To: P

From: P. Deutsch

Subject: Speed of M1 CPU1 in 940 mode

The following timings were obtained by executing 64 sequential copies of the indicated instruction, in a loop that was performed 10000 times. For memory reference instructions, each of the 64 copies had a different address, to negate the effect of the fast memory.

| Instruction                   | Time (µs)    | 940 time        |
|-------------------------------|--------------|-----------------|
| LDA                           | 6.0          | 3.5             |
| LDA indexed                   | 7.0          | 3.5             |
| LDA indirect                  | 10.1         | <b>5.2</b> 5    |
| LDA indirect, 2 levels        | 14.2         | 7.0             |
| MUL                           | 56.8         | 7.0             |
| MIN                           | 6.3          | <b>5.2</b> 5    |
| CLA, CLB                      | 10.2         | 1.75            |
| XAB, AXC                      | 11.6         | 1.75            |
| LCY 1, 8, 16                  | 10.2         | 3.5, 5.25, 5.25 |
| LCY 40                        | 11.7         | 7.0             |
| LSH 2, 8                      | 11.2         | 3.5, 5.25       |
| LSH 32                        | 14.8         | 7.0             |
| RCY 8                         | 11.7         | 5. <b>2</b> 5   |
| BRU *+1                       | 3.9          | 1.75            |
| BRR *                         | 5 <b>. 2</b> | 3.5             |
| BRX *+1, successful           | 5.0          | 1.75            |
| unsuccessful                  | 6.3          | 3.5             |
| SKG, successful               | 7.2          | <b>5.2</b> 5    |
| unsuccessful                  | 6.1          | 3.5             |
| DIV, $(AB)=0$ , $(Q)=1234567$ | 50.1         | 17.5            |
| 177B5, (177B)=BRR 0           | 10.6         | 7.0             |

Most of the tests were run two or three times to check the consistency of the timings. The variation was no more than 2% in any case. Putting the same address in all copies of memory reference instructions speeded them up by about .4  $\mu$ s, presumably because their operand stayed in the fast memory.

These figures explain why 940 programs run so slowly on M1: with an average mix of RCH's, the M1 is only worth about 40% of a 940.