=— ATsl

UNIX System /388

PROGRAMMER'S REFERENCE MANUAL

ATsl

()

UNIX® System V Release 3.0
INTEL 80286/30386
Computer Version

Programmer’s Reference Manual

m}‘q

PRENTICE HALL, ENGLEWOOD CLIFFS, NEW JERSEY 07632

© 1988 by AT&T. All Rights Reserved.

IMPORTANT NOTICE TO USERS

While every effort has been made to ensure the accuracy of all information in
this document, AT&T assumes no liability to any party for any loss or damage
caused by errors or omissions or statements of any kind in the UNIX® System
V/386 Programmer’s Reference Manual © AT&T, its upgrades, supplements,
or special editions, whether such errors are omissions or statements resulting
from negligence, accident or any other cause. AT&T further assumes no lia-
bility arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from
the use of this document. AT&T disclaims all warranties regarding the infor-
mation contained herein, whether expressed, implied or statutory, including
implied warranties or merchantability or fitness for a particular purpose.

AT&T reserves the right to make changes without further notice to any prod-
ucts herein to improve reliability, function or design.

No part of this publication may be reproduced, transmitted or used in any form
or by any means—graphic, electronic, mechanical or chemical, including
photocopying, recording in any medium, taping, by any computer or informa-
tion storage and retrieval systems, etc. without prior permission in writing from
AT&T.

UNIX is a registered trademark of AT&T

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 21

ISBN 0-13-94048L7-3

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Copyright© 1987 AT&T
All Rights Reserved
Printed in U.S.A.

NOTICE

The information in this document is subject to change without notice.
AT&T assumes no responsibility for any errors that may appear in this document.

386/ix is a trademark of Interactive Systems Corporation.

ACT is a trademark of Micro-Term.

AnnArbor is a trademark of AnnArbor Terminals.

Beehive is a trademark of Beehive International.

Concept is a trademark of Human Designed Systems.
CrystalWriter is a trademark of Syntactics.

DATASPEED is a registered trademark of AT&T.

dBASE Il is a registered trademark of Ashton-Tate.

DEC, PDP, VAX, and VT100 are trademarks of Digital Equipment Corporation.
DOCUMENTER’S WORKBENCH is a trademark of AT&T.
Dataphone is a registered trademark of AT&T.

Develcon is a trademark of Develcon Electronics, Incorporated.
Diablo is a registered trademark of Xerox.

Dow Jones News/Retrieval Service is a trademark of Dow Jones.
Ethernet is a registered trademark of Xerox.

HP is a registered trademark of Hewlett-Packard, Inc.

IBM is a trademark of International Business Machines.
IMAGEN is a trademark of IMAGEN Corporation.

INFORMIX is a registered trademark of Relational Database Systems.
INGRES/CS is a trademark of Relational Technology.
INSTRUCTIONAL WORKBENCH is a trademark of AT&T.

Intel is a registered trademark of Intel Corporation.

LSI is a trademark of Lear Siegler.

MBASIC is a registered trademark of Microsoft.

MICOM is a registered trademark of MICOM System, Incorporated.
MS-DOS is a registered trademark of Microsoft Corporation.
MULTIBUS is a registered trademark of Intel Corporation.
Micro-Term and MIME are trademarks of Micro-Term.

Microsoft is a registered trademark of Microsoft.

Multiplan is a registered trademark of Microsoft.

Official Airline Guide is a trademark of Official Airline Guide, Inc.
PC-Interface is a registered trademark of Locus Computing.
Penril is a trademark of Penril Corporation.

RM/COBOL is a trademark of Ryan-McFarland.

SuperCalc3 is a trademark of Sorcim/IUS Micro Software.
Syntactics is a trademark of Syntactics.

TEKTRONIX and TEKTRONIX 4010 are registered trademarks of Tektronix, Inc.
TELETYPE is a registered trademark of AT&T.

TeleVideo is a registered trademark of TeleVideo Systems.
Teleray is a trademark of Research Inc.

TermiNet is a trademark of General Electric.

UNIX is a registered trademark of AT&T.

UltraCalc is a trademark of OLYMPUS Software.

Unify is a registered trademark of Unify.

Ventel is a trademark of Ven-Tel, Incorporated.

Versatec is a registered trademark of Versatec Corporation.

WE is a registered trademark of AT&T.

WRITER’S WORKBENCH is a trademark of AT&T.

Weitek is a trademark of Weitek Corporation.

XED is a trademark of Computer Concepts.

Xenix is a registered trademark of Microsoft Corporation.

AT&T Products and Services

B To order documents from the Customer Information Center:
0 within the continental United States, call 1-800-432-6600
o outside the continental United States, call 1-317-352-8557

o send mail orders to:

AT&T Customer Information Center

Customer Service Representative
P.O. Box 19901
Indianapolis, Indiana 46219

To sign up for UNIX system or AT&T computer courses:
B within the continental United States, call 1-800-221-1647

B outside the continental United States, call 1-609-639-4593

B TELEX: 1-609-639-4756
Attention: Training Registration

For information on Intel hardware and software, contact the Intel sales office
nearest you.

To find out about UNIX system source licenses:

M within the continental United States, except North Carolina, call 1-800-
828-UNIX :

B in North Carolina and outside the continental United States, call
1-919-855-2737

B or write to:

Software Licensing
Guilford Center
Salem Bldg. 4th Floor
P.O. Box 25000
Greensboro, NC 27420

Introduction

This manual describes the programming features of the UNIX system. It
provides neither a general overview of the UNIX system nor details of the
implementation of the system.

Not all commands, features, and facilities described in this manual are
available in every UNIX system. Some of the features require additional utili-
ties which may not exist on your system.

This manual is divided into five sections, some containing interfiled subc-
lasses:

1. Commands
2. System Calls
3. Subroutines:
3C. C Programming Language Libraries
3S. Standard I/O Library Routines
3M. Mathematical Library Routines
3N. Networking Support Utilities
3X. Specialized Libraries
3F. FORTRAN Programming Libraries
4. File Formats
5. Miscellaneous Facilities.

Section 1 (Commands) describes commands that support C and other pro-
gramming languages.

Section 2 (System Calls) describes the access to the services provided by
the UNIX system kernel, including the C language interface.

Section 3 (Subroutines) describes the available subroutines. Their binary
versions reside in various system libraries in the directories /lib and /usr/lib.
See intro(3) for descriptions of these libraries and the files in which they are
stored.

Section 4 (File Formats) documents the structure of particular kinds of
files; for example, the format of the output of the link editor is given in
a.out(4). Excluded are files used by only one command (for example, the
assembler’s intermediate files). In general, the C language structures
corresponding to these formats can be found in the directories /usr/include
and /usr/include/sys.

INTRODUCTION 1

Introduction

Section 5 (Miscellaneous Facilities) contains a variety of things. Included
are descriptions of character sets, macro packages, etc.

References with numbers other than those above mean that the utility is
contained in the appropriate section of another manual. References with (1)
following the command mean that the utility is contained in this manual or
the User’s Reference Manual. Those followed by (IM), (7), or (8) are contained
in the System Administrator’s Reference Manual.

Each section consists of a number of independent entries of a page or so
each. Entries within each section are alphabetized, with the exception of the
introductory entry that begins each section (also Section 3 is in alphabetical
order by suffixes). Some entries may describe several routines, commands,
etc. In such cases, the entry appears only once, alphabetized under its ““pri-
mary”’ name, the name that appears at the upper corners of each manual

page.
All entries are based on a common format, not all of whose parts always
appear:

B The NAME part gives the name(s) of the entry and briefly states its pur-
pose.

B The SYNOPSIS part summarizes the use of the program being
described. A few conventions are used, particularly in Section 2 (Sys-
tem Calls):

o Boldface strings are literals and are to be typed just as they appear.

o [Italic strings usually represent substitutable argument prototypes
and program names found elsewhere in the manual.

o Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as
‘name’ or ‘file,” it always refers to a file name.

o Ellipses ... are used to show that the previous argument prototype
may be repeated.

o A final convention is used by the commands themselves. An argu-
ment beginning with a minus -, plus +, or equal sign = is often
taken to be some sort of flag argument, even if it appears in a posi-
tion where a file name could appear. Therefore, it is unwise to
have files whose names begin with -, +, or =.

2 PROGRAMMER’'S REFERENCE MANUAL

Introduction

The DESCRIPTION part describes the utility.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.
The FILES part gives the file names that are built into the program.
The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may
be produced. Messages that are intended to be self-explanatory are not
listed.

The NOTES part gives generally “helpful hints” about the use of the
utility.

The WARNINGS part points out potential pitfalls.
The BUGS part gives known bugs and sometimes deficiencies.

The CAVEATS part gives details of the implementation that might
affect usage.

A rTable of Contents" and a "Permuted Index" derived from that table
precede section 1. The "Permuted Index" is a list of keywords, given in the
second of three columns, together with the context in which each keyword is
found. Keywords are either topical keywords or the names of manual entries.
Entries are identified with their section numbers shown in parentheses. This
is important because there is considerable duplication of names among the
sections, arising principally from components that exist only to exercise a par-
ticular system call. The right column lists the name of the manual page on
which each keyword may be found. The left column contains useful informa-
tion about the keyword.

INTRODUCTION 3

TABLE OF CONTENTS

1. Commands

intro1) 0. introduction to programming commands
admin(l)00 000l o e create and administer SCCS files
ar(l)o .. archive and library maintainer for portable archives
as(l) . v . e e e e e e e e e e e e e e e e e e e common assembler
as386.sed(1) sed script to convert Intel ASM386 source to as source
ol o (5 C program beautifier
oL () T C compiler
ccoff(1) . v v v v v e e e e e e e e e e e e e e e convert a COFF file
ede(1) - .« v o oo oo change the delta commentary of an SCCS delta
cflow(l) . . . o o i e e e e e e e generate C flowgraph
comb(1) 0 e e e e e e e e e e e combine SCCS deltas
conv(l)00 e e e e common object file converter
convert(l)o L. convert archive files to common formats
epp(1) « v v e e e e the C language preprocessor
eprs(l) . v o v o e e e e e e e e e e e e e compress a common object file
ctrace(1)o oL oo C program debugger
exref(1) . . . o . oL oo generate C program cross-reference
delta(1)o make a delta (change) to an SCCS file
dis(1) . . ¢ o o o e e e e e e e e e e object code disassembler
dump(l) oL dump selected parts of an object file
gencc(IM) 0. create a front-end to the cc command
get(l) . . . v o o e e e s e e e e get a version of an SCCS file
i286emul(l) L L s e e e e e e e e emulate 80286
infoomp(IM) compare or print out terminfo descriptions
install(IM) & v i e e e e e e e e e e e e e e e e install commands
Id(1) . .« oo e e e e e e e e link editor for common object files
lex(1) .« . v v v v e e generate programs for simple lexical tasks
3 4 a C program checker
list(1) . . .« v v v v v v produce C source listing from a-common object file
lorder(1) v .. find ordering relation for an object library
¢4 7T 1 macro processor
make(1) mairitain, update, and regenerate groups of programs
mes(l)o o e e e e manipulate the object file comment section
mkshlib(1)o oo oL create a shared library
nm(1) 00 0o e print name list of common object file
omf(l) convert an object module from COFF to OMF
Prof(1) . & v o v v e e e e e e s e e e e e e e e e e e display profile data
Prs(1) « o v o e e e e e e e e e e e e e e e e e print an SCCS file
regemp(l) L. oo Lo 0oL regular expression compile
relogin(IM) rename login entry to show current layer
rmdel(1)o e remove a delta from an SCCS file
sact(l)o oo oo o oL print current SCCS file editing activity
scesdiff(1) & . . o 0oL o000 e o compare two versions of an SCCS file
sdb(1) . . . L L L e e e e e e e e e e e e e e symbolic debugger
size(l) print section sizes in bytes of common object files
strip(1) strip symbol and line number information from a common object file
ticM) oo o e e e e e e e e e e e terminfo compiler

Table of Contents

L2203 4 {1 T topological sort
unget(1) Lo oL o oL undo a previous get of an SCCS file
val(l) . v v v o e e e e e e e e e e e e e e e e e validate SCCS file
V(1) & v e version control
what(1) oL s identify SCCS files
wtinit(lM) object downloader for the 5620 DMD terminal
xtd(IM) 0000 e e extract and print xt driver link structure
xts(IM) « . . v o oL e s e e e extract and print xt driver statistics
xtt@(IM)o Lo o e extract and print xt driver packet traces
yace(1) « . . o o oo e e e e e e e e e e e yet another compiler-compiler

2. System Calls

intro(2) 000000 introduction to system calls and error numbers
ACCESS(2) v v v v e e e e e e e e e e e e e e determine accessibility of a file
acch(2) e e e e e e e e e enable or disable process accounting
alarm(2) o e e e e e e e e e e e e set a process alarm clock
brk(2)00 change data segment space allocation
chdir(2)o o e change working directory
chmod(2) v . o oo e e e e e e e e e e e change mode of file
chown(2) e e e e e e e change owner and group of a file
chroot(2) Lo oo e e change root directory
cose(2) .« . . . L e e e e e e e e e e e e e e e e e e close a file descriptor
creat(2)00 e el . create a new file or rewrite an existing one
dup(2)o oo duplicate an open file descriptor
L=) execute a file
(= 72 terminate process
fontl(2) @ 0 L L s e file control
fork(2) . . . e e e e e e e e e e e e e e e e e create a new process
getdents(2) . . . read directory entries and put in a file system independent format
getmsg(2) oo oo e e e e get next message off a stream
getpid2) get process, process group, and parent process IDs
getuid(2) get real user, effective user, real group, and effective group IDs
0 T [control device
kilg2) send a signal to a process or a group of processes
Hnk(2) . & v v v o e e e e e e e e e e e e e e e e e e link to a file
Iseek(2) oo oo move read/write file pointer
mkdir(2) . . . oL s e e e e e e e e e e e e e e e make a directory
mknod(2) make a directory, or a special or ordinary file, or a FIFO
mount(2) it e e e e e e e e e e e e e e e e e mount a file system
msgetl(2) oL e message control operations
msgget(2) v e e e e e e e e e e e e e e e e e e get message queue
MSZOP(2) & v ¢ v v e e e e e e e e e e e e e e e e e e e message operations
nice(2) . . . 0 e e e e e e e e e e e e change priority of a process
OPEN(2) v v v v e e e e e e e e e e e e e e open for reading or writing
Pause(2) e e e e e e e e e e e e suspend process until signal
pipe(2)o e e e e e e e create an interprocess channel
plock(2) o000 e oL lock process, text, or data in memory
poll2) oo s e STREAMS input/output multiplexing

Table of Contents

profil(2) Lo execution time profile
ptrace(2) L e e e e e e e e e e e e e e e e e process trace
putmsg(2) o e o e e e e e e e e e send a message on a stream
read(2). e read from file
mdir(2) « . L L L s e e e s e s e e e e e e e e e e e e remove a directory
semctl(2) ... Lo e e semaphore control operations
semget(2) L e e e e e e e e e e e e e e get set of semaphores
SemopP(2) « + . 4 4 e v e e e e e e . e e e e e e e semaphore operations
setpgrp(2) e e e e e e e e e e e e e e e set process group ID
setuid(2) L L e e e e set user and group IDs
shmetl(2) 0. shared memory control operations
shmget(2) get shared memory segment identifier
shmop(2) ¢ o v oo oo s e shared memory operations
signal(2)o 0oL specify what to do upon receipt of a signal
sigset(2) o o e e e e e e e e e e e e e e e signal management
1 1 22 get file status
statfs(2) .« . . v v e e e e e e e e e e e e e get file system information
SMe(2) o« v v v v e set time
SYNC(2) v v v v e update super block
sysfs(2) o oo e e e e e get file system type information
SYSi86(2) . . . v . e e e e e e e e machine-specific functions
Hme(2) .« & v v v e get time
times(2) o0 000 oL, get process and child process times
uadmin(2) 00wl e e e e e e e e administrative control
ulimit(2) L s e e e e e e e e e e e e e e e e get and set user limits
umask(2) L e s s e e e e e e set and get file creation mask
umount(2) L. e e e e e e e e e e e e unmount a file system
uname(2) e e e e e e e e e e e e get name of current UNIX system
unlink(2) Lo oL remove directory entry
ustat(Z) . . . oL L o s s e e s e e e e e e e e e e get file system statistics
utime(2) L0000 e e set file access and modification times
wait(2) e e e e e e e e e e wait for child process to stop or terminate
Write(2) . . . e write on a file

3. Subroutines

introB) 000 s introduction to functions and libraries
a641(3C) convert between long integer and base-64 ASCII string
abort(3C) e e e e s e e e e e generate an IOT fault
abort(B3F) 000 o terminate FORTRAN program
abs(3C) e e e e e e e e e e e e e e e return integer absolute value
abs@BF) e e e e e e e e e e e e FORTRAN absolute value
acos(3F) 00000 o o FORTRAN arccosine intrinsic function
aimag@3F) FORTRAN imaginary part of complex argument
aintBF)o 0oL FORTRAN integer part intrinsic function
asin(BF) o000 oo s FORTRAN arcsine intrinsic function
assert(3X) L. o e e e e e e e e e e e verify program assertion
atanBF)00 0000 FORTRAN arctangent intrinsic function
atan2(3F)00 o000 FORTRAN arctangent intrinsic function

Table of Contents

besselBM)o e e e e e e e Bessel functions
bool(3F) FORTRAN Bitwise Boolean functions
bsearch3C) o oo binary search a sorted table
cAock(BC) & v v v e e e e e e e e e e e e e e e e e e report CPU time used
conjgBF)o FORTRAN complex conjugate intrinsic function
conv(B3C) . . Lt e e e e e e e e e e e e e e e e e translate characters
osBF)t e e s e e e e FORTRAN cosine intrinsic function
cosh@BF) FORTRAN hyperbolic cosine intrinsic function
aypt(BC) - . . . o oo e generate hashing encryption
ayptB3X) 000 oo o password and file encryption functions
ctermid(3S) o000 000 oL generate file name for terminal
cime(3C) o oo o s e e convert date and time to string
o174 o =T (C 1) classify characters
curses(3X) terminal screen handling and optimization package
cuserid(35) e e e e e e get character login name of the user
dial3C) 0oL establish an out-going terminal line connection
dim@BF) 0000000 positive difference intrinsic functions
directory(3X)o oo oo directory operations
dprodBF) double precision product intrinsic function
drand48(3C) generate uniformly distributed pseudo-random numbers
dup2(3C) oo o e duplicate an open file descriptor
ecvt(3C) . . e e e e e e e e e convert floating-point number to string
end3C)o oL e e e e e e e last locations in program
effGM). L. error function and complementary error function
expBF) 0oL FORTRAN exponential intrinsic function
expBM). exponential, logarithm, power, square root functions
fcose(3S) v e i e h e e e e e e e e eclose or flush a stream
ferror(3S) v e e e e e e e e e e e e e e e stream status inquiries
floorBGM) floor, ceiling, remainder, absolute value functions
fopen(3S) L e e e e e e e e e open a stream
fpgetround(3C) IEEE floating point environment control
fread3S) oo oo oo e e e e e e binary input/output
frexp3C) oo manipulate parts of floating-point numbers
fseek(3S) oo oo o oo reposition a file pointer in a stream
3 1) walk a file tree
ftypeBF) o oo s o explicit FORTRAN type conversion
gamma(3M) e e e e e e e e log gamma function
getargB3F)00 return FORTRAN command-line argument
getc(3S)o oo oo e get character or word from a stream
getewd3C) get path name of current working directory
getenv(3C)o oo return value for environment name
getenv@3F) 00000 return FORTRAN environment variable
getgrent(3C) e e e e e e e e e e e e e get group file entry
getlogin3C) oL e e e e e get login name
getopt(3C) Lo oL get option letter from argument vector
getpass(3C) L oo e e e e e e read a password
getpw(BC) . . . L . L. e e get name from UID
getpwent(3C) 00000 e e . get password file entry
gets(3S) e e e e e e e e e e . get a string from a stream

Table of Contents

getut(3C) L. Lo access utmp file entry
hsearch(3C) 00 manage hash search tables
hypotBM)« o o oo e e . Euclidean distance function
farge@BF)o o return the number of command line arguments
indexBF) 000 return location of FORTRAN substring
isnan(3C)o test for floating point NaN (Not-A-Number)
Btol(3C) convert between 3-byte integers and long integers
ldahread(3X) read the archive header of a member of an archive file
Idclose(3X) . . « v ¢« v vt v i e e e e e e e e e close a common object file
ldfhread(3X) read the file header of a common object file

ldgetname(3X) . . retrieve symbol name for common object file symbol table entry
ldlread(3X) manipulate line number entries of a common object file function
ldlseek(3X) seek to line number entries of a section of a common object file

ldohseek(3X) seek to the optional file header of a common object file
Idopen(3X) open a common object file for reading
Idrseek(3X) seek to relocation entries of a section of a common object file
ldshread(3X) read an indexed/named section header of a common object file
Idsseek(3X) seek to an indexed /named section of a common object file
l1dtbindex(3X) . . compute the index of a symbol table entry of a common object file
Idtbread(3X) read an indexed symbol table entry of a common object file
ldtbseek(3X) seek to the symbol table of a common object file
lenBF) o ool return length of FORTRAN string
libwindows(3X) windowing terminal function library
lockf(BC) . . &« & . . L e e e e e e e e e e e e e record locking on files
logBF) FORTRAN natural logarithm intrinsic function
loglOBF) « . o . o .. FORTRAN common logarithm intrinsic function
logname(3X) 000 e s e e return login name of user
Isearch(3C) . . « v v v v v v v e e e e e e e e e e linear search and update
malloc3C) ¢ i i e e e e e e e e e e main memory allocator
malloc(3X) v . v e e e e e e e e e e fast main memory allocator
matherrGM) oo o e e e error-handling function
max(3F)o 0. FORTRAN maximum-value functions
mclock@B3F)0 000 o 0 e L, return FORTRAN time accounting
memory(3C) o e e e e e e e e e e e e memory operations
milBF)« ¢ . o e e e FORTRAN Military Standard functions
mnB3F). 00000 FORTRAN minimum-value functions
mktemp(3C) Lo 000 e make a unique file name
modBF)o FORTRAN remaindering intrinsic functions
monitor(3C)o oo oo e e prepare execution profile
nlist(3C) . . v . . o i e e e e e e e e e e e get entries from name list
perror(3C) L L L L e e e e e e e e e system error messages
plot3X) oo graphics interface subroutines
popen(3S).o oo initiate pipe to/from a process
printf(3S) oL Lo oo print formatted output
putc@3S) Lo oo e put character or word on a stream
putenv3C)o oo change or add value to environment
putpwent(3C) 000 write password file entry
puts(3S)o e e e e put a string on a stream
gsort(B3C) . . . e quicker sort

Table of Contents

rand(3C) v et e e e e e e e simple random-number generator
randBF)o oo oo oo s e random number generator
regemp(3X)o 0oL . . . compile and execute regular expression
roundBF) 00000 FORTRAN nearest integer functions
scanf(3S) it e e e e e e e e e e e e e e convert formatted input
setbuf3S) e e e e e e e e . . . assign buffering to a stream
sefmp(BC) o o e e e e e e e e e e e . . . non-local goto
sign(3F) e e e e e e FORTRAN transfer-of-sign intrinsic function
signal3F) specify FORTRAN action on receipt of a system signal
sin(8F) L e e e e e e e e e e FORTRAN sine intrinsic function
sinh3F) FORTRAN hyperbolic sine intrinsic function
sinhBM) v v v i s e s e e e e e e e e e e hyperbolic functions
sleep3C)o oo a e suspend execution for interval
sputl3X) access long integer data in a machine independent fashion
sqrt(3F) Lo oo oo FORTRAN square root intrinsic function
ssignal(3C) L v L o e e e e s e e e e e e software signals
stdio3S) e standard buffered input/output package
stdipe(3C)o oo oL standard interprocess communication package
seemp@BF) L 000 oo 0oL string comparison intrinsic functions
string(3C) L L e e e e e e . string operations
strtod3C) o000 L convert string to double-precision number
strtol(3C) . . L L L s e e s e e e e s e e e e e e convert string to integer
swab(3C) L. e e e e e e e e e e e e e e e e swap bytes
system(BF) issue a shell command from FORTRAN
system(3S) e e e e issue a shell command
tanBF)o 0000 FORTRAN tangent intrinsic function
tanh(3F) FORTRAN hyperbolic tangent intrinsic function
tmpfile3S) e e e e e e e e e e create a temporary file
tmpnam(3S) o000 0L create a name for a temporary file
trigBM)o oo o oo @ e e e e e e e trigonometric functions
tsearch(3C) v ¢ . v o i o e e e e e e manage binary search trees
ttyname(3C) ool 0 o e e e e e e find name of a terminal
ttyslot(3C)o L find the slot in the utmp file of the current user
t_accept3N) e e e e e e e e e e e accept a connect request
tallocBN) v v o e e e e allocate a library structure
tbindBN), bind an address to a transport endpoint
tcoseBN)o, . . .close a transport endpoint
t connect3N) establish a connection with another transport user
terror(BN) o e e e e e e e e e produce error message
tfreeBN) Lo e e e e e e free a library structure
tgetinfoBN) get protocol-specific service information
tgetstateBN) 0000 o ol get the current state
tlisten(BN) v v v v i e e e e e e e e listen for a connect request
tlook3N) look at the current event on a transport endpoint
t_ open(3N) e e e e e e e e . establish a transport endpoint
toptmgmt(3N) manage options for a transport endpoint
trev3N) ... 0L receive data or expedited data sent over a connection
t_rcvconnect(3N) receive the confirmation from a connect request
trevdisBN)o Lo oo o e e e L retrieve information from disconnect

Table of Contents

trevrelBN) acknowledge receipt of an orderly release indication
trevudataBN) L L L Lo oo receive a data unit
trecvaderr(3N) L0 .o . receive a unit data error indication
tsnd3N) send data or expedited data over a connection
tsnddis(BN)00 send user-initiated disconnect request
tsndrelB3N) L0000 oo initiate an orderly release
tsndudata(3N)00 0 e e e e e send a data unit
tsyncBN)o 0oL oo s s synchronize transport library
tunbindBN) o000 0000 disable a transport endpoint
ungetc(3S)o push character back into input stream
vprintf(3S) L print formatted output of a varargs argument list

4. File Formats

INtro(4) « ¢ v v v e e e e e e e e e e e e e e e introduction to file formats
aout(4)o e common assembler and link editor output
acct(4) Lo o e per-process accounting file format
1 (- common archive file format
checklist(4) list of file systems processed by fsck and ncheck
configl4) oo per-module configuration information
core(4) . .+ . . v o0 e e e e e e e e e e e format of core image file
oy o3 o - format of cpio archive
Lo 11 3 T format of directories"
dirent(4) file system independent directory entry
filehdr(4) o oo oo file header for common object files
T format of system volume
fspec(4)o o e format specification in text files
fstab(4) e e e e e e e e e e e e file-system-table
gettydefs(4) speed and terminal settings used by getty
group(4) « .« - o e group file
inittab(4) L L 0L s e s e e e e script for the init process
inode(4) L i e e e e e e e e e format of an i-node
issue(4) e e e e e e e e e e issue identification file
Idfen(4) © o . . o o oo oo oL common object file access routines
limits(4) file header for implementation-specific constants
linenum(4) line number entries in a common object file
mnttab(4) L e e e e e e e e e mounted file system table
passwd(4) L . o e e e e e e e e e e e e e password file
Plot(4) oo e e e e e e graphics interface
pnch(4)o L e file format for card images
profile(4) setting up an environment at login time
reloc(4), relocation information for a common object file
rfmaster(4) o0 . Remote File Sharing name server master file
scesfile(4) o o v o L oL o e e e e e e e format of SCCS file
senhdr(4) L. L o Lo oo o section header for a common object file
scr_dump(4)o 000 o format of curses screen image file
syms(4)o 0w d e . common object file symbol table format
system(4) oL 000 e e system configuration information
term(4)o e e format of compiled term file

Table of Contents

terminfo(4) L0 terminal capability data base
timezone(4) . « . « . o v e v e e e e e e e set default system time zone
unistd(4) 0 e e e e e e e e e e file header for symbolic constants
utmp(4) « . .. e e e e e e e e e e utmp and wtmp entry formats

5. Miscellaneous Facilites

introB) Lo oo introduction to miscellany
ascii(5) . . . v v e e e e e e e e e e e e e e e map of ASCII character set
environ(5)t v e e e e e e e e e e e e e e e e user environment
fentl(B) L e e e e e e e e e e file control options
jagent(5) oL host control of windowing terminal
layers(5) protocol used between host and windowing terminal under
math(5) . . . « .« . o o o e e e e e e math functions and constants
prof(5) e e e e e e e e e e e profile within a function
regexp(3) regular expression compile and match routines
stat(G) oo data returned by stat system call
term(5)o e e e e e e e conventional names for terminals
types(5) - . . . v o o e e e e e e e e e e e e primitive system data types
values(5) o i e e e e e e e e e e e machine-dependent values
varargs(d) v . e e i e e e e e e e e handle variable argument list
xtproto(5) multlplexed channels protocol used by xt(7) driver

PERMUTED INDEX

13tol, 1tol3: convert between
object downloader for the
i286emul: emulate

long integer and base-64/

program.

FORTRAN absolute value.
value.

abs: return integer

dabs, cabs, zabs: FORTRAN
/floor, ceiling, remainder,
t_accept:

utime: set file

accessibility of a file.
machine/ sputl, sgetl:

1dfen: common object file
/setutent, endutent, utmpname:
access: determine

enable or disable process
acct: per-process

mclock: return FORTRAN time
process accounting.

file format.

orderly release/ t_rcvrel:
trig: sin, cos, tan, asin,
intrinsic function.

current SCCS file editing
putenv: change or

endpoint. t_bind: bind an
SCCS files.

admin: create and

uadmin:

imaginary part of complex/
part intrinsic function.
alarm: set a process

clock.

t_alloc:

change data segment space
realloc, calloc: main memory
mallinfo: fast main memory
natural logarithm/ log,
logarithm intrinsic/ log10,
FORTRAN/ max, max0,
max, max0, amax0, max1,
FORTRAN/ min, min0,
min, min0, amin0, minl,
remaindering intrinsic/ mod,
rshift: FORTRAN Bitwise/ bool:
FORTRAN nearest/ round:
link editor output.
maintainer for portable/

3-byte integers and long/ 13tol(3C)
5620 DMD terminal. wtinit: wtinit(1M)
80286. . . v v a e e e e e e e i286emul(1)
a6bd], 164a: convert between a641(3C)
abort: generate an IOT fault. abort(3C)
abort: terminate FORTRAN abort(3F)
abs, iabs, dabs, cabs, zabs: abs(3F)
abs: return integer absolute abs(3C)
absolutevalue. abs(3C)
absolute value. abs,iabs, abs(3F)
absolute value functions. floor(3M)
accept a connect request. L t_accept(3N)
access and modification times. utime(2)
access: determine L access(2)
access long integer dataina sputl(3X)
access routines. 0. L. 1dfen(4)
access utmp fileentry. L. getut(3C)
accessibility of afile. access(2)
accounting. acct: acct(2)
accounting file format. acct(4)
accounting. mclock(3F)
acct: enable or disable acct(2)
acct: per-process accounting acct(4)
acknowledge receiptofan t_rcvrel(3N)
acos, atan, atan2:/ trig(3M)
acos, dacos: FORTRAN arccosine acos(3F)
activity. sact: print L sact(1)
add value to environment. putenv(3C)
addressto a transport tbind(3N)
admin: create and administer admin(1)
administer SCCS files. admin(1)
administrative control. L. uadmin(2)
aimag, dimag: FORTRAN aimag(3F)
aint, dint: FORTRAN integer aint(3F)
alarmclock.o 0oL alarm(2)
alarm: seta process alarm alarm(2)
allocate a library structure. t_alloc(3N)
allocation. brk, sbrk: brk(2)
allocator. malloc, free, malloc(3C)
allocator. /calloc, mallopt, malloc(3X)
alog, dlog, clog: FORTRAN log(3F)
alog10, dlog10: FORTRAN common log10(3F)
amax0, max1, amax1, dmaxl: max(3F)
amax1, dmaxl: FORTRAN/ max(3F)
amin0, minl, aminl, dminl: min(3F)
aminl, dminl: FORTRAN/ min(3F)
amod, dmod: FORTRAN mod(3F)
and, or, xor, not, Ishift, bool(3F)
anint, dnint, nint, idnint: L. round(3F)
a.out: common assemblerand a.out(4)

ar: archive and library ar(1)

-1 -

Permuted Index

format.

acos, dacos: FORTRAN

for portable archives. ar:

cpio: format of cpio

ar: common

header of a member of an
formats. convert: convert

an archive/ ldahread: read the
maintainer for portable

asin, dasin: FORTRAN

atan2, datan2: FORTRAN
atan, datan: FORTRAN
imaginary part of complex
return FORTRAN command-line
varargs: handle variable
formatted output of a varargs
getopt: get option letter from
the number of command line

convert Intel ASM386 source to
convert Intel ASM386 source/
ascii: map of

set.

long integer and base-64
and/ ctime, localtime, gmtime,
trig: sin, cos, tan,

intrinsic function.

/sed script to convert Intel
output. a.out: common

as: common

assertion,

assert: verify program

setbuf, setvbuf:

/sin, cos, tan, asin, acos,
arctangent intrinsic/
arctangent intrinsic/

cos, tan, asin, acos, atan,
double-precision/ strtod,
integer. strtol, atol,

integer. strtol,

ungetc: push character
terminal capability data
between long integer and

cb: C program

j0, j1, jn, y0, y1, yn:

yn: Bessel functions.

fread, fwrite:

bsearch:

tfind, tdelete, twalk: manage
endpoint. t_bind:

/not, Ishift, rshift: FORTRAN
sync: update super

Ishift, rshift: FORTRAN/

ar: common archive file ar(4)
arccosine intrinsic function. acos(3F)
archive and library maintainer ar(1)
archive. cpio(4)
archive file format. ar(4)
archive file. /thearchive Idahread(3X)
archive filestocommon convert(1)
archive header of a memberof Idahread(3X)
archives. /archive and library ar(1)
arcsine intrinsic function. asin(3F)
arctangent intrinsic function. atan2(3F)
arctangent intrinsic function. atan(3F)
argument. /dimag: FORTRAN aimag(3F)
argument. getarg:0 4. ... getarg(3F)
argument list. varargs(5)
argument list. /print vprintf(3S)
argument vector. e e getopt(3C)
arguments, iargc: return L. L L iargc(3F)
as: common assembler. as(1)

as source. /sedscriptto as386.sed(1)
as386.sed: sed scriptto L L. as386.sed(1)
ASCII characterset. ascii(5)
ascii: map of ASCII character ascii(5)
ASCII string. /convert between a64](3C)
asctime, tzset: convertdate ctime(3C)
asin, acos, atan, atan2:/ trig(3M)
asin, dasin: FORTRAN arcsine asin(3F)
ASM386 source to as source. as386.sed(1)
assembler and link editor a.out(4)
assembler. as(1)

assert: verify program assert(3X)
assertion.04 e e e e .. assert(3X)
assign buffering to a stream. setbuf(3S)
atan, atan2: trigonometric/ trig(3M)
atan, datan: FORTRAN atan(3F)
atan2, datan2: FORTRAN atan2(3F)
atan2: trigonometric/ /sin, trig(3M)
atof: convert stringto strtod(3C)
atoi: convert stringto strtol(3C)
atol, atoi: convert stringto strtol(3C)
back into input stream. ungetc(3S)
base. terminfo: terminfo(4)
base-64 ASCII string. /convert a64l(3C)
beautifier. 0000 cb(1)

Bessel functions. bessel: bessel(3M)
bessel: jO, j1,jn, y0,y1, bessel(3M)
binary input/output. fread(3S)
binary search a sorted table, bsearch(3C)
binary search trees. tsearch, tsearch(3C)
bind an address to a transport t_bind(3N)
Bitwise Boolean functions. bool(3F)
block. 0000 sync(2)
bool: and, or, xor,not, bool(3F)

_2.

rshift: FORTRAN Bitwise
space allocation.

sorted table.

/ieor, ishft, ishftc, ibits,
stdio: standard

setbuf, setvbuf: assign
size: print section sizes in
swab: swap

cc:

cflow: generate

cpp: the

cb:

lint: a

cxref: generate

ctrace:

object file. list: produce
value. abs, iabs, dabs,
data returned by stat system
malloc, free, realloc,

fast/ malloc, free, realloc,
intro: introduction to system
terminfo: terminal

pnch: file format for

create a front-end to the

function. cos, dcos,
commentary of an SCCS delta.
ceiling, remainder,/ floor,
/ceil, fmod, fabs: floor,
intrinsic/ exp, dexp,

delta: make a delta

pipe: create an interprocess
xt(7)/ xtproto: multiplexed
/dble, cmplx, demply, ichar,
stream. ungetc: pllSh

user. cuserid: get

/getchar, fgetc, getw: get
/putchar, fputc, putw: put
ascii: map of ASCII
—tolower, toascii: translate
iscntrl, isascii: classify
directory.

lint: a C program

systems processed by fsck and/
times: get process and
terminate. wait: wait for

of a file.

isgraph, iscntrl, isascii:

Permuted Index

Boolean functions. /lshift, bool(3F)
brk, sbrk: change data segment brk(2)
bsearch: binary searcha bsearch(3C)
btest, ibset, ibclr, mvbits:/ L. mil(3F)
buffered input/output package. stdio(35)
buffering toastream. setbuf(3S)
bytes of common object files. size(1)
bytes. o e swab(3C)
Ccompiler. - ce(1)
Cflowgraph, cflow(1)

C language preprocessor. . . . « + « . .« . . cpp(1)

C program beautifier. cb(1)

C program checker. lint(1)

C program cross-reference. cxref(1)

C program debugger. ctrace(1)

C source listing from a common list(1)
cabs, zabs: FORTRAN absolute abs(3F)
call. stat: oL o L stat(5)
calloc: main memory allocator. malloc(3C)
calloc, mallopt, mallinfo: malloc(3X)
calls and error numbers. intro(2)
capability database. terminfo(4)
cardimages. pnch(4)
cb: C program beautifier. cb(1)
cc:Ccompiler. cc(1)
cccommand. gencc: 4. . . . gencc(1M)
ccoff: convert a COFFfile. ccoff(1)
ccos: FORTRAN cosine intrinsic cos(3F)
cdc: change thedelta cde(l)

ceil, fmod, fabs: floor, floor(3M)
ceiling, remainder, absolute/ floor(3M)
cexp: FORTRAN exponential exp(3F)
cflow: generate C flowgraph. cflow(1)
(change) to an SCCS file. delta(1)
channel. L0000 pipe(2)
channels protocol used by xtproto(5)
char: explicit FORTRAN type/ ftype(3F)
character back into input ungetc(3S)
character login name of the cuserid(3S)
character or word froma/ getc(3S)
character or word on a stream. putc(3S)
characterset. ascii(5)
characters. /_toupper, conv(3C)
characters. /isprint, isgraph, ctype(3C)
chdir: change working chdir(2)
checker. o0 oo e lint(1)
checklist: listof file checklist(4)
child process times. times(2)
child processtostopor wait(2)
chmod: change mode of file. chmod(2)
chown: change owner and group chown(2)
chroot: change root directory. chroot(2)
classify characters. /fisprint, ctype(3C)

-3-

Permuted Index

status/ ferror, feof,
alarm: set a process alarm

logarithm/ log, alog, dlog,
ldclose, ldaclose:

close:

t_close:

descriptor.

fclose, fflush:

telldir, seekdir, rewinddir,
/real, float, sngl, dble,

dis: object

ccoff: convert a

convert an object module from

comb:

system: issue a shell

create a front-end to the cc
iargc: return the number of
system: issue a shell

getarg: return FORTRAN
install: install

introduction to programming
manipulate the object file
cdc: change the delta

ar:

editor output. a.out:

as:

convert archive files to
log10, alogl0, dlog10: FORTRAN
routines. Idfcn:

conv:

cprs: compress a

Idopen, ldaopen: open a
/line number entries of a
Idclose, ldaclose: close a
read the file header of a
entries of a section of a

the optional file header of a
/entries of a section of a
/section header of a

an indexed/named section of a
of a symbol table entry of a
symbol table entry of a

seek to the symbol table of a
line number entries in a

C source listing from a

nm: print name list of
relocation information for a
scnhdr: section header for a
line number information from a
/retrieve symbol name for
table format. syms:

clearerr, fileno: stream ferror(3S)
cock. .+ . v . e s e e e e e e e alarm(2)
clock: report CPU timeused. clock(3C)
clog: FORTRAN natural log(3F)
close a common object file. ldclose(3X)
close a file descriptor. close(2)
close a transport endpoint. t_close(3N)
close:closeafile close(2)
close or flush a stream. fclose(3S)
closedir: directory/ /readdir, directory(3X)
cmplx, demply, ichar, char:/ L L. ftype(3F)
code disassembler. dis(1)
COFFfile.« . .. o .. ccoff(1)
COFFtoOMF. omf: omf(1)
comb: combine SCCS deltas. comb(1)
combine SCCS deltas. comb(1)
command from FORTRAN. system(3F)
command. gencc:0 L gencc(1M)
command line arguments. iargc(3F)
command. e e e e system(3S)
command-line argument. e e e getarg(3F)
commands. . . . o v v e e e s e e e install(1M)
commands. intro: L. L intro(1)
comment section. mcs:00 . . mes(1)
commentary of an SCCS delta. cde(1)
common archive file format. ar(4)
common assemblerand link a.out(4)
common assembler., as(1)
common formats. convert: convert(1)
common logarithm intrinsic/ log10(3F)
common object fileaccess 1dfen(4)
common object file converter. conv(1)
common object file. cprs(1)
common object file for/ Idopen(3X)
common object file function. 1dlread(3X)
common object file. L. 1dclose(3X)
common object file. Idfhread: 1dfhread(3X)
common object file. /number 1dlseek(3X)
common object file. /seekto Idohseek(3X)
common object file., Idrseek(3X)
common object file. 1dshread(3X)
common object file. /seekto Idsseek(3X)
common object file. /theindex 1dtbindex(3X)
common object file. /indexed 1dtbread(3X)
common object file. Idtbseek: 1dtbseek(3X)
common object file. linenum: linenum(4)
common object file. /produce list(1)
common object file. nm(1)
common object file. reloc: reloc(4)
common object file. scnhdr(4)
common object file. /and strip(1)
common object file symbol/ 1dgetname(3X)
common object file symbol syms(4)

-4 -

filehdr: file header for

Id: link editor for

section sizes in bytes of
/ftok: standard interprocess
descriptions. infocmp:

SCCS file. scesdiff:

Ige, lgt, lle, I1t: string
expression. regemp, regex:
regexp: regular expression
regemp: regular expression
term: format of

cc: C

tic: terminfo

yacc: yet another

erf, erfc: error function and
FORTRAN imaginary part of
conjg, dconjg: FORTRAN
cprs:

table entry of a/ ldtbindex:
configuration information.
config: per-module

system: system
t_rcvconnect: receive the
conjugate intrinsic function.
conjg, dconjg: FORTRAN complex
t._accept: accept a

t_listen: listen for a

the confirmation from a

an out-going terminal line
or expedited data sent over a
data or expedited data over a
t_connect: establish a

for implementation-specific
math: math functions and
file header for symbolic
joctl:

fentl: file

floating point environment
jagent: host

msgctl: message

semctl: semaphore

shmetl: shared memory

fentl: file

uadmin: administrative

ve: version

converter.

—toupper, _tolower, toascii:/
terminals. term:

char: explicit FORTRAN type
ccoff:

COFF to OMF. omf:
common formats. convert:
integers and/ 13tol, ltol3:

Permuted Index

common object files. filehdr(4)
common object files. L. 1d(1)
common object files. /print size(1)
communication package. stdipc(3C)
compare or print out terminfo infocmp(1M)
compare two versionsofan scesdiff(1)
comparison intrinsic/ stremp: L. stremp(3F)
compile and execute regular regemp(3X)
compile and match routines. regexp(5)
compile. Lo regemp(1)
compiled term file. L. term(4)
compiler., L0000 L cc(1)
compiler. L. L0 tic(1M)
compiler-compiler. yace(1)
complementary error function. erf(3M)
complex argument. /dimag: aimag(3F)
complex conjugate intrinsic/ conjg(3F)
compress a common object file. cprs(1)
compute the index of asymbol 1dtbindex(3X)
config: per-module config(4)
configuration information. config(4)
configuration information. system(4)
confirmation from a connect/ t_rcvconnect(3N)
conjg, dconjg: FORTRAN complex conjg(3F)
conjugate intrinsic function. conjg(3F)
connectrequest. t—accept(3N)
connectrequest. t_listen(3N)
connect request. /receive t_rcvconnect(3N)
connection. dial: establish dial(3C)
connection. /receivedata t_rcv(3N)
connection. t_snd:send t—_snd(3N)
connection with another/ t_connect(3N)
constants. /file header limits(4)
constants. e e e e e . math(5)
constants. unistd: L. .. unistd(4)
control device. ioctl(2)
control. oo e e fentl(2)
control. /fpsetsticky: IEEE fpgetround(3C)
control of windowing terminal. jagent(5)
control operations. L. msgctl(2)
control operations. semctl(2)
control operations. shmctl(2)
controloptions. L. fenti(5)
control.o uadmin(2)
control.o vi(l)

conv: common object file conv(1)
conv: toupper, tolower, conv(3C)
conventional names for term(5)
conversion. /demplx, ichar, ftype(3F)
converta COFFfile. ccoff(1)
convert an object module from omf(1)
convert archive filesto convert(1)
convert between 3-byte 13tol(3C)

-5-

Permuted Index

and base-64 ASCIl/ a64l, 164a:
to common formats.

/gmtime, asctime, tzset:

to string. ecvt, fevt, gevt:
scanf, fscanf, sscanf:

as/ as386.sed: sed script to
strtod, atof:

strtol, atol, atoi:

conv: common object file

file.

core: format of

cosine intrinsic function.
atan2:/ trig: sin,

hyperbolic cosine intrinsic/
functions. sinh,

cos, dcos, ccos: FORTRAN
/dcosh: FORTRAN hyperbolic
cpio: format of

preprocessor.

file.

clock: report

rewrite an existing one.
command. gencc:

file. tmpnam, tempnam:

an existing one. creat:

fork:

mkshlib:

tmpfile:

channel. pipe:

files. admin:

umask: set and get file
cxref: generate C program
encryption functions.
generate hashing encryption.
function. sin, dsin,
intrinsic/ sqrt, dsqrt,

for terminal.

asctime, tzset: convert date/

islower, isdigit, isxdigit,/
endpoint. t_look: look at the
rename login entry to show
activity. sact: print
t_getstate: get the

uname: get name of

slot in the utmp file of the
getcwd: get path name of
scr_dump: format of
handling and optimization/
name of the user.
cross-reference.

absolute value. abs, iabs,

convert between long integer a641(3C)
convert: convert archive files convert(1)
convert date and timeto/ ctime(3C)
convert floating-point number ecvt(3C)
convert formatted input. scanf(3S)
convert Intel ASM386 sourceto as386.sed(1)
convert string to/0 u ... strtod(3C)
convert string to integer. strtol(3C)
CONVEIter. + o v v v ¢ v v 4 4 e v e e e conv(1)
core: format of coreimage core(4)
core image file. core(4)

cos, dcos, ccos: FORTRAN cos(3F)
cos, tan, asin, acos, atan, trig(3M)
cosh, dcosh: FORTRAN . ., cosh(3F)
cosh, tanh: hyperbolic sinh(3M)
cosine intrinsic function. cos(3F)
cosine intrinsic function. cosh(3F)
cpioarchive. L. ... cpio(4)
cpio: format of cpio archive. cpio(4)
cpp: the Clanguage cpp(1)
cprs: compress a common object cprs(1)
CPUtimeused. clock(3C)
creat: create a new fileor creat(2)
create a front-endtothece gencc(1M)
create a name for a temporary tmpnam(3S)
create a new file or rewrite creat(2)
create a NEW Process. « « « « « 4 + o . . o . fork(2)
create a shared library. mkshlib(1)
create a temporary file. L. tmpfile(3S)
create an interprocess pipe(2)
create and administer SCCS admin(1)
creationmask., umask(2)
cross-reference. 044 e e 0w cxref(1)
crypt: password and file crypt(3X)
crypt, setkey, encrypt: oL L crypt(3C)
csin: FORTRAN sine intrinsic sin(3F)
csqrt: FORTRAN squareroot sqrt(3F)
ctermid: generate filename ctermid(3S)
ctime, localtime, gmtime, ctime(3C)
ctrace: C program debugger. ctrace(1)
ctype: isalpha, isupper, ctype(3C)
current event on a transport t_look(3N)
current layer. relogin: relogin(1M)
current SCCS file editing sact(1)
currentstate. o000 t_getstate(3N)
current UNIXsystem. uname(2)
current user. /findthe ttyslot(3C)
current working directory. getewd(3C)
curses screen image file. scr—.dump(4)
curses: terminal screen curses(3X)
cuserid: get character login cuserid(35)
cxref: generate C program cxref(1)
dabs, cabs, zabs: FORTRAN abs(3F)

-6 -

intrinsic function. acos,
intrinsic function. asin,
terminfo: terminal capability
t_rcvuderr: receive a unit
/sgetl: access long integer
plock: lock process, text, or
connection. t_snd: send
over a/ t_rcv: receive
t_snd: send data or expedited
prof: display profile

call. stat:

brk, sbrk: change

/receive data or expedited
types: primitive system
t_rcvudata: receive a
t_sndudata: send a

intrinsic function. atan,
intrinsic function. atan2,
/asctime, tzset: convert
/idint, real, float, sngl,
/float, sngl, dble, cmplx,
conjugate intrinsic/ conjg,
intrinsic function. cos,
cosine intrinsic/ cosh,
difference intrinsic/ dim,
ctrace: C program

sdb: symbolic

timezone: set

delta commentary of an SCCS
file. delta: make a

delta. cdc: change the
rmdel: remove a

to an SCCS file.

comb: combine SCCS
compare or print out terminfo
close: close a file

dup: duplicate an open file
dup2: duplicate an open file
file. access:

ioctl: control

exponential intrinsic/ exp,
terminal line connection.
dim, ddim, idim: positive
difference intrinsic/

of complex argument. aimag,
intrinsic function. aint,

dir: format of

chdir: change working
chroot: change root

file system/ getdents: read
file system independent
unlink: remove

Permuted Index

dacos: FORTRAN arccosine acos(3F)
dasin: FORTRAN arcsine asin(3F)
database. terminfo(4)
data error indication. t_rcvuderr(3N)
data in a machine independent/ sputl(3X)
datainmemory. plock(2)
data or expedited data overa t—snd(3N)
data or expedited datasent t—rcv(3N)
data over a connection. t_snd(3N)
data.o e e e prof(1)
data returned by stat system stat(5)

data segment space allocation. brk(2)

data sent over a connection. t_rcv(3N)
datatypes. types(5)
dataunit. 0000 L t_rcvudata(3N)
dataunit. 0oL t_sndudata(3N)
datan: FORTRAN arctangent atan(3F)
datan2: FORTRAN arctangent atan2(3F)
date and time tostring. ctime(3C)
dble, cmplx, demplx, ichar,/ L. ftype(3F)
demplx, ichar, char: explicit/ ftype(3F)
dconjg: FORTRAN complex conjg(3F)
dcos, ccos: FORTRAN cosine cos(3F)
dcosh: FORTRAN hyperbolic cosh(3F)
ddim, idim: positive L. dim(3F)
debugger. ctrace(1)
debugger. sdb(1)
default system time zone. timezone(4)
delta. cdc: changethe cde(1)
delta (change) toan SCCS delta(1)
delta commentary of an SCCS cde(1)
delta from an SCCS file. rmdel(1)
delta: make a delta (change) delta(1)
deltas.o comb(1)
descriptions. infocmp: L. L, infocmp(1M)
descriptor. 0o oo el close(2)
descriptor.o dup(2)
descriptor.o dup2(3C)
determine accessibility ofa access(2)
device.o ioctl(2)
dexp, cexp: FORTRAN exp(3F)
dial: establish an out-going dial(3C)
difference intrinsic/ dim(3F)
dim, ddim, idim: positive dim(3F)
dimag: FORTRAN imaginary part aimag(3F)
dint: FORTRAN integerpart aint(3F)
dir: format of directories. dir(4)
directories. L0000 .. dir(4)
directory. o000 o o e e chdir(2)
directory.00 chroot(2)
directory entries and putina getdents(2)
directory entry. dirent: dirent(4)
directory entry., unlink(2)

-7-

Permuted Index

path name of current working
mkdir: make a

telldir, seekdir, rewinddir,/
/seekdir, rewinddir, closedir:
ordinary file,/ mknod: make a
rmdir: remove a

independent directory entry.

t_unbind:

acct: enable or

dis: object code

t_snddis: send user-initiated
retrieve information from
prof:

hypot: Euclidean

/lcong48: generate uniformly
logarithm/ log, alog,
logarithm/ logl0, alog10,
max, max0, amax0, max1, amax1,
object downloader for the 5620
min, min0, amin0, minl, amin1,
intrinsic/ mod, amod,
nearest integer/ round: anint,
intrinsic function. dprod:
/atof: convert string to
terminal. wtinit: object
product intrinsic function.
nrand48, mrand48, jrand48,/
xtd: extract and print xt

xtt: extract and print xt

xts: extract and print xt
protocol used by xt(7)
transfer-of-sign/ sign, isign,
intrinsic function. sin,
intrinsic function. sinh,

root intrinsic/ sqrt,

intrinsic function. tan,
tangent intrinsic/ tanh,

an object file.

object file. dump:

descriptor.

descriptor.

descriptor. dup:

descriptor. dup2:
floating-point number to/
program. end, etext,

sact: print current SCCS file
files. 1d: link

common assembler and link
/user, real group, and

and/ /getegid: get real user,
i286emul:

accounting. acct:

directory. getewd: get getcwd(3C)
directory.00 o000 mkdir(2)
directory: opendir, readdir, directory(3X)
directory operations., directory(3X)
directory, or a specialor mknod(2)
directory. T e e e e e e e e rmdir(2)
dirent: filesystem dirent(4)

dis: object code disassembler. dis(1)
disable a transport endpoint. t_unbind(3N)
disable process accounting. acct(2)
disassembler. dis(1)
disconnect request. t_snddis(3N)
disconnect. t_rcvdis: L. L. t_rcvdis(3N)
display profiledata. prof(1)
distance function. hypot(3M)
distributed pseudo-random/ drand48(3C)
dlog, clog: FORTRAN natural log(3F)
dlog10: FORTRAN common log10(3F)
dmax1: FORTRAN maximum-value/ max(3F)
DMD terminal. wtinit: wtinit(1M)
dminl: FORTRAN minimum-value/ min(3F)
dmod: FORTRAN remaindering mod(3F)
dnint, nint, idnint: FORTRAN round(3F)
double precision product dprod(3F)
double-precision number. strtod(3C)
downloader for the 5620DMD wiinit(1M)
dprod: double precision dprod(3F)
drand48, erand48, Irand48, drand48(3C)
driver link structure. xtd(1M)
driver packet traces. xtt(1M)
driver statistics. 0. ... xts(1M)
driver. /multiplexed channels xtproto(5)
dsign: FORTRAN sign(3F)
dsin, csin: FORTRAN sine sin(3F)
dsinh: FORTRAN hyperbolic sine sinh(3F)
dsqrt, csqrt: FORTRAN square sqrt(3F)
dtan: FORTRAN tangent tan(3F)
dtanh: FORTRAN hyperbolic tanh(3F)
dump: dump selected partsof dump(1)
dump selected partsofan dump(1)
dup: duplicate anopen file dup(2)
dup2: duplicate an open file dup2(3C)
duplicate anopenfile dup(2)
duplicate anopen file dup2(3C)
ecvt, fcvt, gevticonvert L . L L . L L L L L ecvt(3C)
edata: last locationsin end(3C)
editing activity. sact(1)
editor for common object 1d(1)

editor output. aout: a.out(4)
effectivegroupIDs. getuid(2)
effective user, real group, getuid(2)
emulate 80286. i286emul(1)
enable or disable process acct(2)

-8-

encryption. crypt, setkey,
encrypt: generate hashing
crypt: password and file
locations in program.
/getgrgid, getgrnam, setgrent,
bind an address to a transport
t_close: close a transport
current event on a transport
t_open: establish a transport
manage options for a transport
t_unbind: disable a transport
/getpwuid, getpwnam, setpwent,
utmp/ /pututline, setutent,
getdents: read directory

nlist: get

file. linenum: line number
file/ /manipulate line number
/ldnlseek: seek to line number
/ldnrseek: seek to relocation
system independent directory
utmp, wtmp: utmp and wtmp
fgetgrent: get group file
fgetpwent: get password file
utmpname: access utmp file
object file symbol table

/the index of a symbol table
/read an indexed symbol table
putpwent: write password file
relogin: rename login

unlink: remove directory

profile: setting up an

/IEEE floating point

environ: user

getenv: return value for
putenv: change or add value to
getenv: return FORTRAN
mrand48, jrand48,/ drand48,
complementary error function.
complementary error/ erf,
system error/ perror,
complementary/ erf, erfc:
function and complementary
receive a unit data

t_error: produce

sys—errlist, sys_nerr: system
to system calls and

matherr:

another transport/ t_connect:
endpoint. t_open:

terminal line/ dial:

in program. end,

hypot:

Permuted Index

encrypt: generate hashing crypt(3C)
encryption. crypt, setkey, crypt(3C)
encryption functions. crypt(3X)
end, etext, edata: last end(3C)
endgrent, fgetgrent: get group/ getgrent(3C)
endpoint. t bind: 0L L. tbind(3N)
endpoint.o Lo t_close(3N)
endpoint. t look: look atthe t_look(3N)
endpoint. 0oL t_open(3N)
endpoint. t_optmgmt: t_optmgmt(3N)
endpoint.o t_unbind(3N)
endpwent, fgetpwent:get/ getpwent(3C)
endutent, utmpname: access getut(3C)
entries and putinafile/ getdents(2)
entries from name list. nlist(3C)
entries in a common object linenum(4)
entries of a common object 1dlread(3X)
entries of a sectionofa/ ldIseek(3X)
entries of a sectionofa/ ldrseek(3X)
entry. dirent: file dirent(4)
entry formats. utmp(4)
entry. /setgrent, endgrent, getgrent(3C)
entry. /setpwent, endpwent, getpwent(3C)
entry. /setutent, endutent, getut(3C)
entry. /symbol name for common ldgetname(3X)
entry of a common object file. 1dtbindex(3X)
entry of a common object file. 1dtbread(3X)
entry. i e e e e e e putpwent(3C)
entry to show current layer. relogin(1M)
entry. .« . . o v i e e e e e e e e e e unlink(2)
environ: user environment. environ(5)
environment at login time. profile(4)
environment control. L. fpgetround(3C)
environment.40 e e e .. environ(5)
environment name. . . .« ¢ 4 0 4 o0 .. o4 o . getenv(3C)
environment. e . e v 4 e e . putenv(3C)
environment variable. « . . . getenv(3F)
erand48, Irand48, nrand48, drand48(3C)
erf, erfc: error functionand erf(3M)

erfc: error functionand L L. erf(3M)
errno, sys_errlist, sys_merr: perror(3C)
error functionand L erf(3M)

error function. Jerfc:error erf(3M)

error indication. t_rcvuderr: t_rcvuderr(3N)
ErTOr MESSAZE. « o o + « o = = o o o o+« o t_error(3N)
error messages. /errmo, perror(3C)
error numbers. /introduction intro(2)
error-handling function. matherr(3M)
establish a connection with t_connect(3N)
establish a transport t_open(3N)
establish an out-going dial(3C)
etext, edata: last locations end(3C)
Euclidean distance function. hypot(3M)

-9 .

Permuted Index

t_look: look at the current
execve, execlp, execvp:/
execlp, execvp: execute/ exec:
execvp:/ exec: execl, execv,
/execl, execv, execle, execve,
execve, execlp, execvp:
regemp, regex: compile and
sleep: suspend

monitor: prepare

profil:

execvp: execute/ exec: execl,
exec: execl, execv, execle,
/execv, execle, execve, execlp,
a new file or rewrite an
process.

exit,

exponential intrinsic/
exponential, logarithm, /
t_snd: send data or

t_rcv: receive data or

cmplx, demply, ichar, char:
exp, dexp, cexp: FORTRAN
exp, log, logl0, pow, sqrt:
routines. regexp: regular
regcmp: regular

compile and execute regular
link structure, xtd:

packet traces. xtt:

statistics. xts:

remainder,/ floor, ceil, fmod,
data in a machine independent
/calloc, mallopt, mallinfo:
abort: generate an IOT

a stream.

floating-point number/ ecvt,
fopen, freopen,

status inquiries. ferror,

fileno: stream status/

stream. fclose,

word from a/ getc, getchar,
/getgrnam, setgrent, endgrent,
/getpwnam, setpwent, endpwent,
stream. gets,

special or ordinary file, or a
times. utime: set

ldfcn: common object
determine accessibility of a
ccoff: convert a COFF

chmod: change mode of
change owner and group of a
mcs: manijpulate the object

event on a transport endpoint.- t_look(3N)
exec: execl, execv, execle, exec(2)
execl, execv, execle, execve, exec(2)
execle, execve, execlp, exec(2)
execlp, execvp: executea/ exec(2)
execute a file. /execle, exec(2)
execute regular expression. regemp(3X)
execution forinterval. sleep(3C)
execution profile. L. monitor(3C)
execution time profile. profil(2)
execv, execle, execve, execlp, exec(2)
execve, execlp, execvp:/ L Lo exec(2)
execvp: executeafile. L. ... exec(2)
existing one. creat: create creat(2)
exit, _exit: terminate exit(2)
—exit: terminate process. exit(2)

exp, dexp, cexp: FORTRAN exp(3F)
exp, log, logl0, pow, sqrt: exp(3M)
expedited dataovera/ t_snd(3N)
expedited data sentovera/ t_rcv(3N)
explicit FORTRAN type/ /dble, ftype(3F)
exponential intrinsic/ exp(3F)
exponential, logarithm, power,/ exp(3M)
expression compile and match regexp(5)
expression compile. regemp(1)
expression. regemp, regex: regcmp(3X)
extract and print xtdriver xtd(1M)
extract and print xt driver xtt(1M)
extract and print xt driver xts(1M)
fabs: floor, ceiling, floor(3M)
fashion. /access longinteger sputl(3X)
fast main memory allocator. malloc(3X)
fault, 000 0ol e abort(3C)
fclose, fflush: closeor flush fclose(3S)
fentl: filecontrol. fentl(2)
fentl: file control options. L. fentl(5)
fovt, govb: convert . . . L L L L oL L L L. ecvt(3C)
fdopen: open a stream. fopen(3S)
feof, clearerr, fileno: stream ferror(3S)
ferror, feof, clearerr, ferror(3S)
fflush: closeor flusha fclose(3S)
fgetc, getw: get characteror getc(3S)
fgetgrent: get group file/ getgrent(3C)
fgetpwent: get password file/ getpwent(3C)
fgets: getastring froma gets(3S)
FIFO. /make a directory, ora mknod(2)
file access and modification utime(2)
file accessroutines. 1dfen(4)
file. access:00 o0 access(2)

1 ccoff(1)
file. 0 0L e oo chmod(2)
file. chown: chown(2)
file comment section. mes(1)

- 10 -

fentl:

fentl:

conv: common object

core: format of core image
cprs: compress a common object
umask: set and get

a delta (change) to an SCCS
close: close a

dup: duplicate an open

dup2: duplicate an open
selected parts of an object

sact: print current SCCS

crypt: password and

endgrent, fgetgrent: get group
fgetpwent: get password
utmpname: access utmp
putpwent: write password
execlp, execvp: execute a
ldaopen: open a common object
acct: per-process accounting
ar: common archive

pnch:

intro: introduction to

entries of a common object
get: get a version of an SCCS
group: group

files. filehdr:

limits:

constants. unistd:

file. ldfhread: read the
Idohseek: seek to the optional
issue: issue identification

of a member of an archive
close a common object

file header of a common object
a section of a common object
file header of a common object
a section of a common object
header of a common object
section of a common object
table entry of a common object
table entry of a common object
table of a common object
entries in a common object
link: link to a

listing from a common object
ctermid: generate

mktemp: make a unique

name list of common object
/find the slot in the utmp

or a special or ordinary

one. creat: create a new
passwd: password

Permuted Index

filecontrol.o fentl(2)

file control options. fentl(5)

file converter. conv(1)

file. o e core(4)

file. 0.0 cprs(1)

file creationmask., umask(2)
file. deltaimake, delta(1)

file descriptor. L. L. close(2)

file descriptor.00, dup(2)

file descriptor.o L. dup2(3C)
file. dump:dump dump(1)

file editing activity. sact(1)

file encryption functions. crypt(3X)
file entry. /setgrent, getgrent(3C)
file entry. /endpwent, getpwent(3C)
file entry. /endutent, getut(3C)
fileentry. putpwent(3C)
file. /execv, execle, execve, exec(2)

file for reading. ldopen, 1dopen(3X)
fileformat. acct(4)

file format. ar(4)

file format for card images. pnch(4)

file formats. intro(4)

file function. /line number 1dlread(3X)
file. 00 get(1)

file. 0 o e e e e e group(4)

file header for common object filehdr(4)
file header for/ limits(4)

file header for symbolic unistd(4)

file header of a common object ldfhread(3X)
file header of a common object/ Idohseek(3X)
file. © . . o000 Lo e e issue(4)

file. /read the archive header 1dahread(3X)
file. ldclose, 1daclose: 1dclose(3X)
file. ldfhread: readthe ldfhread(3X)
file. /line number entriesof 1dlseek(3X)
file. /seek to the optional ldohseek(3X)
file. /relocation entriesof 1drseek(3X)
file. /indexed/named section 1dshread(3X)
file. /to an indexed/named 1dsseek(3X)
file. /the index ofasymbol 1dtbindex(3X)
file. /read an indexed symbol Idtbread(3X)
file. /seek to thesymbol ldtbseek(3X)
file. linenum: line number linenum(4)
file. e e link(2)

file. list: produce C source list(1)

file name for terminal. ctermid(3S)
filename.00 mktemp(3C)
file nm:print nm(1)

file of the currentuser. ttyslot(3C)
file, or a FIFO. /adirectory, mknod(2)
file or rewrite an existing creat(2)

file. i el e passwd(4)

Permuted Index

/rewind, ftell: reposition a
Iseek: move read/write

prs: print an SCCS

read: read from

for a common object

Sharing name server master
remove a delta from an SCCS
two versions of an SCCS
scesfile: format of SCCS
header for a common object
format of curses screen image
master file. rfmaster: Remote
stat, fstat: get

from a common object
/symbol name for common object
syms: common object
volume. fs:

directory entry. dirent:
directory entries and put in a
statfs, fstatfs: get

mount: mount a

ustat: get

mnttab: mounted

sysfs: get

umount: unmount a

and/ checklist: list of

term: format of compiled term
tmpfile: create a temporary
create a name for a temporary
ftw: walk a

undo a previous get of an SCCS
val: validate SCCS

write: write on a

common object files.

ferror, feof, clearerr,

create and administer SCCS
file header for common object
format specification in text
link editor for common object
lockf: record locking on

in bytes of common object
convert: convert archive
what: identify SCCS

fstab:

ttyname, isatty:

object library. lorder:

of the current user. ttyslot:
ftype: int, ifix, idint, real,
/fpgetsticky, fpsetsticky: IEEE
isnand, isnanf: test for

ecvt, fcvt, gevt: convert
/modf: manipulate parts of
floor, ceiling, remainder,/

file pointer in a stream. fseek(3S)
file pointer. Iseek(2)
file. 0 e prs(1)

file. .« o e e e read(2)
file. /relocation information reloc(4)
file. rfmaster: Remote File rfmaster(4)
file. rmdel:00 rmdel(1)
file. sccsdiff: compare scesdiff(1)
file. . . .« e e scesfile(4)
file. scnhdr: section scnhdr(4)
file. scr_dump: Ce e e e e scr—dump(4)
File Sharing name server rfmaster(4)
filestatus. stat(2)

file. /line number information strip(1)
file symbol tableentry. Idgetname(3X)
file symbol table format. syms(4)
file system: format of system fs(4)

file system independent dirent(4)
file system independent/ /read getdents(2)
file system information. statfs(2)
filesystem. 000 mount(2)
file system statistics, ustat(2)
file system table. mnttab(4)
file system type information. sysfs(2)
filesystem. umount(2)
file systems processed by fsck checklist(4)
file. « . o0 oo e term(4)
file. 0 e e e e e tmpfile(3S)
file. tmpnam, tempnam: tmpnam(35)
filetree. v v v b o e e e ftw(3C)
file. unget:0 0. unget(1)
Fle, « v e e e e e e e e e e val(1)

file. © .. 00 L write(2)
filehdr: file header for filehdr(4)
fileno: stream status/ ferror(3S)
files. admin: admin(1)
files. filehdr:o filehdr(4)
files. fspec:o oL fspec(4)
files. Id: 1d(1)

files. . . . o oo e e e lockf(3C)
files. /print section sizes size(1)
files to common formats. convert(1)
files.o e e e e what(1)
file-system-table. fstab(4)
find name of a terminal. ttyname(3C)
find ordering relation foran lorder(1)
find the slot in the utmp file ttyslot(3C)
float, sngl, dble, cmplx,/ ftype(3F)
floating point environment/ fpgetround(3C)
floating point NaN/ isnan: isnan(3C)
floating-point number to/ ecvt(3C)
floating-point numbers. frexp(3C)
floor, ceil, fmod, fabs: floor(3M)

-12 -

floor, ceil, fmod, fabs:
cflow: generate C
fclose, fflush: close or
remainder,/ floor, ceil,
stream.

per-process accounting file
ar: common archive file
pnch: file

in a file system independent
inode:

term:

core:

cpio:

file. scr_dump:

dir:

scesfile:

fs: file system:

files. fspec:

object file symbol table
archive files to common
intro: introduction to file
wimp: utmp and wtmp entry
scanf, fscanf, sscanf: convert
/viprintf, vsprintf: print
fprintf, sprintf: print

abs, iabs, dabs, cabs, zabs:
system/ signal: specify
function. acos, dacos:
function. asin, dasin:
function. atan2, datan2:
function. atan, datan:

or, xor, not, Ishift, rshift:
getarg: return

log10, alogl0, dlog10:
intrinsic/ conjg, dconjg:
function. cos, dcos, ccos:
getenv: return

function. exp, dexp, cexp:
intrinsic/ cosh, dcosh:
intrinsic/ sinh, dsinh:
intrinsic/ tanh, dtanh:
complex/ aimag, dimag:
function. aint, dint:

amax0, max1, amax1, dmax1:
/btest, ibset, ibclr, mvbits:
amin0, minl, aminl, dmin1:
log, alog, dlog, clog:

/anint, dnint, nint, idnint:
abort: terminate

functions. mod, amod, dmod:
function. sin, dsin, csin:
function. sqrt, dsqrt, csqrt:

Permuted Index

floor, ceiling, remainder,/ floor(3M)
flowgraph. cflow(1)
flushastream. fclose(35)
fmod, fabs: floor, ceiling, floor(3M)
fopen, freopen, fdopen: opena fopen(35)
fork: create a new process. fork(2)
format. acct: L. L, acct(4)
format. 0. ar(4)
format for card images. pnch(4)
format. /entriesandput getdents(2)
formatof ani-node. inode(4)
format of compiled term file. term(4)
format of core image file. core(4)
format of cpio archive. cpio(4)
format of curses screen image scr_dump(4)
format of directories. dir(4)
format of SCCSfile. scesfile(4)
format of system volume. fs(4)
format specification in text fspec(4)
format. syms: common syms(4)
formats. convert: convert convert(1)
formats. 0000 intro(4)
formats. utmp, 0L L. utmp(4)
formatted input. scanf(35)
formatted output of a varargs/ vprintf(3S)
formatted output. printf, printf(3S)
FORTRAN absolute value. abs(3F)
FORTRAN action on receiptofa signal(3F)
FORTRAN arccosine intrinsic acos(3F)
FORTRAN arcsine intrinsic asin(3F)
FORTRAN arctangent intrinsic atan2(3F)
FORTRAN arctangent intrinsic atan(3F)
FORTRAN Bitwise Boolean/ /and, bool(3F)
FORTRAN command-line argument. getarg(3F)
FORTRAN common logarithm/ log10(3F) -
FORTRAN complex conjugate conjg(3F)
FORTRAN cosine intrinsic cos(3F)
FORTRAN environment variable. getenv(3F)
FORTRAN exponential intrinsic exp(3F)
FORTRAN hyperbolic cosine cosh(3F)
FORTRAN hyperbolicsine sinh(3F)
FORTRAN hyperbolic tangent tanh(3F)
FORTRAN imaginary partof aimag(3F)
FORTRAN integer part intrinsic aint(3F)
FORTRAN maximum-value/ /max0, max(3F)
FORTRAN Military Standard/ mil(3F)
FORTRAN minimum-value/ /min0, min(3F)
FORTRAN natural logarithm/ log(3F)
FORTRAN nearest integer/ round(3F)
FORTRAN program. abort(3F)
FORTRAN remaindering intrinsic mod(3F)
FORTRAN sine intrinsic sin(3F)
FORTRAN square root intrinsic sqrt(3F)

-13 -

Permuted Index

len: return length of

index: return location of
issue a shell command from
function. tan, dtan:

mclock: return

intrinsic/ sign, isign, dsign:
/demplx, ichar, char: explicit
fpgetround, fpsetround,
fpgetmask, fpsetmask,/
/fpgetmask, fpsetmask,
formatted output. printf,
/fpsetround, fpgetmask,
fpsetmask,/ fpgetround,
point/ /fpsetmask, fpgetsticky,
word on a/ putc, putchar,
stream. puts,

input/output.

t_free:

memory allocator. malloc,
mallopt, mallinfo:/ malloc,
stream. fopen,

parts of floating-point/

list: produce C source listing
/and line number information
/receive the confirmation
getw: get character or word
gets, fgets: get a string
rmdel: remove a delta
getopt: get option letter

omf: convert an object module
t_rcvdis: retrieve information
read: read

system: issue a shell command
nlist: get entries

getpw: get name

gencc: create a

system volume.

formatted input. scanf,

of file systems processed by
reposition a file pointer in/
text files.

stat,

information. statfs,

pointer in a/ fseek, rewind,
communication/ stdipc:

float, sngl, dble, cmplx,/
FORTRAN arccosine intrinsic
FORTRAN integer part intrinsic
error/ erf, erfc: error
FORTRAN arcsine intrinsic
FORTRAN arctangent intrinsic

FORTRAN string. len(3F)
FORTRAN substring. index(3F)
FORTRAN. system: system(3F)
FORTRAN tangent intrinsic tan(3F)
FORTRAN time accounting. mclock(3F)
FORTRAN transfer-of-sign sign(3F)
FORTRAN type conversion. ftype(3F)
fpgetmask, fpsetmask,/ fpgetround(3C)
fpgetround, fpsetround, fpgetround(3C)
fpgetsticky, fpsetsticky: IEEE/ fpgetround(3C)
fprintf, sprintf: print printf(3S)
fpsetmask, fpgetsticky,/ fpgetround(3C)
fpsetround, fpgetmask, fpgetround(3C)
fpsetsticky: IEEE floating fpgetround(3C)
fputc, putw: put characteror putc(3S)

fputs: putastringona puts(3S)

fread, fwrite: binary fread(3S)

free a library structure. t_free(3N)
free, realloc, calloc: main malloc(3C)
free, realloc, calloc, e e e e malloc(3X)
freopen, fdopen: opena fopen(3S)
frexp, ldexp, modf: manipulate frexp(3C)

from a common object file. list(1)

from a common object file. strip(1)

from a connectrequest. t_rcvconnect(3N)
from a stream. /fgetc, getc(3S)
fromastream. 000 . gets(35)
froman SCCSfile. rmdel(1)

from argument vector. getopt(3C)
from COFFtoOMF. omf(1)

from disconnect. t_rcvdis(3N)
fromfile. L0000 0L read(2)

from FORTRAN. system(3F)
fromnamelist. nlist(3C)
fromUID. 0000 getpw(3C)
front-end to the cc command. gencc(1M)

fs: file system: formatof fs(4)

fscanf, sscanf: convert scanf(3S)

fsck and ncheck. /list checklist(4)
fseek, rewind, ftell: fseek(3S)
fspec: format specificationin fspec(4)

fstab: file-system-table. fstab(4)

fstat: get filestatus. stat(2)

fstatfs: get filesystem statfs(2)

ftell: reposition afile fseek(3S)

ftok: standard interprocess stdipc(3C)

ftw: walk a filetree. ftw(3C)

ftype: int, ifix, idint, real, ftype(3F)
function. acos, dacos: acos(3F)
function. aint, dint: aint(3F)
function and complementary erf(3M)
function. asin, dasin: asin(3F)
function. atan2, datan2: atan2(3F)

-14 -

FORTRAN arctangent intrinsic
complex conjugate intrinsic

ccos: FORTRAN cosine intrinsic
hyperbolic cosine intrinsic
precision product intrinsic

and complementary error
FORTRAN exponential intrinsic
gamma: log gamma

hypot: Euclidean distance

of a common object file
libwindows: windowing terminal
common logarithm intrinsic
natural logarithm intrinsic
matherr: error-handling

prof: profile within a
transfer-of-sign intrinsic

csin: FORTRAN sine intrinsic
hyperbolic sine intrinsic
FORTRAN square root intrinsic
FORTRAN tangent intrinsic
hyperbolic tangent intrinsic
math: math

intro: introduction to

j0, i1, jn, y0, y1, yn: Bessel
FORTRAN Bitwise Boolean
password and file encryption
positive difference intrinsic
logarithm, power, square root
remainder, absolute value
dmax1: FORTRAN maximum-value
FORTRAN Military Standard
dminl: FORTRAN minimum-value
FORTRAN remaindering intrinsic
FORTRAN nearest integer

sinh, cosh, tanh: hyperbolic
string comparison intrinsic
sysi86: machine-specific

atan, atan2: trigonometric

fread,

gamma: log

number to string. ecvt, fevt,
the cc command.

abort:

cflow:

cross-reference. cxref:
terminal. ctermid:

crypt, setkey, encrypt:

lexical tasks. lex:

/srand48, seed48, lcong48:
srand: simple random-number
irand, srand: random number
gets, fgets:

Permuted Index

function. atan, datan: atan(3F)
function. /dconjg: FORTRAN conjg(3F)
function. cos,dcos, cos(3F)
function. /dcosh: FORTRAN cosh(3F)
function. dprod: double dprod(3F)
function. /error function erf(3M)
function. exp, dexp, cexp: exp(3F)
function. 000 gamma(3M)
function.00, hypot(3M)
function. /line number entries Idlread(3X)
function library. L. libwindows(3X)
function. /dlogl0: FORTRAN log10(3F)
function. /dlog, clog: FORTRAN log(3F)
function. matherr(3M)
function. 0. prof(5)
function. /dsign: FORTRAN sign(3F)
function. sin, dsin, sin(3F)
function. /dsinh: FORTRAN sinh(3F)
function. sqrt, dsqrt, csqrt: L .. L. sqrt(3F)
function. tan, dtan: tan(3F)
function. /dtanh: FORTRAN tanh(3F)
functions and constants. math(5)
functions and libraries. intro(3)
functions. bessel: bessel(3M)
functions. /lshift, rshift: bool(3F)
functions. crypt: crypt(3X)
functions, dim, ddim, idim: dim(3F)
functions. /sqrt: exponential, exp(3M)
functions. /floor, ceiling, floor(3M)
functions. /maxl, amax1, max(3F)
functions. /ibclr, mvbits: mil(3F)
functions. /minl, aminl, min(3F)
functions. mod, amod, dmod: mod(3F)
functions. /nint, idnint: round(3F)
functions.00 sinh(3M)
functions. /igt, lle, Ilt: stremp(3F)
functions. sysi86(2)
functions. /tan, asin, acos, trig(3M)
fwrite: binary input/output. fread(3S)
gamma function. gamma(3M)
gamma: log gamma function. gamma(3M)
gevt: convert floating-point ecvt(3C)
gencc: create a front-endto gencc(1M)
generate an IOT fault. abort(3C)
generate C flowgraph. cflow(1)
generate C program cxref(1)
generate filenamefor ctermid(3S)
generate hashing encryption. crypt(3C)
generate programs for simple lex(1)
generate uniformly distributed/ drand48(3C)
generator. rand, rand(3C)
generator. rand,0 rand(3F)
get a string from a stream. gets(3S)

-15 -

Permuted Index

get:

ulimit:

the user. cuserid:

getc, getchar, fgetc, getw:
nlist:

umask: set and

stat, fstat:

statfs, fstatfs:

ustat:

information. sysfs:

file.

/setgrent, endgrent, fgetgrent:
getlogin:

msgget:

getpw:

system. uname:

getmsg:

unget: undo a previous
argument vector. getopt:
/setpwent, endpwent, fgetpwent:
working directory. getcwd:
times, times:

and/ getpid, getpgrp, getppid:
information. t_getinfo:
/geteuid, getgid, getegid:
semget:

identifier. shmget:
t_getstate:

time:

command-line argument.

get character or word from a/
character or word from/ getc,
current working directory.
entries and put in a file/
getuid, geteuid, getgid,
environment variable.
environment name.

redl user, effective/ getuid,
user,/ getuid, geteuid,
setgrent, endgrent,/
endgrent,/ getgrent,
getgrent, getgrgid,

stream.
argument vector.

process group, and/ getpid,
process, process group, and/
group, and/ getpid, getpgrp,

setpwent, endpwent,/
getpwent, getpwuid,
endpwent,/ getpwent,

get a version of an SCCSfile. get(1)

get and set user limits. ulimit(2)

get character login nameof cuserid(3S)
get character or word froma/ getc(35)

get entries from name list. nlist(3C)

get file creationmask. umask(2)
getfilestatus. stat(2)

get file system information. statfs(2)

get file system statistics. ustat(2)

get file system type sysfs(2)

get: get a versionof an SCCS get(1)

get group fileentry. getgrent(3C)
getloginname. getlogin(3C)
get messagequeue.o 0. . msgget(2)
getname fromUID. getpw(3C)
get name of current UNIX uname(2)

get next message off a stream. getmsg(2)
getof an SCCSfile. unget(1)

get option letter from getopt(3C)
get password fileentry. getpwent(3C)
get path name of current getewd(3C)
get process and child process times(2)

get process, process group, . . + .« getpid(2)

get protocol-specific service t_getinfo(3N)
get real user, effectiveuser,/ getuid(2)

get set of semaphores. semget(2)

get shared memory segment shmget(2)
get the current state. t_getstate(3N)
gettime.o time(2)
getarg: return FORTRAN getarg(3F)
getc, getchar, fgetc, getw: getc(3S)
getchar, fgetc, getw:get getc(3S)
getcwd: get path nameof getewd(3C)
getdents: read directory getdents(2)
getegid: getrealuser,/ getuid(2)
getenv: return FORTRAN getenv(3F)
getenv: return valuefor getenv(3C)
geteuid, getgid, getegid: get getuid(2)
getgid, getegid: getreal getuid(2)
getgrent, getgrgid, getgrnam, getgrent(3C)
getgrgid, getgrnam, setgrent, getgrent(3C)
getgrnam, setgrent, endgrent,/ getgrent(3C)
getlogin: get loginname. getlogin(3C)
getmsg: get next messageoffa getmsg(2)
getopt: get option letter from getopt(3C)
getpass: read a password. getpass(3C)
getpgrp, getppid: get process, getpid(2)
getpid, getpgrp, getppid: get getpid(2)
getppid: get process, process getpid(2)
getpw: get name from UID. getpw(3C)
getpwent, getpwuid, getpwnam, getpwent(3C)
getpwnam, setpwent, endpwent,/ getpwent(3C)
getpwuid, getpwnam, setpwent, getpwent(3C)

- 16 -

a stream.

and terminal settings used by
settings used by getty.
getegid: get real user,/
getutline, pututline,/
pututline, setutent,/ getut:
setutent,/ getut: getutent,
getut: getutent, getutid,

from a/ getc, getchar, fgetc,
convert/ ctime, localtime,
setjmp, longjmp: non-local
plot:

subroutines. plot:

/user, effective user, real
/getppid: get process, process
endgrent, fgetgrent: get
group:

setpgrp: set process

real group, and effective
setuid, setgid: set user and
chown: change owner and
a signal to a process or a
update, and regenerate
ssignal,

varargs:

curses: terminal screen
hcreate, hdestroy: manage
setkey, encrypt: generate
search tables. hsearch,
tables. hsearch, hcreate,
file. senhdr: section

files. filehdr: file

limits: file

unistd: file

file. 1dfhread: read the file
/seek to the optional file
/read an indexed/named section
ldahread: read the archive
layers: protocol used between
terminal. jagent:

manage hash search tables.
cosh, dcosh: FORTRAN
sinh, cosh, tanh:

sinh, dsinh: FORTRAN
tanh, dtanh: FORTRAN
function.

FORTRAN absolute value. abs,
ishftc, ibits,/ mil: ior,
command line arguments.
ishftc, ibits, btest, ibset,

/not, ieor, ishft, ishftc,

Permuted Index

gets, fgets: get a string from gets(3S)
getty. gettydefs:speed gettydefs(4)
gettydefs: speed and terminal gettydefs(4)
getuid, geteuid, getgid, getuid(2)
getut: getutent, getutid, getut(3C)
getutent, getutid, getutline, getut(3C)
getutid, getutline, pututline, getut(3C)
getutline, pututline,/ getut(3C)
getw: get characterorword getc(35)
gmtime, asctime, tzset:, .. ctime(3C)
gOtO. . .. e e e e e e e e setjmp(3C)
graphics interface. plot(4)
graphics interface L. plot(3X)
group, and effective group/ getuid(2)
group, and parent process IDs. getpid(2)
group file entry. /setgrent, getgrent(3C)
groupfile.o, group(4)
group: group file. oL L group(4)
groupID. oL oL setpgrp(2)
group IDs. /effectiveuser, getuid(2)
groupIDs. o0 setuid(2)
groupofafile. chown(2)
group of processes. /send kill(2)
groups of programs. /maintain, make(1)
gsignal: software signals. ssignal(3C)
handle variable argument list. varargs(5)
handling and optimization/ curses(3X)
hash search tables. hsearch, hsearch(3C)
hashing encryption. crypt, crypt(3C)
hcreate, hdestroy: manage hash hsearch(3C)
hdestroy: manage hash search hsearch(3C)
header for a common object scnhdr(4)
header for common object filehdr(4)
headerfor/ limits(4)
header for symbolic constants. unistd(4)
header of a common object 1dfhread(3X)
header of a common object/ Idohseek(3X)
header of a common object/ . . ¥ Idshread(3X)
header of a memberofan/ ldahread(3X)
host and windowing terminal/ layers(5)
host control of windowing jagent(5)
hsearch, hcreate, hdestroy: hsearch(3C)
hyperbolic cosine intrinsic/ cosh(3F)
hyperbolic functions. sinh(3M)
hyperbolic sine intrinsic/ sinh(3F)
hyperbolic tangent intrinsic/ tanh(3F)
hypot: Euclidean distance hypot(3M)
i286emul: emulate 80286. i286emul(1)
iabs, dabs, cabs, zabs: abs(3F)
iand, not, ieor,ishft, mil(3F)
iargc: return the numberof iargc(3F)
ibclr, mvbits: FORTRAN/ /ishft, mil(3F)
ibits, btest, ibset, ibclr,/ L. mil(3F)

-17 -

Permuted Index

/ishft, ishftc, ibits, btest,
/sngl, dble, cmplx, demplx,
setpgrp: set process group
issue: issue

get shared memory segment
what:

intrinsic/ dim, ddim,
dble,/ ftype: int, ifix,
round: anint, dnint, nint,
group, and parent process
group, and effective group
setgid: set user and group
/fpgetsticky, fpsetsticky:
btest,/ mil: ior, iand, not,
sngl, dble,/ ftype: int,

core: format of core

format of curses screen
prnch: file format for card
aimag, dimag: FORTRAN
limits: file header for

dirent: file system

long integer data in a machine
and put in a file system

of a/ ldtbindex: compute the
FORTRAN substring.

a common/ ldtbread: read an
Idshread, ldnshread: read an
Idsseek, ldnsseek: seek to an
receipt of an orderly release
receive a unit data error
terminfo descriptions.
inittab: script for the
t_sndrel:

process. popen, pclose:
process.

inode: format of an
sscanf: convert formatted
push character back into
fread, fwrite: binary

poll: STREAMS

stdio: standard buffered
fileno: stream status
install:

sngl, dble, emplx,/ ftype:

abs: return

/164a: convert between long
sputl, sgetl: access long

nint, idnint: FORTRAN nearest
function. aint, dint: FORTRAN
atol, atoi: convert string to
/1tol3: convert between 3-byte

ibset, ibclr, mvbits: FORTRAN/ mil(3F)
ichar, char: explicit FORTRAN/ ftype(3F)
ID. . .ot e e e e e e setpgrp(2)
identification file. 0. L. issue(4)
identifier. shmget: shmget(2)
identify SCCSfiles. what(1)
idim: positive difference dim(3F)
idint, real, float,sngl, ftype(3F)
idnint: FORTRAN nearest/ round(3F)
IDs. /get process, process « . « . . . getpid(2)
IDs. /effective user,real getuid(2)
IDs. setuid, setuid(2)
IEEE floating point/ fpgetround(3C)
ieor, ishft, ishftc, ibits, mil(3F)

ifix, idint, real, float, ftype(3F)
imagefile. core(4)
image file. scr_dump: ., scr_dump(4)
images. el e e e e pnch(4)
imaginary part of complex/ aimag(3F)
implementation-specific/ limits(4)
independent directory entry. dirent(4)
independent fashion. /access sputl(3X)
independent format. /entries getdents(2)
index of a symbol tableentry Idtbindex(3X)
index: return locationof index(3F)
indexed symbol table entryof Idtbread(3X)
indexed/named section header/ Idshread(3X)
indexed/named section ofa/ ldsseek(3X)
indication. /acknowledge t_rcvrel(3N)
indication. t_revuderr: L. L t_rcvuderr(3N)
infocmp: compare or printout infocmp(1M)
initprocess. .+ . ¢« v v o v v e w0 e e inittab(4)
initiate an orderly release. t_sndrel(3N)
initiate pipe to/froma popen(35)
inittab: script for theinit inittab(4)
inode: format of ani-node. inode(4)
irnode.o oo oo o inode(4)
input. scanf, fscanf, scanf(3S)
input stream. ungetc: ungetc(3S)
input/output. o000 fread(3S)
input/output multiplexing. poll(2)
input/output package. stdio(3S)
inquiries. /feof, clearerr, ferror(3S)
install commands. install(1M)
install: install commands. install(1M)
int, ifix, idint, real, float, ftype(3F)
integer absolute value. abs(3C)
integer and base-64 ASCII/ a641(3C)
integer data in a machine/ sputl(3X)
integer functions. /dnint, round(3F)
integer part intrinsic 0L aint(3F)
integer. strtol, L. strtol(3C)
integers and long integers. 13tol(3C)

-18 -

3-byte integers and long

source. /sed script to convert
plot: graphics

plot: graphics

pipe: create an

stdipc: ftok: standard

sleep: suspend execution for
acos, dacos: FORTRAN arccosine
dint: FORTRAN integer part
asin, dasin: FORTRAN arcsine
datan2: FORTRAN arctangent
datan: FORTRAN arctangent
FORTRAN complex conjugate
dcos, ccos: FORTRAN cosine
FORTRAN hyperbolic cosine
double precision product

cexp: FORTRAN exponential
FORTRAN common logarithm
FORTRAN natural logarithm
FORTRAN transfer-of-sign

sin, dsin, csin: FORTRAN sine
dsinh: FORTRAN hyperbolic sine
csqrt: FORTRAN square root

tan, dtan: FORTRAN tangent
FORTRAN hyperbolic tangent
idim: positive difference

dmod: FORTRAN remaindering
lle, 1lt: string comparison
formats.

functions and libraries.
miscellany.

programming commands.

calls and error numbers.

intro:
intro:
intro:
intro:
intro:

libraries.

commands.
and error numbers.

ishftc, ibits, btest,/ mil:
abort: generate an
generator. rand,
/islower, isdigit, isxdigit,
isdigit, isxdigit,/ ctype:
/isprint, isgraph, iscntrl,
terminal. ttyname,
/ispunct, isprint, isgraph,
/isalpha, isupper, islower,
/isspace, ispunct, isprint,
mil: ior, iand, not, ieor,
/ior, iand, not, ieor, ishift,
transfer-of-sign/ sign,
ctype: isalpha, isupper,

Permuted Index

integers. /convert between 13tol(3C)
Intel ASM386 sourcetoas as386.sed(1)
interface. L0000 plot(4)
interface subroutines. plot(3X)
interprocess channel. pipe(2)
interprocess communication/ stdipc(3C)
interval.00 oo oL sleep(3C)
intrinsic function. L. acos(3F)
intrinsic function. aint, aint(3F)
intrinsic function.00 oL L asin(3F)
intrinsic function. atan2, atan2(3F)
intrinsic function. atan, atan(3F)
intrinsic function. /dconjg: conjg(3F)
intrinsic function. cos, cos(3F)
intrinsic function. /dcosh: cosh(3F)
intrinsic function. dprod: dprod(3F)
intrinsic function. /dexp, exp(3F)
intrinsic function. /dlog10: log10(3F)
intrinsic function. /clog: log(3F)
intrinsic function. /dsign: sign(3F)
intrinsic function. L. L. sin(3F)
intrinsic function. sinh, sinh(3F)
intrinsic function. /dsqrt, sqrt(3F)
intrinsic function. 0L tan(3F)
intrinsic function. /dtanh: tanh(3F)
intrinsic functions. /ddim, dim(3F)
intrinsic functions. /amod, mod(3F)
intrinsic functions. /lgt, stremp(3F)
intro: introduction to file intro(4)
intro: introductionto L. intro(3)
intro: introductionto L. intro(5)
intro: introductionto intro(1)
intro: introduction to system intro(2)
introduction to file formats. intro(4)
introduction to functionsand intro(3)
introduction to miscellany. intro(5)
introduction to programming intro(1)
introduction to system calls intro(2)
ioctl: control device. L ioctl(2)
ior, iand, not, ieor, ishft, mil(3F)
IOTfault. abort(3C)
irand, srand: random number rand(3F)
isalnum, isspace, ispunct,/ ctype(3C)
isalpha, isupper, islower, ctype(3C)
isascii: classify characters. ctype(3C)
isatty: find nameofa ttyname(3C)
isentrl, isascii: classify/ L. ctype(3C)
isdigit, isxdigit, isalnum,/ ctype(3C)
isgraph, isentrl, isascii:/ L. ctype(3C)
ishft, ishftc, ibits, btest,/ mil(3F)
ishftc, ibits, btest, ibset,/ mil(3F)
isign, dsign: FORTRAN sign(3F)
islower, isdigit, isxdigit,/ ctype(3C)

-19 -

Permuted Index

for floating point NaN/
floating point NaN/ isnan:
point NaN/ isnan: isnand,
/isalnum, isspace, ispunct,
/isxdigit, isalnum, isspace,
/isdigit, isxdigit, isalnum,
FORTRAN. system:

system:

issue:

file.

isxdigit,/ ctype: isalpha,
/isupper, islower, isdigit,
functions. bessel:

functions. bessel: j0,
windowing terminal.
functions. bessel: j0, j1,
/Irand48, nrand48, mrand48,
process or a group of/
3-byte integers and long/
integer and base-64/ a64l,
cpp: the C

login entry to show current
host and windowing terminal/
/jrand48, srand48, seed48,
object files.

object file. 1dclose,

header of a member of an/
file for reading. ldopen,
common object file.

of floating-point/ frexp,
access routines.

of a common object file.
name for common object file/
line number entries/ ldlread,
number/ ldlread, ldlinit,
manipulate line number/
line number entries of a/
entries of a section/ ldlseek,
entries of a section/ ldrseek,
indexed/named/ ldshread,
indexed/named/ ldsseek,
file header of a common/
object file for reading.
relocation entries of a/
indexed /named section header/
indexed/named section of a/
of a symbol table entry of a/
symbol table entry of a/
table of a common object/
string.

len: return

getopt: get option

simple lexical tasks.

isnan: isnand, isnanf: test isnan(3C)
isnand, isnanf: testfor isnan(3C)
isnanf: test for floating isnan(3C)
isprint, isgraph, isentrl,/ L L L L ctype(3C)
ispunct, isprint, isgraph,/ ctype(3C)
isspace, ispunct, isprint,/ ctype(3C)
issue a shell command from system(3F)
issue a shell command. system(3S)
issue identification file. issue(4)
issue: issue identification . . ., issue(4)
isupper, islower, isdigit, ctype(3C)
isxdigit, isalnum, isspace,/ ctype(3C)
j0,j1,jn, yO, y1, yn: Bessel bessel(3M)
j1,jn,y0,yl,yn:Bessel bessel(3M)
jagent: host controlof jagent(5)

jn, y0, y1, yn: Bessel e e e bessel(3M)
jrand48, srand48, seed48,/ drand48(3C)
kill: send a signaltoa kill(2)

13tol, ltol3: convert between 13tol(3C)
l64a: convert betweenlong a641(3C)
language preprocessor. cpp(1)

layer. relogin: rename relogin(1M)
layers: protocol used between layers(5)
lcong48: generate uniformly/ drand48(3C)
Id: link editor for common 1d(1)
Idaclose: closea common 1dclose(3X)
ldahread: read the archive 1dahread(3X)
Idaopen: open a common object 1dopen(3X)
Idclose, ldaclose: closea 1dclose(3X)
Idexp, modf: manipulate parts frexp(3C)
Idfcn: common object file I1dfen(4)
Idfhread: read the file header 1dfhread(3X)
Idgetname: retrieve symbol ldgetname(3X)
Idlinit, ldlitem: manipulate IdIread(3X)
Idlitem: manipulateline I1dlread(3X)
1dlread, Idlinit, Idlitem: Idlread(3X)
ldiseek, ldnlseek: seek to 1dlseek(3X)
ldniseek: seek to line number ldlseek(3X)
ldnrseek: seek to relocation ldrseek(3X)
ldnshread: readan ldshread(3X)
ldnsseek: seektoan L. .. I1dsseek(3X)
ldohseek: seek to the optional Idohseek(3X)
1dopen, ldaopen: open a common Idopen(3X)
Idrseek, ldnrseek: seek to Idrseek(3X)
ldshread, ldnshread: readan ldshread(3X)
ldsseek, ldnsseek: seek toan Idsseek(3X)
Idtbindex: compute theindex Idtbindex(3X)
Idtbread: read anindexed ldtbread(3X)
Idtbseek: seek to the symbol Idtbseek(3X)
len: return length of FORTRAN len(3F)
length of FORTRAN string. len(3F)
letter from argument vector. getopt(3C)
lex: generate programs for lex(1)

- 20 -

generate programs for simple
update. Isearch,

comparison intrinsic/ strcmp:
comparison/ stremp: lge,
introduction to functions and
windowing terminal function
relation for an object
portable/ ar: archive and
mkshlib: create a shared
t_alloc: allocate a

t_free: free a

t_sync: synchronize transport
function library.
implementation-specific/
ulimit: get and set user

return the number of command
an out-going terminal
common object file. linenum:
/1dlinit, 1dlitem: manipulate
Idiseek, ldnlseek: seek to
strip: strip symbol and
Isearch, Ifind:

in a common object file.

files. 1d:

a.out: common assembler and

extract and print xt driver
link:

nlist: get entries from name
nm: print name

by fsck and/ checklist:

from a common object file.
handle variable argument
output of a varargs argument
t_listen:

file. list: produce C source
intrinsic/ stremp: Ige, lgt,
stremp: Ige, lgt, lle,

tzset: convert date/ ctime,
index: return

end, etext, edata: last

memory. plock:

files.

lockf: record

natural logarithm intrinsic/
gamma:

exponential, logarithm,/ exp,
common logarithm intrinsic/
logarithm, power,/ exp, log,
/alogl0, dlog10: FORTRAN common
/dlog, clog: FORTRAN natural
/log10, pow, sqrt: exponential,

Permuted Index

lexical tasks. lex: oL L. lex(1)
Ifind: linear searchand Isearch(3C)
lge, Igt, lle, llt:string stremp(3F)
Igt, e, Ht:string stremp(3F)
libraries. intro: intro(3)
library. libwindows: libwindows(3X)
library. /find ordering lorder(1)
library maintainer for ar(1)
library. o000 mkshlib(1)
library structure. t_alloc(3N)
library structure. t_free(3N)
library. t_sync(3N)
libwindows: windowing terminal libwindows(3X)
limits: file header for limits(4)
limits. 0000 ulimit(2)
line arguments. iarge: L. iargc(3F)
line connection. Jestablish dial(3C)
line number entriesina linenum(4)
line number entriesofa/ 1dlread(3X)
line number entriesofa/ 1dlseek(3X)
line number information froma/ strip(1)
linear search and update. Isearch(3C)
linenum: line number entries linenum(4)
link editor for common object 1d(1)

link editor output. L. a.out(4)
link: linktoafile. link(2)

link structure. xtd: oL L. xtd(1M)
linktoafile. link(2)

lint: a C program checker. lint(1)

Bist. « o v v v v e e e e nlist(3C)
list of common object file. nm(1)

list of file systems processed checklist(4)
list: produce C source listing list(1)

list. varargs: varargs(5)
list. /print formatted L. vprintf(3S)
listen for a connect request. t_listen(3N)
listing from a common object list(1)

lle, 1It: string comparison stremp(3F)
1It: string comparison/ stremp(3F)
localtime, gmtime, asctime, ctime(3C)
location of FORTRAN substring. index(3F)
locations in program. end(3C)
lock process, text,or datain plock(2)
lockf: record lockingon lockf(3C)
lockingon files. lockf(3C)
log, alog, dlog, clog: FORTRAN log(3F)

log gamma function. gamma(3M)
log, logl0, pow, sqrt: exp(3M)
log10, alog10, dlog10: FORTRAN log10(3F)
log10, pow, sqrt: exponential, exp(3M)
logarithm intrinsic function. log10(3F)
logarithm intrinsic function. log(3F)
logarithm, power, square root/ exp(3M)

-21 -

Permuted Index

layer. relogin: rename
getlogin: get

cuserid: get character
logname: return

setting up an environment at
user.

ab4l, 164a: convert between
sputl, sgetl: access

between 3-byte integers and
setjmp,

for an object library.
jrand48,/ drand48, erand48,
and update.

pointer.

bool: and, or, xor, not,
integers and long/ 13tol,

/access long integer data in a
values:
sysi86:

m4:

malloc, free, realloc, calloc:
/mallopt, mallinfo: fast
regenerate groups of/ make:
ar: archive and library

SCCS file. delta:

mkdir:

or ordinary file, or a/ mknod:
mktemp:

regenerate groups of/
/realloc, calloc, mallopt,

main memory allocator.
mallopt, mallinfo: fast main/
mallog, free, realloc, calloc,
/tfind, tdelete, twalk:

hsearch, hcreate, hdestroy:
endpoint. t_optmgmt:
sigignore, sigpause: signal

of/ 1dlread, 1dlinit, 1dlitem:
frexp, ldexp, modf:

comment section. mcs:

ascii:

set and get file creation

File Sharing name server
regular expression compile and
math:

constants.

function.

dmax1: FORTRAN maximum-value/
dmax1: FORTRAN/ max,
max, max0, amax0,

/max1, amax1, dmax1: FORTRAN
accounting.

login entry to show current relogin(1M)
loginname. getlogin(3C)
login name of theuser. cuserid(3S)
login name of user. logname(3X)
login time. profile: profile(4)
logname: return login nameof logname(3X)
long integer and base-64 ASCII/ a641(3C)
long integer data in a machine/ sputl(3X)
long integers. /ltol3: convert 13tol(3C)
longjmp: non-local goto. setjmp(3C)
lorder: find ordering relation lorder(1)
Irand48, nrand48, mrand48, drand48(3C)
Isearch, Ifind: linear search Isearch(3C)
Iseek: move read/write file 1seek(2)
Ishift, rshift: FORTRAN/ bool(3F)
Itol3: convert between 3-byte 13tol(3C)
m4: MaCro Processor. « « « « « « o « « + o+ & m4(1)
machine independent fashion. sputl(3X)
machine-dependent values. values(5)
machine-specific functions. sysi86(2)
MACIO PrOCESSOL. + + o v + v « & o o o o o « m4(1)

main memory allocator. malloc(3C)
main memory allocator. malloc(3X)
maintain, update, and L. L. make(1)
maintainer for portable/ ar(1)

make a delta (change)toan delta(1)
make adirectory, mkdir(2)
make a directory, or aspecial mknod(2)
make a unique filename. mktemp(3C)
make: maintain, update, and make(1)
mallinfo: fast main memory/ malloc(3X)
malloc, free, realloc, calloc: malloc(3C)
malloc, free, realloc, calloc, malloc(3X)
mallopt, mallinfo: fast main/ malloc(3X)
manage binary search trees. tsearch(3C)
manage hash search tables. hsearch(3C)
manage options for a transport t_optmgmt(3N)
management. /sigrelse, sigset(2)
manipulate line number entries 1dlread(3X)
manipulate partsof/ L. frexp(3C)
manipulate the objectfile mcs(1)

map of ASCII characterset. ascii(5)
mask. umask: L. oL umask(2)
master file. rfmaster: Remote rfmaster(4)
match routines. regexp: regexp(5)
math functions and constants. math(5)
math: math functionsand math(5)
matherr: error-handling matherr(3M)
max, max0, amax0, max1, amax1, max(3F)
max0, amax0, max1, amax1, max(3F)
max1, amax1, dmax1l: FORTRAN/ max(3F)
maximum-value functions. max(3F)
mclock: return FORTRAN time mclock(3F)

-22 .

file comment section.

memcpy, memset:/ memory:
memset:/ memory: memccpy,
memory: memccpy, memchr,
/memccpy, memchr, memcmp,
free, realloc, calloc: main
mallopt, mallinfo: fast main
shmetl: shared

memcmp, memcpy, memset:/
memcmp, memcpy, memset:
shmop: shmat, shmdt: shared
lock process, text, or data in
shmget: get shared

/memchr, memcmp, memcpy,
msgctl:

getmsg: get next

putmsg: send a

msgop: msgsnd, msgrev:
msgget: get

t_error: produce error
sys_nerr: system error

ishft, ishftc, ibits, btest,/

/ibset, ibclr, mvbits: FORTRAN
dminl: FORTRAN minimum-value/
dmin1: FORTRAN/ min,

min, min0, aming,

/minl, aminl, dminl: FORTRAN

special or ordinary file, or/
library.

name.

table.

remaindering intrinsic/
chmod: change
floating-point/ frexp, ldexp,
utime: set file access and
omf: convert an object
profile.

mount:

mnttab:

Iseek:

/erand48, Irand48, nrand48,
operations.

operations.

msgop: msgsnd,

operations. msgop:

used by xt(7)/ xtproto:

poll: STREAMS input/output
/ibits, btest, ibset, ibclr,

test for floating point

log, alog, dlog, clog: FORTRAN

Permuted Index

mcs: manipulate the object mes(1)
memccpy, memchr, memcmp, memory(3C)
memchr, memcmp, memepy, memory(3C)
memcmp, memcpy, memset: memory/ . memory(3C)
memcpy, memset: memory/ memory(3C)
memory allocator. malloc, malloc(3C)
memory allocator. /calloc, malloc(3X)
memory control operations. shmctl(2)
memory: memccpy, memchr, memory(3C)
memory operations. /memchr, memory(3C)
memory operations. shmop(2)
memory. plock: 0L L. plock(2)
memory segment identifier. shmget(2)
memset: memory operations. memory(3C)
message control operations. msgcth(2)
message off astream. getmsg(2)
messageonastream. putmsg(2)
message operations. msgop(2)
MEeSSage qUeUE. . .+ « o + o o b e . s e . msgget(2)
MESSAZE. « + o v o o 4 e e e e e e e e t_error(3N)
messages. /errno, sys—errlist, perror(3C)
mil: ior, iand, not, jeor, mil(3F)
Military Standard functions. mil(3F)

min, min0, amin0, minl, aminl, min(3F)
min0, amin0, minl, amin1, min(3F)
minl, aminl, dminl: FORTRAN/ min(3F)
minimum-value functions. min(3F)
mkdir: make a directory. mkdir(2)
mknod: make a directory,ora mknod(2)
mkshlib: create ashared mkshlib(1)
mktemp: make a unique file mktemp(3C)
mnttab: mounted file system ., mnttab(4)
mod, amod, dmod: FORTRAN mod(3F)
modeoffile., .. chmod(2)
modf: manipulate partsof frexp(3C)
modification times. L. utime(2)
module from COFFto OMF. omf(1)
monitor: prepare execution monitor(3C)
mount a filesystem. mount(2)
mount: mount a file system. mount(2)
mounted file system table. mnttab(4)
move read /write file pointer. Iseek(2)
mrand48, jrand48, srand48,/ drand48(3C)
msgetl: message control L. msgctl(2)
msgget: get message queue. msgget(2)
msgop: msgsnd, msgrcv: message msgop(2)
msgrcv: message operations. msgop(2)
msgsnd, MSGICV: MESSAZE . « « « + o o o . . msgop(2)
multiplexed channels protocol xtproto(5)
multiplexing.00 poll(2)
mvbits: FORTRAN Military/ mil(3F)
NaN (Not-A-Number). /isnanf: isnan(3C)
natural logarithm intrinsic/ log(3F)

-23-

Permuted Index

systems processed by fsck and
/dnint, nint, idnint: FORTRAN
process.

integer/ round: anint, dnint,
list.

object file.

setjmp, longjmp:

ibits, btest,/ mil: ior, iand,
Bitwise/ bool: and, or, xor,

test for floating point NaN
drand48, erand48, Irand48,

dis:

DMD terminal. wtinit:

1dfen: common

mcs: manipulate the

conv: common

cprs: compress a common
dump selected parts of an
Idopen, ldaopen: open a common
number entries of a common
Idaclose: close a common

the file header of a common

of a section of a common

file header of a common

of a section of a common
section header of a common
section of a common

symbol table entry of a common
symbol table entry of a common
the symbol table of a common
number entries in a common

C source listing from a common
nm: print name list of common
information for a common
section header for a common
information from a common
entry. /symbol name for common
format. syms: common

file header for common

1d: link editor for common

sizes in bytes of common

find ordering relation for an
OMEF. omf: convert an

from COFF to OMF.

an object module from COFF to
reading. ldopen, ldaopen:
fopen, freopen, fdopen:

dup: duplicate an

dup2: duplicate an

open:

writing.

seekdir,/ directory:

rewinddir, closedir: directory

ncheck. /listoffile checklist(4)
nearest integer functions. round(3F)
nice: change priorityofa nice(2)

nint, idnint: FORTRAN nearest round(3F)
nlist: get entries from name nlist(3C)
nm: print name list of common nm(1)
non-localgoto. setjmp(3C)
not, ieor, ishft, ishftc, mil(3F)

not, Ishift, rshift: FORTRAN bool(3F)
(Not-A-Number). /isnanf: isnan(3C)
nrand48, mrand48, jrand48,/ drand48(3C)
object code disassembler. dis(1)

object downloader for the 5620 witinit(1M)
object file access routines. 1dfcn(4)
object file comment section. mes(1)
object file converter. conv(1)
objectfile. cprs(1)
object file. dump: dump(1)
object file for reading. 1dopen(3X)
object file function. /line IdIread(3X)
object file. Idclose, 1dclose(3X)
object file. Idfhread: read Idfhread(3X)
object file. /number entries 1dIseek(3X)
object file. /to theoptional Idohseek(3X)
object file. fentries 1drseek(3X)
object file. /indexed/named Idshread(3X)
object file. /indexed/named 1dsseek(3X)
object file. /theindexofa 1dtbindex(3X)
object file. /read anindexed 1dtbread(3X)
object file. /seekto 1dtbseek(3X)
object file. linenum:line linenum(4)
object file. list: produce list(1)
objectfile. nm(1)

object file. /relocation reloc(4)
object file. secnhdr: oL L. scnhdr(4)
object file. /and line number strip(1)
object file symbol table Idgetname(3X)
object file symbol table syms(4)
object files. filehdr: filehdr(4)
objectfiles. o000 1d(1)

object files. /printsection size(1)
object library. lorder: lorder(1)
object module from COFFto omf(1)

omf: convert an object module omf(1)
OMF. omf:convert « v ¢« v o . omf(1)

open a common object filefor Idopen(3X)
openastream. 4 4 e 40 .4 fopen(3S)
open file descriptor. dup(2)

open file descriptor. dup2(3C)
open for reading or writing. open(2)
open: open forreadingor open(2)
opendir, readdir, telldir, directory(3X)
operations. /telldir, seekdir, directory(3X)

-4 -

memcmp, memcpy, memset: memory
msgctl: message control

msgop: msgsnd, msgrev: message
semctl: semaphore control
semop: semaphore

shmctl: shared memory control
shmat, shmdt: shared memory
strespn, strtok: string

terminal screen handling and
vector. getopt: get

common/ ldohseek: seek to the
fentl: file control

endpoint. t_optmgmt: manage
FORTRAN Bitwise/ bool: and,
object library. lorder: find
/acknowledge receipt of an
t_sndrel: initiate an

/a directory, or a special or
dial: establish an

assembler and link editor
/vsprintf: print formatted
sprintf: print formatted

chown: change

handling and optimization
standard buffered input/output
interprocess communication
extract and print xt driver
process, process group, and

functions. crypt:
/endpwent, fgetpwent: get
putpwent: write
passwd:

getpass: read a
directory. getcwd: get
signal.

a process. popen,
information. config:
format. acct:

sys_nerr: system error/
channel.

popen, pclose: initiate
data in memory.

subroutines.

images.

ftell: reposition a file

Iseek: move read /write file
multiplexing.

to/from a process.

and library maintainer for
functions. dim, ddim, idim:
logarithm,/ exp, log, log10,

Permuted Index

operations. /memccpy, memchr, memory(3C)
operations. 00 . . msgctl(2)
operations. msgop(2)
operations. o0 ... semctl(2)
operations. semop(2)
operations.o ... shmctl(2)
operations. shmop: shmop(2)
operations. /strpbrk, strspn, string(3C)
optimization package. curses: curses(3X)
option letter from argument getopt(3C)
optional file headerofa ldohseek(3X)
options.o e fentl(5)
options for a transport t_optmgmt(3N)
or, xor, not, Ishift, yshift: bool(3F)
ordering relation foran lorder(1)
orderly release indication. t—rcvrel(3N)
orderly release. t_sndrel(3N)
ordinary file, ora FIFO. mknod(2)
out-going terminal line/ dial(3C)
output. aout: common a.out(4)
output of a varargs argument/ vprintf(3S)
output. printf, fprintf, printf(3S)
owner and group ofafile. chown(2)
package. /terminalscreen curses(3X)
package. stdio:o stdio(35)
package. /ftok:standard stdipc(3C)
packet traces. xtt: xtt(1M)
parent process IDs. /get getpid(2)
passwd: password file. passwd(4)
password and file encryption crypt(3X)
password fileentry. getpwent(3C)
password fileentry. L. putpwent(3C)
password file. passwd(4)
password. 00w e e e e getpass(3C)
path name of current working getewd(3C)
pause: suspend processuntil pause(2)
pclose: initiate pipe to/from popen(3S)
per-module configuration config(4)
per-process accounting file acct(4)
perror, errno, sys_errlist, perror(3C)
pipe: create an interprocess pipe(2)

pipe to/fromaprocess. popen(3S)
plock: lock process, text,or plock(2)
plot: graphics interface. plot(4)

plot: graphics interface plot(3X)
pnch: file format forcard L . L L, pnch(4)
pointer in a stream. /rewind, fseek(3S)
pointer. Iseek(2)
poll: STREAMS input/output poll(2)
popen, pclose: initiate pipe popen(3S)
portable archives. /archive ar(1)
positive difference intrinsic dim(3F)
pow, sqrt: exponential, exp(3M)

-25 -

Permuted Index

/sqrt: exponential, logarithm,
function. dprod: double
monitor:

cpp: the C language

unget: undo a

types:

prs:

editing activity. sact:
vprintf, vfprintf, vsprintf:
printf, fprintf, sprintf:
object file. nm:

infocmp: compare or

of common object files. size:
structure. xtd: extract and
xtt: extract and

xts: extract and

print formatted output.
nice: change

acct: enable or disable
alarm: set a

times. times: get

exit, _exit: terminate

fork: create a new
/getpgrp, getppid: get process,
setpgrp: set

process group, and parent
inittab: script for the init
nice: change priority of a
kill: send a signal to a
initiate pipe to/from a
getpid, getpgrp, getppid: get
memory. plock: lock
times: get process and child
wait: wait for child

ptrace:

pause: suspend

/list of file systems

to a process or a group of
m4: macro

a common object file. list:
t_error:

dprod: double precision

function.

profile.

prof: display

monitor: prepare execution
profil: execution time
environment at login time.
prof:

intro: introduction to
windowing terminal/ layers:
xtproto: multiplexed channels

power, square root functions. exp(3M)
precision product intrinsic dprod(3F)
prepare execution profile. monitor(3C)
Preprocessor. . . « . 4 4 e 4 0 .0 e 0 oa s cpp(1)
previous get of an SCCS file. unget(1)
primitive system data types. types(5)
printan SCCSfile. prs(1)
print current SCCS file sact(1)
print formatted outputofa/ vprintf(3S)
print formatted output. printf(3S)
print name list of common nm(1)
print out terminfo/ infocmp(1M)
print section sizes in bytes size(1)
print xtdriver link xtd(1M)
print xt driver packet traces. xtt(1M)
print xt driver statistics. xts(1M)
printf, fprintf, sprintf: printf(3S)
priority of a process. nice(2)
process accounting. acct(2)
process alarm clock. alarm(2)
process and child process times(2)
PrOCESS. v v ¢« v o v o o vt e e e e e e exit(2)
PrOCESS. '« v v v v v o et e e e e e fork(2)
process group, and parent/ getpid(2)
processgroupID. setpgrp(2)
process IDs. /get process, getpid(2)
PIOCESS. o ¢ v v v v b e e e e e e e e inittab(4)
PrOCESS. '« v v v v v v e v e e e e e e nice(2)
processoragroupof/ kill(2)
process. popen, pclose: popen(35)
process, process group, and/ getpid(2)
process, text,ordatain plock(2)
processtimes. times(2)
process to stop or terminate. wait(2)
process trace. ptrace(2)
process until signal. L L. " pause(2)
processed by fsck and ncheck. checklist(4)
processes. /sendasignal kill(2)
PrOCESSOT. '« v v « v o o o o v 0 o 0 e .4 m4(1)
produce C source listing from list(1)
produce error message. o . o4 . . . t_error(3N)
product intrinsic function. dprod(3F)
prof: display profiledata. prof(1)
prof: profile withina prof(5)
profil: execution time profil(2)
profiledata. 000 prof(1)
profile.o L monitor(3C)
profile. L oL profil(2)
profile: settingupan profile(4)
profile within a function, prof(5)
programming commands. intro(1)
protocol used between hostand layers(5)
protocol used by xt(7) driver. xtproto(5)

- 26 -

information. t_getinfo: get
/generate uniformly distributed

stream. ungetc:

put character or word on a/
character or word on a/ putc,
environment.

stream.

entry.

stream.

/getutent, getutid, getutline,
a/ putc, putchar, fputc,

msgget: get message

gsort:

number generator.
random-number generator.
rand, irand, srand:

rand, srand: simple

getpass:

entry of a common/ ldtbread:
header/ ldshread, ldnshread:
in a file system/ getdents:
read:

member of an/ ldahread:
common object file. ldfhread:
directory: opendir,

open a common object file for
open: open for

Iseek: move

ftype: int, ifix, idint,
allocator. mallog, free,
mallinfo: fast/ malloc, free,
specify what to do upon
/specify FORTRAN action on
t_rcvrel: acknowledge
t_rcvudata:

indication. t_rcvuderr:

sent over a/ t_rcv:

a connect/ t_rcvconnect:
lockf:

execute regular expression.
compile.

make: maintain, update, and
regular expression. regcmp,
compile and match routines.
match routines. regexp:
regcmp:

regex: compile and execute
lorder: find ordering

/receipt of an orderly

Permuted Index

protocol-specific service t—getinfo(3N)
prs: printan SCCSfile. prs(1)
pseudo-random numbers. drand48(3C)
ptrace: process trace. ptrace(2)
push character back into input ungetc(3S)
putc, putchar, fputc, putw: L. putc(3S)
putchar, fputc, putw: put L. putc(3S)
putenv: change or add valueto putenv(3C)
putmsg: send a messageona putmsg(2)
putpwent: write password file putpwent(3C)
puts, fputs: put a stringona puts(3S)
pututline, setutent, endutent,/ getut(3C)
putw: put character or wordon " pute(3S)
gsort: quickersort. L. gsort(3C)
QUELE. o v v v v v v e e e e e e e e e s msgget(2)
quickersort. gsort(3C)
rand, irand, srand: random rand(3F)
rand, srand: simple L. rand(3C)
random number generator. rand(3F)
random-number generator. rand(3C)
resadapassword. getpass(3C)
read an indexed symbol table Idtbread(3X)
read an indexed/named section ldshread(3X)
read directory entries and put getdents(2)
read fromfile. L read(2)

read: read from file. read(2)

read the archive headerofa 1dahread(3X)
read the file headerofa 1dfhread(3X)
readdir, telldir, seekdir,/ directory(3X)
reading. ldopen, ldaopen: 1dopen(3X)
reading or writing. open(2)
read/write file pointer. 1seek(2)

real, float, sngl, dble,/ ftype(3F)
realloc, calloc: main memory malloc(3C)
realloc, calloc, mallopt, malloc(3X)
receipt of a signal. signal: signal(2)
receipt of a system signal. signal(3F)
receipt of an orderly release/ t_rcvrel(3N)
receiveadataunit. L t_revudata(3N)
receive a unit dataerror t_rcvuderr(3N)
receive data or expedited data t_rcv(3N)
receive the confirmation from t_rcveonnect(3N)
record locking on files. lockf(3C)
regemp, regex: compileand L L L. regemp(3X)
regemp: regular expression L. regemp(1)
regenerate groups of programs. make(1)
regex: compile and execute regemp(3X)
regexp: regular expression regexp(5)
regular expression compileand regexp(5)
regular expression compile. regemp(1)
regular expression. regemp, regemp(3X)
relation for an object/ lorder(1)
release indication. t_rcvrel(3N)

-27 -

Permuted Index

t_sndrel: initiate an orderly
for a common object file.
Idrseek, ldnrseek: seek to
common object file. reloc:
show current layer.

/fmod, fabs: floor, ceiling,
mod, amod, dmod: FORTRAN
server master file. rfmaster:
file. rmdel:

rmdir:

unlink:

current layer. relogin:
clock:

stream. fseek, rewind, ftell:
t_accept: accept a connect
t_listen: listen for a connect
confirmation from a connect
send user-initiated disconnect
disconnect. t_rcvdis:
common object file/ ldgetname:
argument. getarg:

variable. getenv:
accounting. mclock:

abs:

string. len:

substring. index:

logname:

line arguments. iargc:
name. getenv:

stat: data

file pointer in a/ fseek,
/readdir, telldir, seekdir,
creat: create a new file or
name server master file.

SCCS file.

chroot: change

logarithm, power, square
/dsqrt, csqrt: FORTRAN square
idnint: FORTRAN nearest/
common object file access
expression compile and match
and, or, xor, not, Ishift,
editing activity.

space allocation. brk,
formatted input.

the delta commentary of an
comb: combine

make a delta (change) to an
sact: print current

get: get a version of an

prs: print an

rmdel: remove a delta from an

release. L0 e e e e t_sndrel(3N)
reloc: relocation information reloc(4)
relocation entriesofa/ ldrseek(3X)
relocation information fora reloc(4)
relogin: rename login entryto relogin(1M)
remainder, absolute value/ floor(3M)
remaindering intrinsic/ mod(3F)
Remote File Sharing name rfmaster(4)
remove a delta froman SCCS rmdel(1)
remove adirectory. rmdir(2)
remove directory entry. unlink(2)
rename login entry toshow relogin(1M)
report CPU timeused., . clock(3C)
reposition a file pointerina fseek(35)
request. o . e e e e e e e e t_accept(3N)
request. e e e e e t_listen(3N)
request. /receivethe t_rcvconnect(3N)
request. t_snddis: t_snddis(3N)
retrieve information from t_revdis(3N)
retrieve symbol name for Idgetname(3X)
return FORTRAN command-line getarg(3F)
return FORTRAN environment getenv(3F)
return FORTRAN time mclock(3F)
return integer absolute value. abs(3C)
return length of FORTRAN len(3F)
return location of FORTRAN index(3F)
return login name of user. logname(3X)
return the number of command iargc(3F)
return value for environment getenv(3C)
returned by stat systemcall. stat(5)
rewind, ftell: repositiona fseek(3S)
rewinddir, closedir: directory/ directory(3X)
rewrite an existingone. creat(2)
rfmaster: Remote File Sharing rfmaster(4)
rmdel: remove a delta froman rmdel(1)
rmdir: remove a directory. rmdir(2)
root directory. chroot(2)
root functions. /exponential, exp(3M)
root intrinsic function. L. sqrt(3F)
round: anint, dnint, nint, round(3F)
routines. Idfen: oL 0.0 1dfen(4)
routines. regexp: regular regexp(5)
rshift: FORTRAN Bitwise/ bool: bool(3F)
sact: print current SCCSfile sact(1)

sbrk: change data segment brk(2)

scanf, fscanf, sscanf: convert scanf(3S)
SCCS delta. cdc: change cdce(1)
SCCSdeltas. v v v v v v v v v v . comb(1)
SCCSfile. delta: delta(1)
SCCS file editing activity. sact(1)
SCCSfile. . . . v v v v v v v v v cee.oget(l)
SCCSfile. oo o oL prs(1)
SCCSfile. . « v v v v v v v v e e e rmdel(1)

- 28 -

compare two versions of an
sccsfile: format of

undo a previous get of an
val: validate

admin: create and administer
what: identify

of an SCCS file.

common object file.

screen image file.
optimization/ curses: terminal
scr_dump: format of curses
inittab:

source to as/ as386.sed: sed

bsearch: binary

Isearch, lfind: linear

hcreate, hdestroy: manage hash
tdelete, twalk: manage binary
object file. scnhdr:

object/ /read an indexed/named
the object file comment

/to line number entries of a
/to relocation entries of a
/seek to an indexed/named
common object/ size: print
ASM386 source to/ as386.sed:
/mrand48, jrand48, srand48,
section of/ ldsseek, ldnsseek:

a section/ ldlseek, ldnlseek:

a section/ ldrseek, ldnrseek:
header of a common/ ldohseek:
common object file. ldtbseek:
/opendir, readdir, telldir,
shmget: get shared memory
brk, sbrk: change data

file. dump: dump

semctl:

semop:

semget: get set of

operations.

t_sndudata:

putmsg:

a group of processes. kill:

over a connection. t_snd:
request. t_snddis:

/receive data or expedited data
Remote File Sharing name
buffering to a stream.

IDs. setuid,

getgrent, getgrgid, getgrnam,

Permuted Index

SCCS file. scesdiff: L. scesdiff(1)
SCCSfile. + . v v v v v v v v i e scesfile(4)
SCCS file. unget: unget(1)
SCCSfile. . v v v v v v v v v o i e e val(1)
SCCSfiles. .« . v v v v v v v e admin(1)
SCCSfiles. . . . v v v v v v v v e what(1)
scesdiff: compare two versions L L. scesdiff(1)
scesfile: format of SCCSfile. scesfile(4)
scnhdr: section header fora senhdr(4)
scr—dump: formatof curses scr_dump(4)
screen handlingand curses(3X)
screen image file.o L scr_dump(4)
script for the init process. inittab(4)
script to convert Intel ASM386 as386.sed(1)
sdb: symbolic debugger. sdb(1)
searchasortedtable. bsearch(3C)
searchandupdate. Isearch(3C)
search tables. hsearch, hsearch(3C)
search trees. tsearch, tfind, tsearch(3C)
section header fora common scnhdr(4)
section header of acommon 1dshread(3X)
section. mcs: manipulate mces(1)
section of a common object/ Idlseek(3X)
section of a common object/ ldrseek(3X)
section of a common object/ ldsseek(3X)
section sizesin bytesof size(1)

sed script to convertIntel as386.sed(1)
seed48, lcong48: generate/ , drand48(3C)
seek to an indexed/named 1dsseek(3X)
seek to line number entriesof 1dlseek(3X)
seek to relocation entriesof ldrseek(3X)
seek to the optional file 1dohseek(3X)
seek to the symbol tableofa 1dtbseek(3X)
seekdir, rewinddir, closedir:/ directory(3X)
segment identifier. 0L .. shmget(2)
segment space allocation. brk(2)
selected parts of an object dump(1)
semaphore control operations. semctl(2)
semaphore operations. semop(2)
semaphores. semget(2)
semctl: semaphore control semctl(2)
semget: get set of semaphores. semget(2)
semop: semaphore operations. semop(2)
sendadataunit. t_sndudata(3N)
send a message on a stream. putmsg(2)
send a signal to a processor kill(2)

send data or expedited data t_snd(3N)
send user-initiated disconnect t_snddis(3N)
sent over a connection. t_rcv(3N)
server master file. rfmaster: rfmaster(4)
setbuf, setvbuf: assign setbuf(35)
setgid: set userand group setuid(2)
setgrent, endgrent, fgetgrent:;/ getgrent(3C)

-29 -

Permuted Index

goto.
hashing encryption. crypt,

getpwent, getpwuid, getpwnam,
login time. profile:
gettydefs: speed and terminal
group IDs.

/getutid, getutline, pututline,
stream. setbuf,

data in a machine/ sputl,
mkshlib: create a

operations. shmctl:

shmop: shmat, shmdt:
identifier. shmget: get

file. rfmaster: Remote File
system: issue a

system: issue a

operations. shmop:
operations.

operations. shmop: shmat,
segment identifier.

memory operations.
sigpause: signal/ sigset,
sigset, sighold, sigrelse,
transfer-of-sign intrinsic/
sigrelse, sigignore, sigpause:
pause: suspend process until
what to do upon receipt of a
action on receipt of a system
on receipt of a system/
upon receipt of a signal.

of processes. kill: send a
ssignal, gsignal: software
/sighold, sigrelse, sigignore,
signal/ sigset, sighold,
sigignore, sigpause: signal/
lex: generate programs for
generator. rand, srand:

atan, atan2:/ trig:

intrinsic function.

sin, dsin, csin: FORTRAN
/dsinh: FORTRAN hyperbolic
functions.

hyperbolic sine intrinsic/
bytes of common object files.
object/ size: print section
interval.

current/ ttyslot: find the
/int, ifix, idint, real, float,
ssignal, gsignal:

gsort: quicker

tsort: topological

bsearch: binary search a

setjmp, longjmp: non-local setjmp(3C)
setkey, encrypt: generate crypt(3C)
setpgrp: set process group ID. setpgrp(2)
setpwent, endpwent, fgetpwent:/ getpwent(3C)
setting up an environmentat profile(4)
settingsused by getty. gettydefs(4)
setuid, setgid: setuserand setuid(2)
setutent, endutent, utmpname:/ getut(3C)
setvbuf: assign bufferingtoa setbuf(35)
sgetl: access long integer sputl(3X)
shared library. mkshlib(1)
shared memory control shmctl(2)
shared memory operations. shmop(2)
shared memory segment shmget(2)
Sharing name server master rfmaster(4)
shell command from FORTRAN. system(3F)
shell command. system(3S)
shmat, shimdt: shared memory shmop(2)
shmctl: shared memory control shmctl(2)
shmdt: shared memory shmop(2)
shmget: get shared memory shmget(2)
shmop: shmat, shindt: shared shmop(2)
sighold, sigrelse, sigignore, sigset(2)
sigignore, sigpause: signal/ sigset(2)
sign, isign, dsign: FORTRAN sign(3F)
signal management. /sighold, sigset(2)
signal. oo pause(2)
signal. signal: specify signal(2)
signal. /specify FORTRAN signal (3F)
signal: specify FORTRAN action signal(3F)
signal: specify whattodo signal(2)
signal to a process ora group kill(2)
signals.00 ssignal(3C)
sigpause: signal management. sigset(2)
sigrelse, sigignore, sigpause: sigset(2)
sigset, sighold, sigrelse, sigset(2)
simple lexical tasks. lex(1)
simple random-number rand(3C)
sin, cos, tan, asin, acos, trig(3M)
sin, dsin, csin: FORTRAN sine sin(3F)
sine intrinsic function. sin(3F)
sine intrinsic function. L. sinh(3F)
sinh, cosh, tanh: hyperbolic sinh(3M)
sinh, dsinh: FORTRAN sinh(3F)
size: print section sizesin size(1)
sizes in bytes of common size(1)
sleep: suspend execution for sleep(3C)
slot in the utmp fileof the ttyslot(3C)
sngl, dble, cmplx, demplx,/ L. ftype(3F)
softwaresignals. ssignal(3C)
SOFt. & v v v e e e e e e e e e e e e gsort(3C)
SOMt. v v v v u e e e e e e e e e e e tsort(1)
sortedtable. bsearch(3C)

-30 -

Intel ASM386 source to as
object file. list: produce C
script to convert Intel ASM386
brk, sbrk: change data segment
fspec: format

receipt of a system/ signal:
receipt of a signal. signal:
used by getty. gettydefs:
output. printf, fprintf,

integer data in a machine/
square root intrinsic/

power,/ exp, log, log10, pow,
exponential, logarithm, power,
sqrt, dsqrt, csqrt: FORTRAN
generator. rand, irand,
generator. rand,

/nrand48, mrand48, jrand48,
input. scanf, fscanf,

signals.

package. stdio:

mvbits: FORTRAN Military
communication/ stdipc: ftok:
system call.

stat: data returned by

system information.

ustat: get file system

extract and print xt driver
feof, clearerr, fileno: stream
stat, fstat: get file
input/output package.
interprocess communication/

wait for child process to
strcmp, strnemp,/ string:
/strepy, strnepy, strlen,

string comparison intrinsic/
/strcat, strdup, strncat,
/strncat, stremp, strnemp,
/strrchr, strpbrk, strspn,

’ strncmp,/ string: strcat,
fflush: close or flush a

fopen, freopen, fdopen: open a
reposition a file pointer in a
get character or word from a
getmsg: get next message off a
fgets: get a string from a

put character or word on a
putmsg: send a message on a
puts, fputs: put a string on a
setvbuf: assign buffering to a
/feof, clearerr, fileno:

push character back into input

Permuted Index

source. /sed script to convert as386.sed(1)
source listing from a common list(1)
source to as source. /sed as386.sed(1)
space allocation. brk(2)
specification in text files. fspec(4)
specify FORTRAN actionon signal(3F)
specify whattodoupon signal(2)
speed and terminal settings gettydefs(4)
sprintf: print formatted printf(3S)
sputl, sgetl: accesslong sputl(3X)
sqrt, dsqrt, csqrt: FORTRAN sqrt(3F)
sqrt: exponential, logarithm, exp(3M)
square root functions. /sqrt: exp(3M)
square root intrinsic/ L. sqrt(3F)
srand: random number rand(3F)
srand: simple random-number rand(3C)
srand48, seed48, lcong48:/ drand48(3C)
sscanf: convert formatted scanf(3S)
ssignal, gsignal: software ssignal(3C)
standard buffered input/output stdio(3S)
Standard functions. /ibclr, mil(3F)
standard interprocess stdipc(3C)
stat: data returned by stat stat(5)
stat, fstat: get filestatus. stat(2)
statsystemcall. stat(5)
statfs, fstatfs: getfile statfs(2)
statistics. L L. v e e ustat(2)
statistics. xts: L oL xts(1M)
status inquiries. ferror, ferror(3S)
Status. v v v v v v e e e e e e e e e e e e stat(2)
stdio: standard buffered stdio(35)
stdipc: ftok: standard L. L, stdipc(3C)
stime: setfime. stime(2)
stop or terminate. wait: wait(2)
strcat, strdup, strncat, L. L string(3C)
strchr, strrchr, strpbrk,/ . . L L L L L L L string(3C)
stremp: Ige, Igt, lle, t: stremp(3F)
stremp, strnemp, strepy,/ L . . L L string(3C)
strepy, strnepy, strlen,/ L L L L L string(3C)
strespn, strtok: string/ L L L string(3C)
strdup, strncat, stremp, L L. L L string(3C)
stream. fclose,, fclose(3S)
Stream. . . v . v . v u e e e e e e e fopen(3S)
stream. fseek, rewind, ftell: fseek(3S)
stream. /getchar, fgetc, getw: getc(35)
stream. 0L e e e e e e getmsg(2)
stream. gets, L0, gets(35)
stream. /putchar, fputc, putw: putc(3S)
stream. 0L v e e e e e putmsg(2)
stream. L. ..o puts(3S)
stream. setbuf, setbuf(35)
stream status inquiries. ferror(3S)
stream. ungetc: L. ... L ungetc(35)

-31 -

Permuted Index

multiplexing. poll:

long integer and base-64 ASCII
stremp: Ige, lgt, lle, 1lt:
convert date and time to
floating-point number to
gets, fgets: get a

len: return length of FORTRAN
puts, fputs: put a

strspn, strespn, strtok:
strncat, stremp, strncmp, /
number. strtod, atof: convert
strtol, atol, atoi: convert
number information from a/
information from a/ strip:
/strncmp, strepy, strncpy,
string: strcat, strdup,
/strdup, strncat, strcmp,
/stremp, strnemp, strepy,
/strlen, strchr, strrchr,
/strnepy, strlen, strchr,
/strchr, strrchr, strpbrk,

to double-precision number.
/strpbrk, strspn, strespn,
string to integer.

t_alloc: allocate a library
t_free: free a library

and print xt driver link

plot: graphics interface
return location of FORTRAN
sync: update

interval. sleep:

pause:

swab:

information from/ strip: strip
file/ ldgetname: retrieve
name for common object file
object/ /compute the index of a
Idtbread: read an indexed
syms: common object file
object/ ldtbseek: seek to the
unistd: file header for

sdb:

symbol table format.

t sync:

error/ perror, errno,
information.

functions.

perror, errno, sys_errlist,

binary search a sorted

for common object file symbol
/compute the index of a symbol

STREAMS input/output poll(2)
string. /164a: convert between a641(3C)
string comparison intrinsic/ stremp(3F)
string. /asctime, tzset: ctime(3C)
string. /fcvt, gevt: convert L. L ecvt(3C)
string from astream. gets(35)
String. . .« . .0 .. 0o len(3F)
stringonastream. puts(3S)
string operations. /strpbrk, string(3C)
string: strcat, strdup, L. .. string(3C)
string to double-precision strtod(3C)
string to integer. strtol(3C)
strip: strip symbol and line strip(1)

strip symbol and line number strip(1)
strlen, strchr, strrchr,/ . 0 L 0 0 o L L L string(3C)
strncat, stremp, strnemp,/ . . . L L o L. L string(3C)
strncmp, strepy, stmepy,/ . . . o string(3C)
strnepy, strlen, strchr,/ e e e e string(3C)
strpbrk, strspn, strespn,/ . . . L L. L L L. string(3C)
strrchr, strpbrk, strspn,/ . . L L L L L L L L string(3C)
strspn, strespn, strtok:/ L L L0 L L string(3C)
strtod, atof: convertstring strtod(3C)
strtok: string operations. string(3C)
strtol, atol, atoi: convert strtol(3C)
Structure. .+ « « v v . 4 e e e 4 e e e e t_alloc(3N)
structure. . .+ v v v v 4 v e e e e e e t_free(3N)
structure. xtd: extract xtd(1M)
subroutines. plot(3X)
substring. index: 0L index(3F)
superblock. sync(2)
suspend execution for sleep(3C)
suspend process until signal. pause(2)
swab:swap bytes. swab(3C)
swapbytes. swab(3C)
symbol and line number strip(1)
symbol name for common object Idgetname(3X)
symbol table entry. /symbol Idgetname(3X)
symbol table entry of a common 1dtbindex(3X)
symbol table entry of a common/ ldtbread(3X)
symbol table format. syms(4)
symbol table of acommon 1dtbseek(3X)
symbolic constants. unistd(4)
symbolic debugger. -. . . sdb(1)
syms: common objectfile syms(4)
sync: update super block. sync(2)
synchronize transport library. t_sync(3N)
sys—errlist, sys_nerr: system perror(3C)
sysfs: get file systemtype sysfs(2)
sysi86: machine-specific sysi86(2)
sys_nerr: systemerror/ 4 perror(3C)
table. bsearch: bsearch(3C)
table entry. /symbol name Idgetname(3X)
table entry of a common object/ 1dtbindex(3X)

-32 -

file. /read an indexed symbol
common object file symbol
mnttab: mounted file system
Idtbseek: seek to the symbol
hdestroy: manage hash search
request.

structure.

trigonometric/ trig: sin, cos,
intrinsic function.

tan, dtan: FORTRAN

/dtanh: FORTRAN hyperbolic
hyperbolic tangent intrinsic/
sinh, cosh,

programs for simple lexical
transport endpoint.

endpoint.

connection with another/
search trees. tsearch, tfind,
directory: opendir, readdir,
temporary file. tmpnam,
tmpfile: create a

tempnam: create a name for a
terminals.

term: format of compiled

file.

terminfo:

generate file name for
libwindows: windowing

host control of windowing
dial: establish an out-going
optimization package. curses:
getty. gettydefs: speed and
isatty: find name of a
between host and windowing
downloader for the 5620 DMD
term: conventional names for
abort:

exit, —exit:

for child process to stop or
tic:

infocmp: compare or print out
data base.

message.

isnan: isnand, isnanf:

fspec: format specification in
plock: lock process,

binary search trees. tsearch,
structure.

protocol-specific service/
state.

mclock: return FORTRAN

Permuted Index

table entry of a common object Idtbread(3X)
table format. syms: L. syms(4)
table. oo s mnttab(4)
table of a common object file. Idtbseek(3X)
tables. hsearch, hereate, hsearch(3C)
t_accept: accept aconnect t_accept(3N)
t_alloc: allocate a library t—alloc(3N)
tan, asin, acos, atan, atan2: trig(3M)

tan, dtan: FORTRAN tangent tan(3F)
tangent intrinsic function. tan(3F)
tangent intrinsic function. tanh(3F)
tanh, dtanh: FORTRAN tanh(3F)
tanh: hyperbolic functions. sinh(3M)
tasks. lex: generate lex(1)
t_bind: bind an addresstoa t_bind(3N)
t_close: close a transport t_close(3N)
t_connect: establisha t_connect(3N)
tdelete, twalk: manage binary tsearch(3C)
telldir, seekdir, rewinddir,/ directory(3X)
tempnam: create a name fora tmpnam(3S)
temporary file.00 tmpfile(3S)
temporary file. tmpnam, tmpnam(3S)
term: conventional names for term(5)
termfile. L0000 term(4)
term: format of compiled term term(4)
terminal capability database. terminfo(4)
terminal. ctermid: ctermid(3S)
terminal function library. libwindows(3X)
terminal. jagent: jagent(5)
terminal line connection. dial(3C)
terminal screen handlingand curses(3X)
terminal settingsusedby gettydefs(4)
terminal. ttyname, ttyname(3C)
terminal under. /protocolused layers(5)
terminal. wtinit: object L. witinit(1M)
terminals. L0000 0oL term(5)
terminate FORTRAN program. abort(3F)
terminate process. L. exit(2)
terminate. wait: wait L wait(2)
terminfo compiler. tic(1M)
terminfo descriptions. infocmp(1M)
terminfo: terminal capability terminfo(4)
t_error: produce error t_error(3N)
test for floating point NaN/ isnan(3C)
textfiles, L 0L fspec(4)

text, or data inmemory. plock(2)
tfind, tdelete, twalk: manage tsearch(3C)
t_free: freealibrary t_free(3N)
t_getinfo:get t_getinfo(3N)
t_getstate: get thecurrent t_getstate(3N)
tic: terminfo compiler. L. tic(1M)

time accounting. mclock(3F)
time: gettime. time(2)

-33 -

Permuted Index

profil: execution

up an environment at login
stime: set

time: get

tzset: convert date and

clock: report CPU

timezone: set default system
process times.

get process and child process
file access and modification
time zone.

request.

event on a transport/

file.

for a temporary file.
/tolower, _toupper, _tolower,
popen, pclose: initiate pipe
/toupper, tolower, _toupper,
toascii:/ conv: toupper,
endpoint.

tsort:

a transport endpoint.

conv: toupper, tolower,
—tolower, toascii:/ conv:
ptrace: process

and print xt driver packet
sign, isign, dsign: FORTRAN
/—toupper, _tolower, toascii:
t_bind: bind an address to a
t_close: close a

look at the current event on a
t_open: establish a

/manage options for a
t_unbind: disable a

t_sync: synchronize

a connection with another
expedited data sent over a/
confirmation from a connect/
from disconnect.

of an orderly release/

unit.

data error indication.

ftw: walk a file

twalk: manage binary search
acos, atan, atan2:/

tan, asin, acos, atan, atan2:
twalk: manage binary search/
data over a connection.
disconnect request.

release.

library.

time profile.
time. profile: setting
time. . .
time.
time to string. /asctime, .
time used.
time zone.
times: get process and child . . .

times. utime: set
timezone: set default system
t._listen: listen for a connect . . .
t_look: look at the current . . .
tmpfile: create a temporary . . .
tmpnam, tempnam: create a name
toascii: translate characters. .

to/from a process.
—tolower, toascii: translate/ . . .
tolower, __toupper, _tolower, . .

t_open: establish a transport . .
topological sort.
t_optmgmt: manage options for
—_toupper, _tolower, toascii:;/ . .
toupper, tolower, _toupper, . . .
trace.
traces. xtt: extract
transfer-of-sign intrinsic/
translate characters.
transport endpoint.
transport endpoint.
transport endpoint.
transport endpoint.
transport endpoint.
transport endpoint.
transport library.
transport user. /establish
t_rcv: receive data or
t_rcvconnect: receive the

t_rcvdis: retrieve information . .
t_rcvrel: acknowledge receipt . .
t_rcvudata: receive adata
t_rcvuderr: receive a unit
tree.
trees. /tfind, tdelete,
trig: sin, cos, tan, asin,
trigonometric functions. /cos,
tsearch, tfind, tdelete,
t_snd: send data or expedited . .
t_snddis: send user-initiated . . .
t_sndrel: initiate an orderly . . .
t_sndudata: send a data unit. . .
tsort: topological sort.
t_sync: synchronize transport . .

- 34 -

t_look: . . .

profil(2)
profile(4)
stime(2)

. time(2)
. ctime(3C)

clock(3C)

. timezone(4)
. times(2)

times(2)
utime(2)

. timezone(4)

t_listen(3N)

. t_look(3N)

tmpfile(3S)
tmpnam(3S)
conv(3C)
popen(3S)
conv(3C)
conv(3C)
t_open(3N)

. tsort(1)

t_optmgmt(3N)

. conv(3C)

conv(3C)
ptrace(2)
xtt(1M)
sign(3F)
conv(3C)
t_bind(3N)
t_close{3N)

. . t_look(3N)
. t—open(3N)

t_optmgmt(3N)

. t_unbind(3N)

t_sync(3N)

. t—connect(3N)
. trev(3N)

t_rcvconnect(3N)
t_rcvdis(3N)

. trcvrel(3N)
. t_rcvudata(3N)

t_revuderr(3N)
ftw(3C)
tsearch(3C)

. trig(3M)
. trig(3M)

tsearch(3C)
t_snd(3N)

. t_snddis(3N)
. . t_sndrel(3N)
. t_sndudata(3N)

tsort(1)

. tsync(3N)

a terminal.

utmp file of the current/
endpoint.

tsearch, tfind, tdelete,

ichar, char: explicit FORTRAN
sysfs: get file system

types.

types: primitive system data
/localtime, gmtime, asctime,
control.

getpw: get name from
limits.

creation mask.

UNIX system.

file. unget:

an SCCS file.

into input stream.

/seed48, lcongd8: generate
mktemp: make a

symbolic constants.
t_rcvuderr: receive a
t_rcvudata: receive a data
t_sndudata: send a data
entry.

umount:

of programs. make: maintain,
Ifind: linear search and
sync:

setuid, setgid: set

character login name of the
/getgid, getegid: get real
environ:

ulimit: get and set

logname: return login name of
/get real user, effective
with another transport

the utmp file of the current
request. t_snddis: send
statistics.

modification times.

utmp, wtmp:

endutent, utmpname: access
ttyslot: find the slot in the
entry formats.

/pututline, setutent, endutent,

val:

abs: return integer absolute
cabs, zabs: FORTRAN absolute
getenv: return

ceiling, remainder, absolute
putenv: change or add

Permuted Index

ttyname, isatty: find nameof ttyname(3C)
ttyslot: find the slotinthe ttyslot(3C)
t_unbind: disable a transport t_unbind(3N)
twalk: manage binary search/ tsearch(3C)
type conversion. /demplx, ftype(3F)
type information. L. sysfs(2)
types: primitive systemdata types(5)
tYPes. o . . w . e e e e e e e e types(5)
tzset: convert date and time/ ctime(3C)
uvadmin: administrative uadmin(2)
UD. . . .0 i it h e e getpw(3C)
ulimit: get and setuser ulimit(2)
umask: set and getfile umask(2)
umount: unmount a file system. umount(2)
uname: get name of current uname(2)
undo a previous get of an SCCS unget(1)
unget: undo a previous getof unget(1)
ungetc: push characterback ungetc(3S)
uniformly distributed/ drand48(3C)
unique file name. L mktemp(3C)
unistd: file header for unistd(4)
unit data error indication. t_rcvuderr(3N)
unit. .. oL L e e e e e e e e t_rcvudata(3N)
unit. ... Lo t_sndudata(3N)
unlink: remove directory unlink(2)
unmount a file system. L. umount(2)
update, and regenerate groups make(1)
update. Isearch, Isearch(3C)
update super block. L. sync(2)
userand group IDs. L. setuid(2)
user. cuserid: get cuserid(3S)
user, effective user, real/ getuid(2)
user environment. 0. environ(5)
user limits.o L ulimit(2)
USET. & v o v e o v e e e e e e e e e e logname(3X)
user, real group, and/ getuid(2)
user. /establish a connection t_connect(3N)
user. /find theslotin ttyslot(3C)
user-initiated disconnect t_snddis(3N)
ustat: get file system ustat(2)
utime: set file accessand L. utime(2)
utmp and wtmp entry formats. utmp(4)
utmp file entry. /setutent, getut(3C)
utmp file of the current user. ttyslot(3C)
utmp, wtmp: utmp and wtmp utmp(4)
utmpname: access utmp file/ getut(3C)
val: validate SCCSfile. val(l)
validate SCCSfile. val(1)

value. . . . L L L Lo e abs(3C)
value. abs, iabs, dabs, abs(3F)
value for environment name. . . , getenv(3C)
value functions. /fabs: floor, floor(3M)
value to environment. putenv(3C)

-35-

Permuted Index

values.

values: machine-dependent
/print formatted output of a
argument list.

varargs: handle

return FORTRAN environment

option letter from argument
assert:

ve:

get: get a

scesdiff: compare two
formatted output of/ vprintf,
file system: format of system
print formatted output of a/
output of/ vprintf, vfprintf,
or terminate. wait:

to stop or terminate.

ftw:

signal. signal: specify

library. libwindows:

jagent: host control of

/protocol used between host and
chdir: change

get path name of current

write:

putpwent:

open: open for reading or
the 5620 DMD terminal.
utmp, wtmp: utmp and
formats. utmp,
FORTRAN/ bool: and, or,
xtd: extract and print

xtt: extract and print

xts: extract and print
channels protocol used by
driver link structure.
protocol used by xt(7)/
driver statistics.

driver packet traces.
bessel: jO, j1, jn,

bessel: jO, j1, jn, yO,
compiler-compiler.

bessel: j0, j1, jn, y0, y1,
abs, iabs, dabs, cabs,

set default system time

values: machine-dependent values(5)
values.o 0oL values(5)
varargs argument list. vprintf(3S)
varargs: handle variable varargs(5)
variable argument list. varargs(5)
variable. getenv: getenv(3F)
ve:versioncontrol. . . . L L Lo oL 0. ve(l)
vector. getopt:get oL oL getopt(3C)
verify program assertion. assert(3X)
versioncontrol. L. L. ve(l)
version of an SCCSfile. get(1)
versions of an SCCS file. scesdiff(1)
vfprintf, vsprintf: print vprintf(3S)
volume. fs: L0000 fs(4)
vprintf, vfprintf, vsprintf: vprintf(3S)
vsprintf: print formatted vprintf(3S)
wait for child processtostop wait(2)
wait: wait for child process wait(2)
walkafiletree. ftw(3C)
what: identify SCCS files. what(1)
what to do upon receiptofa signal(2)
windowing terminal function libwindows(3X)
windowing terminal. jagent(5)
windowing terminal under. layers(5)
working directory. 0. . chdir(2)
working directory. getewd: getewd(3C)
writeonafile. write(2)
write password fileentry. putpwent(3C)
write: writeonafile. write(2)
writing. o000 0oL open(2)
wtinit: object downloader for wtinit(1M)
wtmp entry formats. oL . oL utmp(4)
wimp: utmp and wtmp entry utmp(4)
xor, not, Ishift, rshift: bool(3F)
xt driver link structure. xtd(1M)

xt driver packet traces. xtt(1M)

xt driver statistics. xts(1M)
xt(7) driver. /multiplexed xtproto(5)
xtd: extractand printxt xtd(1M)
xtproto: multiplexed channels xtproto(5)
xts: extractand printxt xts(1M)
xtt: extractand printxt xtt(1M)
y0, y1, yn: Bessel functions. bessel(3M)
y1, yn: Bessel functions. bessel(3M)
yacc: yetanother yace(1)
yn: Bessel functions. bessel(3M)
zabs: FORTRAN absolute value. abs(3F)
zone. timezone: timezone(4)

- 36 -

INTRO(1) INTRO(1)

NAME
intro — introduction to programming commands

DESCRIPTION
This section describes, in alphabetical order, commands available for your
computer. The top of each page indicates the utilities package to which the
command belongs. The packages are:

Advanced C Utilities

AT&T Windowing Utilities

C Programming Language Utilities

Directory and File Management Utilities
Extended Software Generation System Utilities
Software Generation System Utilitites

Source Code Control System Utilities
Terminal Information Utilities

COMMAND SYNTAX
Unless otherwise noted, the commands described accept options and other
arguments according to the following syntax:

name [option(s)] [cmdarg(s)]

where:
name is the name of an executable file

option is - noargletter(s) or
- argletter<>optarg

where:

noargletter is a single letter representing an option without an
option-argument

argletter is a single letter representing an option requiring an
option-argument

<> is optional white space

optarg is an option-argument (character string) satisfying the
preceding argletter.

cmdarg is a path name (or other command argument) not beginning
with “~”, or =" by itself indicating the standard input.

Throughout the manual pages there are references to TMPDIR, BINDIR,
INCDIR, LIBDIR, and LLIBDIR. These represent directory names whose
value is specified on each manual page as necessary. For example, TMPDIR
might refer to /tmp or /usr/tmp. These are not environment variables and
cannot be set. [There is also an environment variable called TMPDIR
which can be set. See tmpnam(3S).]

INTRO(1) INTRO(1)

SEE ALSO
exit(2), wait(2), getopt(3C).
getopts(1) in the User’s Reference Manual,

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
“normal” termination) one supplied by the program [see wait(2) and
exit(2)]. The former byte is 0 for normal termination; the latter is cus-
tomarily 0 for successful execution and non-zero to indicate troubles such as
erroneous parameters, or bad or inaccessible data. It is called variously
“exit code”, “exit status”, or “return code”, and is described only where
special conventions are involved.

WARNINGS
Some commands produce unexpected results when processing files contain-
ing null characters. These commands often treat text input lines as strings
and therefore become confused upon encountering a null character (the
string terminator) within a line.

ADMIN(1) (Source Code Control System Utilities) ADMIN(1)

NAME
admin — create and administer SCCS files

SYNOPSIS
admin [-n] [-i[name]] [-rrel] [-tname]] [-fflag[flag-val]] [-dflag|flag-val]]
[-alogin] [-elogin] [-m[mrlist]] [~y[comment]] [-h] [-Z] files

DESCRIPTION

The admin command is used to create new SCCS files and change parame-
ters of existing ones. Arguments to admin, which may appear in any order,
consist of keyletter arguments, which begin with -, and named files (note
that SCCS file names must begin with the characters s.). If a named file
does not exist, it is created, and its parameters are initialized according to
the specified keyletter arguments. Parameters not initialized by a keyletter
argument are assigned a default value. If a named file does exist, parame-
ters corresponding to specified keyletter arguments are changed, and other
parameters are left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed since the effects of the arguments apply
independently to each named file.

-n This keyletter indicates that a new SCCS file is to be
created.
~i[name] The name of a file from which the text for a new SCCS

file is to be taken. The text constitutes the first delta
of the file (see -r keyletter for delta numbering
scheme). If the i keyletter is used, but the file name
is omitted, the text is obtained by reading the stan-
dard input until an end-of-file is encountered. If this
keyletter is omitted, then the SCCS file is created
empty. Only one SCCS file may be created by an
admin command on which the i keyletter is supplied.
Using a single admin to create two or more SCCS files
requires that they be created empty (no -i keyletter).
Note that the -i keyletter implies the -n keyletter.

~rrel The release into which the initial delta is inserted.
This keyletter may be used only if the -i keyletter is
also used. If the -r keyletter is not used, the initial
delta is inserted into release 1. The level of the initial
delta is always 1 (by default initial deltas are named
1.1).

~t[name] The name of a file from which descriptive text for the
SCCS file is to be taken. If the -t keyletter is used

-1-

ADMIN(1) (Source Code Control System Utilities) ADMIN(1)

~fflag

cceil

ffloor

dsID

ifstr]

Uist

<list>

and admin is creating a new SCCS file (the -n and/or
-i keyletters also used), the descriptive text file name
must also be supplied. In the case of existing SCCS
files: (1) a -t keyletter without a file name causes
removal of descriptive text (if any) currently in the
SCCs file, and (2) a -t keyletter with a file name
causes text (if any) in the named file to replace the
descriptive text (if any) currently in the SCCS file.

This keyletter specifies a flag, and, possibly, a value
for the flag, to be placed in the SCCS file. Several f
keyletters may be supplied on a single admin com-
mand line. The allowable flags and their values are:

Allows use of the -b keyletter on a get(1) command
to create branch deltas.

The highest release (i.e., “ceiling”’), a number greater
than 0 but less than or equal to 9999, which may be
retrieved by a get(1) command for editing. The
default value for an unspecified c flag is 9999.

The lowest release (i.e., “floor”), a number greater
than 0 but less than 9999, which may be retrieved by
a get(1) command for editing. The default value for
an unspecified f flag is 1.

The default delta number (SIDs+1) to be used by a get(1)
command.

Causes the "No id keywords (ge6)" message issued
by get(1) or delta(l) to be treated as a fatal error. In
the absence of this flag, the message is only a warn-
ing. The message is issued if no SCCS identification
keywords [see get(1)] are found in the text retrieved or
stored in the SCCS file. If a value is supplied, the
keywords must exactly match the given string, how-
ever the string must contain a keyword, and no
embedded newlines.

Allows concurrent get(1) commands for editing on the
same SID of an SCCS file. This allows multiple con-
current updates to the same version of the SCCS file.

A list of releases to which deltas can no longer be
made (get -e against one of these “locked” releases
fails). The list has the following syntax:

1= <range> | <list> , <range>
<range>"u= la

The character a in the list is equivalent to specifying
all releases for the named SCCS file.

ADMIN(1) (Source Code Control System Utilities) ADMIN(1)

qtext

mmod

ttype

vpgm

~dflag

1ist

-alogin

Causes delta(1l) to create a “null” delta in each of
those releases (if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null
deltas serve as “anchor points” so that branch deltas
may later be created from them. The absence of this
flag causes skipped

releases to be non-existent in the SCCS file, preventing
branch deltas from being created from them in the
future.

User-definable text substituted for all occurrences of
the %Q% keyword in SCCS file text retrieved by
get(1).

Module name of the SCCS file substituted for all
occurrences of the %M% keyword in SCCS file text
retrieved by get(1). If the m flag is not specified, the
value assigned is the name of the SCCS file with the
leading s. removed.

Type of module in the SCCS file substituted for all
occurrences of %Y% keyword in SCCS file text
retrieved by get(1).

Causes delta(1) to prompt for Modification Request
(MR) numbers as the reason for creating a delta. The
optional value specifies the name of an MR number
validity checking program [see delta(1)]. (If this flag
is set when creating an SCCS file, the m keyletter
must also be used even if its value is null.)

Causes removal (deletion) of the specified flag from
an SCCS file. The -d keyletter may be specified only
when processing existing SCCS files. Several -d
keyletters may be supplied on a single admin com-
mand. See the -f keyletter for allowable flag names.

A list of releases to be “unlocked”. See the -f
keyletter for a description of the 1 flag and the syntax
of a list.

A login name, or numerical UNIX system group ID, to
be added to the list of users which may make deltas
(changes) to the SCCS file. A group ID is equivalent
to specifying all login names common to that group
ID. Several a keyletters may be used on a single
admin command line. As many logins, or numerical
group IDs, as desired may be on the list simultane-
ously. If the list of users is empty, then anyone may
add deltas. If login or group ID is preceded by a !
they are to be denied permission to make deltas.

ADMIN(1)

(Source Code Control System Utilities) ADMIN(1)

-elogin

-m[mrlist]

~y[comment]

-h

A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e keyletters may be used on a
single admin command line.

The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creating
the initial delta in a manner identical to delta(1). The
v flag must be set and the MR numbers are validated
if the v flag has a value (the name of an MR number
validation program). Diagnostics will occur if the v
flag is not set or MR validation fails.

The comment text is inserted into the SCCS file as a
comment for the initial delta in a manner identical to
that of delta(1). Omission of the -y keyletter results
in a default comment line being inserted in the form:

date and time created YY /MM /DD HH:MM:SS by login

The -y keyletter is valid only if the ~i and/or -n
keyletters are specified (i.e., a new SCCS file is being
created).

Causes admin to check the structure of the SCCS file
[see sccsfile(5)], and to compare a newly computed
check-sum (the sum of all the characters in the SCCS
file except those in the first line) with the check-sum
that is stored in the first line of the SCCS file.
Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it
nullifies the effect of any other keyletters supplied,
and is, therefore, only meaningful when processing
existing files.

The SCCS file check-sum is recomputed and stored in
the first line of the SCCS file (see -h, above).

Note that use of this keyletter on a truly corrupted
file may prevent future detection of the corruption.

The last component of all SCCS file names must be of the form s.file-
name. New SCCS files are given mode 444 [see chmod(1)]. Write per-
mission in the pertinent directory is, of course, required to create a file.
All writing done by admin is to a temporary x-file, called x.file-name,
[see get(1)], created with mode 444 if the admin command is creating a
new SCCS file, or with the same mode as the SCCS file if it exists.
After successful execution of admin, the SCCS file is removed (if it
exists), and the x-file is renamed with the name of the SCCS file. This
ensures that changes are made to the SCCS file only if no errors

occurred.

ADMIN(1)

FILES
g-file

p-file
g-file
x-file
z-file

d-file

(Source Code Control System Utilities) ADMIN(1)

It is recommended that directories containing SCCS files be mode 755
and that SCCS files themselves be mode 444. The mode of the direc-
tories allows only the owner to modify SCCS files contained in the
directories. The mode of the SCCS files prevents any modification at
all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the
mode may be changed to 644 by the owner allowing use of ed(1).
Care must be taken! The edited file should always be processed by an
admin -h to check for corruption followed by an admin -z to gen-
erate a proper check-sum. Another admin -h is recommended to
ensure the SCCS file is valid.

The admin command also makes use of a transient lock file (called
z.file-name), which is used to prevent simultaneous updates to the
SCCS file by different users. See get(1) for further information.

Existed before the execution of delta; removed after com-
pletion of delta.

Existed before the execution of delta; may exist after com-
pletion of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Created during the execution of delta; renamed to SCCS file
after completion of delta.

Created during the execution of delta; removed during the
execution of delta.

Created during the execution of delta; removed after com-
pletion of delta.

/usr/bin/bdiff Program to compute differences between the “gotten” file

SEE ALSO

and the g-file.

delta(1), get(1), prs(1), what(1), sccsfile(4).

ed(1),

help(1) in the User’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

AR(1) (Directory and File Management Utilities) AR(1)

NAME
ar — archive and library maintainer for portable archives

SYNOPSIS
ar key [posname] afile [name] ...

DESCRIPTION

The ar command maintains groups of files combined into a single archive
file. Its main use is to create and update library files as used by the link
editor. It can be used, though, for any similar purpose. The magic string
and the file headers used by ar consist of printable ASCII characters. If an
archive is composed of printable files, the entire archive is printable.
Archives of text files created by ar are portable between implementations of
System V.

When ar creates an archive, it creates headers in a format that is portable
across all machines. The portable archive format and structure is described
in detail in ar(4). The archive symbol table [described in ar(4)] is used by
the link editor [ld(1)] to effect multiple passes over libraries of object files in
an efficient manner. An archive symbol table is only created and main-
tained by ar when there is at least one object file in the archive. The
archive symbol table is in a specially named file which is always the first
file in the archive. This file is never mentioned nor is accessible to the user.
Whenever the ar(1) command is used to create or update the contents of
such an archive, the symbol table is rebuilt. The s option, described in the
following, text will force the symbol table to be rebuilt.

Unlike command options, the command key is a required part of ar’s com-
mand line. The key (which may begin with a -) is formed with one of the
following letters: drqtpmx. Arguments to the key, alternatively, are made
with one of more of the following set: vuaibcls. Posname is an archive
member name used as a reference point in positioning other files in the
archive. Afile is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are as follows:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character
u is used with r, then only those files with dates of modification
later than the archive files are replaced. If an optional positioning
character from the set abi is used, then the posname argument must
be present and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file.
Optional positioning characters are invalid. The command does not
check whether the added members are already in the archive. This
option is useful to avoid quadratic behavior when creating a large
archive piece-by-piece. Unchecked, the file may grow exponentially
up to the second degree.

t Print a table of contents of the archive file. If no names are given,
all files in the archive are tabled. If names are given, only those
files are tabled.

AR(1) (Directory and File Management Utilities) AR(1)

P Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.

X Extract the named files. If no names are given, all files in the

archive are extracted. In neither case does x alter the archive file.
The meanings of the key arguments are as follows:

v Give a verbose file-by-file description of the making of a new
archive file from the old archive and the constituent files. When
used with t, give a long listing of all information about the files.
When used with x, precede each file with a name.

c Suppress the message that is produced by default when afile is
created.

1 Place temporary files in the local (current working) directory rather
than in the default temporary directory, TMPDIR.

s Force the regeneration of the archive symbol table even if ar(1) is

not invoked with a command which will modify the archive con-
tents. This command is useful to restore the archive symbol table
after the strip(1) command has been used on the archive.

FILES
$TMPDIR/* temporary files

$TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
1d(1), lorder(1), strip(1), tmpnam(3S), a.out(4), ar(4) in the Programmer’s
Reference Manual.

NOTES
If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

AS(1) (Software Generation System Utilities) AS(1
Yy

NAME
as — common assembler

SYNOPSIS
as [options] file name
DESCRIPTION
The as command assembles the named file. The following flags may be
specified in any order:
-0 objfile Put the output of the assembly in objfile. By default, the output
file name is formed by removing the .s suffix, if there is one, from
the input file name and appending a .o suffix.

-n Turn off long/short address optimization. By default, address
optimization takes place.

-m Run the m4 macro processor on the input to the assembler.

-R Remove (unlink) the input file after assembly is completed.

-dl Do not produce line number information in the object file.

-Ml (80286 only) Assemble the program using the large memory

model. See Programming Procedures for UNIX System V /286.

-Ms (80286 only) Assemble the program using the small memory
model. This model is used by default when no memory model is
specified. See Programming Procedures for UNIX System V /286.

-V Write the version number of the assembler being run on the stan-
dard error output.
=Y [md],dir

Find the m4 preprocessor (m) and/or the file of predefined mac-
ros {d) in directory dir instead of in the customary place.

FILES
TMPDIR /* temporary files
TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
cc(1), 1d(1), m4(1), nm(1), strip(1), tmpnam(3S), a.out(4)

WARNING
If the ~m (m4 macro processor invocation) option is used, keywords for m4
[see m4(1)] cannot be used as symbols (variables, functions, labels) in the
input file since m4 cannot determine which are assembler symbols and
which are real m4 macros.

BUGS
The .align assembler directive may not work in the .text section when
optimization is performed.

CAVEATS
Arithmetic expressions may only have one forward referenced symbol per
expression.

AS(1) (Software Generation System Utilities) AS(1)

NOTES
Wherever possible, the assembler should be accessed through a compilation
system interface program [such as cc(1)).

AS386.SED(1)

NAME

as386.sed — sed script to convert Intel ASM386 source to as source

SYNOPSIS

sed -f as386.sed < input-file >output-file

DESCRIPTION

The as386.sed sed script is used to convert an Intel ASM386 assembler

source file to a form acceptable to the UNIX system as assembler.

The sed script does not attempt to convert 100% of the ASM386 source

code; it cannot handle the following constructs:
- Macros.
- Strange segmentation schemes.

- Data declarations beyond the simple db/dw/dd/dp with simple

constant init list.
- Quoted ASCII strings.
- Structure or record template addressing (i.e., [ebp].foo).

- Complex expressions (parentheses and operators other than simple

+ and -).
- Immediate operands that are not simple constants.

- Immediate operands with automatically typed memory operands.

- Source files with opcodes in upper case.

- Source files with continued lines.

The sed script will preserve all comments, it will also transform certain
ASM386 directives into comments (like EXTERN, SEGMENT, etc.) Since it
translates the ASM386 NAME directive into the .file directive, it is best to

put the NAME directive as the first line of the source file.

EXAMPLES

The following command will read an uppercase ASM386 formatted file
named misc.asm and produce a UNIX system as formatted file named misc.s.

tr "[A-Z]" "[a-2]" <misc.asm | sed -f as386.sed >misc.s
SEE ALSO
sed(1)

BUGS

Except for the limitations mentioned above, there are no known bugs.

AS386.SED(1)

CB(1) (Advanced C Utilities) CB(1)

NAME
cb - C program beautifier
SYNOPSIS
cb[-s][-J][-1leng][file ...]
DESCRIPTION

The cb comand reads C programs either from its arguments or from the
standard input, and writes them on the standard output with spacing and
indentation that display the structure of the code. Under default options, cb
preserves all user new-lines.

The cb command accepts the following options.

-8 Canonicalizes the code to the style of Kernighan and Ritchie in
The C Programming Language.
-j Causes split lines to be put back together.
-1 leng Causes cb to split lines that are longer than leng.
SEE ALSO
cc(1).

The C Programming Language. Prentice-Hall, 1978.

BUGS
Punctuation that is hidden in preprocessor statements will cause indentation

€rrors.

CC(1) (C Programming Language Utilities) CC(1)

NAME
cc ~ C compiler

SYNOPSIS
cc [options] files

DESCRIPTION
The cc command is the interface to the C Compilation System. The compi-
lation tools consist of a preprocessor, compiler, optimizer, assembler, and
link editor. The cc command processes the supplied options and then exe-
cutes the various tools with the proper arguments. The cc command accepts
several types of files as arguments.

Files whose names end with .c are taken to be C source programs and may
be preprocessed, compiled, optimized, assembled and link edited. The com-
pilation process may be stopped after the completion of any pass if the
appropriate options are supplied. If the compilation process runs through
the assembler, then an object program is produced and is left in the file
whose name is that of the source with .0 substituted for .c. However, the .0
file is normally deleted if a single C program is compiled and then immedi-
ately link edited. In the same way, files whose names end in .s are taken to
be assembly source programs and may be assembled and link edited; and
files whose names end in .i are taken to be preprocessed C source programs
and may be compiled, optimized, assembled, and link edited. Files whose
names do not end in ., .s, or .i are handed to the link editor.

Since the c¢c command usually creates files in the current directory during
the compilation process, it is necessary to run the cc command in a directory
in which a file can be created.

The following options are interpreted by cc: .

-c Suppress the link editing phase of the compilation and do not
remove any produced object files.

-ds Do not generate symbol attribute information for the symbolic
debugger.

-dl Do not generate symbolic debugging line number information. This
and the above flag may be used in conjunction as -dsl (-dsl is the
default unless the -g flag is given).

-g Cause the compiler to generate additional information needed for
the use of sdb(1).

-Ml (80286 only) Compile the program using the large memory model.
See Programming Procedures for UNIX System V /286 for details.

-Ms (80286 only) Compile the program using the small memory model.
This memory model is used by default when no memory model is
specified. See Programming Procedures for UNIX System V /286 for
details.

~0 outfile »
Produce an output object file by the name outfile. The name of the
default file is a.out. This is a link editor option.

-1 -

cc()

P

-qp

(C Programming Language Utilities) CC(1)

Arrange for the compiler to produce code that counts the number of
times each routine is called; also, if link editing takes place, profiled
versions of libc.a and libm.a (with -lm option) are linked and
monitor(3C) is automatically called. A mon.out file will then be
produced at normal termination of execution of the object program.
An execution profile can then be generated by use of prof(1).

Arrange for profiled code to be produced where the p argument
produces identical results to the -p option [allows profiling with

prof(1)].

~Bstring
-t[p02al]

-E

-F

-H

-0

-P

-S

-V

These options will be removed in the next release. Use the -Y
option.

Run only cpp(1) on the named C programs, and send the result to
the standard output.

Cause the compiler to generate code for single precision arithmetic
whenever an expression contains float variables and no doubles.

Print out on stderr the path name of each file included during the
current compilation.

Do compilation phase optimization. This option will not have any
effect on .s files.

Run only cpp(1) on the named C programs and leave the result in
corresponding files suffixed .i. This option is passed to cpp(1).

Compile and do not assemble the named C programs, and leave the
assembler-language output in corresponding files suffixed .s.

Print the version of the compiler, optimizer, assembler and/or link
editor that is invoked.

-Wc,argl[,arg2...]

Hand off the argument([s] argi to pass ¢ where c is one of [p02al]
indicating the preprocessor, compiler, optimizer, assembler, or link
editor, respectively. For example: -Wa,~m passes -m to the assem-
bler.

~Y [p02alSILU],dirname

Specify a new path name, dirname, for the locations of the tools and
directories designated in the first argument. [p02alSILU] represents:

P preprocessor
0 compiler

2 optimizer

a assembler

1link editor

S directory containing the start-up routines

I default include directory searched by cpp(1)

L first default library directory searched by ld(1)

U second default library directory searched by ld(1)

-2

cC(1)

FILES

(C Programming Language Ultilities) CC(1)

If the location of a tool is being specified, then the new path name
for the tool will be dirname/tool. If more than one -Y option is
applied to any one tool or directory, then the last occurrence holds.

The cc command also recognizes ~C, -D, -H, -I and -U and passes these
options and their arguments directly to the preprocessor without using the
-W option. Similarly, the cc command recognizes -a, -1, -m, —o, -r, -s, —t,
-u, -x, -z, -, -M and -V and passes these options and their arguments
directly to the loader. See the manual pages for cpp(l) and ld(1) for
descriptions.

Other arguments are taken to be C compatible object programs, typically
produced by an earlier cc run, or perhaps libraries of C compatible routines
and are passed directly to the link editor. These programs, together with
the results of any compilations specified, are link edited (in the order given)
to produce an executable program with name a.out unless the -0 option of
the link editor is used.

If the cc command is put in a file prefixcc the prefix will be parsed off the
command and used to call the tools, i.e., prefixtool. For example, OLDcc
will call OLDcpp, OLDcomp, OLDoptim, OLDas, and OLDId and will link
OLDcrtl.o. Therefore, one MUST be careful when moving the cc command
around. The prefix will apply to the preprocessor, compiler, optimizer,
assembler, link editor, and the start-up routines.

The C language standard was extended to allow arbitrary length variable
names. The option pair “-Wp,-T -W0,-XT"” will cause cc to truncate arbi-
trary length variable names.

file.c C source file

file.i preprocessed C source file
file.o object file

file.s assembly language file
a.out link edited output

LIBDIR /*crtl.o start-up routine

LIBDIR /<model> /*crtl.o

LIBDIR/crtn.o
LIBDIR/<model> /crtn.o

start-up routine (80286 only; model is either
small or large)

start-up routine

start-up routine (80286 only; model is either
small or large)

TMPDIR /* temporary files

LIBDIR /cpp preprocessor, cpp(1)

LIBDIR /comp compiler

LIBDIR /optim optimizer

BINDIR/as assembler, as(1)

BINDIR/1d link editor, Id(1)

LIBDIR/libc.a standard C library

LIBDIR /<model>/libc.a standard C library (80286 only; model is either
small or large)

LIBDIR /libc_s.a standard C shared library

cc(l)

(C Programming Language Utilities) CC(1)

LIBDIR/<model>/libc_s.a standard C shared library (80286 only; model is
large)

LIBDIR is usually /lib

LIBDIR /<model> is usually /lib (80286 only; model is either small or large)
BINDIR is usually /bin

TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR |[see tempnam() in tmpnam(3S)].

SEE ALSO

as(1), 1d(1), cpp(1), gence(1M), lint(1), prof(1), sdb(1), tmpnam(3S).
Kernighan, B. W., and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.

DIAGNOSTICS

NOTES

The diagnostics produced by the C compiler are sometimes cryptic.

By default, the return value from a compiled C program is completely ran-
dom. The only two guaranteed ways to return a specific value is to expli-
citly call exit(2) or to leave the function main() with a “return expression;”
construct.

CCOFF(1) CCOFF(1)

NAME

ccoff — convert a COFF file
SYNOPSIS

ccoff [-1} [-v] file ...
DESCRIPTION

The ccoff command converts a COFF file by byte-swapping all multi-byte
integers in the file. Thus, if the COFF file has been built by a cross com-
piler running on a big-endian development machine (Motorola 68000, etc.),
ccoff will convert the file to a format suitable for running on the target
(80386) machine. The ccoff command will convert relocated executables,
non-relocated objects, and archives (libraries). The -r flag performs the
reverse conversion, so that a file that has already been run through ccoff can
be restored to its original state; or a file that has been built on a target
machine can be manipulated on the development machine. The -v flag
causes ccoff to operate verbosely.

SEE ALSO
convert(1)

CDC(1) (Source Code Control System Utilities) CDC(1)

NAME
cdc — change the delta commentary of an SCCS delta

SYNOPSIS
cde -rSID [-m[mrlist]] [-y[comment]] files

DESCRIPTION
The cdc command changes the delta commentary, for the SID (SCCS IDentif-
ication string) specified by the -r keyletter, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR) and com-
ment information normally specified via the delta(1) command (-m and -y
keyletters).

If a directory is named, cdc behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read (see WARNINGS)
and each line of the standard input is taken to be the name of an SCCS file
to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu-
ments and file names.

All the described keyletter arguments apply independently to each named

file:
-1SID Used to specify the SCCS IDentification (SID) string of
a delta for which the delta commentary is to be
changed.
~mmrlist If the SCCS file has the v flag set [see admin(1)] then a

list of MR numbers to be added and/or deleted in the
delta commentary of the SID specified by the -r
keyletter may be supplied. A null MR list has no
effect.

MR entries are added to the list of MRs in the same
manner as that of delta(l). In order to delete an MR,
precede the MR number with the character ! (see
EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a
“comment” line. A list of all deleted MRs is placed in
the comment section of the delta commentary and
preceded by a comment line stating that they were
deleted.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output
before the standard input is read; if the standard input
is not a terminal, no prompt is issued. The MRs?
prompt always precedes the comments? prompt (see
-y keyletter).

CDC(1) (Source Code Control System Utilities) CDC(1)

~y[comment]

MRs in a list are separated by blanks and/or tab char-
acters. An unescaped new-line character terminates
the MR list.

Note that if the v flag has a value [see admin(1)], it is
taken to be the name of a program (or shell pro-
cedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from
the MR number validation program, cdc terminates
and the delta commentary remains unchanged.

Arbitrary text used to replace the comment(s) already
existing for the delta specified by the -r keyletter.
The previous comments are kept and preceded by a
comment line stating that they were changed. A null
comment has no effect.

If -y is not specified and the standard input is a ter-
minal, the prompt comments? is issued on the stan-
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com-
ment text.

Simply stated, the keyletter arguments are either (1) if you made the delta,
you can change its delta commentary; or (2) if you own the file and direc-
tory, you can modify the delta commentary.

EXAMPLES

cdc -rl.6 -m"bl78-12345 'bl77-54321 bl79-00001" —ytrouble s.file

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 from
the MR list, and adds the comment trouble to delta 1.6 of s.file.

cde -rl.6 s.file

MRs? bl77-54321 bl78-12345 bl79-00001
comments? trouble

does the same thing.

WARNINGS

If SCCS file names are supplied to the cdc command via the standard input
(- on the command line), then the -m and -y keyletters must also be used.

admin(1), delta(1), get(1), prs(1), sccsfile(4).
help(1) in the User’s Reference Manual.

FILES
x-file [see delta(1)]
z-file [see delta(1)]
SEE ALSO
DIAGNOSTICS

Use help(1) for explanations.

CFLOW(1) (Advanced C Utilities) CFLOW(1)

NAME

cflow — generate C flowgraph
SYNOPSIS

cflow [-1] [-ix] [-i] [-dnum] files
DESCRIPTION

The cflow command analyzes a collection of C, yacc, lex, assembler, and
object files and attempts to build a graph charting the external references.
Files suffixed with .y, .1, and .c are yacced, lexed, and C-preprocessed as
appropriate. The results of the preprocessed files, and files suffixed with .i,
are then run through the first pass of lint(1). Files suffixed with .s are
assembled. Assembled files, and files suffixed with .0, have information
extracted from their symbol tables. The results are collected and turned into
a graph of external references which is displayed upon the standard output.

Each line of output begins with a reference number, followed by a suitable
number of tabs indicating the level, then the name of the global symbol fol-
lowed by a colon and its definition. Normally only function names that do
not begin with an underscore are listed (see the -i options below). For
information extracted from C source, the definition consists of an abstract
type declaration (e.g., char #), and, delimited by angle brackets, the name of
the source file and the line number where the definition was found. Defini-
tions extracted from object files indicate the file name and location counter
under which the symbol appeared (e.g., text). Leading underscores in C-
style external names are deleted.

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition
may be found. For undefined references, only <> is printed.

As an example, given the following in file.c:

int i;
main()
f();
g0
£0;

f()
i=h();

CFLOW(1) (Advanced C Utilities) CFLOW(1)

the command
cflow —ix file.c
produces the output
main: int(), <file.c 4>
f: int(), <file.c 11>

h: <>
i: int, <file.c 1>

s WO N =

g <>

When the nesting level becomes too deep, the output of cflow can be piped
to pr(1), using the -e option, to compress the tab expansion to something
less than every eight spaces.

In addition to the -D, -I, and -U options [which are interpreted just as they
are by cc(1) and cpp(1)), the following options are interpreted by cflow:

-1 Reverse the “caller:callee” relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in
lexicographical order by callee.

-ix Include external and static data symbols. The default is to include
only functions in the flowgraph.

-i Include names that begin with an underscore. The default is to
exclude these functions (and data if -ix is used).

-dnum The num decimal integer indicates the depth at which the flow-
graph is cut off. By default this is a very large number. Attempts
to set the cutoff depth to a nonpositive integer will be ignored.

DIAGNOSTICS

Complains about bad options. Complains about multiple definitions and
only believes the first. Other messages may come from the various pro-
grams used (e.g., the C-preprocessor).

SEE ALSO

BUGS

as(1), cc(1), cpp(1), lex(1), lint(1), nm(1), yacc(1).
pr(1) in the User’s Reference Manual.

Files produced by lex(1) and yacc(l) cause the reordering of line number
declarations which can confuse cflow. To get proper results, feed cflow the
yacc or lex input.

COMB(1) (Source Code Control System Utilities) COMB(1)

NAME

comb - combine SCCS deltas
SYNOPSIS

comb files
DESCRIPTION

The comb command generates a shell procedure [see sh(1)] which, when
run, will reconstruct the given SCCS files. The reconstructed files will,
hopefully, be smaller than the original files. The arguments may be speci-
fied in any order, but all keyletter arguments apply to all named SCCS files.
If a directory is named, comb behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
input is taken to be the name of an SCCS file to be processed; non-SCCS
files and unreadable files are silently ignored. The generated shell pro-
cedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed, but the effects of any keyletter argument
apply independently to each named file.

-0 For each get -e generated, this argument causes the recon-
structed file to be accessed at the release of the delta to be
created, otherwise the reconstructed file would be accessed
at the most recent ancestor. Use of the -0 keyletter may
decrease the size of the reconstructed SCCS file. It may
also alter the shape of the delta tree of the original file.

—pSID The SCCS IDentification string (SID) of the oldest delta to
be preserved. All older deltas are discarded in the recon-
structed file.

-5 This argument causes comb to generate a shell procedure
which, when run, will produce a report giving, for each file:
the file name, size (in blocks) after combining, original size
(also in blocks), and percentage change computed by:

100 * (original — combined) / original
It is recommended that before any SCCS files are actually
combined, one should use this option to determine exactly
how much space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.

SEE ALSO

admin(1), delta(1), get(1), prs(1), sccsfile(4).
help(1), sh(1) in the User’s Reference Manual.

COMB(1) (Source Code Control System Utilities) COMB(1)

DIAGNOSTICS
Use help(1) for explanations.

BUGS
The comb command may rearrange the shape of the tree of deltas. It may
not save any space; in fact, it is possible for the reconstructed file to actually
be larger than the original.

CONV(1) (Software Generation System Utilities) CONV(1)

NAME

conv — common object file converter
SYNOPSIS

conv [-a] [~o] [-p] -t target [- | files]
DESCRIPTION

The conv command converts object files in the common object file format
from their current byte ordering to the byte ordering of the target machine.
The converted file is written to file.v. The conv command can be used on
either the source (sending) or target (receiving) machine.

Command line options are:

- Indicates that the names of files should be read from the
standard input.

-a If the input file is an archive, produce the output file in the
UNIX System V Release 2.0 portable archive format.

-0 If the input file is an archive, produce the output file in the old
(pre- UNIX System V) archive format.

-p If the input file is an archive, produce the output file in the
UNIX System V Release 1.0 random access archive format.

-t target Convert the object file to the byte ordering of the machine
(target) to which the object file is being shipped. This may be
another host or a target machine. Legal values for target are:
pdp, vax, ibm, x86, b16, n3b, mc68, and m32.

The conv command is meant to ease the problems created by a multi-host
cross-compilation development environment. The conv command is best
used within a procedure for shipping object files from one machine to
another.

The conv command will recognize and produce archive files in three for-
mats: the pre- UNIX System V format, the UNIX System V Release 1.0 ran-
dom access format, and the UNIX System V Release 2.0 portable ASCII for-
mat. By default, conv will create the output archive file in the same format
as the input file. To produce an output file in a different format than the
input file, use the -a, -0, or -p option. If the output archive format is the
same as the input format, the archive symbol table will be converted, other-
wise the symbol table will be stripped from the archive. The ar(1) com-
mand with its -t and -s options must be used on the target machine to
recreate the archive symbol table.

EXAMPLE
To ship object files from a VAX computer sytem to a 3B2 computer, execute
the following commands:

conv -t m32 *.out

uucp *.out.v my3b2!"/rje/

CONV(1) (Software Generation System Utilities) CONV(1)

DIAGNOSTICS
The diagnostics are self-explanatory. Fatal diagnostics on the command
lines cause termination. Fatal diagnostics on an input file cause the pro-
gram to continue to the next input file.

CAVEATS
The conv command will not convert archives from one format to another if
both the source and target machines have the same byte ordering. The
UNIX system tool convert(1) should be used for this purpose.

SEE ALSO
ar(1), convert(1), ar(4), a.out(4).

CONVERT(1) (Software Generation System Utilities) CONVERT(1)

NAME

convert — convert archive files to common formats
SYNOPSIS

convert infile outfile
DESCRIPTION

The convert command transforms input infile to output outfile. Infile must
be a UNIX System V Release 1.0 archive file and outfile will be the
equivalent UNIX System V Release 2.0 archive file. All other types of input
to the convert command will be passed unmodified from the input file to the
output file (along with appropriate warning messages).

Infile must be different from outfile.

FILES
TMPDIR /conv# temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)).

SEE ALSO
ar(1), tmpnam(3S), a.out(4), ar(4)

CPP(1) (C Programming Language Utilities) CPP(1)

NAME

cpp - the C language preprocessor
SYNOPSIS

LIBDIR/cpp [option ...][ifile [ofile]]
DESCRIPTION

The C language preprocessor, cpp, is invoked as the first pass of any C
compilation by the cc(1) command. Thus cpp’s output is designed to be in
a form acceptable as input to the next pass of the C compiler. As the C
language evolves, cpp and the rest of the C compilation package will be
modified to follow these changes. Therefore, the use of cpp other than
through the cc(1) command is not suggested, since the functionality of cpp
may someday be moved elsewhere. See m4(1) for a general macro proces-
sor.

The ¢pp command optionally accepts two file names as arguments. Ifile
and ofile are respectively the input and output for the preprocessor. They
default to standard input and standard output if not supplied.

The following options to cpp are recognized:

-P Preprocess the input without producing the line control information
used by the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the ~C option is speci-
fied, all comments (except those found on cpp directive lines) are
passed along.

-Uname
Remove any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor. Following
is the current list of these possibly reserved symbols. On the 80286

and 80386, unix and one of i286 or i386 are defined.
operating system: unix, dmert, gcos, ibm, os, tss
hardware: 1286, i386, interdata, pdp11, u370, u3b,

u3b5, u3b2, u3b20d, vax
UNIX system variant: RES, RT
lint(1): lint

-Dname

~Dname=def
Define name with value def as if by a #define. If no =def is given,
name is defined with value 1. The -D option has lower precedence
than the -U option. That is, if the same name is used in both a -U
option and a -D option, the name will be undefined regardless of
the order of the options.

-T The -T option forces cpp to use only the first eight characters to
distinguish preprocessor symbols and is included for backward com-
patibility.

-Idir Change the algorithm for searching for #include files whose names
do not begin with / to look in dir before looking in the directories
on the standard list. Thus, #include files whose names are

-1-

CPP(1)

(C Programming Language Utilities) CPP(1)

enclosed in " " will be searched for first in the directory of the file
with the #include line, then in directories named in -I options, and
last in directories on a standard list. For #include files whose
names are enclosed in <>, the directory of the file with the
#include line is not searched.

-Ydir Use directory dir in place of the standard list of directories when
searching for #include files.

-H Print, one per line on standard error, the path names of included
files.
Two special names are understood by cpp. The name __LINE_._ is

defined as the current line number (as a decimal integer) as known by cpp,
and __FILE__ is defined as the current file name (as a C string) as known
by cpp. They can be used anywhere (including in macros) just as any other
defined name.

All cpp directive lines start with # in column 1. Any number of blanks and
tabs is allowed between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ..., arg) token-string

Notice that there can be no space between name and the (. Replace
subsequent instances of name followed by a (, a list of comma-
separated sets of tokens, and a) followed by token-string, where
each occurrence of an arg in the token-string is replaced by the
corresponding set of tokens in the comma-separated list. When a
macro with arguments is expanded, the arguments are placed into
the expanded token-string unchanged. After the entire token-string
has been expanded, cpp re-starts its scan for names to expand at the
beginning of the newly created token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on.
No additional tokens are permitted on the directive line after name.

#ident "string®
Put string into the .comment section of an object file.

#include "filename"

#include <filename>
Include at this point the contents of filename (which will then be
run through cpp). When the <filename> notation is used, filename
is only searched for in the standard places. See the -I and -Y
options above for more detail. No additional tokens are permitted
on the directive line after the final " or >.

#line integer-constant " filename™"
Causes cpp to generate line control information for the next pass of
the C compiler. Integer-constant is the line number of the next line
and filename is the file from which it comes. If "filename™ is not
given, the current file name is unchanged. No additional tokens are
permitted on the directive line after the optional filename.

-2

CPP(1)

(C Programming Language Utilities) CPP(1)

#endif
Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif. No
additional tokens are permitted on the directive line.

#ifdef name
The lines following will appear in the output if and only if name has
been the subject of a previous #define without being the subject of
an intervening #undef. No additional tokens are permitted on the
directive line after name.

#ifndef name
The lines following will appear in the output if and only if name has
not been the subject of a previous #define. No additional tokens
are permitted on the directive line after name.

#if constant-expression

Lines following will appear in the output if and only if the
constant-expression evaluates to non-zero. All binary non-
assignment C operators, the ?: operator, the unary -, !, and ~ opera-
tors are all legal in constant-expression. The precedence of the
operators is the same as defined by the C language. There is also a
unary operator defined, which can be used in constant-expression in
these two forms: defined (name) or defined name. This allows
the utility of #ifdef and #ifndef in a #if directive. Only these
operators, integer constants, and names which are known by cpp
should be used in constant-expression. In particular, the sizeof
operator is not available.

To test whether either of two symbols, foo and fum, are defined, use

#if defined(foo) % defined(fum)

#elif constant-expression

An arbitrary number of #elif directives is allowed between a #if,
#ifdef, or #ifndef directive and a #else or #endif directive. The
lines following the #elif directive will appear in the output if and
only if the preceding test directive evaluates to zero, all intervening
#elif directives evaluate to zero, and the constant-expression evalu-
ates to non-zero. If conmstant-expression evaluates to non-zero, all
succeeding #elif and #else directives will be ignored. Any
constant-expression allowed in a #if directive is allowed in a #elif
directive.

#else The lines following will appear in the output if and only if the
preceding test directive evaluates to zero, and all intervening #elif
directives evaluate to zero. No additional tokens are permitted on
the directive line.

The test directives and the possible #else directives can be nested.

CPP(1) (C Programming Language Utilities) CPP(1)

FILES
INCDIR standard directory list for #include files, usually
/usr/include
LIBDIR usually /lib
SEE ALSO
cc(1), lint(1), m4(1).
DIAGNOSTICS

The error messages produced by cpp are intended to be self-explanatory.
The line number and file name where the error occurred are printed along
with the diagnostic.

NOTES
The unsupported -W option enables the #class directive. If it encounters a
#class directive, cpp will exit with code 27 after finishing all other process-
ing. This option provides support for “C with classes”.

Because the standard directory for included files may be different in dif-
ferent environments, this form of #include directive:

#include <file.h>
should be used, rather than one with an absolute path, like:
#include "“/usr/include/file.h"

The cpp commnad warns about the use of the absolute path name.

CPRS(1) (Software Generation System Ultilities) CPRS(1)

NAME
cprs — compress a common object file

SYNOPSIS
cprs [-p] filel file2

DESCRIPTION
The cprs command reduces the size of a common object file, filel, by
removing duplicate structure and union descriptors. The reduced file, file2,
is produced as output.

The sole option to cprs is:

-p Print statistical messages including: total number of tags, total dupli-
cate tags, and total reduction of filel.

SEE ALSO
strip(1), a.out(4), syms(4).

CTRACE(1) (Advanced C Utilities) CTRACE(1)

NAME

ctrace — C program debugger

SYNOPSIS

ctrace [options] [file]

DESCRIPTION

The ctrace command allows you to follow the execution of a C program,
statement-by-statement. The effect is similar to executing a shell procedure
with the -x option. The ctrace command reads the C program in file (or
from standard input if you do not specify file), inserts statements to print
the text of each executable statement and the values of all variables refer-
enced or modified, and writes the modified program to the standard output.
You must put the output of ctrace into a temporary file because the cc(1)
command does not allow the use of a pipe. You then compile and execute
this file.

As each statement in the program executes it will be listed at the terminal,
followed by the name and value of any variables referenced or modified in
the statement, followed by any output from the statement. Loops in the
trace output are detected and tracing is stopped until the loop is exited or a
different sequence of statements within the loop is executed. A warning
message is printed every 1000 times through the loop to help you detect
infinite loops. The trace output goes to the standard output so you can put
it into a file for examination with an editor or the bfs(1) or tail(1) com-
mands.

The options commonly used are:

-f functions Trace only these functions.
-V functions Trace all but these functions.

You may want to add to the default formats for printing variables. Long
and pointer variables are always printed as signed integers. Pointers to
character arrays are also printed as strings if appropriate. Char, short, and
int variables are also printed as signed integers and, if appropriate, as char-
acters. Double variables are printed as floating point numbers in scientific
notation. You can request that variables be printed in additional formats, if
appropriate, with these options:

-0 Octal

-X Hexadecimal
-u Unsigned

-e Floating point

These options are used only in special circumstances:

-In Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from
loops.

-8 Suppress redundant trace output from simple assignment statements
and string copy function calls. This option can hide a bug caused
by use of the = operator in place of the == operator.

-tn Trace n variables per statement instead of the default of 10 (the
maximum number is 20). The Diagnostics section explains when to

-1-

CTRACE(1)

-P

(Advanced C Utilities) CTRACE(1)

use this option.
Run the C preprocessor on the input before tracing it. You can also
use the -D, -1, and -U cpp(1) options.

These options are used to tailor the run-time trace package when the traced
program will run in a non-UNIX System environment:

-b

Use only basic functions in the trace code, that is, those in
ctype(3C), printf(3S), and string(3C). These are usually available
even in cross-compilers for microprocessors. In particular, this
option is needed when the traced program runs under an operating
system that does not have signal(2), fflush(3S), longjmp(3C), or
setjmp(3C).

-p string

—rf

EXAMPLE

Change the trace print function from the default of "printf(". For
example, ‘fprintf(stderr,” would send the trace to the standard error
output.

Use file f in place of the runtime.c trace function package. This lets
you change the entire print function, instead of just the name and
leading arguments (see the -p option).

If the file Ic.c contains this C program:

1 #include <stdio.h>

2 main() /* count lines in input */
34
4 int ¢, nl;
5
6 nl =0;
7 while ((c = getchar()) I= EOF)
8 if (c ="\n")
9 ++nl;
10 printf(" %d\n", nl);
11}
and you enter these commands and test data:
cc le.c
a.out
1
(cntl-d)

the program will be compiled and executed. The output of the program will
be the number 2, which is not correct because there is only one line in the
test data. The error in this program is common, but subtle. If you invoke
ctrace with these commands:

ctrace lc.c >temp.c
cc temp.c
a.out

the output will be:

2 main()
6 nl = 0;
/¥nl == 0%/

CTRACE(1) (Advanced C Utilities) CTRACE(1)

7 while ((c = getchar()) != EOF)
The program is now waiting for input. If you enter the same test data as
before, the output will be:
Jxc==49 or 1" */

8 if (c ="\n)
/*c==10 or \n' */
9 ++nl;
/Enl==1%/

7 while ((c = getchar()) = EOF)
/¥ c == 10 or \n’ */

8 if (c ="\n")
/*c == 10 or "\n’ */
9 ++nl;
Jenl == 2%/

7 while ((c = getchar()) != EOF)
If you now enter an end-of-file character (cntl-d) the final output will be:

Jre=="-13/

10 printf(" %d\n", nl);
/Enl==2=x/2
return

Note that the program output printed at the end of the trace line for the nl
variable. Also note the return comment added by ctrace at the end of the
trace output. This shows the implicit return at the terminating brace in the
function.

The trace output shows that variable c is assigned the value ‘1’ in line 7, but
in line 8 it has the value "\n’. Once your attention is drawn to this if state-
ment, you will probably realize that you used the assignment operator (=)
in place of the equality operator (==). You can easily miss this error during
code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file, unless
you use the —f or -v options to trace specific functions. This does not give
you statement-by-statement control of the tracing, nor does it let you turn
the tracing off and on when executing the traced program.

You can do both of these by adding ctroff() and ctron() function calls to
your program to turn the tracing off and on, respectively, at execution time.
Thus, you can code arbitrarily complex criteria for trace control with if state-
ments, and you can even conditionally include this code because ctrace
defines the CTRACE preprocessor variable. For example:

#ifdef CTRACE
if (c == "V && i > 1000)
ctron();
#endif

CTRACE(1) (Advanced C Utilities) CTRACE(1)

You can also call these functions from sdb(1) if you compile with the -g
option. For example, to trace all but lines 7 to 10 in the main function,
enter:

sdb a.out
main:7b ctroff()
main:11b ctron()
r

You can also turn the trace off and on by setting static variable tr_ct_ to 0
and 1, respectively. This is useful if you are using a debugger that cannot
call these functions directly.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(1), since
the traced code often gets some cc warning messages. You can get cc error
messages in some rare cases, all of which can be avoided.

ctrace Diagnostics
warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C com-
piler "out of tree space; simplify expression" error. Use the -t
option to increase this number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are
using tabs to indent your code, not spaces.

cannot handle preprocessor code, use —P option
This is usually caused by #ifdef/#endif preprocessor statements in
the middle of a C statement, or by a semicolon at the end of a
#define preprocessor statement.

if ... else if’ sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any
appropriate -D, -1, and -U preprocessor options. If you still get the
error message, check the Warnings section below.

Cc Diagnostics
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0
Ignore these messages.

compiler takes size of function
See the ctrace "possible syntax error" message above.

yacc stack overflow
See the ctrace "'if ... else if’ sequence too long" message above.

CTRACE(1) (Advanced C Utilities) CTRACE(1)

out of tree space; simplify expression
Use the -t option to reduce the number of traced variables per state-
ment from the default of 10. Ignore the "ctrace: too many variables
to trace™ warnings you will now get.

redeclaration of signal
Either correct this declaration of signal(2), or remove it and #include
<signal.h>.

SEE ALSO

signal(2), ctype(3C), fclose(3S), printf(3S), setjmp(3C), string(3C).
bfs(1), tail(1) in the User’s Reference Manual.

WARNINGS

BUGS

FILES

You will get a ctrace syntax error if you omit the semicolon at the end of
the last element declaration in a structure or union, just before the right
brace (}). This is optional in some C compilers. Defining a function with
the same name as a system function may cause a syntax error if the number
of arguments is changed. Just use a different name.

The ctrace command assumes that BADMAG is a preprocessor macro, and
that EOF and NULL are #defined constants. Declaring any of these to be
variables, e.g., "int EOF;", will cause a syntax error.

The ctrace command does not know about the components of aggregates
like structures, unions, and arrays. It cannot choose a format to print all the
components of an aggregate when an assignment is made to the entire
aggregate. ctrace may choose to print the address of an aggregate or use the
wrong format (e.g., 3.149050e-311 for a structure with two integer
members) when printing the value of an aggregate.

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file of a multi-
file program. This can result in functions called from a loop still being
traced, or the elimination of trace output from one function in a file until
another in the same file is called.

/usr/lib/ctrace/runtime.c run-time trace package

CXREF(1) (Advanced C Utilities) CXREF(1)

NAME)
cxref — generate C program cross-reference
SYNOPSIS
cxref [options] files
DESCRIPTION

The cxref command analyzes a collection of C files and attempts to build a
cross-reference table. The cxref command uses a special version of cpp to
include #define’d information in its symbol table. It produces a listing on
standard output of all symbols (auto, static, and global) in each file
separately, or, with the -c option, in combination. Each symbol contains an
asterisk (*) before the declaring reference.

In addition to the -D, -I, and ~U options [which are interpreted just as they
are by cc(1) and cpp(1)], the following options are interpreted by cxref:

-c Print a combined cross-reference of all input files.

-w<num:>
Width option which formats output no wider than <num>
(decimal) columns. This option will default to 80 if <num> is not
specified or is less than 51.

-o file Direct output to file.

] Operate silently; do not print input file names.
-t Format listing for 80-column width.
FILES
LLIBDIR usually /usr/lib
LLIBDIR/xcpp special version of the C preprocessor.
SEE ALSO
cc(1), cpp(1).
DIAGNOSTICS
Error messages are unusually cryptic, but usually mean that you cannot
compile these files.
BUGS

The cxref command considers a formal argument in a #define macro defini-
tion to be a declaration of that symbol. For example, a program that
#includes ctype.h, will contain many declarations of the variable c.

DELTA(1) (Source Code Control System Utilities) DELTA(1)

NAME

delta — make a delta (change) to an SCCS file
SYNOPSIS

delta [-rSID] [~s] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p] files
DESCRIPTION

The delta command is used to permanently introduce into the named SCCS
file changes that were made to the file retrieved by get(1) (called the g-file,
or generated file).

The delta command makes a delta to each named SCCS file. If a directory is
named, delta behaves as though each file in the directory were specified as
a named file, except that non-SCCS files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a name
of - is given, the standard input is read (see WARNINGS); each line of the
standard input is taken to be the name of an SCCS file to be processed.

The delta command may issue prompts on the standard output depending
upon certain keyletters specified and flags [see admin(1)] that may be
present in the SCCS file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

-1SID Uniquely identifies which delta is to be made to the
SCCS file. The use of this keyletter is necessary only
if two or more outstanding gets for editing (get -e) on
the same SCCS file were done by the same person
(login name). The SID value specified with the -r
keyletter can be either the SID specified on the get
command line or the SID to be made as reported by
the get command [see get(1)]. A diagnostic results if
the specified SID is ambiguous, or, if necessary and
omitted on the command line.

-s Suppresses the issue, on the standard output, of the
created delta’s SID, as well as the number of lines
inserted, deleted, and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally
removed at completion of delta processing).

-glist a list [see get(1) for the definition of list] of deltas
which are to be ignored when the file is accessed at
the change level (SID) created by this delta.

-m[mrlist] If the SCCS file has the v flag set [see admin(1)] then a
Modification Request (MR) number must be supplied
as the reason for creating the new delta.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output
before the standard input is read; if the standard input
is not a terminal, no prompt is issued. The MRs?
prompt always precedes the comments? prompt (see
-y keyletter).

-1 -

DELTA(1)

(Source Code Control System Utilities) DELTA(1)

MRs in a list are separated by blanks and/or tab char-
acters. An unescaped new-line character terminates
the MR list.

Note that if the v flag has a value [see admin(1)], it is
taken to be the name of a program (or shell pro-
cedure) which will validate the correctness of the MR
numbers. If a non-zero exit status is returned from
the MR number validation program, delta terminates.
(It is assumed that the MR numbers were not all
valid.)

~y[comment] Arbitrary text used to describe the reason for making

P
FILES
g-file
p-file
q-file
x-file
z-file
d-file

/usr/bin/bdiff

WARNINGS

the delta. A null string is considered a valid comment.

If -y is not specified and the standard input is a ter-
minal, the prompt comments? is issued on the stand-
ard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com-
ment text.

Causes delta to print (on the standard output) the
SCCS file differences before and after the delta is
applied in a diff(1) format.

Existed before the execution of delta; removed after com-
pletion of delta.

Existed before the execution of delta; may exist after com-
pletion of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Created during the execution of delta; renamed to SCCS file
after completion of delta.

Created during the execution of delta; removed during the
execution of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Program to compute differences between the “gotten” file
and the g-file.

Lines beginning with an SOH ASCII character (binary 001) cannot be placed
in the SCCS file unless the SOH is escaped. This character has special mean-
ing to SCCS [see sccsfile(4)] and will cause an error. '

A get of many SCCS files, followed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, multiple
get/delta sequences should be used.

If the standard input (=) is specified on the delta command line, the -m (if
necessary) and -y keyletters must also be present. Omission of these
keyletters causes an error to occur.

-2-

DELTA(1) (Source Code Control System Utilities)

Comments are limited to text strings of at most 512 characters.

SEE ALSO
admin(1), cdc(1), get(1), prs(1), rmdel(1), sccsfile(4).
bdiff(1), help(1) in the User’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

DELTA(1)

DIS(1) (Software Generation System Utilities) DIS(1)

NAME
dis — object code disassembler

SYNOPSIS
dis [-o] [-V] [-L] [-s] [-d sec] [-da sec] [-F function] [-t sec] [-] string]
file ...

DESCRIPTION
The dis command produces an assembly language listing of file, which may
be an object file or an archive of object files. The listing includes assembly
statements and an octal or hexadecimal representation of the binary that
produced those statements.

The following options are interpreted by the disassembler and may be speci-
fied in any order.

-0 Print numbers in octal. The default is hexadecimal.

-V Print, on standard error, the version number of the disassem-
bler being executed.

-L Look up source labels in the symbol table for subsequent
printing. This option works only if the file was compiled with
additional debugging information [e.g., the -g option of cc(1)].

-s Perform symbolic disassembly, i.e., specify source symbol
names for operands where possible. Symbolic disassembly out-
put will appear on the line following the instruction. For maxi-
mal symbolic disassembly to be performed, the file must be
compiled with additional debugging information [e.g., the -g
option of cc(1)]. Symbol names will be printed using C syn-
tax.

-d sec Disassemble the named section as data, printing the offset of
the data from the beginning of the section.

-da sec Disassemble the named section as data, printing the actual
address of the data.

-F function Disassemble only the named function in each object file speci-
fied on the command line. The -F option may be specified
multiple times on the command line.

-t sec Disassemble the named section as text.

-1 string Disassemble the library file specified by string. For example,
one would issue the command dis -1 x -1 z to disassemble
libx.a and libz.a. All libraries are assumed to be in LIBDIR.

If the -d, ~da or -t options are specified, only those named sections from
each user-supplied file name will be disassembled. Otherwise, all sections
containing text will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as
[5], represents that the break-pointable line number starts with the following
instruction. These line numbers will be printed only if the file was com-
piled with additional debugging information [e.g., the -g option of cc(1)].
An expression such as <40> in the operand field or in the symbolic

-1-

DIS(1) (Software Generation System Utilities) DIS(1)

disassembly, following a relative displacement for control transfer instruc-
tions, is the computed address within the section to which control will be
transferred. A function name will appear in the first column, followed by

0.
FILES

LIBDIR usually /lib.
SEE ALSO

as(1), cc(1), 1d(1), a.out(4).
DIAGNOSTICS

The self-explanatory diagnostics indicate errors in the command line or
problems encountered with the specified files.

DUMP(1) (Software Generation System Utilities) DUMP(1)

NAME
dump - dump selected parts of an object file
SYNOPSIS
dump [options] files
DESCRIPTION .
The dump command dumps selected parts of each of its object file argu-
ments.

This command will accept both object files and archives of object files. It
processes each file argument according to one or more of the following

options:

-a Dump the archive header of each member of each archive file
argument.

-g Dump the global symbols in the symbol table of an archive.

~f Dump each file header.

-0 Dump each optional header.

-h Dump section headers.

- Dump section contents.

-r Dump relocation information.

-1 Dump line number information.

-t Dump symbol table entries.

-z name Dump line number entries for the named function.

-c Dump the string table.

-L Interpret and print the contents of the .lib sections.

The following modifiers are used in conjunction with the options listed
above to modify their capabilities.

-d number Dump the section number, number, or the range of sections
starting at number and ending at the number specified by +d.

+d number Dump sections in the range either beginning with first section
or beginning with section specified by -d.

-n name Dump information pertaining only to the named entity. This
modifier applies to -h, -s, -r, -1, and ~t.

-p Suppress printing of the headers.

-t index Dump only the indexed symbol table entry. The -t used in
conjunction with +t, specifies a range of symbol table entries.

+t index Dump the symbol table entries in the range ending with the
indexed entry. The range begins at the first symbol table entry
or at the entry specified by the -t option.

-u Underline the name of the file for emphasis.

DUMP(1) (Software Generation System Utilities) DUMP(1)

-v Dump information in symbolic representation rather than
numeric (e.g., C_STATIC instead of 0X02). This modifier can be
used with all the above options except -s and -o options of
dump.

-z name,number
Dump line number entry or range of line numbers starting at
number for the named function.

+z number Dump line numbers starting at either function name or number
specified by -z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma
separating the name from the number modifying the -z option may be
replaced by a blank.

The dump command attempts to format the information it dumps in a
meaningful way, printing certain information in character, hex, octal, or
decimal representation as appropriate.

SEE ALSO
a.out(4), ar(4).

GENCC(1M) (C Programming Language Utilities) GENCC(1M)

NAME
gencc — create a front-end to the cc command

SYNOPSIS
gencc

DESCRIPTION

The gencc command is an interactive command designed to aid in the crea-
tion of a front-end to the cc command. Since hard-coded path names have
been eliminated from the C Compilation System (CCS), it is possible to
move pieces of the CCS to new locations without recompiling the CCS.
The new locations of moved pieces can be specified through the -Y option
to the cc command. However, it is inconvenient to supply the proper -Y
options with every invocation of the cc command. Further, if a system
administrator moves pieces of the CCS, such movement should be invisible
to users.

The front-end to the cc command which gencc generates is a one-line shell
script which calls the cc command with the proper -Y options specified.
The front-end to the cc command will also pass all user supplied options to
the cc command.

The gencc command prompts for the location of each tool and directory
which can be respecified by a -Y option to the cc command. If no location
is specified, it assumes that that piece of the CCS has not been relocated.
After all the locations have been prompted for, gencc will create the front-
end to the cc command.

The gencc command creates the front-end to the cc command in the current
working directory and gives the file the same name as the cc command.
Thus, gencc can not be run in the same directory containing the actual cc
command. Further, if a system administrator has redistributed the CCS, the
actual cc command should be placed somewhere which is not typically in a
user’s PATH (e.g., /lib). This will prevent users from accidentally invoking
the cc command without using the front-end.

CAVEATS
The gencc command does not produce any warnings if a tool or directory
does not exist at the specified location. Also, gencc does not actually move
any files to new locations.

FILES

./cc front-end to cc
SEE ALSO

cc(1).

GET(1) (Source Code Control System Utilities) GET(1)

NAME
get — get a version of an SCCS file

SYNOPSIS
get [-rSID] [-ccutoff] [-ilist] [-xlist] [-wstring] [-aseq-no.] [-k] [-e] [-1[p]
[-p] [-m] [-n] [-s] [-b] [-g] [-t] file ...

DESCRIPTION
The get command generates an ASCII text file from each named SCCS file
according to the specifications given by its keyletter arguments, which begin
with -. The arguments may be specified in any order, but all keyletter
arguments apply to all named SCCS files. If a directory is named, get
behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not begin
with s.) and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken to be the
name of an SCCS file to be processed. Again, non-SCCS files and unread-
able files are silently ignored.

The generated text is normally written into a file called the g-file whose
name is derived from the SCCS file name by simply removing the leading s.;
(see also FILES, below).

Each of the keyletter arguments is explained below as though only one
SCCS file is to be processed, but the effects of any keyletter argument
applies independently to each named file.

-rSID The SCCS IDentification string (SID) of the version (delta) of
an SCCS file to be retrieved. Table™1 below shows, for the
most useful cases, what version of an SCCS file is retrieved
[as well as the SID of the version to be eventually created by
delta(1) if the -e keyletter is also used], as a function of the
SID specified.

~ccutoff Cutoff date-time, in the form:
YY[MM[DD[HH[MM][SS]]]]]

No changes (deltas) to the SCCS file which were created
after the specified cutoff date-time are included in the gen-
erated ASCII text file. Units omitted from the date-time
default to their maximum possible values; that is, -c7502 is
equivalent to -¢750228235959. Any number of non-numeric
characters may separate the various 2-digit pieces of the cut-
off date-time. This feature allows one to specify a cutoff
date in the form: "-c77/2/2 9:22:25". Note that this
implies that one may use the %E% and %U% identification
keywords (see below) for nested gets.

“iget "—c%E% %U%" s.file

GET(1)

~ilist

-xlist

-€

-1[p]

P

(Source Code Control System Utilities) GET(1)

A list of deltas to be included (forced to be applied) in the
creation of the generated file. The list has the following
syntax:

<list> = <range> | <list> , <range>
<range> ::= SID | SID - SID

SID, the SCCS Identification of a delta, may be in any form
shown in the “SID Specified” column of Table 1.

A list of deltas to be excluded in the creation of the gen-
erated file. See the -i keyletter for the list format.

Indicates that the get is for the purpose of editing or making
a change (delta) to the SCCS file via a subsequent use of
delta(1). The -e keyletter used in a get for a particular ver-
sion (SID) of the SCCS file prevents further gets for editing
on the same SID until delta is executed or the j (joint edit)
flag is set in the SCCS file [see admin(1)]. Concurrent use of
get —e for different SIDs is always allowed.

If the g-file generated by get with an -e keyletter is acciden-
tally ruined in the process of editing it, it may be regen-
erated by re-executing the get command with the -k
keyletter in place of the -e keyletter.

SCCS file protection specified via the ceiling, floor, and
authorized user list stored in the SCCS file [see admin(1)] are
enforced when the -e keyletter is used.

Used with the -e keyletter to indicate that the new delta
should have an SID in a new branch as shown in Table 1.
This keyletter is ignored if the b flag is not present in the
file [see admin(1)] or if the retrieved delta is not a leaf delta.
(A leaf delta is one that has no successors on the SCCS file
tree.)

Note: A branch delta may always be created from a non-leaf
delta. Partial SIDs are interpreted as shown in the “SID
Retrieved” column of Table 1.

Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The -k keyletter
is implied by the -e keyletter.

Causes a delta summary to be written into an I-file. If -lp
is used, then an I-file is not created; the delta summary is
written on the standard output instead. See FILES for the
format of the I-file.

Causes the text retrieved from the SCCS file to be written on
the standard output. No g-file is created. All output which
normally goes to the standard output goes to file descriptor
2 instead, unless the -s keyletter is used, in which case it
disappears.

GET(1)

-S

-m

-n

-8

-t
-W string

-aseq-no.

(Source Code Control System Utilities) GET(1)

Suppresses all output normally written on the standard out-
put. However, fatal error messages (which always go to file
descriptor 2) remain unaffected.

Causes each text line retrieved from the SCCS file to be pre-
ceded by the SID of the delta that inserted the text line in
the SCCS file. The format is: SID, followed by a horizontal
tab, followed by the text line.

Causes each generated text line to be preceded with the
%M% identification keyword value (see below). The format
is: %M% value, followed by a horizontal tab, followed by
the text line. When both the -m and -n keyletters are used,
the format is: %M% value, followed by a horizontal tab,
followed by the -m keyletter generated format.

Suppresses the actual retrieval of text from the SCCS file. It
is primarily used to generate an I-file, or to verify the
existence of a particular SID.

Used to access the most recently created delta in a given
release (e.g., -rl), or release and level (e.g., -r1.2).

Substitute string for all occurrences of %W% when getting
the file.

The delta sequence number of the SCCS file delta (version)
to be retrieved [see sccsfile(5)]. This keyletter is used by the
comb(1) command; it is not a generally useful keyletter. If
both the -r and -a keyletters are specified, only the -a
keyletter is used. Care should be taken when using the -a
keyletter in conjunction with the -e keyletter, as the SID of
the delta to be created may not be what one expects. The
-r keyletter can be used with the -a and -e keyletters to
control the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the SCCS file.

If the -e keyletter is used, the SID of the delta to be made appears after the
SID accessed and before the number of lines generated. If there is more
than one named file or if a directory or standard input is named, each file
name is printed (preceded by a new-line) before it is processed. If the -i
keyletter is used, included deltas are listed following the notation
“Included”; if the -x keyletter is used, excluded deltas are listed following
the notation “Excluded”.

GET(1) (Source Code Control System Utilities) GET(1)
TABLE 1. Determination of SCCS Identification String
SID* -b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created
nonez no R defaults to mR mR.mL mR.(mL+1)
nonej yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R.1***
R no R = mR mR.mL mR.(mL+1)
R yes R > mR mR.mL mR.mL.(mB+1).1
R yes R = mR mR.mL mR.mL.(mB+1).1
R < mR and .
R - R does rof exist hR.mL hR.mL.(mB+1).1
Trunk succ.#
R - in release > R R.mL R.mL.(mB+1).1
and R exists
R.L no No trunk succ. R.L R.(L+1)
R.L yes No trunk succ. R.L R.L.(mB+1).1
Trunk succ.
R.L - in release = R R.L R.L.(mB+1).1
R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+1)
R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1
R.L.B.S no No branch succ. R.L.B.S R.L.B.(5+1)
R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+1).1
R.L.B.S — Branch succ. R.L.B.S R.L.(mB+1).1
* “R”, “L"”, “B”, and ““S” are the “release’”, “level”, ““branch”, and
“sequence” components of the SID, respectively; “m” means “max-
imum”. Thus, for example, “R.mL” means “the maximum level
number within release R”; “R.L.(mB+1).1” means ‘“the first sequence
number on the new branch (i.e., maximum branch number plus one) of
level L within release R”. Note that if the SID specified is of the form
“R.L”, “R.L.B”, or “R.L.B.S”, each of the specified components must
exist.
** “hR” is the highest existing release that is lower than the specified,
nonexistent, release R.
*** This is used to force creation of the first delta in a new release.
Successor.
t The -b keyletter is effective only if the b flag [see admin(1)] is present
in the file. An entry of - means “irrelevant”.
¥ This case applies if the d (default SID) flag is not present in the file. If

the d flag is present in the file, then the SID obtained from the d flag is
interpreted as if it had been specified on the command line. Thus, one
of the other cases in this table applies.

GET(1) (Source Code Control System Utilities) GET(1)

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from the SCCS file
by replacing identification keywords with their value wherever they occur.
The following keywords may be used in the text stored in an SCCS file:

Keyword Value

%M% Module name: either the value of the m flag in the file [see
admin(1)], or if absent, the name of the SCCS file with the lead-
ing s. removed.

%I% SCCS identification (SID) (%R%.%L%.%B%.%S%) of the
retrieved text.

%R% Release.

%L% Level.

%B% Branch.

%S% Sequence.

%D% Current date (YY/MM/DD).

%H% Current date (MM/DD/YY).

%T% Current time (HH:MM:SS).

%E% Date newest applied delta was created (YY/MM/DD).

%G% Date newest applied delta was created (MM/DD/YY).

%U% Time newest applied delta was created (HH:MM:SS).

%Y% Module type: value of the t flag in the SCCS file [see admin(1)].
%F% SCCS file name.

%P% Fully qualified SCCS file name.

%Q% The value of the q flag in the file [see admin(1)].

%C% Current line number. This keyword is intended for identifying

messages output by the program such as “this should not have
happened” type errors. It is not intended to be used on every
line to provide sequence numbers.

%Z% The 4-character string (@(#) recognizable by what(1).

%W% A shorthand notation for constructing what(1) strings for UNIX
system program files. = %W% = %Z% %M%<horizontal-
tab>%]I1%

%A% Another shorthand notation for constructing what(1) strings for
non-UNIX system program files.

%A% = %Z%%Y% %M% %I1%%Z%

Several auxiliary files may be created by get. These files are known generi-
cally as the g-file, l-file, p-file, and z-file. The letter before the hyphen is
called the tag. An auxiliary file name is formed from the SCCS file name:
the last component of all SCCS file names must be of the form s.module-
name, the auxiliary files are named by replacing the leading s with the tag.
The g-file is an exception to this scheme: the g-file is named by removing
the s, prefix. For example, s.xyz.c, the auxiliary file names would be xyz.c,
Lxyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current direc-
tory (unless the -p keyletter is used). A g-file is created in all cases,
whether or not any lines of text were generated by the get.

GET(1)

(Source Code Control System Utilities) GET(1)

It is owned by the real user. If the -k keyletter is used or implied, its mode
is 644; otherwise its mode is 444. Only the real user need have write per-
mission in the current directory.

The I-file contains a table showing which deltas were applied in generating
the retrieved text. The I-file is created in the current directory if the -1
keyletter is used; its mode is 444 and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
* otherwise.
b. A Dblank character if the delta was applied or was not

applied and ignored;
* if the delta was not applied and was not ignored.
c. A code indicating a “special” reason why the delta was or
was not applied:
“1”: Included.
“X": Excluded.
“C”: Cut off (by a -c keyletter).
Blank.
SCCS identification (SID).
Tab character.
Date and time (in the form YY/MM/DD HH:MM:SS) of crea-
tion.
Blank.
Login name of person who created delta.

FE @ ee

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with a -e

- keyletter along to delta. Its contents are also used to prevent a subsequent

execution of get with a -e keyletter for the same SID until delta is executed
or the joint edit flag, j, [see admin(1)] is set in the SCCS file. The p-file is
created in the directory containing the SCCS file and the effective user must
have write permission in that directory. Its mode is 644 and it is owned by
the effective user. The format of the p-file is: the gotten SID, followed by a
blank, followed by the SID that the new delta will have when it is made,
followed by a blank, followed by the login name of the real user, followed
by a blank, followed by the date-time the get was executed, followed by a
blank and the -i keyletter argument if it was present, followed by a blank
and the -x keyletter argument if it was present, followed by a new-line.
There can be an arbitrary number of lines in the p-file at any time; no two
lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (i.e., get) that
created it. The z-file is created in the directory containing the SCCS file for
the duration of get. The same protection restrictions as those for the p-file
apply for the z-file. The z-file is created mode 444.

-6 -

GET(1)

FILES
g-file
p-file
q-file
x-file
z-file
d-file

/Jusr/bin/bdiff

SEE ALSO

(Source Code Control System Utilities) GET(1)

Existed before the execution of delta; removed after com-
pletion of delta.

Existed before the execution of delta; may exist after com-
pletion of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Created during the execution of delta; renamed to SCCS file
after completion of delta.

Created during the execution of delta; removed during the
execution of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Program to compute differences between the “gotten” file
and the g-file.

admin(1), delta(1), prs(1), what(1).
help(1) in the User’s Reference Manual.

DIAGNOSTICS

Use help(1) for explanations.

BUGS

If the effective user has write permission (either explicitly or implicitly) in
the directory containing the SCCS files, but the real user does not, then only
one file may be named when the -e keyletter is used.

1286EMUL(1) 1286EMUL(1)

NAME

i286emul - emulate 80286

SYNOPSIS

i286emul [arg ...] prog286

DESCRIPTION

FILES

BUGS

1286emul is an emulator that allows programs from UNIX System V Release
2 or Release 3 on the Intel 80286 to run on UNIX System V Release 3 on
the Intel 80386.

The UNIX system recognizes an attempt to exec(2) a 286 program, and
automatically exec’s the 286 emulator with the 286 program name as an
additional argument. It is not necessary to specify the i286emul emulator
on the command line. The 286 programs can be invoked using the same
command format as on the 286 UNIX System V.2 or V.3.

1286emul reads the 286 program’s text and data into memory and maps
them through the LDT [via sysi86(2)] as 286 text and data segments. It also
sets callgate 89 in the GDT (which is used by 286 programs for system
calls) to point to a routine in i286emul. 1286emul starts the 286 program by
jumping to its entry point.

When the 286 program attempts to do a system call, i286emul takes control.
It does any conversions needed between the 286 system call and the
equivalent 386 system call, and performs the 386 system call. The results
are converted to the form the 286 program expects, and the 286 program is
resumed.

The following are some of the differences between a program running on a
286 and a 286 program using i286emul on a 386:

A 286 program under i286emul always has 64k in the stack segment
if it is a large-model process, or 64k in the data segment if it is a
small-model process.

System calls and signal handling use more space on the stack under
i286emul than it does on a 286.

Attempts to unlink or write on the 286 program will fail on the 286
with ETXTBSY. Under i286emul, they will not fail.

Ptrace(2) is not supported under i286emul.
The 286 program must be readable for the emulator to read it.

/bin/i286emul
The emulator must have this name and be in /bin if it is to be
automatically invoked when exec(2) is used on a 286 program.

The signal mechanism under the emulator is the System V release 2 signal
mechanism rather than the System V release 3 mechanism.

INFOCMP(1M)

NAME

(Terminal Information Utilities) INFOCMP(1M)

infocmp - compare or print out terminfo descriptions

SYNOPSIS

infocmp [-d] [-d] [-n] [-1] [-L] [-C] [-1] [-u] [-s diillic] [-v] [-V] [-1] [-w
width] [-A directory] [-B directory] [termname ...]

DESCRIPTION

infocmp can be used to compare a binary terminfo(4) entry with other ter-
minfo entries, rewrite a terminfo(4) description to take advantage of the
use= terminfo field, or print out a terminfo(4) description from the binary
file (term(4)) in a variety of formats. In all cases, the boolean fields will be
printed first, followed by the numeric fields, followed by the string fields.

Default Options
If no options are specified and zero or one termnames are specified, the -I
option will be assumed. If more than one termname is specified, the -d
option will be assumed.

Comparison Options [-d] [-c] [-n]
infocmp compares the terminfo(4) description of the first terminal termname
with each of the descriptions given by the entries for the other terminal’s
termnames. If a capability is defined for only one of the terminals, the value
returned will depend on the type of the capability: F for boolean variables,
-1 for integer variables, and NULL for string variables.

-d

produce a list of each capability that is different. In this manner, if
one has two entries for the same terminal or similar terminals,
using infocmp will show what is different between the two entries.
This is sometimes necessary when more than one person produces
an entry for the same terminal and one wants to see what is dif-
ferent between the two.

produce a list of each capability that is common between the two
entries. Capabilities that are not set are ignored. This option can
be used as a quick check to see if the —u option is worth using.

produce a list of each capability that is in neither entry. If no term-
names are given, the environment variable TERM will be used for
both of the termnames. This can be used as a quick check to see if
anything was left out of the description.

Source Listing Options [-]] [-L] [-C] {-1]

The -I,
named.

-1

-C

-T

-L, and -C options will produce a source listing for each terminal

use the terminfo(4) names

use the long C variable name listed in <term.h>

use the termcap names

when using -C, put out all capabilities in termcap form

If no termnames are given, the environment variable TERM will be used for
the terminal name.

INFOCMP(1M) (Terminal Information Utilities) INFOCMP(1M)

The source produced by the -C option may be used directly as a termcap
entry, but not all of the parameterized strings may be changed to the
termcap format. infocmp will attempt to convert most of the parameterized
information, but that which it doesn’t will be plainly marked in the output
and commented out. These should be edited by hand.

All padding information for strings will be collected together and placed at
the beginning of the string where termcap expects it. Mandatory padding
(padding information with a trailing '/’) will become optional.

All termcap variables no longer supported by terminfo(4), but which are
derivable from other terminfo(4) variables, will be output. Not all ter-
minfo(4) capabilities will be translated; only those variables which were part
of termcap will normally be output. Specifying the -r option will take off
this restriction, allowing all capabilities to be output in termcap form.

Note that because padding is collected to the beginning of the capability,
not all capabilities are output, mandatory padding is not supported, and
termcap strings were not as flexible, it is not always possible to convert a
terminfo(4) string capability into an equivalent termcap format. Not all of
these strings will be able to be converted. A subsequent conversion of the
termcap file back into terminfo(4) format will not necessarily reproduce the
original terminfo(4) source.

Some common terminfo parameter sequences, their termcap equivalents, and
some terminal types which commonly have such sequences, are:

Terminfo Termcap Representative Terminals
%p1%c %. adm

%p1%d %d hp, ANSI standard, vt100
%p1%’x'%+%c %+x concept

%i %i ANSI standard, vt100
%p1%?%’'x’ %>%t%pl% 'y %+%; %>xy concept

%p? is printed before %pl %r hp

Use= Option [-u]

-u produce a terminfo(4) source description of the first terminal term-
name which is relative to the sum of the descriptions given by the
entries for the other terminals termnames. It does this by analyzing
the differences between the first termname and the other termnames
and producing a description with use= fields for the other termi-
nals. In this manner, it is possible to retrofit generic terminfo
entries into a terminal’s description. Or, if two similar terminals
exist, but were coded at different times or by different people so
that each description is a full description, using infocmp will show
what can be done to change one description to be relative to the
other.)

A capability will get printed with an at-sign (@) if it no longer exists in the

first termname, but one of the other termname entries contains a value for it.

A capability’s value gets printed if the value in the first termname is not

found in any of the other termname entries, or if the first of the other

-2-

INFOCMP(1M) (Terminal Information Utilities) INFOCMP(1M)

termname entries that has this capability gives a different value for the capa-
bility than that in the first termname.

The order of the other termname entries is significant. Since the terminfo
compiler tic(IM) does a left-to-right scan of the capabilities, specifying two
use= entries that contain differing entries for the same capabilities will pro-
duce different results depending on the order that the entries are given in.
infocmp will flag any such inconsistencies between the other termname
entries as they are found.

Alternatively, specifying a capability after a use= entry that contains that
capability will cause the second specification to be ignored. Using infocmp
to recreate a description can be a useful check to make sure that everything
was specified correctly in the original source description.

Another error that does not cause incorrect compiled files, but will slow
down the compilation time, is specifying extra use= fields that are superflu-
ous. infocmp will flag any other termname use= fields that were not

needed.

Other Options [-s dlillic] [-v] [-V] [-1] [-w width]

-s sort the fields within each type according to the argument below:

d leave fields in the order that they are stored in the terminfo
database.

i sort by terminfo name.

1 sort by the long C variable name.

c sort by the termcap name.

If no -s option is given, the fields printed out will be sorted alpha-

betically by the terminfo name within each type, except in the case

of the -C or the -L options, which cause the sorting to be done by

the termcap name or the long C variable name, respectively.

-v print out tracing information on standard error as the program
runs.

-V print out the version of the program in use on standard error and
exit.

-1 cause the fields to printed out one to a line. Otherwise, the fields
will be printed several to a line to a maximum width of 60 charac-
ters.

-w change the output to width characters.

Changing Databases [-A directory] [-B directory]
The location of the compiled terminfo(4) database is taken from the environ-
ment variable TERMINFO. If the variable is not defined, or the terminal is
not found in that location, the system terminfo(4) database, usually in
Jusr/lib/terminfo, will be used. The options -A and -B may be used to
override this location. The -A option will set TERMINFO for the first term-
name and the -B option will set TERMINFO for the other termnames. With
this, it is possible to compare descriptions for a terminal with the same
name located in two different databases. This is useful for comparing

-3-

INFOCMP(1M) (Terminal Information Utilities) INFOCMP(1M)

descriptions for the same terminal created by different people. Otherwise
the terminals would have to be named differently in the terminfo(4) data-
base for a comparison to be made.

FILES
/usr/lib/terminfo/?/* compiled terminal description database

DIAGNOSTICS
malloc is out of space!
There was not enough memory available to process all the
terminal descriptions requested. Run infocmp several
times, each time including a subset of the desired term-
names.

use= order dependency found:
A value specified in one relative terminal specification was
different from that in another relative terminal specifica-
tion.

‘use=term’ did not add anything to the description.
A relative terminal name did not contribute anything to
the final description.

must have at least two terminal names for a comparison to be done.
The -u, -d and -c options require at least two terminal

names.
SEE ALSO
tic(1M), curses(3X), term(4), terminfo(4) in the Programmer’s Reference
Manual.

captoinfo(1M) in the System Administrator’s Reference Manual.
Chapter 10 of the Programmer’s Guide.

NOTE
The termcap database (from earlier releases of UNIX System V) may not be
supplied in future releases.

INSTALL(1M) (Extended Software Generation System Utilities) INSTALL(1M)

NAME
install — install commands

SYNOPSIS
/etc/install [-c dira] [-f dirb] [-i] [-n dirc] [-m mode] [-u user] [-g
group] [-o0] [-s] file [dirx ...]

DESCRIPTION
The install command is most commonly used in “makefiles” [see make(1)]
to install a file (updated target file) in a specific place within a file system.
Each file is installed by copying it into the appropriate directory, thereby
retaining the mode and owner of the original command. The program
prints messages telling the user exactly what files it is replacing or creating
and where they are going.

If no options or directories (dirx ...) are given, install will search a set of
default directories (/bin, /usr/bin, /etc, /lib, and /usr/lib, in that order)
for a file with the same name as file. When the first occurrence is found,
install issues a message saying that it is overwriting that file with file, and
proceeds to do so. If the file is not found, the program states this and exits
without further action.

If one or more directories (dirx ...) are specified after file, those directories
will be searched before the directories specified in the default list.

The meanings of the options are:

-c dira Installs a new command (file) in the directory speci-
fied by dira, only if it is not found. If it is found,
install issues a message saying that the file already
exists, and exits without overwriting it. May be used
alone or with the -s option.

-f dirb Forces file to be installed in given directory, whether
or not one already exists. If the file being installed
does not already exist, the mode and owner of the
new file will be set to 755 and bin, respectively. If
the file already exists, the mode and owner will be
that of the already existing file. May be used alone or
with the -0 or -s options.

-i Ignores default directory list, searching only through
the given directories (dirx ...). May be used alone or
with any other options except ~¢ and -f.

-n dirc If file is not found in any of the searched directories,
it is put in the directory specified in dirc. The mode
and owner of the new file will be set to 755 and bin,
respectively. May be used alone or with any other
options except -¢ and ~f.

~m mode The mode of the new file is set to mode. Only avail-
able to the superuser.

-u user The owner of the new file is set to user. Only avail-
able to the superuser.

-1 -

INSTALL(1M) (Extended Software Generation System Utilities) INSTALL(1M)

-g group The group id of the new file is set to group. Only
available to the superuser.

-0 If file is found, this option saves the “found” file by
copying it to OLDfile in the directory in which it was
found. This option is useful when installing a fre-
quently used file such as /bin/sh or /etc/getty, where
the existing file cannot be removed. May be used
alone or with any other options except —c.

-s Suppresses printing of messages other than error mes-
sages. May be used alone or with any other options.

SEE ALSO
make(1).

LD(1) (Software Generation System Utilities) LD(1)

NAME
1d - link editor for common object files

SYNOPSIS
1d [options] file name

DESCRIPTION

The Id command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for sym-
bolic debugging. In the simplest case, the names of several object programs
are given, and ld combines the objects, producing an object module that can
either be executed or, if the -r option is specified, used as input for a subse-
quent Id run. The output of Id is left in a.out. By default this file is execut-
able if no errors occurred during the load. If any input file, filename, is not
an object file, Id assumes it is either an archive library or a text file contain-
ing link editor directives. [See Link Editor Directives in the UNIX System V
Programmer’s Guide for a discussion of input directives.]

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. The library may be either a relocatable
archive library or a shared library. [See Shared Libraries in the UNIX System
V Programmer’s Guide for a discussion of shared libraries.] Only those rou-
tines defining an unresolved external reference are loaded. The library
(archive) symbol table [see ar(4)] is searched sequentially with as many
passes as are necessary to resolve external references which can be satisfied
by library members. Thus, the ordering of library members is functionally
unimportant, unless there exist multiple library members defining the same
external symbol.

The following options are recognized by Id:

-e epsym
Set the default entry point address for the output file to be that of
the symbol epsym.

-f fill Set the default fill pattern for “holes” within an output section as
well as initialized bss sections. The argument fill is a two-byte con-
stant.

-kx (80286 only) Set the allocated stack area to x, where x is the number
of bytes you wish to allocate for the stack. The value entered will
be rounded up to a multiple of 512 bytes.

-Ix Search a library libx.a, where x is up to nine characters. A library is
searched when its name is encountered, so the placement of a -1 is
significant. By default, libraries are located in LIBDIR or LLIBDIR.

-m Produce a map or listing of the input/output sections on the stand-
ard output.
-0 outfile

Produce an output object file by the name outfile. The name of the
default object file is a.out.

-r Retain relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a

-1-

LD(1)

-a

-t

(Software Generation System Utilities) LD(1)

subsequent Id run. The link editor will not complain about
unresolved references, and the output file will not be executable.

Create an absolute file. This is the default if the -r option is not
used. Used with the -r option, -a allocates memory for common
symbols.

Strip line number entries and symbol table information from the
output object file.

Turn off the warning about multiply-defined symbols that are not
the same size.

-u symnar+e

-X

Enter symname as an undefined symbol in the symbol table. This is
useful for loading entirely from a library, since initially the symbol
table is empty and an unresolved reference is needed to force the
loading of the first routine. The placement of this option on the Id
line is significant; it must be placed before the library which will
define the symbol.

Do not preserve local symbols in the output symbol table; enter
external and static symbols only. This option saves some space in
the output file.

Do not bind anything to address zero. This option will allow run-
time detection of null pointers.

Change the algorithm of searching for libx.a to look in dir before
looking in LIBDIR and LLIBDIR. This option is effective only if it
precedes the -1 option on the command line.

Output a message for each multiply-defined external definition.

Put the text section at the beginning of the text segment rather than
after all header information, and put the data section immediately
following text in the core image.

(80286 only) Real address mode linkage.

Output a message giving information about the version of 1d being
used.

-VS num

Use num as a decimal version stamp identifying the a.out file that is
produced. The version stamp is stored in the optional header.

-Y[LU],dir

Change the default directory used for finding libraries. If L is speci-
fied the first default directory which Id searches, LIBDIR, is replaced
by dir. If U is specified and 1d has been built with a second default
directory, LLIBDIR, then that directory is replaced by dir. If 1d was
built with only one default directory and U is specified a warning is
printed and the option is ignored.

LD(1) (Software Generation System Utilities) LD(1)
FILES
LIBDIR /libx.a libraries
LLIBDIR/libx.a libraries
a.out output file
LIBDIR usually /lib
LLIBDIR usually /usr/lib
/lib/<model> /libx.a libraries (80286 only)
Just/lib/<model> /libx.a libraries (80286 only)
where "<model>" is either small or large.
SEE ALSO
as(1), cc(1), mkshlib(1), exit(2), end(3C), a.out(4), ar(4), and Link Editor
Directives and Shared Libraries in the Programmer’s Guide.
CAVEATS

Through its options and input directives, the common link editor gives users
great flexibility; however, those who use the input directives must assume
some added responsibilities. Input directives and options should insure the
following properties for programs:

— C defines a zero pointer as null. A pointer to which zero has been
assigned must not point to any object. To satisfy this, users must not
place any object at virtual address zero in the program’s address space.

- When the link editor is called through cc(1), a startup routine is linked
with the user’s program. This routine calls exit() [see exit(2)] after exe-
cution of the main program. If the user calls the link editor directly,
then the user must insure that the program always calls exit() rather
than falling through the end of the entry routine.

The symbols etext, edata, and end [see end(3C)| are reserved and are defined
by the link editor. It is incorrect for a user program to redefine them.

If the link editor does not recognize an input file as an object file or an
archive file, it will assume that it contains link editor directives and will
attempt to parse it. This will occasionally produce an error message com-
plaining about "syntax errors".

Arithmetic expressions may only have one forward referenced symbol per
expression.

LEX(1) (Extended Software Generation System Utilities) LEX(1)

NAME
lex — generate programs for simple lexical tasks

SYNOPSIS
lex [-rctvn][file] ...

DESCRIPTION
The lex command generates programs to be used in simple lexical analysis
of text.

The input files (standard input default) contain strings and expressions to be
searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the
input to the output except when a string specified in the file is found; then
the corresponding program text is executed. The actual string matched is
left in yytext, an external character array. Matching is done in order of the
strings in the file. The strings may contain square brackets to indicate char-
acter classes, as in [abx-z] to indicate a, b, x, y, and z; and the operators *,
+, and ? mean respectively any non-negative number of, any positive
number of, and either zero or one occurrence of, the previous character or
character class. The character . is the class of all ASCII characters except
new-line. Parentheses for grouping and vertical bar for alternation are also
supported. The notation r{d,e} in a rule indicates between d and e
instances of regular expression r. It has higher precedence than i, but lower
than #, ?, +, and concatenation. Thus [a-zA-Z]+ matches a string of
letters. The character at the beginning of an expression permits a success-
ful match only immediately after a new-line, and the character $ at the end
of an expression requires a trailing new-line. The character / in an expres-
sion indicates trailing context; only the part of the expression up to the slash
is returned in yytext, but the remainder of the expression must follow in the
input stream. An operator character may be used as an ordinary symbol if
it is within " symbols or preceded by \.

Three subroutines defined as macros are expected: input() to read a charac-
ter; unput(c) to replace a character read; and output(c) to place an output
character. They are defined in terms of the standard streams, but you can
override them. The program generated is named yylex(), and the library
contains a main() which calls it. The action REJECT on the right side of the
rule causes this match to be rejected and the next suitable match executed;
the function yymore() accumulates additional characters into the same
yytext; and the function yyless(p) pushes back the portion of the string
matched beginning at p, which should be between yytext and
yytext+yyleng. The macros input and output use files yyin and yyout to
read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes %%, it is copied into the external definition area of the
lex.yy.c file. All rules should follow a %%, as in YACC. Lines preceding
%% which begin with a non-blank character define the string on the left to
be the remainder of the line; it can be called out later by surrounding it with
{}. Note that curly brackets do not imply parentheses; only string substitu-
tion is done.

LEX(1) (Extended Software Generation System Utilities) LEX(1)

EXAMPLE
D [0-9]
% %
if printf("IF statement\n");

[a—z]+ printf("tag, value %s\n" yytext);
0{D}+ printf("octal number %s\n", yytext);
{D}+ printf(" decimal number %s\n",yytext);
"++" printf("unary op\n");

nygm printf("binary op\n");

WAL skipcommnts();
% %
skipcommnts()

for (;;)

{

while (input() != '#)

if (input() '="/")
unput(yytext[yyleng-1]);
else
return;

}
}

The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files. The flag -r indicates RATFOR
actions, -c¢ indicates C actions and is the default, <t causes the lex.yy.c pro-
gram to be written instead to standard output, ~v provides a one-line sum-
mary of statistics, -n will not print out the -v summary. Multiple files are
treated as a single file. If no files are specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:

%p n number of positions is n (default 2500)

%n n number of states is n (500)

%e n number of parse tree nodes is n (1000)

%a n number of transitions is n (2000)

%k n number of packed character classes is n (1000)
%o n size of output array is n (3000)

The use of one or more of the above automatically implies the -v option,
unless the -n option is used.
SEE ALSO
yacc(1).
Programmer’s Guide.

BUGS
The -r option is not yet fully operational.

-2

LINT(1) (Advanced C Utilities) LINT(1)

NAME

lint — a C program checker
SYNOPSIS

lint [option] ... file ...
DESCRIPTION

The lint command attempts to detect features of the C program files that are
likely to be bugs, non-portable, or wasteful. It also checks type usage more
strictly than the compilers. Among the things that are currently detected
are unreachable statements, loops not entered at the top, automatic vari-
ables declared and not used, and logical expressions whose value is con-
stant. Moreover, the usage of functions is checked to find functions that
return values in some places and not in others, functions called with vary-
ing numbers or types of arguments, and functions whose values are not
used or whose values are used but none returned.

Arguments whose names end with .c are taken to be C source files. Argu-
ments whose names end with .In are taken to be the result of an earlier
invocation of lint with either the -c or the -0 option used. The .In files are
analogous to .0 (object) files that are produced by the cc(1) command when
given a .c file as input. Files with other suffixes are warned about and
ignored.

The lint command will take all the .c, .In, and llib-lx.In (specified by -Ix)
files and process them in their command line order. By default, lint
appends the standard C lint library (1lib-lc.In) to the end of the list of files.
However, if the -p option is used, the portable C lint library (llib-port.In) is
appended instead. When the ~-c option is not used, the second pass of lint
checks this list of files for mutual compatibility. When the -c option is
used, the .In and the llib-1x.In files are ignored.

Any number of lint options may be used, in any order, intermixed with
file-name arguments. The following options are used to suppress certain
kinds of complaints:

-a Suppress complaints about assignments of long values to variables
that are not long.

-b Suppress complaints about break statements that cannot be reached.
(Programs produced by lex or yacc will often result in many such
complaints.)

~h Do not apply heuristic tests that attempt to intuit bugs, improve
style, and reduce waste. .

-u Suppress complaints about functions and external variables used
and not defined, or defined and not used. (This option is suitable
for running lint on a subset of files of a larger program.)

-v Suppress complaints about unused arguments in functions.

-X Do not report variables referred to by external declarations but
never used.

LINT(1)

(Advanced C Utilities) LINT(1)

The following arguments alter lint’s behavior:

-Ix

-C

-0 lib

Include additional lint library llib-lx.In. For example, you can
include a lint version of the math library 1lib-Im.In by inserting -lm
on the command line. This argument does not suppress the default
use of 1lib-lc.In. These lint libraries must be in the assumed direc-
tory. This option can be used to reference local lint libraries and is
useful in the development of multifile projects.

Do not check compatibility against either the standard or the port-
able lint library.

Attempt to check portability to other dialects (IBM and GCOS) of C.
Along with stricter checking, this option causes all non-external
names to be truncated to eight characters and all external names to
be truncated to six characters and one case.

Cause lint to produce a .In file for every .c file on the command
line. These .In files are the product of lint’s first pass only, and are
not checked for inter-function compatibility.

Cause lint to create a lint library with the name llib-llib.In. The -c
option nullifies any use of the -0 option. The lint library produced
is the input that is given to lint’s second pass. The -0 option sim-
ply causes this file to be saved in the named lint library. To pro-
duce a llib-llib.In without extraneous messages, use of the -x
option is suggested. The -~v option is useful if the source file(s) for
the lint library are just external interfaces (for example, the way the
file 1lib-1c is written). These option settings are also available
through the use of “lint comments” (see below).

The -D, -U, and -1 options of cpp(1) and the -g and -O options of cc(1) are
also recognized as separate arguments. The -g and -O options are ignored,
but, by recognizing these options, lint’s behavior is closer to that of the
cc(1) command. Other options are warned about and ignored. The prepro-
cessor symbol “lint” is defined to allow certain questionable code to be
altered or removed for lint. Therefore, the symbol “lint” should be thought
of as a reserved word for all code that is planned to be checked by lint.

Certain conventional comments in the C source will change the behavior of

lint:

/*NOTREACHED*/
at appropriate points stops comments about unreachable
code. [This comment is typically placed just after calls to
functions like exit(2)].

/*VARARGSn*/
suppresses the usual checking for variable numbers of argu-
ments in the following function declaration. The data types
of the first n arguments are checked; a missing n is taken to
be 0.

/*ARGSUSED*/
turns on the -v option for the next function.

-2-

LINT(1) (Advanced C Utilities) LINT(1)

/*LINTLIBRARY#*/
at the beginning of a file shuts off complaints about unused
functions and function arguments in this file. This is
equivalent to using the -v and -x options.

The lint command produces its first output on a per-source-file basis. Com-
plaints regarding included files are collected and printed after all source files
have been processed. Finally, if the -¢ option is not used, information gath-
ered from all input files is collected and checked for consistency. At this
point, if it is not clear whether a complaint stems from a given source file or
from one of its included files, the source file name will be printed followed
by a question mark.

The behavior of the —c¢ and the -0 options allows for incremental use of lint
on a set of C source files. Generally, one invokes lint once for each source
file with the -c option. Each of these invocations produces a .In file which
corresponds to the .c file, and prints all messages that are about just that
source file. After all the source files have been separately run through lint,
it is invoked once more (without the -c option), listing all the .In files with
the needed -1x options. This will print all the interfile inconsistencies. This
scheme works well with make(1); it allows make to be used to lint only the
source files that have been modified since the last time the set of source
files were linted.

FILES
LLIBDIR the directory where the lint libraries specified by the
-lx option must exist, usually /usr/lib
LLIBDIR/lint[12] first and second passes
LLIBDIR /1lib-lc.In declarations for C Library functions (binary format;
source is in LLIBDIR/llib-Ic)
LLIBDIR/llib-port.In declarations for portable functions (binary format;
source is in LLIBDIR/llib-port)
LLIBDIR/Nlib-Im.In declarations for Math Library functions (binary for-
mat; source is in LLIBDIR /1lib-1Im)
TMPDIR /+lint* temporaries
TMPDIR usually /usr/tmp but can be redefined by setting the
environment variable TMPDIR [see tempnam() in
tmpnam(3S)).
SEE ALSO
cc(1), cpp(1), make(1).
BUGS

exit(2), setjmp(3C), and other functions that do not return are not under-
stood; this causes various lies.

LIST(1) (C Programming Language Utilities) LIST(1)

NAME

list — produce C source listing from a common object file
SYNOPSIS

list [-V] [-h] [-F function] source-file . . . [object-file]
DESCRIPTION

The list command produces a C source listing with line number information
attached. If multiple C source files were used to create the object file, list
will accept multiple file names. The object file is taken to be the last non-C
source file argument. If no object file is specified, the default object file,
a.out, will be used.

Line numbers will be printed for each line marked as breakpoint inserted by
the compiler (generally, each executable C statement that begins a new line
of source). Line numbering begins anew for each function. Line number 1
is always the line containing the left curly brace ({) that begins the function
body. Line numbers will also be supplied for inner block redeclarations of
local variables so that they can be distinguished by the symbolic debugger.

The following options are interpreted by list and may be given in any order:

-V Print, on standard error, the version number of the list com-
mand executing.

-h Suppress heading output.

~Ffunction List only the named function. The -F option may be specified
multiple times on the command line.

SEE ALSO
as(1), cc(1), 1d(1).

CAVEATS
Object files given to list must have been compiled with the -g option of
cc(1).

Since list does not use the C preprocessor, it may be unable to recognize
function definitions whose syntax has been distorted by the use of C
preprocessor macro substitutions.

DIAGNOSTICS

The list command will produce the error message “list: name: cannot open”
if name cannot be read. If the source file names do not end in .c , the mes-
sage is “list: name: invalid C source name”. An invalid object file will
cause the message “list: name: bad magic” to be produced. If some or all of
the symbolic debugging information is missing, one of the following mes-
sages will be printed: “listt name: symbols have been stripped, cannot
proceed”, “list: name: cannot read line numbers”, and “list: name: not in
symbol table”. The following messages are produced when list has become
confused by #ifdef’s in the source file: “list: name: cannot find function in
symbol table”, “list: name: out of sync: too many }”, and “list: name: unex-
pected end-of-file”. The error message “list: name: missing or inappropriate
line numbers” means that either symbol debugging information is missing,
or list has been confused by C preprocessor statements.

LORDER(1) (Software Generation System Utilities) LORDER(1)

NAME

lorder — find ordering relation for an object library

SYNOPSIS

lorder file ...

DESCRIPTION

The input is one or more object or library archive files [see ar(1)]. The
standard output is a list of pairs of object file or archive member names,
meaning that the first file of the pair refers to external identifiers defined in
the second. The output may be processed by tsort(1) to find an ordering of
a library suitable for one-pass access by ld(1). Note that the link editor
1d(1) is capable of multiple passes over an archive in the portable archive
format [see ar(4)] and does not require that lorder(1) be used when building
an archive. The usage of the lorder(1) command may, however, allow for a
slightly more efficient access of the archive during the link edit process.

The following example builds a new library from existing .o files.
ar —cr library ‘lorder *.0 | tsort'

FILES
TMPDIR /*symref temporary files
TMPDIR /*symdef temporary files
TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].
SEE ALSO
ar(1), 1d(1), tsort(1), ar(4).
CAVEAT

The lorder command will accept as input any object or archive file, regard-
less of its suffix, provided there is more than one input file. If there is but a
single input file, its suffix must be .0.

M4(1)

NAME

(Software Generation System Utilities) M4(1)

m4 — macro processor

SYNOPSIS

m4 [options] [files]

DESCRIPTION

The m4 command is a macro processor intended as a front end for Ratfor,
C, and other languages. Each of the argument files is processed in order; if
there are no files, or if a file name is -, the standard input is read. The pro-
cessed text is written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is
unbuffered.
-s Enable line sync output for the C preprocessor (#line ...)

-Bint Change the size of the push-back and argument collection buffers
from the default of 4,096.

-Hint Change the size of the symbol table hash array from the default of
199. The size should be prime.

-Sint Change the size of the call stack from the default of 100 slots.
Macros take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before
any -D or -U flags:
-Dname[=val]

Defines name to val or to null in val’s absence.

-Uname
Undefines name.

Macro calls have the form:
name(argl,arg2, ..., argn)

The (must immediately follow the name of the macro. If the name of a
defined macro is not followed by a (, it is deemed to be a call of that macro
with no arguments. Potential macro names consist of alphabetic letters,
digits, and underscore _, where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting
arguments. Left and right single quotes are used to quote strings. The
value of a quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching
for a matching right parenthesis. If fewer arguments are supplied than are
in the macro definition, the trailing arguments are taken to be null. Macro
evaluation proceeds normally during the collection of the arguments, and
any commas or right parentheses which happen to turn up within the value
of a nested call are as effective as those in the original input text. After
argument collection, the value of the macro is pushed back onto the input
stream and rescanned.

M4(1)

(Software Generation System Utilities) M4(1)

The m4 command makes available the following built-in macros. They may
be redefined, but once this is done, the original meaning is lost. Their
values are null unless otherwise stated.

define

undefine
defn

pushdef
popdef

ifdef

shift

changequote

changecom

divert

undivert

the second argument is installed as the value of the macro
whose name is the first argument. Each occurrence of $n in
the replacement text, where n is a digit, is replaced by the n-
th argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string; $# is replaced by
the number of arguments; $* is replaced by a list of all the
arguments separated by commas; $@ is like $*, but each
argument is quoted (with the current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful
for renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the
previous one, if any.

if the first argument is defined, the value is the second argu-
ment, otherwise the third. If there is no third argument, the
value is null. The word unix is predefined on UNIX system
versions of m4.

returns all but its first argument. The other arguments are
quoted and pushed back with commas in between. The quot-
ing nullifies the effect of the extra scan that will subsequently
be performed.

change quote symbols to the first and second arguments. The
symbols may be up to five characters long. Changequote
without arguments restores the original values (i.e., ‘’).

change left and right comment markers from the default #
and new-line. With no arguments, the comment mechanism
is effectively disabled. With one argument, the left marker
becomes the argument and the right marker becomes new-
line. With two arguments, both markers are affected. Com-
ment markers may be up to five characters long.

m4 maintains 10 output streams, numbered 0-9. The final
output is the concatenation of the streams in numerical order;
initially stream 0 is the current stream. The divert macro
changes the current output stream to its (digit-string) argu-
ment. Output diverted to a stream other than 0 through 9 is
discarded.

causes immediate output of text from diversions named as
arguments, or all diversions if no argument. Text may be
undiverted into another diversion. Undiverting discards the
diverted text.

M4(1)

divnum
dnl

ifelse

incr

decr

eval

len

index

substr

translit
include
sinclude
sysemd

sysval
maketemp

m4exit

(Software Generation System Utilities) M4(1)

returns the value of the current output stream.

reads and discards characters up to and including the next
new-line.

has three or more arguments. If the first argument is the
same string as the second, then the value is the third argu-
ment. If not, and if there are more than four arguments, the
process is repeated with arguments 4, 5, 6, and 7. Otherwise,
the value is either the fourth string, or, if it is not present,
null.

returns the value of its argument incremented by 1. The
value of the argument is calculated by interpreting an initial
digit-string as a decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using 32-
bit arithmetic. Operators include +, -, *, /, %, (exponentia-
tion), bitwise &, |, ", and ~; relationals; parentheses. Octal
and hex numbers may be specified as in C. The second argu-
ment specifies the radix for the result; the default is 10. The
third argument may be used to specify the minimum number
of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second
argument begins (zero origin), or -1 if the second argument
does not occur.

returns a substring of its first argument. The second argu-
ment is a zero origin number selecting the first character; the
third argument indicates the length of the substring. A miss-
ing third argument is taken to be large enough to extend to
the end of the first string.

transliterates the characters in its first argument from the set
given by the second argument to the set given by the third.
No abbreviations are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is
inaccessible.

executes the UNIX system command given in the first argu-
ment. No value is returned.

is the return code from the last call to syscmd.

fills in a string of XXXXX in its argument with the current pro-
cess ID.

causes immediate exit from m4. Argument 1, if given, is the
exit code; the default is 0.

M4(1) (Software Generation System Utilities M4(1
Yy

mdwrap argument 1 will be pushed back at final EOF; example:
m4éwrap(‘cleanup()’)

errprint prints its argument on the diagnostic output file.

dumpdef prints current names and definitions, for the named items, or

for all if no arguments are given.

traceon with no arguments, turns on tracing for all macros (including
built-ins). Otherwise, turns on tracing for named macros.

traceoff turns off trace globally and for any macros specified. Macros

specifically traced by traceon can be untraced only by specific
calls to traceoff.

SEE ALSO

cc(1), cpp(1).
The m4 Macro Processor in the Support Tools Guide.

MAKE(1)

NAME

(Extended Software Generation System Utilities) MAKE(1)

make — maintain, update, and regenerate groups of programs

SYNOPSIS

make [-f makefile] [-p] [-i] [-k] [-s] [-1] [-n] [-b] [-e] [-u] [-1] [-q]

[names]
DESCRIPTION

The make command allows the programmer to maintain, update, and regen-
erate groups of computer programs. The following is a brief description of
all options and some special names:

~f makefile
P

-i

&
-S
-r
-n

-b
-e
-u
~-t

-q

.DEFAULT

PRECIOUS

SILENT
IGNORE

Description file name. makefile is assumed to be the name of a
description file.

Print out the complete set of macro definitions and target
descriptions.

Ignore error codes returned by invoked commands. This mode
is entered if the fake target name .IGNORE appears in the
description file.

Abandon work on the current entry if it fails, but continue on
other branches that do not depend on that entry.

Silent mode. Do not print command lines before executing.
This mode is also entered if the fake target name .SILENT
appears in the description file.

Do not use the built-in rules.

No execute mode. Print commands, but do not execute them.
Even lines beginning with an @ are printed.

Compatibility mode for old makefiles.
Environment variables override assignments within makefiles.
Force an unconditional update.

Touch the target files (causing them to be up-to-date) rather
than issue the usual commands.

Question. The make command returns a zero or non-zero
status code depending on whether the target file is or is not
up-to-date.

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists.

Dependents of this target will not be removed when quit or
interrupt are hit.

Same effect as the -s option.
Same effect as the -i option.

The make command executes commands in makefile to update one or more
target names. Name is typically a program. If no -f option is present,
makefile, Makefile, and the Source Code Control System(SCCS) files

-1-

MAKE(1) (Extended Software Generation System Utilities) MAKE(1)

s.makefile, and s.Makefile are tried in order. If makefile is -, the standard
input is taken. More than one - makefile argument pair may appear.

The make command updates a target only if its dependents are newer than
the target (unless the -u option is used to force an unconditional update).
All prerequisite files of a target are added recursively to the list of targets.
Missing files are deemed to be out-of-date.

The makefile file contains a sequence of entries that specify dependencies.
The first line of an entry is a blank-separated, non-null list of targets, then a
:, then a (possibly null) list of prerequisite files or dependencies. Text fol-
lowing a ; and all following lines that begin with a tab are shell commands
to be executed to update the target. The first non-empty line that does not
begin with a tab or # begins a new dependency or macro definition. Shell
commands may be continued across lines with the <backslash><new-line>
sequence. Everything printed by make (except the initial tab) is passed
directly to the shell as is. Thus,

echo a\
b

will produce
ab
exactly the same as the shell would.
Sharp (#) and new-line surround comments.

The following makefile says that pgm depends on two files a.0 and b.o, and
that they in turn depend on their corresponding source files (a.c and b.c)
and a common file incl.h:

pgm: a.0 b.o
cc a.0 b.o -0 pgm

a.o: incl.h a.c

cCc —-C a.c
b.o: incl.h b.c
cc — b.c

Command lines are executed one at a time, each by its own shell. The
SHELL environment variable can be used to specify which shell make should
use to execute commands. The default is /bin/sh. The first one or two
characters in a command can be the following: -, @, -@, or @-. If @ is
present, printing of the command is suppressed. If - is present, make
ignores an error. A line is printed when it is executed unless the -s option
is present, or the entry .SILENT: is in makefile, or unless the initial character
sequence contains a @. The -n option specifies printing without execution;
however, if the command line has the string $(MAKE) in it, the line is
always executed (see discussion of the MAKEFLAGS macro under Environ-
ment). The -t (touch) option updates the modified date of a file without
executing any commands.

Commands returning non-zero status normally terminate make. If the -i
option is present, or the entry .IGNORE: appears in makefile, or the initial
character sequence of the command contains -. the error is ignored. If the

2.

MAKE(1) (Extended Software Generation System Utilities) MAKE(1)

-k option is present, work is abandoned on the current entry, but continues
on other branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old version of
make) to run without errors.

Interrupt and quit cause the target to be deleted unless the target is a depen-
dent of the special name .PRECIOUS.

Environment

The environment is read by make. All variables are assumed to be macro
definitions and processed as such. The environment variables are processed
before any makefile and after the internal rules; thus, macro assignments in
a makefile override environment variables. The -e option causes the
environment to override the macro assignments in a makefile. Suffixes and
their associated rules in the makefile will override any identical suffixes in
the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing
any legal input option (except -f and -p) defined for the command line.
Further, upon invocation, make “invents” the variable if it is not in the
environment, puts the current options into it, and passes it on to invocations
of commands. Thus, MAKEFLAGS always contains the current input
options. This proves very useful for “super-makes”. In fact, as noted
above, when the -n option is used, the command $(MAKE) is executed any-
way; hence, one can perform a make -n recursively on a whole software
system to see what would have been executed. This is because the -n is
put in MAKEFLAGS and passed to further invocations of $(MAKE). This is
one way of debugging all of the makefiles for a software project without
actually doing anything.

Include Files
If the string include appears as the first seven letters of a line in a makefile,
and is followed by a blank or a tab, the rest of the line is assumed to be a
file name and will be read by the current invocation, after substituting for
any macros.

Macros

Entries of the form stringl = string2 are macro definitions. String2 is
defined as all characters up to a comment character or an unescaped new-
line. Subsequent appearances of $(stringl[:substl1=[subst2]]) are replaced by
string2. The parentheses are optional if a single character macro name is
used and there is no substitute sequence. The optional :substl=subst2 is a
substitute sequence. If it is specified, all non-overlapping occurrences of
substl in the named macro are replaced by subst2. Strings (for the purposes
of this type of substitution) are delimited by blanks, tabs, new-line charac-
ters, and beginnings of lines. An example of the use of the substitute
sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros which are useful for writing
rules for building targets.

MAKE(1) (Extended Software Generation System Utilities) MAKE(1)

$+ The macro $* stands for the file name part of the current dependent
with the suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It
is evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT
rule. It is the module which is out-of-date with respect to the target
(i.e., the “manufactured” dependent file name). Thus, in the .c.o rule,
the $< macro would evaluate to the .c file. An example for making
optimized .o files from .c files is:

.C.O:
cc —¢ -0 $*.c

or:

.C.0:
cc —c -0 $<

$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are out-of-date with
respect to the target; essentially, those modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an archive library
member of the form lib(file.0). In this case, $@ evaluates to lib and
$% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an uppercase D
or F is appended to any of the four macros, the meaning is changed to
“directory part” for D and ‘““file part” for F. Thus, $(@D) refers to the
directory part of the string $@. If there is no directory part, ./ is generated.
The only macro excluded from this alternative form is $2.

Suffixes
Certain names (for instance, those ending with .0) have inferable prere-
quisites such as .c, .s, etc. If no update commands for such a file appear in
makefile, and if an inferable prerequisite exists, that prerequisite is compiled
to make the target. In this case, make has inference rules which allow
building files from other files by examining the suffixes and determining an
appropriate inference rule to use. The current default inference rules are:

.« . f f .sh .sh”

.c0 .ca .c.o .c.c c".a

fo fa fo ff fa

.h"h s.0 570 s"s s7.a sh™sh

Lo lc I'o I'l I'c

.y.o .yc .y.0.yy .y.c
The internal rules for make are contained in the source file rules.c for the
make program. These rules can be locally modified. To print out the rules
compiled into the make on any machine in a form suitable for recompila-
tion, the following command is used:

make —fp - 2>/dev/null </dev/null

MAKE(1) (Extended Software Generation System Utilities) MAKE(1)

A tilde in the above rules refers to an SCCS file [see sccsfile(4)]. Thus, the
rule .c”.0 would transform an SCCS C source file into an object file (.0).
Because the s. of the SCCS files is a prefix, it is incompatible with make’s
suffix point of view. Hence, the tilde is a way of changing any file refer-
ence into an SCCS file reference.

A rule with only one suffix (i.e., .c:) is the definition of how to build x from
x.c. In effect, the other suffix is null. This is useful for building targets
from only one source file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is
inferred as a prerequisite. The default list is:

.SUFFIXES: .0 .c . .y .y~ 1.1 .s 5" .sh sh™ .h .h™ f f

Here again, the above command for printing the internal rules will display
the list of suffixes implemented on the current machine. Multiple suffix lists
accumulate; .SUFFIXES: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.o b.o
cc a.0 b.o —o pgm
a.0 b.o: incLh

This is because make has a set of internal rules for building files. The user
may add rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclu-
sion of optional matter in any resulting commands. For example, CFLAGS,
LFLAGS, and YFLAGS are used for compiler options to cc(1), lex(1), and
yacc(1), respectively. Again, the previous method for examining the current
rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file
with suffix .0 from a file with suffix .c is specified as an entry with .c.0: as
the target and no dependents. Shell commands associated with the target
define the rule for making a .o file from a .c file. Any target that has no
slashes in it and starts with a dot is identified as a rule and not a true target.

Libraries
If a target or dependency name contains parentheses, it is assumed to be an
archive library, the string within parentheses referring to a member within
the library. Thus lib(file.o) and $(LIB)(file.o) both refer to an archive library
which contains file.o. (This assumes the LIB macro has been previously
defined.) The expression $(LIB)(filel.o file2.0) is not legal. Rules pertaining
to archive libraries have the form .XX.a where the XX is the suffix from
which the archive member is to be made. An unfortunate byproduct of the
current implementation requires the XX to be different from the suffix of the

MAKE(1) (Extended Software Generation System Ultilities) MAKE(1)

archive member. Thus, one cannot have lib(file.o) depend upon file.o
explicitly. The most common use of the archive interface follows. Here, we
assume the source files are all C type source:
lib: lib(filel.0) lib(file2.0) lib(file3.0)
@echo lib is now up-to-date
.ca:
$(CC) —c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.0
rm —f $*.0
In fact, the .c.a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive
library maintenance construction follows:
lib: lib(file1.0) lib(file2.0) lib(file3.0)
$(CC) —c $(CFLAGS) $(?:.0=.c)
$(AR) $(ARFLAGS) lib $?
rm $? @echo lib is now up-to-date
.ca;

Here the substitution mode of the macro expansions is used. The $? list is
defined to be the set of object file names (inside lib) whose C source files
are out-of-date. The substitution mode translates the .0 to .c. (Unfor-
tunately, one cannot as yet transform to .c”; however, this may become pos-
sible in the future.) Note also, the disabling of the .c.a: rule, which would
have created each object file, one by one. This particular construct speeds
up archive library maintenance considerably. This type of construct
becomes very cumbersome if the archive library contains a mix of assembly
programs and C programs.

FILES
[Mm]akefile and s.[Mm]akefile
/bin/sh
SEE ALSO
cc(1), lex(1), yacc(l), printf(3S), sccsfile(4).
cd(1), sh(1) in the User’s Reference Manual.
NOTES
Some commands return non-zero status inappropriately; use -i to overcome
the difficulty.
BUGS

File names with the characters = : @ will not work. Commands that are
directly executed by the shell, notably cd(1), are ineffectual across new-lines
in make. The syntax (lib(filel.o file2.0 file3.0) is illegal. You cannot build
lib(file.o) from file.o. The macro $(a:.0=.c’) does not work. Named pipes
are not handled well.

MCS(1) (Software Generation System Utilities) MCS(1)

NAME
mcs — manipulate the object file comment section

SYNOPSIS
mcs [options] object-file ...

DESCRIPTION
The mcs command manipulates the comment section, normally the “.com-
ment”’ section, in an object file. It is used to add to, delete, print, and
compress the contents of the comment section in a UNIX system object file.
The mcs command must be given one or more of the options described
below. It takes each of the options given and applies them in order to the
object-files.

s

If the object file is an archive, the file is treated as a set of individual object
files. For example, if the ~a option is specified, the string is appended to
the comment section of each archive element.

The following options are available.

-a string
Append string to the comment section of the object-files. If string
contains embedded blanks, it must be enclosed in quotation marks.

-c Compress the contents of the comment section. All duplicate
entries are removed. The ordering of the remaining entries is not
disturbed.

-d Delete the contents of the comment section from the object file.

The object file comment section header is removed also.

-n name
Specify the name of the section to access. By default, mcs deals
with the section named .comment. This option can be used to
specify another section.

-p Print the contents of the comment section on the standard output.
If more than one name is specified, each entry printed is tagged by
the name of the file from which it was extracted, using the format
“filename:string.”

EXAMPLES
mcs -p file # Print file’s comment section.
mcs -a string file # Append string to file’s comment section
FILES
TMPDIR /mcs* temporary files
TMPDIR/* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
cpp(1), a.out(4).

MCS(1) (Software Generation System Utilities) MCS(1)

NOTES
The mcs command cannot add new sections or delete existing sections to
executable objects with magic number 0413 [see a.out(4)].

MKSHLIB(1) (Advanced C Utilities) MKSHLIB(1)

NAME

mkshlib — create a shared library
SYNOPSIS

mkshlib -s specfil [-t target] [-h host] [-n] [-q]
DESCRIPTION

The mkshlib command builds both the host and target shared libraries. A
shared library is similar in function to a normal, non-shared library, except
that programs which link with a shared library will share the library code
during execution, whereas programs which link with a non-shared library
will get their own copy of each library routine used.

The host shared library is an archive which is used to link-edit user pro-
grams with the shared library [see ar(4)]. A host shared library can be
treated exactly like a non-shared library and should be included on cc(1)
command lines in the usual way [see cc(1)]. Further, all operations which
can be performed on an archive can also be performed on the host shared
library.

The target shared library is an executable module which is attached to the
user’s process during execution of a program using the shared library. The
target shared library contains the code for all the routines in the library and
must be fully resolved. The target will be brought into memory during exe-
cution of a program using the shared library, and subsequent processes
which use the shared library will share the copy of code already in memory.
The text of the target is always shared, but each process will get its own
copy of the data.

The user interface to mkshlib consists of command line options and a shared
library specification file. The shared library specification file describes the
contents of the shared library.

The mkshlib command invokes other tools such as the archiver, ar(1), the
assembler, as(1), and the loader, ld(1). Tools are invoked through the use of
system(3S) which searches directories in the user’s PATH. Also, prefixes to
mkshlib are parsed in the same manner as prefixes to the cc(1) command,
and invoked tools are given the prefix, where appropriate. For example,
i386mbkshlib or i286mkshlib will invoke i3861d or i286ld, respectively.

The following command line options are recognized by mkshlib:

-s specfil Specifies the shared library specification file, specfil. This file
contains the information necessary to build a shared library.
Its contents include the branch table specifications for the tar-
get, the path name in which the target should be installed, the
start addresses of text and data for the target, the initialization
specifications for the host, and the list of object files to be
included in the shared library (see details below).

MKSHLIB(1)

~t target

-h host

-n

-q

(Advanced C Utilities) MKSHLIB(1)

Specifies the name, target, of the target shared library pro-
duced on the host machine. When target is moved to the tar-
get machine, it should be installed at the location given in the
specification file (see the #target directive below). If the -n
option is used, then a new target shared library will not be
generated.

Specifies the name of the host shared library, host. If this
option is not given, then the host shared library will not be
produced.

Do not generate a new target shared library. This option is
useful when producing only a new host shared library. The -t
option must still be supplied since a version of the target
shared library is needed to build the host shared library.

Quiet warning messages. This option is useful when warning
messages are expected but not desired.

The shared library specification file contains all the information necessary to
build both the host and target shared libraries. The contents and format of
the specification file are given by the following directives:

#address sectname address

Specifies the start address, address, of section sectname for the
target. This directive typically is used to specify the start
addresses of the .text and .data sections.

#target pathname

#branch

Specifies the absolute path name, pathname, of the target
shared library on the target machine. This pathname is copied
to a.out files and is the location where the operating system
will look for the shared library when executing a file which
uses it.

Specifies the start of the branch table specifications. The lines
following this directive are taken to be branch table specifica-
tion lines.

Branch table specification lines have the following format:
funcname <white space> position

where funcname is the name of the symbol given a branch
table entry and position specifies the position of funcname’s
branch table entry. Position may be a single integer or a range
of integers of the form positionl-position2. Each position must
be greater than or equal to one, the same position cannot be
specified more than once, and every position from one to the
highest given position must be accounted for.

If a symbol is given more than one branch table entry by asso-
ciating a range of positions with the symbol or by specifying
the same symbol on more than one branch table specification

2.

MKSHLIB(1)

#objects

#init object

(Advanced C Utilities) MKSHLIB(1)

line, then the symbol is defined to have the address of the
highest associated branch table entry. All other branch table
entries for the symbol can be thought of as "empty" slots and
can be replaced by new entries in future versions of the shared
library.

Finally, only functions should be given branch table entries,
and those functions must be external.

This directive can be specified only once per shared library
specification file.

Specifies the names of the object files constituting the target
shared library. The lines following this directive are taken to
be the list of input object files in the order they are to be
loaded into the target. The list simply consists of each file
name followed by white space. This list is also used to deter-
mine the input object files for the host shared library, but the
order for the host is given by running the list through lorder(1)
and tsort(1).

This directive can be specified only once per shared library
specification file.

Specifies that the object file, object, requires initialization code.
The lines following this directive are taken to be initialization
specification lines.

Initialization specification lines have the following format:
pimport <white space> import

Pimport is a pointer to the associated imported symbol, import,
and must be defined in the current specified object file, object.
The initialization code generated for each such line is of the
form:

pimport = &import;

where pimpaddr is the absolute address of pimport.

All initializations for a particular object file must be given at
once and multiple specifications of the same object file are not
allowed.

#ident string

##

Specifies a string, string, to be included in the .comment sec-
tion of the target shared library. This directive can be speci-
fied only once per shared library specification file.

Specifies a comment. All information on a line following this
directive is ignored.

_3-

MKSHLIB(1) (Advanced C Utilities) MKSHLIB(1)

All directives which may be followed by multiline specifications are valid
until the next directive or the end of the file.

FILES
TEMPDIR/* temporary files
TEMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].
SEE ALSO
ar(1), as(1), cc(1), 1d(1), a.out(4), ar(4).
Chapter 8 ("Shared Libraries") in the Programmer’s Guide.

NM(1)

NAME

(Software Generation System Utilities) NM(1)

nm - print name list of common object file

SYNOPSIS

nm [-oxhvnefurpVT] file name ...

DESCRIPTION

The nm command displays the symbol table of each common object file,
filename. Filename may be a relocatable or absolute common object file; or
it may be an archive of relocatable or absolute common object files. For
each symbol, the following information will be printed:

Name
Value

Class
Type

Size

Line

Section

The name of the symbol.

Its value expressed as an offset or an address depending on its
storage class.

Its storage class.

Its type and derived type. If the symbol is an instance of a struc-
ture or of a union, then the structure or union tag will be given
following the type (e.g., struct-tag). If the symbol is an array,
then the array dimensions will be given following the type (e.g.,
charf n [m]). Note that the object file must have been compiled
with the -g option of the cc(1l) command for this information to
appear.

Its size in bytes, if available. Note that the object file must have
been compiled with the -g option of the cc(l) command for this
information to appear.

The source line number at which it is defined, if available. Note
that the object file must have been compiled with the -g option of
the cc(1) command for this information to appear.

For storage classes static and external, the object file section con-
taining the symbol (e.g., text, data, or bss).

The output of nm may be controlled using the following options:

Print the value and size of a symbol in octal instead of decimal.

Print the value and size of a symbol in hexadecimal instead of
decimal.

Do not display the output header data.
Sort external symbols by value before they are printed.
Sort external symbols by name before they are printed.
Print only external and static symbols.

Produce full output. Print redundant symbols (.text, .data, .lib,
and .bss), normally suppressed.

Print undefined symbols only.
Prepend the name of the object file or archive to each output line.

NM(1)

FILES

BUGS

(Software Generation System Utilities) NM(1)

-p Produce easily parsable, terse output. Each symbol name is pre-
ceded by its value (blanks if undefined) and one of the letters U
(undefined), A (absolute), T (text segment symbol), D (data seg-
ment symbol), S (user-defined segment symbol), R (register sym-
bol), F (file symbol), or C (common symbol). If the symbol is
local (non-external), the type letter is in lower case.

-V Print the version of the nm command executing on the standard
error output.

-T By default, nm prints the entire name of the symbols listed. Since
object files can have symbols names with an arbitrary number of
characters, a name that is longer than the width of the column set
aside for names will overflow its column, forcing every column
after the name to be misaligned. The -T option causes nm to
truncate every name which would otherwise overflow its column
and place an asterisk as the last character in the displayed name
to mark it as truncated.

Options may be used in any order, either singly or in combination, and may
appear anywhere in the command line. Therefore, both nm name -e -v
and nm -ve name print the static and external symbols in name, with exter-
nal symbols sorted by value.

TMPDIR /* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

When all the symbols are printed, they must be printed in the order they
appear in the symbol table in order to preserve scoping information. There-
fore, the -v and -n options should be used only in conjunction with the -e
option.

SEE ALSO

as(1), cc(1), 1d(1), tmpnam(3S), a.out(4), ar(4).

DIAGNOSTICS

“nm: name: cannot open”
~ if name cannot be read.

“nm: name: bad magic”
if name is not a common object file.

“nm: name: no symbols”
if the symbols have been stripped from name.

OMF(1) OMEF(1)

NAME
omf — convert an object module from COFF to OMF

SYNOPSIS
omf [-i input-file] [-0 output-file]] -G gdt_limit,gdt_base -I
idt_limit,idt_base -T tss_selector [-3]

DESCRIPTION
The omf command is used to convert an object module from AT&T’s COFF
(Common Object File Format) to Xenix's OMF (Object Module Format).
The following options may be given in any order:

input-file is the name of the COFF file. If it is missing then omf will attempt
to read from a file named a.out.

output-file is the name of the OMF file. If it is missing then omf will
attempt to write to a file named x.out.

gdt_limit,gdt_base are the limit and base of the Global Descriptor Table
(GDT); these numbers are separated by a comma.

idt_limit,idt_base are the limit and base of the Interrupt Descriptor Table
(IDT); these numbers are separated by a comma.

tss_selector is a selector into the GDT for the initial task state.

By default, omf will convert a file to the format of an Intel 80286 boot-
loadable file. The -3 argument causes omf to produce an 80386 boot-
loadable file.

EXAMPLES
The following command will read a COFF formatted file named "a.out"
and produce an 80286 boot-loadable file named "x.out". "x.out" will have

a GDT limit of 100, a GDT base of 1000, an IDT limit of 200, an IDT base
of 2000, and a TSS selector of 32:

omf —G100,1000 —1200,2000 —T32
The following command will read a COFF formatted file named "test" and
produce an 80386 boot-loadable file named "x.out". "x.out" will have a
GDT limit of 256, a GDT base of 0, an IDT limit of 512, an IDT base of 256,
and a TSS selector of 64:

omf —i test —G256,0 —I512,256 —T64 —3

SEE ALSO

a.out(4)

DIAGNOSTICS
The error messages are intended to be self-explanatory.

PROF(1) (Extended Software Generation Ultilities) PROF(1)

NAME
prof — display profile data

SYNOPSIS
prof [~tcan] [-0x] [-g] [-Z] [-h] [-5] [-m mdata] [prog]

DESCRIPTION
The prof command interprets a profile file produced by the monitor(3C)
function. The symbol table in the object file prog (a.out by default) is read
and correlated with a profile file (mon.out by default). For each external
text symbol the percentage of time spent executing between the address of
that symbol and the address of the next is printed, together with the
number of times that function was called and the average number of mil-
liseconds per call.

The mutually exclusive options t, ¢, a, and n determine the type of sorting
of the output lines:

-t Sort by decreasing percentage of total time (default).
-c Sort by decreasing number of calls.

-a Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive options 0 and x specify the printing of the address
of each symbol monitored:

-0 Print each symbol address (in octal) along with the symbol name.
-X Print each symbol address (in hexadecimal) along with the symbol
name. -

The following options may be used in any combination:
-g Include non-global symbols (static functions).

-z Include all symbols in the profile range [see monitor(3C)], even if
associated with zero number of calls and zero time.

-h Suppress the heading normally printed on the report. (This is use-
ful if the report is to be processed further.)

-s Print a summary of several of the monitoring parameters and statis-
tics on the standard error output.

-m mdata
Use file mdata instead of mon.out as the input profile file.

A program creates a profile file if it has been loaded with the -p option of
cc(1). This option to the cc command arranges for calls to monitor(3C) at
the beginning and end of execution. It is the call to monitor at the end of
execution that causes a profile file to be written. The number of calls to a
function is tallied if the -p option was used when the file containing the
function was compiled.

The name of the file created by a profiled program is controlled by the
environment variable PROFDIR. If PROFDIR does not exist, “mon.out” is
produced in the directory that is current when the program terminates. If

-1-

PROF(1) (Extended Software Generation Utilities) PROF(1)

PROFDIR = string, “‘string/pid.progname’ is produced, where progname con-
sists of argv[0] with any path prefix removed, and pid is the program’s pro-
cess id. If PROFDIR is the null string, no profiling output is produced.

A single function may be split into subfunctions for profiling by means of
the MARK macro [see prof(5)].

FILES
mon.out for profile
a.out for namelist

SEE ALSO
cc(1), exit(2), profil(2), monitor(3C), prof(5).

WARNING
The times reported in successive identical runs may show variances of 20%
or more, because of varying cache-hit ratios due to sharing of the cache
with other processes. Even if a program seems to be the only one using the
machine, hidden background or asynchronous processes may blur the data.
In rare cases, the clock ticks initiating recording of the program counter may
““beat” with loops in a program, grossly distorting measurements.

Call counts are always recorded precisely.

The times for static functions are attributed to the preceding external text
symbol if the —g option is not used. However, the call counts for the
preceding function are still correct, i.e., the static function call counts are not
added in with the call counts of the external function.

CAVEATS
Only programs that call exit(2) or return from main will cause a profile file
to be produced, unless a final call to monitor is explicitly coded.

The use of the -p option to cc(1) to invoke profiling imposes a limit of 600
functions that may have call counters established during program execution.
For more counters you must call monitor(3C) directly. If this limit is
exceeded, other data will be overwritten and the mon.out file will be cor-
rupted. The number of call counters used will be reported automatically by
the prof command whenever the number exceeds 5/6 of the maximum.

PRS(1) (Source Code Control System Utilities) PRS(1)

NAME
prs — print an SCCS file

SYNOPSIS
prs [-d[dataspec]] [-r[SID]} [-e] [-1] [-c[date-time]] [-a] files

DESCRIPTION

The prs command prints, on the standard output, parts or all of an SCCS file
[see sccsfile(4)] in a user-supplied format. If a directory is named, prs
behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not begin
with s.), and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken to be the
name of an SCCS file or directory to be processed; non-SCCS files and
unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of keyletter argu-
ments and file names.

All the described keyletter arguments apply independently to each named
file:

-d[dataspec] Used to specify the output data specification. The
dataspec is a string consisting of SCCS file data key-
words (see DATA KEYWORDS) interspersed with
optional user-supplied text.

-r[SID] Used to specify the SCCS IDentification (SID) string of
a delta for which information is desired. If no SID is
specified, the SID of the most recently created delta is
assumed.

-e Requests information for all deltas created earlier than
and including the delta designated via the -r keyletter
or the date given by the -c option.

-1 Requests information for all deltas created later than
and including the delta designated via the -r keyletter
or the date given by the -¢ option.

—c[date-time] The cutoff date-time -c[cutoff]] is in the form:
YY[MM[DD[HHMMISS]][]]

Units omitted from the date-time default to their max-
imum possible values; that is, -¢7502 is equivalent to
-c750228235959. Any number of non-numeric charac-
ters may separate the various 2-digit pieces of the cut-
off date in the form: "-c77/2/2 9:22:25".

-a Requests printing of information for both removed,
ie., delta type = R, [see rmdel(1)] and existing, i.e.,
delta type = D, deltas. If the -a keyletter is not speci-
fied, information for existing deltas only is provided.

PRS(1)

(Source Code Control System Ultilities) PRS(1)

DATA KEYWORDS

Keyword
:Dt:
:DL:
:Li:
:Ld:

Lu
DT
I
R
L
B!
S.
D
Dy
Dm
Dd:
T
Th:
Tm
:Ts:
:P:
DS
DP.
DI
Dn.
Dx:
Dg
MR
C
UN
FL
Y
MF

Data keywords specify which parts of an SCCS file are to be retrieved and
output. All parts of an SCCS file [see sccsfile(4)] have an associated data
keyword. There is no limit on the number of times a data keyword may
appear in a dataspec.

The information printed by prs consists of: (1) the user-supplied text; and
(2) appropriate values (extracted from the SCCS file) substituted for the
recognized data keywords in the order of appearance in the dataspec. The
format of a data keyword value is either Simple (S), in which keyword sub-
stitution is direct, or Multiline (M), in which keyword substitution is fol-
lowed by a carriage return.

User-supplied text is any text other than recognized data keywords.
A tab is specified by \t and carriage return/new-line is specified by \n.
The default data keywords are:

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C: "

TABLE 1. SCCS Files Data Keywords

Data Item File Section Value Format
Delta information Delta Table See below* S
Delta line statistics " :Li:/:Ld:/:Lu: S
Lines inserted by Delta " nnnnn S
Lines deleted by Delta " nnnnn S
Lines unchanged by Delta " nnnnn S
Delta type " D7or'R S
SCCS ID string (SID) " :R:.:Li:B:.:S: S
Release number " nnnn S
Level number i nnnn]
Branch number " nnnn S
Sequence number N nnnn S
Date Delta created " :Dy:/:Dm:/:Dd: S
Year Delta created " nn S
Month Delta created " nn)
Day Delta created " nn S
Time Delta created i :Th::Tm::Ts: S
Hour Delta created " nn S
Minutes Delta created " nn S
Seconds Delta created " nn S
Programmer who created Delta " logname S
Delta sequence number " nnnn S
Predecessor Delta seq-no. " nnnn S
Seq-no. of deltas incl., excl., ignored " :Dn:/:Dx:/:Dg: S
Deltas included (seq #) " :DS:":DS:... S
Deltas excluded (seq #) " :DS:":DS:... S
Deltas ignored (seq #) " :DS::DS:... S
MR numbers for delta " text M
Comments for delta " text M
User names User Names text M
Flag list Flags text M
Module type flag " text S
MR validation flag " yes“or"no S

PRS(1) (Source Code Control System Utilities) PRS(1)
TABLE 1. SCCS Files Data Keywords (continued)

Keyword Data Item File Section Value Format
:MP: MR validation pgm name B text S
(KF: Keyword error/warning flag " yes“or'no S
(KV: Keyword validation string " text S
:BF: Branch flag " yes“or"no S

Js Joint edit flag " yes~or"no S
:LK: Locked releases " R:...]
:Q: User-defined keyword " text S
M: Module name " text S
:FB: Floor boundary " :R: S
:CB: Ceiling boundary " R: S
:Ds: Default SID " HE S
:ND: Null delta flag " yes~or"no S
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body " text M
W: A form of what(1) string N/A ZaM:\tL: S
:A: A form of what(1) string N/A :ZzY":MTIzZ: S
:Z: what(1) string delimiter N/A @#) S
:F: SCCS file name N/A text S
PN: SCCS file path name N/A text S
* :Dt"="DT:"L:":D:":T:":P:":DS:":DP:
EXAMPLES

prs ~d" Users and/or user IDs for :F: are:\n:UN:" s.file
may produce on the standard output:

Users and/or user IDs for s.file are:

Xyz

131

abc

prs —d"Newest delta for pgm :M:: :I: Created :D: By :P:" —r s.file
may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas
As a special case:

prs s.file
may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:

bl78-12345

bl79-54321

COMMENTS:

this is the comment line for s.file initial delta

for each delta table entry of the “D” type. The only keyletter argument
allowed to be used with the special case is the -a keyletter.

PRS(1) (Source Code Control System Utilities) PRS(1)

FILES

SEE ALSO
admin(1), delta(1), get(1), sccsfile(4).
help(1) in the User’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

REGCMP(1) (Advanced C Utilities) REGCMP(1)

NAME

regemp — regular expression compile
SYNOPSIS

regemp [-] files
DESCRIPTION

The regcmp command performs a function similar to regcmp(3X) and, in
most cases, precludes the need for calling regcmp(3X) from C programs.
This saves on both execution time and program size. The command regcmp
compiles the regular expressions in file and places the output in file.i. If the
- option is used, the output will be placed in file.c. The format of entries in
file is a name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotes. The output of regcmp is C
source code. Compiled regular expressions are represented as extern char
vectors. File.i files may thus be included in C programs, or file.c files may
be compiled and later loaded. In the C program which uses the regcmp out-
put, regex(abc,line) will apply the regular expression named abc to line.
Diagnostics are self-explanatory.

EXAMPLES
name "([A-Za-z]|A-Za-z0-9__]*)$0"

telno "\({0,1}([2-9J[01][1-9))$0\){0,1} **
"([2-9]10-9]{2H$1[-]{0,1} "
"([0-9]{4})$2"

In the C program that uses the regcmp output,
regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regcmp(3X).

RELOGIN(1M) (AT&T Windowing Utilities) RELOGIN(1M)

NAME

relogin — rename login entry to show current layer
SYNOPSIS

/usr/lib/layersys/relogin [-s] [line]
DESCRIPTION

The relogin command changes the terminal line field of a user's utmp(4)
entry to the name of the windowing terminal layer attached to standard
input. write(1) messages sent to this user are directed to this layer. In addi-
tion, the who(1) command will show the user associated with this layer.
relogin may only be invoked under layers(1).

The relogin command is invoked automatically by layers(1) to set the
utmp(4) entry to the terminal line of the first layer created upon startup, and
to reset the utmp(4) entry to the real line on termination. It may be invoked
by a user to designate a different layer to receive write(1) messages.

-S Suppress error messages.

line Specifies which utmp(4) entry to change. The utmp(4) file is
searched for an entry with the specified line field. That field is
changed to the line associated with the standard input. (To learn
what lines are associated with a given user, say jdoe, type ps -f -u
jdoe and note the values shown in the TTY field [see ps(1))].

FILES
/etc/utmp data base of users versus terminals

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

SEE ALSO
utmp(4) in the Programmer’s Reference Manual.
layers(1), mesg(1), ps(1), who(1), write(1) in the User’s Reference Manual.

NOTES
If line does not belong to the user issuing the relogin command or standard
input is not associated with a terminal, relogin will fail.

RMDEL(1) (Source Code Control System Utilities) RMDEL(1)

NAME

rmdel — remove a delta from an SCCS file

SYNOPSIS

rmdel -rSID files

DESCRIPTION

The rmdel command removes the delta specified by the SID from each
named SCCS file. The delta to be removed must be the newest (most
recent) delta in its branch in the delta chain of each named SCCS file. In
addition, the specified must not be that of a version being edited for the
purpose of making a delta (i. e., if a p-file [see get(1)] exists for the named
SCCs file, the specified must not appear in any entry of the p-file).

The -r option is used for specifying the SID (SCCS IDentification) level of
the delta to be removed.

If a directory is named, rmdel behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an SCCS file to be processed;
non-SCCS files and unreadable files are silently ignored.

Simply stated, they are either (1) if you make a delta you can remove it; or
(2) if you own the file and directory you can remove a delta.

FILES
x.file [see delta(1)]
z file [see delta(1)]
SEE ALSO
delta(1), get(1), prs(1), sccsfile(4).
help(1) in the User’s Reference Manual.
DIAGNOSTICS

Use help(1) for explanations.

SACT(1)

NAME

(Source Code Control System Utilities) SACT(1)

sact — print current SCCS file editing activity

SYNOPSIS
sact files

DESCRIPTION

The sact command informs the user of any impending deltas to a named
SCCS file. This situation occurs when get(1) with the -e option has been
previously executed without a subsequent execution of delta(1). If a direc-
tory is named on the command line, sact behaves as though each file in the
directory were specified as a named file, except that non-SCCS files and
unreadable files are silently ignored. If a name of - is given, the standard
input is read with each line being taken as the name of an SCCS file to be

processed.

The output for each named file consists of five fields separated by spaces.

Field 1

Field 2
Field 3

Field 4
Field 5
SEE ALSO

specifies the SID of a delta that currently exists in the
SCCS file to which changes will be made to make the
new delta.

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta
(i.e., executed a get for editing).

contains the date that get -e was executed.
contains the time that get -e was executed.

delta(1), get(1), unget(1).

DIAGNOSTICS

Use help(1) for explanations.

SCCSDIFF(1) (Source Code Control System Utilities) SCCSDIFF(1)

NAME

scesdiff — compare two versions of an SCCS file
SYNOPSIS

scesdiff -rSID1 -rSID2 [-p] [-sn] files
DESCRIPTION

The scesdiff command compares two versions of an SCCS file and generates
the differences between the two versions. Any number of SCCS files may
be specified, but arguments apply to all files.

-1SID? SID1 and SID2 specify the deltas of an SCCS file that are
to be compared. Versions are passed to bdiff(1) in the
order given.

-p pipe output for each file through pr(1).
-sn n is the file segment size that bdiff will pass to diff(1).
This is useful when diff fails due to a high system load.
FILES
/tmp/get????? Temporary files
SEE ALSO
get(1).
bdiff(1), help(1), pr(1) in the User’s Reference Manual.
DIAGNOSTICS
“file: No differences” If the two versions are the same,

Use help(1) for explanations.

SDB(1) (Extended Software Generation System Utilities) SDB(1)

NAME
sdb — symbolic debugger

SYNOPSIS
sdb [-w] [-W] [objfil [corfil [directory-list]]]

DESCRIPTION
The sdb command calls a symbolic debugger that can be used with C and
F77 programs. It may be used to examine their object files and core files
and to provide a controlled environment for their execution.

Objfil is an executable program file which has been compiled with the -g
(debug) option. If it has not been compiled with the -g option, the sym-
bolic capabilities of sdb will be limited, but the file can still be examined and
the program debugged. The default for objfil is a.out. Corfil is assumed to
be a core image file produced after executing objfil; the default for corfil is
core. The core file need not be present. A - in place of corfil will force sdb
to ignore any core image file. The colon-separated list of directories
(directory-list) is used to locate the source files used to build objfil.

It is useful to know that at any time there is a current line and current file.
If corfil exists, then they are initially set to the line and file containing the
source statement at which the process terminated. Otherwise, they are set
to the first line in main(). The current line and file may be changed with
the source file examination commands.

By default, warnings are provided if the source files used in producing objfil
cannot be found, or are newer than objfil. This checking feature and the
accompanying warnings may be ‘disabled by the use of the -W flag.

Names of variables are written just as they are in C or F77. sdb does not
truncate names. Variables local to a procedure may be accessed using the
form procedure:variable. If no procedure name is given, the procedure con-
taining the current line is used by default.

It is also possible to refer to structure members as variable.member, pointers
to structure members as variable->member, and array elements as
variable[number]. Pointers may be dereferenced by using the form
pointer[0]. Combinations of these forms may also be used. F77 common
variables may be referenced by using the name of the common block
instead of the structure name. Blank common variables may be named by
the form .variable. A number may be used in place of a structure variable
name, in which case the number is viewed as the address of the structure,
and the template used for the structure is that of the last structure refer-
enced by sdb. An unqualified structure variable may also be used with vari-
ous commands. Generally, sdb will interpret a structure as a set of vari-
ables. Thus, sdb will display the values of all the elements of a structure
when it is requested to display a structure. An exception to this interpreta-
tion occurs when displaying variable addresses. An entire structure does
have an address, and it is this value sdb displays, not the addresses of indi-
vidual elements.

Elements of a multidimensional array may be’ referenced as wvariable
[number][numbetr]..., or as variable [number,number,...]. In place of number,

-1.-

SDB(1)

(Extended Software Generation System Utilities) SDB(1)

the form number;number may be used to indicate a range of values, * may
be used to indicate all legitimate values for that subscript, or subscripts may
be omitted entirely if they are the last subscripts and the full range of values
is desired. As with structures, sdb displays all the values of an array or of
the section of an array if trailing subscripts are omitted. It displays only the
address of the array itself or of the section specified by the user if subscripts
are omitted. A multidimensional parameter in an F77 program cannot be
displayed as an array, but it is actually a pointer, whose value is the loca-
tion of the array. The array itself can be accessed symbolically from the cal-
ling function.

A particular instance of a variable on the stack may be referenced by using
the form procedure:variable,number. All the variations mentioned in naming
variables may be used. Number is the occurrence of the specified procedure
on the stack, counting the top, or most current, as the first. If no procedure
is specified, the procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of integer
constants which are valid in C may be used, so that addresses may be input
in decimal, octal, or hexadecimal.

Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case the number is relative to the beginning of
the file. If no procedure or file name is given, the current file is used by
default. If no number is given, the first line of the named procedure or file
is used.

While a process is running under sdb, all addresses refer to the executing
program; otherwise they refer to objfil or corfil. An initial argument of -w
permits overwriting locations in objfil.

Addresses

The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two tri-
ples (b1, el, f1) and (b2, €2, f2) and the file address corresponding to a writ-
ten address is calculated as follows: ‘

bl<address<el

then

file address=address+f1-b1
otherwise

b2 <address<e2

then
file address=address+{2-b2

" otherwise, the requested address is not legal. In some cases (e.g., for pro-

grams with separated I and D space) the two segments for a file may over-
lap.

The initial setting of both mappings is suitable for normal a.out and core
files. If either file is not of the kind expected then, for that file, b1 is set to
0, el is set to the maximum file size, and f1 is set to 0; in this way the
whole file can be examined with no address translation.

2.

SDB(1) (Extended Software Generation System Utilities) SDB(1)

In order for sdb to be used on large files, all appropriate values are kept as
signed 32-bit integers.

Commands
The commands for examining data in the program are:

t Print a stack trace of the terminated or halted program.
T Print the top line of the stack trace.

variable fclm

Print the value of variable according to length I and format m. A
numeric count ¢ indicates that a region of memory, beginning at the
address implied by variable, is to be displayed. The length specifiers
are:

b one byte

h two bytes (half word)

1 four bytes (long word)

Legal values for m are:

character

decimal

decimal, unsigned

octal

hexadecimal

32-bit single precision floating point

64-bit double precision floating point

Assume variable is a string pointer and print characters

starting at the address pointed to by the variable.

Print characters starting at the variable’s address. This

format may not be used with register variables.

P pointer to procedure

disassemble machine-language instruction with

addresses printed numerically and symbolically.

I disassemble machine-language instruction with
addresses just printed numerically.

wE R o an

EY)

e

Length specifiers are only effective with the ¢, d, u, 0, and x formats.
Any of the specifiers, ¢, I, and m, may be omitted. If all are omitted,
sdb chooses a length and a format suitable for the variable’s type as
declared in the program. If m is specified, then this format is used for
displaying the variable. A length specifier determines the output
length of the value to be displayed, sometimes resulting in truncation.
A count specifier ¢ tells sdb to display that many units of memory,
beginning at the address of variable. The number of bytes in one such
unit of memory is determined by the length specifier I, or if no length
is given, by the size associated with the variable. If a count specifier is
used for the s or a command, then that many characters are printed.
Otherwise successive characters are printed until either a null byte is
reached or 128 characters are printed. The last variable may be
redisplayed with the command ./.

SDB(1)

(Extended Software Generation System Utilities) SDB(1)

The sh(1) metacharacters * and ? may be used within procedure and
variable names, providing a limited form of pattern matching. If no
procedure name is given, variables local to the current procedure and
global variables are matched; if a procedure name is specified, then
only variables local to that procedure are matched. To match only
global variables, the form :pattern is used.

linenumber?lm

variable:?2lm
Print the value at the address from a.out or I space given by
linenumber or variable (procedure name), according to the format Im.
The default format is 1",

variable=Im

linenumber=Im

number=Im
Print the address of variable or linenumber, or the value of number, in
the format specified by Im. If no format is given, then Ix is used. The
last variant of this command provides a convenient way to convert
between decimal, octal, and hexadecimal.

variabletvalue

Set variable to the given value. The value may be a number, a charac-
ter constant, or a variable. The value must be well defined; expres-
sions which produce more than one value, such as structures, are not
allowed. Character constants are denoted ’character. Numbers are
viewed as integers unless a decimal point or exponent is used. In this
case, they are treated as having the type double. Registers are viewed
as integers. The variable may be an expression which indicates more
than one variable, such as an array or structure name. If the address
of a variable is given, it is regarded as the address of a variable of type
int. C conventions are used in any type conversions necessary to per-
form the indicated assignment.

X Print the machine registers and the current machine-language instruc-
tion.

X Print the current machine-language instruction.
The commands for examining source files are:

e procedure

e file-name

e directory/

e directory file-name
The first two forms set the current file to the file containing procedure
or to file-name. The current line is set to the first line in the named
procedure or file. Source files are assumed to be in directory. The
default is the current working directory. The latter two forms change
the value of directory. If no procedure, file name, or directory is given,
the current procedure name and file name are reported.

SDB(1)

(Extended Software Generation System Utilities) SDB(1)

/regular expression [
Search forward from the current line for a line containing a string
matching regular expression as in ed(1). The trailing / may be deleted.

?regular expression?
Search backward from the current line for a line containing a string
matching regular expression as in ed(1). The trailing ? may be deleted.

P Print the current line.

z Print the current line followed by the next 9 lines. Set the current line
to the last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current
line.

count+
Advance the current line by count lines. Print the new current line.

count-
Retreat the current line by count lines. Print the new current line.

The commands for controlling the execution of the source program are:

count r args

count R
Run the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument begin-
ning with < or > causes redirection for the standard input or output,
respectively. If count is given, it specifies the number of breakpoints
to be ignored.

linenumber ¢ count

linenumber C count
Continue after a breakpoint or interrupt. If count is given, the pro-
gram will stop when count breakpoints have been encountered. The
signal which caused the program to stop is reactivated with the C
command and ignored with the ¢ command. If a line number is speci-
fied, then a temporary breakpoint is placed at the line and execution is
continued. The breakpoint is deleted when the command finishes.

linenumber g count
Continue after a breakpoint with execution resumed at the given line.
If count is given, it specifies the number of breakpoints to be ignored.

s count

S count
Single-step the program through count lines. If no count is given, then
the program is run for one line. S is equivalent to s except it steps
through procedure calls.

SDB(1)

(Extended Software Generation System Utilities) SDB(1)

I Single-step by one machine-language instruction. The signal which
caused the program to stop is reactivated with the I command and
ignored with the i command.

variable$m count

address:m count
Single-step (as with s) until the specified location is modified with a
new value. If count is omitted, it is effectively infinity. Variable must
be accessible from the current procedure. Since this command is done
by software, it can be very slow.

level v
Toggle verbose mode, for use when single-stepping with S, s, or m. If
level is omitted, then just the current source file and/or subroutine
name is printed when either changes. If level is 1 or greater, each C
source line is printed before it is executed; if level is 2 or greater, each
assembler statement is also printed. A v turns verbose mode off if it is
on for any level.

k Kill the program being debugged.

procedure(argl,arg?2,...)

procedure(argl,arg2,...)/m
Execute the named procedure with the given arguments. Arguments
can be integer, character, or string constants or names of variables
accessible from the current procedure. The second form causes the
value returned by the procedure to be printed according to format m.
If no format is given, it defaults to d. This facility is only available if
the program was loaded with the -g option.

linenumber b commands

Set a breakpoint at the given line. If a procedure name without a line
number is given (e.g., “proc:”’), a breakpoint is placed at the first line
in the procedure even if it was not compiled with the -g option. If no
linenumber is given, a breakpoint is placed at the current line. If no
commands are given, execution stops just before the breakpoint and
control is returned to sdb. Otherwise the commands are executed
when the breakpoint is encountered and execution continues. Multi-
ple commands are specified by separating them with semicolons. If k
is used as a command to execute at a breakpoint, control returns to
sdb, instead of continuing execution.

B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no linenumber is given, then
the breakpoints are deleted interactively. Each breakpoint location is
printed and a line is read from the standard input. If the line begins
with a y or d, then the breakpoint is deleted.

D Delete all breakpoints.

Print the last executed line.

o

-6 -

SDB(1)

(Extended Software Generation System Utilities) SDB(1)

linenumber a
Announce. If linenumber is of the form proc:number, the command
effectively does a linenumber b 1. If linenumber is of the form proc:,
the command effectively does a proc: b T.

Miscellaneous commands:

lcommand
The command is interpreted by sh(1).

new-line
If the previous command printed a source line, then advance the
current line by one line and print the new current line. If the previous
command displayed a memory location, then display the next memory
location.

end-of-file character
Scroll. Print the next 10 lines of instructions, source or data depend-
ing on which was printed last. The end-of-file character is usually
control-D.

< filename
Read commands from filename until the end of file is reached, and
then continue to accept commands from standard input. When sdb is
told to display a variable by a command in such a file, the variable
name is displayed along with the value. This command may not be
nested; < may not appear as a command in a file.

M Print the address maps.

M[?/] [#]b e f
Record new values for the address map. The arguments ? and /
specify the text and data maps, respectively. The first segment (b1, el,
f1) is changed unless * is specified; in which case, the second segment
(b2, €2, f2) of the mapping is changed. If fewer than three values are
given, the remaining map parameters are left unchanged.

" string
Print the given string. The C escape sequences of the form \character
are recognized, where character is a nonnumeric character.

q Exit the debugger.

The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.

FILES
a.out
core
SEE ALSO

cc(1), a.out(4), core(4), syms(4).
sh(1) in the User’s Reference Manual.

7.

SDB(1) (Extended Software Generation System Ultilities) SDB(1)

WARNINGS
When sdb prints the value of an external variable for which there is no
debugging information, a warning is printed before the value. The size is
assumed to be int (integer).

Data which are stored in text sections are indistinguishable from functions.

Line number information in optimized functions is unreliable, and some
information may be missing.

BUGS
If a procedure is called when the program is not stopped at a breakpoint
(such as when a core image is being debugged), all variables are initialized
before the procedure is started. This makes it impossible to use a procedure
which formats data from a core image. ‘

The sdb command cannot print the value of an F77 parameter. It will
erroneously print the address.

Tracebacks containing F77 subprograms with multiple entry points may
print too many arguments in the wrong order, but their values are correct.

The range of an F77 array subscript is assumed to be 1 to n, where #n is the
dimension corresponding to that subscript. This is only significant when
the user omits a subscript, or uses * to indicate the full range. There is no
problem in general with arrays having subscripts whose lower bounds are
not 1.

SIZE(1) (Software Generation System Utilities) SIZE(1)

NAME

size — print section sizes in bytes of common object files
SYNOPSIS

size [-n] [-f] [~0] [-x] [-V] files
DESCRIPTION

The size command produces section size information in bytes for each
loaded section in the common object files. The size of the text, data, and
bss (uninitialized data) sections is printed, as well as the sum of the sizes of
these sections. If an archive file is input to the size command, the informa-
tion for all archive members is displayed.

The -n option includes NOLOAD sections in the size.

The -f option produces full output, that is, it prints the size of every loaded
section, followed by the section name in parentheses.

Numbers will be printed in decimal unless either the -0 or the -x option is
used, in which case they will be printed in octal or in hexadecimal, respec-
tively.

The -V flag will supply the version information on the size command.

SEE ALSO
as(1), cc(1), 1d(1), a.out(4), ar(4).

CAVEAT
Since the size of bss sections is not known until link-edit time, the size com-
mand will not give the true total size of pre-linked objects.

DIAGNOSTICS
size: name: cannot open
if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

STRIP(1) (Software Generation System Utilities) STRIP(1)

NAME

strip — strip symbol and line number information from a common object file

SYNOPSIS

strip [-1] [-x] [-b] [-1] [-V] filename ...

DESCRIPTION

The strip command strips the symbol table and line number information
from common object files, including archives. Once this has been done, no
symbolic debugging access will be available for that file; therefore, this com-
mand is normally run only on production modules that have been debugged
and tested.

The amount of information stripped from the symbol table can be controlled
by using any of the following options:

-1 Strip line number information only; do not strip any symbol table
information.

-X Do not strip static or external symbol information.

-b Same as the -x option, but also do not strip scoping information
(e.g., beginning and end of block delimiters).

-r Do not strip static or external symbol information, or relocation
information.

-V Print the version of the strip command executing on the standard

error output.

If there are any relocation entries in the object file and any symbol table
information is to be stripped, strip will complain and terminate without
stripping filename unless the -r option is used.

If the strip command is executed on a common archive file [see ar(4)] the
archive symbol table will be removed. The archive symbol table must be
restored by executing the ar(1) command with the s option before the
archive can be link-edited by the Id(1) command. strip will produce
appropriate warning messages when this situation arises.

The strip command is used to reduce the file storage overhead taken by the
object file.

FILES
TMPDIR /strp* temporary files
TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].
SEE ALSO
ar(1), as(1), cc(1), 1d(1), tmpnam(3S), a.out(4), ar(4).
DIAGNOSTICS

strip: name: cannot open
if name cannot be read.

strip: name: bad magic
if name is not an appropriate common object file.

-1-

STRIP(1) (Software Generation System Utilities) STRIP(1)

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the -r flag
is not used, the symbol table information
cannot be stripped.

TIC(1M) (Terminal Information Utilities) TIC(1M)

NAME
tic — terminfo compiler

SYNOPSIS
tic [-v[n]] [-c] file

DESCRIPTION
tic translates a terminfo(4) file from the source format into the compiled for-
mat. The results are placed in the directory /usr/lib/terminfo. The com-
piled format is necessary for use with the library routines described in
curses(3X).

-vn (verbose) output to standard error trace information showing tic’s
progress. The optional integer n is a number from 1 to 10,
inclusive, indicating the desired level of detail of information. If n
is omitted, the default level is 1. If n is specified and greater than
1, the level of detail is increased.

-c only check file for errors. Errors in use= links are not detected.

file contains one or more terminfo(4) terminal descriptions in source
format (see terminfo(4)). Each description in the file describes the
capabilities of a particular terminal. When a use=entry-name field
is discovered in a terminal entry currently being compiled, tic reads
in the binary from /usr/lib/terminfo to complete the entry. (Entries
created from file will be used first. If the environment variable
TERMINFO is set, that directory is searched instead of
Jusr/lib/terminfo.) tic duplicates the capabilities in entry-name for
the current entry, with the exception of those capabilities that
explicitly are defined in the current entry.

If the environment variable TERMINFO is set, the compiled results are
placed there instead of /usr/lib/terminfo.

FILES
/usr/lib/terminfo/? /* compiled terminal description data base

SEE ALSO
curses(3X), term(4), terminfo(4) in the Programmer’s Reference Manual.
Chapter 10 in the Programmer’s Guide.

WARNINGS
Total compiled entries cannot exceed 4096 bytes. The name field cannot
exceed 128 bytes.

Terminal names exceeding 14 characters will be truncated to 14 characters
and a warning message will be printed.

When the -c option is used, duplicate terminal names will not be diagnosed;
however, when -c is not used, they will be.

BUGS
To allow existing executables from the previous release of the UNIX System
to continue to run with the compiled terminfo entries created by the new
terminfo compiler, cancelled capabilities will not be marked as cancelled
within the terminfo binary unless the entry name has a ‘+’ within it. (Such
terminal names are only used for inclusion within other entries via a use=

-1-

TIC(1M) (Terminal Information Utilities) TIC(1M)

entry. Such names would not be used for real terminal names.)
For example:
4415+nl, kf1@, k2@,

4415+base, kf1=\EOc, kf2=\EOd,

4415-nli4415 terminal without keys,
use=4415+nl, use=4415+base,

The above example works as expected; the definitions for the keys do not
show up in the 4415-nl entry. However, if the entry 4415+nl did not have
a plus sign within its name, the cancellations would not be marked within
the compiled file and the definitions for the function keys would not be
cancelled within 4415-nl.

DIAGNOSTICS
Most diagnostic messages produced by tic during the compilation of the
source file are preceded with the approximate line number and the name of
the terminal currently being worked on.

mkdir ... returned bad status
The named directory could not be created.

File does not start with terminal names in column one
The first thing seen in the file, after comments, must be the list of
terminal names.

Token after a Iseek(2) not NAMES
Somehow the file being compiled changed during the compilation.

Not enough memory for use_list element
or
Out of memory
Not enough free memory was available (malloc(3C) failed).

Can’t open ...
The named file could not be created.

Error in writing ...
The named file could not be written to.

Can'’t link ... to ...
A link failed.

Error in re-reading compiled file ...
The compiled file could not be read back in.

Premature EOF
The current entry ended prematurely.

Backspaced off beginning of line
This error indicates something wrong happened within tic.

Unknown Capability - "..."
The named invalid capability was found within the file.

2.

TIC(1M) (Terminal Information Utilities) TIC(1M)

Wrong type used for capability "...”
For example, a string capability was given a numeric value.

Unknown token type
Tokens must be followed by ‘@’ to cancel, ‘,” for booleans, ‘#’ for
numbers, or ‘=" for strings.

"...": bad term name
or

Line ...: Illegal terminal name - "..."

Terminal names must start with a letter or digit
The given name was invalid. Names must not contain white space
or slashes, and must begin with a letter or digit.

"...": terminal name too long.
An extremely long terminal name was found.

"...": terminal name too short.
A one-letter name was found.

"..." filename too long, truncating to "..."
The given name was truncated to 14 characters due to UNIX file
name length limitations.

"..." defined in more than one entry. Entry being used is "...".
An entry was found more than once.

Terminal name "..." synonym for itself
A name was listed twice in the list of synonyms.

At least one synonym should begin with a letter.
At least one of the names of the terminal should begin with a
letter.

Illegal character - "..."
The given invalid character was found in the input file.

Newline in middle of terminal name
The trailing comma was probably left off of the list of names.

Missing comma
A comma was missing.

Missing numeric value
The number was missing after a numeric capability.

NULL string value
The proper way to say that a string capability does not exist is to
cancel it. :

Very long string found. Missing comma?
self-explanatory

Unknown option. Usage is:
An invalid option was entered.

Too many file names. Usage is:
self-explanatory

TIC(1M) (Terminal Information Utilities) TIC(1M)

"..." non-existant or permission denied
The given directory could not be written into.

"..." is not a directory
self-explanatory

" . ": Permission denied
access denied.

v...": Not a directory
tic wanted to use the given name as a directory, but it already
exists as a file

SYSTEM ERROR! Fork failed!!!
A fork(2) failed.

Error in following up use-links. Either there is a loop in the links or they
reference non-existant terminals. The following is a list of the entries
involved:
A terminfo(4) entry with a use=name capability either referenced a
non-existant terminal called name or name somehow referred back to
the given entry.

TSORT(1) (Software Generation System Utilities) TSORT(1)

NAME
tsort — topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
The tsort command produces on the standard output a totally ordered list of
items consistent with a partial ordering of items mentioned in the input file.
If no file is specified, the standard input is understood.
The input consists of pairs of items (nonempty strings) separated by blanks.
Pairs of different items indicate ordering. Pairs of identical items indicate
presence, but not ordering.

SEE ALSO
lorder(1).

DIAGNOSTICS

Odd data: there is an odd number of fields in the input file.

UNGET(1) (Source Code Control System Ultilities) UNGET(1)

NAME

unget — undo a previous get of an SCCS file
SYNOPSIS

unget [-1SID] [-s] [-n] files
DESCRIPTION

The unget command undoes the effect of a get —e done prior to creating the
intended new delta. If a directory is named, unget behaves as though each
file in the directory were specified as a named file, except that non-5CCS
files and unreadable files are silently ignored. If a name of - is given, the
standard input is read with each line being taken as the name of an SCCS
file to be processed.

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the “‘new
delta”). The use of this keyletter is necessary only if two
or more outstanding gets for editing on the same SCCS
file were done by the same person (login name). A diag-
nostic results if the specified SID is ambiguous, or if it is
necessary and omitted on the command line.

-s Suppresses the printout, on the standard output, of the
intended delta’s SID.
-n Causes the retention of the gotten file which would nor-

mally be removed from the current directory.
SEE ALSO
delta(1), get(1), sact(1).
help(1) in the User’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

VAL(1)

NAME

(Source Code Control System Utilities) VAL(1)

val - validate SCCS file

SYNOPSIS

val -
val [-s] [-1SID] [-mname] [-ytype] files

DESCRIPTION

The val command determines if the specified file is an SCCS file meeting the
characteristics specified by the optional argument list. Arguments to val
may appear in any order. The arguments consist of keyletter arguments,
which begin with a -, and named files.

The val command has a special argument, -, which causes reading of the
standard input until an end-of-file condition is detected. Each line read is
independently processed as if it were a command line argument list.

The val command generates diagnostic messages on the standard output for
each command line and file processed, and also returns a single 8-bit code
upon exit as described below.

The keyletter arguments are defined as follows. The effects of any keyletter
argument apply independently to each named file on the command line.

-s - The presence of this argument silences the diagnostic message
normally generated on the standard output for any error that is
detected while processing each named file on a given com-
mand line.

-rSID The argument value SID (SCCS IDentification String) is an
SCCS delta number. A check is made to determine if the SID
is ambiguous (e. g., rl is ambiguous because it physically does
not exist but implies 1.1, 1.2, etc., which may exist) or invalid
(e. g., r1.0 or r1.1.0 are invalid because neither case can exist
as a valid delta number). If the SID is valid and not ambigu-
ous, a check is made to determine if it actually exists.

-mname The argument value name is compared with the SCCS %M%
. keyword in file.

-ytype The argument value type is compared with the SCCS %Y%
keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, i. e.,
can be interpreted as a bit string where (moving from left to right) set bits
are interpreted as follows:

bit 0 = missing file argument;

bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted SCCS file;

bit 3 = cannot open file or file not SCCS;

bit 4 = SID is invalid or ambiguous;

bit 5 = SID does not exist;

bit 6 = %Y%, -y mismatch;

bit 7 = %M%, -m mismatch;

VAL(1) (Source Code Control System Utilities) VAL(1)

Note that val can process two or more files on a given command line and in
turn can process multiple command lines (when reading the standard input).
In these cases an aggregate code is returned — a logical OR of the codes gen-
erated for each command line and file processed.

SEE ALSO
admin(1), delta(1), get(1), prs(1).
help(1) in the User’s Reference Manual.
DIAGNOSTICS
Use help(1) for explanations.
BUGS

The val command can process up to 50 files on a single command line.
Any number above 50 will produce a core dump.

VC(1) (Source Code Control System Utilities) VC(1)

NAME
vc — version control

SYNOPSIS
ve [-a] [-t] [-cchar] {-s] [keyword=value ... keyword=value]

DESCRIPTION
The vc command copies lines from the standard input to the standard out-
put under control of its arguments and control statements encountered in the
standard input. In the process of performing the copy operation, user
declared keywords may be replaced by their string value when they appear
in plain text and/or control statements.

The copying of lines from the standard input to the standard output is con-
ditional, based on tests (in control statements) of keyword values specified
in control statements or as vc command arguments.

A control statement is a single line beginning with a control character,
except as modified by the -t keyletter (see below). The default control char-
acter is colon (:), except as modified by the -c keyletter (see below). Input
lines beginning with a backslash (\) followed by a control character are not
control lines and are copied to the standard output with the backslash
removed. Lines beginning with a backslash followed by a non-control char-
acter are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alpha-
betic. A value is any ASCII string that can be created with ed(1); a numeric
value is an unsigned string of digits. Keyword values may not contain
blanks or tabs.

Replacement of keywords by values is done whenever a keyword sur-
rounded by control characters is encountered on a version control statement.
The -a keyletter (see below) forces replacement of keywords in all lines of
text. An uninterpreted control character may be included in a value by
preceding it with \. If a literal \ is desired, then it too must be preceded by

Keyletter Arguments

-a Forces replacement of keywords surrounded by control charac-
ters with their assigned value in all text lines and not just in
vc statements.

-t All characters from the beginning of a line up to and including
the first tab character are ignored for the purpose of detecting
a control statement. If one is found, all characters up to and
including the tab are discarded.

-cchar Specifies a control character to be used in place of :.

-s Silences warning messages (not error) that are normally
printed on the diagnostic output.

Version Control Statements

:dcl keyword, ..., keyword]
Used to declare keywords. All keywords must be declared.

-1-

VvC(1) (Source Code Control System Ugtilities) VC(1)

:asg keyword=value
Used to assign values to keywords. An asg statement overrides the
assignment for the corresponding keyword on the vc command line
and all previous asg’s for that keyword. Keywords declared, but not
assigned values have null values.
:if condition

tend

Used to skip lines of the standard input. If the condition is true, all
lines between the if statement and the matching end statement are
copied to the standard output. If the condition is false, all intervening
lines are discarded, including control statements. Note that interven-
ing if statements and matching end statements are recognized solely
for the purpose of maintaining the proper if-end matching.

The syntax of a condition is:

<cond> :=["not"] <or>

<or> := <and> | <and> "I" <or>

<and> n= <exp> | <exp> "&" <and>

<exp> = "(" <or> ")" | <value> <op> <value>
<op> = N=n | nl=n | nn|nsn

<value> := <arbitrary ASCII string> | <numeric string>

The available operators and their meanings are:

= equal

1= not equal

& and

I or

> greater than

< less than

) used for logical groupings

not may only occur immediately after the if, and

when present, inverts the value of the
entire condition

The > and < operate only on unsigned integer values (e.g., : 012 > 12
is false). All other operators take strings as arguments (e.g., : 012 !=
12 is true). The precedence of the operators (from highest to lowest)
is:

=l=>< all of equal precedence

&

|
Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by at least
one blank or tab.

vC(1) (Source Code Control System Ultilities) VC(1)

stext
Used for keyword replacement on lines that are copied to the standard
output. The two leading control characters are removed, and key-
words surrounded by control characters in text are replaced by their
value before the line is copied to the output file. This action is
independent of the -a keyletter.

:on
soff

Turn on or off keyword replacement on all lines.
:ctl char

Change the control character to char.
:msg message
Prints the given message on the diagnostic output.
:err message
Prints the given message followed by:
ERROR: err statement on line ... (915)

on the diagnostic output. vc halts execution and returns an exit code
of 1. ,

SEE ALSO
ed(1), help(1) in the User’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

EXIT CODES
0 — normal
1 — any error

WHAT(1) (Source Code Control System Utilities) WHAT(1)

NAME
what - identify SCCS files
SYNOPSIS
what [-s] files
DESCRIPTION
The what command searches the given files for all occurrences of the pat-
tern that get(1) substitutes for %Z% (this is @(#) at this printing) and prints
out what follows until the first ©, >, new-line, \, or null character. For
example, if the C program in file f.c contains
char ident[] = " @(#)identification information *;
and f.c is compiled to yield f.0 and a.out, then the command
what f.c f.o a.out
will print
f.c:
identification information
f.o:
identification information
a.out:
identification information
The what command is intended to be used in conjunction with the com-
mand gef(1), which automatically inserts identifying information, but it can
also be used where the information is inserted manually. Only one option
exists:
-s Quit after finding the first occurrence of pattern in each file.
SEE ALSO
get(1).
help(1) in the User’s Reference Manual.
DIAGNOSTICS
Exit status is 0 if any matches are found, otherwise 1. Use help(1) for expla-
nations.
BUGS

It is possible that an unintended occurrence of the pattern @(#) could be
found just by chance, but this causes no harm in nearly all cases.

WTINIT(1M) (AT&T Windowing Utilities) WTINIT(1M)

NAME

wtinit — object downloader for the 5620 DMD terminal
SYNOPSIS

/usr/lib/layersys/wtinit [-d] [-p] file
DESCRIPTION

The wtinit utility downloads the named file for execution in the AT&T Tele-
type 5620 DMD terminal connected to its standard output. file must be a
DMD object file. wtinit performs all necessary bootstrap and protocol pro-
cedures.

There are two options.

-d Prints out the sizes of the text, data, and bss portions of the down-
loaded file on standard error.

-p Prints the down-loading protocol statistics and a trace on standard
error.

The environment variable JPATH is the analog of the shell’s PATH variable
to define a set of directories in which to search for file.

If the environment variable DMDLOAD has the value hex, wtinit will use a
hexadecimal download protocol that uses only printable characters.

Terminal Feature Packages for specific versions of AT&T windowing termi-
nals will include terminal-specific versions of wtinit under those installation
sub-directories. /usr/lib/layersys/wtinit is used for layers(1l) initialization
only when no Terminal Feature Package is in use.

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

WARNING
Standard error should be redirected when using the -d or -p options.

SEE ALSO
layers(1) in the User’s Reference Manual.

XTD(1M) (AT&T Windowing Utilities) XTD(1M)

NAME

xtd — extract and print xt driver link structure
SYNOPSIS

xtd [-f] [-n ..]
DESCRIPTION

The xtd command is a debugging tool for the x#7) driver. It performs an
XTIOCDATA ioctl(2) call on its standard input file to extract the Link data
structure for the attached group of channels. This call will fail if data
extraction has not been configured in the driver or the standard input is not
attached to an x#(7) channel. The data are printed one item per line on the
standard output. The output should probably be formatted via pr -3.

The optional flags affect output as follows:

-n n is a number in the range 0 to 7. Channel 7 is included in the
list of channels to be printed. The default prints all channels,
whereas the occurrence of one or more channel numbers implies
a subset.

-f Causes a “formfeed” character to be put out at the end of the
output, for the benefit of page-display programs.

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

SEE ALSO
xts(1M), xtt(1M), ioctl(2), xtproto(5)
xt(7) in the System Administrator’s Reference Manual.
pr(1) in the User’s Reference Manual.

XTS(1M) (AT&T Windowing Utilities) XTS(1M)

NAME
xts — extract and print xt driver statistics

SYNOPSIS
xts [f]

DESCRIPTION
The xts command is a debugging tool for the x#(7) driver. It performs an
XTIOCSTATS ioctl(2) call on its standard input file to extract the accumu-
lated statistics for the attached group of channels. This call will fail if statis-
tics have not been configured in the driver, or the standard input is not
attached to an x#(7) channel. The statistics are printed, one item per line, on
the stand..rd output.

—f Causes a “formfeed’” character to be put out at the end of the out-
put, for the benefit of page-display programs.

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

SEE ALSO
xtd(1M), xtt(1M), ioctl(2), xtproto(5)
xt(7) in the System Administrator’s Reference Manual.

XTT(1M) (AT&T Windowing Utilities) XTT(1M)

NAME
xtt - extract and print xt driver packet traces

SYNOPSIS
xtt [-f] [-o]

DESCRIPTION
The xtt command is a debugging tool for the xt(7) driver. It performs an
XTIOCTRACE ioctl(2) call on its standard input file to turn on tracing and
extract the circular packet trace buffer for the attached group of channels.
This call will fail if tracing has not been configured in the driver, or the
standard input is not attached to an x#7) channel. The packets are printed
on the standard output.

The optional flags are:

-f Causes a “formfeed” character to be put out at the end of the out-
put, for the benefit of page-display programs.

-0 Turns off further driver tracing.

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

NOTE
If driver tracing has not been turned on for the terminal session by invoking
layers(1) with the -t option, xtt will not generate any output the first time it
is executed.

SEE ALSO
xtd(1M), xts(1M), ioctl(2), layers(5)
xt(7) in the System Administrator’s Reference Manual.
layers(1) in the User’s Reference Manual.

YACC(1) (Extended Software Generation System Utilities) YACC(1)

NAME

yacc — yet another compiler-compiler

SYNOPSIS

yacc [-vdlt] grammar

DESCRIPTION

FILES

The yacc command converts a context-free grammar into a set of tables for a
simple automaton which executes an LR(1) parsing algorithm. The grammar
may be ambiguous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a
program yyparse. This program must be loaded with the lexical analyzer
program, yylex, as well as main and yyerror, an error-handling routine.
These routines must be supplied by the user; lex(1) is useful for creating lex-
ical analyzers usable by yacc.

If the -v flag is given, the file y.&itput is prepared, which contains a
description of the parsing tables and a report on conflicts generated by
ambiguities in the grammar.

If the —d flag is used, the file y.tab.h is generated with the #define state-
ments that associate the yacc-assigned “token codes” with the user-declared
“token names”. This allows source files other than y.tab.c to access the
token codes.

If the -1 flag is given, the code produced in y.tab.c will not contain any
#line constructs. This should only be used after the grammar and the asso-
ciated actions are fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional
compilation control. By default, this code is not included when y.tab.c is
compiled. However, when yacc’s -t option is used, this debugging code
will be compiled by default. Independent of whether the -t option was
used, the runtime debugging code is under the control of YYDEBUG, a
preprocessor symbol. If YYDEBUG has a non-zero value, then the debug-
ging code is included. If its value is zero, then the code will not be
included. The size and execution time of a program produced without the
runtime debugging code will be smaller and slightly faster.

y.output

y.tab.c

y.tab.h defines for token names
yacc.tmp,

yacc.debug, yacc.acts temporary files
/usr/lib/yaccpar parser prototype for C programs

SEE ALSO

lex(1).
Programmer’s Guide.

YACC(1) (Extended Software Generation System Utilities) YACC(1)

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the
standard error output; a more detailed report is found in the y.output file.
Similarly, if some rules are not reachable from the start symbol, this is also
reported.

CAVEAT
Because file names are fixed, at most one yacc process can be active in a
given directory at a given time.

INTRO(2) INTRO(2)

NAME .
intro - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one
or more error returns. An error condition is indicated by an otherwise
impossible returned value. This is almost always —1 or the NULL pointer;
the individual descriptions specify the details. An error number is also
made available in the external variable errno. Errno is not cleared on suc-
cessful calls, so it should be tested only after an error has been indicated.

Each system call description attempts to list all possible error numbers. The
following is a complete list of the error numbers and their names as defined
in <errno.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also returned
for attempts by ordinary users to do things allowed only to the
super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should
exist but doesn’t, or when one of the directories in a path name
does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in
kill(2) or ptrace(2).

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the inter-
rupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error has occurred. This error may in some
cases occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for exam-
ple, a tape drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member
of the exec(2) family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic number
[see a.out(4)].

INTRO(2) INTRO(2)

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read(2) [respec-
tively, write(2)] request is made to a file which is open only for
writing (respectively, reading).

10 ECHILD No child processes
A wait was executed by a process that had no existing or unwaited-
for child processes.

11 EAGAIN No more processes
A fork failed because the system’s process table is full or the user is
not allowed to create any more processes. Or a system call failed
because of insufficient memory or swap space.

12 ENOMEM Not enough space

During an exec(2), brk(2), or sbrk(2), a program asks for more space
than the system is able to supply. This may not be a temporary
condition; the maximum space size is a system parameter. The
error may also occur if the arrangement of text, data, and stack seg-
ments requires too many segmentation registers, or if there is not
enough swap space during a fork(2). If this error occurs on a
resource associated with Remote File Sharing (RFS), it indicates a
memory depletion wich may be temporary, dependent on system
activity at the time the call was invoked.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the
protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an
argument of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required,
e.g., in mount(2).

16 EBUSY Device or resource busy
An attempt was made to mount a device that was already mounted
or an attempt was made to dismount a device on which there is an
active file (open file, current directory, mounted-on file, active text
segment). It will also occur if an attempt is made to enable account-
ing when it is already enabled. The device or resource is currently
unavailable.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.,
link(2).

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

-2 -

INTRO(2)

20

21

22

23

24

25

26

27

28

29

30

31

32

INTRO(2)

ENOTDIR Not a directory
A non-directory was specified where a directory is required, for
example in a path prefix or as an argument to chdir(2).

EISDIR Is a directory
An attempt was made to write on a directory.

EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device;
mentioning an undefined signal in signal(2) or kill(2); reading or
writing a file for which Iseek(2) has generated a negative pointer).
Also set by the math functions described in the (3M) entries of this
manual.

ENFILE File table overflow
The system file table is full, and temporarily no more opens can be
accepted.

EMFILE Too many open files
No process may have more than NOFILES (default 20) descriptors
open at a time.

ENOTTY Not a character device (or) Not a typewriter
An attempt was made to ioctl(2) a file that is not a special character
device.

ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing or
to remove a pure-procedure program that is being executed.

EFBIG File too large
The size of a file exceeded the maximum file size or ULIMIT [see
ulimit (2)).

ENOSPC No space left on device
During a write(2) to an ordinary file, there is no free space left on
the device. In fcntl(2), the setting or removing of record locks on a
file cannot be accomplished because there are no more record
entries left on the system.

ESPIPE Illegal seek
An Iseek(2) was issued to a pipe.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

EMLINK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

EPIPE Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned if
the signal is ignored.

INTRO(2)

33

34

35

36

INTRO(2)

EDOM Math argument
The argument of a function in the math package (3M) is out of the
domain of the function.

ERANGE Result too large
The value of a function in the math package (3M) is not represent-
able within machine precision.

ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not
exist on the specified message queue [see msgop(2)].

EIDRM Identifier removed
This error is returned to processes that resume execution due to the
removal of an identifier from the file system’s name space [see
msgctl(2), semctl(2), and shmctl(2)].

37-44 Reserved numbers

45

46

60

62

63

64

65

EDEADLK Deadlock
A deadlock situation was detected and avoided. This error pertains
to file and record locking.

ENOLCK No lock
In fentl(2) the setting or removing of record locks on a file cannot be
accomplished because there are no more record entries left on the
system.

ENOSTR Not a stream
A putmsg(2) or getmsg(2) system call was attempted on a file
descriptor that is not a STREAMS device.

ETIME Stream ijoctl timeout
The timer set for a STREAMS ioctl(2) call has expired. The cause of
this error is device specific and could indicate either a hardware or
software failure, or perhaps a timeout value that is too short for the
specific operation. The status of the ioctl(2) operation is indeter-
minate.

ENOSR No stream resources
During a STREAMS open(2), either no STREAMS queues or no
STREAMS head data structures were available.

ENONET Machine is not on the network
This error is Remote File Sharing (RFS)-specific. It occurs when
users try to advertise, unadvertise, mount, or unmount remote
resources while the machine has not done the proper start-up to
connect to the network.

ENOPKG No package
This error occurs when users attempt to use a system call from a
package which has not been installed.

INTRO(2)

66

67

68

69

70

71

74

77

83

84

85

INTRO(2)

EREMOTE Resource is remote
This error is RFS-specific. It occurs when users try to advertise a
resource which is not on the local machine, or try to
mount/unmount a device (or path name) that is on a remote
machine.

ENOLINK Virtual circuit is gone
This error is RFS-specific. It occurs when the link (virtual circuit)
connecting to a remote machine is gone.

EADV Advertise error
This error is RFS-specific. It occurs when users try to advertise a
resource which has been advertised already, or try to stop the RFS
while there are resources still advertised, or try to force unmount a
resource when it is still advertised.

ESRMNT Srmount error
This error is RFS-specific. It occurs when users try to stop RFS while
there are resources still mounted by remote machines.

ECOMM Communication error
This error is RFS-specific. It occurs when trying to send messages to
remote machines but no virtual circuit can be found.

EPROTO DProtocol error
Some protocol error occurred. This error is device-specific, but is
generally not related to a hardware failure.

EMULTIHOP Multihop attempted
This error is RFS-specific. It occurs when users try to access remote
resources which are not directly accessible.

EBADMSG Bad message
During a read(2), getmsg(2), or ioctl(2) I_RECVFD system call to a
STREAMS device, something has come to the head of the queue that
can’t be processed. That something depends on the system call:
read(2)—control information or a passed file descriptor.
getmsg(2)—passed file descriptor.
ioctl(2)—control or data information.

ELIBACC Cannot access a needed shared library
Trying to exec(2) an a.out that requires a shared library (to be linked
in) and the shared library doesn’t exist or the user doesn’t have per-
mission to use it.

ELIBMAX Accessing a corrupted shared library
" Trying to exec(2) an a.out that requires a shared library (to be linked
in) and exec(2) could not load the shared library. The shared library
is probably corrupted.

ELIBSCN .lib section in a.out corrupted
Trying to exec(2) an a.out that requires a shared library (to be linked
in) and there was erroneous data in the .lib section of the a.out. The
lib section tells exec(2) what shared libraries are needed. The a.out
is probably corrupted.

INTRO(2) INTRO(2)

86 ELIBMAX Attempting to link in more shared libraries than system limit
Trying to exec(2) an a.out that requires more shared libraries (to be
linked in) than is allowed on the current configuration of the sys-
tem. See the System Administrator’s Guide.

87 ELIBEXEC Cannot exec a shared library directly
Trying to exec(2) a shared library directly. This is not allowed.

DEFINITIONS

Process ID. Each active process in the system is uniquely identified by a
positive integer called a process ID. The range of this ID is from 1 to
30,000. By convention, process-ID 0 and 1 are reserved for special system
processes.

Parent Process ID. A new process is created by a currently active process
[see fork(2)]. The parent process ID of a process is the process ID of its crea-
tor.

Process Group ID. Each active process is a member of a process group that
is identified by a positive integer called the process group ID. This ID is the
process ID of the group leader. This grouping permits the signaling of
related processes [see kill(2)].

Process Group Leader. A process group leader is any process whose pro-
cess group ID is the same as its process ID. Any process that is not a pro-
cess group leader may detach itself from its current process group and
become a new process group leader by calling the setpgrp(2).

Tty Group ID. Each active process can be a member of a terminal group
that is identified by a positive integer called the tty group ID. This grouping
is used to terminate a group of related processes upon termination of one of
the processes in the group [see exit(2) and signal(2)].

Real User ID and Real Group ID. Each user allowed on the system is iden-
tified by a positive integer (0 to 65535) called a real user ID.

Each user is also a member of a group. The group is identified by a positive
integer called the real group ID.

An active process has a real user ID and real group ID that are set to the real
user ID and real group ID, respectively, of the user responsible for the crea-
tion of the process.

Effective User ID and Effective Group ID. An active process has an effec-
tive user ID and an effective group ID that are used to determine file access
permissions (see below). The effective user ID and effective group ID are
equal to the process’s real user ID and real group ID respectively, unless the
process or one of its ancestors evolved from a file that had the set-user-ID
bit or set-group ID bit set [see exec(2)].

-6 -

INTRO(2) INTRO(2)

Super-user. A process is recognized as a super-user process and is granted
special privileges, such as immunity from file permissions, if its effective
user ID is 0.

Special Processes. The processes with a process ID of 0 and a process ID of
1 are special processes and are referred to as proc0 and procl.

Proc0 is the scheduler. Procl is the initialization process (init). Procl is the
ancestor of every other process in the system and is used to control the pro-
cess structure.

File Descriptor. A file descriptor is a small integer used to do I/O on a file.
The value of a file descriptor is from 0 to (NOFILES - 1). A process may
have no more than NOFILES file descriptors open simultaneously. A file
descriptor is returned by system calls such as open(2), or pipe(2). The file
descriptor is used as an argument by calls such as read(2), write(2), ioctl(2),
and close(2).

File Name. Names consisting of 1 to 14 characters may be used to name
an ordinary file, special file or directory.

These characters may be selected from the set of all character values exclud-
ing \0 (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file names
because of the special meaning attached to these characters by the shell [see
sh(1)]. Other characters to avoid are the hypen, blank, tab, <, >,
blackslash, single and double quotes, accent grave, vertical bar, caret, curly
braces, and parentheses. Although permitted, the use of unprintable charac-
ters in file names should be avoided.

Path Name and Path Prefix. A path name is a null-terminated character
string starting with an optional slash (/), followed by zero or more directory
names separated by slashes, optionally followed by a file name.

If a path name begins with a slash, the path search begins at the root direc-
tory. Otherwise, the search begins from the current working directory.

A slash by itself names the root directory. An attempt to create or delete
the path-name slash by itself is undefined and may be considered an error.
The meaning of . and .. are defined under directory.

Unless specifically stated otherwise, the null path name is treated as if it
named a non-existent file.

Directory. Directories organize files into a hierarchical system of files
where directories are the nodes in the hierarchy. A directory is a file that
catalogues the list of files, including directories (sub-directories), that are
directly beneath it in the hierarchy. Directory entries are called links. By
convention, a directory contains at least two links, . and .., referred to as dot

-7

INTRO(2) INTRO(2)

and dot-dot respectively. Dot refers to the directory itself and dot-dot refers
to its parent directory. The root-directory, which is the top-most node of
the hierarchy, has itself as its parent-directory. The path-name of the root-
directory is / and the parent directory of the root-directory is /.

Root Directory and Current Working Directory. Each process has associ-
ated with it a concept of a root directory and a current working directory for
the purpose of resolving path name searches. The root directory of a pro-
cess need not be the root directory of the root file system.

File Access Permissions. Read, write, and execute/search permissions on a
file are granted to a process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the
owner of the file; and the appropriate access bit of the ““owner” por-
tion (0700) of the file mode is set.

The effective user ID of the process does not match the user ID of
the owner of the file; and the effective group ID of the process
matches the group of the file; and the appropriate access bit of the
“group”” portion (0070) of the file mode is set.

The effective user ID of the process does not match the user ID of
the owner of the file; and the effective group ID of the process does
not match the group ID of the file; and the appropriate access bit of
the “other” portion (0007) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier. A message queue identifier (msqid) is a unique
positive integer created by a msgget(2) system call. Each msqid has a mes-
sage queue and a data structure associated with it. The data structure is
referred to as msqid_ds and contains the following members:

struct ipc_perm msg_perm;
struct msg *msg_first;
struct msg *msg_last;
ushort msg_cbytes;
ushort msg_qnum;
ushort msg._qbytes;
ushort msg_lspid;
ushort msg_lrpid;
time_t msg stime;
time_t msg_rtime;
time_t msg_ctime;

msg_perm is an ipc_perm structure that specifies the message operation
permission (see below). This structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */

-8 -

INTRO(2) INTRO(2)

ushort uid; /* user id */

ushort gid; /* group id */

ushort mode; /* r/w permission */
ushort seq; /* slot usage sequence # %/
key_t key; /* key */

msg *msg_first

is a pointer to the first message on the queue.
msg *msg_last

is a pointer to the last message on the queue.

msg_cbytes
is the current number of bytes on the queue.

msg_qnum
is the number of messages currently on the queue.

msg gbytes
is the maximum number of bytes allowed on the queue.

msg_lspid
is the process id of the last process that performed a msgsnd opera-
tion.

msg_lrpid
is the process id of the last process that performed a msgrcv opera-
tion.

msg_stime
is the time of the last msgsnd operation.

msg_rtime
is the time of the last msgrcv operation.

msg_ctime
is the time of the last msgctl(2) operation that changed a member of
the above structure.

Message Operation Permissions. In the msgop(2) and msgctl(2) system call
descriptions, the permission required for an operation is given as
" {token} ", where "token" is the type of permission needed, interpreted as

follows:
00400 Read by user
00200 Write by user
00040 Read by group
00020 Write by group
00004 Read by others
00002 Write by others

Read and write permissions on a msqid are granted to a process if one or
more of the following are true:

The effective user ID of the process is super-user.

INTRO(2) INTRO(2)

The effective user ID of the process matches msg perm.cuid or
msg_perm.uid in the data structure associated with msgid and the
appropriate bit of the ““user” portion (0600) of msg_perm.mode is
set.

The effective group ID of the process matches msg perm.cgid or
msg_perm.gid and the appropriate bit of the “group” portion (060)
of msg_perm.mode is set.

The appropriate Dbit of the “other” portion (006) of
msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier. A semaphore identifier (semid) is a unique positive
integer created by a semget(2) system call. Each semid has a set of sema-
phores and a data structure associated with it. The data structure is referred
to as semid_ds and contains the following members:

struct ipc_perm sem_perm; /* operation permission struct */

struct sem *sem_base; /* ptr to first semaphore in set */
ushort sem_nsems; /* number of sems in set */
time_t sem_otime; /* last operation time */

time_t sem_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

sem_perm is an ipc_perm structure that specifies the semaphore operation
permission (see below). This structure includes the following members:

ushort uid; /* user id */
ushort gid; /* group id */
ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort mode; /* r/a permission */
ushort seq; /* slot usage sequence number */
key_t key; /* key */
sem_nsems

is equal to the number of semaphores in the set. Each semaphore
in the set is referenced by a positive integer referred to as a
sem_num. Sem_num values run sequentially from 0 to the value of
sem_nsems minus 1.

sem_otime
is the time of the last semop(2) operation.

sem_ctime
is the time of the last semctl(2) operation that changed a member of
the above structure.

A semaphore is a data structure called sem that contains the following

members:
ushort semval; /* semaphore value */
short sempid; /* pid of last operation */

- 10 -

INTRO(2) INTRO(2)

ushort semncnt; /* # awaiting semval > cval */
ushort semzent; /* # awaiting semval = 0 */

semval
is a non-negative integer which is the actual value of the semphore.
sempid
is equal to the process ID of the last process that performed a sema-
phore operation on this semaphore.

semncnt
is a count of the number of processes that are currently suspended
awaiting this semaphore’s semval to become greater than its current
value.

semzcnt
is a count of the number of processes that are currently suspended
awaiting this semaphore’s semval to become zero.

Semaphore Operation Permissions. In the semop(2) and semctl(2) system
call descriptions, the permission required for an operation is given as
" {token} ", where "token" is the type of permission needed, interpreted as

follows:
00400 Read by user
00200 Alter by user
00040 Read by group
00020 Alter by group
00004 Read by others
00002 Alter by others

Read and alter permissions on a semid are granted to a process if one or
more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches sem_perm.cuid or
sem_perm.uid in the data structure associated with semid , and the
appropriate bit of the “user’”” portion (0600) of sem_perm.mode is
set.

The effective group ID of the process matches sem_perm.cgid or
sem_perm.gid and the appropriate bit of the “group” portion (060)
of sem_perm.mode is set.

The appropriate bit of the “other”” portion (006) of sem_perm.mode
is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier. A shared memory identifier (shmid) is a unique
positive integer created by a shmget(2) system call. Each shmid has a seg-
ment of memory (referred to as a shared memory segment) and a data struc-
ture associated with it. (Note that these shared memory segments must be
explicitly removed by the user after the last reference to them is removed.)

11 -

INTRO(2) INTRO(2)

The data structure is referred to as shmid_ds and contains the following

members:
struct ipc_perm shm_perm; /* operation permission struct %/
int shm_segsz; /* size of segment */
struct region *shm_reg; /*ptr to region structure */
char pad[4]; /* for swap compatibility */
ushort shm_lpid; /* pid of last operation */
ushort shm__cpid; /* creator pid */
ushort shm_nattch; /* number of current attaches */
ushort shm_cnattch; /* used only for shminfo */
time_t shm_atime; /* last attach time */
time_t shm_dtime; /* last detach time */
time_t shm_ctime; /* last change time #/

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

shm_perm is an ipc_perm structure that specifies the shared memory
operation permission (see below). This structure includes the following

members:
ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; /* 1/w permission */
ushort seq; /* slot usage sequence # */
key_t key; /* key */
shm_segsz
specifies the size of the shared memory segment in bytes.
shm__cpid
is the process id of the process that created the shared memory
identifier.
shm_lpid
is the process id of the last process that performed a shmop(2)
operation.
shm_nattch
is the number of processes that currently have this segment
attached.
shm_atime

is the time of the last shma#(2) operation,

shm_dtime
is the time of the last shmdt(2) operation.

shm_ ctime
is the time of the last shmctl(2) operation that changed one of the
members of the above structure.

-12 -

INTRO(2) INTRO(2)

Shared Memory Operation Permissions. In the shmop(2) and shmctl(2)
system call descriptions, the permission required for an operation is given as
v{token}", where "token" is the type of permission needed, interpreted as

follows:
00400 Read by user
00200 Write by user
00040 Read by group
00020 Write by group
00004 Read by others
00002 Write by others

Read and write permissions on a shmid are granted to a process if one or
more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid and the
appropriate bit of the “user” portion (0600) of shm_perm.mode is
set.

The effective group ID of the process matches shm_perm.cgid or
shm_perm.gid and the appropriate bit of the “group’ portion (060)
of shm_perm.mode is set.

The appropriate bit of the “other” portion (06) of shm_perm.mode
is set.

Otherwise, the corresponding permissions are denied.

STREAMS. A set of kernel mechanisms that support the development of
network services and data communication drivers. It defines interface stan-
dards for character input/output within the kernel and between the kernel
and user-level processes. The STREAMS mechanism is composed of utility
routines, kernel facilities, and a set of data structures.

Stream. A stream is a full-duplex data path within the kernel between a
user process and driver routines. The primary components are a stream
head, a driver, and zero or more modules between the stream head and
driver. A stream is analogous to a Shell pipeline except that data flow and
processing are bidirectional.

Stream Head. In a stream, the stream head is the end of the stream that pro-

vides the interface between the stream and a user process. The principle

functions of the stream head are processing STREAMS-related system calls,
- and passing data and information between a user process and the stream.

-13 -

INTRO(2) INTRO(2)

Driver. In a stream, the driver provides the interface between peripheral
hardware and the stream. A driver can also be a pseudo-driver, such as a
multiplexer or log driver [see log(7)], which is not associated with a hardware
device.

Module. A module is an entity containing processing routines for input
and output data. It always exists in the middle of a stream, between the
stream’s head and a driver. A module is the STREAMS counterpart to the
commands in a Shell pipeline except that a module contains a pair of func-
tions which allow independent bidirectional (downstream and upstream) data
flow and processing.

Downstream. In a stream, the direction from stream head to driver.
Upstream. In a stream, the direction from driver to stream head.

Message. In a stream, one or more blocks of data or information, with asso-
ciated STREAMS control structures. Messages can be of several defined
types, which identify the message contents. Messages are the only means of
transferring data and communicating within a stream.

Message Queue. In a stream, a linked list of messages awaiting processing
by a module or driver.

Read Queue. In a stream, the message queue in a module or driver contain-
ing messages moving upstream.

Write Queue. In a stream, the message queue in a module or driver contain-
ing messages moving downstream.

Multiplexer. A multiplexer is a driver that allows streams associated with
several user processes to be connected to a single driver, or several drivers
to be connected to a single user process. STREAMS does not provide a gen-
eral multiplexing driver, but does provide the facilities for constructing
them, and for connecting multiplexed configurations of streams.

SEE ALSO
intro(3).

-14 -

ACCESS(2) ACCESS(2)

NAME
access — determine accessibility of a file

SYNOPSIS
#include <unistd.h>

int access (path, amode)
char *path;
int amode;

DESCRIPTION
The path argument points to a path name naming a file. The access func-
tion checks the named file for accessibility according to the bit pattern con-
tained in amode, using the real user ID in place of the effective user ID and
the real group ID in place of the effective group ID. The bit pattern con-
tained in amode is constructed as follows:

04 read

02 write

01 execute (search)

00 check existence of file

The symbolic constants for the argument amode are defined by the
<unistd.h> header file and are as follows:

Name Description

R_OK test for read permission.

W_OK test for write permission.

X_OK test for execute (search) permission.
F_OK test for existence of file.

The argument amode is either the logical OR of one or more of the values
of the symbolic constants for R_OK, W_OK, and X_OK or is the value of
the symbolic constant F_OK.

Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] Read, write, or execute (search) permission is
requested for a null path name.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the
path prefix.

[EROFS] Write access is requested for a file on a read-only
file system.

[ETXTBSY] Write access is requested for a pure procedure
(shared text) file that is being executed.

[EACCES] Permission bits of the file mode do not permit
the requested access.

[EFAULT] Path points outside the allocated address
space for the process.

[EINTR] A signal was caught during the access
system call.

[ENOLINK] Path points to a remote machine and the link

to that machine is no longer active.

-1 -

ACCESS(2) ACCESS(2)

[EMULTIHOP] Components of path require hopping to multiple
remote machines.

The owner of a file has permission checked with respect to the “owner”
read, write, and execute mode bits. Members of the file’s group other than
the owner have permissions checked with respect to the “group” mode bits,
and all others have permissions checked with respect to the “other”” mode
bits.

SEE ALSO
chmod(2), stat(2).

DIAGNOSTICS
If the requested access is permitted, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

ACCT(2) ACCT(2)

NAME

acct — enable or disable process accounting

SYNOPSIS

int acct (path)
char #path;

DESCRIPTION

acct is used to enable or disable the system process accounting routine. If
the routine is enabled, an accounting record will be written on an account-
ing file for each process that terminates. Termination can be caused by one
of two things: an exit call or a signal [see exit(2) and signal(2)]. The effec-
tive user ID of the calling process must be super-user to use this call.

path points to a pathname naming the accounting file. The accounting file
format is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur
during the system call. It is disabled if path is zero and no errors occur dur-
ing the system call.

acct will fail if one or more of the following are true:

[EPERM] The effective user of the calling process is not super-user.

[EBUSY] An attempt is being made to enable accounting when it is
already enabled.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] One or more components of the accounting file path name
do not exist.

[EACCES] The file named by path is not an ordinary file.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points to an illegal address.

SEE ALSO

exit(2), signal(2), acct(4).

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

ALARM(2) ALARM(2)

NAME
alarm — set a process alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
The alarm system call instructs the alarm clock of the calling process to send
the signal SIGALRM to the calling process after the number of real time
seconds specified by sec have elapsed [see signal(2)].

Alarm requests are not stacked; successive calls reset the alarm clock of the
calling process.

If sec is 0, any previously made alarm request is canceled. The fork(2) sys-
tem call sets the alarm clock of a new process to 0. A process created by
the exec(2) family of calls inherits the time left on the old process’s alarm
clock.

SEE ALSO
exec(2), fork(2), pause(2), signal(2), sigpause(2), sigset(2).

DIAGNOSTICS
The alarm system call returns the amount of time previously remaining in
the alarm clock of the calling process.

BRK(2)

NAME

BRK(2)

brk, sbrk — change data segment space allocation

SYNOPSIS

int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION

The brk and sbrk system calls are used to change dynamically the amount of
space allocated for the calling process’s data segment [see exec(2)]. The
change is made by resetting the process’s break value and allocating the
appropriate amount of space. The break value is the address of the first
location beyond the end of the data segment. The amount of allocated
space increases as the break value increases. Newly allocated space is set to
zero. If, however, the same memory space is reallocated to the same pro-
cess, its contents are undefined.

The brk system call sets the break value to endds and changes the allocated
space accordingly.

The sbrk system call adds incr bytes to the break value and changes the
allocated space accordingly. Incr can be negative, in which case the amount
of allocated space is decreased.

For the 80286 computer endds and incr are rounded up to the next multiple
of 512 in large model programs.

The brk and sbrk system calls will fail without making any change in the
allocated space if one or more of the following are true:

[ENOMEM] (For 80386 and 80286 computers) Such a change
would result in more space being allocated than is
allowed by the system-imposed maximum process
size [see ulimit(2)].

[ENOMEM] (For the 80286 computer only) Such a change would
result in the segment selector of the break location
being greater than or equal to the segment selector of
any attached shared memory segment [see shmop(2)].

[ENOMEM] (For the 80286 computer only) A large model process
attempts to brk to an endds that has a segment selec-
tor which is greater than one more than the segment
selector of the old break value.

[ENOMEM] (For the 80286 computer only) Such a change would
result in the break value being in the stack or text
areas of the process.

[ENOMEM] (For the 80286 computer only) Such a change would
result in the break value being placed within an unal-
located area between two currently allocated seg-
ments.

BRK(2)

BRK(2)

[EAGAIN] (For the 80386 computer only) Total amount of sys-
tem memory available for a read during physical 10 is
temporarily insufficient [see shmop(2)]. This may
occur even though the space requested was less than
the system-imposed maximum process size [see
ulimit(2)).

The following table summarizes the actions of brk(2), and sbrk(2) in the dif-
ferent memory models (S = small, L = large). The table is applicable to the

80286 computer only.

Operation Model Action
sbrk(0) S Returns current break value.
L Returns starting address of NEXT data
segment.
sbrk(+incr) S Allocates incr bytes in current segment.
L Allocates incr bytes in next data segment
(space from old break value* to end of
old segment is not allocated).

SL Returns the same value as sbrk (0).
sbrk(-incr) S Frees incr bytes in current segment.

L Frees incr bytes from as many segments
as needed.

SL Returns the same value as sbrk (0).
brk(endds) S,L Sets break value to endds and allocates
(current segment) or frees memory to that point.
brk(endds) L Sets break value to endds and frees
(previous segment) memory between old break value and endds.

Endds must be an allocated location.
Can free multiple segments.
brk(endds) L Sets break value to endds in next segment.
(new segment) L Can allocate up to one segment per call.
L Space from old break value to end of
old segment is not allocated.

* m"Old break value" is the break value previous to the execution of the

current operation.
RETURN VALUE

On the 80386 computer, upon successful completion brk returns a value of
0, and sbrk returns the old break value. On the 80286 computer, upon suc-
cessful completion brk returns a value of 0, and sbrk returns either the
current break value (small model) or the starting address of the next data
segment (large model). Otherwise, a value of -1 is returned and errno is set

to indicate the error.
CAVEATS (80286 computer only)

Brk(2) and sbrk(2) are not intended for general use: The malloc(3C) function
is the recommended way to obtain arbitrary amounts of memory.

Processes must not assume that the allocated address space is contiguous.
When large model processes perform any sbrk with a non-negative incr or a

2.

BRK(2) BRK(2)

brk to a new segment, the area between the old segment’s break location
offset and the end of the old segment (offset 65535) is not accessible. Any
reference to this area will cause a segmentation violation.

SEE ALSO
exec(2), shmop(2), ulimit(2), end(3C).

CHDIR(2)

NAME

CHDIR(2)

chdir — change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION

Path points to the path name of a directory. chdir causes the named direc-

tory to become

the current working directory, the starting point for path

searches for path names not beginning with /.

chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

[ENOTDIR]
[ENOENT]
[EACCES]

[EFAULT]

[EINTR]
[ENOLINK]

[EMULTIHOP]

SEE ALSO
chroot(2).

DIAGNOSTICS
Upon successful

A component of the path name is not a directory.
The named directory does not exist.

Search permission is denied for any component of the path
name,

Path points outside the allocated address space of the pro-
cess.

A signal was caught during the chdir system call.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

completion, a value of 0 is returned. Otherwise, a value of

—1 is returned and errno is set to indicate the error.

CHMOD(2) CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int chmod (path, mode)
char *path;
int mode;

DESCRIPTION
The path argument points to a path name naming a file. The chmod system
call sets the access permission portion of the named file’s mode according to
the bit pattern contained in mode.

Access permission bits are interpreted as follows:

‘04000 Set user ID on execution.
020#0 Set group ID on execution if # is 7, 5, 3, or 1
Enable mandatory file/record locking if # is 6, 4, 2, or 0
01000 Save text image after execution.
00400 Read by owner.
00200 Write by owner.
00100 Execute (search if a directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

Symbolic constants defining the access permission bits are in the
<sys/stat.h> header file and should be used to construct the argument
mode. The value of the argument mode should be the logical OR of the
values of the desired permissions:

Name Description

S_ISUID Set user-ID on execution.
S_ISGID Set group-ID on execution.
S_ISVTX Reserved.

S_IRUSR Read by owner.

S_IWUSR Write by owner.

S_IXUSR Execute (search) by owner.
S_IRGRP Read by group.

S_IWGRP Write by group.

S_IXGRP Execute (search) by group.
S_IROTH Read by others (i.e., anyone else).
S_IWOTH Write by others.

S_IXOTH Execute (search) by others.

-1-

CHMOD(2) CHMOD(2)

S_ENFMT Record locking enforced.

The effective user ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000
(save text image on execution) is cleared.

If the effective user ID of the process is not super-user and the effective
group ID of the process does not match the group ID of the file, mode bit
02000 (set group ID on execution) is cleared.

If a 410 executable file has the sticky bit (mode bit 01000} set, the operating
system will not delete the program text from the swap area when the last
user process terminates. If a 413 executable file has the sticky bit set, the
operating system will not delete the program text from memory when the
last user process terminates. In either case, if the sticky bit is set, the text
will already be available (either in a swap area or in memory) when the
next user of the file executes it, thus making execution faster.

If the mode bit 02000 (set group ID on execution) is set and the mode bit
00010 (execute or search by group) is not set, mandatory file/record locking
will exist on a regular file. This may effect future calls to open(2), creat(2),
read(2), and write(2) on this file.

The chmod system call will fail and the file mode will be unchanged if one
or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

[EPERM] The effective user ID does not match the owner of the file
and the effective user ID is not super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] The path argument points outside the allocated address
space of the process.

[EINTR] A signal was caught during the chmod system call.

[ENOLINK] The path argument points to a remote machine and the link

to that machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chown(2), creat(2), fentl(2), mknod(2), open(2), read(2), write(2).
chmod(1) in the User’s Reference Manual.

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

CHOWN(2)

NAME

CHOWN(2)

chown — change owner and group of a file

SYNOPSIS

int chown (path, owner, group)

char *path;

int owner, group;

DESCRIPTION

Path points to a path name naming a file. The owner ID and group ID of
the named file are set to the numeric values contained in owner and group

respectively.

Only processes with effective user ID equal to the file owner or super-user
may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set-
group-ID bits of the file mode, 04000 and 02000 respectively, will be

cleared.

chown will fail and the owner and group of the named file will remain
unchanged if one or more of the following are true:

[ENOTDIR]
[ENOENT]
[EACCES]

[EPERM]

[EROFS]
[EFAULT]

[EINTR]
[ENOLINK]

[EMULTIHOP]

SEE ALSO
chmod(2).

A component of the path prefix is not a directory.
The named file does not exist.

Search permission is denied on a component of the path
prefix.

The effective user ID does not match the owner of the file
and the effective user ID is not super-user.

The named file resides on a read-only file system.

Path points outside the allocated address space of the pro-
cess.

A signal was caught during the chown system call.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

chown(1) in the User’s Reference Manual.

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

CHROOT(2) CHROOT(2)

NAME

chroot — change root directory

SYNOPSIS

int chroot (path)
char #path;

DESCRIPTION

The path argument points to a path name naming a directory. The chroot
system call causes the named directory to become the root directory, the
starting point for path searches for path names beginning with /. The
user’s working directory is unaffected by the chroot system call.

The effective user ID of the process must be super-user to change the root
directory.

The .. entry in the root directory is interpreted to mean the root directory
itself. Thus, .. cannot be used to access files outside the subtree rooted at
the root directory.

The chroot system call will fail and the root directory will remain
unchanged if one or more of the following are true:

[ENOTDIR] Any component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EPERM] The effective user ID is not super-user.

[EFAULT] The path argument points outside the allocated address
space of the process.

[EINTR] A signal was caught during the chroot system call.

[ENOLINK] The Path argument points to a remote machine and the link

to that machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO

chdir(2).

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

CLOSE(2) CLOSE(2)

NAME

close — close a file descriptor

SYNOPSIS

int close (fildes)
int fildes;

DESCRIPTION

The fildes argument is a file descriptor obtained from a creat, open, dup,
fentl, or pipe system call. The close system call closes the file descriptor
indicated by fildes. All outstanding record locks owned by the process (on
the file indicated by fildes) are removed.

If a STREAMS [see intro(2)] file is closed, and the calling process had previ-
ously registered to receive a SIGPOLL signal [see signal(2) and sigset(2)] for
events associated with that file [see I_SETSIG in streamio(7)], the calling pro-
cess will be unregistered for events associated with the file. The last close
for a'stream causes the stream associated with fildes to be dismantled. If
O_NDELAY is not set and there have been no signals posted for the stream,
close waits up to 15 seconds, for each module and driver, for any output to
drain before dismantling the stream. If the O_NDELAY flag is set or if there
are any pending signals, close does not wait for output to drain and disman-
tles the stream immediately.

The named file is closed unless one or more of the following are true:

[EBADF] The fildes argument is not a valid open file descriptor.
[EINTR] A signal was caught during the close system call.
[ENOLINK] Fildes is on a remote machine and the link to that machine

is no longer ctive.

SEE ALSO

creat(2), dup(2), exec(2), fentl(2), intro(2), open(2), pipe(2), signal(2), sig-
set(2).
streamio(7) in the System Administrator’s Reference Manual.

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

CREAT(2) CREAT(2)

NAME
creat — create a new file or rewrite an existing one

SYNOPSIS
#include <sys/types.h>
#include <sys/stath>

int creat (path, mode)
char *path;
int mode;

DESCRIPTION
The creat system call creates a new ordinary file or prepares to rewrite an
existing file named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file’s owner ID is set to the effective user ID of
the process; the group ID of the process is set to the effective group ID of
the process; and the low-order 12 bits of the file mode are set to the value
of mode modified as follows:

All bits set in the process’s file mode creation mask are cleared [see
umask(2)).

The “save text image after execution bit” of the mode is cleared [see
chmod(2)].

Upon successful completion, a write-only file descriptor is returned and the
file is open for writing, even if the mode does not permit writing. The file
pointer is set to the beginning of the file. The file descriptor is set to remain
open across exec system calls [see fcntl(2)]. No process may have more
than 20 files open simultaneously. A new file may be created with a mode
that forbids writing.

Symbolic constants defining the access permission bits are specified in the
<sys/stat.h> header file and should be used to construct mode [see
chmod(2)].

The call creat(path, mode) is equivalent to the following [see open(2)]:
open(path, O_WRONLY | O_CREAT | O_TRUNC, mode)

The creat system call fails if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

[ENOENT] The path name is null.

[EACCES] The file does not exist and the directory in which the file is
to be created does not permit writing,.

[EROFS] The named file resides or would reside on a read-only file
system.

CREAT(2)

[ETXTBSY]

[EACCES]
[EISDIR]
[EMFILE]
[EFAULT]

[ENFILE]
[EAGAIN]

[EINTR]
[ENOLINK]

[EMULTIHOP]

[ENOSPC]
SEE ALSO

CREAT(2)

The file is a pure procedure (shared text) file that is being
executed.

The file exists and write permission is denied.
The named file is an existing directory.
NOFILES file descriptors are currently open.

The path argument points outside the allocated address
space of the process.

The system file table is full.

The file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file [see chmod(2)].

A signal was caught during the creat system call.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

The file system is out of inodes.

chmod(2), close(2), dup(2), fentl(2), Iseek(2), open(2), read(2), umask(2),

write(2).
DIAGNOSTICS

Upon successful completion, a non-negative integer, namely the file descrip-
tor, is returned. Otherwise, a value of -1 is returned, and errno is set to
indicate the error.

DUP(2) DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION
The fildes argument is a file descriptor obtained from a creat, open, dup,
fentl, or pipe system call. The dup system call returns a new file descriptor
having the following in common with the original:

Same open file (or pipe).
Same file pointer (i.e., both file descriptors share one file pointer).
Same access mode (read, write, or read/write).

The new file descriptor is set to remain open across exec system calls [see

fentl(2)].
The file descriptor returned is the lowest one available.
The dup system call will fail if one or more of the following are true:

[EBADF] The fildes argument is not a valid open file descriptor.
[EINTR] A signal was caught during the dup system call.
[EMFILE] NOFILES file descriptors are currently open.
[ENOLINK] Fildes is on a remote machine and the link to that machine
is no longer active.
SEE ALSO
close(2), creat(2), exec(2), fentl(2), open(2), pipe(2), lockf(3C).
DIAGNOSTICS

Upon successful completion a non-negative integer, namely the file descrip-
tor, is returned. Otherwise, a value of -1 is returned, and errno is set to
indicate the error.

EXEC(2) EXEC(2)

NAME
exec: execl, execv, execle, execve, execlp, execvp — execute a file

SYNOPSIS
int execl (path, arg0, argl, .., argn, (char %)0)
char *path, *arg0, *argl, .., *argn;

int execv (path, argv)
char *path, *argv[];

int execle (path, arg0, argl, ..., argn, (char %0, envp)
char #path, *arg0, *argl, .., *argn, *envp[|;

int execve (path, argv, envp)
char *path, *argv[], *envp[|;

int execlp (file, arg0, argl, .., argn, (char *)0)
char #file, *arg0, *argl, .., *argn;

int execvp (file, argv)
char #file, *argv|]

DESCRIPTION
The exec system call in all its forms transforms the calling process into a
new process. The new process is constructed from an ordinary, executable
file called the new process file. This file consists of a header [see a.out(4)], a
text segment, and a data segment. The data segment contains an initialized
portion and an uninitialized portion (bss). There can be no return from a
successful exec because the calling process is overlaid by the new process.

When a C program is executed, it is called as follows:

main (arge, argv, envp)

int argc;

char *+argv, **envp;
where argc is the argument count, argv is an array of character pointers to
the arguments themselves, and envp is an array of character pointers to the
environment strings. As indicated, argc is conventionally at least one and
the first member of the array points to a string containing the name of the
file.

The path argument points to a path name that identifies the new process
file.

The file argument points to the new process file. The path prefix for this
file is obtained by a search of the directories passed as the environment line
"PATH =" [see environ(5)]. The environment is supplied by the shell [see
sh(1)].

The arg0, argl, ..., argn are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process. By
convention, at least arg0 must be present and point to a string that is the
same as path (or its last component).

The argv is an array of character pointers to null-terminated strings. These
strings constitute the argument list available to the new process. By con-
vention, argv must have at least one member, and it must point to a string

-1-

EXEC(2) EXEC(2)

that is the same as path (or its last component). The argv is terminated by a
null pointer.

The envp is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process. The envp is ter-
minated by a null pointer. For execl and execv, the C run-time start-off rou-
tine places a pointer to the environment of the calling process in the global
cell:
extern char *»*environ;
and it is used to pass the environment of the calling process to the new pro-
cess.

File descriptors open in the calling process remain open in the new process,
except for those whose close-on-exec flag is set; see fcntl(2). For those file
descriptors that remain open, the file pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the new
process. Signals set to be ignored by the calling process will be set to be
ignored by the new process. Signals set to be caught by the calling process
will be set to terminate new process; see signal(2).

For signals set by sigset(2), exec will ensure that the new process has the
same system signal action for each signal type whose action is SIG_DFL,
SIG_IGN, or SIG_HOLD as the calling process. However, if the action is
to catch the signal, then the action will be reset to SIG_DFL, and any pend-
ing signal for this type will be held.

If the set-user-ID mode bit of the new process file is set [see chmod(2)], exec
sets the effective user ID of the new process to the owner ID of the new pro-
cess file. Similarly, if the set-group-ID mode bit of the new process file is
set, the effective group ID of the new process is set to the group ID of the
new process file. The real user ID and real group ID of the new process
remain the same as those of the calling process.

The shared memory segments attached to the calling process will not be
attached to the new process [see shmop(2)].

Profiling is disabled for the new process; see profil(2).

The new process also inherits the following attributes from the calling pro-
cess:

nice value [see nice(2)]

process ID

parent process ID

process group ID

semadj values [see semop(2)]

tty group ID [see exit(2) and signal(2)]
trace flag [see ptrace(2) request 0]
time left until an alarm clock signal [see alarm(2)]
current working directory

root directory

file mode creation mask [see umask(2)]
file size limit [see ulimit(2)]

2.

EXEC(2)

EXEC(2)

utime, stime, cutime, and cstime [see times(2))
file-locks [see fcntl(2) and lockf(3C)]

The exec system call will fail and return to the calling process if one or more
of the following are true:

[ENOENT]
[ENOTDIR]
[EACCES]

[EACCES]
[EACCES]
[ENOEXEC]

[ETXTBSY]

[ENOMEM]

[E2BIG]

[EFAULT]
[EFAULT]
[EAGAIN]
[ELIBACC]
[ELIBEXEC]
[EINTR]
[ENOLINK]

[EMULTIHOP]

SEE ALSO

One or more components of the new process path name of
the file do not exist.

A component of the new process path of the file prefix is
not a directory.

Search permission is denied for a directory listed in the
new process file’s path prefix.

The new process file is not an ordinary file.
The new process file mode denies execution permission.

The exec is not an execlp or execvp, and the new process
file has the appropriate access permission but an invalid
magic number in its header.

The new process file is a pure procedure (shared text) file
that is currently open for writing by some process.

The new process requires more memory than is allowed by
the system-imposed maximum MAXMEM.

The number of bytes in the new process’s argument list is
greater than the system-imposed limit of 5120 bytes.

Required hardware is not present.

Path, argv, or envp point to an illegal address.

Not enough memory.

Required shared library does not have execute permission.
Trying to exec(2) a shared library directly.

A signal was caught during the exec system call.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

alarm(2), exit(2), fentl(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), sig-
set(2), times(2), ulimit(2), umask(2), lockf(3C), a.out(4), environ(5).
sh(1) in the User’s Reference Manual.

DIAGNOSTICS

If exec returns to the calling process, an error has occurred; the return value
will be -1 and errno will be set to indicate the error.

EXIT(2)

NAME

EXIT(2)

exit, _exit — terminate process

SYNOPSIS

void exit (status)
int status;

void _exit (status)
int status;

DESCRIPTION

The exit system call terminates the calling process with the following conse-
quences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is notified
of the calling process’s termination and the low order eight bits (i.e., bits
0377) of status are made available to it [see wait(2)].

If the parent process of the calling process is not executing a wait, the cal-
ling process is transformed into a zombie process. A zombie process is a
process that only occupies a slot in the process table. It has no other space
allocated either in user or kernel space. The process table slot that it occu-
pies is partially overlaid with time accounting information (see
<sys/proc.h>) to be used by times.

The parent process ID of all of the calling processes’ existing child processes
and zombie processes is set to 1. This means the initialization process [see
intro(2)] inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory iden-
tifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value
[see semop(2)], that semadj value is added to the semval of the specified
semaphore.

If the process has a process, text, or data lock, an unlock is performed [see
plock(2)].

An accounting record is written on the accounting file if the system’s
accounting routine is enabled [see acct (2)].

If the process ID, tty group ID, and process group ID of the calling process
are equal, the SIGHUP signal is sent to each process that has a process
group ID equal to that of the calling process.

A death of child signal is sent to the parent.

The C function exit may cause cleanup actions before the process exits. The
function _exit circumvents all cleanup.

SEE ALSO

acct(2), intro(2), plock(2), semop(2), signal(2), sigset(2), wait(2).

WARNING

See WARNING in signal(2).

EXIT(2) EXIT(2)

DIAGNOSTICS
None. There can be no return from an exit system call.

FCNTL(2)

NAME
fentl - file control

SYNOPSIS

FCNTL(2)

#include <fentl.h>

int fentl (fildes,
int fildes, cmd;

DESCRIPTION
The fcntl system
ment is an open
pipe system call.

cmd, arg)

call provides for control over open files. The fildes argu-
file descriptor obtained from a creat, open, dup, fentl, or
The data type and value of arg are specific to the type of

command specified by c¢md. The symbolic names for commands and file

status flags are de

fined by the <fcntl.h> header file.

The commands available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or
equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descrip-
tors share one file pointer).

Same access mode (read, write, or read /write).

Same file status flags (i.e., both file descriptors share the
same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec(2) system
calls.

Get the close-on-exec flag associated with the file descrip-
tor fildes. If the low-order bit is 0 the file will remain
open across exec; otherwise the file will be closed upon
execution of exec.

Set the close-on-exec flag associated with fildes to the
low-order bit of arg (0 or 1 as above).

Get file status flags [see open(2)].

Set file status flags to arg. Only certain flags can be set
[see fcntl(5)].

The following commands are used for file-locking and record-locking.
Locks may be placed on an entire file or segments of a file.

F_GETLK

Get the first lock which blocks the lock description given by the
variable of type struct flock pointed to by arg. The information

retrieved
structure.

overwrites the information passed to fentl in the flock
If no lock is found that would prevent this lock from

being created, then the structure is passed back unchanged except
for the lock type which will be set to F_UNLCK.

-1-

FCNTL(2) FCNTL(2)

F_SETLK ,
Set or clear a file segment lock according to the variable of type
struct flock pointed to by arg [see fentl(5)]. The cmd F_SETLK is used
to establish read (F_RDLCK) and write (F_WRLCK) locks, as well as
remove either type of lock (F_UNLCK). If a read or write lock can-
not be set, fentl will return immediately with an error value of —1.

F_SETLKW
This cmd is the same as F_SETLK except that if a read or write lock
is blocked by other locks, the process will sleep until the segment is
free to be locked.

A read lock prevents any process from write locking the protected area.
More than one read lock may exist for a given segment of a file at a given
time. The file descriptor on which a read lock is being placed must have
been opened with read access.

A write lock prevents any process from read-locking or write-locking the
protected area. Only one write lock may exist for a given segment of a file
at a given time. The file descriptor on which a write lock is being placed
must have been opened with write access.

The structure flock defined by the <fentl.h> header file describes a lock. It
describes the type (I_type), starting offset (I_whence), relative offset
(I_start), size (I_len), and process-ID (I_pid):

short I_type; /* F_RDLCK, F_WRLCK, F_UNLCK */
short I_whence; /* flag for starting offset */

long [_start; /* relative offset in bytes */

long I_len; /* if 0 then until EOF */

short I_pid; /* returned with F_GETLK */

The value of I_whence is 0, 1, or 2 to indicate that the relative offset, I_start
bytes, will be measured from the start of the file, current position, or end of
file, respectively. The value of I_len is the number of consecutive bytes to
be locked. The process id is used only with the F_GETLK cmd to return the
values for a blocking lock. Locks may start and extend beyond the current
end of a file, but may not be negative relative to the beginning of the file.
A lock may be set to always extend to the end of file by setting I_len to
zero (0). If such a lock also has I_whence and I_start set to zero (0), the
whole file will be locked. Changing or unlocking a segment from the mid-
dle of a larger locked segment leaves two smaller segments for either end.
Locking a segment that is already locked by the calling process causes the
old lock type to be removed and the new lock type to take effect. All locks
associated with a file for-a given process are removed when a file descriptor
for that file is closed by that process or the process holding that file descrip-
tor terminates. Locks are not inherited by a child process in a fork(2) system
call.

When mandatory file and record locking is active on a file, [see chmod(2)],
read and write system calls issued on the file will be affected by the record
locks in effect.

FCNTL(2)

FCNTL(2)

The fcntl system call will fail if one or more of the following are true:

[EBADF]
[EINVAL]

[EINVAL]

[EACCES]

[ENOLCK]

[EMFILE]

[EBADF]

[EBADF]

[EDEADLK]

[EFAULT)]

[EINTR]
[ENOLINK]

SEE ALSO

The fildes argument is not a valid open file descriptor.

The ¢cmd argument is F_DUPFD. The arg argument is either
negative, or greater than or equal to the configured value
for the maximum number of open file descriptors allowed
each user.

The c¢md argument is F_GETLK, F_SETLK, or SETLKW and
arg or the data it points to is not valid.

The cmd argument is F_SETLK the type of lock (I_type) is a
read (F_RDLCK) lock and the segment of a file to be locked
is already write locked by another process or the type is a
write (F_WRLCK) lock and the segment of a file to be
locked is already read or write locked by another process.

The cmd argument is F_SETLK or F_SETLKW, the type of
lock is a read or write lock, and there are no more record
locks available (too many file segments locked) because the
system maximum has been exceeded.

The cmd argument is F_DUPFD and file-descriptors are
currently open in the calling-process.

The cmd argument is F_SETLK of F_SETLKW, the type of
lock (I—type) is a read-lock (F_RDLCK), and fildes is not a
valid file-descriptor open for reading.

The c¢md argument is F_SETLK or F_SETLKW, the type of
lock (I-type) is a write-lock (F—-WRLCK), and fildes is not a
valid file-descriptor open for writing.

The c¢md argument is F_SETLKW, the lock is blocked by
some lock from another process, and putting the calling-
process to sleep, waiting for that lock to become free,
would cause a deadlock.

The c¢md argument is F_SETLK, arg points outside the pro-
gram address space. '

A signal was caught during the fcntl system call.

Fildes is on a remote machine and the link to that machine
is no longer active.

close(2), creat(2), dup(2), exec(2), fork(2), open(2), pipe(2), fentl(5).

DIAGNOSTICS

Upon successful completion, the value returned depends on cmd as follows:
F_DUPFD A new file descriptor.
F_GETFD Value of flag (only the low-order bit is defined).

F_SETFD

Value other than -1.

F_GETFL Value of file flags.

-3-

FCNTL(2) FCNTL(2)

F..SETFL Value other than -1.
F_GETLK Value other than 1.
F_SETLK Value other than -1.
F_SETLKW Value other than -1.
Otherwise, a value of -1 is returned, and errno is set to indicate the error.

WARNINGS
Because in the future the variable errno will be set to EAGAIN rather than
EACCES when a section of a file is already locked by another process, port-
able application programs should expect and test for either value.

FORK(2)

NAME

FORK(2)

fork - create a new process

SYNOPSIS

int fork ()

DESCRIPTION

The fork system call causes creation of a new process. The new process
(child process) is an exact copy of the calling process (parent process). This
means the child process inherits the following attributes from the parent

process:

environment

close-on-exec flag [see exec(2)]

signal handling settings (i.e., SIG_DFL, SIG_IGN, SIG_HOLD, func-
tion address)

set-user-ID mode bit

set-group-ID mode bit

profiling on/off status

nice value [see nice(2)]

all attached shared memory segments [see shmop(2)]
process group ID

tty group ID [see exit(2)]

current working directory

root directory

file mode creation mask [see umask(2)]

file size limit [see ulimit(2)]

The child process differs from the parent process in the following ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process
ID of the parent process).

The child process has its own copy of the parent’s file descriptors.
Each of the child’s file descriptors shares a common file pointer with
the corresponding file descriptor of the parent.

All semadj values are cleared [see semop(2)].

Process locks, text locks, and data locks are not inherited by the
child [see plock(2)].

The child process’s utime, stime, cutime, and cstime are set to 0.
The time left until an alarm clock signal is reset to 0.

The fork system call will fail and no child process will be created if one or

more of

the following are true:

[EAGAIN] The system-imposed limit on the total number of processes

under execution would be exceeded.

[EAGAIN] The system-imposed limit on the total number of processes

under execution by a single user would be exceeded.

FORK(2) FORK(2)

[EAGAIN] Total amount of system memory available when reading
via raw IO is temporarily insufficient.
[ENOMEM] The process requires more space than the system is able to
supply.
SEE ALSO

exec(2), nice(2), plock(2), ptrace(2), semop(2), shmop(2), signal(2), sigset(2),
times(2), ulimit(2), umask(2), wait(2).

DIAGNOSTICS
Upon successful completion, fork returns a value of 0 to the child process
and returns the process ID of the child process to the parent process. Other-
wise, a value of -1 is returned to the parent process, no child process is
created, and errno is set to indicate the error.

GETDENTS(2) GETDENTS(2)

NAME

getdents — read directory entries and put in a file system independent for-
mat

SYNOPSIS

#include <sys/dirent.h>

int getdents (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

DESCRIPTION

The fildes argument is a file descriptor obtained from an open(2) or dup(2)
system call.

The getdents system call attempts to read nbyte bytes from the directory
associated with fildes and to format them as file system independent direc-
tory entries in the buffer pointed to by buf. Since the file system indepen-
dent directory entries are of variable length, in most cases the actual number
of bytes returned will be strictly less than nbyte.

The file system independent directory entry is specified by the dirent struc-
ture. For a description of this see dirent(4).

On devices capable of seeking, getdents starts at a position in the file given
by the file pointer associated with fildes. Upon return from getdents, the file
pointer is incremented to point to the next directory entry.

This system call was developed in order to implement the readdir(3X) rou-
tine [for a description see directory(3X)], and should not be used for other
purposes.

The getdents system call will fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for reading.

[EFAULT] Buf points outside the allocated address space.

[EINVAL] nbyte is not large enough for one directory entry.

[ENOENT] The current file pointer for the directory is not located at a
valid entry.

[ENOLINK] Fildes points to a remote machine and the link to that
machine is no longer active.

[ENOTDIR] Fildes is not a directory.

[EIO] An 1/0O error occurred while accessing the file system.

SEE ALSO

directory(3X), dirent(4).

DIAGNOSTICS

Upon successful completion a non-negative integer is returned, indicating
the number of bytes actually read. A value of 0 indicates the end of the
directory has been reached. If the system call failed, a -1 is returned, and
errno is set to indicate the error.

GETMSG(2) GETMSG(2)

NAME
getmsg — get next message off a stream

SYNOPSIS
#include <stropts.h>

int getmsg(fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int *flags;

DESCRIPTION
The getmsg system call retrieves the contents of a message [see intro(2)]
located at the stream head read queue from a STREAMS file, and places the
contents into user-specified buffer(s). The message must contain either a
data part, a control part or both. The data and control parts of the message
are placed into separate buffers, as described below. The semantics of each
part is defined by the STREAMS module that generated the message.

The fd argument specifies a file descriptor referencing an open stream.
Ctiptr and dataptr each point to a strbuf structure which contains the follow-
ing members:

int maxlen; /* maximum buffer length */
int len; /* length of data */
char *buf; /* ptr to buffer */

where buf points to a buffer in which the data or control information is to
be placed, and maxlen indicates the maximum number of bytes this buffer
can hold. On return, len contains the number of bytes of data or control
information actually received, or is 0 if there is a zero-length control or data
part, or is -1 if no data or control information is present in the message.
Flags may be set to the values 0 or RS_HIPRI and is used as described
below.

The ctlptr argument is used to hold the control part from the message and
dataptr is used to hold the data part from the message. If ctiptr (or dataptr)
is NULL or the maxlen field is -1, the control (or data) part of the message is
not processed and is left on the stream head read queue, and len is set to -1.
If the maxlen field is set to 0 and there is a zero-length control (or data)
part, that zero-length part is removed from the read queue and len is set to
0. If the maxlen field is set to 0 and there are more than zero bytes of con-
trol (or data) information, that information is left on the read queue and len
is set to 0. If the maxlen field in ctiptr or dataptr is less than, respectively,
the control or data part of the message, maxlen bytes are retrieved. In this
case, the remainder of the message is left on the stream head read queue and
a non-zero return value is provided, as described below under DIAGNOS-
TICS. If information is retrieved from a priority message, flags is set to
RS_HIPRI on return.

GETMSG(2) GETMSG(2)

By default, getmsg processes the first priority or non-priority message avail-
able on the stream head read queue. However, a user may choose to
retrieve only priority messages by setting flags to RS_HIPRI. In this case,
getmsg will only process the next message if it is a priority message.

If O_NDELAY has not been set, getmsg blocks until a message, of the type(s)
specified by flags (priority or either), is available on the stream head read
queue. If O_NDELAY has been set and a message of the specified type(s) is
not present on the read queue, getmsg fails and sets errno to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved,
getmsg will continue to operate normally, as described above, until the
stream head read queue is empty. Thereafter, it will return 0 in the len fields
of ctlptr and dataptr.

The getmsg system call fails if one or more of the following are true:

[EAGAIN] The O_NDELAY flag is set, and no messages are available.

[EBADF] Fd is not a valid file descriptor open for reading.

[EBADMSG] Queued message to be read is not valid for getmsg.

[EFAULT] Ctlptr, dataptr, or flags points to a location outside the allo-
cated address space.

[EINTR] A signal was caught during the getmsg system call.

[EINVAL] An illegal value was specified in flags, or the stream refer-
enced by fd is linked under a multiplexer.

[ENOSTR] A stream is not associated with fd.

A getmsg can also fail if a STREAMS error message had been received at the
stream head before the call to getmsg. The error returned is the value con-
tained in the STREAMS error message.

SEE ALSO
intro(2), read(2), poll(2), putmsg(2), write(2).
STREAMS Primer
STREAMS Programmer’s Guide

DIAGNOSTICS

Upon successful completion, a non-negative value is returned. A value of 0
indicates that a full message was read successfully. A return value of
MORECTL indicates that more control information is waiting for retrieval. A
return value of MOREDATA indicates that more data is waiting for retrieval.
A return value of MORECTLIMOREDATA indicates that both types of infor-
mation remain. Subsequent getmsg calls will retrieve the remainder of the
message.

GETPID(2) GETPID(2)

NAME
getpid, getpgrp, getppid — get process, process group, and parent process IDs

SYNOPSIS
int getpid ()
int getpgrp ()
int getppid ()

DESCRIPTION
The getpid system call returns the process ID of the calling process.

The getpgrp system call returns the process group ID of the calling process.
The getppid system call returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

GETUID(2) GETUID(2)

NAME
getuid, geteuid, getgid, getegid — get real user, effective user, real group, and
effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()
unsigned short getgid ()
unsigned short getegid ()

DESCRIPTION
The getuid system call returns the real user ID of the calling process.

The geteuid system call returns the effective user ID of the calling process.
The getgid system call returns the real group ID of the calling process.
The getegid system call returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

IOCTL(2) IOCTL(2)

NAME

ioctl — control device

SYNOPSIS

int ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION

The ioct! system call performs a variety of control functions on devices and
STREAMS. For non-STREAMS files, the functions performed by this call are
device-specific control functions. The arguments request and arg are passed
to the file designated by fildes and are interpreted by the device driver. This
control is infrequently used on non-STREAMS devices, with the basic
input/output functions performed through the read(2) and write(2) system
calls.

For STREAMS files, specific functions are performed by the ioctl call as
described in streamio(7).

Fildes is an open file descriptor that refers to a device. Request selects the
control function to be performed and will depend on the device being
addressed. Arg represents additional information that is needed by this
specific device to perform the requested function. The data type of arg
depends upon the particular control request, but it is either an integer or a
pointer to a device-specific data structure.

In addition to device-specific and STREAMS functions, generic functions are
provided by more than one device driver, for example, the general terminal
interface [see termio(7)].

The ioctl system call will fail for any type of file if one or more of the fol-
lowing are true:

[EBADF] Fildes is not a valid open file descriptor.

[ENOTTY] Fildes is not associated with a device driver that accepts
control functions.

[EINTR] A signal was caught during the ioct! system call.

The ioctl system call will also fail if the device driver detects an error. In
this case, the error is passed through ioctl without change to the caller. A
particular driver might not have all of the following error cases. Other
requests to device drivers will fail if one or more of the following are true:

[EFAULT] Request requires a data transfer to or from a buffer pointed
to by arg, but some part of the buffer is outside the
process’s allocated space.

[EINVAL] Regquest or arg is not valid for this device.

[EIO] Some physical I/O error has occurred.

[ENXIO] The request and arg are valid for this device driver, but the
service requested cannot be performed on this particular
subdevice.

IOCTL(2) IOCTL(2)

[ENOLINK] Fildes is on a remote machine and the link to that machine
is no longer active.

STREAMS errors are described in streamio(7).

SEE ALSO
streamio(7), termio(7) in the System Administrator’s Reference Manual.

DIAGNOSTICS
Upon successful completion, the value returned depends upon the device
control function, but must be a non-negative integer. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

KILL(2)

NAME

KILL(2)

kill - send a signal to a process or a group of processes

SYNOPSIS

#include <signal.h>

int kill (pid, sig)
int pid, sig;

DESCRIPTION

The kill system call sends a signal to a process or a group of processes. The
process or group of processes to which the signal is to be sent is specified
by pid. The signal that is to be sent is specified by sig and is either one
from the list given in signal(2), or 0. If sig is 0 (the null signal), error check-
ing is performed but no signal is actually sent. This can be used to check
the validity of pid.

The real or effective user ID of the sending process must match the real or

effective user ID of the receiving process, unless the effective user ID of the
sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special
processes [see intro(2)] and will be referred to below as proc0 and procl,
respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is
equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding proc0 and procl whose
process group ID is equal to the process group ID of the sender.

If pid is —1 and the effective user ID of the sender is not super-user, sig will
be sent to all processes excluding proc0 and procl whose real user ID is
equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be
sent to all processes excluding proc0 and procl.

If pid is negative but not ~1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid.

The kill system call will fail and no signal will be sent if one or more of the
following are true:

[EINVAL] Sig is not a valid signal number.

[EINVAL] Sig is SIGKILL and pid is 1 (procl).

[ESRCH] No process can be found corresponding to that specified by
pid.

[EPERM] The user ID of the sending process