<4t|ﬁ!ﬂm~

UNIX System Laboratories, Inc.

A Subsidiary of AT&T

UNIX® SYSTEM V
RELEASE 4

Programmer's Guide:
Networking Interfaces

='—:%‘—f—-AT&T

UNIX System Laboratories, Inc.
A Subsidiary of AT&T

UNIX® SYSTEM V
RELEASE 4

Programmer's Guide:
Networking Interfaces

Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984, 1983 AT&T
Copyright 1986, 1987, 1988, 1989 Sun Microsystems, Inc.
Copyright 1985 Regents of the University of California

All Rights Reserved

Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means—graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap-
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state-
ments of any kind in this document, its updates, supplements, or special editions, whether such er-
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth-
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu-
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS
UNIX is a registered trademark of UNIX System Laboratories, Inc.

LEGAL NOTICE TO USERS

“Yellow Pages" is a registered trademark in the United Kingdom of British Teleoommunicaﬁons ple,
and may also be a trademark of other telephone companies around the world.

AT&T is revising future versions of software and documentation to replace all references to “Yellow
Pages” and “YP" with “Network Information Service” and “NIS" respectively. The functionality of the
two is the same; only the name is being changed.

109876543

ISBN 0-13-947078-b

UNIX

PRESS
A Prentice Hall Title

P R ENTI CE H A L L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:

Corporate Sales

Prentice Hall

Englewood Cliffs, N.J. 07632.

Or call: (201) 592-2498.

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

AT&T UNIX® System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User’s and Administrator’s Guide
UNIX® System V Release 4 Product Overview and Master Index
UNIXS System V Release 4 System Administrator’s Guide

UNIX System V Release 4 System Administrator’s Reference Manual
UNIX® System V Release 4 User’s Guide

UNIX® System V Release 4 User’s Reference Manual

General Programmer’s Series

UNIX® System V Release 4 Programmer’s Guide: ANSI C
and Programming Support Tools

UNIX® System V Release 4 Programmer’s Guide: Character User Interface
(FMLI and ETI)

UNIX® System V Release 4 Programmer’s Guide: Networking Interfaces
UNIX® System V Release 4 Programmer’s Guide: POSIX Conformance

UNIX® System V Release 4 Programmer’s Guide: System Services
and Application Packaging Tools

UNIX® System V Release 4 Programmer’s Reference Manual

System Programmer’s Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide

UNIX® System V Release 4 Device Driver Interface / Driver—Kernel
Interface (DDI1/ DKI) Reference Manual

UNIX® System V Release 4 Migration Guide
UNIX® System V Release 4 Programmer’s Guide: STREAMS

Available from Prentice Hall

Contents of Volume

TLI and Sockets Programming
Introduction

Transport Interface Programming

The Sockets Interface

Sockets Migration and Sockets-to-TLI Conversion
Index: TLI and Sockets Programming

Remote Procedure Calls

Introduction to Remote Procedure Calls

rpcgen Programming Guide

Remote Procedure Call Programming Guide

External Data Representation Standard: Protocol
Specification

Remote Procedure Calls: Protocol Specification

RPC Administration

The YP Service

Index: Remote Procedure Calls

Network Selection and Name-to-Address

Mappping
Network Selection and Name-to-Address Mapping

Index: Network Selection and Name-to-Address Mapping

Contents of Volume

Table of Contents

Writing a Port Monitor for the Service

Access Facility
Writing a Port Monitor for the Service Access Facility
Index: Writing a Port Monitor for the Service Access Facility

Appendix A: Manual Pages

ii Programmer’s Guide: Networking Interfaces

~ TLIAND SOCKETS PROGRAMMING

ONININVYHOOHd SL1IND0S ANV I1L

Contents

1 Introduction
Introduction 1-1

2 Transport Interface Programming
Introduction 2-1
Background 2-2
Document Organization 2-5
Overview of the Transport Interface 2-6
Introduction to Connection-Mode Service 2-16
Introduction to Connectionless-Mode Service 2-40
A Read/Write Interface 2-47
Advanced Topics 2-51
State Transitions 2-61
Guidelines for Protocol Independence 2-69
Some Examples 2-71
Glossary 2-88

3 The Sockets Interface

Background 3-1
Basics 3-2
Supporting Routines 3-23
Client/Server Model 3-30
Advanced Topics 3-41

Table of Contents i

Table of Contents

| Sockets Migration and Sockets-to-TLI

Conversion

Sockets Mlgratlon and Sockets-to-TLI Conversuon 4-1
| Index

Index I-1

] Programmer’s Guide: Networking Interfaces

Figures and Tables

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

OSI Reference Model

Transport Interface

Channel Between User and Provider

Transport Connection

Listening and Responding Transport Endpoints
Initiating an Internet Domain Stream Connection
Accepting an Internet Domain Stream Connection
Reading Internet Domain Datagrams

Sending an Internet Domain Datagram

Using select () to Check for Pending Connections
Remote Login Client Code

Remote Login Server

Output of ruptime Program

rwho Server

Figure 3-10: Flushing Terminal I/O on Receipt of Out Of Band Data
Figure 3-11: Use of Asynchronous Notification of I/O Requests
Figure 3-12: Use of the SIGCHLD Signal

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:

Table 2-1:
Table 2-2:
Table 2-3:
Table 2-4:
Table 2-5:
Table 2-6:
Table 2-7:
Table 2-8:
Table 2-9:

Client Side of Stream-Oriented Application

TLI Client Code

Sockets Server Code

TLI Server Code

Sending Internet Domain Datagram

TLI Datagram Code

Local Management Routines of the Transport Interface
Routines for Establishing a Transport Connection
Connection Mode Data Transfer Routines
Connection Release Routines

Routines for Connectionless-Mode Data Transfer
States Describing Transport Interface State Transitions
Outgoing Events

Incoming Events
Common Local Management State Table

Table 2-10: Connectionless-Mode State Table

Table 2-11:

Table 3-1:

Connection-Mode State Table
Run-Time Library Routines

Table of Contents

2-2

2-8
2-11
2-31
3-10
3-12
3-15
3-16
3-20
3-28
3-31
3-37
3-38
3-42
3-45
3-47
4-2

4-4

4-6

4-10
4-12
2-9

2-12
2-12
2-13
2-14
2-61
2-62
2-64
2-67
2-67
2-68
3-27

Table of Contents

Table 4-1: Table of TLI/Sockets Equivalents. 4-16
Table 4-2: Differences in Sockets Implementations 4-18

iv Programmer’s Guide: Networking Interfaces

1. INTRODUCTION

N O Blalel= 1y

1 Introduction

Introduction
Organization of the Document
Network Selection and Name-to-Address Mapping

Table of Contents

Introduction

The AT&T Transport Interface (TLI) was introduced in UNIX System V Release
3 as a standard transport-independent programming interface. The Network
Selection and Name-to-Address Mapping facilities have been added to Release
4.0 to provide a means of guaranteeing media and protocol independence for
transport applications. Network Selection and Name-to-Address Mapping allow
programmers to get transport-specific information to network applications in a
transport-independent way.

As part of the unification of UNIX System V and Berkeley UNIX, the sockets
interface and support for the DARPA protocols (the TCP/IP Internet Package)
have also been added to System V Release 4.0.

Both TLI and sockets provide a programming interface to the transport layer.
In System V Release 4.0, both are implemented within the STREAMS frame-
work. They differ in the following ways:

m TLI is media- and protocol-independent. It allows applications to run
over any transport protocol that supports the TLI interface.

m The sockets interface has historically been tied to the Internet protocol
suite, TCP/IP and UDP/IP.

It is expected that new applications will take advantage of TLI's protocol
independence and that the socket interface will be used primarily in expanding
and maintaining existing sockets-based applications.

Organization of the Document

The document contains this Introduction and three major chapters. Chapter 2,
“Transport Interface Programming,” describes the UNIX System Transport
Interface (TLI).

Chapter 3, “The Sockets Interface,” describes the socket-based interface to the
transport layer.

Chapter 4, “Sockets Migration and Sockets-to-TLI Conversion,” describes the
differences between the TLI and sockets interfaces and shows how BSD sockets
applications can be adapted to System V Release 4, and how sockets applica-
tions, whether Berkeley- or System V-based, can be modified to run under TLI.
The chapter includes parallel code examples and tables of equivalent sockets
and TLI functions.

Introduction 1-1

Introduction

Network Selection and Name-to-Address Mapping

TLI applications require an understanding of the Network Selection and Name-
to-Address Mapping facilities provided with this release if they are to run as
media- and protocol-independent apphcatlons Network Selection provides a
standard interface to the networks available in any current environment.
Name-to-Address Mapping allows appllcatlons to translate transport-specific
addresses. The following material is available:

m Programmer’s Guide: Networking Interfaces. Chapter 8, “Network Selection
and Name-to-Address Mapping.” This chapter provides comprehensive
coverage of these facilities.

m System Administrator’s Guide. Chapter 10, “Network Services.” The
description of the Network Selection and Name-to-Address Mapping facil-
ities is intended for administrators and does not include complete descrip-
tions of the library routines.

m Programmer’s Guide: Networking Interfaces. The following manual pages are
included at the end of the Network Selection and Name-to-Address Map-
ping chapter:

o getnetconfig(3N). Describes the Network Selection library routines
that manipulate the network conﬁguratlon administrative file,
netconfig.

o getnetpath(3N). Describes the routines that manipulate the NET-
PATH variable. The NETPATH environment variable allows pro-
grammers to choose the networks in the netconfig file that an
application is to try.

o netconfig(4). Describes the network configuration database file.
o environ(5). Describes the NETPATH environment variable.

o netdir(3N). Contains descriptions of the Name-to-Address Map-
ping library functions.

1-2 Programmer‘s Guide: Networking Interfaces

2 Transport Interface Programming

Introduction 2-1
Background 22
Document Organization 2-5
Overview of the Transport Interface 2-6
Modes of Service 2-7
m Connection-Mode Service 2-8
m Connectionless-Mode Service 2-14
State Transitions 2-14

Introduction to Connection-Mode Service 2-16

Local Management 2-16
® The Client 2-18
m The Server 2-20
Connection Establishment 2-23
a The Client 2-24
m Event Handling 2-26
m The Server 2-27
Data Transfer 2-31
m The Client 2-33
m The Server 2-34
Connection Release 2-36
m The Server 2-37
m The Client 2-38

Table of Contents i

Table of Contents

Introduction to Connectionless-Mode

Service 2-40
Local Management 2-40
Data Transfer 2-43
Datagram Errors 2-45
A Read/Write Interface 2-47
write 2-48
read 2-49
close 2-49
Advanced Topics 2-51
Asynchronous Execution Mode 2-51
Advanced Programming Example 2-52
State Transitions 2-61
Transport Interface States 2-61
Outgoing Events 2-62
Incoming Events 2-64
Transport User Actions 2-65
State Tables 2-65
Guidelines for Protocol Independence 2-69

il Programmer’s Guide: Networking Interfaces

Table of Contents

Some Examples 2-71
Connection-Mode Client 2-71
Connection-Mode Server 2-73
Connectionless-Mode Transaction Server 2-77
Read/Write Client 2-79
Event-Driven Server 2-81
Glossary 2-88

Table of Contents fii

Introduction

This chapter provides detailed information, with various examples, on the UNIX
system Transport Interface. This interface is intended to supersede the socket-
based interprocess communications mechanisms as the standard means of gain-
ing direct access to transport services.

The following discussion assumes a working knowledge of UNIX system and C
language programming and data communication concepts. Familiarity with the
Reference Model of Open Systems Interconnection (OSI) is required as well.

Transport Interface Programming 241

Background

To place the Transport Interface in perspective, a discussion of the OSI Reference
Model is first presented. The Reference Model partitions networking functions
into seven layers, as depicted in Figure 2-1.

Figure 2-1: OSI Reference Model

Layer 7 application
Layer 6 presentation
Layer 5 session
Layer 4 tra'nsporf
Layer 3 network
Layer 2 data link
Layer 1 physical
Layer 1 The physical layer is responsible for the transmission of raw

data over a communication medium.

Layer 2 The data link layer provides the exchange of data between net-
work layer entities. It detects and corrects any errors that may
occur in the physical layer transmission.

Layer 3 The network layer manages the operation of the network. In
particular, it is responsible for the routing and management of
data exchange between transport layer entities within the net-
work.

Layer 4 The transport layer provides transparent data tranéfer services
between session layer entities by relieving them from concerns
of how reliable and cost-effective transfer of data is achieved.

2-2 Programmer’s Guide: Networking Interfaces

Background

Layer 5 The session layer provides the services needed by presentation
layer entities that enable them to organize and synchronize their
dialogue and manage their data exchange.

Layer 6 The presentation layer manages the representation of informa-
tion that application layer entities either communicate or refer-
ence in their communication.

Layer 7 The application layer serves as the window between correspond-
ing application processes that are exchanging information.

A basic principle of the Reference Model is that each layer provides services
needed by the next higher layer in a way that frees the upper layer from con-
cern about how these services are provided. This approach simplifies the design
of each particular layer.

Industry standards either have been or are being defined at each layer of the
Reference Model. Two standards are defined at each layer: one that specifies an
interface to the services of the layer, and one that defines the protocol by which
services are provided. A service interface standard at any layer frees users of
the service from details of how that layer’s protocol is implemented, or even
which protocol is used to provide the service.

The transport layer is important because it is the lowest layer in the Reference
Model that provides the basic service of reliable, end-to-end data transfer
needed by applications and higher layer protocols. In doing so, this layer hides
the topology and characteristics of the underlying network from its users. More
important, however, the transport layer defines a set of services common to
layers of many contemporary protocol suites, including the International Stan-
dards Organization (ISO) protocols, the Transmission Control Protocol and Inter-
net Protocol (TCP/IP) of the ARPANET, Xerox Network Systems (XNS), and the
Systems Network Architecture (SNA).

A transport service interface, then, enables applications and higher layer proto-
cols to be implemented without knowledge of the underlying protocol suite.
That is a principle goal of the UNIX system Transport Interface. Also, because
an inherent characteristic of the transport layer is that it hides details of the
physical medium being used, the Transport Interface offers both protocol and
medium independence to networking applications and higher layer protocols.

Transport Interface Programming 2-3

Background

The UNIX system Transport Interface was modeled after the industry standard
ISO Transport Service Definition (ISO 8072). As such, it is intended for those
applications and protocols that require transport services. Because the Tran-
sport Interface provides reliable data transfer, and because its services are com-
mon to several protocol suites, many networking applications will find these
services useful.

The Transport Interface is implemented as a user library using the STREAMS
input/output mechanism. Therefore, many services available to STREAMS appli-
cations are also available to users of the Transport Interface. These services will
be highlighted throughout this guide. For detailed information about STREAMS,
see the DDI Driver-Kernel Interface (DDI/DKI) Reference Manual or the
Programmer’s Guide: STREAMS.

2-4 Programmer’s Guide: Networking Interfaces

Document Organization

This chapter is organized as follows:

“Overview of the Transport Interface,” a summary of the basic services
available to Transport Interface users and a presentation of the back-
ground information needed for the remainder of the section.

“Introduction to Connection-Mode Service,” a description of the services
associated with connection-based (or virtual circuit) communication.

“Introduction to Connectionless-Mode Service,” a description of the ser-
vices associated with connectionless (or datagram) communication.

A Read/Write Interface,” a description of how users can use the services
of read(2) and write(2) to communicate over a transport connection.

“’Advanced Topics,” a discussion of important concepts not covered in
earlier sections. These include asynchronous event handling and process-
ing of multiple, simultaneous connect requests.

“‘State Transitions,” which defines the allowable state transitions associ-
ated with the Transport Interface.

“Guidelines for Protocol Independence,” which establishes necessary
guidelines for developing software that can be run without change over
any transport protocol developed for the Transport Interface.

“Examples,” which presents the full listing of each programming example
used throughout the guide.

“Glossary,” a definition of the Transport Interface terms and acronyms
used in this section.

This section describes the more important and common facilities of the Tran-
sport Interface, but is not meant to be exhaustive. Appendix A of this docu-
ment contains manual pages giving complete descriptions of each Transport

Interface routine.

Transport Interface Programming 2-5

Overview of the Transport Interface

This section presents a high level overview of the services of the Transport
Interface, which supports the transfer of data between two user processes. Fig-
ure 2-2 illustrates the Transport Interface.

Figure 2-2: Transport Interface

transport
user

.. Transport Interface

service events
and indications

transport
provider

The transport provider is the entity that provides the services of the Transport
Interface, and the transport user is the entity that requires these services. An
example of a transport provider is the ISO transport protocol, while a transport
user may be a networking application or session layer protocol.

The transport user accesses the services of the transport provider by issuing the
appropriate service requests. One example is a request to transfer data over a
connection. Similarly, the transport provider notifies the user of various events,
such as the arrival of data on a connection.

The Network Services Library of UNIX System V includes a set of functions that
support the services of the Transport Interface for user processes (see intro(3)).
These functions enable a user to make requests to the provider and process
incoming events. Programs using the Transport Interface can link the appropri-
ate routines as follows:

2-6 Programmer’s Guide: Networking Interfaces

Overview of the Transport Interface

Modes of Service

The Transport Interface provides two modes of service:
m connection-mode
m connectionless-mode -

Connection-mode is circuit-oriented and enables the transmission of data over
an established connection in a reliable, sequenced manner. It also provides an
identification procedure that avoids the overhead of address resolution and
transmission durmg the data transfer phase. This service is attractive for appli-
cations that require relatlvely long-lived, datastream-oriented interactions.

Connectlonless-mode, by contrast, is message-orlented and supports data
transfer in self-contained units with no logical relationship required among mul-
tiple units. This service requires only a preexisting association between the peer
users involved, which determines the characteristics of the data to be transmit-
ted. All the information required to deliver a unit of data (for example, the des-
tination address) is presented to the transport provider, together with the data
to be transmitted, in one service access (which need not relate to any other ser-
vice access). Each unit of data transmitted is entirely self-contained.
Connectionless-mode service is attractive for applications that:

m involve short-term request/response interactions
m exhibit a high level of redundancy
m are dynamically reconfigurable

= do not require guaranteed, in-sequence delivei'y of data

Transport Interface Programming 2-7

Overview of the Transport Interface

Connection-Mode Service

The connection-mode transport service is characterized by four phases:
m local management
m connection establishment
m data transfer

B connection release

Local Management

The local management phase defines local operations between a transport user
and a transport provider. For example, a user must establish a channel of com-
munication with the transport provider, as illustrated in Figure 2-3. Each chan-
nel between a transport user and transport provider is a unique endpoint of
communication, and will be called the transport endpoint. The t_open(3N)
routine enables a user to choose a particular transport provider that will supply
the connection-mode services, and establishes the transport endpoint.

Figure 2-3: Channel Between User and Provider

transport
user

(_L transport endpoint

... Transport Interface

transport
provider

2-8 Programmer’s Guide: Networking Interfaces

Overview of the Transport Interface

Another necessary local function for each user is to establish an identity with
the transport provider. Each user is identified by a transport address. More
accurately, a transport address is associated with each transport endpoint, and
one user process may manage several transport endpoints. In connection-mode
service, one user requests a connection to another user by specifying that user’s
address. The structure of a transport address is defined by the address space of
the transport provider. An address may be as simple as a random character
string (for example, “file_server”’), or as complex as an encoded bit pattern that
specifies all information needed to route data through a network. Each tran-
sport provider defines its own mechanism for identifying users. Addresses may
be assigned to each transport endpoint by t_bind(3N).

In addition to t_open and t_bind, several routines are available to support
local operations. Table 2-1 summarizes all local management routines of the
Transport Interface.

Table 2-1: Local Management Routines of the Transport Interface

Command Des&iption
t_alloc Allocates Transport Interface data structures.
t_bind Binds a transport address to a transport endpoint.
t_close Closes a transport endpoint.
t_error Prints a Transport Interface error message.
t_free Frees structures allocated using t_alloc.
t_getinfo Returns a set of parameters associated with a particular
transport provider.
t_getstate | Returns the state of a transport endpoint.

Transport Interface Programming 2-9

Overview of the Transport Interface

Table 2-1: Local Management Routines of the Transport Interface (continued)

Command Description

t_look Returns the current event on a transport endpoint.

t_open Establishes a transport endpoint connected to a chosen
transport provider.

t_optmgmt Negotiates protocol-specific options with the transport
provider.

t_sync Synchronizes a transport endpoint with the transport
provider.

t_unbind Unbinds a transport address from a transport end-

point.

Connection Establishment

The connection establishment phase enables two users to create a connection, or
virtual circuit, between them, as demonstrated in Figure 2-4.

2-10

Programmer’s Guide: Networking Interfaces

Overview of the Transport Interface

Figure 2-4: Transport Connection

user 1 user 2

.. Transport Interface

F————- Transport Connection

transport provider

This phase is illustrated by a client-server relationship between two transport
users. One user, the server, typically advertises some service to a group of
users, and then listens for requests from those users. As each client requires the
service, it attempts to connect itself to the server using the server’s advertised
transport address. The t_connect (3N) routine initiates the connect request.
One argument to t_connect, the transport address, identifies the server the
client wishes to access. The server is notified of each incoming request using
t_listen(3N), and may call t_accept (3N) to accept the client’s request for
access to the service. If the request is accepted, the transport connection is esta-
blished.

Table 2-2 summarizes all routines available for establishing a transport connec-
tion.

Transport Interface Programming 2-11

Overview of the Transport Interface

Table 2-2: Routines for Establishing a Transport Connection

Command Description
t_accept Accepts a request for a transport connection.
t_connect Establishes a connection with the transport user at a
specified destination.
t_listen Retrieves an indication of a connect request from

another transport user.

t_rcvconnect | Completes connection establishment if t _connect was
called in asynchronous mode (see the section
“’Advanced Topics”).

Data Transfer

The data transfer phase enables users to transfer data in both directions over an
established connection. Two routines, t_snd(3N) and t_rcv(3N), send and
receive data over this connection. All data sent by a user is guaranteed to be
delivered to the user on the other end of the connection in the order in which it
was sent. Table 2-3 summarizes the connection mode data transfer routines.

Table 2-3: Connection Mode Data Transfer Routines

Command Description

t_rcv Retrieves data that has arrived over a transport connec-
tion.

t_snd Sends data over an established transport connection.

2-12 Programmer’s Guide: Networking Interfaces

Overview of the Transport Interface

Connection Release

The connection release phase allows you to break an established connection.
When you decide that a conversation should end, you can request that the pro-
vider release the transport connection. Two types of connection release are sup-
ported by the Transport Interface. The first is an abortive release, which directs
the transport provider to release the connection immediately. Any previously
sent data that has not yet reached the other transport user may be discarded by
the transport provider. The t_snddis(3N) routine initiates this abortive
disconnect, and t_rcvdis(3N) processes the incoming indication for an abor-
tive disconnect.

All transport providers must support the abortive release procedure. In addi-
tion, some transport providers may also support an orderly release facility that
enables users to terminate communication gracefully with no data loss. The
functions t_sndrel(3N) and t_rcvrel(3N) support this capability. Table 2-4
summarizes the connection release routines.

Table 2-4: Connection Release Routines

Command Description

t_rcvdis | Returns an indication of an aborted connection, includ-
ing a reason code and user data.

t_rcvrel | Returns an indication that the remote user has
requested an orderly release of a connection.

t_snddis | Aborts a connection or rejects a connect request.

t_sndrel | Requests the orderly release of a.connection.

Transport Interface Programming 2-13

Overview of the Transport Interface

Connectionless-Mode Service

The connectionless-mode transport service is characterized by two phases: local :
management and data transfer. The local management phase defines the same 1
local operations described above for the connection-mode service. ;

The data transfer phase enables a user to transfer data units (sometimes called
datagrams) to the specified peer user. Each data unit must be accompanied by
the transport address of the destination user. Two routines, t_sndudata(3N)
and t_rcvudata(3N), support this message-based data transfer facility. Table
2-5 summarizes all routines associated with connectionless-mode data transfer.

Table 2-5: Routines for Connectionless-Mode Data Transfer

Command Description

t_rcvudata | Retrieves a message sent by another transport user.

t_rcvuderr | Retrieves error information associated with a previ-
ously sent message.

t_sndudata | Sends a message to the specified destination user.

State Transitions

The Transport Interface has two components:
m the library routines that provide the transport services to users

m the state transition rules that define the sequence in which the transport
routines may be invoked

The state transition rules can be found later in this chapter in the state tables in
the section ““State Transitions.” The state tables define the legal sequence of
library calls based on state information and the handling of events. These
events include user-generated library calls, as well as provider-generated event
indications.

2-14 Programmer’s Guide: Networking Interfaces

Overview of the Transport Interface

Any user of the Transport Interface must completely understand all possible
state transitions before writing software using the interface.

Transport Interface Programming 2-15

Introduction to Connection-Mode Service

This section describes the connection-mode service of the Transport Interface.
As discussed in the previous section, the connection-mode service can be illus-
trated using a client-server paradigm. The important concepts of connection-
mode service will be presented using two programming examples. The exam-
ples are related: the first example illustrates how a client establishes a connec-
tion to a server and then communicates with it; the second example shows the
server’s side of the interaction. All examples discussed in this chapter are
presented complete later in the section “Some Examples.”

In the examples, the client establishes a connection with a server process. The
server then transfers a file to the client. The client, in turn, receives the data
from the server and writes it to its standard output file.

Local Management

Before the client and server can establish a transport connection, each must first
establish a local channel (the transport endpoint) to the transport provider using
t_open, and establish its identity (or address) using t_bind.

The set of services supported by the Transport Interface may not be imple-
mented by all transport protocols. Each transport provider has a set of charac-
teristics associated with it that determines the services it offers and the limits
associated with those services. This information is returned to the user by
t_open, and consists of the following;:

addr maximum size of a transport address

options maximum bytes of protocol-specific options that may be passed
between the transport user and transport provider

tsdu maximum message size that may be transmitted in either
connection-mode or connectionless-mode

etsdu maximum expedited data message size that may be sent over a
transport connection

connect maximum number of bytes of user data that may be passed
between users during connection establishment

2-16 Programmer’s Guide: Networking Interfaces

Introduction to Connection-Mode Service

discon maximum bytes of user data that may be passed between users
during the abortive release of a connection

servtype the type of service supported by the transport provider

The three service types defined by the Transport Interface are:

T_COTS The transport provider supports connection-mode service but
does not provide the optional orderly release facility.

T_COTS_ORD The transport provider supports connection-mode service with
the optional orderly release facility.

T_CLTS The transport provider supports connectionless-mode service.
Only one such service can be associated with the transport pro-
vider identified by t_open.

t_open returns the default provider characteristics associated with a tran-
sport endpoint. However, some characteristics may change after an end-
point has been opened. This will occur if the characteristics are associated
with negotiated options (option negotiation is described later in this section).
For example, if the support of expedited data transfer is a negotiated option,
the value of this characteristic may change. t_getinfo may be called to
retrieve the current characteristics of a transport endpoint.

Once a user establishes a transport endpoint with the chosen transport provider,
it must establish its identity. As mentioned earlier, t _bind does this by bind-
ing a transport address to the transport endpoint. In addition, for servers, this
routine informs the transport provider that the endpoint will be used to listen
for incoming connect indications, also called connect requests.

An optional facility, t_optmgmt (3N), is also available during the local manage-
ment phase. It enables a user to negotiate the values of protocol options with
the transport provider. Each transport protocol is expected to define its own set
of negotiable protocol options, which may include such information as Quality-
of-Service parameters. Because of the protocol-specific nature of options, only
applications written for a particular protocol environment are expected to use
this facility.

Transport Interface Programming 217

Introduction to Connection-Mode Service

The Client

The local management requirements of the example client and server are used
to discuss details of these facilities. The following are the definitions needed by
the client program, followed by its necessary local management steps.

The first argument to t_open is the pathname of a file system node that
identifies the transport protocol that will supply the transport service. In this
example, /dev/tivc is a STREAMS clone device node that identifies a generic,
connection-based transport protocol (see clone(4)). The clone device finds an
available minor device of the transport provider for the user. It is opened for
both reading and writing, as specified by the O_RDWR open flag. The third
argument may be used to return the service characteristics of the transport pro-
vider to the user. This information is useful when writing protocol-mdependent
software (discussed in the section “Guidelines for Protocol Independence,”
below). For simplicity, the client and server in this example ignore this informa-
tion and assume the transport provider has the following characteristics:

2-18 Programmer’s Guide: Networking Interfaces

Introduction to Connection-Mode Service

m The transport address is an integer value that uniquely identifies each
user.

m The transport provider supports the T_COTS_ORD service type, and the
example will use the orderly release fac111ty to release the connection.

m User data may not be passed between users during either connection
establishment or abortive release.

m The transport provider does not support protocol-specific options.

Because these characteristics are not needed by the user, NULL is specified in the
third argument to t_open. If the user needed a service other than
T_COTS_ORD, another transport provider would be opened. An example of the
T_CLTS service invocation is presented in the section “Introduction to
Connectionless-Mode Service.”

The return value of t_open is an identifier for the transport endpoint that will
be used by all subsequent Transport Interface function'calls. This identifier is
actually a file descriptor obtained by opening the transport protocol file (see
open(2)). The significance of this fact is highlighted in the section “A
Read/Write Interface.”

After the transport endpoint is created, the client calls t_bind to assign an
address to the endpoint. The first argument identifies the transport endpoint.
The second argument describes the address the user would like to bind to the
endpoint, and the third argument is set on return from t_bind to specify the
address that the provider bound.

The address associated with a server’s transport endpoint is important, because
that is the address used by all clients to access the server. However, the typical
client does not care what its own address is, because no other process will try to
access it. That is the case in this example, where the second and third argu-
ments to t_bind are set to NULL. A NULL second argument directs the tran-
sport provider to choose an address for the user. A NULL third argument
specifies that the user does not care what address was assigned to the endpoint.

If either t_open or t_bind fail, the program will call t_error(3N) to print an
appropriate error message to stderr. If any Transport Interface routine fails,
the global integer t_errno will be assigned a transport error value. A set of
error values has been defined (in <tiuser.h>) for the Transport Interface, and
t_error will print an error message corresponding to the value in t_errno.
This routine is analogous to perror(3), which prints an error message based on

Transport Interface Programming 2-19

Introduction to Connection-Mode Service

the value of errno. If the error associated with a transport function is a system
error, t_errno will be set to TSYSERR, and errno will be set to the appropri-
ate value.

The Server

The server in this example must take similar local management steps before
communication can begin. The server must establish a transport endpoint
through which it will listen for connect indications. The necessary definitions
and local management steps are shown below:

' ‘(cdhtimjed on next page)

2-20 Programmer’s Guide: Networking Interfaces

Introduction to Connection-Mode Service

As with the client, the first step is to call t_open to establish a transport end-
point with the desired transport provider. This endpoint, 1isten_£fd, will be
used to listen for connect indications. Next, the server must bind its well-
known address to the endpoint. This address is used by each client to access
the server. The second argument to t_bind requests that a particular address
be bound to the transport endpoint. This argument points to a t_bind struc-
ture with the following format:

where addr describes the address to be bound, and qlen specifies the max-
imum outstanding connect indications that may arrive at this endpoint. All
Transport Interface structure and constant definitions are found in
<tiuser.h>.

Transport Interface Programming 2-21

Introduction to Connection-Mode Service

The address is specified using a netbuf structure that contains the following
members:

where buf points to a buffer containing the data, 1en specifies the bytes of data
in the buffer, and maxlen specifies the maximum bytes the buffer can hold (and
need only be set when data is returned to the user by a Transport Interface rou-
tine). For the t_bind structure, the data pointed to by buf identifies a tran-
sport address. It is expected that the structure of addresses will vary among
each protocol implementation under the Transport Interface. The netbuf struc-
ture is intended to support any address structure.

If the value of qlen is greater than 0, the transport endpoint may be used to
listen for connect indications. In such cases, t_bind directs the transport pro-
vider to begin queueing connect indications destined for the bound address
immediately. Furthermore, the value of qlen specifies the maximum outstand-
ing connect indications the server wishes to process. The server must respond
to each connect indication, either accepting or rejecting the request for connec-
tion. An outstanding connect indication is one to which the server has not yet
responded. Often, a server will fully process a single connect indication and
respond to it before receiving the next indication. When this occurs, a value of
1 is appropriate for glen. However, some servers may wish to retrieve several
connect indications before responding to any of them. In such cases, qlen
specifies the maximum number of outstanding indications the server will pro-
cess. An example of a server that manages multiple outstanding connect indica-
tions is presented in the section “Advanced Topics.”

t_alloc(3N) is called to allocate the t_bind structure needed by t_bind.
t_alloc takes three arguments. The first is a file descriptor that references a
transport endpoint. This is used to access the characteristics of the transport
provider (see t_open(3N)). The second argument identifies the appropriate
Transport Interface structure to be allocated. The third argument specifies
which, if any, netbuf buffers should be allocated for that structure. T_ALL
specifies that all netbuf buffers associated with the structure should be

2-22 Programmer’s Guide: Networking Interfaces

introduction to Connection-Mode Service

allocated, and causes the addr buffer to be allocated in this example. The size
of this buffer is determined from the transport provider characteristic that
defines the maximum address size. The maxlen field of this netbuf structure
will be set to the size of the newly allocated buffer by t_alloc. The use of
t_alloc helps ensure the compatibility of user programs with future releases
of the Transport Interface.

The server in this example processes connect indications one at a time, so qlen
is set to 1. The address information is then assigned to the newly allocated
t_bind structure. This t_bind structure passes information to t_bind in the
second argument and returns information to the user in the third argument.

On return, the t_bind structure contains the address that was bound to the
transport endpoint. If the provider could not bind the requested address
(perhaps because it had been bound to another transport endpoint), it will
choose another appropriate address.

Each transport provider manages its address space differently. Some tran-
sport providers may allow a single transport address to be bound to several
transport endpoints, while others may require a unique address per endpoint.
The Transport Interface supports either choice. Based on its address
management rules, a provider will determine if it can bind the requested
address. If not, it will choose another valid address from its address space
and bind it to the transport endpoint.

The server must check the bound address to ensure that it is the one previously
advertised to clients. Otherwise, the clients will be unable to reach the server.

If t_bind succeeds, the provider will begin queueing connect indications.
entering the next phase of communication, connection establishment.

Connection Establishment

The connection establishment procedures highlight the distinction between
clients and servers. The Transport Interface imposes a different set of pro-
cedures in this phase for each type of transport user. The client starts the con-
nection establishment procedure by requesting a connection to a particular
server using t_connect (3N). The server is then notified of the client’s request
by calling t_listen(3N). The server may either accept or reject the client’s
request. It will call t_accept (3N) to establish the connection, or call

Transport Interface Programming 2-23

Introduction to Connection-Mode Service

t_snddis(3N) to reject the request. The client will be notified of the server’s
decision when t_connect completes.

The Transport Interface supports two facilities during connection establishment
that may not be supported by all transport providers:

m The ability to transfer data between the client and server when establish-
ing the connection.

The client may send data to the server when it requests a connection.
This data will be passed to the server by t_listen. Similarly, the server
can send data to the client when it accepts or rejects the connection. The
connect characteristic returned by t_open determines how much data, if
any, two users may transfer during connect establishment.

m The negotiation of protocol options.

The client may specify protocol options that it would like the transport
provider and/or the remote user to support. The Transport Interface sup-
ports both local and remote option negotiation. As discussed earlier,
option negotiation is inherently a protocol-specific function. Use of this
facility is discouraged if protocol independent software is a goal (see the
section “Guidelines for Protocol Independence”).

The Client

Continuing with the client/server example, the steps needed by the client to
establish a connection are shown next:

2-24 Programmer’s Guide: Networking Interfaces

Introduction to Connection-Mode Service

The t_connect call establishes the connection with the server. The first argu-
ment to t_connect identifies the transport endpoint through which the con-
nection is established, and the second argument identifies the destination server.
This argument is a pointer to a t_call structure with the following format:

addr identifies the address of the server, opt may be used to specify protocol-
specific options that the client would like to associate with the connection, and
udata identifies user data that may be sent with the connect request to the
server. The sequence field has no meaning for t_connect.

t_alloc is called above to allocate the t_call structure dynamically. Once
allocated, the appropriate values are assigned. In this example, no options or
user data are associated with the t_connect call, but the server’s address must
be set. The third argument to t_alloc is set to T_ADDR to specify that an
appropriate netbuf buffer should be allocated for the address. The server’s
address is then assigned to buf, and len is set accordingly.

Transport Interface Programming 2-25

Iintroduction to Connection-Mode Service

The third argument to t_connect can be used to return information about the
newly established connection to the user, and may retrieve any user data sent
by the server in its response to the connect request. It is set to NULL by the
client here to indicate that this information is not needed. The connection will
be established on successful return of t_connect. If the server rejects the con-
nect request, t _connect will fail and set t_errno to TLOOK.

Event Handling

The TLOOK error has special significance in the Transport Interface. TLOOK
notifies the user if a Transport Interface routine is interrupted by an unexpected
asynchronous transport event on the given transport endpoint. As such, TLOOK
does not report an error with a Transport Interface routine, but the normal pro-
cessing of that routine will not be done because of the pending event. The
events defined by the Transport Interface are listed here:

T _LISTEN A request for a connection, called a connect indication,
has arrived at the transport endpoint.

T_CONNECT The confirmation of a previously sent connect request,
called a connect confirmation, has arrived at the tran-
sport endpoint. The confirmation is generated when a
server accepts a connect request.

T_DATA User data has arrived at the transport endpoint.

T_EXDATA Expedited user data has arrived at the transport end-
point. Expedited data will be discussed later in this sec-
tion.

T_DISCONNECT A notification that the connection was aborted or that

the server rejected a connect request, called a disconnect
indication, has arrived at the transport endpoint.

T_ORDREL A request for the orderly release of a connection, called
an orderly release indication, has arrived at the tran-
sport endpoint.

T_UDERR The notification of an error in a previously sent

datagram, called a unitdata error indication, has arrived
at the transport endpoint (see the section “Introduction
to Connectionless-Mode Service”).

2-26 Programmer’s Guide: Networking Interfaces

Introduction to Connection-Mode Service

It is possible in some states to receive one of several asynchronous events, as
described in the state tables of the section ““State Transitions.” The t_1look(3N)
routine enables a user to determine what event has occurred if a TLOOK error is
returned. The user can then process that event accordingly. In the example, if a
connect request is rejected, the event passed to the client will be a disconnect
indication. The client will exit if its request is rejected.

The Server

Returning to the example, when the client calls t_connect, a connect indica-
tion will be generated on the server’s listening transport endpoint. The steps
required by the server to process the event are discussed below. For each client,
the server accepts the connect request and spawns a server process to manage
the connection.

The server will loop forever, processing each connect indication. First, the
server calls t_listen to retrieve the next connect indication. When one
arrives, the server calls accept_call to accept the connect request.
accept_call accepts the connection on an alternate transport endpoint (as dis-
cussed below) and returns the value of that endpoint. conn_fd is a global vari-
able that identifies the transport endpoint where the connection is established.
Because the connection is accepted on an alternate endpoint, the server may
continue listening for connect indications on the endpoint that was bound for
listening. If the call is accepted without error, run_server will spawn a pro-
cess to manage the connection.

Transport Interface Programming 2-27

Introduction to Connection-Mode Service

The server allocates a t_call structure to be used by t_listen. The third
argument to t_alloc, T_ALL, specifies that all necessary buffers should be
allocated for retrieving the caller’s address, options, and user data. As men-
tioned earlier, the transport provider in this example does not support the
transfer of user data during connection establishment, and also does not support
any protocol options. Therefore, t_alloc will not allocate buffers for the user
data and options. It must, however, allocate a buffer large enough to store the
address of the caller. t_alloc determines the buffer size from the addr
characteristic returned by t_open. The maxlen field of each netbuf structure
will be set to the size of the newly allocated buffer by t_alloc (maxlen is 0
for the user data and options buffers).

Using the t_call structure, the server calls t_listen to retrieve the next con-
nect indication. If one is currently available, it is returned to the server immedi-
ately. Otherwise, t_listen will block until a connect indication arrives.

The Transport Interface supports an asynchronous mode for these routines,
which prevents a process from blocking. This feature is discussed in the
section “Advanced Topics.”

When a connect indication arrives, the server calls accept_call to accept the
client’s request, as follows:

2-28 Programmer’s Guide: Networking Interfaces

Introduction to Connection-Mode Service

accept_call takes two arguments.
m listen_fd identifies the transport endpoint where the connect indication
arrived
m call is a pointer to a t_call structure that contains all information
associated with the connect indication.

Transport Interface Programming 2-29

Introduction to Connection-Mode Service

The server first establishes another transport endpoint by opening the clone dev-
ice node of the transport provider and binding an address. As with the client, a
NULL value is passed to t_bind to specify that the user does not care what
address is bound by the provider. The newly established transport endpoint,
resfd, is used to accept the client’s connect request.

The first two arguments of t_accept specify the listening transport endpoint
and the endpoint where the connection will be accepted, respectively. A con-
nection may be accepted on the listening endpoint, but this prevents other
clients from accessing the server for the duration of the connection.

The third argument of t_accept points to the t_call structure associated
with the connect indication. This structure should contain the address of the
calling user and the sequence number returned by t_listen. The value of
sequence is significant if the server manages multiple outstanding connect
indications. The “Advanced Topics” section presents an example of this situa-
tion. Also, the t_call structure should identify protocol options the user
would like to specify, and user data that may be passed to the client. Because
the transport provider in this example does not support protocol options or the
transfer of user data during connection establishment, the t_call structure
returned by t_listen may be passed without change to t_accept.

For simplicity in the example, the server will exit if either the t_open or
t_bind call fails. exit(2) will close the transport endpoint associated with
listen_f£d, causing the transport provider to pass a disconnect indication to
the client that requested the connection. This disconnect indication notifies the
client that the connection was not established; t _connect will fail, setting
t_errno to TLOOK.

t_accept may fail if an asynchronous event has occurred on the listening tran-
sport endpoint before the connection is accepted, and t_errno will be set to
TLOOK. The state transition table in the “State Transitions” section shows that
the only event that may occur in this state with only one outstanding connect
indication is a disconnect indication. This event may occur if the client decides
to undo the connect request it had previously sent. If a disconnect indication
arrives, the server must retrieve the disconnect indication using t_rcvdis.
This routine takes a pointer to a t_discon structure as an argument, which is
used to retrieve information associated with a disconnect indication. In this
example, however, the server does not care to retrieve this information, so it
sets the argument to NULL. After receiving the disconnect indication,

2-30 Programmer’s Guide: Networking Interfaces

Introduction to Connection-Mode Service

accept_call closes the responding transport endpoint and returns DISCON~
NECT, which informs the server that the connection was disconnected by the
client. The server then listens for further connect indications.

Figure 2-5 illustrates how the server establishes connections.

Figure 2-5: Listening and Responding Transport Endpoints

client server
listening
. - .
responding endpoint
endpoint >

... Transport Interface

transport
connection

transport provider

The transport connection is established on the newly created responding end-
point, and the listening endpoint is freed to retrieve further connect indications.

Data Transfer

Once the connection has been established, both the client and server may begin
transferring data over the connection using t_snd and t_rcv. The Transport
Interface does not differentiate the client from the server from this point on.
Either user may send and receive data, or release the connection. The Transport
Interface guarantees reliable, sequenced delivery of data over an existing con-
nection.

Transport Interface Programming 2-31

Introduction to Connection-Mode Service

Two classes of data may be transferred over a transport connection:
®m normal data
m expedited data

Expedited data is typically associated with urgent information. The exact
semantics of expedited data are subject to the interpretations of the transport
provider. Furthermore, not all transport protocols support the notion of an
expedited data class (see t_open(3N)).

All transport protocols support the transfer of data in byte stream mode, where
“byte stream’” implies no concept of message boundaries on data that are
transferred over a connection. However, some transport protocols support the
preservation of message boundaries over a transport connection. This service is
supported by the Transport Interface, but protocol-independent software must
not rely on its existence.

The message interface for data transfer is supported by a special flag of t _snd
and t_rcv called T_MORE. The messages, called Transport Service Data Units
(TSDU), may be transferred between two transport users as distinct units. The
maximum size of a TSDU is a characteristic of the underlying transport protocol.
This information is available to the user from t_open and t_getinfo.

Because the maximum TSDU size can be large (p0551bly unlimited), the Tran-
sport Interface allows a user to transmit a message in multiple units.

To send a message in multiple units over a transport connection, the user must
set the T_MORE flag on every t_snd call except the last. This flag specifies that
the user will send more data associated with the message in a subsequent call to
t_snd. The last message unit should be transmitted with T_MORE turned off to
specify that this is the end of the TSDU.

Similarly, a TSDU may be passed in multiple units to the receiving user. Again,
if t_rcv returns with the T_MORE flag set, the user should continue calling
t_rcv to retrieve the remainder of the message. The last unit in the message
will be identified by a call to t_rcv that does not set T_MORE.

2-32 Programmer’s Guide: Networking Interfaces

Introduction to Connection-Mode Service

The T MORE flag implies nothing about how the data may be packaged
below the Transport Interface or how the data may be delivered to the
remote user. Each transport protocol, and each implementation of that
protocol, may package and dsliver the data differently.

For example, if a user sends a complete message in a single call to
t_snd, there is no guarantee that the transport provider will deliver the
data in a single unit to the remote transport user. Similarly, a TSDU
transmitted in two message units may be delivered in a single unit to the
remote transport user. The message boundaries may only be preserved
by noting the value of the T_MORE flag on t_snd and t_rcv. This will
guarantee that the receiving user will see a message with the same con-
tents and message boundaries as was sent by the remote user.

The Client

Continuing with the client/server example, the server will transfer a log file to
the client over the transport connection. The client receives this data and writes
it to its standard output file. A byte stream interface is used by the client and
server, where message boundaries (that is, the T_MORE flag) are ignored. The
client receives data using the following instructions:

The client continuously calls t_rcv to process incoming data. If no data is
currently available, t _rcv blocks until data arrives. t_rcv retrieves the avail-
able data up to 1024 bytes, which is the size of the client’s input buffer, and
returns the number of bytes received. The client then writes this data to stan-
dard output and continues. The data transfer phase will complete when t_rcv
fails. t_rcv will fail if an orderly release or disconnect indication arrives, as
discussed later in this section. If the fwrite(3S) call fails for any reason, the
client will exit, closing the transport endpoint. If the transport endpoint is
closed (either by exit or t_close) during the data transfer phase, the connec-
tion will be aborted and the remote user will receive a disconnect indication.

Transport Interface Programming 2-33

Introduction to Connection-Mode Service

The Server

Looking now at the other side of the connection, the server manages its data
transfer by spawning a child process to send the data to the client. The parent
process then loops back to listen for further connect indications. run_server
is called by the server to spawn this child process as follows:

(continued on next page)

2-34 Programmer’s Guide: Networking Interfaces

Introduction to Connection-Mode Service

After the fork, the parent process returns to the main processing loop and
listens for further connect indications. Meanwhile, the child process will
manage the newly established transport connection. If the fork call fails, exit
closes the transport endpoint associated with 1isten_fd, sending a disconnect
indication to the client, and the client’s t_connect call will fail.

The server process reads 1024 bytes of the log file at a time and sends that data
to the client using t_snd. buf points to the start of the data buffer, and
nbytes specifies the number of bytes to be transmitted. The fourth argument
can contain one of the two optional flags below:

®m T_EXPEDITED specifies that the data is expedited

m T_MORE defines message boundaries when transmitting messages over a
connection.

Neither flag is set by the server in this example.

Transport Interface Programming 2-35

Introduction to Connection-Mode Service

If the user floods the transport provider with data, the provider may exert back

pressure to provide flow control. In such cases, t_snd will block until the flow
control is relieved, and will then resume its operation. t_snd will not complete
until nbyte bytes have been passed to the transport provider.

The t_snd routine does not look for a disconnect indication (showing that the
connection was broken) before passing data to the provider. Also, because the
data traffic flows in one direction, the user will never look for incoming events.
If the connection is aborted, the user should be notified since data may be lost.
The user can invoke t_look, which checks for incoming events before each
t_snd call. A more efficient solution is presented in the example. The
STREAMS I_SETSIG ioctl enables a user to request a signal when a given
event occurs (see streamio(5) and signal(2)). S_INPUT causes a signal to be
sent to the user if any input arrives on the Stream referenced by conn_fd. If a
disconnect indication arrives, the signal catching routine (connrelease) prints
an error message and then exits.

If the data traffic flowed in both directions in this example, the user would not
have to monitor the connection for disconnects. If the client alternated t_snd
and t_rcv calls, it could rely on t_rcv to recognize an incoming disconnect
indication.

Connection Release

At any point during data transfer, either user may release the transport connec-
tion and end the conversation. As mentioned earlier, two forms of connection
release are supported by the Transport Interface:

m Abortive release breaks a connection immediately and may result in the
loss of any data that has not yet reached the destination user.

Either user may call t_snddis to generate an abortive release. Also, the
transport provider may abort a connection if a problem occurs below the
Transport Interface. t_snddis enables a user to send data to the remote
user when aborting a connection. Although the abortive release is sup-
ported by all transport providers, the ability to send data when aborting a
connection is not.

When the remote user is notified of the aborted connection, t_rcvdis
must be called to retrieve the disconnect indication. This call returns a
reason code that identifies why the connection was aborted, and returns

2-36 Programmer’s Guide: Networking Interfaces

Introduction to Connection-Mode Service

any user data that may have accompanied the disconnect indication (if the
abortive release was initiated by the remote user). This reason code is
specific to the underlying transport protocol, and should not be inter-
preted by protocol-independent software.

m Orderly release gracefully terminates a connection and guarantees that no
data will be lost.

All transport providers must support the abortive release procedure, but orderly
release is an optional facility that is not supported by all transport protocols.

The Server

The client-server example in this section assumes that the transport provider
supports the orderly release of a connection. When all the data has been
transferred by the server, the connection may be released as follows:

The orderly release procedure consists of two steps by each user. The first user
to complete data transfer may initiate a release using t_sndrel, as illustrated
in the example. This routine informs the client that no more data will be sent
by the server. When the client receives this indication, it may continue sending
data back to the server if desired. When all data have been transferred, how-
ever, the client must also call t_sndrel to indicate that it is ready to release
the connection. The connection is released only after both users have requested
an orderly release and received the corresponding indication from the other
user.

In this example, data is transferred in one direction from the server to the client,
so the server does not expect to receive data from the client after it has initiated
the release procedure. Thus, the server simply calls pause(2) after initiating the
release. Eventually, the remote user responds with its orderly release request,
which generates a signal that will be caught by connrelease. Remember that
the server earlier issued an I_SETSIG ioctl call to generate a signal on any

Transport Interface Programming 2-37

Introduction to Connection-Mode Service

incoming event. Since the only possible Transport Interface events that can
occur in this situation are a disconnect indication or orderly release indication,
connrelease terminates normally when the orderly release indication arrives.
The exit call in connrelease will close the transport endpoint, freeing the
bound address for another user. If a user process wants to close a transport
endpoint without exiting, it may call t_close.

The Client

The client’s view of connection release is similar to that of the server. As men-
tioned earlier, the client continues to process incoming data until t_rcv fails. If
the server releases the connection (using either t_snddis or t_sndrel),
t_rcv will fail and set t_errno to TLOOK. The client then processes the con-
nection release as follows:

When an event occurs on the client’s transport endpoint, the client checks
whether the expected orderly release indication has arrived. If so, it proceeds
with the release procedures by calling t_rcvrel to process the indication and
t_sndrel to inform the server that it is also ready to release the connection.
At this point the client exits, closing its transport endpoint.

Because not all transport providers support the orderly release facility just
described, users may have to use the abortive release facility provided by
t_snddis and t_rcvdis. However, steps must be taken by each user to
prevent data loss. For example, a special byte pattern may be inserted in the

2-38 Programmer’s Guide: Networking Interfaces

Introduction to Connection-Mode Service

data stream to indicate the end of a conversation. There are many possible rou-
tines for preventing data loss. Each application and high level protocol must
choose an appropriate routine given the target protocol environment and
requirements.

Transport Interface Programming 2-39

Introduction to Connectionless-Mode Service

This section describes the connectionless-mode service of the Transport Inter-
face. Connectionless-mode service is appropriate for short-term
request/response interactions, such as transaction processing applications. Data
are transferred in self-contained units with no logical relationship required
among multiple units.

The connectionless-mode services will be described using a transaction server as
an example. This server waits for incoming transaction queries, and processes
and responds to each query.

Local Management

Just as with connection-mode service, the transport users must do appropriate
local management steps before transferring data. A user must choose the
approprlate connectionless service provider using t_open and estabhsh its
identity using t_bind.

t_optmgmt may be used to negotiate protocol options associated with the
transfer of each data unit. As with the connection-mode service, each transport
provider specifies the options, if any, that it supports. Option negotiation is
therefore a protocol-specific activity.

In the example, the definitions and local management calls needed by the tran-
sactlon server are as follows:

2-40 Programmer’s Guide: Networking Interfaces

Introduction to Connectionless-Mode Service

Transport Interface Programming 2-41

Introduction to Connectionless-Mode Service

The local management steps should look familiar by now. The server estab-
lishes a transport endpoint with the desired transport provider using t_open.
Each provider has an associated service type, so the user may choose a particu-
lar service by opening the appropriate transport provider file. This
connectionless-mode server ignores the characteristics of the provider returned
by t_open in the same way as the users in the connection-mode example, by
setting the third argument to NULL. For simplicity, the transaction server
assumes the transport provider has the following characteristics:

m The transport address is an integer value that uniquely identifies each
user.

m The transport provider supports the T_CLTS service type (connectionless
transport service, or datagram).

m The transport provider does not support any protocol-specific options.

The connectionless server also binds a transport address to the endpoint so that
potential clients may identify and access the server. A t_bind structure is allo-
cated using t_alloc and the buf and len fields of the address are set accord-
ingly.

One important difference between the connection-mode server and this
connectionless-mode server is that the qlen field of the t_bind structure has
no meaning for connectionless-mode service, since all users are capable of
receiving datagrams once they have bound an address. The Transport Interface
defines an inherent client-server relationship between two users while establish-
ing a transport connection in the connection-mode service. However, no such
relationship exists in the connectionless-mode service. It is the context of this
example, not the Transport Interface, that defines one user as a server and
another as a client.

Because the address of the server is known by all potential clients, the server
checks the bound address returned by t_bind to ensure it is correct.

2-42 Programmer’s Guide: Networking Interfaces

Introduction to Connectioniess-Mode Service

Data Transfer

Once a user has bound an address to the transport endpoint, datagrams may be
sent or received over that endpoint. Each outgoing message is accompanied by
the address of the destination user. In addition, the Transport Interface enables
a user to specify protocol options that should be associated with the transfer of
the data unit (for example, transit delay). As discussed earlier, each transport
provider defines the set of options, if any, that may accompany a datagram.
When the datagram is passed to the destination user, the associated protocol
options may be returned as well.

The following sequence of calls illustrates the data transfer phase of the
connectionless-mode server:

on next page

Transport Interface Programming 2-43

Introduction to Connectionless-Mode Service

The server must first allocate a t_unitdata structure for storing datagrams,
which has the following format:

addr holds the source address of incoming datagrams and the destination
address of outgoing datagrams, opt identifies any protocol options associated
with the transfer of the datagram, and udata holds the data itself. The addr,
opt, and udata fields must all be allocated with buffers large enough to hold
any possible incoming values. As described in the previous section, the T_ALL
argument to t_alloc will ensure this and will set the maxlen field of each
netbuf structure accordingly. Because the provider does not support protocol
options in this example, no options buffer will be allocated, and maxlen will be

2-44 Programmer’s Guide: Networking Interfaces

Introduction to Connectionless-Mode Service

set to zero in the netbuf structure for options. The server also allocates a
t_uderr structure for processing any datagram errors, as discussed later in this
section.

The transaction server loops forever, receiving queries, processing the queries,
and responding to the clients. It first calls t_rcvudata to receive the next
query. t_rcvudata will retrieve the next available incoming datagram. If
none is currently available, t_rcvudata will block, waiting for a datagram to
arrive. The second argument of t_rcvudata identifies the t_unitdata struc-
ture in which the datagram should be stored.

The third argument, flags , must point to an integer variable and may be set to
T_MORE on return from t_rcvudata to specify that the user’s udata buffer
was not large enough to store the full datagram. In this case, subsequent calls
to t_rcvudata will retrieve the remainder of the datagram. Because t_alloc
allocates a udata buffer large enough to store the maximum datagram size, the
transaction server does not have to check the value of flags.

If a datagram is received successfully, the transaction server calls the query
routine to process the request. This routine will store the response in the struc-
ture pointed to by ud, and will set ud->udata. len to specify the number of
bytes in the response. The source address returned by t _rcvudata in
ud->addr will be used as the destination address by t _sndudata.

When the response is ready, t_sndudata is called to return the response to the
client. The Transport Interface prevents a user from flooding the transport pro-
vider with datagrams using the same flow control mechanism described for the
connection-mode service. In such cases, t _sndudata will block until the flow
control is relieved, and will then resume its operation.

Datagram Errors

If the transport provider cannot process a datagram that was passed to it by
t_sndudata, it will return a unit data error event, T_UDERR, to the user. This
event includes the destination address and options associated with the
datagram, plus a protocol-specific error value that describes what may be wrong
with the datagram. The reason a datagram could not be processed is
protocol-specific. One reason may be that the transport provider could not
interpret the destination address or options. Each transport protocol is expected
to specify all reasons why it is unable to process a datagram.

Transport Interface Programming 2-45

Introduction to Connectionless-Mode Service

The unit data error indication is not necessarily intended to indicate success
or failure in delivering the datagram to the specified destination. The tran-
sport protocol decides how the indication will be used. Remember, the con-
| nectionless service does not guarantee reliable delivery of data.

The transaction server will be notified of this error event when it attempts to
receive another datagram. In this case, t_rcvudata will fail, setting t_errno
to TLOOK. If TLOOK is set, the only possible event is T_UDERR, so the server
calls t_rcvuderr to retrieve the event. The second argument to t_rcvuderr
is the t_uderr structure that was allocated earlier. This structure is filled in by
t_rcvuderr and has the following format:

where addr and opt identify the destination address and protocol options as
specified in the bad datagram, and error is a protocol-specific error code that
specifies why the provider could not process the datagram. The transaction
server prints the error code and then continues by entering the processing loop
again.

2-46 Programmer’s Guide: Networking Interfaces

A Read/Write Interface

A user may wish to establish a transport connection and then exec(2) an exist-
ing user program such as cat (1) to process the data as it arrives over the con-
nection. However, existing programs use read(2) and write(2) for their
input/output needs. The Transport Interface does not directly support a
read/write interface to a transport provider, but one is available with UNIX Sys-
tem V. This interface enables a user to issue read and write calls over a tran-
sport connection that is in the data transfer phase. This section describes the
read/write interface to the connection-mode service of the Transport Interface.
This interface is not available with the connectionless-mode service.

The read/write interface is presented using the client example of the “Introduc-
tion to Connection-Mode Service” section with some minor modifications. The
clients are identical until the data transfer phase is reached. At that point, this
client will use the read/write interface and cat (1) to process incoming data.
cat can be run without change over the transport connection. Only the differ-
ences between this client and that of the example in the “Introduction to
Connection-Mode Service” section are shown below.

The client invokes the read/write interface by pushing the tirdwr(7) module
onto the Stream associated with the transport endpoint where the connection
was established (see I_PUSH in streamio(5)). This module converts the Tran-
sport Interface above the transport provider into a pure read/write interface.

Transport Interface Programming 2-47

A Read/Write Interface

With the module in place, the client calls close(2) and dup(2) to establish the
transport endpoint as its standard input file, and uses /usr/bin/cat to pro-
cess the input. Because the transport endpoint identifier is a file descriptor, the
facility for duping the endpoint is available to users.

Because the Transport Interface uses STREAMS, the facilities of this character
input/output mechanism can be used to provide enhanced user services. By
pushing the tirdwr module above the transport provider, the user’s interface is
effectively changed. The semantics of read and write must be followed, and
message boundaries will not be preserved.

7 The tirdwr module may only be pushed onto a Stream when the tran-
sport endpoint is in the data transfer phase. Once the module is pushed,
the user may not call any Transport Interface routines. If a Transport
Interface routine is invoked, tirdwr will generate a fatal protocol error,
EPROTO, on that Stream, rendering it unusable. Furthermore, if the user
pops the tirdwr module off the Stream (see I_POP in streamio(5)),
the transport connection will be aborted.

The exact semantics of write, read, and close using tirdwr are described
below. To summarize, tirdwr enables a user to send and receive data over a
transport connection using read and write. This module will translate all
Transport Interface indications into the appropriate actions. The connection can
be released with the close system call.

write

The user may transmit data over the transport connection using write. The
tirdwr module will pass data through to the transport provider. However, if
a user attempts to send a zero-length data packet, which the STREAMS mechan-
ism allows, tirdwr will discard the message. If the transport connection is
aborted (for example, because the remote user aborts the connection using
t_snddis), a STREAMS hangup condition will be generated on that Stream, and
further write calls will fail and set errno to ENXIO. The user can still retrieve
any available data after a hangup.

2-48 Programmer’s Guide: Networking Interfaces

A Read/Write Interface

read

read may be used to retrieve data that has arrived over the transport connec-
tion. The tirdwr module will pass data through to the user from the transport
provider. However, any other event or indication passed to the user from the
provider will be processed by tirdwr as follows:

m read cannot process expedited data because it cannot distinguish
expedited data from normal data for the user. If an expedited data indi-
cation is received, tirdwr will generate a fatal protocol error, EPROTO,
on that Stream. This error causes further system calls to fail. You should
therefore not communicate with a process that is sending expedited data.

m If an abortive disconnect indication is received, tirdwr will discard it
and generate a STREAMS hangup condition on that Stream. Subsequent
read calls will retrieve any remaining data, and then read will return
zero for all further calls (indicating end-of-file).

m If an orderly release indication is received, t irdwr will discard the indi-
cation and deliver a zero-length STREAMS message to the user. As
described in read(2), this notifies the user of end-of-file by returning 0.

m If any other Transport Interface indication is received, tirdwr generates a
fatal protocol error, EPROTO, on that Stream. This causes further system
calls to fail. If a user pushes tirdwr onto a Stream after the connection
has been established, no indication will be generated.

close

With tirdwr on a Stream, the user can send and receive data over a transport
connection for the duration of that connection. Either user may terminate the
connection by closing the file descriptor associated with the transport endpoint
or by popping the tirdwr module off the Stream. In either case, tirdwr will
take the following actions:

m If an orderly release indication was previously received by tirdwr, an
orderly release request will be passed to the transport provider to com-
plete the orderly release of the connection. The remote user who initiated
the orderly release procedure will receive the expected indication when
data transfer completes.

Transport Interface Programming 2-49

A Read/Write Interface

m If a disconnect indication was previously received by tirdwr, no special
action is taken. '

m If neither an orderly release indication nor disconnect indication previ-
ously received by tirdwr, a disconnect request will be passed to the tran-
sport provider to abort the connection.

m If an error previously occurred on the Stream and a disconnect indication
has not been received by tirdwr, a disconnect request will be passed to
the transport provider.

A process may not initiate an orderly release after tirdwr is pushed onto a
Stream, but tirdwr will handle an orderly release properly if it is initiated by
the user on the other side of a transport connection. If the client in this section
is communicating with the server program in the “Introduction to Connection-
Mode Service” section, that server will terminate the transfer of data with an
orderly release request. The server then waits for the corresponding indication
from the client. At that point, the client exits and the transport endpoint is
closed. As explained in the first list item above, when the file descriptor is
closed, tirdwr will initiate the orderly release request from the client’s side of
the connection. This will generate the indication that the server is expecting,
and the connection will be released properly.

2-50 Programmer’s Guide: Networking Interfaces

Advanced Topics

This section presents the following important concepts of the Transport Interface
that have not been covered in the previous section:

® an optional non-blocking (asynchronous) mode for some library calls

m an advanced programming example that defines a server supporting mul-
tiple outstanding connect indications and operating in an event driven
manner

Asynchronous Execution Mode

Many Transport Interface library routines may block waiting for an incoming
event or the relaxation of flow control. However, some time-critical applications
should not block for any reason. Similarly, an application may wish to do local
processing while waiting for some asynchronous transport interface event.

Support for asynchronous processing of Transport Interface events is available
to applications using a combination of the STREAMS asynchronous features and
the non-blocking mode of the Transport Interface library routines. Earlier exam-
ples in this guide have illustrated the use of the poll system call and the
I_SETSIG ioctl command for processing events asynchronously.

In addition, each Transport Interface routines that may block waiting for some
event can be run in a special non-blocking mode. For example, t_listen will
normally block, waiting for a connect indication. However, a server can period-
ically poll a transport endpoint for existing connect indications by calling
t_listen in the non-blocking (or asynchronous) mode. The asynchronous
mode is enabled by setting O _NDELAY or O_NONBLOCK on the file descriptor.
These can be set as a flag on t_open, or by calling fcnt 1(2) before calling the
Transport Interface routine. fcntl can be used to enable or disable this mode
at any time. All programming examples in this chapter use the default synchro-
nous processing mode.

O_NDELAY or O_NONBLOCK affect each Transport Interface routine differently.
To determine the exact semantics of O_NDELAY or O_NONBLOCK for a particular
routine, see the relevant pages in Appendix A of this document.

Transport Interface Programming | 2-51

Advanced Topics

Advanced Programming Example

The following example demonstrates two important concepts. The first is a
server’s ability to manage multiple outstanding connect indications. The second
is an illustration of the ability to write event-driven software using the Tran-
sport Interface and the STREAMS system call interface.

The server example in the “Introduction to Connection-Mode Service” section is
capable of supporting only one outstanding connect indication, but the Tran-
sport Interface supports the ability to manage multiple outstanding connect
indications. One reason a server might wish to receive several simultaneous
connect indications is to impose a priority scheme on each client. A server may
retrieve several connect indications, and then accept them in an order based on
a priority associated with each client. A second reason for handling several out-
standing connect indications is that the single-threaded scheme has some limita-
tions. Depending on the implementation of the transport provider, it is possible
that while the server is processing the current connect indication, other clients
will find it busy. If, however, multiple connect indications can be processed
simultaneously, the server will be found to be busy only if the maximum
allowed number of clients attempt to call the server simultaneously.

The server example is event-driven: the process polls a transport endpoint for
incoming Transport Interface events, and then takes the appropriate actions for
the current event. The example demonstrates the ability to poll multiple tran-
sport endpoints for incoming events.

The definitions and local management functions needed by this example are
similar to those of the server example in the section “Introduction to
Connectionless-Mode Service.”

2-52 Programmer’s Guide: Networking Interfaces

Advanced Topics

(continued on next page)

Transport Interface Programming 2-53

Advanced Topics

The file descriptor returned by t_open is stored in a pol1£d structure (see
pol1(2)) that polls the transport endpoint for incoming data. Notice that only
one transport endpoint is established in this example. However, the remainder
of the example is written to manage multiple transport endpoints. Several end-
points could be supported with minor changes to the above code.

An important aspect of this server is that it sets qlen to a value greater than 1
for t_bind. This specifies that the server is willing to handle multiple out-
standing connect indications. Remember that the earlier examples single-
threaded the connect indications and responses. The server would accept the
current connect indication before retrieving additional connect indications. This
example, however, can retrieve up to MAX_CONN_IND connect indications at one
time before responding to any of them. The transport provider may negotiate
the value of qlen downward if it cannot support MAX_CONN_IND outstanding
connect indications.

Once the server has bound its address and is ready to process incoming connect
requests, it does the following:

2-54 Programmer’s Guide: Networking Interfaces

Advanced Topics

The events field of the pollfd structure is set to POLLIN, which will notify
the server of any incoming Transport Interface events. The server then enters
an infinite loop, in which it polls the transport endpoint(s) for events, and then
processes those events as they occur.

The pol1l call will block indefinitely, waiting for an incoming event. On return,
each entry (correspondlng to each transport endpoint) is checked for an existing
event. If revents is set to 0, no event has occurred on that endpoint. In this
case, the server continues to the next transport endpoint. If revents is set to
POLLIN, an event does exist on the endpoint. In this case, do_event is called
to process the event. If revents contains any other value, an error must have
occurred on the transport endpoint, and the server will exit.

For each iteration of the loop, if any event is found on the transport endpoint,
service_conn_ind is called to process any outstanding connect indications.
However, if another connect indication is pending, service_conn_ind will
save the current connect indication and respond to it later. This routine will be
explained shortly.

Transport Interface Programming 2-55

Advanced Topics

If an incoming event is discovered, the following routine is called to process it:

(continued on next page)

2-56 Programmer’s Guide: Networking Interfaces

Advanced Topics

This routine takes a number, slot, and a file descriptor, £d, as arguments.
slot is used as an index into the global array calls. This array contains an
entry for each polled transport endpoint, where each entry consists of an array
of t_call structures that hold incoming connect indications for that transport
endpoint. The value of slot is used to identify the transport endpoint.

do_event calls t_look to determine the Transport Interface event that has
occurred on the transport endpoint specified by £d. If a connect indication
(T_LISTEN event) or disconnect indication (T_DISCONNECT event) has arrived,
the event is processed. Otherwise, the server prints an appropriate error mes-
sage and exits.

For connect indications, do_event scans the array of outstanding connect indi-
cations looking for the first free entry. A t_call structure is then allocated for
that entry, and the connect indication is retrieved using t_listen. There must
always be at least one free entry in the connect indication array, because the
array is large enough to hold the maximum number of outstanding connect
indications as negotiated by t_bind. The processing of the connect indication
is deferred until later.

Transport Interface Programming 2-57

Advanced Topics

If a disconnect indication arrives, it must correspond to a previously received
connect indication. This occurs if a client attempts to undo a previous connect
request. In this case, do_event allocates a t_discon structure to retrieve the
relevant disconnect information. This structure has the following members:

where udata identifies any user data that might have been sent with the
disconnect indication, reason contains a protocol-specific disconnect reason
code, and sequence identifies the outstanding connect indication that matches
this disconnect indication.

Next, t_rcvdis is called to retrieve the disconnect indication. The array of
connect indications for slot is then scanned for one that contains a sequence
number that matches the sequence number in the disconnect indication.
When the connect indication is found, it is freed and the corresponding entry is
set to NULL. ‘

As mentioned earlier, if any event is found on a transport endpoint,
service_conn_ind is called to process all currently outstanding connect indi-
cations associated with that endpoint as follows:

2-58 Programmer’s Guide: Networking Interfaces

Advanced Topics

For the given slot (the transport endpoint), the array of outstanding connect
indications is scanned. For each indication, the server will open a responding
transport endpoint, bind an address to the endpoint, and then accept the con-
nection on that endpoint. If another event (connect indication or disconnect
indication) arrives before the current indication is accepted, t_accept will fail
and set t_errno to TLOOK.

Transport Interface Programming 2-59

Advanced Topics

The user cannot accept an outstanding connect indication if any pending
connect indication events or disconnect indication events exist on that tran-
sport endpoint.

If this error occurs, the responding transport endpoint is closed and
service_conn_ind will return immediately (saving the current connect indi-
cation for later processing). This causes the server’s main processing loop to be
entered, and the new event will be discovered by the next call to poll. In this
way, multiple connect indications may be queued by the user.

Eventually, all events will be processed, and service_conn_ind will be able
to accept each connect indication in turn. Once the connection has been esta-
blished, the run_server routine used by the server in the “Introduction to
Connection-Mode Service” section is called to manage the data transfer.

2-60 Programmer’s Guide: Networking Interfaces

State Transitions

These tables describe all state transitions associated with the Transport Interface.
First, however, the states and events will be described.

Transport Interface States

Table 2-6 defines the states used to describe the Transport Interface state transi-

tions.

Table 2-6: States Describing Transport Interface State Transitions

State Description Service Type
T UNINIT uninitialized - initial and | T_COTS,
final state of interface T_COTS_ORD, T _CLTS
T_UNBND initialized but not bound | T_COTS,
T_COTS_ORD, T_CLTS
T_IDLE no connection established | T_COTS, ,
T_COTS_ORD, T_CLTS
T_OUTCON outgoing connection T_COTS, T_COTS_ORD
pending for client
T_INCON incoming connection T_COTS, T_COTS_ORD
pending for server
T _DATAXFER | data transfer T_COTS, T_COTS_ORD
T_OUTREL outgoing orderly release | T_COTS_ORD
(waiting for orderly
release indication)
T_INREL incoming orderly release | T_COTS_ORD

(waiting to send orderly
release request)

Transport Interface Programming

2-61

State Transitions

Outgoing Events

The outgoing events described in Table 2-7 correspond to the return of the
specified transport routines, where these routines send a request or response to
the transport provider.

In the table, some events (such as acceptN) are distinguished by the context in
which they occur. The context is based on the values of the following variables:

ocnt count of outstanding connect indications

fd file descriptor of the current transport endpoint

resfd file descriptor of the transport endpoint where a connection will
be accepted

Table 2-7: Outgoing Events

Event Description Service Type

opened successful return of t_open T_COTS,
T_COTS_ORD, T_CLTS

bind successful return of t_bind T_COTS,
T_COTS_ORD, T_CLTS

optmgmt successful return of t_optmgmt T_COTS,
T_COTS_ORD, T_CLTS

unbind successful return of t_unbind T_COTS,
T_COTS_ORD, T_CLTS

closed successful return of t_close T_COTS,
T_COTS_ORD, T_CLTS

connectl | successful return of t_connect in T_COTS, T_COTS_ORD
synchronous mode

2-62 Programmer’s Guide: Networking Interfaces

State Transitions

Table 2-7: Outgoing Events (continued)

Event Description Service Type

connect2 | TNODATA error on t_connect in T_COTS, T_COTS_ORD
asynchronous mode, or TLOOK error
due to a disconnect indication arriv-
ing on the transport endpoint

acceptl successful return of t_accept with | T_COTS, T_COTS_ORD
ocnt == 1, fd == resfd

accept2 successful return of t_accept with | T_COTS, T_COTS_ORD
ocnt == 1, fd != resfd

accept3 successful return of T_COTS, T_COTS_ORD
t_accept with ocnt > 1

snd successful return of t_snd T_COTS, T_COTS_ORD

snddisl successful return of T_COTS, T_COTS_ORD
t_snddis with ocnt <=1

snddis2 successful return of T_COTS, T_COTS_ORD
t_snddis with ocnt > 1

sndrel successful return of t_sndrel T_COTS_ORD

sndudata | successful return of t_sndudata T_CLTS

Transport Interface Programming 2-63

State Transitions

Incoming Events

The incoming events correspond to the successful return of the specified rou-
tines, where these routines retrieve data or event information from the transport
provider. The only incoming event not associated directly with the return of a
routine is pass_conn, which occurs when a user transfers a connection to
another transport endpoint. This event occurs on the endpoint that is being
passed the connection, despite the fact that no Transport Interface routine is
issued on that endpoint. pass_conn is included in the state tables to describe
the behavior when a user accepts a connection on another transport endpoint.

In Table 2-8, the rcvdis events are distinguished by the context in which they
occur. The context is based on the value of ocnt, which is the count of out-
standing connect indications on the transport endpoint.

Table 2-8: Incoming Events

Incoming
Event Description Service Type

listen successful return of t_listen T _COTS, T_COTS_ORD

rcveonnect | successful return of t_rcvconnect | T_COTS, T_COTS_ORD

rcev successful return of t_rcv T _COTS, T_COTS_ORD

rcvdisl successful return of t_rcvdis T_COTS, T_COTS_ORD
with ocnt <=0

rcvdis2 successful return of t_rcvdis T_COTS, T_COTS_ORD
with ocnt ==
rcvdis3 successful return of t_rcvdis T_COTS, T_COTS_ORD

with ocnt > 1

rcvrel successful return of t_rcvrel T_COTS_ORD

2-64 Programmer’s Guide: Networking Interfaces

State Transitions

Table 2-8: Incoming Events (continued)

Incoming
Event Description Service Type
rcvudata successful return of t_rcvudata T_CLTS
rcvuderr successful return of t_rcvuderr T_CLTS
pass_conn receive a passed connection T_COTS, T_COTS_ORD

Transport User Actions

In the state tables that follow, some state transitions are accompanied by a list of
actions the transport user must take. These actions are represented by the nota-
tion [n], where n is the number of the specific action as described below.

[1] Set the count of outstanding connect indications to zero.

(2] Increment the count of outstanding connect indications.

[3] Decrement the count of outstanding connect indications.

(4] Pass a connection to another transport endpoint as indicated in
t_accept.

State Tables

The following tables describe the Transport Interface state transitions. Given a
current state and an event, the transition to the next state is shown, as well as
any actions that must be taken by the transport user (indicated by [n]). The
state is that of the transport provider as seen by the transport user.

The contents of each box represent the next state, given the current state
(column) and the current incoming or outgoing event (row). An empty box
represents a state/event combination that is invalid. Along with the next state,
each box may include an action list (as specified in the previous section). The

Transport Interface Programming 2-65

State Transitions

transport user must take the specific actions in the order specified in the state

table.

The following should be understood when studying the state tables:

m The t_close routine is referenced in the state tables (see closed event

in Table 2-9), but may be called from any state to close a transport end-
point. If t_close is called when a transport address is bound to an end-
point, the address will be unbound. Also, if t_close is called when the
transport connection is still active, the connection will be aborted.

If a transport user issues a routine out of sequence, the transport provider
will recognize this and the routine will fail, setting t _errno to TOUT-
STATE. The state will not change.

If any other transport error occurs, the state will not change unless expli-
citly stated on the manual page for that routine. The exception to this is a
TLOOK or TNODATA error on t_connect, as described in Table 2-1. The
state tables assume correct use of the Transport Interface.

The support routines t_getinfo, t_getstate, t_alloc, t_free,
t_sync, t_look, and t_error are excluded from the state tables
because they do not affect the state.

A separate table is shown for common local management steps, data transfer in
connectionless-mode, and connection-establishment/connection-release/data-
transfer in connection-mode.

2-66

Programmer’s Guide: Networking Interfaces

State Transitions

Table 2-9: Common Local Management State Table

event state T_UNINIT | T_UNBND T_IDLE
opened T_UNBND

bind T_IDLE [1]

optmgmt T_IDLE
unbind T_UNBND
closed T_UNINIT

Table 2-10: Connectionless-Mode State Table

evo state | ¢ 1pre
sndudata T_IDLE
rcvudata T_IDLE
rcvuderr T_IDLE

Transport Interface Programming

2-67

State Transitions

Table 2-11: Connection-Mode State Table

event state T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL
connectl T_DATAXFER

connect?2 T_OUTCON

rcveonnect T_DATAXFER

listen T_INCON [2] T_INCON (2]

acceptl T_DATAXFER([3]

accept2 T_IDLE (3] (4]

accept3 T_INCON [3][4]

snd T_DATAXFER T_INREL
rev T_DATAXFER T_OUTREL

snddisl T_IDLE T_IDLE (3] T_IDLE T_IDLE T_IDLE
snddis2 T_INCON [3]

rcvdisl T_IDLE T_IDLE T_IDLE T_IDLE
revdis2 T_IDLE [3]

rcvdis3 T_INCON [3]

sndrel T_OUTREL T_IDLE
rcvrel T_INREL T_IDLE

pass_conn T_DATAXFER

2-68 Programmer’s Guide: Networking Interfaces

Guidelines for Protocol Independence

By defining a set of services common to many transport protocols, the Transport
Interface offers protocol independence for user software. However, not all tran-
sport protocols support the services supported by the Transport Interface. If
software must be run in a variety of protocol environments, only the common
services should be accessed. The following guidelines highlight services that
may not be common to all transport protocols.

In the connection-mode service, the concept of a transport service data
unit (TSDU) may not be supported by all transport providers. The user
should make no assumptions about the preservation of logical data boun-
daries across a connection. If messages must be transferred over a con-
nection, a protocol should be implemented above the Transport Interface
to support message boundaries.

Protocol and implementation specific service limits are returned by the
t_open and t_getinfo routines. These limits are useful when allocat-
ing buffers to store protocol-specific transport addresses and options. It is
the responsibility of the user to access these limits and then adhere to the
limits throughout the communication process.

User data should not be transmitted with connect requests or disconnect
requests (see t_connect(3N) and t_snddis(3N)). Not all transport pro-
tocols support this capability.

The buffers in the t_call structure used for t_listen must be large
enough to hold any information passed by the client during connection
establishment. The server should use the T_ALL argument to t_alloc,
which determines the maximum buffer sizes needed to store the address,
options, and user data for the current transport provider.

The user program should not look at or change options that are associated
with any Transport Interface routine. These options are specific to the
underlying transport protocol. The user should not pass options with
t_connect or t_sndudata. In such cases, the transport provider will
use default values. Also, a server should use the options returned by
t_listen when accepting a connection.

Protocol-specific addressing issues should be hidden from the user pro-
gram. A client should not specify any protocol address on t_bind, but
instead should allow the transport provider to assign an appropriate
address to the transport endpoint. Similarly, a server should retrieve its
address for t_bind in such a way that it does not require knowledge of

Transport Interface Programming 2-69

Guidelines for Protocol Independence

2-70

the transport provider’s address space. Such addresses should not be
hard-coded into a program. A name server procedure could be useful in
this situation, but the details for providing this service are outside the
scope of the Transport Interface. Detailed information about Network
Selection and Name-to-Address Mapping can be found in the “Network
Selection and Name-to-Address Mapping’’ chapter.

The reason codes associated with t_rcvdis are protocol-dependent. The
user should not interpret this information if protocol-independence is
important.

The error codes associated with t_rcvuderr are protocol-dependent.
The user should not interpret this information if protocol-independence is
a concern.

The names of devices should not be hard-coded into programs, because
the device node identifies a particular transport provider, and is not pro-
tocol independent.

The optional orderly release facility of the connection-mode service (pro-
vided by t_sndrel and t_rcvrel) should not be used by programs tar-
geted for multiple protocol environments. This facility is not supported
by all connection-based transport protocols. In particular, its use will
prevent programs from successfully communicating with ISO open sys-
tems.

Programmer’s Guide: Networking Interfaces

Some Examples

The examples presented throughout this guide are shown in their entirety in
this section.

Connection-Mode Client

The following code represents the connection-mode client program described in
the section “Introduction to Connection-Mode Service.”” This client establishes a
transport connection with a server, and then receives data from the server and
writes it to its standard output. The connection is released using the orderly
release facility of the Transport Interface. This client communicates with each of
the connection-mode servers presented in the guide.

(continued on next page)

Transport Interface Programming 2-71

Some Examples

2-72 Programmer’s Guide: Networking Interfaces

Some Examples

Connection-Mode Server

The following code represents the connection-mode server program described in
the “Introduction to Connection-Mode Service” section. This server establishes
a transport connection with a client, and then transfers a log file to the client on
the other side of the connection. The connection is released using the orderly
release facility of the Transport Interface. The connection-mode client presented
earlier will communicate with this server.

(continued on next page)

Transport Interface Programming 2-73

Some Examples

(continued on next page)

2-74 Programmer’s Guide: Networking Interfaces

Some Examples

(continued on next page)

Transport Interface Programming 2-75

Some Examples

2-76 Programmer’s Guide: Networking Interfaces

Some Examples

Connectionless-Mode Transaction Server

The following code represents the connectionless-mode transaction server pro-
gram described in the section “Introduction to Connectionless-Mode Service.”
This server waits for incoming datagram queries, and then processes each query
and sends a response.

(continued on next page)

Transport Interface Programming 2-77

Some Examples

(continued on next page)

2-78 Programmer’s Guide: Networking Interfaces

Some Examples

Read/Write Client

The following code represents the connection-mode read/write client program
described in the section ““A Read/Write Interface.” This client establishes a tran-
sport connection with a server, and then uses cat (1) to retrieve the data sent by
the server and write it to its standard output. This client will communicate with
each of the connection-mode servers presented in the guide.

Transport Interface Programming 2-79

Some Examples

(continued on next page)

2-80 Programmer’s Guide: Networking Interfaces

Some Examples

Event-Driven Server

The following code represents the connection-mode server program described in
the section ““Advanced Topics.” This server manages multiple connect indica-
tions in an event-driven manner. Either connection-mode client presented ear-
lier will communicate with this server.

Transport Interface Programming 2-81

Some Examples

(continued on next page)

2-82 Programmer’s Guide: Networking Interfaces

Some Examples

(continued on next page)

Transport Interface Programming 2-83

Some Examples

(continued on next page)

2-84 Programmer’s Guide: Networking Interfaces

Some Examples

(continued on next page)

Transport Interface Programming 2-85

Some Examples

(continued on next page)

2-86 Programmer’s Guide: Networking Interfaces

Some Examples

Transport Iinterface Programming 2-87

Glossary

The following terms apply to the Transport Interface:

Abortive release
An abrupt termination of a transport connection, which may
result in the loss of data.

Asynchronous execution
The mode of execution in which Transport Interface routines
will never block while waiting for specific asynchronous events
to occur, but instead will return immediately if the event is not

pending.
Client The transport user in connection-mode that requests a transport
connection.

Connection establishment :
The phase in connection-mode that enables two transport users
to create a transport connection between them.

Connection-mode
A circuit-oriented mode of transfer in which data are passed
from one user to another over an established connection in a
reliable, sequenced manner.

Connectionless-mode
A mode of transfer in which data are passed from one user to
another in self-contained units with no logical relationship
required among multiple units.

Connection release
The phase in connection-mode that terminates a previously esta-
blished transport connection between two users.

Datagram A unit of data transferred between two users of the
connectionless-mode service.

Data transfer ~ The phase in connection-mode or connectionless-mode that sup-
ports the transfer of data between two transport users.

Expedited data Data that are considered urgent. The specific semantics of
expedited data are defined by the transport protocol that pro-
vides the transport service.

2-88 Programmer’s Guide: Networking Interfaces

Glossary

Expedited transport service data
The amount of expedited user data the identity of which is
preserved from one end of a transport connection to the other
(that is, an expedited message).

Local management
The phase in either connection-mode or connectionless-mode in
which a transport user establishes a transport endpoint and
binds a transport address to the endpoint. Functions in this
phase perform local operations, and require no transport layer
traffic over the network.

Orderly release ,
A procedure for gracefully terminating a transport connection
with no loss of data.

Peer user The user with whom a given user is communicating above the
Transport Interface.
Server The transport user in connection-mode that offers services to

other users (clients) and enables these clients to establish a tran-
sport connection to it.

Service indication
The notification of a pending event generated by the provider to
a user of a particular service.

Service primitive
The unit of information passed across a service interface that
contains either a service request or service indication.

Service request A request for some action generated by a user to the provider of
a particular service.

Synchronous execution
The mode of execution in which Transport Interface routines
“may block while waiting for specific asynchronous events to
occur.

Transport address
The identifier used to differentiate and locate specific transport
endpoints in a network.

Transport Iinterface Programming 2-89

Glossary

Transport connection
The communication circuit that is established between two tran-
sport users in connection-mode.

Transport endpoint
The local communication channel between a transport user and
a transport provider.

Transport Interface
The library routines and state transition rules that support the
services of a transport protocol.

Transport provider
The transport protocol that provides the services of the Tran-
sport Interface.

Transport service data unit
The amount of user data whose identity is preserved from one
end of a transport connection to the other (that is, a message).

Transport user The user-level application or protocol that accesses the services
of the Transport Interface.

Virtual circuit A transport connection established in connection-mode. The fol-
lowing acronyms are used throughout this guide:
CLTS Connectionless Transport Service
COTS Connection Oriented Transport Service
ETSDU Expedited Transport Service Data Unit
TSDU Transport Sel\'vice Data Unit

2-90 Programmer’s Guide: Networking Interfaces

3 The Sockets Interface

Background 3-1
Basics 3-2
Socket Types 32
Socket Creation 33
Binding Local Names 34
Connection Establishment 3-6
Data Transfer 39
Closing Sockets 3-10
Connectionless Sockets 3-13
Input/Output Multiplexing 317
Supporting Routines 3-23
Host Names 3-24
Network Names 3-24
Protocol Names 3-25
Service Names 3-26
Miscellaneous 3-27
Client/Server Model 3-30
Servers 3-31
Clients 3-34
Connectionless Servers 3-36

Table of Contents 1

Table of Contents

Advanced Topics

Out Of Band Data

Non-Blocking Sockets

Interrupt Driven Socket I/O

Signals and Process Groups

Selecting Specific Protocols

Address Binding

Broadcasting and Determining Network Configuration
Socket Options

inetd

3-41
3-41
3-43
3-44
3-45
3-47
3-48
3-51
3-55
3-57

Programmer’s Guide: Networking Interfaces

Background

Sockets was first introduced in 1981 as part of the Berkeley 4.2 Software Distri-
bution. A significant application base has been written using this interface.
Sockets has now been added to UNIX System V Release 4 as part of the
BSD/System V unification.

Different approaches are possible within the sockets framework. This chapter
discusses these approaches and then illustrates them with a series of sample
programs. The programs demonstrate the use of both datagram socket and
stream socket communication. The chapter is divided into the following sec-
tions: The “‘Basics” section introduces the sockets routines and the basic model
of communication. “Supporting Routines” describes some of the library func-
tions that may be used to build distributed applications. The section on the
“Client/Server Model” discusses the model used in developing applications and
includes examples of the two major types of servers. “Advanced Topics”
discusses issues that may be relevant for more sophisticated users.

The Sockets Interface 3-1

Basics

A basic building block for communication is the socket. A socket is an endpoint
of communication to which a name may be bound. Each socket in use has a
type and one or more associated processes. Sockets exist within communica-
tions domains. Domains are abstractions that imply both an addressing struc-
ture (address family) and a set of protocols which implement socket types
within the domain (protocol family). Communications domains are introduced
to bundle common properties of processes communicating through sockets.

One such property is the scheme used to name sockets. In the UNIX domain,
sockets are named with UNIX pathnames; for example, a socket may be named
/dev/foo. Sockets normally exchange data only with sockets in the same
domain (it may be possible to cross between communications domains, but only
if some translation process is performed). The UNIX system socket interface
facilities support several separate communications domains: for example, the
UNIX domain, for on-system communication; and the Internet domain, which is
used by processes that communicate using the DARPA standard communication
protocols. The underlying communication facilities provided by these domains
have a significant influence on the internal system implementation as well as the
interface to socket facilities available to a user. For example, a socket operating
in the UNIX domain sees a subset of the error conditions that are possible when
operating in the Internet domain.

Socket Types

Sockets have types that reflect the communication properties visible to a user.
Processes are presumed to communicate only between sockets of the same type,
although there is nothing that prevents communication between sockets of dif-
ferent types should the underlying communication protocols support this.

There are several types of sockets currently available:

m A stream socket provides for the bidirectional, reliable, sequenced and
unduplicated flow of data without record boundaries. A pair of con-
nected stream sockets provides an interface nearly identical to that of

pipes.

® A datagram socket supports bidirectional flow of data that is not prom-
ised to be sequenced, reliable, or unduplicated. That is, a process receiv-
ing messages on a datagram socket may find messages duplicated and
possibly in an order different from the order in which they were sent. An
important characteristic of a datagram socket is that record boundaries in

3-2 Programmer’s Guide: Networking Interfaces

Basics

the data are preserved. Datagram sockets closely model the facilities
found in many contemporary packet switched networks such as the Ether-
net.

m A raw socket provides access to the underlying communication protocols
that support socket abstractions. These sockets are normally datagram
oriented, although their exact characteristics are dependent on the inter-
face provided by the protocol. Raw sockets are not intended for the gen-
eral user; they have been provided mainly for users interested in develop-
ing new communication protocols, or gaining access to some of the more
esoteric facilities of an existing protocol. The use of raw sockets is con-
sidered under “Advanced Topics” below.

Socket Creation

The socket () system call is used to create a socket:
s = socket (domain, type, protocol);

This call requests that the system create a socket in the specified domain and of
the specified type. If the protocol is left unspecified (a value of 0), the system
will select an appropriate protocol from those that comprise the domain and
that may be used to support the requested socket type. A descriptor (a small
integer) that may be used in later system calls that operate on sockets is
returned. The domain is specified as one of the manifest constants defined in
the file <sys/socket .h>. For the UNIX domain the constant is AF_UNIX; for the
Internet domain, it is AF_INET.

The constants named AF_whatever show the address format to use in inter-
preting names.

I

The socket types are also defined in <sys/socket .h> and one of
SOCK_STREAM, SOCK DGRAM, or SOCK RAW must be specified. To create a
stream socket in the Internet domain the following call might be used:

s = socket (AF_INET, SOCK_STREAM, 0);

The Sockets Interface 3-3

Basics

This call would result in a stream socket being created with the TCP protocol
providing the underlying communication support. To create a datagram socket
for on-machine use the call might be:

s = socket (AF_UNIX, SOCK DGRAM, 0);

The default protocol (used when the protocol argument to the socket () call is
0) should be correct for most situations. However, it is possible to specify a
protocol other than the default; this will be covered in the ‘“Advanced Topics”
section below.

A socket call may fail for several reasons. Aside from the rare occurrence of
lack of memory (ENOBUFS), a socket request may fail because the request is for
an unknown protocol (EPROTONOSUPPORT), or because the request is for a type
of socket for which there is no supporting protocol (EPROTOTYPE).

Binding Local Names

A socket is created without a name. Until a name is bound to a socket,
processes have no way to reference it and consequently no messages may be
received on it. Communicating processes are bound by an association. In the
Internet domain, an association is composed of local and foreign addresses, and
local and foreign ports, while in the UNIX domain, an association is composed
of local and foreign pathnames.

The phrase “foreign pathname” means a pathname created by a foreign pro-
cess, not a pathname on a foreign system.

i

In most domains, associations must be unique. In the Internet domain there
may never be duplicate tuples, such as:

<protocol, local address, local port, foreign address, foreign port>

UNIX domain sockets need not always be bound to a name, but when bound
there may never be duplicate tuples of the type:

<protocol, local pathname, foreign pathname>

Currently, the pathnames may not refer to files already existing on the system,
though this may change in future releases.

3-4 Programmer’s Guide: Networking Interfaces

Basics

The bind () system call allows a process to specify half of an association, for
example

<local address, local port> (or <local pathname>)

while the connect () and accept () primitives are used to complete a socket’s
association.

The bind () system call is used as follows:
bind(s, name, namelen);

The bound name is a variable length byte string that is interpreted by the sup-
porting protocol(s). Its interpretation may vary between communication
domains (this is one of the properties that comprises a domain). Whereas Inter-
net domain names contain an Internet address and port number, UNIX domain
names contain a pathname and a family. The family is always AF_UNIX. The
following code would be used to bind the name /tmp/foo to a UNIX domain
socket:

Note that in determining the size of a UNIX domain address, null bytes are not
counted, which is why strlen() is used. The file name referred to in
addr.sun_path is created as a socket in the system file space. The caller
must, therefore, have write permission in the directory where addr.sun_path
is to reside, and the file should be deleted by the caller when it is no longer
needed.

In binding an Internet address things become more complicated. The call itself
is similar,

The Sockets Interface 3-5

but the selection of what to place in the address sin requires some discussion.
We will come back to the problem of formulating Internet addresses in the
““Supporting Routines” section when the library routines used in name resolu-
tion are discussed.

Connection Establishment

Connection establishment is usually asymmetric, with one process a client and
the other a server . The server, when willing to offer its advertised services,
binds a socket to a well-known address associated with the service and then
passively listens on its socket. It is then possible for an unrelated process to
rendezvous with the server. The client requests services from the server by ini-
tiating a connection to the server’s socket. On the client side the connect ()
call is used to initiate a connection. In the UNIX domain, this might appear as:

while in the Internet domain, it might be:

3-6 Programmer’s Guide: Networking Interfaces

Basics

server would contain either the UNIX pathname, or the Internet address and
port number of the server to which the client process wishes to speak. If the
client process’s socket is unbound at the time of the connect call, the system will
automatically select and bind a name to the socket if necessary. See “Signals
and Process Groups” below. This is the usual way that local addresses are
bound to a socket.

An error is returned if the connection was unsuccessful (however, any name
automatically bound by the system remains). Otherwise, the socket is associated
with the server and data transfer may begin. Some of the more common errors
returned when a connection attempt fails are:

ETIMEDOUT After failing to establish a connection over a period of time, the
system stopped attempting the connection. This may occur
when the destination host is down or when problems in the net-
work result in lost transmissions.

ECONNREFUSE
The host refused service. This usually occurs when a server
process is not present at the requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status informa-
tion delivered to the client host by the underlying communica-
tion services.

ENETUNREACH or EHOSTUNREACH
These operational errors can occur either because the network or
host is unknown (no route to the network or host is present), or
because of status information returned by intermediate gateways
or switching nodes. The status returned is not always sufficient
to distinguish between a network that is down and a host that is
down.

For a server to receive a client’s connection it must perform two steps after

binding its socket. The first is to listen for incoming connection requests. With
a socket marked as listening, the second step is to accept () a connection:

The Sockets Interface 3-7

Basics

The first parameter to the 1isten () call is the socket on which the connection
is to be established. The second parameter to the 1isten () call specifies the
maximum number of outstanding connections that may be queued awaiting
acceptance by the server process. (For the UNIX domain, from would be
declared as a structsockaddr_un but nothing different would need to be done
as far as fromlen is concerned. In the examples that follow, only Internet rou-
tines will be discussed.) A new descriptor is returned on receipt of a connection
(along with a new socket). If the server wishes to find out who its client is, it
may supply a buffer for the client socket’s name. The value-result parameter
fromlen is initialized by the server to indicate how much space is associated
with from. It is then modified on return to reflect the true size of the name. If
the client’s name is not of interest, the second parameter may be a null pointer.

accept () normally blocks. That is, accept () will not return until a connec-
tion is available or the system call is interrupted by a signal to the process.
Further, there is no way for a process to indicate that it will accept connections
only from a specific individual or individuals. It is up to the user process to
consider who the connection is from and close down the connection if it does
not wish to speak to the process. If the server process wants to accept connec-
tions on more than one socket, or wants to avoid blocking on the accept call,
there are alternatives; they will be considered in the ““Advanced Topics” section
below.

3-8 Programmer’s Guide: Networking Interfaces

Basics

Data Transfer

With a connection established, data may begin to flow. There are several calls
for sending and receiving data. With the peer entity at each end of a connection
anchored, a user can send or receive a message without specifying the peer.
Here, the normal read () and write () system calls are usable:

In addition to read () and write (), the calls send() and recv() may be
used:

send (s, buf, sizeof buf, flags);
recv(s, buf, sizeof buf, flags);

While send () and recv () are virtually identical to read () and write (),
the extra flags argument is important. The flags, defined in

<sys/socket .h>, may be specified as a non-zero value if one or more of the
following is required:

MSG_OOB send/receive out-of-band data
MSG_PEEK look at data without reading
MSG_DONTROUTE send data without routing packets

Out-of-band data is specific to stream sockets. The option to have data sent
without routing applied to the outgoing packets is currently used only by the
routing table management process and is unlikely to be of interest to most
users. However, the ability to preview data is of interest. When MSG_PEEK is
specified with a recv () call, any data present is returned to the user but
treated as still unread. That is, the next read () or recv () call applied to the
socket will return the data previously previewed.

The Sockets Interface 3-9

Basics

Closing Sockets

Once a socket is no longer of interest, it may be discarded by applying a
close () to the descriptor,

close(s);

If data is associated with a socket that promises reliable delivery (for example, a
stream socket) when a close takes place, the system will continue to attempt to
transfer the data. However, if the data is still undelivered after a falrly long
period of time, it will be discarded. If a user has no use for pending data, a
shutdown () may be performed on the socket before closing it. This call is of
the form:

shutdown (s, how);

where how is 0 if the user is no longer interested in reading data, 1 if no more
data will be sent, and 2 if no data is to be sent or received.

The following two code samples illustrate how to initiate and accept an Internet
domain stream connection.

Figure 3-1: Initiating an Internet Domain Stream Connection

(continued on next page)

3-10 Programmer’s Guide: Networking Interfaces

Basics

Figure 3-1: Initiating an Internet Domain Stream Connection (continued)

The Sockets Interface 3-11

Basics

Figure 3-2: Accepting an Internet Domain Stream Connection

(continued on next page)

3-12 Programmer’s Guide: Networking Interfaces

Basics

Figure 3-2: Accepting an Internet Domain Stream Connection (continued)

Connectionless Sockets

Up to this point we have been concerned primarily with connection-oriented
sockets. However, connectionless interactions typical of the datagram facilities
found in contemporary packet switched networks are also supported. A
datagram socket provides a symmetric interface to data exchange. While
processes are still likely to be client and server process, there is no requirement
for connection establishment. Instead, each message includes the destination
address.

The Sockets Interface 3-13

Basics

Datagram sockets are created as described above under “Socket Creation.” If a
particular local address is needed, the bind () operation must precede the first
data transmission. Otherwise, the system will set the local address and/or port
when data is first sent. To send data, the sendto () call is used:

sendto (s, buf, buflen, flags, (struct sockaddr *)
&to, tolen);

The s, buf, buflen, and flags parameters are used the same as with
connection-oriented sockets. The to and tolen values are used to indicate the
address of the intended recipient of the message. When using an unreliable
datagram interface, it is unlikely that any errors will be reported to the sender.
When information is present locally that allows the system to recognize a mes-
sage that can not be delivered (for instance when a network is unreachable), the
call will return —1 and the global value errno will contain the error number.

To receive messages on an unconnected datagram socket, the recvfrom() call
is used:

recvfrom(s, buf, buflen, flags, (struct sockaddr *)
&from, &fromlen);

The fromlen parameter initially contains the size of the from buffer; it is
modified on return to show the size of the address from which the datagram
was received.

In addition to the two calls mentioned above, datagram sockets may also use
the connect () call to associate a socket with a specific destination address.
Here, any data sent on the socket without explicitly specifying the destination
address will automatically be addressed to the connected peer, and only data
received from that peer will be delivered to the user. Only one connected
address is permitted for each socket at one time. A second connect will change
the destination address, and a connect to a null address (domain AF_UNSPEC)
will disconnect. Connect requests on datagram sockets return immediately; the
system simply records the peer’s address. By contrast, a connection request on
a stream socket initiates establishment of an end-to-end connection.

accept () and listen() are not used with datagram sockets.

While a datagram socket is connected, errors from recent send () calls may be
returned asynchronously. These errors may be reported on subsequent opera-
tions on the socket, or a special socket option used with get sockopt,
SO_ERROR, may be used to interrogate the error status.

3-14 Programmer’s Guide: Networking Interfaces

Basics

Figure 3-3: Reading Internet Domain Datagrams

The Sockets Interface 3-15

Basics

Figure 3-3: Reading Internet Domain Datagrams (continued)

Figure 3-4: Sending an Internet Domain Datagram

(cdntlnﬁéd on next pég'é)

3-16 Programmer’s Guide: Networking Interfaces

Basics

Figure 3-4: Sending an Internet Domain Datagram (continued)

Input/Output Multiplexing
The ability to multiplex I/0 requests among multiple sockets or files is a facility

that is often used in developing applications. The select () call is used for
this type of input/output multiplexing;:

The Sockets Interface 317

Basics

select () takes pointers to three sets as arguments. One pointer is to the set
of file descriptors on which the caller wishes to be able to read data; one is to
those descriptors to which data is to be written; and one is to pending excep-
tional conditions. Out-of-band data is the only exceptional condition currently
implemented. If the user is not interested in certain conditions (i.e., read, write,
or exceptions), the corresponding argument to the select () should be a prop-
erly cast null pointer.

Each set is a structure containing an array of long integer bit masks. The size of
the array is set by FD_SETSIZE. The array is long enough to hold one bit for
each of FD_SETSIZE file descriptors.

The macros FD_SET (fd &mask) , and FD_CLR (fd, &mask) have been provided
for adding and removing file descriptor £d in the set mask. The set should be

zeroed before use, and the macro FD_ZERO (&mask) has been prov1ded to clear
the set mask.

- The nfds argument specifies the range of file descriptors (i.e., one plus the
value of the largest descriptor) to be examined in a set.

A timeout value may be specified if the selection is not to last more than a
predetermined period of time. If the fields in timeout are set to 0, the selec-
tion takes the form of a poll, returning immediately. If the last parameter is a
NULL pointer, the selection will block indefinitely.

3-18 Programmer’s Guide: Networking Interfaces

Basics

To be more specific, if the last parameter is a NULL pointer, a return takes
place only when a descriptor is selectable, or when a signal is received by
the caller, interrupting the system call.

select () normally returns the number of file descriptors selected. If the
select () call returns because the timeout has expired, the value 0 is returned.
If the select () terminates because of an error or interrupt, a —1 is returned
with the error number in errno, and with the file descriptor masks unchanged.

Assuming a successful return, the three sets will indicate which file descriptors
are ready to be read from, written to, or have exceptional conditions pending.

The status of a file descriptor in a select mask may be tested with the
FD_ISSET (fd, &mask) macro, which returns a non-zero value if £d is a
member of the set mask, and 0 if it is not.

To determine if there are connections waiting on a socket to be used with an
accept () call, select () can be used, followed by a FD_ISSET (fd, &mask)
macro to check for read readiness on the appropriate socket. If FD_ISSET
returns a non-zero value, indicating permission to read, then a connection is
pending on the socket.

As an example, to read data from two sockets, s1 and s2, as it is available from
each and with a five-second timeout, the following code might be used:

The Sockets Interface 3-19

Basics

Figure 3-5: Using select () to Check for Pending Connections

(continued on next page)

3-20 Programmer’s Guide: Networking Interfaces

Basics

Figure 3-5: Using select () to Check for Pending Connections (continued)

In previous versions of select (), its arguments were pointers to integers
instead of pointers to £d_sets. This type of call will still work as long as the
number of file descriptors being examined is less than the number of bits in an
integer; however, the methods illustrated above should be used in all current
programs.

The Sockets Interface 3-21

Basics

select () provides a synchronous multiplexing scheme. The SIGIO and
SIGURG signals described in the ““Advanced Topics” section below may be used
to provide asynchronous notification of output completion, input availability,
and exceptional conditions.

3-22 Programmer’s Guide: Networking Interfaces

Supporting Routines

The discussion in the ‘‘Basics” section above mentions the possible need to
locate and construct network addresses when using the communication facilities
in a distributed environment. To aid in this task several routines have been
added to the standard C run-time library. In this section we will consider the
new routines provided to manipulate network addresses.

Locating a service on a remote host requires many levels of mapping before
client and server may communicate. A service is assigned a name that is
intended for human consumption; e.g., the login server on host monet. This
name, and the name of the peer host, must then be translated into network
addresses that are not necessarily suitable for human consumption. Finally, the
address must then be used in locating a physical location and route to the ser-
vice. The specifics of these three mappings are likely to vary between network
architectures. For instance, it is desirable for a network not to require hosts to
be named in such a way that their physical location is known by the client host.
Instead, underlying services in the network may discover the location of the
host at the time a client host wishes to communicate. This ability to have hosts
named independent of their location may induce overhead in connection estab-
lishment, as a discovery process must take place, but allows a host to be physi-
cally mobile without requiring it to notify its clientele of its current location.

Standard routines are provided for mapping host names to network addresses,
network names to network numbers, protocol names to protocol numbers, and
service names to port numbers and the appropriate protocol to use in communi-
cating with the server process. The file <netdb.h> must be included when
using any of these routines.

The Sockets Interface 3-23

Supporting Routines

Host Names

An Internet host name to address mapping is represented by the hostent
structure:

The routine get hostbyname(3N) takes an Internet host name and returns a
hostent structure, while the routine gethostbyaddr(3N) maps Internet host
addresses into a hostent structure. The routine inet_ntoa(3N) maps an
Internet host address into an ASCII string for printing by log and error mes-
sages.

The official name of the host and its public aliases are returned by these rou-
tines, along with the address type (domain) and a null terminated list of vari-
able length addresses. This list of addresses is required because it is possible for
a host to have many addresses, all having the same name. The h_addr
definition is provided for backward compatibility, and is defined to be the first
address in the list of addresses in the hostent structure.

Network Names

As for host names, routines for mapping network names to numbers, and back,
are provided. These routines return a netent structure:

3-24 Programmer’s Guide: Networking Interfaces

Supporting Routines

The routines get netbyname (3N), getnetbyaddr (3N) , and getnetent (3N)
are the network counterparts to the host routines described above.

Protocol Names

For protocols, the protoent structure defines the protocol-name mapping used
with the routines get protobyname (3N), getprotobynumber(3N), and
getprotoent (3N):

The Sockets Interface 3-25

Supporting Routines

Service Names

Information regarding services is a bit more complicated. A service is expected
to reside at a specific port and use a particular communication protocol. This
view is consistent with the Internet domain, but inconsistent with other network
architectures. Further, a service may reside on multiple ports. If this occurs, the
higher level library routines will have to be bypassed or extended.

A service mapping is described by the servent structure:

The routine get servbyname(3N) maps service names to a servent structure
by specifying a service name and, optionally, a qualifying protocol. Thus the
call

sp = getservbyname ("telnet", (char *) 0);

returns the service specification for a telnet server using any protocol, while the
call

sp = getservbyname ("telnet", "tcp"):;

returns only that telnet server that uses the TCP protocol. The routines
getservbyport (3N) and get servent (3N) are also provided. The get—
servbyport () routine has an interface similar to that provided by get—
servbyname () ; an optional protocol name may be specified to qualify lookups.

3-26 Programmer’s Guide: Networking Interfaces

Supporting Routines

Miscellaneous

With the support routines described above, an Internet application program
should rarely have to deal directly with addresses. This allows services to be
developed as much as possible in a network independent fashion. It is clear,
however, that purging all network dependencies is very difficult. So long as the
user is required to supply network addresses when naming services and sockets
there will always be some network dependency in a program. For example, the
normal code included in client programs, such as the remote login program, is
of the form shown in Figure 3-6. (This example will be considered in more
detail in the “Client/Server Model” section below.)

Aside from the address-related database routines, there are several other rou-
tines available in the run-time library that are of interest to users. These are
intended mostly to simplify manipulation of names and addresses. Table 3-1
summarizes the routines for manipuldting variable length byte strings and han-
dling byte swapping of network addresses and values.

Table 3-1: Run-Time Library Routines

Call Synopsis

memcmp (s1, s2, n) Compare byte-strings; 0 if same, not 0 otherwise
memcpy (sl, s2, n) Copy n bytes from s2 to sl

memset (base, value, n) | Set n bytes to value starting at base

htonl (val) 32-bit quantity from host into network byte order
htons (val) 16-bit quantity from host into network byte order
ntohl (val) 32-bit quantity from network into host byte order

ntohs (val) 16-bit quantity from network into host byte order

The byte swapping routines are provided because the operating system expects
addresses to be supplied in network order. On some architectures, such as the
VAX, host byte ordering is different from network byte ordering. Consequently,
programs are sometimes required to byte swap quantities. The library routines
that return network addresses provide them in network order so that they may
simply be copied into the structures provided to the system. Users should
therefore encounter byte swapping problems only when interpreting network

The Sockets Interface 3-27

Supporting Routines

addresses. For example, the following code will print out an Internet port:
printf ("port number %d\n", ntohs(sp->s_port));

On certain machines, where these routines are not needed, they are defined as
null macros.

Figure 3-6: Remote Login Client Code

m(contlnued on next pa"g“e‘) -

3-28 Programmer’s Guide: Networking Interfaces

Supporting Routines

Figure 3-6: Remote Login Client Code (continued)

The Sockets Interface 3-29

Client/Server Model

The most commonly used paradigm in building distributed applications is the
client/server model. In this scheme client applications request services from a
server process. This implies an asymmetry in establishing communication
between the client and server that has been examined in the “Basics” section
above. In this section we will look more closely at the interactions between
client and server, and consider some of the problems in developing client and
server applications.

The client and server require a well known set of conventions before service
may be rendered (and accepted). This set of conventions comprises a protocol
that must be implemented at both ends of a connection. Depending on the
situation, the protocol may be symmetric or asymmetric. In a symmetric proto-
col, either side may play the master or slave roles. In an asymmetric protocol,
one side is immutably recognized as the master, with the other as the slave. An
example of a symmetric protocol is the TELNET protocol used in the Internet for
remote terminal emulation. An example of an asymmetric protocol is the Inter-
net file transfer protocol, FTP. No matter whether the specific protocol used in
obtaining a service is symmetric or asymmetric, when accessing a service there
is a client process and a server process. We will first consider the properties of
server processes, then client processes.

A server process normally listens at a well known address for service requests.
That is, the server process remains dormant until a connection is requested by a
client’s connection to the server’s address. At such a time the server process
“wakes up” and services the client, performing whatever appropriate actions
the client requests of it.

Alternative schemes that use a service server may be used to eliminate a flock of
server processes clogging the system while remaining dormant most of the time.
For Internet servers, this scheme has been implemented via inetd, the so called
“internet super-server.” inetd listens at a variety of ports, determined at
start-up by reading a configuration file. When a connection is requested to a
port on which inetd is listening, inetd executes the appropriate server pro-
gram to handle the client. With this method, clients are unaware that an
intermediary such as inetd has played any part in the connection. inetd will
be described in more detail in the “Advanced Topics” section below.

3-30 Programmer’s Guide: Networking Interfaces

Client/Server Model

Servers

In the UNIX system, most servers are accessed at well known Internet addresses
or UNIX domain names. The form of their main loop is illustrated by the fol-
lowing code form the remote-login server:

Figure 3-7: Remote Login Server

(continued on next page)

The Sockets Interface 3-31

Client/Server Model

Figure 3-7: Remote Login Server (continued)

The first step taken by the server is look up its service definition:

The result of the get servbyname () call is used in later portions of the code to
define the Internet port at which it listens for service requests (indicated by a
connection). Some standard port numbers are given in the file
/usr/include/netinet/in.h for backward compatibility purposes.

Step two is to disassociate the server from the controlling terminal of its
invoker:

3-32 Programmer’s Guide: Networking Interfaces

Client/Server Model

This step is important as the server will likely not want to receive signals
delivered to the process group of the controlling terminal. Note, however, that
once a server has disassociated itself it can no longer send reports of errors to a
terminal, and must log errors via syslog() .

Once a server has established a pristine environment, it creates a socket and
begins accepting service requests. The bind () call is required to insure the
server listens at its expected location. Note that the remote login server listens
at a restricted port number, and must therefore be run with a user-id of root.
This concept of a “restricted port number” is covered in the “Advanced Topics”
section below.

The main body of the loop is simple:

The Sockets Interface 3-33

Client/Server Model

An accept () call blocks the server until a client requests service. This call
could return a failure status if the call is interrupted by a signal such as
SIGCHLD (to be discussed in the ““Advanced Topics” section below). Therefore,
the return value from accept () is checked to insure a connection has been
established, and an error report is logged via syslog () if an error has
occurred.

With a connection in hand, the server then forks a child process and invokes the
main body of the remote login protocol processing. Note how the socket used
by the parent for queuing connection requests is closed in the child, while the
socket created as a result of the accept () is closed in the parent. The address
of the client is also handed the doit () routine because it requires it in authen-
ticating clients.

Clients

The client side of the remote login service was shown earlier in Figure 3-6. One
can see the separate, asymmetric roles of the client and server clearly in the
code. The server is a passive entity, listening for client connections, while the
client process is an active entity, initiating a connection when invoked.

3-34 Programmer’s Guide: Networking Interfaces

Client/Server Model

Let us consider more closely the steps taken by the client remote login process.
As in the server process, the first step is to locate the service definition for a
remote login:

Next the destination host is looked up with a gethostbyname () call:

With this done, all that is required is to establish a connection to the server at
the requested host and start up the remote login protocol. The address buffer is
cleared, then filled in with the Internet address of the foreign host and the port
number at which the login process resides on the foreign host:

A socket is created, and a connection initiated. Note that connect () implicitly
performs a bind () call, since s is unbound.

The Sockets Interface 3-35

Client/Server Model

The details of the remote login protocol will not be considered here.

Connectionless Servers

While connection-based services are the norm, some services are based on the
use of datagram sockets. One, in particular, is the rwho service, which provides
users with status information for hosts connected to a local area network. This
service, while predicated on the ability to broadcast information to all hosts con-
nected to a particular network, is of interest as an example usage of datagram
sockets.

A user on any machine running the rwho server may find out the current status
of a machine with the ruptime program. The output generated is illustrated in
Figure 3-8.

3-36 Programrher’s Guide: Networking Interfaces

Client/Server Model

Figure 3-8: Output of ruptime Program

Status information for each host is periodically broadcast by rwho server
processes on each machine. The same server process also receives the status
information and uses it to update a database. This database is then interpreted
to generate the status information for each host. Servers operate autonomously,
coupled only by the local network and its broadcast capabilities.

Note that the use of broadcast for such a task is fairly inefficient, as all hosts
must process each message, whether or not using an rwho server. Unless such
a service is sufficiently universal and is frequently used, the expense of periodic
broadcasts outweighs the simplicity.

The rwho server, in a simplified form, is pictured below. It performs two
separate tasks. The first is to act as a receiver of status information broadcast by
other hosts on the network. This job is carried out in the main loop of the pro-
gram. Packets received at the rwho port are interrogated to insure they’ve been
sent by another rwho server process, then are time stamped with their arrival
time and used to update a file indicating the status of the host. When a host
has not been heard from for an extended period of time, the database interpreta-
tion routines assume the host is down and report this information on the status
reports. This algorithm is prone to error, as a server may be down while a host
is up.

The Sockets Interface 3-37

Client/Server Model

Figure 3-9: rwho Server

(continued on next page)

3-38 Programmer’s Guide: Networking Interfaces

Client/Server Model

Figure 3-9: rwho Server (continued)

The second task performed by the server is to supply information regarding the
status of its host. This involves periodically acquiring system status informa-
tion, packaging it up in a message and broadcasting it on the local network for
other rwho servers to hear. The supply function is triggered by a timer and
runs off a signal. Locating the system status information is somewhat involved,
but uninteresting. Deciding where to transmit the resultant packet is somewhat
problematic, however.

Status information must be broadcast on the local network. For networks that
do not support the notion of broadcast another scheme must be used to simu-
late or replace broadcasting. One possibility is to list the known neighbors
(based on the status messages received from other rwho servers). This, unfor-
tunately, requires some bootstrapping information, for a server will have no
idea what machines are its neighbors until it receives status messages from
them. Therefore, if all machines on a net are freshly booted, no machine will
have any known neighbors and thus never receive, or send, any status informa-
tion. This is the identical problem faced by the routing table management pro-
cess in propagating routing status information. The standard solution, unsatis-
factory as it may be, is to inform one or more servers of known neighbors and
request that they always communicate with these neighbors. If each server has
at least one neighbor supplied to it, status information may then propagate
through a neighbor to hosts that are not (possibly) directly neighbors. If the
server is able to support networks that provide a broadcast capability, as well as
those that do not, then networks with an arbitrary topology may share status
information.

The Sockets Interface : 3-39

Client/Server Model

Programmers must be concerned about loops, however. [f a host is con-
nected to multiple networks, it will receive status information from itself. This
can lead to an endless, wasteful, exchange of information.

It is important that software operating in a distributed environment not have
any site-dependent information compiled into it. This would require a separate
copy of the server at each host and make maintenance a severe headache. The
UNIX system attempts to isolate host-specific information from applications by
providing system calls that return the necessary information. (An example of
such a system call is the gethostname(3N) call that returns the host’s official
name.) The ioctl () call allows you to find the collection of networks to
which a host is directly connected. Further, a local network broadcasting
mechanism has been implemented at the socket level. Combining these two
features allows a process to broadcast on any directly connected local network
that supports the notion of broadcasting in a site independent manner. This
solves the problem of deciding how to propagate status information with rwho,
or more generally in broadcasting. Such status information is broadcast to con-
nected networks at the socket level, where the connected networks have been
obtained via the appropriate ioctl1 () calls. The specifics of such broadcastings
are complex, however, and will be covered in the ““Advanced Topics” section
below.

3-40 Programmer’s Guide: Networking Interfaces

Advanced Topics

Several facilities have yet to be discussed. For most programmers, the mechan-
isms already described will suffice in building distributed applications. How-
ever, others will find the need to use some of the features that we consider in
this section.

Out Of Band Data

The stream socket abstraction includes the notion of out of band data. Out of
band data is a logically independent transmission channel associated with each
pair of connected stream sockets. Out of band data is delivered to the user
independently of normal data. The abstraction defines that the out of band data
facilities must support the reliable delivery of at least one out of band message
at a time. This message may contain at least one byte of data, and at least one
message may be pending delivery to the user at any one time. For communica-
tions protocols (such as TCP) that support only in-band signaling (i.e., the urgent
data is delivered in sequence with the normal data), the system normally
extracts the data from the normal data stream and stores it separately. This
allows users to choose between receiving the urgent data in order and receiving
it out of sequence without having to buffer all the intervening data. It is possi-
ble to “peek” (via MSG_PEEK) at out of band data. If the socket has a process
group, a SIGURG signal is generated when the protocol is notified of its
existence. A process can set the process group or process id to be informed by
the SIGURG signal via the appropriate fcnt1 () call, as described below for
SIGIO. If multiple sockets may have out of band data awaiting delivery, a
select () call for exceptional conditions may be used to determine those sock-
ets with such data pending. Neither the signal nor the select show the arrival of
the out-of-band data, but only notification that it is pending.

In addition to the information passed, a logical mark is placed in the data
stream to specify the point at which the out of band data was sent. The remote
login and remote shell applications use this facility to propagate signals between
client and server processes. When a signal flushes any pending output from the
remote process(es), all data up to the mark in the data stream is discarded.

To send an out of band message the MSG_OOB flag is supplied to a send () or
sendto () calls, while to receive out of band data MSG_0OOB should be specified
when doing a recvfrom() or recv () call (unless out of band data is taken in
line, in which case the MSG_0OOB flag is not needed). To find out if the read

The Sockets Interface 3-41

Advanced Topics

pointer is currently pointing at the mark in the data stream, the SIOCATMARK
ioctl is provided:

ioctl (s, SIOCATMARK, &yes);

If yes is 1 on return, the next read will return data after the mark. Otherwise
(assuming out of band data has arrived), the next read will provide data sent by
the client before transmission of the out of band signal. The routine used in the
remote login process to flush output on receipt of an interrupt or quit signal is
shown in the following example. This code reads the normal data up to the
mark (to discard it), then reads the out-of-band byte.

Figure 3-10: Flushing Terminal /O on Recelpt of Out Of Band Data

3-42 Programmer’s Guide: Networking Interfaces

Advanced Topics

A process may also read or peek at the out-of-band data without first reading
up to the mark. This is more difficult when the underlying protocol delivers the
urgent data in-band with the normal data, and only sends notification of its
presence ahead of time (e.g., the TCP protocol used to provide socket streams in
the Internet domain). With such protocols, the out-of-band byte may not yet
have arrived when a recv () is done with the MSG_OOB flag. In that case, the
call will return an error of ENOULDBLOCK. Worse, there may be enough in-band
data in the input buffer that normal flow control prevents the peer from sending
the urgent data until the buffer is cleared. The process must then read enough
of the queued data before the urgent data may be delivered.

Certain programs that use multiple bytes of urgent data and must handle multi-
ple urgent signals (e.g., telnet (1)) need to retain the position of urgent data
within the socket stream. This treatment is available as a socket-level option,
SO_OOBINLINE; see setsockopt (3N) for usage. With this option, the position
of urgent data (the “‘mark”) is retained, but the urgent data immediately follows
the mark within the normal data stream returned without the MSG_OOB flag.
Reception of multiple urgent indications causes the mark to move, but no out-
of-band data are lost.

Non-Blocking Sockets

It is occasionally convenient to make use of sockets that do not block; that is,
I/0 requests that cannot complete immediately and would therefore cause the
process to be suspended awaiting completion are not executed, and an error
code is returned. Once a socket has been created via the socket () call, it may
be marked as non-blocking by fcnt1 () as follows:

The Sockets Interface 3-43

Advanced Topics

When performing non-blocking I/0 on sockets, one must be careful to check for
the error ENOULDBLOCK (stored in the global variable errno), which occurs
when an operation would normally block, but the socket it was performed on is
marked as non-blocking. In particular, accept (), connect (), send(),
recv(), read(), and write () can all return ENOULDBLOCK, and processes
should be prepared to deal with such return codes. If an operation such as a
send () cannot be done in its entirety, but partial writes are sensible (for exam-
ple, when using a stream socket), the data that can be sent immediately will be
processed, and the return value will show the amount actually sent.

Interrupt Driven Socket I/O

The SIGIO signal allows a process to be notified via a signal when a socket (or
more generally, a file descriptor) has data waiting to be read. Use of the SIGIO
facility requires three steps: First, the process must set up a SIGIO signal
handler by use of the signal () or sigvec() calls. Second, it must set the
process id or process group id that is to receive notification of pending input to
its own process id, or the process group id of its process group (note that the
default process group of a socket is group zero). This can be done by using a
fentl () call. Third, it must enable asynchronous notification of pending 1/0
requests with another fent1 () call. Sample code to allow a given process to
receive information on pending 1/0 requests as they occur for a socket s is
given in Figure 3-11 With the addition of a handler for SIGURG, this code can
also be used to prepare for receipt of SIGURG signals.

3-44 Programmer’s Guide: Networking Interfaces

Advanced Topics

Figure 3-11: Use of Asynchronous Notification of I/O Requests

Signals and Process Groups

Because of the existence of the SIGURG and SIGIO signals, each socket has an
associated process number, just as is done for terminals. This value is initialized
to zero, but may be redefined at a later time with the F_SETOWN fcntl(), such
as was done in the code above for SIGIO.

To set the socket’s process id for signals, positive arguments should be given to
the fentl () call. To set the socket’s process group for signals, negative argu-
ments should be passed to fentl() .

The only acceptable arguments to these system calls are the caller’s process id or
a negative process group having the same absolute value as the caller’s process
id (the process must be the process group leader of its own process group).
Therefore, the only allowed recipient of SIGURG and SIGIO signals is the cal-
ling process.

The Sockets Interface 3-45

Advanced Topics

Note that the process number shows either the associated process id or the asso-
ciated process group; it is impossible to specify both at the same time. A similar
fentl () , F_GETOWN, is available for determining the current process number
of a socket.

Note that the receipt of SIGURG and SIGIO can also be enabled by using the
ioctl () call to assign the socket to the user’s process group:

Another signal that is useful when building server processes is SIGCHLD. This
signal is delivered to a process when any child processes have changed state.
Normally servers use the signal to “‘reap” child processes that have exited
without explicitly awaiting their termination or periodically polling for exit
status. For example, the remote login server loop shown in Figure 3-7 may be
augmented as follows:

3-46 Programmer’s Guide: Networking Interfaces

Advanced Topics

Figure 3-12: Use of the SIGCHLD Signal

If the parent server process fails to reap its children, several zombie processes
may be created.

Selecting Specific Protocols

If the third argument to the socket () call is 0, socket () will select a default
protocol to use with the returned socket of the type requested. The default pro-
tocol is usually correct, and alternate choices are not usually available. How-
ever, when using “raw”’ sockets to communicate directly with lower-level proto-
cols or hardware interfaces, the protocol argument may be important for setting
up demultiplexing. For example, raw sockets in the Internet domain may be
used to implement a new protocol above IP, and the socket will receive packets
only for the protocol specified. To obtain a particular protocol one determines

The Sockets Interface 3-47

Advanced Topics

the protocol number as defined within the protocol domain. For the Internet
domain one may use one of the library routines discussed in the “Supporting
Routines”” section above, such as getprotobyname () :

This would result in a socket s using a stream based connection, but with pro-
tocol type of newtcp instead of the default tcp.

Address Binding

As was mentioned in the “Basics” section, binding addresses to sockets in the
Internet domain can be complex. As a brief reminder, these associations are
composed of local and foreign addresses, and local and foreign ports. Port
numbers are allocated out of separate spaces, one for each system and one for
each domain on that system. Through the bind () system call, a process may
specify half of an association, the <local address, local port> part, while the con-
nect () and accept () primitives are used to complete a socket’s association
by specifying the <foreign address, foreign port> part. Since the association is
created in two steps the association uniqueness requirement mentioned previ-
ously could be violated unless care is taken. Further, it is unrealistic to expect
user programs always to know proper values to use for the local address and
local port since a host may reside on multiple networks and the set of allocated
port numbers is not directly accessible to a user.

To simplify local address binding in the Internet domain the notion of a wild-
card address has been provided. When an address is specified as INADDR_ANY
(a manifest constant defined in <netinet/in.h>), the system interprets the
address as any valid address. For example, to bind a specific port number to a
socket, but leave the local address unspecified, the following code might be
used:

3-48 Programmer’s Guide: Networking Interfaces

Advanced Topics

Sockets with wildcarded local addresses may receive messages directed to the
specified port number, and sent to any of the possible addresses assigned to a
host. For example, if a host has addresses 128.32.0.4 and 10.0.0.78, and a socket
is bound as above, the process will be able to accept connection requests that
are addressed to 128.32.0.4 or 10.0.0.78. If a server process wished to only allow
hosts on a given network connect to it, it would bind the address of the host on
the appropriate network.

In a similar fashion, a local port may be left unspecified (specified as zero), in
which case the system will select an appropriate port number for it. For exam-
ple, to bind a specific local address to a socket, but to leave the local port
number unspecified:

The system selects the local port number based on two criteria. The first is that
Internet ports below IPPORT RESERVED (1024) are reserved for privileged
users (i.e., the super user); Internet ports above IPPORT_USERRESERVED
(5000) are reserved for non-privileged servers. The second is that the port
number is not currently bound to some other socket. To find a free Internet

The Sockets Interface 3-49

Advanced Topics

port number in the privileged range the rresvport () library routine may be
used as follows to return a stream socket in with a privileged port number:

This restriction was placed on port allocation to allow processes executing in a
“secure” environment to do authentication based on the originating address and
port number. For example, the rlogin (1) command allows users to log in
across a network without being asked for a password, provided that two condi-
tions are met: First, the name of the system the user is logging in from must be
in the file /etc/hosts.equiv on the system being logged in to (or the system
name and the user name must be in the user’s . rhosts file in the user’s home
directory). Second, the user’s rlogin process must come from a privileged port
on the machine from which the user is logging in. The port number and net-
work address of the machine from which the user is logging in can be deter-
mined either from the accept () call (the from result), or the getpeername ()
call.

In certain cases the algorithm used by the system in selecting port numbers is
unsuitable for an application. This is because associations are created in a two
step process. For example, the Internet file transfer protocol, FTP, specifies that
data connections must always originate from the same local port. However,
duplicate associations are avoided by connecting to different foreign ports. In
this situation the system would disallow binding the same local address and
port number to a socket if a previous data connection’s socket still existed. To
override the default port selection algorithm, an option call must be performed
before address binding:

3-50 Programmer’s Guide: Networking Interfaces

Advanced Topics

With the above call, local addresses may be bound that are already in use. This
does not violate the uniqueness requirement as the system still checks at connect
time to be sure any other sockets with the same local address and port do not
have the same foreign address and port. If the association already exists, the
error EADDRINUSE is returned.

Broadcasting and Determining Network Configuration

By using a datagram socket, it is possible to send broadcast packets on many
networks connected to the system. The network itself must support broadcast;
the system provides no simulation of broadcast in software. Broadcast messages
can place a high load on a network since they force every host on the network
to service them. Consequently, the ability to send broadcast packets has been
limited to sockets that are explicitly marked as allowing broadcasting. Broad-
cast is typically used for one of two reasons: it is desired to find a resource on a
local network without prior knowledge of its address, or important functions
such as routing require that information be sent to all accessible neighbors.

To send a broadcast message, a datagram socket should be created:
s = socket (AF_INET, SOCK_DGRAM, 0);
The socket is marked as allowing broadcasting,

int on = 1;
setsockopt (s, SOL_SOCKET, SO_BROADCAST, &on, sizeof on);

and at least a port number should be bound to the socket:

The Sockets Interface 3-51

Advanced Topics

The destination address of the message to be broadcast depends on the
network(s) on which the message is to be broadcast. The Internet domain sup-
ports a shorthand notation for broadcast on the local network, the address
INADDR_BROADCAST (defined in <netinet/in.h>. To determine the list of
addresses for all reachable neighbors requires knowledge of the networks to
which the host is connected. Since this information should be obtained in a
host-independent fashion and may be impossible to derive, the UNIX system
provides a method of retrieving this information from the system data struc-
tures. The SIOCGIFCONF ioctl call returns the interface configuration of a
host as a single ifconf structure; this structure contains a ““data area” that is
made up of an array of ifreq structures, one for each address domain sup-
ported by each network interface to which the host is connected. These struc-
tures are defined in <net/if.h> as follows:

3-52 Programmer’s Guide: Networking Interfaces

Advanced Topics

The call that obtains the interface configuration is:

After this call buf will contain a list of ifreq structures, one for each network
to which the host is connected. These structures will be ordered first by inter-
face name and then by supported address families. ifc.ifc_len will have
been modified to reflect the number of bytes used by the ifreq structures.

The Sockets Interface 3-53

Advanced Topics

For each structure there exists a set of “interface flags” that tell whether the net-
work corresponding to that interface is up or down, point to point or broadcast,
etc. The SIOCGIFFLAGS ioctl retrieves these flags for an interface specified
by an ifreq structure as follows:

Once the flags have been obtained, the broadcast address must be obtained.
With broadcast networks this is done via the SIOCGIFBRDADDR ioctl, while
for point-to-point networks the address of the destination host is obtained with
SIOCGIFDSTADDR.

3-54 Programmer’s Guide: Networking Interfaces

Advanced Topics

After the appropriate ioct1l () s have obtained the broadcast or destination
address (now in dst), the sendto () call may be used:

sendto (s, buf, buflen, 0, (struct sockaddr *)é&dst,
sizeof dst);

In the above loop one sendto () occurs for every interface to which the host is
connected that supports the notion of broadcast or point-to-point addressing. If
a process only wished to send broadcast messages on a given network, code
similar to that outlined above would be used, but the loop would need to find
the correct destination address.

Received broadcast messages contain the sender’s address and port, as datagram
sockets are bound before a message is allowed to go out.

Socket Options

It is possible to set and get several options on sockets via the set sockopt ()
and getsockopt () system calls. These options include such things as marking
a socket for broadcasting, not to route, to linger on close, etc. The general forms
of the calls are:

setsockopt (s, level, optname, optval, optlen);

The Sockets Interface 3-55

Advanced Topics

and

getsockopt (s, level, optname, optval, optlen);

The parameters to the calls are as follows: s is the socket on which the option is
to be applied. level specifies the protocol layer on which the option is to be
applied; usually this is the ““socket level,” indicated by the symbolic constant
SOL_SOCKET, defined in <sys/socket .h>. The option is specified in
optname, and is a symbolic constant also defined in <sys/socket .h>.
optval and optlen point to the value of the option (usually, whether the
option is to be turned on or off), and the length of the value of the option,
respectively. For getsockopt (), optlen is a value-result parameter, initially
set to the size of the storage area pointed to by optval, and modified on return
to show the amount of storage used.

An example should help clarify things. It is sometimes useful to determine the
type (e.g., stream, datagram, etc.) of an existing socket; programs invoked by
inetd (described below) may need to do this task using the SO_TYPE socket
option and the get sockopt () call:

After the get sockopt () call, type will be set to the value of the socket type,
as defined in <sys/socket .h>. If, for example, the socket were a datagram
socket, type would have the value corresponding to SOCK_DGRAM.

3-56 Programmer’s Guide: Networking Interfaces

Advanced Topics

inetd

One of the daemons provided with the UNIX sytem is inetd, the so called
“Internet super-server.” inetd is invoked at boot time by the Service Access
Controller, and determines the services for which it is to listen from the file
/etc/inetd.conf. Once this information has been read and a pristine
environment created, inetd proceeds to create one socket for each service it is
to listen for, binding the appropriate port number to each socket.

inetd then performs a select () on all these sockets for read availability,
waiting for somebody wishing a connection to the service corresponding to that
socket. inetd then performs an accept () on the socket in question,

fork () s, dup () s the new socket to file descriptors 0 and 1 (stdin and stdout),
closes other open file descriptors, and exec () s the appropriate server.

Servers making use of inetd are considerably simplified, as inetd takes care
of most of the communication work required in establishing a connection. The
server invoked by inetd expects the socket connected to its client to be on file
descriptors 0 and 1, and may immediately do operations such as read (),
write (), send (), or recv() . Indeed, servers may use buffered I/0O as pro-
vided by the stdio conventions, as long as they remember to use £f1lush ()
when appropriate.

One call that may be of interest to individuals writing servers to be invoked by
inetd is the getpeername () call, which returns the address of the peer (pro-
cess) connected on the other end of the socket. For example, to log the Internet
address in “dot notation” (e.g., ““128.32.0.4"”) of a client connected to a server
under inetd, the following code might be used:

The Sockets Interface 3-57

Advanced Topics

While the getpeername () call is especially useful when writing programs to
run with inetd, it can be used under other circumstances.

3-58 Programmer’s Guide: Networking Interfaces

4 Sockets Migration and Sockets-
to-TLI Conversion

Sockets Migration and Sockets-to-TLI

Conversion 41
Connection Mode 4-2
m Establishing Socket Connections: Client Code 4-2
m Establishing TLI Connections: Client Code 4-4
m Establishing Socket Connections: Server Code 4-6
m Establishing TLI Connections: Server Code 4-7
Connectionless Mode 4-9
m Socket-Based Datagrams 4-9
m TLI Datagrams 4-11
Synchronous and Asynchronous Modes 4-14
Error Handling 4-15
Sockets-to-TLI Conversion 4-16
Moving Sockets Applications to System V Release 4 4-18

Table of Contents i

Sockets Migration and Sockets-to-TLI
Conversion

This chapter provides an introduction to the issues involved in porting a sockets
application to TLI and includes notes on the differences between BSD sockets
and System V Release 4 sockets that programmers must be aware of. Although
existing sockets applications can be rewritten for TLI relatively easily, such ports
are not necessary for sockets applications that are to run only over TCP/IP or
UDP/IP networks. However, TLI is the preferred programming interface for
accessing transport services and it is recommended that programmers writing
new applications for System V Release 4 use TLI.

Both TLI and sockets routines are defined in terms of communications paths
identified by file descriptors. These file descriptors are known as “‘transport
endpoints” for TLI and as “‘sockets” for the socket interface. In most cases,
there are parallel routines for each transport function. For example, the TLI rou-
tine t_open() returns a file descriptor that identifies a transport endpoint; the
routine socket () returns a file descriptor that identifies a socket. Table 4-1 at
the end of this section shows the parallels among TLI and sockets interface rou-
tines.

This chapter will highlight the areas in which there is no direct correspondence
between TLI and sockets routines. The examples will first show code that uses
the socket interface and then show how to rewrite the program using TLI.

The last section of the chapter documents differences between System V Release
4 sockets and BSD sockets. Programmers must be aware of these differences
before moving BSD sockets applications to System V Release 4.

System V socket calls are implemented as library routines. Application pro-
grams that use sockets should be compiled and linked with socket libraries:

Sockets Migration and Sockets-to-TLI Conversion 4-1

Sockets Migration and Sockets-to-TLI Conversion

Connection Mode

Both TLI and sockets support two distinct types of service: connection oriented
and connectionless.

Establishing Socket Connections: Client Code

When creating a socket, the type of service must be specified (for example,
SOCK_STREAM, SOCK_DGRAM, SOCK_RAW). The service type determines
whether connection-oriented or connectionless semantics are used. For a simple
example of connection establishment, consider the client side of a stream-
oriented application, as in Figure 4-1. It must initiaté a connection by first creat-
ing a stream socket and then using the connect () call to establish communica-
tion with a preexisting socket on a server machine.

Figure 4-1: Client Side of Stream-Oriented Application

(continued on next page)

4-2 Programmer’s Guide: Networking Interfaces

Sockets Migration and Sockets-to-TLI Conversion

Figure 4-1: Client Side of Stream-Orlented Application (continued)

Notice the calls to gethostbyname () and getservbyname () . These are the
socket-oriented network directory services described under “Socket-Based
Datagrams.” They take a host and service name, respectively, and return the
host network address and the service port. The service port number can be
thought of as a machine-specific service address. Certain well-known services
are assumed to have specific TCP port numbers in the 1-to-1023 range. Some
applications hard code these port numbers rather than using get -
servbyname () .

When porting sockets applications to TLI, calls to gethostbyname () and get-
servbyname (), as well as hard-coded TCP port numbers, should be replaced
by calls to the netdir_getbyname () routine.

If the target socket exists and is prepared to handle a connection, the connection
will complete successfully and the program can begin to send messages. Mes-
sages will be delivered in order without message boundaries. The connection is
destroyed when both sockets are closed.

Sockets Migration and Sockets-to-TLI Conversion 4-3

Sockets Migration and Sockets-to-TLI Conversion

Some transports hold the connection open briefly in case more data are
sent. The user may also have directed the system to wait. For more infor-
mation, see the discussion of the sO_LINGER option on the

I getsockopt (3N) manual page.

Establishing TLI Connections: Client Code

The TLI connection mode transport service is also circuit (stream) oriented, ena-
bling data to be transferred over an established connection in a reliable,
sequenced manner. Typical TLI client code is shown in Figure 4-2.

Figure 4-2: TLI Client Code

(continued on next page)

4-4 Programmer’s Guide: Networking Interfaces

Sockets Migration and Sockets-to-TLI Conversion

Figure 4-2: TLI Client Code (continued)

Network selection is used by TLI applications to find the device filename associ-
ated with the requested transport protocol. The device filename that matches
the protocol is passed to t_open (). t_open () then returns a file descriptor
that identifies a new transport endpoint, and optionally (by way of its third
argument), the default characteristics of the transport provider associated with
that endpoint (and indirectly specified by the first argument). t_bind () then
binds the new transport endpoint to the transport address contained in its
second argument. The typical client doesn’t care what its own address is
because no other process will try to access it. The second and third arguments
in the example are therefore NULL.

Sockets Migration and Sockets-to-TLI Conversion 4-5

Sockets Migration and Sockets-to-TLI Conversion

Establishing Socket Connections: Server Code

Connection establishment for a server process is slightly different. The process
must bind itself to an address and wait for clients to connect to it. Figure 4-3
shows how a sockets server is bound to its known address:

Figure 4-3: Sockets Server Code

In the example, the server explicitly asks to be bound to port SRV_PORT.

4-6 Programmer’s Guide: Networking Interfaces

Sockets Migration and Sockets-to-TLI Conversion

Establishing TLI Connections: Server Code

The equivalent code for a TLI server process is shown in Figure 4-4.

Figure 4-4: TLI Server Code

(continued on next page)

Sockets Migration and Sockets-to-TLI Conversion 4-7

Sockets Migration and Sockets-to-TLI Conversion

Figure 4-4: TLI Server Code (continued)

4-8 Programmer’s Guide: Networking Interfaces

Sockets Migration and Sockets-to-TLI Conversion

The examples show two significant differences between sockets and TLI. First,
since TLI server applications work over any transport provider, they use the
Network Selection and Name-to-Address Mapping features in order to be proto-
col independent; sockets applications use fixed addresses.

A second difference is in the behavior of the TLI and sockets bind routines when
an address is invalid or unavailable. The sockets bind () routine fails. The TLI
t_bind() routine may bind to another address instead. For this reason, TLI
servers should check that the address returned by t_bind () as its third argu-
ment is correct.

Connectionless Mode

Connectionless-mode transport services, in contrast to connection-oriented ser-
vices, are message-oriented and support transfer in self-contained units
(datagrams) with no necessary logical relationship to each other. Sockets and
TLI both provide connectionless-mode service.

All the information required to deliver a datagram (for example, a destination
address) is presented to the transport provider, together with the data to be
transmitted, in a single service access. A given service access need not relate to
any other service access. Each unit of data transmitted is entirely self-contained,
and can be independently routed by the transport provider.

Socket-Based Datagrams

The differences between socket library datagrams and the connectionless service
provided by TLI parallel the differences between sockets and TLI connection-
oriented service described above. Figure 4-5 gives the code necessary to send
an Internet domain datagram to a receiver whose host and service names are
given as command line arguments.

Sockets Migration and Sockets-to-TLI Conversion 4-9

Sockets Migration and Sockets-to-TLI Conversion

Figure 4-5: Sending Internet Domain Datagram

(continued on next page)

4-10 Programmer’s Guide: Networking Interfaces

Sockets Migration and Sockets-to-TLI Conversion

Figure 4-5: Sending Internet Domain Datagram (continued)

The program looks up the host address and the service port (both given on the
command line) by calling gethostbyname () and getservbyname (). The
host network address and service port number are in the structures returned by
these two library routines. They are copied into the structure that specifies the
destination of the message.

TLI Datagrams

TLI connectionless service is functionally similar to sockets datagram service.
The sockets address management routines gethostbyname () and get-—
servbyname () are replaced by netdir_getbyname () for both connection-
oriented and connectionless service.

The TLI code in Figure 4-6 sends a datagram to a receiver whose host and ser-
vice names are given on the command line:

Sockets Mlgi'atlon and Sockets-to-TLI Conversion 4-11

Sockets Migration and Sockets-to-TLI Conversion

Figure 4-6: TLI Datagram Code

(continued on next page)

412 Programmer’s Guide: Networking Interfaces

Sockets Migration and Sockets-to-TLI Conversion

Figure 4-6: TLI Datagram Code (continued)

For more information about the functions t_open, t_bind, and t_sndudata,
see the manual pages t_open(3N), t_bind(3N), and t_sndudata(3N).

Sockets Migration and Sockets-to-TLI Conversion 4-13

Sockets Migration and Sockets-to-TLI Conversion

Synchronous and Asynchronous Modes

Transport services are inherently asynchronous, with events occurring indepen-
dently of the actions of the transport user. For example, a user may be sending
data over a transport connection when an asynchronous disconnect indication
arrives. The user must somehow be informed that the connection has been bro-
ken. Both the socket interface and TLI provide an asynchronous mode for
managing such events. Asynchronous mode is most useful for applications that
expect long delays between events and have other tasks that they can perform
in the meantime.

A socket is put into asynchronous mode by calling fcnt1 () and specifying
O_NDELAY or O_NONBLOCK. Once in asynchronous mode, all relevant primi-
tives — send (), read(), etc. — return ENOULDBLOCK whenever they
encounter situations that would have caused them to block if they had been in
synchronous mode.

The TLI non-blocking mode is also specified with the O_NDELAY or
O_NONBLOCK flag. The O_NDELAY and O_NONBLOCK ﬂags can be used when
the transport provider is initially opened with the t_open () function, or later
with the fcntl () call. If the TLI blocking mode is used, these cause the error
code EAGAIN to be returned (see the Programmer’s Reference Manual, Section 2,
Introduction).

There are different levels of asynchronous operation. Specifying O_NDELAY or
O_NONBLOCK puts a socket into non-blocking mode. For true asynchronous
operation, however, it is also necessary to test for asynchronous events. Socket-
based applications normally use select (3N) to test for asynchronous events.

TLI-based applications should use pol11(2) to test for asynchronous events.
select () is supported only for compatibility with older applications.

Both TLI and sockets provide mechanisms for asynchronous event notification.
Sockets uses fentl () to request that the system issue a SIGIO signal when it
becomes possible to perform 1/0 on a given file descriptor. TLI uses the
I_SETSIG ioctl. This causes the system to send the process a SIGPOLL sig-
nal when the 1/0 event specified actually occurs. The TLI mechanism is the
more powerful of the two, since it allows users to specify the precise kind of
I/0 event they want to be signaled on (see the st reamio(7) manual page for
the possible kinds of events).

4-14 Programmer’s Guide: Networking Interfaces

Sockets Migration and Sockets-to-TLI Conversion

A process that issues functions in synchronous mode must still be able to recog-
nize certain asynchronous events immediately and act on them if necessary.
Eight such asynchronous events are specified for TLI and cover both
connection-oriented and connectionless modes (see the t_1look (3N) manual
page). TLI routines that encounter trouble return the special transport error
TLOOK. The user can then use the t_look () function to identify the event that
generated the error. Alternatively, the transport user can use t_1look () to poll
the transport endpoint periodically for asynchronous events. If a sockets func-
tion encounters trouble, the primitive will return an errno value directly.

Error Handling

TLI attempts to separate communications errors from system errors by defining
two levels of errors:

m Library level errors. Each library function has one or more error returns
and indicates failure with a —1. An external integer, t_errno, holds the
specific error number when such an failure occurs. This value is set when
errors occur but is not cleared by successful library calls. It should there-
fore be tested only after an error has been indicated. A diagnostic func-
tion, t_error(), is provided for printing out information on the current
transport error.

m System errors. The standard external variable errno, is used to report
system errors. Such errors can, of course, affect TLI functioning. When
they do, t_errno is set to TSYSERR and errno is set to indicate the
specific system error that occurred. The state of the transport provider
may change if a transport error occurs.

The socket interface provides a similar facility with getsockopt () when called
with an option of SO_ERROR.

Sockets Migration and Sockets-to-TLI Conversion 4-15

Sockets Migration and Sockets-to-TLI Conversion

Sockets-to-TLI Conversion

Table 4-1 shows some approximate TLI/—sockets equivalents. The comment
field describes the differences. Where there is no comment, either the functions
are the same or there is no equivalent function in one or the other interface.

Table 4-1: Table of TLI/Sockets Equivalents.

TLI function Socket function Comments

t_open () socket ()

- socketpair ()

t_bind() bind() t_bind() sets the queue depth for passive
sockets, but bind () doesn’t. For sockets, the
queue length is specified in the call to
listen().

t_optmgmt () getsockopt () t_optmgmt () manages only transport options.

setsockopt () getsockopt () and setsockopt () can

manage options at the transport layer, but also
at the socket layer and at arbitrary protocol
layers.

t_unbind () -

t_close() close()

t_getinfo() getsockopt () t_getinfo() returns information about the

transport. getsockopt () can return informa-
tion about the transport and the socket.

t_getstate()

t_getname ()

getsockname ()

t_sync() -

t_alloc() -

t_free() -

t_look () - getsockopt with the SO_ERROR option
returns the same kind of error information as
t_look().

t_error() perror ()

4-16 Programmer’s Guide: Networking Interfaces

Sockets Migration and Sockets-to-TLI Conversion

Table 4-1: Table of TLI/Sockets Equivalents. (continued)

TLI function Socket function Comments

t_connect () connect () A connect () can be done without first bind-
ing the local endpoint. The endpoint must be
bound before calling t_connect (). A con-
nect () can be done on a connectionless end-
point to set the default destination address for
datagrams.

t_rcvconnect() -

t_listen() listen() t_listen() waits for connection indications.
listen() merely sets the queue depth.

t_accept () accept

t_snd() send () sendto() and sendmsg () operate in connec-
sendto () tion mode as well as datagram mode.
sendmsg ()

t_rcv() recv() recvfrom() and recvmsg() operate in con-
recvfrom() nection mode as well as datagram mode.
recvmsg ()

t_snddis() -

t_rcvdis() -

t_sndrel () shutdown ()

t_rcvrel() -

t_sndudata () sendto()
sendmsg ()

t_rcvudata() recvfrom()
recvmsg ()

t_rcvuderr() -

read () read() In TLI, you must push the tirdwr module
write() write () before calling read () or write();in sockets,
it is sufficient just to call read () or write().

Sockets Migration and Sockets-to-TLI Conversion 417

Sockets Migration and Sockets-to-TLI Conversion

Moving Sockets Applications to System V Release 4

Although System V Release 4 sockets and the BSD sockets implementation are
largely compatible, there are some differences an application programmer must
be aware of before moving a BSD sockets-based application to System V
Release 4. These differences are described in Table 4-2.

Table 4-2: Differences in Sockets Implementations

BSD

UNIX System V Release 4.0

Connection-Mode Primitives

connect()

If connect() is called on an unbound
socket, the protocol determines
whether or not the endpoint will be
bound before the connection takes
place.

When connect(), is called on an
unbound socket, that socket is always
bound to an address selected by the
transport provider.

Data Transfer Primitives

write()

write() will fail with errno set to
ENOTCONN if it is used on an uncon-
nected socket.

write () can be used on type
SOCK_DGRAM sockets (either AF_UNIX
or AF_INET domains) to send zero
length data.

A call to write() will appear to
succeed, but the data will be discarded.
The socket error option SO_ERROR will
be set to ENOTCONN if this occurs.

A call to write () will return —1, with
errno set to ERANGE. The functions
send (), sendto (), or sendmsg()
should be used to send zero length
data.

4-18 Programmer’s Guide: Networking Interfaces

Sockets Migration and Sockets-to-TLI Conversion

Table 4-2: Differences in Sockets Implementations (continued)

BSD

UNIX System V Release 4.0

read()

A call to read() will fail with errno
set to ENOTCONN if read () is used on
an unconnected socket which needs to
be connected.

A call to read() will return zero bytes
read if the socket is in blocking mode.
If the socket is in non-blocking mode, it
will return a -1 with errno set to
EAGAIN.

sendmsg() and readmsg()

If the MSG_PEEK flag has been set
when sendmsg () is called, and access
rights are available, the access rights
will be copied, leaving them available
for reading by a subsequent call to
recvmsg() .

If the MSG_PEEK flag is specified in a
call to recvmsg () , and access rights
are available, the access rights will be
transferred to the user buffer associated
with the receiving socket. They are
then destroyed, and the transferring
socket has no further access to them.
They are therefore unavailable to a
subsequent call to recvmsg (). Any
data associated with the access rights
will also be copied to the user buffer
and will not be available to

recvmsg ().

Information Primitives

get sockname()

get sockname() will work when a pre-
viously existing connection has been
closed.

get sockname() will return -1 and
errno will be set to EPIPE if a previ-
ously existing connection has been
closed.

Sockets Migration and Sockets-to-TLI Conversion

4-19

Sockets Migration and Sockets-to-TLI Conversion

Table 4-2: Differences in Sockets Implementations (continued)

BSD UNIX System V Release 4.0

ioctl() and fentl()

SIOCSPGRP/FIOSETOWN/F_SETOWN()

The ~ This is not the case in SVR4. The only
'SIOCSPGRP/FIOSETOWN/F_SETOWN acceptable arguments to these system
ioctl()’s and the F_SETOWN calls is the caller’s process id or a nega-
fcntl () take as argument a positive tive process group which has the same
process id or negative process group absolute value as the caller’s process id.

indentifying the intended recipient list In other words, the only recipient of
of subsequent SIGURG and SIGIO sig- SIGURG and SIGIO signals is the cal-
nals. ling process.

Local Management

bind ()

bind () uses the credentials of the user A call to socket () causes the user’s
at the time of the bind () call to deter- credentials to be remembered and used
mine whether the port requested to validate addresses used in bind () .
should be allocated or not. '

setsockopt ()

setsockopt () can be used at any Because of the state diagram specified

time during the life of a socket. by the Transport Provider Interface
(TPI), a setsockopt () operation on a
transport provider conforming to this
specification will fail if issued on a
socket that is not bound to a local
address.

4-20 Programmer’s Guide: Networking Interfaces

Sockets Migration and Sockets-to-TLI Conversion

Table 4-2: Differences in Sockets Implementations (continued)

BSD

UNIX System V Release 4.0

Specifically, if a socket is unbound and
setsockopt () is used, then the
operation will succeed in the AF_INET
domain, but will fail in the AF_UNIX

shutdown ()

If shutdown is called with the value of
how equal to zero, further attempts to
receive data will return zero bytes
(EOF).

If shutdown () is called with the value
of how equal to 2, further atempts to
receive data will return EOF. Attempts
to send data will return -1 with errno
set to EPIPE with a SIGPIPE issued.

If shutdown () is called with a value
of two for how, further attempts to
receive data will return EOF, and
attempts to send data will return -1
with errno set to EPIPE with a SIG-
PIPE issued.

Calling shutdown with the value of
how equal to zero will not cause further
attempts to receive data to return zero
bytes if the read(2) system call is used
and the socket is in nonblocking mode.
In this case read will return -1 with
errno set to EAGAIN. If one of the
socket receive primitives is used, the
correct result (EOF) will be returned.

The same results will occur, except that
attempts to send data using the write
system call will cause errno to be set
to EIO. As in the above case, if a
socket primitive is used, the correct
errno will be returned.

The same results will occur, except that
attempts to send data using the

write () system call will cause errno
to be set to EIO. If a socket primitive
is used, the correct errno will be
returned.

Sockets Migration and Sockets-to-TLI Conversion

4-21

Sockets Migration and Sockets-to-TLI Conversion

Table 4-2: Differences in Sockets Implementations (continued)

BSD

UNIX System V Release 4.0

Signals

SIGIO

SIGIO is delivered every time new
data are appended to the socket input
queue.

SIGIO is delivered only when data are
appended to a socket queue that was
previously empty.

SIGURG

A SIGURG is delivered every time new
data is anticipated or actually arrives.

A SUGURG is delivered only when there
is no urgent data already pending.

S_ISSOCK

The ISSOCK macro takes the mode of
a file as an argument. It returns 1 if
the file represents a socket and 0 other-
wise.

The ISSOCK macro does not exist. In
SVR4, a socket is defined as a file
descriptor associated with a streams
character device that has the socket
module pushed onto it.

S_IFSOCK ()

This file type identifies a socket
descriptor.

There is no socket file type, and this
#define does not exist.

Miscellaneous

If an invalid buffer is specified in a
function, the function will normally
return -1 with errno set to EFAULT.

If 1s -1 is executed on a directory
that contains a UNIX domain socket, an
s will be printed on the left side of the
mode field.

If an invalid buffer is specified in a
function, the user’s program will prob-
ably coredump.

If 1s -1 is executed on a directory
that contains a UNIX domain socket, a
p will be printed on the left side of the
mode field.

4-22

Programmer’s Guide: Networking Interfaces

Sockets Migration and Sockets-to-TLI Conversion

Table 4-2: Differences in Sockets Implementations (continued)

BSD UNIX System V Release 4.0
Executing 1s -F will cause an equals Nothing will be printed after a
sign (=) to be printed after any filename that represents a UNIX
filename that represents a UNIX domain socket.

domain socket.

Sockets Migration and Sockets-to-TLI Conversion 4-23

Index

A

abortive release 2: 13, 36

accept(3N) 3:7, 34

address

binding 3:48

wildcard 3:48

asynchronous mode 2: 28, 51, 63,
4:14-15

authentication 3:50

B

bind(3N) 3:52
binding local names 3: 4
broadcasting 3: 51
byte swapping 3: 27

C

clients 2:11, 16, 24-26, 38-39, 4:2
client/server model 3:29
close(2) 2:48-50)
communication, C run-time routines
3:27
connect requests 2: 11-13, 17, 20-31,
34-35, 51-65, 69
multiple 2: 81
connection errors 3:7
connection establishment 2: 10-12,
23-31
using sockets 3:6
connection release 2: 13, 36-39
table of routines 2: 13
connectionless sockets 3: 13
connectionless-mode 2: 7, 14, 40-47,
4:9-13

Index

example of transaction server
2:77-79

servers 3:36

state table 2:67

connection-mode 2: 7-13, 16-39, 47,

4:2-9

client side 4:4-5

example of client 2:71-72

example of server 2:73-76, 81-87

server side 4:6-9

state table 2:68

D

data transfer 2: 12, 31-36, 43-45, 3:9
during connection 2: 24
in byte stream mode 2: 32
message interface 2:32
table of routines 2: 12
datagram
errors 2:45-46
Internet domain 3: 15-16
socket 3:2
device names 2:70, 4:5
disconnect requests 2: 26-31, 33,
35-38, 49-51, 57-60, 63, 69

E

event handling 2: 26-27

event-driven TLI software, example
of 2:52-60

expedited data 2:35

Index

F

FD_CLR macro 3:18
FD_SET macro 3:18

G

gethostbyaddr function 3:24
gethostbyname function 3:24

H

host names 3: 24

incoming events 2: 64-65
inetd(IM) 3:30, 57
inet_ntoa function 3:24
Internet, Domain Stream Connection
3:10
interrupt-driven socket I/O 3:44
I/0O multiplexing 3: 17
I/0 requests, asynchronous
notification 3: 45 ‘
IPC (sockets)
basics 3:2
Internet domain datagrams 3: 15
Internet Domain Stream Connec-
tion 3:12
multiplexing 3: 17
select(3C) 3:20
socket naming 3: 2
UNIX domain 3:2

L

libraries, sockets 3:23

listen(3N) 3:7

local names 3:4

local transport interface management
2:8-10, 16-23, 40-42

M

message boundaries 2:35, 4:3
MSG_OOB 3: 41

MSG_PEEK 3:41

multiplexing 3:17

N

name binding 3:4
names

host - 3: 24

network 3:24

protocol 3:25
name-to-address mapping 4:9
network

configuration 3: 51
names 3:24

network selection - 4:5
non-blocking sockets 3: 43

O

option negotiation 2: 40
orderly release 2: 13, 33, 37, 70-71
OSI (Open Systems Interconnection)
2:1-4 '
Reference Model 2:2-4
out of band data 3: 41

Programmer’s Guide: Networking Interfaces

Index

outgoing events 2: 62-63

P

port allocation 3: 50
portability 3: 40

process group 3:45
protocol

independence 2:69-70, 4:9
names 3:25

negotiation of options 2:24
selecting specific 3: 47

R

raw sockets 3:3

read(2) 2:47,49

read /write interface 2: 47-50
example of client program 2: 79-81

ruptime(l) 3:36

S

select(3C) 3:17, 19, 47
connection 3:20

sendto function 3:55

servers 2: 11, 16, 20, 24, 27-31, 34-38
connectionless-mode 3: 36
setsockopt function 3: 51,55
SIGCHLD 3:47

signals, and process groups 3: 45
socket 3:1, 4:1

closing 3:10

connectionless 3:13
conversion to TLI 4:1-23
creation 3:3

Index

datagram 3:2, 14
differences between BSD and UNIX
System V 4:1

failure 3:4

flags 3:9

non-blocking 3: 43

options 3:55

raw 3:3

stream 3:2 ,

table of differences in implementa-

tions 4:18-23
table of TLI equivalents 4:16
3:2 ' :

socket-based datagrams 4: 9-11
state transitions 2: 14-15, 61-68

transport interface 2: 65-68
stream sockets 3:2
STREAMS

asynchronous feature 2: 51

input/output mechanism 2: 4, 48

system call interface 2:52
synchronous mode 4: 14-15
system errors 4:15

T

tirdwr(7) 2:47-50
TLI (Transport-Level Interface) (see
transport interface)
transport endpoints 2:9, 48, 52-60, 64,
69, 4:1
~ polling multiple endpoints 2: 52, 54
transport interface 4:1,9
datagrams 4:11-13
error handling 4: 15
examples of 2:71-87
local management 2: 8-10, 16-23,
40-42

Index

local management common state
table 2:66
states 2:61
transport provider 2:6, 42, 45, 47-48,
52, 62, 69-70
transport user 2:6, 65
transport-level programming 2: 1-90
TSDU (transport service data unit)
2:32-33, 69

W

wildcard address 3:48
write(2) 2:47-48

I-4

Programmer’s Guide: Networking Interfaces

Contents

5 Introduction to Remote Procedure Calls
Introduction to RPC 5-1
RPC Overview 5-4

6 rpcgen Programming Guide

Introduction 6-1
An rpcgen Tutorial 6-3
Common RPC Programming Techniques 6-21
RPC Language Reference 6-30
7 Remote Procedure Call Programming
Guide
Introduction : 7-1
The Simplified Interface to RPC 7-6
The Lower Levels of RPC 7-17
Low-level Data Structures 7-33
Low-level Program Testing Using Raw RPC 7-36
Advanced RPC Programming Techniques 7-39
Advanced Examples 7-59
8 External Data Representation Standard:
Protocol Specification
Introduction to XDR 8-1
XDR Data Type Declarations 8-3
Other XDR Declarations 8-17

Table of Contents i

Table of Contents

The XDR Language Specification 8-20
An Example of an XDR Data Description 8-24
References 8-26
9 Remote Procedure Calls: Protocol
Specification
Introduction 9-1
RPC Protocol Requirements 95
The RPC Message Protocol 9-10
Authentication Protocols 9-14
Record Marking Standard 9-22
The RPC Language 9-23
rpebind Protocol 9-26
References 9-31
1 0 RPC Administration
Introduction to RPC Administration 10-1
RPC Administration Files 10-2
Secure RPC Overview 10-7
Secure RPC Administration 10-9
1 1 The YP Service
Introduction to YP Service 11-1
Implementing the YP Service 11-7
Administering YP Maps 11-23
Adding a New YP Server to the Original Set 11-31
Summary of YP-Related Commands 11-35
Fixing YP Problems 11-37
Tuming Off YP Services 11-46

Programmer’s Guide: Networking Interfaces

Table of Contents

Index: Remote Procedure Calls

Table of Contents fii

Figures and Tables

Figure 5-1: Network Communication with the Remote Procedure Call 5-5
Figure 5-2: Client-Side RPC Lower Levels 5-14

Figure 5-3: Server-Side RPC Lower Levels 5-15

Table of Contents v

5 Introduction to Remote
Procedure Calls

Introduction to RPC 5-1
Organization of Technical Information 5-1
Definitions 5-1
RPC Overview 5-4
RPC Versions and Numbers 5-6
Network Selection 5-7
m Name-to-Address Translation 5-10
The rpcbind Facility 5-11
® Address Registration 5-11
m The rpcinfo Command 5-13
The Lower RPC Levels 5-13
External Data Representation 5-15

Table of Contents i

Introduction to RPC

The Remote Procedure Calls (RPC) mechanism is a high-level communications
paradigm for network applications. By use of RPC, programs on networked
platforms can communicate with remote (and local) resources.

Organization of Technical Information

This chapter, “Introduction to Remote Procedure Calls”, provides an overview
of the RPC mechanism and the programming tools and protocols that support
RPC. Terms used throughout this section are defined.

The “rpcgen Programmi‘ng Guide” chapter provides instruction on the use of
rpcgen, the compller used for creating C-language programs that use RPC. The
RPC programming language is described in this chapter.

The “Remote Procedure Call Programming Guide” chapter describes in detail
the C-language interface to the RPC environment. The RPC interface allows
programmers access to RPC at various levels, from high to low. High level RPC
provides transparency and portability. Lower levels offer greater control of the
communications. This chapter mcludes guidance on selecting an appropriate
level for a given application.

External Data Representation (XDR) is the protocol used by RPC for platform-
independent data communications. The “External Data Representation Stan-
dard: Protocol Specification” chapter is an XDR reference for RPC program-
mers.

The “Remote Procedure Calls; Protocol Specification” chapter is a complete
RPC programming reference.

Definitions
Bottom Level Lowest of the four lower RPC levels; programs
' written to this level can control many transport-
specific details.

connection-oriented transport Connection-oriented transports are reliable and
support byte-stream deliveries of unhrmted data
size.

Introduction to Remote Procedure Calls 5-1

Introduction to RPC

connectionless transport

datagram transport
deserializing

Expert Level

Intermediate Level

network client

network service

ping

remote program
RPC language

RPC Package

RPC Protocol

5-2

Connectionless transports have less overhead
than connection-orient transports but are less
reliable and maximum data transmissions are
limited by buffer sizes.

See connectionless transport.

Converting data from XDR format to a
machine-specific representation.

Second-lowest of the four lower RPC levels; pro-
grams written to this level can: control client
and server characteristics; interface with
rpcbind; manipulate service dispatch.

Second-highest of the four lower RPC levels;
programs written to this level specify the tran-
sport they require.

A process that makes remote procedure calls to
services.

A collection of one or more remote programs.

A call to procedure 0 of an RPC program. Ping-
ing is used to verify the existence and accessibil-
ity of a remote program. Pinging can also be
used to time network communications.

Software that implements one or more remote
procedures.

A C-like programming language recognized by
the rpcgen compiler.

The collection of software and documentation
used to implement and support remote pro-
cedure calls in System V. The RPC Package

implements and is a superset of the functionality
of the RPC Protocol. ‘

The message-passing protocol that is the basis of
the RPC package.

Programmer’s Guide: Networking Interfaces

Introduction to RPC

RPC/XDR

serializing

server
Simplified Interface
transport

Top Level

universal address

virtual circuit transport

XDR language

See RPC language.

Converting data from a machine-specific
representation to XDR format.

Software that implements network services.
The simplest level of the RPC package.

Refers to the fourth layer of the Reference
Model of Open Systems Interconnection (OSI).

Highest of the four lower RPC levels; programs
written to this level specify the type of transport
they require.

A machine-independent representation of a net-
work address. '
See connection-oriented transport.

A protocol specification language for data
representation. RPC language builds on and is a
superset of XDR.

Introduction to Remote Procedure Calis 5-3

RPC Overview

RPC allows network applications to use specialized kinds of procedure calls
designed to hide the details of underlying networking mechanisms. RPC is
transport independent, able to take advantage of whatever kinds of networking
mechanisms (such as TCP/IP or ISO) may be available. RPC implements a logi-
cal client-to—server communications system designed specifically for the sup-
port of network applications. Generic facilities, such as rpcbind, associate net-
work services with universal network addresses.

Refer to Figure 5-1. With RPC, the client makes a procedure call that sends data
packets to the server, as necessary. When these packets arrive, the server calls a
dispatch routine, performs whatever service is requested, sends back the reply,
and the procedure call returns to the client.

5-4 Programmer’s Guide: Networking Interfaces

RPC Overview

Figure 5-1: Network Communication with the Remote Procedure Call

client service |
program : daemon,
H |
y REC Call ' Machine B
: :
]
| invoke
service
Machine A |
i call
| i service
! |
! ; service
i | executes
1 I
' ! RPC Return
i
! : request
' i completed
[.
! return
reply |
|
program '
continues '
’

Programming with RPC produces programs that are designed to run within a
client/server network model. Such programs use RPC mechanisms to avoid the
details of interfacing to the network, and provide network services to their call-
ers without requiring that the caller be aware of the existence and function of
the underlying network. For example, a program can simply call rusers(), a C
routine that returns the number of users on a remote machine. The caller is not

Introduction to Remote Procedure Calis 5-5

RPC Overview

explicitly aware of using RPC — the call to rusers() is as simple as a call to
malloc().

This section addresses only the C interface to RPC, but remote procedure calls
can be made from any language. Note too that although this section describes
the use of RPC for communication between processes on different machines,
RPC works just as well for communication between different processes on the
same machine.

The following paragraphs provide capsule overviews of the key components
and leading characteristics of RPC. Descriptions will address:

m “RPC Versions and Numbers” — RPC uses a program number, program
version, procedure number tuple to uniquely identify procedures that can
be called via RPC.

m “Network Selection” — Programs can be written to operate over specific
transports and transport types, or can be written to operate over system-
or user-chosen transports.

m “The rpcbind Facility” — rpcbind is a facility used to associate network
services with universal network addresses.

m “The Lower RPC Levels” — The lower RPC levels available to client and
server programs allow for greater control of RPC communications.

m “External Data Representation (XDR)” — Data transmitted between RPC
clients and servers is encoded in XDR transfer syntax.

RPC Versions and Numbers

Each RPC procedure is uniquely identified by a program number, version
number, and procedure number.

The program number identifies a group of related remote procedures, each of
which has a different procedure number. Each program also has a version
number, so when a minor change is made to a remote service (adding a new
procedure, for example), a new program number does not have to be assigned.

5-6 Programmer’s Guide: Networking Interfaces

RPC Overview

To call a procedure to find the number of remote users, for example, you would
look up the appropriate program, version and procedure number in a reference
manual (just as you would look up the name of a memory allocator if you
wanted to allocate memory).

RPC programs should be assigned program numbers according to rules detailed
in the “Program Number Assignment” sub-section of the “Remote Procedure
Calls: Protocol Specification” chapter in this guide.

Network Selection

Network selection is a simple way by which users and applications may dynam-
ically select transports, according to both their preferences and the available
transports. It is based on two mechanisms, the /etc/netconfig database,
which lists the transports available on the host and identifies them by type, and
the optional environmental variable NETPATH, which allows the user to specify
preferences among the transports available in /etc/netconfig that are accept-
able to the application.

To create a service for a particular transport, an application must interface to
RPC at a level below the top level, i.e., the level composed of
clnt_create() and its associated routines. Only then can it specify the

l types of transports that it prefers. See below for details about the various
RPC levels.

The /etc/netconfig file contains several lines, each of which corresponds to
an available transport. Here are some possible entries:

Introduction to Remote Procedure Calls 5-7

RPC Overview

For the details about /etc/netconfig, and about the applications interface to
it, see the getnetconfig(3N) manual page and the “Network Services”
Chapter in the System Administrator’s Guide. Here, we just want to mention a
few points:

m Each entry contains an identifier (the first field) which gives the network
identifier by which the transport is commonly known.

m Each entry also contains a flag or set of flags (the third field) that
identifies it by type — the v flag, for example, identifies any transport
that is ‘visible.”

m The last field names a run-time linkable module that contains the name-
to-address translation routines associated with the transport. (See below).

® The loopback transports are required for registering services with
rpcbind. They are local transports, available only to local clients and
servers, and hence are more secure than other transports.

The format of NETPATH is simple: an ordered list of network identifiers
separated by colons (:) (for example: udp:tcp:starlan). By setting NETPATH,
the user can specify the order in which the application should try the various
networks. If NETPATH is not set, the system defaults to all visible transports
specified in /etc/netconfig, in the order they appear.

5-8 Programmer’s Guide: Networking Interfaces

RPC Overview

Applications can choose to ignore a user's NETPATH.

RPC divides selectable transports into the following types:

netpath Choose from those transports that have been specified in the
NETPATH environment variable. If NETPATH is not set, the sys-
tem defaults to all visible transports specified in
/etc/netconfig, in the order they appear.

we (null) — same as selecting netpath.

visible Choose those transports that have the visible flag (‘v’) set in
their /etc/netconfig entries.

circuit_v Same as visible, but restricted to connection-oriented tran-
sports.

datagram v Same as visible, but restricted to connectionless transports.

circuit_n Choose from whatever is defined in NETPATH, but restrict to
connection-oriented transports.

datagram_n Choose from whatever is defined in NETPATH, but restrict to
connectionless transports.

udp (Obsolete. For backwards compatibility.) — specifies Internet
User Datagram Protocol (UDP).
tcp (Obsolete. For backwards compatibility.) — specifies Internet

Transmission Control Protocol (TCP).

When a transport-dependent application begins execution, it begins by calling
the setnetconfig(), getnetconfig() and endnetconfig() routines, using
them to search /etc/netconfig for a transport of appropriate type. This
information is then stored in local data structures of type struct netconfig
and is available for later use. setnetconfig(), getnetconfig(), and end-
netconfig() are described on the getnetconfig(3N) manual page; the Net-
work Selection Administrative file /etc/netconfig is described on the
netconfig(4) manual page.

Introduction to Remote Procedure Calls 5-9

RPC Overview

Taken together, these mechanisms allow a fine degree of control over network
selection: a user can specify a preferred transport, and if it is reasonable, appli-
cations will use it. In cases where the specified transport is inappropriate (as,
for example, when a remote server does not support a specified transport) the
application should automatically try others with the right characteristics.

Name-to-Address Translation

Each transport has an associated set of routines that convert between universal
network addresses (string representations of transport addresses) and their local
address representation. These universal addresses are passed around within the
RPC system (for example, between rpcbind and a client). When any program-
ming interface to the transport layer is made, a transport-specific name-to-
address translation routine is called to convert the universal address into local
form. Each transport has associated with it a run-time loadable library that con-
tains the name-to-address translation routines associated with it. The main
translation routines are: ' '

netdir_getbyname: Translates from host/service pairs and a
netconfig structure (e.g. serverl, rpcbind)
to a set of netbuf addresses. netbuf’s are
Transport Layer Interface (TLI) structures that
are used at run-time to contain transport-specific
addresses.

netdir_getbyaddr: Translates from netbuf addresses and a
netconfig structure into host/service pairs.

uaddr2taddr: Translates from universal addresses and a
netconfig structure to netbuf addresses.

taddr2uaddr: Translates from netbuf addresses and a
netconfig structure to universal addresses.

For more details on these routines, see the netdir(3N) manual page. v

5-10 Programmer’s Guide: Networking Interfaces

RPC Overview

The rpcbind Facility

Client programs need a way to find server programs; that is, they need a way to
look up the addresses of server programs. Network transport services do not
themselves provide such a service; they merely provide process-to-process mes-
sage transfer across a network. A message is sent to a transport-specific net-
work address. A network address is a logical communications channel; by wait-
ing on a network address, a process receives messages from the network.

RPC, being transport independent, makes no assumptions about the structure of
a network address. It deals with universal addresses, specified only as null-
terminated strings of characters. RPC translates universal addresses into local
transport addresses by using routines specific to each transport provider. For
more details on these routines, see the netdir(3N) manual page.

Operating systems provide (differing) mechanisms by which a process can wait
on a network address, i.e, synchronize its activity with arriving messages. Thus,
messages are not sent across networks to receiving processes, but rather to the
transport address at which receiving processes pick them up. Transport
addresses are valuable because they allow message receivers to be specified in a
way that is independent of the conventions of the receiving operating system.
The rpcbind protocol defines a network service that provides a standard way
for clients to look up the transport address of any remote program supported
by a server. Because the rpcbind protocol can be implemented for any tran-
sport, it provides a single solution to a general problem that works for all
clients, all servers and all networks.

Address Registration

Because rpcbind is responsible for mapping network services to their
addresses, its address must be well known. The name-to-address translation
routines for any particular transport should know and reserve a particular
address for rpcbind.

In the Internet domain, this problem is solved by always assigning rpcbind the
port number 111. Unfortunately, this simple solution is not acceptable on all
transports.

rpcbind begins each session by registering its location on each of the tran-
sports supported by the host. rpcbind is the only network service that must
have such a well-known address. The address must be well-known for a given
transport because rpcbind is responsible for registering the addresses of other

Introduction to Remote Procedure Calls 5-11

RPC Overview

network services and making those addresses available to network clients.
Thus, services make their addresses available to clients by registering their
addresses with their host’s rpcbind daemon. Thereafter, the addresses of the
services are available to rpcinfo(IM) and to programs using library routines
specified in rpcbind (3N).

RPC-based servers typically get mapped to network addresses at run time, and
then they register with rpcbind, and neither they nor their clients can make
any assumptions about what those network addresses will be.

rpcbind is started by the system or RPC administrator. Both server programs
and client programs call rpcbind.

Although client and server programs and client and server machines are

usually distinct, they need not be. A server program can also be a client

program, as when an NFS server calls an rpcbind server. Likewise, when

| a client program directs a "remote" procedure call to its own machine, the
machine acts as both client and server.

As part of its initialization, a server program calls its host’s rpcbind daemon to
register itself in the host’s registered-address map. Whereas server programs
call rpcbind to update address maps, clients call them to query those maps.

To find a remote program’s address, a client sends an RPC call message to a
server machine’s rpcbind daemon; if the remote program is on the server, the
daemon returns the relevant address in an RPC reply message. The client pro-
gram can then send RPC call messages to that address.

The rpcbind protocol (for details, see the “Remote Procedure Calls: Protocol
Specification” chapter) provides a procedure, RECBPROC_CALLIT(), with which
rpcbind can assist a client in making a remote procedure call. A client pro-
gram passes the target procedure’s program number, version number, pro-
cedure number (for a discussion of these numbers, see the “Remote Procedure
Call Programming Guide” chapter) and arguments in an RPC call message.
rpcbind then looks up the target procedure’s address in the address map and
sends an RPC call message, including the arguments received from the client, to
the target procedure.

When the target procedure returns results, RRCBPROC_CALLIT() passes them on
to the client program. It also returns the target procedure’s address so the client
can later call it directly.

5-12 Programmer’s Guide: Networking Interfaces

RPC Overview

The RPC library provides an interface to all rpcbind procedures. Some of the
RPC library procedures also call rpcbind automatically for client and server
programs.

The rpcinfo Command

rpcinfo is a shell command that reports current RPC registration information
known to rpcbind (and can be used, by administrators, to delete registrations).
rpcinfo can be used to find all the RPC services registered on a specified host
and to report their universal addresses and the transports for which they are
registered. It can also be used to call (ping) a specific version of a specific pro-
gram on a specific host using a TCP or UDP transport, and to report whether a
response is received. For details, see rpcinfo(1M).

The Lower RPC Levels

There are various levels at which it is possible to interface to the RPC library
services. These levels are described in detail in the “Remote Procedure Call
Programming Guide” chapter. Understanding the lower levels of RPC is help-
ful but not necessary if you plan to use rpcgen to generate your RPC applica-
tions. For usage of rpcgen, refer to the “rpcgen Programming Guide”
chapter.

Figure 5-2 illustrates client-side lower level interfaces, that are available for
transport-handle creation. Figure 5-3 illustrates transport-handle creation for an
RPC server. Note the similarity of hierarchies on each side.

Introduction to Remote Procedure Calls 5-13

RPC Overview

Figure 5-2: Client-Side RPC Lower Levels

clnt_create (host, prog, vers, nettype)
"Top Level" - transport is selected by network type.
I
I
: (Network Selection)
Application controls transport selection below this point.
|
|
clnt_tp_create (host, prog, vers, netconfig)
"Intermediate Level" - application knows what transport it will use.
|
|
(Name-to-Address Translation)
|
[
clnt_tli create(fd, netconfig, ...)
"Expert Level" - Application can now directly manipulate the transport.
I
|

I |
I |
clnt_dg create() clnt_vc_create()
"Bottom Level" - Only very specialized applications need access to this level.

5-14 Programmer’s Guide: Networking Interfaces

RPC Overview

Figure 5-3: Server-Side RPC Lower Leveis

svc_create (dispatch, prog, vers, nettype)
"Top Level" - transport is selected by network type.
I
I
(Network Selection)
Application controls transport selection below this point.
I
I
svc_tp_create (dispatch, prog, vers, netconfig)
"Intermediate Level" - application knows what transport it will use.
I
I
(Name-to-Address Translation)
I
I
svc_tli create(fd, netconfig, ...)
"Expert Level" - Application can now directly manipulate the transport.
I
I

| I
| I
svc_dg_create() svc_vc_create ()
"Bottom Level" - Only very specialized applications need access to this level.

External Data Representation

RPC uses External Data Representation (XDR), a protocol for the machine-
independent description and encoding of data. XDR is useful for transferring
data between different computer architectures.

RPC can handle arbitrary data structures, regardless of different machines’ byte
orders or structure layout conventions, by always converting them to XDR
representation sending them over the wire. The process of converting from a
particular machine representation to XDR format is called serializing, and the

Introduction to Remote Procedure Calls 5-15

RPC Overview

reverse process is called deserializing. For a detailed discussion of XDR, see the
“External Data Representation Standard: Protocol Specification” chapter.

5-16 Programmer’s Guide: Networking Interfaces

6 rpcgen Programming Guide

Introduction 6-1
An Overview of rpcgen 6-1
Organization of Technical Information 6-2
An rpcgen Tutorial 6-3
Converting Local Procedures into Remote Procedures 6-3
Generating XDR Routines with rpcgen 6-12
Using Preprocessing Directives 6-19

Common RPC Programming Techniques -2t

Network Types (transport selection) 6-21
Timeout Changes 6-22
Client Authentication 6-23
rpcgen Command-line Define Statements 6-24
Server Response to Broadcast Calls 6-25
Port Monitor Support 6-26
Dispatch Tables 6-27
Debugging with rpcgen 6-29
RPC Language Reference 6-30
Definitions 6-30
Enumerations 6-31
Constants 6-31
Typedets 6-32
Declarations 6-32
Structures 6-34

Table of Contents i

Table of Contents

Unions 6-34
Programs 6-35
Special Cases 6-37

ii Programmer’s Guide: Networking Interfaces

Introduction

An Overview of rpcgen

rpcgen is a compiler. It accepts a remote program interface definition written
in a language, called RPC Language. RPC Language is similar to C. rpcgen
produces a C language output for RPC programs. This output includes:

m stub versions of the client routines

a server skeleton

XDR filter routines for both parameters and results
a header file that contains common definitions

(optionally) dispatch tables that the server can use to check authorizations
and then invoke service routines.

rpcgen’s output files can be compiled and linked in the usual way.

The client stubs interface with the RPC library and effectively hide the transport
from their callers. The server skeleton similarly hides the transport from the
server procedures that are to be invoked by remote clients.

The developer writes server procedures (in any language that observes system
calling conventions) and links them with the server skeleton produced by
rpcgen to get an executable server program. To use a remote program, the pro-
grammer writes an ordinary main program that makes local procedure calls to
the client stubs produced by rpcgen. Linking this program with stubs pro-
duced by rpcgen creates an executable program. (At present the main program
must be written in C.)

rpcgen options can be used to suppress stub generation and to specify the tran-
sport to be used by the server skeleton.

rpcgen reduces the development time that would otherwise be spent coding
and debugging low-level routines, at a small cost in efficiency and flexibility.
For speed-critical applications, though, rpcgen allows programmers to mix
low-level code with high-level code. Hand-written routines can be linked with
the rpcgen output without any difficulty. Also, one may proceed by using
rpcgen output as a starting point, and then rewriting it as necessary. (For a
discussion of RPC programming without rpcgen, see the “Remote Procedure
Call Programming Guide”” chapter.)

rpcgen Programming Guide 6-1

Introduction

Organization of Technical Information

This chapter provides rpcgen tutorial and user information.

The section titled “An rpcgen Tutorial” describes through examples how a pro-
grammer can use rpcgen to do such things as:

® convert an application to run over a network

m use rpcgen to create XDR routines

m make use of rpcgen-supported preprocessing directives.
The ““Common RPC Programming Techniques” section suggests some coding
and rpcgen usage techniques.

Finally, the “RPC Language Reference” provides a complete description of the
RPC programming language recognized by the rpcgen compiler.

6-2 Programmer’s Guide: Networking Interfaces

An rpcgen Tutorial

The details of programming applications to use Remote Procedure Calls can be
overwhelming. Perhaps most daunting is the writing of the XDR routines
necessary to convert procedure arguments and results into their XDR format
and vice-versa.

Fortunately, rpcgen(1) exists to help programmers write RPC applications sim-
ply and directly. rpcgen does most of the dirty work, allowing programmers
to debug the main features of their application, instead of requiring them to
spend most of their time on their transport interface code.

This section presents some basic rpcgen programming examples.

Converting Local Procedures into Remote Procedures

Assume an application that runs on a single machine. Suppose we want to con-
vert it to run over the network. Here we will show such a conversion by way
of a simple example program that prints a message to the console. The source
file for the original program might look like:

rpcgen Programming Guide 6-3

An rpcgen Tutorial

For local use on a single machine, this program could be compiled and executed
as follows:

6-4 Programmer’s Guide: Networking Interfaces

An rpcgen Tutorial

If the printmessage () function were turned into a remote procedure, it could
be called from anywhere in the network. It is not difficult to make a procedure
remote.

In the context of RPC programming, it has become acceptable to use the
term procedure to refer to a C-language function. The terms are used inter-
changeably in this guide.

In general, it is necessary to figure out what the types are for all procedure
inputs and outputs. Here, the procedure printmessage () takes a string as
input, and returns an integer as output. Knowing this, we can write a protocol
specification in RPC language that describes the remote version of printmes-
sage () . The RPC language source code for such a specification might look
like:

Remote procedures are always declared as being part of remote programs. The
above is actually a declaration for an entire remote program, one that contains -
the single procedure PRINTMESSAGE.

rpcgen Programming Guide 6-5

An rpcgen Tutorial

In the context of RPC programming, the term “remoteprogram’” actually
refers to a collection of (related) procedures.

l

In this example, the PRINTMESSAGE procedure is declared to be procedure 1, in
version 1 of the remote program whose number is 0x20000001. [Refer to
Program Number Assignment” in the “Remote Procedure Calls: Protocol
Specification” chapter for guidance on choice of program numbers.]

By convention, all RPC services provide for a procedure 0; a call to a remote
program’s procedure 0 should do nothing (a “no-op”) except succeed. To ping
means to call procedure 0 of a remote program. Pinging is used to verify the
existence and accessibility of a remote program.

Using rpcgen, no null procedure (procedure 0) need be written because
rpcgen generates it automatically.

Notice that the program and procedure names are declared with all capital
letters. This is not required, but is a good convention to follow.

Notice also that the argument type is string and not char * as it would be
in C. This is because a char * in C is ambiguous. Programmers usually
intend it to mean a null-terminated string of characters, but it could also
represent a pointer to a single character or a pointer to an array of characters.
In RPC language, a null-terminated string is unambiguously called a string.

There are just two more things to write:
m the remote procedure itself
m the main client program that calls it

Here’s one possible definition of a remote procedure to implement the
PRINTMESSAGE procedure we declared above:

6-6 Programmer’s Guide: Networking Interfaces

An rpcgen Tutorial

Notice that the declaration of the remote procedure printmessage_1() differs
from that of the local procedure printmessage () in three ways:

m It takes a pointer to a string instead of a string itself. This is true of all
remote procedures: they always take pointers to their arguments rather
than the arguments themselves.

m [t returns a pointer to an integer instead of an integer itself. This is also
characteristic of remote procedures: they return pointers to their results.

rpcgen Programming Guide 6-7

An rpcgen Tutorial

When rpcgen is used, it is essential to have result (in this
example) declared as static.

In the code generated by rpcgen, the result address is converted to XDR
format after the remote procedure returns. If the result were declared
local to the remote procedure, references to its address would be invalid
after the remote procedure returned. So the result must be declared
static when rpcgen is used.

m It has _1 appended to its name. In general, all remote procedures called
by rpcgen are named by the following rule: the procedure name in the
program definition (here PRINTMESSAGE) is converted to all lower-case
letters, an underbar (_) is appended to it, and the version number (here 1)
is appended.

The last thing to do is declare the main client program that will call the remote
procedure. Here is one possibility:

(continued on next page)

6-8 Programmer’s Guide: Networking Interfaces

An rpcgen Tutorial

rpcgen Programming Guide 6-9

An rpcgen Tutorial

There are four things to note here:

m First a client handle is created using the RPC library routine
clnt_create () . This client handle will be passed to the stub routines
that call the remote procedure. (The client handle can be created in other
ways as well, see the “Remote Procedure Call Programming Guide”
chapter for details.)

m The last parameter to clnt_create () is ‘‘visible’’, which specifies
that any transport noted as visible in /etc/netconfig can be used.

®m The remote procedure printmessage_1 () is called exactly the same
way as it is declared in msg_proc.c except for the inserted client handle
as the second argument. It also returns a pointer to the result instead of
the result itself.

m The remote procedure call can fail in two ways. The RPC mechanism
itself can fail or, alternatively, there can be an error in the execution of the
remote procedure. In the former case, the remote procedure [in this case
print_message_1()] returns with a NULL. In the later case, however,
the details of error reporting are application dependent. Here, the error is
being reported via *result.

Here’s how to put all the pieces together:

6-10 Programmer’s Guide: Networking Interfaces

An rpcgen Tutorial

Two programs are compiled here: the client program rprintmsg and the
server program msg_server. Before doing this, rpcgen was used to fill in the
missing pieces.

Here is what rpcgen (called without any flags) did with the input file msg. x:

1. It created a header file called msg.h that contained #define statements
for MESSAGEPROG, MESSAGEVERS and PRINTMESSAGE for use in the
other modules.

2. It created the client ““stub” routines in the msg_clnt.c file. Here there
is only one, the printmessage_1() routine, that was called from the
rprintmsg client program. If the name of an rpcgen input file is
FOO.x, the client stubs output file is called FOO_clnt.c.

3. It created the server program in msg_svc.c that calls printmes—
sage_1() from msg_proc.c. The rule for naming the server output file
is similar to the previous one: for an input file called FOO. x, the output
server file is named FOO_svc.c.

If invoked with the -T argument, rpcgen creates an additional output file
that contains index information used for the dispatching of service routines.

Once created, the server should be copied to a remote machine and run. (If the
machines are homogeneous, the server can be copied as a binary. Otherwise,
the source files will need to be copied to and compiled on the remote machine.)
For this example, the remote machine is called remote and the local machine is
called local. The server is started from the shell on the remote system:

rpcgen Programming Guide 6-11

An rpcgen Tutorial

Server processes, like msg_server, created with rpcgen always run in the
background. It is not necessary to follow the server’s invocation with an
ampersand (&). Servers generated by rpcgen can also be invoked with

l port monitors like 1isten and inetd, instead of from the command line.

Thereafter, a user on local can print a message on the console of system
remote as follows:

Using rprintmsg, a user can print a message on any system console (including
the local console) if the server msg_server is running on the target system.

Generating XDR Routines with rpcgen

The previous example illustrated the automatic generation of client and server
RPC code. rpcgen may also be used to generate XDR routines, i.e., the rou-
tines necessary to convert local data structures into XDR format and vice-versa.

This example presents a complete RPC service: a remote directory listing ser-
vice, built using rpcgen not only to generate stub routines, but also to generate
the XDR routines.

Here is the protocol description file:

6-12 Programmer’s Guide: Networking Interfaces

An rpegen Tutorial

Types (like readdir_res in the example above) can be defined using the
struct, union and enum keywords. These keywords should not be used
in later declarations of variables of those types. For example, if you define a
union foo, you should declare using only foo and not union foo.

rpcgen compiles RPC unions into C structures. It is an error to declare
RPC unions using the union keyword.

rpcgen Programming Guide 6-13

An rpcgen Tutorlial

Running rpcgen on dir.x creates four output files. First are the basic three
described previously: those containing the header file, client stub routines and
server skeleton.

The fourth contains the XDR routines necessary for converting instances of
declared data types from host platform representation into XDR format, and
vice-versa. These routines are output in the file dir_xdr.c.

For each data type used in the .x file, rpcgen assumes that the RPC/XDR
library contains a routine whose name is the name of the datatype, prepended
by xdr_ (e.g. xdr_int). If a data type is defined in the .x file, then rpcgen
generates the required xdr_ routine.

If there are no such data types definitions, in an RPC source file (e.g. msg.x),
then an _xdr. c file will not be generated.

An RPC programmer may write a .x source file that uses a data type not sup-
ported by the RPC/XDR library, and deliberately omit defining the type (in the

.x file); if so, the programmer has to provide that xdr_ routine. This is a way
for programmers to provide their own customized xdr routines. See the
“Remote Procedure Call Programming Guide” chapter “for more details on pass-
ing arbitrary data types.

Here is the server-side implementation of the READDIR procedure.

6-14 Programmer’s Guide: Networking Interfaces

An rpcgen Tutorial

(continued on next page)

rpcgen Programming Guide 6-15

An rpcgen Tutorial

Here is the client side program to call the server:

(continued on next page)

6-16 Programmer’s Guide: Networking Interfaces

An rpcgen Tutorlal

(66ntinued on next balge)

rpcgen Programming Guide 6-17

An rpcgen Tutorlal

Again using the hypothetical systems named local and remote, the files can
be compiled and run as follows:

After installing an executable copy of rls on system local, a user on that sys-
tem can list the contents of /usr/share/1ib on system remote as follows:

6-18 Programmer’s Guide: Networking Interfaces

An rpcgen Tutorial

Using Preprocessing Directives

The rpcgen compiler supports C and other preprocessing features.

C-preprocessing is performed on rpcgen input files before they are compiled.
All C-preprocessing directives are legal within a . x file. Five symbols may be
defined by rpcgen, depending on the type of output file being generated. The
symbols are:

Symbol Usage
RPC_HDR For header-file output -
RPC_XDR For XDR routine output
RPC_SVC For server-skeleton output
RPC_CLNT For client stub output
RPC_TBL For index table output

The rpcgen compiler provides an additional preprocessing feature: any line
that begins with a percent sign (%) is passed directly into the output file,
without any interpretation of the line.

rpcgen Programming Guide 6-19

An rpcgen Tutorlal

The % feature is not always useful, owing to a limitation: The rpcgen
compiler may not place the lines where the programmer intended.

Here is a simple example that illustrates rpcgen preprocessing features:

6-20 Programmer’s Guide: Networking Interfaces

Common RPC Programming Techniques

This section suggests some coding and rpcgen usage techniques.

network types rpcgen can produce for specific transport types
(or even specific transports)

timeout changes client default timeout periods can be changed

authentication clients may authenticate themselves to servers;

interested servers can examine client authentica-
tion information

define statements C-preprocessing symbols can be defined on
rpcgen command lines

broadcast calls servers need not send NULL replies to broadcast
calls

port monitor support port monitors can “listen” for RPC servers

dispatch tables programs can access server dispatch tables

debugging clients and servers created with rpcgen can be
linked and run on a single system for debugging
purposes

Network Types (transport selection)

The rpcgen compiler takes optional arguments that allow a programmer to
specify a desired network type or even a specific network identifier. (For details
about network selection, see the ““‘Remote Procedure Call Programming Guide”
chapter.)

In the context of RPC programming, the term network is frequently used (as
here) as a synonym for transport or transport type.

The -s flag creates a server that responds to requests on all transports of a
specified type. For example, the invocation

rpcgen -s datagram n prot.x

writes a server to standard output that responds to any of the connectionless

rpcgen Programming Guide , 6-21

Common RPC Programming Techniques

transports specified in the NETPATH environment variable (or in
/etc/netconfig, if NETPATH is not defined or does not specify any connec-
tionless transports).

Similarly, the —-n flag creates a server that responds only to requests from the
transport specified by a single network identifier.

Be careful using servers created by rpcgen with the -n flag. Because
network identifiers are host-specific, the server produced may not run on
other hosts in the expected way. ‘

Timeout Changes

After sending a request to the server, a client program waits for a default
amount of time (25 seconds) to receive a reply. This timeout may be changed
using the clnt_control () routine. [See rpc(3N).]

When considering timeout periods, be sure to allow for the minimal
amount of time required for “round trip” communications over the net-
work.

Here is a small code fragment to illustrate the use of clnt_control() :

6-22 Programmer’s Guide: Networking Interfaces

Common RPC Programming Techniques

Client Authentication

The client create routines do not, by default, have any facilities for client authen-
tication, but the client may sometimes want (or be required) to authenticate
itself to the server. Doing so is trivial, and looks about like this:

The following example illustrates one of the least secure authentication
methods in common use. See the “Remote Procedure Call Programming
Guide” for information on the more secure DES authentication technique.

Servers that want to know more about an RPC call can check authentication
information. For example, getting authentication information is important to
servers that want to achieve some level of security. This extra information is
actually supplied to the server as a second argument. (For details, see the struc-
ture of svc_req, in the “Authentication” section of the “Remote Procedure
Call Programming Guide” chapter.

Here is an example of a remote procedure whose server checks client authenti-
cation information. This is a rewrite of the printmessage_1() thatis
developed in the “An rpcgen Tutorial” section. The rewritten procedure will
only allow root users to print a message to the console:

rpcgen Programming Guide 6-23

Common RPC Programming Techniques

rpcgen Command-line Define Statements

The rpcgen compiler provides a means for defining C-preprocessing symbols
and assigning values to them from the command line. Command-line define
statements can, for example, be used to compile conditional debugging code
that is compiled only when the DEBUG symbol is defined. For example:

6-24 Programmer’s Guide: Networking Interfaces

Common RPC Programming Techniques

Server Response to Broadcast Calls

When a procedure is known to have been called via broadcast RPC, and the
called procedure determines that it cannot provide the client with a useful
response, it is usually best for the server to send no reply back to the client.
This reduces network traffic.

To prevent the server from replying, a remote procedure can return NULL as its
result. The server code generated by rpcgen will detect this and not send out
a reply.

Here is an example of a procedure that replies only if it thinks it is an NFS
server:

If a procedure returns type void *, it must return a non-NULL pointer if it
wants RPC to send a reply.

rpcgen Programming Guide ‘ 6-25

Common RPC Programming Techniques

Port Monitor Support

Port monitors such as inetd and listen can monitor network addresses for
specified RPC services. Whenever a request comes in for a particular service,
the port monitor spawns a server process to provide for it. After the call has
been serviced, the server can exit. This has the advantage of conserving system
resources: fewer blocked processes waiting for work.

It may be useful for services to wait for a specified interval after satisfying a ser-
vice request, on the chance that another request will follow. If there is no call
within the specified time, the server will exit and some port monitors, like
inetd, will continue to monitor for the server. If a later request for the service
occurs, the port monitor will give the request to a waiting server process (if
any), rather than spawning a new process.

When monitoring for a server, some port monitors, like 1isten, always
spawn a new process in response to a service request. If it is known that
a server will be used with such a monitor, the server should exit immedi-
ately on completion.

By default, services created using rpcgen wait for 120 seconds after servicing a
request before exiting. The programmer can, however, change that interval with
the -K flag.

Here the server will wait only for 20 seconds before exiting. To create a server
that exits immediately, ~K 0 can be used. To create a server that never exits (a
normal server), the appropriate argument is -K -1.

All servers generated by rpcgen assume the following support from port moni-
tors:

m the name of the transport provider is passed through the environment
variable NLS_PROVIDER

m the connection is passed on an open TLI file descriptor 0

6-26 Programmer’s Guide: Networking Interfaces

Common RPC Programming Techniques

See the “Using Port Monitors” section of the “Remote Procedure Call Program-
ming Guide” chapter for a further discussion of port monitors.

Dispatch Tables

It is sometimes useful for programs to have access to dispatch tables used by the
RPC package. For example, the server dispatch routine may need to check
authorization and then invoke the service routine; or a client library may want
to deal with the details of storage management and XDR data conversion.

When invoked with the —T option, rpcgen generates RPC dispatch tables for
each program defined in the protocol description file, proto. x, in the file
proto_tbl.i. For sample protocol description file, dir.x, given in the “Gen-
erating XDR Routines with rpcgen” section, above, a dispatch table file created
by rpcgen would be called dir_tbl.i. The suffix .i stands for “index.”

Each entry in the dispatch table is a struct rpcgen_table, defined in the
header file proto.h as follows:

where

proc isa pointei' to the service routine,

xdr_arg is a pointer to the input (argument) xdr_ routine,
len_arg is the length in bytes of the input argument,
xdr_res is a pointer to the output (result) xdr__ routine, and
len_res is the length in bytes of the output result.

rpcgen Programming Guide 6-27

Common RPC Programming Techniques

The table, named dirprog_1_table for the example, is indexed by procedure
number. The variable dirprog_1 nproc contains the number of entries in the
table.

An example of how to locate a procedure in the dispatch tables is shown by the
routine find_proc() :

Each entry in the dispatch table contains a pointer to the corresponding service
routine. However, that service routine is usually not defined in the client code.
To avoid generating unresolved external references, and to require only one
source file for the dispatch table, the rpcgen service routine initializer is
RPCGEN_ACTION (proc_ver).

This way, the same dispatch table can be included in both the client and the
server. Use the following define when compiling the client:

and use this define when compiling the server:

6-28 Programmer’s Guide: Networking Interfaces

Common RPC Programming Techniques

Debugging with rpcgen

When programming with rpcgen, the client program and the server procedure
can be tested together as a single program by linking them with each other
rather than with the client and server stubs. To do this, calls to RPC library
routines [e.g. clnt_create ()], have to be commented out, and client-side
routines have to call server routines directly. The procedure calls will be exe-
cuted as ordinary local procedure calls and the program can be debugged with
a local debugger. After the program is working, the client program can be
linked to the rpcgen-created client stubs and the server procedures can be
linked to the rpcgen-created server skeleton.

rpcgen Programming Guide 6-29

RPC Language Reference

RPC language is an extension of the XDR language. The sole extension is the
addition of the program and version types.

For a complete description of the XDR language syntax, see the “External Data
Representation: Protocol Specification” chapter. For a description of the RPC
extensions to the XDR language, see the “Remote Procedure Calls: Protocol
Specification” chapter.

RPC language is similar to C language. We describe here the syntax of the RPC
language, showing a few examples along the way. We also show how the vari-
ous RPC and XDR type definitions get compiled into C type definitions in the
output header file.

Definitions

An RPC language file consists of a series of definitions.

definition-list:
definition ;
definition ; definition-list

It recognizes six types of definitions.

definition:
enum-definition
const-definition
typedef-definition
struct-definition
union-definition
program-definition

6-30 Programmer’s Guide: Networking Interfaces

RPC Language Reference

Enumerations

RPC/XDR enumerations have the same syntax as C enumerations.
enum-definition:
enum enum-ident {
enum-value-list

}

enum-value-list:
enum-value
enum-value , enum-value-list

enum-value:
enum-value-ident
enum-value-ident = value

Here is a short example of an RCP/XDR enum, and the C enum to which it gets
compiled.

enum colortype { enum colortype {
RED = O, RED = O,
GREEN = 1, -—> GREEN = 1,
BLUE = 2 BLUE = 2,

}: }:
typedef enum colortype colortype:

Constants
RPC/XDR symbolic constants may be used wherever an integer constant is
used, for example, in array size specifications.

const-definition:
const const-ident = integer

For example, the following defines a constant, DOZEN, equal to 12.

const DOZEN = 12; --> #define DOZEN 12

rpcgen Programming Guide 6-31

RPC Language Reference

Typedefs

RPC/XDR typedefs have the same syntax as C typedefs.
typedef-definition:

typedef declaration

Here is an example that defines an fname_type used for declaring file name
strings that have a maximum length of 255 characters.

typedef string fname_type<255>; --> typedef char *fname_ type;

Declarations

In RPC/XDR, there are four kinds of declarations.

declaration: ‘
simple-declaration
fixed-array-declaration
variable-array-declaration
pointer-declaration

Simple Declarations: Simple declarations are just like simple C declarations.

simple-declaration:
type-ident variable-ident

Example:
colortype color; -—-> colortype color;

Fixed-length Array Declaxati(ms: Fixed-length array declarations are just like C
array declarations: ‘

fixed-array-declaration:
type-ident variable-ident [value]

Example:

colortype palette[8]; --> colortype palette([8];

6-32 Programmer’s Guide: Networking Interfaces

RPC Language Reference

Variable-Length Array Declarations: Variable-length array declarations have no
explicit syntax in C. The RPC/XDR does have a syntax; it uses angle-brackets.

variable-array-declaration:
type-ident variable-ident < value >
type-ident variable-ident < >
The maximum size is specified between the angle brackets. The size may be
omitted, indicating that the array may be of any size.

int heights<12>; /* at most 12 items */
int widths<>; /* any number of items */

Because variable-length arrays have no explicit syntax in C, these declarations
are compiled into struct declarations. For example, the heights declaration
gets compiled into the following struct:

struct {
u_int heights_len; /* % of items in array */
int *heights_val; /* pointer to array */

} heights;

Note that the number of items in the array is stored in the _len component
and the pointer to the array is stored in the _val component. The first part of
each of these component’s names is the same as the name of the declared
RPC/XDR variable.

Pointer Declarations: Pointer declarations are made in RPC/XDR exactly as
they are in C. Address pointers cannot really be sent over the network, but
RPC/XDR pointers are useful for sending recursive data types such as lists and
trees. The type is actually called “optional-data,” not “pointer,” in XDR
language.

pointer-declaration:
type-ident *variable-ident

Example:

listitem *next; --> 1listitem *next;

rpcgen Programming Guide , 6-33

RPC Language Reference

I

Structures

An RPC/XDR struct is declared almost exactly like its C counterpart. It looks
like the following:

struct-definition:
struct struct-ident {
declaration-list
}

declaration-list:
declaration ;
declaration ; declaration-list

As an example, here is an RPC/XDR structure for a two-dimensional coordi-
nate, and the C structure that it gets compiled into in the output header file.

struct coord { struct coord {
int x; -—> int x;
int y; int y;

bi b
typedef struct coord coord;
The output is identical to the input, except for the added typedef at the end of

the output. This allows one to use coord instead of struct coord when
declaring items.

Unions

RPC/XDR unions are discriminated unions, and look different from C unions.
They are more analogous to Pascal variant records than they are to C unions.

union-definition:
union union-ident switch (simple declaration) ({
case-list
}

case-list:
case value : declaration ;
case value : declaration ; case-list
default : declaration ;

6-34 Programmer’s Guide: Networking Interfaces

RPC Language Reference

Here is an example of a type that might be returned as the result of a “read
data” operation: if there is no error, return a block of data; otherwise, don’t

return anything.

union read result switch (int errno) ({
case 0:

opaque data[1024];
default:

void;
b:

It gets compiled into the following:

struct read_result {

int errno;

union {

char data[1024];
} read_result_u;

}i
typedef struct read_result read_result;

Notice that the union component of the output struct has the name as the type
name, except for the trailing _u.

Programs

RPC/XDR programs are declared using the following syntax:

rpcgen Programming Guide 6-35

RPC Language Reference

program-definition:
program program-ident {
version-list
} = value

version-list:
version
version

;
; version-list
version:
version version-ident {
procedure-list
} = value

procedure-list:
procedure ;
procedure ; procedure-list

procedure:
type-ident procedure-ident (type-ident) = value
For example:
VA

* time.x: Get or set the time. Time is represented as seconds
* gince 0:00, January 1, 1970.
*/
program TIMEPROG ({
version TIMEVERS ({
unsigned int TIMEGET (void) = 1;
void TIMESET (unsigned) = 2;
} = 1;
} = 0x20000044;

This file compiles into these #defines in the output header file:

#define TIMEPROG 0x20000044
#define TIMEVERS 1

#define TIMEGET 1

$define TIMESET 2

6-36 Programmer’s Guide: Networking Interfaces

RPC Language Reference

Special Cases

There are a few exceptions to the rules described above.

Booleans: C has no built-in boolean type. However, the RPC library uses a
boolean type called bool_t that is either TRUE or FALSE. Things declared as
type bool in RPC/XDR language are compiled into bool_t in the output
header file.

Example:
bool married; --> bool_ t married;

Strings: C has no built-in string type, but instead uses the null-terminated char
* convention. In RPC/XDR language, strings are declared using the string
keyword, and compiled into type char * in the output header file. The max-
imum size contained in the angle brackets specifies the maximum number of
characters allowed in the strings (not counting the NULL character). The max-
imum size may be left off, indicating a string of arbitrary length.

Examples:
string name<32>; --> char *name;
string longname<>; --> char *longname;

Opaque Data: Opaque data is used in RPC/XDR to describe untyped data, that
is, just sequences of arbitrary bytes. It may be declared either as a fixed or vari-
able length array. Examples:

opaque diskblock([512]; --> char diskblock[512];

opaque filedata<l1024>; --> struct ({
u_int filedata_len;
char *filedata_val;
} filedata;

Voids: In a void declaration, the variable is not named. The declaration is just
void and nothing else. Void declarations can only occur in two places: union
definitions and program definitions (as the argument or result of a remote pro-
cedure).

rpcgen Programming Guide 6-37

7 Remote Procedure Call
Programming Guide

Introduction 7-1
An Overview of the RPC Package 7-1
Organization of Technical Information 7-4
The Simplified Interface to RPC 7-6
RPC Library-based Network Services 7-6
Remote Procedure Call and Registration 7-8
m The rpc_cali() Routine 7-9
m The rpc_reg() Routine 7-11
= Passing Arbitrary Data Types 7-12
The Lower Levels of RPC 717
The Top Level 7-18
m Top Level: The Client Side 7-18
m Top Level: The Server Side 7-20
The Intermediate Level 7-22
= Intermediate Level: The Client Side 7-22
m Intermediate Level: The Server Side 7-24
The Expert Level 7-25
m Expert Level: The Client Side 7-25
m Expert Level: The Server Side 7-28
The Bottom Level 7-31
= Bottom Level: The Client Side 7-31
m Bottom Level: The Server Side 7-32

Table of Contents i

Table of Contents

Low-level Data Structures 7-33
Low-level Program Testing Using Raw
RPC 7-36
Advanced RPC Programming Techniques 739
select() on the Server Side 7-39
Broadcast RPC 7-40
Batching 7-42
m Batching Performance 7-46
Authentication 7-46
m AUTH_NONE: The Client Side 7-47
@ AUTH_NONE: The Server Side 7-48
m AUTH_SYS Authentication 7-49
m AUTH_DES Authentication 7-51
Using Port Monitors 7-55
m Using inetd 7-56
m Using the listener 7-57
Advanced Examples 7-59
Versions 7-59
Connection-Oriented Transports 7-61
Callback Procedures 7-64
Memory Allocation with XDR 7-69

Programmer’s Guide: Networking Interfaces

Introduction

The RPC package provides a multi-level application programming interface for
development of network applications using remote procedure calls.

At the simplified interface (the highest level), the package provides great tran-
sparency, but offers only limited control over the underlying communications
mechanisms. Program development at the simplified interface can be rapid, and
is directly supported by the rpcgen compiler — a C-language code generator
that supports remote procedure call program development.

The “Generating XDR Routines with rpcgen” section of the “xrpcgen Pro-
gramming Guide” contains the complete source for a working RPC service:
a remote directory listing service that uses rpcgen to generate XDR routines
as well as client and server stubs. For most applications, rpcgen and its
facilities are fully adequate and the detailed information in this chapter is not
required.

Interfaces to lower levels of the RPC package provide increasing control over
remote procedure call communications. Programs that exercise this control pay
for the power in terms of greater complexity of code. Effective programming at
the lower levels requires knowledge of computer network fundamentals.

In order of increasing control and complexity, these levels are called the Top
Level, Intermediate Level, Expert Level and Bottom Level.

This chapter is intended for programmers who wish to write network applica-
tions using remote procedure calls, and who want to use or understand the RPC
mechanisms usually hidden by the rpcgen(1) protocol compiler.

An Overview of the RPC Package

The RPC interface can be seen as being divided into several distinct levels. The
highest level is general, and provides for no fine control of any kind. The lower
levels (four can be usefully distinguished) are available for use as necessary, and
provide increasingly detailed levels of control.

Remote Procedure Call Programming Guide 71

Introduction

For a complete specification of the routines in the RPC library, see the
rpc(3N) and related manual pages.

[

The Simplified Interface: Here, the programmer doesn’t need to consider the
characteristics of the underlying transport, operating system, or other low-level
implementation mechanisms. Programmers simply make remote procedure calls
to routines on other machines, and need specify only the type of transport that
they wish to use. The selling point here is simplicity. It is this level that allows
RPC to pass the "hello world" test — that simple things should be simple. The
routines at this level are used for most applications.

Included in the simplified interface are only three basic RPC routines:

rpc_reg() rpc_reg() registers a routine as an RPC routine and
obtains a unique, system-wide procedure-identification
number for it.

rpc_call() Given such a unique, system-wide procedure-identification
number, rpc_call() uses it to make a remote call to that
routine on a specified host.

rpc_broadcast () Like rpc_call(), except that it broadcasts its call message
across all transports of the specified type.

The Top Level: At the top level, the interface is still simple, but the program-
mer does have to create client and server handles before making a call. Like the
routines in the simplified interface, the routines here require a nettype argu-
ment that specifies a general class (type) of transports.

The top level essentially consists of two routines:

clnt_create() The generic client creation. The programmer tells
clnt_create () where the server is located and the type
of transport to use to get to it.

svc_create () Creates server handles for all the transports of the
specified nettype. The programmer tells svc_create ()
which dispatch function should be used.

7-2 Programmer’s Guide: Networking Interfaces

Introduction

The simplified interface and the top level of RPC, while simple, are also
inefficient. They do not allow the choice of a specific transport (but see the dis-
cussion of NTEPATH, below). At these levels, all routines just take a nettype
argument, which serves to define the class of transport to be used. On the client
side, programs do network selection, and hence may be slightly inefficient
depending on the nettype. On the server side, programs may have to listen on
many transports, and hence may waste system resources.

In both of these cases, however, efficiency can be improved by]lldlClOllS assign-
ment to the NETPATH environment variable. If the programmer wishes the
application to run on all transports, this is the interface that should be used.

The Intermediate Level: The intermediate interface of RPC, and the two inter-
faces below it, allow many details to be controlled by the programmer, and for
that reason their use is necessary for special applications. Programmers should
only go down to the level necessary for the control needed. Programs written
at these lower levels are more complicated, but also more efficient.

The intermediate di_ffers from the two levels above it in that it allows the pro-
grammer to specify directly the transport to be used. It consists of two routines:

clnt_tp create() Creates a client handle for a specified transport.
svc_tp_create() Likewise, svc_tp_create() creates a server handle for
a specified transport.

The Expert Level: The expert level consists of a larger set of routines with
which the programmer can specify more parameters, but those parameters are
still all directly transport related. It includes the following routines:

clnt_tli create() Creates a client handle for a specified transport, allow-
ing fine control of the client characteristics.

svc_tli_create() Creates a server handle for a specified transport, allow-
ing fine control of the server characteristics.

rpcb_set (), Provides a prdgrammatic interface to rpcbind, one that
‘ establishes a mapping between an RPC service and a
network address.

rpcb_unset () Destroys a mapping of the type established by
rpcb_set.

Remote Procedure Call Programming Guide 73

Introduction

rpcb_getaddr () Provides a programmatic interface to rpcbind, one that
returns the transport address of specified RPC service.

svc_reg() Associates a given program and version number pair
with a given dispatch routine.

svc_unreg() Destroys an association of the type established by
svc_reg. ;

The Bottom Level: The bottom level consists of routines called when the pro-
grammer requires full control, even down to the smallest details of transport
options. It consists of the following routines:

clnt_dg _create() Creates an RPC client for the specified remote program,
' using a connectionless transport.

svc_dg_create() Creates an RPC server handle, using a connectionless
transport.

clnt_vc_create() Creates an RPC client for the specified remote program,
using a connection-oriented transport.

svc_vc_create () Creates an RPC server handle, using a connection-
oriented transport.

Organization of Technical Information

”The'Simpliﬁed Interface to RPC” section describes programming with RPC
library-based services, and calling RPC functions using the simplest RPC inter-
faces. Programming with arbitrary data types is also addressed.

The next three sections serve as a general reference to the lower levels of the
RPC package.

“The Lower Levels of RPC” section illustrates the client- and server-side pro-
gramming interfaces of each of the four lower levels of the RPC package.

The “Low-level Data Structures” section provides reference information on RPC
handles and the authentication structure used for secure RPC communications.

7-4 Programmer’s Guide: Networking Interfaces

Introduction

The “Low-level Program Testing Using Raw RPC” section describes pseudo-RPC
interfaces that are provided by the package for testing purposes.

The remaining sections focus on particular aspects of low-level RPC program-
ming.

The ““Advanced RPC Programming Techniques,” comments on developing RPC
applications programs that take advantage of the lower level interfaces.

The ““Advanced Examples” section illustrates how some important program-
ming tasks are done using the RPC low-level interfaces.

Remote Procedure Call Programming Guide 7-5

The Simplified Interface to RPC

The easiest interface to RPC does not recjulre‘ the programmer to use the inter-
face at all. “RPC Library-based Network Services” describes using functions
that hide all detalls of the RPC package

Some RPC services are not available as C functions, but are available as RPC
programs. ‘“Remote Procedure Call and Registration” shows how easy it is to
use these services, and how easy it is to create new services that are equally
simple to use.

Data types passed to and received from remote pfocedures can be any of a set
of predefined types, or can be programmer-defined types. “Passing Arbitrary
Data Types” explains how such types are declared and used.

RPC Library-based Network Services

Imagine writing a progfam that needs to know how many users are logged into
a remote machine. This can be done by calling an RPC library routine,
rusers (), as illustrated below:

7-6 Prograh\iher’s Guide: Networking Interfaces

The Simplified Interface to RPC

For rusers () to work, the rusers daemon must be running on the remote
host.

RPC library routines such as rusers () are in the RPC services library
librpcsve.a. Thus, the program above should be compiled with

$ cc program.c -lrpcsvc -lnsl

Here are some of the RPC service library routines available to the C program-
mer:

Remote Procedure Call Programming Guide 7-7

The Simplified Interface to RPC

Routine Description

rusers() Return information about users on remote machine
rwall () Write to specified remote machines
spray () Spray packets to a specific machine

Remote Procedure Call and Registration

The simplest interface to the RPC functions is based on the routines
rpc_call(), rpc_reg(), and rpc_broadcast () . These functions provide
direct access to the RPC facilities, and are appropriate for programs that do not
require fine levels of control.

Using the simplified interface, the number of remote users can be gotten as fol-
lows:

7-8 Programmer’s Guide: Networking Interfaces

The Simpilified Interface to RPC

The rpc_call() Routine

The simplest way of making remote procedure calls is with the RPC library rou-
tine rpc_call (). It has nine parameters.

m The first is the name of the remote server machine.

®m The next three parameters are the program, version, and procedure
numbers. Together, they identify the remote procedure to be called.

m The fifth and sixth parameters are an XDR filter for encoding and an
argument that has to be passed to the remote procedure.

Remote Procedure Call Programming Guide 7-9

The Simpilified Interface to RPC

m The next two parameters are an XDR filter for decoding the results
returned by the remote procedure and a pointer to the place where the
procedure’s results are to be stored.

m Finally, there is the nettype specifier.

Multiple arguments and results are handled by embedding them in structures.
If rpc_call() completes successfully, it returns zero; otherwise, it returns a
nonzero value. The return codes (of type enum clnt_stat, cast to an int in
the previous example) are found in <rpc/clnt.h>.

Because data types may be represented differently on different machines,
rpc_call() needs both the type of, and a pointer to, the RPC argument (simi-
larly for the result). For RUSERSPROC_NUM, the return value is an unsigned
long, so rpc_call() has xdr_u long () as its first return parameter, which
says that the result is of type unsigned long; and &nusers as its second
return parameter, which is a pointer to where the long result will be placed.
Because RUSERSPROC_NUM takes no argument, the argument parameter of
rpc_call() is xdr_void().

If rpc_call() gets no answer within a certain time period, it returns with an
error code. In the example, it tries all the transports listed in /etc/netconfig
that are flagged as visible. Adjusting the number of retries requires use of the
lower levels of the RPC library, discussed later in this chapter. The remote
server procedure corresponding to the above might look like this:

7-10 Programmer’s Guide: Networking Interfaces

The Simplified Interface to RPC

It takes one argument, which is a pointer to the input of the remote procedure
call (ignored in our example), and it returns a pointer to the result. In many
versions of C, character pointers are the generic pointers, so both the input
argument and the return value are cast to char *.

The rpc_reg() Routine

Normally, a server registers all the RPC calls it plans to handle, and then goes
into an infinite loop waiting to service requests. If rpcgen is used to provide
this functionality, it will generate much code, including a server dispatch func-
tion and support for port monitors. But programmers can also write servers
themselves using rpc_reg (), and it is appropriate that they do so if they have
simple applications, like the one shown as an example here. In this example,
there is only a single procedure to register, so the main body of the server
would look like this:

The rpc_reg() routine registers a C procedure as corresponding to a given
RPC procedure number. The registration is done for each of the transports of
the specified type, or if the type parameter is NULL, for all the transports named
in NETPATH. The first three parameters, RUSERPROG, RUSERSVERS, and
RUSERSPROC_NUM are the program, version, and procedure numbers of the
remote procedure to be registered; rusers is the name of the local procedure
that implements the remote procedure; and xdr_void and xdr_u_long name

Remote Procedure Call Programnilng Guide 7-11

The Simpilified Interface to RPC

the XDR filters for the remote procedure’s arguments and results, respectively.
(Multiple arguments or multiple results are passed as structures.) The last
parameter specifies the desired nettype. Note that, when using rpc_reg (),
programmers are not required to write their own dispatch routines.

The svc_run() routine is used at all levels of RPC programming. Strictly
speaking, it does not “belong” to this or to any other level.

After registering the local procedure, the server program’s main procedure calls
svc_run (), the RPC library’s remote procedure dispatcher. It is this function
that calls the remote procedures in response to RPC call messages. Note that
the dispatcher in rpc_reg() takes care of decoding remote procedure argu-
ments and encoding results, using the XDR filters specified when the remote
procedure was registered.

Passing Arbitrary Data Types

In the previous example, the RPC call returned a single unsigned long. RPC
can handle arbitrary data structures, regardless of different machines” byte ord-
ers or structure layout conventions, by always converting them to a standard
transfer syntax called External Data Representation (XDR) before sending them
over the transport. The process of converting from a particular machine
representation to XDR format is called serializing, and the reverse process is
called deserializing.

The type field parameters of rpc_call() and rpc_reg() can name an XDR
primitive procedure, like xdr_u_long () in the previous example, or a pro-
grammer supplied procedure (that may take a maximum of two parameters).
XDR has these “built-in” primitive type routines:

xdr_int () xdr_u_int () xdr_enum()
xdr_long() xdr_u_long() xdr_bool ()
xdr_short() xdr_u short() xdr_wrapstring()
xdr_char () xdr_u_char()

7-12 Programmer’s Guide: Networking Interfaces

The Simplified Interface to RPC

The routine xdr_string() exists, but takes more than two parameters. It
cannot, therefore, be used with rpc_call () and rpc_reg(), which only
pass two parameters to their XDR routines. xdr_wrapstring() has only
] two parameters, and is thus OK. HIt, in turn, calls xdr_string().

As an example of a user-defined type routine, if a programmer wanted to send
the structure:

then rpc_call () would be called as:

where xdr_simple () is written as:

Remote Procedure Call Programming Guide 7-13

The Simplified Interface to RPC

An XDR routine returns nonzero (true in the C sense) if it completes success-
fully, and zero otherwise. A complete description of XDR is provided in the
“External Data Representation Standard: Protocol Specification” chapter Note
that the above routine could have been generated automatxcally by using the
rpcgen compiler.

In addition to the built-in primitives, there are also some prefabricated building
blocks: ‘ ,

xdr_array () xdr_bytes () xdr_refe rencé ()
xdr_vector() xdr_union() xdr_pointer ()
xdr_string() xdr opaque()

To send a variable array of mtegers, the array might be packaged as a structure
like this:

and sent by an RPC call such as:

with xdr_varintarr() defined as:

7-14 Programmer’s Guide: Networking Interfaces

The Simplified Interface to RPC

The xdr_array () routine takes as parameters the XDR handle, a pointer to the
array, a pointer to the size of the array, the maximum allowable array size, the
size of each array element, and an XDR routine for handling each array element.

If the size of the array is known in advance, one can use xdr_vector () , which
serializes fixed-length arrays.

XDR always converts quantities to 4-byte multiples when serializing. Thus, if
either of the examples above involved characters instead of integers, each char-
acter would occupy 32 bits. That is the reason for the XDR routine
xdr_bytes (), which is like xdr_array () except that it packs characters;
xdr_bytes () has four parameters, similar to the first four parameters of
xdr_array().

For null-terminated strings, there is the xdr_string() routine, which is the
same as xdr_bytes () without the length parameter. On serializing it gets the
string length from strlen(), and on deserializing it creates a null-terminated
string.

Remote Procedure Call Programming Guide 7-15

The Simpilified Interface to RPC

Here is a final example that calls the previously written xdr_simple () as well
as the built-in functions xdr_string() and xdr_reference (), which chases
pointers:

Note that we could as easily call xdr_simple () here instead of
xdr_reference().

7-16 Programmer’s Guide: Networking Interfaces

The Lower Levels of RPC

In the examples given for programming at the simplied interface, RPC takes
care of almost as many details as would the rpcgen compiler. RPC does so by
choosing defaults for almost everything, including the transport protocol.

This section shows how to control these details by using lower levels of the RPC
library. The reader is assumed to be familiar with the Transport Level Interface
(TLD.

There are several reasons for using lower levels of RPC:

m A program may need to directly control the selection of the transport pro-
tocol, which at the simplified interface level, can be done only by use of
the NETPATH variable.

m A program may need to allocate and free memory while serializing or
deserializing with XDR routines. There are no facilities for doing so avail-
able at the higher level. (For details, see “Memory Allocation with XDR”
in the “Advanced Examples” section of this chapter.

The following sections illustrate programming at the lower levels of RPC.

“The Top Level” describes RPC interfaces that allow for control of transport
selection by type.

“The Intermediate Level” section describes those interfaces that allow a pro-
grammer to choose a specific transport.

“The Expert Level” section describes routines that:
m allow program control of client and server characteristics
m provide an interface to rpcbind
Finally, the section on ““The Bottom Level” describes routines that control most
details of transport options.
For detailed descriptions of RPC routines, see rpc(3N).

Remote Procedure Call Programming Guide 717

The Lower Levels of RPC

The Top Level

At the top level, the application can specify the fype of transport that it wants to
use, but not an individual transport. This level differs from the simplified inter-
face to RPC in that the application is responsible for creating its own transport
handles, on both the client and server sides.

Top Level: The Client Side

Assume we have the following header file:

The following code implements the client side of a trivial date service, written at
the top level:

7-18 ‘ Programmer’s Guide: Networking Interfaces

The Lower Levels of RPC

Remote Procedure Call Programming Guide 7-19

The Lower Levels of RPC

Note that, when this program is run, if nettype is not given on the command
line, the code assigns it to point to the string "netpath". Whenever the rou-
tines in the RPC libraries encounter this string, they consult the NETPATH
environment variable for the user’s list of acceptable network identifiers.

If the client handle cannot be created, the reason for the failure can be printed
using clnt_pcreateerror (), or the error status can be obtained via the glo-
bal variable rpc_createerr.

After the client handle is created, clnt_call() is used to make the remote
call. It takes as arguments the remote procedure number, an XDR filter for the
input argument and the argument pointer, an XDR filter for the result and the
result pointer, and the time-out period of the call. Normally, this last should
not be 0. In this particular example there are no arguments, and thus
xdr_void () has been specified.

Top Level: The Server Side

Here’s the code for the time server:

(continued on next page)

7-20 Programmer’s Guide: Networking Interfaces

The Lower Levels of RPC

svc_create () returns the number of transports on which it could create
server handles. time_prog() is the dispatch function called by svc_run ()

whenever there’s a request for its given program and version number.

Remote Procedure Call Programming Guide 7-21

The Lower Levels of RPC

Here the remote procedure takes no arguments Had arguments been required,
sve _getargs (transport, XDR filter, argument _pointer)

could have been used to deserialize (XDR decode) the arguments. In such cases,
svc_freeargs () should be used to free up the arguments after the actual call
has been made. The server reply results are sent back to the chent usmg
svc_sendreply().

It is recommended that rpcgen be used to generate the dlspatch function which
can later be customized.

When rpcgen is used to generate the dlspatch function, ,

svc_sendreply () is called only after the actual procedure has
returned, and hence it is essential to have rs1t (in this example)
declared as static within that actual procedure ‘

In this example, rslt is not declared as static because svc sendreply () is
called from within the dlspatch functlon

The Intermediate Level

At the mtermedlate level, the application directly chooses the transport it wishes
to use, factoring the value of NETPATH and the contents of /etc/netconfig
into the choice as it sees fit.

Intermediate Level: The Client Side

The following code implements the elient side of the same time service shown
above, but written to the intermediate level of the RPC package.

Here, the programmer requires the user to name, on the command lme, the
transport over Wthh the call will be made:

7-22 Programmer’s Guide: Networking Interfaces

The Lower Levels of RPC

The netconfig structure can be obtained by a call to
getnetconfigent (nettype). (See getnetconfig(3N) for more details.)

At this level, the program must explicitly make all decisions about network-
selection.

Remote Procedure Call Programming Guide 7-23

The Lower Levels of RPC

Intermediate Level: The Server Side

Here’s the corresponding server. The administrator who starts the service is
required to name, on the command line, the transport over which the service is
provided:

(ééhflnued' on nex bége)

7-24 Programmer’s Guide: Networking Interfaces

The Lower Levels of RPC

The Expert Level

At the expert level, network selection is done exactly as at the intermediate
level. The only difference here is in the level of control that the application has
over the details of the transport’s configuration. Control at this level is much
greater. These examples illustrate that control, which is exercised using the
clnt_tli create() and svc_tli_create() routines.

Expert Level: The Client Side

Here is the client side of some code that implements a version of
clntudp_create () (the client-side creation routine for the UDP transport) in
terms of clnt_tli_create (). The example shows how to do network selec-
tion based on the family of the transport one wishes to use.

clnt_tli_create() is normally used to create a client handle when:

m the application wants to pass an open file descriptor, which may or may
not be bound

m the programmer wants to feed the server’s address to the client

m the programmer wants to specify the send and receive bulffer size (here,
8800 bytes)

Remote Procedure Call Programming Guide 7-25

The Lower Levels of RPC

(continued on next page)

7-26 Programmer’s Guide: Networking Interfaces

The Lower Levels of RPC

(continued on next page)

Remote Procedure Call Programming Guide 7-27

The Lower Levels of RPC

The network selection is done using the library functions setnetconfig(),
getnetconfig (), and endnetconfig (). (Note that endnetconfig() is
not called until after the call to clnt_tli_create (), near the end of the
example.)

clntudp_create () can be passed an open fd, but if not (f
RPC_ANYSOCK) , it will open its own using the netconfig structure for UDP.

If the remote address is not known, (raddr->sin_port == 0), then itis
obtained from the remote rpcbind. Note the call to bind_clnt_resv(),
which serves to bind a transport endpoint to a reserved address. This call is
necessary because there is no notion of a reserved address in RPC under TLI, as
there is in both TCP and UDP. The implementation of this routine is of no
interest here, because it is entirely transport specific. What is of interest is the
scaffolding necessary to call it.

After the client handle has been created, the programmer can suitably customize
it using calls to clnt_control (). Here, the RPC library closes the file
descriptor while destroying the handle (as it usually does with a call to
clnt_destroy () when it opens the f£d itself) and sets the retry timeout
period.

Expert Level: The Server Side

Below is the corresponding server code. It implements svcudp_create () in
terms of sve_tli_create (), and calls the user provided bind_resv() to
bind the transport endpoint to a reserved address.

7-28 Programmer’s Guide: Networking Interfaces

The Lower Levels of RPC

svc_tli_create() is normally used when the application needs a fine degree
of control, and especially if it is necessary to:

m pass an open file descriptor to the application
m pass the user’s bind address
m set the send and receive buffer sizes (here being set to 8800 bytes)

The f£d argument may be unbound when passed in. If it is, then it is bound to
a given address, and the address is stored in a handle. If the bind address is set
to NULL, and if the £d is initially unbound, it will be bound to any suitable
address.

It is the responsibility of the programmer to use rpcb_set () to register the
service with rpcbind.

"~ (continued on next page)

Remote Procedure Call Programming Guide 7-29

The Lower Levels of RPC

7-30 Programmer’s Guide: Networklng Interfaces

The Lower Levels of RPC

The network selection here is done in a similar way as in clntudp_create () .

svcudp_create () is set up to receive an open £d, but if it does not, it will
open one itself using the selected netconfig structure.

bind_resv () is a user-provided function that binds the f£d to a reserved port
if the caller is a superuser.

The Bottom Level

At the bottom-level interface to RPC, the application can control all options,
transport-related and otherwise. clnt_tli_create (), and the other expert-
level RPC interface routines are implemented on top of these bottom-level rou-
tines.

The programmer should not normally be using these low-level routines.

These routines are responsible for creating their own data structures, their own
buffer management, the creation of their own RPC headers, etc.

Callers of these routines [like the expert level routine clnt_tli_create()]
are responsible for initializing the c1_netid and cl_tp fields within the client
handle. The bottom level routines clnt_dg create() and
clnt_vc_create() are themselves responsible for populating the clnt_ops
and cl_private fields.

For a created handle, c1_netid is the network identifier (e.g. udp) of the tran-
sport and cl_tp is the device name of that transport (e.g. /dev/udp).

Bottom Level: The Client Side

The example here shows the use of local variables to control the exact details of
the calls to clnt_vc_create() and clnt_dg_create(). Thus, these rou-
tines allow control of the transport to the lowest level:

Remote Procedure Call Programming Guide 7-31

The Lower Levels of RPC

Bottom Level: The Server Side

And, again, on the server side:

7-32 Programmer’s Guide: Networking Interfaces

Low-level Data Structures

For reference, here are the client- and server-side RPC handles, as well as an
authentication structure.

The client-side handle contains an authentication structure. For a client pro-
gram authenticate itself, it must initialize the c1_auth field to an appropriate
authentication structure:

Remote Procedure Call Programming Guide 7-33

Low-level Data Structures

Within the AUTH structure, ah_cred contains the caller’s credentials, and
ah_verf contains the information necessary to verify those credentials. (See

“/Authentication” in the “Advanced RPC Programming Techniques” section for
more details.)

Here is the server-side transport handle:

7-34 Programmer’s Guide: Networking Interfaces

Low-level Data Structures

xp_fd is the file descriptor assoc1ated with the handle. Two or more server
handles can share the same file descriptor.

xp_netid is the network identifier (e.g. udp) of the transport on which this
handle was created and xp_tp is the devxce name associated with that tran-

sport.
xp_ltaddr is the server’s own bind address, while xp_rtaddr is the address
of the remote caller and hence may change from call to call.

Xp_ netid, xp_tp and xp_ ltaddr are 1n1t1a11zed by sve_tli_create() and
other expert-level routines.

The rest of the fields are mltlahzed by the bottom—level server routines
svc_dg_create() and svc_vc_create().

Remote Prodedure céu Programmlng éu,ide 7-35

Low-level Program Testing Using Raw RPC

There are two pseudo-RPC interface routines provided to support program test-
ing. These routines, clnt_raw_create() and svc_raw_create(), do not
involve the use of any real transport. They exist to help the developer debug
and test the non-communications-oriented aspects of an application before run-
ning it over a real network.

Here’s an example of their use:

(continued on next page)

7-36 Programmer’s Guide: Networking Interfaces

Low-level Program Testing Using Raw RPC

Note the following points:

m The server is not registered with rpcbind, and svc_run () is not called.
The last parameter to svc_reg() is 0, which means that it will not regis-
ter with rpcbind.

B All the RPC calls occur within the same thread of control.

Remote Procedure Call Programming Guide 7-37

Low-level Program Testing Using Raw RPC

m It is necessary that the server be created before the client.
m svc_raw_create () takes no parameters.

m The server dispatch routine is the same as it is for normal RPC servers.

7-38 Programmer’s Guide: Networking Interfaces

Advanced RPC Programming Techniques

This section addresses areas of occasional interest to programmers using the
lower level interfaces of the RPC package. The topics discussed are:

select () on the server side if calling svc_run() is not feasible, a server
can call the dispatcher directly

broadcast RPC details of the broadcast mechanism are
described

batching efficiency is gained if a series of calls can be
batched

authentication two methods in common use are described

port details are provided for interfacing with the
inetd and listener port monitors

versions how programs with multiple versions are ser-
viced

select() on the Server Side

Suppose a process is processing RPC requests while performing some other
activity. If the other activity involves periodically updating a data structure, the
process can set an alarm signal before calling sve_run() .

If the other activity involves waiting on a file descriptor, however, the
svce_run() call will not work.

Below is the code for svc_run () . Note that svc_fdset is a bit mask of all
the file descriptors that RPC is using for services. The mask can change every
time any RPC library routine is called, because descriptors are constantly being
opened and closed:

Remote Procedure Call Programming Guide 7-39

Advanced RPC Programming Techniques

A process can bypass sve_run() and call svc_getregset () (the dispatcher)
directly. Given the file descriptors of the transport endpoints associated with
the programs being waited on, the process can have its own select () that
waits on both the RPC file descriptors, and its own descriptors.

Broadcast RPC

rpcbind is a daemon that converts RPC program numbers into network
addresses comprehensible to any transport provider. rpcbind supports broad-
cast RPC. Here are the main differences between broadcast RPC and normal
RPC calls:

7-40 Programmer’s Guide: Networking Interfaces

Advanced RPC Programming Techniques

m Normal RPC expects one answer, whereas broadcast RPC expects many
answers (one or more answer from each responding machine).

m Broadcast RPC can only be performed on connectionless protocols that
support broadcasting, such as UDP.

m The implementation of broadcast RPC treats all unsuccessful responses as
garbage by filtering them out. Thus, if there is a version mismatch
between the broadcaster and a remote service, the user of broadcast RPC
never knows.

m All broadcast messages are sent to rpcbind’s network address. Thus,
only services that register themselves with rpcbind are accessible via the
broadcast RPC mechanism.

m The size of broadcast requests is limited to the MTU (Maximum Transfer
Unit) of the local network. For Ethernet, the MTU is 1500 bytes.

The following illustrates how rpc_broadcast () is used and describes its
arguments:

The procedure eachresult () is called each time a valid result is obtained. It
returns a boolean that specifies whether the user wants more responses.

Remote Procedure Call Programming Guide 7-41

Advanced RPC Programming Techniques

If done is TRUE, then broadcasting stops and rpc_broadcast () returns suc-
cessfully. Otherwise, the routine waits for another response. The request is
rebroadcast after a few seconds of waiting. If no responses come back, the rou-
tine returns with RPC_TIMEDOUT.

Batching

The RPC architecture is designed so that clients send a call message, and wait
for servers to reply that the call succeeded. This implies that clients do not
compute while servers are processing a call. This is inefficient if the client does
not want or need an acknowledgement for every message sent. It is possible for
clients to continue computing while waiting for a response, using RPC batch
facilities.

RPC messages can be placed in a "pipeline” of calls to a desired server; this is
called batching. Batching assumes that:

m each RPC call in the pipeline requires no response from the server, and
the server does not send a response message

m the pipeline of calls is transported on a reliable byte stream transport such
as TCP/IP

Because the server does not respond to every call, the client can generate new
calls in parallel with the server executing previous calls. Furthermore, the
TCP/IP implementation can buffer up many call messages, and send them to
the server in one write () system call. This overlapped execution greatly
decreases the interprocess communication overhead of the client and server
processes, and the total elapsed time of a series of calls.

7-42 Programmer’s Guide: Networking Interfaces

Advanced RPC Programming Techniques

Because the batched calls are buffered, the client should eventually do a non-
batched call to flush the pipeline.

An example of batching follows. Assume a string rendering service (like a win-
dow system) has two similar calls: one renders a string and returns void
results, while the other renders a string and remains silent. The service (using
the TCP/IP transport) may look like:

(continued on next page)

Remote Procedure Call Programming Guide 7-43

Advanced RPC Programming Techniques

Of course, the service could have one procedure that takes the string and a
boolean that specifies whether the procedure should respond.

To take advantage of batching (using the code above), the client must make RPC
calls on a TCP-based transport. The calls must have the following attributes:

m the XDR routine for the result must be zero (NULL)

m the RPC call’s timeout must be zero

7-44 Programmer’s Guide: Networking Interfaces

Advanced RPC Programming Techniques

Here is an example of a client that uses batching to render a bunch of strings;
the batching is flushed when the client gets a null string (EOF):

Because the server sends no message, the clients cannot be notified of any of the
failures that may occur.

Remote Procedure Call Programming Guide 7-45

Advanced RPC Programming Techniques

Batching Performance
The following illustrates the benefits that may be gained from batching.

The above example was completed to render all the lines in a 2000 line file. The
rendering service did nothing but throw the lines away.

The example was run in four configurations, with the following results:

Configuration Time
machine to itself, regular RPC 50 seconds
machine to itself, batched RPC 16 seconds
machine to another, regular RPC 52 seconds
machine to another, batched RPC 10 seconds

Running fscanf () on the same file only requires six seconds. These timings
show the advantage of protocols that allow for overlapped execution.

Authentication

In the examples presented so far, the caller never identified itself to the server,
and the server never required an ID from the caller. Some network services,
such as a network filesystem, require stronger security than what has been
presented so far.

Every RPC call is subjected to a style of authentication by the RPC package on
the server. Similarly, the RPC client package generates and sends authentication
parameters suitable for the style of authentication in effect. The default authen-
tication style is AUTH_NONE (none).

Just as different transports can be used when creating RPC clients and servers,
different forms of authentication can be associated with RPC clients.

The authentication subsystem of the RPC package is open ended. That is,
numerous styles of authentication are easy to support; programmers can design
their own authentication style and easily configure the RPC package to support
it.

7-46 Programmer’s Guide: Networking Interfaces

Advanced RPC Programming Techniques

In addition to AUTH_NONE, the RPC package already supports the following
authentication styles:

AUTH_SYS An authentication style based on traditional System V operating
system process permissions authentication.

AUTH_SHORT An alternate form of AUTH_SYS used by some servers for
efficiency. Client programs using AUTH_SYS authentication
should be prepared to receive AUTH_. SHORT response verifiers
from some servers. See “’Authentication Protocols” in the
“Remote Procedure Calls: Protocol Specification”” chapter for
details.

AUTH_DES An authentication style based on DES encryption techniques.

AUTH_NONE: The Client Side

When a caller creates a new RPC client handle as in:

the appropriate transport instance defaults the associated authentication handle
to be

If the programmer creates a new style of authentication, the programmer is
responsible for destroying it with auth_destroy(clnt->cl_auth). This
should always be done, to conserve memory.

Remote Procedure Call Programming Guide 7-47

Advanced RPC Programming Techniques

AUTH_NONE: The Server Side

Service implementors have a harder time dealing with authentication issues
because the RPC package passes the service dispatch routine a request that has
an arbitrary authentication style associated with it. Consider the fields of a
request handle passed to a service dispatch routine:

The rq_cred is mostly opaque, except for one field of interest: the style or
flavor of authentication credentials:

The RPC package guarantees the following to the service dispatch routine:

® The request’s rq_cred is well formed. Thus the service implementor
may inspect the request’s rq_cred.oa_flavor to determine the style of
authentication the caller used. The service implementor may also wish to
inspect the other fields of rq_cred if the style is not one supported by
the RPC package.

7-48 Programmer’s Guide: Networking Interfaces

Advanced RPC Programming Techniques

m The request’s rq_clntcred field is either NULL or points to a well
formed structure that corresponds to a supported style of authentication
credentials. Remember that only AUTH_NONE, AUTH_SYS, AUTH_SHORT
and AUTH_DES styles are currently supported, so (currently)
rq_clntcred could be cast only as a pointer to an authsys _parms,
short_hand_verf, or authdes_cred structure. If rq_clntcred is
NULL, the service 1mplementor may wish to inspect the other (opaque)
fields of rq_cred if the service knows about a new type of authentication
that the RPC package does not know about.

AUTH_SYS Authentication

The RPC client can choose to use AUTH_SYS style authentication by setting
clnt->cl_auth after creating the RPC client handle:

This causes each RPC call associated with clnt to carry with it the following
authentication credentials structure:

These fields are set by authsys_create_default () by invoking the
appropriate system calls.

Remote Procedure Call Programming Guide 7-49

Advanced RPC Programming Techniques

The following shows the server for a remote procedure, RUSERPROC_n, that
computes the number of users on the network. As a trivial demonstration of
authentication usage, this server checks AUTH_SYS credentials and does not ser-
vice requests from callers whose uid is 16:

(continued on next page)

7-50 Programmer’s Guide: Networking Interfaces

Advanced RPC Programming Techniques

A few things should be noted here:

m It is customary not to check the authentication parameters associated with
the NULLPROC (procedure number zero).

m The server should call svcerf_weakauth () if the authentication
parameter’s type is not suitable for the service.

m The service protocol itself should return status for access denied; in this
example, the protocol does not have such a status, so the service primitive
svcerr_systemerr () is called instead.

The last point underscores the relation between the RPC authentication package
and the services: RPC deals only with authentication and not with individual ser-
vices’ access control. The services themselves must establish access control poli-
cies and reflect these policies as return statuses in their protocols.

AUTH DES Authentication

AUTH_DES authentication is recommended for programs that require more secu-
rity than that offered by the AUTH_SYS style of authentication.

AUTH_SYS authentication is easy to defeat. For example, instead of using
authsys_create_default (), a program could call authsys_create(),
and then change the RPC authentication handle to give itself any desired user
ID and hostname.

Remote Procedure Call Programming Guide 7-51

Advanced RPC Programming Techniques

The details of the AUTH_DES authentication protocol are complicated and are
not explained here. See the “Remote Procedure Calls: Protocol Specification”
chapter for the details.

For AUTH_DES authentication to work, the keyserv(1M) daemon must be run-
ning on both the server and client machines. The users on these machines need
public/secret key pairs assigned by the network administrator in the pub—
lickey(4) database. And, they need to have decrypted their secret keys using
the keylogin(1) command.

AUTH_DES: The Client Side

If a client wishes to use AUTH_DES authentication, it must set its authentication
handle appropriately. Here is an example:

The first argument is the network name or "netname" of the owner of the server
process. Typically, server processes are root processes and their netname can be
derived using the following call:

Here, rhostname is the hostname of the machine the server process is running
on. host2netname () populates servername to contain this root process’s
netname. If the server process was run by a regular user, one could use the call
user2netname () instead. Here is an example for a server process with the
same user ID as the client:

7-52 Programmer’s Guide: Networking Interfaces

Advanced RPC Programming Techniques

The last argument to both of these calls, user2netname () and
host2netname (), is the name of the naming domain where the server is
located. The NULL used here means "use the local domain name."

The second argument to authdes_seccreate () is a lifetime for the creden-
tial. Here it is set to sixty seconds. What that means is that the credential will
expire 60 seconds from now. If some mischievous program tries to reuse the
credential, the server RPC subsystem will recognize that it has expired and will
not grant any requests. If the same mischievous program tries to reuse the
credential within the sixty second lifetime, it will still be rejected, because the
server RPC subsystem remembers credentials it has seen in the near past, and
will not grant requests to duplicates.

The third argument to authdes_seccreate () is the name of the host to syn-
chronize with. For AUTH_DES authentication to work, the server and client
must agree on the time. Here we pass the hostname of the server itself, so the
client and server will both be using the same time: the server’s time. The argu-
ment can be NULL, which means "don’t bother synchronizing." A program
should pass NULL only if sure the client and server are already synchronized.

The final argument to authdes_seccreate () is the address of a DES encryp-
tion key to use for encrypting timestamps and data. If this argument is NULL,
as it is in this example, a random key will be chosen. The client may find out
the encryption key being used by consulting the ah_key field of the authentica-
tion handle.

AUTH_DES: The Server Side

The server side is simpler than the client side. Here is the previous example
rewritten to use the AUTH_DES style instead of AUTH_SYS:

Remote Procedure Call Programming Guide 7-53

Advanced RPC Programming Techniques

7-54 Programmer’s Guide: Networking Interfaces

Advanced RPC Programming Techniques

Note the use of the routine netname2user (), the inverse of
user2netname () : it takes a network ID and converts to a local system ID.
netname2user () also supplies the group IDs, not used in this example, but
which may be useful to other programs.

Using Port Monitors

An RPC server can be started from port monitors such as inetd and
listener. These port monitors listen for requests for the services, and spawn
servers in response to those requests. The forked server process is passed the
file descriptor 0 on which the request has been accepted. For inetd, after the
server has serviced the request, it may exit immediately or wait a given interval
of time for another service request to come in.

For the listener, servers should exit inmediately because the 1istener
will always spawn a new process rather than give a request to a waiting
server process.

The following routine can be used to create a service:

nconf is the netconfig structure of the transport on which the request came in.

Because the port monitors have already registered the service with rpcbind,
there is no need for the service to register itself. Nevertheless, it must call
svc_reg():

The netconfig structure here is NULL.

Remote Procedure Call Programming Guide 7-55

Advanced RPC Programming Techniques

Programmers should study rpcgen-generated server stubs to better see the
sequence in which these routines are called.

I

For connection-oriented transports, the following routine provides a lower level
interface:

The file descriptor passed here is 0. The user may set the value of recvsize or
sendsize to any appropriate buffer size. If they use a 0 in either case, a system
default size will be chosen. This routine should be used by application servers
that do not do any listening of their own, i.e., servers that simply do their job
and return.

Using inetd
The format of entries in /etc/inetd.conf for RPC services is as follows:
rpc_prog/vers socket_type rpc/proto flags uid pathname args

where rpc_prog is the symbolic name of the program as it appears in rpc(4),
vers is the version number, socket_type is one of dgram or stream for connec-
tionless or virtual circuit transport, respectively, proto is transport protocol, such
as tcp or udp and must make sense with respect to the specified socket_type;
flags is one of wait or nowait, uid must exist in /etc/passwd, pathname is
the full path name of the server daemon and args are arguments to be passed to
the daemon when it is invoked. For example:

For more information, see inetd.conf(4).

7-56 Programmer’s Guide: Networking Interfaces

Advanced RPC Programming Techniques

Using the listener

We will assume here that the reader already knows the details of setting up the
listener process and of using pmadm. The following shows how to use pmadm
to add RPC services:

pmadm -a -p pm_tag —s svctag —i id —v ver \
-m ‘nlsadmin -c command -D -R prog:vers’

Here —a means to add a service, -p pm_tag specifies a tag associated with the
port monitor providing access to the service, —s suvctag is the server’s identifying
code, -1 id is the /etc/passwd user ID assigned to service svctag, —v ver is
the version number for the port monitor’s database file and —m specifies the
nlsadmin command for invoking the service. nlsadmin may have additional
arguments. For example, to add version 1 of a remote program server named
rusersd the pmadm command might be:

Here, the command is given root permissions, installed in version 4 of the
listener database file, and is made available over TCP transports.

Because of the complexity of the arguments and options that can follow the
pmadm -a invocation, it may be convenient to use a command script or the
menu system to add RPC services. If you use the menu system, enter

I sysadm ports, then choose the port_services option.

After adding a service, the 1istener must be reinitialized before the service
will be available. This is accomplished by stopping, then retarting the listener,
as follows (note that rpcbind must be running):

Remote Procedure Call Programming Guide 7-57

Advanced RPC Programming Techniques

For more information, see the 1isten(1M), pmadm(1M), sacadm(1M) and
sysadm(1M) manual pages and the System Administrator’s Guide.

7-58 Programmer’s Guide: Networking Interfaces

Advanced Examples

This section contains examples.
“Versions”” shows how to register multiple versions of a remote procedure.
“‘Connection-oriented Transports”” shows a remote copy program.

“Callback Procedures” shows how a server can be made to place a "client call"
back to a client that calls it.

“Memory Allocation With XDR” illustrates how this is done.

Versions

By convention, the first version number of program PROG is PROGVERS_ORIG
and the most recent version is PROGVERS.

Suppose there is a new version of the ruser program that returns an
unsigned short rather than a long. If we name this version
RUSERSVERS_SHORT, then a server that wants to support both versions would
do a double register. The same server handle would be used for both of these
registrations.

Both versions can be handled by the same C procedure:

Remote Procedure Call Programming Guide 7-59

Advanced Examples

7-60 Programmer’s Guide: Networking Interfaces

Advanced Examples

Connection-Oriented Transports

Here is an example that copies a file from one system to another. The initiator
of the RPC send call takes its standard input and sends it to the server
receive, which prints it on standard output. This also illustrates an XDR pro-
cedure that behaves differently on serialization than on deserialization.

Remote Procedure Call Programming Guide 7-61

Advanced Examples

Note that in the following two screens, the serializing and deserializing is done
only by xdr_bytes () .

(continued on next page)

7-62 Programmer’s Guide: Networking Interfaces

Advanced Examples

(continued on next page)

Remote Procedure Call Programming Guide 7-63

Advanced Examples

Note that on the server side no explicit action was taken after receiving the
arguments. This is because xdr_rcp () did all the necessary dirty work
automatically.

Callback Procedures

Occasionally, it is useful to have a server become a client, and make an RPC call
back to the client process. An example is remote debugging, where the client is
a window system program, and the server is a debugger running on the remote
machine. Most of the time, the user clicks a mouse button at the debugging
window, which converts this to a debugger command, and then makes an RPC
call to the server (where the debugger is actually running), telling it to execute
that command. However, when the debugger hits a breakpoint, the roles are
reversed, and the debugger wants to make an rpc call to the window program,
so that it can inform the user that a breakpoint has been reached.

To do an RPC callback, a program number is needed to make the RPC call.
Because this will be a dynamically generated program number, it should be in
the transient range, 0x40000000 - OxSfffffff. In the following example,
the routine gettransient () returns a valid program number in the transient
range, and registers it with rpcbind. The call to rpcb_set () is a test and set
operation, in that it indivisibly tests whether a program number has already
been registered, and if it has not, then reserves it.

7-64 Programmer’s Guide: Networking Interfaces

Advanced Examples

The following program illustrates how to use the gettransient() routine.
The client makes an RPC call to the server, passing it a transient program
number. Then the client waits around to receive a callback from the server at
that program number. The server registers the program EXAMPLEPROG, so that
it can receive the RPC call informing it of the callback program number. Then
at some random time (on receiving an ALRM signal in this example), it sends a
callback RPC call, using the program number it received earlier.

Remote Procedure Call Programming Guide 7-65

Advanced Examples

' ‘z(oontmued on next b'age)

7-66 Programmer’s Guide: Networking Interfaces

Advanced Examples

This example shows how svc_t1i_create () can be used when it is necessary
to explicitly chose the program number by callmg rpcb_set () until it
succeeds. (Here it was not required that a service be registered on a given tran-
sport, and the example could simply have used a "generic" network type.)

After creating the handle, sve_reg() is called (with the last parameter given as
NULL) to register the dispatch function with the dispatcher. Once the server
side is ready, it then notifies the actual server of its dynamic program number
with rpc_call(). On success it then waits for requests from the remote
server.

In the following example, the server makes an RPC call to the client on an
ALARM Signal, but only if the client has passed the program number to the
server. This server example illustrates the simplicity of the code when one is
using rpc_reg() .

Remote Procedure Call Programming Guide 7-67

Advanced Examples

(continued on next page)

7-68 Programmer’s Guide: Networking Interfaces

Advanced Examples

Memory Allocation with XDR

XDR routines not only do input and output, they also do memory allocation.

The second parameter of xdr_array () is a pointer to an array, rather than the
array itself.

This is true for most XDR routines. The indirection is necessary because
these routines often allocate memory.

l

If it is NULL, then xdr_array () allocates space for the array and returns a
pointer to it, putting the size of the array in the third argument. As an exam-
ple, consider the following XDR routine xdr_chararrl (), which deals with a
fixed array of bytes with length SIZE:

Remote Procedure Call Programming Guide 7-69

Advanced Examples

If space has already been allocated in chararr, it can be called from a server
like this:

To have XDR to do the allocation, this routine must be rewritten in the follow-
ing way:

Then the RPC call might look like this:

Note that, after being used, the character array should normally be freed with
svc_freeargs (). svc_freeargs () will not attempt to free any memory if
the variable indicating it is NULL. For example, in the routine
xdr_finalexample (), given earlier, if finalp->string were NULL, then it
would not be freed. The same is true for finalp->simplep.

7-70 Programmer’s Guide: Networking Interfaces

Advanced Examples

To summarize:

m Each XDR routine is responsible for serializing, deserializing, and freeing
memory.

® When an XDR routine is called from rpc_call (), the serializing part is
used.

m When called from svc_getargs (), the deserializer is used.
® When called from svc_freeargs (), the memory deallocator is used.

When building simple programs like those given as examples in this section, a
programmer does not have to worry about the three modes.

Remote Procedure Call Programming Guide 7-71

8. mx._.mmz>_.. DATA REPRESENTATION STANDARD: PROTOCOL SPECIFICATION

ZO..EOEGN&W 1020.10Hd “Qm<.QZ<.,_.m ZO_._.E.mew,mmmm,ﬂ.&Q TVYNH31X3 '8

8 External Data Representation
Standard: Protocol Specification

Introduction to XDR 8-1
Basic Block Size 8-1
Organization of Technical Information 8-2
XDR Data Type Declarations 8-3
Integer 8-3
m Description 8-3
m Declaration 8-3
m Encoding 8-4
Unsigned Integer 8-4
m Description 8-4
m Declaration 8-4
m Encoding 8-4
Enumeration 85
m Description 8-5
m Declaration 8-5
= Encoding 8-5
Boolean 85
s Description 8-5
= Declaration 8-5
® Encoding 8-6
Hyper Integer and Unsigned Hyper Integer 8-6
= Description 8-6
® Declaration 8-6
m Encoding 8-6
Floating-point ‘ 8-7
m Description 8-7
m Declaration 8-7
m Encoding 8-7
Double-Precision Floating-point 8-8
m Description 8-8
m Declaration 8-9

Table of Contents

Table of Contents

m Encoding 8-9
Fixed-length Opaque Data 89
m Description 8-9
m Declaration 8-10
m Encoding 8-10
Variable-length Opaque Data 8-10
m Description 8-10
m Declaration 8-11
m Encoding 8-11
String 8-11
m Description 8-11
m Declaration 8-12
m Encoding 8-12
Fixed-length Array 8-12
m Description 8-12
m Declaration 8-13
Variable-length Array 8-13
m Description 8-13
m Declaration 8-13
m Encoding 8-14
Structure 8-14
a Description 8-14
m Declaration 8-14
= Encoding 8-14
Discriminated Union 8-15
m Description 8-15
a Declaration 8-15
= Encoding 8-15
Void : 8-16
m Description 8-16
m Declaration : 8-16
= Encoding 8-16
Other XDR Declarations 8-17
Constant . ‘ 8-17
typedef 8-17
Optional-data 8-18

i Programmer’s Guide: Networking Interfaces

Table of Contents

The XDR Language Specification 8-20
Notational Conventions 8-20
Lexical Notes 8-20
Syntax Information 8-21

m Syntax Notes 8-23

An Example of an XDR Data Description 8-24

References 8-26

Table of Contents iii

Introduction to XDR

XDR is a standard for the description and encoding of data. The XDR protocol
is useful for transferring data between different computer architectures and has
been used to communicate data between such diverse machines as the 3B2, Sun
Workstation, VAX, IBM-PC, and Cray. XDR fits into the ISO presentation layer
and is roughly analogous in purpose to X.409, ISO Abstract Syntax Notation.
The major difference between the two is that XDR uses implicit typing, while
X409 uses explicit typing.

XDR uses a language to describe data formats and can only be used to describe
data; it is not a programming language. This language makes it possible to
describe intricate data formats in a concise manner. The XDR language is simi-
lar to the C language. Protocols such as RPC (Remote Procedure Call) and the
NFS (Network File System) use XDR to describe the format of their data.

The XDR standard makes the following assumption: that bytes (or octets) are
portable, where a byte is defined to be 8 bits of data.

Basic Block Size

The representation of all items requires a multiple of four bytes (or 32 bits) of
data. The bytes are numbered 0 through n-1. The bytes are read or written to
some byte stream such that byte m always precedes byte m+1. The n bytes are
followed by enough (0 to 3) residual zero bytes, r, to make the total byte count
a multiple of four.

Choosing the XDR block size requires a tradeoff. Choosing a small size such as
two makes the encoded data small, but causes alignment problems for machines
that are not aligned on these boundaries. A large size such as eight means the
data will be aligned on virtually every machine, but causes the encoded data to
grow too large. Four was chosen as a compromise. Four is big enough to sup-
port most architectures efficiently, except for rare machines such as the eight-
byte aligned Cray. Four is also small enough to keep the encoded data res-
tricted to a reasonable size.

The same data should encode into the same thing on all machines, so that
encoded data can be significantly compared or checksummed. Forcing the pad-
ded bytes to be zero ensures this.

External Data Representation Standard: Protocol Specification 8-1

Introduction to XDR

This chapter uses graphic box notation for illustration and comparison. In most
illustrations, each box (delimited by a plus sign at the 4 corners and vertical
bars and dashes) depicts a byte. Ellipses (...) between boxes show zero or
more additional bytes where required:

A Block

| byte 0 | byte 1 |...|byte n-1| 0 l...1 o |
| <= n byteg—————————- >|< r bytes >|
[K==mmmmm n+r (where (n+r) mod 4 = 0)>——————————- >

Organization of Technical Information

The “XDR Data Type Declarations’” section describes each atomic data type that
can be represented using XDR.

“Other XDR Declarations” describe constants, type definitions, and optional
data (an alternate way to express certain kinds of unions).

“The XDR Language Specification” section provides a formal definition of the
XDR language.

“An Example of an XDR Data Description” shows how XDR might be used to
describe a file.

8-2 Programmer’s Guide: Networking Interfaces

XDR Data Type Declarations

Each of the sections that follow:

m describe a data type defined in the XDR standard

m show how that data type is declared in the language

m include a graphic illustration of the encoding
For each data type in the language we show a general paradigm declaration.
Note that angle brackets (< and >) denote variable length sequences of data and
square brackets ([and]) denote fixed-length sequences of data. n, mand r
denote integers. For the full language specification and more formal definitions

of terms such as identifier and declaration, refer to ““The XDR Language
Specification”, below.

For some data types, more specific examples are included. A more extensive
example of a data description is in the section “An Example of XDR Data
Representation”.

Integer

Description

An XDR signed integer is a 32-bit datum that encodes an integer in the range [-
2147483648,2147483647]. The integer is represented in two’s complement nota-
tion; the most and least significant bytes are 0 and 3, respectively.

Declaration
Integers are declared as follows:
int identifier;

External Data Representation Standard: Protocol Specification 8-3

XDR Data Type Declarations

Encoding
Integer

(MSB) (LSB)
|byte O |byte 1 |byte 2 |byte 3 |

<————--——--32 bitg-——————>

+

Unsigned Integer

Description

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer
in the range [0,4294967295]. The integer is represented by an unsigned binary
number whose most and least significant bytes are 0 and 3, respectively.

Declaration
An unsigned integer is declared as follows:
unsigned int identifier;

Encoding
Unsigned Integer

(MSB) (LSB)

(byte 0 |byte 1 |byte 2 |byte 3 |

ha T T as -

< 32 bits———-—————>

8-4 Programmer’s Guide: Networking Interfaces

XDR Data Type Declarations

Enumeration

Description

Enumerations have the same representation as signed integers and are handy
for describing subsets of the integers.

Declaration
Enumerated data is declared as follows:
enum { name-identifier = constant, ... } identifier;

For example, an enumerated type could represent the three colors red, yellow,
and blue as follows:

enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

It is an error to assign to an enum an integer that has not been assigned in the
enum declaration.

Encoding
See “Integer,” above.

Boolean
Description
Booleans are important enough and occur frequently enough to warrant their

own explicit type in the standard. Booleans are integers of value 0 or 1.

Declaration
Booleans are declared as follows:
bool identifier;
This is equivalent to:
enum { FALSE = 0, TRUE = 1 } identifier;

External Data Representation Standard: Protocol Specification 8-5

XDR Data Type Declarations

Encoding
See “Integer,” above.

Hyper Integer and Unsigned Hyper Integer

Description

The standard also defines 64-bit (8-byte) numbers called hyper int and
unsigned hyper int whose representations are the obvious extensions of
integer and unsigned integer, defined above. They are represented in two’s
complement notation; the most and least significant bytes are 0 and 7, respec-
tively.

Declaration

Hyper integers are declared as follows:

hyper int identifier;

unsigned hyper int identifier;

Encoding
Hyper Integer

(MSB) (LSB)

+ 4 n + 4 4 4 + 4
T T -+ T T T

Ibyte O |byte 1 |byte 2 |byte 3 |byte 4 |byte 5 |byte 6 |byte 7 |

< 64 bits >

8-6 Programmer’s Guide: Networking Interfaces

XDR Data Type Declarations

Floating-point

Description

The standard defines the floating-point data type float (32 bits or 4 bytes).
The encoding used is the IEEE standard for normalized single-precision
floating-point numbers [1]. The following three fields describe the single-
precision floating-point number:

4 The sign of the number. Values 0 and 1 represent positive and negative,
respectively. One bit.

E: The exponent of the number, base 2. Eight bits are devoted to this field.
The exponent is biased by 127.

F: The fractional part of the number’s mantissa, base 2. 23 bits are devoted
to this field.

Therefore, the floating-point number is described by:
(-1) **s * 2** (E-Bias) * 1.F

Declaration
Single-precision floating-point data is declared as follows:

float identifier;

Encoding
Single-Precision Floating Point

+ : : 3 n
T -+ T * A

|byte 0 |byte 1 |byte 2 |byte 3 |

siI E | F I
1i<- 8 =>|< 23 bits >\
< 32 bits >

Just as the most and least significant bytes of an integer are 0 and 3, the most
and least significant bits of a single-precision floating-point number are 0 and

External Data Representation Standard: Protocol Specification 8-7

XDR Data Type Declarations

31. The beginning bit (and most significant bit) offsets of S, E, and F are 0, 1,
and 9, respectively.

These offsets refer to the logical positions of the bits, not to their physical
locations (which vary from medium to medium).

The IEEE specifications should be consulted about the encoding for signed zero,
signed infinity (overflow), and denormalized numbers (underflow) [1]. Accord-
ing to IEEE specifications, the NaN (not a number) is system dependent and
should not be used externally.

Double-Precision Floating-point

Description

The standard defines the encoding for the double-precision floating-point data
type double (64 bits or 8 bytes). The encoding used is the IEEE standard for
normalized double-precision floating-point numbers [1]. The standard encodes
the following three fields, which describe the double-precision floating-point
number:

K The sign of the number. Values 0 and 1 represent posmve and negative,
respectively. One bit. '

E: The exponent of the number, base 2. 11 bits are devoted to this field.
The exponent is biased by 1023.

F: The fractional part of the number’s mantissa, base 2. 52 bits are devoted
to this field.

Therefore, the floating-point number is described by:
(1) **S * 2**(E-Bias) * 1.F

8-8 Programmer’s Guide: Networking Interfaces

XDR Data Type Declarations

Declaration
double identifier;

Encoding
Double-Precision Floating Point

n I : I 3 I + I
T T T T + T T -+

Ibyte Ol|byte 1|byte 2|byte 3|byte 4|byte 5|byte 6|byte 7|

S| E | F [
1|<—11-->|< 52 bits >|
< 64 bits >

Just as the most and least significant bytes of an integer are 0 and 3, the most
and least significant bits of a double-precision floating- point number are 0 and
63. The beginning bit (and most significant bit) offsets of S, E , and F are 0, 1,
and 12, respectively.

These offsets refer to the logical positions of the bits, not to their physical
locations (which vary from medium to medium).

The IEEE specifications should be consulted about the encoding for signed zero,
signed infinity (overflow), and denormalized numbers (underflow) [1]. Accord-
ing to IEEE specifications, the NaN (not a number) is system dependent and
should not be used externally.

Fixed-length Opaque Data

Description

At times, fixed-length uninterpreted data needs to be passed among machines.
This data is called opaque.

External Data Representation Standard: Protocol Specification 8-9

XDR Data Type Declarations

Declaration

Opaque data is declared as follows:

opaque identifier[n];

where the constant n is the (static) number of bytes necessary to contain the
opaque data.

Encoding

The n bytes are followed by enough (0 to 3) residual zero bytes, r, to make the
total byte count of the opaque object a multiple of four.

Fixed-Length Opaque

0 1

; byte 0 :byte 1 :Tbyte n-l? 0 II 0 ;
|<-mmrmmh Bytes——————->|<——-z bytes—-——>|
<= n+r (where (n+r) mod 4 = 0)———————-] >

Variable-length Opaque Data

Description

The standard also provides for variable-length (counted) opaque data, defined
as a sequence of n (numbered 0 through n-1) arbitrary bytes to be the number
n encoded as an unsigned integer (as described below), and followed by the n
bytes of the sequence.

Byte b of the sequence always precedes byte b+1 of the sequence, and byte 0 of
the sequence always follows the sequence’s length (count). The n bytes are fol-
lowed by enough (0 to 3) residual zero bytes, r, to make the total byte count a
multiple of four.

8-10

Programmer’s Guide: Networking Interfaces

XDR Data Type Declarations

Declaration

Variable-length opaque data is declared in the following way:
opaque identifier<m>;

or
opaque identifier<>;

The constant m denotes an upper bound of the number of bytes that the
sequence may contain. If m is not specified, as in the second declaration, it is
assumed to be (2**32) - 1, the maximum length. For example, a filing proto-
col may state that the maximum data transfer size is 8192 bytes, as follows:

opaque filedata<8192>;

Encoding
Variable-Length Opaque
0 1 2 3 4 S
| lengthn IbyceOlbytell...in-l | 0 (...l O |
;<-————:——4 b;tes——:-——->I<————:—n bytT:;;-.--T-—~——>I<———rTl'>;n.:;s—-—>I

|<==—-n+r (where (n+r) mod 4 = 0)———>|

It is an error to encode a length greater than the maximum described in the
specification.

String

Description

The standard defines a string of n (numbered 0 through n-1) ASCII bytes to be
the number n encoded as an unsigned integer (as described above), and fol-
lowed by the n bytes of the string. Byte b of the string always precedes byte
b+1 of the string, and byte 0 of the string always follows the string’s length.
The n bytes are followed by enough (0 to 3) residual zero bytes, r, to make the
total byte count a multiple of four.

External Data Representation Standard: Protocol Specification 8-11

XDR Data Type Declarations

Declaration

Counted byte strings are declared as follows:
string object<m>;

or
string object<>;

The constant m denotes an upper bound of the number of bytes that a string
may contain. If m is not specified, as in the second declaration, it is assumed to
be (2%*32) - 1, the maximum length. The constant m would normally be
found in a protocol specification. For example, a filing protocol may state that a
file name can be no longer than 255 bytes, as follows:

string filename<255>;

Encoding
String

0 1 2 3 4 5

+ + + + + + +...4 + +. . t———+

| length n |byteO|bytel|...| n-1 | 0 |[...] O |

| K= 4 bytes——————>|<————— n bytes—————- >|<---r bytes———>|
|<=——-n+r (where (n+r) mod 4 = 0)——->|

It is an error to encode a length greater than the maximum described in the

specification.

Fixed-length Array

Description

Fixed-length arrays of elements numbered 0 through n-1 are encoded by indivi-
dually encoding the elements of the array in their natural order, 0 through n-1.
Each element’s size is a multiple of four bytes. Though all elements are of the
same type, the elements may have different sizes. For example, in a fixed-
length array of strings, all elements are of type string, yet each element will
vary in its length.

8-12 Programmer’s Guide: Networking interfaces

XDR Data Type Declarations

Declaration

Declarations for fixed-length arrays of homogeneous elements are in the follow-
ing form:

type-name identifier [n) ;

Fixed-Length Array

I n
T -+

| element 0

+ 4 4
™ T T+

element n-1

+ — +
+ — +

+ - +
o
g
]
o
-+
+ — +

+ : I
T ng

4
T T T

+

1< n elements >|

Variable-length Array

Description

Counted arrays provide the ability to encode variable-length arrays of homo-
geneous elements. The array is encoded as the element count n (an unsigned
integer) followed by the encoding of each of the array’s elements, starting with
element 0 and progressing through element n-1.

Declaration

The declaration for variable-length arrays follows this form:
type-name identifier<m>;

or
type-name identifier<>;

The constant m specifies the maximum acceptable element count of an array.
Note that if m is not specified, as is the case in the second declaration format
above, it is assumed to be (2**32) - 1.

External Data Representation Standard: Protocol Specification 8-13

XDR Data Type Declarations

Encoding
Counted Array
01 2 3
N S e e i a2
| n | element O | element 1 |...|element n-1|
bttt At ——+
|<-4 bytes—>|< n elementg———————————- >|
It is an error to encode a value of n that is greater than the maximum described
in the specification.
Structure
Description

The components of the structure are encoded in the order of their declaration in
the structure. Each component’s size is a multiple of four bytes, though the
components may be different sizes.

Declaration

Structures are declared as follows:

struct {
component-declaration-A;
component-declaration-B;

} identiﬁ.e.r:-

Encoding

8-14

Structure

component A | component B

*- — -{-
+ — +
+ — +

Programmer’s Guide: Networking Interfaces

XDR Data Type Declarations

Discriminated Union

Description

A discriminated union is a type composed of a discriminant followed by a type
selected from a set of prearranged types according to the value of the discrim-
inant. The type of discriminant is either int, unsigned int, or an enumerated
type, such as bool. The component types are called arms of the union, and are
preceded by the value of the discriminant which implies their encoding.

Declaration
Discriminated unions are declared as follows:

union switch (discriminant-declaration) {
case discriminant-value-A:
arm-declaration-A;
case discriminant-value-B:
arm-declaration-B;
default:
default-declaration;
} identifier;

Each case keyword is followed by a legal value of the discriminant. The
default arm is optional. If it is not specified, then a valid encoding of the union
cannot take on unspecified discriminant values. The size of the implied arm is
always a multiple of four bytes.

Encoding

The discriminated union is encoded as its discriminant followed by the encoding
of the implied arm. :

Discriminated Union
1 2 3

I n + + $ 4 4 I
v v T T T T T T +
4
+

discriminant | implied arm |

4 4 + + + +
+ + -+ T T T

|<——4 bytes——>|

External Data Representation Standard: Protocol Specification 8-15

XDR Data Type Declarations

Void
Description

An XDR void is a 0-byte quantity. Voids are useful for describing operations
that take no data as input or no data as output. They are also useful in unions,
where some arms may contain data and others do not.

Declaration

The declaration is simply as follows:

void;

Encoding
Voids are illustrated as follows:

++

++
—><~ 0 bytes

8-16 Programmer’s Guide: Networking Interfaces

Other XDR Declarations

Constant

The declaration for a constant follows this form:
const name-identifier = n;

const is used to define a symbolic name for a constant; it does not declare any
data. The symbolic constant may be used anywhere a regular constant may be
used.

The following example defines a symbolic constant DOZEN, equal to 12.
const DOZEN = 12;

typedef
typedef does not declare any data either, but serves to define new identifiers
for declaring data. The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration part of the
typedef.

The following example defines a new type called eggbox using an existing type
called egg and the symbolic constant DOZEN:
typedef egg eggbox [DOZEN];

Variables declared using the new type name have the same type as the new
type name would have in the typedef, if it was considered a variable. For
example, the following two declarations are equivalent in declaring the variable
fresheggs:

eggbox fresheggs:
egg fresheggs [DOZEN] ;

When a typedef involves a struct, enum, or union definition, there is another
(preferred) syntax that may be used to define the same type. In general, a
typedef of the following form:

typedef <<struct, union, or enum definition>> identifier;

External Data Representation Standard: Protocol Specification 8-17

Other XDR Declarations

may be converted to the alternative form by removing the typedef part and
placing the identifier after the struct, enum, or union keyword, instead of at
the end. For example, here are the two ways to define the type bool:

typedef enum { /* using typedef */
FALSE = 0O,
TRUE = 1

} bool;

enum bool { /* preferred alternative */
FALSE = O,
TRUE = 1

}:

This syntax is preferred because one does not have to go to the end of a declara-
tion to learn the name of the new type.

Optional-data

Optional-data is a form of union. Because it occurs frequently, it has been
given its own declaration syntax. It is declared as follows:
type-name *identifier;
This is equivalent to the following union:
union switch (bool opted) {
case TRUE:
type-name element;
case FALSE:
: void;
} identifier;
It is also equivalent to the following variable-length array declaration, because
the boolean opted can be interpreted as the length of the array:

type-name identifier<1>;

8-18 Programmer’s Guide: Networking Interfaces

Other XDR Declarations

Optional-data is useful for describing recursive data-structures such as linked-
lists and trees. For example, the following defines a type stringlist that
encodes lists of arbitrary length strings:

struct *stringlist {
string item<>;
stringlist next;
}:

It could have been equivalently declared as the following union:

union stringlist switch (bool opted) {
case TRUE:
struct {
string item<>;
stringlist next;
} element;
case FALSE:
void;
}i
or as a variable-length array:

struct stringlist<1> {
string item<>;
stringlist next;
}:

Both of these declarations obscure the intention of the stringlist type, so the
optional-data declaration is preferred over both of them. The optional-data type
also has a close correlation to how recursive data structures are represented in
high-level languages such as Pascal or C by use of pointers. The syntax is the
same as that of the C language for pointers.

External Data Representation Standard: Protocol Specification 8-19

The XDR Language Specification

Notational Conventions

This specification uses a modified Backus-Naur Form notation for describing the
XDR language. Here is a brief description of the notation:

1.

N oo s wN

The characters |, (,), [,], and * are special.

Terminal symbols are strings of any characters in a font.
Non-terminal symbols are strings of non-special italic characters.
Alternative items are separated by a vertical bar (|).

Optional items are enclosed in brackets.

Items are grouped together by enclosing them in parentheses.

A * following an item means 0 or more occurrences of the item.

For example, consider the following pattern:

a very (, very)* [cold and] rainy (day | night)

An infinite number of strings match this pattern. A few of them are:

a very rainy day

a very, very rainy day

a very cold and rainy day

a very, very, very cold and rainy night

Lexical Notes

1.

Comments begin with /* and end with */.

2. White space serves to separate items and is otherwise ignored.

8-20

- An identifier is a letter followed by an optional sequence of letters, digits

or underbars (_). The case of identifiers is not ignored.

A constant is a sequence of one or more decimal digits, optionally pre-
ceded by a minus-sign (-).

Programmer’s Guide: Networking Interfaces

The XDR Language Specification

Syntax Information

declaration:
type-specifier identifier
| type-specifier identifier [value]
| type-specifier identifier < [value] >
| opaque identifier [value]
| opaque identifier < [value | >
| string identifier <[value] >
| type-specifier * identifier

| void

value:
constant
| identifier

type-specifier:
[unsigned] int
| [unsigned] hyper
| float
| double
| bool
| enum-type-spec
| struct-type-spec
| union-type-spec
| identifier

enum-type-spec:
enum enum-body

enum-body:
{
(identifier = value)
(, identifier = value)*
}

struct-type-spec:
struct struct-body

External Data Representation Standard: Protocol Specification 8-21

The XDR Language Specification

struct-body:
{
(declaration ;)
(declaration ;)*
}

union-type-spec:
union union-body

union-body:
switch (declaration) {
(case value : declaration ;)
(case value : declaration ;)*
[default : declaration ;]
}

constant-def:
const identifier = constant ;

type-def:
" typedef declaration ;
| enum identifier enum-body ;
| struct identifier struct-body ;
| union identifier union-body ;

definition:
type-def
| constant-def

specification:
definition *

8-22 Programmer’s Guide: Networking Interfaces

The XDR Language Specification

Syntax Notes
1. The following are keywords and cannot be used as identifiers:

bool const enum int struct union
case default float opaque switch unsigned
char double hyper string typedef void

2. Only unsigned constants may be used as size specifications for arrays. If
an identifier is used, it must have been declared previously as an
unsigned constant in a const definition.

3. Constant and type identifiers within the scope of a specification are in the
same name space and must be declared uniquely within this scope.

4. Similarly, variable names must be unique within the scope of struct and
union declarations. Nested struct and union declarations create new
scopes.

5. The discriminant of a union must be of a type that evaluates to an
integer. That is, int, unsigned int, bool, an enum type or any
typedefed type that evaluates to one of these. Also, the case values must
be legal discriminant values. Finally, a case value may not be specified
more than once within the scope of a union declaration.

External Data Representation Standard: Protocol Specification 8-23

An Example of an XDR Data Description

Here is a short XDR data description of a thing called a file, which might be
used to transfer files from one machine to another:

Suppose now that there is a user named john who wants to store his lisp pro-
gram sillyprog that contains just the data (quit). His file would be
encoded as follows:

8-24 Programmer’s Guide: Networking Interfaces

An Example of an XDR Data Description

Offset Hex Bytes ASCII Description

0 00000009 Lengthof filename =9
4 73 69 6¢c 6¢ sill Filename characters

8 79 70 72 6f ypro ... and more characters ...
12 67 00 00 00 g... ... and 3 zero-bytes of fill
16 00 00 00 02 Filekind is EXEC =2

20 00 00 00 04 Length of interpretor = 4
24 6c 69 73 70 1lisp Interpretor characters

28 00 00 00 04 Lengthof owner=4

32 6a 6f 68 6e john Owner characters

36 00 00 00 06 Lengthof file data =6
40 28 71 75 69 (qui File data bytes ...

44 74 29 00 00 t).. ..and 2 zero-bytes of fill

External Data Representation Standard: Protocol Specification 8-25

References

[1] "IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Stan-
dard 754-1985, Institute of Electrical and Electronics Engineers, August
1985.

8-26 Programmer’s Guide: Networking Interfaces

9 Remote Procedure Calls:
Protocol Specification

Introduction 9-1
Terminology 9-1
General Attributes of the Protocol 9-1
= The RPC Model 9-1
m Transports and Semantics 9-2
m Binding and Rendezvous Independence 9-3
m Authentication 9-3
Organization of Technical Information 9-4
RPC Protocol Requirements 9-5
Programs and Procedures 9-5
Authentication 9-6
Program Number Assignment 9-7
Other Uses of the RPC Protocol 9-9
m Batching 9-9
m Broadcast RPC 9-9
The RPC Message Protocol 9-10
Authentication Protocols 9-14
AUTH_NONE Authentication 9-14
AUTH_SYS Authentication 9-14
s The AUTH_SHORT Verifier 9-15
AUTH_DES Authentication 9-15
m Naming 9-16
® AUTH_DES Authentication Verifiers 9-16
m Nicknames and Clock Synchronization 9-17
m DES Authentication Protocol (in XDR language) 9-18

Table of Contents i

Table of Contents

m Diffie-Hellman Encryption 9-20
Record Marking Standard 9-22
The RPC Language 9-23
An Example Service Described in the RPC Language 9-23
The RPC Language Specification 9-24
Syntax Notes 9-25
rpcbind Protocol 9-26
rpcbind Protocol Specification (in RPC Language) 9-26
rpcbind Operation 9-28

m The RPCBPROC_NULL Procedure 9-28

m The RPCBPROGC_SET Procedure 9-28

m The RPCBPROC_UNSET Procedure 9-29

m The RPCBPROC_GETADDR Procedure 9-29

m The RPCBPROC_DUMP Procedure 9-29

m The RPCBPROC_CALLIT Procedure 9-29

m The RPCBPROC_GETTIME Procedure 9-30

s The RPCBPROC_UADDR2TADDR Procedure 9-30

= The RPCBPROC_TADDR2UADDR Procedure 9-30
References 9-31

Programmer’s Guide: Networking Interfaces

Introduction

This chapter specifies a message protocol used in implementing the Remote Pro-
cedure Call (RPC) package. (The message protocol is specified with the External
Data Representation (XDR) language. This chapter assumes the reader is fami-
liar with XDR. See the “‘External Data Representation Standard: Protocol
Specification” chapter for details.)

Terminology

This chapter discusses servers, services, programs, procedures, clients, and ver-
sions.

A server is a process that provides remote services to clients.
A network service is a collection of one or more remote programs.

A remote program implements one or more remote procedures; the procedures,
their parameters, and results are documented in the specific program’s protocol
specification (see the ““rpcbind Protocol” below, for an example).

Network clients are processes that make remote procedure calls to servers. A
server may support more than one version of a remote program to be forward
compatible with changing protocols.

As an example of how these terms are used, consider a network file service
composed of two programs. One program may deal with high-level applica-
tions such as file system access control and locking. The other may deal with
low-level file IO and have procedures like "read" and "write." A client machine
of the network file service would call the procedures associated with the two
programs of the service on behalf of some user on the client machine.

General Attributes of the Protocol
The RPC Model

The remote procedure call model is similar to the local procedure call model. In
the local case, the caller places arguments to a procedure in some well-specified
location. It then transfers control to the procedure, and eventually gains back
control. At that point, the results of the procedure are extracted from a well-
specified location, and the caller continues execution.

Remote Procedure Calls: Protocol Specification 9-1

Introduction

The remote procedure call is similar, in that one thread of control logically
winds through two processes. One is the caller’s process, the other is a server’s
process. Conceptually, the caller process sends a call message to the server pro-
cess and waits (blocks) for a reply message. The call message contains the
procedure’s parameters, among other things. The reply message contains the
procedure’s results, among other things. Once the reply message is received,
the results of the procedure are extracted, and the caller’s execution is resumed.

On the server side, a process is dormant awaiting the arrival of a call message.
When one arrives, the server process extracts the procedure’s parameters, com-
putes the results, sends a reply message, and then awaits the next call message.

Note that in this description, only one of the two processes is active at any
given time. However, this need not be the case. The RPC protocol makes no
restrictions on the concurrency model implemented. For example, an imple-
mentation may choose to have RPC calls be asynchronous, so that the client
may do useful work while waiting for the reply from the server. Another possi-
bility is to have the server create a task to process an incoming request, so that
the server can be free to receive other requests.

Transports and Semantics

The RPC protocol is independent of transport protocols. That is, RPC does not
care how a message is passed from one process to another. The protocol deals
only with specification and interpretation of messages.

It is important to point out that RPC does not attempt to ensure transport relia-
bility. In this regard, the application must be aware of the type of transport
protocol underneath RPC. If the RPC service knows it is running on top of a
reliable transport such as TCP/IP, then most of the work is already done for it.
On the other hand, if RPC is running on top of an unreliable transport such as
UDP/IP, the service must devise its own retransmission and time-out policy.
RPC does not provide this service.

Because of transport independence, the RPC protocol does not attach specific
semantics to the remote procedures or their execution. Semantics can be
inferred from (but should be explicitly specified by) the underlying transport
protocol. For example, consider RPC running on top of an unreliable transport
such as UDP/IP. If an application retransmits RPC messages after short time-
outs, the only thing it can infer if it receives no reply is that the procedure was
executed zero or more times. If it does receive a reply, then it can infer that the
procedure was executed at least once.

9-2 Programmer’s Guide: Networking Interfaces

Introduction

A server may wish to remember previously granted requests from a client and
not regrant them to insure some degree of execute-at-most-once semantics. A
server can do this by taking advantage of the transaction ID that is packaged
with every RPC request. The main use of this transaction ID is by the RPC
client for matching replies to requests. However, a client application may
choose to reuse its previous transaction ID when retransmitting a request. The
server application, knowing this fact, may choose to remember this ID after
granting a request and not regrant requests with the same ID. The server is not
allowed to examine this ID in any other way except as a test for equality.

On the other hand, if using a reliable transport such as TCP/IP, the application
can infer from a reply message that the procedure was executed exactly once,
but if it receives no reply message, it cannot assume the remote procedure was
not executed. Note that even if a connection-oriented protocol like TCP is used,
an application still needs time-outs and reconnection to handle server crashes.

Binding and Rendezvous Independence

The act of binding a client to a service is not part of the remote procedure call
specification. This important and necessary function is left up to some higher-
level software. (The software may use RPC itself; see the ““rpcbind Protocol”
section, below.)

Implementors should think of the RPC protocol as the jump-subroutine instruc-
tion ("JSR") of a network; the loader (binder) makes JSR useful, and the loader
itself uses JSR to accomplish its task. Likewise, the network makes RPC useful,
using RPC to accomplish this task.

Authentication

The RPC protocol provides the fields necessary for a client to identify itself to a
service and vice-versa. Security and access control mechanisms can be built on
top of the message authentication. Several different authentication protocols can
be supported. A field in the RPC header specifies the protocol being used.
More information on authentication protocols can be found in the ““Authentica-
tion Protocols” section, below.

Remote Procedure Calls: Protocol Specification 9-3

Introduction

Organization of Technical Information
The “RPC Protocol Requirements”” section outlines the inherent features of the
RPC protocol and additional features provided by the RPC package.

The “RPC Message Protocol” section defines the RPC message protocol in terms
of the XDR language.

The ““Authentication Protocols” section describes authentication features sup-
ported by the RPC package.

The “Record Marking Standard” section describes how RPC messages are
delimited from each other when operating over a byte stream protocol transport
like TPC/1P.

“The RPC Language” section provides an example of an RPC service followed
by a formal definition of the RPC language.

The “rpcbind Protocol” section describes the interface to the rpcbind service.

9-4 Programmer’s Guide: Networking Interfaces

RPC Protocol Requirements

The RPC protocol provides for the following:
m Unique specification of a procedure to be called.
m Provisions for matching response messages to request messages.
m Provisions for authenticating the caller to service and vice-versa.
In addition, the RPC package provides features that detect the following:
m RPC protocol mismatches.
® Remote program protocol version mismatches.
m Protocol errors (such as misspecification of a procedure’s parameters).

m Reasons why remote authentication failed.

Programs and Procedures

The RPC call message has three unsigned fields:
B remote program number
B remote program version number
® remote procedure number
The three fields uniquely identify the procedure to be called.
Program numbers are administered by a central authority (see below).

The first implementation of a program will most likely have version number 1.
Because most new protocols evolve into better, stable, and mature protocols, a
version field of the call message identifies the version of the protocol the caller
is using. Version numbers make speaking old and new protocols through the

same server process possible.

The procedure number identifies the procedure to be called. These numbers are
documented in the specific program’s protocol specification. For example, a file
service’s protocol specification may state that its procedure number 5 is "read”
and procedure number 12 is "write."

Remote Procedure Calls: Protocol Specification 9-5

RPC Protocol Requirements

Just as remote program protocols may change over several versions, the RPC
message protocol itself may change. Therefore, the call message also has in it
the RPC version number, which is always equal to 2 for the version of RPC
described here.

The reply message to a request message has enough information to distinguish
the following error conditions:

m The remote implementation of RPC does not speak protocol version 2.
The lowest and highest supported RPC version numbers are returned.

® The remote program is not available on the remote system.

m The remote program does not support the requested version number. The
lowest and highest supported remote program version numbers are
returned.

m The requested procedure number does not exist. (This is usually a caller
side protocol or programming error.)

m The parameters to the remote procedure appear to be garbage from the
server’s point of view. (Again, this is usually caused by a disagreement
about the protocol between client and service.)

Authentication

Provisions for authentication of caller to service and vice-versa are provided as a
part of the RPC protocol. The call message has two authentication fields, the
credentials and verifier. The reply message has one authentication field, the
response verifier. The RPC protocol specification defines all three fields to be
the following opaque type:

9-6 Programmer’s Guide: Networking Interfaces

RPC Protocol Requirements

In simple English, any opaque_auth structure is an auth_flavor enumera-
tion followed by bytes that are opaque to the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication
fields is specified by individual, independent authentication protocol
specifications. (See “Authentication Protocols,” below, for definitions of the
various authentication protocols.)

If authentication parameters are rejected, the response message contains infor-
mation stating why they are rejected.

Program Number Assignment

Program numbers are given out in groups of 0x20000000 according to the fol-
lowing chart:

Remote Procedure Calls: Protocol Specification 9-7

RPC Protocol Requirements

Program Numbers Description

0 - LEEEEEEE Defined by Sun
20000000 - 3££E£EEEE Defined by user

40000000 - SEffffff Transient
60000000 - 7fffffff Reserved
80000000 — Offfffff Reserved
a0000000 — bfffffff Reserved
c0000000 ~ Jdfffffff Reserved
e0000000 - ffffffff Reserved

Sun Microsystems administers the first group of numbers, which should be
identical for all UNIX® System V customers. If a customer develops an applica-
tion that might be of general interest, that application should be given an
assigned number in the first range.

The second group of numbers is reserved for specific customer applications.
This range is intended primarily for debugging new programs.

The third group is reserved for applications that generate program numbers
dynamically.

The final groups are reserved for future use, and should not be used.

To register a protocol specification, send a request by email to rpc@sun. com,
or write to:

RPC Administrator

Sun Microsystems

2550 Garcia Ave.
Mountain View, CA 94043

Please include a compilable rpcgen . x file describing your protocol. You will
be given a unique program number in return.

The RPC program numbers and protocol specifications of standard RPC services
can be found in the include files in /usr/include/rpcsve. These services,
however, constitute only a small subset of those that have been registered.

9-8 Programmer’s Guide: Networking Interfaces

RPC Protocol Requirements

Other Uses of the RPC Protocol

The intended use of this protocol is for calling remote procedures. That is, each
call message is matched with a response message. However, the protocol itself
is a message-passing protocol with which other (non-RPC) protocols can be
implemented. Some of the non-RPC protocols supported by the RPC package
are:

Batching

Batching allows a client to send an arbitrarily large sequence of call messages to
a server; batching typically uses reliable byte stream protocols (like TCP/IP) for
its transport. In batching, the client never waits for a reply from the server, and
the server does not send replies to batch requests. A sequence of batch calls is
usually finished by a non-batch RPC call to flush the pipeline (with positive ack-
nowledgement).

Broadcast RPC

In broadcast RPC-based protocols, the client sends a broadcast packet to the net-
work and waits for numerous replies. Broadcast RPC uses unreliable, packet-
based protocols (like UDP/IP) as its transports. Servers that support broadcast
protocols only respond when the request is successfully processed, and are
silent in the face of errors. Broadcast RPC uses the rpcbind service to achieve
its semantics. See the “rpcbind Protocol” below, for more information.

Remote Procedure Calls: Protocol Specification 9-9

The RPC Message Protocol

This section defines the RPC message protocol in the XDR data description
language. The message is defined in a top-down style.

(contlh'uéd' on next Vpa'g"e)

9-10 Programmer’s Guide: Networking Interfaces

The RPC Message Protocol

(continued on next page)

Remote Procedure Calls: Protocol Specification 9-11

The RPC Message Protocol

(continued on next page)

9-12 Programmer’s Guide: Networking Interfaces

The RPC Message Protocol

Remote Procedure Calls: Protocol Specification 9-13

~ Authentication Protocols

As previously stated, authentication parameters are opaque, but open-ended to
the rest of the RPC protocol. This section defines some flavors of authentication
that have already been implemented. Other sites are free to invent new authen-
tication types, with the same rules of flavor number assignment as there is for
program number assignment.

AUTH_NONE Authentication

Calls are often made where the caller does not authenticate itself and the server
does not care who the caller is. In these cases, the flavor value (the "discrim-
inant" of the opaque_auth "union") of the RPC message’s credentials, verifier,
and response verifier is AUTH_NONE. The bytes of the body field in the
opaque_auth structure are undefined. It is recommended that the body
length be zero when AUTH_NONE authentication is used.

AUTH_SYS Authentication

The caller of a remote procedure may wish to identify itself using traditional
System V process permissions authentication. The flavor of the
opaque_auth of such an RPC call message is AUTH_SYS. The bytes of the
body encode the following structure:

stamp is an arbitrary ID that the caller machine may generate.

machinename is the name of the caller’'s machine (like "krypton").

9-14 Programmer’s Guide: Networking Interfaces

Authentication Protocols

uid is the caller’s effective user ID.

gid is the caller’s effective group ID.

gids is a counted array of groups in which the caller is a
member.

The flavor of the verifier accompanying the credentials should be
AUTH_NONE. (defined above).

The AUTH_SHORT Verifier

When usmg AUTH_SYS authentication, the flavor of the response verifier
received in the reply message from the server may be AUTH_NONE or
AUTH_SHORT.

If AUTH_SHORT, the bytes of the response verifier’s string encode a
short_hand_verf structure. This opaque structure may now be passed to the
server instead of the original AUTH_SYS credentials.

The server keeps a cache that maps shorthand opaque structures (passed back
by way of an AUTH_SHORT style response verifier) to the original credentials of
the caller. The caller can save network bandwidth and server cpu cycles by
using the new credentials.

The server may flush the shorthand opaque structure at any time. If this hap-
pens, the remote procedure call message will be rejected owing to an authentica-
tion error. The reason for the failure will be AUTH_REJECTEDCRED. At this
point, the caller may wish to try the original AUTH_SYS style of credentials.

AUTH_DES Authentication

AUTH_SYS authentication suffers from the following problems:

m Caller identification can not be guaranteed to be unique if machines with
differing operating systems are on the same network.

m There is no verifier, so credentials can easily be faked.

AUTH_DES authentication attempts to fix these two problems.

Remote Procedure Calls: Protocol Specification 9-15

Authentication Protocols

Naming

The first problem is handled by addressing the caller by a simple string of char-
acters instead of by an operating system specific integer. This string of charac-
ters is known as the netname or network name of the caller. The server should
not interpret the caller’s name in any way other than as the identify of the
caller. Thus, netnames should be unique for every caller in the naming domain.

It is up to each operating system’s implementation of AUTH_DES authentication
to generate netnames for its users that insure this uniqueness when they call
remote servers. Operating systems already know how to distinguish users local
to their systems. It is usually a simple matter to extend this mechanism to the
network. For example, a user with a user ID of 515 might be assigned the fol-
lowing netname: "UNIX.515@sun.com". This netname contains three items
that serve to insure it is unique. Going backwards, there is only one naming
domain called sun.com in the internet. Within this domain, there is only one
UNIX user with user ID 515. However, there may be another user on another
operating system, for example VMS, within the same naming domain that, by
coincidence, happens to have the same user ID. To insure that these two users
can be distinguished we add the operating system name. So one user is
"UNIX.515@sun.com" and the other is "VMS.515@sun.com".

The first field is actually a naming method rather than an operating system
name. It just happens that today there is almost a one-to-one correspon-
dence between naming methods and operating systems. If the world could
agree on a naming standard, the first field could be a name from that stan-
dard, instead of an operating system name.

AUTH_DES Authentication Verifiers

Unlike AUTH_SYS authentication, AUTH_DES authentication does have a verifier
so the server can validate the client’s credential (and vice-versa). The contents
of this verifier is primarily an encrypted timestamp. The server can decrypt this
timestamp, and if it is close to what the real time is, then the client must have
encrypted it correctly. The only way the client could encrypt it correctly is to
know the conversation key of the RPC session. If the client knows the conversa-
tion key, then it must be the real client.

The conversation key is a DES [5] key that the client generates and notifies the
server of in its first RPC call. The conversation key is encrypted using a public
key scheme in this first transaction. The particular public key scheme used in

9-16 Programmer’s Guide: Networking Interfaces

Authentication Protocols

AUTH_DES authentication is Diffie-Hellman [3] with 192-bit keys. The details of
this encryption method are described later.

The client and the server need the same notion of the current time for this to
work. If network time synchronization cannot be guaranteed, then client can
synchronize with the server before beginning the conversation, perhaps by con-
sulting the Internet Time Server [4].

A server can determine if a client timestamp is valid. For any transaction after
the first, the server checks for two things:

m the timestamp is greater than the one previously seen from the same
client

m the timestamp has not expired

A timestamp is expired if the server’s time is later than the sum of the client’s
timestamp plus what is known as the client’s window. The window is a number
the client passes (encrypted) to the server in its first transaction. The window
can be thought of as a lifetime for the credential.

For the first transaction, the server checks that the timestamp has not expired.
As an added check, the client sends an encrypted item in the first transaction
known as the window verifier which must be equal to the window minus 1, or
the server will reject the credential.

The client must check the verifier returned from the server to be sure it is legiti-
mate. The server sends back to the client the encrypted timestamp it received
from the client, minus one second. If the client gets anything other than this, it
will reject it.

Nicknames and Clock Synchronization

After the first transaction, the server’s AUTH_DES authentication subsystem
returns in its verifier to the client an integer nickname that the client may use in
its further transactions instead of passing its netname, encrypted DES key and
window every time. The nickname is most likely an index into a table on the
server that stores for each client its netname, decrypted DES key and window.

Though originally synchronized, client and server clocks can get out of sync. If
this happens, the client RPC subsystem most likely will get back
RPC_AUTHERROR at which point it should resynchronize.

Remote Procedure Calls: Protocol Specification 9-17

Authentication Protocols

A client may still get the RPC_AUTHERROR error even though it is synchronized
with the server. The reason is that the server’s nickname table is a limited size,
and it may flush entries whenever it wants. The client should resend its origi-
nal credential and the server will give it a new nickname. If a server crashes,
the entire nickname table may get flushed, and all clients will have to resend
their original credentials.

DES Authentication Protocol (in XDR language)

(continued on next pagverr)

9-18 Programmer’s Guide: Networking Interfaces

Authentication Protocols

Remote Procedure Calls: Protocol Specification 9-19

Authentication Protocols

Diffie-Hellman Encryption

In this scheme, there are two constants, PROOT and HEXMODULUS. The particu-
lar values chosen for these for the DES authentication protocol are:

The way this scheme works is best explained by an example. Suppose there are
two people "A" and "B" who want to send encrypted messages to each other.
So, A and B each generate a random secret key that they do not disclose to any-
one. Let these keys be represented as SK(A) and SK(B) . They also publish in
a public directory their public keys. These keys are computed as follows:

PK(A) = (PROOT ** SK(A)) mod HEXMODULUS
PK(B) = (PROOT ** SK(B)) mod HEXMODULUS

The ** notation is used here to represent exponentiation.

Now, both A and B can arrive at the common key between them, represented
here as CK (A, B) , without disclosing their secret keys.

A computes:
CK(A, B)

(PK(B) ** SK(A)) mod HEXMODULUS
while B computes:
CK(A, B) = (PK(A) ** SK(B)) mod HEXMODULUS
These two can be shown to be equivalent:
(PK(B) **SK(A)) mod HEXMODULUS = (PK(A)**SK(B)) mod HEXMODULUS

We drop the mod HEXMODULUS parts and assume modulo arithmetic to sim-
plify things:

PK(B) ** SK(A) = PK(A) ** SK(B)
Then, replace PK (B) by what B computed earlier and likewise for PK () .

9-20 Programmer’s Guide: Networking Interfaces

Authentication Protocols

((PROOT ** SK(B)) ** SK(A) = (PROOT ** SK(A)) ** SK(B)
which leads to:
PROOT ** (SK(A) * SK(B)) = PROOT ** (SK(A) * SK(B))

This common key CK (&, B) is not used to encrypt the timestamps used in the
protocol. It is used only to encrypt a conversation key that is then used to
encrypt the timestamps. The reason for doing this is to use the common key as
little as possible, for fear that it could be broken. Breaking the conversation key
is a far less serious offense, because conversations are comparatively short-lived.

The conversation key is encrypted using 56-bit DES keys, yet the common key is
192 bits. To reduce the number of bits, 56 bits are selected from the common
key as follows. The middle-most 8-bytes are selected from the common key,
and then parity is added to the lower order bit of each byte, producing a 56-bit
key with 8 bits of parity.

Remote Procedure Calls: Protocol Specification 9-21

Record Marking Standard

When RPC messages are passed on top of a byte stream protocol (like TCP/IP),
it is necessary, or at least desirable, to delimit one message from another to
detect and possibly recover from user protocol errors. This is called record
marking (RM). One RPC message fits into one RM record.

A record is composed of one or more record fragments. A record fragment is a
four-byte header followed by 0 to (2**31) - 1 bytes of fragment data. The
bytes encode an unsigned binary number; as with XDR integers, the byte order
is from highest to lowest.

The header encodes two values

m a boolean that specifies whether the fragment is the last fragment of the
record (bit value 1 implies the fragment is the last fragment)

m a 31-bit unsigned binary value that is the length in bytes of the fragment’s
data.

The boolean value is the highest-order bit of the header; the length is the 31
low-order bits.

This record specification is not in XDR standard form.

9-22 Programmer’s Guide: Networking Interfaces

The RPC Language

Just as there was a need to describe the XDR data-types in a formal language,
there is also need to describe the procedures that operate on these XDR data-
types in a formal language as well. We use the RPC Language for this purpose.
It is an extension to the XDR language. The following example is used to
describe the essence of the language.

An Example Service Described in the RPC Language

Here is an example of the specification of a simple ping program.

Remote Procedure Calls: Protocol Specification 9-23

The RPC Language

The first version described is PING_VERS_PINGBACK with two procedures,
PINGPROC_NULL and PINGPROC PINGBACK.

PINGPROC_NULL takes no arguments and returns no results, but it is useful for
such things as computing round-trip times from the client to the server and
back again. By convention, procedure 0 of any RPC protocol should have the
same semantics, and never require authentication.

The second procedure is used for the client to have the server do a reverse ping
operation back to the client, and it returns the amount of time (in microseconds)
that the operation used.

The next version, PING_VERS_ORIG, is the original version of the protocol and
it does not contain PINGPROC PINGBACK procedure. It is useful for compatibil-
ity with old client programs, and as this program matures it may be dropped
from the protocol entirely.

The RPC Language Specification

The RPC language is identical to the XDR language, except for the added
definitions described below.

9-24 Programmer’s Guide: Networking Interfaces

The RPC Language

program-definition:
program program-ident {
version-list
} = value

version-list:
version ;
version ; version-list
version:
version version-ident {
procedure-list
} = value

procedure-list:
procedure ;
procedure ; procedure-list

procedure:
type-ident procedure-ident (type-ident) = value

Syntax Notes

1. The following keywords are added and cannot be used as identifiers:

| program version l

2. A version name cannot occur more than once within the scope of a pro-
gram definition. Nor can a version number occur more than once within
the scope of a program definition.

3. A procedure name cannot occur more than once within the scope of a
version definition. Nor can a procedure number occur more than once
within the scope of version definition.

4. Program identifiers are in the same name space as constant and type
identifiers.

5. Only unsigned constants can be assigned to programs, versions and pro-
cedures.

Remote Procedure Calls: Protocol Specification 9-25

rpcbind Protocol

rpcbind maps RPC program and version numbers to universal addresses, thus
making dynamic binding of remote programs possible.

rpcbind is run at a well-known universal address, and other programs register
their dynamically allocated transport addresses with it. It then makes those
addresses publically available. Universal addresses are defined by the address-
ing authority of the given transport. They are string representations of the tran-
sport address. '

rpcbind also aids in broadcast RPC. There is no fixed relationship between
the addresses that a given RPC program will have on different machines, so
there is no way to broadcast directly to all these programs. rpcbind, however,
has a universal address. So, to broadcast to a given program, the client actually
sends its message to the rpcbind process on the machine it wishes to reach.
rpcbind picks up the broadcast and calls the local service specified by the
client. When rpcbind gets a reply from the local service, it passes it on to the
client.

rpcbind Protocol Specification (in RPC Language)

(continued on next pag'e')

9-26 Programmer’s Guide: Networking Interfaces

rpcbind Protocol

(continued on next pa“gbeb)

Remote Procedure Calls: Protocol Specification 9-27

rpcbind Protocol

rpcbind Operation

rpcbind is contacted by way of an assigned address specific to the transport
being used. For IP, for example, it is port number 111. Each transport has such
an assigned well known address. The following is a description of each of the
procedures supported by rpcbind.

The RPCBPROC_NULL Procedure

This procedure does no work. By convention, procedure zero of any protocol
takes no parameters and returns no results.

The RPCBPROC_SET Procedure

When a program first becomes available on a machine, it registers itself with the
rpcbind program running on the same machine. The program passes its pro-
gram number prog, version number vers, network identifier netid, and the
universal address uaddr on which it awaits service requests.

The procedure returns a boolean response whose value is TRUE if the procedure
successfully established the mapping and FALSE otherwise. The procedure
refuses to establish a mapping if one already exists for the tuple (prog, vers,
netid).

9-28 Programmer’s Guide: Networking Interfaces

rpcbind Protocol

Note that neither netid nor uaddr can be NULL, and that netid should be a valid
network identifier on the machine making the call.

The RPCBPROC UNSET Procedure

When a program becomes unavailable, it should unregister itself with the
rpcbind program on the same machine.

The parameters and results have meanings identical to those of RRCBPROC_SET.
The mapping of the (prog, vers, netid) tuple with uaddr is deleted.

If netid is NULL, all mappings specified by the tuple (prog, vers, *) and the
corresponding universal addresses are deleted.

The RPCBPROC GETADDR Procedure

Given a program number prog, version number vers, and network identifier
netid, this procedure returns the universal address on which the program is
awaiting call requests.

The netid field of the argument is ignored and the netid is inferred from the netid
of the transport on which the request came in.

The RPCBPROC_DUMP Procedure

This procedure lists all entries in rpcbind’s database.

The procedure takes no parameters and returns a list of program, version, netid,
and universal addresses.

The RPCBPROC_CALLIT Procedure

This procedure allows a caller to call another remote procedure on the same
machine without knowing the remote procedure’s universal address. It is
intended for supporting broadcasts to arbitrary remote programs via rpcbind’s
universal address.

The parameters prog, vers, proc, and the args_ptr are the program number, ver-
sion number, procedure number, and parameters of the remote procedure.

Remote Procedure Calls: Protocol Specification 9-29

rpcbind Protocol

This procedure only sends a response if the procedure was successfully
executed and is silent (no response) otherwise.

The procedure returns the remote program’s universal address, and the results
of the remote procedure.

The RPCBPROC GETTIME Procedure

This procedure returns the local time on its own machine.

The RPCBPROC_UADDR2TADDR Procedure

This procedure converts universal addresses to transport (netbuf) addresses.
RPCBPROC_UADDR2TADDR is equivalent to uaddr2taddr() [see netdir(3N)].

Only processes that can not link to the name-to-address library modules
should use RPCBPROC_UADDR2TADDR.

The RPCBPROC _TADDR2UADDR Procedure

This procedure converts transport (netbuf) addresses to universal addresses.
RPCBPROC_TADDR2UADDR is equivalent to taddr2uaddr() [see netdir(3N)].

Only processes that can not link to the name-to-address library modules
should use RPCBPROC_TADDR2UADDR.

9-30 Programmer’s Guide: Networking Interfaces

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Birrell, Andrew D. & Nelson, Bruce Jay; "Implementing Remote Pro-
cedure Calls," XEROX CSL-83-7, October 1983.

Cheriton, D.; "VMTP: Versatile Message Transaction Protocol," Prelim-
inary Version 0.3; Stanford University, January 1987.

Diffie & Hellman; "New Directions in Cryptography," IEEE Transactions
on Information Theory IT-22, November 1976.

Harrenstien, K.; "Time Server," RFC 738; Information Sciences Institute,
October 1977.

National Bureau of Standards; "Data Encryption Standard," Federal
Information Processing Standards Publication 46, January 1977.

Postel, J.; "Transmission Control Protocol - DARPA Internet Program
Protocol Specification,” RFC 793; Information Sciences Institute, Sep-
tember 1981.

Postel, J.; "User Datagram Protocol,” RFC 768; Information Sciences
Institute, August 1980.

Remote Procedure Calls: Protocol Specification 9-31

1 0 RPC Administration

Introduction to RPC Administration 10-1
RPC Administration Files 10-2
Name-to-Address Mapping 10-2
System RC File /etc/rc2.d/s75rpc 10-2
The /etc/publickey File 10-5
The /etc/master.d/kernel File 10-5
Secure RPC Overview 10-7
RPC Domains 10-8
Secure RPC Administration 10-9
Establishing Secure RPC Domains 10-9
Master /etc/publickey File 10-10
® Adding RPC Users with the newkey Command 10-11
Network Passwords and the chkey Command 10-12
Troubleshooting Note 10-13

Table of Contents i

Introduction to RPC Administration

RPC administration consists of configuring administration files that:
m Establish name-to-address mapping relationships
m Start server daemons at boot time
m Prompt users for a network password at login (secure RPC)

m Edit a master machine /etc/publickey file that determines who can
access secure RPC services (secure RPC)

Start ypdaemons

Servers are started at boot time by editable system RC scripts. The file
/etc/profile is edited to call keylogin to query for a network password at
login time.

YP is currently the recommended default mechanism for administering secure
RPC (see Chapter 11, “The YP Service”).

RPC Administration 10-1

RPC Administration Files

Name-to-Address Mapping

Name-to-address mapping must be in effect for RPC (secure or otherwise) to
work. Refer to the “Network Services” chapter of the System Administrator’s
Guide for name-to-address mapping administrative procedures.

System RC File /etc/rc2.d/s75rpc

RPC servers can be started at system boot time. When the system comes up in
init state 2, all of the scripts in /etc/rc2.d are executed. One of these scripts,
/etc/rc2.d/s75rpe, starts the RPC servers.

The system administrator can edit the script to start additional servers. For
reference, the default script, shipped with new systems, is shown here:

(continued on next page)

10-2 Programmer’s Guide: Networking Interfaces

RPC Administration Files

(continued on next page)

RPC Admlnlstratlon 10-3

RPC Administration Files

10-4 Programmer’s Guide: Networking Interfaces

RPC Administration Files

The server keyserv must also be running for secure RPC to work properly.
Administrators may wish to edit the RPC RC script to start keyserv at boot
time. If not, keyserv will have to be started manually or by other means.

The /etc/publickey File
Secure RPC information is kept in this file, which is controlled by a domain
master server. For each secure RPC user known to a master, this file contains:
m operating system name
m user ID
m RPC domain name
m public key
m secret key

The triple (operating system, user ID, domain) forms a unique key into this data-
base of public/secret key pairs that are required by the RPC built-in security
protocol.

The user ID field in /etc/publickey may also be a host name. This
allows more than one root user per domain.

r

The /etc/master.d/kernel File

All machines supporting secure RPC must have what is known as a secure RPC
domain name. By default, a machine’s secure RPC domain name is null and
(because it is null), secure RPC will not work on the machine.

A domain name can be set using the domainname(1M) command, but it will
not be remembered across reboots. For preservation of the name across reboots,
administrators need to edit their /etc/master.d/kernel file to set the
SRPC_DOMAIN tunable to their desired secure RPC domain name. For example,

RPC Administration 10-5

RPC Administration Files

to change a machine’s domain name from null to finance, the system adminis-
trator would find the line:

SRPC_DOMAIN=""
in /etc/master.d/kernel and change it to

SRPC_DOMAIN="finance"

10-6 Programmer’s Guide: Networking Interfaces

Secure RPC Overview

There is a security protocol, based on DES encryption, built into the RPC pack-
age. Remote programs that use secure RPC expect client users to have a
public/secret key entry in a shared master /etc/publickey file. Access to
secure RPC programs is controlled by the keyserv daemon which accesses the
/etc/publickey file when users invoke keylogin. One /etc/publickey
database exists for each secure RPC domain. In large domains (many
machines), multiple physical copies of the database may exist for performance
reasons. If multiple copies exist, updates will be made to the copy on the
domain’s master server, and copies of the master /etc/publickey will be
propagated to slave servers.

Secure RPC users must be given entries in this file on the master
/etc/publickey server machine by the system administrator before they can
use secure RPC programs (in that domain). These users must also be given
logins on the master server machine.

In addition, the administrator of every client machine should edit
/etc/profile to remove the comment character that has commented out the
keylogin command; in this way, keylogin will be invoked for each user at
login time. Thereafter secure RPC commands and programs can be used in the
same way ordinary commands and programs are used.

Every machine that allows use of secure RPC is a client machine, even if it
is also a master or slave server.

l

One of the secure RPC commands, chkey, allows users who are logged onto
only the master server machine to change their secure RPC passwords.

The .profile files of secure RPC users should be set up to call keylogout
automatically at the end of a terminal session. For example:

RPC Administration 10-7

Secure RPC Overview

A secure RPC user should always execute keylogout before logging off
the system. Failure to do so is a serious security infraction.

[See sh(1) for details on use of trap for executing commands at the end of a
terminal session.]

The presence of secure RPC has no effect on remote programs that do not
use the secure protocol. Such programs work normally, whether or not the
user is also a secure RPC user.

RPC Domains

All machines using secure RPC must have a secure RPC domain name. One
machine per domain acts as master server for the domain. The
domainname (IM) command is used to set a machine’s domain name. The
machine’s SRPC_DOMAIN tunable should also be set to the secure RPC domain
name. Otherwise, the name is forgotten across reboots.

Secure RPC identifies users using a triple (operating system, uid, domain). Thus,
users may have multiple registrations with RPC, provided all such triples are
unique. For example, a user may belong to more than one domain, with operat-
ing system and wid identical for each.

By default, master servers know about users in their own domain. However,
master servers may export their /domainkeys directories to other master
servers to acquire information about users in other domains. If those other mas-
ter servers have an /etc/masters file listing the local master server, they will
periodically mount the local master’'s /domainkeys directory and copy their
domain key data to a file named /domainkeys/master_X (path as seen by the
local master) where master_X is the secure RPC domain name of the other mas-
ter server.

Given this information, the local master server can periodically update its own
/etc/publickey file to include key information records from files in
/domainkeys.

10-8 Programmer’s Guide: Networking Interfaces

Secure RPC Administration

In general, administering secure RPC is accomplished as follows:

1. A domain name is chosen (for multiple domains, more than one domain
name is chosen). Secure RPC domain names are set on participating
machines, using the domainname(1IM) command, and the SRPC_DOMAIN
tunable is set to the secure RPC domain name.

2. For each user or host to be allowed access to secure RPC services, domain
master machine administrators add entries to their master
/etc/publickey file.

3. keyserv and YP daemons are started.

4. Administrators start keyserv, either manually or by means of a boot-
time script.

5. Administrators of client machines mount the master (or a slave)
/etc/publickey file and link it as their local /etc/publickey file.
They remove the comment character that has commented out the keylo-
gin command from their machine’s /etc/profile and they direct their
secure RPC users to add a trap to their $HOME/ .profile so that keylo-
gout will be called when their sessions end.

The following sections detail this procedure.

When slave servers are in use, master servers may have clients as well as
slaves.

Establishing Secure RPC Domains

For many networked systems, a single secure RPC domain will suffice.
Administrators are notified of the domain name, and they use the
domainname(1M) command to establish that name as the secure RPC domain
name for their machine. For example, to set the a machine’s domain name to
research:

RPC Administration 10-9

Secure RPC Administration

For networked systems having multiple domains, the process is the same, except
that two or more different domains will be in use in the network.

Administrators should also set their machine’s SRPC_DOMAIN tunable to their
secure RPC domain name, as described in “The /etc/master.d/kernel File”
section, above. If this is not done, the domain name will be forgotten across
reboots.

A machine can be part of only one domain at any given time. The decision to
use single or multiple domains depends on need. In general, the advantages of
multiple domains include:

®m Duplicate operating system/user ID pairs can be using secure RPC (pro-
vided they are in different domains).

m Access to secure RPC programs can be made selective, if some programs
are not available to all domains.

The primary advantage of using a single domain is simplified administration.

Master /etc/publickey File

The /etc/publickey file is a database of public/secret key pairs. The file
contains pairs for users and hosts authorized to use secure RPC. Remote pro-
cedures that use the DES authentication protocol (built into the RPC package)
expect to find public/secret key pairs (for the processes that call them) in
/etc/publickey. A system administrator must therefore add an entry to
/etc/publickey for each user/host to be granted access to secure RPC
resources. A single /etc/publickey file (on a master server or on a collection
of master and slave servers) is used and shared over the network by machines
having access to the file.

10-10 Programmer’s Guide: Networking Interfaces

Secure RPC Administration

Secure RPC programs are not required to be hosted by the same machine
that hosts the master /etc/publickey file. The master
/etc/publickey machine is not necessarily the server for any of the
secure RPC application programs or commands.

Adding RPC Users with the newkey Command

On the domain master server machine (only), the system administrator grants a
user or host access to secure RPC in that domain by adding an entry to the
/etc/publickey file. This is accomplished using the newkey(1M) command.

The newkey command must be executed on the master server machine by
a user with root privileges. Furthermore, prior to using newkey, the
machine’s secure RPC domain name must have been set.

For example, to add an entry for the user alice the system administrator
would enter the following on the master server:

The —u option signifies that alice is a user ID. The domain field for this entry
is the domain of the master server on which this command is executed. This is
the only way that user alice can get access to this particular secure RPC
domain.

The newkey command can also be used with the —h option to give access to
hosts, i.e., to root users on hosts on the network:

RPC Administration 10-11

Secure RPC Administration

Within the domain of secure RPC users having entries in a master
/etc/publickey file, all user names and IDs must be unique. The -h option
is provided to allow more than one root user to have access to secure RPC.
Because root users on different machines have the same name and ID, it would
be impossible for more than one of them to beé a secure RPC user. The -h
option solves this problem, allowing root users to use their unique machine
name and address as a user name and ID for RPC purposes.

Network Passwords and the chkey Command

If using the YP service, client users should be notiﬁed of their passwords when
they are given access to secure RPC. Their .profile files should be modified
to execute keylogout when they log off.

Users are prompted for their secure RPC passwords when keylogin is exe-
cuted by /etc/profile. After gaining access, secure RPC users logged onto
the master server machine may invoke the chkey command to assign them-
selves a different secret password.

For example, a user can set up a password as follows:

Users logged onto client machines and on slave server machines cannot
change their passwords in this way. Users should login to their master
server to change their network password.

10-12 Programmer’s Guide: Networking Interfaces

Secure RPC Administration

Troubleshooting Note

If all administration procedures have been performed correctly and trouble
occurs, suspect that an RPC server daemon process (in particular, rpcbind)
may not have been started, may have died, or may have been killed.

RPC Administration 10-13

1 1 The YP Service

Introduction to YP Service 11-1
What Is YP? 11-1
The YP Elements 11-1
The YP Environment 11-2
m The YP Domain 11-3
m YP Machine Types 11-3
u YP Maps 11-6
Implementing the YP Service 11-7
Establishing the Domain 11-7
Preparing the Maps 11-8
m The publickey Map 11-9
m Other Maps 11-11
Making the Maps 11-12
m The Default Makefile 11-12
s Modifying the Makefile 11-14
Setting the Master Server 11-15
Starting Daemons in the Master Server 11-17
Setting Slave Servers 11-18
Starting Slave Server Daemons 11-21
Setting Up a YP Client 11-21
Administering YP Maps 1123
Updating Existing Maps 11-23
m Modifying Standard Maps 11-23
m Creating and Modifying Non-Standard Maps 11-24
Propagating a YP Map 11-27
m Using crontab with ypxfr 11-27
m Using Shell Scripts with ypxir 11-28
m Directly Invoking ypxfr 11-29

Table of Contents i

Table of Contents

m Logging ypxir's Activities 11-<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>