JSYS Traps—A TENEX mechanism for
encapsulation of user processes*

mrvr\l\/r

by ROBERT H. THOMAS

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

INTRODUCTION

The #SYS Trap mechanism is an extension to the TENEX
operating system®? which enables a process** to define and
control the virtual machine seen by other processes. Using
the mechanism, a process can control the execution envi-
ronment of other processes by providing them with a vir-
tual machine that enlarges, restricts or completely
redefines the “standard” virtual machine provided by
TENEX. .

The controlling process does this by declaring that it
wishes to “monitor” (trap) selected system calls (JSYS’s)
when executed by other (inferior) processes. When a moni-
tored process attempts to execute one of the calls specified
it is suspended and the monitoring process is notified.
After gaining control, the monitoring process may take
whatever action it finds necessary. For example, it may
choose to perform the call itself on behalf of the trapped
process. Alternatively, it may allow the trapped process to
perform the call itself, or it may first modify the call
parameters and then allow the trapped process to resume
normal execution of the system call.

Mechanisms similar to JSYS traps have been proposed
in the context of TENEX and elsewhere.** The motivating
forces that transformed the JSYS trap mechanism from
an idea to a design and implementation for TENEX were
the requirements placed on TENEX by the Resource
Sharing Executive (RSEXEC) system.®* The RSEXEC
system is being developed as part of a research project in
distributed computation.

One of the goals of RSEXEC is to enable the various
TENEX Host computerst on the ARPA Computer Net-
work®’ to function together as a single, multi-host TENEX
system. RSEXEC provides an environment within which
the resources available to a user are enlarged to include
those beyond the boundaries of his local TENEX Host. It

* This work was supported by the Advanced Research Projects Agency of
the Department of Defense under Contract No. DAHC15-71-C-0088.

** Almost any of the common definitions for the term process is adequate
for the needs of this section. TENEX supports the concept of a tree struc-
tured process hierarchy described more fully in subsequent sections.
With the exception of when it interacts with other processes, a TENEX
process proceeds asynchronously as if executing on its own machine.

t There were thirteen TEXEX Hosts on the ARPANET as of October
1974.

does this in a way that removes the logical distinction
between resources which are “local” and those which are
“remote”. This applies to both the user at the “command
language’ level and his programs at the “executing
process’ level.

An important part of the RSEXEC environment is a
distributed, multi-Host file system which allows files to be
referenced without requiring Host specification. That is, a
process need not be aware of the location within the net-
work of files it uses in order to access them. Whenever a
process attempts an operation involving a non-local file,
the operation is dispatched across the network to a
cooperating process running on the appropriate remote
Host. As a result, existing “subsystems”, such as text edi-
tors, assemblers and compilers, need not be rewritten to
operate in the multi-Host environment.

We initially conceived of RSEXEC as an evolutionary
system whose development would require considerable ex-
perimentation. Consequently, we decided that, at least
initially, the RSEXEC environment would not be imple-
mented as part of the normal TENEX operating system.
Rather it would be provided by “ordinary user” processes
which would act on behalf of processes attempting to ac-
cess non-local resources. To provide the environment in
this way it is necessary that ordinary user processes be
able to intercept system calls made by other processes
before the operating system itself acts upon them. JSYS
traps were implemented to provide such an encapsulation
mechanism.

Although the JSYS trap mechanism was strongly moti-
vated by the RSEXEC application, it represents an im-
portant and powerful addition to the TENEX operating
system which is useful in a general manner in applications
requiring a controlled execution environment. This paper
describes the trapping mechanism and records design and
implementation decisions that were made in adding it to
the existing TENEX operating system. In doing so, the
paper describes some aspects of TENEX not previously
reported.

The next section is a brief sketch of the TENEX virtual
machine. Following that, the JSYS trap mechanism is
described in more detail. First, it is described in terms of
the properties we wanted it to exhibit and the constraints
that consistency with the existing TENEX virtual ma-
chine placed upon it. Next, we describe the user’s view of

352 National Computer Conference, 1975

JSYS traps. Finally, we view its implementation. The
paper concludes by comparing the trapping mechanism
with similar features in other operating systems.

THE TENEX VIRTUAL MACHINE

TENEX is a time-shared operating system developed by
BBN to run on the DEC PDP-10 processor augmented
with paging hardware. TENEX provides a multi-process
job structure with software program interrupt capabilities,
advanced file handling features and an interactive and
carefully human-engineered command language. At
present (October 1974) there are fourteen TENEX
systems. This section focuses on the system call and multi-
process facilities of the TENEX virtual machine. Readers
interested in other aspects of TENEX are referred to the
literature, 28510

A user process running under TENEX executes on a vir-
tual machine similar to a PDP-10 processor* with 256 K
words of virtual memory. The direct input/output instruc-
tions of the PDP-10 are not available to user processes.
Rather, the virtual machine provides input/output
facilities which are considerably more powerful and so-
phisticated.

All of the virtual machine facilities* are accessed via a
system call machine instruction, JSYS,** which was add-
ed to the PDP-10 processor for TENEX. The JSYS
instruction accomplishes a transfer of control from a user
process to the monitor routine that implements a
particular system call in a single instruction time. The
hardware interprets the address field of the JSYS instruc-
tion as an index into a transfer vector called the JSYS dis-
patch vector. The JSYS dispatch vector occupies exactly 1
page (512 words) in the monitor address space.***
TENEX users have come to regard the different system
calls supported by the JSYS instruction as separate
instructions. Thus, one speaks of the “Byte In” JSYS and
the “Open File” JSYS, etc. This convention is used
throughout the remainder of this paper.

When a user logs into TENEX a job consisting of a
single process is created for him. By using appropriate
system calls that process may create other processes which
themselves may create further processes, etc. TENEX
provides a separate virtual machine with its own address
space for each such process. Each process has exactly one
immediate superior (its creator) and may have any
number of immediate inferiors (processes it has created).
Thus the process hierarchy is tree-structured; the root of
the tree being the process created at login time.

TENEX currently provides three mechanisms for inter-

* With the exception of the pager trapping facilities that implement the
virtual memory and which are invisible to user processes.

** pronounced JAY-sys

*** For addresses greater than 511, the address is interpreted as an index
into the user process address space and the process is dispatched to a
routine in its own address space.

process communication:

1. Communication by direct process control whereby

one process modifies the state of another.
The state of a process includes its execution status
(i.e., running, suspended by another process, blocked
for input/output, etc.), program counter (PC), active
registers (ACs) and the contents of its address space.
A process can modify the PC and ACs of other
processes and can start, stop and destroy them. The
capability for direct process control is defined by the
process hierarchy; processes may directly control
only their inferiors.

2. Communication by pseudo-interrupt whereby one

process transmits an interrupt signal to another.
The signalling process specifies the target process
and an interrupt channel. To receive the signal
properly, the receiving process must have previously
“armed” the specified interrupt channel by activat-
ing it, assigning it a priority, and specifying a routine
to be executed whenever a signal for the channel oc-
curs. The identity of the signalling process is not
conveyed as part of the interrupt signal. In addition
to other processes, a process may receive pseudo-
interrupt signals from devices such as terminals and
as a result of its own execution (e.g., arithmetic
register overflow).

3. Communication through shared memory whereby

communicating processes read and write from the
same memory.
The paging hardware partitions memory into pages
of 512 words each. Each process sees a linearly ad-
dressable virtual memory of 512 pages which is de-
fined by a memory map with an entry for each page.
Each map entry describes a page in the process ad-
dress space: an indication of whether the page exists,
its physical location (i.e., current location in core or
secondary storage) and the type of access the process
has to the page. Processes can arrange to share por-
tions of their address spaces by system calls that
manipulate memory maps. For example, process A
can share page 3 of its address space with page 5 of
process B; any change to the shared page made by
either process will be seen by both.

The multi-process features play an important role in
standard TENEX operation. The process created for the
user at login time runs the TENEX command language in-
terpreter (EXEC). When a user invokes a subsystem (e.g.,
text editor) or a program of his own, the EXEC creates a
process, whose initial virtual memory contains the
program. After starting it, the EXEC blocks until the
process terminates (see Figure 1). One interesting
subsystem is IDDT, an interactive, “invisible’ debugger,?
which runs in a process inferior to the EXEC and superior
to the process(es) being debugged. IDDT uses TENEX
facilities for memory sharing and direct process control to
enable a user to monitor (examine registers, address space,

etc.) and control (start, stop, place “breakpoints”, modify
address space, etc.) the execution of a process in a manner
that is transparent to the process.

DESIGN CONSIDERATIONS

Our goal was to add te TENEX a facility enabling one
process to control the execution environment of another.
The mechanism we chose was one in which the process be-
ing controlled is suspended whenever it attempts to exe-
cute JSYS’s (system calls) previously specified by the con-
trolling process to which control is then passed. The major
constraint in designing the trapping mechanism was that it
be done within the context of the existing operating
system. Specifically, the mechanism had to be compatible
with the TENEX virtual machine and its implementation
could not require radical departure from the approach
taken to the rest of TENEX. Of course, its implementation
should not require excessive per process storage, should in-
volve minimal overhead to processes not using it, and
should not be excessively costly to those that do use it.

The following summarizes the major considerations that
influenced definition of the JSYS trap mechanism:

1. The capability of a process for setting JSYS traps
should be limited to processes inferior to it in order
to provide a measure of protection that is consistent
with the TENEX process hierarchy.

2. A process setting traps for another should be able to
specify an arbitrary subset of JSYS’s to be trapped
rather than being required to specify only all or no
JSYS’s. This enables the inferior process to execute
efficiently, incurring the overhead of being trapped
only for those system calls the superior is interested
in intercepting. In addition, it provides a measure of
convenience for the trapping process; it need be
programmed only to handle those JSYS’s it is
interested in. Furthermore, to allow for generality
and flexibility a process should be able to dy-
namically remove traps it has set. It should not, of
course, be able to remove traps set by other
processes.

FINISH DEBUG RUN
LOGIN EDIT EDIT PROGRAM PROGRAM

Figure 1—The process structure for a user job changes throughout the
course of a TENEX session. The TENEX EXEC (command language
interpreter), which resides in the top process in the job process hierarchy,
creates and manages other processes as the user’s requests dictate

3. The traps set for a process should be inherited by its
inferiors. That is, when a process is created, it should
be subject to the same traps as its creator. Addi-
tionally, when traps are set for a process, they should
also be set for all existing processes inferior to it. This
ability to set traps indirectly allows a process to con-
trol the virtual machine seen by all its inferiors
without requiring that it know the details of the infe-
riors’ process structure. In addition, it prevents a
trapped process from using inferior processes to exe-
cute (trapped) system calls on its behalf in order to
bypass the trapping mechanism.

4. A trapping process should be able to allow a process
that has been suspended as a result of executing a
trapped JSYS to resume “normal” execution of the
JSYS that caused the trap. This is useful in situa-
tions in which one process is monitoring another. For
example, a process which may not be completely
trustworthy could be encapsulated by a monitoring
process which would trap operations that are
potential security violations in order to prevent it
from writing “private” data to a “public” or non-
secure ‘“area’”’. The monitoring process would allow
the inferior to resume execution of such an operation
only after checking the call parameters to ascertain
that the operation is “safe”.

5. Control should propagate up the process hierarchy
from controlling process to controlling process. When
a process attempting to execute a particular JSYS is
suspended, control should be passed to the nearest
superior in the hierarchy that requested to trap that
JSYS. If that process resumes the suspended process
without changing its PC and execution status, control
should pass to the next superior in the hierarchy han-
dling that JSYS. Should each controlling process in
the hierarchy resume the trapped process without
resetting its PC, “normal” execution of the JSYS
should be resumed. This insures that each process in
the hierarchy wishing to trap the JSYS has a chance
to handle it. Additionally, it prevents a process from
bypassing the trapping mechanism by creating infe-
riors and then trapping and immediately resuming
their calls executed on its behalf.

6. The trapping mechanism should be transparent to
the trapped process. In particular, the execution of a
given JSYS should appear to be the “same’ to the
executing process whether or not the JSYS is trapped
by a superior process. This permits existing programs
to run in a trapping environment without requiring
that they be rewritten.

7. To allow for flexibility and generality, a process
should be able to use JSYS traps to control its
various inferior processes differently. That is, it
should be able to specify a different set of JSYS’s to
be trapped for each inferior.

The transfer of control from the trapped process to the
trapping process involves suspension of the former and no-

354 National Computer Conference, 1975

Figure 2—Process A may not directly set traps for Process C. However,
process C inherits any traps set by process A for process B

tification of the latter. We chose to have notification of the
trapping process occur via a pseudo-interrupt signal. Two
other approaches suggested themselves:

1. The trapping process could use a periodic polling
procedure to look for processes suspended as the
result of traps it had set; or

2. The trapping process could execute a system call
causing it to block until the “next” trap occurred.

The first alternative was rejected immediately on effi-
ciency grounds because it requires a “busy wait” by the
trapping process. The second was judged to be less flexible
than the pseudo-interrupt approach because it requires the
trapped process to relinquish control and therefore to
remain idle while awaiting the next trap. If this effect is
desired, a user can achieve it in a straightforward way us-
ing existing system calls in conjunction with the trap
pseudo-interrupt. Furthermore, since the implementation
would be virtually identical for both the pseudo-interrupt
and blocking approaches, we selected the more flexible
pseudo-interrupt approach.

As an implementation consideration, we restricted the
ability of a process to set traps beyond that suggested in
consideration (1) above. A process can directly set and
remove traps only for processes that are immediately infe-
rior to it. To allow a process to set traps for non-immediate
inferiors would not violate the TENEX process hierarchy.
However, it would require a considerably more complex
implementation, particularly in terms of maintaining the
data base required to describe the trapping situation (see
“Implementation’ Section below). Because traps are
inherited by inferiors in the process hierarchy (considera-
tion (3) above) this is not a severe restriction. For
example, for the situation in Figure 2, process A may
directly set traps for process B but not for process C;
however, any traps set for B are inherited by C. This
restriction also prevents a process from trapping its own
execution of JSYS’s. While there are situations in which
this would be useful, we felt that the additional imple-

mentation complexity required to support the capability
was unjustified.

USERS VIEW OF THE TRAPPING MECHANISM

The trapping mechanism was made available to user
processes by augmenting the virtual machine with several
new JSYS’s (system calls). The basic calls are sum-
marized below in an informal notation that conveys their
meaning while avoiding the details of TENEX program-
ming. Values returned by a call are indicated on the left
side of an “=" sign.

To set or remove JSYS traps the following calls are
used.

set-traps (proc, trap-spec)
remove-traps (proc, trap-spec)

Proc is the process ID of an immediately inferior process
and trap-spec is the address of a table specifying the
JSYS’s for which traps are to be set or removed. A process
can declare the channel on which it wishes to receive
pseudo-interrupt signals resulting from JSYS traps by the
call:

set-trap-channel (chn)

where chn is a channel number for the interrupt channel.
The call to determine the source of a trap pseudo-inter-
rupt is:

proc, call=trap-data ()

Proc is the ID of the process that was suspended attempt-
ing to execute the JSYS call. Before such a pseudo-inter-
rupt can occur, the trapping process must have previously
set a trap for the call JSYS in proc and declared a channel
for trap interrupts. To respond to a trap, the trapping
process may use any of the operations normally available
for direct process control: it can read the parameters sup-
plied by the trapped process, set the value (if any) to be
returned to the trapped process, change its PC, modify its
address space, change its execution status, etc. After the
trap has been handled, the trapped process may be
allowed to resume execution using the call:

resume-trapped-proc (proc)

where proc is the process to be resumed.
A process may use the call

t=test-trap ()

where the value returned is either true or false, to de-
termine whether traps have been set for it by a superior
process. Since all JSYS’s including those for managing
traps may be trapped by superiors, this call need not vio-
late the transparency property (6 above) desired for the
trapping mechanism: A process could prevent inferiors
from determining whether they are being trapped by trap-
ping their exeention of test-trap and always returning the
value false.

-
[
=l
73
(Vo]
(S]]
o

An example should clarify how the trapping mechanism
can be used. Consider the simple task of generating a fre-
quency histogram of system calls made by an arbitrary
program. A process Q can do this by creating another
process P to run the program and then trapping and re-
cording the JSYS’s P executes. The following annotated
program fragment describes Q:

(enable pseudo-interrupt-system)
set-trap-channel(n) //Assign n as channel for trap

/ / pseudo-interrupts.

/ /Create P initializing its address
//space to the program stored as
/1file

//Set traps for ALL JSYS’s

/ /executed by P.

/ /Start program execution by P.

P =create-proc(file)

set-traps{P,ALL)

start-proc(P)

wait-proc(P) //Wait until P terminates.
output(Histogram) / /Output the Histogram array.
PSI-Handler-n: //JSYS trap interrupt handling
/ /routine
R,i=trap-data() //Read trap data.
Histogram(i) = Histogram(i)+1 / /Account for JSYS in Histogram
//array.
resume-trapped-proc(R) //Allow P to resume normal
/ /execution of JSYS I.
break / /Break from the trap interrupt.

Use of the trapping mechanism in this example is rela-
tively simple: process @ merely resumes P after recording
the trap. In the distributed file system application
described earlier, the process running RSEXEC uses trap-
ping to extend the TENEX virtual machine to support ac-
cess to files remote from the local TENEX Host. It traps
file operations made by processes inferior to it (e.g., text
editors, compilers, etc.). Whenever a file operation is
initiated that requires access to a remote file, RSEXEC
sends a request across the network to a cooperating
“service” process at the proper Host instructing it to exe-
cute the operation on behalf of the inferior process (See
Figure 3). Operations that can be handled locally are
passed directly to the local operating system by RSEXEC.
After the operation has been performed RSEXEC resumes
the inferior process, by properly incrementing its PC and
providing return parameters (if any). Because the trap-
ping activity is transparent, the inferior process can uni-
formly access all files, both local and remote, without
regard for their location within the network.

Other applications for the trapping mechanism readily
suggest themselves. JSYS traps have proven to be a power-
ful debugging aid. For example, a complex program, which
was believed to have been debugged and which is run
continuously on TENEX as a service “demon” process,
began to malfunction by closing a critical data file for no
apparent reason on the order of once a day. After unsuc-
cessfully studying program listings and using conventional
debugging techniques for several days, the programmer

@ ® P INITIATES FILE OPERATION

& OPERATION TRAPPED
® P SUSPENDED

® CONTROL PASSED TO RSEXEC

NETWORK SERVICE

RSEXEC PROCESS

FILE

® RSEXEC AND REMOTE SERVICE
PROCESS COMPLETE OPERATION

® P RESUMED

Figure 3—RSEXEC uses the JSYS trap mechanism to support uniform
access by a user program (process P) to local and remote files. Access to
remote files is accomplished by interacting with a remote service process

built a simple process to trap and examine all operations
that could possibly result in closing the file. He then ran
the malfunctioning service process as an inferior to the
trapping process and was able to intercept the operation
that caused the malfunction the first time it occurred (ap-
proximately ten hours after the program was placed in
execution). We plan to add this debugging technique to the
repertoire of IDDT, the invisible debugger, such that a user
can cause a program being debugged to “break’ on certain
system calls. This technique would enable the user to gain
control on, for example, all file output operations without
requiring that he remember and specify the program loca-
tion of each. When the program breaks he could inspect
the parameters, perhaps request IDDT to execute the call
and inspect the result, and then allow his program to
proceed to the next breakpoint.

A somewhat different use of the trap mechanism would
enable a user to use programs written by others with the
assurance that doing so would not compromise the se-
curity of his data. For example, he could encapsulate such
programs in a controlled environment which selectively in-
hibits output operations by trapping them and allowing
only those directed to ‘‘legitimate” destinations to
continue. He could even intercept and prevent use of more
subtle techniques for leaking information such as those
recently noted by Lampson.*®

IMPLEMENTATION

The implementation of the JSYS trap mechanism is
described in this section with the focus on approach rather
than detail. The result is a simplified sketch of the imple-
mentation. First, it is necessary to present as background

356 National Computer Conference, 1975

T
ISYSXTo_ bt ¥ T ——
- — 1
.x:
USER JSYS MONITOR
ADDRESS DISPATCH ADDRESS
SPACE VECTOR SPACE

Figure 4—The JSYS instruction uses the JSYS dispatch vector to
accomplish a transfer from user to monitor address space

some facts about the JSYS instruction and the structure of
TENEX.

A TENEX process has two address spaces: A user ad-
dress space where the process executes the instructions of
the user program; and, a monitor address space that is in-
visible to the user program where the process executes
monitor routines in response to system calls initiated by
execution in the user address space. Transfer from user to
monitor address space is accomplished by execution of a
JSYS instruction with an effective address of less than 512
(see Figure 4). The processor enters “monitor mode” and
uses the effective address as an index into the JSYS dis-
patch vector to fetch two pointers; it stores the user
process PC and processor flags through one of the pointers
and resumes execution in monitor address space at the lo-
cation specified by the other.

Like the user address space, the monitor space for a
process is a paged, 256K word linearly addressable space.
Unlike the user space, the monitor space is partitioned
into several areas (see Figure 5). These areas are:

1. a process private area that holds process state in-
formation (PC, ACS, user address space map, etc.);

2. a job private area, shared by all processes in a job,
used for job wide data (the structure of the job
process hierarchy, data about files open by processes
in the job, etc.);

3. a “public” area, shared by every process in the
system, that contains monitor routines and various
system wide data bases.

The public area is further subdivided into in core resident
and swappable regions. Both the process and job private
areas are swappable.

The hardware paging device is aware of the organization
of the monitor address space and, depending upon the
area being referenced, takes different actions to complete
a memory reference. References to the resident area are
‘generally direct and bypass the page mapping operation
although the pager can be instructed to “map the resident
monitor” (see below); references to the public swappable

area are mapped via a resident monitor page map;
references to the job and process private areas are mapped
via a page map for the process private area.

Implementation of the trapping mechanism specified in
the previous section was feasible for TENEX because only
a finite number of system calls (512) are possible* and all
system calls “pass through” a single point in the system:
the JSYS dispatch vector.

To implement JSYS traps, the dispatch vector, formerly
a page shared by all processes in the system, was made
process private. Trapped processes have a modified dis-
patch vector. Entries corresponding to trapped JSYS’s
point to a “trap and interrupt” routine and those for un-
trapped JSYS’s point to the standard monitor routines for
those calls. We saw two ways to make the dispatch vector
private:

1. Make a minor (hardware) modification to the JSYS
instruction so that it uses as its dispatch vector, a
page in the process private area rather than one in
the public area.

2. Leave the JSYS instruction unmodified. When a
trapped process is running, set up the monitor map
entry for the JSYS dispatch vector to point to a page
in the per process area (the modified dispatch vector)
and cause the pager to map references to the resident
monitor (see above).

The primary advantage of the second approach is that it
allows the trapping software to run on the existing
hardware at all TENEX installations. Its disadvantages
are two: slightly slower execution for trapped processes
resulting from mapping each reference to the resident
monitor; and severe constraints on the software for
(planned) dual processor configurations resulting from
limitations of both the paging device and PDP-10
processor. The current implementation provides for both
alternatives, allowing each installation to choose one at
“system generation time”’.

77777,
8

PER
PROCESS
REGION

PER JOB
REGION

SWAPPABLE

"PUBLIC"
REGION

RESIDENT

|___.o

Figure 5—Schematic of the TENEX monitor address space

* The TENEX operating system, of course, can (and does) support more
than 512 system operations. This is accomplished by multiplexing
similar operations on a given JSYS by using call parameters to indicate
the desired operation.

The “trap and interrupt” routine executed when a JSYS
is trapped, suspends the trapped process and interrupts
the proper process in the hierarchy. Should the suspended
process be resumed without modification to its PC, the
routine continues by searching the hierarchy for addi-
tional processes to interrupt. The situation in Figure 6
illustrates that the immediate monitor of a trapped
process (i.e., the nearest superior process trapping its
JSYS’s) is not necessarily the correct process to interrupt.
Consider the proper sequence of events for execution of
JSYS’s 1,2,3 and 4 by process E, assuming that all
processes respond to the trap interrupt merely by resum-
ing E:

JSYS 1: trap to A
(note bypass of immediate monitor D and inter-
mediate monitor C)
JSYS 2: trap to D, then trap to C, then trap to A
(all monitors in hierarchy receive interrupt)
JSYS 3: trap to C, then trap to A
(note bypass of immediate monitor D)
JSYS 4: trap to D, then trap to A
(note bypass of intermediate monitor C)

The point here is that the immediate monitor may not
have set the trap for the particular JSYS executed. The
modified dispatch vector (JDVEC) is sufficient to initiate
trap action but is insufficient, by itself, to specify the
proper process(es) to be notified. To enable the “trap and
interrupt” routine to complete the trap action properly,
additional information is associated with each process:

1. The name of the process which is its immediate
monitor (IM);

2. A list of the JSYS’s for which its immediate monitor
has set traps (TTBL).

\\A TRAPPING 3

A TRAPPING
1,2,3,4 /

C TRAPPING
2,3 /

D TRAPPING
2,4 /

Figure 6—The immediate monitor of a trapped process is not necessarily
the correct process to handle a JSYS trap. For example, execution of
JSYS 1 by process E should initiate a trap to process A, bypassing
intermediate monitors D and C

TAVAQ Mrana QxR
U LW ;Aayn o
A
1,2,3,4 3
M IM
B ~ F '~
TTBL JDVEC JDVEC
1,2,3,4 ,2,3,4 3
™ TRAPPED TRAPPED
C ~
JOVEC
1,2,3,4
TRAPPED
TTBL JDVEC
2,4 1,2.3.4
IM>:1 TRAPPED
JDVEC
1,2,3,4
TRAPPED

Figure 7—When a process attempts to execute a trapped JSYS, a “trap

and interrupt” routine makes use of the modified JSYS dispatch vector

(JDVEC), the name of the immediate monitor of the process (IM) and a

list of JSYS’s being trapped by the process (TTBL) to determine which
process to interrupt

The situation in Figure 6 is redrawn in Figure 7 to
illustrate how JDVEC, IM and TTBL are used when a
process executes a trapped JSYS. Assume process E
initiates JSYS 3 and, as before, assume that all processes
receiving trap interrupts respond by resuming E. The
following sequence of events occurs (refer to Figure 7):

1. E is dispatched through its JDVEC to the “trap and
interrupt” routine.
2. IM of E is process D; D is not trapping E’s execution
of JSYS 3 (from E’s TTBL); bypass D.
3. IM of D is C; C is trapping JSYS 3; interrupt C and
suspend E;
. C resumes E;
. IM of Cis A; A is trapping JSYS 3; interrupt A and
suspend E;
6. A resumes E;
7. IM of A is null; dispatch E to standard monitor
routine for JSYS.

[N

Setting and removing traps for a process is accom-
plished by a recursive routine that “walks” over the
process hierarchy appropriately updating JDVEC, IM and
TTBL for the process and its inferiors. Reconsider the
situation of Figure 7; the effect of

set-traps (C, JSYS-2-and-5)

executed by process B is shown in Figure 8. Removing
traps is the trickier of the operations, as care must be

358 National Computer Conference, 1975

A
TTBL TTBL
1,2,3,4 3
M IM
B\ F\
TTBL JDVEC JDVEC
2,5 1,2,3.4 3
™ TRAPPED TRAPPED
C\
TTBL JDVEC
2,3 ,2,3,4,5
T TRAPPED
D). _
TTBL JDVEC
2,4 1.2,34,5
™ TRAPPED
E\
JDVEC
1.2,3.4,5
TRAPPED

Figure 8—Note the changes in IM, JDVEC, and TTBL for processes C,
D, and E resulting from process B setting traps for JSYS’s 2 and 5 for
process C

taken to restore to JDVEC the normal dispatches for only
those JSYS’s no longer trapped by any process in the
hierarchy. The following cases (refer to Figure 7) illustrate
the nature of the problem:

1. remove-traps (B, JSYS-1) executed by A:
Restore the normal dispatch for JSYS 1 to JDVEC of
B,C,D.E;
Remove JSYS 1 from TTBL of B and C

2. remove-traps (B, JSYS-2) executed by A:
Restore the normal dispatch for JSYS 2 to JDVEC
for B and C;
C and D trap JSYS 2, hence do not modify JDVEC
of D and E;
Remove JSYS 2 from TTBL of B and C

3. remove-traps (E, JSYS-2) executed by D:
E’s execution of JSYS 2 is trapped by A and C,
hence do not modify JDVEC C of E;
Remove JSYS 2 from TTBL of E.

Moving the JSYS dispatch vector from a resident page
shared by all processes to a swappable page in the process
private region adds to system memory management
overhead by:

a. increasing paging activity—modified dispatch vec-
tors must be swapped into core as the corresponding
trapped processes execute; and

b. placing increased demand for storage on the swap-
ping medium to hold the numerous dispatch vectors.

To reduce this overhead, the implementation minimizes
the number of dispatch vectors the system must maintain
by sharing them among processes whenever possible.* All
untrapped processes share the same modified dispatch
vector which is a page in the resident region. Furthermore,
the routine that sets and removes traps is careful to insure
that a process and all of its inferiors having the same im-
mediate monitor share the same dispatch vector. Figure 9
shows how dispatch vector sharing relations change as
traps are set and removed.

As we have described the implementation, a process
whose execution of certain JSYS’s is trapped can execute
untrapped JSYS’s without incurring overhead due to the
trapping mechanism. Because the overhead resulting from
execution of a trapped JSYS strongly depends upon the
situation,** it is impossible to give a single, simple
measure of how expensive trapping is. However, a com-
parison of the times required for a process to execute a
given (nontrapped) JSYS and to execute the same JSYS
for a well-defined, ‘‘best case’ trapping situation
represents a useful measure of the trapping overhead.

The time required to execute JSYS X is:

2 usec (=time to accomplish transfer from user to
monitor space; usually insignificant)

+CPU time to execute system routines that implement
call X

The time required when JSYS X is trapped by only a

®__
E —=| JOvECY JDVECy
UNMODIFIED UNMODIFIED
A SETS x
TRAPS ~ -] JDVEC,
FOR 8 “TmooiFiep
JDVEC, \ ~ — | JDpvECy
MODIFIED _#|moDIFiED
®-"

JDVECe
UNMODIF(ED

B8 REMOVES
ALL TRAPS
FOR D

-] JovEc,

MODIFIED

Figure 9—To minimize the number of JSYS dispatch vectors that must
be maintained, TENEX insures that processes share dispatch vectors
whenever possible

* Two processes can be made to share a page by setting the correspond-
ing map entries in their memory maps to point to the same physical page
of memory.

** i e., the number of superior processes trapping the JSYS, the actions
they take in response to the trap interrupt, and “unrelated” factors such
as liow heavily luaded the systen: is when the trap oceurs.

single process that eventually returns control to the trap-
ped process is:

2 usec (insignificant here)

+CPU time to execute system routines that implement
call X

+1.7 msec (=CPU time required to pass control from
trapped to trapping process and back; determined by
counting instructions making ‘“best case” assump-
tions)

+CPU time trapping process uses in response to trap

+2 process wakeups*

It is clear that the (percentage) overhead incurred by trap-
ping JSYS X is a strong function of the complexity of
JSYS X. Measurements made for the “Byte IN” JSYS (a
moderately “quick” call that reads the “next” byte from
an open file) for the situation in which the trapping
process immediately resumes the trapped process shows
the untrapped operation to be 3 to 10 times faster than the
trapped one.** By using highly tuned, tightly coded
routines rather than the existing, “general purpose” moni-
tor routines to transfer control among the processes, we
estimate that the 1.7 msec figure could be halved. This
would result in halving the overhead in trapping the “Byte
IN” operation. Our experience with the trapping
mechanism has shown that the delay resulting from the
two process wakeups is the most significant component of
the overhead. This component is largely due to the current
TENEX scheduling algorithms which treat the two
processes as independent, whereas, in reality, they operate
in a tightly coupled, coroutine-like fashion. We feel that a
significant reduction in trapping overhead would result by
modifying the TENEX scheduler to support coroutine-like
transfer of control between processes whereby one process
could relinquish the processor (i.e., its remaining CPU
quantum) and its memory resources (used to hold its
working set) to another process without invoking the
“normal’ processor and memory management operations.

DISCUSSION

The features we are familiar with in other systems that
most closely approximate the JSYS trap mechanism are
“dynamic linking”” in MULTICS*% and “facility calls” in
the operating system being developed by Project SUE.-¥7
The intended uses of these features are somewhat dif-
ferent from those of JSYS traps and of each other; thus
the capabilities they provide, while similar in some
respects, exhibit significant differences.

In MULTICS all “system calls” are made by invoking

* Time for TENEX to “notice” that the trapping process has been inter-
rupted, should be awakened and given the CPU and, later, that the
trapped process has been resumed and should be awakened.

** The large variance is due to the fact that it is sometimes necessary to
read a file page from secondary storage into the monitor file buffer to
complete the read operation.

subroutines. The “linkage” to an “external” subroutine,
such as one implementing a MULTICS “system function”
is not established until the routine is called for the first
time during program execution. At the first call a “fault”
occurs that activates a dynamic linking procedure. As a
result, various “system” and ‘“user” file directories are
searched for the routine. When (if) the routine is found,
the linkage is made such that subsequent calls of the
routine do not cause a “fault” and then normal execution
of the subroutine call is resumed. Dynamic linking is moti-
vated largely by the desire to support and encourage
modular programming.

The dynamic linking mechanism of MULTICS can be
used to substitute “non-standard’ routines for the “stan-
dard system” routines by placing such routines in the file
directories that are searched and (or) by specifying al-
ternative directory “search paths”. Use of dynamic link-
ing in this way could approximate some capabilities JSYS
traps offer. However, there are significant differences that
should be noted. First, the “set-up” procedure is different
and, in practice, would probably deter use of linking in
this way. The set up involves storing a file for each call to
be intercepted in an appropriate “user” file directory. The
MULTICS system provides many ways of accomplishing
a given function. As a result, in order to provide an execu-
tion environment for a given program it is necessary to
know which of the many possible routines the program
uses for each of the functions to be controlled. This,
together with the potential for file naming conflicts, sug-
gests that implementation of software to provide a con-
trolled environment within which arbitrary users may run
programs of their choice would be decidedly non-trivial.

Secondly, the linking activity takes place within the
context of a single process. The multiple process nature of
the trapping mechanism makes hierarchies of execution
environments relatively easy to implement. Consider, as
an example, the situation of a debugging environment
(such as IDDT provides) existing within a multi-host file
system environment (such as RSEXEC provides); system
calls would be interpreted first by the process implement-
ing the debugging environment and then by the process
implementing the file system environment. It is difficult
to see how dynamic linking could be used to implement
such a hierarchy of execution environments. Finally, the
linking mechanism is designed to serve as a subroutine
linkage mechanism. The kind of “controlling” actions a
“substitute” routine can take are constrained to be
consistent with the subroutine discipline. Furthermore,
once a link is established it generally exists for the dura-
tion of the computation. In this sense, JSYS traps are
more ‘“dynamic” in that they may be set and removed
repeatedly.

Project SUE at the University of Toronto is developing
an operating system in which system resources and
services are provided by dedicated ‘“system” processes.
The “facility call” concept was developed to meet the in-
terprocess communication requirements presented by
such a system organization. To request a service a process

360 National Computer Conference, 1975

issues a facility call. As a result it is blocked until the
process responsible for the service completes the request.
Thus, the virtual machine seen by a process is defined by
the processes which respond to the facility calls it makes.
Because facility calls can be used by all processes for in-
terprocess communication the distinction between ‘“user”
and ‘“‘system” processes is a weak one. That is, a so called
“user” process could provide service for another user
process in much the same way a TENEX process can use
JSYS traps to provide services for another process that are
not directly supported by the operating system. Unlike
JSYS traps, facility calls (as described in References 16
and 17) cannot be used to redefine existing system calls.
Therefore the approach one would take to provide a con-
trolled execution environment would be somewhat dif-
ferent than that using JSYS traps. It would involve
reprogramming the processes that provide the functions to
be controlled. The extent to which this is feasible would
depend upon where the functions of interest are provided:
at a low level by “standard” system processes, or at a high
level by user processes. As noted earlier, a requirement of
the JSYS trap mechanism was that it enable all standard
system functions to be intercepted without modifying the
way the operating system itself provides them. Because
there is no obvious analogy in facility calls to the way a
trap for a particular JSYS can be passed from process to
process, hierarchies of controlled environments would be
difficult to implement.

CONCLUDING REMARKS

Our experience with using the trapping mechanism has, to
date, been somewhat limited. However, we feel that it
represents an extremely powerful operating system
facility. Although we have discussed trapping in the
context of its realization in the TENEX operating system,
we feel that the trapping concept is a general one which is
consistent with a variety of operating system philosophies
and should appear in some form in every ‘“‘general pur-
pose” operating system. We recommend that system
designers seriously consider providing similar, user ac-
cessible mechanisms for program encapsulation in future
operating systems.

ACKNOWLEDGMENTS

The author wishes to thank a number of colleagues for
their contributions to the work presented above, especially

R. S. Tomlinson and J. D. Burchfiel who constructively
commented on the JSYS trap design and on the imple-
mentation approach; D. C. Allen and R. S. Tomlinson
whose knowledge of the TENEX monitor was invaluable
during the debugging phase; and R. E. Schantz, T. A.
Standish, and W. R. Sutherland who constructively com-
mented on the presentation of this paper.

REFERENCES

1. Bobrow, D. G., J. D. Burchfiel, D. L. Murphy and R. S. Tomlinson,
“TENEX, a Paged Time-Sharing System for the PDP-10,” Com-
munications of the ACM 15, 3, pp. 135-143, March 1972.

2. Murphy, D. L., ‘“Storage Organization and Management in
TENEX,” AFIPS Conference Proceedings, Vol. 41, 1972 AFIPS
Press, Montvale, New Jersey, pp. 23-32.

3. Thomas, R. H., A Model for Process Representation and Synthesis,
Ph.D. Thesis, Department of Electrical Engineering, M.I.T., June
1971. (Also available as Project MAC Technical Report TR-87.)

4. Bernstein, A. J. and P. Siegel, Hardware for Level Structure Operat-
ing Systems, Technical Report 21, State University of New York at
Stony Brook, Department of Computer Science, October 1973.

5. Thomas, R. H., “A Resource Sharing Executive for the ARPANET,”
AFIPS Conference Proceedings, Vol. 42, 1973, AFIPS Press, Mont-
vale, New Jersey, pp. 155-163.

‘6. Roberts, L. G. and B. D. Wessler, “Computer Network Development
to Achieve Resource Sharing,” AFIPS Conference Proceedings, Vol.
36, 1970, pp. 543-549.

7. Heart, F. E.,, R. E. Kahn, S. M. Ornstein, W. R. Crowther and D. C.
Walden, “The Interface Message Processor for the ARPA Computer
Network,” AFIPS Conference Proceedings, Vol. 36, 1970.

8. TENEX JSYS Manual—A Manual of TENEX Monitor Calls,
BBN—Computer Science Division, BBN, Cambridge, Massachusetts,
September 1973,

9. Myer, T. H,, J. R. Barnaby and W. W. Plummer, TENEX Executive
Language Manual for Users, BBN Computer Science Division, BBN,
Cambridge, Massachusetts, April 1973.

10. TENEX User’s Guide, BBN Computer Science Division, BBN,
Cambridge, Massachusetts, January 1973.

11. Digital Equipment Corporation, PDP-10 Reference Handbook,
December 1971.

12. Plummer, W. W., IDDT User Manual, BBN Computer Science Divi-
sion, BBN, Cambridge, Massachusetts, 1973.

13. Lampson, B. W., “A Note on the Confinement Problem,” Communi-
cations of the ACM, 18, 10, October 1973, pp. 613-615.

14. Organick, E. 1., The MULTICS System: An Examination of its
Structure, M.I.T. Press, 1972.

15. Vyssotsky, V. A., F. J. Corbato and R. M. Graham, “Structure of the
MULTICS Supervisor,” AFIPS Conference Proceedings, Vol. 27,
1965.

16. Sevcik, J. W., J. W. Atwood, M. S. Grushcow, R. C. Holt, J. J. Horn-
ing, and D. Tsichritzis, “Project SUE as a Learning Experience,”
AFIPS Conference Proceedings, Vol. 41, 1972, pp. 331-338.

17. Holt, R. C. and M. S. Gruschow, “A Short Discussion of Interprocess
Communication in the SUE/360/370 Operating System,” Proceed-
ings ACM SIGPLAN/SIGOPS Interface Meeting, April 1973.

	351
	352
	353
	354
	355
	356
	357
	358
	359
	360

