
RECOMP II USER IS PROGRAH NO. 1118

PROGRAM TITLE: AFA"O. SY!130LIC ASSEHBLER HANTTAL

ffiOGRA~A r!IASSIFICATION: Executive and r~ntrol

AUTT10R:

PURPOSE:

DATE: .

BROADVIEt,r RESEAltC:-I CORPORATION
./ .

To translate into machine language
the symbolic co~ing generated by
AFCOR (An Algebraic Compiler).

May 1961

Published by

RECOMP User's Library

at

AUTONETICS INDnSTRIAL PR.ODTTCTS
A DIVISION OF NORTH Al1ERICAN AVIATION, J~~C.

3400 E. 70th Street, Long Beach 5, Calif.

DISCLAIMER
Although It ts assumed that all the precautions have been
taken to check out this program thoroughly, no responsibility
Is taken by the originator of this program for any erroneous
re$ults, misconceptions, or misrepresentations that may appear
in this program. Furthermore, no responsibility is taken by
Autonetics Industrial Products for the correct reproductions of
thfs program. No warranty. express or implied, is extended
by the use or appllC4t1onof the program.

BRC l6l-9-Rev.

FOREWORD

This manual describes the operation and use of the symbolic

assembler prepared under contract AF 23(601)-2857 for the

Aeronautical Chart and Information Center, U.S. Air,Force, by

Broadview Research Corporation.

i

The operation and use of the algebraic compiler, which can be

used to produce symbolic assembler-language programs, is described

in BRC 161-10, AFCOR Algebraic Compiler Manual.

The flow charts and coding for the compiler and assembler

appear in the following documents:

BRC 161-11-1, AFAR Symbolic Assembler Flow Charts

BRC 161-11-11, AFAR Symbolic Assembler Coding

BRC· 161-14-1, AFCOR Algebraic Compiler Flow Charts

BRC 161-14-11, AFCOR Algebraic Compiler Coding

BRC l6l-9-Rev.

Section

1

2

3

4

5

6

TABLE OF CONTENTS

INTRODUCTION AND GENERAL DESCRIPTION .

CODING FORMAT ~ . ,

Symbolic Location (SL)
Operation (OP)
L or V Loop Designation (LV)' .
Symbolic Address (SA)
Absolute Address (AA)
Numeric (N)

OPERATION CODES

PREPARATION OF INPUT TAPE

COMPUTER OPERATION AND OUTPUT

ERRORS

• • • fJ

·

· ,

ii

1

3

3
5
5
6
6
7

8

22

25

26

BRC 161-9

Section 1

INTRODUCTION AND GENERAL DESCRIPTION

The Assembly Routine is a two pass program which translates

coding written for the Recomp II computer from a symbolic lan­

guage to an object program in explicit binary form required by

the computer. In describing the use of this program it is

assumed that .the user is familiar tvith the Recomp and its oper­

ation as explained in Autonetics publications.*

In the followin3 sections, the symbolic language is des­

cribed in full, including the exact rules for coding, permissible

and pon-permissible formats, and all details of the use of the

assembly routine.

Eighty-column punched cards are assumed as the principal

input medium. The most common sequence is assumed to be:

1. Write the prog~am on coding paper.

2. Punch cards -- one card per line of coding.

3. Convert from cards to Baudot paper tape with a

Systematics converter.

4. Assemble -- load the assembly program tape and the

input tape prepared in 3. above. Output is a punched

tape object program and an optional typewriter listin

listing.

On-line typewriter input may replace steps 2. and 3. above.

* 1. Operating Manual for Recomp Il (Revised May, 1959)
2. Supplement to Recomp II Operating Manual (April, 1960)
3. Recomp II Technical Bulletin No. 11 (June 3, 1960)

1

BRC 161-9 2

The alternate sequence for generating an object program is:

1. Write the program in compiler language.

2. Punch cards.

3. Convert from cards to Baudot paper tape with

Systematics converter.

4. Compile.

S • As semble.

BRC 161-9

Section 2

COD ING FORl'fAT

Each coding line consists of six fixed-length fields. These

fields are symbolic location, operation, L or V loop designation,

symbolic address, absolute address, and numeric, and their use is

described below.

SYMBOLIC LOCATION (SL)

This field is si~ characters long. It is the first field

3

of the coding line (Fig. 1) and must contain letters or blanks

only. The normal purpose in using a location symbol is to give a

name to the instruction with ,vhich the location symbol is asso­

ciated, so that the instruction r:~ny be referred to by this name in

other instructions of the program.

The symbol -- if any -- f.1.ppearing in this field must begin in

the first column of the field and must contain no imbedded blanks

(i. e., be packed left). Symbols identifying rr.a.chirle instructions

must begin with A through H • .,'(Symbols identifying fixed point

quantities must begin with I through N. -k Symbols identifying

floating point quantities must begin with 0 through Z.*

Every symbol appearing in a program rIJ1.1st be defined by appear­

ing in 5L or by use of a SYN pseudo-oper.ation (see Section 3). If

it does not appear in one of the above ways, the symbol is said to

be undefined. If it appears more than once, it is said to be

multiply defined.and, of course, is ambiguous as a name.

* These conventions correspond to half, full, and double computer
word usages.

BRC 161-9

!SL
F
!Symbolic
Location

Examples:

i
i . :

iOP iLV SA
!- r--:-

!Op:r- i I Symbolic
;at10n ~ I Address

:Absolute
,Address
I

i

I

iN
l-
IN · ! umer1C

I
I

Letters & Spaces···· Numbers, Signs & Spaces, .. -_.,.

! i
ISL lOP L: SA . AA N
I . ~ ,.: i ~
I I V ; i

~BCDEF~LA: ~A ~297~
I jSTOlLABSDEF, i
IJA jDECj i 1+1. 7lJi36 ,
lJX !OCT., : j+176~352ll6453,
tXW 1BSS: I!XH 20 i

~ I I

Note: All fields must be packed left.

Figure 1. Coding Line

4

BRC 161-9 5

Although there is nothing logically wrong in naming a loca­

tion without ever using that name, it is generally· desirable to

use a location symbol only if this symbol is referred to elsewhere

in the program. The reason is that the assembly program, in

processing the source program, keeps in memory a symbol table of

location symbols which is limited to 512 entries.

In processin~ 8L, the assembly program uses a location counter.

This is an absolute binary number (13 bits) denoting the memory

location which the instruction (with the given location symbol)

will occupy when the object program is loaded.

OPERATION (OP)

This field is three characters long (see Figure 1) and must

contain letters only (blanks are not permitted). Every permis­

sible operation code belongs to one of two classes: it is either

a Recomp II machine operation (such as "CLA", "SC<R", etc.) or it

is a pseudo-operation.

Machine operations always generate 20 bits of absolute ma­

chine language in the object program. Pseudo-operations, unlike

machine operations, may generate more than 20 bits (i.e., 40, 30

or more) in the object program, ·or none at all.

Permissible machine and pseudo-operations are described in

Section 4. All non-permissible OP codes* are replaced by HTR in

the object program.

L OR V LOOP DESIGNATION (LV)

The LV field is one character long (see Figure 1). Permis­

sible characters are "L", "V", or blank. This field is used with

* A blank OP field is used by the assembly program as a special
sentinel.

BRC 161-9 6

machine operations only, and modifies addresses so that they refer

to the L or V high speed loops.

The assembly program calculates an absolute address (13 bits)

for each machine operation. If LV contains an L(V) the nine high­

order bits of the absolute address are replaced by 776 (777). For

example, 44311 becomes 77611 (77711). A blank LV implies no

modification. Any other character gives an error prin~.

SYMBOLIC ADDRESS (SA)

This field is six characters long (see Figure 1). SA nor­

mally contains a symbol defined in an SL field.* The absolute

binary equivalent of SA is augmented by the l~ and LV fields to

form the 13-bit address of this instruction in the object program.

If the symbol in SA is undefined (i.e., does not appear in the

symbol table),. an error message is typed and the I3-bit address

is set to zero.

ABSOLUTE ADDRESS (AA)

This field is five characters long (see Figure 1). The first

character must be +, - or blank. Blank and + are equivalent.

AA normally contains a signed decimal number.** This number is

converted to binary. If the first character of SA is A through

H or blank, the number is unchanged. If the first character of

SA is I through N (0 through Z), the number is mUltiplied by

2(4). The resulting number is added to the binary equivalent of

SA to form a 13-bit address for this instruction. The half word

* For other usages·, see BSS, HED, PNC, PTC, REM, SYN, and TYC
below.

** For other usages, see ALS, ARS, BSS, CMD, DEC, DSC, FLD, FSC,
OCT, ORG, PNC, PTC, P~M, TYC below.

BRC 161-9

bit is set to:

o for machine operations DIS, PNH, PTVl, TYW and all

other operations in which a half uord bit of zero is

used to specify a different operation;

or to:

I for machine operations DSiJ, PND, PTD, TYD, and all

other operations in which a half word bit of one is

used to specify a different operation.

NUMERIC (N)

7

This field contains nine characters (see Figure 1). It is

used only for numeric input and REM pseudo-operations. For usage,

see CMD, DEC, DSC, FLD, OCT, REM.

BRC 161-9

Section 3

OPERATION CODES

Permissible OP codes can be classified into two sets:

1. Machine operations explained in detail in

Autonetics publications. (See page 1.)

2. Machine operations and pseudo-operations peculiar

to this assembly program. A detailed explanation

of these OP codes is includeq in this section.

OP codes not appearing on the permissible OP code list are

replaced by OP code HTR (77 octal) and an erro~ message is

printed. (See Section 6.)

3

BRC 161-9

Alpha
Code

ADD

ADM

ALS

ARS

BSS

CAM

CFL

CFV

CLA

CLS

CMD

CSM

CTL

CTV

DEC

DIS

DIV

DKM*

DRM

DSC

DSD

DSL

DSM

Octal
Code

01 ... (/J

~l 1

41

40
None

0f/J 1

65

67

00 rtJ

02 0
None

r/J2 1

64

66

None

36

22

21

23

None

36

20
2f/J

f/J

f/J

1

1

1

o
1

PERMISSIBLE OP CODES

Operation

Add

Add magnitude

Accumulator left shift

Accumulator right shift

Block started by Symbol

Clear and add magnitude

Copy from L-loop

Copy from V-loop

Clear and add

Clear and subtract

Command input

Clear and subtract magnitude

Copy to L-loop

Copy to V-loop

Decimal input

Display

Divide

Divide by magnitude single length
and round

Divide 'by magnitude and round

Decimal scaling

Display decimal

Divide Single Length

Divide by magnitude single length

* Listed as SRM in Recomp II Technical Bulletin No. 11 (June 3,
1960)

9

BRC 161-9

Alpha
Code

DSR

DVl1

DVR

EXT

FAD

FAN

FCA

Fes
FDM

FDV

FLD

FMM

FHP

FNN

FSB

FSC

FSM

FSQ

FST

I-LllL

HED

HTR

NPR

IvlPY

NOP

OCT

ORG

PNA

Octal
Code

21

22

23

33

04
04
30
34

05
05
None

07

07
45

06
None

06
l~4

35

None

None

77

13

11

l~rj)Qj l/J rjJ rjJ VJ

None

None

7l :·776xfiJ

rp

1

1

o

1

r/J

1

Operation

Divide single length and round

Divide by magnitude

Divide and round

Extract

Floating add

Floating add magnitude

Cloating clear and add

Floating clear and subtract

Floating divide magnitude

Floating divide

Floating decimal input

Floating multiply magnitude

Floating mUltiply

Floating normalize

Floating subtract

Floating scaling

Floating subtract magnitude

Floating square root

Floating store

Halt after loading

Head

Halt and transfer

Multiply and round

Multiply

No operation

Octal input

Origin

Punch alpha

10

BRC 161-·9 11

Alpha Octal
Code Code Operation

PNC 74 f/J Punch character

PND 14 1 Punch decimal word

PNW 14 '/J Punch word

PTA 76776X0 Punch and type alpha

PTC 76 ~ Punch and type character

PTD 16 1 Punch and type decimal

PTVJ 16 f/J Punch and type word

REM None Remark

RDY 71 Read Y

RDZ . 73 Read Z

SAL None Start after loading

SAX 15 Store A and exchange A and X

SBM 03 1 Subtract magnitude

SLA 42 '/J Store left address

SLL None Set location left

SLR None Se't location right

SLZ None Set location zero

SQM 25 1 Square root magnitude

SQR 25 f/J Square root

SRA 42 1 Store right address

STA 42 Store address

STO 60 Store accumulator

SUB f/J3 f/J Subtract

SYN None Synonym

TMI 51 Transfer on minus

TOV 53 Transfer on overflow

TPL 52 Transfer on plus

TRA 57 Transfer

BRC 161-9 12

Alpha Octal
Code Code Operation

TRP None Trap next instruction

TSB 54 Transfer on Sense Switch B

TSC 55 Transfer on Sense Switch C

TSD 56 Transfer on Sense Switch D

TYA 72776Xf/j Type alpha

Tye 72 Type character

TYD 12 ... 1 Type decimal word

TYH 12 ... f/J Type word

TZE 50 Transfer on zero

XAR 43 Exchange A and R

BRC 161-9.

For interpretation of OP codes not contained in the follow­

ing section, see Autonetics publications:

1. Operating Manual for Recomp II and Supplement

2. Technical Bulletin No. 11.

ALS Accumulator Left Shift SL, OP, AA*

13

The AA field is converted to binary and put into the six bits

in the sector address. See the Recomp II Operating Manual for

further details.

ARS Accumulator Right. Shift SL, OP, AA

See ALS

BSS Block Started by Symbol SL, OP, SA, AA

This operation is used to specify blocks of memory reserved

for such purposes as data storage, erasable storage, etc. The

AA field contains the number of storage locations to be saved.

This number is controlled by the first letter of the symbol in the

SA field. If this first letter is A through H, half words (or

ins.truction) storages are saved. If the first letter is I through

N, full word storages are saved. If the first letter is 0 through

Z, double word (or floating) storages are saved.

In the case of full word storage (I through N), if the cur-

rent value of the location counter specifies a right half word,

this location is skipped (i.e., set to minus zero) and the block

is started in the following full word. In the case· of floating

storage (0 through Z), the location counter is set to the nearest

following even full word location, and the skipped locations set

to minus zero, before the block is saved.

* Fields used by each OP code are indicated following the oper­
ation name.

BRC 161-9

If the SA field is blank, an error message is typed and the

block is saved as though floating storage were specified.

CMD ComManD input SL, OP, AA, N

14

This operation causes the contents of the AJ~ field and the

first three numbers in the N field to be put into the half word

location at the currznt value of the location counter. The first

character is the sign, the next six characters are octal, and the

remaining character is binary.

DEC DECimal SL, OP, A.A., N

The contents of the p~ and N fields are converted to binary

and put into the full word location at the current value of the

location counter unless this is a right half word location, in

which case this location is skipped (i.e., set to minus zero) and

the converted number is put into the following full word. If the

AA and N fields contain no decimal point, the number is assumed

to be an integer. If there is no sign, the number is assumed to

be positive and the sign column must be blank. The assembly

program terminates the number when it finds a blank, so imbedded

blanks are not permissible. Binary scaling and additional decimal

scaling are specified by means of a DSC operation. If there is no

DSC operation given, the binary scaling is assumed to be 39 and the

decimal scaling·is assumed to be zero (see DSC).

DIS DISplay SL, OP, LV, SA, AA

This operation causes output, as described in the Recomp Oper­

ating Manual, in command format only (i.e., the half word bit in

the address is a 0). For decimal display see DSD.

BRC 161-9· 15

DSC· Decimal SCaling OP, AA, N

This pseudo-operation generates no words in the object pro­

gram but is used to specify scaling -- both decimal and binary -­

for DEC operation codes. The decimal scaling is a signed integer

in the AA field and the binary scaling is a signed. integer in the

N field. The decimal scaling gives the power of ten by which the

number in the DEC input line is to be multiplied after conversion

to binary for insertion into the computer. The binary scaling

specifies the position of the binary point in the binary word cell

which receives the fixed point binary number resulting from the

conversion of the decimal number. This integer is used to count

from the left hand end of the binary word cell to the right, so

that a binary scaling of 0 says that the binary point is immedi­

ately to the left of bit position I and a binary scaling of 39 says

that the binary point is immediately to the right of bit position

39. This ~caling factor can then be thought of as the number of

integral places. No binary scaling implies a scaling of 39 (i.e.,

an integer).

The DSC operation precedes one or more DEC operations and

controls the scaling until a line with any operation other than

DEC is reached. At this point, the scaling reverts to a binary

scaling of 39 and a decimal scaling of zero.

DSD DiSplay Decimal SL, OP, LV, SA, AA

This operation causes output as described in the Recomp

Operating Manual under DIS in decimal ¥ormat only (i.e., the half

word bit in the address is a 1). For command format display, see

DIS.

BRC 161-9 16

FLD FLoating Decimal SL, OP, AA, N

The contents of the AA and N fields are converted to nor­

malized floating binary and put into the two full word locations

at the current value of the location counter plus K (K = 0, 1, 2,

or 3 half words), \vhere K is a number such that the fractional

portion of the floating number begins in an even left location.

If K = 1, 2, or 3, the K half word locations skipped are cleared

(i.e., set to minus zero). If the t~ and N fields contain no

decimal point, the number is assumed to be an integer; if the sign

column is blank, the number is assumed to be positive. The number

is terminated by a blank, so it must contain no imbedded blanks.

Decimal scaling is specified by a FSC operation. If no FSC oper­

ation is given, the decimal scaling is assumed to be zero (see

FSC) .

FSC Floating SCaling OP, AA

This pseudo-operation generates no words in the object pro­

gram. The AA field contains a signed integer which is the power

of ten by which the number in the FLD input line is to be multiplied

after conversion to binary.

An FSC operation is used to precede one or more FLD operations,

and controls the scaling until a line with any operation other than

FLD is reached. At this point, the scaling reverts to zero. The
128 FSC - FLD sequence converts numbers modulo 10 .

HAL Halt After Loading OP, SA, AA

The last instruction in a program ~ be an HAL or SAL pseudo­

operation. The assembly terminates on sensing one of these pseudo­

operations. This pseudo-operation generates no words in the object

program. This operation, along with SAL, has three functions:

BRC 161-9 17

first, it signifies the end of the program to be assembled; second,

the SA and AA fields define the address to which the location

counter is to be set after loading the object program; third, it

causes a halt (start) code to be punched at the end of the object

program tape.

HED HEaD OP, SA

This pseudo-operation generates no words in the object pro­

gram. The SA field of the HED pseudo-operation contains a single

character. All instructions following the HED are modified by

insertion of this single character between the first and second

characters of the symbols in the SL and the SA fields, until

another HED pseudo-operation is encountered.

If the SA field of the HED pseudo-operation is blank or con­

tains more than one character, following instructions are not

modified; thus a HED pseudo-operation with a blank SA field must

be used to terminate a heading operation. If a symbol containing

six characters is headed, the right-most character will be

destroyed.

NOP No OPeration SL, OP

The NOP operation is replaced by an ARS ~ instruction in the

object program.

OCT OCTal input SL, OP, AA, N

The thirteen or fewer octal digits (including a sign) which

are contained in the AA and. N fields are entered into the full

word location at the current value of the location counter, unless

this is a right half word location, as an octal integer. If the

OCT operation occurs at a right half word location, one half word

is skipped (i.e., set to minus zero) and the number is put into

BRC 161-9 18

the next full word location. If the sign column is blank, the

number is assumed to be positive. The number is terminated by a

blank so it must contain no imbedded blanks. If a non-octal digit

is encountered, an error message is typed and the number is set to

zero.

ORG ORiGin OP, AA

No word is generated in the object program by this pseudo­

operation, but the effect is to set the location counter. T~e AA

field is converted from decimal to full word binary. Thus BORG 64"
would set the location counter to octal 100.0. If the AA field is

negative, or is greater than 4095, or contains a non-numeric

character, an error message will be printed and the location

counter will not be changed. A .blank AA field will set the loca­

tion to zero.

PNC PuNch Character SL, OP, SA, AA

T~e SA or AA portion of this instruction contains the actual

character to be output as described in the Recomp Operating Manual.

If the character is represented on the typewriter in letter shift

mode (i.e., A-Z or control function), it must appear in the SA

field. If the character is a figure (0-9 or punctuation), it must

appear in the AA field. The control functions appearing in the SA

field are represented by:

CR

SP

FS

Carriage Return

Space

. Figure Shift

LF Line Feed

LS Letter Shift

TF Tape Feed

BRC 161-9' 19

PND' PuNch Decimal SL, OP, LV, SA, AA

This operation causes output, as described in the Recomp

Operating Manual under PNvl, in decimal format only (i. e., the 'half

word bit in the address is a 1), For command format output, see

PNW.

PNl~ PuNch vJord SL, OP, LV, SA, AA

This operation causes output, as described in the Recomp Oper­

ating Manual, in command format only (i.e., the half word bit in

the address is a 0). For decimal output, see PND.

PTC Punch and Type Character SL, OP, SA, AA

See PNC.

PTD Punch and Type Decimal SL, OP, LV, SA, AA

See PND.

PTIA] Punch and Type lvord SL, OP, LV, SA, AA

See PNW.

REM REMark SL, OP, LV, SA, AA, N

This pseudo-operation generates no words in the object pro~

gram but merely provides a method of typing remarks on the symbolic

output listing, if any. All characters on the line are typed with

the typewriter in letter shift so no numeric characters may appear.

SAL Start After Loading OP, SA,AA

See HAL.

SLA Store Left Address SL, OP, LV, SA, AA

This operation is replaced by an STA (428) operation code. If

the combined SA and AA portion of this instruction Irefers to a right

BRC 161-9 20

address (.1), an error message is printed. The address is not

changed.

SLL Set Location Left . OP

This operation has one of two effects on the object program.

If the current value of the location counter specifies a left

address, no instruction is generated in the object program. If

the current value of the location counter specifies a right address,

a NOP instruction is put into the object program at this point.

SLR Set Location Right OP

This operation has one of two effects on the object program.

If the current value of the location counter specifies a right

address, no instruction is generated in the object program. If

the current value of the location counter specifies a left address,

a NOP instruction is put into the object program at th~s point.

SLZ Set Location Zero OP

This operation causes the location counter to be advanced to

the nearest higher location, the least significant four bits of

which are zero. The locations which are skipped are cleared (i.e.,

set to minus zero) in the object program.

S~. Store Right Address SL, OP, LV, SA, AA

This operation is replaced by an STA (428) operation code. If

the combined SA and AA portion of this instruction refers to a

left address (.0), an error message is printed. The address is not

changed.

SYN SYNonym SL, OP, SA, AA

This pseudo-operation generates no operations in the object

program, but merely sets the SL field equal to the SA + AA fields.

BRC 161-9. 21

If neither of these fields has been defined by a previous line of

coding, an error message is printed and the symbols are not put

into the symbol table. If both symbols .have already been assigned,

their previous assignments are unchanged and an error message is

printed.

TRP TRaP OP

This pseudo-operation generates no operations in the object

program, but sets the sign of the following instruction minus in

the object program.

TYC TYpe Character

See PNC.

TYD TYpe Decimal

See PND

SL, OP, SA, AA

SL, OP, LV, SA, AA

TYW TYpe Hord

See PNW.

SL, OP, LV, SA, AA

Section 4

PREPARATION OF INPUT TAPE

The symbolic alpha input tape for this assembly program may

be prepared either from cards or on-line.

The card format is shown in Figure 2. Columns 1 through 30

are to be punched in the format described in Section 2. Columns

31 and 32 and 65-80 must be left blank. Columns 33 through 64

22

may contain remarks. These remarks are ignored by the card-to-tape

converter.

When the program is ready to be put on tape, a beginning-of­

record card should be put on the front of the deck. End-of-record

cards, followed immediately by beginning-of-record cards must then

be inserted in the deck at intervals of no more than 332 cards. An

end-of-record card must be put at the back of the deck (following

the HAL or SAL card). Put the assembly board into the converter,

the proper drum cards on the drums, the program deck into the

hopper, and start the card-to-tape converter.

Leaders at the beginning and end of the tape must be punched

manually.

The alternate (on-line) method of tape preparation is used as

follows:

1. Set the left hand margin of the Recomp typewriter at

zero, with tabs at columns 6, 16, 21, and 30.

2. Ready the tape punch (feed out a suitable leader).

3. Load the assembly tape.

4. Press Start 3. The typewriter carriage will return.

The computer stops with the typewriter in letter shift.

BRC 161-9

5. Type one input line. Note that no letter shift

should be typed, but that a figure shift must be

typed in column 17 if figures follow.* ~ields may

be skipped by tabbing. If an error occurs anywhere

in the line, tab over to column 30 and type "X" or

"/". The line will not be punched. If the line

is satisfactory, tab (or type) to column 30 and

type "LETTER SHIFT". This character signals no

error. The computer will then construct and punch

this line. At the completion of punching, the

typewriter carriage will return. Note: the type­

writer is again in letter· shift.

6. Repeat step 5 for each input line.

7. ~fuen a line containing either HAL or SAL in the OP

field is sensed,** the computer will punch the line,

then punch C, carriage return, S, then transfer to

the first pass of the assembly routine.

S. Feed out the tape. The program typed is now ready

for assembly.

23

Note: This routine counts the input lines~ and punches end­

of-record and beginning-of-record.information· as needed.

* In the case of the REM pseudo-operation code, do not type
figure shift.

** All programs must end with either a HAL or SAL since the
assembly terminates on sensing one of these.

BRC 161-9

/
Card Columns --J

g

Lf'\
.'!Q

~
~

M
("'t"')

I"""fN
('t') ('t')

0
("'t"')

I

I"""f
N

0
N

I
~
I"""f

Lt'"'I
I

I"""f
'I"""f

0
r-f

" 00 r:..'

\0

J

r-f

~\

l
I

I
1

./

\
(

I
)
.....
\

,J

1
~
}
\
f
\
/

i)

}

NOT USED

COMMENTS

BLANK

NUMERIC (N)

ABSOLUTE
ADDRESS (M)

SYMBOLIC
ADDRESS (SA)
LV

OPERATION (OP)

SYMBOLIC
LOCATION (SL)

Figure 2. Input Card Format

24

BRC 161-9

Section 5

COMPUTER OPERATION AND OUTPUT

This section'describes the operating procedures for using

the assembly program once the symbolic alpha input tape has been

prepared.

Set the typewriter margin at 0, with the first tab at 24.

25

Load the assembly program tape and push Start. The typewriter will

type "READY TAPE, PRESS START 1". Ready the input tape in the

reader and press the Start 1 button.

Pass One of the assembly reads the input tape, constructs

the symbol table, types detected errors, types a memory map show­

ing locations used, and types "END OF PASS ONE" READY TAPE, PRESS

START 2", and halts. (Error prints are listed in Section 6.)

If it is desired to complete the assembly, again ready the

, input tape, and press Start 2. Pass Two of the assembly always

punches the object program tape in command format. If Sense

Switch B is up, a typewriter listing is also produced, containing

a command format print of the object program, an alpha print of

the input tape, and detected error prints.

vfuen the assembly finishes processing either of the pseudo­

operation codes '1IHALII or "SALIi, the assembly types "ssc DOvIN FOR

MULTIPLE ASSEMBLY - PRESS START". If Sense Switch C is left in

the up position, the location set and H (or S) code is punched on

the object program tape, and the computer stops at location 7777.18 ,

If Sense Switch C' is set in the down position at this time, the

assembly does not punch the location set and H (or S) code on the

object program tape but transfers to the beginning of Pass 9ne.

BRC 161-9 26

Section 6

ERRORS

Pass One will type detected errors as XXNNNN, where XX is a

letter code specifying the error and NNNN is the object program

octal location of the word in error. For example, OP2173 signals

an error in the OP field at octal location 2173 in the object

program.

Pass Two error prints are typed immediately, before the line

in which the error occurs, and consist of letter codes only, as

explained

Codes

A

AA

AN

LV

MF

N

OP

SA

SB(SN)

SC

below.

Error

Inadmissible character in either SA or AA field

Inadmissible character in the AA field

Inadmissible charact~r in the combined I, fAA and N fields

Inadmissible character in the LV field.

Map storage full. If more than 14 ORG pseudo-operation

codes appear on the input tape, this error print will

occur, and subsequent blocks will not be included in

the memory map.

Inadmissible character in the N field.

Non-p~rmissible OP code

Error in the SA field

SB(SN) is typed during processing of an SYN pseudo­

operation code if both (neithe~) symbols have been

previously defined ..

Improper scaling on a DEC pseudo-operation (overflow)

BRC 161-9 27

Codes Error

SF Symbol tape full. A maximum of 512 symbois are stored.

The computer halts after this.print. Pressing "START"

will cause the assembly to continue. No further symbols

will be entered in the symbol table.

SL Symbol in the SL field has been previously defined (and

is now multiply defined).

