APPENDIX 1
 BELL TELEPHONE LABORATORIES

SUBJECT: GRAPHIC-2 IOT Instructions

DATE:	September 25,1967
FROM:	W.H.Ninke
	P.E.Rosenfeld

In the following discussion of the GRAPHIC-2 IOT instructions, the word "instruction" refers to a PDP-9 IOT, while the word "command" refers to a display command(executed from the display buffer). The IOT's are given below in ascending numerical order. In assigning mnemonics to the IOT instructions, the following conventions have been observed. A transfer from the accumulator (AC) to another register is called writing, and all instructions which write start with W. A transfer into the accumulator from another register is called loading and instructions which load start with L. A single status bit which can be controlled by IOT's is turned on by an instruction starting with E for Enable and is turned off by an instruction starting with D for Disable. A flag is cleared by an instruction starting with C (except for $C \not \subset N$).

CDF 700501 Clear Display Flags. The light-pen, edges, stop, conditional-stop, immediate-stop, and display-trap flags are turned off. The vector-component holding registers aro cleared. The display cycle control is set to single-step operation.

WDA 700502
Write Display Address. The 13 low-order bits of the AC are written into the display address registor.

Enable Continuous Run. The cyclo control is set to the continuous-run state.

ESS
700524
Enable Single-Step. The cycle control is set to the single-step state.

To start the scope after a display-trap flag, stop flag or con-ditional-stop flag has stopped the cycling, the following instruction is used:
$C \not \subset N \quad 700545$ CoNtinue. A CDF is performed. The cycle control is set to the continuous-run state and the data-request signal is turned on. The display starts at the location currently in the display address register.

To start the scope at a specific address, the following instruction is used:

BEG
700547
$=$

WDBC
700605

BEGin. (WDA followed by $C \varnothing N$). The display is started at the location specified by the 13 low-order bits of the AC.

Write Display Buffer and Continue. The contents of the AC are written into the display buffer register. The data-request signal is turned off. The display cycle control is set to the continuous-run state. Execution of the command transferred to the display buffer is begun. When this command is completed, the next command will be
taken from the location indicated by the display address register and normal continuous cycling will then take place.

LDB

WDBS

ELP

DLP

700612

700625

700721

Load Display Buffer. The display buffer register is loaded into the AC.

Write Display Buffer and Single-Step. The contents of the $A C$ are written into the display buffer register. The data-request signal is turned off. The display cycle control is set to the single-step state. Execution of the command transferred to the display buffer is begun. When this command is completed, the data-request signal is turned on and the display awaits further instructions.

Enable the Light Pen. The light pen is activated so that light sensed within the field of view of the pen will turn the light-pen flag on. This function can also be accomplished using a parameter-mode display command.

Disable the Light Pen. The light pen is disabled so that light sensed within the field of view of the pon will not turn the light-pen flag on. This function can also
be performed by a parameter-mode display command.

Note: The ability of the pen to respond to light within the field of view is dotermined by the last LP control IOT or parametermode display command (with LP control bits set) that has been given. Thus, if a parameter-mode word enables the light pen and a DLP instruction is then executed by the computer, the pen is disabled until another parameter-mode word or IOT changes the status of the pen.

RLPE $700722 \quad$ Resume after Light Pen stoppage with pen Enabled. The light-pen flag stops the display. This instruction causes resumption from the exact point of stoppage. The light-pen flag is turned off and the light pen is left enabled.

RLPD 700723
$=\sim$

RAEF
700742

Resume after Light Pen stoppage with pen Disablod. Same as RLPE except the light pen is disabled.

Resume After Edges $\underline{\text { Elag. }}$. The edges flag stops the display. This instruction causes resumption from the exact point of stoppage. All odge flags are cleared.

Note: If an RLPD or RLPE is given with the edges flag on, the display will not resume until an RAEF is also given. Similarly, with the light-pen flag on, an RAEF will not cause resumption until an RLPE or RLPD is given. This
method of operation allows the light-pen-flag programming and the " edge-flag programming to be separate uncoupled modules. Simultaneous light-pen flag and edges flag will not cause problems in the order of processing.

ECS

LDAC

DCS

LPM
701032
$:=-\infty$

Enable Conditional Stop. The conditionalstop feature for slave-mode words is enabled.

Load Display Address. The display address register is loaded into the 13 low-order bits of the AC. The 5 high-order bits of the AC are cleared. The display address register always points one beyond the display command being executed under normal cycling.

Disable Conditional Stop. The conditionalstop feature for slave-mode words is disabled.

Load Parameter-Mode command. The parameters settable by a parameter-mode command are loaded into the $A C$ in the following format: The prefix 0001 is loaded into the high-order bits. Bits $4,6,8,12$ and 15 are set to 1 . The remaining bits are loaded as follows:

```
        AC5 - Blink
        AC7 - LP enable
        AC9 - Exchange axss
        AClO - Complement X component
        ACll - Complement Y component
        ACl3-- Scale 0
        ACl4 - Scale l
        ACl6 - Intensity 0
        ACl7 - Intensity l
```

Thus, the parameters are loaded in the format of a parameter-mode command.

LDS $701052 \quad$ Load Display Status. The display flags	
	and conditions are loaded into the AC in
	the following format:

(ACO - Display-Trap Flag
ACl - Edges Flag
ACC - Light-Pen Flag
AC3 - Stop Flag
AC4 - Conditional-Stop Flag
AC5 - Pushbuttons Flag
AC6 - Console-Keyboard Flag
AC7 - Data-Phone Flag
AC8 - Byte Scan
AC9 - Conditional-Stop Enable
ACl0 - Immediate Stop
ACll - Cycle Control
ACl2 - Data Request
ACl3 - Override
ACl4 - Right Edge Flag
ACl5 - Left Edge Flag
ACl6 - Top Edge Flag
ACl7 - Bottom Edge Flag

Bit is 0	Bit is l
off	on
lst byte	2nd byte
off	on
off	enabled
contimuous	single-step
busy	ready
disabled	enabled
off	on

EIS 701401 Enable Immediate Stop. The immediate-stop condition is enabled.

LX	701412	Load X. The X deflection register is
		loaded into the low-order 10 bits of the AC .
		The high-order 8 bits are cleared.
EøV	.703401	Enable OVerride. The override condition is
		enabled (scope beam turned off).
'LY	703412	Load Y. The Y deflection register is
		loaded into the low-order 10 bits of the AC .
		The high-order 8 bits are cleared.

DøV	703421.	Disable override. The override condition is disabled (scope beam turned on).
SCK	704301	Skip on Console-Keyboard flag. If the console-keyboard flag is on indicating that a key has been depressed, the next instruction is skipped.
øck	704302	Or Console Keyboard. The code for the currently depressed key is or-gated into the AC. If no key is currently depressed, the $A C$ is unchanged. The bit format is as follows: ACll - KBO ACl2 - KBl ACl3 - KB2 ACl4 - KB3 ACl5 - KB4 AC16 - KB5 ACl 7 - KB6
CCK	$=-704304$	Clear Gonsole Keyboard. The console-keyboard flag is cleared.
LCK	704312	Load Console Keyboard. The AC is cleared and then an $\varnothing \mathrm{cK}$ is performed.
SPB	704401	Skip on Push-Buttons flag. If the pushbuttons flag indicating that any pushbutton has been pushed is on, the next instruction is skipped.

ϕ PB	704402	Or Push Buttons. The status of the pushbuttons is or-gated into the AC. If no pushbutton is currently depressed, the AC is unchanged. The bit format is as follows: ACO - PBO ACl - PBl AC2 - PB2 AC3 - PB3 AC4 - PB4 AC5 - PB5 AC6 - PB6 AC7 - PB7
CPB	704404	Clear Push Buttons. The pushbuttons flag is cleared.
LPB	704412	Load Push Buttons. The AC is cleared and then an $\varnothing \mathrm{PB}$ is performed.
WBL	704424	Write Button Lights. The lights in the pushbuttons corresponding to the l-bits in the AC are turned on. The previous status of the lights is lost. The bit format for the lights is the same as for the corresponding pushbuttons as given in $\varnothing \mathrm{PB}$.
LBL	704432	Load Push Button Lights. The AC is cleared. The pushbutton lights status is loaded into the AC. The bit format is the same as for the corresponding pushbuttons as given in $\varnothing \mathrm{PB}$.

Note: The following IOT (7045×2) applied only to G-2 terminals equipped with the Sylvania Data Tablet option.

LIX 704512
Load the Tablet X coordinate. Bits $8-17$ of the AC are loaded with the X coordinate of the tablet stylus. Bit 0 is set if the data are valid. Bit 0 \& 1 are set if the stylus is touching the surface of the tablet, and the data are valid. Bits $0,1 \& 2$ are set if the stylus is pressed against the surface of the tablet and the data are valid. The remaining bits are cleared.

Load the Tablet \underline{Y} coordinate. (Same as LTX but for Y coordinate).
V.NAink
W. H. NINE

MF- $\begin{aligned} & 1375-\text { WHN } \\ & 6263-\text { PER }\end{aligned}$

Att.
Figures 1-3

Graphic-2 API Assignments (revised Sept. 12, 1967)

Level Channel Name
B

4	40	Softivare
5	41	42
6	42	
7	43	n
	44	
	45	
\angle	46	
	47	

250 Paper-Tape Reader
$3 \quad 51$ Clock Overflow
52
53
54
255 Edges Flag.
256 Light_Pen Flag
2. 57 removed $79 / 68$

- 260 Conditional-Stop Flas

61
62
163 Pushbuttons Flag
164 Console-Keyboard. Fleg
065 Data-Fhone Flag
66
67

Level Channel Name

