns an integer value. A zero value yields a
false condition and a non .. zero value yields a true
value. A relational expression is also considered
an integer expression.

If multiple operands are used in either an integer
expression or in a string expression, then the
entire expression must be enclosed in left and
right parentheses.

A string constant containing a character string
must be enclosed in double quotes.

A variable must be declared before it can be used
in an assignment statement. Variables are
declared by using INT, CHAR, or FIELD
statements. The scope of a variable may be local
or global.

If the length of the right side (source data) in a
string or screen field assignment statement is
more than the length of the left side (destination
field), then the assignment terminates when the
destination field is full. An overflow condition is
not indicated by ESCORT.

4·12 Commands and Functions

See also

Example 1

For example,

CHAR (8) lastname

lastname = "Frankenberger"

moves the first 8 characters, Frankenb, to the
string variable lastname. The remaining
characters, erger, are lost, but no error is reported.

CHAR, FIELD, and INT commands, and the
section , II Operators and Expressions ", in Chapter
2.

The following example demonstrates various types
of integer variable assignments:

1*
INT
INT
INT

Declarations
i 1* integer
j(6)
k

1* integer array
1* integer

1*
k
i

Assignments

i
i
i

236
k
j(2)
$GETCUR
«$GETCUR/236)+j(k»

1* integer constant
1* integer variable
1* integer array element
1* integer function
1* multiple operands

Example 2 The following example demonstrates integer array
initialization:

1* Declaration
INT j(6) 1* integer array
1* Assignment
j = (256,0, -1,32,32767, -32767) 1* integer array initialization

Example 3 The following example demonstrates integer array
element assignments:

1* Declarations
INT j(6)
INT k
1* Assignments
k 4
j(3) -1
j(k) k
j(k) j(3)
j(5) $GETCUR
j(3) ($GETCUR-l)

1* integer array
1* integer

1* integer constant
1* integer variable
1* integer array element
1* integer function
1* multiple operands

Command Directory 4-13

Example 4 The following example demonstrates string
variable assignments:

1* Declarations
CHAR (20) u
CHAR (15) v
CHAR (10) Y (3)
FIELD (2,12,15) fl
1* Assignments
u "$ 1,800.00"
v u
u y(2)
v $DATE
u fl

1* string
1* string
1* string array
1* screen field

1* string constant
1* string variable
1* string array element
1* string function
1* screen field variable

v ("DATE = " + $DATE) 1* multiple operands

Example 5 The following example demonstrates string array
initialization:

1* Declaration
CHAR (10) y(3) 1* string array
1* Assignments
y = ("cereal","sugar","milk") 1* string array initialization

Example 6 The following example demonstrates string array
element assignment:

1* Declarations
CHAR (20) u 1* string
CHAR (15) v 1* string
CHAR (15) Y (3) 1* string array
FIELD (2,12,15) fl 1* screen field
INT k 1* integer
1* Assignments
k 2
v $DATE
y(l) "sugar" 1* string constant
y(k) v 1* string variable
y(2) y(l) 1* string array element
y(k) $DATE 1* string function
y(3) fl 1* screen field variable
y(l) ("TIME = " + $TIME)/* multiple operands

4-14 Commands and Functions

Example 7 The following example demonstrates screen field
variable assignments:

1* Declarations
FIELD (10,5,20) fl
FIELD (15,10,15) f2
CHAR (15) y(3)
CHAR (20) u

1* screen field
1* screen field
1* string array
1* string

Assignments
"123.25"
"hello"
u
y(3)
$DATE
f2

1* string constant
1* string variable
1* string array element
1* string function

1*
u
f2
fl
f2
fl
fl
f2 ("DATE = " + $DATE)

1* screen field variable
1* multiple operands

Example 8

CHAR (10) S

S ::; ("." + S)
S = (" " + S)

This example demonstrates a special case of the
assignment statement:

You can use a special case of the assignment
statement to initialize a string variable with a
pattern. For example:

x = (y+x), where x and yare strings, is
equivalent to x = (y+y+y+ ...).

In this example, the pattern y is propagated
throughout x. Propagation will be repeated
according to the declared size of string x.

You can also use the special assignment statement
to propagate blanks or dashes throughout a field.
For example:

1* s = "
1* s = "

Command Directory 4-15

ATTN
Purpose

Format

Remarks

Example

ATTN

Simulates the action of the attention key on the
keyboard.

Oabel:] ATTN

This command is effective in synchronous
sessions.

After an ATTN command is executed, script
execution is suspended until the keyboard is
unlocked.

This key is used by certain applications in an
SNA/SDLC environment.

1* interrupt program execution.

4-16 Commands and Functions

BEEP

Purpose

Format

Example

Sounds a beep on your terminal to alert you to a
particular condition.

Oabel:] BEEP

The following example uses the BEEP command
to beep 3 times before entering interactive mode.

WTO "PRESS PA2 TWICE, THEN PRESS F2"
FOR i= 1 TO 3 /* sounds 3 beeps
DO

ENDO
EXIT

BEEP

/* enter interactive mode

Command Directory 4-17

BEGFMT IENDFMT

Purpose

Format

Remarks

See also

Marks the beginning and end of local screen
format definition.

BEGFMT screeIL-name

ENDFMT

screeIL-name specifies the local screen format
name. The screen_name consists of from one to
eight alphanumeric characters, the first character
of which must be alphabetic. Individual
screen_names must be unique within a script.

This command is effective in local sessions.

BEGFMTiENDFMT are administrative
commands. Up to 100 local screen formats can
be defined in a single script, each of which may
contain a maximum of 500 fields.

Local screen format definitions must be written
after the PROG statement and before the first
SCRIPT statement.

FIELD statements are written between the
BEGFMT and ENDFMT statements. An
unformatted screen containing a single
unprotected field of 1920 characters will be
created by using a BEGFMT and an ENDFMT
statement without an intervening FIELD
statement.

FIELD statement and FORMAT command.

4-18 Commands and Functions

Example In this example two local screen formats, the
order format and the logon format are created.

prog1 PROG main

BEGFMT order
FIELD (1,2,9,(P,*,H,*,*,*,*» DUMMY "ORDER n ..
FIELD (1,12,8,{*,N,*,*,R,*,*» ordno

ENDFMT
BEGFMT logon

FIELD (10,12,9,{P,*,H,*,*,*,*» DUMMY "PASSWORD:"
FIELD (10,22,8,{*,*,D,*,*,*,*» passwd

ENDFMT
main SCRIPT

Command Directory 4-19

BREAK

Purpose

Format

Remarks

See also

Example

FOR i = 1 to 20
DO

Discontinues processing of a loop within your
program.

[label:] BREAK

The BREAK command is used to break from a
WHILE or FOR loop. When used between DO
and END 0 , it causes a branch to the statement
following END 0 .

CYCLE, FOR, and WHILE commands.

This program calls a subroutine, ADD ORDER , in
a loop. The subroutine returns a code. The
program checks the code and terminates the loop
if a code other than zero is returned.

CALL ADDORDER
IF code 1= 0
THEN

PRINT ("FAILING CODE + " $ITOS(code»
BREAK 1* quit loop

ENDIF
ENOO

4-20 Commands and Functions

BTAB
Purpose

Format

See also

Example

Simulates action of the back,tab key on the
keyboard.

[label:] BTAB [(n)]

n specifies the number of back,tabs to be
performed. The n can be an integer constant or
an integer variable. It can have a value between
1 and 64. The default value for n is 1.

TAB command and $TAB function.

This example demonstrates use of the BT AS
command to find the first unprotected field
before the literal "ORDER#".

K = $SCAN ("ORDER/I", (12,1,100»
CURSOR (K) 1* position cursor at literal
BTAB 1* backup to the first unprotected field

1* before literal "ORDERU"

Command Directory 4-21

CALL

Purpose

Format

Remarks

Invokes another script.

[label:] CALL scripL-name [(parIIL-list)]

scripL-name specifies the name of the script to
be executed.

parIIL-list specifies the list of parameters to be
passed to or returned from a script. The
parm_list is optional and may contain integer
constants, integer variables, string constants,
string variables or field variables. Note that
arrays, array elements, and functions are no t
allowed in the parm_list. If you are specifying a
parameter list, you must enclose it in parentheses.

For each parameter in the parm_list in the
CALL statement, there must be a corresponding
entry in the decl_list in the SCRIPT statement.
Each type of parameter in the parm_list and
decl_list must be consistent. See the table below
for examples.

parIIL-list decUist

integer constant integer variable
integer variable integer variable
string constant string variable
string variable string variable
field variable screen field variable

or string variable

The CALL command is similar to the subroutine
call in other programming languages.

4-22 Commands and Functions

See also

Example 1

pI PROG sl

You may nest calls. For example, if script A calls
script B, script B may contain a call to script C.

The variable names used in the parm_list may be
the same as in the decl_list. You may not use
arrays, array elements or functions in the
parameter list.

The length of each passed variable is assigned to
its corresponding local variable in the decl_list
when a subroutine is executed. Therefore, the
length of a local variable is not explicitly
declared in the decl_list but is marked by an
asterisk instead. Further details on passing
variables are provided in the SCRIPT statement.

Called scripts may be defined internally within
the same program as the CALL command, or
externally in a separate file. If the called scripts
are defined externally, they must be included in
the calling program by use of the COpy
command.

An ESCORT script is a procedure and not a
function. To return a value from an ESCORT
script, you must pass a suitable parameter in the
parm_list.

COpy command and SCRIPT statement.

The first example shows global variables used as
parameters. Script sl calls script s2. Return from
s2 is made via a RETURN or ENDS. The
subroutine returns a value which is assigned to
ordemo.

1* start of program pI

CHAR (10) custid 1* global variables
CHAR (6) reqdue
CHAR (9) orderno
FIELD (12,23,9) cust.order

sl SCRIPT

(more code)

custid = "000000414" l*g10bals used in s2
reqdue = "073184"
CALL s2 (orderno) 1* call script s2

Command Directory 4-23

(more code)

ENDS 1* end of script 51
52 SCRIPT (char (*) ordparm)

CHAR (10) a 1* local variables
CHAR (6) b

· (more code)

ordparm = cust.order 1* return parameter (orderno)
IF (cusUd = a) & (reqdue = b)
THEN

RETURN
ENDIF

· (more code)

ENDS
ENDP

1* return to 51

1* return to 51
1* end of program

Example 2 The next example is the same as the previous
example except that local variables are used to
pass and return parameters. Note that the first
parameter, custid, is used as a string constant in
the call.

p2 PROG 51 1* start of program p2
FIELD (12,23,9) cust.order

51 SCRIPT 1* start of script 51

52

CHAR (10) custid 1* local variables
CHAR (6) reqdue
CHAR (9) orderno

(more code)

reqdue = "073184"
CALL 52 ("000000414", reqdue, orderno)

· (more code)

ENDS
SCRIPT (CHAR (*) customer,

CHAR (*) duedat,
CHAR (*) ordparm)

CHAR (10) a
CHAR (6) b

· (more code)

1* end of script 51
1* input parm, string constant
1* input parm, string variable
1* output parm, string variable
1* local variables

ordparm = cust. order 1 * return parameter (orderno)
IF (customer = a) & (duedat = b)
THEN

RETURN 1* return to 51
ENDIF

· (more code)

4-24 Commands and Functions

ENDS
ENOP

Example 3

/* return to sl
/* end of program

In the last example, four parameters are passed.
Two will contain returned values.

prog1 PROG
main SCRIPT

INT

main

CHAR (80)
CALL
IF
THEN
ELSE
ENDIF
PRINT
ENDS

code / * output parm - integer
response /* output parm - string
sub (80, code, "ADD COMPLETED", response)
code = 0
PRINT "SUCCESSFUL ADD"
PRINT "ADD FAILED"

response

sub SCRIPT (INT length, /* integer constant - input
INT rtncode, /* integer variable - output
CHAR (*) message, /* string constant - input
CHAR (*) response,) /* string variable - output

FIELD (24,1,20) 1ine24
PF4
IF $SCAN (message, (24,1,length»
THEN rtncode = 0
ELSE rtncode = -1
ENDIF
response = 11ne24
ENDS
ENOP

Command Directory 4-25

CAPTURE ON/OFF

Purpose

Format

Remarks

Example

Toggles on and off the capture of output from an
asynchronous host.

nabe1:] CAPTURE ON

nabel:] CAPTURE OFF

This command is effective in asynchronous
sessions.

The capture feature may be turned on and off as
necessary during script execution. Each time
CAPTURE is turned on, all data received from
the asynchronous host is captured and is
appended to the file named escort.cp{proc~id},
where {proc~id} refers to the unique process
identification the UNIX operating system assigns
to each process. The file is created in the
directory defined by the ESCDIR environment
variable.

Checking for a successful CAPTURE ON
operation, when the escort.cp{proc~id} file is first
created, is good programming practice. The
internal global integer variable, SYSRET, returns
the result of a CAPTURE ON operation.
SYSRET may have one of the following values
after the CAPTURE ON is executed:

o Successful CAPTURE ON
non~O Failed CAPTURE ON

The command will fail if the output file,
escort.cp{proc~id} cannot be created. A message
will be written to the escort.pr{proc~id} file.

In this example, asynchronous host system
responses are captured.

4-26 Commands and Functions

CAPTLRE ON
TEXT "Johnson, J."
ENTER
WAIT (10, "Add Complete")

CAPTlRE OFF

1* send information to host
1* wait for host system response

Command Directory 4-27

CHAR
Purpose

Format

Remarks

Declares a string variable or a string array.

CHAR (size) name
or

CHAR (size) name (#elements)

size specifies the maximum size of a character
string or an array element. The actual size
changes each time a string is assigned. The size
may be between 1 and 2048, inclusive.

name specifies the name of the variable. The
name may be between 1 and 8 characters. The
variable name must not be a reserved word.
Further details on naming variables may be found
in the section, "Naming Variables", in
Chapter 2.

#elements specifies the number of elements in
an array. The array may contain 1 to 2048
elements, inclusive. Further details on array
elements may be found in the sections, "String
Variables" , and "String Array Variables" in
Chapter 2.

Upon declaration, the string (or each element in
the array) is initialized to a null value and has a
zero length.

A string (or a string element) may be assigned a
string expression or a screen field variable by
using an assignment statement.

4-28 Commands and Functions

Example
CHAR (20) name
CHAR (9) orderno
CHAR (2) table2 (5)

1* string variable
1* string variable
1* string array

name = "JOHNSON, L.B" 1* string assignment

table2 = (" ab", "C", "e", "GH", "15") 1 * array ini tlallzatlon

name = "DAVIS Jr., S." 1* string reassignment

table2 (1) = "cd" 1* string element reassignment

Command Directory 4-29

CHGATTR

Purpose

Format

Remarks

See also

Changes the field attributes for a given local
screen format.

Oabel:] CHGATTR (locaLsession .. id, position,
(attr~ist»

locaLsession .. id specifies a local session
identification. Valid local session identifications
are:

L1 Local session 1
L2 Local session 2

position specifies the absolute screen address of
the first position of the field for which the
attributes are to be changed. The position can be
an integer constant or an integer variable within
the range from 1 to 1920.

attr~ist specifies the new attribute list to be
applied to the field for which the attributes are to
be changed. The attr _list follows the same
format as the attribute list in the FIELD
statement. You may use an asterisk (*) to specify
the default attribute in any of the seven attribute
groups.

This command is effective in local sessions.

If the absolute address of the starting position of
the field, for which the attributes are to be
changed, is unknown, it can be obtained by
using either a $FLDADDR or a $GETCUR
function.

FIELD statement and $FLDADDR and
$GETCUR functions.

4-30 Commands and Functions

Example In this example, the field named order# is defined
in the local screen format section as follows:

FIELD (1,12,8,(*,N,*,*,*,*,*» orderD

INT i

The field is defined as numeric with all other
attributes using the default values. If the user
enters an incorrect order number, the script will
prompt the user to key,in the correct order
number and will change the attributes of the
order# field to underline to highlight the error.

i= $FLDAODR(orderD) /* get field address
/* underline CHGATTR (Ll, i, (*,N,*,*,U,*,*»

WINDOW (21,15,24,35)
WTO "Incorrect Order D"
WTO "Correct . press ENTER"
BEEP
EXIT

/* window for message

/* to draw attention
/* go to interactive mode

Command Directory 4-31

CHKPT

Purpose

Format

Remarks

See also

Preserves the contents of an active file in case of
a system disaster.

Oabel:] CHKPT ({nickname})
{LOG}
{PRN}
{CAP}

nickname specifies the internal name of the file.
This name must have been previously defined in
an OPEN command. The nickname is global and
can be used in any script within the program.

LOG specifies the ESCORT log file, which is
named escort.lg{proc,id}.

PRN specifies the ESCORT print file, which is
named escort.pr{proc,id}.

CAP specifies the ESCORT capture file, which
is named escort.cp{proc,id}.

{proc,id} is the unique process identification that
the UNIX operating system assigns to the
particular process.

The files are created in the directory defined by
the ESCDIR environment variable.

Data is not written from the internal system
buffer to the file unless the internal system buffer
is full or a CHKPT command in a script is
encountered. In the event of a system failure,
data in the internal system buffer is lost. If data
is critical, therefore, a CHKPT command should
be performed after each WRITE command.
Such frequent use of the CHKPT command may
cause slight degradation in script performance.

OPEN and WRITE commands.

4-32 Commands and Functions

Example This example saves the contents of a file after
every 20 records.

OPEN (filel, "filel.f", W)
k = 1
WHILE (k < 100)

DO
FORi=lto20

DO
buffer = rec (k) 1* get next record
k = (k + 1)
WRITE (fi1el, buffer) 1* write it

ENOO
CHKPT (filel) 1* checkpoint every 20 records

ENDO

Command Directory 4-33

CLEAR

Purpose

Format

Remarks

See also

Example

Simulates the action of the clear key on the
keyboard.

nabel:] CLEAR

This command is effective in synchronous and
asynchronous sessions.

When connected to an active synchronous host
session, after a CLEAR command is executed,
script execution is suspended until the keyboard
is unlocked.

AID and CONNECT commands.

TEXT "Add information to screen"
ENTER 1* send information to host
CLEAR 1* clear screen
TEXT "/for mainmenu"
ENTER 1* go to main menu

4-34 Commands and Functions

CLOSE

Purpose

Format

Remarks

Closes a file.

Oabel:] CLOSE (nickname)

nickname specifies the internal name for the
file. This must be the same name assigned to the
file in the OPEN command. The nickname is
global and can be used in any script within the
entire program.

Checking for a successful CLOSE operation is
good programming practice. The internal global
integer variable, SYSRET, returns the result of a
close operation. SYSRET may have one of the
following values after the CLOSE is executed:

o Successful CLOSE
- 1 Failed CLOSE

All files are closed automatically by ESCORT at
the end of program execution.

See also OPEN command.

Example In this example a file, F, is closed. A status
check using SYSRET is made after the file is
closed. If the CLOSE failed (SYSRET = - 1), a
message is written to the escort.pr{proc,id} file
and execution continues.

CLOSE (F) /* close file
IF SYSRET < 0 / * check value of SYSRET
THEN

PRINT ("FAILED TD CLOSE FILE")
BEEP /* sound alarm to alert operator and continue

ENDIF

Command Directory 4-35

COLOR

Purpose

Format

Remarks

See also

Specifies colors used in creating a window.

nabel:] COLOR (frame, background, foreground)

frame is a numeric code that defines the color of
the window borders. The table below lists the
possible colors and codes you may use.

background is a numeric code that defines the
color of the window background. You may use
only the colors listed in Column 1 of the table
below for the background of a window.

foreground is a numeric code that defines the
color of the window foreground. The table below
lists the possible colors and codes you may use.

Code Color Code Color

0 Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 White 15 Hi~h Intensitv White

The COLOR command applies to the MS .. DOS
version of ESCORT and is not available in the
UNIX operating system version of ESCORT. It
is included for script compatibility between the
UNIX operating system version and MS .. DOS
operating system version of ESCORT.

WINDOW command.

4-36 Commands and Functions

Example
COLOR (6,7,0) 1* brown frame, white background, black foreground
WINDOW (3,5,15,50) 1* draw window
WTO "Here is a window"
WTO "using the COLOR command."

Black Foreground
White Background

Here Is a indow
using the COLOR command.

Command Directory 4-37

COMMENT (/*)
Purpose

Format

Remarks

Example
PFl

Indicates the beginning of comments on a line.

/* .•••. This is a comment •••••

A comment may be placed anywhere on a
statement line or on a line by itself.

The beginning of a comment is marked with a
slash (/) and an asterisk (*). A comment is
terminated at the end of the line. If you want the
comment to exceed one line, start each
continuation line with a "/*".

You may use upper and lower .. case characters,
numbers, or special characters in a comment.

You may include as many comments in your
program as you like.

1* comment after command
I******************entire line of comments******
TEXT ("abcdefghijklmnop" + 1* comment in middle

"qrstuvwxyZ")

4-38 Commands and Functions

CONNECT

Purpose

Format

Remarks

Opens and makes active a particular session, or if
the defined session is already open, activates that
session.

Note
The value of the system global variable, SYSRET,
must be checked to ensure script integrity.

Oabel:] CONNECT (session .. id)

session .. id specifies a session identification. Valid
session identifications are:

H I Synchronous host session I
H2 Synchronous host session 2
H3 Synchronous host session 3
H4 Synchronous host session 4

Al Asynchronous host session I
A2 Asynchronous host session 2
A3 Asynchronous host session 3
A 4 Asynchronous host session 4

L I Local session I
L2 Local session 2

Check for a successful CONNECT operation
when the connection to the host is first
established. The internal global integer variable,
SYSRET, returns the result of a connect
operation. SYSRET may have one of the
following values after the CONNECT is
executed:

o Successful CONNECT
non..Q Failed CONNECT

The CONNECT command defines a session as
active by making the associated presentation
space active. Only one session can be active at
any given time.

Command Directory 4-39

When an ESCORT script is started, the
synchronous host session, HI, is the active
session by default. This default can be changed
by specifying another session identification in the
PROG statement.

If an asynchronous session is specified by the
CONNECT session,id, ESCORT physically
connects to the asynchronous host using the
communication port initialization parameters
specified by an associated SERINIT statement.

Data can be manipulated in an active session's
presentation space. Refer to the tables preceding
the command and function directories to
determine which commands and functions are
effective in the synchronous, asynchronous and
local environments.

ESCORT handles AID commands and AID keys
in a special manner depending upon whether a
host or local session is made active by use of the
CONNECT command (or by setting the session'
id operand in the PROG statement).

o When a synchronous host session is active:

In Script mode, all AID commands are
sent to the synchronous host.

In Interactive mode, all AID keys are sent
to the synchronous host.

In Tutorial mode, none of the AID keys
is sent to the synchronous host. The
script is resumed and the value of the
AID key entered is available by accessing
the system global variable, SYSAID.

o When an asynchronous host session is active:

In Script mode, only the ENTER, PFI to
PFS (corresponding to soft function keys em to @) and CLEAR AID
commands are sent to the asynchronous
host, all other AID commands are
ignored.

4-40 Commands and Functions

See also

Example

CHAR (10) order

In Interactive mode, only the ENTER,
PFI to PF8 (corresponding to soft
function keys @ to @) and CLEAR
keys are sent to the asynchronous host,
all other AID keys are ignored.

In Tutorial mode, none of the AID keys
is sent to the asynchronous host. The
script is resumed and the value of the
AID key entered is available by accessing
the system global variable, SYSAID.

D When a local session is active:

In Script mode, all AID commands are
ignored.

In Tutorial mode, none of the AID keys
is sent to the host. The script is resumed
and the value of the AID key entered is
available by accessing the system global
variable, SYSAID.

AID, DISCON, PROG, and SERINIT
commands, and the section, "Asynchronous
Communication Port Initialization ", in Chapter
2.

In the following example, an order number is
entered into a local screen format. The script
uses the CONNECT command to make the
synchronous host session, HI, active. The order
number is displayed in the correct synchronous
host field position.

1* string variable to transfer data

BEGFMT stock 1* local screen format
FIELD (5,8,10,(*,*,*,*,*,*,*» I-order 1* local session field variable

ENDFMT

FIELD (9,25,10) hLorder 1* host session field variable

GETFMT (Ll, stock) 1* load local screen format

Command Directory 4-41

CONNECT (ll)
SHOW (ll)
EXIT
order= Lerder
CONNECT (HI)
IF (SYSRET = -1)

THEN
PRINT ("Connection to Host Failed.")
EXIT

ENDIF
SHOW (HI)
h....order = order

4-42 Commands and Functions

1* connect to local session
1* display local screen format
1* go to tutorial for data
1* data to transfer variable

1* connect to host session
1* check connection

1* display host session
1* order number automatically

1* entered in correct host
1* screen position

COpy

Purpose

Format

Remarks

Includes a specified file in your source program.

COPY "filename"

filename specifies the file you want to include.

The COPY command is a preprocessor command
that alters your source code by including a file
that you specify. The copied file appears in your
program beginning at the location of the COpy
command.

Up to 100 characters are allowed in a filename.
You may use either the filename or the complete
pathname of a file.

You may nest a COpy command within a copied
file. However, only two,level nesting is
permitted. You will receive an error message if
you attempt three,level nesting.

The COpy command can be coded anywhere
between the PROG and ENDP statements. It is
recommended, however, that you copy all the
subroutine scripts right before the ENDP
statement. Global variables should be copied
immediately after the PROG statement and local
variables should be copied immediately after the
SCRIPT statement in the appropriate scripts.

Scripts are portable between the UNIX operating
system version and the MS,DOS operating system
version of ESCORT and you may, therefore,
substitute the standard UNIX operating system
slash character (/) in a UNIX file pathname with
the MS,DOS back,slash (\) file name separation
character when using the COpy command.

Command Directory 4-43

Example In this example, use of the COpy command
copies the file named myfile into the program
from the /usr/myname directory.

copy " I usr/mynamelmyfile"

4-44 Commands and Functions

CURSOR

Purpose

Format

Example
INT i

Positions the cursor at a specified location on the
screen.

Oabel:] CURSOR { (row,col) }
{ (position) }

row, col specifies a desired cursor address in row
and column numbers. The row and col may be
either integer constants or integer variables.

position specifies a desired cursor address in the
form of screen offset + 1. For example, the first
position on the screen is 1 and the last position is
1920. The position may be either an integer
constant or an integer variable.

CURSOR (6,10) /* positions cursor on row 6, col. 10
TEXT "Cursor is here" /* writes data at row 6, col. 10

FOR i=l to 24
DO

ENDO

CURSOR (i,l)
TEXT "Hello"
ENTER

/* position cursor at row i, col. 1
/* writes "Hello" at specified cursor location

CURSOR (1155) /* absolute-screen position
TEXT "ABSOLUTE POSITION"

Command Directory 4-45

CYCLE

Purpose

Format

Remarks

See also

Skips to the next iteration of a loop in a WHILE
or FOR statement.

[label:] CYCLE

The CYCLE command is complementary to the
BREAK command. The CYCLE command
branches processing of the program to the next
repetition of the loop. The BREAK command
can be used to branch outside the loop.

BREAK, FOR, and WHILE commands.

Example This example shows use of both the CYCLE and
BREAK commands. An array of names is
printed. The name MILLER will not be printed.
If the name JOHNSON is encountered, the
printing process terminates.

CHAR (20) table (6) 1* declares 6 entries in a table
CHAR (20) name 1* declares a name string
INT i 1* declares a table entry number
table = ("BROWN", 1* initializes table

"JONES",
"SMITH" ,
"MILLER" ,
"WHITE"
"JOHNSON")

FOR i = 1 to 6
DO

name:::: table(i)
IF name= "MILLER"
THEN

CYCLE
ENOIF
IF name= • JOHNSON"
THEN

BREAK
ENDIF
PRINT name

ENOO

1* get name from table

1* skip PRINT

1* stop executing loop

1* print name

4-46 Commands and Functions

DEL

Purpose

Format

Remarks

Example

CURSOR (5,11)

DEL (2)

Simulates the action of the delete key on the
keyboard.

[label:] DEL [(n)]

n specifies the number of times you want to
repeat execution of the delete key. The n can be
an integer constant or integer variable and have a
value of 1 to 64, inclusive. The default value for
n is 1.

This command is effective in synchronous and
asynchronous sessions.

1* field at row 5, collI contains
1* incorrect date (auAugust 30, 1985)
1* position cursor on field containing
1* wrong information
1* delete first 2 characters of field

Command Directory 4-47

DISCON

Purpose

Format

Remarks

Closes a particular host session.

[label:] DISCON (hOSL-session .. id)

hOSL-session .. id specifies a host session
identification. Valid host session identifications
are:

HI Synchronous host session 1
H2 Synchronous host session 2
H3 Synchronous host session 3
H4 Synchronous host session 4

Al Asynchronous host session 1
A2 Asynchronous host session 2
A3 Asynchronous host session 3
A4 Asynchronous host session 4

This command is effective in synchronous and
asynchronous sessions.

The DISCON command terminates the specified
host session and releases the host system
connection. Use of DISCON does not log you
off from a host application; you should follow the
usual logoff procedure before using the DISCON
command in a script.

If the specified host session is the currently
connected, active session, the DISCON
command will, after terminating the specified
host session, connect the ESCORT script to the
lowest available host session, if any, within the
same environment. If no other host session is
available in the same environment, the ESCORT
script is connected to the lowest available host
session.

If the specified host session is a dormant session,
the DISCON command will terminate the
specified host session; the currently connected,
active session is not affected.

4-48 Commands and Functions

Example

CONNECT (HI)
SHOW (HI)

CONNECT (H2)
SHOW (H2)

CONNECT (AI)
SHOW (AI)

CONNECT (H3)
SHOW (H3)

DISCON (H2)

orSCON (H3)

orSCON (HI)

orSCON (AI)

If only one host session is connected when the
ESCORT script encounters the DISCON
command, ESCORT is automatically connected
to local session Ll.

Checking for a successful DISCON operation is
good programming practice. The internal global
integer variable, SYSRET, returns the result of a
disconnect operation. SYSRET may have one of
the following values after the DISCON is
executed:

o
non .. O

Successful DISCON
Failed DISCON

1* connect to synchronous host session I
1* display synchronous host session I

1* connect to synchronous host session 2
1* display synchronous host session 2

1* connect to asynchronous host session I
1* display asynchronous host session I

1* connect to synchronous host session 3
1* display synchronous host session 3

1* synchronous host session 2 terminated,
1* synchronous host session 3 remains
1* connected session

1* synchronous host session 3 terminated,
1* synchronous host session I automatically
1* connected

1* synchronous host session I terminated,
1* asynchronous host session I automatically
1* connected

1* asynchronous host session I terminated,
1* local session I automatically connected
1* and displayed

Command Directory 4-49

DUP

Purpose

Format

Remarks

Example
CURSOR (5,11)
TEXT ("Order 125")
TAB(2)
DUP

Simulates the action of the duplication key on
the keyboard.

[label:] DUP

This command is effective in synchronous
sessions.

1* position cursor to first field
1* enter some text
1* tab to third field on screen
1* duplicate text

4·50 Commands and Functions

EJECT

Purpose

Format

Remarks

Example

Inserts a form feed character in the print file that
causes a page eject when the file is printed.

Oabel:] EJECT

The EJECT command applies to the MS~DOS
version of ESCORT and is not available in the
UNIX operating system version of ESCORT. It
is included for script compatibility between the
UNIX operating system version and MS~DOS
operating system version of ESCORT.

This example uses the EJECT command to print
each of five records on a new page.

CHAR (80) REC(5)

(more code)

FOR J = 1 TO 5
DO

EJECT
PRINT REC (J)

ENDO

1* execute form feed on printer
1* print record on new page

Command Directory 4-51

ENDP

Purpose

Format

Remarks

See also

Example
pI PROG sl

sl SCRIPT

ENDS
ENDP

Indicates the end of a program.

ENDP

Only one ENDP (end of program) statement is
allowed in a program. It is complementary to the
PROG statement, which indicates the beginning
of a program. Upon execution of the ENDP
statement in a program, a zero exit code is
returned to the UNIX shell.

PROG statement.

/* beginning of program 1
/* global section

/* beginning of script 1

/* end of script sl
/* end of program pI

4-52 Commands and Functions

ENDS

Purpose

Format

Remarks

See also

Example
pI PROG sl

sl SCRIPT

ENDS
ENDP

Indicates the end of a script section in a program.

Oabel:] ENDS

There must be an ENDS statement for each
corresponding SCRIPT statement. The ENDS
statement also functions as a RETURN
command by returning control back to the calling
script (or to the shell that initiated ESCORT if
ENDS is encountered in the main script).

RETURN command and SCRIPT statement.

1* beginning of program 1
1* global section

1* beginning of script 1

1* end of script s1
1* end of program pI

Command Directory 4-53

ENTER

Purpose

Format

Remarks

See also

Example

Simulates the action of the enter key on the
keyboard.

Oabel:] ENTER

This command is effective in synchronous and
asynchronous sessions.

After an ENTER command is executed, script
execution is suspended until the keyboard is
unlocked.

AID command.

TEXT "Place text here"
TAB (2) /* tab over two fields
TEXT "Place additional text here"
ENTER /* send information on screen to host

4-54 Commands and Functions

ERASEW

Purpose

Format

Remarks

See also

Example

Removes all existing windows.

nabel:] ERASEW

The ERASEW command is the only way to
remove a resident window.

Any subsequent WTO (Write To Operator)
message is written to the default WTO area, the
operator information area, until you establish a
new window.

WINDOW and WTO commands.

The following example shows you how to use the
ERASEW command to remove a resident
window.

WINDOW (3,5,15,75,R) /* establish resident window
WTO "This message appears in the window."
ERASEW /* remove window
WTO "This message appears in operator information area."

Command Directory 4-55

This message appears In the window

Window established.
Message written to operator

appears In window.
After execution of ERASEW.
message written to operator

Information area

This message appears In operator Information area

4-56 Commands and Functions

ERIN

Purpose

Format

Remarks

Example

Simulates the action of the erase .. input key on
the keyboard.

Oabel:] ERIN

This command is effective in synchronous and
local sessions.

This command clears all the unprotected data
fields on your current screen.

PF4 1* add a record

ERIN 1* erase all unprotected data on screen

Command Directory 4-57

EROF

Purpose

Format

Remarks

Example

Simulates the action of the erase .. to .. end .. of .. field
key on the keyboard.

[label:] EROF

This command is effective in synchronous and
local sessions.

This command removes all unprotected data
beginning at the current cursor position until the
end of the field.

PF4 /* add a record
TAB(2) /* tab to third field on screen
EROF /* erase the third field

4-58 Commands and Functions

EXIT

Purpose

Format

Remarks

Exits from script mode to either Interactive mode
or Tutorial mode.

[label:] EXIT [(TUTORIAL)]

TUTORIAL specifies exit to Tutorial mode
from script mode when connected to an active
host session. If you do not specify the keyword
TUTORIAL, ESCORT will default to:

o Interactive mode from script mode when
connected to an active host session.

o Tutorial mode from script mode when
connected to a local session.

The EXIT command can be used for two main
purposes: exiting from a script and entering
Interactive mode to allow for data entry, or
entering Tutorial mode.

Using EXIT to Enter Interactive Mode

The EXIT command is useful during script
execution, when connected to an active host
session, since it enables you to exit the script and
enter Interactive mode. Once in Interactive
mode, data can be entered. Script execution is
resumed by rSin5 the Interrupt/Resume (I/R) key
sequence, (ESC f 2).

The ability to enter data in Interactive mode can
be used, for example, to attempt to recover from
an error condition.

Another common use of the EXIT command is
to help you debug scripts. You can use the EXIT
command to insert break points in a script.
Once you complete the debugging stage, you may
remove the EXIT commands from the script.

When an EXIT command is encountered in a
script (or when script execution is interrupted
manually by pressing @£) f 2), script execution

Command Directory 4-59

is suspended and Interactive mode is entered.
You may perform as many transactions as you
wish while in Interactive mode. In order to
resume scrtpt ejecution, press the I1R key
sequence, ESC f 2.

U sing EXIT to Enter Tutorial Mode.

The other main use of the EXIT command is to
enter Tutorial mode. You may use the keyword
TUTORIAL in the EXIT statement when
connected to an active host session, or the EXIT
statement without the keyword when connected
to a local session, to enter Tutorial mode.
Tutorial mode enables you to use ESCORT as an
on~line tutorial for your application. Tutorial
mode suspends script execution temporarily so
that data can be entered from the terminal. It
differs from Interactive mode because pressing any
AID key will resume script execution.

You can use this feature most effectively in
combination with the WINDOW and WTO
commands. These commands enable you to send
instructions or messages to an operator before
entering Tutorial mode. For example, you can
have the script prompt an operator to enter
information such as a password or request input
parameters to be used later in the script.

When you enter Tutorial mode, script execution
is suspended until an AID key is pressed.
However, neither the data nor the AID key is
sent to the host system at that point. When the
AID key is pressed, script execution resumes, but
it is up to the script to decide whether or not to
send the entered data and AID key to the host.
Therefore, you have the ability to perform edit
checks on the entered data and AID key before
they are sent to the host system. A system global
integer variable, SYSAID, is provided to check
which AID key has been entered. The table
below lists the AID keys and the corresponding
SYSAID values.

4-60 Commands and Functions

See also

Example 1

AID key SYSAID value

ENTER 0
PFl 1
PF2 2

PF24 24
CLEAR 25
PAl 26
PA2 27
PA3 28
ATTN 29
SYS~EQ 30

The only AID keys available in the asynchronous
environment are:

ENTER
PFl .. PF8 (co7W)0ndtng {o soft
function keys F1 to Fa)

CLEAR
All other AID keys are ignored.

To avoid leaving your terminal in either
Interactive or Tutorial modes for an indefinite
period, a time .. out value can be specified using
the EXIT keyword in a TIMEOUT command.
When the time .. out value expires control is
returned to the script.

TIMEOUT, WINDOW and WTO commands.

This example prompts a user through a login
procedure. The EXIT command enables the
operator to enter a user ID and password in
Interactive mode. Program execution continues
after @ f 2 is pressed. If the login fails, the
EXIT command is used again to enter Interactive
mode for another try.

TEXT "/for login"
ENTER 1* get login screen
WTO "ENTER USERID At{) PASSWORD TI-EN PRESS ESC f 2"
EXIT 1* enter interactive mode

I***continue here after ESC f 2 is pressed***1
WHILE $SCAN ("LOGIN FAILED" (24,1,80»

Command Directory 4-61

DO
WTO "TRY AGAIN"
EXIT 1* enter interactive mode

ENDO

Example 2 This example calls an error routine if the
operator does not enter the date and press PFI.

WTO "ENTER DATE THEN HIT PFl"
EXIT (TUTORIAL) 1* enter tutorial mode

I***continue here after AID key is pressed***1
IF (SYSAID 1= 1) I 1* PF l?

(DATE 1= CURDATE) TI£N 1* correct date?
CALL ERROR

ENDIF

4-62 Commands and Functions

FIELD

Purpose

Format

The first format assigns a symbolic name (a screen
field variable) to a specified area on the screen.

The second format assigns a symbolic name to
and defines the attributes for a specified area
within a local screen format.

FIELD (row,col,length) [format.]fielLname

or

FIELD (row,col,length, (attr~ist»

{[format.]fielLname} [" char_string"]
{DUMMY }

row, col specifies the screen address of the field.
The row can be between 1 and 24; and the col
can be between 1 and 80, inclusive. The row
and col must be integer constants.

length specifies a length for the field. The
length must be between 1 and 1919, inclusive (the
entire screen). The length must be an integer
constant.

attr~ist specifies the attributes for the field.
There are seven groups of attributes. Groups 1 to
4 are the Primary Attributes, groups 5 and 6 are
the Extended Field Attributes and group 7 is an
additional attribute, not provided by IBM, that
specifies background color.

You must select one attribute from each group or
select the default attribute by using an asterisk
(*). Each attribute must be separated by a
comma, a blank space or a tab.

The following tables list the seven groups of
Primary Attributes and Extended Field Attributes.

Command Directory 4-63

Primary Attribute .. Group 1
Attribute Code

Protected P
Unprotected U
Default (U) *

Primary Attribute .. Group 2
Attribute Code

Numeric N
Alphabetic A
DefaultiAJ *

Primary Attribute .. Group 3
Attribute Code

Normal N
Highlighted H
Dark D
Default (N) *

Primary Attribute .. Group 4
Attribute Code

Modified DT M
Reset DT R
Default (R) *

Extended Field Attribute
.. Group 5

Attribute Code
Normal N
Blink B
Reverse video R
Underline U
Default (N) *

4-64 Commands and Functions

Extended Field Attribute
Foreground .. Group 6

Attribute Code
Black 0
Blue 1
Green 2
Cyan 3
Red 4
Magenta 5
Brown 6
White 7
Gray 8
Light blue 9
Light green 10
Light cyan 11
Light red 12
Light magenta 13
Yellow 14
Hi,lit white 15
Default (7) *

Extended Field Attribute
Background .. Group 7

Attribute Code
Black 0
Blue 1
Green 2
Cyan 3
Red 4
Magenta 5
Brown 6
White 7
Default (0) *

Command Directory 4-65

Remarks

format. specifies an optional screen format name
to identify uniquely a field name that may appear
in multiple formats.

fielLname specifies the simple field name for a
particular format. For more information on
naming conventions for field names see the
section, "Field Variables", in Chapter 2.

DUMMY is a keyword that allows you to
declare a literal field, or a field which you are not
going to access by a symbolic field variable name.

char_str pre .. initializes a field. A Protected
field can be initialized with a literal character
string. An Unprotected data entry field can be
initialized with an integer constant or a string
constant, depending upon the attribute selected
from the options in Primary Attribute .. Group 2 .
If the char ---..Str operand is omitted the field is
initialized with blanks.

Assigning data to a field is the same as setting
the cursor to the field position and using the
TEXT command. For example, the following
two statements are equivalent:

Statement 1
FIELD (5,10,8) ATT.USERID

ATT.USERID = "ORDERXYZ"

Statement 2
CURSOR (5,10)
TEXT "ORDERXYZ"

4-66 Commands and Functions

Both of these statements position the cursor on
the screen at row 5, column 10 and enter a 8
character string, "ORDERXYZ" on the screen.

Using field names can help you maintain your
scripts. If a script contains CURSOR
commands, it is necessary to update the row and
column values in the script if the screen's field
definitions change. You would also have to
remember which scripts are affected by a
particular changed screen. By using symbolic
names you can avoid this time consuming work.

It is good programming practice to define fields in
an external file. The external file is included in
the required scripts by using the COpy
command. Changes to FIELD statements, used
in multiple scripts, need only be made once.

A screen field variable may be used wherever a
string variable is appropriate in a program.

Any null values within a field are converted to
blanks.

Every local screen field created with a FIELD
statement contains an attribute byte. Each
attribute byte occupies one character position on
the screen, located at the first position in each
field. It is important to take this into account
when defining the starting column position for a
field.

In the following example, field A is defined with
a length of 10 characters and starts in row 5 at
column 2; the position in row 5 at column 1 will
be occupied by the attribute byte for field A.
Similarly, field B, which starts immediately after
field A begins at column 13 since the position in
row 5 at column 12 will be occupied by the
attribute byte for field B.

FIELD (5,2,10) A
FIELD (5,13,7) B

Command Directory 4-67

Refer to Appendix D for information on
interpreting the attribute byte.

A script, fldgen, is provided on your ESCORT
installation diskette to assist you in creating field
variables for a given synchronous host screen.
For more information on this script, see the
section, "Generating Screen Field Variables", in
Chapter 5. Refer also to the "Local Screen
Generator Utility Program" described in Chapter
6, for information on creating local screens.

Of the two FIELD statement types, the first type
is used primarily to declare field variables for
formatted screens in a host session. Within this
FIELD statement type, there are two kinds of
screen field variables: specific and common.

Specific Screen Field Variables

A specific screen field variable declares a field on
a specific screen. The format of the specific
screen field is:

FIELD (row, col, length) format. field

Examples of specific screen field variable
declarations follow:

FIELD (7,25,7) ORDER.USERID
FIELD (4,13,12) CUST.CUSTID

Common Screen Field Variables

A common screen field variable declares a field
common to more than one screen. The format of
the common screen field is:

FIELD (row, col, length) cfield

The cfield (common field) specifies the common
screen field name. The common field name
applies to any screen format in the program (it
has the same location, length, and name on every
screen). A common field name may have from 1
to 8 characters and the first character must be
alphabetic.

Examples of common screen field variable

4-68 Commands and Functions

See also

declarations follow:
FIELD (24,1,80) sy~rror
FIELD (24,60,20) actlonmsg

The second FIELD statement type is used to
create formatted screens for local sessions. Use of .
the Primary Attributes and Extended Field
Attributes allow you to create screens that
contain almost all of the attributes of an actual
host application screen.

Note
The foreground and background colors, defined
by the Extended Field Attribute, groups 6 and 7,
are not available in the UNIX operating system
version of ESCORT. They are defined for script
compatibility between the UNIX operating
system version and MS,DOS operating system
version of ESCORT.

FIELD statements of the second type must be
defined in a local screen format definition area
that starts with a BEGFMT statement and ends
with an ENDFMT statement. For more
information on defining this second type of
FIELD statement see the section, "Local Session
Screens", in Chapter 2.

ESCORT does not support light,pen,detect
among the Primary Attributes, nor Base
Character Set among the Extended Field
Attributes, and none of the Extended Character
Attributes.

BEGFMTIENDFMT, FORMAT and TEXT
commands.

Command Directory 4-69

Example 1 This example demonstrates the declaration of
global and local field variables using the first type
of FIELD statement.

pI PROG Sl
1***. Global variable declarations ***1

1*** Screen field global declarations ***1
FIELD (24,1,80) J 1* field J
FIELD (1,60,20) K 1* field K
FIELD (1,60,20) F.A 1* format F, field A
FIELD (24,1,80) G.K 1* format G, field K

Sl SCRIPT
1*** Local variable declarations ***1

1*** Screen field declarations ***1
FIELD (5,8,11) A.A 1* format A, field A
FIELD (9,9,12) A.B 1* format A, field B
FIELD (5,8,19) C.A 1* format C, field A
FIELD (5,20,10) C.B 1* format C, field B

FIELD (9,10,16) X.Y 1* format X, field Y

Example 2 In this example, two literal fields named USER
ID: and PASSWORD:, and two screen field
variables named user_id and passwd are declared
for a local screen format called logon, using the
second type of FIELD statement.

p2 PROG sl
1*** Global variable declarations ***1

1*** Local screen formats ***1
BEGFMT logon

FIELD (5,12,8,(P,*,H,*,*,*,*» DUMMY "USER 10:"
FIELD (5,21,6,(*,*,*,*,*,*,*» usr-1d
FIELD (lO,12,9,(P,*,H,*,*,*,*» DUMMY "PASSWORD:"
FIELD (10,22,8,(*,*,0,*,*,*,*» passwd

ENDFMT
sl SCRIPT

4-70 Commands and Functions

FM

Purpose

Format

Remarks

Example

TEXT "=x"
FM
TEXT " logoff"
ENTER

Simulates the action of the field~mark key on the
keyboard.

Oabel:] FM

This command is effective in synchronous
sessions.

If you are using TSO/SPF, you may enter
multiple commands on a single line if you use the
field~mark key.

This example demonstrates the use of the FM
command to execute a logoff procedure in
TSO/SPF.

1* you are on EDIT screen

1* get out of SPF
1* field mark
1* logoff command
1* execute both commands

Command Directory 4-71

FOR

Purpose

Format

Enables execution of a block of commands in a
DOIENDO loop for a specified number of times.

[label:] FOR var = init TO final [STEP incr]
DO

statement(s)

END 0

var specifies a counter. The vaT must be an
integer variable.

init specifies the initial value of the counter.
This can be an integer or integer expression.

final specifies the final value of the counter.
This can be an integer variable or an integer
constant and may be either positive or neftative.
The maximum absolute value of final is 2 - 1.
Execution of the program continues after the
ENDO statement once the value of final has
been passed.

incr specifies a value by which to increment the
counter (or decrement it if the value is negative).
The value is added to the init field after each pass
through the DOIENDO loop. The incr value
can be either an integer constant or an integer
variable. The default value is + 1.

4-72 Commands and Fl:lnctions

Remarks

See also

Example 1

Following is a listing of the execution process of
the loop:

1 The counter (var) is set to the initial value
you specified (in it).

2 The current value of the counter is compared
with the final value. If the counter has an
absolute value greater than the absolute value
of the final value, the program branches out
of the DOIENDO loop.

3 The statements following the DO statement
are executed sequentially until the ENDO
statement is reached.

4 The counter is incremented (or decremented)
by the value you specified in incr.

5 Control is transferred to Step 2.

These are some general rules for loops:

o You may use nested FOR statements in your
program.

o The DO and ENDO statements are required
in your program even if you execute only one
statement or no statement at all.

o You may use the BREAK and CYCLE
commands within your DO lEND 0 loop to
change the path of execution of the loop.

BREAK and CYCLE commands.

This program section shows how to use the FOR
statement to print an array containing 5
elements.

CHAR (80) REC(5)

(more code)

FORJ=lT05
DO

PRINT REC (J)
ENDO

Command Directory 4-73

Example 2 In this example, 25 elements of a string array,
names, are assigned from another array, source. If
the name in source is Hangman, there is no
assignment. Each element of the array is a 20
character string. Nested FOR loops are shown.

CHAR (20) names (25)
CHAR (20) source (5)
INT i
INT j
INT k

source = ("Dude", " Badguy" , "Hangman", "Henchman", "Toad")
FOR i= 1 TO 5 1* automatically defaults to increment of 1
DO

FOR j=l TO 5 STEP 1 1* counter explicitly incremented by 1
DO

IF source (j) = "Hangman"
THEN CYCLE 1* goes to first ENDO
ENDIF
k = «i-l)*5 + j) 1* next element subscript
names (k) = source (j)

ENDO
ENDO

4-74 Commands and Functions

FORMAT

Purpose

Format

Remarks

See also

Defines the current default format name.

nabel:] FORMAT format

format specifies the new default format name.

The format operand in a FORMAT statement is
defined in a FIELD statement. The FORMAT
command is a preprocessing command that
relieves you of the laborious task of coding
format,qualified field names (specific screen field
names). Field names preceded by a dot (.) in
the statements following the FORMAT
command are automatically prefixed with the
specified format name.

FIELD statement.

Example 1 The first program does not use the FORMAT
command. This program requires entry of full
screen,field names in assignment statements.

TEXT " I FOR ORDER" 1* get MFS format
ENTER
ORDER.ORDERNO = "00000034" 1* explicit qualification
ORDER. CLEXTID = "USNENJF J"
ORDER. INSTID = "USNENJF J"
ORDER.REQDATE = "052986"
PF4
IF I($SCAN ("ADO COMPLETED" (24,1,80»)
THEN WTO "FAILED TO ADD ORDER"

EXIT
ENDIF

Command Directory 4-75

Example 2 This example is similar to Example 1, except that
the FORMAT command is used. Note the use
of the dot in the field names.

TEXT "/FOR ORDER" /* get MFS format
ENTER
FORMAT ORDER /* set default qualifier

.ORDERNO = "00000034" /* implicit qualification
· CLEXTID = " USNENJF J"
.INSTID =" USNENJF J"
.REQDATE = "052986"

PF 4
IF I($SCAN ("ADD COMPLETED" (24,1,80»)
THEN WTO "FAILED TO ADD ORDER"
EXIT
ENDIF

Example 3

FORMAT customer

This example illustrates the use of the FORMAT
command to code the fields for customer and
supplier screens.

• name "Brown's Shoes"
• phone = "111- 3333"
• acct " 123400"
.street = "Roosevelt Drive"
• city "Pasadena"
· state = "CA"

FORMAT supplier
. name "Footwear Manufacturing Co."
· phone =" 222 -3333"
· acct " 5432100"
· street = "Elm Street"
. city "Springfield"
· state =" Il"

4-76 Commands and Functions

FRESH

Purpose

Format

Remarks

See also

Example

TEXT "IMS"
ENTER

Updates the ESCORT screen buffer with data
from the host.

[label:] FRESH

This command is effective in synchronous and
asynchronous sessions.

The FRESH command is especially useful in the
following types of synchronous host applications:

D A screen appears in pieces.

D You expect to receive multiple messages (e.g.,
TSO logon).

D You expect the host response after an
unpredictable number of intermediate
responses (e.g., IMS no,response mode
transactions).

In the asynchronous environment data is
displayed at the terminal following a WAIT or a
FRESH command only. The FRESH command
provides up to 24 screen,lines of asynchronous
host data.

$SCAN function and "AID Subroutines Library"
in Appendix C.

This example demonstrates use of the FRESH
command during login to IMS or TSO when
unpredictable or multiple synchronous host
responses are received.

/******** loop until expected message arrives
WHILE I($SCAN ("IMS/VS SIGNON SCREEN"»
DO

FRESH /*read SCREEN buffer and display
ENDO

Command Directory 4·77

TEXT "TSOOM USERID"
ENTER
1******** loop until expected message arrives
WHILE I($SCAN ("ENTER AN '5' BEFORE EACH OPTION OESIRED"»
00

FRESH
ENOO

4-78 Commands and Functions

GETFMT

Purpose

Format

Remarks

See also

Example

Loads a specified local screen format into a given
local session's presentation space.

[label:] GETFMT (locaLsession .. id,
screeIL-name)

locaLsession .. id specifies the local session
identification. Valid locaL....session,ids are:

Ll Local session 1
L2 Local session 2

screeIL-name specifies the local screen format
name. The local screen format name is defined
by the BEGFMT statement in the local screen
format definition area.

This command is effective in local sessions.

Only one local screen format can be loaded into
the local session's presentation space at any given
time.

BEGFMT/ENDFMT statement.

In this example, local session Ll is used to deal
with an order entry system using the order format,
and local session L2 is used to deal with an
inventory control system using the stocking
format.

GETFMT (Ll, order)
GETFMT (L2, stocking)
CONNECT (Ll)

1* load order format in Ll
1* load stocking format in L2
1* connect to local session
1* display local session SHOW (Ll)

EXIT

CONNECT (L2)
SHOW (L2)
EXIT

1* go to interactive for data

1* connect to local session
1* display local session
1* go to interactive for data

Command Directory 4-79

GOTO

Purpose

Format

Remarks

See also

Example
test PROG test

test SCRIPT

Changes the script execution path by
unconditionally branching to another statement
within the script.

[label:] GOTO label

label specifies a label within the current script
section.

It is good programming practice to use the
BREAK command rather than the GOTO
command to branch out from a DO/ENDO loop.

BREAK and CYCLE commands.

10gl: TEXT • / FOR LOGON"
ENTER

GOTO end /* branch forward

GOTO 10gl /* branch backward
end: WTO • TEST END = o·

ENDS

ENDP

4·80 Commands and Functions

HOME

Purpose

Format

Remarks

Example

TEXT "ISPF"
ENTER
TEXT "3.6"
ENTER

Simulates the action of the home key on the
keyboard.

Oabel:] HOME

Use of the HOME statement positions the cursor
at the first unprotected field on the screen.

This example prints a PDS member named MFS
using the ISPF 3.6 option on TSO.

TEXT "JCL.CNTL(MFS)"
HOME 1* positions the cursor at option entry field
TEXT "J"
ENTER
PF3

Command Directory 4-81

IF
Purpose

Format

Remarks

Evaluates a relational expression which yields a
true or false condition and allows you to change
the script execution path based on the result.

Oabel:] IF clause
THEN

statement(s)
ELSE

statement(s)
ENDIF

clause specifies an expression that returns a true
(non,zero) or a false (zero) value. The expression
may be an integer or relational expression or a
combination of these expressions separated by &
or I operators. A relational expression always
returns an integer value (zero for false, non,zero
for true).

statement(s) specifies a block of ESCORT code.

THEN and END IF are required in an IF
statement. ELSE is optional.

You may nest IF statements.

Labels are not allowed on THEN, ELSE, or
ENDIF.

When an IF statement is encountered in a
program, the expression following the IF is
evaluated. The execution path followed depends
upon the value returned from the expression.

If the result of the expression is true, the
statements following THEN are executed until
an ELSE or ENDIF is encountered. If the result
of the expression is false, the statements following
ELSE are executed until an ENDIF is
encountered.

4-82 Commands and Functions

Example
IF (stringl = "abcdef") /* string variable/constant

I /* or
(counter 1 = counter2) / * integer variables

I /* or
($Scan ("ADD COMPLETED"» /* field scan

THEN

ELSE

ENDIF

/* THEN action statements

/* ELSE action statements

IF «a> b) & (c> d»
I /* or

«e(5)= 2) & (fl = "50S"»
THEN

/* THEN action statements
ENDIF
/**where:
/**
/**
/**

a and b are integer variables
e is an integer array
c and d are string variables
f is a field variable

Command Directory 4-83

INS

Purpose

Format

Remarks

See also

Example

INS
CURSOR (12,5)

Simulates the action of the insert key on the
keyboard and sets the terminal in insert mode.

[label:] INS

This command is effective in synchronous and
local sessions.

This command is commonly used to insert data at
a particular cursor position. Data to the right of
the cursor is shifted right as long as there are
nulls at the end of the field.

You can terminate insert mode by using either a
RESET command or an AID key command (such
as ENTER).

RESET and DEL commands.

This example demonstrates use of the INS
command along with the TEXT command to
insert data.

1* puts terminal in insert mode

TEXT "inserted text"
RESET

1* puts cursor at row 12, column 5
1* text inserted at row 12, column 5
1* ends insert mode

4-84 Commands and Functions

INT
Purpose

Format

Remarks

See also

Example
INT table(lOO)
INT i
INT j
INT k

j = -1

k = (j . 5)

Declares an integer variable or an integer array.

INT name
or

INT name (#elements)

name specifies the name of the variable. The
variable name must not be a reserved word.

#elements specifies the number of elements in
an array. You may specify any number of
elements from 1 to 2048, inclusive.

The INT statement allocates a storage area in
memory and assigns a symbolic name to the
storage area for an integer or integer array.

The integer (or integer element) may be assigned
any value between _231 +1 and +231 _1,
inclusive.

When an integer is declared, it contains a zero
value.

ASSIGN(=), CHAR, and FIELD statements.

/* declares an integer array of 100 elements
/* declares an integer variable "i"
/* declares an integer variable OJ"
/* declares an integer variable Ok"

FOR i= 1 TO 100 /* initialize integer array
DO

table(i) = i
ENOO

Command Directory 4-85

LBREAK
Purpose

Format

Remarks

Example

CONNECT (AI)
ENTER

Simulates the action of the line .. break key on the
keyboard.

Oabel:] LBREAK

This command is effective in asynchronous
sessions.

WAIT (1) 1* wait for one second
LBREAK
WAIT (1, "SIGNON", "DISCONNECT") 1* wait for prompts for one second

4-86 Commands and Functions

LOG

Purpose

Format

Remarks

Specifies data to be written to the log file.

[label:] LOG { str_expr }
{SCREEN}

str_expr specifies data to be written to the log
file. The str _expr may contain a string
expression that includes a string constant, string
variable, string array element, screen field
variable, or string function. It may also be a
combination of any of the above types of
operands separated by a concatenation operator.
If you use more than one constant or variable,
you must enclose the expression in parentheses.

SCREEN is a keyword used to write the current
screen image (1920 characters) to the log file. It
is a system global variable.

The log file contains data or messages defined by
the user.

The ESCORT log file name is escort.lg{proc,id} ,
where {proc,id} refers to the unique process
identification the UNIX operating system assigns
to each process. The file is created in the
directory defined by the ESCDIR environment
variable.

Checking for a successful LOG operation, when
the escort.lg{proc,id} file is first created, is good
programming practice. The internal global
integer variable, SYSRET, returns the result of a
LOG operation. SYSRET may have one of the
following values after the LOG is executed:

o Successful LOG
non..() Failed LOG

The command will fail if the output file,
escort.lg{proc,id} cannot be created. A message

Command Directory 4-87

will be written to the escort.pr{proc,id} file.

See also CHKPT, PRINT, and WTO commands.

Example

LOG LINE24 1* global field variable
LOG "case 20" 1* simple string constant
LOG ($TIt-E + " TESTOO2 CQt.PLETED SUCCESSFULLY")
LOG SCREEN 1* log current screen image
LOG ("Code" $ITOS(i) "=" codetype (i»

4-88 Commands and Functions

NL
Purpose

Format

Example

Simulates the action of the new,line key on the
keyboard.

Oabe1:] NL [(0)]

o specifies the number of lines you want to skip
over. The n can be either an integer constant or
an integer variable with a value between 1 and
64 inclusive. The default value for n is 1.

CURSOR (12,34) /* positions cursor at row 12, col 34
TEXT "some data"
NL (3) /* skips 3 lines
TAB (4) /* tabs over 4 fields
TEXT "more data"

Command Directory 4-89

OPEN

Purpose

Format

Remarks

Opens a file in order to read, write, or append
data.

[label:] OPEN (nickname, filename, {R})
{W}
{A}

nickname specifies the internal (ESCORT) name
of the file. It must be declared in the OPEN
command. The nickname must be 1 to 8
characters, and the first character must be
alphabetic. This name is used in the READ,
WRITE, CLOSE, and CHKPT commands. The
nickname is global and can be used in any script
within the entire program.

In an ESCORT program, you may specify up to
10 files, which may be open at the same time.

filename specifies the name of the disk file. The
filename may be a string constant or a string
variable. Up to 100 characters are allowed in a
filename. It may contain the full path name.

{R} {W} {A} specifies the read, write, or
append attribute. Append mode permits addition
of new data to the end of an existing file. If you
specify a {W} or {A} attribute and the file does
not exist, it is automatically created.

Checking for a successful OPEN operation is
good programming practice. The internal global
integer variable, SYSRET, returns the result of an
open operation. SYSRET may have one of the
following values after the OPEN is executed:

a Successful OPEN
- 1 Failed OPEN

If a file is opened as a pipe between scripts, the
file must first have been created as a named pipe

4-90 Commands and Functions

See also

Example

using the UNIX mknod system call.

Scripts are portable between the UNIX operating
system version and the MS .. DOS operating system
version of ESCORT and you may, therefore,
substitute the standard UNIX operating system
slash character (/) in a UNIX file pathname with
the MS .. DOS back .. slash (\) file name separation
character when using the OPEN command.

CHKPT, CLOSE, READ, and WRITE
commands.

This example opens a file called
lUST Imynamelmyfile and assigns the nickname F.
A status check using SYSRET is made after the
file is opened. If the OPEN failed (SYSRET =
-1), a message is displayed on the terminal and
the program exits to Interactive mode.

OPEN (F, "/usr/mynarne/myfile", R) 1* open file for READ
IF SVSRET < 0 1 * check value of SVSRET
THEN

WTO "FAILED TO OPEN FILE lusr/myname/myfile"
EXIT 1* exit to interactive mode

ENDIF

Command Directory 4-91

PAn

Purpose

Format

Remarks

See also

Example

Simulates the action of one of the Program
Attention keys (PAl, P A2 or P A3) on the
keyboard.

[label:] PAn

n specifies the number of the P A key being
simulated. The n may have a value of either 1, 2
or 3 representing the PAl, P A2 or P A3 key.

This command is effective in synchronous
sessions.

After a PAn command is executed, script
execution is suspended until the keyboard is
unlocked.

AID command.

PA2 1 * clear IMS n.essage queue
PA2 1* before getting new format
TEXT " 1 FOR FORMATX"
ENTER

4-92 Commands and Functions

PFn

Purpose

Format

Remarks

See also

Example

PF4
TAB(2)
TEXT "Enter data"
ENTER

Simulates the action of one of the 24 Program'
Function keys on the 3278 keyboard, or the
action of one of the eight soft function keys on
the VT100 keyboard.

[label:] PFn

n specifies the number of the PF key being
simulated. In a synchronous session, the n may
have a value of 1 to 24, representing keys PF1
through PF24 on the keyboard.

In an asynchronous session, the n may have a
value of 1 to 8, representing keys PF1 through
PF8 (corresponding to soft function keys @ to
@) on the keyboard.

This command is effective in synchronous and
asynchronous sessions.

After a PFn command is executed, script
execution is suspended until the keyboard is
unlocked.

AID command.

1* add a record to your file
1* tab to third field on screen

1* send data to host

Command Directory 4-93

PRINT

Purpose

Format

Remarks

Example

Sends data to the ESCORT print file.

Oabel:] PRINT { str_expr }
{SCREEN}

str_expr specifies data to be written to the print
file. The str _expr may contain a string
expression that includes a string constant, string
variable, string array element, screen field
variable, or string function. It may also be a
combination of any of the above operands
separated by a concatenation operator. If you use
more than one constant or variable, you must
enclose the expression in parentheses.

SCREEN is a keyword that prints the current
screen image (1920 characters). It is a system
global variable.

The ESCORT print file is named escort.pr{proc,
id} where {proc,id} refers to the unique process
identification that the UNIX operating system
assigns to each process. The print file is created
in the directory defined by the ESCDIR
environment variable.

PRINT LINE24 1* global field variable
PRINT "Hello" 1* print string constant
PRINT ($TIt-E + " TESTOO2 COt-PLETED SLCCESSFULL Y")
PRINT SCREEN 1* print current screen image
PRINT ("Code" $ITOS(i) "=" code type (i»

4·94 Commands and Functions

PROG

Purpose

Format

Remarks

Indicates the beginning of a program, defines the
name of the program and first script to be
executed, and specifies which session is to be
connected.

pro~ame PROG scrip~ame [(session .. id)]

pro~ame specifies the name of the program.

scrip~ame specifies the name of the first
script to be executed when the program begins.
Normally, this is the main script.

session .. id specifies the session identification that
will be connected and active when ESCORT is
started. Valid session,ids are:

HI Synchronous host session 1
H2 Synchronous host session 2
H3 Synchronous host session 3
H4 Synchronous host session 4

Al Asynchronous host session 1
A2 Asynchronous host session 2
A3 Asynchronous host session 3
A4 Asynchronous host session 4

L1 Local session 1
L2 Local session 2

The session,id is an optional operand; if it is
omitted ESCORT will connect the default,
synchronous host session, HI.

If the session,id is specified as an asynchronous
session, ESCORT connects to the screen buffer of
the specified session; a CONNECT command,
preceded by a SERINIT statement, is required to
physically connect to the asynchronous session.

The PROG statement marks the beginning of
both the global variable declaration section and
the local screen format definition section of the

Command Directory 4-95

See also

Example

program. The global declaration and the local
format sections are ended by the first script
statement. It is good programming practice to
define local screen formats immediately after
declaring global variables. Except for comments
in your program, the PROG statement should
always be the first statement.

Each program must have at least one script.

A program contains an optional global variable
declaration section, an optional local screen
format definition section, and one or more
scripts. The global variable section may contain
only INT, CHAR, and FIELD statements and
comments. The local screen format definition
section may contain only BEGFMT, ENDFMT,
and FIELD statements and comments.

You may also use the COpy statement in the
global variable section to copy code containing
declaration statements.

CONNECT, ENDP, SCRIPT and SERINIT
commands.

pI PROG main (H2) /* beginning of program statement
/* host session 2 connected
/* global section

INT i
CHAR (8) order

BEGFMT logon /* local screen format section
FIELD (lO,12,9,(P,*,H,*,*,*,*» DUMMY "PASSWORD:"
FIELD (10,22,8,(*,*,0,*,*,*,*» passwd

ENDFMT

main SCRIPT /* beginning of script main

CALL s2 /* call to script s2

. (commands and statements)

ENDS /* end of script main

4·96 Commands and Functions

52 SCRIPT /* start of script 52

(commands and statements)

ENDS
ENDP

/* end of script 52
/* end of program statement

Command Directory 4-97

PROMPT

Purpose

Format

Remarks

Initializes the system global variable, SYSPRMT,
with an asynchronous host prompt.

Oabel:] PROMPT (str_expr [,col [,row]])

str_expr specifies the asynchronous host
prompt. The str _expr may contain a string
expression that includes a string constant, string
variable, string array element, screen field
variable, or string function. It may also be a
combination of any of the above types of
operands separated by a concatenation operator.
If you use more than one constant or variable,
you must enclose the expression in parentheses.

col specifies the screen column address of the
prompt, and can be between 1 and 80 inclusive.

row specifies the screen row address of the
prompt, and can be between 1 and 24 inclusive.

Both col and row must be integer constants.

This command is effective in asynchronous
sessions.

The entire operand string from the PROMPT
command initializes the SYSPRMT system global
variable. The SYSPRMT variable can be used as
a parameter to a WAIT command which
searches for the specified string expression at the
defined screen address (if any).

Note that ESCORT provides several address
parameter options:

D Column and row screen address are not
specified. The WAIT command searches the
entire data stream for the specified prompt.

D Both column and row screen address are
provided. The data stream is searched at the
precise screen address for the specified

4·98 Commands and Functions

See also

Example

prompt.

o Only the column screen address is provided.
The data stream is searched at the particular
column address. This option is useful if, for
example, the asynchronous host system
response always returns in a specific screen
column, as in the case of the UNIX operating
system default dollar sign ($) prompt.

Unlike other screen addressing commands, the
PROMPT command address operands are
reversed (Le., column is defined before row).

WAIT command and the section,
"Synchronizing Data Transmissions", in Chapter
2.

CONNECT (AI) /* connect to asynchronous host Al
PROMPT ("$" ,1) /* initialize system prompt in column 1
TEXT "Input to async host"
ENTER /* send data to asynchronous host
WAIT (10, SYSPRMT) /* wait for async host prompt ($),

/* time-out and proceed to next command
/* after 10 seconds

Command Directory 4-99

PUTENV

Purpose

Format

Remarks

See also

Example

CHAR (15) envvar

Changes or creates a UNIX environment
variable.

PUTENV (evar = value)

evar specifies the environment variable whose
value you wish to change or create.

value specifies the value that is assigned to the
environment variable.

The evar = value operand must be a string
constant.

The system global variable, SYSRET, returns the
result of a PUTENV operation. SYSRET may
have one of the following values after the
PUTENV operation:

o Successful PUTENV
non..() Unsuccessful PUTENV

$GETENV function.

This example shows how to use PUTENV to
change the value of the UNIX environment
variable HOME.

envvar = " HOtE= lusr/xyz"
PUTENV (envvar)

4·100 Commands and Functions

READ
Purpose

Format

Remarks

Reads a record from a file.

Oabel:] READ (nickname, buffer)

nickname specifies an ESCORT internal name
for the file. This is the name assigned to the file
in the OPEN statement. The nickname is global
and can be used in any script within the entire
program.

buffer specifies the symbolic name of a string
variable to receive the data record. The buffer
size should be equal to the maximum record size
in the file (maximum possible record size is 2048
characters). Otherwise, data will be truncated
and lost.

You must open a file before reading it.

Since tabs are not expanded by ESCORT, be sure
you do not inadvertently insert tabs in your file
with an editor. ESCORT issues a warning if tabs
are encountered, but processing continues.

The input file may have variable length records.
The record length may be between 1 and 2048
characters. Records are separated by a new~line

. character (or a carriage return or both).

The READ operation is sequential. When a file
is opened, the record pointer points to the first
record in the file. READ always gets a record
from the current pointer and then advances the
record pointer to the next sequential record. If a
READ is attempted after the last record in the
file has been read, an end~of~file (EOF) condition
is returned.

Command Directory 4-101

See also

In order to rewind the file, issue a CLOSE
command followed by an OPEN. This will
position the record pointer at the first record in
the file again.

Checking for a successful READ operation is
good programming practice. The internal global
variable, SYSRET, returns the result of a READ
operation. SYSRET may have one of the
following values after the READ operation:

o Successful READ.
-1 Error or end of file encountered.

n Data truncated and lost {n is the
number of characters returned}.

The length of the data read into the buffer is
either the maximum {declared} size of the buffer
or the length of the record read. This length
may be obtained by using the $LENGTH
function.

If a file is opened as a pipe between scripts and a
READ operation is attempted before data has
been written to the pipe, an end .. of·.file condition
will be returned in SYSRET. In such a case, it
may be necessary to include aWAIT command
to ignore the end .. of .. file condition. Additionally,
a true end .. of .. file flag must be agreed upon
beforehand within the reading and writing scripts.
Refer to the "Reading from a Pipe File" script in
Appendix G for an example.

CHKPT, CLOSE, OPEN, WAIT, and WRITE
commands and the $LENGTH function.

4-102 Commands and Functions

Example In this example, records are read sequentially
from a file (nickname F) until the end of file has
been reached. The file contains variable length
records. The maximum record size in this file is
80 bytes. After a record has been read, the
program prints out each record's sequence
number, length, and contents. Note that the
$ LEN GTH function is used.

CHAR (80) buffer 1* 80 byte buffer
INT length
INT record

1* open file
1* read first record

OPEN (F, "FILE1", R)
READ (F, buffer)
record = 1 1 * set record count = 1
WHILE SYSRET I = -1
DO

1* if not EOF then

length = $LENGTH(buffer)
PRINT ("Record # " + record)
PRINT ("Length = " + length)
PRINT buffer

. (more code)

READ (F, buffer) 1* read subsequent record
ENDO
I*******skips to here when EOF encountered*******1
PRINT "END OF FILE ENCOUNTERED"

Command Directory 4-103

RESET

Purpose

Format

Remarks

See also

Example
INS
TEXT "1238"
RESET

Simulates the action of the reset key on the
keyboard.

Oabel:] RESET

This command is effective in synchronous
sessions.

INS command.

1* put terminal in insert mode
1* insert data in field
1* take terminal out of insert mode

4-104 Commands and Functions

RETURN

Purpose

Format

Remarks

See also

Example

sl SCRIPT

IF a=b
THEN

RETURN
ELSE

ENDIF

Returns control of a program back to the calling
script from a subroutine (script) call.

[label:] RETURN

The ENDS statement also functions as a
RETURN command if the called script does not
have a RETURN command.

ENDS statement.

The following example demonstrates a return
from a subroutine via a RETURN statement and
via an ENDS statement. The RETURN is
executed if a equals b and the ENDS is executed
if a is not equal to b.

/* return to calling script if a= b

ENDS /* return to calling script if al = b
/* ENDS functions as a RETURN

Command Directory 4-105

RUN
Purpose

Format

Remarks

Example
RUN "cIs"
RUN "Is lusr/bin"

Enables execution of UNIX operating system (or
shell) commands from a script.

[label:] RUN string

string specifies a string constant or string
variable containing the operating system
command line. The actual command string
length is restricted by the UNIX shell.

You must have a FRESH command in your
program after the last RUN command in order to
restore the host screen.

The system global variable, SYSRET, returns the
result of a RUN command. SYSRET may have
one of the following values after the RUN
command:

o Successful RUN
- 1 Unsuccessful RUN

Note that a successful RUN (SYSRET value of 0)
does not imply that the command, contained in
the string operand, executed successfully.

1* clear screen
1* issue list files command

com = "cp filel file2"
RUN com 1* issue copy file command

1* run a user program RUN " userprog"
FRESH 1* needed to restore the host screen

4·106 Commands and Functions

SCRIPT

Purpose

Format

Indicates the beginning of a script section in your
program and defines the name of the script.

scrip~ame SCRIPT [(decUist)]

scrip~ame specifies the name of the script.
This name may appear in a PROG or CALL
statement. The script_name may be up to 8
characters. The first character must be
alphabetic.

decUist declares parameters passed on a CALL
statement. The decl_list may contain an integer
constant, integer variable, string constant, string
variable, screen field variable, or more than one
of the above separated by commas (arrays or array
elements are not allowed). The decl_list is
required if parameters are passed to the script on
a CALL statement, and it must be enclosed in
left and right parentheses.

For each entry in the decl_list in the SCRIPT
statement, there must be a corresponding
parameter in the parm_list in the CALL
statement. Each type of parameter in the
parm_list and decl_list must be consistent.
See the table below for examples:

parnLJist decUist

integer constant integer variable
integer variable integer variable
string constant string variable
string variable string variable
field variable screen field variable

or string variable

Command Directory 4-107

Remarks

See also

Passed parameters are defined in the SCRIPT
statement. When a constant is passed, a local
variable is allocated and the value of the constant
is assigned to it. When a variable is passed, the
address and length of the local variable are
changed to those of the passed parameter.
Therefore, any change to a locally declared
variable in the decl_list modifies the
corresponding variable in the parm_list.

If a field variable is passed, the decl_list
parameter may be a field variable or a string
variable. In the first case, the address and length
of the passed field variable are assigned to the
receiving field variable. In the latter case, a local
string is allocated and the contents of the passed
field are copied into it.

The row, column, and length of a field variable
in the decl_list should contain an asterisk (*).
Note that only the contents of a field variable are
passed, the attributes of the field variable, to
which the contents are assigned, are governed by
the defined attributes, if any, for that field.

Similarly, the length of a string variable should
contain an asterisk (*). For example:

S1 SCRIPT (INT i, CHAR (*) buf, FIELD (*, *, *) f1)

You may pass a global variable on the call in the
parm_list. In this case, you must not use the
same variable in the decl_list. Local variables
may have the same name in both the parm_list
and the decl_list.

CALL and ENDS commands.

4-108 Commands and Functions

Example 1 This example shows the script structure in a
program.

pI PROG main 1* program pI, start script 'main', default session HI

1* global variable declaration

main SCRIPT 1* start of script 'main'

CALL s2 (parmLlist) 1* call script s2

. (commands and statements)

ENDS 1* end of script 'main'
s2 SCRIPT (dec1-list) 1* start of script s2

. (commands and statements)

ENDS
ENDP

Example 2

1* end of script s2
1* end of program pI

In this example, four parameters are passed. Two
will contain returned values.

pgm PROG main
main SCRIPT

INT code 1 * output parm - integer
1 * output parm - string CHAR (80) response

FIELD (24, 1, 80) (line24)
CALL
IF
THEN
ELSE
ENDIF
PRINT
ENDS

sub SCRIPT

PF4

sub (80, code, "ADD COMPLETED", response)
code = D
PRINT "SUCCESSFUL ADD"
PRINT "ADD FAILED"

response

(INT length, 1 * integer constant - input
INT rtncode, 1* integer variable - output
CHAR (*) message, 1* string constant - input
CHAR (*) response,) 1* string variable - output

IF $SCAN (message, (24,1,length»
THEN rtncode = 0
ELSE rtncode = - 1
ENDIF
response = 11ne24
ENDS
ENDP

Command Directory 4-109

SERINIT

Purpose

Format

Initialize a communication port with the line
parameters appropriate to a specific asynchronous
host session.

[label:] SERINIT (port, speed, parity,
stopbits, length, duplex,
telephone-Ilumberl
machine-Ilame, TTY_port
[,flow_control])

The port operand to the SERINIT command
applies to the MS .. DOS version of ESCORT and
is not available in the UNIX operating system
version of ESCORT. It is included for script
compatibility between the UNIX operating
system version and MS .. DOS operating system
version of ESCORT. However, a port number
must be specified. Valid port numbers are 1 or 2.

speed specifies the speed, in bits .. per .. second, at
which you will communicate with the
asynchronous host. Valid speeds are:

300 bps
600 bps

1200 bps
2400 bps
4800 bps
9600 bps

parity specifies the type of parity setting the
asynchronous host expects in the transmitted
data. Valid parity settings are:

o Odd
E Even
N None

stopbits specifies the number of stopbits to be
transmitted, depending on whether data is
transmitted at high speed. Valid stopbits are

4-110 Commands and Functions

Remarks

either 1 or 2.

length specifies the length, in bits, of a
transmitted data "word ". Valid lengths are either
7 or 8.

duplex specifies how keyboard input is echoed to
the terminal. Valid duplex settings are:

full
half

telephone~umber/machine_name specifies
either the telephone number or machine name of
the asynchronous host. These parameters must
be defined in the systems/device files associated
with the UNIX operating system uucp facility.

TTY_port specifies which TTY port will be
used when dialing the asynchronous host. If this
parameter is not specified, a null string (" ") must
be substituted in the appropriate operand position
in the SERINIT command.

flow_control is an optional parameter that
specifies flow control. Valid flow_control
parameters are:

a Disable
1 Enable

The flow_control parameter determines the
settings of both IXON and IXOFF. The default
value is 1.

Refer to the Basic Network Utilities
documentation for further information on
communication port initialization parameters.

This command is effective in asynchronous
sessions.

Communication port initialization parameters
must be provided by a SERINIT statement
before attempting to physically connect to an
asynchronous host using the CONNECT

Command Directory 4-111

See also

command.

The first asynchronous CONNECT command, in
a script, establishes a connection to an
asynchronous host using the parameters provided
by the preceding SERINIT statement.
Successive CONNECT commands to this
session, reactivate the existing connection. The
connection is not dropped when the script is
connected to another host session. Use the
DISCON command to disconnect sessions.

New communication port initialization
parameters are provided by subsequent SERINIT
statements. A CONNECT command to an
asynchronous session, not already established,
uses the parameters provided by the most recent
SERINIT statement.

CONNECT and PROG commands, and the
section, "Asynchronous Communication Port
Initialization", in Chapter 2.

4-112 Commands and Functions

Example

SERINIT (1,300,O,1,7,full,machin~,"") /* establish parameters
/* for asynchronous host
/* (machine a)

CONNECT (AI) /* coonect to async host Al
/* (machine a)

CONNECT (HI) /* connect to sync host HI,
/* connection to async host Al
/* dormant, not dropped

CONNECT (AI) /* reconnect to async host Al
/* (machine a)

SERINIT (1,300,O,1,7,full,"5551234","") /* establish parameters
/* for asynchronous host
/* (phone number 555-1234)

CONNECT (A2) /* connect to async host A2
/* using new parameters;
/* connections to async host Al
/* and sync host HI
/* dormant, not dropped

Command Directory 4-113

Remarks

See also

Example I

CONNECT (HI)

SHOW (Ll)

EXIT

SHOW (HI)

This command is effective only during s,~ript
execution. When Interactive mode or Tutorial
mode are entered, ESCORT displays the
presentation space of the active session.

CONNECT command.

In the following example, synchronous host
session HI is active. The SHOW command is
used to display various presentation spaces.

1* host session HI is active

1* local session LI presentation space is displayed,
1* HI continues to execute in background

1* go to interactive mode, HI presentation space displayed

1* HI presentation space redisplayed, acts the same as
1* a FRESH command

4-114 Commands and Functions

SHOW

Purpose

Format

Display the presentation space of a particular
session.

[label:] SHOW (session .. id)

session .. id specifies the session identification of
the session to be displayed. Valid session
identifications are:

H I Synchronous host session I
H2 Synchronous host session 2
H3 Synchronous host session 3
H 4 Synchronous host session 4

Al Asynchronous host session I
A2 Asynchronous host session 2
A3 Asynchronous host session 3
A 4 Asynchronous host session 4

LI Local session I
L2 Local session 2

Command Directory 4-115

SWITCH

Purpose

Format

Remarks

Executes a set of statements depending on the
value of a string or integer argument.

pabel:] SWITCH (var-I1ame)
CASE constanL-l

< code for case 1 >

CASE constanL-n

< code for case n>

DEFAULT

< code for default case>

ENDC

var-I1ame specifies a string or integer variable
whose value determines which CASE will
execute. The variable name must not be a
reserved word.

constanL-l specifies a string or integer constant
(depending on the type of var_name).

The value of var _name is compared with each of
the case constants. If there is a match, the code
following the matching constant statement is
executed up to the next CASE. If no match is
found, the DEFAULT case is executed. The
DEFAULT case is required and is terminated by
an ENDC statement.

A maximum of 50 cases are permitted per
SWITCH statement.

SWITCH statements may not be nested; you are
not allowed to use a SWITCH statement within
another SWITCH statement.

4-116 Commands and Functions

Example 1 This example demonstrates use of the SWITCH
statement with a string variable.

CHAR (1) str
CHAR (6) name
INT 1

SWITCH (name)
CASE "B111"

1 = 1
str = "b"

CASE "John"
1 = 2
str = "j"

CASE "Peter"
1 = 3
str = "p"

CASE "Joe"
1 = 4
str = "j"

DEFAULT
1 = 5
str = "x"

ENDC

1* name = B111

1 * name = John

1 * name = Peter

1* name = Joe

1* name not 1n case 11st

Example 2 This example demonstrates use of the SWITCH
statement with an integer variable.

CHAR (1) str
INT j
INT i

SWITCH (j)
CASE 2

1 = 1
str = "b"

CASE 5-
1 = 2
str = "j"

CASE 12
i = 3
str = "p"

CASE 21
i = 4
str = "j"

DEFAULT
1 = 5
str = "x"

ENDC

1* j = 2

1* j = 5

1* j = 12

1* j = 21

1* j not 1n case 11st

Command Directory 4-117

SVSREQ

Purpose

Format

Remarks

See also

Example

SYSREQ
TEXT ·OROC"
ENTER

Simulates the action of the system request key on
the keyboard.

Oabel:] SYSREQ

This command is effective in synchronous
sessions.

Most packet networks require use of a SYS-.REQ
key on the keyboard to establish connection with
the network.

This key is used in an SNA/SDLC (or Packet
Net) environment.

AID command.

1* invoke packet network
1* select network

4-118 Commands and Functions

TAB
Purpose

Format

See also

Example
TAB

Simulates action of the tab key on the keyboard.

[label:] TAB [(n)]

n specifies the number of tabs to be perfonned.
The n can be an integer constant or an integer
variable and must be enclosed in parentheses.
The n can have a value between 1 and 64
inclusive. The default value for n is 1.

$T AB function and BT AB command.

/* execute 1 tab
TEXT " 0000000414"
TAB (2)

1 = 5
TAB (1)

/* execute 2 tabs

/* execute 5 tabs

Command Directory 4-119

TEXT

Purpose

Format

Remarks

See also

Example 1

Simulates an operator entering data at a terminal.

nabel:] TEXT str_expr

str_expr specifies the data you want to write. It
is written at the current cursor position. The
str _expr may contain a string expression that
includes a string constant, string variable, string
array element, screen field variable, or string
function. The str _expr may also be a
combination of any of the above operands
separated by a concatenation operator . You must
use a concatenation operator if the data exceeds
one line. If you use more than one constant or
variable, you must enclose the expression in
parentheses.

If you enter a character in a protected field, you
will receive an error message that the terminal is
"input inhibited." The program will
automatically exit to Interactive mode.

The $T AB function may be used to enter
multiple data fields in a single TEXT statement.
The $T AB function can also be concatenated.

If a string is longer than the field on the screen,
the extra characters will appear in the next
unprotected field.

ASSIGN(=) statement.

TEXT ("USERID" + $TAB + "PASSWD" + $TAB + "GROUP")
ENTER
TAB (2) 1* select order menu
TEXT "X"
ENTER
CURSOR (6,10) 1* position cursor
TEXT "XYZ Co." 1 * name of company
TAB
TEXT ("P.O.Box 24000" + $TAB + "PORTLAND" $TAB) 1* address of company
TEXT ("NC" "97223")
ENTER

4-120 Commands and Functions

Example 2 This example shows use of the concatenation
operator to continue entry of data on multiple
lines.

TEXT ("DATA IN TEXT STATEMENT MAY BE CONTINUED" +
"ON MULTIPLE LINES AS SHOWN IN THIS EXAMPLE")

Command Directory 4-121

TIMEOUT

Purpose

Format

Remarks

The first format sets a limit on the amount of
time your terminal will wait for a response from a
synchronous host.

The second format sets a limit on the amount of
time your terminal will wait for user input in
Interactive or Tutorial modes.

[label:] TIMEOUT (n)

or

[label:] TIMEOUT (n, EXIT)

n specifies the number of minutes the program
will wait for a response. The n may be a positive
integer constant or a positive integer variable, in
the range 1 to 60.

EXIT is the keyword used to indicate that the
time,out period corresponds to an EXIT
command.

The first format of this command is effective in
synchronous sessions. The second format of this
command is effective in synchronous,
asynchronous and local sessions.

If an integer value is assigned to the response
time operand, n, and the time,out value expires
during a synchronous host session, your terminal
will be put in Interactive mode. This gives you
an opportunity to fix any problems and restart
the script. In order for you to restart the script
successfully, the host sessions' status must
duplicate the position at the time script
execution was interrupted. Script execution can
be resumed by pressing ~ f 2. If a time,out
value is not set, the default value is 60 minutes.

If an integer value is assigned to the response
time operand, n when the EXIT keyword is
specified, and the time,out value expires in
Interactive or Tutorial modes, control returns to

4-122 Commands and Functions

See also

Example

TIt-EOUT (5)

TIMEOUT (15, EXIT)

the script. This command is useful in ensuring
that the terminal is not left in Interactive mode
for an indefinite period.

The internal global integer variable, SYSRET,
returns the result of an Interactive mode time .. out
operation. SYSRET may have one of the
following values after control returns to the script
following a TIMEOUT (n, EXIT) command:

o TIMEOUT period not expired
- 1 TIMEOUT period expired

The specified TIMEOUT value remains in effect
until changed by another TIMEOUT command.

EXIT command.

1* change sync host time-out to 5 minutes

1* allow user to enter data within 15 minutes

Command Directory 4-123

WAIT

Purpose

Format

Remarks

The first format temporarily delays script
execution.

The second format searches an asynchronous data
stream.

[label:] WAIT (seconds)

or

[label:] WAIT (seconds, search .. str_l
[,search .. str_2] ••• [,search ..

str_8])

seconds specifies the number of seconds script
execution is suspended. The seconds may be an
integer constant or an integer variable.

search .. str_l to search .. str_8 specify the strings
to be searched for in the incoming asynchronous
host data stream. The search,str _1 to search,
str_8 operands may contain string expressions
that include string constants, string variables,
string array elements, screen field variables, or
string functions. If you use more than one
constant or variable, you must enclose the
expression in parentheses.

Anyone of the eight search string operands may
be substituted by the system global variable,
SYSPRMT.

When using the asynchronous format WAIT
command, control is immediately returned to the
script when one of the search strings is detected
in the incoming data stream. The system global.
variable, SYSRET, returns the result of an
asynchronous WAIT operation. SYSRET may
have one of the following values after the WAIT
operation:

4-124 Commands and Functions

See also

Example 1

WHILE t = 0
DO

n search,str_n detected (n is the
positional number, in the
WAIT command, of the
matched search string)

- 1 No search string detected
within time,out value specified
by seconds

By substituting a search string with the system
global variable, SYSPRMT, the WAIT command
searches for the specified asynchronous host
system prompt at a specified screen location or
throughout the entire data stream.

The SYSPRMT variable is initialized by the
PROMPT command.

PROMPT command and the
section, "Synchronizing Data Transmissions", in
Chapter 2.

In this example, script execution is delayed for 20
seconds before the file is re,read to determine
whetl?-er the necessary flag has been received.

/* execute loop while t is equal to 0

READ (file, var)
IF var I = " flag"
THEN

/* flag not received

WAIT (20)
CYCLE

ENOIF

ENDO

/* delay before rereading file

/* procedure if flag received

Command Directory 4-125

Example 2

PROM='T ("$" ,1)

CONNECT (AI)

In this example, the WAIT command searches
the data from the asynchronous host for either a
specific response or for the dollar sign system
prompt in column 1.

(transactions with async host)

WAIT (lO,"Update Successful",SYSPRMT)
IF SYSRET = 1
THEN

PRINT ("Update Successful")
ELSE

IF SYSRET = 2
THEN

PRINT ("System Prompt Found")
ELSE

PRINT ("Timed Out")
ENOIF

ENDIF

4-126 Commands and Functions

WHILE

Purpose

Format

Remarks

Allows repetitive execution of a block of code
(loop) as long as a given condition is true.

Oabel: 1 WHILE clause
DO

statement{s)

END 0

clause specifies an expression that returns a true
(non,zero) or a false (zero) value. The expression
can be an integer expression, a relational
expression, or a combination of these expressions
separated by "&" or "I" operators. A relational
expression always returns an integer value (zero
for false, non,zero for true condition).

statement{s) specifies a block of ESCORT code.

As long as the clause returns a true value, the
statements between the DO and ENDO are
executed repeatedly.

At least one statement is required between the
DO and ENDO. DO and ENDO are always
required. Labels are not allowed on DO and
ENDO.

Nested WHILE statements are allowed.

A $SCAN function can be used to search for a
given string in the screen buffer.

The BREAK and CYCLE commands may be
used between DO and ENDO.

Command Directory 4-127

See also BREAK and CYCLE commands and $SCAN
function.

Example 1 This example demonstrates use of nested WHILE
loops.

CHAR(80) REC(5)
INT i
INT j
i 25
WHILE i I = 0 I * execute loop while i is not equal to 0
DO

ENDO

WHILE j < 10
DO

j = (j+l)
ENDO

CALL ADCUST

i = (i-I)

/* nested WHILE

/* delay

/* subroutine to add a customer

Example 2 This example demonstrates use of a WHILE loop
with string and relational expressions.

WHILE (stringl = "abcdef") /* string variable/constant

DO

ENDO

I /* or
(counter! = counter2) /* integer variables

I /* or
($SCAN ("ADD COMPLETED"» /* field scan

IF a = b
THEN BREAK
ELSE

ENDIF

/* branches after ENDO

4-128 Commands and Functions

WINDOW

Purpose

Format

Remarks

Defines a rectangular area on your screen in
which you can write messages to a terminal
operator. The WTO command is used to write
messages in the window.

[label:] WINDOW (rI,eI, r2,e2 [,R])

r I,e I defines the row and column address of the
top left corner of the window. The row and
column operands can be either integer constants
or integer variables.

r2,e2 defines the row and column address of the
bottom right corner of the window. The row and
column operands can be either integer constants
or integer variables.

R is an optional parameter that defines the
window as a resident window. A resident window
stays on your screen after the arrival of a new
message from the host. If a window is not
defined as resident, it will disappear when a new
message arrives from the host.

Each window has a border and therefore must
span at least 3 rows and 3 columns. The
maximum window size is 24x80 characters (the
entire screen).

When the WINDOW command is executed, a
window is drawn on your screen which contains
no data.

The window temporarily covers the application
display in the defined area. If you erase a
resident window by using the ERASEW
command, you will see the contents of the screen
buffer underneath the window.

The WTO command is used to write messages in
the window. ESCORT performs word~spill
processing at the end of a window line. Words
cannot be split between lines. When an entire

Command Directory 4·129

See also

Example 1

rl 9
cl 60
r2 12
c2 77

word does not fit on a line, it is moved to the
next.

Each new message starts on a new line in the
window. When the window is full, the message
scrolls up one line.

You may clear the contents of a window by
coding WTO " " for each line in the window or
by issuing the WINDOW command again using
the same row and column values as before.

If you define a new window before an old window
is erased, the screen will contain multiple
windows. However, you can only write to the
last window. The ERASEW command erases all
existing windows. Any resident window is also
eliminated by ERASEW.

If no window is active, any WTO message is
written to a default area, the operator
information area.

ERASEW and WTO commands.

This example shows you how to use integer
variables to define a non,resident window.

WINDOW (rl,cl,r2,c2) 1* define window using variables
WTO • Press enter key to continue.·
EXIT (TUTORIAL)

4-130 Commands and Functions

Example 2 This example shows you how to use integer
constants to define a non .. resident window.

WINDOW (2,5,22,75) /* define non-resident window
WTO "This is a large window."

This Is a large wlndC7N

Example 3 This example shows you how to create another
resident window.

WINDOW (4,4,8,42,R) /* define resident window
WTO ("This is a small window." +

"It is a resident window.")
/**employs word-spill
EXIT (TUTORIAL)
CLEAR /* clear screen but resident window stays
WTO "Enter I Imstest' . Then press enter key."
EXIT (TUTORIAL)

Command Directory 4-131

WRITE

Purpose

Format

Remarks

Writes a record to a file.

[label:] WRITE (nickname, buffer)

nickname specifies the internal name of the file.
This is the name of the file you assigned in the
OPEN statement. The nickname is global and can
be used in any script within the entire program.

buffer specifies the symbolic name of a string
variable from which the data record is written.
The buffer size must be equal to the maximum
record size in the file (the maximum possible
record size is 2048 characters).

You must open a file for write or append mode
before attempting to write to it.

The WRITE operation is a sequential operation.
Each WRITE operation writes data in the file at
the end of the last record.

Data is not written from the internal system
buffer to the file unless the internal system buffer
is full or a CHKPT command in a script is
encountered. In the event of a system failure,
data in the internal system buffer is lost. If data
is critical, therefore, a CHKPT command should
be performed after each WRITE command.
Such frequent use of the CHKPT command may
cause slight degradation in script performance.

Checking for a successful WRITE operation is
good programming practice. The internal global
integer variable, SYSRET, returns the result of a
WRITE operation. SYSRET may have one of
the following values after the WRITE is
executed:

o Successful WRITE
- 1 Failed WRITE

4-132 Commands and Functions

See also

Example

If a file is opened as a pipe between scripts, it
will be necessary to establish an end,of,file flag
that will be recognized by the script reading data
from the pipe, since the end .. of .. file condition
returned by SYSRET may be ignored in the
reading script. Refer to the "Writing to a Pipe
File" script in Appendix G for an example.

CHKPT, CLOSE, OPEN, READ, and WAIT
commands.

In the following example, records are written
sequentially to a file (nickname Fl) from an array.
The file contains variable length records. The
maximum record size in this file is 80 bytes. For
each record, the program prints out sequence
number, length, and contents.

CHAR (80) rec (25)
CHAR (80) buffer

/* 80 byte record array
/* 80 byte buffer

INT length
INT record
OPEN (Fl, "FILE1", W)
OPEN (F2, "FILE2", R)

/* open file for write
/* open file for read

FOR record = 1 to 25
DO /* execute following code

READ (F2, buffer) /* read next record
length = $LENGTH(buffer)
PRINT ("Record n " + $ITOS(record»
PRINT ("Length = " + $ITOS(length»
WRITE (Fl, buffer)
IF SYSRET = -1 THEN

ENDIF
ENOO

ABEND (12) /* user abend code

Command Directory 4-133

WTO
Purpose

Format

Remarks

Writes a message to the operator, on the screen.

[label: 1 WTO str_expr

str_expr specifies the data to be written in a
window or to the operator information area. The
str _expr may contain a string expression that
includes a string constant, string variable, screen
field variable, string array element, or string
function. It may also be a combination of any of
the above operands separated by a concatenation
operator. If you use more than one constant or
variable, you must enclose the expression in
parentheses.

The WTO (Write To Operator) command may
be used to communicate with the terminal
operator.

If a window is active, the message is displayed in
the window, beginning at the next free line.
Successive messages may be sent to the same
window. If there is insufficient space left in the
window to complete the message, the window
scrolls up.

Each WTO message starts on a new line inside
the window. If a word cannot fit at the end of
the line, word spill processing occurs and the
word is written on the next line.

If no window is active, the message is displayed
in the operator information area. If data exceeds
60 characters and no window is active, excess
characters are lost.

4-134 Commands and Functions

See also

Example 1

ERASEW and WINDOW commands.

This and the next example show how to use the
WTO command with a string constant.

WINDOW (5,10,20,70)
WTO • Enter your ID and password.·

Enter your ID and password

Command Directory 4-135

Example 2
INT i
CHAR (1) codetype (4)
code type = ("a", "b", "C", "d") /* initialize array

TEXT "/for logon"
ENTER /* get logon screen
WTO "ENTER USERID AND PASSWORDS THEN PRESS ESC f 2"
EXIT /* enter interactive mode
/* program continues here after ESC f 2 pressed
ENTER
WHILE $SCAN ("LOGON FAILED" (24,1,80»
DO

WTO "TRY AGAIN"
EXIT /* enter interactive mode
ENTER

Ef'.I'DO

Example 3 This example demonstrates use of the WTO
command with functions and a string constant.

WTO ($DATE +" 10 $TIME + 10 TEST002 CO~LETED SUCCESSFULLY")
BEEP

Example 4 This example demonstrates use of the WTO
command with a string array.

WINDOW (10,15,19,30) /* define window
WTO "Below is a list of valid code types:"
FOR i = 1 to 4
DO /* write to successive window lines

WTO ("code" $ITOS(i) "=" code type (i»
ENOO

4-136 Commands and Functions

Function Directory

This function directory contains a complete alphabetical listing
of all ESCORT functions. ,:.

Conventions Used
Most functions have the following format:

$FUNCTION operands

Function names always start with a dollar sign ($) and are printed
in capital letters.

Optional fields are noted in brackets. In the example below, you
may enter a number (n) to indicate the number of tabs to be
executed.

$TAB [(n)]

Braces indicate a choice of operands. In the example below, you
must enter one of the listed operands (P, A, H, D, or M).

$A TTR (position, {P})
{A}
{H}
{D}
{M}

Operands are separated by commas, as in the example below:

$CHDATE (n, date)

Parentheses must be entered where indicated. In the example
above, the entries for n and date must be enclosed in parentheses.

Function Directory 4-137

Functions are either string or integer functions. The one
exception is the $T AB function, which does not return a value
and is therefore neither a string nor an integer function.

String functions may be assigned to a string variable, screen field
variable, or string array element and may appear in a string or
relational expression. A string function returns a character string.

Integer functions may be assigned to integer variables or integer
array elements and may appear in an integer or relational
expression. An integer function returns an integer value.

No function may appear as an operand of another function.

Several function descriptions use the term position or screen
position. This term denotes the absolute position (offset + 1)
rather than the row and column. This is the position returned
by the $SCAN, $FLDADDR, and $NEXTFLD functions. It
may also be an operand in the CURSOR statement. For
example, row 1, column 1 is screen position 1; row 24, column
80 is screen position 1920.

When used in this section, the term null string means a string of
length zero (no characters).

The format mm-dd-yy stands for month .. day .. year.

The format hh:mm:ss stands for hours:minutes:seconds.

Most examples listed in this directory are program sections.
Many examples use a dot (.) on a line by itself to denote
additional code.

4-138 Commands and Functions

Function Summary
In the following table, a bullet (•) indicates the session type,
(synchronous, asynchronous or local) in which each function is
effective.

Synchronous Asynchronous
Command Host Host

$ATTR •
$CHDATE • •
$ DATE • •
$ DATES • •
$DAY • •
$ EVAL • •
$FLDADDR • •
$GETCUR • •
$GETENV • •
$GETPID • •
$GSUBSTR • •
$HEX • •
$ITOS • •
$LENGTH • •
$MONTH • •
$NEXTFLD •
$RESP •

Local

•
•
• • •
•
•
• • • •
•
•
•
•
•

Function Directory 4-139

Synchronous Asynchronous
Command Host Host Local

$SCAN • • • $SEC2TIM • • •
$STOI • • • $STRIP • • •
$TAB • • •
$TIMDIFF • • •
$TIME • • •
$TIM2SEC • • •
$ YEAR • • •

4-140 Commands and Functions

$ATTR

Purpose

Format

Remarks

Tests an attribute of a field starting at a given
position, and returns a true (non .. zero) or false
(zero) condition.

$ATTR (position, {P})
{A}
{H}
{D}
{M}

position specifies the screen position of a field.
This is the position returned by the
$FLDADDR, $GETCUR, and $SCAN
functions. The position is expressed as either an
integer variable or a constant (in the range of 1 ..
1920).

attribute specifies the mask for the attribute to
be tested. Listed below are the keyword codes for
the attributes that can be tested:

Mask True False

P Protected Unprotected
A Alphanumeric Numeric
H Highlighted Normal
D Dark Displayable
M Modified (tagged) Not modified

This function is effective in synchronous and
local sessions.

$A TTR is an integer function.

If you test a field for a specific attribute, the
$A TTR function returns a true or false value,
depending on whether the attribute was found.

Function Directory 4-141

See also

Example

The following is a list of the values:

1 True .. Attribute found.
o False .. Attribute not found.

- 1 Specified position not at start
of a screen field.

$FLDADDR, $GETCUR, and $SCAN
functions.

The following example demonstrates how to use
the $A TTR function. The program first obtains
the field position of the field duedate and then
tests it to see if it is a protected field. An error
message is written if the field does not start at
the given position (Le., if there is no preceding
attribute byte).

FIELD (5,8,6) duedate
INT n

n=$FLDADDR (duedate) 1* get defined field position
IF $ATTR (n,P) = I THEN 1* tests for protected field

PRINT "'duedate' is a protected field"
ELSE
IF $ATTR (n,P) = a THEN 1* tests for unprotected field

PRINT "'duedate' is an unprotected field"
ELSE

PRINT "'duedate' does not start at defined location"
ENDIF
ENDIF

4-142 Commands and Functions

$CHDATE

Purpose

Format

Remarks

Example
CHAR (6) todate
CHAR (6) duedate
INT n

Adds or subtracts a specified number of days to a
date and returns a new date.

$CHDATE (n, date)

n specifies the number of days added (or
subtracted) from a given date. The n is a positive
or negative integer constant or an integer
variable.

date specifies the initial date to which you either
add or subtract a number of days, n. The date
can be either a string constant or a string
variable. The date must be six characters long in
the format mmddyy.

$CHD ATE is a string function.

The receiving variable must be at least six
characters long.

todate = $DATES 1* get current date
n = 60 1 * 60 days to be added
duedate = $Ct-DATE (n, todate) 1* get new date

PRINT ("Today's date = " + to date +
", Due Date = " + duedate)

Function Directory 4-143

$DATE

Purpose

Format

Remarks

See also

Example 1

Returns the current date in the format
mm,dd,yy.

$DATE

$D ATE is a string function.

The receiving variable must be at least eight
characters long.

$DATES function.

PRINT ("Today's date is" + $DATE)

Example 2
CHAR (8) todate
CHAR (8) dates (10)
FIELD (5,10,8) screena.date

todate

dates(5)

$DATE

$DATE

screena.date = $DATE

PRINT ("DATE=" + $DATE +
", TIME = " +.$TIME)

I*string array

I*string variable assignment

I*string array element assignment

I*screen field variable assignment

I*use in string expression

4-144 Commands and Functions

$DATES

Purpose Returns the current date in the format mmddyy.

Format $DATES

Remarks $DATES is a string function.

The receiving variable must be at least six
characters long.

See also $DATE function.

Example 1
FIELD (10,21,6) todate
todate = $DATES

Example 2
CHAR (6)
CHAR (6)
FIELD (5,10,6)

to date

dates(5)

todate
dates (10)
screena.date

$DATES

$OATES

screena. date = $OATES

PRINT ("DATE=" + $DATES +
", TIME = ". + $TIME)

/* write current date to field "todate"

/*string array

/*string variable assignment

/*string array element assignment

/*screen field variable assignment

/*use in string expression

Function Directory 4-145

$DAY

Purpose

Format

Remarks

Example 1

Returns the current day of the month in the
format dd.

$DAY

$DAY is a string function.

The receiving variable must be at least two
characters long.

FIELD (10,21,2) today
today = $DAY 1* write current day to field "today"

Example 2
CHAR (2)
CHAR (2)
CHAR (2)
CHAR (2)
FIELD (5,11,2)
FIELD (5,14,2)
FIELD (5,17,2)

day
month =
year

$DAY
$MONTH
$YEAR

dates(5) = $DAY

FORMAT order
. day $DAY
. month = $t-()NTH
. year = $YEAR

day
month
year
dates (10)
order. day
order. month
order. year

1* string array

1* string variable assignment
1* string variable assignment
1* string variable assignment

1* string array element assignment

1* screen field assignment
1* screen field assignment
1* screen field assignment

PRINT ("DUE DATE" + $DAY + 1* use in string expression
"~ + $MONTH + "~ + $YEAR)

4-146 Commands and Functions

$EVAL

Purpose

Format

Performs standard arithmetic calculations on, or
compares, two given numeric string operands.

$EV AL (operanLl, operator, operanL2
[,dec])

operanLl specifies the first operand in the
calculation corresponding to the addend in
addition, minuend in subtraction, multiplicand in
multiplication, or dividend in division.

operator specifies the operator type. Valid
operator types are:

+

*
%

addition
subtraction
multiplication
division
modulo (remainder division)
comparison

operanL2 specifies the second operand in the
calculation corresponding to the addend in
addition, subtrahend in subtraction, multiplier in
multiplication, or divisor in division.

dec specifies the number of decimal places
returned in the result. The dec can be an integer
constant or integer variable in the range 0 to 12.
The dec is an optional operand and, if omitted,
$EV AL returns a default value of zero decimal
places in the result.

The operand_l and operand--.2 must be string
constants or string variables containing integer
numbers or floating point numbers. The
operand_l and operand--.2 may contain commas
or leading dollar signs ($). $EV AL ignores
commas and leading dollar signs when evaluating
operands.

The dec is ignored in comparison operations.

Function Directory 4-147

Remarks $EV AL is a string function. The result of a
$EV AL arithmetic calculation can be assigned to
a character string, the length of which determines
the length of the $EV AL result string. The
maximum character string returned by $EV AL is
14 characters made up as follows:

sign
decimal point
characteristic (integer) and
mantissa (decimal fraction)

1 character
1 character

12 characters

$EV AL will truncate least significant digits from
results that are longer than 14 characters.

The comparison operator returns one of three
values:

" - 1" operand_l < operand~
"0" operand_l = operand~
" 1 " operand_l > operand~

4-148 Commands and Functions

Example This example shows how to use both integer and
floating point numbers and a combination thereof
in $EVAL arithmetic calculations.

CHAR (3) opJ
CHAR (1O) oP--2
CHAR (10) result-l
CHAR (14) resul~
CHAR (2) result-3

resulLl = $EVAL{"7" ,+," 5") 1* result-l = "12"
resulLl = $EVAL{"7,350",-,"5,675")/* result-l = "1675"
result-l = $EVAL{"3" , *," 5.2" ,7) 1* resulLl = "15.6000000"
resul ~ = $EVAL (" $22" , 1 , "7" ,12) 1 * resul ~ = " 3 .142857142857"

opJ = "27"
oP--2 = "3.12"
result..2 = $EVAL{opJ,l,oP--2,12) 1* resul~ = "8.653846153846"
result..2 = $EVAL{opJ,%,oP--2,12) 1* resul~ = "2.040000000000"

opJ = "112"
op...2 = "53.6"
resulU = $EVAL{opJ,?,op....2) 1* resulU = "1"
resulU = $EVAL{" 15.3" ,?,op...2) 1* result-3 = "-1"

IF $EVAL{opJ,? ,op....2) = "0" 1* checks if opJ = op...2
THEN

ENDIF

IF $EVAL{opJ,+,op....2) $ITOS{c) 1* compares result to an integer
THEN

ENDIF

Function Directory 4-149

$FLDADDR

Purpose

Format

Remarks

See also

Example

FIELD (5,6,2) a
FIELD (7,6,2) b
FIELD (9,6,2) c
INT i

TAB
i = $GETCUR

Returns the absolute screen position from a given
screen field.

$FLDADDR (fiel~ame)

fiel~ame specifies the screen field name for
which you are seeking an address.

$FLDADDR is an integer function.

$ATTR function.

This example shows how to use $FLDADDR to
determine at which of three fields the cursor is
positioned.

IF $FLDADDR (a) = i THEN
CALL fielda

1* get cursor position
1* cursor at field a

1* call subroutine
ENDIF
IF $FLDADDR (b) = i THEN

CALL fieldb
ENDIF
IF $FLDADDR (c) = i THEN

CALL fieldc
ENDIF

1* cursor at field b
1* call subroutine

1* cursor at field c
1* call subroutine

4-150 Commands and Functions

$GETCUR

Purpose

Format

Remarks

Example

Returns the current cursor position.

$GETCUR

$GETCUR is an integer function.

This example shows how to read the current
cursor position and convert it to a row and
column address.

INT r /* row
INT c /* column
INT offset

offset = ($GETCUR - 1) / * get screen offset of cursor
r = (offset/BO + 1) /* get row
c = (offset%80 + 1) /* get column

WTO ("ROW = " $ITOS(r) ", COL =" $ITOS(c»

Function Directory 4-151

$GETENV

Purpose

Format

Remarks

See also

Example

CHAR (8) termtype

Returns the value of a UNIX operating system
environment variable.

$GETENV (evar)

evar specifies the environment variable whose
value you wish to obtain. It must be a string
constant.

$GETENV is a string function. The receiving
variable may be up to 255 characters long.

PUTENV command.

This example shows how to use $GETENV to
obtain the value of the UNIX operating system
environment variable TERM.

term type = $GETENV (. TERM")

4-152 Commands and Functions

$GETPID

Purpose

Format

Remarks

Example

CHAR (6) pid
CHAR (20) fname

Returns the process identification (PID) of
ESCORT.

$GETPID

$GETPID is a string function. The PID has five
digits.

This example shows how to use $GETPID to
receive a PID.

fname = ("custf" + $GETPID) /* make filename unique
open (filel,fname,W)

Function Directory 4-153

$GSUBSTR

Purpose

Format

Remarks

Example 1

Returns a substring from within a string or screen
field variable.

$GSUBSTR ({ string}, position, length)
{SCREEN}

string specifies the string or screen field variable
name containing the substring you want to get.

SCREEN specifies the screen buffer.

position specifies the starting location of the
substring within the string. The position can be
either an integer constant or an integer variable
and must have a value between 1 and the length
of the entire string. If the position specified in
this field is not within the range of your string,
an error message will appear.

length specifies the number of characters the
substring contains. The length can be either an
integer constant or an integer variable and must
have a value between 1 and 256. The receiving
variable must be at least equal to the value
specified in this field, or the substring will be
truncated.

$GSUBSTR is a string function.

This example writes on the screen the text I am
no t a string.

s1 = "I am a string"
TEXT ($GSUBSTR(s1,1,4) + " not a " + $GSUBSTR(sl,8,6»

4-154 Commands and Functions

Example 2 This example returns three characters from the
screen.

TAB 1* position cursor
i = $GETCUR 1 * get cursor position
data = $GSLSSTR (SCREEN,i,3)

Example 3 This example reads the current time of day and
sends a message to the operator based on the
time of day.

INT i
INT ti
CHAR (8) to
CHAR (2) tl
CHAR (10) mea (3)
mea (1) =. tJDRNING"
mea (2) =. EVENING"
mea (3) =" AFTERNOON"

to $TIt-E
tl = $GSLSSTR (to,1,2)
ti = $STOI (tl)
IF ti < 12
THEN i = 1
ELSE IF ti > 17

THEN i=2
ELSE i=3
ENOIF

ENDIF
WTO ("GOOO " + mea(i»

1* 3 element array
1* initialize the array

1* get current time of day
1* get hh from time string
1* convert to integer

1* morning before 12 noon

1* evening after 5pm
1* afternoon between 12am-5pm

1* write good day message

Function Directory 4-155

$HEX

Purpose

Format

Remarks

Example

CHAR (30) a

Returns the ASCII character for a given
hexadecimal value.

$HEX (hexval)

hexval specifies the hexadecimal value of the
ASCII character you wish to obtain.

$HEX is an string function. The $HEX
function provides you with a method of
producing ASCII characters that would otherwise
be interpreted with a different meaning.

Refer to the sample script, II Asynchronous Host
Soft Function Keys ", in Chapter 5, for an
example of how to use the $HEX function to
send data strings to an asynchronous host.

This example shows how to use $HEX to embed
double quotation marks (") in a string. Hex 22 is .
the hexadecimal equivalent of the ASCII double
quotation mark. Double quotation marks would
otherwise mark the beginning and end of the
string.

The TEXT command in this example will
produce:

Text with "Quotes" embedded.

a = ("Text with" + $HEX("22") + "Quotes" +
$HEX("22") + " embedded.")

TEXT a

4-156 Commands and Functions

$ITOS

Purpose

Format

Remarks

See also

Example
INT i
INT k
CHAR (6) 51
CHAR (6) 52

Converts an integer to a string.

$ITOS (int)

int specifies the integer you want to convert to a
string. The integer can be a constant or a
variable. It may have any value between
_231+ 1 and +231 _1, inclusive.

$ITOS is an string function.

The $ITOS function may be used to convert the
result of an arithmetic calculation to a string.

Negative numbers are preceded by a minus
sign (-). There are no leading zeros.

$STOI function.

CHAR (6) cur
CHAR (6) sa (lO)
FIELD (5,lO,5) ord.orderno
k -32767
51 $ITOS{k)
k = 256
52 = $ITOS{k)
cur = $GETCUR
sa(5) = $ITOS{cur)

1* string array

1* string - 32767

1* string 256
1* get current cursor address
1* string array assignment

Function Directory 4-157

$LENGTH

Purpose

Format

Returns the current length of a specified string
variable.

$LENGTH (str_var)

str_ var specifies the string variable, string array
element, or screen field variable whose length
you want to know.

Remarks $LENGTH is an integer function.

Example 1
INT j
CHAR (10) x
x = "abc"

The length of a string variable is the length of
the last string assigned. See example 1.

The length of a field is always the defined length.
See example 2.

j = $LENGTH (x) 1* j is 3

Example 2
FIELD (1,1,10) y
y = "abc"
j = $LENGTH (y) 1* j is 10

4-158 Commands and Functions

Example 3 This is a script to find a particular substring in a
given string. If the substring is found, a zero is
returned in code. Otherwise, -1 is returned.

ss SCRIPT (CHAR (*) str,
CHAR (*) sub,

INT i
INT nl
INT n2

INT code)

nl = $LENGTH (str)
n2 = $LENGTH (sub)

FOR i = 1 TO nl
DO

1* source string
1* search string
1* return code

1* source string length
1* search string length

IF ($GSUBSTR (str,i,n2) sub)
THEN code = 0 1* string found
RETURN
ENDIF

ENDO
code = -1 1* string not found
ENDS

Function Directory 4-159

$MONTH

Purpose

Format

Remarks

Example 1

Returns the current month of the year in the
format mm.

$MONTH

$MONTH is a string function.

The receiving variable may be a string variable,
string array element, or a screen field variable
and must be at least two characters long.

The month is returned in a two,digit format (for
example, 01, 02, ... 11, 12).

PRINT ("DATE:" $MONTH "I" $DAY "I" $YEAR)

Example 2 In this example, the day, month, and year are
sent to the host, and are subsequently printed
out.

CHAR (2)
CHAR (2)
CHAR (2)

day
month
year

CHAR (2)
FIELD (5,11,2)
FIELD (5,14,2)
FIELD (5,17,2)

dates (10)
order.day
order.month
order.year

day $DAY
month $KlNTH
year $YEAR

dates (2) $MONTH

enter
FORMAT order

. day = $DAY

. month = $MONTH

.year = $YEAR

1* string array

1* string variable assignment
1* string variable assignment
1* string variable assignment

1* string array element assignment

1* screen field assignment
1* screen field assignment
1* screen field assignment

PRINT ("DUE DATE = " + $DAY 1* use in a string expression
"." + $MONTH + "." + $YEAR)

4-160 Commands and Functions

$NEXTFLD

Purpose

Format

Remarks

See also

Returns the screen position of the next field after
a given position.

$NEXTFLD (position)

position specifies the screen position at which to
start looking for the next field.

This function is effective in synchronous and
local sessions.

$NEXTFLD is an integer function.

If the given position holds an attribute byte, the
screen position returned is the position
immediately following the attribute byte.

The next field may be protected, unprotected, or
a dark field.

If there are no fields following the given position,
$NEXTFLD returns a zero value. A zero value
is also returned if the screen is unformatted
(contains no attribute characters).

If the last position on the screen (1920) is an
attribute character, an attempt to find the next
field returns a value of 1921.

$ATTR function.

Function Directory 4-161

Example 1 In this example, a screen has three fields at
positions 162, 242, 322 (rows 3,4,5). The
attribute byte begins each row at 161, 241, 321.

K = $NEXTFLD (1) /* K = 162
/* K = 162
/* K = 242
/* K = 0

K = $NEXTFLD (161)
K = $NEXTFLD (162)
K = $NEXTFLD (322)

Example 2 This example prints out the starting position of
every field on a given screen. It also reports if
the screen is unformatted (contains no attribute
characters) and if there is an attribute character
at the last position on the screen (1920).

flds
main

main PROG
SCRIPT
INT i
iN~ 1 j
j = 0
WHILE

/* initial position
/* number of fields

«i 1= 0) & (i 1= 1921»
DO

j = (j + 1)
i = $t\£XTFLD(i)
IF (i 1= 0) & (i 1= 1921)
THEN

PRINT ($ITOS(j) +
" at position" + $ITOS(*i»

ENDIF
ENDO
IF (i = 0) & (j = 1)
THEN

PRINT ("unformatted screen")
ENDIF
IF (i = 1921) & (j = 1)
THEN

PRINT ("I at position 1")
ENDIF
IF (i = 1921)
THEN

PRINT ("attr. char at position 1920")
ENDIF
PRINT ("")
ENDS

ENDP

/* blank line at the end

4-162 Commands and Functions

$RESP

Purpose

Format

Remarks

See also

Returns the response time of the last transaction
in hundredths of a second.

$RESP

This function is effective in synchronous sessions.

$RESP is an integer function.

ESCORT maintains two time indicators
internally, which can be called to and tl. When
you press an AID key (such as ENTER, PFl, or
CLEAR), the current time is recorded in to.
After a response is received from the host system
(or the keyboard is unlocked), the time is
recorded in tl. Whenever $RESP is executed,
the difference between t1 and to (in hundredths
of a second) is returned. This difference is the
response time of the transaction.

A FRESH command will update tl. If you use a
DO/ENDO loop containing the FRESH
command to wait for a specific response, t1 will
contain the time the response arrived (See
Example 2 below and Appendix C for sample
programs that use FRESH in a DO/ENDO loop).
The FRESH command is useful for synchronous
host no,response mode transactions, when the
response you are waiting for may not coincide
with the unlock keyboard response. $RESP
should be executed after the FRESH loop or after
an AID subroutine call.

Note: Since the UNIX operating system provides
a multi,tasking environment, the accuracy of the
response time provided by $RESP may
deteriorate as the load on the system increases.

FRESH command, and the "AID Subroutines
Library" in Appendix C.

Function Directory 4-163

Example 1

INT i
TEXT "ispf"
ENTER
i = $RESP

This example returns the response time after an
ENTER command.

PRINT ("Response time = " + $ITOS (i»

Example 2

TEXT "USNENJXZ"
PFl

In this example, the transaction response time is
returned when the message, "ADD
COMPLETED," is received from the host. It is
important to limit the time consumed by the
$SCAN function by specifying as precisely as
possible the starting position and scope of the
scan. ESCORT cannot detect the incoming
message while the $SCAN function is executing.

WHILE I($SCAN ("ADO COMPLETEO·,(24, 1,80»)
DO

FRESH
ENDO
i = $RESP
PRINT ("Response = " + $ITOS(i»

4-164 Commands and Functions

$SCAN

Purpose

Format

Remarks

Searches the screen buffer for a specified string
and returns its position. .

$SCAN (string [(row, col [,length])])

string specifies the string you want to find in the
screen buffer. The string can be either a string
constant or a string variable. The screen buffer is
referenced by a system global variable, SCREEN.

row, col specifies the starting location for the
screen scan. The row and col can be either
integer constants or integer variables. The
default values for row and col are the first
position on the screen (1,1). Entries for row and
column are optional. If you do not specify a row
and column, the entire screen buffer is searched.

length specifies the length of the search. The
length can be either an integer constant or an
integer variable. The value of length may be from
1 to 1920 characters (the maximum screen size).
The default value is 1920. Entering a value for
length is optional. However, you may only specify
a length if the row and column are specified.

$SCAN is an integer function. If the search
string is not found, $SCAN returns zero.

There are two main ways to use $SCAN:

D as a test in the clause of an IF or WHILE
statement;

D to return a position.

Function Directory 4-165

See also

Example 1

The $SCAN function returns the position of the
desired string, but does not position the cursor at
the string. You must use the CURSOR
command to position the cursor.

$GETCUR function and CURSOR command.

This example shows use of the $SCAN function
with a default and specified starting position and
length.

IF $SCAN ("ADD COMPLETED")
THEN

1* default row, col, length

ENDIF
IF $SCAN ("FIND COMPLETED" (24,1,80» 1* no default
THEN

ENDIF

Example 2 This example shows use of the $SCAN function
to search the buffer for the string "LOGON
SCREEN".

TEXT "imstest"
ENTER
logon = "LOGON SCREEN"
WHILE I($SCAN (logon»
DO

FRESH
ENDO

4-166 Commands and Functions

1* defaults, string variable

1* refreshes screen buffer

Example 3 The following example calculates the row and
column address of the string on the screen.

INT r
INT c
INT offset
/* find address of string
offset = ($SCAN ("000000414") - 1)
IF offset < a THEN RETURN ENDIF
r (offset/SO + 1)
c = (offset%80 + 1)

/* row
/* column

/* not found
/* get row
/* get column

Example 4 The following example searches for a given string
at a specific position on the screen and prints a
message depending on whether the string is
found.

IF ($SCAN ("ADO COMPLETED" (24,9,13»)
THEN

PRINT "SUCCESSFUL"
ELSE

PRINT "UNSUCCESSFUL"
ENDIF

Function Directory 4·167

$SEC2TIM

Purpose

Format

Remarks

See also

Example

Converts time (in seconds) to time expressed as a
string in the format hh:mm:ss.

$SEC2TIM (int)

int specifies time in seconds. The int can be a
positive integer constant or an integer. variable.

$SEC2TIM is a string function.

This function is useful in converting a time
difference obtained by the $TIMDIFF function
to a readable format.

The receiving variable must be at least eight
characters long.

$TIMDIFF and $TIM2SEC functions.

This example performs 10 transactions on the
host system and prints out the total time taken
for all 10 transactions.

FORi= ltolODO
tl = $TIME
ENTER

1* get start time
1* enter transaction
1 * get end time t2 = $TIME

el = $TIKHFF (tl, t2)
totsec = (totsec + $TIM2SEC(el»

ENDO
PRINT $SEC2TIM (totsec)

4-168 Commands and Functions

1* calculate elapsed time
1* convert string to integer

1* for arithmetic

1* convert back to string for display

$STOI

Purpose

Format

Remarks

See also

Example

Converts a numeric string to an integer.

$STOI (string)

string specifies the string variable you want to
convert to an integer. The value of the string
must be between - 231 + 1 and +231 _1. If you
exceed this range or if a nonnumeric character is
found, your program will end abnormally and you
will get an error message.

$STOI is an integer function.

Use the $STOI function to convert a numeric
string into an integer so that arithmetic
calculations can be performed.

$ITOS function.

This example captures two values, adds them
together and prints out the total.

FIELD (15,6,4) price
FIELD (10,12,6) qty
INT Q
INT P
INT total
Q = $STOI (qty)
P = $STOI (price)
total = (Q * P)
PRINT ("TOTAL = " + total)

Function Directory 4-169

$STRIP

Purpose

Format

Remarks

Returns a given string after removing any trailing
blanks from it.

$STRIP (str_var)

str_var specifies the string or screen field
variable containing trailing blanks.

$STRIP is a string function.

The stT_vaT may contain up to 2048 characters.

The value of the stT _vaT is not changed by using
the $STRIP function.

Example 1 This example removes trailing blanks from a
screen field.

CHAR (12) c
FIELD (2,15,12) f 1* f is a field containing "price
c = $STRIP (f) 1 * c now contains "price"

1* the value of f is still "price

Example 2 This example reads records from a file and strips
any trailing blanks.

CHAR (80) bl 1* input buffer

READ (fn, bl) 1* read one record
bl = $STRIP (bl) 1* strip off trailing blanks

4-170 Commands and Functions

$TAB

Purpose

Format

Remarks

See also

Example

Simulates the action of the tab key on the
keyboard.

$TAB [(n)]

n specifies the number of tabs you want to
execute. The n may be an integer constant or
integer variable with a value between 1 and 64.
The default value for n is 1.

The $T AB function is similar to the TAB
command. However, you use the $T AB function
within a TEXT command, as shown in the
example below.

$T AB is a special function that is neither a
string nor an integer function. It cannot be
assigned to a variable.

TAB and TEXT command.

This example performs two tabs within a single
text statement.

TEXT ("ABC Co." $TAB(2) "5632")

ENTER

Function Directory 4-171

$TIMDIFF

Purpose

Format

Remarks

See also

Example
CHAR (8) TIME!
CHAR (8) TIME2
TIME! = $TIME

TIME2 = $TIME

Calculates the difference between two time
strings and. returns the result as a character string
in the format hh:mm:ss.

$TIMDIFF (time!, time2)

time! specifies the earlier time. It can be either
a string constant or a string variable.

time2 specifies the later time. It can be either a
string constant or a string variable.

$TIMDIFF is a string function.

The receiving variable must be at least eight
characters long.

$SEC2TIM, $TIME, and $TIM2SEC functions.

1* some processing

PRINT $TIMDIFF (TIME!; TIME2)

4-172 Commands and Functions

$TIME

Purpose

Format

Remarks

Example

Returns the current time of day in the format
hh:mm:ss.

$TIME

$TIME is a string function.

The receiving variable must be at least eight
characters long.

PRINT ("TIME =" $TIME)

Function Directory 4-173

$TIM2SEC

Purpose

Format

Remarks

See also

Example

Converts a given time string in the format
hh:mm:ss to time expressed in seconds.

$TIM2SEC (time)

time specifies the time string that you want to
convert to the number of seconds. The time can
be either a string constant or a string variable in
the format hh:mm:ss.

$TIM2SEC is an integer function.

$SEC2TIM function.

FOR i = 1 to 10 00
tl = $TIt-£
ENTER

1* get start time
1* enter transaction
1* get end time t2 = $TIt-£

el = $TIKlIFF (tl, t2)
totsec = (totsec + $TIM2SEC(el»

ENDO
PRINT $SEC2TIM (totsec)

4-174 Commands and Functions

1* calculate elapsed time
1* convert string to integer

1* for arithmetic

1* convert back to string for display

$YEAR

Purpose

Format

Remarks

Example

Returns the current year in the format yy.

$YEAR

$YEAR is a string function.

The receiving variable must be at least two
characters long.

PRINT ("DATE =" $t-(lNTH "'" $DAY"'" $YEAR)

Function Directory 4-175

5 ESCORT Utilities

Overview 5-1

Upload and Download 5-3
Program Listing 5 -7

Generating Screen Field Variables 5 -17
Program Listing 5 -20

Get Fields 5 -25
Program Listing 5 -27

Asynchronous Host Soft
Function Keys 5-29
Program Listing 5 -30

Overview

This chapter contains information on the ESCORT utility
programs that are included on your ESCORT installation
diskette.

Read this chapter to learn how to

D transfer files to and from a synchronous host

D generate screen field variables for any synchronous host
application screen

D read variable length records into an' array

D send soft function key values to an asynchronous host.

The operation of the utilities is described and the individual
program listings are provided at the end of each section.

Overview 5-1

Upload and Download

The two scripts provided on your ESCORT installation diskette,
named upload and dnload, can be used for transmitting text data
files between TSO on a synchronous host computer and the 3B
processor.

Invoke Procedure
The procedure for invoking upload or dnload from the UNIX
shell is described below.

1 To upload files from the 3B processor, type on the command
line

escort lusrlescortlsllblupload

To download files to the 3B processor, type on the command
line

escort lusrlescortlsllbldnload

and press (RETURN) •

2 The ESCORT banner screen is displayed briefly.

3 ESCORT then displays a File Transfer Facility input screen,
(a local session screen defined by a local screen format). The
File Transfer Facility screen indicates whether the transfer
mode is upload or download.

4 You must specify source and target files and parameters in the
a ro riate fields. If all input fields are blank and you press

RETURN the ESCORT script terminates and control returns
to the UNIX shell.

The first input field in the File Transfer Facility screen
prompts

Enter UNIX File Name:

Upload and Download 5·3

You may enter the file name or the full path name for the
UNIX file that is the source file in an upload or the target
file in a download. Remember that the UNIX operating
system is case sensitive and that the file name must be
entered exactly as it appears in the directory. If the UNIX
file name entered is less than 50 characters in length, press
(TAB) to move the cursor to the next input field.

5 You must next enter the TSO data set name at the screen
prompt

Enter Host DSNAME (Full Name, NO Quotes):

If the data set name is less than 50 characters in length, press
(TAB) to move the cursor to the next input field.

6 The next File Transfer Facility screen input field is the logical
record length of the file on the synchronous host system. At
the prompt

Enter Host File's LRECL:

enter the logical record length; valid record lengths are
between 1 and 255. If the record length entered is less than
3 characters, press (TAB) to move the cursor to the next input
field.

7 The final File Transfer Facility screen input field is the record
format of the synchronous host system file. At the prompt

Enter Host RECFM (FB or VB):

enter the appropriate record format, FB for Fixed Block or VB
for Variable Block. The record format may be entered in
either upper or lower case letters. The cursor automatically
moves to the first input field, the UNIX file name.

8 Edit any of the fields as necessary, using (TAB) to skip to the
next field, following the procedures in steps 4 to 7 above.
When all fields have been completed correctly, press (--R-E-T-UR-N---)

and the ESCORT upload or dnload script verifies the data you
have entered.

D If the UNIX file does not exist in the upload mode, or
you do not have write permission in the download mode
the ESCORT script responds with the error message

5-4 ESCORT Utilities

Cannot open UNIX File: file_name

Please Re-enter UNIX File name and Press RETURN

where file_name is the name of the UNIX file you
entered in step 4 above. Re,enter the correct UNIX file
name and press (RETURN) to continue.

o If the logical record length is incorrect, the ESCORT
script displays the error message

Invalid LRECL - Valid Range Is between 1-255

Please Re-enter LRECL and Press RETURN

Type a valid record length and press (RETURN) to
continue.

o If the record format is incorrect, the following error
message is displayed:

Invalid RECFM - valid entries are FB or VB
Please Re-enter RECFM and Press RETURN

Type a valid record format and press (RETURN) to
continue.

o Note that the ESCORT upload and dnload scripts do not
check the validity of the TSO data set name.

9 ESCORT next displays the synchronous host application
screen together with the following login prompt in a window:

Please logon to TSO and leave at READY state,

then press ESC f 2 to resume script execution

Log in to the application. You can log in to the application.
manually or you can use a script to log in automatically . To
effect an automatic login, edit the upload or dnload scripts as
appropriate to include your own login procedure. At the
Ready state press the Resume key sequence, (@ f 2), to
resume ESCORT script execution. The login prompt is
redisplayed if you attempt to resume script execution before
the login procedure is complete.

The ESCORT upload or dnload script automatically invokes
IEBGENER from SYSl.LINKLIB so that no synchronous host
program installation is necessary. If IEBOENER is not

Upload and Download 5-5

contained in SYS1.LINKLIB, the user will have to modify the
upload and dnload scripts (contained in lusr/escortlslib) to
point to the appropriate libraries.

10 Blocks of data being uploaded or downloaded are displayed on
the terminal. The following message is displayed in a window
for each screen load of n records transferred:

n Records Up (Down) - loaded

The following message, in a window, is displayed on the final
screen:

n Total Records Up (Down) -loaded

11 The upload and dnload scripts then redisplay the File Transfer
Facility input screen. You may continue to select source and
target files for transmission of data, following the procedures
outlined in steps 4 to 10 above. Note that since you have
already logged in to your application you do not have to
repeat the procedure in step 9 above.

12 When you have completed all uploading or downloading of
data, at the File Transfer Facility screen press (RETURN) ,
leaving all input fields blank. The ESCORT script
automatically logs off from the application. A count of the
number of records uploaded or downloaded is written to the
escort.pr{proc,id} file, in the directory defined by the ESCDIR
environment variable. The following example indicates that
58 records were downloaded:

58 Total Records Down-loaded from dsname to UNIX-fll~ame

Note
When uploading, the ESCORT script pads short records with
blanks up to the logical record length. The upload and dnload
scripts do not recognize tabs. Files containing special characters
(for example, binary data) may not be transmitted using the
upload or dnload scripts.

5-6 ESCORT Utilities

Program Listing

Downloading Files from TSO

/**
/*
/* This program is for downloading text files from TSO. You
/* will be prompted for the TSO file name, the UNIX file name, and
/* the logical record length. The host file must be cataloged.
/* The full data set name is required without quotes.
/*
/* The file to be downloaded can contain only displayable standard ASCII
/* characters. Otherwise, transmission error may occur.
/*
/* The download is accomplished by executing IEBGENER in the
/* foreground. A CLIST is uploaded and executed line by line to
/* run the GENER. You may speed this process up by storing the
/* CLIST on TSO.
/*
/**

dnload prog main(Ll)

main

while(l)
do

char (50) unixname
char (50) dsname
int lrecl
int blk
char (4) recfm
char (255) buf
char (255) tmpbuf

int rtncode

copy " parms. 1" /* local screen for Parms

script

int b
int e
int i
int j
int k
int 1
int m
int tot
int consw
int endsw
int fldpos

call getdata /* Get User Parameters for DNLOruo
/* No more files to DNLOAD . EXIT if (rtncode = 1)

then
connect(Hl)
if (sysret = -1) /* Host connection failed
then

connect(Ll)
fldpos = $fldaddr (parms. errmsgl)
chgattr(Ll,fldpos,(U,*,*,*,*,*,*»

Upload and Download 5-7

endif

parms.errmsgl = C"Cannot Connect to Host - Please Tr¥ later")
chgattrCll,fldpos,CP,*,*,*,*,~,*»
showCll)
exit
return

endif
if C$scanC"READY "»
then·

showCHl)
text "lOGOFF" 1* log off T50
enter

endif
return 1* Exit DNlOAD

1***
1* Exit to Interactive Mode·to allow user to
1* logon to T50 and bring to READY state.
1***

manlog: while IC$scanC"READY "» do
window C2l,20,24,79)

en do

wto C" Please logon to T50 and leave at READY state,")
wto C" then press ESC f 2 to resume script execution.")
exit

call allocate 1* allocate iebgener files

e = 81 1 * initialize end of line
tot = 0
endsw = 0
consw = 0
window C22,50,24,79,r) 1* message window
wto C" Down-loading Data ")

k = 1
while k = 1 do

if tot I = 0 then
e = 0

endif
cursor C24, 80)
for i = 0 to 23 do 1 * is this last page ?

j = C80*i + 2)
if $gsubstr (screen, j, 5) = "READY" then

endsw = 1
j == (j + 80)
cursor (j)
break

endif
endo
for i = 1 to 24 do 1 * process current page

b = $nextfld (e) 1* get beginning of record
if b = 1842 then 1* bottom?

break
endif
if endsw = 1 then 1 * not full page

if $gsubstr(screen, b, 5) = "READY" then
k= 2
break

end if
endif
e = $nextfld (b) 1* get end of record

5-8 ESCORT Utilities

1 = (e - b - 1)
if consw = 1 then

/* get record length

tmpbuf = $gsubstr(screen,b,l)
if «1 + $length(buf» > lrecl) I

«$length(tmpbuf) = 1) & tmpbuf = " ") then
call writeo /* write out previous record
buf = $gsubstr(screen, b, 1)
tot = (tot + 1)

else /* concatenate records
buf = (buf + $gsubstr(screen, b, 1))

endif
else

buf = $gsubstr (screen, b, 1)
endif
consw = 0
if (e = 1842) then

consw = 1
break

endif
call writeo
if $attr(e, H) then

e = (e - 1)
endif

/* rec continues next page

/* write a record
/* means no real end attr
/* so this is begin attr

/* for next record
tot = (tot + 1)

endo
wto (" " $itos(tot) " Records Down-loaded")
enter

endo

window (22,44,24,79) /* non-resident message window
wto (" " $itos(tot) " Total Records Down-loaded")
print ($itos(tot) " Total Records Down-loaded"
" From" dsname " To " unixname)

close(unixflle)

endo /* MAIN WHILE LOOP
ends

writeo script /* write a record
write "(unixfile, buf)
if sysret = -I then

window (21,40,24,79)
wto " Wr! te Error - Aborted"
wto " ENTER to terminate"
exit (tutorial)
abend

end if
ends

allocate script
clear
text "FREE FI(SYSIN SYSPRINT SYSUTI SYSUT2) ATTR(L)"
enter
text "ALLOC FI(SYSIN) DA('NULLFILE') SHR"
enter
text "ALLOC FI(SYSPRINT) DA('NULLFILE') SHR"
enter
text ("ATTR L LRECL(" lrecl ") BLKSIZE(" blk ")"
enter
text ("ALLOC FI(SYSUTl) DA('" dsname "') SHR ")
enter
text "ALLOC FI(SYSUT2) DA(*) USING(L)"
enter

Upload and Download 5-9

ends

clear
text "CALL 'SYSl.LINKLIB(IEBGENER)'"
enter

getdata script

while(l)
do

int fldpos
char(3) work

rtncode = 0

getfmt(Ll,parms)
connect(Ll)
showeLl)
fldpos = $fldaddr(parms.process)
chgattr(Ll,fldpos,(U,*,*,*,*,*,*»
parms. process = "DNLOAD"
chgattr(Ll,fldpos,(P,*,H,*,*,*,*»

exit

unixname = $strip(parms.unixname)
dsname = $strip(parms.dsname)
work = $strip(parms.lrecl)
recfm = $strip(parms.recfm)

1* Get User Parameters

1* Get UNIX file name
1* Get DSNAME

1* Get LRECL
1* Get RECFM

if (unixname = "" &: dsname =
then

&: work = "" &: recfm = "")

endo

end if

rtncode = 1
return

open (unixfile,unixname, W)
if (sysret 1= 0)
then

endif

call error(l)
cycle

lrecl = $stoi(work)
if (lrecl < 1 I lrecl > 255)
then

endif

call error(2)
cycle

blk = (lrecl * 10)
switch (recfm)
case "fb"
case "FB"
case "vb"

blk = (blk + 4)
case "VB"

blk = (blk + 4)
default

call error(3)
cycle

endc

break

5-10 ESCORT Utilities

1* Exit File transfer

1* Convert to integer

1* for record desc word

1* for record desc word

1* Break out of while loop

connect(HI)
show(HI)

/* Connect Back to Host T50

ends

error script(int code)

ends

endp

int fldpos

fldpos = $fldaddr(parms.errmsgl) /* Unprotect Error Message Field
chgattr(LI, fldpos, (U,*,*,*,*,*,*»
fldpos = $fldaddr (parms. errmsg2)
chgattr(LI, fldpos, (U,*,*,*,*,*,*»

switch (code)
case I

parms.errmsgl = ("Cannot Open UNIX File: " UNIXNAME)
parms.errmsg2 = "Please Re-enter UNIX File name and Press RETURN"
fldpos = $fldaddr(parms.unixname) /* Position Cursor
cursor(fldpos)

case 2
parms.errmsgl = "Invalid LRECL - Valid Range is between 1-255"
parms.errmsg2 = "Please Re-enter LRECL and Press RETURN"
fldpos = $fldaddr (parms .lrecl)
cursor (fldpos)
close (unixfile)

case 3
parms.errmsgl = "Invalid RECFM - Valid Entries are FB or VB"
parms.errmsg2 = "Please Re-enter RECFM and Press RETURN"
fldpos = $fldaddr (parms. recfm)
cursor(fldpos)
close (unixfile)

default
endc

fldpos = $fldaddr(parms.errmsgl) /* Protect Error Message Field
chgattr(LI, fldpos, (P,*,*,*,*,*,*»
fldpos = $fldaddr(parms.errmsg2)
chgattr(LI, fldpos, (P,*,*,*,*,*,*»

Upload and Download 5-11

Uploading Files to TSO

1**
1*
1* This program is for uploading text files to TSO. You
1* will be prompted for the TSO file name, the UNIX file name, and
1* the logical record length. The host file must be cataloged.
1* The full data set name is required without quotes.
1*
1* The file to be uploaded can contain only displayable standard ASCII
1* characters. Otherwise, transmission error may occur.
1*
1* The upload is accomplished by executing IEBGENER in the
1* foreground. A CLIST is uploaded and executed line by line to
1* run the GENER. You may speed this process up by storing the
1 * CLIST on TSO.
1*
1**

upload prog main(Ll)

char (50)
char (50)
int
char (4)
int

dsname
unixname
lrecl

recfm
rtncode

copy "/usr/escort/slib/parms.l"

main script

whlle(l)
do

int
int
int
int
int
int
int
int
int

i
j
k
1
m
lim
tot
count
fldpos

char (255) buf
char (255) a (22)
char (2048) block
char (80) blank

blank = (" " blank)

call getdata
if (rtncode = 1)
then

connect(Hl)

1* initialize with blanks

1* Get User Parameters for UPLOAD
1* No more files to UPLOAD - EXIT

if (sysret = -I) 1* Host connection failed
then

connect(Ll)
. fldpos = $fldaddr (parms. errmsgl)

chgattr(Ll,fldpos,(U,*,*,*,*,*,*»
parms.errmsgl = ("Cannot Connect to Host - Please Try Later")
chgattr(Ll,fldpos,(P,*,*,*,*,*,*»

5-12 ESCORT Utilities

endif

showell)
exit
return

endif
if ($scan("READY "»
then

show(Hl)
text " LOGOFF" 1 * Log off TSO
enter

endif
return 1* Exit ONLOAD

1***1
1* LOGON TO TSO --
1* Exit to Interactive Mode to allow user to
1* logon to TSO and bring to READY state.
1***1

while 1($scan("READY "» do
window (21,20,24,79)

endo

wto (" Please logon to TSO and leave at READY state,")
wto (" tnen press ESC f 2 to resume script execution.")
exit

l~m = (1760 - lrecl)

call allocate

1* set bound on block size

1* allocate gener files

count = 0
window (22,50,24,79,r) 1* message window
wto (" Up-loading Oata ")

k = 1
while k = 1 do

tot = 0
for i = 1 to 21 do

read (unixfile, buf)
if sysret = -I then 1 * end of file ?

k = 0
a (i) = ""
break

endif
count = (count + 1)
1 = $length (buf) ,
j = (lrecl - 1)
if j < 0 then

erasew
window (21,40,24,79)
wto (" Record read> " $itos(lrecl»
wto "ENTER to terminate"
print (" Record read> " $itos(lrecl»
exit (tutorial)
abend

endif'
m = (j 1 80)
j = (j % 80)
switch (m) 1* pad record with blanks

case 0
a (i) (buf $gsubstr (blank, 1, j»

case 1
a (i) (buf blank $gsubstr (blank, 1, j»

Upload and Download 5-13

endo

case 2
a (i) (buf blank blank $gsubstr (blank, 1, j»

case 3
a (i) (buf blank blank blank $gsubstr (blank, 1, j»

default
abend (12)

endc
tot = (tot + lrecl)
if tot > lim then 1* max block

break
endif

for i = (i+l) to 21 do
a (i) = "" 1* null unused elements

en do
block = (a(l) a(2) a(3) a(4) a(5) a(6) a(7) a(8) a(9) a(lO)

a(ll) a(12) a(13) a(14) a(15) a(16) a(17) a(18) a(19)
a(20) a(21)) 1* build block

if $length (block) = 0 then
break

endif
clear
sysret = ·5 1 * required for upload
text block
sysret = 0 1* reset "sysret"
enter
wto (" " $itos(count) " Records Up·loaded ")

endo

sysret = 0
text "1*"
enter
erasew
window (22,44,24,79) 1* non·resident message window
wto (" " $itos(count) " Total Records Up·loaded ")
print ($itos(count)" Total Records Up·loaded"
" From " unixname " To " dsname)

close(unixfile)
endo 1* MAIN WHILE LOOP

ends

allocate script

ends

clear
text "FREE FI(SYSIN SYSPRINT SYSUTl SYSUT2) ATTR(L)"
enter
text "ALLOC FI(SYSIN) DA('NULLFILE') SHR"
enter
text "ALLOC FI(SYSPRINT) DA('NULLFILE') SHR"
enter
text ("ATTR L LRECL(" $itos(lrecl) ")")
enter
text "ALLOC FI(SYSUT1) DA(*) USING(L)"
enter
text ("ALLOC FI(SYSUT2) DA('" dsname "') SHR ")
enter
text "CALL 'SYS1.LINKLIB(IEBGENER)'"
enter
clear

5-14 ESCORT Utilities

getdata script

while(l)
do

int fldpos
char(3) work

rtncode = 0

getfmt(Ll,parms)
connect(Ll)
show(Ll)
fldpos = $fldaddr (parms. process)
chgattr(Ll,fldpos,(U,*,*,*,*,*,*»
parms.process = "UPLOAD"
chgattr(Ll,fldpos,(P,*,H,*,*,*,*»

exit

unixname = $strip(parms.unixname)
dsname = $strip(parms.dsname)
work = $strip(parms.lrecl)
recfm = $strip(parms. recfm)

1* Get User Parameters

1* Get UNIX file name
1* Get OSNAME

1* Get LRECL
1* Get RECFM

if (unixname = "" & dsname =
then

& work = "" & recfm = " ")

endo

endif

rtncode = 1
return

open (unixfile,unixname, R)
if (sysret 1= 0)
then

endif

call error(l)
cycle

lrecl $stoi(work)
if (lrecl < 1 I lrecl > 255)
then

endif

call error(2)
cycle

switch (recfm)
case "fb"
case "m"
case "vb"
case "VB"
default

endc

break

call error(3)
cycle

connect(Hl)
show(Hl)

ends

error script(int code)

1* Exit File transfer

1* Convert to integer

1* Break out of while loop

1* Connect Back to Host T50

Upload and Download 5-15

ends

endp

int fldpos

fldpos = $fldaddr(parms.errmsgl) 1* Unprotect Error Message Field
chgattr(Ll, fldpos, (U,*,*,*,*,*,*»
fldpos = $fldaddr(parms.errmsg2)
chgattr(Ll, fldpos, (U,*,*,*,*,*,*»

switch(code)
case 1

parms.errmsgl = ("Cannot Open UNIX File: " UNIXNAME)
parms.errmsg2 = "Please Re-enter UNIX File name and Press RETURN"
fldpos = $fldaddr(parms.unixname) 1* Position Cursor
cursor(fldpos)

case 2
parms.errmsgl = "Invalid LRECL - Valid Range is between 1-255"
parms.errmsg2 = "Please Re-enter LRECL and Press RETURN"
fldpos = $fldaddr (parms .lrecl)
cursor(fldpos)
close(unixfile)

case 3
parms.errmsgl = "Invalid RECFM - Valid Entries are FB or VB"
parms.errmsg2 = "Please Re-enter RECFM and Press RETURN"
fldpos = $fldaddr(parms.recfm)
cursor (fldpos)
close(unixfile)

default
endc

fldpos = $fldaddr(parms.errmsgl) 1* Protect Error Message Field
chgattr(Ll, fldpos, (P,*,*,*,*,*,*»
fldpos = $fldaddr (parms. errmsg2)
chgattr(Ll, fldpos, (P,*,*,*,*,*,*»

5-16 ESCORT Utilities

Generating Screen
Field Variables

The ESCORT script named fldgen, contained on the ESCORT
installation diskette, can be used to generate screen field
variables for any screen within your synchronous host
application.

Procedure for Generating Variables
The procedure for generating screen field variables follows:

1 On the command line, type

escort /usr/escortlsllb/fldgen filename[,ALLJ

and press (RETURN).

filename is the name of the output file to which the generated
screen field variables will be written.

The optional parameter ALL can be used to generate screen
field variables for all fields on the screen (both protected and
unprotected). If you omit this parameter, field statements for
unprotected fields only are generated.

2 The ESCORT banner screen is displayed briefly. ESCORT
then displays the appropriate synchronous host application
screen together with the following field generation prompt in
a window:

Select Application Screen and

-Press ESC f 2 to generate field variables, OR

-Log off and exit ESCORT (ESC f 1) to quit

3 Log in to the application (either manually or via a login
script).

4 Select the application screen for which you want to generate
screen field variables.

Generating Screen Field Variables 5-17

5 Press the InterruptlResume (I1R) key combination, ~ f 2,
to generate the field variables for the application screen you
have selected. The field generation prompt and window are
redisplayed. The window and its contents do not affect the
generation of screen field variables that may be obscured by
this prompt.

6 Repeat the operations in steps 4 and 5 above for all
remaining application screens for which you want to generate
screen field variables.

7 When you have generated all the required screen field
variables, log off from the application in the usual way and
press (ESC) f 1 to quit ESCORT and return to the UNIX
shell.

Generated Variables Format
The output file, filename, contains the screen field variables for
each application screen that you selected. A blank line separates
field statements for each application screen. The format of the
field statement generated in the output file is

FIELD(row,col,length)fld{n}/*Attributes, Groups 1 to 4 (offset)

row,col,length follow the conventions defined in the FIELD
statement in Chapter 4.

fld {n} specifies the field name automatically assigned by the
fldgen script, where n is a sequential number starting at 0001.
The first FIELD statement generated by fldgen from each
application screen is assigned the field name fldOOO 1; subsequent
fields are named fld0002, fld0003, etc.

It is recommended that the field names in the output file be
amended to unique names to avoid conflicts in field names across
multiple screen definitions.

1* Attributes, Groups 1 to 4 specifies the Primary Attributes ..
Group 1 to Group 4 for the generated field. The attributes are
shown as a comment to the FIELD statement. Note that fldgen
does not generate comments for Extended Field Attributes ..
Group 5 to Group 7.

The following table lists the comments generated by the fldgen
script together with their attribute group and meaning.

5-18 ESCORT Utilities

Attribute Primary
Comment Attribute Attribute

PROT Protected Group 1
UNPR Unprotected Group 1

NUMR Numeric Group 2
ALPH Alphabetic Group 2

NORM DISP Normal Group 3
HILT DISP Highlighted Group 3
DARK Dark Group 3

TAGS Modified DT Group 4
TAGR Reset DT Group 4

To use the output file FIELD statements to generate a local
screen fonnat containing Primary Attributes and Extended Field
Attributes, you must amend such FIELD statements by replacing
the attribute comments with the corresponding attribute operand.
See the FIELD statement in Chapter 4 for more information on
Primary Attributes and Extended Field Attributes.

(offset) specifies the absolute screen address of the first character
of the field generated. This comment may be deleted when you
use the generated FIELD statement in an ESCORT script.

The following example indicates the contents of an output file
created using the fldgen script from two synchronous host
application screens. The first synchronous host application
screen contains two fields and the second screen three fields; the
generated field variables for each screen are separated by a blank
line in the output file.

FIELD (5,10,12)f1dOOO1
FIELD (10,10,5)f1dOOO2
FIELD (3,10,8)f1dOOO1
FIELD (5,10,10)f1dOOO2
FIELD (15,8,3)f1dOOO3

1* UNPR ALPH t-DRM DISP TAGR (330)
1* UNPR NUMR NORM DISP TAGR (730)
1* UNPR ALPH HILT DISP TAGR (170)
1* UNPR ALPH NORM DISP TAGR (330)
1* UNPR NUMR DARK TAGR (1128)

Generating Screen Field Variables 5-19

Program Listing

/***/
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

This program generates field statements from the current
screen. To generate a file containing field variables,
you have to be on that screen. From the UNIX prompt, enter:

ESCORT FLDGEN outfile[,ALL]

where 'outfile' is the name of the file that will contain the
field statements for the current screen. The optional parameter
ALL can be used to generate statements for all fields,
i.e., protected and unprotected. If you omit this parameter,
then statements for unprotected fields only are generated.
This script has been changed for the 38 version of ESCORT.
The script is in a loop where the user is allowed to position
themselves on the screen for field generation, they will
then PRESS ESC f 2 and the script will then generate the field
statements for that screen. The script will then allow the
user to go to other screens and repeat the process.
All field statements generated will be placed in the file
specified by the user at the time of execution. Each format will
be separated by a blank line.

BUGS:
1. If two or more consecutive attributes are present, then

the length of the field may be incorrect.
/* 2.
/*

If a field is wrapped (from last field to first field),
then two field statements are generated, i.e., last field

/* and first field, instead of one contiguous field.
/*
/***/

fldgen PROG

main SCRIPT
INT
INT
INT
INT
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
INT
INT
INT
INT
INT
INT

5-20 ESCORT Utilities

main

i
j
k
FIRSTFID
(5) P
(5) A
(5) H
(5) 0
(5) M
(4) s
(2) r
(2) c
(4) 1
(8) f
(80) line
(40) file
(10) opt
row
col
len
olen
all
total

/* field pOSition
/* number of fields

/* 1st attr found flag
/* protected/unprotected
/* alphanumeric/numeric
/* highlighted/normal
/* displayable/dark
/* data tag set/reset

/* line buffer
/* filename
/* ALL option
/* row
/* column
/* length
/* old length
/* print all fields flag
/* total length

1***1
1*
1* check input parameters and open 'outfile'
1*
1***1

FILE = "&&1" 1* outfile name
opt = "&&2" 1* all option
IF file = "" 1* no outfile name specified
THEN

WINDOW (21,20,23,62)
WTO USAGE: ESCORT FLDGEN outfile(,ALL)"
EXIT(tutorial)
ABEND

ENDIF

OPEN (fl,"&&l",a) 1* open file to append,handles multiple screens
IF SYSRET 1 = a
THEN 1* outfile open failed
WINDOW (21,20,23,62)
WTO" cannot open output file . &&1"
EXIT(tutorial)
ABEND
ENDIF

SWITCH (opt)
CASE ""
all = a

CASE "all"
all = 1

CASE "ALL"
all = 1

DEFAULT
WINDOW
WTO USAGE:
EXIT (tutorial)
ABEND

ENDC

1* check ALL option
I * null option

1* unprotected fields only
I * all fields

I * all fields

(21,20,23,62)
ESCORT FLDGEN outfile(,ALL)"

1***1
1*
1* $NEXTFLD returns a if no field is found.
1* $NEXTFLD returns 1921 if there is an attr. byte at position 1920.
1* case 0" means last field wrapped (no attr at position 1).
1* case 1" is normal formatted screen field.
1*
1***1

while(l)
do

WINDOW (19,15,23,70)
WTO " Select Application Screen and
WTO Press ESC f 2 to generate field variables, OR"
WTO Log Off and exit ESCORT (ESC f 1) to quit."
exit

i = 1
j = a
k = a
FIRSTFID = 1

1* initial position
1* fields counter
1* Next field position
1* New Screen . NO ATTR Found Yet

WHILE «i 1 = 0) & (i 1 = 1921»
DO
i = $NEXTFLD(i)
IF (i 1 = 0) & (i 1 = 192i)

Generating Screen Field Variables 5-21

THEN
IF (FIRSTFID) & (1 1= 2) & (k = 0)
THEN 1 = 1 /* no attr at position 1

WTO "case 0"
ELSE

j = (j+1)
WTO "case I"

ENDIF

/* bump f1e1ds count
/* attr at pos1t1on 1

FIRSTFID = 0

IF $ATTR(1,P) THEN P = " PROT" ELSE P = " UNPR" ENDIF
IF (P = " PROT") & (all = 0) /* Unprotected f1d only
THEN

j = (j-l) /* reset field count
cycle

ENDIF

IF $ATTR(1,A) THEN A = " ALPH" ELSE A = " NUMR" ENDIF
IF $ATTR(i,H) THEN H = " HILT" ELSE H = " NORM" ENDIF
IF $ATTR(1,D) THEN D = " DARK" ELSE D = " DISP" ENDIF
IF $ATTR(1,M) THEN M = " TAGS" ELSE M = " TAGR" ENDIF

CALL rowcol(1, row, col)

s = $ITOS(row)
IF $LENGTH(S) = 1 THEN r = ("0" + s) ELSE r = s ENDIF

s = $ITOS(col)
IF $LENGTH(S) = 1 THEN c =

k = $NEXTFLD(i)
len = (k - 1 - 1)

("0" + s) ELSE c = s ENDIF

IF k = 0 THEN len = (1922-1-1) ENDIF /* EOF
IF k = 1921 THEN len = (1921-1-1) ENDIF /* NORM
total = (total + len)
s = $ITOS(len)

k = $LENGTH(s) /* fill 'Os' 1n length field
SWITCH (k)
CASE 1
1 = ("000" + s)

CASE 2
1 = ("00" + s)

CASE 3
1 = ("0" + s)

DEFAULT
1 = ("" + s)

ENDC

1f (j < 1)
then
j = 1

endif
s $ITOS(j)

k $LENGTH(s)
SWITCH (k)
CASE 1

f = ("fldOOO" + $ITOS(j»
CASE 2
f = ("fldOO" + $ITOS(j»

CASE 3
f = ("fldO" + $ITOS(j»

DEFAULT

5-22 ESCORT Utilities

1* fill 'Os' in field names

f ("f1d" + $ITOS(j»
ENDC

line = (" FIELD (" +
r+"," +c+"," +1+
") " + f + " 1*" +

P+A+H+D+M+
" (" + $ITOS(i) + ")")

IF (P = " UNPR") I (all = 1)
THEN

WRITE (fl, line)
ENDIF

ENDIF
ENDO

1* write a line

1***1
1*
1* case of an unformatted screen (no attributes)
1*
1***1

IF (i = 0) & (j = 0) 1* un· formatted screen
THEN
total = (total + 1920)
line = (" FIELD (01,01,1920) fldOOO1" +

" 1* UNPR ALPH NORM DISP TAGR (1)")
WRITE (f1, line) 1* write a line
line = (" " +

WRITE (fl, line)
ENDIF

1* UN·FORMATTED SCREEN")
1* write a line

1***1
1*
1* case of an unformatted screen (no attributes)
1*
1***1

IF (i = 1921) & (j = 0) 1* only attr at 1920
THEN

1* WTO "case 2"
total = (total + 1919)
line = (" FIELD (01,01,1919) fldOOO1" +

" 1* UNPR ALPH NORM DISP TAGR (I)")
WRITE (f1, line) 1* write a line

ENDIF

1***1
1*
1* print attributes at position 1920
1*
1***1

1*

IF (i = 1921) 1* attr at position 1920
THEN
WTO "case 3"

IF $ATTR(i,P) THEN P "PROT" ELSE P
IF $ATTR(i,A) THEN A "ALPH" ELSE A
IF $ATTR(i,H) THEN H "HILl" ELSE H
IF $ATTR(i,D) THEN D "DARK" ELSE D
IF $ATTR(i,M) THEN M "TAGS" ELSE M
j (j+1) 1* bump attr count
line = ("

" ltPR"
" NtJt.R"
" NORM"
" DISP"
" TAGR"

ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

" 1*" + P + A + H + D + M +
+

" (" + $ITOS(192O) + ")")
IF (P
THEN

" UNPR") I (all = 1)

Generating Screen Field Variables 5-23

endo

ENDIF
ENOIF

line = (" ")
WRITE (fl, line)

1* MAIN WHILE LOOP

WRITE (fl, line)/* write a line

1* blank line at the end
1* write a line

1***1
1*
1* diagnostics
1*
1***1
1*
1*
1*
1*
1*

total = (total + j) 1* add number of attr
line = (" TOTAL LENGTH = " + $itos(total))
WRITE (fl, line) 1* write total length
line = ("NUM OF ATTR =" + $itos(j»
WRITE (fl, line) 1* write value of attr

ENDS

1***1
1*
1* This routine returns row and column position
1*
1***1
rowcol SCRIPT (int cur, int row, int col)/* calc. row & col

INT offset
offset= (cur-I)
row «offset/BO)+l)
col = (offset- (80*(row-l))+1)
ENOS

1***1
copy "/usr/escort/slib/aidLcc"

ENOP

5-24 ESCORT Utilities

Get Fields

The getflds.s script facilitates the parsing of input records into
fields. It is used to read variable length records, that may
contain variable length fields. The fields within the record must
be delimited by a vertical bar (I) field separation character.

To include the getflds.s subroutine in your script, add the
following COpy command:
COpy "/usr/escort/common/getflds.s"

You must perform a READ operation before calling the getflds.s
subroutine.

The subroutine is invoked in your script by using a CALL
command.

The getflds.s subroutine parses variable length input strings and
populates a field table named fld_tbl. The values assigned to
the fld_tbl array can then either be addressed directly or can be
assigned to suitable variables within your script.

The following declarations are required in the global variable
declarations section of the calling program:
CHAR (15) fldLtbl (20)

The fld_tbl array is defined with a maximum field length of 15
characters and with a maximum of 20 fields per record. The
field length and the number of table entries can be amended to
suit your needs. When values are assigned to the array, fld_tbl
(1) will contain the first field and fld_tbl (n) will contain the nth
field.
CHAR (80) inbuf

The inbuf variable is the input buffer into which the records are
read. The maximum record size contained in the file is 80
characters. Similarly, the record size can be amended to suit
your needs.

Get Fields 5-25

The variable names may also be amended to suit your particular
application.

5-26 ESCORT Utilities

Program Listing

1**
1* GETFLOS
1* This function will parse an input string, delimited by "I"s
1* individual fields. These fields will be stored in an array called
1* "fldtbl", each element containing the field value as it was
1* encountered.
1**
getflds script

int i
int indx
int e
int b
int 1
int len
char (80) string

indx = 0

1* end of field position
1* beginning of fld
1* length of field
1* length of string

len = $length (inbuf) 1* contents of record read

while (len 1= 0)
do
e = 0
indx = (indx+l)
for i= 1 to len
do

endo

if (e = 0)
then

else

endif

if ($gsubstr(inbuf,i,l) = "I")
then

endif

e = (i-I)
break

1 * "I" not found, last field

e = 1
fld..tbl(indx)
len = 0

fld..tbl(lndx)
b = (e+2)
if (b > len)
then

endif

$gsubstr(lnbuf,l,e)

$gsubstr(lnbuf,l,e)

len = 0
goto eo..OQP

1 = (len- (e+l»
lnbuf = $gsubstr(inbuf,b,l)
len = $length(inbuf)

ENOLOOP: string = fld..tbl(indx)
fld..tbl(indx) $strlp(strlng)

endo

ends

Get Fields 5-27

Asynchronous Host
Soft Function Keys

In the asynchronous host environment, many applications use
the soft function keys, @) to @. ESCORT allows the use of
these keys from within a script by using PFl to PFB, or AID
keys 1 to 8, to transmit the soft function keys to the
asynchronous host.

The escape sequences sent by ESCORT when these commands or
keys are used, are the defaults specified for a VT100 terminal. In
some instances, applications will define alternate key sequences
for the soft functions keys. In this case, use of the PFl to PFB,
or AID keys 1 to 8, will not provide the correct function.

In order to transmit the @) to @ keys in this situation, you
must use the $HEX function to send the appropriate escape
sequences to the asynchronous host.

The fkeys.p sample program provides an illustration of how the
$HEX function is used to send the soft function keys to the host.

The sample script includes dummy SERINiT parameters which
must be amended for your particular asynchronous session. A
sample CALL command, which sends soft function key @
default values to the asynchronous host, is also shown.

Asynchronous Host Soft Function Keys 5·29

Program Listing

1***
1* PURPOSE: This sample program demonstrates the use of the
1* $HEX function to send any string of data to the
1* host.
1*
1* The use of the $HEX function is very effective
1* when you need to send the soft function keys
1* (Fl-F8) to the host and the host has modified
1* the default VT100 values for those keys.
1* In that case, you need to be able to send the
1* sequence of characters that the host application
1* expects to receive for the keys Fl-F8.
1***

fkeys prog main(Al)

char(3)
char(3)
char(3)
char(3)
char(3)
char(3)
char(3)
char(3)

main script

Fl
F2
F3
F4
F5
F6
F7
F8

Fl=
F2 =
F3 =
F4
F5 =
F6 =
F7 =
F8 =

$HEX ("lb4f50")
$HEX ("lb4f5l")
$HEx ("lb4f52")
$HEX ("lb4f53")
$HEx ("lb4f54")
$HEX ("lb4f55")
$HEX ("lb4f56")
$HEx (" lb4f57")

1* ESC OP *1
1* ESC OQ *1
1* ESC OR *1
1* ESC OS *1
1* ESC OT *1
1* ESC OU *1
1* ESC OV *1
1* ESC OW *1

serinit(1,12oo,e,1,7,full,"hostl" ,"")
connect(al)

ends

if (sysret = -I)
then

endif

call sendfkey(2)

5-30 ESCORT Utilities

log "Connection to HOSTI failed"
return

1* Send F2 *1

/***
/* SENDFKEY
/* PURPOSE: Send ASCII Soft Function Keys Fl·F8
/***

sendfkey script(int key)

switch(key)
case 1

text Fl
case 2

text F2
case 3

text F3
case 4

text F4
case 5

text F5
case 6

text F6
case 7

text F7
case 8

text F8
default /* Default required */
endc

ends

endp

Asynchronous Host Soft Function Keys 5-31

6 Local Screen Generator
Utility Program

Overview 6-1

Accessing and Quitting LSGEN 6-3
Accessing LSGEN 6 -3
Operator Infonnation 6 -5
On .. Line Help 6 -6
Quitting LSGEN 6 -7

Creating and Editing Fields 6 -9
Edit Mode 6 -9

Defining Fields 6 -19
Field Definition Mode 6 - 19

LSGEN Error Messages 6 -27

LSGEN Key Sequences 6 -29
Special Key Combinations 6 -29
LSGEN Cursor Movement Keys 6 -32

Overview

This chapter contains information you need to know to use the
ESCORT Local Screen Generator (LSGEN) Utility Program.

LSGEN is a full screen editor program that allows you to create
local screen formats for subsequent use with an ESCORT
program. The formatted screens may contain a variety of field
attributes. Formatted screens created using LSGEN are saved on
your system as standard UNIX files and can be accessed using
your system editor utility. Local Screen files can also be
retrieved and modified by the LSGEN program and can be
included in an ESCORT program by use of the ESCORT COpy
command.

Local screens formats are created independently of any ESCORT
program and, therefore, you do not require a knowledge of
ESCORT to be able to create local screen formats using LSGEN.

This chapter is divided into four sections:

o accessing and quitting LSGEN

o modes of operation of the program

o LSGEN error messages

o key sequences specific to LSGEN.

Note
LSGEN is a separate utility program and, therefore, it utilizes a
separate set of key sequences which may differ from the key
sequences used in ESCORT.

A demonstration local screen format file, named
lusrlescort/commonldemoscrn is available, as part of the LSGEN
utility program, on your system. Access this demonstration
screen to test the various features of LSGEN.

Overview 6-1

When you have read this chapter you will be able to create local
screen formats, using all of the field attributes available with your
system, for use with an ESCORT program.

6-2 Local Screen Generator Utility Program

Accessing and
Quitting LSGEN

This section provides you with information on accessing LSGEN
from the UNIX shell and on quitting the LSGEN program.
Information regarding the on .. line help screen and the operator
information area is also reviewed.

Accessing LSGEN
The procedure for invoking LSGEN from the UNIX shell is
described below.

1 On the command line, type

Isgen file_1 [file---21

and press (RETURN) •

file_l specifies the name of the local screen format input file.
The file_l may be either a new file or an existing file.
LSGEN checks the format of the file and displays an error
message if it does not conform to the syntax rules required by
ESCORT.

file-'2 specifies the name of the local screen format output
file. The file-'2 may be either a new file or an existing file.
The file-'2 is an optional parameter and, if omitted, file_l is
used as the output file.

If the output file exists the contents are overwritten when you
quit LSGEN and save the generated output.

LSGEN automatically assigns the output file name to the
screen_name operand of the BEGFMT statement in the
generated local screen format.

2 An LSGEN banner screen is displayed. Press (RETURN) to
continue.

Accessing and Quitting LSGEN 6-3

3 If the output file, file--.2, has been specified on the command
line and this file exists, LSGEN displays the following
warning message:

Output file file--.2 exists. You may overwrite it.
RETURN = continue ESC = quit

4 LSGEN checks the read and write permissions to the files
specified on the command line. If you do not have read
permission for file_I, LSGEN displays the following error
message andquitsj control is returned to the UNIX shell:

Cannot open file_l file.

If you do not have write permission for the output file,
file_I, (or file--.2 if specified) LSGEN displays the following
message:

You do not have write permission to the file_n file.

Updates are not allowed, you may only view the format.

The file_n specifies the output file.

5 If file_l is a new file, LSGEN displays a blank, unformatted
screen.

6 If file_l is an existing file, LSGEN displays a summary of the
local screen format with the following information for each
field statement contained in the file_l file:
o statement line number
o sequential field statement number
o field row, column and length
o field attributes
o format name and field name
o the flag, STR, indicating that the field has been initialized

with a string.

A warning is also displayed if any field has been initialized
with a character string longer than the defined field length.

Press (RETURN) to display the contents of file_l as a
formatted screen.

6-4 Local Screen Generator Utility Program

Operator Information
LSGEN displays certain operator information messages in the
operator information area. If your terminal has a 24,line screen,
the operator information area must first be toggled on. Press
@ I to toggle on the operator information area. The operator
information area is automatically displayed on terminals with 25,
line screens. The operator information area can be toggled off or
on by pressing @£J I.

In addition to error messages and operator prompts, the operator
information area displays

ESC 1 =HELP row: col:

The row and column location of the current cursor position are
displayed.

Accessing and Quitting LSGEN 6-5

On-Line Help
While in Edit mode, an on .. line help screen is available. Edit
mode is discussed in the next section. Press @D 1 to display
the on .. line help screen. The help screen

o summarizes the special function keys and other key
combinations that you can use in LSGEN

o summarizes the cursor movement keys that are available in
Edit mode.

Press any key to return to Edit mode from the help screen.

6-6 Local Screen Generator Utility Program

Quitting LSGEN
You can quit the LSGEN program, in Edit mode, and either save
or cancel the generated local screen format.

o To save the generated local screen format and return to the
UNIX shell, press (ESC) 2. The local screen format is
written to either file_lor to file-2, depending on the files
specified on the command line. See the section "Accessing
LSGEN" for further information.

o To exit LSGEN and return to the UNIX shell without saving
the contents of the generated local screen format, press
~ q. The LSGEN program requests confirmation that
the generated local screen format is not to be saved.

Accessing and Quitting LSGEN 6-7

Creating and Editing Fields

The two modes of operation of LSGEN, Edit mode and Field
Definition mode, are discussed in this section. Features covered
include creating a local screen format; deleting and inserting
characters and lines; selecting and copying, moving, and deleting
fields; and defining fields.

Edit Mode
Edit mode provides the functions of a screen editor. It is the
default mode when LSGEN displays either a blank screen when
creating a new local screen format, or a formatted screen when
modifying an existing local screen format.

You can move the cursor to any position on the screen and type
uppercase and lowercase text, numbers, and special characters.
Type narrative, either before or after creating fields, at the
appropriate location to pre .. initialize the field.

Various functions are available that provide you with the ability
to insert and delete individual characters, lines of text, and fields.
These functions are described in this section.

Creating'and Editing Fields 6-9

LSGEN Cursor Movement
Cursor movement is controlled by use of the following key
combinations and function keys:

OJ*
or
(CTRL) - t

OJ*
or
(CTRL) - V

B*
or
(CTRL) - f

B*
or
@O-g
(SPACE BAR)

(RETURN)

(BACK SPACE) *

Up arrow

Moves the cursor up one line.

Down arrow

Moves the cursor down one line.

Left arrow

Moves the cursor one position to the left.

Right arrow

Moves the cursor one position to the right.

Space bar

Moves the cursor one position to the right
and displays a blank space.

Return (New line)

Moves the cursor to the first position on
the next line.

Back space

Moves the cursor one position to the left
and deletes the character.

Tab

Moves the cursor to the beginning of the
next tab position. Tab positions are set at
every eighth column.

* These keys must be defined in the UNIX system, terminfo, terminal
information files.

6-10 Local Screen Generator Utility Program

Insert Characters
Entering characters normally overtypes any existing characters on
the screen. Press @ i to insert characters at the current cursor
position. LSGEN displays

INS

in the operator information area when insert is selected. @ i
toggles between insert and overtype modes of typing.

Characters can be inserted inside a field or into a string located
in an unformatted area of the screen. When inserting characters,
characters to the right of the cursor are shifted. The shift area
extends to the end of the current field or to the end of the
current line, depending upon whether insertion is inside or
outside a field. Characters are lost if they are shifted out of the
shift area.

A field cannot be shifted off the current line by inserting
characters to the left of, or inside the field.

Delete Characters
Press @ X to delete individual characters at the current cursor
position. Characters can be deleted from within a field or from a
string located in an unformatted area of the screen. When
deleting characters, characters to the right of the cursor are
shifted. The shift area extends to the end of the current field or
to the end of the current line, depending upon whether deletion
is inside or outside a field.

Characters cannot be deleted from the left of a field that wraps
around the current line.

Field attribute bytes and field termination characters, «),
cannot be deleted.

The delete character key sequence, (ESC) X, can be used in insert
mode. .

Creating and Editing Fields 6-11

Insert and Delete Lines
To in~ert a blank line at the current cursor position, press
~ o. The screen area following the inserted line scrolls
down. You cannot insert blank lines inside a field that wraps
around the current line, nor can fields be shifted off the bottom
of the screen.

To delete a line at the current cursor position, press ~ d.
The screen area following the deleted line scrolls up and a blank
line is inserted at the bottom of the screen. You cannot delete a
line that contains a field.

6-12 Local Screen Generator Utility Program

Create Fields
Every local screen field is preceded by an attribute byte. The
attribute byte occupies a single screen position. To create a new
field:

1 Position the cursor at the screen location immedi(tely ~efore
the first position of the field to be created. Press ESC 4 and
the attribute byte is displayed at the current location.
LSGEN also displays

Field not terminated.

in the operator information area. The attribute byte
overwrites any character at the current screen location. Refer
to Appendix D "Interpretation of Attribute Bytes" for
information on interpreting field attribute bytes.

2 Extend the field created using the cursor movement keys.
Refer to the row and column indicators displayed in the
operator information area to determine the correct length of
the field.

3 Terminate the field. Press @ 4 and the field termination
character «) is displayed at the first screen location
following the last character in the field.

4 You may now choose to define the name and attributes for
the field created. Position the cursor at any location within
the field and press @ 3. LSGEN enters Field Definition
mode and allows you to specify the field name, define the
attributes and redefine the field length if necessary. Refer to
"Defining Fields" in this section for further information.

Defining the field is optional; if you do not define the field,

a LSGEN automatically assigns the current field attributes
to the field. Current field attributes are those attributes
last specified in Field Definition mode. If current field
attributes have not been specified in Field Definition
mode, LSGEN assigns the default field attributes. Refer to
the attribute tables listed in the FIELD statement detailed
in Chapter 4 for information on default attributes.

Creating and Editing Fields 6-13

b The default field name dummy is assigned to the field
when the local screen format is saved.

LSGEN checks to ensure that fields are not created with zero
length and that they dci not overlap.

6-14 Local Screen Generator Utility Program

Delete Fields
To delete a field, PjSition the cursor at any location within the
field and press ESC 6. LSGEN displays

Delete the field? RETURN = YES ESC = NO

in the operator information area. Press (RETURN) and the
attribute byte and the field termination character «) are
deleted. Any literal characters previously contained within the
field are not deleted, however, allowing you to move the literal
string and recreate the field in another location. Literal string
characters may be overtyped or deleted. Refer to the section
"Delete Characters" in this chapter.

Press @ if you do not want to delete the field.

You can also delete a field that has not been terminated by
pressing @ 6.

Creating and Editing Fields 6-15

Copy Fields
To copy an existing field:

1 Position the cursor at any location within the field to be
copied and press @ 5. LSGEN copies (yanks) the field
length, attributes. and any literal character string contained
within the field.

2 Position the cursor at the screen location of the attribute byte
for the new field and press @ 5. LSGEN displays (puts) a
copy of the field in the new location. The field length,
attributes and literal character string, if any, duplicate the
original field. LSGEN assigns the default field name dummy
to the new field. The field name can be amended using the
Field Definition mode.

LSGEN checks to ensure that sufficient unformatted screen sp"ace
exists to accommodate the copied field.

Move Fields
To move an existing field to a new location, use a combination
of the LSGE~ Cor Field, @ 5, Delete Field, @ 6, and
Define Field, ESC 3, key combinations.

1 Select the field to be moved and copy (yank) the field using
(ESC) 5.

2 Put a copy of the field in the new location using @ 5.

3 Delete the original field using @ 6.

4 Redefine the field name of the new field using @ 3.

6-16 Local Screen Generator Utility Program

Field Display
LSGEN provides four functions that assist in visualizing
formatted screens:

o Press @ 7 to toggle on the attribute bytes and field
termination characters «) for all fields. Use @ 7 to
toggle on and off the attribute bytes and field termination
characters. Refer to Appendix D II Interpretation of Attribute
Bytes II for information on interpreting field attribute bytes.

o Press @ 8 to display all fields using the defined visual
attributes: Intensity, (primary Attribute, Group 3), and
Display, (Extended Field Attribute, Group 5). Use (ESC) 8
to toggle on and off the display of visual attributes.

LSGEN displays

FMT

in the operator information area when display attributes
mode is selected.

o Press @ f to display all unprotected fields, that do not
contain a literal character string, with dot (.) fill characters.
The fill character is not part of the formatted screen and is
not saved to the file. Use @ f to toggle on and off
display of the fill character.

LSGEN displays

FIL

in the operator information area when fill mode is selected.

o Press (ESC) r to refresh the entire screen. Use this feature to
repaint the screen to remove, for instance, unwanted UNIX
system messages that may appear at the terminal when you
are creating a formatted screen.

LSGEN provides the option of clearing the entire screen. Note
that all screen data are lost and are not saved to the file. To clear
the screen, press @ z.

Creating and Editing Fields 6-17

Defining Fields

Field Definition Mode
Field Definition mode is entered from Edit mode. Field
Definition mode allows you to define or modify a field and its
attributes. This section contains information on defining all the
characteristics of a field.

Defining Fields 6-19

Enter Field Definition Mode
The following procedure shows you how to enter Field Definition
mode:

D Every local screen field is preceded by an attribute byte. To
create a new field, position the cursor at the screen location
immediately before the first character in the field. The
attribute byte occupies this position.

D To define the attributes of a field created by use of the
Create Field key combination, @ 4, position the cursor
anywhere within the field.

D To modify an existing field, position the cursor anywhere
within the field.

When the cursor is positioned correctly, press @ 3. The
following menu is displayed in a window:

Field name:
row: col:

length:

Protected

Data type
Intensity

Data tag

Display
Foreground
Background

TAB=skip field

SPACE BAR=toggle

ESC = cancel

RETURN = save

The field name, length and attributes are displayed if you are
modifying an existing field.

For new fields, the field name is blank, the length is shown and
current field attributes are displayed. Current field attributes are
those attributes last specified in Field Definition mode. If current
field attributes have not been specified in Field Definition mode,
LSGEN assigns the default field attributes.

The following sections describe the procedure for defining or
modifying a field.

6-20 Local Screen Generator Utility Program

Define Name
Enter the field name in the following format:

[format.]fielLname

where format specifies an optional screen format name to identify
uniquely a field name that may appear in multiple formats.

fielLname specifies the simple field name. The fonnat and
field_name may each be up to eight alphanumeric characters,
and the first character must be alphabetic. The format is
optional, but when it is included it must be separated from the
field_name by a dot (.).

If the field name is not specified, LSGEN automatically assigns
the default name dummy to the field when the local screen
format is saved. This default value corresponds to the keyword
DUMMY used in the ESCORT FIELD statement, and is used to
declare a literal field.

You can modify an existing field name by overtyping and using
(BACKSPACE) if necessary.

Press (TAB) or OJ to skip to the length field. LSGEN checks
the field name entered and displays

Duplicate name.

in the operator information area if the field name entered is not
unique. Press (RETURN) and amend the field name.

Defining Fields 6-21

Define Length
Enter the new field length, or overtype the existing field length.
Valid field lengths are in the range from 1 to 1919. LSGEN
displays

Overlapping fields.

in the operator information area if the length entered would
cause the current field to overlap an existing field.

Press (TAB) or OJ to skip to the attributes fields. Press rn to
return to the previous field.

The field length may be left as undefined. However, if the field
length is not defined, when you exit from Field Definition mode,
LSGEN displays

Field not terminated.

in the operator information area. You must either

o extend the field, using the cursor movement keys, and
terminate the field, by pressing @ 4, or,

o delete the field by pressing @ 6.

See "Create Fields" and "Delete Fields" in the "Edit Mode"
section of this chapter for further information.

6-22 Local Screen Generator Utility Program

Define Attributes
Press the Space Bar, B or B to cycle through all of the
available attribute options.

Press (TAB) or OJ to skip to the next attribute field. Press OJ
to return to the previous field.

You can select one attribute, from the following tables, for each
of the seven groups. Note that Code relates to the attribute code
that LSOEN writes to the field statement in the local screen
format file.

Primary Attribute -- Group 1
Protected Code
Yes P
No U

Primary Attribute -- Group 2
Data type Code

Numeric N
Alphabetic A

Primary Attribute -- Group 3
Intensity Code

Normal N
Highlighted H
Dark D

Primary Attribute -- Group 4
Data tag Code
Modified M
Reset R

Defining Fields 6-23

Extended Field Attribute
.. Group 5

Display Code
Normal N
Blink B
Reverse video R
Underline U

Extended Field Attribute
Foreground .. Group 6
Color Code

Black 0
Blue 1
Green 2
Cyan 3
Red 4
Magenta 5
Brown 6
White 7
Gray 8
Light blue 9
Light green 10
Light cyan 11
Light red 12
Light magenta 13
Yellow 14
Hi .. lit white 15

6-24 Local Screen Generator Utility Program

Extended Field Attribute
Background ... Group 7
Color Code

Black 0
Blue 1
Green 2
Cyan 3
Red 4
Magenta 5
Brown 6
White 7

Note
The foreground and background colors, defined by the Extended
Field Attribute, Groups 6 and 7, are not available in the UNIX
operating system version of LSGEN. They are defined for local
screen format compatibility between the UNIX operating system
version and the MS .. DOS operating system version of LSGEN.

Note that if you select Dark Intensity from the Primary
Attribute, Group 3, the foreground color, defined in Extended
Field Attribute, Group 6, automatically changes to the
background color defined in Extended Field Attribute, Group 7.

Defining Fields 6-25

Exit Field Definition Mode
Amend any fields as necessary by using (TAB), OJ or IT) to
move between fields.

Choose one of the following options to exit Field Definition
mode and return to Edit mode:

D If ou are satisfied that the field is correctly defined, press
RETURN to save the field and its associated name, length and

attributes. The Field Definition window is erased and the
field is displayed on the screen at the appropriate location.

D To cancel the generated field, press ~. The Field
Definition window is erased and the defined field is not
saved.

6·26 Local Screen Generator Utility Program

LSGEN Error Messages

This section lists error messages that LSGEN writes to the
operator information area. A brief explanation of each error
message is included.

Message

Overlapping fields.
RETURN = continue

Cannot delete attribute byte.
RETURN = continue

Cannot shift left.
RETURN = continue

Cannot scroll.
RETURN = continue

Duplicate name.
RETURN = continue

Description

A field has been defined with a
length that will cause fields to
overlap. Fields may not overlap,
redefine the length or reposition
the field.

The delete character key sequence,
@ X, was pressed with the
cursor positioned at an attribute
byte. Attribute bytes cannot be
deleted, reposition the cursor.

Characters cannot be deleted from
the left of a field that wraps around
a line.

Blank lines cannot be inserted
inside a field that wraps around a
line. Blank lines cannot be
inserted that would cause a field to
shift off the bottom of the screen.
Lines. that contain a field cannot
be deleted.

The field name entered in Field
Definition mode already exists.
Duplicate field names are not
allowed, enter a new field name.

LSGEN Error Messages 6-27

Message

Length undefined.
RETURN = continue

Nothing to delete.
RETURN = continue

Cannot shift right.
RETURN = continue

Name too long.
RETURN = continue

Bad name. RETURN =contlnue

Description

Field length has not been defined.
Extend the field using the cursor
movement keys and terminate the
field, or delete the field.

The cursor was not positioned
within a field when the delete field
key sequence, ~ 6, was
pressed. Reposition the cursor.

Characters cannot be inserted in a
field that would cause the field to
shift off the current line.

The field name exceeds the
maximum allowed length. The
format and field name may each be
up to eight characters in length,
separated by a dot (.).

An illegal character (e.g.,
unprintable character) has been
used in a field name. The first
character in a field name must be
alphabetic.

6-28 Local Screen Generator Utility Program

LSGEN Key Sequences

This section lists the special key combinations together with the
cursor movement key sequences available in Edit mode in the
LSGEN program.

You can program the special function keys, @ to @ ,~our
terminal, if available, to simulate the key combinations, ~ 1
to@8.

Special Key Combinations

On .. Line Help

Displays the on .. line help screen. Press any
key to return to Edit mode from the help
screen.

Save screen and return to UNIX shell

Saves the local screen format generated,
quits LSGEN and returns to the UNIX
shell.

Field Definition mode

Enters Field Definition mode from Edit
mode. You may use this function key to
define a new field or to modify an existing
field.

LSGEN Key Sequences 6-29

@D4 Create Field

Establishes the start of a new field and
displays the field attribute byte. When the
field has been extended, by use of the
cursor movement keys, press @D 4 to
terminate the field and display the field
termination character, «).
Copy Field

Copies (yanks) an existing field. The field
length, attributes and any literal string are
copied. Position the cursor at the new
screen location, by use of the cursor
movement keys, and press @D 5 to
display (put) the copied field. LSGEN
assigns the default name dummy to the
copied field.

Delete Field

Deletes a field. Literal characters
previously contained within the deleted
field are not deleted.

Toggle field limit characters

Toggles on and off field attribute bytes and
field termination characters, «).
Toggle field visual attributes

Toggles on and off the defined visual
attributes, Intensity and Display. FMT is
displayed in the operator information area
when display attributes mode is selected.

Delete line

Deletes a line at the current cursor
position. Screen lines that contain fields
cannot be deleted. The screen
automatically scrolls.

6-30 Local Screen Generator Utility Program

@£) i

@£) I

@£)o

[ESC)q

@£)r

@£)x
or
[CTRL) - d

@£)z

Toggle fill character

Toggles on and off display of the fill
character, (.), in all unprotected fields
that do not contain literal character
strings. FIL is displayed in the operator
information area when fill mode is
selected.

Toggle insertl overtype modes

Toggles on and off between insert and
overtype modes. INS is displayed in the
operator information area when insert
mode is selected.

Toggle operator information area

Toggles on and off the operator
information area, or status line.

Insert blank line

Inserts a blank line at the current cursor
position. The screen automatically scrolls.

Exit LSGEN and return to UNIX shell

The local screen format is not saved,
LSGEN quits and control returns to the
UNIX shell.

Refresh screen

Repaints the entire screen with defined
fields and character strings.

Delete character

Deletes individual characters. Field
attribute bytes and field termination
characters, «), may not be deleted.

Clear Screen

Clears the screen; all fields and character
strings are deleted.

LSGEN Key Sequences 6-31

LSGEN Cursor Movement Keys

CD*
or
(CTRL) - t

OJ*
or
(CTRL) - V

B*
or
(CTRL) - f

B*
or
~-g

(SPACE BAR)

(RETURN)

(BACK SPACE) *

Up arrow

Moves the cursor up one line.

Down arrow

Moves the cursor down one line.

Left arrow

Moves the cursor one position to the left.

Right arrow

Moves the cursor one position to the right.

Space bar

Moves the cursor one position to the right
and displays a blank space.

Return (New line)

Moves the cursor to the first position on
the next line.

Back space

Moves the cursor one position to the left
and deletes the character.

Tab

Moves the cursor to the beginning of the
next tab position. Tab positions are set at
every eighth column.

* These keys must be defined in the UNIX system, terminfo, terminal
information files.

6-32 Local Screen Generator Utility Program

A

B

c

D

E

Appendices

Error Messages A-1

Debugging Facilities 8-1
TRACE Command 8-1
DUMP Command 8-3

AID Subroutines Library C-1

Interpretation of Attribute Bytes 0-1

Key Sequences E-1
Key Sequences for Standard ASCII Terminals E -2
Key Sequences for AT&T 4410

and Teletype 5410 Terminals E-4
Key Sequences for AT&T 4418

and Teletype 5418 Terminals E -6
Key Sequences for AT&T 4425

and Teletype 54 25 Terminals E -8
Key Sequences for AT&T 605

Business Communications Terminal E -10
Key Sequences for AT&T 610, 615, 620,

and 630 Business Communications Terminals E -12
Key Sequences for DEC VT100 Terminal E-14

F

G

Environment Variables
and Customization
Setting 3270 Emulator+

ESCORT Environment Variables
Terminal Customization

Additional Programs
Writing a Tutorial Script
Performing Regression Testing
Reading from a Pipe File
Writing to a Pipe File

F-1

F-2
F-4

G -1
G-2
G-4
G- 7
G-8

Error Messages

This section lists all numbered ESCORT error messages in
numerical order, together with a partial list of the more common
run time error messages. A brief explanation of each error
message is included.

ESCORT Error Messages

If an error occurs during syntax checking, ESCORT prints the
line number, external file name, script name, and source (Le., the
operand/operator) of the error to a file, in the directory defined
by the ESCDIR environment variable, named escort.pr{proc'id} ,
where {proc,id} refers to the unique process identification the
UNIX operating system assigns to each session.

If an error occurs during execution, ESCORT prints the name of
the script in which the error was detected, the name of the script
which called that script, and the command causing the error, also
to the escort.pr{proc,id} file.

Following is a list of all numbered error messages. All ESCORT
error messages are preceded by the literal ECS; for example,
ECSOOO.

Error Messages A-1

No. Error Message Description

000 dummy msg Error in ESCORT. Call the
AT&T Hotline.

001 variable not defined The variable used has not been
previously defined by a CHAR,
INT, or FIELD statement.

002 row Invalid The value of a row variable is not
between 1 and 24.

003 column invalid The value of column variable is
not between 1 and 80.

004 Invalid command A valid command is expected but
not found.

005 Invalid operator A valid arithmetic or logical
operator is expected but
not found.

006 string required A string type operand is required
but not found.

007 expected '(' An open parenthesis is required.

008 expected numeric A numeric value is required.

009 expected ')' A close parenthesis is required.

010 Invalid identifier An identifier must start with an
alphabetic character and contain
no more than 8 characters. The
exception to this rule is a field
variable.

011 operator required An arithmetic (e.g., +) or logical
operator (e.g., » is required.

012 type conflict String used in an integer context
or an integer in a string context.

013 THEN required Keyword THEN is missing in an
IF statement.

014 label after GOTO Invalid label follows a GOTO
command.

A-2 Error Messages

No. Error Message Description

015 type not Implemented Error in ESCORT. Call the AT&T
Hotline.

016 operator invalid An arithmetic (e.g., +) or logical
(e.g., » operator is required.

017 Invalid character Program contains an illegal special
character.

018 IF not terminated At least one IF statement in your
script is missing an END IF .

019 invalid syntax A syntax error occurred, but
ESCORT cannot give you the
precise definition of the error.

020 name > 8 characters A name is too long.

021 invalid subscript An array subscript must have
a numeric value of less than
or equal to 2048.

022 script name required After an ENDS (end of script)
statement, a script name is expected
unless an ENDP (end of program) is
present.

023 expected command A valid command is expected.

024 operand > 132 A literal may not exceed 132
characters characters.

025 * * *next addr invalid Error in ESCORT. Call the AT&T
Hotline.

026 * * * command code null Error in ESCORT. Call the AT&T
Hotline.

027 DO required Keyword DO is missing in a FOR
or WHILE statement.

028 DOIENDO not paired Keyword DO or ENDO is missing
within a named script.

029 label unknown Branch label in a GOTO
statement is not defined.

Error Messages A-3

No. Error Message Description

030 script unknown Script name used in a CALL
statement does not exist in the
program.

031 expected TO Keyword TO is missing in a FOR
statement.

032 clause type Invalid String clause is required instead of
an integer clause, or vice versa.

033 embedded copy Only two levels of embedded
COpy statements are allowed. (If
file A contains a COpy for file B
and file B contains a COpy for file
C, file C may not have a COpy
statement.)

034 open failed - script The OPEN command did not
work for the script named on the
UNIX command line. This usually
happens if there is no file with the
specified name.

035 storage limit exceeded Storage requirements of the
program exceeded the dynamic
storage area allocated by ESCORT.
If this happens, split the program
into two programs, if possible, and
run them sequentially by using a
UNIX shell script. An alternative
is to reduce the size and number of
variables and constants in the
program.

036 USER abend A user abend was issued. No
ESCORT dump is produced.

037 identifier already used The name has already been used.
All global variables must be unique
within a program. All local
variables within a script must be
unique.

A-4 Error Messages

No. Error Message Description

038 Illegal In global sect. Only declaration statements and
copy statements may be in the
global section of the program.

039 unallocated variable Error in ESCORT. Call the AT&T
Hotline.

040 parm list mismatch Parameters specified in the CALL
statement must correspond to
parameters defined in the SCRIPT
statement in type and number. See
the CALL and SCRIPT commands
for further detail.

041 file name > 40 External file name (including
complete path specification) may
not exceed 40 characters.

042 prev script not ended Script lacks ENDS statement.
Each script must terminate with an
ENDS statement before another
begins.

043 PROG required first Program lacks PROG statement.
Each program must begin with a
PROG statement.

044 2nd PROG Program contains more than one
PROG statement. Each program
may contain only one PROG
statement.

045 missing ENDP Program lacks ENDP statement.
Each program must terminate with
an ENDP statement.

046 2nd ENDS for script Script contains more than one
ENDS statement. Each script may
contain only one ENDS statement.

047 string length > 2K A character string may not exceed
2048 bytes.

Error Messages A-5

No. Error Message Description

048 2 successive operators An expression may not contain
two operators in a row without an
operand between them (e.g., +1 is
an error).

049 syntax error A syntax error occurred, but
ESCORT cannot give you the
precise definition of the error.

050 missing left paren An open parentheses is required.

051 2 successive operands An expression may not contain
two operands in a row without an
intervening operator between
them.

052 time format error The correct format is hh:mm:ss
(hours, minutes, seconds).

053 date format error The correct format is mmddyy or
mm~dd~yy (month, day, year).

054 time/date format error See above two error messages.

055 bad argument for The argument must be either a
$LENGTH string or a field variable.

056 value> max The parameter value specified
exceeds the maximum allowable
value.

057 array Initialize error An error occurred while processing
an array initialization statement.
Errors are usually caused when an
initial string is assigned to a shorter
character element, or when an
initial value list has more items
than the number of elements in
the array.

A-6 Error Messages

No. Error Message Description

058 table overflow Program exceeds capacity of 2500
variables and constants. You may
reduce this number by deleting
unused field variables from a
copied format file. If you cannot
reduce the variables or constants,
split the program into two
programs and run them
sequentially in a batch stream.

059 $GSUBSTR A substring begins after
past string end the end of string argument.

060 Not used.

061 > 40 format names defined Only 40 different format names
specified by the FORMAT
command are allowed in a
program.

062 qualified name invalid Program contains invalid name.

063 max fields exceeded Only 500 fields may be defined on
an application screen.

064 parse list overflow Program exceeds allowable program
size. Split the code into two
programs and run them
sequentially in a batch file.

065 no loop to break BREAK or CYCLE statement used
improperly. BREAK or CYCLE
can be used only within a
DOIENDO loop.

066 invalid offset Specified position or offset is
not within the given string.

067 open flies > max Program exceeds allowable number
of open files. You may have 10
files open at the same time.

Error Messages A-7

No. Error Message Description

068 invalid file operation READ or WRITE command used
improperly. Check for one of the
following common errors:
READIWRITE before OPEN
command, READ issued against a
file opened for WRITE, or
WRITE issued against a file
opened for READ.

069 CASE without SWITCH CASE statement was found
without a prior SWITCH
statement. Check proper syntax.

070 DEFAUL T must be last DEFAULT must follow all CASE
statements. DEFAULT is a
special type of CASE statement
within a SWITCH statement.

071 missing ENDC for ENDC (end case) statement must
SWITCH terminate all SWITCH statements.

072 terminal input inhibited Script calls for entering data in a
protected field. This commonly
occurs when a script is attempting
to enter data on the wrong screen
or in a protected field on the
correct screen.

073 integer overflow Integer exceeds allowable
maximum value of - 231 + 1
to +231 _1.

074 parm not valid Parameter option, or operand,
is improperly specified.

075 Invalid option Option is specified incorrectly.

A-a Error Messages

No. Error Message Description

076 Invalid window Rowand column positions are
specified incorrectly. Three
characters are required for
minimum window width and
window height.

077 too many CASES Program exceeds limit of 50
CASES in a SWITCH statement.

078 missing THEN Required THEN is missing in an
IF THEN ELSE statement.

079 missing DO Required DO is missing in a FOR
or WHILE statement.

080 CLOSE for closed file CLOSE command was issued for
an already closed file.

081 OPEN for open file OPEN command was issued
for an already open file.

082 READ before open READ command was issued
for a closed file.

083 WRITE before open WRITE command was issued
for a closed file.

084 DO Illegal DO is allowed only in a FOR
or WHILE statement.

085 CHKPT before open CHKPT command was issued
for a closed file.

086 CHKPT for read file CHKPT command was issued
for an input file.

087 file 'nickname' required File management commands
require assignment of an internal
name in the OPEN statement.

088 file not opened for read READ command was issued for a
file not opened with the read
option.

Error Messages A-9

No. Error Message Description

089 file not opened for write WRITE command was issued for a
file not opened with the write
option.

090 THEN illegal THEN is allowed only in an IF
statement.

091 no IF for ENDIF ENDIF statement is not preceded
by an IF statement.

092 zero not allowed A zero value is not permitted in
this context.

093 $ATTR - cursor Invalid Screen position is incorrect. It
must be at the start of a field.

094 && numeric suffix missing Numeric suffix is missing.

095 Invalid mode Error in ESCORT. Call the
AT&T Hotline.

096 illegal In local format An invalid statement has been
included in a local screen format.
A local screen format may contain
only BEGFMTIENDFMT and
FIELD statements.

097 invalid code In attr list An invalid attribute has been
included in a CHGATTR or
FIELD command attribute list
operand. Valid attributes are listed
in the FIELD command in
Chapter 4.

098 format not built Local screen format lacks
ENDFMT statement. Each local
screen format definition area must
begin with a BEGFMT and end
with an ENDFMT statement.

A-10 Error Messages

No. Error Message Description

099 format not found Screen name defined by a
GETFMT not found in spilled
format files.

100 cannot open format spill file ESCORT is unable to write the
spilled formats to the spill file.
You must have write permission for
the file.

101 cannot open ESCORT Log ESCORT is unable to open the
file escort.lg{proc-id} escort.lg{proc~id} file specified by a

LOG command. You must have
write permission for the file.

102 cannot open ESCORT ESCORT is unable to open the
Capture file escort.cp{proc- escort.cp{proc~id} file specified by a
id} CAPTURE ON command. You

must have write permission for the
file.

103 cannot open ESCORT ESCORT is unable to open the
Dump file escort.dp{proc-id} escort.dp{proc~id} file specified by a

DUMP command. You must have
write permission for the file.

Error Messages A-11

Run Time Error Messages

A list of the more common run time error messages follows.
Those messages marked OIA indicate that the message is
displayed in the operator information area. All other run time
errors terminate ESCORT, and the message is written to the
standard error.

Error Message Description

ESCORT Syntax Errors A syntax error occurred, refer to
the escort.pr{proc,id} file for details
of the error.

Communication The communication processor is
Controller Error not running.

Logical Unit Requested The logical unit environment
does not Exist variable, D3274, contains an

invalid logical unit.

OIA INHIBIT BAD KEY An undefined key sequence has
TRANSLATION been entered. Press RESET to

continue.

Insufficient Memory to Memory allocation of 5I2K
run ESCORT required for each ESCORT process.

The UNIX tunable parameters
need to be changed to allow each
UNIX process to run using 5I2K of
memory. Refer to your UNIX
System Administrator's User
Guide.

The environment ESCORT is unable to set up your
variable TERM is not terminal for execution. The
defined TERM environment variable must

be set before using ESCORT.

Your terminal is Your terminal type is not defined
unknown to this system in the UNIX terminfo data base.

A-12 Error Messages

Error Message Description

OIA INHIBIT ILLEGAL Your application does not accept
FUNCTION the function entered. Press RESET

to continue.

OIA SNAIBSC Terminal Is Either the D3 274 logical unit
busy requested for the host connection

is currently being used by another
user, or all logical unit connections
assigned to you are in use.

OIA No lu ports available All logical unit connections are in
use.

OIA INHIBIT NOT HERE Attempt to either enter data in a
protected area, or enter alphabetic
data in a numeric field. Press
RESET to continue.

ESCORT Execution An error occurred during script
Errors execution, refer to the

escort.pr{proc,id} file for details of
the error.

OIA ASYNC Connection A connection to an asynchronous
Failed host failed; refer to the

escort.pr{proc,id} file for details of
the error. The Basic Network
Utilities documentation provides
further information on failed
asynchronous host connections.

OIA Cannot open ESCORT ESCORT is unable to open the
ASG ky file escort.ky{proc,id} file specified by

Interactive mode Automatic Script
Generation. You must have write
permission for the file.

OIA Cannot open ESCORT ESCORT is unable to open the
ASL Ig file escort.lg{proc,id} file specified by

Interactive mode Automatic
Screen Logging. You must have
write permission for the file.

Error Messages A-13

Error Message

Cannot open ESCORT
Print file: escort.pr{proc,
id}

A-14 Error Messages

Description

The ESCORT process was unable
to open the escort.pr{proc~id} file.
You must have write permission for
the file.

Debugging
Facilities

The ESCORT commands, TRACE and DUMP, are tools
designed to assist you in debugging hard to find problems in
scripts.

This appendix describes the use of these debugging commands, it
does not tell you how to analyze their output.

TRACE Command
Use the TRACE command to activate or deactivate the trace
facility.

The format of the TRACE command is as follows:

TRACE (X, {l}}
{OJ

X indicates tracing the program execution phase.

The TRACE command can be placed anywhere between the
PROG and ENDP statements. The operand 1 toggles tracing on
and the operand 0 toggles tracing off. The TRACE command
can be toggled on and off as required in a script. This allows you
either to trace the entire program or to trace portions of the
program only.

The output from TRACE is directed to a file, created in the
directory defined by the ESCDIR environment variable, named
escort.pr{proc#id}, where {proc,id} refers to the unique process
identification the UNIX operating system assigns to each process.

The format of the execution phase trace line gives you the
command code, command mnemonic, and parse list address of
each command as it is being executed. Thus, any program loop
can be readily found with the execution trace.

Debugging Facilities B-1

Example 1
In this example, the TRACE command is used to trace the
entire program.
logoftso prog main

trace (X,l) 1* turn tracing on
main script

clear
text ("logoff")
enter
while 1($scan("WELCOME TO"»
do

endo
ends
endp

Example 2

fresh

In this example, the TRACE command is used to trace a portion
of program code containing a WHILE loop.
logoftso prog main
main script

clear
text ("logoff")
enter
trace (X,l) 1* turn tracing on
while 1($scan("WELCOME TO"»
do

fresh
endo
trace (X,O)
ends
endp

8-2 Debugging Facilities.

1* turn tracing off

DUMP Command
An ESCORT dump can be produced by using the DUMP
command. The dump is written to a file, created in the directory
defined by the ESCDIR environment variable, named
escort.dp {pro c,id} , where {proc,id} refers to the unique process
identification the UNIX operating system assigns to each process.
A dump is also produced when a program abends. A program
abend occurs if there is a user run,time error or a disastrous error
in ESCORT itself.

A dump provides you with the following data:

o Current values of all ESCORT table indices.

D Parse list (stored commands and operands) dump.

D Constant and variable tables with table index, storage
address, length, type, and value for each entry.

D Label table.

D Script table.

o User file table.

o Format table.

D Static storage area.

o Dynamic storage area.

o Return address stack .. nested calls.

o Frame stack .. address of storage frames for local variables.

The operands that follow commands stored in the parse list are
nearly always represented by the corresponding table indices.
Expressions are terminated by hex FFFF. Operators in integer
expressions are stored as the two's complement of the ASCII
code.
For example, "+" (hex 2B) becomes hex FFD5.

Debugging Facilities 8-3

Example
This example activates DUMP after the ENTER command is
executed.
logoftso prog
main script

clear
text
enter
dump

while
do

endo
ends
endp

main

("logoff")

/* dump information to
/* escort.dump'pid'

1($scan("WELOOME TO"»

fresh

8-4 Debugging Facilities

AID Subroutines
Library

This section provides you with a listing of the scripts for the AID
subroutines contained on your ESCORT installation disk. These
programs are listed for your information.

See the section, "Synchronous ResponselNo .. Response Mode
Transactions" , in Chapter 2 for more information about using
the AID subroutines.

AID_GC

Writes a tag in row 24, column 79, sends an AID key, and waits
until the tag has been overwritten by the response from the
synchronous host system.
aidLgc script (int aidLkey)

field (24,79,1) ta9-fld
char (1) tag
tag = "g"
ta9-fld = tag
aid (aidLkey)
while ta9-fld = tag
do

endo
ends

AID_CC

fresh

Moves the cursor to the last position on the screen, sends an
AID key, and waits until the cursor has moved to another
location on the screen.
aid.....cc script (int aidLkey)

cursor (24,80)
aid (aid...key)
while $getcur = 1920
do

fresh
endo
ends

AID Subroutines Library C-1

AID_01C

Sends an AID key and waits until line 1 changes.
aidJD1c script (int aidLkey)

field (1,1,80) new1-l
char (80) old1-l
old1-l = new1-l
aid (aidLkey)
while new1-l = old1-l
do

endo
ends

AID_24C

fresh

Sends an AID key and waits until line 24 changes.
ai~4c script (int aidLkey)

field (24,1,80) new1-24
char (80) old1-24
o1d1-24 = new1-24
aid (aidLkey)
while new1-24 = old1-24
do

endo
ends

AID_LC

fresh

Sends an AID key and waits until data on a specified line has
changed.
aidLlc script (int aidLkey, int 1crow)

int 1coffset
char (80) lc1ine
lcoffset = (80*lcrow-79)
lcl1ne = $gsubstr (SCREEN, lcoffset, 80)
aid (aidLkey)
while $scan(lcl1ne (lcrow, 1, 80»
do

endo
ends

fresh

C-2 AID Subroutines Library

AID_Fe

Sends an AID key and waits until a specified field on the screen
has changed.
aidLfc script (int aidLkey, field (*,*,*) new-Ild)

char (SO) oldLfld
oldLfld = new-Ild
aid (aidLkey)
while new.....fld = oldLfld .
do

en do
ends

AID_SMA

fresh

Sends an AID key and waits until a specified message appears on
the screen.
aid-sma script (int aidLkey, char (*) smsmsg, int smsrow,

int smscol, inst smslen)
aid (aidLkey)
while I($scan (smsmsg (smsrow, smscol, smslen»)
do

endo
ends

AID_SMD

fresh

Sends an AID key and waits until a specified message disappears
from the screen.
aid-smd script (int aidLkey, char (*) smsmsg, int smsrow,

int smscol, inst smslen)
aid (aidLkey)
while $scan (smsmsg (smsrow, smscol, smslen»
do

en do
ends

fresh

AID Subroutines Library C-3

AID_KC

Writes a PF key in row 24, column 74, sends an AID key, and
waits until the tag has been overwritten by a response from the
synchronous host system.
aicLl<c script (int aicLl<ey)

field (24, 74, 5) taQLfld
char (5) tag
switch (aid....key)

case 0 tag = "ENTER"
case 1 tag = " PFl "
case 2 tag = " PF2 n

case 3 tag = n PF3 "
case 4 tag = " PF4 •
case 5 tag = " PFS n

case 6 tag = " PF6 "
case 7 tag = n PF7 "
case S tag = • PFS"
case 9 tag = " PF9 "
case 10 tag = • PFlO'
case 11 tag = • PF11"
case 12 tag = " PFl2"
case 13 tag = " PF13n

case 14 tag = • PFl4"
case 15 tag = " PFl5n

case 16 tag = • PFl6"
case 17 tag = " PFl7"
case IS tag = • PFlS"
case 19 tag = " PFl9"
case 20 tag = " PF20"
case 21 tag = " PF21"
case 22 tag = " PF22"
case 23 tag = " PF23"
case 24 tag = " PF24"
case 25 tag = "CLEAR"
case 26 tag = " PAl"
case 27 tag = • PA2 •
case 2S tag = • PA3 "
case 29 tag = " ATTN"
case 30 tag = "SYSRQ"
default tag = "11111"

endc
taQLfld = tag
aid (aicLkey)
while taQLfld = tag
do

fresh
en do
ends

C-4 AID Subroutines Library

AID_RESP

Moves the cursor to the last position on the screen, sends an
AID key, and waits until the cursor has moved to another
location on the screen.

This subroutine is used when you press (ESC) f 0 to activate· or
deactivate AID subroutine substitution while in Automatic Script
Generation.

This is a generic subroutine which you may change to suit your
particular application environment.
aidLresp script (int aidLkey)

cursor (24,80)
aid (aidLkey)
while $getcur = 1920
do

endo
ends

fresh

AID Subroutines Library C-5

Interpretation of
Attribute Bytes

When you press ~ f 5 while connected to a synchronous
host session, ESCORT displays an alpha character in the position
of each attribute byte on the screen. The character displayed
represents the Primary Attributes for each field; this appendix
shows you how to interpret the displayed characters.

The following table shows you how to convert the character
displayed on the terminal screen into attribute bytes.

ASCII Character to Attribute Byte Conversion

Char Attr Char Attr Char Attr Char Attr

@ 11000000 P 1101 0000 . 11100000 p 11110000
A 11000001 Q 1101 0001 a 11100001 q 1111 0001
B 11000010 R 1101 0010 b 11100010 r 1111 0010
C 11000011 S 1101 0011 c 11100011 s 1111 0011
D 11000100 T 1101 0100 d 11100100 t 1111 0100
E 11000101 U 1101 0101 e 11100101 u 11110101
F 1100 0110 V 1101 0110 f 11100110 v 1111 0110
G 11000111 W 1101 0111 g 11100111 w 11110111
H 1100 1000 X 1101 1000 h 1110 1000 x 1111 1000
I 1100 1001 Y 1101 1001 i 1110 1001 y 11111001
J 1100 1010 Z 1101 1010 j 1110 1010 z 1111 1010
K 1100 1011 [1101 1011 k 1110 1011 { 11111011
L 11001100 \ 1101 1100 1 1110 1100 I 11111100
M 1100 1101] 1101 1101 m 1110 1101 } 11111101
N 1100 1110 A 1101 1110 n 11101110 - 11111110
0 1100 1111 - 1101 1111 0 1110 1111 < 1111 1111

Interpretation of Attribute Bytes 0-1

The following diagram shows you how to read the bits in an
attribute byte. Note that bits 3 and 2 are coupled and are read
together. Detectable refers to detectable by a light pen.

BITS in an AlTRIBUTE BYTE

o not modified
1 modified

1........ ___ 0 always

00 normal & nondetectable
10 highlit & detectable
01 normal & nondetectable
11 dark & nondetectable

o alphanumeric
1 numeric

o unprotected
1 protected

'--____________ 1 always

L...-______________ 1 always (most significant bit)

D-2 Interpretation of Attribute Bytes

For example, if the alphabetic character X is displayed when the
Display Attribute key sequence ((ESC) f 5) is pressed, the
corresponding attribute byte is 1101 1000. Interpretation of the
attribute byte shows that the field has the following
characteristics :

not modified

........ _____ highlit & detectable

1.-________ numeric

1....-_________ unprotected

Interpretation of Attribute Bytes 0-3

Key Sequences

This appendix lists the key sequences that emulate IBM 3278 key
functions for the following terminals:

Synchronous Terminals

o Standard ASCII terminals

o AT&T 4410 and Teletype® 5410 terminals

o AT&T 4418 and Teletype 5418 terminals

o AT&T 4425 and Teletype 5425 terminals

o AT&T 605 Business Communications Terminal (BCT)

o AT&T 610, 615, 620, and 630 Business Communications
Terminals (BCTs).

Asynchronous Terminals

o DEC VT100 terminal.

Note that certain key functions are ignored if either ESCORT or
the terminal does not support them. The following key functions
are not supported by ESCORT:

ALLCAP COLR
ALT_CR CTRL
BLINK CURSIL-SEL
BOT NULLEND
CAN NU~OV
CLICK TOP

The synchronous keyboard files are the same as the keyboard files
used by the AT&T 3270 Emulator+ software.

Key Sequences E-1

Key Sequences for
Standard ASCII Terminals
The AT&T 4415,5420 and the Tektronix™ 4105 terminals use
these key sequences.

3278 Key Standard ASCII Terminal
Function Key Sequence

ATTN @ a [RETURN J
BAKTAB [CTRLJe
BS [CTRL J h
CENT 1\

CLEAR @z
DEL @
DEV_CNCL @d
DOWN-A [CTRL J V
DUP [CTRL) d
EJOF @ef
E_INPUT [EscJei
ENTER [RETURN J
ENTERl [RETURN J
EXIT [ESC)XX
FM [CTRLJk
HOME [CTRL) 0
IDENT [Esc)i
INS [CTRL J u
LDUB [CTRL) r
LEFT-A [CTRL) f
NEWL [CTRL J j
NEXTS @+
NOT ~ a key number [RETURN J PAl to PA3
PFl to PF24 @ key number [RETURN J
PREYS @-
PRINT [ESC)p
RDUB [CTRL J Y
REDRAW [EscJr
RESET [CTRL J a
RIGHT-A [CTRL J 9

E-2 Key Sequences

Key Sequences for
Standard ASCII Terminals (continued)

3278 Key Standard ASCII Terminal
Function Kev- Sequence

SHELL @£)s
SOLID ~I STAT
SYS--REQ (SNA only) @£)q
TAB (CTRL) i
TEST --REQ (BSC @£)q
only)
UP~ (CTRL) t

Key Sequences E-3

Key Sequences for AT&T 4410
and Teletype 5410 Terminals

3278 Key AT&T 4410 and Teletype 5410
Function K~y Se_quence

AnN ~ a (RETURN)

BAKTAB 0
BS (CTRL)" h
CENT " CLEAR ~z
DEL @)
DEV_CNCL ~d
DOWN~ OJ
DUP (CTRL) d
EJOF ~ef
E.-INPUT ~ei
ENTER (RETURN)

ENTERl (RETURN)

EXIT ~xx
FM (CTRL) k
HOME GJ
IDENT ~i
INS (CTRL) U
LDUB (CTRL) r
LEFT~ B
NEWL lCTRL) j
NEXTS ~>
NOT ~ a key number (RETURN) PAl to PA3
PFl to PF9 ~ key number
PFlO ~O
PFll ~-
PFl2 ~=
PFl3 ~ (SHIFT) 1
PFl4 ~ (SHIFT) 2
PFl5 ~ (SHIFT) 3

E-4 Key Sequences

Key Sequences for AT&T 4410
and Teletype 5410 Terminals (continued)

3278 Key AT&T 4410 and Teletype 5410
Function Kev Sequence

PF16 @ (SHIFT) 4
PF17 @ (SHIFT) 5
PF18 @ (SHIFT) 6
PF19 @ (SHIFT) 7
PF20 @ (SHIFT) 8
PF21 @ (SHIFT) 9
PF22 @ (SHIFT) 0
PF23 @ (SHIFT] -

PF24 @ (SHIFT] =
PREYS @<
PRINT @p
RDUB (CTRL)y

REDRAW @r
RESET (CTRL) a
RIGHT---.A B
SHELL @s
SOLID ~I STAT
SYS~EQ (SNA only) @q
TAB (CTRL) i
TEST ~EQ (BSC @q
only)
UP---.A OJ

Key Sequences E-S

Key Sequences for AT&T 4418
and Teletype 5418 Terminals
Note that on these terminals there is no key marked (ESC) or
(CTAl].

To emulate (ESC) , press (Al T) and /.

For (CTRl) use the key immediately to the left of the space bar.

3278 Key AT&T 4418 and Teletype 5418
Function Kev_ Sequence

ATTN (AnN)

BAKTAB (BACK TAB)

BS (BACK SPACE)

CENT A

CLEAR (CLEAR)

DEL ~
DEV_CNCL (·DEV CNCl)

DOWN~ OJ
nTTD Ini'iD\,""' ... ~

E-EOF (ERASE EOF)

E.-INPUT (ERASE INPUT)

ENTER (ENTER) (lower right side)
ENTER! (ENTER) (upper left side)
EXIT @9Jxx
FM (FIELD MARK)

HOME (HOME)

IDENT (IDENT)

INS @
LDUB ~
LEFT~ B
NEWL (NEW LINE)

NEXTS (ESC) +
NOT]

E-6 Key Sequences

Key Sequences for AT&T 4418
and Teletype 5418 Terminals (continued)

3278 Key AT&T 4418 and Teletype 5418
Function Key Sequence

PAl @D
PA2 [PA2)

PA3 [SHIFT) @
PFl to PF24 @ to [PF24)

PREYS [ESC) -

PRINT [PRINT LCL 1
RDUB ~
REDRAW [Esclr

RESET [RESET) (lower left side)
RIGHT~ G
SHELL (SHIFT) CRESED (upper left side)
SOLID ~ RESET 1 (upper left side) STAT
SYS~Q (SNA only) [SYS REO 1
TAB (CURSOR TAB)

TEST ~EQ (BSe [SYS REO 1
only)
UP~ OJ

Key Sequences E-7

Key Sequences for AT&T 4425
and Teletype 5425 Terminals

3278 Key AT&T 4425 and Teletype 5425
Function Kev Sequence

ATIN @ a (RETURN)

BAKTAB (SHIFT) (TAB)

BS (BACK SPACE)

CENT A

CLEAR (CLEAR)

DEL (@
DEV_CNCL @d
DOWN~ rn
DUP (CTRL) d
EJOF (CLEAR LINE)

E_INPUT (DELETE LINE)

ENTER (RETURN)

ENTERl (ENTER) (on keypad)
EXIT @xx
FM (CTRL) k
HOME. (HOME)

IDENT @i
INS (INSERT CHAR)

LDUB (CTRL) r
LEFT~ B
NEWL (CTRL) j
NEXTS @+
NOT ~ a f:1 ymber (RETURN) PAl to PA3
PFl to PF4 ~ to PF4

PF5 7 (on keypad)
PF6 8 (on keypad)
PF7 9 (on keypad)
PF8 - (on keypad)
PF9 4 (on keypad)
PFlO 5 (on keypad)

E-8 Key Sequences

Key Sequences for AT&T 4425
and Teletype 5425 Terminals (continued)

3278 Key AT&T 4425 and Teletype 5425
Function Kev Sequence

PFll 6 (on keypad)
PF12 , (on keypad)
PF13 to PF24 @) key number (RETURN)

PREYS @)-
PRINT @)p
RDUB (CTRL) Y
REDRAW @)r
RESET (CTRL) a
RIGHT~ G
SHELL @)s
SOLID ~I STAT
SYS.-REQ (SNA only) @)q
TAB (TAB)

TEST .-REQ (BSC @)q
only)
UP~ OJ

Key Sequences E-9

Key Sequences for AT&T 605
Business Communications Terminal
The AT&T 605 Business Communications Terminal (BCT) has a
102 .. key keyboard.

3278 Key AT&T 605 BeT
Function Kev Sequence

ATTN @ a (RETURN)

BAKTAB (SHIFT) (TAB)

BS (BACK SPACE)

'CENT A

CLEAR (SHIFT) (CLEAR)

DEL (CTRL) (DELETE)

DEV_CNCL (Esc)d

DOWN-A OJ
DUP (CTRL) d

EJOF @ef

E_INPUT (SHIFT) (DEL LN)

ENTER (RETURN)

ENTER 1 (RETURN)

EXIT @xx

FM (CTRL) k
HOME (CLEAR HOME)

IDENT @i

INS (INS LN)

LDUB (CTRL) r

LEFT-A B
NEWL (CTRL) j
NEXTS (ESC) +
NOT l ESC) a key number (RETURN) PAl to PA3
PFI to PF24 (ESC) key number (RETURN)

PREYS @-

PRINT @p

RDUB (CTRL) Y
REDRAW (ESC)r

RESET (ESC)C

RIGHT-A G

E-10 Key Sequences

Key Sequences for AT&T 605
Business Communications Terminal (continued)

3278 Key AT&T 605 BeT
Function Kev Sequence

SHELL @£)s
SOLID ~I STAT
SYS~EQ (SNA only) @£)q
TAB (TAB)

TEST ~EQ (BSe @£)q
only)

OJ UP--A

Key Sequences E-11

Key Sequences for AT&T 610,615, 620,
and 630 Business Communications
Terminals
The AT&T 610, 615, 620, and 630 Business Communications
Terminals (BCTs) have 98 .. key keyboards.

3278 Key AT&T 610, 615, 620, and 630
Function BeTs Kev Sequence

ATTN @ a (RETURN)

BAKTAB (SHIFT) (TAB)

BS (BACK SPACE)

CENT A

CLEAR (CLEAR)

DEL (DELETE)

DEV_CNCL @d
DOWN.-A OJ
DUP (CTRL) d
EJOF @ef
E_INPUT @ei
ENTER (RETURN)

ENTER 1 (RETURN)

EXIT @xx
FM (CTRL) k
HOME (HOME)

IDENT @i
INS (CTRL) U
LDUB (CTRL) r
LEFT.-A B
NEWL (CTRL) j
NEXTS @+
NOT ~ a key number (RETURN) PAl to PA3
PF1 to PF24 @ key number (RETURN)

PREYS @-
PRINT @p
RDUB (CTRL) Y
REDRAW @r
RESET @C
RIGHT.-A G

E-12 Key Sequences

Key Sequences for AT&T 610,615, 620,
and 630 Business Communications Terminals
(continued)

3278 Key AT&T 610, 615, 620, and 630
Function BCTs Kev Sequence

SHELL @Ds
SOLID ~I STAT
SYS.-REQ (SNA only) @Dq
TAB (TAB)

TEST .-REQ (BSe @Dq
only)

OJ UP~

Key Sequences E-13

Key Sequences for
DEC VT100 Terminal

DEC VT100 Key ESCORT Equivalent
Function Key Sequence

BAKTAB (CTRL J e
BS (CTRL J h
CLEAR @§]z
DEL C@
DOWN--A (CTRL J V
ENTER (RETURN J

ENTERl (RETURN J

EXIT @§]xx
HOME (CTRLJO

IDENT @§] i
LEFT--A (CTRL J f
NEWL (CTRL J j
NEXTS @§] +
PFI to PF8 @§] key number (RETURN J

PREYS @§] -
PRINT @§]p
REDRAW @§]r
RIGHT--A (CTRL J 9
SHELL @§]S
STAT @§] I
TAB (CTRL J i
UP--A (CTRL J t

Note
This key sequence table should be used in asynchronous,only
environments. If you communicate with both synchronous and
asynchronous hosts, use the appropriate key sequence table for
your specific synchronous terminal for all synchronous and
asynchronous applications.

E-14 Key Sequences

Environment Variables
and Customization

This appendix provides information on setting environment
variables applicable to your operating environment and on
customizing terminal functions for different types of ASCII
terminals.

Environment Variables and Customization F-1

Setting 3270 Emulator +
ESCORT Environment Variables
Once the ESCORT software has been installed, certain
prerequisite variables should be set in your profile file. When
invoking ESCORT, ensure that the 3270 Emulator+ terminal
manager process is running.

Terminal Environment Variable
. ESCORT uses the environment variable, TERM, to access
terminal information in the system file terminfo for screen
management. The following example shows the environment
variable set for an AT&T 4410 terminal type.

TERM=4410

export TERM

3270 Emulator + Environment Variables
ESCORT runs in conjunction with the AT&T 3270 Emulator+
software. Your profile file should be edited to include the
following command:

• /usr/bscadm/runtlme/bscenvset

or

. /usr/snaadm/runtlme/snaenvset

Set the appropriate environment variables so that 3270
Emulator+ and ESCORT will execute properly.

03274 Environment Variable
The default value for the D3274 environment variable provided
by the snaenvset command allows access to all available logical
unit connections. Setting the D3274 environment variable
provides controlled access to certain host applications. You can
assign ranges of logical unit ports to particular users. In the
following example, a user is given access to eight logical unit
ports.

D3274 = 1-5,13,14,15

export D3274

F-2 Environment Variables and Customization

Host/Local Session Environment Variable
The UNIX operating system environment variable, ESCHOST,
determines whether a synchronous connection is to be
established. The environment variable can be set to a or 1 j if set
to a value of 1 (the default value if this variable is not set) the
ESCORT script will be able to connect to a synchronous host
session.

Setting the ESCHOST environment variable to a is useful

in limiting access to prototyping local screen formats

if ISC or SDLI cards have not been installed in the 3B
processor

if the user accesses only asynchronous host applications.

In the following example, a user's ESCORT connections will
default to a local session.

ESCHOST=O

export ESCHOST

Directory Environment Variable
The UNIX operating system environment variable, ESCDIR,
determines the path for the five types of ESCORT utility files. If
the ESCDIR environment variable is not set, ESCORT utility
files are created in your $HOME directory. In the following
example, a user's ESCORT utility files will be created in a
directory named 5Y5_1, a subdirectory of lusrljohn.

ESCDIR = /usr/john/sys_1

export ESCDIR

Terminal Information Environment Variable
To use the terrninfo terminal information files installed by
ESCORT, set the terrninfo variable as follows:

TERMINFO =/usr/escortltermlnfo

export TERMINFO

Setting this environment variable is only necessary if the system ..
supplied files contain errors or have been modified in some way
and ESCORT does not function correctly.

Environment Variables and Customization F-3

Terminal Customization
The screen and keyboard layouts of various types of ASCII
terminals differ from those found on actual IBM 3278 display
stations. The AT&T 3270 Emulator+ software is designed to
work with many different types of ASCII terminal by using a
terminal emulator process to translate the logical IBM 3278
functions to the target ASCII terminal.

To be consistent, ESCORT uses the same keyboard sequence
defined in the AT&T 3270 Emulator+ software. The AT&T
3270 Emulator+ key sequences that are supported by ESCORT,
together with the default ESCORT specific keys, are listed in this
section.

You should utilize the AT&T 3270 Emulator+ software utilities
kyinit and scinit to customize the IBM 3278 functions. Follow
the procedure outlined in the AT&T 3270 Emulator+ User's and
System Administrator's Guides.

Caution
If you modify the keyboard source files and fail to run the kyinit
utility, it is possible that the key sequences generated will not be
unique.

F·4 Environment Variables and Customization

The default ESCORT specific key sequences can be modified for
your particular environment by appending the ESCORT key
labels and their associated values to the keyboard mapping files
in the AT&T 3270 Emulator+ software. The following table
details the default values for the ESCORT specific keys.

Default Values of
ESCORT Specific Kevs

:EK-FO = \EfO: \
:EK-Fl = \Efl: \
:EK-F2=\Ef2:\
:EK-F3 = \Ef3: \
:EK-F4 = \Ef4: \
:EK-F5=\Ef5:\
:EK-F6 = \Ef6: \
:EK-F7 = \En: \
:EK-F9=\Ef9:\
:EIC..OPENS = \Eos: \
:EIC..OPENA = \Eoa: \

Defining Multiple Key Sequences
As part of the terminal customization feature, ESCORT allows
you to specify two separate key sequences for the same function.
For example, when customizing a standard ASCII terminal you
may wish to specify the k(y sefuence @) Z, in addition to the
standard key sequence of ESC Z, to represent the function,
(CLEAR).

In this case, the mapping file should be amended to included the
following:

KY _CLEAR = \Ez:\
KY _CLEAR = \EZ:\

Environment Variables and Customization F-5

AT&T 3270 Emulator+ Supported Kevs

ATTN LEFT~
BAKTAB NEWL
BS NEXTS
CENT NOT
CLEAR PAl to PA3
DEL PFl to PF24
DEV_CNCL PREYS
DOWN~ PRINT
DUP RDUB
EJOF REDRAW
E_INPUT RESET
ENTER RIGHT~
ENTERl SHELL
EXIT SOLID
FM STAT
HOME SYS~EQ
IDENT TAB
INS TEST~EQ
LDUB UP~

ESCORT Specific Keys
Function Kev Sequence

QUIT ~f1
IIR ~f2
ASG ~f3
CURSR-POS ~f4
ATTRIB ~f5
ASL ~f6
KEY_STATUS ~f7
SHOW ~f9
AID_SUB ~fO
OPENS ~OS
OPENA ~oa

F-6 Environment Variables and Customization

Additional
Programs

This section contains more advanced programs written in
ESCORT for more experienced programmers to use.

These programs serve two purPoses. They provide you with
scripts that you may be able to modify for use with your
particular application, and they give you an idea of how to write
more complicated programs in ESCORT.

A short description before each program listing explains what the
program does and points out any important programming
techniques used.

Additional Programs G-1

Writing a Tutorial Script
This program can be used as a model for writing a tutorial script.
The program accesses a sample host application and must be
modified to suit your particular application.

It employs a subroutine that takes a set of literals to be entered
by an operator in a training session and displays them in a
window. When the operator has entered the data, the
subroutine checks the data at locations passed in the global array
offsets. If the data entered is not what was requested, an error
message is displayed and the operator must reenter the data.
tutor prog main

int i
int j
int k
int 1
int rc
int offsets (12)
char (20) values (12)

main script

repeat:

clear
tab
offsets (1) = 855
values = (" imstest", "end")
call check
enter

offsets = (505, 825)

/* where to check for "imstest"

/* won't return until "imstest"
/* has been entered

values = (" userid", "imsgrp", "end")
call check
enter

offsets = (1613)
values = ("/test mfs", "end")
call check
enter

window (1,63,6,80)
wto "Hit CLEAR key"
exit (tutorial)
if sysaid I = 25 then / * operator did not hit CLEAR

window (9,63,13,80)
j = (j + 20)
wto ("Wrong, again I That's a $ " j " fine.")
goto repeat /* loop

endif
clear /* send the CLEAR

offsets = (1)
values = ("/rcI", "end")
call check
enter

ends

/* sign off

G-2 Additional Programs

check script

again:

window (l,63,6,80,r)
wto (" Enter:")
for i = 1 to 100 1 * display values in window

do
if values (i) "end" then

break
endif
wto values (i)

endo
exit (tutorial)

rc = 0
for i = 1 to 100

do
if values (i) = "end" then

break
endif
1 = $length (values (i»
k = offsets (i)

1* check for correct data
if $gsubstr (screen, k, 1) != values (i) then

rc = 1
endif

endo
if rc = 1 then 1* error

erin
window (1,63,6,80)
wto (" Enter: •)
for i = 1 to 100

do
if values (i) "end" then

break
endif
wto values (i)

en do
window (9,63,13,80)
j = (j + 20)
wto ("Wrong, again That's a $ " j " fine.")
exit (tutorial)
go to again

endif
ends
endp

Additional Programs G-3

Performing Regression
Testing
This program performs regression testing on the PFI (Find) key in
an order entry application. Numerous comments are included' to
guide you through the program. You may be able to use this
program for your synchronous host application with some slight
modifications.

The program consists of 2 scripts. The main script logs on to an
application, brings up a particular order entry screen, and then
accesses a second script that performs a regression test on the PFI
(Find) key. Note the use of the AID subroutines and the LOG
command to save the results of the test.
ORDERS PROG MAIN

/***Global Variable Declaration

copy "c :\mfs3\orders" /* get format variables

MAIN

field (24,55,20) action
char (8) mfs

char (9) goodord
char (9) badord

char (3) goodcidl
char (3) goodcid2
char (4) goodcid3

char (3) badcidl
char (3) badcid2
char (4) badcid3

SCRIPT

/***Local Variables Declaration

int rtncode
int find flag

/***Initialize Global Variables

mfs " orders"
goodord = "15981"
badord =" 16601"

goodcidl = "000"
goodcid2 = "004"
goodcid3 = "9411"

badcidl "000"
badcid2 = "004"
badcid3 = " 4818"

/***Logon to Application

G-4 Additional Programs

/* field to indicate pfkey hit
/* MFS name of the order screen

/* valid order number
/* invalid order number

(* valid customer id - partl
/ * valid customer id - part2
/ * valid customer id - part3

/* invalid customer id -
/* invalid customer id -
/* invalid customer id -

/* return code
/* results of find test

/* save name of screen
/* valid order number
/* invalid order number

/* valid customer id
/* valid customer id
/* valid customer id

/* invalid customer id
/* invalid customer id
/* invalid customer id

partl
part2
part3

call logon (rtncode)
if (rtncode I = 0)
then

abend
endif

1***Call Up Screen

call aidLresp (25)
text ("/for orders")
call aidLresp (0)

1***00 Find Key Regression Test

call pflreg (rtncode)
find flag = rtncode

1***Logoff Application

call aidLresp (25)
text (" Ircl")
call aidLresp (0)

ENDS

PFIREG SCRIPT (int rtncode)

1***Initialize Variables

char (80) message
rtncode = a

1***Establish Format

format orders

1***00 Find With Valid Data

1* logon to application
1* is there a mistake?

1* 'couldn't logon, so quit

1* clear screen
1* request orders format
1* press enter to bring up screen

1* run find key regression test
1* save the results

1* clear screen
1* tells system we want to logoff
1* press enter to end session

1* error message
1* assume good return code

1* set format to orders

.orderno = goodord I * load good order
action = " ACTION = FIND " I * tell user which pfkey pressed
call aidLgc (1) 1* press find key
if 1($scan("FIND COMPLETED"» 1* check for error
then

rtncode = (rtncode + 4) 1* set bad return code
message = "PF! - GOOD KEY TEST FAILED"
call error (message,mfs) 1* handle the error

endif
action = " ACTION = REFRESH" I * tell user which pfkey pressed
call aidLgc(8) 1* refresh the screen

1***00 Find With Zeroes

.orderno = "0000000000" I * load zero order
action = " ACTION = FIND " I * tell user which pfkey pressed
call aidLgc (1) 1* press find key
if I ($scan("INVALIO ORDER SEGMENT NUMBER"» 1* check for error
then

rtncode = (rtncode + 2) 1* set bad return code
message = "PFI - ZERO KEY TEST FAILED"
call error (message,mfs) 1* handle the error

endif
action = " ACTION = REFRESH" I * tell user which pfkey pressed
call aidLgc(8) 1* refresh the screen

Additional Programs G-5

'***00 Find With Invalid Data

.orderno = badord '* load bad order
action = " ACTION = FIN) " '* tell user which pfkey pressed
call aidLgc (1) '* press find key
if !($scan("SECURITY VIOLATION"» '* check for error
then

rtncode = (rtncode + 1) '* set bad return code
message = • PFl - BAD KEY TEST FAILED"
call error (message,mfs) '* handle the error

endif
action = • ACTION = REFRESH" '* tell user which pfkey pressed
call aidLgc(8) '* refresh the screen

'***Log Completion of PFI Regression Test

log ("ORDERS - PFI - REGRESSION TEST CQtoPLETED")

if (rtncode = 0) '* check for all good runs
then

log (" ORDERS - PFI - NO ERRORS FOlJN)")
endif

ENlS
EtIlP

G-6 Additional Programs

Reading from a Pipe File
This program demonstrates the ability of ESCORT to allow a
user to read data from a file opened as a pipe. The script
complements the "Writing to a Pipe File" program detailed in
this section.

The script uses the WAIT command to ignore the end .. of .. file
condition that would arise if the pipe file is read before data has
been written. A true end .. of .. file flag must be agreed upon
beforehand within the reading and writing scripts; in this
example, the variable buffer will contain the flag STOP
indicating that no more records exist.

Note
The file used in this program must first have been created as a
named pipe using the UNIX mknod system call.

rpipe
main

prog
script

main

char (SO) buffer

open(pipe,"/usr/myname/testpipe",R) 1* open file for read
if sysret = ·1 1* test for failed open
then

10g("OPEN FAILED")
endif

while(l)
do

read(pipe,buffer) 1* read record from pipe
if sysret = ·1 1* no data in pipe, wait
then

wait (30)
cycle

endif
if buffer = "STOP" 1* no more records, exit
then

close(pipe)
return

endif

en do

ends
endp

1* process record

Additional Programs G-7

Writing to a Pipe File
This program demonstrates the ability of ESCORT to allow a
user to write data to a file opened as a pipe. The script
complements the "Reading from a Pipe File" program detailed in
this section.

A true end--of--file flag must be agreed upon beforehand within
the reading and writing scripts since the reading script will ignore
the usual end--of--file condition indicated by the system global
variable, SYSRET. In this example, the variable buffer will
contain the flag STOP indicating that no more records exist.

Note
The file used in this program must first have been created as a
named pipe using the UNIX mknod system call.

wpipe
main

prog
script

main

char (SO) buffer
char (20) usersays

open(plpe,"/usr/myname/testplpe",W) 1* open file for write
if sysret = -1 1* test for failed open
then

10g("OPEN FAILED")
endif

while(l) 1* process user requests
do

if usersays = "STOP" 1* no more records
then

buffer = "STOP" 1* notify reading process
1* no more records

else

endif
write(pipe,buffer)
if sysret = -1
then

10g("WRITE FAILED")
endif
endo

ends
endp

1* build record in buffer

1* write record to pipe
1* test for failed write

G-8 Additional Programs

Glossary

This glossary contains definitions for terms and acronyms used
throughout this guide. These terms are defined according to
their meaning in ESCORT and may not have the same meaning
in other programming languages.

Active session

Administrative
command

AID key

Any host or local session connected to a
script or connected interactively, to which
all ESCORT commands are directed.

A command that shows where a program,
subroutine, or comment begins or ends.
PROG is an administrative command.

Attention .. identifier key. AID key
commands simulate the action of one of
the attention .. identifier keys. ENTER is an
example of an AID key.

Arithmetic operator A character (such as +) that represents a
mathematical operation.

Array

Automatic screen
logging

A collection of values of the same type
referred to by a single name. Each entry in
an array is called an element.

A feature of ESCORT that saves the image
of a specific application screen and any
data entered on it. Also called ASL.

Glossary-1

Automatic script
generation

Concatenation

Constant

A feature of ESCORT that automatically
creates a script from a user's terminal
session. Also called ASG.

The operation that joins two strings
together.

A fixed value or data item. A constant
may be a string or a numeric constant.

Debugging command A programming aid used to check for
errors or to detect failures in program
execution. DUMP is a debugging
command.

Declaration

Default

Destination

Emulator

Expression

Glossary-2

A statement that defines the type and
amount of data associated with a symbolic
label. Declaration commands include INT
and CHAR.

The value or option that is assumed when
none is given. For example, if you use the
command BT AB and do not specify the
number of back .. tabs to be executed,
ESCORT assumes the value is 1.

The variable to the left of the equal sign
in an assignment statement.

The ESCORT component that allows an
ASCII terminal to perfoim the functions of
an IBM 3278 terminal in the synchronous
environment, or a DEC VT100 terminal in
the asynchronous environment.

A single operand or multiple operands
separated by operators.

Extended Field
Attributes

Field variable

File management
command

Format

Function

Global variable

Host session

ISC card

Three arguments used in a FIELD
statement that define advanced screen
characteristics similar to those found in
IBM synchronous host screen formats.
Also called EFA.

An area of the screen buffer defined by the
user and assigned a symbolic name. Also
called screen field variable.

A command used to open or close a file or
to control the input and output of data
from a file. READ is a file management
command.

A symbolic name for a group of fields that
constitute a screen.

An algorithm that returns an integer or
string value. Function names in ESCORT
are preceded by a $.

A variable that is accessible throughout a
program.

The connection of your ASCII terminal
through the 3 B processor to a synchronous
or an asynchronous host computer,
providing you with access to a host
computer application.

Intelligent Serial Controller card. A card
installed in the 3B2 processor that provides
communications ability to synchronous
host computers.

Glossary-3

Interactive mode

Interpreter

Keyword

Label

An ESCORT feature that allows you to
use your ASCII terminal as a synchronous
IBM 3278 terminal, or an asynchronous
DEC VT100 terminal.

The ESCORT component that executes a
script.

An operand predefined by ESCORT, such
as SCREEN.

A word or symbol used at the beginning of
a program statement to branch from a
GOTO statement.

Local screen format Templates used to provide an interface
between you and host computer
applications.

Local session

Local variable

Loop

Glossary-4

The connection of your ASCII terminal to
the 3 B processor, allowing access to user
defined screen layouts (see Local screen
format) that provide an interface between
the user and host applications, and allows
the user to exchange data between
applications.

A variable that is defined only for a
particular script or subprogram.

A series of instructions that is executed
repeatedly until a given condition is met.

Null string

Offset

Operand

Operator

A string of zero length (with no
characters). It is represented by two
double quotation marks (" ").

The number of bytes from a starting point
to some other point.

A constant or variable that is acted on by
an operator. Operand also refers to any
argument that follows a command or
function.

A character that represents a mathematical
(or logical) operation. ESCORT uses
arithmetic, relational, and string
concatenation operators.

Operator information An area on the terminal display screen, in
area which messages to the operator are written

by ESCORT. On terminals with 25 .. line
screens, this area is on line 25, extending
from column 21 to column 80. On
terminals with 24 .. line screens, this area is
on line 24, extending from column 21 to
column 80. Also called Status Line.

Operator notification A command used to communicate with the
command operator of a terminal. WTO is an

operator notification command.

Overflow

Parameter

An error that develops when the value
returned by an operation is too large for a
given register or location.

An argument passed to a subroutine on a
CALL statement.

Glossary-5

Parser

Preprocessor
command

Presentation space

Primary Attributes

Program control
command

Relational operator

Reserved word

SDLI card

Glossary-6

The ESCORT component that decodes a
program and checks syntax.

A command that requests an action before
program execution. COpy is a
preprocessor command.

See Screen buffers.

Four arguments used in a FIELD statement
that define basic screen characteristics
similar to those found in IBM synchronous
host screen formats.

A command that changes the path of
program execution. BREAK is a program
control command.

A character (such as =) that represents a
comparison of two values.

A word used in ESCORT for a special
purpose, such as a command or function
name. Reserved words cannot be used as
names for variables, labels, programs, or
scripts.

Synchronous Data Link Interface card. A
card installed in the 3B5 or 3B15 processor
that provides synchronous communications
ability between host computers and
terminals.

Screen buffers Buffers maintained by ESCORT which
contain the last refreshed screen image for
each host and local session. The active
session screen buffer can be accessed with
the system global variable named SCREEN.
Also called Presentation space.

Screen field variable See Field variable.

Script

Script mode

Simulator

Statement

Status line

String

A program written in ESCORT. Script
also means a subroutine labeled with a
script name.

This mode executes an ESCORT script.

The ESCORT component that consists of
a parser and an interpreter. The simulator
checks for correct syntax and executes the
parsed code.

An instruction to the computer to perform
some sequence of operations. A statement
consists of a command or function and its
operands.

See Operator information area.

A sequence of characters or words.
ESCORT uses string constants, string
variables, and string array variables. String
constants are enclosed in double quotation
marks. String variables are declared in a
CHAR statement, such as CHAR (20)
name.

Glossary-7

String concatenation A symbol that links a series of string
operator operands. The plus sign (+) is used as a

string concatenation operator in ESCORT.

Terminal keyboard
command

Tutorial mode

Variable

Window

Glossary-8

A command that simulates the action of a
given keyboard function. For example,
CLEAR is a terminal keyboard command.

This ESCORT feature provides the ability
to perform edit checks on data entered
before sending data to the host. It also
allows you to set up on .. line training
sessions.

A symbol used to represent a value. There
are five types of variables in ESCORT:
integer, integer array, string, string array,
and field.

A display area on a screen. Windows are
defined in ESCORT by a WINDOW
statement.

Index

A
ABEND command, 4~8
AID command, 4~9
AID keys, 2~6
AID subroutines, 2~43

library, C~ 1
Arithmetic operators, 2~22
ASSIGN (=) command, 4~ 11
Asynchronous communication

port initialization, 2~7
Asynchronous host,

Automatic Script Generation, 2~50
scanning data, 2~9
system prompts, 2~49

ATIN command, 4~16
$A TTR function, 4~ 141
Attribute bytes, interpretation of, D~ 1

B
BEEP command, 4~ 17
BEGFMTIENDFMT command,

2~29, 4~18

BREAK command, 4~20
BTAB command, 4~21

C
CALL command, 4~22
CAPTURE ON/OFF command, 4~26
CHAR command, 2~ 16, 4~28
Character set, 2~7
$CHDA TE function, 4~ 143
CHGA TTR command, 4·30
CHKPT command, 4~32
CLEAR command, 4·34
CLOSE command, 4~35
COLOR command, 4~36
Command summary table, 4·5
Commands,

ABEND, 4~8

AID, 4~9
ASSIGN (=), 4·11
ATIN, 4~16
BEEP, 4~17
BEGFMTIENDFMT, 2~29, 4~18
BREAK, 4~20
BTAB, 4~21
CALL, 4~22
CAPTURE ON/OFF, 4~26
CHAR, 2~ 17, 4~28
CHGATTR, 4~30
CHKPT, 4~32
CLEAR, 4~34
CLOSE, 4~35
COLOR, 4·36
COMMENT (/*), 4~38
CONNECT, 4~39
COPY, 4~43
CURSOR, 4~5
CYCLE, 4~6
DEL, 4~7
DISCON, 4~48
DUMP, B~3
DUP, 4~50
EJECT, 4~51
ENDFMT, 2~29
ENDP, 2~3, 4~52
ENDS, 2~3, 4~53
ENTER, 4~54
ERASEW, 4~55
ERIN, 4~57
EROF, 4~58
EXIT, 4·59
FIELD, 2·18, 2~31, 4~63
FM, 4~71
FOR, 4~72
FORMAT, 4~75
FRESH, 4·77
GETFMT, 2~32, 4~79
GOTO, 4~80

Index 1-1

HOME, 4-81
IF, 4-82
INS, 4-84
INT, 2-15, 4-85
LBREAK, 4-86
LOG,4-87
NL,4-89
OPEN, 4-90
PAn, 4-92
PFn, 4-93
PRINT, 4-94
PROG, 2-3, 4-95
PROMPT, 2-49, 4-98
PUTENV, 4-100
READ, 4-101
RESET, 4-104
RETURN, 4-105
RUN, 4-106
SCRIPT, 2-3, 4-107
SERINIT, 2-47, 4-110
SHOW, 4-114
SWITCH, 4-116
SYSREQ, 4-118
TAB,4-119
TEXT, 4-120
TIMEOUT,4-122
TRACE, B-1
WAIT, 2-49, 4-124
WHILE, 4-127
WINDOW, 4-129
WRITE, 4-132
WTO, 4-134

COMMENT (/*) command, 4-38
CONNECT command, 4-39
Constants,

integer, 2-11
string, 2-11

Conventions,
commands, 4-3
data entry, 1-6
documentation, 1-5
functions, 4-137

COpy command, 4-43
CURSOR command, 4-45
CYCLE command, 4-46

D
$DA TE function, 4-144
$DA TES function, 4-145
$DAY function, 4-146
Debugging facilities, B-1

1-2 Index

Declaring variables, 2-13
Definitions, 1-7
DEL command, 4-47
DISCON command, 4-48
DUMP command, B-3
DUP command, 4-50

E
EJECT comand, 4-51
ENDFMT command, 2-29
ENDP command, 2-3, 4-52
ENDS command, 2-3, 4-53
ENTER command, 4-54
Environment variables,

3270 Emulator+, F-2
03274, F-2
Directory, F-3
Host/Local Session, F-3
Terminal, F-2
Terminal Information, F-3

ERASEW command, 4-55
ERIN comand, 4-57
EROF command, 4-58
Error messages,

execution, A-I
run time, A-12
syntax, A-I

$EV AL function, 4-147
EXIT command, 4-59
Expressions,

integer, 2-25
relational, 2-25
string, 2-26

F
FIELD command, 2-18, 2-31, 4-63
Field variables, 2-18
$FLDADDR function, 4-150
FM command, 4-71
FOR command, 4-72
FORMAT command, 4-75
FRESH command, 4-77
Function summary table, 4-139
Functions,

$A TTR, 4-141
$CHDATE,4-143
$DATE, 4-144
$DATES, 4-145
$DAY,4-146
$EVAL, 4-147

$FLDADDR, 4,150
$GETCUR, 4,151
$GETENV, 4,152
$GETPID, 4,153
$GSUBSTR, 4,154
$HEX, 4,156
$ITOS, 4,157
$LENGTH, 4,158
$MONTH, 4,160
$NEXTFLD, 4,161
$RESP, 4,163
$SCAN, 4,165
$SEC2TIM, 4,168
$STOI, 4,169
$ STRIP , 4,170
$TAB, 4,171
$TIM2SEC, 4,174
$TIMDIFF,4,172
$TIME, 4,173
$YEAR, 4,175

G
$GETCUR function, 4,151
$GETENV function, 4,152
GETFMT command, 2,32, 4,79
$GETPID function, 4,153
Global and local variables, 2,13
GOTO command, 4,80
$GSUBSTR function, 4,154

H
$HEX function, 4,156
HOME command, 4,81

IF command, 4,82
INS command, 4,84
INT command, 2,15, 4,85
Integer,

array variables, 2,15
constants, 2, II.
expressions, 2,25
variables, 2,15

$ITOS function, 4,157

K
Key sequences,

AT&T 4410 and
Teletype 5410 terminals, E~

AT&T 4418 and
Teletype 5418 terminals, E-6

AT&T 4425 and
Teletype 5425 terminals, E-8

AT&T 605 Business Communications
Terminal, E,lO

AT&T 610,615,620, and 630 Business
Communications Terminals, E,12

DEC VT100 terminal, E,14
standard ASCII terminals, E-2

L
LBREAK command, 4,86
$LENGTH function, 4,158
Local screen format, 2,29

defining, 2,31
definition area, 2,29
loading, 2,32
multiple format files, 2,30
spilled files, 2,30

LOG command, 4,87
LSGEN,

accessing, 6,3
copy fields, 6,16, 6,30
create fields, 6,13, 6,29
cursor movement keys, 6,10,6,32
define attributes, 6,23
define length, 6,22
define name, 6,21
delete characters, 6,11, 6,31
delete fields, 6,15, 6,30
delete lines, 6,12, 6,30
edit mode, 6,9
enter field definition mode, 6,20, 6,29
error messages, 6,27
exit field definition mode, 6-26
field definition mode, 6,19
field display, 6,17, 6,30, 6,31
insert characters, 6,11, 6,31
insert lines, 6,12, 6,31
move fields, 6,16
on,line help, 6,6, 6,29
operator information, 6,5, 6-31
quitting, 6,7, 6,29

M
$MONTH function, 4,160
Multiple key sequences, defining, F,5

Index 1·3

N
Naming variables, 2~ 13
$NEXTFLD function, 4~161
NL command, 4~89

o
OPEN command, 4~90
Operators,

arithmetic, 2~22
precedence of, 2~24
relational, 2~22
string concatenation, 2~23

p
PAn command, 4~92
Parameter passing, 2~38
PFn command, 4~93
Pipe file,

reading from, G~ 7
writing to, G~8

Port initialization,
asynchronous communication,

2~47
Precedence of operators, 2~24
PRINT command, 4~94
PROG command, 2~3, 4~95
Program,

requirements, 2~3
structure, 2~4

PROMPT command, 2~49, 4~98
PUTENV command, 4~ 100

R
READ command, 4~101
Regression testing, G~4
Relational,

expressions, 2~25
operators, 2~22

Reserved words, 2~9
RESET command, 4~104
$RESP function, 4~163
RETURN command, 4~105
RUN command, 4~106

S
Sample program,

asynchronous host, 3~ 39
synchronous host, 3~3

1-4 Index

$SCAN function, 4~ 165
Screen buffers, 2~37
SCREEN variable, 2~35
SCRIPT command, 2~3, 4~107
$SEC2TIM function, 4~168
SERINIT command, 2~47, 4~110
SHOW command, 4~ 113
$STOI function, 4~ 169
String,

array variables, 2~ 17
concatenation operators, 2~23
constants, 2~ 11
expressions, 2~26
variables, 2~16

$STRIP function, 4~ 170
SWITCH command, 4~ 115
Synchronous ResponselNo~Response

mode transactions, 2~41
SYSAID variable, 2~35
SYSPRMT variable, 2~35
SYSREQ command, 4~ 117
SYSRET variable, 2~36

with 'CAPTURE ON command,
4~26

with CLOSE command, 4~35
with CONNECT command, 4~39
with DISCON command, 4~48
with LOG command, 4~87
with OPEN command, 4~90
with PUTENV command, 4~ 100
with READ command, 4~101
with RUN command, 4~ 106
with TIMEOUT command, 4~121
with WAIT command, 4~123
with WRITE command, 4~ 131

T
TAB command, 4~118
$T AB function, 4~ 171 .
Terminal customization, FA
TEXT command, 4~ 119
$TIM2SEC function, 4~ 17 4
$TIMDIFF function, 4~ 172
$TIME function, 4~ 17 3
TIMEOUT command, 4~ 121
TRACE command, B~ 1

U
Utilities,

Asynchronous Host
Soft Function Keys, 5,27

Generating Screen Field
Variables, 5,17

Get Fields, 5,25
Upload and Download, 5,3

V
Variables,

declaring, 2,13
field, 2,18
global and local, 2,13
integer, 2,15
integer array, 2,15
naming, 2,13
string, 2,16
string array, 2,17

w
WAIT command, 2-49, 4,123
WHILE command, 4,126
WINDOW command, 4,128
WRITE command, 4,131
Writing a tutorial script, G,2
WTO command, 4,133

V
$YEAR function, 4,175

Index 1-5

