|
y O

[

JSeN

duts

SYOOY NIGAVH Uemg JaBana(I Oq.llu_‘

HAYDEN BOOKS Tom Swan

Mastering
Turbo Debugger

. """’ﬂammhmmwwmwﬁ“

]

Covers new version of Borland’s Turbo Debugger
For C, C++, Pascal, and assembly language
Reveals successful debugging strategies

Mastering Turbo Debugger®

Mastering Turbo Debugger”

Tom Swan

HAYDEN BOOKS

A Division of Macmillan Computer Publishing
11711 North College, Carmel, Indiana 46032 USA

©1990 by Tom Swan

FIRST EDITION
SECOND PRINTING — 1991

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein. For
information, address SAMS, 11711 N. College Ave., Carmel, IN 46032.

International Standard Book Number: 0-672-48454-4
Library of Congress Catalog Card Number: 90-61921

Acquisitions Editor: Linda Sanning

Manuscript Editor: Sara Black

Production Editor: Kathy Grider-Carlyle

Production Coordinator: Steve Noe

Cover Concept and Art Direction: Dan Armstrong
Compositor: Cromer Graphbics

Illustrator: Dorn Clemons

Production Assistance: 7. R. Emrick, Tami Hugbes, Bill Hurley,
Chuck Hutchinson, Betty Kish, Bob LaRoche, Diana Moore, Bruce Steed,
Mary Beth Wakefield

Indexer: Sharon Hilgenberg

Technical Reviewer: Rick Naro

Printed in the United States of America

To my mother Mary P. Swan and my fatber Reyer O. Swan,
the beekeepers!

Overview

Part 1 Guide and Reference

1
2
3

(=) WAV BN

Introduction

Preparing Programs for Debugging
Getting Turbo Debugger Up and Running
Windows, Menus, and Hot Keys

Views and Local Commands

Using TD’s Utility Programs

Part 2 The Art of Debugging

5
8
9

10

11

12

13

14

15

Developing a Debugging Strategy
Breakpoints and Code Tracing
Evaluating Expressions

Common C Bugs

Hands-On Debugging for C
Common Pascal Bugs

Hands-On Debugging for Pascal
Common Assembly Language Bugs

Hands-On Debugging for Assembly Language

13
41
71
125
177

195
197
213
235
249
279
311
345
377
403

vii

viii

Mastering Turbo Debugger

Part 3 Advanced Debugging Topics
16 Macros and Keystroke Recording

17 Remote and Dual-Monitor Debugging

18 Hardware-Assisted Debugging

19 Debugging Resident Programs

Part 4 Data-Structure Guides
20 Cand C+ + Data Structures

21 Pascal Data Structures

22 Assembly Language Data Structures
Bibliography

Index

423
425
447
461
483

517
519
547
569
585
587

Part 1

Contents

Preface
Acknowledgments

Guide and Reference

1 Introduction

Requirements
Required Hardware
Required Software
Required Knowledge
Optional Hardware
How to Use This Book
About the Chapters
Part 1: Guide and Reference
Part 2: The Art of Debugging
Part 3: Advanced Debugging Topics
Part 4: Data-Structure Guides
Listings
Keyboard Keys
Text Styles
File Names
Where to Go from Here
Summary

XXXT1E

XXXV

~
IR I N e Nie SV IS TS N

NN~
NN

Mastering Turbo Debugger

2 Preparing Programs for Debugging

How to Use This Chapter

The Design-Compile-Debug Cycle

Compiler Updates

Managing Obiject Libraries with TLIB

Compiling C and C+ + Programs for Debugging

Sample C Program

Lattice C 3.3

Microsoft C 5.1

Microsoft C 6.0

QuickC 2.01

Turbo C 2.0 Integrated Environment
Turbo C 2.0 Command-Line Compiler
Turbo C+ + 1.0 Programmer’s Platform
Turbo C+ + 3.0 Command-Line Compiler
Zortech C+ + 1.07

Zortech C+ + 2.0

Compiling Pascal Programs for Debugging

Sample Pascal Program

Microsoft Pascal 4.0

QuickPascal 1.0

Turbo Pascal 4.0

Turbo Pascal 5.x Integrated Environment
Turbo Pascal 5.x Command-Line Compiler

Preparing Assembly Language Programs for Debugging

Sample Assembly Language Program
Microsoft Macro Assembler 5.1
OptASM 1.5

QuickAssembler 2.01

Turbo Assembler 2.0

Preparing .COM Programs for Debugging

Sample .COM Program
Assembling .COM Programs

Compiling Other Programs for Debugging
Debugging Without the Source

Using TOUCH to Update Files

Summary

3 Getting Turbo Debugger Up and Running

Configuration Tips

Black-and-White Graphics
Setting Up Directories

14
15
15
17
17
17
18
19
20
20
21
22
22
24
24
25
25
25
26
28
28
29
30
31
31
32
33
33
34
35
35
36
37
38
39
39

41
42
42

13

41

Contents

xi

System RAM
Expanded RAM (EMS)
Extended RAM (XMS)

Converting Extended to Expanded RAM

80286 Installation
80386 Installation
Exceptions

Reserving Environment Variable Space

Remote and Dual-Monitor Installation
Installing 2 Mouse
Using a Mouse with Microsoft Windows
Minimum Configurations
Custom Setups
Editing Configuration Files
Restoring Original Settings
TDINST Commands
Colors
Customize
Default color set
Display
Display swapping
Integer format
Beginning display
Screen lines
Tab size
Max tiled watch
Fast screen update
Permit 43/50 lines
Full graphics save
User screen updating
Log list length
Floating precision
Range inspect
Options
Directories
Input & prompting
Source debugging
Miscellaneous
Mode for Display
Save
Save configuration file
Modify td.exe
Quit
Creating a Debugging Workstation
Running Editors and Other Programs

43
43
44
45
46
47
48
48
49
49
50
50
51
52
52
53
53
53
53
53
53
54
54
54
54
54
55
55
55
55
55
56
56
56
56
56
57
57
58
59
59
59
59
59
60

Mastering Turbo Debugger

Shelling to DOS
Installing Language Help
Microsoft Windows
Running TD
TD Command-Line Options
-c[file]
-do, -dp, -ds
-h, -?
A+ | -]
K+ -]
-m(#)
-pl+ -1
[+] -]
-rp{#)
-rs{#)
scl+ | -]
-sd(dir)
-sm{#)
-vg[+| -]
va[+| -]
-vp[+| -]
-y<#)
-ye<#)
TD286 Command-Line Options
TD386 Command-Line Options
-b[+ | -]
-e(#)
-fx69
-w
Summary

4 Windows, Menus, and Hot Keys

Sample Program

The Scoop on Scope

Choose, or Select, Your Weapon

Turbo Debugger’s Display

Windows

Menus

Views
What’s in a Window?
Mouse Window Commands
Using Scroll Bars

60
61
61
62
62
63
63
64
64
64
64
65
65
65
65
66
66
66
66
67
67
67
67
68
68
68
68
68
69
69
70

71
72
73
73
75
75
79
79
80
81

71

Contents

xiii

Window Panes

Keyboard Window Commands

Moving Windows

Context Sensitivity
Dialog Boxes

What'’s in a Dialog Box?

Closing Dialog Boxes

Selecting Options with a Mouse
Selecting Options with the Keyboard

Entering Text
History Lists
Message Dialogs
Prompt Dialog Boxes
Inspectors
Local Inspector Menu
Range
Change
Inspect
Descend
New expression
Type cast
Inspecting Objects
Object Inspector Menus
Methods
Show inherited
Hierarchy
Inspecting Object Types
Inspect
Hierarchy
Show inherited
Global Menus
System Menu (=)
Repaint desktop
Restore standard
About
File Menu
Open
Change dir
Get info
DOS shell
Resident
Symbol load
Table relocate
Quit (Alt)-X)
View Menu

82
83
84
84
84
85
87
87
88
89
90
91
91
92
93
94
94
95
95
95
95
95
96
97
97
97
97
98
98
98
98
99
99
99
100
100
100
101
101
102
103
103
103
103
103

Xiv Mastering Turbo Debugger

Run Menu
Run ({F9))
Go to cursor ({F4))
Trace into ({F7))
Step over ((F8))
Execute to ((Alt)-(F9))
Until return ((Alt)-{F8))
Animate
Back trace ((Alt)-(F4))
Instruction trace (Alt)-(F7))
Arguments
Program reset ({Ctrl)-{F2))
Breakpoints Menu
Toggle ({F2))
At ((Alt)-(F2))
Changed memory global
Expression true global
Delete all
Data Menu
Inspect
Evaluate/modify ({Ctrl)-{F4}))
Add watch ({Ctrl)-{F7))
Function return
Options Menu
Language
Macros
Display options
Path for source
Save options
Restore options
Window Menu
Zoom ({F5))
Next ((F6))
Next pane ({Tab))
Size/move ({Ctrl)-{F5))
Iconize/restore
Close (Alt)-{F3))
Undo close ({Alt)-(F6))
Dump pane to log
User screen ({Alt)-(F5))
1 Module TCALC, 2 Watches
Help Menu
Index ({Shift)-(F1})
Previous topic ({Alt)-(F1))
Help on Help

103
104
104
104
105
105
106
106
107
107
108
108
108
109
109
110
110
111
111
111
111
113
113
113
113
114
115
115
116
116
117
117
117
118
118
118
119
119
119
119
120
120
121
121
121

Contents

XU

Hot Keys
Summary

5 Views and Local Commands

How to Use This Chapter
Default Commands
Another View
Breakpoints View
Local Breakpoints View Commands
Set options ({Ctrl)-S)
Hardware options ((Ctrl)-H)
Add ({Ctrl)-A) (Default)
Remove ({Ctrl)-R, (Delete))
Delete all ((Ctrl)-D)
Inspect ({Ctrl)-I)
CPU View
CPU Window Uses
Opening the CPU Window
CPU Code Pane
Local CPU Code Pane Commands
Goto ({Ctr])-G)
Origin ({Ctrl)-O)
Follow ({Ctrl)-F)
Caller ({Ctrl)-C)
Previous ({Ctrl)-P)
Search ({Ctrl)-S)
View source ({Ctrl)-V)
Mixed ({Ctrl)-M)
New cs:ip ({Ctrl)-N)
Assemble ({Ctrl)-A) (Default)
I/0 ({Ctrly-I)
CPU Registers Pane
CPU Flags Pane
CPU Stack Pane
Local CPU Stack Pane Commands
Goto ({Ctrl)-G)
Origin ({Ctrl)-O)
Follow ({Ctrl)-F)
Previous ({Ctrl)-P)
Change ({Ctrl)-C) (Default)
CPU Dump Pane
Dump View
Scrolling the Dump Window

122
124

125

126
126
127
127
128
128
130
130
131
131
131
132
132
132
134
135
135
135
136
136
136
136
137
137
138
138
139
139
139
140
140
140
141
141
141
141
142
142
142

xvi Mastering Turbo Debugger

Local Dump View Commands 143
Goto ({Ctrl)-G) 143

Search ({Ctrl)-S) 143

Next ({Ctrl)-N) 144
Change ({Ctrl)-C) (Default) 144

Follow ({Ctrl)-F) 144
Previous ({Ctrl)-P) 146

Display as ({Ctrl)-D) 146

Block ({Ctrl)-B) 147
Execution History View 149
Reverse Executing Code 149
Reverse Execution Limitations 149
Local Execution History Commands 149
Inspect ({Ctrl)-I) 150
Reverse execute ({Ctrl)-R) 150

Full history ({Ctrl)-F) 150
Keystroke restore ({Ctrl)-K) 150

File View ‘ 151
File View Local Menu 152
Goto ({Ctrl)-G) 152

Search ({Ctrl)-S) (Default) 152

Next ({Ctrl)-N) 152
Display as ({Ctrl)-D) 153

File ({Ctrl)-F) 153

Edit ((Ctrl)-E) 153
Hierarchy View 153
C+ + vs. Turbo Pascal 154
Hierarchy View Local Menu 154
Inspect ({Ctrl)-I) 155

Tree ({Ctrl)-T) 155

Parents ({Ctrl)-P) 155

Log View 155
Log View Local Menu 156
Open log file ({Ctrl)-O) 156

Close log file ({Ctrl)-C) 157
Logging ({Ctrl)-L) 157

Add comment ({Ctrl)-A) (Default) 157

Erase log ({Ctrl)-E) 157

Module View ({F3)) . 158
Module View Window Title 159
Module View Local Menu 159
Inspect ({Ctrl)-I) 159

Watch ({Ctrl)-W) 160

Module ({Ctrl)-M) 160

File ({Ctrl)-F) 160

Contents

xvii

Previous ({Ctrl)-P)
Line ({Ctrl)-L)
Search ((Ctrl)-S)
Next ((Ctrl)-N)
Origin ({Ctrl)-O)
Goto ({Ctrl)-G) (Default)
Edit ({Ctrl)-E)
Numeric Processor View
NDP Stack Values
The Numeric Processor View’s Window Title
Numeric Processor View Local Menu
Zero ({Ctrl)-Z)
Empty ((Ctrl)-E)
Change ({Ctrl)-C) (Default)
Toggle ({Ctrl)-T) (Default)
Registers View
Register View Local Menus
Increment ({Ctrl)-I)
Decrement ({Ctrl)-D)
Zero ({Ctrl)-Z)
Change ({Ctrl)-C) (Default)
Registers 32-bit ({Ctrl)-R)
Toggle ({Ctrl)-T) (Default)
Stack View
Stack View Local Menu
Inspect ({Ctrl)-I) (Default)
Locals ({Ctrl)-L)
Variables View
Variables View Local Menu
Inspect ({ Ctrl)-I) (Default)
Change ({Ctrl)-C)
Watches View
Viewing Variables
Adding Symbols to Watches
Watches View Local Menu
Watch ({Ctrl)-W, (Insert)) (Default)
Edit ({Ctrl)-E)
Remove ({Ctrl)-R, {Delete))
Delete all ({Ctrl)-D)
Inspect ({Ctrl)-I)
Change ({Ctrl)-C)
Summary

161
161
161
162
162
162
163
163
164
164
164
165
165
165
165
165
166
166
167
167
167
167
167
168
168
168
169
169
170
170
171
171
172
172
173
173
173
174
174
174
174
174

xviti

Mastering Turbo Debugger

6 Using TD’s Utility Programs

Displaying On-line Help
Error Messages
About the Syntax Descriptions
TDCONVRT.EXE
TDCONVRT Syntax and Options
-C
-swW
TDDEV.EXE
TDDEV Syntax and Options
-r :
TDINST.EXE
TDINST Syntax and Options
-c(file)
TDMAP.EXE
TDMAP Syntax and Options
-b
-C
-e{ext)
-q
TDMEM.EXE
TDMEM Syntax and Options
-V
TDNMI.COM
TDNMI Syntax and Options
-Pl{#)]
TDPACK.EXE
TDPACK Syntax
TDREMOTE.EXE
TDRE.EXE
TDSTRIP.EXE
TDSTRIP Syntax and Options
-s
-C
TDSTRIP Examples
TDUMP.EXE
TDUMP Syntax and Options
-a
-a7
-b{#)

177

177
178
178
178
179
179
179
180
180
180
180
181
181
181
182
182
182
182
183
183
183
183
183
184
184
184
184
185
185
185
186
186
186
186
187
188
188
188
188
188
188
189
189

Contents

Xix

Part 2

-h
-1
-m
-0
-0C
-0ilD
-0xID
-v
UNZIPEXE
UNZIP Syntax and Options
-C, -cm
-0
P
-t
-v[b|c|d|e[n|p]s]|r]
Summary

The Art of Debugging

7 Developing a Debugging Strategy

The Elements of Debugging Style
Turbo Debugger’s Tools
Breakpoints
Code Tracing
Data Inspection
Expression Evaluation
Bug Species
Syntax Errors
Runtime Errors
Logical Errors
Types of Runtime and Logical Bugs
Data-Dependent Bugs
Intermittent Bugs
Moving-Target Bugs
Fatal Bugs
Long-Distance Bugs
Time-Bomb Bugs
Debugging Strategies
Testing for Bugs
Force Bugs into the Open
Take Good Notes
Test as You Go
Stabilizing Bugs

189
189
189
190
190
190
190
191
191
191
192
192
193
193
193
193

195

197

198
199
199
201
201
202
203
203
204
205
205
206
206
206
207
207
208
209
209
210
210
210
211

Mastering Turbo Debugger

Isolating Bugs
Repairing and Retesting
Summary

8 Breakpoints and Code Tracing

Breakpoints, Tracepoints, and Watchpoints
Debugging with Code Breakpoints
Isolating a Bug
Breaking in Procedures and Functions
Examining Program Exit Conditions
Finding a Runtime Error
Breaking into OOP Methods
Code Breakpoint Tricks
Debugging with Data Breakpoints
Entering Expressions
Hardware and Software Differences
Speeding Software Data Breakpoints
String Comparisons
Breaking on Register Values
Data Breakpoint Tricks
Logging Expressions
Logging Multiple Variables
Logging Complex Expressions
Logging “Self” in OOP Code
Side Effects
Splicing Code
Splicing Pascal Code
Splicing C Code
Splicing Procedure and Function Calls
Setting the Pass Count
Verifying a Loop Index
Finding Unauthorized Variable Assignments
Locating Unwanted Recursions
Debugging with Code Tracing
Tracing and Stepping
Using Instruction Tracing
Animation
Debugging with Back Tracing
Back Tracing Machine Code
Back-Tracing Limitations
Tracing into DOS and BIOS Code
Summary

211
211
212

213

213
214
214
215
215
216
216
217
217
218
218
219
220
220
221
221
222
223
223
224
224
224
225
226
226
227
227
227
228
228
229
230
231
231
232
232
233

Contents xxi

9 Evaluating Expressions 235
Language and Format 236
Changing an Expression’s Format 236
Line Numbers 237
C Expressions 238
Operators 239
Numeric Expressions 239
String Expressions 239
Type Casting 239
Side Effects 240
Pascal Expressions 240
Operators 241
Numeric Expressions 241
String Expressions 241
Calling String Functions 241
Type Casting 242
Side Effects 243
Assembly Language Expressions 244
Operators 244
Numeric Expressions 245
String Expressions 245
Side Effects 246
Object-Oriented Expressions 246
Calling Object Methods 247
Summary 247

10 Common C Bugs 249
Going to the Source 249
Transposed Comment Brackets 250
Mismatched Braces and Parentheses 250
Else with Wrong If 251
All Things Being Equal 252
Path-Name Problems 253
Misplaced Semicolons 254
Accidental Function Redefinition 255
Problems with Variables 256
Uninitialized Variables 256
Finding Uninitialized Variables 257
Stabilizing a Changing Variable 258
Mishandling Global Variables 259
Confusing Automatic and Static Variables 260
Confusing Static and Extern 261

xxit

Mastering Turbo Debugger

Arrays
Something for Nothing
Index-Range Errors
Problems with Pointers
Uninitialized Pointers
Finding Uninitialized Pointers
Finding NULL Pointers
Not Allocating Space to Pointers
Flunking Pointer Arithmetic
Pointers and Automatic Variables
Not Disposing Allocated Space
Using Disposed Memory
Functions
Forgetting a Return Value
Confusing Calls by Value and Reference
Function Side Effects
Unwanted Recursion
Numerical Errors
Bad Operator Precedence
Putting the Hex On
File Handling
Forgetting to Close Open Files
Not Checking for I/O Errors
Neglecting to Use Pointers in scanf()
Bad Breaks
Nested Breaks
Broken Continuations
Forgetting Break in a Switch Statement
Summary

11 Hands-On Debugging for C

Debugging Strategy Review
The Program
Hands-On Debugging Sessions
Using LS.C
How LS.C Works
Bug Number 1
Bug number 1—Test
Bug number 1—Stabilize
Bug number 1—Isolate
Bug number 1—Repair
Bug Number 2
Bug number 2—Test

261
262
262
263
263
264
265
265
266
266
268
268
268
268
270
271
272
273
273
274
274
274
274
275
276
276
277
277
278

279

280
280
289
290
290
291
291
292
292
294
295
295

Contents

Xxiii

Bug number 2—Stabilize
Bug number 2—Isolate
Bug number 2—Repair
Bug Number 3
Bug number 3—Test
Bug number 3—Stabilize
Bug number 3—Isolate
Bug number 3—Repair
Bug Number 4
Bug number 4—Test
Bug number 4—Stabilize
Bug number 4—Isolate
Bug number 4—Repair
Bug Number 5
Bug number 5—Test
Bug number 5—Stabilize
Bug number 5—Isolate
Bug number 5—Repair
Summary

12 Common Pascal Bugs

Typos and Other Ink Spots
The Case of the Missing Comment Bracket
ELSE with Wrong IF-THEN
Disappearing Standards
Variable Dilemmas
Global Variable Wars
Home on the Range Error
How to Find a Runtime Error
Looping Once Too Many Times
Procedural Predicaments
Mixing Variable and Value Parameters
String Length Problems
Functional Foul Ups
Side Effects
This Way Out
Unwanted Recursion
Mutual Madness
Interactive Side Effects
Pointer Pointers
Uninitialized Pointers
Finding Nil Pointers
Finding Uninitialized Pointers

295
296
297
297
298
298
299
301
302
302
303
303
307
307
308
308
308
310
310

311

311
311
313
315
316
318
318
319
319
320
321
321
323
323
324
325
327
328
328
329
330
330

xX6V

Mastering Turbo Debugger

Disposed Pointers
Unnormalized Pointers

Misunderstanding MemAvail and MaxAvail

Out-of-Memory Bugs
Numerical Puzzles

Misplaced Operator Precedence

Negative Words

Putting the Hex On

Integer Wrap Around
Mishandling Files

Forgetting to Close a File

Delayed File Errors
Overlay Obstacles

Over Initialization

Sluggish Overlays
Summary

13 Hands-On Debugging for Pascal

The Program
Hands-On Debugging Sessions
Using CAL.PAS
Bug Number 1
Bug number 1—Test
Bug number 1—Stabilize
Bug number 1—Isolate
Bug number 1—Repair
Bug Number 2
Bug number 2—Test
Bug number 2—Stabilize
Bug number 2—Isolate
Bug number 2—Repair
Bug Number 3
Bug number 3—Test
Bug number 3—Stabilize
Bug number 3—Isolate
Bug number 3—Repair
Bug Number 4
Bug number 4—Test
Bug number 4—Stabilize
Bug number 4—Isolate
Bug number 4—Repair
Bug Number 5
Bug number 5—Test

331
332
333
334
335
335
336
337
337
338
338
339
341
341
342
343

345

346
353
354
355
355
356
357
358
359
360
360
360
363
364
364
364
365
366
367
368
368
368
370
370
371

Contents Xxv
Bug number 5—Stabilize 371
Bug number 5—Isolate 371
Bug number 5—Repair 372

Bug Number 6 373
Bug number 6—Test 373
Bug number 6—Stabilize 373
Bug number 6—1Isolate 373
Bug number 6—Repair 375

Summary 375

14 Common Assembly Language Bugs 377

Typos and Ink Spots 377
Instruction Operand Order 377
Popping the Wrong Registers 378
Confusing Offsets and Variables 379

Common Program Errors 381
No Return to DOS 381
Stack Missing or Too Small 382
Misunderstanding Uninitialized Data 382
Misunderstanding ASSUME 383
Unexpected Register Changes 384
Undocumented Registers 385

Flag Foul-Ups 385

Segment Snags 385
Using the Wrong Segment Register Value 386
Using the Wrong Default Segment Register 386
Ignoring Data Segment Starting Offsets 387
Unexpected Segment Wrap Around 388

Procedural Predicaments 389
Unexpected Fall-Through 389
Uninitialized Register Parameters 390
Multiple Entry Points and Exit Paths 390
Returning Near and Far 391
Not Preserving Registers Around Calls 392

Jumping Into the Fire 392
Wrong Jump Sense 393
Misplaced Local Labels 393

String Sins ' 395
Expecting CX = 0 to Reach an Entire Segment 395
Trusting String Operands 396
Bad Direction Flag Setting 397
Confusing Default Segment Registers 397

Interrupt Intricacies 397

XXVi

Mastering Turbo Debugger

Part 3

Destroying Register Values

Disabling Interrupts

Forgetting to Restore Interrupt Vectors
Numerical Puzzles

Not Extending the Sign Bit

Radix Mistakes
Debugging Mixed-Language Code
Summary

15 Hands-On Debugging for Assembly Language

The Program
Hands-On Debugging Sessions
Using FILLMEM and FILLTEST
Bug Number 1
Bug number 1—Test and Stabilize
Bug number 1—Isolate
Bug number 1—Repair
Bug Number 2
Bug number 2—Isolate
Bug number 2—Repair
Bug Number 3
Bug number 3—Isolate
Bug number 3—Repair
Summary

Advanced Debugging Topics

16 Macros and Keystroke Recording

Macros

How to Enter Macros

Keys for Macros

Saving and Restoring Macros

Macros and Debugging
Opening views
Reprogramming TD’s hot keys
Repeating test sequences
Entering watch and inspector expressions
Setting multiple breakpoints

Problems with Macros

Sample Macros
Display hidden windows—{Shift)-(F1)
Skip over statements—({Shift)-(F2)

398
398
398
399
399
399
400
401

403

404
412
413
414
415
415
416
417
417
418
419
419
422
422

423

425

425
426
426
428
428
428
429
430
430
431
431
432
433
433

Contents

Xxvit

Reset and return to origin—(Shift)-(F3)
Open views as icons—{Shift)-(F4)
Erase user screen—<{Shift)-(F5)
Start a new log file—(Shift)-{(F6)
Snapshot—({Shift)-(F7)
OOP instance inspector—{Shift)-(F8)
Forward and reverse gears—(Keypad +) and {(Keypad -)
Repeat test—{Shift)-(F9)
CPU search next command—<{Shift)-(F10)
Keystroke Recording
Enabling Keystroke Recording
Execution History View Review
Keystroke Recording and Debugging
Keystroke recording and breakpoints
Keystroke recording and animation
Keystroke recording and code tracing
Keystroke recording and inspectors
Creating Repeatable Test Procedures
Problems with Keystroke Recording
Using Macros and Keystroke Recording
Summary

17 Remote and Dual-Monitor Debugging

The Right Connections
Testing the Remote Link
Configuring TDREMOTE
Configuring TDRF
TDRF and TDREMOTE Command-Line Options
Configuring TD for Remote Debugging
Debugging a Program in Remote Mode
File I/O and Remote Debugging
Debugging Keyboard Input Routines
TDRF Commands
Dual-Monitor Debugging
Using Two Monitors
Switching Displays
Problems with Dual-Monitor Debugging
Summary

18 Hardware-Assisted Debugging

Internal and External Hardware Debugging
Single-Stepping and the Trap Flag

434
435
436
436
437
438
439
440
440
441
441
442
442
442
443
443
443
444
444
445
445

447

448
450
451
452
453
453
454
456
456
457
458
459
459
459
460

461

461
462

XXViii

Mastering Turbo Debugger

Breakpoint Interrupt
Internal Debugging Registers
Hardware-Debugging Boards
Setting Up for Hardware-Assisted Debugging
The Hardware Breakpoint Options Dialog
How to Set Hardware Breakpoints
Modifying Existing Hardware Breakpoints
Accessing and Changing Memory
Expression True vs Hardware Breakpoints
Selecting Hardware Breakpoint Options
How Hardware-Assisted Debugging Works
Problems with Hardware-Assisted Debugging
Debugging with Hardware Breakpoints
Hardware Breakpoints and C
Hardware Breakpoints and Pascal
Using I/O Breakpoints
Using Instruction-Fetch Breakpoints
Debugging Embedded Systems
Installing a Panic Reset Button ‘
Writing a Debugging Device Driver
Summary

19 Debugging Resident Programs

TSRs—A Quick Review
Debugging TSRs
A Sample TSR Program
Debugging the Sample TSR
Setting TSR Breakpoints
Resetting the Interrupt Vector
Alternate TSR Debugging Methods
Loading the TSR from DOS
Loading a Separate Symbol Table
Debugging TSRs in Remote Mode
Resident Remote Debugging
Nonresident Remote Debugging
Common TSR Bugs
Failing to Preserve All Registers
Mishandling Segment Registers
Conflict with a BIOS Routine
Conflict with a Nonreentrant DOS Routine
Interrupting a Hardware Interrupt
Miscalculating the Resident Portion Size

Loading an Unprotected Resident Data Segment

462
462
463
465
466
467
469
469
470
470
473
474
475
475
478
479
479
480
481
481
482

483

483
485
486
497
497
498
500
500
502
503
504
505
506
506
506
507
508
508
509
509

Contents XXX
PRINT.COM Conflict 510
Not Letting Interrupt 09h Finish 510
Not Letting Interrupt 08h Finish 510
Failing to Deal With Critical Errors 511
Device Drivers—A Quick Review 511
Debugging Device Drivers 512
Debugging Device Drivers in Remote Mode 513
Debugging Interrupt Service Routines 513
Debugging “Exec-ed” Processes 514
Summary 516

Part 4 Data-Structure Guides 517

20 Cand C+ + Data Structures 519
Where Are My Variables? 519
Static Variables 520
Automatic Variables 520
Register Variables 521
Function Parameters 521
Pointer Variables 522
Size of Variables 523
Internal Variables 523
Viewing Local Symbols 523
Examining Basic Data Types 524
Char Types 524
Int Types 525
Float Types 525
Enumeration Types 526
Constants 527
Examining Derived Data Types 528
Arrays 528
Arrays of Pointers 530
Strings 531
Bit Fields 531
Structures 534
Unions 535
Pointers 536
Pointers and Arrays 536
Typed and Untyped Pointers 537
NULL Pointers 538
Files 538
Debugging Dynamic Structures 539
Pseudo Variables 540

Mastering Turbo Debugger

Debugging C+ + Objects
Watching Objects
Browsing Object Classes
Browsing Object Instances

Summary

21 Pascal Data Structures

Where Are My Variables?
Global Variables
Local Variables and Parameters
Pointer Variables
Size of Variables
System Variables
Examining Simple Data Types
Boolean Types
Char Types
Enumerated Types
Integer Types
Real Types
Subrange Types
Constants
Examining Complex Data Types
Array Types
Record Types
Problems with “With”

Set Types

String Types
Files

Debugging Dynamic Structures
Debugging Objects

Watching Objects

Classes vs Instances

Finding the VMT
Summary

22 Assembly Language Data Structures

Where Are My Variables?
Entering Values
Size of Variables
Examining Simple Data Types
Byte (db) Variables
Word (dw) Variables

540
541
541
543
546

547

547
547
548
548
549
549
550
550
550
551
552
553
554
555
555
556
557
558
558
559
560
562
563
564
564
565
567

569

569
570
570
571
571
572

Contents

XxXE
Doubleword (dd) Variables 573
Pointer (df, dp) Variables 573
Doubleword (dd) Pointers 574
Quadword (dq) Variables 574
Ten-Byte (dt) Variables 575
Memory-Addressing Modes 575
Equates and Expressions 576
True and False Expressions 577
Examining Complex Data Types 578
Arrays 578
Strings 579
Structures 580
Unions 581
Records 582
Summary 584

Bibliography 585
Companies and Products 585
References 586

Index

587

Preface

ALL PROGRAMS have bugs. You’ve heard it said, but is it true? Maybe not,
although it does seem that few programmers write bug-free code on the first
try. Any sizable program is bound to catch a few snags at some stage in its
development.

The trick, of course, is to find and fix the bugs before others see them. But,
despite what you may have heard or read elsewhere, debugging is not an
obscure ritual that only programming wizards can possibly master. Debugging
is a skill—one that all programmers can learn how to perform successfully and
with a minimum of fuss and frustration.

With that thought in mind, over a year ago, I began writing Mastering
Turbo Debugger. Originally, i meant to focus on two themes: First, how to use
Turbo Debugger to debug MS-DOS programs in C, Pascal, and assembly lan-
guage; and, second, how to combine that practical knowledge with the ele-
ments of a good debugging style.

While researching that second theme, however, I ran into an unexpected
stumbling block. To my surprise, I found that very little had been written about
how to acquire useful debugging skills, or even about what those skills are. Of
the few books and articles that mention debugging, most do so only in passing.
(“While debugging, watch out for uninitialized pointers. They can bite.”). I
knew that already—I wanted to learn how to bite back!

Resigned to getting little help from currently published material, I dis-
carded two earlier rough-draft manuscripts and started over from scratch. Little
by little, ideas took form and the chapters fell into place. By drawing on my
own experiences with debugging and programming, by reading between the
lines in the very few references that treat debugging seriously, and by sharing
ideas with friends and colleagues, I was able to assemble a collection of practical
advice about debugging that I hope will make it easier for others to identify and
stamp out bugs.

XXX111

XXXiV

Mastering Turbo Debugger

Now that the book is done, and I'm finally typing these last few words, I
can say truthfully that writing Mastering Turbo Debugger has been a remark-
able learning experience for me. When I began writing the book, I thought that
I knew what debugging was “all about.” But I soon discovered that what I didn’t
know could, well, fill a book. So, here is that book. May it serve your own
debugging efforts well.

ToMm SWAN

Note: The complete Turbo Debugger and Tools package from Borland includes
three products: Turbo Debugger 2.0, Turbo Assembler 2.0, and Turbo Profiler
1.0. This book covers Turbo Debugger 2.0. For an assembly language tutorial, see
my book Mastering Turbo Assembler, Howard W. Sams, 1989. Mastering Turbo

- Debugger does not cover Turbo Profiler. Profiling is a subject that demands more
than a glossing over in a chapter or two—and for that reason, this book concen-
trates on its defined goal: explaining how to use Turbo Debugger as a tool for
developing useful debugging strategies. Will there be a Mastering Turbo Profiler?
Let me turn the question back to you. Would you find such a book to be useful? If
so, let me know by writing to me in care of Howard W. Sams, 11711 N. College
Ave., Carmel, IN 46032.

Acknowledgments

]

’I:IIS BOOK would not exist without the efforts of the following people. To
all of you: Please accept my sincere thanks and appreciation for your time, your
patience, and your expertise.

To everyone at Howard W. Sams, especially Sara Black, Kathy Grider-
Carlyle, Chuck Hutchinson, Betty Kish, Jennifer Matthews, San Dee Phillips,
Glen Santner, Linda Sanning, Richard Swadley, Ann Taylor, and others who
edited and “debugged” the text: Thanks for your painstaking attention to
countless details. To Rick Naro at Paradigm Systems, who read the manuscript
for technical accuracy: Thank you for your many helpful suggestions. To the
Turbo Debugger development team and supporting players at Borland Interna-
tional, including Nan Borreson, Chuck Jazdzewski, Matt Pietrek, Steve Sheridan,
Eugene Wang, and Tom Wu: Thank you for answering my questions and for
supplying the prerelease software that made it possible for me to write this
book. To Turbo Debugger’s developers at Purart, especially Chris Williams:
Thanks for an excellent debugger. To my correspondents on Borland’s Com-
puserve forums: Thank you for many hours of engaging, informative, and
always entertaining conversation. To my friend Ron Borthwick, who knows PC
hardware inside and out, thanks for helping more than you realize. And, to my
wife and assistant Anne: A special thank you not only for helping with this
book, but for being there always.

XXXV

XXXVE

Mastering Turbo Debugger

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks are
listed below. In addition, terms suspected of being trademarks or service marks have
been appropriately capitalized. SAMS cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

386-MAX™ is a trademark of Qualitas, Inc.

BRIEF™ is a trademark of Solutions Systems Company.

DESQview™ is a trademark of Quarterdeck Office Systems.

IBM® PC is a registered trademark of International Business Machines Corporation.
Microsoft® C is a registered trademark of Microsoft Corporation.

Microsoft® Macro Assembler is a registered trademark of Microsoft Corporation.
Microsoft® Windows™ is a registered trademark of Microsoft Corporation.
Microsoft® Windows™ /386 is a registered trademark of Microsoft Corporation.
MS-DOS® is a registered trademark of Microsoft Corporation.

Pcriscbpe"‘ I1-X is a trademark of The Periscope Co., Inc.

PC-Kwik™ is a trademark of Multisoft Corporation.

PS/2™ is a trademark of International Business Machines Corporation.

SideKick® is a registered trademark of Borland International, Inc.

VEDIT® is a registered trademark of CompuView Products, Inc.

WordStar® is a registered trademark of WordStar International Incorporated.

Part One

Guide and Reference

Chapter 1

Introduction

MOST PROGRAMMERS view debugging as all work and no fun. But that’s
understandable—instead of finding and fixing bugs, who wouldn’t prefer to
write new code? Nothing ruins the day like a nasty bug that pops up out of
nowhere in a program that seemed to work just fine. Programming is often
enjoyable. Debugging is always a grind.

So, I won’t promise to make debugging fun. Nobody can do that. Instead,
with the help of Borland International’s Turbo Debugger (TD) 2.0, I aim to
demonstrate in this book how you can master the art of debugging, not as a
tedious, distasteful chore, but as an interesting challenge, just another part of
your normal programming activities. Debugging won't ever be fun. But it can
be rewarding when accomplished with patience and skill.

Like all skills, however, improving your ability to find and fix bugs in code
will take time. And that’s where this book and TD 2.0 come in. In the following
chapters, you’ll meet every TD command and feature. You’ll learn ways to
develop useful debugging strategies using TD to find out quickly what’s causing
your program to misbehave. And, you’ll investigate many common bugs in C,
Pascal, and assembly language, which will help you to avoid making these same
mistakes in your own programs.

In researching the material for this book, I combed language tutorials for
debugging tips, I monitored Borland’s Compuserve forums, and I took thou-
sands of notes about my own debugging experiences with TD. [spent countless
hours using TD 2.0, from its early “alpha” and “beta” tests, to the production
version you can purchase today. Along the way, I nearly became bug-eyed
looking at buggy code—but I also discovered there was more to the art of
debugging than I ever expected to learn.

The result of those efforts is Mastering Turbo Debugger, a guide to the art
of debugging in C, Pascal, and assembly language and a complete reference to
TD’s windows, commands, and hot keys. This chapter introduces the book and
explains how to get the most from its four parts:

4 Part One: Guide and Reference

® Part 1 is a Guide and Reference to installing and using TD. Read these
chapters quickly your first time through for an overview of TD’s
commands.

® Part 2 explores The Art of Debugging from a language point of view. In this
part, you’ll learn how to develop successful debugging strategies. You'll
also follow hands-on demonstrations in C, Pascal, and assembly language to
see TD in action as you find and fix several dastardly bugs.

® Part 3 covers Advanced Debugging Iopics, including macros, keystroke
recording, remote and dual-monitor debugging, hardware debugging,
TSRs, and device drivers.

e Part 4 closes the book with detailed Data-Structure Guides, which show
how to use TD to examine simple and complex data structures in C, Pascal,
and assembly language. Use this section as a reference for investigating
variables in your programs.

You'll also want to cut out one of the keyboard overlays inside the book’s
back cover. Place the appropriate template on your keyboard for a handy
reference to TD’s function keys.

Requirements

The following sections list required and optional hardware and software items
that you’ll need to use the information in this book.

Required Hardware

® Any IBM PC, PS/2, or compatible computer.

e At least 384K of RAM available after booting.

® One hard drive or a high-density diskette drive. (A hard drive is
recommended—TD 2.0 will not work with standard 360K drives.) Note:
You may not be able to run the automated INSTALL program to install TD
on a high-density floppy. In that case, you’ll have to run the UNZIP utility
manually (see chapter 6) to extract files from the .ZIP archives on TD’s
master diskettes.

® Color or monochrome display.

® Keyboard.

Chapter One: Introduction

Required Software

Turbo Debugger 2.0. You may be able to get by with an earlier version, but
most of the information in this book requires TD version 2.0.

DOS 2.0 or a later version.

For Pascal: Turbo Pascal (TP) 5.0 or later versions. TP 5.5 or later is
required for object-oriented examples. It’s possible to debug TP 4.0 pro-
grams with TD (see chapter 2), but versions 5.0 or later give better results.

For C: Turbo C (TC) 2.0 or later versions. TC+ + 1.0 is required for object-
oriented C+ + examples.

For assembly language: Turbo Assembler (TASM) 2.0, supplied with TD. To
enter programs, you’ll also need a programmer’s text editor such as Brief,
Multi-Edit, Epsilon, VEdit, or Borland’s Sidekick. Or, you can use any word
processor that can save files in plain ASCII format.

You may also use Microsoft C (MSC), Microsoft Macro Assembler (MASM),
and other languages as explained in chapter 2. However, you will have to
modify some of the program listings before they will compile or assemble
with non-Borland language products.

Required Knowledge

You’ll need a fundamental knowledge of C, Pascal, or assembly language
programming. The more you know about one or more of these languages,
the better you’ll be able to use TD and the information in this book.

You'll also need a working knowledge of DOS commands, batch files, and
related topics. A good DOS reference (see Bibliography) is a practical
necessity.

Optional Hardware

An 80286-based PC and at least 640K of extended memory for debugging
in protected mode with the alternate TD286 debugger.

Or, an 80386- or 80486-based computer for installing the TDH386.5YS
device driver, which lets TD use special debugging features available on
these processors.

On 80386- and 80486-based systems, at least 640K of extended memory to
use the optional TD386 supervisor for debugging programs and running
TD in virtual 8086 machines. (The TDH386.SYS device driver must also be
installed.)

Printer.

6 Part One: Guide and Reference

® Mouse input device.

* 8087, 80287, or 80387 numeric data processor (NDP).

® Additional expanded memory for large-program debugging.
® EGA or VGA display capable of showing 43 or 50 lines.

¢ Second PC or compatible computer attached to a host system with a serial
cable for remote debugging. Or, separate monochrome and color display
adapters for dual-monitor debugging. (See chapter 17.)

¢ Trapper debugger board for using TD’s hardware-breakpoint features (see
chapter 18 and Bibliography).

How to Use This Book

If you’ve never used TD before, it’s probably best to read this book from cover
to cover. I organized the chapters to introduce debugging concepts and to
serve as a reference to TD’s commands. If you read the chapters in order, you’ll
never meet an unexplained term, although, from time to time, I may refer you
to other chapters where you can find more information about a topic.

If you’re familiar with any version of TD, you may be able to skip the rest of
part 1 and start with part 2’s discussion of debugging strategies. TD 1.x users
should at least skim chapters 4 and 5 in part 1 for descriptions of new features in
TD 2.0. Everyone should read chapter 2’s instructions about preparing pro-
grams for debugging, using a variety of compilers and assemblers.

Chapters 10-15 and 20-22 are devoted to C, Pascal, and assembly language
(three chapters each). You can read only the chapters that apply to your favorite
language, but you might want to browse through the others for additional
debugging tips. Some of the material in these chapters is duplicated, but to
avoid too much redundancy, I've tried to concentrate on tips that apply
uniquely to each language.

Scan the following chapter summaries for a closer look at the book’s
contents. If you don’t want to read these descriptions now, turn to the next
section, “Listings,” and read the remainder of this chapter for several important
details that will help you to get the most from this book.

About the Chapters

The following brief descriptions explain the contents of Mastering Turbo
Debugger’s chapters. Read this information for an overview of the book’s
contents.

Chapter One: Introduction ‘ 7

Part 1: Guide and Reference

Chapter 1, “Introduction,” lists requirements and explains how to use this
book effectively.

Chapter 2, “Preparing Programs for Debugging,” details how to prepare C,
Pascal, and assembly language programs for debugging, using a variety of
language products.

Chapter 3, “Getting Turbo Debugger Up and Running,” shows how to
install, configure, and run TD. The chapter also covers TD’s command-line
options.

Chapter 4, “Windows, Menus, and Hot Keys,” is a guide to most of TD’s
commands and keys. Read this chapter for general information about using
windows, dialog boxes, the keyboard, and a mouse.

Chapter 5, “Views and Local Commands,” covers the commands in TD’s
View menu. The chapter is a reference to TD’s main features—those you
will use most frequently during debugging sessions.

Chapter 6, “Using TD’s Utility Programs,” describes miscellaneous utilities
such as TDMAP and TDSTRIP, which are supplied with TD. Just browse
through this chapter at first so you’ll know where to find specific facts as
you need them.

Part 2: The Art of Debugging

Chapter 7, “Developing a Debugging Strategy,” discusses approaches to
debugging, using TD as the primary weapon in your arsenal. Read this
chapter for tips about developing a good debugging style.

Chapter 8, “Breakpoints and Code Tracing,” details the finer points of these
powerful debugging tools, two of TD’s most important features.

Chapter 9, “Evaluating Expressions,” documents TD’s expression-handling
abilities in C, Pascal, and assembly language. Read this chapter for tips
on entering expressions and to learn how to use expression side effects to
call C and Pascal routines out of context from the rest of a program loaded
into TD.

Chapter 10, “Common C Bugs,” lists bugs that often plague C code. Use this
chapter as a guide to avoid making typical errors in your C programs.

Chapter 11, “Hands-On Debugging for C,” is the first of three chapters that
include a medium-size program with several documented bugs. Step-by-
step, hands-on demonstrations show TD in action as you enter commands
to track down bugs in a Turbo C program. You can also use this chapter and
the similar chapters 13 and 15 for Pascal and assembly language as self tests
of your debugging skills.

Part One: Guide and Reference

e Chapter 12, “Common Pascal Bugs,” lists bugs that typically appear in
Pascal programs. ‘

® Chapter 13, “Hands-On Debugging for Pascal,” is similar to chapter 11 but
contains information for Turbo Pascal programmers. Despite the sim-
ilarities, however, the program listing and bugs in this chapter are different
from those in chapter 11; therefore, you can read either chapter without
spoiling the plot in the other.

® Chapter 14, “Common Assembly Language Bugs,” lists bugs that are both
common and unique to assembly language.

e Chapter 15, “Hands-On Debugging for Assembly Language,” is similar to
chapters 11 and 13 but contains information for Turbo Assembler program-
mers. As in chapter 13, the program listing and bugs in this chapter are
different from the ones in the other two. You can follow the hands-on
debugging demonstrations in this chapter and take the self tests even after
you’ve solved the other chapters’ “whodunits.”

Part 3: Advanced Debugging Topics

e Chapter 16, “Macros and Keystroke Recording,” shows how to use these
advanced TD features to create your own commands, to automate parts of a
debugging session, and to replay recorded keystrokes, useful for designing
repeatable test procedures. Several sample macros are listed for C, Pascal,
and assembly language.

® Chapter 17, “Remote and Dual-Monitor Debugging,” explains how to take
advantage of two computers connected with a serial cable or two display
adapters in one system. With these setups, output from TD and the target
program appear on separate monitors, simplifying debugging of graphics
applications and other display-oriented programs.

® Chapter 18, “Hardware-Assisted Debugging,” discusses in detail extra fea-
tures available for 80386- and 80486-based systems. The chapter shows

how to install and use a Trapper debugging board to take advantage of TD’s
advanced hardware-breakpoint abilities.

® Chapter 19, “Debugging Resident Programs,” tours the byways of TSR and
device-driver debugging, using TD’s new resident commands.

Part 4: Data-Structure Guides

® Chapter 20, “C and C+ + Data Structures,” lists common C data types and
shows how to use TD to inspect them. Use this and the next two chapters as
guides for examining variables in your own programs.

Chapter One: Introduction 9

Listings

e Chapter 21, “Pascal Data Structures,” lists common Pascal data types and
shows how to use TD to inspect them.

® Chapter 22, “Assembly Language Data Structures,” lists common assembly
language data types and shows how to use TD to inspect them.

Many of the C, Pascal, and assembly language listings in this book are printed
with line numbers for reference. When entering the listings into your editor,
type only the text that follows the reference numbers and colons along the left
border.

Unlike many of my books, this one does not include an offer to sell the
program listings on disk. There are several reasons for this. For one, many of
the programs in this book have bugs, and I'm reluctant to offer for sale
programs that don’t work! For another, this book does not teach you how to
program, and, therefore, most of the program listings are short fragments that
illustrate various principles. You can understand most of these examples just by
reading them.

However, the hands-on demonstrations in chapters 11, 13, and 15, do
require you to enter three sizeable programs (about 400 lines each). I suggest
you bite the bullet and type them into your editor. But if you don’t have time to
do that, you can download the listings from Borland’s Compuserve forum. To
join, type GO BOR at any Compuserve main prompt and follow directions.
Then, search the Turbo Debugger section library for the keyword MTD (for
Mastering Turbo Debugger). You may also find these same listings on an
electronic bulletin board. (If you manage a BBS, feel free to place the files on
your service—with the bugs intact, please.)

Keyboard Keys

Angle brackets surround references to named keys—for example, (F1), (Ctrl),
and (Alt). F1 without brackets means to type an F followed by 1. With the
brackets, {(F1) means to press the function key labeled “F1.” (By the way, this is
the same style used by PC Worid magazine.)

A dash between keys or characters means you should press the first key and
hold it down while you press the second. For example, (Alt)-{F5) means to
press (Alt), hold it down, and press (F5). {Ctrl)-C means to press and hold
{Ctrl) while you press C. (Even though character keys are printed in uppercase,
you don’t have to press {Shift) unless instructed to do so.) When two keys are

10 Part One: Guide and Reference

printed together without a dash as in (Esc)X, this means to press and release
{Esc), and then to press X. »

The two forms are often combined. For example, (Alt)-XC means to press
and hold (Alt), press X, release those two keys, and then press C. The familiar
“reboot” sequence {Ctrl)-(Alt)-{Del) means to press and hold {Ctrl), press
and hold (Alt), press {(Del), and then release all three keys.

Cursor keys are named {Cursor Up), {(Cursor Down}), (Cursor Left), and
{Cursor Right). Other keys such as {Page Up) and (Insert) are spelled as they
appear on most extended keyboards (the ones with function keys along the top
row). On other keyboards, these keys may be abbreviated, for example, as
(PgUp) and (Ins).

Text Styles

Many computer books adopt a gaggle of text styles: one for key words, one for
input, one for output, one for listings, and so on. This book follows a simpler
(and, I think, less confusing) three-way design:

® Language key words, listings, and items such as menu names and option
settings that you see on screen are printed in monospace. Text that you enter
at the DOS prompt to compile, link, and run various utility programs is
printed in this same style, matching the way these lines appear on your
display.

® In paragraphs, keys that you are to press and entries that you are to make
are printed in bold.

® Important passages, new terms, plus book, product, and other titles are
printed in attention-getting italic. Program abbreviations such as TD, TP,
and MSC are not italicized.

Colons (:) separate multiple commands. To save space, command names
followed by a three-dot ellipsis on screen do not include that symbol, which
indicates that choosing the command opens a dialog window for selecting
options (see chapter 4). For instance, the Module. .. command in the View menu
is printed here as View:Module.

You may enter DOS and most other commands in upper- or lowercase as you
prefer. However, be aware that some option letters for selecting various program
features may be case-sensitive—for example, -s and -S might have different mean-
ings. Commands are printed in this book in lowercase except when uppercase is
significant.

Chapter One: Introduction 11

File Names

Casual references to file names and DOS commands are in uppercase—for
example, DIR and TD.EXE. When they refer to something you should enter,
these same names are in lowercase (because that’s how you’ll type them) and
are printed in bold. For example, you may see a sentence such as: “Enter
cd \td to switch to the \ TD directory, using the DOS CD command.”

Program names include the file-name extension only when they refer to
that file as listed in a DOS directory. For example, TDMAP.EXE is the file name
for the TDMAP program. 1 may also tell you to enter the tdmap command at
the DOS prompt to run TDMAP. The lowercase and bold tdmap indicates that
this is something you can enter.

Where to Go from Here

Read chapter 2 next for instructions about preparing programs for debugging. If
you already know how to do that, turn to chapter 3 to get TD up and running.

Summary

Debugging is no fun, but it can be challenging, as this book attempts to show. If
you’re new to TD, read all chapters from cover to cover. Or, if you have some
debugging experience, start with part 2 and turn to the other chapters as you
need them.

This introduction to Mastering Turbo Debugger explains several important
details that will help you to get the most from the book. It also lists required
hardware and software that you’ll need in order to use the information that
follows.

Chapter 2

Preparing Programs
for Debugging

A SENSE OF DIRECTION isn’'t one of my better skills—when traveling
without a2 map, I'm lucky to find my way home. To find its way around
programs, TD needs a different sort of map, one that charts the symbols, line
numbers, and other landmarks in compiled code. Collectively known as the
symbol table, this detailed mapping of a program’s parts and pieces lets TD
relate machine-code instructions and raw binary data to source-code lines,
variables, and other structures in the program’s high-level language (HLL),
usually, C, Pascal, or assembly.

The symbol table in a compiled or assembled program makes it possible for
TD to execute binary code while displaying statements and data structures from
the program’s text. Rather than forcing you to pick apart machine-code instruc-
tions and hunt through data segments looking for variables—as you must, for
example, with DOS DEBUG—the symbol table simplifies debugging by letting
you focus on data structures and statements in their more familiar (and more
readable) source-code forms. This is why TD is known as a symbolic debugger.
It uses symbolic information in compiled code to let you debug programs on
the source-code level.

But compiled code straight from the compiler lacks the symbolic informa-
tion that TD requires. So, the first step in preparing programs for debugging is
to give the compiler and linker special commands that add symbols and line
numbers to the program’s compiled result. This chapter explains how to do that
for several different compilers and assemblers. It’s possible to use TD to exam-
ine code that doesn’t have a symbol table, but in that event, you’ll see only the
disassembled machine code. You won’t be able to view variables by name or
trace C, Pascal, and assembly language statements.

That same rule applies to all programs, whether composed of one or several
modules. In every case, before using TD to debug the code, you must compile
or assemble the program with the correct commands to add symbolic informa-
tion to all the program’s parts and pieces. If you don’t, TD will show statements

13

14 Part One: Guide and Reference

and data structures for only the parts that have symbol tables attached. For that
reason, when developing new software, it’s usually best to add a symbol table
every time you compile. This will lengthen compile times somewhat, but when
a bug surfaces (and it will, it will), you can then load the program immediately
into TD for debugging.

Also, be sure to store the program’s original source-code text files in a
directory where TD can find them—usually in the current directory or in a path
specified with Options:Path for source. TD displays the program’s lines and
data structures directly from these files—the lines you see on TD’s display are
the same lines you wrote into the program’s text.

In C and Pascal, one line may contain two or more statements. However, because
TD is line-oriented, not statement-oriented, many debugger commands work best
when there is only one statement per line. Try to follow this one-statement-per-
line design rule in your own programs. You’ll find TD easier to use, and you may
also discover that your program’s logic is clearer and, therefore, easier to debug.

When TD searches for source-code files, it looks in various directories in
this order:

® The directory from which the compiler or assembler reads the original
source-code files.

® One or more directory path names listed in Options:Path for source or
specified with the -sd option (see chapter 3).

® The current directory.

® The same directory where the .EXE, .COM, or other file loaded into TD is
located.

How To Use This Chapter

The information in this chapter will help you to determine the proper commands
to use with your compiler and assembler to add symbol tables to compiled and
assembled code. Three main sections—one each for C, Pascal, and assembly
language—include detailed instructions for building programs with various lan-
guages listed alphabetically by product (not company) name. As these instruc-
tions demonstrate, you can use TD to debug programs written with just about
any language that can generate Microsoft CodeView symbols or a .MAP text file.
You don’t have to use a Borland language to take advantage of TD’s features.
Each main section in this chapter also includes a small sample program that
you can use to test your compiler and linker. After reading the section that
applies to your language, enter the sample program and try out the instructions

Chapter Two: Preparing Programs for Debugging 15

for compiling and loading the result into TD. Then turn to chapter 3, “Getting
Turbo Debugger Up and Running,” to begin learning your way around TD’s
windows and commands.

The Design-Compile-Debug Cycle

Many programmers use a debugger as a last-ditch attempt to investigate why a
program isn’'t working as expected. In fact, until I became more familiar with
TD, I was a proud member of the I-hate-to-debug club. But now I use TD as an
everyday programming tool to examine the inner secrets of my code—not just
to track down bugs.

After a year or so of working with TD, my programming habits have settled
into a design, compile, and debug cycle, illustrated in Figure 2.1. Use the
diagram as a guide to the steps required to compile and link programs for
debugging. As the figure shows, although there are many ways to prepare
programs for TD, the goal is always the same: to transfer a symbol table
(represented by a boxed-in S) from the compiler’s output to the executable code
file or to store the symbols separately in a .TDS (Turbo Debugger Symbol) file.
Either way, TD can then load the program and use the symbols for debugging
on the source-code level. Figure 2.1 also lists typical files identified by file-name
extensions such as .PAS, .C, and .OB], generated at each stage in the process of
preparing programs for debugging. Chapter 6 describes how to use the utility
programs, such as TDMAP and TDSTRIP, mentioned in Figure 2.1.

Compiler Updates

Sometimes it seems that software manufacturers release new compiler versions
faster than rabbits make bunnies. Although I've used the most recent versions
of compilers available to me, in a few months after this book is printed, some of
the information here may become obsolete. If your compiler or assembler isn’t
listed, or if the instructions in this chapter don't work for other versions, try
these suggestions:

® Use the commands for the previous release. If they don't work, you may
find a note in your language manuals that explains a change to a command-
line option used here.

® Read the instructions for a similar product (e.g., another C compiler). This
may give you enough hints to get started.

® Look in your manuals for information about how to add CodeView debug-
ging information to compiled and assembled code. Also read the notes in

16 Part One: Guide and Reference

Design I E = Symbols

Y |
Program Source Header or Inciude
MAKE Code Files
(.C, .PAS, ASM) (.H, .INC)
]
¥]
Compiler or
Assembler
| A
I S i - S -
Library Files Object File
(.0BY, .LIB, .TPU) (.OBJ) I — (Turbo Pascal)
™ |
[]] f
Linker
(LINK, TLINK, or EXE2BIN
Built-in Linker)
T |
Y s Y ¥
Map File Executable Code
(.MAP) I Ll-_‘.d.lsxe. .COM, BIN) TDCONVRT
+ [} [
TDMAP I___ - TDSTRIP

TD Symbol File TD Symbol File
(TDS) (TDS)

!]
Y L]

Turbo Debugger

Figure 2.1. Preparing programs for debugging.

this chapter for compiling Microsoft C programs and converting their
CodeView symbol tables to TD’s format by running the TD utility program
TDCONVRT (see chapter 6).

® Read “Compiling Other Programs for Debugging” near the end of this
chapter. If your language can create a standard .MAP file, you can debug the
code with TD, but with some limitations—for example, all data structures
will be represented as arrays of bytes or words.

The following sections assume that you’ve installed your compiler or assembler
according to the manufacturer’s instructions, set required environment variables,
and included necessary directories in a DOS PATH statement. Before trying out the
commands in this chapter, be sure that you can compile, link, and run a small test
program.

Chapter Two: Preparing Programs for Debugging 17

Managing Object Libraries with TLIB

Be sure to use the TLIB program that comes with TD (on one of the Turbo
Assembler disks) to add object-code files to library files. Older versions of TLIB
strip symbol tables from .OB]J files, making it impossible to view the source-
code for those files in TD’s Module window.

Before debugging programs linked to files in libraries, you may have
to recompile each object-code file and rebuild the library files with the
new TLIB.

Compiling C and C++ Programs for Debugging

C programmers all have their favorite MS-DOS compilers, and there are so many
good C-language products to choose from, it’s impossible to cover them all
here. For this section, therefore, I've tried to select compilers from the main-
stream—the ones against which most others compete. Even if your compiler
isn't listed, you may be able to use commands similar to those in this section.

Sample C Program

Listing 2.1, SAMPLE.C, is a short C program that you can use to test the
commands in this section. The program displays command-line arguments in
reverse order. For example, after compiling and linking SAMPLE, typing
sample argl arg2 arg3 from DOS displays:

Argument #3 : arg3
Argument #2 : arg2
Argument #1 : argl

Listing 2.1. SAMPLE.C.
/*
* %k Test C program
*/
#include <stdio.h>

main(int argc, char *argv[])

NV OO ~NOUVNT NN =

{
while (--argc > 0)
10: printf("Argument #%d : %s\n', argc, argvlargcl);
1: exit(0);

12: %

18

Part One: Guide and Reference

Some compilers do not allow typed parameters in function declarations, as
used here in Listing 2.1 at line 7. In that case, try the alternative old-style
program in Listing 2.2, SAMPLE2.C, and substitute SAMPLE2 for SAMPLE
elsewhere in this chapter.

Listing 2.2. SAMPLE2.C.

/*
*k Test C program (old-style)
*/

#include <stdio.h>

main(argc,argv,envp)
int argc;

char *argv(];

10: char *envpl];

VOO ~NOUNPHWN -

11:

12: while (--argc > 0

13: printf("Argument #%d : %s\n", argc, argvlargcl);
14: exit(0);

15: }

Lattice C 3.3

Lattice C (LC) represents the “unusual” category of C compilers in this chapter.
That’s not to detract from the quality of this product—LC is a very capable
compiler for MS-DOS and OS/2 programming, and it’s well regarded among
programmers. But the steps required to prepare LC programs for debugging
with TD require the most finagling, and similar steps may be necessary for
other non-Microsoft and non-Borland compilers. So, if you can’t get TD to
recognize your code, these tips may help.

First, you must compile and link your program modules separately. LC 3.3
uses the Microsoft Overlay Linker version 3.64, but it can’t give the necessary
commands to create a2 .MAP file in the form that TD requires. Luckily, though, it
can put basic debugging information in the .OB]J file, so that’s the first step. For
example, to compile SAMPLE.C to SAMPLE.OB]J, use the command:

lc -d sample

The -d option inserts line number information into SAMPLE.OBJ. (You
might also try -d1 or -d2, which are supposed to insert other symbols and data-
type information as well as line numbers. But my tests indicate these alternate
options do not affect TD’s ability to view LC source code.)

Next, link the .OB]J file to the appropriate LC libraries. The key here is to
give the commands needed to create a .MAP file with line numbers and other
symbols intact. For the small memory model, this command is:

Chapter Two: Preparing Programs for Debugging 19

link /NOIGNORECASE /LINENUMBERS /MAP
c:\lc\s\c.obj+sample.obj,sample,sample/M,
c:\lc\s\lc+c:\lc\lapi.lib;

Type all of that on one line, or better, insert it into a batch file named
LCL.BAT (or another name), and then type lcl to link. You may have to use the
correct path names for your libraries in place of the names listed here. But, to
avoid hunting through manuals looking for those and other details, you can use
the compiler to generate the correct information. For example, enter Ic -L
sample. Then, use the text in the resulting SAMPLE.LNK file to create LCL.BAT.
(Before debugging, be sure to recompile the program as explained earlier.)

After compiling and linking, you’ll have on disk a file named SAMPLE.MAP,
which TDMAP can use to add TD-format symbols to SAMPLE.EXE. The final
step is to process that file and load the code into TD. To do that, enter the two
commands:

tdmap sample.map
td sample

That converts and loads SAMPLE.EXE into TD. If you see the CPU window
instead of the expected source-code view, choose TD’s View:Module command,
highlight one of the listed module names, and press {(Enter). (If the entire
program is in one source-code file, there will be only one name.) After that,
press {(F2) to set a breakpoint at the first executable statement in the code, then
press {(F9)(F2) to run the program to that stopping place and remove the
breakpoint. This positions the cursor on the first executable source-code state-
ment and initializes data segment registers so you can view variables in mem-
ory. (Later chapters explain more about breakpoints and using TD commands—
these keystrokes will let you begin using TD while you learn about these and
other commands.)

Microsoft C 5.1

To compile a Microsoft C (MSC) program contained in a single text file, run the
CL Compiler-Linker executive program with the /Zi option. This adds
CodeView debugging information to the compiled .OB] code file and automat-
ically runs the linker. Also specify the /Od option to disable optimizations,
which can affect TD’s ability to relate source and binary machine code:

cl /Zi /0d sample.c

The .C file-name extension is required, and the two options /Zi and /Od are
case-sensitive—/zi and /od won’t work. The command first compiles SAMPLE.C
to SAMPLE.OBJ and then runs the linker, giving the necessary commands
to link in library modules and transfer CodeView debugging information to

Part One: Guide and Reference

SAMPLE.EXE. You can then convert the finished code and load the result into
TD by typing:

tdconvrt sample.exe
td sample

Compiling multimodule programs is equally simple—just give CL all of the
program’s .C files. Specify the main module first. For example, to compile
MAIN.C with submodules SUB1.C and SUB2.C, use the command:

cl /Zi /0d main.c subl.c sub2.c

You can then run TDCONVRT on MAIN.EXE as before to convert the
CodeView information for debugging with TD.

Microsoft C 6.0

Follow the instructions for Microsoft C 5.1 in the previous section. The com-
mands for preparing code are the same for MSC versions 5.1 and 6.0.

QuickC 2.01

The steps to use the Microsoft QuickC (QC) command-line compiler for C
programs are the same as they are for the compiler’s built-in assembler (see
“QuickAssembler 2.01” later in this chapter). To compile SAMPLE.C and load
the finished code into TD, use the /Zi CodeView debugging option (the Z must
be in uppercase) and convert the symbols in SAMPLE.EXE to TD’s format with
TDCONVRT:

qcl /Zi sample.c
tdconvrt sample.exe
td sample

Be sure to specify the .C and .EXE file-name extensions as shown here. To
compile a multimodule program, feed the individual source-code modules to
QCL:

qcl /Zi main.c subl.c sub2.c
tdconvrt main.exe
td main

Or, you can compile the submodules separately with the /c (“compile-
only”) and /Zi options and then compile and link the separate .OBJ code
modules to the main code file before converting the result with TDCONVRT
and loading into TD:

Chapter Two: Preparing Programs for Debugging 21

qcl /c /Zi subl.c

qcl /c /Zi sub2.c

qgcl /Zi main.c subl.obj sub2.obj
tdconvrt main.exe

td main

Turbo C 2.0 Integrated Environment

Turbo C 2.0’s (TC2) integrated environment combines a text editor, C compiler,
and a drastically stripped-down version of TD for a complete development
system in one package. Although TC2’s Integrated Development Environment
(IDE) is convenient for entering, compiling, and testing small programs, you’ll
want to take advantage of features in the stand-alone TD for serious debugging
work. This can also free extra memory for debugging large programs.

To continue using the IDE for editing and compiling, but to prepare code
for debugging with TD, you’ll need to change a few IDE settings. After
starting TC2, select Options:Compiler:Code generation. Highlight 0BJ debug
information and press (Enter) to change this setting to On. Press {Esc), select
Optimization, and set Jump optimization to Off. If you don’t do this, TD may
not be able to relate optimized machine code to the appropriate C statements.
Next, open the Debug menu, and change Source debugging to Standalone.
When you compile a program, this adds symbolic debugging information to the
finished .EXE disk file, preparing the code for loading into TD.

You may want to save these settings in a configuration file. That way, you
won’t have to make the same modifications every time you start TC2. To do
this, select Options:Save options and specify a file name, or press (Enter) to
accept the default TCCONFIG.TC.

After setting TC2’s options, either manually or by loading a configuration file,
you’re ready to compile and debug programs. First, load or enter the program
text (SAMPLE.C, for example) into TC2’s editor and use Compile:Make EXE file
to compile the source code to disk. You can also specify a project file according
to directions in the Turbo C User’s Guide for compiling multimodule programs.

If you haven’'t made any changes to the program recently, instead of
compiling, you may see a message that your file “is up to date.” In that case,
because the compiler skips re-creating the .EXE disk file, it also skips adding
debugging information to code that you compiled before under different set-
tings. If that happens, you have several options:

® Delete the program’s .EXE and .OB]J files and recompile.
® Make an unimportant change to the source text.
® Use the Compile and Build all commands.

Whatever approach you decide to use, the result is to create an .EXE disk
file with the necessary information required to load the program into TD. After

Part One: Guide and Reference '

compiling, be sure that all .C source files are available to TD. Then, quit TC2
and type td sample to begin debugging.

Turbo C 2.0 Command-Line Compiler

Many professional C programmers prefer to use TC2’s command-line compiler
(TCC) along with a separate text editor for entering and modifying source code.
This arrangement frees extra memory for compiling large programs, and it also
lets you take advantage of various options and in-line assembly language—
features that are not available in the IDE. To compile SAMPLE, use TCC’s -v
option and load the finished code file into TD:

tcc -v sample
td sample

Compiling programs stored in multiple source code files is equally simple.
For example, if your main program text is stored in MAIN.C, which calls
functions in submodules SUB1.C and SUB2.C, create and load MAIN.EXE into
TD with the commands:

tcc -v main sub1 sub2
td main

Another way to handle multimodule programs is to compile individual mod-
ules separately with the -c (“compile-only”) option, and then use TCC to link the
.OBJ files to the finished main code file. Just remember to use the -v option for all
steps. Also, be sure to specify the .OBJ file-name extension for SUB1.OBJ and
SUB2.0BJ (on the third line below) to avoid recompiling those modules:

tcc -v -c subl.c

tcc -v -c sub2.c

tcc -v main subl.obj sub2.0bj
td main

If you store various options in a TURBOC.CFG configuration file, and if one
of those options is -O (Optimize jumps), add the option -0- to TCC to disable
optimizing in all of the previous commands. This will keep the debugger in
sync with the Module window’s source-code display.

Turbo C++ 1.0 Programmer's Platform

The newest version of Borland’s Turbo C compiler adds C+ + object-oriented
features, ANSI standard compatibility, and a vastly improved IDE—now named
the Programmer’s Platform. (I'll refer to this version as TC+ +.) The new IDE

Chapter Two: Preparing Programs for Debugging 23

includes a stripped version of TD that’s suitable for examining small programs
and tests. But for debugging larger programs and for finding elusive mistakes,
you’ll still want to use the full TD 2.0.

As already explained, to use previous TC and TD versions together, you
would have to compile a program, quit to DOS, load the result into TD, debug,
quit TD, reload TC2’s editor, and so on. TC+ + changes that endless run-
around by letting you transfer control from the IDE to another program, usually
TASM or TD. To start debugging after compiling a program, you simply transfer
control directly to TD without quitting to DOS. Then, to return to TC+ + after
debugging, quit TD by pressing (Alt)-X.

Your TC + + installation may already be configured to call TD. To find out if
it is, start TC+ + (enter tc at the DOS prompt) and press (Alt)-{Space) (or
(Alt)-F(Cursor left) under Microsoft Windows). If “Turbo Debugger” is
listed as a command in TC+ +’s System menu, your system is configured.
Otherwise, follow these steps to transfer to TD for debugging. You can also
repeat the same steps to modify the transfer configuration:

1. With TC+ + running, press (Alt)-OT and move the highlight bar to a
blank line or to an existing transfer-command name that you want to
modify. Then, press E or click the Edit button to add or change the entry.

2. Enter Turbo ~Debugger as the Program Tit le. The tilde (~) is optional—
it enables the following character (D in this case) as the hot key that you can
press when the System menu is visible. If you don’t want to assign a hot key,
don’t enter the tilde.

3. In Program Path, enter td. This assumes that TD’s directory is listed in a
PATH statement. If it isn’t listed, enter the full path name, for example,
c:\td.

4. In Command Line, enter $EXENAME to pass the name of the current pro-
gram to TD for debugging. You can also add additional command-line
options such as -k, -1, or -vg (see chapter 3). To have TC+ + prompt you for
additional arguments before transferring to TD, append $PROMPT to the
end of the line.

5. Next, select an optional Hot Key assignment from the list at the right of the
Modify/New Transfer Item dialog box. You can then press (Shift) plus the
selected function key to transfer to TD.

6. When you’ve prepared TC+ +, select the New or Modi fy buttons and press
K (or click the mouse cursor on 0k) to erase the Transfer dialog and accept
your changes. Use the Options:Save command to save the configuration for
the next time you run TC+ +.

After following those steps to prepare TC+ +, you’re ready to transfer
control directly to TD by pressing the programmed hot keys or by selecting -
Turbo Debugger from the System menu. Make sure that debugging information

Part One: Guide and Reference

is added to the compiled code: (press (Alt)-OB and verify that Source
Debugging is On). Use the Compile menu’s Make EXE file or Build all
commands to compile and link the program. Then, transfer to TD for
debugging.

Turbo C+ + 3.0 Command-Line Compiler

See “Turbo C.2.0 Command-Line Compiler.” The instructions for compiling
and linking C_programs are identical for the command-line TC compiler ver-
sions 2.0 and TC+ + 1.0.

To compile C+ + programs, unless you've configured the compiler to
always recognize C+ + code, you may have to specify the file-name extension
.CPP. For example, to compile and debug SAMPLE.CPP (not shown here), enter
the command:

tcc -v sample.cpp
td sample

If you don’t supply the .CPP extension, TCC+ + looks for the file SAM-
PLE.C by default, not SAMPLE.CPP. Except for this difference, the other com-
mands should work as they do for TCC 2.0.

Zortech C+ + 1.07

Zortech C (ZTC) can compile programs written in C and C+ +. But because the
compiler outputs CodeView-compatible debugging information and because
CodeView cannot understand elements that are unique to C+ +, objects and
methods (among other things) are translated into C equivalents for debugging. In
other words, you can load a C+ + program into TD, but you may not be able to
view your program’s structures in every detail. Also, variables loaded into regis-
ters may display as four question marks (????)—TD’s “value unknown” symbol.

There are several ways to compile programs with Zortech C+ +. The
simplest plan is to use the ZTC compiler control program. Specify the -g option
to add line numbers and symbols to .OBJ code files; insert a -co option to call
the Microsoft Overlay Linker and to add CodeView debugging information to
the finished code. To save a small amount of memory, you can also use -gl (line
numbers only) or -gs (symbols only), although the results aren’t as good.
Zortech also recommends using the -S stack-frame option. After compiling and
linking, process the result with TDCONVRT and load into TD. For example,
these commands compile and load the SAMPLE program:

ztc -g -S -co sample.c
tdconvrt sample.exe
td sample

Chapter Two: Preparing Programs for Debugging 25

To compile a multimodule program with a main module MAIN.C and two
submodules SUB1.C and SUBZ2.C, just list all submodules after the main one:

ztc -g -S -co main.c subl.c sub2.c
tdconvrt main.exe
td main

Or, you can compile the submodules separately with the -¢ (“compile-
only”) option, and then let ZTC link the individual .OB]J files to the finished
.EXE code file. In this case, specify the -co CodeView option only in the last
ZTC command: o '

ztc -¢c -g -S subl.c

ztc -¢c -g -S sub2.c

ztc -g -S -co main.c subl.obj sub2.o0bj
tdconvrt main.exe

td main

Zortech C+ + 2.0

See “Zortech C+ + 1.07.” The commands to prepare programs for versions
1.07 and 2.0 of the Zortech compiler are identical.

Compiling Pascal Programs for Debugging

Because there aren’t as many MS-DOS compilers for Pascal as there are for C
programmers, most people use Turbo Pascal (TP). That’s just as well because
TD can’t load Microsoft QuickPascal (QP) programs, even though QP is largely
compatible with TP on the source-code level. Even so, TD can debug Microsoft
Pascal 4.0 code, as explained in the next section.

Sample Pascal Program

Listing 2.3, SAMPLE.PAS, is a short Pascal program that you can use to test the
instructions in this section. The program displays command-line arguments in
reverse order. For example, after compiling and linking SAMPLE, typing sam-
ple argl arg2 arg3 displays:

Argument #3 : arg3
Argument #2 : arg?
Argument #1 : argl

26 Part One: Guide and Reference

Listing 2.3. SAMPLE.PAS.

1: (%
2: k% Sample Pascal program
3: %)

4
5: program Sample;

6: wvar i : integer;

7: begin

8: for i := paramCount downto 1 do

9: writeln('Argument #', i, ' : ', paramStr(i));
0: end.

Microsoft Pascal 4.0

Although it can generate CodeView debugging information, Microsoft Pascal
4.0 (MSP4) is not compatible with Microsoft’s QuickPascal or Turbo Pascal. For
this reason, MSP4 can’t compile SAMPLE.PAS (Listing 2.3). Instead, use
MSPSAMP.PAS in Listing 2.4. The program prompts for up to eight arguments,
stored in an array of Lstring. When you press {(Enter) to return to DOS, the
program displays these pseudo “arguments” in reverse order.

Listing 2.4. MSPSAMP.PAS.

(*
*% Sample Microsoft Pascal 4.0 program
*)

program Sample(input, output);

var
i, paramCount : integer;
paramStr : arrayl 1 .. 8] of Lstring(80);
done : Boolean;

VOO~V WN -

10: begin

1: done := false;

12: paramCount := 0;

13: while (not done) and (paramCount < 8) do

14: begin

15: paramCount := paramCount + 1;

16: write(output, 'Argument? ');

17: readln(input, paramStr[paramCount 1]);

18: done := paramStrlparamCountl[0] = chr(0) { len =10 2}
19: end;

20: paramCount := paramCount - 1;

21: for i := paramCount downto 1 do

22: writeln(output, 'Argument #', i:1, ' : ', paramStr[i]
);

23: end.

To compile MSP4 programs for running in TD, use the PL.EXE Pascal/Link
driver program with the /Zi option and convert the CodeView symbols in the

Chapter Two: Preparing Prbgrams for Debugging 27

finished code file with TDCONVRT. The /Zi option is case-sensitive: Z must be
uppercase and i, lowercase. Also use the -sc option when starting TD to ignore
case for symbols—if you don’t specify this option, you’ll have to use
View:Variables to select variables for watching and inspecting (subjects cov-
ered later in this book). For example, to compile, link, and load MSPSAMP into
TD, use the commands:

pl /Zi mspsamp.pas
tdconvrt mspsamp.exe
td -sc mspsamp

If the CPU window appears when TD starts, use View:Module to select the
MSPSAMP source module. When the Module window opens, press (F5) to
zoom the window to full screen. Then, press (F2) to set a breakpoint on the
program’s first statement. You don’'t have to highlight that statement, just press
(F2)—TD will set the breakpoint at the first executable statement it finds. After
this, press (F9)(F2) to run past the program’s startup code and remove the
temporary breakpoint. This positions the cursor on the program’s first line—
similar to the display that comes up for Turbo Pascal programs. (See chapters 4
and 5 for full descriptions of these commands.)

You might want to enter the keypresses in the previous paragraph as a macro.
Then you can press the macro’s assigned key every time you need to issue these
same commands. Chapter 16 explains how to enter macros.

To compile multimodule programs, give PL all the program’s module
names, some of which might be MSP4 modules and others might be units (two
different methods for breaking an MSP4 program into pieces). For a main
program MAIN.PAS that uses a unit UNIT.PAS and module MOD.PAS, compile,
link, and load the program into TD with the command:

pl /Zi main.pas unit.pas mod.pas
tdconvrt main.exe
td -sc main

Use the View:Module command to view the program’s source code in TD.
Then, press (F8) to execute the program’s startup code and position the cursor
on the first program statement.

You can also compile modules and units separately. To do this, add the /c
(“compile only”) switch to /Zi for the separate modules, then use PL to compile
and link the pieces:

pl /Zi /c unit.pas
pl /Zi /c mod.pas
pl /Zi main.pas unit.obj mod.obj

Part One: Guide and Reference

tdconvrt main.exe
td -sc main

When debugging MSP4 programs, you may have to set Options:Language
to Pascal. (Save a TDCONFIG.TD configuration file in the current directory to
avoid having to change this setting for each debugging session.)

QuickPascal 1.0

It’s not possible to use TD to debug programs compiled with Microsoft’s
QuickPascal 1.0. The QP compiler has its own built-in debugger, which can’t
generate CodeView information or a .MAP file. The command-line QP compiler
QPL.COM isn’'t any help either. So if you have hopes of using TD together with
QP and QPL, you’re out of luck.

Perhaps a future QP version will generate CodeView debugging informa-
tion, or at least a .MAP file. In that case, you might be able to use TDCONVRT
and TDMAP to translate that information to TD’s required format.

Turbo Pascal 4.0

Contrary to what you may have heard or read elsewhere, you can debug Turbo
Pascal 4.0 (TP4) programs with TD. Of course, you’ll get better results with TP
versions 5.0 or 5.5 (collectively known as version 5.x), which can generate TD
symbols directly. But, by creating an intermediate .MAP file with the TP4
compiler, you can view symbolic information in TD, set breakpoints, and trace
through a program’s statements—even those in multiple units. You won’t be
able to examine data structures with as much detail as you can by compiling
with later TP versions. But until you can upgrade your compiler, at least you’re
not stuck out on a limb without a ladder.

To prepare TP4 programs for debugging, you can use the TP4 integrated
development environment (IDE) or the command-line compiler. If you are
using the IDE, open the Options:Compiler menu and set Turbo pascal map file
and Debug information to On. You must turn on this second setting to transfer
the necessary symbolic information and line numbers to the compiled code.
Unfortunately, those symbols are not in TD’s format but are instead intended for
use with Microsoft’s SYMDEB debugger, which isn’'t compatible with CodeView
or TD. For that reason, it’s also necessary to create a .TPM (Turbo Pascal Map)
file of the same symbols, which can then be translated by other utilities into
TD’s required format.

To compile with the command-line compiler, use the /$T + option to create
the .TPM map file. After that, or after compiling from inside the IDE and
quitting to DOS, convert the .TPM file to a .MAP text file with the TP4 utility
TPMAP. Then, process that file with TD’s TDMAP program to write the symbols

Chapter Two: Preparing Programs for Debugging V 29

back to the .EXE file in TD’s format. For example, use these commands to
compile SAMPLE and load the result into TD:

tpc /3T+ sample
tpmap sample
tdmap sample.map
td sample

Notice that the second line runs TPMAP; the third runs TDMAP—two
different programs. For multimodule programs, add the /M (“make”) or /B
(“build”) options to the TPC command. This will compile individual units and
include their symbols in the .TPM map file. Use TD’s View:Module command to
select among various source-code modules.

Turbo Pascal 5.x Integrated Environment

Turbo Pascal 5.0 and 5.5 (I'll refer to them both as TP5) come supplied with an
IDE that includes the compiler, editor, and stripped-down debugger in the file
TURBO.EXE. Although useful for examining small programs and tests, TP5’s
built-in debugger lacks the features and memory capacity of the full-powered
TD. To take advantage of those features, but still be able to edit and compile
programs in the IDE, you’ll need to set various switches to add symbols and line
numbers to compiled Pascal programs. You can then load the .EXE file into TD.

To prepare programs for debugging, start TP5 and set Debug:Standalone
debugging to On. You can also change Integrated Debugging to Off, although
this is not required. If you want to view local variables declared in procedures
and functions, use Options:Compiler to change Local symbols to On. Turning
this option off might save a little memory, but then you won’t be able to view
local variables in TD. (Alternately, you can insert a {$L+} option in the source
code to enable local symbols.)

Also change Debug information to On. If this option is off, no symbols will
be written to the compiled code file, regardless of the other switch settings.
(This makes the Debug information command handy for turning symbol gener-
ation on and off quickly without changing other settings.) In addition to these
settings, change Compile:Destination to Disk; otherwise, TPS compiles to
memory, making the result inaccessible to TD. You must compile your program
to a disk .EXE file before you can load the code into the debugger.

After making these changes, you may want to use Options:Save options to
save the new configuration in a TURBO.TP file, which TP5 will read from the
current directory the next time you start the IDE. Or, specify a different file
name (perhaps TD.TP), which you can load with Options:Retrieve options to
configure the IDE for debugging.

With all the proper switches set, compile your program with one of TP5’s
three Compile-menu commands—cCompile, Make, or Build. For simple

30

Part One: Guide and Reference

. programs like SAMPLE, load the text into the editor and select Compile. For

programs that use custom units, use Make to compile only those modules that
have changed since the previous compilation. Use Build to compile all
modules.

After a successful compilation, press (Alt)-X to quit TP5. Then, type td
sample to load SAMPLE.EXE into TD for debugging.

Turbo Pascal 5.x Command-Line Compiler

Many professional Pascal programmers prefer to use Turbo Pascal’s command-
line compiler (TPC) along with a separate text editor for entering and modifying
source code. This arrangement can also free extra memory for compiling large
programs with many symbols.

To use TPC to compile SAMPLE, specify the /v option, which adds symbols
and line numbers to the finished .EXE code file in TD’s required format. You
can then load that file into TD using the commands:

tpc /v sample
td sample

When compiling programs that use units, also specify /m (“make”) or /b
(“build”) options to compile out-of-date modules. For example, to compile a
program file MAIN.PAS that uses two units in UNIT1.PAS and UNIT2.PAS, and
then load MAIN.EXE into TD, use the commands:

tpc /v /b main
td sample

Replace /b with /m to compile only the minimum number of modules to
bring the entire program up to date. (If TD doesn’t display source code for
some modules, use /b the first time you compile. Use /m from then on. This
ensures that all .TPU [Turbo Pascal Unit] files have symbolic debugging
information.)

You can also compile units separately if you prefer, although this isn’t
necessary for most programs. The following commands are equivalent to the
previous two:

tpc /v unit1
tpc /v unit2
tpc /v main
td main

To conserve memory, you can specify the option /$D- for tpc in addition to
those listed here. This disables local-symbol generation, adding only global
symbols for debugging.

Chapter Two: Preparing Programs for Debugging 31

Preparing Assembly Language Programs for Debugging

It’s probably true that most people think a symbolic debugger like TD is most
useful for debugging C and Pascal code. But even though assembly language
symbols have a direct relationship to the finished machine code, and, therefore,
you might think a nonsymbolic debugger like DEBUG would be adequate for
investigating problems, there are many advantages to symbolic versus machine-
code assembly language debugging.

For one, TD’s main Module window displays the program’s source-code
lines and comments from the original text files. You see your program in the
debugger exactly as it appears in the editor. Other TD windows can display
variables, evaluate expressions, and set breakpoints to enhance your ability to
comprehend just what your exquisitely written (but unfortunately buggy)
machine code is doing. The alternative—and I’'m always amazed to discover
programmers still doing this—is to pick apart a DEBUG hex dump and hunt
through a disassembly of the program’s instructions to rout out the bugs.

There are times, though, when looking deep inside a program’s executable
machine code is useful—for example, when you want to try a temporary
optimization or if you suspect that the compiler’s or assembler’s output is faulty
(unlikely, but possible). At such times, when you do need to see the assembled
machine code, you can open TD’s CPU window by pressing {Alt)-VC. Then, to
switch back to the source-code Module window, press (F6). (See chapters 3-5
for more details about these and other TD commands.)

Sample Assembly Language Program

Listing 2.5, SAMPLE.ASM, is a short assembly language program in standard
Microsoft Macro Assembler (MASM) syntax that you can use to test the assembly
language instructions in this chapter. The program displays a short message and
then ends. You might want to verify that the code assembles and runs correctly
before trying to load the result into TD. To do that with Turbo Assembler, enter
the commands:

tasm sample
tlink sample

sample
Listing 2.5. SAMPLE.ASM.
1: TITLE Test Assembly Language Program (MASM syntax)
2:
3: DOSSEG
IS .MODEL SMALL
5: .STACK 100h
6:
7: .DATA

32

Part One: Guide and Reference

Listing 2.5. (cont.)

8:

9: string db "Test Program",13,10

10: Llen equ $ - string

11:

12: PUBLIC string

13:

14: .CODE

15:

16: start: mov ax, aDATA ; Assign address of data
17: mov ds, ax ; segment to ds

18: mov bx, 1 ; Select standard out

19: mov cx, len ; Set cx = string length
20: mov dx, OFFSET string ; Address string with dx
21: mov ah, 40h ; Select DOS write function
22: int 21h ; Display string

23: mov ax, 4C00h ; Select DOS exit function
24: int 21h ; Exit program

25:

26: END start

Microsoft Macro Assembler 5.1

This version of the Microsoft Macro Assembler—better known as MASM—can
generate CodeView symbol tables directly. After assembling and linking (I used
version 3.64 of the Microsoft Overlay Linker to test these commands, although
other versions probably will work), run the TD utility program TDCONVRT to
translate the CodeView symbols in the finished .EXE file to TD’s format. For
example, to assemble, link, and debug SAMPLE, enter:

masm /zi sample;
link /CO sample;
tdconvrt sample.exe
td sample

The semicolons are optional, but if you leave them out, MASM and LINK
will prompt you for various file names. Be sure to supply the entire file name
(SAMPLE.EXE here) to TDCONVRT. Some versions of this utility create spurious
files (such as AA.AAA) if you don’t specify the full file name with its extension.

The /zi option tells MASM to include CodeView debugging information in
the output file, SAMPLE.OBJ in this example. The /CO option tells LINK to copy
that information to SAMPLE.EXE, preparing the code for loading into TD. You
can also replace /zi with /zd, which adds only line number information to the
.OBJ output file. But you can then view only source-code lines in TD, not other
symbols. Usually, there’s no reason to use this option except, perhaps, to
conserve a little memory for debugging large programs.

Chapter Two: Preparing Programs for Debugging 33

To link multiple object files for debugging, first assemble each source-code
file with the /zi or /zd options. Then link with a command such as:

link /CO main+sub1+sub2

That links MAIN.OBJ, SUB1.OBJ, and SUB2.0OBJ to produce MAIN.EXE.
Other arrangements will also work as long as you include the /CO option.
Consult MASM’s manuals for LINK’s complete syntax.

OptASM 1.5

OptASM from SLR Systems can insert debugging information into .OBJ output
files, but because some versions of this popular assembler don’t come with a
linker, it may be necessary to create a .MAP file and then translate that informa-
tion with the TDMAP utility. Using the MS-DOS 8086 Object Linker version
3.05 as supplied with MS-DOS 3.3 (other versions should work the same way),
the steps to assemble, link, and debug SAMPLE are:

optasm /zi sample;

link /LINENUMBERS /MAP sample;
tdmap sample

td sample

You may also want to use the -B or -E options along with TDMAP. (See
chapter 6.) Also, all symbols that you want to view in TD must be declared in
PUBLIC statements. Local symbols are not transferred to the map file.

OptASM also has a /zt option, which is supposed to generate “Turbo”
line numbers. I've had better luck using /zi, but check your manuals for
details—perhaps newer assembler versions will generate TD-compatible
symbols.

Link multiple modules as with MASM, or check your linker’s manual for
details. If your linker recognizes CodeView debugging, use that option and
translate the result with TDCONVRT instead of TDMAP.

QuickAssembler 2.01

Microsoft’s QuickAssembler 2.01 is built into the QuickC 2.01 compiler. Of
course, most people use QuickC to compile C programs, but you can also use it
for stand-alone assembly language work. For this purpose, it’s probably easiest
to run the command-line compiler QCL, although it is possible to assemble
programs from inside the integrated editor. Here’s how to use QCL to assemble
SAMPLE and load the result into TD:

34

Part One: Guide and Reference

qcl /Zi sample.asm
tdconvrt sample.exe
td sample

The /Zi option is case-sensitive—the Z must be uppercase and the i, lower-
case. Also, you must specify the .ASM and .EXE file-name extensions for the
file-name arguments supplied to QCL and TDCONVRT.

There are two ways to compile a multimodule program. The first is easiest
in most cases—just list the main module first, followed by others. For example,
if the main module MAIN.ASM calls routines in a submodule SUB.ASM, assem-
ble for debugging with the commands:

qcl /Zi main.asm sub.asm
tdconvrt main.exe
td main

Or, you can assemble the individual modules by first adding a /c option and
then specifying the object files in the final QCL command. This will assemble
the main module and link it to other object-code files assembled earlier:

qcl /c /Zi sub.asm

qcl /Zi main.asm sub.obj
tdconvrt main.exe

td main

Turbo Assembler 2.0

Borland’s Turbo Assembler (TASM), which is supplied with the full Turbo
Debugger and Tools package, can add TD symbolic information directly to the
.OBJ output file. To assemble SAMPLE and load the finished code into TD, use
these commands:

tasm /zi sample
tlink /v sample
td sample

The /zi option adds symbols and line numbers to SAMPLE.OBJ. You can
replace /zi (line numbers and other symbols) with /zd (line numbers only) to
conserve memory. If you do that, you can still view variables by name, but you
won’t see full data structures. For example, strings declared with DB display as
word values, not as character arrays as they normally do when the code is
assembled with the /zi option. The /v option for TLINK transfers the symbol
table from SAMPLE.OBJ file to SAMPLE.EXE. You must remember to use both
options. If you forget to insert /v during the link step, the symbol table will not
be included in the result even if you assembled the source-code text with /zi.

Chapter Two: Preparing Programs for Debugging 35

To compile a multimodule program with a main module MAIN.ASM and a
submodule SUB.ASM, assemble the parts separately and link them with TLINK
as shown here:

tasm /vi main
tasm /vi sub
tlink /v main sub
td main

Preparing .COM Programs for Debugging

Not long ago, the preferred code-file format was a .COM (command) file, which
normally limits programs to 64K of memory and stores the code, data, and
stack in a single segment. Today, the issues that made .COM files popular in the
past—faster loading, faster compilation, and simple organization—are no longer
critical, and most programmers compile to .EXE code files instead.

Preparing .COM code files for debugging is less straightforward than pre-
paring .EXE files because a .COM file reserves no space for a symbol table. The
answer to this dilemma is to store symbols and line numbers in a separate .TDS
file, which TD can read and overlay onto the code in memory, accomplishing
the same effect as loading an .EXE file that contains all the information TD
needs. The following sections explain how to do this in assembly language.

Sample .COM Program

Assembile Listing 2.6 to test the following instructions for debugging .COM code
files. As written, the program assembles only with TASM. Delete line 4 and
remove the first semicolon from line 5 for MASM.

Listing 2.6. COMPROG.ASM.

1: TITLE Test Assembly Language .COM Program
2:

3: DOSSEG

4: .MODEL tiny ; TASM

5: ; .MODEL small ; MASM

6:

7: .DATA

8:

9: string db "Test .COM-style Program",13,10,'$"
10:

11: .CODE
12:

13: ORG 100h
14:

15: Start: mov dx, offset string

36

Part One: Guide and Reference

Listing 2.6. (cont.)

16: mov ah, 0%9h
17: int 21h

18: Exit:

19: mov ax, 4C00h
20: int 21h

21:

22: END Start

Assembling .COM Programs

To assemble and link a .COM-style program with TASM and TLINK, use the /zi
option and link with /v. Don't use the /t option with TLINK as you normally do
to create .COM files—this option removes the symbol table from the object
code. Instead, process the .EXE file with TDSTRIP, using the -c option to create
the finished .COM file and -s to store the symbol table in a .TDS file. The
complete instructions for assembling, linking, and loading COMPROG.ASM into
TD are:

tasm /zi comprog
tlink /v comprog
tdstrip -c -s comprog
td comprog

Ignore the “no stack” warning from TLINK. Because this step creates
COMPROG.EXE, the linker warns about the missing stack segment, which isn’t
needed for a .COM code file.

With a little more work, you can also assemble .COM code files with MASM
5.1. (Be sure to change .MODEL to smal lL—MASM doesn’t recognize TASM’s tiny
memory model key word.) The trick this time is to generate CodeView symbols
in the .EXE file, use TDCONVRT to translate those symbols to TD format, and
then strip the symbols with TDSTRIP to create the finished .COM code file:

masm /Zi comprog;
link /CO comprog;
tdconvrt comprog.exe
tdstrip -c -s comprog
td -sc comprog

The -sc option tells TD to ignore symbol case. After TD starts, use
View:Module to open a source-code window, press {F2) to set a breakpoint on
the first source-code executable instruction, and then press (F9){F2) to start
the program and halt at the first line. This simulates the conditions of a .COM
program loaded into memory just before the first instruction executes. (See
chapters 4 and 5 for more details about these and other TD commands.)

Chapter Two: Preparing Programs for Debugging 37

If you follow these steps and still don’t see your source code in TD, you may have
to run the TOUCH utility to update file dates and times. Just enter touch *.* to
update all files in the current directory, then try the TD command again. Also see
chapter 6 and the notes near the end of this chapter for more information about
TOUCH.

Compiling Other Programs for Debugging

In general, if your language can generate a .MAP file that lists public symbols
and source-code line numbers, you can use TD to debug the code. This goes for
any language, not only C, Pascal, and assembly. You won't be able to see every
detail of exotic data structures in their original source-code forms, but you can
still view their values as bytes and words in memory. What’s more, you can use
TD’s code-tracing, breakpoint, and expression features to help find the bugs in
your programs.

If you have trouble getting TD to recognize your language’s .MAP file
format, compare the sample .MAP file text in Figure 2.2 to the output from your
compiler or linker. Perhaps you’ll be able to convert a nonstandard format to
match the one that TDMAP requires. To create this text, I entered the TASM
commands tasm /zi sample and tlink /m /1 sample.

Start Stop Length Name Class
00000OH 00016H 00017H _TEXT CODE
00018H 00025H OOOOEH _DATA DATA
00030H 0012FH O0100H STACK STACK
Address Publics by Name
0001 :0008 STRING
Address Publics by Value
0001:0008 STRING

Line numbers for sample.obj(SAMPLE.ASM) segment _TEXT

16 0000:0000 17 0000:0003 18 0000:0005 19 0000:0008
20 0000:0008 21 0000:000€ 22 0000:0010 23 0000:0012
24 0000:0015

Program entry point at 0000:0000

Figure 2.2. Sample .MAP file contents.

38

Part One: Guide and Reference

After creating a standard .MAP file, use the command tdmap file.map to
translate the map text information into a TD symbol table and write that data to
FILE.EXE. If you are creating a .COM file, perform these steps before running
TDSTRIP to store the symbol table in a .TDS file and create the .COM code file
on disk, as explained earlier in “Assembling .COM Programs.”

When using TDMAP, specify -C if your language’s symbols are case-
sensitive. Add the -B option if you want to view variables as bytes instead of as
word values. Also add -Exxx where xxx is a file-name extension such as ASM or
HCC for any files listed in the .MAP file without extensions. This will enable TD
to load those files and relate the source-code lines to the compiled code.

Debugging Without the Source

Debugging is more complicated (to say the least) when you don’t have the
source code to a program. That’s rare, but it happens. Perhaps you’ve lost a
version of a program’s source, or maybe you just want to dissect a commercial
program, using TD as your scalpel to slice into the code and see what makes it
tick. At such times, don’t resort to using DOS DEBUG—you may still be able to
debug the code at the source level with TD.

The first approach to debugging a sourceless program is simply to load the
code as is into TD. When you do this, you’ll see a machine-language disassem-
bly of the program in TD’s CPU window, similar in some ways to what DEBUG’s
“unassemble” command produces. You've got to be sharp to debug machine
code this way—there are no landmarks to recognize and no comments or
procedure headers to denote logical divisions in the program. Also, it’s up to
you to separate data from code. TD can’'t know which is which, and if you
accidentally execute some data as instructions, the program may crash. Still,
you can set breakpoints and use most other commands as described in later
chapters. TD is far superior to DEBUG for examining programs in this rawest of-
low-level forms.

Another possibility is to disassemble the code with a program designed for

.this purpose. A capable disassembler can read a compiled .EXE, .COM, or

device-driver file and create pseudo source-code assembly language text. You
can then assemble the pseudo source code with TASM or MASM (or another
assembler) according to instructions earlier in this chapter to add a symbol table
to the result, which you can then load into TD for debugging at the source
level—or as close as you’re likely to get.

An excellent disassembler is Sourcer from V Communications, Inc. This
program does an amazing job at identifying procedures and separating code
from data. It also identifies DOS and BIOS function calls, locates external
subroutine entry points, and inserts comments in the pseudo source code.
(Some of the comments are a bit simple-minded, but even minimal comments
are better than none at all.)

Chapter Two: Preparing Programs for Debugging 39

Be careful when running disassembled code files after reassembly. Usually,
the pseudo source text will assemble without errors, but the result might not
run correctly without further modifications. To disassemble and debug a large
program is a major undertaking—but at least Sourcer and TD give you a flying
start.

Using TOUCH to Update Files

On occasion, you may be unable to run TDSTRIP and other utilities on various
files as described in this chapter. If you receive errors, and especially if that
happens for commands that worked perfectly well before, try running the
TOUCH utility on all or some files in the directory. To update all files in the
current directory, enter touch *.*.

That sets all file dates to the current date and time. Sometimes this is
necessary to force a utility to process a set of files that, because of their differing
dates and times, are incorrectly flagged by the utility as unrelated.

Summary

TD needs a map, called the symbol table, to find its way around a program’s
compiled code. This chapter explains how to add a symbol table to programs
using a variety of C, Pascal, and assembly language compilers and assemblers.

Of course, Borland’s own languages—Turbo C, Turbo Pascal, and Turbo
Assembler—can generate TD symbol tables directly; therefore, these are the
most convenient languages to use with TD. But if your language can add
Microsoft CodeView debugging information to compiled code, or if it can at
least create a standard .MAP text file, TD can help you to debug the program.

Because TD is line-oriented, not statement-oriented, some commands work
best when each line contains only one statement. Following this one-statement-
per-line design rule may also help to make your source code more readable and,
therefore, easier to debug.

This chapter also explains how to debug .COM programs, how to translate a
.MAP file to a TD symbol table, and how to use a source-code disassembler to
debug programs for which the original source text is lost or unavailable.

Chapter 3

Getting Turbo Debugger
Up and Running

INSTALLING TD is a simple process—just run the INSTALL program on TD’s
“Install” diskette and follow the instructions. Because these and other installa-
tion details are covered in the Turbo Debugger User’s Guide, instead of dupli-
cating that information, this chapter concentrates on tips for configuring TD,
installing a mouse, saving disk space, using extended and expanded RAM,
setting up TD to run a text editor, and using TD with multitasking software such
as Microsoft Windows. The chapter ends with a complete reference to TD’s
command-line options.

It’s probably best to skim this chapter (and the next two) to become familiar
with the layouts. You can then refer back to these pages for help with specific
commands and configurations as you need them.

Before running INSTALL, you may have to reboot to remove TSRs and, possibly, to
disable a disk cache such as PC-Kwik; otherwise, INSTALL may hang while
unpacking archived (compressed) files. The problem is caused by a conflict
between some versions of the UNZIP utility and the cache software.

Configuration Tips

The tips in this section will help you to configure TD for peak performance. On
my system, I keep two configurations—one for 80386 virtual debugging and
another for DOS and Windows. 1 run a simple batch file to copy the appropriate
AUTOEXEC.BAT and CONFIG.SYS files to my C:\ root directory so 1 can
quickly switch from one setup to another.

I also keep several “local” configurations in my project directories by
saving TDCONFIG.TD files with TD’s Options:Save options command. This

41

Part One: Guide and Reference

records the options I use to debug various programs, saving me the trouble of
resetting those same options the next time a bug surfaces in the code.

When configuring TD for your system, don’t aim for perfection. Each
buggy program will pose unique problems to solve, and you’ll probably have to
reconfigure TD frequently to find different kinds of bugs. Use the information
in this chapter to find a “happy medium” that works for most programs. You
can always create configuration files to fine-tune TD if necessary.

Black-and-White Graphics

Most CGA, EGA, and VGA video displays are color, but if yours is in black and
white (or green, amber, or even shocking monochromatic pink), you might not
be able to read INSTALL’s messages. In that case, press q to quit to DOS and
restart with the command install /b to fix the problem. You’ll also want to
configure TD to use black-and-white “colors.” See “Custom Setups” later in this
chapter.

Setting Up Directories

Most people install TD—plus the other two programs in the Turbo Debugger
and Tools package, TASM and Turbo Profiler (TPROF)—on a hard drive in the
subdirectories C: \TD, C:\TASM, and C:\TPROE If you are using floppy
diskettes, you’ll need at least one high-density 5.25-inch 1.2-megabyte, or one
3.5-inch 720K or better, drive. TD’s code file TD.EXE is too large to fit on a
standard 360K floppy diskette. (Unfortunately, you can’t use INSTALL to install
TD on high-density floppies. To do that, you must unpack the .ZIP archive files
manually with the UNZIP utility. See chapter 6.)

Whatever directory names you decide to use, be sure to add a command
such as path=c: \ dos;c: \ td to your AUTOEXEC.BAT file. This will let you
switch to your working directories and run the debugger by typing td plus a
program name. If you are using two high-density disk drives instead of a hard
drive, insert the command path=a: \ ;b: \ in AUTOEXEC.BAT so you can run
TD in one drive while the other is current.

Some programmers prefer to store all TD files along with TASM and TPROF in
a common directory, typically named C: N\ UTIL or C: \ BIN. You might also store
your compiler’s executable files there plus other utility programs. This arrangement
offers three advantages over using the stock setup’s multiple subdirectories:

¢ The PATH environment variable is kept short.

® Programs start more quickly (on the average) because COMMAND.COM
needs to search only two directories for executable files—the current
directory and the one listed in PATH.

Chapter Three: Getting Turbo Debugger Up and Running 43

® The newest versions of utilities such as README, GREP, and MAKE auto-
matically replace old files of the same names. This also prevents wasteful
duplicate files in multiple directories.

A disadvantage of this technique is that some programs may start more
slowly if C: \ BIN becomes very full. Also, to uninstall programs and to upgrade
to future versions requires manually deleting old files, which can be tedious.

System RAM

TD can use three kinds of memory: system, expanded (EMS), and extended
(XMS). Normally, the debugger shares system RAM with the code that you want
to examine, an arrangement that works surprisingly well even for medium-size
programs. You’ll need a minimum of 384K available in addition to DOS and any
resident programs, but the more memory you have, the better. Figure 3.1
illustrates this common configuration and lists rough sizes for each component
in RAM. (Exact sizes will vary from one installation to another.)

- o

DOS
— 150K
ZGOKT‘; Turbo Debugger
jl_ 410K
Symbol Table
L]
230K i Program Code and Data
L]
| Free Memory
640K

* (Sizes are approximate)

Figure 3.1. System-memory map.

Expanded RAM (EMS)

If your system has an expanded memory card installed, TD can store its overlays
and program symbols there to free some system RAM for the debugger and the
program’s code. For debugging medium- to large-size programs, if you run out
of room in system RAM, increasing your system’s EMS capacity may be the least
costly solution. Figure 3.2 illustrates how TD uses EMS RAM to store symbol
tables, plus a few other items you’ll meet later.

Other programs may compete with TD for EMS RAM. For example, you
may install a large RAM drive at boot time. In that case, be sure to reserve some
EMS for TD. The exact amount depends entirely on the size of your program’s

44 Part One: Guide and Reference

+ 0K System Memory

DOS
—‘— 150K - =
Turbo Debugger xpan
= ! % Memory (EMS)
3 400K
* Program Code and Data Symbol Table
240K . History Lists
Overlays
* plus other uses
Free Memory
640K

* (Sizes are approximate)

Figure 3.2. Expanded-memory (EMS) map.

code and how many public symbols it defines, so it’s impossible to calculate
how much EMS RAM you need. Experiment until you find a setting that works.

Extended RAM (XMS)

Extended RAM is found only on 80286-, 80386-, and 80486-based systems;
therefore, if you have an XT-style PC, skip to “Remote and Dual-Monitor
Installation.” Only AT-class machines can use extended RAM, which extends the
computer’s address space above a standard PC’s 1-megabyte high-water mark.
Figure 3.3 illustrates TD’s use of extended RAM.

© oK System Memory

‘ Extended
150K pos __ | Memory (XMS)
_75lS_Core£' D2_t16_ on_l)ﬂ § RAM Drive
. }
490K . Program Code and Data Turbo Debugger 640K
’) t
Free Memory § Disk Cache
640K
* (Sizes are approximate) § (Optional)

Figure 3.3. Extended-memory (XMS) map.

Many AT-class systems come with extended RAM installed on the mother-
board. Others have XMS cards that you can configure to EMS or XMS specifica-
tions (or both). These tips and the notes that follow for 80286-, 80386-, and
80486-based PCs will help you to choose the best arrangement for your system:

® 80286 and 80386 systems need about 640K extended RAM. (In past TD
versions, the recommended extended RAM minimum for TD386 was 700K.

Chapter Three: Getting Turbo Debugger Up and Running 45

Actually, that figure is approximate, and a smaller value might work equally
well, especially if you also have EMS for TD to store symbol tables. See the
-f option later in this chapter.) If you have less than 640K extended RAM,
you may not be able to run TD286 or TD386.

¢ If you have a large amount of extended RAM (at least 1 megabyte), config-
ure about 700K as extended and, if possible, the rest as expanded RAM. You
can then run TD, TD286, or TD386 to debug very large programs.

® If you are using other programs such as a disk cache or RAM drive that
compete with TD for extended RAM, be careful not to allocate the same
RAM for more than one use. See Figure 3.3 for help in planning your
extended RAM usage.

One way to prevent conflicts when multiple programs share extended
memory is to install an extended-memory manager and, possibly, Microsoft’s
XMS HIMEM.SYS driver, supplied with Microsoft Windows. This driver
makes a 64K High Memory Area (HMA) available starting at the base of
extended RAM.

If you aren’t using Windows, you can get a free copy of the XMS software
and documentation by calling the Microsoft Information Center (MIC) toll free
at 800-426-9400. When you hear the recording, follow instructions to connect
to the MIC and ask for the “XMS documentation and driver source code for the
Extended Memory Specification.”

'TD286 also respects the VCPI (Virtual Control Program Interface) specifi-
cation, available at no charge from Phar Lap Software, Inc., 60 Aberdeen Ave.,
Cambridge, MA 02138. Their phone number is 617-661-1510. (This is not a toll-
free call.) Programs that are VCPI-aware can share extended RAM without
conflicts.

Neither of these solutions is perfect, however, and they do not permit
TD386 to run along with other protected-mode software such as Windows/386
and DesgView. Also, all programs and TSRs must recognize the existence of an
extended-memory driver—this isn’t automatic.

Converting Extended to Expanded RAM

There are public domain drivers available such as EMS40.SYS published by PC
Magazine (Vol 8, No. 12) that use an 80386 or 80486 processor’s paging abilities
to convert extended memory to EMS. Unfortunately, because these drivers
switch in and out of protected mode to perform a copy subroutine for each
access to a new memory page, they can cause TD’s performance to drop
through the bottom of the barrel.

For this reason, if you want to convert extended RAM to EMS for storing
symbol tables, one of these drivers may not be the best choice. Instead, try
these suggestions:

46

Part One: Guide and Reference

e Use the -f switch with TD386 to convert additional extended RAM to EMS
for TD’s use. (This RAM is not available to your program. It’s strictly for
TD’s private consumption.)

® Purchase an expanded memory card. You can install extended and
expanded RAM in the same computer, and TD can use both kinds of
memory simultaneously.

e Run TD or TD286 (not TD386) under Windows/386 or Windows 3.0 with
the HIMEM.SYS XMS driver installed according to directions. Depending
on the total amount of extended RAM in your system, Windows will
automatically convert extended RAM to EMS, which TD will use. Under
Windows 3.0 on an 80386- or 80486-based system, you can also install the
supplied EMM386.SYS device driver to convert a portion of extended RAM
to EMS.

e Some people with 80386 systems recommend running TD and
Windows/286 or Windows 3.0 in real mode with 386-Max from Qualitas to
manage extended memory. (See Bibliography.) However, you must run TD
or TD286, not TD386, under this configuration.

80286 Installation

AT-class PCs with 80286 processors and at least 640K of extended RAM can run
TD 2.0 in protected mode. With this configuration, the TD286 debugger loads
all but a small portion of itself into extended RAM. Only a small core of about
75K remains behind in system memory, freeing the rest of RAM to hold a target
program’s executable code and data. (See Figure 3.3.) According to Borland,
because TD286 recognizes the VCPI specification, you may also be able to use
TD286 with a VCPI-aware extended memory manager.

Because all 80286-based systems are not equal, before running TD in
protected mode, change to TD’s directory and execute TD28G6INS to configure
TD286 for your hardware. The Turbo Debugger User’s Guide implies that, in
some cases, this may hang your computer, forcing you to reboot. If that
happens, the guide suggests restarting the program to continue configuring. I'd
also suggest removing all TSRs and device drivers before running TD286INS for
the first time. That may not be necessary, but experience teaches that limiting
the number of variables while configuring software is often a good idea.

After configuring TD286, you’re ready to run TD in protected mode. Turn
to “Running TD” later in this chapter for details.

You can’t use TD286 and another protected-mode program such as a DOS
extender at the same time. Also, if you have an 80386- or 80486-based system, you
may run TD286, but usually, you’ll want to use TD386 instead, as the next section
explains.

Chapter Three: Getting Turbo Debugger Up and Running 47

80386 Installation

If you're fortunate to have an 80386- or 80486-based system, you can install
the TDH386.SYS device driver to take advantage of special debugging registers
on these processors. Patterned after ICE hardware—the vastly more expensive
In-Circuit Emulators hardware used by system designers—these features let
you set breakpoints (instructions to halt a program based on certain conditions)
to monitor bytes in memory without slowing TD’s performance. You can set
similar breakpoints on systems with 8088, 8086, and 80286 processors. But,
without hardware debugging abilities, TD has to monitor memory locations by
brute force, which can drastically reduce runtime speed. (Chapter 8 covers
breakpoints in more detail. Also see chapter 18.)

To install the TDH386 device driver, add the following line to your
CONFIG.SYS configuration file in your boot drive’s root directory:

DEVICE=C:\TD\TDH386.SYS

This assumes that TD is installed in C: \ TD. After rebooting, when you next
run TD, the device driver gives the debugger access to debugging registers on
80386 and 80486 processors.

If you also have at least 640K of extended memory available, after booting
to install TDH386.SYS, you can run the TD386 protected-mode supervisor.
This runs the target program and TD in two 8086 virtual machines, replicating
the runtime conditions that exist during normal operation of a buggy program
under DOS. (See “Running TD” later in this chapter for more information about
running TD386.)

Among the many advantages of running TD386 in protected mode on
80386 systems, these head the list:

® All available system memory is allocated to your program. TD and the
symbol table no longer have to share memory with the program’s code.
Provided you have enough RAM, this should make it possible to debug
programs of any size. (See also the -f switch, which lets TD386 use some
extended RAM as EMS for storing large symbol tables.)

® The buggy code runs under conditions that are identical to normal DOS
operation. TD386 can help pinpoint positional bugs that appear when the
code runs from DOS, but disappear when the program runs under control
of the debugger—an exasperating experience, as anyone who’s faced this
kind of bug can verify.

® The debugger and program symbols are protected from wayward state-
ments, pointers, and array index faults (among other problems) that over-
write RAM allocated to TD. All memory outside of the program’s virtual
machine is protected from unauthorized changes. (But see “Exceptions”
later.)

Part One: Guide and Reference

® Conflicts between the debugger and program code are eliminated. All
system resources (disk drives, keyboards, video displays, and so on) are
available to the program.

There are still a few restrictions when using TD386: you can’'t debug
protected-mode programs, you can’'t access memory above the lower 1-mega-
byte address space, and you can’t execute privileged instructions. Also, only
one program at a time may serve as the protected-mode supervisor; therefore,
you can’t run TD386 along with other multitasking software such as
Windows/386, Windows 3.0 in 386 enhanced mode, QEMM, 386-Max and
DesqView. You can run only plain TD and TD286 when using those and similar
programs.

Even so, when running one of those multitaskers, or if you don’t have 640K
of extended RAM available for TD386 or TD286, you can still install the
TDH386.SYS device driver on 80386 and 80486 systems. This lets TD take
advantage of hardware debugging registers on the processor. You don’t have to
run TD386 to enable hardware breakpoints.

Exceptions

Even with TD386, it’s still possible for an exception violation to occur when
TD386 intercepts an unexpected critical interrupt. Typical exception values are
0 (divide error), 6 (illegal machine code), 13 (general protection exception), and
14 (page fault). Some network cards cause TD386 to fail with exception 13.
Code that was trashed by a bad pointer often leads to exception 6. Some TSRs
are also known to cause similar headaches.

The only solution to these problems is to remove the card or software that’s
at fault. In the case of exception 6, the error is probably in the target program
(but remove all TSRs just to be safe). Unfortunately, when the problem is caused
by conflicting hardware, there aren’t any easy answers. Complain loudly to
manufacturers, stressing that they should document the interrupts used in their
peripherals.

Reserving Environment Varidble Space

When TD386 creates the virtual machine under which a target program’s code
runs, it allocates 256 bytes for environment variables. If your program needs
more or less than this default amount, specify the space you need with the
device-driver’s -e option in CONFIG.SYS. For example, this line reserves 800
bytes for environment variables:

DEVICE=C:\TD\TDH386.SYS -e800

Chapter Three: Getting Turbo Debugger Up and Running 49

This option affects only the amount of system RAM reserved for environ-
ment variables that your program code requires. It does 7ot affect how TD386
loads TD into extended RAM—a common misconception. (The option is equiv-
alent to COMMAND.COM’s /e switch.) For other memory options, see “Running
TD” later in this chapter.

Remote and Dual-Monitor Installation

Chapter 17 explains how to link two systems for remote debugging, and it
shows how to install TD for use with two monitors connected to one computer.
These configurations make it possible to view TD’s screen while seeing your
program’s display at the same time. A remote link is the safest possible setup—it
completely isolates the development system from harm caused by bugs. Even
the TD386 virtual debugger can’t prevent a bug from erasing source code and
other files on your disk drive!

If you have two PCs, or if you have two video adapters in your computer,
you might want to read chapter 17 now to learn how to prepare TD for remote
or dual-monitor debugging. You can then use this configuration along with
most of the other information in this book. (You can’t debug remotely while
running TD286 and TD386, though.)

Installing a Mouse

You don’t have to take any special actions for TD to recognize most popular
brands of mouse input devices. I use a Microsoft “Bus” mouse, but those
from other manufacturers (e.g., Logitech) should work equally well. If you
have a Microsoft mouse, there are two ways to install the required device
driver:

¢ Insert the command DEVICE =d: \ dir \ MOUSE.SYS in your CONFIG.SYS
file, where d: \dir\ is the optional drive and directory that contains the
MOUSE.SYS file.

® Or, insert the command d: \ dir \ MOUSE into AUTOEXEC.BAT to install
the MOUSE.COM program stored in d: \dir \..

Installing MOUSE.SYS may save a little RAM by avoiding unnecessary dupli-
cation of environment variables attached to every TSR that you load. But only
the MOUSE.COM method lets you run the Microsoft CPANEL Control Panel
program to adjust mouse sensitivity. Also, you can enter the command MOUSE
OFF to remove the TSR mouse driver from RAM without rebooting. If you use a

50 Part One: Guide and Reference

‘mouse only with TD, you can save about 15K of RAM for compiling and editing
by starting the debugger with the batch file in Listing 3.1, TDM.BAT.

Listing 3.1. TDM.BAT.

mouse
td %1 %2 %3 %4 %5 %6 %7 %8 %9
mouse off ‘

Replace td with td286 or td386 if you have the appropriate hardware. Use
the command mouse /Sn where z is a number between 0 and 100 to adjust
sensitivity—that is, the speed of the mouse pointer relative to how much you
move the mouse device. Store TDM.BAT, MOUSE.COM, and TD.EXE in direc-
tories listed in a PATH statement. From then on, enter TDM instead of TD to
start the debugger and enable the mouse. When you quit TD, the final com-
mand removes the mouse driver from memory, freeing about 15K.

Using a Mouse with Microsoft Windows

Even though Microsoft Windows has its own mouse driver, you still have to
install MOUSE.SYS or MOUSE.COM to use a mouse with TD. When running
under Windows, TD’s mouse cursor appears only in a full-screen text window.
When running the debugger in a graphics window, you can’t use the mouse to
pull down TD menus and select commands. To do that, you must switch to text
mode (usually by pressing (Alt)-{Tab)) before TD will recognize and use the
mouse driver you installed at boot time. This is a limitation that Windows places
on all DOS applications.

Minimum Configurations

If you’re short on disk space, consult Table 3.1 for the minimum number of files
required to run TD, TD286, and TD386. Also listed are the files required for
remote debugging with two computers (see chapter 17).

As the table shows, the only required file for all systems is TD.EXE. When
debugging in remote mode, the remote system needs only the
TDREMOTE.EXE file.

If you can spare the room, you should also keep TDHELP.TDH in TD’s
directory. This file stores the text for TD’s extensive on-line help—if the file is
missing, you’ll see the message “Help file tdhelp.tdh not found” when you press
(F1). You may also want to keep various TD utilities on disk. See chapters 2 and
6 for hints about selecting which utilities you need.

Chapter Three: Getting Turbo Debugger Up and Running 51

Table 3.1. Minimum files required for debugging.

System Required Files

All TD.EXE

80286 TD.EXE
TD286.EXE*

80386 TD.EXE
TDH386.SYS
TD386.EXE*

Remote TD.EXE
TDREMOTE.EXE
TDREEXE

*Required only for protected-mode operation.

Custom Setups

After installing TD’s files, run the configuration program TDINST to select
various settings and options. Don’t put this job off until later—some of the
settings can drastically affect TD’s performance; therefore, selecting the right
options for your hardware can improve TD’s ability to help you find bugs
quickly.

Some TDINST commands require you to enter text, others let you select
one or more options, and still others are enabled or disabled by a check box.
Many settings are grouped in a dialog box. To select these options, press (Tab)
to move among option groups and {(Shift)-(Tab) to move in the opposite
direction. Or, point the mouse cursor at an item to change and click the left
button. Enable check boxes [X] by pressing {Space) or clicking the mouse. Use
{Cursor Up) and {Cursor Down) to select settings marked with a round dot
(called radio buttons because they resemble the buttons on a car radio). When
you’re done making changes in a dialog box, press (Enter) or click 0k to
accept the settings, or press (Esc) or click Cancel to restore the previous
values. (Also see chapter 4 for a more complete description about using dialog
boxes.)

When you have configured TD, use TDINST’s Save command to store
your settings directly in TD.EXE or in a configuration file, usually named
TDCONFIG.TD. The next time you start TD, it will read TDCONFIG.TD from
the current directory, in the “Turbo” directory specified with TDINST,
or in the same directory where TD.EXE is located. If it doesn’t find a
TDCONFIG.TD file in one of those locations, TD uses the default configuration
stored in TD.EXE.

Part One: Guide and Reference

Some people report problems seeing TDINST and TD’s displays and cursors,
which can happen on systems that don’t support multiple video pages or
that install a single-page ANSI.SYS device driver. Follow these steps to cure
the problem. Run TDINST (even though you can’t see its output) and enter
dw(Enter)s(Enter)(Enter)q. This creates a TDCONFIG.TD file with User
screen updating set to Swap, preventing TD from using multiple video pages.
You can also specify the -ds option for TD as explained later in this chapter.

Editing Configuration Files

In time, you’ll probably collect many TDCONFIG.TD files in various directories
with custom settings for different projects. If you need to store more than one
configuration file in the same directory, use the DOS RENAME command to
change TDCONFIG.TD to any name you like. You can then pass the file to TD
to select that configuration (see the -c switch later on in this chapter).

For example, to debug a program named PROG.EXE and use a configura-
tion named NEW.TD, enter td -cnew.td prog with no space between the ¢ and
the first letter of the file name. You can also use a similar command with
TDINST to edit a custom configuration. To do that for NEW.TD, enter tdinst
-cnew.td.

Restoring Original Settings

Enter the command tdinst -c¢ with no file name to load a fresh copy of TD’s
original unchanged settings. You can then save those changes back to TD.EXE
to restore the program to its virgin state as it existed just after installation. You
can also use this trick to create a TDCONFIG.TD file with the original settings.
Start TDINST with the nameless -c option, then save the configuration in
TDCONFIG.TD.

I discovered the nameless -c trick by accident—this is not a documented feature,
so it may or may not work in the future. Borland recommends recopying the
TD.EXE file from its master disk if you need to install a fresh copy of the debugger.
Actually, that won’t work either because the TD.EXE file is compressed, and you’ll
either have to rerun INSTALL or use the UNPACK utility (see chapter 6) to extract
the file from the archive. Try tdinst -c first. It’s much easier than those
alternatives.

Chapter Three: Getting Turbo Debugger Up and Running 53

TDINST Commands

Most of TDINST’s commands follow, with additional hints for creating custom
configurations. To save space, a few commands that have obvious purposes and
that are covered in the Turbo Debugger User's Guide are not listed. Most of the
tips here are not in the TD guide.

Colors

The following hints are for using the two TDINST Colors subcommands.

Customize

Select this command to customize display colors. Choose Windows, Dialogs,
Menus, or Screen and use the resulting menus to make your changes. Sample
windows show the results of new settings. Hint: If you press (Print Screen)
frequently to print copies of TD’s display, set Screen:Pattern for background
to Blank to reduce printing time.

Default color set

Choose this command, press {Tab) twice to select View colors, and then press
{(Cursor Up) and {(Cursor Down) to review colors for various display
samples.

Display

Selecting the Display command in TDINST’s main menu brings up the Display
options dialog box with the following options.

Display swapping

Set to None for debugging programs with no display output. Set to Smart to let
TD decide when to switch from its own display to the program’s. Set to Always
to switch to the output display between every executed statement. The option
has no effect when debugging in remote or dual-monitor modes. Hint: Use the
Smart setting to reduce display “chatter.”

54

Part One: Guide and Reference

Integer format

Most programmers prefer setting this to Both, which displays all integer values
in hexadecimal and in decimal. Hint: Set to Hex or Decimal to reduce screen
clutter, at the expense of not seeing both integer formats together.

Beginning display

Set to Source to view the Module window and your program’s source code
when TD starts. Set to Assembler to view the CPU window at startup instead.
When set to Source, TD runs a compiled program’s C or Pascal startup code
automatically, pausing at the first source-code instruction. When set to
Assembler, TD does not execute the startup code; therefore, it may not be able
to find program variables until you run enough of the startup programming to
initialize segment registers. Hint: Usually, set this option to Source unless you
want to debug a compiled program’s startup code, or if you prefer to have the
CPU window open for assembly language debugging.

Screen lines

Use the 43/50 setting to display 43 (EGA) or 50 (VGA) lines. Use 25 for all other
displays. Hint: To gain a little more memory for symbols, set to 25 and uncheck
Permit 43/50 lines. Borland’s documentation claims this can save 8K of RAM,
but I've measured as much as 16K savings with some configurations.

Tab size

This option specifies the size of each tab column but has no effect on source
code created with editors that insert spaces for tabs. Use this option to config-
ure TD’s display only if your editor inserts tab control codes in text. The
maximum value is 32. (Do you know anyone who actually uses 32-character
tabs?) Hint: Typical values are 3 or 4 for C and Pascal and 8 for assembly
language. Set to 1 or 2 for heavily indented programs. This will pack more text
horizontally in the Module window.

Max tiled watch

This value limits the automatic expansion of the Watches window. It doesn’t
affect the number of variables you can watch, only the number you see on
screen at the same time. Hint: Set to 10 or a little higher if you’ve enabled 43/50
screen lines for EGA or VGA displays. This will still leave plenty of room to view
source-code statements in the Module window.

Chapter Three: Getting Turbo Debugger Up and Running 55

Fast screen update

If you have a CGA display and if you see interference or “snow” on screen
when TD writes to the display and when you press keys, uncheck this option.
Normally, leave the option checked on. Hint: If you can live with the snow on a
CGA display, check this option for faster displays. You may also want to change
this setting when using dual monitors if one of the displays is attached to a CGA
card (see chapter 17). ‘

Permit 43/50 lines

Check this option to debug programs that display in EGA or VGA 43/50-line
modes. Unchecking it forces TD to display 25 lines regardless of the Screen
Lines setting, allowing the target program to display 43- or 50-line text screens.
Hint: Uncheck to conserve up to 16K RAM.

Full graphics save

Check only if you will debug graphics programs. You might have to use this
option to prevent conflicts between TD’s text screen and the graphics display.
Hint: Leave the option unchecked to conserve up to 8K RAM on some systems.
Check it only if you experience problems with graphics output.

User screen updating

Toggle Other display if you have two display adapters (see chapter 17). The two
circuits must use different video buffer addresses. Toggle Flip pages on if your
display adapter supports multiple pages (most CGA, EGA, and VGA displays do).
Set to Swap only if you experience problems when TD switches between its
display and your program’s. Hint: Swap uses extra memory (up to 16K) for
display buffers. Don’t enable this setting unless absolutely necessary.

Log list length

Sets the number of lines (from 4 to 200) held in the in-memory log. It has no
effect on log information written to disk. Hint: Make sure this value is at least as
large as the number of Screen lines you specify so that you can use the
Window:Dump pane to Log command to log the contents of any window.

56

Part One: Guide and Reference

Floating precision

Normally set to 6, this value controls the maximum number of digits used to
display floating point (real) values. You can specify from 1 to 32 digits. Hint:
Higher values let TD display larger and smaller real numbers in decimal nota-
tion. For best results, choose a setting that matches the precision of the
precision-point data type your programs use most often.

Range inspect

Change the default value of 5 to expand the number of elements TD shows for
untyped arrays viewed in Inspector windows when you press {Ctrl)-R to
choose the Range command. (Chapter 4 introduces Inspector windows.) Hint:
You need to change this value only if you always modify the default range when
you choose that command. I change it to 10 so I can see more of my arrays in
inspector windows without having to make adjustments.

Options

Selecting Options from TDINST’s main menu brings up a submenu of four other
commands.

Directories

Enter the full path name of your program editor in Editor program name. When
TD’s Modu le window is active, you can then press {Ctrl)-E to run your editor—
that is, if your system has enough memory. TD passes the name of the file
displayed in the Module window to the program you specify. (For other ways to
use this feature, see “Creating a Debugging Workstation” later in this chapter.)
In Sourcedirectories, enter the directory names where you store source-code
files. Enter TD’s home directory name in Turbodirectory. Hint: Change Source
directories if you separate source and .OB]J files after compiling (e.g., after
inserting compiled modules into .LIB files). Change Turbo directory if pressing
TD’s help key (F1) brings no help at all when TD’s directory is not current.
Otherwise, you can usually leave these two settings blank.

Input & prompting

Set History list length to the number of entries you want TD to save in
prompt boxes. You can then select from the recorded histories to save retyping
responses to most prompts. Hint: 10 is adequate; 15 is better.

Use Interrupt Key to change TD’s break key—normally set to
{Ctrl)-{Break). Selecting Other enables the Set Key button, which lets you

Chapter Three: Getting Turbo Debugger Up and Running 57

program any key combination for breaking. You may have to change this setting
to debug programs that need to use the break key. Some people also prefer to
change the key to (F12) on extended keyboards with more than ten function
keys. However, because some keyboards may not generate the expected break
signal, after reprogramming this setting, load a test program that pauses for
input (just execute a readln statement in Pascal, or a scanf() function in C, or
call a DOS input function in assembly language), press (F9) to run the code,
and try your new break key to be sure it works.

Always switch on Mouse enabled unless you are 100% positive you will not
use a mouse. Leaving this option on has no effect even if you don’t have a
mouse, so the only reason to disable the switch is if you’re debugging a custom
mouse driver that you don’t want TD to use.

Turn off Beep on error for silent running. That way, it will be easier to hear
the bugs chewing up your code. (Just kidding.)

Toggle on Keystroke recording to use TD’s ability to record every key-
stroke and then play that recording back. Hint: Turn this option off unless you
always plan to use the -k option, explained later in this chapter. When this
setting is on, TD will create a .TDK (Turbo Debugger Keystroke) file for every
program you debug. Turn it off if these extra files become a problem—you can
always enable keystroke recording with -k when needed.

Turn on Control key shortcuts to enable (Ctrl) hot keys, which you can
press to issue local commands in windows (see chapter 5). Hint: Turn this one
off only if you need additional keys to assign to macros or if you want to use
WordStar-editing keys such as (Ctrl)-C and {Ctrl)-S, which conflict with those
same hot keys in some windows. Because hot keys make TD much easier to use,
usually, it’s best to leave this option on.

Source debugging

Set Language to Source module to let TD choose expression and other data
formats based on the source-code file name. Change to C, Pascal, or Assembler
to force the debugger to use one of those formats at all times. Set Ignore symbol
case on if TD doesn’t recognize variable names embedded in source code, but
does display those variables in uppercase in the View:Variables window—a sign
that TD is treating the symbols as case-sensitive when they’re not. Hint: C
programmers who occasionally use Pascal may want to select the € source setting
and then use C-style expressions while debugging Pascal code. Pascal fans who
use C infrequently may want to select Pascal. You may also have to change this
setting when debugging code from compilers that TD fails to recognize.

Miscellaneous

NMI intercept lets TD deal with nonmaskable interrupts, which have been put
to all sorts of unwelcome uses in various PCs and peripherals. If TD hangs or if

58

Part One: Guide and Reference

your system is connected to a network or if TD resets the system clock or if you
experience other odd problems running the debugger (especially intermittent
failures), try unchecking this option. Hint: On systems with multispeed (some-
times labeled “Turbo”) switches, run TD, quit to DOS, and check that the speed
didn’t change. Some computers have lights to indicate the current speed; others
don’t. You may have to inspect the setting using a utility supplied with
your system. Or, type dir at the DOS prompt before and after running TD
to see if TD affects performance. If you notice a slowdown, toggle NMI
intercept Off.

Uncheck Use expanded memory to let your program (not TD) use EMS RAM
for its own data. Hint: Whether or not your program uses EMS, normally leave
this option checked on so TD can store symbols in EMS RAM. Check it off only
if your code must have access to all available EMS space.

In most cases, leave Change process ID checked—it resolves potential
conflicts between TD and your program’s use of DOS function calls and file
handles. Hint: Unchecking this option allows you to trace into DOS function
calls. But if you do this, be prepared for system crashes and, possibly, a reduced
number of file handles available to your code.

0S shell swap size (Kb) sets the amount of code TD swaps to disk when
you choose the File:D0S shel l command. The value is meaningless for virtual-
mode debugging on 80386 or 80486 systems and for protected-mode operation
on 80286 systems, which never swap program code to disk. Hint: Set to O to
swap the entire program to disk.

Spare symbol memory (Kb) reserves room for symbol tables loaded with
File:Symbol load. Hint: This option has no effect on TD’s normal operation,
but high values may waste memory when debugging small programs. For that
reason, the default value of 0 is probably best—you can always use the -sm
command-line option to select symbol-table size as needed.

Turn on Remote debugging only if you will always debug programs with two
systems as chapter 17 explains. Because you can use the -r option to do this
anyway, there’s rarely a compelling reason to switch this option on. Leaving it
off gives you the choice of running TD normally or via a remote link—it doesn’t
prohibit remote debugging.

Use Remote link port to select your serial I/O port, COM1 or COM2. Hint:
Don’t look for other choices; TD can’t use COM3 or COM4 for remote
debugging.

Set Link speed to the maximum I/O port speed. 40 stands for 38,400; 115
for 115,200 baud—the fastest setting. Always use the 115 Kbaud setting unless
you experience I/O problems.

Mode for Display

Use this command to select among five display modes, Default, Color, Black
and white, Monochrome, and LCD. Normally select Default to let TD detect and

Chapter Three: Getting Turbo Debugger Up and Running 59

use a display mode that’s appropriate for your system. Hint: If you have a CGA,
EGA, or VGA display, but are using a black-and-white monitor, use the command
MODE BW80 before starting TDINST and then select Black and white or LCD. Do
this before using TDINST’s Colors command to customize display colors. If you
still have trouble seeing menus, you might have to type tdinst /b to run TDINST
in black-and-white mode on monochrome displays that emulate CGA hardware.

Save

Select this TDINST main menu command to save a custom setup in one of the
following two ways.

Save configuration file

Choose this subcommand to save all settings in a named file, usually TDCON-
FIG.TD. Hint: This command overwrites existing files with no prior warning.
Use extreme caution when changing the default file name.

Modify td.exe

Select this subcommand to save settings directly to TD.EXE. A TDCONFIG.TD
file will override any settings in TD.EXE, so if your changes don’t seem to take,
you may also have to erase an old configuration file in the current directory or
in TD’s home directory.

Quit

Select Quit to return to DOS. If you made any changes to various settings,
TDINST will warn you before quitting if you didn’t save them.

Creating a Debugging Workstation

There’s a simple reason that many programmers shy away from using
debuggers—they take time to load and execute, and using them can increase
compilation times. Even a few seconds added to the design-compile-debug
cycle discussed in chapter 2 can lead to hours of wasted time over several
months. It’s also annoying to have to quit the editor, run the compiler, load the
debugger, quit the debugger, reload the editor, and so on.

One answer is to create your own debugging workstation, using features in
TD and other software to make your editor, compiler, and TD readily available.

Part One: Guide and Reference

This section discusses several approaches for preparing a comfortable working
environment that can reduce design-compile-debug cycle times while filling in
work-habit ruts you may have fallen into.

Running Editors and Other Programs

*As explained previously, you can enter the path name of your editor with
TDINST’s Options:Directories command. Actually, that name can refer to any
program—TD doesn’t know MR-ED.EXE from a talking horse. TD passes the
name of the current module displayed in the Module window to whatever
‘program you choose to run by this method, a fact that may be useful for
‘running other programs that accept a file name.

This suggests numerous ways to use this feature. For example, you might
run a compiler and use a pop-up editor to enter program text from inside TD.
That way, you need to load TD only once at the start of the day. Or, you might
run another program to modify data files required by the program being
debugged. This may be faster than quitting TD, entering new data, and then
reloading the debugger to continue testing.

You can also run a batch file by entering its file name as the TD “editor.”
When the Module window is active in TD, you can then press {Ctrl)-E to
execute the batch file’s commands, which can run utilities, erase temporary
files, and perform other jobs.

Another possibility is to run your editor (or any other program) with TD’s
File:Open command. In other words, instead of shelling to DOS or installing
the editor’s file name with TDINST, load your editor’s .EXE or .COM file as
though you were going to debug it, and then press (F9) to run! When you quit
your editor, you’ll be back at TD’s display. This trick is especially useful when
running TD286 or TD386 (which frees all or most system RAM for running
programs), and it’s often much faster than quitting to DOS to run another
program. You can even run the full TP or TC IDE editors and compilers under
TD’s control this way.

Shelling to DOS

Use TD’s File:D0S shell command to suspend debugging temporarily and
return to DOS. You can then run editors, compilers, and linkers to modify your
program. When done, enter exit at the DOS command line to get back to TD.

If you use this method to edit and recompile program source-code files, be sure to
reload the compiled program with File:Open; otherwise, TD will use the old
code that it previously swapped to disk.

Chapter Three: Getting Turbo Debugger Up and Running 61

You might have to use TDINST’s Options:Miscellaneous command to
increase the amount of memory reserved for 0S shell, normally set to 128K.
Some compilers and editors can run in that small amount of space, but most
require more room. Remember, this setting has no effect when running TD286
and TD386, which disable swapping program code and data to disk when
shelling to DOS.

Installing Language Help

TP and TC programmers may want to install the on-line help systems for those
languages before running TD by changing to the TP or TC directory and
entering thelp at the DOS prompt. Doing this loads the on-line help TSR into
RAM. You can then press (F1) to use TD’s on-line help system or press 5 on the
numeric keypad to get help with Pascal or C. You can also move the cursor to
any source-code statement in a TD window and press 5 to bring up documenta-
tion about that command, library function, or data structure.

Listing 3.2, TDH.BAT, shows how to enable language help temporarily
during TP debugging sessions. Enter the batch file and then type a command
such as tdh prog to debug a compiled program PROG.EXE and load TP’s on-
line help. (This assumes that TURBO.HLP is in the C: \ TP directory.) The third
line removes the help program from RAM after you quit TD. TC users should
change the help file’s path name to C: \ TC\ TCHELP.TCH, assuming that TC is
installed in C: \TC. The batch file requires the TP or TC directory to be listed
in the current PATH.

Listing 3.2. TDH.BAT.

thelp /Fc:\tp\turbo.hlp
td %1 %2 %3 %4 %S5 %6 %7 %8 %9
thelp /U

Microsoft Windows

Probably the best all-around way to design a debugging workstation is to
enhance DOS with a program switcher or multitasker such as Microsoft Win-
dows or DesqView.

Whatever setup you choose, you can then run your editor, compiler, and
TD in separate windows and use mouse or keyboard commands to switch
between those and other tasks. For best results, a fast AT or 80386-based system
and a high-quality color EGA and VGA display are practical necessities. You’ll
also need at least 2 megabytes of RAM—4 is better.

To run TD under Windows, you must create a .PIF (program information)
file, and run that file to start TD. Or, you can open a COMMAND.COM window
and then run TD and other DOS applications as you normally do from the DOS

62 Part One: Guide and Reference

prompt. Several sample .PIF files are provided with Windows for this purpose.
Use the supplied PIFEDIT program to create TD.PIF and store the file in TD’s
directory or with other PIF files. (This program is named PIF Editor under
Windows 3.0.) When running PIFEDIT, set Required memory to 384; Desired
to 512 or 640. Other settings are optional, and you’ll have to experiment to
achieve the best results for your system.

Running TD

With your code compiled and with TD installed and configured, you’re ready
to begin learning more about TD’s many features. Starting TD is easy—just type
td plus the name of a program to debug. If that program takes command-line
parameters, add them after the program name. For example, to load a sorting
program that operates on input and output files, enter a command similar
to this:

td mysort input.txt output.txt

Enter td286 instead of td if you’ve configured an 80286 system to run in
protected mode. Or, enter td386 instead of td for virtual debugging on 80386
systems. (This requires the TDH386.SYS driver to be installed in CONFIG.SYS
as described earlier.)

To debug filter programs that process redirected input and, usually, write
output to the standard DOS output file, enter a command such as:

td filter < infile.txt

You can also start TD with no parameters, in which case you’ll see the CPU
window instead of the usual source-code Module view. If you start TD this way
under Windows or another multitasker, you can then use File:Open to load
programs for debugging.

The complete syntax for running TD, TD286, and TD386 with optional
elements in brackets, is:

td[286|386]1 [option...] [program [<] [arguments...]]

TD Command-Line Options

The following reference includes all TD command-line options. Because some
of the features are covered in later chapters, you might want to skim this
material now so you can look up specific details later. To view a list of TD

Chapter Three: Getting Turbo Debugger Up and Running 63

options on screen, enter td -h or td -?. To print a reference copy, enter
td -h)prn.

TD286 and TD386 options are also listed in this section. To view them on
screen, use the -h or -? options. This works for TD386 only on 80286 or on
80386 systems with the TDH386.SYS driver installed in CONFIG.SYS. Also,
you’ll receive an error message if you try to run these programs while another
protected-mode supervisor (such as Windows or DesqView) is in charge.

To enable an option, type a dash and the option letter in upper- or lower-
case between TD and the optional program name. You can replace the dash
with a forward slash (/) if you prefer. Follow the letter with a dash (representing
minus) to disable an option. Follow it with a plus sign (+) to turn that option on.
Separate multiple options with spaces. For example, to load MYPROG.EXE (or
MYPROG.COM) and to disable 43/50-line mode and the mouse, you would
enter:

td -vn -p- myprog

All command-line options take precedence over settings in a TDCONFIG.TD
configuration file and defaults stored directly in TD.EXE by TDINST.

The following TD command-line options are arranged alphabetically. A few
related options are listed together—for example, -do, -dp, and -ds. Optional
arguments are bracketed [like this]. The notation [+ | —] indicates you can type
a plus to enable or 2 minus to disable this option. (The plus sign is the default—
you never have to type it.) Where appropriate, the TDINST configuration
command that’s related to an option is also listed in this section.

-c[file]

This option loads a configuration file named file. There should not be any space
between the ¢ and the first letter of the file name. Normally, file is named
TDCONFIG.TD, but you can use any other name. TDINST command: none.
(Use the similar -c option with TDINST to edit a configuration file.)

-do, -dp, -ds

Use only one of these three options at a time: -do to enable a second display in a
two-display system; -dp to select page flipping for multipage video display
adapters (normally, the default setting); and -ds to cure problems when TD
switches between its display and a program’s. Use -ds if a program loaded into
TD displays text on multiple pages, in which case you should #ot use -dp. (Your
program or TD can flip pages, not both.) When debugging graphics programs,

64

Part One: Guide and Reference

-b, -?

if you receive the message “Video mode switched while flipping pages,” start
TD with the -ds option and the problem should disappear. (See also the -vg
option.) TDINST command: Display:User screen updating:0ther display
(-do), Flip pages (-dp), Swap (-ds).

Use either of these two commands to list TD’s options to the standard output.
The presence of either option prevents TD from running, even if you also
specify additional options and a file name. TDINST command: none. (You can
use these same command-line options to display TDINST’s instructions.)

if+]-]

K[+ |

Enables or disables process ID switching. Use -i- only if you want to trace into
DOS routines. Use -i if you did not check the related TDINST option (thus
allowing DOS tracing) and you don’t want to trace into DOS routines for this
debugging session.

Process ID switching allows TD and your program to call DOS functions
and use file handles without conflicts. Disabling this feature with -i- allows you
to trace into DOS, but it also causes your program to share file handles with TD.
Because tracing DOS routines is dangerous and may cause DOS to become
unstable, use -i- with extreme caution. TDINST command:
Options:Miscel laneous:Change process ID.

-1

Enable or disable keystroke recording. When enabled (-k), all keystrokes are
saved in a .TDK file, and you can use View:Execution history to replay all
recorded activity to rerun various test sequences. Unlike simple macros, key-
stroke recording saves all input to TD and to the program being debugged;
therefore, you can use this feature to repeat every command that you issue
while debugging.

If you enabled this option with TDINST, you can temporarily disable it with
-k- to avoid creating a .TDK file in the current directory. TDINST command:
Options:Input & prompting:Keystroke recording.

Enable this command to force TD to display the CPU window at startup, and not
to run startup code added by the compiler before the first source-code state-

Chapter Three: Getting Turbo Debugger Up and Running 65

ment in a target program. You can then press (F7) and (F8) and use other
commands to trace the program’s initializations. When you do that, you may
have to step through code that initializes segment registers ds and es before TD
will be able to locate variables in the data segment.

Another time when -I- is useful is to view the Module window when TD
starts if you previously used TDINST to force the CPU window to come up by
default. TDINST command: Display:Beginning display.

-m(#)

Use -m to set TD’s heap size to #K. For example, -m12 allocates a 12K heap.
Normally, TD sets aside 18K for its heap, in which it stores various dynamic
items, including command histories and breakpoint information. Use -mO to
allocate 2 maximum 18K heap. In some cases, a slightly smaller heap will allow
TD to function normally but will free enough room for a large symbol table.
This won’t always work, but it’s worth a try. The smallest heap TD can use is 7K.
TDINST command: none.

P+ -]

Unless you turned off mouse support with TDINST (which is rarely necessary),
you’ll never have to use this command. TD automatically recognizes and uses a
mouse if you have one. But you can use -p- to disable mouse support tempo-
rarily if that ever becomes necessary, for example, to debug a custom mouse
driver. TDINST command: Options:Input & prompting:Mouse enabled.

+|-]

Start TD with -r to activate remote debugging. You’ll also have to connect your
two systems with a serial cable and start TDREMOTE on the remote computer.
See chapter 17 for more information about debugging in remote mode.
You can’t use this option with TD286 or TD386. TDINST command:
Options:Miscel laneous:Remote debugging.

-rp{#)

When using -r, you can also use -rpl or -rp2 to select COM1 or COM2, the
only two I/O ports that TD supports for remote debugging. Usually, you’ll
use -rp to test your remote hookup as chapter 17 explains, and then run TDINST
to record the correct port in TD.EXE or in a configuration file.

Part One: Guide and Reference

You can’t use this command without also using -r. TDINST command:
Options:Miscel laneous:Remote Link port.

-rs{#)

Similar to -rp, when using -1, you can also specify -rs1 (9600 baud), -rs2 (38.4
Kilobaud), or -rs3 (115.2 Kilobaud) to set I/O transfer speed. Usually, you’ll use
this command to test a remote hookup and then run TDINST to record the
correct speed in TD.EXE or in a configuration file. Also, as with -rp, there’s
never any reason to use -rs without also using -r. TDINST command:
Options:Miscel laneous:Link speed.

sef+|-]

Enable the ignore-symbol-case option with -sc to treat upper- and lowercase
symbols equally (the default). Disable with -sc- to make case significant so that
myVar and MyVAR are considered to be different symbols. Either way, this option
affects only programs that are compiled and linked with your language’s
case-sensitive switch on. Most C but not Pascal programs are case-sensitive.
Assembly language programs are usually not case-sensitive unless linked to
C code. TDINST command: Options:Source debugging:Ignore symbol case.

-sd{dir)

Use -sd to specify an alternate directory where you store your source-code files.
To list more than one directory, enter multiple -sd commands such as
td -sd \ include -sdc: \1ib. All specified directories are added to those listed
in a configuration file. TDINST command: Options:Directories:Source
directories.

-sm{#)

This option allocates from 0 to 256K of memory for a symbol table to be loaded
by File:Symbol load, usually to debug resident device drivers and TSRs (see
chapter 19). Before using this option, type dir to list the .TDS file name that
contains the symbols stripped from a code file by TDSTRIP or prepared from a
.MAP file by TDMAP. Then, use -sm to allocate about 1.5 to 2 times the size that
DIR reports for the symbol-table file. For example, if DIR reports the .TDS file
size to be 8750 bytes, use the command -sml13. If you receive an error when
loading the symbol table, quit TD and increase the -sm value until you get a
successful load.

Chapter Three: Getting Turbo Debugger Up and Running 67

Because the allocated space is added to TD’s normal symbol-table room,
there’s no reason to use -sm except when loading a symbol-table file from a
.TDS file. TDINST command: Options:Miscel laneous:Spare symbol memory.

-vg[+|-]

Specify -vg to debug graphics programs, especially if you receive error mes-
sages or experience problems when TD switches between its display and the
program’s. You might also need to use both -vg and -ds to debug graphics
programs successfully. (Note: Debugging graphics programs is much easier with
two computers or two monitors—see chapter 17 for details.) TDINST com-
mand: Display:Full graphics save.

onf+|-]

If you’ve enabled 43/50-line mode with TDINST for an EGA or VGA display, use
-vn to temporarily disable the extra-length mode and display TD in 25 lines.
The option has no effect if 43/50-line mode was disabled with TDINST. In other
words, you can’t use -vn- alone to switch on 43/50-line displays, you can use -vn
only to switch them off. TDINST command: Display:Screen lines.

-vp[+|-]

Use -vp to enable EGA palette save mode. This option is necessary only if you
experience problems with EGA colors. Normally, it’s not needed. TDINST
command: none.

-y(#)

This option can help strike a balance between performance and memory
savings by adjusting the size of TD’s overlay buffer from 20K (-y20) up to 200K
(-y200). (The default value is 80K.) Smaller values cause TD to load overlays
more frequently from disk, thus reducing performance while making more
memory available for a program and its symbols. Larger values improve TD’s
performance but decrease the maximum size of a target program you can load.
This option has no effect with TD286 or TD386, which do not use overlays.
TDINST command: none.

68 Part One: Guide and Reference

-ye#)

If expanded memory is available, TD will use up to 192K (twelve 16K pages) for
its overlays. If that doesn’t leave enough expanded memory for your program’s
own use, you can specify this option to limit how much RAM TD should use in
16K chunks. For example, -ye8 allocates eight 16K pages, or 128K. To debug
programs that need access to all available EMS RAM, specify -yeO to disable TD’s
use of EMS for overlays. Like -y, this option has no effect when used with TD286
or TD386. TDINST command: Options:Miscellaneous:Use expanded memory.

TD286 Command-Line Options

TD286 recognizes all of the same options available to TD except the overlay
options -y and -ye (TD286 doesn’t use overlays) and the remote-mode options
-1, -rp, and -rs. To debug in remote mode, you must use TD.

TD386 Command-Line Options

The following options are available for TD386 in addition to those listed for TD
(except where noted). Like TD286, TD386 does not recognize the -y, -ye, -r,
-rp, and -rs options.

To use TD386, you must have an 80386- or 80486-based system, and you
must install the TD386H.SYS device driver as explained under “80386 Installa-
tion” near the beginning of this chapter.

b+|-]

Specify -b to allow (Ctrl)-{Break) to interrupt a hung program even when
interrupts are disabled. This is so helpful, you may want to enable this option
permanently. To do that, type td386 -b -w and press (Enter) to accept the
default path name where TD386.EXE is located. Or, enter a different file name
ending in .EXE to preserve the original file. Be careful when entering this
command—the option overwrites any existing file of the name you specify
without warning.

-e(#)

Use -e to specify an amount of extended memory in 1,024-byte increments that
other programs use. Normally, TD386 loads TD into extended memory starting

Chapter Three: Getting Turbo Debugger Up and Running 69

at the 1-megabyte address boundary. The -e option moves TD’s load address
higher to avoid overwriting another program in that same space. For example, if
you are running a 250K RAM drive in extended memory, run TD386 with the
option -€250.

Disk cache programs such as PC-KWIK load from the top of available
extended RAM down; therefore, you don’'t have to use -€ to reserve space for a
cache—a common misconception. But you do have to tell the cache not to
grow down past the 640K limit in order to reserve enough room to run TD286
in protected mode or for virtual debugging with TD386. To do this with
PC-KWIK, use an option such as /E:1724 to reserve 700K in low extended RAM
for TD386 to use. (Note: That’s a PC-KWIK, not a TD, option. Other disk cache
programs may have similar options to restrict their use of extended RAM at
lower addresses.)

-fx000

Use -f to set the expanded memory page frame address to a hex value x. For
example, to specify EO00 as the page frame, use the command -fE000. You’ll
have to experiment to find.a value that works for your system. Try also -fC000
or -fD000.

This option converts additional extended memory over the amount used by
TD386 to EMS RAM. TD can then use this RAM to store a program’s symbols.
However, the converted memory is available only to TD—your program can’t
use this memory for its own EMS purposes. Use the option to debug large
programs when you run out of room for the symbol table.

Hint: You do not have to use this option if you have an expanded memory
card or emulator in your system. Also, the option will not work unless you also
enable TDINST’s Options:Miscellaneous:Use expanded memory setting.

To avoid having to enter the -b, -e, and -f TD386 options described in this
section for each new debugging session, specify -w to modify TD386.EXE’s
default values. For example, if you normally use -b, -e512, and -fE000 with
TD386, change the defaults to these values by entering the command td386 -b
-e512 -fE000 -w. Then, press (Enter) to accept the default path name where
TD386.EXE is stored. Or, enter a different file name ending in .EXE to preserve
the original file. Be careful when entering this command—the option doesn’t
warn you before overwriting any existing file of the same name. The new
settings take effect the next time you run TD386.

70

Part One: Guide and Reference

Summary

This chapter lists tips for installing, configuring, and running TD. Every buggy
program presents unique problems, and you may need to create many different
configurations. Use the TDINST utility to select options that work best for most
programs. Then, create TDCONFIG.TD files (either with TDINST or TD) to
fine-tune the default settings.

TD can run on plain PCs and XTs or on AT-class systems with extended
memory. TD286 can load most of the debugger into extended RAM, freeing
system RAM for debugging large programs. TD386 can load a program and TD
into virtual 8086 machines to free even more room for debugging. This also
isolates the debugger from TD, thus preventing wayward instructions from
overwriting TD’s own code. All versions can use expanded RAM to store TD’s
overlays and a target program’s symbol table.

A good way to use TD is to create a debugging workstation under control of
Microsoft Windows, DesqView, or a similar multitasking DOS add-on. Or you
can use the information in this chapter to run editors and other programs
directly from TD. Anything you can do to limit the amount of time spent
switching between editors, compilers, TD, and DOS can reduce the tedium of
the design-compile-debug cycle.

This chapter also explains how to enable a mouse, how to load a language’s
on-line help for use inside TD, and how to use various command-line options to
select debugging features.

Chapter 4

Windows, Menus, and
Hot Keys

TJRBO DEBUGGER is one of the most complex software packages that many
programmers will ever own. Maybe that’s why some are put off initially by
TD’s numerous windows and hundreds of commands. They mastered their
compilers and editors in a few hours—why should it take so long to learn how
to use TD?

The source of this common complaint, I believe, is that most programmers
begin to learn their way around TD (and other debuggers) only after they’ve
exhausted all other avenues for finding bugs in their code. Then, with deadlines
looming, they turn to TD for help and are frustrated by their unfamiliarity with
TD’s windows, menus, and hot keys at a time when they’re already burned up
about not being able to find those blasted bugs.

If there’s a recipe for failure, that one belongs in the haute cuisine of
disasters. So, instead of waiting for trouble to boil before trying out TD’s
commands, you’ll find debugging easier if you blend TD into your daily
programming habits, and use it as a tool to examine code even before bugs
occur. Then, when disaster strikes, you won’t have to waste time learning how
to set breakpoints, add variables to the Watches window, and enter expressions.

To help you master TD, this chapter is organized as a reference to TD’s
windows, menus, and hot-key commands. Portions of most TD displays are
reproduced here, making this a good chapter to read when you’re away from
your keyboard. Don’t try to memorize every detail that follows—skim the
material your first time through so you can return for specific information later.

Sample Program

The TP sample spreadsheet program TCALC or the TC equivalent MCALC on
your language master disks makes good multimodule demonstration pro-

71

72 Part One: Guide and Reference

grams for experimenting with TD’s commands. (I used TCALC to prepare the
figures in this chapter.) To compile TCALC with TP’s command-line compiler,
enter:

tpc /v /b tcalc
To compile TC’s MCALC, enter:
tcc -v mcalc mcparser mcdisply mcinput mcommand mcutil

Then, enter td tcalc or td mcalc to load the program into TD. Press (F9)
to run the program, (Ctrl)-(F2) to reset the demo to the beginning, and
(Alt)-X to quit TD. (We’ll cover these commands in detail later, but that much
will get you started.)

Unfortunately, there’s no similar sample code for TASM users. Instead, you
can use either one of the assembly language demos on TASM’s master disk or a
listing from an assembly language book. (CHARS.ASM or DT.ASM from my
book, Mastering Turbo Assembler, is a good choice.)

The Scoop on Scope

All identifiers have a scope, a limit on their visibility to other parts of a
program. Some identifiers are global—their scope extends throughout the
entire program. Others are local—they are visible only while their declaring
routines are active.

TD respects identifier scope. It always lets you specify global identifier
names—for example, to inspect the value of a variable. But TD can't find local
variables unless their declaring modules or routines are active. If you try to
enter an identifier outside of its scope, you’ll probably see a value listed as four
questions marks ????, or you’ll receive an error message that the symbol can’t
be found. It is possible to override the current scope by prefacing a symbol with
its module, procedure, or function name, separating identifiers with a # or a
period. (See chapter 9 for details.)

Sometimes, TD’s handling of locally scoped identifiers leads .to problems.
Although you can enter such identifiers at any time, TD recognizes them
only when the declaring code runs. But TD can’t know whether an identifier
outside of its scope is spelled correctly, and any typing mistakes will go
unnoticed. Don’t be concerned about this, just be aware of how TD works. If
TD refuses to recognize an identifier, make sure you’ve spelled it
correctly.

Chapter Four: Windows, Menus, and Hot Keys 73

Choose, or Select, Your Weapon

In general, to select something means to highlight it with a keyboard or mouse
command. To choose something means to select the item and then enter a
command that activates it. For example, you can select a command from
a menu by moving the highlight bar to that command’s name. But you choose
the command by double-clicking its name or by pressing (Enter) after you
select it.

The difference between selecting and choosing an item isn’t always clear,
but the distinction may be important at times.

Turbo Debugger’s Display

TD usually begins with a display similar to the one in Figure 4.1. For reference,
various window parts, which will be described later, are identified in the
diagram. Global menu commands are along the top. (The triple-line symbol =
at the far left represents TD’s System Menu. Other menus have names like File

and Data.)
m»: File View Run Breckpoints Duta Options Window Help SEHL
—[0)Module: TCALC File: TCALC.PRS 1 1=[11[4)
{ Turbo Calc }
{ Copyright ¢c> 1989 by Borland International, Inc. }
progron TCalc;
{ Turbo Pascal 5.5 object-oriented exam!e main module.
Object-oriented spreodsheet prog
Window) See TCALC.DOC for more lnformtlm cbout this example.
uses TCRun;
Current
Line » begin { Call main procedure. The progrom is designed this woy to make
Run; { complles faster. Since the maln source file gets compiled every
. { every time, it moKes sense to moke the file as small as possible.
Inactive
Window

Function-key Reference / Message Llne)

Figure 4.1. Typical starting display.

Part One: Guide and Reference

To the right of the global menu names is the Activity Indicator, which tells
you what TD is doing. For example, in Figure 4.1, TD is READY to accept
commands. Table 4.1 lists the meanings of other activity indicators.

Table 4.1. Activity indicators (upper left display corner).

Indicator Activity or Meaning

ERROR Error message showing; (Esc) to clear

HELP On-line help is active; (Esc) to return

MENU Menu line is active; (Alt)-(F10) returns

MOVE Hold mouse button and drag to move window
MOVE/RESIZE Use cursor movement keys to move or resize window
PLAYBACK Playing back recorded keystrokes

PROMPT Answer dialog box prompt; {(Esc) clears

READY Cursor in window; TD is ready for commands
READY... TD is sorting the symbol table; wait

RECORDING Macro recording in progress; (Alt)-{(Minus) stops
RUNNING TD is running, tracing, or stepping code

STATUS Status dialog box is active; (Esc) clears

WAIT Code is running or TD is busy; wait

The bottom display line shows TD’s hot keys and also displays messages from
time to time. Hold down (Alt) or (Ctrl) to see additional keys. Between the top
and bottom two lines is TD’s display field, which is normally filled with one or
more windows displayed next to each other either in téled fashion or overlapping.
As Figure 4.1 shows, TD starts with two windows completely occupying this
area—Module and Watches. There’s nothing sacred about this initial organization,
and you can change it to any other configuration by using an Options command
to save a TDCONFIG.TD configuration file, as explained later.

If instead of Module and Watches TD displays the CPU or other window
setup initially, the cause might be one of the following:

* You didn’t compile and link your code with the correct options to add
debugging information to the .EXE or .COM or other code file. See chapter
2 for help.

® TD can’t find the source code files for the program. Use TDINST as
explained in chapter 3 to specify a path to those files, or use an Options
command as explained later in this chapter. ‘

® You forgot to delete an old TDCONFIG.TD configuration file in which you
saved a nonstandard window arrangement. Erase this file in the current
directory or in TD’s home directory.

Chapter Four: Windows, Menus, and Hot Keys 75

® You used the -1 command to start TD, causing the debugger not to execute
the program’s startup code. Use Run-menu commands to continue, or use
the View:Module command to open the Module window to see your source
code.

Windows
All TD windows are one of these four varieties:

®* Menus

® Views

® Dialog boxes
® Inspectors

All four window kinds are related, but individual windows vary widely in
the number and kinds of elements they contain. For example, some windows
can move; others can’t. One window might have a mouse scroll bar; another
won’t.

The following information explains in general how to use TD’s four kinds of
windows. After that are details about global menus, commands, and hot keys.
Chapter 5 covers individual View-menu windows with their associated dialog
boxes and commands. Inspectors are discussed as needed to explain how to
investigate language data structures.

Menus

TD displays three kinds of menus, from which you can execute various
commands:

® Global pull-down menus
® Local pop-up menus
® Submenus

There are nine global pull-down menus listed along the top of TD’s display
(see Figure 4.1). To open a global menu so you can see its commands, press
{F10) and use {Cursor Left) and (Cursor Right) to highlight the menu you
want. Then, press (Enter) or (Cursor Down) to open that menu. Or, instead
of pressing (F10), you can press (Alt) plus the first letter of the menu name.
You can also click the left mouse button after moving the mouse cursor to the

76

Part One: Guide and Reference

menu name. To open the System menu, press (Alt)-{Space) or click the
=symbol.

Hint: Because Microsoft Windows reserves {Alt)-{Space) for its own use, under
that program, press {Alt)-F{Cursor Left) to open the System menu.

If you have trouble opening a menu, the reason is probably that another
window is expecting a response from you. Supply that response, or press (Esc)
(possibly more than once), and then try to open the menu again.

When a global menu opens, it displays a list of commands (see Figure 4.2).
Inside the menu, a highlight bar shows which command you’ll execute if you
press (Enter). Press {Cursor Up) and (Cursor Down) to move the high-
lighter up and down and (Home) and (End) to highlight the first and last
commands. You can also use WordStar control keys A, S, D, F, E, and X to move
around in menus. Or, press the highlighted letter key to execute a menu
command directly. For example, to execute the File menu’s Resident
command, open that menu and press R.

= KEIP View Rn Breckpoints Dota Options Window Help
=1 : TCRLC.PAS 18 1=[1103

Resident
Symbo! load...
Table relocate...

Quit Alt-X

Figure 4.2. Sample global pull-down menu.

Hint: The bottom display line describes the highlighted command in all menus,
and a good way to learn more about TD is to open various menus and read those
notes. For more extensive help, highlight a command and press (F1), then follow
directions for using TD’s on-line help window. (See “Help Menu” later in this
chapter.)

To execute a2 command in an open global menu, you can also click the
mouse cursor anywhere on the command name. Or, if you used the mouse to
click open a menu, continue to hold the mouse button down while you drag the
highlight bar up and down. Then, release the button when you get to the
command you want. Press {(Cursor Left) and (Cursor Right) to close
the current menu and open one of its neighbors. Press (Esc) to close the menu

Chapter Four: Windows, Menus, and Hot Keys 77

and return to whatever you were doing. Or, you can click the mouse cursor
anywhere outside of the menu border to close an open menu.

Inside the menu, as Figure 4.2 shows, some commands may be separated
by horizontal lines. Commands within a segmented area are related in some
way, but the lines have no special meaning. Also inside the menu are any hot-
key assignments, shown to the right of a menu command. For example, in
Figure 4.2, <Alt>-X is listed as the hot key for the Quit command. As you
execute various menu commands, pay attention to these hot keys, which you
can press to execute commands without opening their menus. Eventually, you’ll
memorize the hot keys for commands that you use most frequently. It’s much
easier to press (Alt)-X to quit TD than to type (F10)fq or other keys that do
the same thing.

Notice also that some commands—for example, Open and Change dir in
Figure 4.2—are followed by an ellipsis (...). This symbol tells you that executing
the command opens a dialog box for selecting various TD features.

This is a good place to point out a key TD feature. It’s possible to execute many of
TD’s commands in uncountably different ways. Because different people have
different skills and equipment—some are good typists, some have a mouse, others
prefer using the keyboard—individuals will develop their own ways to run TD.
Experiment with as many different possibilities as you can to find the commands
that work best for you. I tend to use the mouse and keyboard about equally. So,
the instructions here may reflect my personal bias. You may find other command
sequences that work better for you.

Local pop-up menus belong to individual windows and list the commands
that you can give to perform various actions on the information displayed inside
that window. Each window has one or more local menus that pop up close to
the text or mouse cursors, not in fixed locations. To open a local menu, first
activate the window you want to use (make sure the window’s border is a
double line), then press (Alt)-(F10). ((Ctrl)-(F10) also works.) For example,
to open the Watches local menu (see Figure 4.3), press (F6) to activate that
window and press (Alt)-(F10).

implementa| Watch

Remove
SovedExi| Delete all

Inspect -
(Change 2=[11[11=)
Empty N d..cruo:oong s CELLPTR T

Figure 4.3. Sample local pop-up window.

78

Part One: Guide and Reference

If you have a mouse, you can click the right button to open a local menu for
the active window. To activate a different window, click the mouse cursor inside
that window or anywhere on its border. To activate an inactive window and
open its local menu, move the mouse cursor inside the window and click the
right button twice. You can then choose commands by clicking their names, or
hold down the button, drag the highlight bar, and release the button to execute
the command.

When a local pop-up menu is open, execute commands using the same
keystrokes and mouse movements described earlier for global menus. As with
those menus, the bottom line describes each highlighted local command, and
you can press {F1) for more extensive on-line help. Unlike global menus, local
pop-ups can also move. Just click and drag the window border with a mouse, or
press {(Ctrl)-{F5) and use (Enter) and cursor movement keys to move
windows and uncover whatever was hidden below. (See “Views” for more
details about moving windows with keyboard commands.)

Also unlike global menus, all local menu commands have associated hot
keys. To execute a local command directly, just press {Ctrl) and the high-
lighted letter of that command. For example, to execute the Delete all
command in Figure 4.3, press {Ctrl)-D. When the local menu is closed, you
must press (Ctrl) plus a command’s hot key. When the menu is open, press
only the hot-key letter. (You can use TDINST to disable local command hot
keys, as explained in chapter 3.)

Both global and local menus may have additional submenus (see Figure 4.4).
A solid triangle () to the right of a menu command—as in the Another and
Macros commands in the figure—tells you that executing the command opens a
submenu, which lists additional commands. Press (Esc) to close the submenu
and return to the underlying menu. Or, press (Alt) and the letter of another
global menu to close both menus and open another. To do the same with a
mouse, either click on another menu name or click anywhere outside the menu
border.

Run BreoKpoints Window Help
Breckpoints
Stack
Log

N N

Stop recording Alt -
Remove
Delete all

Execution history
Hierarc!

Dump
File...

Figure 4.4. Two sample submenus.

Chapter Four: Windows, Menus, and Hot Keys 79

Another way to close a submenu is to click and hold the mouse button
down while pointing to a visible command in the underlying menu. For
example, with the Options menu’s Macros submenu open (see Figure 4.4), you
can click and hold on Language or Macros in the underlying menu to close the
submenu. Then drag the mouse to another command or move it outside the
menu and release to close both menus.

Views
Views are TD’s main windows—places where most debugging activities occur.
There are 14 of these views, each opened by executing a command from the
global View menu. The following information generally applies to all 14 views.
For details about individual view windows, see chapter 5.
What's in a Window?

Figure 4.5 illustrates the parts of a typical View window—in this case, a Module
window that displays the source code for the OBJECTS.PAS file, positioned to
line 205. Most View windows appear similarly, but they are different sizes and
shapes and have different contents.

Other
Information

Close-Window
Button

Window Title Window Number

Zoom Buttons

Mo
destructor Streom.Done;

begin
- FreeMen(ProcList, TypeCount * SizeOf(SProc)?;
Active Window FreeMen(TypeList, TupeCount * SizeDf¢ord));
(Double-Line .

Border)

’

Eg(i:edwe Strean.Error(Code: Integer>;
n)

Status := Code;
erdo

Resize
Handle

Horizontal Scroll Bar Window Contents

Figure 4.5. Parts of a typical View window.

Only one window at a time is the active window—identified by a double-
line border. All input and commands from you affect the active window.
Inactive windows have single-line borders. Output from TD may appear in
active and inactive windows, but commands affect only the active one. For

80

Part One: Guide and Reference

example, see the Watches window near the bottom of the display in Figure 4.1.
Even though this window is inactive, TD still updates its contents when
variables change values.

There are five ways to activate a specific window:

® Choose the window from the Window global menu. Open that menu in the
usual way and select a window name as you do other commands. Or, with
the Window menu open, press the digit key of that window’s number.

® Open the window from the View menu. A new window always opens as the
active window. If that window is already open, it will become active.

e Press (F6) to cycle through all open windows, activating each window in
turn.

® Press (Alt)-n where 7 is an open window’s number.

® Click the mouse cursor anywhere inside a window or on its border. Of
course, this works only if you can see at least part of a covered window. To
activate a window that’s completely hidden behind another, you must use
one of the other four methods or move the other windows aside.

Mouse Window Commands

Many of the elements identified in Figure 4.5 are appropriate only if you have a
mouse. You can still perform all TD commands directly from the keyboard—
see “Keyboard Commands” later in this chapter. But a mouse makes life with
TD windows so much easier, you may want to consider adding one to your
system.

Most mouse movements are intuitive, and I assume you know how to move
the mouse, click the buttons, and click and drag (hold the mouse button down
while you move the mouse). The following tips are for using a mouse with TD
windows (refer to Figure 4.5 as you read these):

® Click on the close-window button (upper left corner) to close the window.
You don’t have to press the button in the exact middle—anywhere on the
two square brackets or the rectangle inside will do.

* To move a window, click anywhere on a single- or double-line border, hold
the button down, drag the window outline to another location, then release
the button.

* To resize a window, click and drag on the lower right single-line corner (the
resize handle). When the window outline is the way you want it, let go of
the button. If the window does not have a vertical scroll bar, you can click
and drag anywhere along the right border to resize that window.

® Click or release the mouse button outside of an area to cancel a command
chosen by accident. For example, suppose you click on the zoom down

Chapter Four: Windows, Menus, and Hot Keys 81

button when you meant to hit zoom up. If you’re quick enough to realize
your error before releasing the button, move the mouse aside and then
release to cancel the command. (This trick also works with menus. When
clicking and dragging in a menu, move the mouse cursor outside of the
menu window and release the button to not choose any commands.)

® Double-click anywhere on the top window border to zoom a window to
full screen. Double-click again to zoom back to the previous window size.

® Zoom buttons may appear in one of three styles (see Figure 4.6). Click on
the zoom-up arrow to enlarge that window to cover the entire screen.
Because that makes the window grow to its maximum size, it will then have
only a zoom-down arrow. Click on that button to restore the window to its
previous size. When both zoom-up and zoom-down arrows are visible,
click on the zoom-down arrow to shrink the window to a small icon, which
TD automatically positions in the lower right display corner. Icons have
only zoom-up buttons. Click an icon’s zoom-up arrow to restore the win-
dow to its previous size.

Full Zoom Medium Zoom

||=[I]=1——[3)T |"[lkl—[f][l)? [[lPl-[tj

Figure 4.6. Three zoom-button styles.

Using Scroll Bars

Many windows have vertical and horizontal scroll bars, which you can use to
pan a window’s contents up, down, left, and right. Some windows have only
one bar and not the other. Others do not have scroll bars. The presence of a
scroll bar is significant—it tells you that there is more to see beyond that
window’s borders. If a window doesn’t have any scroll bars, then its contents
are displayed in full.

Figure 4.7 shows a typical scroll bar, in this case a horizontal bar. (Vertical
bars operate similarly, but they pan a window’s contents up and down instead
of left and right.) Click the left mouse button on one of the small triangles at
either end of the scroll bar to scroll the contents one line (or other unit) at a
time. Click repeatedly to scroll multiple lines or hold the mouse button down
for a moment to scroll continuously until you release the button or until you
move the mouse cursor aside.

82

Part One: Guide and Reference

Scroll Left Slider Scroll Right

Page Left Page Right

Figure 4.7. Typical scroll bar.

All scroll bars have a slider, a rectangular block that travels between the two
triangles at the ends. The slider’s position represents the relative position of the
window’s contents. For example, if the slider is about one-quarter of the way
from the left, you can assume that there’s about three-quarters more infor-
mation hidden to the right. If the slider is in the middle, you're seeing the
content’s midpoint (more or less). When the slider is at either end of a scroll bar,
you can assume you’ve reached the end of the window’s contents in that
direction.

To move to a specific location, click and drag the scroll bar slider and
release the button when the slider is near the location you want. Because the
slider only approximates the window’s position, you’ll probably miss the exact
spot you want, so use this method to get close to where you want to go,
and then use other scroll-bar commands to fine-tune your destination. To
page left, right, up, and down, click inside the shaded parts on either side of the
slider.

Hint: A handy trick is to position the mouse cursor to one side of a slider and click
the left mouse button several times while being careful not to move the mouse. In
most windows, this will jump back and forth between two pages of information—
similar to pressing (Page Up) and (Page Down) repeatedly.

To page rapidly in any direction, click and hold the mouse button down
inside the shaded region to either side of the scroll-bar slider. The window
contents will continue to scroll in the same direction even after the slider
passes the mouse cursor, making this a great way to scan quickly through a long
source-code listing.

Window Panes

Many windows are divided into two or more panes. For example, as Figure 4.8
shows, the CPU window has five panes separated by vertical and horizontal
lines.

Like windows, only one pane inside a window is active. To activate another
pane, click the mouse button inside that pane’s borders. Sometimes, an active

Chapter Four: Windows, Menus, and Hot Keys ‘ 83

B
1114L15

: 0ac?

TCRUN.B3: begin dx 0099
cs:084E 55 push bp s| 0008
cs:004F BIKES mov bp,sp di 6008
cs:0851 B3ECE2 sub sp,BAB2 bp 0008 I=1

TCRUN.B4: Scr.PrintError(ErrNoMemory); sp FFE d=8
cs:0854 Broaea di , 0008 ds 7716

ss BA78

cs 7726

ip 0008
ds:0008 C0 26 B0 A B0 9A FB FE = a L=B
ds:0088 10 FB D3 81 53 30 90 AL e=igs=3@
ds:0818 53 30 88 62 79 37 7R 29 S=ikp7z) ss:4000 0000
ds:0018 61 01 61 O B2 FF FFFF XX @ ss: FFEVE00D

Figure 4.8. A CPU window is divided into five panes.

pane will have scroll bars—inactive panes never do. The active pane also will
have a flashing text cursor or a highlight bar (or both).

Some window panes are strictly informational, for example, the right pane
of the Breakpoints view. Such panes display various facts, but you can’t activate
them with the mouse.

Keyboard Window Commands

If you don’t have a mouse, or if you don’t like to use one, you can also drive TD
with keyboard commands. These notes explain a few “key” concepts for
manipulating windows. For more details on keyboard commands, see “Hot
Keys” later in this chapter.

® Press (F6) to cycle between all open windows, activating each in turn.
There are other ways to activate windows, but this key is usually the fastest.

® Press (Alt)-(F3) to close an active window. If you do this by accident for
any window opened from the View menu only, press (Alt)-(FG) imme-
diately after to reopen the closed window. (You can only recover one
closed window this way.) Note: Previous TD versions assigned (F3) as the
window-close key. This was changed to a double-key assignment to make it
harder to close windows accidentally.

® Press (F5) to zoom a window to maximum size. Press (F5) again to zoom
back to original size. To zoom a window to an icon, use the Window menu’s
Iconize/restore command. After that, you can activate the window and
press {F5) once or twice to zoom to maximum and original sizes. Execut-
ing Iconize/restore on an active icon also zooms the window to its
original size, but pressing (F5) is usually easier.

84 Part One: Guide and Reference

Moving Windows

Press (Ctrl)-(F5) to switch TD into “window-adjust” mode for the active
window. (Note: In previous TD versions, {Scroll Lock) activated this mode.)
After the window border changes to an unbroken single line, the bottom
display line shows a list of some window movement and sizing keys. Here’s a
complete list:

® Press the cursor movement keys to move the window outline to a new
position, then press (Enter) to fix the window at that spot. If you change
your mind about moving the window, press (Esc). You can’t move a
window beyond TD’s display limits—all windows must be fully visible.

® Use named function keys to move windows in giant steps—(Home) to
move fully left, (End) to move right, (Page Up) to move up, and
({Page Down) to move down. These keys make it easy to move windows
quickly out of the way or to send multiple windows to opposite corners.

® Press and hold (Shift) while using the cursor movement keys to resize a
window. In general, you can change a window to any size, although some
windows restrict their minimum and maximum dimensions.

® Press and hold (Shift) and use named function keys to resize windows to
their minimum and maximum limits—(Home) for the narrowest size,
{End) for the widest, (Page Up) for the shortest, and (Page Down) for
the tallest. (On my keyboard, these commands work only for these named
keys on the numeric keypad with the {(Num Lock)-key light off, not the
similar keys on an extended keyboard.)

Context Sensitivity

An important feature that applies to all TD windows is the concept of context
sensitivity. At most times, TD is able to recognize various highlighted items, for
example, text at the flashing cursor or at the position of the mouse cursor. This
lets you point to something and give a command to operate on that item. For
example, you can move the cursor (with or without a mouse) to a variable in a
source-code listing displayed in the Module window and press (Ctrl)-I to
inspect that variable’s contents. This is much faster than typing the variable’s
name.

Dialog Boxes

Dialog boxes, newly introduced in TD 2.0, make selecting program options
much easier than in previous debugger versions. Dialog boxes collect various

Chapter Four: Windows, Menus, and Hot Keys 85

items in one handy window—for example, all the switches and settings associ-
ated with the display (see Figure 4.9). This lets you view all settings at a glance
while changing only the options you need.

[|]=U|SD|0J wt[atﬁ:

) Smart) Dccnmul
¢ Alunys (o) Rath

Figure 4-9. A typical dialog box.

Using dialog boxes effectively takes practice. As with other windows, a
mouse makes dialog-box handling much easier, and you may want to consider
adding one to your system. You can select all options with the keyboard, but
not as easily.

This section describes the parts, pieces, and commands associated with all
dialog boxes. Individual dialogs are discussed along with the commands that
activate them.

What's in a Dialog Box?

As Figure 4.9 shows, a dialog box’s window looks like other windows. But a
closer look reveals a few key differences:

® A dialog box lacks a resize handle in the lower right corner. You can’t
change the size of a dialog box. But you can move dialog boxes to new
positions using the same commands that work for other windows.

® A dialog box lacks zoom buttons.

® A dialog box has at least one clickable button, usually labeled 0k, Yes,
Cancel, or Help.

® Unlike other windows, dialog boxes do not have local pop-up menus.
Pressing (Alt)-{F10) has no effect when a dialog box is active.

It’s important to be able to distinguish dialog boxes from other windows
because, when a dialog box is active, you can’t issue other TD commands until
you close the dialog box. This restriction is necessary because changing the
settings in a dialog box affects TD’s operation—so, you’ve got to complete your
changes before continuing to use other debugger commands. Related to this is
the fact that only one dialog box can be on the screen at a time.

86

Part One: Guide and Reference

No two dialog boxes are exactly alike, although they all use one or more
parts listed in Figure 4.10. Depending on the kind of display you have, these
parts may appear differently than shown here. For example, on monochrome
displays, a default button is marked with a chevron character (»). On color
screens, that same button is displayed in a different or brighter color than other
buttons.

o
[X] Options
B et (check boxes)
Source
{ Radio buttons ’
(roubox
checkSnou

{ List box ’
checkBreak

c

A

checKEof

Figure 4.10. Dialog-box parts.

Each dialog-box part has a specific purpose and controls options in a
unique way. The following notes describe the parts listed in Figure 4.10. After
that are instructions for using the keyboard and mouse to select a dialog’s
options.

® Buttons perform immediate actions. For example, the 0k button accepts the
current settings and closes the dialog box. The Cancel button also closes
the dialog box, but it restores the original settings. The Help button acti-
vates TD’s on-line help to describe the dialog box’s options. All dialog boxes
have at least one button, usually named 0Ok.

® Check boxes select one or more options in a group. For example, in Figure
4.10, two check boxes select Options and Macros but not Layout.

® Radio buttons select one of several related options. They’re called radio
buttons because they resemble a car radio’s push buttons. On the radio, you
can tune into only one station at a time. In a dialog box, you can select only
one radio button from a group. For example, in Figure 4.10, the Source
option is selected. Selecting another button—-C, Pascal, or Assembler—
would deselect Source (similar to the way a radio button pops out when
you press another).

® Input boxes are places where you can type information such as an expres-
sion, a file name, or an argument to be supplied to your program. TD saves

Chapter Four: Windows, Menus, and Hot Keys 87

a bistory list of your entries in most input boxes and lets you select previous
entries from these lists the next time you activate this same dialog. More
about this later.

o List boxes display lists of items for selection—for example, a list of file or
module names. List boxes operate similarly to menus—use keyboard cursor
movement keys and {Enter) to select highlighted items or double-click the
left mouse button after moving the mouse cursor to the item you want.
(Note: A quick double-click is necessary to select list-box items. A single
click merely highlights that item. This differs from the way menu com-
mands are selected by single clicks.) Alphabetized list boxes—for example,
file and directory lists—let you select entries by typing partial names, what
the Turbo Debugger User’s Guide calls incremental matching. If
MYCODE.EXE is listed among other files, none of which begins with MYC,
you can type those three characters to highlight the name. In long lists, this
may be faster than using cursor movement keys to move the highlight bar to
that name.

Closing Dialog Boxes

You can press (Alt)-(F3) to close regular windows, but not dialog boxes. To
close dialogs, you must press (Esc) or select another button or operation that
closes the window. This may seem confusing at first, and until I discovered a
small visual clue, I constantly pressed the wrong keys to close the wrong kinds
of windows.

The trick is to look for a resize handle in the lower left corner of the
window border. (See Figure 4.5.) If that corner is a double line, then the
window is a dialog box, and you can close it by pressing (Esc). But if
the corner is a single-line resize handle as it is in the Figure 4.5, you must press
(Alt)-(F3) to close the window—(Esc) won't work because this is not a
dialog box.

There’s one exception to this rule—you can press {(Esc) or (Alt)-(F3) to
close inspector windows even though they have resize handles.

Selecting Options with a Mouse

To activate a button, click and release the mouse button on the display button’s
highlighted text. The action doesn’t take effect until after you release the button
without moving the mouse cursor. This lets you cancel a button’s action by
moving the mouse cursor aside and releasing the button.

To select a check-box item, click anywhere in that item’s text. You don’t
have to aim with 100% accuracy—for example, in Figure 4.10, you can click on
any letter of Layout, inside the square brackets, or even on the brackets to

88

Part One: Guide and Reference

check that item. Try this—it’s a great time saver. Check boxes operate as toggles.
Click once to select them; click again to turn them off.

To select a radio button, click inside the parentheses or on the button’s
label. This deselects the current radio button and selects the new one. Unlike
check boxes, radio buttons are not toggles—at least one button in a group must
be selected at all times.

Use the mouse to position the text cursor inside an input box and then enter
your text. This is one time when you must take your hands off the mouse—
unfortunately awkward, but unless you’ve got three hands, there’s no alter-
native. Because {(Enter) selects the 0k button, don’t press that key to end
typing unless you also want to accept all changes and close the dialog
box. (See “Entering Text” below for more information about typing into input
boxes.)

Selecting Options with the Keyboard

You can select all dialog items with keyboard commands. Although I prefer to
use a mouse, at times I find it’s easier to use the keyboard—especially when
entering expressions and changing values, which require too much switching
back and forth between the two input devices. Even if you have a mouse, it’s a
good idea to learn how to work with dialog boxes from the keyboard. These
notes will help.

To select options in a dialog box, press that option’s highlighted letter or
number. Or, press {(Tab) to move from one section to another—you can
identify the current item by looking for the flashing cursor and by observing
the labels. On color screens, the current item is displayed in a bright color; on
monochrome screens, it’s bracketed. To see this, open a dialog box and press
(Tab) a few times. Press {(Shift)-(Tab) to move in the opposite direction.

Press (Enter) to choose the dialog box’s highlighted button, usually 0k or
Yes. Press (Esc) to choose the Cancel button if there is one. Press (F1) to
choose Help. You can also tab to the button you want and press (Enter),
which leads to an ambiguity. For example, if the Cancel button is active,
pressing (Enter) cancels the dialog box. But if zo button is active, pressing
(Enter) selects 0k; therefore, it’s possible to press (Enter) to accept and to
throw away your option settings! This can be terribly confusing. Just be sure
that, if you’re going to press {Enter) to select the 0k button, no other button is
highlighted.

Tab to the check box you want to change and press {(Space) to toggle the
check mark on and off.

Radio buttons operate differently. First, tab to a group of radio buttons.
Then use the cursor movement keys to select one button from the group.
Unlike check boxes, you can press (Tab) to move from item to item. This is
because check boxes function as individual items, but radio buttons function as
a group—confusing until you get used to the difference.

Chapter Four: Windows, Menus, and Hot Keys 89

Tab to an input box and type your entries. (See “Entering Text” after this
section for more help with typing.)

Tab to a list box and use {Cursor) keys to select one of the listed items.
Then press (Enter) to select that item (and usually close the dialog box).

Entering Text

At many different times, TD lets you enter text, usually into a dialog’s input box.
If you have a mouse, you can use it to position the flashing text cursor inside an
input box. Just point to any character and click the left button. With or without
amouse, you can use the usual text-editing keys to move the text cursor as listed
in Table 4.2.

Table 4.2. Text editing keys.

Key Purpose

{Cursor Up) Select previous history entry

{Cursor Down) Select next entry or highlight this one
{Cursor Left) Move cursor left one character
{Cursor Right) Move cursor right one character
(Delete) Delete character at cursor

(Home) Move to beginning of line

{(End) Move to end of line

(Page Up) Move to first history entry

(Page Down) Move to last history entry

TD lacks the insert/overstrike ability found in most editors and word
processors. To replace characters, delete the old text and enter the new—you
can’'t type over text to replace it.

When selecting text from a history list (see next section) or when TD
inserts text in an input box automatically (which it frequently will do, for
example, to enter a highlighted expression from your source text into an input
box for editing), new typing replaces the old highlighted text. To keep that text,
press {Cursor Left) or (Cursor Right) before pressing any other keys. This
removes the highlighting so you can change the text without replacing it.
To rehighlight the line, press {Cursor Down). (If there are multiple entries,
this may select the next one. In that event, press {(Cursor Up) to back up one
line.) The text is again highlighted, and the next alphanumeric keypress will
replace it.

90

Part One: Guide and Reference

History Lists

TD keeps track of the ten most recent entries into most dialog input boxes. (Use
TDINST to change this number.) Histories in different input boxes are
independent—each box keeps its own historical record. Figure 4.11 shows a
sample history list as displayed by Watches:Edit.

—=[B1=Enter expression to watch—=

Figure 4.11. Sample history list.

When you reuse an input box, you can select a stored history entry instead
of retyping it. To do that, move the highlight bar with the cursor movement
keys and press (Enter). Or, double-click the left mouse button while pointing
to the entry you want. You might have to tab to the input box first. In small
dialog boxes like the one in Figure 4.11, the input box is selected by default. In
complex dialog boxes, another item might be selected at first.

To save room in dialog boxes with many other items, some history lists stay
hidden until activated. If a small down arrow (see Figure 4.12) appears to the
right of a single-line input box, there’s a hidden history list waiting behind the
scenes. To activate the list, press {Cursor Down). If you tab to another dialog
item, TD hides the history list again, but it shows the selected entry in the
input box.

File nome
EXE—) ~—(_Beoe)

File nome= G

() [

Figure 4.12. Input box with history list.

Some input boxes use history lists to let you type partial entries and then
press {Ctrl)-N. TD will search for a history entry that matches. If it finds one, it
will complete the typing for you. For example, if COUNTXYZ is among a list of
variable names, you can type cou{Ctrl)-N instead of entering the full identi-
fier. At times, for example in a file-name dialog, pressing (Ctrl)-N will open a
list-box dialog with a set of symbols. Choose one of the displayed symbols to
complete your entry.

Chapter Four: Windows, Menus, and Hot Keys 91

Message Dialogs

A message window is a dialog box with no options, only a button or two and a
message. Figure 4.13 shows a typical example—the “Terminated” message you
see after running a program to completion.

=L
Terninated, exlt code B

e

Figure 4.13. Message dialog box.

Because message windows are dialog boxes, you must close them before
you can use other TD commands or make other windows active. To close a
message dialog, click the window-close or 0k buttons, or press (Enter). Even
though there’s no Cancel button, you can also press (Esc) or {Space) to close.

Hint: Before closing a message dialog box, click on He lp or press (F1) for on-line
help about why this message appeared.

Prompt Dialog Boxes

Some dialog boxes prompt for input but contain no other options except for the
usual Ok, Cancel, and Help buttons. You’ll often see these dialog boxes in
response to various commands—for example, a command to change the value
of a variable. Prompt dialogs also have history lists from which you can select
previous entries. Figure 4.14 shows a sample prompt dialog box opened by the
File:Change dir command.

[#J=—tnter new directol
1KC: \ TP OOF

B = E

Figure 4.14. Prompt dialog box.

When a prompt dialog box appears, the bottom display line shows the
message “Enter item prompted for in dialog title.” Read the window’s title to
know what TD expects you to enter. If you’re still not sure what to enter, press
(F1) for help.

92

Part One: Guide and Reference

Another kind of prompt dialog requires a yes or no answer. For example, if
you choose the Run:Arguments command, after entering new command-line
arguments, TD displays a prompt dialog that asks, “Reload program so argu-
ments take effect?” This and similar dialogs have two buttons—Yes and No. Use
a mouse to click the button you want, or press {(Enter) or {Space) to choose
Yes; press {Esc) to choose No. You can also press the Y or N keys to answer.

Inspectors

TD’s fourth window variety is called an inspector. Inspectors are like magnify-
ing glasses that let you view the inner workings of variables, memory locations,
and subroutines. Inspectors also let you view lists of items linked by pointers,
and they let you change the values of variables in memory. Figure 4.15 shows a
sample inspector window open to a variable named countByte of type BYTE.
The variable’s current value is 76 in decimal, or $4C in hex.

Window Number

Close Button Variable Name Zoom Buttons

N f 4

[01}=Inspecting countByte=1=[11C4

B9R24 2 (4]
BYTE o 76 (340>

/

DataType Value Resize Handle

Address — g

Figure 4.15. A simple inspector.

Inspectors are like View windows—they have close and zoom buttons, they
have a window number, and a resize handle. You can move, activate, and adjust
the size of inspectors with mouse and keyboard commands as described earlier.

Inspectors differ from other windows by their ability to mold themselves to
the data types of inspected items. If you view an array, the inspector shows the
array’s contents along with its index values. If you view a structure or record,
the inspector shows the record’s fields. And, if you view an object, the inspec-
tor shows data fields and methods in object classes and instances.

As Figure 4.15 shows, the first line in an inspector lists the item’s segment
and offset addresses (9624:0041). When this address line is highlighted, if you
press (Enter), a second inspector opens to that address—a trick that’s mostly
useful for inspecting data addressed by pointers.

Figure 4.16 shows two inspectors opened to a Pascal record variable. In
these and similar complex inspectors, you can move the highlight bar to any of
the listed items to view its data type on the bottom line. If you then press
{Enter), another inspector opens to show you more details about the high-
lighted item—in this example, the value of a field in the record (see the

Chapter Four: Windows, Menus, and Hot Keys 93

inspector to the right in the figure). You can continue to highlight and inspect
individual items in complex data structures this way. There’s no limit to the
number of inspectors you can open. (But you may run out of memory at some
point if you try to open too many inspectors at once.)

[0)=Inspecting r—=3=[11({ ——Inspecting r—
‘é’?DEH:RT-:E .]:'1 g?([m:%ﬁE -
$108>
& 212%6 (3%%) . BX 21243 <$5FB>
CX 1543 <$607> CX 1543 ($687>
OX 1884 <$43C) DX 1884 (3430
& 0 g 145%3?;
3' L LT [[8EInspecting SI=4[t1(}
REGISTERS [?mnhm N

Figure 4.16. Two complex inspectors.

When inspecting variables with many parts, the top part of an inspector
may scroll as you move the highlight bar up and down. If scroll bars appear,
you can also use the mouse to scroll an inspector’s contents. Inspector windows
operate much like list boxes in dialogs, and you can use similar commands to
control them.

To close an inspector, press (Esc) or (Alt)-(F3). If you’ve opened multi-
ple inspectors to view the details of a complex data structure, press {Esc) to
close only the topmost inspector window. Or press (Alt)-(F3) to close all
open inspectors.

Chapters 20-22 list sample inspectors for all data structures in C, Pascal,
and assembly language. Refer to those chapters for more information about
using inspectors to view variables of different kinds.

Local Inspector Menu

Inspectors have their own local menus, activated in the usual way by pointing to
the inspector window and pressing the right mouse button or by pressing
(AlIt)-(F10) when the inspector window is active. Figure 4.17 shows a sample
local menu for an inspector open to a Boolean Pascal variable DirectVideo.

An inspector’s local menu is divided into two sections. The commands in
the top section perform minor surgery on the inspected item. The bottom
commands affect the entire inspector window. All commands do not apply to
all data types—for example, it’s senseless to change the Range of a Boolean
variable; you can change only the Range of an array. But don’t be concerned
about this—you’ll learn how to apply these commands as you open inspectors
to inspect variables of different kinds.

Remember that you can press (Ctrl) and a local command’s highlighted
letter to execute that command. For example, with an inspector active,
press (Ctrl)-N to select the New expression command. Also, because

94

Part One: Guide and Reference

[8)=Inspecting DirectVideo=3=[11[{
ki
R

e, . .

Figure 4.17. An inspector’s local menu.

inspector menus behave like other local menus, they can move—a useful trick
to remember when the menu covers the inspected data. Just pick up the menu’s
window with a mouse or use keyboard commands to shove it aside. (Some
people call TD’s moveable menus “tear-off menus.”)

The following notes describe how to use each command in an inspector’s
local menu. You’ll find more details about these commands in other places in
this book.

Range

This command changes the starting index and range of the indexed items in an
array. Use it to limit or expand the amount of information displayed. Enter
values separated by a comma. For example, type 5, 8 to list eight items
beginning with the fifth, which might have an index value of 4 if the first array
index is 0.

Change

This command changes the value of the highlighted item. If the address line is
highlighted, the new value is stored in the entire variable. If another part of a
variable is highlighted, only that part changes. This lets you highlight a field in a
record or a character in a string and press {Ctrl)-C to change its value. The
changed value is stored directly in memory, so be sure that’s what you want to
do before using this command. If you receive the error message “Symbol not
found,” the value you entered is in the wrong form for this item. See chapter 9
for help on entering expressions for your language.

Hint: This command is activated simply by typing any alphanumeric key. You
never have to press (Ctrl)-C to choose it—just start typing after highlighting an
item to change. Try this. It saves a lot of time.

Chapter Four: Windows, Menus, and Hot Keys 95

Inspect

Press (Ctrl)-I to open another inspector window for the highlighted item or
address. You can also press (Enter) to choose this command automatically.
Multiple inspectors take memory, and you may not be able to use this command
if you’re short on RAM.

Descend

This command is similar to Inspect. Use it to view more details about a
highlighted item. Unlike Inspect, however, the new inspector replaces the
current inspector’s contents, and there is no way to get the old contents back
(except, of course, by reopening the original inspector.) Use Descend if you run
out of memory when viewing multiple inspectors with the Inspect command.

New expression

Use this command to inspect another named variable when it’s more conve-
nient to enter the new item’s name than it is to close the current inspector and
open another one. The newly inspected item completely replaces the current
inspector’s contents.

Type cast

Enter a C or Pascal type cast expression to modify the data type of the inspected
item, for example, to view a typed structure addressed by a generic pointer. If
that pointer is p, and the type is t, then enter a C type cast such as (t *)p or
(struct t *)p to view the data addressed by p as type t. Or, in Pascal, enter the
expression t (p*) where t is a valid data type. See chapter 9 for more informa-
tion about entering type casts.

Hint: You can use this command during assembly language debugging if you first
change Options:Language to C or Pascal.

Inspecting Objects

Because objects are special data types that encapsulate code and data, they have
special inspector windows. As Figure 4.18 shows, there are two kinds of
inspectors: one for instances (left) and another for object types or classes
(right).

96

Part One: Guide and Reference

STFJEHMF‘F:I]IfiLl',%T SFRIOCLISTFTR

STREAM.STATUS : INTEGER !

4

Figure 4.18. Inspecting object instances and types.

Object inspectors are divided into two panes. At top are the object’s
instance variables; at bottom, method names and addresses. Highlight an
instance variable and press (Enter) (or {Ctrl)-I) to inspect that variable in
more detail. For example, in Figure 4.18, you could highlight LOC and press
(Enter) to view that field in this object.

To view the source code for object methods, press (Tab) to shift to the
method area in the inspector window. Highlight a method name (for example,
INIT in Figure 4.18) and press (Enter) twice—once to open a new inspector to
that method and again to jump to the method’s source code in the Module
window.

Object Inspector Menus

Local menus in object inspector windows add a few new commands to those
listed in Figure 4.17 and described earlier. When inspecting object instances
(see Figure 4.18, left), there are two local menus, as shown in Figure 4.19. In
that figure, the menu on the left appears when the top portion (showing
instance variables) of the inspector is active. The menu on the right appears
when the bottom portion is active (showing the object’s methods).

Chonge. .. Methods

Yes
Shou inherited VYes

Methods Yes
Shou inherited VYes

Figure 4.19. Object-instance inspector menus.

The two local menus are nearly identical—but only the one for the instance
variables in the top of the object inspector contains the Change command. (You
can’t change object methods. You can change only instance field values.) The

Chapter Four: Windows, Menus, and Hot Keys 97

following notes describe how to use the local commands added to object
inspectors.

Methods

This command toggles the bottom pane on and off. If on, that pane shows the
object’s methods. If off, the inspector shows only the object’s instance vari-
ables. Hint: When inspecting complex objects, turning Methods off (press
{Ctrl)-M) lets you fit more information on-screen.

Show inherited

This command specifies whether to show inherited instance variables and
methods if Methods equals Yes. This command is an excellent tool for compar-
ing the instance variables and methods declared in this object with those
declared in the object’s ancestors.

Hierarchy

Press (Ctrl)-H to open the View:Hierarchy window and highlight the
inspected object’s type (or class), showing where that object fits within the
program’s object tree. Because this opens a full View window, and not a dialog
box, you have to press (Alt)-(F3), not (Esc), to close the window. See
chapter 5 for more information about using the Hierarchy view.

Inspecting Object Types

In TP5.5 and TC+ +, object types or classes are conceptual—they don’t exist
anywhere in memory when a program runs. Object instances, which do exist
in memory, are variables of their classes. Because of this difference, the inspec-
tor windows for object classes and variables differ, as do their local menus.
Obviously, you can only Change an object instance’s fields because only an
object instance is stored in memory.

Normally, you can open inspector windows only to variables that exist in
memory (and to procedures and functions, which, after all, are a form of data).
But TD makes an exception for object types, which you’ll often want to
inspect. To do that, open the View:Hierarchy window either from the View
menu or by executing the Hierarchy command while inspecting an object
instance. Highlight an object type name in either window pane and press
(Enter) or {Ctrl)-I to open an inspector window for that type. As you’ll see
when you try this, an object-type inspector is similar to an object-instance
inspector, but it shows the full instance variables and method names along with
ancestor object names (if this type inherited parts from other objects).

98

Part One: Guide and Reference

As with other inspectors, you can highlight an object type’s various items
and press (Enter) or {(Ctrl)-I to open another inspector for that item. But,
because the object type doesn’t exist as a variable in memory, this works only
for fields that are other objects (or pointers to objects). It’s not possible to open
inspectors for fields of other data types such as integers, strings, and real
numbers. .

When inspecting object types, the local menus for the top and bottom
inspector panes contain only the three commands shown in Figure 4.20.

Hierarchy
Shou inherited VYes

Figure 4.20. Object-type inspector menu.

Inspect

This command opens an inspector window for another object type. It does not
work for fields of other data types—only object types and pointers to object
types. The resulting inspector functions is a new object-type inspector.

Hierarchy

This command shows the location of the inspected type in the Hierarchy
window’s tree. It is useful for switching back to that window rapidly without
having to close the object-type inspector.

Show inherited

This command toggles inherited properties on and off. Use this command to
compare the items defined in this object with those the object inherits from
ancestor types.

Global Menus

This chapter began with a description of how to use TD’s global menus, which
are displayed on the top line of the screen (see Figure 4.1). The following
information describes each of TD’s global menus in the order they appear-on
that line and describes any related dialog boxes. Command hot keys are listed in
parentheses.

Chapter Four: Windows, Menus, and Hot Keys 99

Because some of this information applies to later chapters, the information
here is brief and refers you to other places in this book. Also, some terms and
concepts haven’'t been introduced—but that can’t be helped. Use this section to
become familiar with TD’s global menus, commands, and dialog boxes. Then
return to it later when you need help with specific commands.

As in chapter 2, to avoid duplicating the information in the Turbo Debugger User’s
Guide, I've concentrated here on tips that explain why you might want to use one
or another command. Remember also that you can highlight any command in TD
and press (F1) for help.

System Menu (=)

The System menu contains commands that have system-wide effects on TD’s
operation—plus one purely informational command. (See Figure 4.21.) Press
(Alt)-(Space) to open this menu. (Microsoft Windows users must press
(Alt)-F{Cursor Left) instead.)

HElFile View Run

Repnint desktop
Restore standord

Figure 4.21. System menu.

Repaint desktop

This command redisplays the global menu line, function key line, and all open
TD windows. Use it to recover from a misbehaving program that overwrites
some or all of TD’s display.

Hint: Memorize (Alt)-(Space)R as the command to use if a program obliterates
TD’s display so much you can't even see the menu names. This might happen if
you started TD with the -ds option or if you set Display:User screenupdating
to Swap with TDINST (see chapter 3).

Restore standard

This command restores all windows to their configuration when you first
loaded your program into TD.

100

Part One: Guide and Reference

Hint: If the Watches window stops expanding automatically for new variables, use
this command to reactivate the expansion, which becomes disabled if you alter the
size of the Modu l e or Watches windows. The command is also useful to restore an
expanded Watches window to its original small size. To do that, make Watches
active, press (Ctrl)-D to delete all variables in the window, and press
(Alt)-(Space)S$ to restore the original window sizes.

About

This command displays miscellaneous information about TD.

File Menu

Use File menu commands (see Figure 4.22) to open code files for debugging,
to change directories, to view general information about a program you’re
debugging, to issue DOS commands, and to quit TD. You can also use com-
mands in this menu to debug resident code, as chapter 19 explains.

I Viev Run

Suymbol lood...
Table relocate...

Quit Alt-X

Figure 4.22. File menu.

Open

This command opens a dialog box (see Figure 4.23) and lets you select another
code file for debugging. Enter a Fi Le name, select a name from Fi les, and view
files in other Directories. The second to bottom line shows the current path
and wild-card settings. The bottom line shows the selected file and its date,
time, and size.

In addition to a file name, you can enter arguments and initiate I/O redirec-
tion in the dialog’s File name prompt box. For example, enter a file name such
as myprog.exe argl arg2. However, any arguments that have wild cards
(for example, when debugging a directory-lister) are expanded by the dialog;

Chapter Four: Windows, Menus, and Hot Keys 101

F[IJ==Enter progrom name to |

Flle nome

3k
Files Directories

tcalc.exe

C: \TP\OOP\ =+, EXE
TCALC.EXE Jon 29, 1999 7:49om 159658 bytes

Figure 4.23. File:Open dialog box.

therefore, you must use the Run menu’s Arguments command to enter argu-
ments with wild cards.

Hint: At any time during debugging, press (Alt)-FO(Enter) or select a file name
to reload a program. This has the same effect as quitting TD and restarting from
DOS, but it is faster.

Change dir

This command opens a prompt box (see Figure 4.14). Enter the path name of
any directory. You may specify either a drive, for example, C: or D:, along with
the path or just the path. A good time to use this command is just before
choosing File:0pen when you want to load a program in a different directory
and make that directory the new current one.

Get info

This command displays information about the code file loaded at startup or
after using File:Open. (See Figure 4.24.) It shows the program name and its
current runtime status. Various messages appear here, most of which have
obvious meanings such as No program loaded, Control break, Breakpoint at...,
Loaded..., Stopped at..., NMI Interrupt, Exception..., Divide by zero, Termi-
nated, and Resident.

In the middle are system memory statistics (left) and EMS use (if TD has
found some expanded memory to use). The User interrupts line shows any
interrupts the target program is handling. Other items listed near the bottom

102 Part One: Guide and Reference

~LBJ=——=C8ysten informati
Program: C:\TP\OOPATCALC.EXE

Status : Looded
J— —_— — _EM§ ———
D0S : 23%b DOS 192
Debugger : BKb DBebugger 352
Sywols : B Pro b
Progran : 48%b Avoilable: 224Kb
Avoilable: Kb
User interrupts

BreaKpoints : Horduore
1-29-1998 4:06pm

"

Figure 4.24. File:Get info dialog box.

include the current DOS version, whether breakpoints are being set in hard-
ware (80386 or 80486 systems only with an installed TDH386.SYS driver), and
the date and time (to remind you, I suppose, how much time you’ve lost while
hunting bugs).

The values for Avai lable RAM are frequently 0 because of the way DOS allocates
all memory to a loaded program. This doesn’t mean you’ve run out of room. It just
means DOS has given your code all available system RAM. If your program releases
some RAM to DOS (or, for example, if in a TP program you use an $M directive to
limit RAM use), then the Avai lable figure might not be 0. The Available EMS
value (if shown) lists how much EMS RAM is available to your program.

DOS shell

This command exits temporarily to DOS, swapping some RAM to disk to release
the amount of memory specified by TDINST. Use it to issue DOS commands
such as COPY and COMP. Enter exit at the DOS prompt to return to TD.

If the DOS screen doesn’t work correctly when you choose this command,
for example, if the display doesn’t scroll as it normally does, the fault could be
an installed ANSI.SYS or similar device driver. Try removing the driver. Or start
TD with the -ds command-line option to prevent the debugger from using
multiple video pages (see chapter 3).

Never load TSRs into memory after exiting to DOS. Run only small stand-alone
utilities and DOS commands.

Chapter Four: Windows, Menus, and Hot Keys 103

Resident

Makes TD “go resident” to allow debugging resident code. See chapter 19 for
more information about this command.

Symbol load

This command loads a symbol table stored in a . TDS file. See chapters 2, 6, and
19 for information about preparing this file. Before using this command, you
may have to start TD with an -sm# option to reserve space for symbols. (See
chapter 3.)

Table relocate

This command relocates a symbol table’s origin to the address of code already
. in memory. Usually that code is a TSR loaded before starting TD. Or it might be
a device driver. (Chapter 19 explains more about using this command.)

Quit ((Alt)-X)

Press (Alt)-X to quit TD and return to DOS. You can execute this command at
just about any time, but not when a dialog box is active. If (Alt)-X doesn’t
seem to work, press (Esc) and then try (Alt)-X again. If that still doesn’t work,
press (Ctrl)-(Break)(Esc)(Alt)-X. If you get no response, you may have
crashed the debugger. Press (Ctrl)-(Alt)-(Del) to reboot. If you’re still hung,
click your heels three times and toggle the on/off switch.

View Menu

Chapter 5 describes the commands in this menu.

Run Menu

Commands in the Run menu (see Figure 4.25) execute the currently loaded
program. Various choices let you run code up to breakpoints (see chapter 8),
execute code fragments, single-step individual instructions, animate in slow
motion, and even trace backwards to undo previously executed instructions.
Other Run-menu commands let you enter program arguments and reset a
program to its beginning.

104 Part One: Guide and Reference

IEXA Brekpoints Data Options

6o to cursor F4
Trace into F7
Step over F8
Execute to... AIt-F9
Until return AIt-F8
Animate. ..

Bock troce Alt-F4
Instruction trace RIt-F7
Argunents. . .

Progrom reset Ctri-F2

Figure 4.25. Run menu.

Run ((F9))

This command runs program from the line marked by P in the Module window
(see Figure 4.1). Code runs at full speed—except, perhaps, when an active
breakpoint is set to monitor memory locations.

Use this command to run a program up to a breakpoint, which you can set with
the commands in the Breakpoints menu, described later in this chapter.

Go to cursor ((F4))

Use the arrow keys to move the cursor, or click anywhere on a source-code line
with the mouse, and press (F4) to run the program up to that line. The
program must reach the marked location—if a statement skips the code at the
cursor, pressing (F4) will have the same effect as (F9).

Trace into (F7))

Press (F7) to execute the single statement marked by P in the Module window.
If that statement calls a function, procedure, or assembly language subroutine,
TD jumps to that routine and pauses, loading a different source-code file from
disk if necessary. If process-ID switching is off (see chapter 3), then you can also
trace into DOS int 21 function calls. Lines that contain multiple statements
execute as a single command.

You can also use this command to trace into object methods. TD recog-
nizes polymorphic method calls—those that are redirected through an array of
method addresses called the VMT (Virtual Method Table).

Chapter Four: Windows, Menus, and Hot Keys 105

If pressing (F7) causes the CPU window to appear, TD can’t find the source-code
file for the module that contains the traced routine. In that event, either continue
debugging on the machine-code level or, to return to your source, press (F3) and
choose the previous module name. Set a breakpoint (press (F2)) at the statement
after the one you just traced and press (F9)(F2). This will execute the code for
which the source is unavailable, halt after the routine returns, and remove the
temporary breakpoint.

Step over ((F8))

Press (F8) to execute the single statement marked by P in the Module window.
Unlike the similar Trace into command, Step over executes function, pro-
cedure, and assembly language subroutine calls as indivisible instructions. After
the called routine finishes, the program halts at the next statement. Lines that
contain multiple statements execute as a single command.

Use Step over to narrow a search for a bug in the early stages of debugging.
First, run a suspect section of code by pressing (F8) to step over all subroutine
calls. Then, when you find the subroutine where the bug appears, set a break-
point at the statement that activates the routine, reset the program, and press
({F9) to execute to that location. After that, press (F7) to trace into the routine
and (F8) to step over more code until you find the low-level statement that’s
causing the problem.

Despite this command’s name, TD does not skip over the current instruction
when you press (F8). It still executes the stepped-over routine. To skip a state-
ment completely, move the cursor to the next statement below and type
(Alt)-VC{Ctrl)-N(Alt)-(F3). This opens the CPU window, resets registers CS
and IP to the new origin at the cursor, and closes CPU. If CPU is already active, just
move the cursor to the next machine-code instruction to execute and press
(Ctrl)-N.

Execute to ((Alt)-(F9))

Use this command to run a program up to a specific constant address. The
program will halt when registers CS:IP equal the specified address. So, for the
command to work, the program must reach the address that you enter. If you
enter an offset value, TD automatically prefaces it with the code-segment value
in CS. For example, TD interprets the Pascal hex value $017F as CS:$017F. Or,
specify segment values explicitly as in $4000:$0800.

See chapter 9 for more information on entering address constants in C,
Pascal, and assembly language.

106

Part One: Guide and Reference

You can also type a module name and line number such as umod#100
to halt before executing the statement at that line. But it’s usually easier to use
Go to cursor (move the cursor and press (F4)) for this purpose instead.

If you receive a runtime error when executing a program directly from DOS,
note the address and load the program into TD. Then, press (Alt)-{(F9) and
enter an expression such as (cs +0000):ffff where 0000 is the runtime error’s
segment value and ffff is the offset. Because loading the program into TD
positions the code to a different location than when that same program runs from
DOS (unless you're running TD386), you must add the current code-segment
register CS to the runtime error’s segment value. If that doesn’t work, you might
have to press (F8) immediately after starting TD before using the Execute to
command. This will execute any startup code and initialize CS to your program’s
code segment.

Until return ((Alt)-(F8))

There are two main uses for this command. One, after pressing (F7) when you
meant to press (F8) to step over a procedure or function call, press
(Alt)-(F8) to run the program at full speed until the code returns to
the statement following the one that called the routine. In that
way, (Alt)-(F8) is a sort of “undo” command for Trace into. Two, use the
command to finish executing a procedure or function after you’ve examined its
initial statements.

Press (Alt)-VS to open the Stack window. The routine immediately below the
highlighted line tells you the general location to which (Alt)-(F8) will return. If
the Stack window shows no active subroutine calls, pressing (Alt)-(F8) does
nothing.

Animate

Execute this command by pressing (Alt)-RN or by choosing the Animate
command from the Run menu. (Previous TD versions assigned hot key
(Alt)-(F4) to this command. Version 2.0 now uses those keys for the Back
trace command.) Enter the amount of delay in tenths of seconds to pause
between each source-code line (or machine code if you’re debugging in the CPU
window). For example, enter 20 to pause for about 2 seconds between lines;

‘enter 2.5 to pause for about a quarter second.

Use Animate to monitor a series of statements instead of pressing
{F7) repeatedly. Then sit back and wait for a bug to appear. Press (Esc)
to stop animating and then use other commands to fine-tune your search for a
problem.

Chapter Four: Windows, Menus, and Hot Keys 107

Back trace ((Alt)-(F4))

New to version 2.0, Back trace is TD’s “execution undo” command. Just press
(Alt)-(F4) to run your program in reverse, undoing the effects of statements
previously executed by pressing (F7) or (Alt)-(F7) or by using Run:Animate.
You can also reverse most statements executed by pressing (F8), but you can’t
unravel a LOOP, a machine-code string instruction, or other statements treated as
atomic by Step over. To get the most out of Back trace, use (F7) to execute
several statements and press (Alt)-(F4) to undo that execution.

TD can reverse execute up to 400 statements, or 3000 if you have enough
EMS RAM. Press (Alt)-VE to open the Execution history window to examine
the list of recorded statements. (See chapter 5 for more information about this
window.)

Don’'t expect too much from Back trace. Obviously, it can’t recall text sent
to a printer or data written to disk. It also can’t back up through a software
interrupt int instruction unless you traced into that code by pressing
(Alt)-(F7) (see Instruction trace in the next section). Despite these limita-
tions, Back trace does let you back up to rerun a troublesome section, perhaps
with new arguments.

Pressing (F9) and executing software interrupts erases the Execution history;
therefore, this puts (Alt)-(F4) out of action until you run a few more statements
by pressing (F7) or (Alt)-(F7).

Instruction trace ((Alt)-(F7))

When debugging C or Pascal source code in the Module window, press
(Alt)-{F7) to open the CPU window and execute one machine-code
instruction—usually one of several such instructions that the compiler
generated for this high-level statement. This has the identical effect as pressing
{Alt)-VC(F7). You can also use this command to trace a software interrupt
int instruction.

Use the command in the final debugging stages after you’ve narrowed
a problem to one or more statements and when you need to examine
each machine-code instruction to understand why a high-level statement
failed. For assembly language debugging, the command works, but it isn’t that
useful.

Hint: After tracing into a procedure or function call by pressing (Alt)-(F7), to
return to the source-code view and halt at the next statement, press {F6) repeat-
edly to make the Module window active. Then press (F8).

108

Part One: Guide and Reference

Arguments

Use this command to enter program arguments or to enable I/O redirection as
you might do if executing the code from the DOS command line. Because this
changes the startup conditions, TD asks if you want to “Reload program so
arguments take effect?” Press (Enter) or click the Yes button. Press (Esc) or
click No to cancel reloading and to throw away the new arguments—you must
let TD reload the program for the new arguments to be accepted.

Reloading the program does not affect any variables added to Watches or
any breakpoints set in code. This makes the Arguments command particularly
handy for testing a variety of input data—for example, all the character switches
that the program recognizes. ‘

Remember that you can supply program arguments when starting TD. For
example, you can enter td mycode file to debug a program file named
MYCODE.EXE and supply the argument FILE. Use the Arguments command if
you forget to supply a needed argument or to change the arguments that you
entered before.

Program reset ({Ctrl)-(F2))

Press (Ctrl)-(F2) to reset the program to its original startup condition.
All breakpoints and watched variables remain active, so you can use this
command to restart and investigate the effects of new input data or other
operations.

Hint: Activate the Modu le window and press {Ctrl)-O immediately after pressing
(Ctrl)-(F2) to bring the first source-code statement into view.

Breakpoints Menu

The Breakpoints menu (see Figure 4.26) lets you set breakpoints at specific
locations or based on other conditions. When you execute a program by
pressing (F9), TD halts the code before executing the statement at a breakpoint
or after executing code that satisfies other conditions such as a variable reaching
a specific value.

Don’t confuse this menu with the View menu’s Breakpoints command. Use
the Breakpoints menu to set new breakpoints. Use the View menu’s
Breakpoints command to view and modify breakpoints already set. Normally,
a breakpoint halts the program when it reaches a test location. But it’s also
possible to perform other breakpoint actions, call subroutines, and log expres-
sions. (See chapter 8 for information about how to use breakpoints as part of a
good debugging strategy.)

Chapter Four: Windows, Menus, and Hot Keys 109

Dota Options
At Alt-Fe

Changed memory glabal ...
Expression true global...
Delete al |

Figure 4.26. Breakpoints menu.

Toggle ((F2))

The simplest way to set a breakpoint is to move the cursor to a source-code line
and press {(F2). Or, move the mouse cursor to either of the two blank columns to
the left of any source-code statement and click the left mouse button when the
mouse cursor changes from a square block to the symbol *. On monochrome
monitors, the breakpoint shows in reverse video or is highlighted in some other
way. On color monitors, breakpoint statements display in stop-sign red.

To remove a breakpoint, position the cursor and press (F2) again. You can
toggle a breakpoint on and off as often as necessary. And, there’s no limit to the
number of breakpoints you can set simultaneously. (Actually, there may be an
upper limit—TD has to record breakpoint information somewbere in a PC’s
limited memory. But the maximum number is probably so high that it’s mean-
ingless to consider.)

You may set a breakpoint only on statements for which the compiler
generates machine code. This includes certain keywords and symbols such as
BEGIN and END in Pascal or the braces { and } in C, which TD takes to represent
any startup code appended by the compiler to the beginning of a subroutine;
therefore, setting a breakpoint at the first statement in a procedure may have a
different effect than setting one at the BEGIN or opening brace.

Hint: The Toggle command accepts a certain amount of “slop”—the cursor can
be anywhere on a line, it doesn’t have to be positioned at the first character. Also,
if the cursor is on a line that doesn’t generate any machine code—for example, a
comment or a function header—pressing {(F2) sets a breakpoint at the first code-
generating statement below. You don’t have to move the cursor to that line.

At ((Alt)-(F2))

Use this command to enter a constant address where you want the program to
halt. You can also enter a module name and line number in the form
MODULE#250.

Usually, pressing (F2) is easier than using this command to set breakpoints.
But it might be useful for running code up to a runtime error location or to an

110

Part One: Guide and Reference

address listing in a .MAP file. In that case, you may have to add your program’s
CS register value to the reported segment address—similar to the way you can
specify a stopping address with the Execute to command in the Run menu.

Changed memory global

One of the most common and difficult bugs to fix is a bad pointer or other
instruction that alters a memory location unexpectedly. Use the Changed memory
global command to narrow your search for the source of this slippery bug.

When you choose the command, a dialog box prompts you for a memory
address and count. Enter a constant expression followed by a comma and the
number of elements you want to monitor. Normally, you’ll specify the address
as the name of a variable. For example, to halt the program if the Temperature
rises (or falls), just enter that variable’s name. To monitor more than a single
variable—for example, an array of ten integers—follow the name of the variable
by the count like this: MyArray,10.

The 10 here does not represent the number of bytes that are monitored.
Instead, this is the count of elements of the variable’s size. If TD recognizes
MyArray to have 5-byte elements, the expression would set a breakpoint for
50 bytes.

You can also enter an explicit address such as DS:$0800,128 to monitor a
block of 128 bytes. In C, use an expression such as DS:0x0800,128. See chapters
5 and 8 for more information on watching memory values.

The more bytes you monitor, the slower your code will run. If you have an
80386-based system, install the TDH386.SYS device driver to enable hardware
debugging features, allowing code to run at full speed. You can execute either
TD or TD386 for this purpose—it’s the device driver that enables the special
registers, not the virtual-mode capabilities in TD386.

Expression true global

This command sets a breakpoint to halt the program when a variable equals
a specific value. For example, to trigger a breakpoint when an integer
variable named count equals 99, choose this command and enter the expression
count =10 in Pascal, count= =10 in C, or count eq 10 in assembly language.

You can also monitor processor registers for specific values with this
breakpoint option. In Pascal, enter ax{)0; in C, enter ax!=0; and in assembly
language, enter ax ne O to halt the code if register AX is not zero. (See chapter 9
for help with entering other expressions in these three languages.)

As with Changed memory global, this command may cause performance to drag
unless you have an 80386-based system and have installed the TDH386.SYS device
driver.

Chapter Four: Windows, Menus, and Hot Keys 111

Delete all

Execute Delete all to remove all breakpoints from your program. To remove
individual breakpoints, move the cursor to that location and press (F2). Or
open View:Breakpoints, highlight any listed breakpoint, and press {(Ctrl)-R.

Data Menu
The four commands in the Data menu (see Figure 4.27) give you ways to inspect
variables, evaluate expressions, add expressions to the Watches window, and

examine function return values.

Options Window Help

Evaluate/modi fy. .. Ctrl-F4
Add watch... Ctri-F7
Function return

Figure 4.27. Data menu.

Inspect

Choose Inspect and enter the name of a variable that you want to examine in
detail. If the variable is within the current scope, TD opens an inspector
window and displays the variable’s contents. If not, TD displays “Symbol not
found.” This means you can always inspect a global variable, but you can
inspect local variables in C and Pascal only when their declaring procedures
and functions are active.

Because the size, contents, and abilities of inspector windows depend on
the examined data structure, it takes time to learn how to put these windows to
the best use. For general information about inspector window features, see
“Inspectors” earlier in this chapter. For detailed instructions for inspecting
specific data structures in C, Pascal, and assembly language, see chapters 20-22.

Usually, the easiest way to open an inspector window is to position the cursor on a
variable name and press (Ctrl)-I. Most often, you’ll choose the Inspect
command in the Data menu only when you can’t easily find the variable name in
your source code.

Evaluate/modify ((Ctrl)-(F4))

Use this command to evaluate an expression, to examine a variable’s value, or to
change it. You can also use the command to call procedures and functions in

112

Part One: Guide and Reference

your C and Pascal programs independently of the program’s normal
operation—a great way to run quick tests on a misbehaving subroutine.

When you press {(Ctrl)-(F4) or choose Evaluate/modify from the Data
menu, TD displays the dialog box in Figure 4.28. Three prompt boxes—
Expression, Result, and New value—occupy most of this dialog box. The
Expression area lets you enter new expressions to evaluate. The Result box
shows the result of an expression after you choose the Eval button. And the
New value space lets you enter a new value for a variable you entered into
Expression. These three boxes can scroll horizontally if necessary to display
long lines, indicated by left and right triangles at either end of the field.
The top and bottom areas can scroll vertically, and they each have separate
history lists of previous entries. Press (Esc) or click the close button to close
the dialog box.

F[ﬂm&ul uate/mod| fy=
E;

Result (e
True @ BOILEAM

Figure 4.28. Evaluate/modify dialog box.

To enter a new expression, tab to the Expression field and type the expres-
sion as it would appear in C, Pascal, or assembly language. You can also highlight
an expression in the Module window and press (Ctrl)-(F4) to open Evaluate/
modify and copy the marked text to the Expression prompt box. Or just move
the cursor to a variable name and open the dialog box. Choose Eval to evaluate
the expression and display the result in the Result area. If the cursor is inside the
Expression field, you can also press (Enter) to choose the Eval button.

If you evaluate a variable, you can change its value by moving to the New
value field and entering another constant expression. For example, after typing
MyCount into the Expression area and pressing (Enter) to examine that
variable’s value, tab to New value and enter MyCount + 1. Then, choose Modi fy
to evaluate that expression and assign its result to the variable in the Expression
area. If the cursor is inside the New value field, pressing (Enter) chooses the
Modi fy button.

Expressions can also call procedures and functions in C and Pascal pro-
grams. When it evaluates such expressions, TD pushes any required parameters
and calls the routine—just as a statement in your program might do. Part 2
(especially chapter 9) explains how this works.

Chapter Four: Windows, Menus, and Hot Keys 113

When an object method is active, enter self (or this for TC+ +) into the
Expression area. This is a good way to verify the class of an object, but
Inspector windows are usually better for examining objects in detail.

Add watch ((Ctrl)-(F7))

Press (Ctrl)-{(F7) and enter a variable name or expression to add to the
Watches window. If that window is closed, TD opens it. The expression or
variable must evaluate to a constant—you can’t enter expressions that cause side
effects such as assigning a value to a variable or incrementing a variable with C’s
++ and -- operators. But you can watch expressions such as MyCounter*2. TD
will then display the result of that expression, and it will update that value if
MyCounter ever changes.

Rather than use this command, however, you may find it easier to move the
cursor to a variable name and press (Ctrl)-W to add that variable to Watches.
(See chapter 5 for more information about this view window.) Use the Add watch
command only if it’s inconvenient to find a variable in the source code.

Function return

After halting a program inside a function, choose this command to examine the
result that will be passed back to the function’s caller. The command opens an
Inspector window to a pseudo variable that represents the function’s value,
formatted according to the declared data type.

Hint: Most function results are passed in registers, which you can also examine
with the View:Registers command. Use that command along with Function
return to verify that function results are stored in the expected registers.

Options Menu

The commands in the Options menu (see Figure 4.29) let you select various
runtime parameters, create macros, change display formats, set directory paths,
and perform other jobs that affect how TD operates. You can also save options
in configuration files that you can reload during future debugging sessions to
restore a custom configuration.

Language

Choose Source or one of the three languages—C, Pascal, or Assembler
(assembly language)—from the dialog box shown in Figure 4.30. When this

114 Part One: Guide and Reference

Window Help

Lanquoage. ..

Mocros

Display options. ..
Path for source...
Save options...
Restore options...

Figure 4.29. Options menu.

Figure 4.30. Expression Language dialog box.

option is set to Source, TD detects the language type automatically so you can
enter expressions in that language’s format. Use the other settings to force TD to
accept expressions in a different format.

Hint: If you’re more comfortable with C, but you have to debug a Pascal program,
change Language to C. You can still debug the Pascal code as usual, but you can
now enter hex values as 0x0800 and use other C constructions. Pascal program-
mers faced with debugging foreign C code can switch Language to Pascal to let
TD recognize hex values such as $0800 and to format other expressions in a more
familiar style.

Macros

The Macros command displays a submenu that you can use to create and delete
macros (see the right half of Figure 4.4). TD macros can record and assign
lengthy command sequences to {(Ctrl) and other keys, which you can then
press to run those commands.

Creating macros is easy. Just press (Alt)-= to begin recording and press the
key to assign to this macro. Then, execute the commands to record. When
you’re done, press (Alt)-(Minus) to stop.

Using macros effectively is another matter. Because source-code changes,
it’s difficult to create general-purpose macros that work correctly under a range
of conditions. Still, macros are useful. See chapter 16’s sample macros for C,
Pascal, and assembly language debugging.

Chapter Four: Windows, Menus, and Hot Keys 115

You can record only TD commands in macros, not input typed into program
variables. If you need that ability, use TDINST to switch on “Keystroke recording,”
or start TD with the -k option to record all keypresses and most mouse movements
(see chapter 3).

Display options

Figure 4.31 shows the dialog box associated with this command. It’s settings
are similar to those for TDINST’s Display command as described in
chapter 3.

:[lsziSDku opti
Displa pplng |
C) None
(e Smart
¢) Alunus

C > Decimal
(e) Pnth

Screen |ines Tab size
A

(o) 5 C) 43/50

D

Figure 4.31. Display options dialog box.

Use the dialog box to change Display swapping to None (no output display),
Smart (show output only when it changes or might change), or Always (show
output between every statement).

Choose an Integer format to show values in Hex or Decimal. Use Both to
display in both styles—usually the best choice unless you prefer one or the
other and want to save a little horizontal display space.

Set Screen Lines to 25 for most monochrome and CGA displays or to 43/50
for EGA and VGA displays that can display extra lines. The change takes effect as
soon as you close the dialog box.

Set Tab size to the same setting that you use in your editor, from 1 to 32.
The source code must have embedded tab characters for this setting to have an
effect.

Path for source

Enter a path name with an optional drive letter where you store your
program’s source-code files. Enter multiple directory names separated by
semicolons.

116

Part One: Guide and Reference

For large multimodule programs, I like to store various sections in their own
directories. When debugging test programs inside those directories, I enter the
pseudo directory name “..” in Path for source. Or, I use names such as
“..\subx.” This tells TD to look for additional source-code files in this directory’s
parent and in other subdirectories stemming from the same ancestor. I also avoid
specifying drive letters such as C: and D:. That way, my configurations will work if
I move my files to a different drive.

Save options

Choose this command and fill in the dialog box shown in Figure 4.32. Check
off the items you want to save—Options to save all settings from other
Options-menu commands, Layout to save the currently open View-menu win-
dow positions and sizes, and Macros to save any macros you created. Enter the
file name, usually TDCONFIG.TD, in the Save to input field, then choose 0k to
save the configuration to disk.

Options ,
Layout
Maeras

Save To .

Figure 4.32. Save Configuration dialog box.

Be careful when typing the Save to file name—TD doesn’t warn you before
replacing an existing file. Some programmers name their configurations the
same as their program, for example, SORT.TD for a program named SORT.C.
This may be asking for trouble. If you accidentally supply the wrong file-name
extension (.C instead of .TD), you could wipe out a source-code file.

If you change the output file name by accident, to return to the default
TDCONFIG.TD, move to the Save to prompt box and press {Cursor Up) or
{Cursor Down).

Restore options

Use this command to load a configuration file saved by the Save options
command or created with TDINST as explained in chapter 3. The command

Chapter Four: Windows, Menus, and Hot Keys 117

opens a file dialog similar to the File:0pen command’s (see Figure 4.23) but
displays files ending in .TD instead of .EXE. (You can change this by entering a
new wild-card expression such as *.tdx or *.td?.)

Window Menu

Just about everything TD has to say is displayed in a window. Use the com-
mands in the Window menu (see Figure 4.33) to move, resize, shrink, expand,
close, and activate various TD windows. Some of these operations were cov-
ered earlier—see “Views” near the beginning of this chapter.

Help
Next Fb
Next pare Tab

Size/move Ctr|-F5
|conize/restore

Clase Alt-F3
Undo close Alt-F6

Dump pare to log

User screen AIt-FS
1 Module TCALC

2 Watches

Figure 4.33. Window menu.

Zoom ((F5))

Press (F5) to expand the current window to full screen or to shrink it to its
former size. I find the command especially handy for examining complex data
structures in inspector windows—it’s faster to zoom such windows to full
screen temporarily than to use mouse and keyboard commands to make minor
adjustments to the window size.

Hint: Because large windows take more memory, this command may not work
when debugging big programs. You can usually avoid this problem and conserve
resources by zooming only one window at a time.

Next ((F6))

Press (F6) to activate the next window in numerical sequence. I use this key to
bring multiple inspector windows back into view after switching to Module to

118

Part One: Guide and Reference

view some source code. Even though this means pressing (F6) several times,
this is often easier than choosing the windows by other means as explained later
in this section.

Next pane ({Tab))

Press (Tab) to move from one pane to the next in windows that have more
than one pane or in dialog boxes with multiple fields and buttons. This com-
mand does nothing for windows that have only single panes.

Press (Shift)-{Cursor Left) or (Shift)-(Cursor Right) to move the cursor to
the previous and next words in the Module window. Pressing (Tab) in TD does
not move the text cursor to the next column as it does in most text editors, but
these alternate keys make it possible to move around just as rapidly.

Size/move ({Ctrl)-(F5))

Formerly attached to {Scroll Lock), the Size/move command lets you move
and resize any window that has a resize handle in the lower right corner (see
Figure 4.1). You can move but not resize dialog boxes. If you have a mouse,
you’ll probably never use this command. (In that case, remember {Ctrl)-{(F5)
as a possible macro key.)

Iconize/restore

Choose this command to reduce the current window to an icon, displayed as a
tiny window near the bottom right of TD’s display. Choose the command to
expand an icon to its former size.

If you prefer to keep many View-menu windows open instead of choosing
them individually as needed, convert them all to icons and use Options:Save
options to store the Layout in a configuration file. When you restart TD, you
can then use a mouse or keyboard command to expand the windows you want
to use.

After converting a window to an icon, it may disappear behind Module or
Watches. If that happens, press {(F6) to bring the icons forward so you can see
them. Or, if this is a frequent problem, shrink Module and Watches one or two
columns horizontally from the right to expose a sliver of the icon borders, which
you can click with the mouse pointer to activate the windows.

Chapter Four: Windows, Menus, and Hot Keys 119

Close ({Alt)-(F3))

Press (Alt)-(F3) to close the current View-menu window. This does not work
for dialog boxes. If the window is an inspector, pressing (Alt)-(F3) closes all
open inspectors. To close only the active inspector window, press (Esc). (In
previous TD versions, (F3) was the Close command’s hot key.) See the next
command for a way to undo the most recent close.

Undo close ((Alt)-(F6))

If you accidentally close a View-menu or inspector (but not a dialog box), press
(Alt)-(F6) to reopen the window to its former size, position, and content. You
can restore only the most recently closed window—pressing (Alt)-(F6) again
does not reopen other windows closed earlier.

Hint: After opening multiple inspector windows, to close all but the one with the
lowest window number, press (F6) or click on any other inspector to make it
active, then press (Alt)-(F3)(Alt)-(F6). This can be handy when following a
linked list to start over from the root node and follow a different path.

Dump pane to log

Choose this command to copy the information in the currently active pane of
the active window to the Log window, opened by View:Log. See chapter 5 for
more information about keeping logs and saving a log file to disk.

I often use this command to prepare before-and-after tests. For example,
after opening the Registers window, I'll dump one or both panes to the Log
window. This gives me a snapshot of register and flag values as they existed at
this place in my program. After running other statements, I can then compare
the Log entry with the current values in Registers. (If you do this frequently,
assign the command to a macro key. See chapter 16.)

User screen ((Alt)-(F5))

Press (Alt)-(F5) to switch from TD’s display to the program’s output screen.
To return to TD, press any key. The display output is frozen—all you can do is
look.

If this command doesn’t work, check that Options:Display options is set
to Smart or Always. If it’s set to None, there is no display output to view. Also,
TD disables User screen during remote and dual-monitor debugging (see
chapter 17).

120

Part One: Guide and Reference

1 Module TCALC, 2 Watches

At the bottom of the Windows menu (see Figure 4.33) is a numbered list of all
open View-menu and inspector windows. The list changes as you open and
close windows, but it usually has the two entries listed here, Module (plus the
module’s name) and Watches.

To activate a listed window, you can open the Windows menu and press its
number. This is the same number you can press along with (Alt) when the
menu is zot open. Usually, though, pressing {F6) or using a mouse to activate
new windows is easier. The list is mostly helpful just for seeing what windows
are open.

The Windows menu can list up to nine window titles. When ten or more windows
are open, the last menu command changes to Window pick. Choosing this com-
mand opens a dialog list box (see Figure 4.10) from which you can select the
window you want to activate.

Help Menu

The last global menu lists three commands for TD’s on-line help system. (See
Figure 4.34.) The commands are easy to use. Just choose one of the Help menu’s
selections or press (F1). Then, follow the on-screen instructions to page among
topics until you find the help you need.

Window

Previous topic AIt—F1
Help on help

Figure 4.34. Help menu.

TD’s help system is context-sensitive. This means you can activate a window
or highlight a command and press (F1) at any time to view more information
about that selection. For information about how to use on-line help, press (F1)
twice.

Use the four cursor movement keys to select highlighted words in help-text
screens, then press (Enter) to view more information about these topics.
After threading your way among the facts you need, press {Esc) to close the
help windows and return to what you were doing. To back out of a threaded
journey through various help screens, press (Page Up) one or more times. See
Table 4.3 for a complete list of keys you can use while viewing help screens.

Chapter Four: Windows, Menus, and Hot Keys 121

Hint: Press (Alt)-(F1) to reopen the previous help screen after you close the on-
line help system by pressing (Esc). This is a handy key to remember for flipping
between another TD window and the help text that describes how that window
works.

Table 4.3. On-line help keys.

Key Action

(Alt)-(F1) View previous screen (same as {(Page Up))
{Ctrl)-(Page Up) Return to first page opened this session
{Cursor Down) Select highlighted topic below

{Cursor Left) Select highlighted topic to left

{Cursor Right) Select highlighted topic to right

{Cursor Up) Select highlighted topic above

{Enter) View help screen for highlighted topic
(Esc) Close help screen and return to TD

(F1) Open index to all help topics

{Page Down) View next help screen*

(Page Up) View previous screen (same as {Alt)-(F1))

*This works only when “PgUp/PgDn” appears in lower right corner.

Index ((Shift)-(F1))

Press (Shift)-(F1) at any time to open TD’s He lp Index window. Then, use cursor
and page movement keys or a mouse to choose topics from the displayed list.

Previous topic ((Alt)-(F1))

When the on-line help system is open, pressing (Alt)-(F1) is the same as
pressing (Page Up). The command takes you back through the help screens
you visited previously.

This command is more useful after closing help by pressing (Esc). At any
time after that, you can press (Alt)-(F1) to reopen the previous help screen.

Help on Help

Choose this command for an overview of TD’s on-line help system. The
information is the same as displayed when you choose the Help on Help entry in
the help system index.

122

Part One: Guide and Reference

Hot Keys

As you learn to navigate TD’s menus and windows, you’ll find many commands
that have hot-key assignments. Memorize as many of those keys as you can.
You’ll cut out a lot of rigmarole—opening menus, moving highlight bars, and
choosing commands from pop-up lists.

This section will help you to learn TD’s hot keys. Listed here are (Ctrl),
(Alt), and all function key combinations (see Tables 4.4, 4.5, and 4.6). Unused
combinations (marked none in the “Action” column) are available for assigning
to macros (except for (F11) and {F12) on extended keyboards). Other suitable
macro keys are (Shift)-(F2) through (Shift)-(F10).

For compatibility with Borland’s integrated Turbo Pascal and Turbo C compilers
and editors, (Shift)-(F6) performs the same action as (F6), (Ctrl)-(F8) sets
breakpoints as does (F2), and (Ctrl)-(F10) and (Alt)-{F10) both open local
menus. Unless you need both sets of keys, the duplicated entries make good
choices for assigning to macros.

Table 4.4. Function hot keys.

Key Action

(F1) On-line help text

(F2) Toggle breakpoint at cursor on or off

(F3) Open the Pick a module dialog box

(F4) Execute program up to cursor

(F5) Zoom (enlarge or shrink) window

(FG6) Uncover and make next window active
(F7) Single-step, tracing into subroutine calls
(F8) Single-step, stepping over subroutine calls
(F9) Run program to a breakpoint or to completion
(F10) Toggle between global menu and a window
(F11) None (not available for macro assignment)
(F12) None (not available for macro assignment)

This section does not list local-menu { Ctrl)-letter keys. As explained earlier,
every View window has its own local menu of commands, each of which has a
highlighted character that you can press along with (Ctrl) to choose that
command without first opening the menu. The best way to learn these hot
keys is to open the menus or press the (Ctrl)-key combinations to choose

Chapter Four: Windows, Menus, and Hot Keys 123

commands. Eventually, you’ll memorize the keys for the commands you use
most frequently.

If you have a mouse, you can click the left button to choose any function key
displayed on TD’s bottom line. You can also hold down (Alt) or {Ctrl) until that
line changes (this takes a moment). Then, while still pressing that key, click the
listed function. If you’re good with a mouse, but not the world’s best typist, you
may find this method easier than pressing double-function keys.

Table 4.5. (Alt)-Function hot keys.

Keys Action

(Alt)-(F1) Display or reopen previous help screen
(Alt)-(F2) Set breakpoint options

C(Alt)-(F3) Close the active window ({Alt)-(F6) recovers)
(Alt)-(F4) Back trace through previous instruction traces
(Alt)-(F5) View user screen (any keypress returns to TD)
(Alt)-(F6) Reopen most recently closed View window
(Alt)-(F7) Trace into machine code of current statement
(Alt)-(F8) Run until return from subroutine

(Alt)-(F9) Execute up to specified address or line

(Alt)-(F10)

Open local menu for current window

Table 4-6. (Ctrl)-function hot keys.

Keys Action

{Ctrl)-(F1) None

(Ctrl)-(F2) Reset program to startup conditions
(Ctrl)-(F3) None

(Ctrl)-(F4)
{Ctrl)-(F5)
(Ctrl)-(FG6)
(Ctrl)-(F7)
(Ctrl)-(F8)
{Ctrl)-(F9)
{Ctrl)-{F10)

Evaluate and modify expressions

Activate window move and resize commands
Norne

Add a variable to Watches window

Toggle breakpoint (same as (F2))

Run program (same as (F9))

Open local menu (same as (Alt)-(F10))

124

Part One: Guide and Reference

Summary

TD is a complex software package, and learning how to use its many windows,
menus, and hot keys can be frustrating—especially when you have to find a bug
now, not tomorrow. However, by weaving TD into your daily programming
habits and by using the debugger as a tool to examine code even before bugs
occur, you’ll be ready to use the commands when bugs do surface.

This chapter is organized as a reference to most of TD’s windows, menus,
and hot keys. It also contains general information about using windows, dialog
boxes, inspectors, the keyboard, and a mouse. Skim the chapter for an over-
view of TD’s operations, then come back later for help with specific commands
as you need it.

TD uses three kinds of menus: global menus, local menus, and submenus.
Global menus are always available except when a dialog box is open. Local
menus are associated with other windows. Submenus contain additional com-
mands. Descriptions of global menus are listed in this chapter in the order the
menus appear on the top line of TD’s display.

The next chapter covers TD’s most heavily used windows and commands
from the View menu.

Chapter 5

Views and Local Commands

MOST OF TD’s power is concentrated in the View menu’s 14 main com-
mands (see Figure 5.1). Each of these commands opens a view window,
described in this chapter in alphabetic order along with the window’s associ-
ated local commands.

Most View-menu commands directly open their view windows—for exam-
ple, Watches and Registers. Others (Module and Fi Le) first open a dialog box
that prompts for various options to apply to those views. One command
(Another) opens a submenu that lets you create additional copies of three other
common views.

If you are reading this chapter out of order, you might want to glance at the
beginning of chapter 4 for general help on using windows, choosing menu
commands, and operating dialog boxes. Here are a few highlights from chapter
4 that will also help:

® Press (Alt)-V to open the View menu. Then, press the highlighted letter of
the command you want. For all View commands, this is the first letter of the
command name. Press C to open the CPU view, H for the object Hierarchy,
and so on. You can also use a mouse to choose commands.

® An ellipsis (...) in a menu command indicates that the command opens a
dialog box. A small triangle (®) tells you the command opens a submenu.

® Press (Esc) to close a dialog box. Press (Alt)-(F3) to close a View
window. You know it’s a dialog box if the lower right corner is a solid
double line. Only active View windows (and inspectors) have single-line
resize handles at the lower right.

¢ TD normally opens the Module and Watches views when you start debug-
ging. You’ll rarely need to open these windows from the View menu.

® Press (Alt)-(F10) or (Ctrl)-(F10) to open a view’s private menu of local
commands. Or, instead of opening the menu, press (Ctrl) and a local

125

126 Part One: Guide and Reference

Run Breckpoints

Breckpoints

Stock

Log

Watches

Uaricbles

Module... F3
File...

Durp

Registers

Numeric processor
Execution history

Hierarc|

Module. ..

Figure 5.1. View menu.

command’s highlighted letter. A few commands also recognize (Delete)
and (Insert) as alternate hot keys. Get in the habit of using these keys—
they can save a lot of time. To help you learn them, this chapter lists hot
keys in parentheses after the local command names.

® Press (F6) or use a mouse to activate an inactive window. Only one view at
a time can be active, and all local commands apply only to that view.

How to Use This Chapter

Because this chapter is a reference to all View-menu commands, it mentions
topics discussed elsewhere. So, if you come across something you don’t under-
stand, just skip it and go on. Don’t try to memorize every detail here—skim the
material the first time through and plan to come back later when you need help
with specific commands.

Dozens of figures in this chapter illustrate many of TD’s displays, making
this a good chapter to read when you’re away from your computer. Depending
on the type of video adapter you have, the screens printed here might be
different from those you see on your monitor. But all elements will be in the
same places, and this shouldn’t cause any problems.

Default Commands

Most views have default commands in their local menus that TD executes when
the view’s window is active and you simply start typing or when you press
{Enter) or (Space). These commands are marked here by the word (Default).

Chapter Five: Views and Local Commands 127

Default commands make TD seem almost intelligent, and they can save
many wasteful keystrokes. For example, Goto is the Module window’s default
command; therefore, instead of pressing {Ctrl)-G or opening the local menu
and pressing G, you can simply type the name of a procedure or function to
view. Once you learn these and other shortcuts, you’ll never have to select these
commands from their menus again.

Another View

Strictly speaking, Another isn’t a view—it’s a command that lets you open
additional copies of three other views: Module, Dump, and File, explained
elsewhere in this chapter. Choose Another and then choose an additional view
from the submenu (see the bottom of Figure 5.1).

Another is needed because of the way View commands work. If, for exam-
ple, you choose bump a second time, it activates the current Dump window,
bringing that window to the front if it’s now hidden. It doesn’t create another
bump. For this reason, only Another can open a second copy of these three
windows. (It would serve no purpose to have second copies of the other views.)

You can use Another to open as many Module, Dump, or File windows as
you need, limited only by the amount of memory available for TD to store
internal data related to open windows.

Breakpoints View

The Breakpoints view displays facts about active and inactive breakpoints—
stopping places or conditions where you want to halt a program for examina-
tion, log an expression, or call a subroutine. As Figure 5.2 shows, the
Breakpoints window has two panes, but unlike other multipane windows, only
the left pane has a local menu.

The right pane displays details about the highlighted breakpoint to the left.
Move the highlight bar to select any breakpoint and read the information to the
right. In Figure 5.2, the breakpoint named 6lobal_1 is set to go off when the
expression Reg.ax <> 0 is true. The breakpoint is enabled.

3=[1103
Breakpoint
Expression true "Reg.ax <> 8~
Encbled

Figure 5.2. Breakpoints view.

128

Part One: Guide and Reference

If you've installed TDH386.SYS and if a breakpoint can use hardware
debugging features on 80386 or 80486 processors, an asterisk in the left pane
indicates that this breakpoint will not affect performance when you run the
code by pressing (F9).

Don’t confuse the Breakpoints view with the global Breakpoints menu.
Use the view to examine breakpoints you set previously and to modify how
those breakpoints work. Use the menu to set new breakpoints, as described in
chapter 8. (It is possible, though not as easy, to set breakpoints with the view’s
local Add command, as explained later in this chapter.)

Local Breakpoints View Commands

There are six local commands that you can use when the Breakpoints view is
active. (See Figure 5.3.) The following notes describe how to use each of these

commands.

Horduare options...

Remove
Belete all
Inspect

Figure 5.3. Breakpoints local menu.

Set options ({Ctrl)-S)

This option opens the Breakpoint options dialog box illustrated in Figure 5.4.
Use this command to examine or change the following options associated with
this breakpoint.

® Address: Breakpoints in code are in the form #NAME#LINE or NAME.LINE
where NAME is the module name and LINE is a line number. (The exact
format depends on the current language.)

® Action: Set to Break to halt the program when the Condition to the right is
true. Change to Execute and enter a function or procedure into the Action
expression to run a subroutine when this breakpoint hits. Set to Log to log
the result of an Action expression—usually a variable to examine at each
breakpoint.

® Action expression: Enter an expression in your language’s format (see
chapter 9) to call a subroutine when Actionis set to Execute, or to make an
entry in the Log view. You can also enter an expression with an intentional
side effect (a change to a global value) such as i+ + in C.

Chapter Five: Views and Local Commands 129

—=[1} =————————BreKpoint options 1
Address
Mot vt labl 2> (%] Rlabal IE

Action expression Condition expression
Mot avai lnbles Req.ox <> 0

Pass count
1 [] Breakprint di=abled

Figure 5.4. Breakpoint options dialog box.

Hint: To avoid trouble, it’s usually best if a Log expression does not cause any side
effects such as assigning a function result to a variable or using the C ++ and --
increment and decrement operators. You may do this in unusual circumstances,
but be aware that if you do, the breakpoint may affect the target program,
complicating the search for a bug.

® Pass count: Change to ignore a breakpoint Condi tion until that condition occurs
a certain number of times. For example, to break out of a loop after nine iterations,
set a breakpoint on a statement inside the loop and change Pass count to 9. You
can’t set Pass count to O or to a negative value. Instead, use the Breakpoint
disabled check box to disable a breakpoint.

® Global: After setting a breakpoint in code (usually by pressing (F2)), you can enter
a Condition expression for TD to evaluate when the breakpoint occurs. If you
then turn on the Global switch, TD will monitor that condition between every
source line (if Module is the active window) or between every machine-code
instruction (if CPU is active). Because this will reduce TD’s performance unless you
have an 80386 or 80486 and are running TD386, there’s few good reasons to
change the Global setting—but you can examine it to find out how TD will
monitor a breakpoint condition while a program runs.

Note: TD’s use of the word “Global” confuses many people. A common code
breakpoint is not global because TD creates it by inserting an interrupt instruction
into the code; therefore, the debugger doesn’t have to monitor the breakpoint’s
address. Instead, the breakpoint occurs when the program ifself executes the
interrupt instruction, which TD replaces with the original code when it handles
the breakpoint. A global breakpoint requires TD to examine a memory location
each time the debugger gains control from the target program. That’s why global
breakpoints cause performance to suffer the blues.

130

Part One: Guide and Reference

® Condition: Set to Always for breakpoints in code. Set to Changed memory to
break when any of a range of memory bytes specified in Condition expression
are changed. Set to Expression true to break when an expression becomes true—
usually when a variable reaches a specific value as in Figure 5.4 where the break will
occur when Reg. ax is not zero. Set to Hardware to enable the Hardware options
local command if you’re system has an 80386, 80486, or debugging board (see
chapter 18).

e Condition expression: Enter an expression here when Condition is set to
Changed memory or to Expression true. In the first case, the expression should
be an address or label followed by a optional count of the number of items to
examine. For example, the expression MyCount, 2 monitors 4 bytes if MyCount is a
2-byte integer. To monitor an entire variable such as an array, just enter its name. To
monitor an unlabeled address, enter it in hex in your language’s format. You can also
specify segment registers and offsets such as CS:$0800 (Pascal), CS:0x800 (C), or
CS:0800h (assembly language). When Condition is set to Expression true, TD
evaluates the Condition expression before every source-code line (or machine-
code instruction if the CPU view is active). The breakpoint Action is then taken if
the expression is true.

Hint: Set Changed memory and enter a Condition expression to find a bug
that’s unexpectedly changing a memory location. Set Expression true and enter
an expression to halt the code when a variable reaches or exceeds a specific value,
for example, when an array index that’s supposed to be limited to 99 is greater or
equal to 100.

® Breakpoint disabled: Check this box to disable a breakpoint temporarily. Check
it again to turn the breakpoint back on.

Hardware options ({Ctrl)-H)

Before you can use this command, you must install a hardware debugging
board or have an 80386 or 80486 processor in your system as explained in
chapter 18.

Add ((Ctrl)-A) (Default)

This option opens the Breakpoint options dialog (see Figure 5.4) so you can fill
in a new breakpoint’s details. In some cases, this might be easier than using the
global Breakpoints menu commands to set breakpoints, especially if the
Breakpoints view is already active. But usually, you won’'t add new breakpoints
this way. Instead, use the methods described in chapters 4 and 8. For example,
it’s a lot easier to move the cursor to a source-code line and press (F2) to set a

Chapter Five: Views and Local Commands 131

code breakpoint than it is to use the Add command and fill in the source-code
line number manually.

Hint: After loading a program into TD, open the Breakpoints view and enter the
name of any procedure, function, or label. Because Add is the default action, just
start typing. You don’t have to choose the command from the menu. This will
open the Breakpoint options dialog box and set a breakpoint at that address.
Then, press {F9) to run the code to the breakpoint—a quick way to execute up to
a routine when you know its name.

Remove ((Ctrl)-R, (Delete))

This command removes the breakpoint highlighted in the Breakpoints
window. Be sure that’s what you want to do—you’ll have to reenter the break-
point if you remove it accidentally.

Hint: This is one of the few TD commands with two hot keys. You can press
{Crtl)-R or (Delete) to remove individual breakpoints.

Delete all ((Ctrl)-D)

This option removes all breakpoints of all kinds. Use this command to delete
breakpoints only if the Breakpoints view is already active—the Delete all
command in the Breakpoints global menu takes fewer keystrokes ((Alt)-BD
instead of (Alt)-VB(Ctrl)-D).

Inspect ({Ctrl)-I)

Highlight a nonglobal code breakpoint and press (Ctrl)-I to view that source-
code line in the Module window. If that window is not open, this command
opens it.

Because Module usually occupies most of the display, when you press
{Ctrl)-I, the Breakpoints window appears to close, but it’s just hidden behind
Module. Press (F6) a few times to bring Breakpoints back into view.

Note: This command doesn’t work for global breakpoints that monitor memory
locations and expressions. To examine those breakpoints, use Set options (press
(Ctrl)-S).

132

Part One: Guide and Reference

CPU View

The CPU view is one of TD’s most complex. (See Figure 5.5.) Each of its five
panes displays a different kind of information, and each has its own local menu
of commands. Starting with the large pane in the upper left corner and proceed-
ing clockwise, first is the Code pane, which shows a disassembly of your
program’s compiled or assembled machine code. Next is the Registers pane—
a view of the 16- or 32-bit processor registers. After that comes a thin pane at
the far right of the processor Flags. Below Registers and Flags is the Stack
pane, showing the values currently pushed onto the system stack. To the left of
that is the bump pane, which you can use to view and change bytes, words, and
other values anywhere in memory.

3=[t1[3
2. Hhie ax 7201 |c=B
cs:B480pBI7EECA2 bx 668l |z=8
cs:B46E 730A job TCSCREEN.354 § cx 7208 |s=B
TCSCREEN.352: CurrCols := 40 dx 3F2 |o=B
¢s:8490 C47E86 les di,[bp+86] si 91l (p=B
cs:0493 26C6458128 mov es:byte ptr [§ di B58A a=0
cs:0438 EBBS Jjmp TCSCREEN.3S5 § bp 3FEC i=1
TCSCREEN.354: CurrCols := 88; sp D8 |d=9
¢s:049A C47E06 les di,[bp+B6] ds 9011
cs:8490 2606450150 mov es:byte ptr [§ es 9011
TCSCREEN.355: end ss 9093
cs:B4A2 EBIC Jmp TCSCREEN.361 § cs 8974
TCSCREEN. 357 UldeoT e := MR, ip 8484
ds:%%%%m%‘HFFlﬁw D«
ds:@PBC EA FF GA BB F6 FF SEBS N | «+ ™~
ds:0018 ES 7F BA 0@ F6 FF CD 85 Oog = =4 ss:3F0A 8082
ds:8818 E5 7F 21 8L DF FE 15 59 Oo'EMEsP

ss:3r08r50E3

Figure 5.5. CPU view.

Only two of the CPU's five panes are unique—the Code and Stack panes.
The others are identical to the separate views Dump and Registers (which also
contains the Flags pane). Turn to the descriptions of those two views in this
chapter for more information about these sections of the CPU window. This
section explains how to use the Code and Stack panes.

CPU Window Uses

Use the CPU view to examine and patch a program on its lowest level—the
machine-code instructions that drive the 80x86 processor in your computer.
Use it also to view and modify processor registers and flags, to examine the
system stack, and to view a dump of bytes, words, and other values anywhere
in memory.

When debugging assembly language code, some people prefer to use the
CPU window instead of the source-code Module view. Because assembly

Chapter Five: Views and Local Commands 133

language source-code statements directly translate into individual machine-
code instructions and because much of assembly language programming
involves setting registers and flags and manipulating the stack and bytes in
memory, the CPU window is often convenient for debugging assembled
machine code.

But when debugging high-level C and Pascal programs, the CPU window is
mostly useful only when it becomes necessary to peer below the source-code
level and look at the code the compiler has generated for your commands. For
that reason, when debugging C and Pascal, you’ll want to use the Module
window at most times, switching to CPU only when:

® You want to trace machine not source code. When CPU is active, (F7),
(F8), and other Run-menu commands execute processor instructions.
When Module is active, those same commands trace source-code lines,
which might be composed of many compiled machine-code instructions.

* You need to examine the registers or flags, for example, after returning
from an assembly language subroutine or a call to a DOS function.

* You want to examine or modify a procedure or function’s return address on
the stack, or you want to alter a parameter passed to a routine on the stack.

® You want to execute individual machine-code instructions and watch their
effects on bytes in memory.

® You want to patch the compiled code. The CPU window lets you assemble
new instructions directly into memory, which might be useful for testing
temporary fixes that you’ll later add to your program’s source.

Opening the CPU Window

Usually, use the mouse or press (Alt)-VC to open the CPU window, similar to
the way you choose other View-menu commands. Sometimes, however, the CPU
window will open automatically when:

® You debug a program that lacks debugging information in its .EXE or .COM
file. Unless this is what you want to do, quit TD and recompile according to
the instructions in chapter 2. If the CPU window still appears, check that
Options:Path for source lists the directory path name where you store
your source-code files. If that’s still no help, you may have used TDINST to
set Display:Beginning display to Assembler. Change this back to Source,
or use the -1- command line to run TD.

® You call a routine in 2 module for which source code is not available, for
example, a library routine. If you do this by accident, close the CPU window
(press (Alt)-(F3)) and then press {(Cursor Down)(F4) to run the pro-
gram up to the next source-code statement.

134

Part One: Guide and Reference

® You break out of a program by pressing (Ctrl)-(Break). This will often
interrupt a library routine without source-code and debugging information.
Unless you want to continue debugging from that point, close the CPU
window and press (Ctrl)-(F2) to reset.

The CPU view also exhibits a fair amount of intelligence. When you open
CPU, it tries to show you something logical—the disassembled machine code for
a selected statement in the Module window or a Dump of the bytes for an
inspected data structure. But, if the window activates the wrong pane, just tab
to the one you want.

CPU Code Pane

The Code pane is the large one in the CPU view’s upper left corner. (See Figure
5.5.) In it is a disassembled representation of your program’s compiled or
assembled code. Usually, as the figure shows, the original source-code state-
ments are displayed along with the machine-code instructions generated for
those statements. (See the Mixed local command to change this pane’s display
format.) A small triangle (™) marks the location of the instruction that will
execute for the next Run-menu command.

When the highlighted instruction in this pane refers to a memory
location—for example, as in the instruction mov [bp-011,al—the upper win-
dow border (near the center) shows something like $S:3FF7 = 5F. To the left of =
is the effective address to which the instruction refers; to the right is the current
byte or word value at that address. Use this information to confirm that values
loaded into registers or written to memory are correct and that the addresses
point where you think they should.

Examining code in the CPU view is a great way to learn how your compiler
operates. Scanning the machine code for selected source-code statements can
show you how the compiler executes a pointer reference, calls a function or
procedure, or evaluates an expression. If you’'re curious about what code is
really doing, this is the place to find out. ;

Assembly language programmers may notice a few discrepancies between
source statements and disassembled machine code. This is because 80x86
assembly language often uses several mnemonics (symbolic names) for the same
code. For example, je and jz refer to the same jump instruction. But TD always
disassembles jz as the equivalent je.

Hint: Along with the disassembly, the Code pane normally shows the machine-
code bytes for those instructions. But, if you shrink the CPU window horizontally
to less than about 60 characters wide, the bytes disappear! When you don’t need
to see the machine code, you can shrink CPU this way to pack almost as' much
information on-screen in a much smaller space.

Chapter Five: Views and Local Commands 135

Local CPU Code Pane Commands

Like most window panes, the Code pane has its own local menu of commands
(see Figure 5.6). The next sections describe how to use each command.

Origin
Fol low
Caller

Figure 5.6. Local menu in the CPU window’s code pane.

Goto ((Ctrl)-G)

To examine other parts of a program, you can press the cursor and page
movement keys, or you can use the Goto command to jump farther away.
Enter an address such as 054Eh ($054E for Pascal, 0x054E for C), or if you
know the line number, enter #module#000 where module is the name of a
source-code module and 000 is the line number, for example, #strio#124.
(When debugging Pascal code, enter line numbers in the form
MODULE.LINE.)

Hint: Press {Ctrl)-(Cursor Left) and (Ctrl)-(Cursor Right) to shift the
instruction displayed at the highlight bar in the Code pane. This is similar to using
Goto to reposition the window and is helpful on the rare occasions where the
disassembly becomes out of synch with the source code.

Origin ((Ctrl)-0)

This option returns to the current origin—the location of the instruction that
will execute next when you use a Run command or press a hot key such as
(F7), (F8), or (F9). Use this command after viewing other locations to get
back to the program’s current origin.

It’s a good idea to use this command before entering expressions to make
sure TD scopes any local symbols to the origin, not to another location in the
code you happen to be viewing.

136

Part One: Guide and Reference

Hint: After scrolling around in the Module window to view various source-code
lines and opening the CPU window to view a disassembly of those statements,
press {Ctrl)-O(Ctrl)-V to reset both windows, with CPU active.

Follow ({Ctrl)-F)

When a jump, call, or software interrupt instruction is highlighted in the CPU’s
Code pane, press (Ctrl)-F to view that instruction’s target location—the code
that will be executed by the next Run command. You might think of Fol lowas a
kind of “look before you leap” feature. It lets you look ahead into a subroutine
before actually jumping into it.

After pressing (Ctrl)-F to view a target subroutine, press {F7) to execute
the jump, call, or interrupt instruction that leads to this address. You can then
continue debugging the subroutine. But never press {Ctrl)-N after (Ctrl)-F to
make the target the new origin—unless, of course, you don’t want the caller’s
return address to be pushed onto the stack.

Caller ({Ctr1)-C)

Press (Ctrl)-C to view the code that called the currently displayed subroutine.
In order for this to work, that location’s return address must be on the stack and
a call must have been the most recently executed instruction. After pressing
{Ctrl)-C, you can press {Ctrl)-P or {Ctrl)-O to return to the previous view.

Previous ({Ctrl)-P)

Press (Ctrl)-P to return to the location previously displayed in the Code pane
before you used another command to move away from that spot.

Hint: This command gives you a neat way to toggle between two disassemblies.
For example, press {Ctrl)-F to follow (but not execute) a call instruction and
then press {(Ctrl)-P repeatedly to toggle between the two views.

Search ((Ctrl)-S)

Enter an assembly language instruction or a series of byte values to find. TD will
start searching from the current address down. If it finds your search argument,
it will reposition the CPU Code pane to that new location.

When entering byte lists, be sure to use the correct format for the current
language. For example, to search for the two hex bytes 8E and 7F enter

Chapter Five: Views and Local Commands 137

$8e $7f in Pascal, 0xO8E OxO7F in C, or 08Eh 07Fh in assembly language.
Also, beware of byte swapping in word and other multibyte values. To find the
word value 8E7F, you must enter $7F8E, Ox7F8E, or 07F8Eh to account for
the way these values are stored in memory.

You can also search for assembly language instructions, but in that case, you
must enter an instruction that assembles to the bytes you want to find.
TD doesn’t search for the text of the instruction—it assembles the text and
then searches for the resulting bytes. For example, if you enter the search
argument or al,al, TD assembles that instruction and looks for the bytes 0Ah
and COh.

This means you can’t search for conditional jumps because the offset
locations are not the same for the starting and target addresses. If you search
for je tcscreen.450, TD assembles the instruction and calculates the offset
from the current location to line 450. Because that offset value is probably
different where the instruction exists in the code, this kind of search usually
fails.

Hint: Performing multiple searches for the same instruction is difficult because
there is no “search again” command in this window pane. Fortunately, it’s easy to
create your own. For example, to find all occurrences of int 21h, after finding the
first, press (Cursor Down){Ctrl)-S{Cursor Down){Enter). Record those
keys as a macro if you do this often.

View source ((Ctrl)-V)

Press (Ctrl)-V to view the source-code statement in the Module window
associated with the highlighted machine-code instruction in the CPU window’s
Code pane.

Hint: Get into the habit of using this command if you frequently switch between
the CPU and Module views—it’s faster than closing the CPU window and then
having to reopen it later. Press (F6) a few times or press (Alt) and the CPU
window’s number (usually 3) to return.

Mixed ((Ctrl)-M)

This command has three settings: No, Yes, and Both. Press {Ctrl)-M to cycle
through each of these to change the format of the disassembled instructions in
the Code pane. The results are purely visual and the settings have no other
effects.

138

Part One: Guide and Reference

Hint: I use Both for C and Pascal, Yes for assembly language, and No when
examining code for which I don’t have the source text.

New cs:ip ({Ctrl)-N)

After highlighting an assembly language instruction, press {Ctrl)-N to copy the
address of that instruction to registers CS (code segment) and IP (instruction
pointer). This changes TD’s origin—the location of the next instruction to
execute.

Never reset the origin to an instruction inside a subroutine—that would skip
the call instruction that pushes the caller’s return address onto the stack. Do
this only if you’ll never execute that routine’s return. For safety, place a break-
point at the next ret or retf so that, if you press {F9) by accident, you’ll avoid
an almost certain crash.

Assemble ({Ctrl)-A) (Default)

Press (Ctrl)-A or just start typing to assemble a new instruction at the current
location. When you press (Enter), TD moves the highlight bar to the next line
down; therefore, to enter multiple instructions, just type them one after the
other, pressing (Enter) at the end of each line.

Use this command to enter short patches to code or to test small assembly
language sequences. You can’t save your changes to disk. Don't use this command
to enter long subroutines—if you press (Ctrl)-{F2) to reset the code, TD will
throw out all your patches. Also, you can't use the full-address forms of string
instructions. Instead, you must use shorthand mnemonics like lodsb and cmpsw.

Hint: Add a small buffer to your program to provide space for entering assembly
language patches. Use the Data: Inspect command to open an inspector window
to the buffer, press (Alt)-VC to open the CPU view and press (Tab) to move to
the Code pane. Press (Ctrl)-G and enter the first address shown in the Dump pane.
You can then assemble instructions into the buffer without concern about over-
writing other code in RAM. To execute the patch, use a call far seg:ofs
instruction where seg:ofs is the segment and offset address of the patch, which
should end with a far return instruction (retf).

If you make a mistake typing an instruction, you’ll receive messages such as
“Invalid instruction mnemonic” or “Symbol not found.” To avoid having to
retype the entire line, after erasing the error message, either press (Space) or
press {Ctrl)-A and then press {Cursor Down) to highlight the previous text,
which you can then edit in the usual way.

Chapter Five: Views and Local Commands 139

1/0 ({Ctr1)-T)

After pressing (Ctrl)-I or choosing 1/0 from the local menu, press I, O, R, or
W to choose one of the submenu’s commands: Inbyte, Out byte, Read word, or
Write word. (See Figure 5.7.) Don’t also press (Ctrl)—let up on that key first.
The “In” commands prompt you for the port number, which you can enter in
decimal or hex. The “Out” commands prompt for a port number and a value to
write to that port. Separate the two values with a comma. You can specify port
numbers from 0 to 65,535.

Hint: Be extremely careful with this command. It’s like a rifle with a hair trigger—
once you fire it, there’s no way to recall the bullet. Even reading from some ports
can affect circuits and devices attached to your system. For safety, reboot after
using 1/0.

Figure 5.7. 1/O submenu for the CPU window’s code pane.

CPU Registers Pane

The Registers pane in the CPU window shows the 80x86 processor’s 16- or 32-
bit registers. (See Figure 5.5.) The commands for this pane are identical to those
for the Registers view, described later in this chapter.

CPU Flags Pane

The Flags pane in the CPU window shows the 80x86 processor’s single-bit
flag values. (See Figure 5.5.) There is only one local command in this
pane, Toggle. To use it, highlight the flag you want to change and press
(Ctrl)-T.

Hint: You can also press {(Space) or (Enter) to toggle a flag value between 1 (on)
and 0 (off).

140

Part One: Guide and Reference

CPU Stack Pane

The Stack pane in the CPU window’s lower right corner shows 16-bit word
values on the system stack. (See Figure 5.5.) A small triangle (®) marks the stack
pointer’s current location, the value most recently pushed onto the stack. This is
the word that will be loaded into a register by the next pop instruction or into ip
by the next ret (or the first of a pair of words to be loaded into cs:ip by the
next retf).

Hint: TD displays stack words in byte-swapped order. To view stack bytes as they
are actually stored in RAM, tab to the Dump pane, press {Ctrl)-G, and enter ss:sp
for a byte-dump of the same values listed in the Stack.

Local CPU Stack Pane Commands

The Stack pane’s local menu (see Figure 5.8) has five commands, described in
the next sections.

Origin
Fol low
Previous

Figure 5.8. Local menu in the CPU window’s stack pane.

Goto ({Ctrl)-G)

Use this command to position the stack to a new location. It’s especially useful
for examining pointer references to variables stored on the stack. For example,
to see the stack location affected by the instruction mov byte ptr [bp-131, press
{Ctrl)-G and enter bp-$13 (bp-0x13 for C or bp-13h for assembly language).
Remember, the 13 is in hex, even though the Code pane doesn’t list the value
that way!

To scroll the Stack pane without moving the highlight bar, press
(Ctrl)-{Cursor Left) and (Ctrl)-{Cursor Right).

When viewing stack locations, be aware that the stack pointer is always
even (or, at least it should be). To return to a true representation of the stack
after viewing odd-value addresses, press {Ctrl)-O. To move quickly through
the stack, enter an expression such as sp +128 or sp +1024. You don’t have to
specify the stack segment register SS in the expression.

Chapter Five: Views and Local Commands 141

Hint: You don’t have to view only the system stack in the Stack pane—you can
also use it to view other locations as a list of words. For example, press (Ctrl)-G
and enter ds:$0080 to view an array of integers or words in the data segment. I
find that the Stack’s vertical format makes viewing such arrays easier than the
Dump pane, which displays values in a wide block. Unfortunately, the list is “upside
down.” So, to move down in memory (to higher addresses), you must press
{Cursor Up). Of course, in RAM, up to one person might be down to another.

Origin ((Ctr1)-0)

Press (Ctrl)-O to reset the Stack pane to the current SS:SP stack location. Use
the command after scrolling, paging, or using other commands to view other
stack positions.

Follow ({Ctrl)-F)

When a pointer on the stack represents an offset to another stack frame (a series
of values pushed onto the stack usually by a high-level language subroutine),
you can highlight the value and press (Ctrl)-F to view that stack location. In
the case where multiple pointers point to many such frames, you can trace
through the stack quickly by highlighting the values and pressing (Ctrl)-F.
This command has the same effect as entering the pointer as an offset value
with the 6oto command.

Hint: Press {Ctrl)-P to return to the previous view. Or, press (Ctrl)-O to return
to the stack origin after following a series of pointers.

Previous ({Ctrl)-P)

Press (Ctrl)-P to restore the Stack pane to where it was before you used
other commands to view different locations. The command works as a toggle—
press {(Ctrl)-P two or more times to switch rapidly between two stack
locations.

Change ((Ctrl)-C) (Default)

Press {(Ctrl)-C or just start typing to enter a new word value for the highlighted
stack location. You can use this command to change arguments passed on the
stack or to alter a return address. Remember to enter the value using the correct
format for your language.

142 Part One: Guide and Reference

CPU Dump Pane

The Dump pane in the CPU window shows byte, word, and other values any-
where in memory. (See Figure 5.5.) The commands for this pane are identical to
those for the bump view, described next.

Dump View

Figure 5.9 shows a typical bump view window. Although at first glance, the
contents of this window appear scatterbrained, the information divides log-
ically into three columns: an address field (for example, ds:0000), eight hexa-
decimal byte values stored beginning at that address, and eight ASCII characters
representing those same bytes. These characters frequently look like gibberish
unless the bytes are part of a string. You can ignore them most other times.

Figure 5.9. Typical Dump ‘view.

The address field may appear as in Figure 5.9 or as segment and offset
values such as 735F:35D8. Watch for this—it tells you whether TD recognizes
the displayed data as belonging to the program’s global data segment addressed
by ds. If an explicit segment address value appears, you are not looking at the
data segment.

Because TD makes copies of certain memory locations, video display buffers,
interrupt vectors, and the like, when using the Dump view to examine locations
outside of a program, you may not be seeing the actual values stored in RAM when
you look there. In other words, you can’t see the values that TD uses from those
locations. Instead, the Dump window always shows you the values that will be
available to your code when it runs.

Scrolling the Dump Window

Use the cursor and page movement keys to scroll the text cursor inside the Dump
window. Press (Home) and (End) to move the cursor to the beginning and
end of a line. Press (Ctrl)-(Home) and (Ctrl)-{End) to move to the top and
bottom of the window. Press (Ctrl)-(Page Up) to reset the current offset
address to 0000, moving to the top of the current segment. To scroll the

Chapter Five: Views and Local Commands 143

window contents 1 byte at a time but keep the cursor stationary, press
(Ctrl)-{Cursor Left) or (Ctrl)-{Cursor Right).

Local Dump View Commands

The Dump view has one menu of local commands (see Figure 5.10), three of
which have submenus with other commands.

Change
Follow »
Previous

Display as b
Block >

Figure 5.10. Dump-view local menu.

Goto ((Ctrl)-G)

Use this command to position the Dump view to any address. If you enter only an
offset such as $085E (Pascal), 0x085E (C), or 085Eh (assembly language), TD
moves to that offset within the current segment. You can also specify explicit
segment and offset pairs such as $72D0:$085E, 0x72D0:0x085E, or
72DO0h:085Eh. Or, you can specify a segment register like this: ds:$085E.

In place of an explicit address, you can also enter the name of a variable. For
example, to dump the bytes of an array, enter its name with the 6oto command.
In fact, you can enter other kinds of expressions, too. TD will evaluate the
expression and dump the bytes at the address that equals the result of the expres-
sion. You can even enter program line numbers such as TCSCREEN.435 or
#DT#42 to dump the machine-code bytes associated for the statement at that line.

Search ((Ctrl)-S)

Press (Ctrl)-S and enter bytes or ASCII text in quotes that you want to search
for in RAM. Separate multiple bytes with spaces. Surround ASCII text with
single quotes in Pascal, double quotes in C, or either in assembly language.

Hint: Searches extend only to the end of the current segment. To continue a search
in the next segment, add 1000 hex to the segment address with the Goto
command. For example, if the current segment is 3500h, Goto 4500h:0 and repeat
the search by pressing (Ctrl)-N.

144

Part One: Guide and Reference

Next ({Ctrl)-N)

Press (Ctrl)-N to repeat the most recent Search, starting from the current
location and proceeding into the current segment (toward higher addresses).

Hint: Press (Ctrl)-(Page Up) before (Ctrl)-N to repeat a search for the entire
segment beginning at address seg:0000.

Change ({Ctrl)-C) (Default)

Press (Ctrl)-C or just start typing to insert one or more byte values starting
with the byte above the flashing text cursor. Separate multiple bytes with
spaces. Remember to enter each byte in a format that’s suitable for your
language—for example, $FF (Pascal), OXFF (C), and OFFh (assembly language).

You can also enter string data by typing a single (Pascal and assembly) or
double (C and assembly) quote to choose the Change command. Then, enter
your ASCII text, type a closing quote mark, and press (Enter) to insert the
string into memory.

Use the Display as command to change the display format in the Dump
window. You can then enter word, floating point, and other kinds of values
instead of single bytes. If you don’t change the display format before entering
16- and 32-bit values, you might accidentally change the wrong bytes if you fail
to consider the 80x86’s byte-swapped storage order for multibyte values. For
these reasons, it’s probably best to enter values in the currently displayed
format.

Hint: To use a mouse to choose this command, position the mouse cursor on the
byte you want to change, press the right mouse button, and choose Change. But,
be careful. If the mouse cursor moves before the local menu appears, you won't
know that until you finish the command. Because this makes it too easy to deposit
bytes at the wrong locations, I prefer to click the mouse left button to position the
cursor. Then, I enter the new data.

FQllow ({Ctrl)-F)

This command pops up a submenu with five additional commands. (See Figure
5.11.) Each command interprets the bytes at the text cursor as an address for
displaying code in the CPU window or bytes at a different location in dump. Code
commands are at the top of the submenu; data commands are at the bottom. By
using these commands, you can follow a list of items joined by pointer fields,
trace pointers in the stack, and view buffers addressed by word segment values.

Chapter Five: Views and Local Commands 145

Neor code

For code

Offset to data
Segment:offset to dato
Base segmwent:8 to data

Figure 5.11. Submenu for the Dump view’s Follow command.

The fastest way to choose these commands is to press {(Ctrl)-FX where X
is the submenu command’s first letter: N, F O, S, or B. If you use these
commands often, you might want to record those keystrokes as macros. The
following notes explain how to use each of these subcommands:

® Near code: Opens or activates the CPU window to the current CS segment at
the offset address equal to the word at the cursor. Most of the time, you’ll
use this command to trace a 16-bit near return value in the stack, although
you can also use it to trace near calls, jumps, and 16-bit pointers to
subroutines.

® Far code: Opens or activates the CPU window to the segment and offset
address equal to the 32-bit value at the cursor. Use this command to inspect
the code for a far return on the stack or to view the instructions addressed
by any other 32-bit pointer.

Hint: The 32-bit pointers are stored as two words with the offset value preceding
the segment. The bytes in each of these word values are stored in swapped order.
For these reasons, you might want to change the display format to words before
using this command. That will make the values easier to read.

e oOffset to data: Repositions the Dump view’s contents to the current seg-
ment and offset value at the cursor. Because most C and Pascal pointers are
stored as 32-bit values, you won’t use this command often. But it shines
when debugging assembly language programs, which frequently use arrays
of offsets to address strings and other variables in the data segment. The
0ffset command lets you position the cursor on an array entry and press
(Ctrl)-FO to view the data at that address.

® Segment:offset to data: Repositions the Dump view’s contents to the 32-bit
segment and offset value at the cursor. The most common use for this
command is to follow a linked list. Just position the cursor on the pointer
value and press {Ctrl)-FS to view the bytes at that location. You can then
move the cursor to another pointer and repeat the command to view other
linked items.

146

Part One: Guide and Reference

Hint: Another good use for this command is to inspect arguments passed as 32-bit
pointers on the stack to a procedure or function in C and Pascal programs. To do
this, use the 6oto command to view the stack (enter ss:sp for the address). Then,
move the cursor to the pointer value and press (Ctrl)-FS. The Dump window will
then display the data addressed by the pointer.

® Base segment:0 to data: Repositions the Dump view’s contents to the seg-
ment value at the cursor with an assumed offset of 0000. A good use for this
command is to display the contents of buffers stored in their own
segments—a typical setup for C and Pascal, but not uncommon in assembly
language. Usually, a list of these buffers is stored as an array of word
pointers in the global data segment. To view a buffer, move the text cursor
to one of the word pointers and press {Ctrl)-FB.

Previous ({Ctrl)-P)

After using another local command (but not cursor and page movement keys) to
scroll the bump view’s contents, press { Ctrl)-P to return to the previous display.
The view keeps track of the last five 6oto and Fol Low commands.

You can use the command as a toggle to switch between two views. For
example, after pressing (Ctrl)-FS to follow a 32-bit pointer that addresses
another variable, press {(Ctrl)-P to view the previous item.

Display as ({Ctrl)-D)

Choosing this command brings up a submenu of commands that you can use to
change the display format of the information in the bump window. (See Figure
5.12.)

Long

Figure 5.12. Submenu for the Dump view’s Display as command.

You might want to experiment with the available settings: Byte, Word, Long,
Comp, Float, Real, Double, and Extended. Most have obvious meanings. Long is
a 32-bit integer. Comp stands for Composite Number, an 8-byte integer value
equivalent to TP’s Comp data type.

Chapter Five: Views and Local Commands 147

Hint: Display values as words when examining pointers. That way, you won’t have
to swap bytes mentally to realize that 08 OF 00 01 actually refers to the address
0100:0F08. This is much easier to see if you display those bytes as the two words
OF08 0100, even though you still have to reverse the segment and offset values.

Block ({Ctrl)-B)

Choosing the Block command pops up a submenu of five other commands that
Clear, Move, Set, Read, and Write multiple values in memory. (See Figure 5.13.)
Use these commands to fill buffers, zero a data segment, or insert values into
unused stack space.

Figure 5.13. Submenu for the Dump view’s Block command.

Be careful when using these commands—they write and move values in
memory and can easily destroy code and data, including bytes that belong to
TD. Here’s what each command does:

® Clear: Enter an address, a comma, and the number of bytes starting at that
address that you want to clear to 0. For example, enter ds:0,8 to clear the 8
bytes at ds:0000 through ds:0007.

Hint: To clear an entire variable in Pascal or C, enter its name, a command, and
sizeof(name). For example, to zero a buffer named InBuf, enter
InBuf,sizeof(InBuf).

* Move: Enter source and destination addresses plus the number of bytes to
copy from the source to the destination. Except for overlapping moves
where the source and destination areas share some of the same locations,
this command does not change any bytes in the source.

® Set: Use Set to assign any byte value to a range of addresses. Enter an
address, the number of bytes to set, and the value to insert in memory. For
example, ds:$0080, 10, $FF sets 10 bytes starting at ds:0080 to hexa-
decimal FF.

148

Part One: Guide and Reference

Hint: You can fill backwards by subtracting from the current address. For
example, to fill 100 bytes of unused stack space, enter the Set expression
ss:(sp - 100) ,100 ,255. Take care not to fill too far backward, or you might
erase other data, especially when using memory models that store global data
and the system stack in the same segment. After running your program, use the
Dump view to scan the stack—you’ll see at a glance how much stack space your
code used during the run.

® Read: Use this command to load data from a disk file into a block of

memory. After choosing Read, enter or select a file name from the direc-
tory dialog box, then enter the address of the buffer and the maximum
number of bytes (usually sizeof(buffer)) to load.

® Write: Use this command to write data to an existing or new file. After

to

1.

choosing Write, enter or select a file name from the directory dialog box
and then type the address of the buffer and the number of bytes (usually
sizeof(buffer)) to write to disk.

You can use the Block:Write command along with TD’s built-in assembler
create small .COM program files. To do this, follow these steps:

Start TD with no file name. This opens the CPU window to the address
CS:0100, the origin of all .COM programs.

Enter your program instructions. You don’t need to select any commands to
do this, just type the instructions and press {Enter) at the end of each line.
You must compute address offsets manually. To make this easier, if the
current address for the next instruction is 0108 and you need to jump
forward from there to an unknown location, insert the temporary com-
mand je 0108 and then fill in the correct offset later.

. Note the address just after the last instruction in your program. You need

this address to tell TD how many bytes to write to disk.

Press (Alt)-VD to open the bump window. Then, press {Ctrl)-G and enter
cs:0100h to view the bytes of the instructions you entered into the CPU
view. The bDump window will display the address as ds:0100 because
CS = DS for .COM programs.

Press (Ctrl)-BW to select the Block:Write command. Enter a file name,
for example, test.com.

TD then prompts for an address and count. Enter the expression
¢s:0100h, nh where 7 is the address you noted earlier minus 100h.
For example, if the address after the last instruction was 015F, enter
005Fh.

Chapter Five: Views and Local Commands 149

Execution History View

If you like to ride backwards in subways and trains, you’ll love the Execution
history view, which shows you where your program came from to get to
where it got. (Got that?) Even better, it lets you throw TD into reverse gear to
undo execution one step at a time. This is useful for running multiple tests on
code fragments and for resetting conditions before a bug appeared so you can
test theories about the problem. You can also use this window to replay saved
keystrokes leading up to a recorded event.

As Figure 5.14 shows, the Execution history view is divided into two
panes. On top is a machine-code disassembly that shows the instruction you can
undo. On bottom is a list of events, one for each time TD regained control after
executing one or more instructions in your code. If you have EMS RAM, TD can
save up to 3,000 instructions. If not, the limit is about 400 instructions.

Reverse Executing Code

Before you can run code in reverse, you have to execute one or more statements
by pressing {F7), (F8), or {Alt)-(F7) or by using the Run:Animate command.
Because of differences among these code-tracing commands, the effects on reverse
tracing will vary. Use the Run:Trace into command ({F7)) for best results.

Reverse Execution Limitations

There are several limitations on the kinds of instructions you can reverse
execute. As you might expect, you can’'t undo some operations—reading or
writing bytes to 1/O ports, for example. You also can’t undo the effects of an
interrupt service routine.

Local Execution History Commands

Figure 5.15 shows the local command menus for the top (the left screen in the
figure) and bottom (the right screen in the figure) Execution history panes.
Each of these commands is described next.

[#)=Execution history——"——=3-[11[4]
BF4E:43A9: mov es:[bx+dil,si
BF4E: 43AC: retf

Troce TCSCREEN.520: Scr.Init;
Trace TCSCREEN.SCREEN. INIT: begin
Troce TCSCREEN.332: OldMode := LastMode;

Figure 5.14. Execution history view.

150

Part One: Guide and Reference

Reverse execute

Full history Ves

Figure 5.15. Execution history view local menu.

Inspect ((Ctrl)-I)

Press (Ctrl)-I to inspect the source-code line in the Module view associated
with the highlighted machine-code instruction (top pane) or control event
(bottom pane). If there isn’t a source-code statement associated for the high-
lighted item, TD may open the CPU window instead.

Reverse execute ((Ctrl)-R)

Highlight a machine-code instruction in the Execution history's top pane and
press {(Ctrl)-R to execute back to and including that command. For example,
to undo the effects of the previous three instructions, press {(Cursor Up) three
times to and then press (Ctrl)-R.

Full history ({Ctrl)-F)

Toggle this setting off if you don’'t want to collect every machine-code instruc-
tion in the Execution history view’s top pane. When set to Yes, pressing
{Alt)-(F4) reverses lines in the Module window and instructions in CPU. When
set to No, pressing (Alt)-(F4) works in Pascal and C only for the CPU view,
which has to be the active window during tracing.

Hint: Switching Ful l history off adds a bit of speed to TD’s tracing abilities, and
it may conserve a little memory. Usually, however, you should leave it on to enable
full back tracing.

Keystroke restore ({Ctrl)-K)

Highlight an event listed in the bottom pane of the Executionhistory view and
press {Ctrl)-K to repeat all keystrokes and significant mouse operations that
led to that moment of debugging history. The command works only if you
started TD with the -k command-line option or if you turned on keystroke
recording permanently with TDINST (see chapter 3).

Chapter Five: Views and Local Commands 151

File View

Use the File view to examine the contents of a disk file. Choosing this
command opens a dialog box to prompt for a file name, the same dialog that
other file-related commands use. Figure 5.16 shows a sample view of a text file
BUFSTM.ASM (top left) and that same text as assembled by Turbo Assembler to
BUFSTM.OB]J (bottom right). Text files look very much like source code in a
Module window, while other files look like a byte Dump. Feel free to examine any
file on disk—TD will not overwrite the file or change it in any way.

When viewing binary data (as shown at the bottom right of Figure 5.16),
address values in the first column are relative to the start of the file data. These
addresses do not reveal where TD stores the file data in memory.

; Turbo Pascal 5.5 object-oriented exomple
; Assembler code for OBJECTS.PAS unit
; Copyright ¢c¢> 1989 by Borland International, Inc.

[X1=File C:\TP\DOP\BUFSTM.ASM I 3=[f][l.]1

TITLE BUFSTM

e [CLUCE QBECTS, 1NC

[0]=File C:\TP\OOP\BUFSTM.0BU——=3=[11[3
: 89 Bc B0 Ba 42 55 46 53 ¢f BBUFS

: Ba 88 TM.RSMee
7262 « Tub
6d 62 o RAssemb
65
2e
58

Figure 5.16. File views.

When viewing text data, the line number is shown after the file name in the
window’s top border. (It’s 1 in the figure.) Use this number as a guide to find
source-code lines referred to by TD in other windows such as Variables
and CPU.

The text and binary File views are also useful for examining data files—
those a program reads or those it creates. For example, if your code writes a text
file, rather than quitting to DOS and using the TYPE command or another
program to examine the file’s contents, use TD’s Fi Le view. You can then restart
the code (press {Ctrl)-{F2)), change input parameters or other conditions,
and run another test. This should be much faster than switching between TD
and DOS.

Hint: Use the Fi le view to examine C header files included in a module’s source
code. Or, create your own reference files and open them with this command to
create custom on-line help screens.

152 Part One: Guide and Reference

File View Local Menu

Whether TD displays binary data or ASCII text in the File view, there
are six local commands you can use when this window is active. (See
Figure 5.17.)

Figure 5.17. File view local menu.

Goto ((Ctrl)-G)

Use Goto to enter a new line number for ASCII text files or offset address for
binary data. If the number you enter is within range, TD will reposition the
File view to the new location.

Search ({Ctrl)-S) (Default)

Press {Ctrl)-S or just start typing to enter a string you want to find in an ASCII
text file or to locate a series of bytes in binary data. Unlike other TD commands
that perform searches, the File:Search command does not require strings to
be delimited with quote marks. But you do have to enter a byte series in the
correct format for the current language, for example, $F0 (Pascal), 0xFO (C), or
OFOh (assembly language).

Hint: This command is useful for poking around in compiled programs for which
the source code is not available. For example, to verify various messages while
writing this book, I loaded TD.EXE into a Fi le view window and searched for
“Error” and similar strings that led me to other information.

Next ({Ctr])-N)

After performing a Search command, press {Ctrl)-N to find the next occur-
rence of the search argument in the file. Press (Ctrl)-(Page Up) to move to
the top of the file before pressing (Ctrl)-N if you want to repeat a search from
the beginning.

Chapter Five: Views and Local Commands 153

Display as ((Ctrl)-D)

Press (Ctrl)-D or choose this command to toggle the File window between
ASCII text and hexadecimal byte views. Usually, TD will display data in the
correct format, but if it can’t tell what a file MYSTUFEXQP contains, it will
display the contents in binary. In that case, press (Ctrl)-D to switch to the
other format.

File ({Ctrl)-F)

The File local command is identical to the File command in the View menu. It
opens a dialog box to prompt for a file name. If the file you specify exists, TD
replaces the current File view with the contents of the new file.

Hint: When examining files updated by a program, use this local command to
reload the Fi le view with a data file’s current contents. TD does not update this
window automatically—the Fi Le view represents a snapshot of a file’s bytes at the
time you loaded it from disk.

Edit ({Ctr])-E)

If you specified an editor, a batch file, or another program with TDINST (see
chapter 3), press {Ctrl)-E to run the program. TD passes to that program the
name of the current file as an argument. This may be useful during debugging to
make quick changes to one or more modules and to prepare input data for tests.

Hierarchy View

The Hierarchy view displays the relationships among an object-oriented pro-
gram’s object data types—or classes as they’re known in C+ +. As Figure 5.18
shows, the window is divided into two panes—a list of object types on the left
and a family-tree diagram of those same objects on the right.

Both panes understand the same keys for moving the highlight bar up and
down. The cursor and page movement keys move the bar in the usual direc-
tions, (Ctrl)-(Home) moves to the top of the pane, (Ctrl)-(End) moves to
the bottom, (Ctrl)-(Page Up) moves to the first object name, and
(Ctrl)-{Page Down) moves to last.

Remember when using this window that you are viewing object ¢ypes, not
object instances (variables). The types do not exist in memory. Think of the
information in this window as templates of a program’s objects. Use it to
browse objects and to examine their relations with one another.

154 Part One: Guide and Reference

Hint: To document an object-oriented program, dump the Hierarchy window to
a log file, which you can then print or store along with other program document
files. First, open the Log view, press (Ctrl)-O, and supply a name for the log file.
Press (Alt)-(F3) to close Log. Then, press (Alt)-VH(Tab)(Alt)-WD to copy
the Hierarchy’s right pane to the log.

[#)=0bject Hierarchy =111

Figure 5.18. Hierarchy view.

C+ + vs. Turbo Pascal

The Hierarchy view is similar for C+ + and Turbo Pascal object-oriented pro-
grams. But when displaying C+ + object classes, if those classes inherit from
multiple ancestors, the view changes to display a Parent Tree pane below the
usual two panes as shown in Figure 5.18. This new pane displays the parents for a
highlighted class. Use this pane as you do the others. For example, you can high-
light and select class names to view them in more detail, just as you can in the
object list and tree panes.

See chapters 20 and 21 for more information about viewing objects and classes in
Pascal and C + + programs.

Hierarchy View Local Menu

Each of the Hierarchy view’s two panes has a small local menu (see Figure 5.19).
The left pane has two commands, the right has one. When debugging C+ + pro-
grams that use multiple inheritance, a third local menu is available for the bottom
Parent Tree pane. The following sections describe how to use these commands.

Tree

Parents VYes

Figure 5.19. Hierarchy view local menus.

Chapter Five: Views and Local Commands 155

Log View

Inspect ({Ctrl)-I)

Press (Ctrl)-I or just press (Enter) to open an inspector window for a
highlighted object type in either of the two Hierarchy window panes. The
command does the same job for all panes.

The object type’s inspector window resembles an inspector for an object
instance, but it displays only type information for data fields in the object, and
it doesn’t list the object’s address. Remember, you are viewing only a template
of an object, not an instance of that object in memory. Only variables have
addresses, not data types.

Tree ((Ctrl)-T)

After highlighting an object type name in the left pane of the Hierarchy
window, press (Ctrl)-T to move to the right pane and highlight that same
object type. This shows where that object type fits in the program’s family tree
of all other objects.

Hint: The Hierarchy view’s left pane recognizes incremental matching—just type
the first few letters of any object type name to move quickly to that object. When
you know an object’s name, this may be faster than using the mouse or cursor
movement Kkeys.

Parents ((Ctrl)-P)

Tab to the bottom pane in a C+ + program that uses multiple inheritance and
press {Ctrl)-P to toggle the setting from Yes to No. When set to Yes, multiple
ancestors are displayed for a descendant class. If you don’t need to see that
information, change the setting to No.

This command is available only in C+ + code. It is not available (nor is it
needed) in Pascal programs.

Open the Log view to see entries made to the log buffer or file (see Figure 5.20).
You can also use this command to start a new log and to write the current log
information to disk.

Figure 5.20 shows a log of three items: the value of Reg.ax, the module and
line number of a breakpoint (TCSCREEN.351), and a few register values. The
value and breakpoint information are from breakpoints that I set and modified
with the Breakpoints view’s Set options local command, changing Action to

156 Part One: Guide and Reference

Log and entering the variable name Reg.ax as the Action expression. The
register values came from the Registers view, copied to the Log by the
Window:Dump pane to log command (press (Alt)-WD).

Unless you save log information to disk with the Open log fi le command, the log
window can store at most about 5C lines. When it becomes full, new entries cause
older ones to scroll into oblivion. You can change the maximum number of Log
lines with TDINST (see chapter 3). But to conserve memory, it’s usually better to
save long logs to disk.

Figure 5.20. Log view.

Log View Local Menu

With the Log view active, there are five commands you can use to open and
close a log disk file, to add a comment, and to erase the current log information
(see Figure 5.21). You can also turn off logging temporarily.

Close log file
Logging Yes
Add comment...
Erase log

Figure 5.21. Log view local menu.

Open log file ((Ctrl)-0)

Press (Ctrl)-O to open a log file on disk and press (Enter) to accept the
default file name or enter a new name. The default is the name of the current
module with the extension .LOG. With a log file open, all entries in the Log
window plus all newly logged information are written to disk. (The Log window
still shows the most recent lines added to the log.) ’

Chapter Five: Views and Local Commands 157

You can log to only one file at a time. If you choose this command twice
without first closing the log file, TD displays the message Already logging to a
file.

Hint: The window title normally says “Log.” But when logging to a disk file, the
title changes to something like “Log to TCALC.LOG.” Watch this title. It tells you
whether log information is being saved to disk.

Close log file ({Ctrl)-C)

If you don't want to continue recording logged information to disk, or if
you want to start a new log file, press (Ctrl)-C to close the current log
file. You don’t have to execute this command before leaving TD. An open log
file is closed automatically when you quit to DOS. You may also want to press
{Ctrl)-E to erase any leftover lines in the Log window.

Hint: Use the Fi le view to open a saved log file and examine its contents. Because
the Log window lacks a Search command, the File view is useful for searching
through long logs for information.

Logging ((Ctrl)-L)

The Logging command acts as a toggle that switches logging on and off. When
off, no new entries are saved in the Log window or file, and the message
(Paused) is displayed in the window title. When on, logging resumes.

Use this command to speed up sections of code with many breakpoints that
log Action expressions. When you need to get through such code quickly,
temporarily switching off logging is faster than disabling breakpoints with
Breakpoints:Set options.

Add comment ({Ctrl)-A) (Default)

Press (Ctrl)-A or just type to add a comment to the Log window or file.
Whatever you type is added to the end of the current log.

Erase log ((Ctrl)-E)

Press (Ctrl)-E to erase the log information inside the Log window. This com-
mand does not affect any log information already written to disk.

158 Part One: Guide and Reference

Module View ((F3))

If there’s 2 main view in TD, this is it. The Module window (see Figure 5.22)
shows your source code and breakpoints, and it lets you inspect and watch
variables by selecting them from the text. When you start TD, this window
opens by default and occupies most of the display—unless, that is, you
configured TD to open with a different window combination. Also, if TD can’t
find the program’s source-code file, it displays the CPU window instead of
Module.

[B])=Module: TCRUN File: TCRUN.PAS I l=[ﬂ[l)=a
{ Copyright ¢c> 1989 by Borlond International, Inc. } [

unit TCRun;

{ Turbo Pascal 5.5 object-oriented example run module.
This unit is used by TCALC.PRS.

) See TCALC.DOC for on more information obout this exomple.

Figure 5.22. Module view.

Of all 14 TD views, only Module has an associated hot key. Press {F3) to
open a pick list of module names (see Figure 5.23). You can then select 2 name
in the usual ways, or type the first few letters of a listed entry and press (Enter)
(or click 0k) to open that module.

Hint: Opening a new module replaces the one now on view in the Module
window. To view more than one module at the same time, use the
Another:Module command.

—[0J=Pick a modul

UBJECTS
TCALC
TCCELL
TCCELLSP
TCHASH

TCLSTR
TCHENU
TCPARSER
TCRUN
TCSCREEN
TCSHEET
TOUTIL

) = B

Figure 5.23. The Module view’s pick list.

Chapter Five: Views and Local Commands 159

Module View Window Title

The Module view’s title in the top window border shows the module name
(TCRUN in Figure 5.22), and the file associated with this module—usually the
same name plus an extension such as .PAS or .C. After this is the line number at
the text cursor (not the mouse cursor).

At times, you might see the word (Modified) between the file name and
line number. If so, this means the source-code file’s date and time are later than
the compiled code. When this happens, be prepared for strange occurrences—
what you see on-screen may not be what you have in memory! Usually, this is
caused by forgetting to recompile the code after making changes to source-
code files or making the wrong directory current and loading an old compiled
program into TD.

Module View Local Menu

Figure 5.24 shows the 11 local commands you can issue when the Module
window is active. The following notes describe each of these commands.

Inspect ({Ctrl)-I)

Move the text cursor to an identifier. Usually this will be a variable name, but it
can also be a function identifier or constant. Press {Ctrl)-I to open an inspec-
tor window for that identifier.

As mentioned in chapter 3, inspector windows mold themselves to the type
of data they contain. See that chapter and also chapters 9 and 20-22 for more
information about inspecting data types in C, Pascal, and assembly language.

Hint: To dump the contents of a large buffer, move the cursor to the buffer’s name
and press (Ctrl)-I{Alt)-VD. This opens a Dump window to the same address as
the inspector, giving you two views of the same information.

Figure 5.24. Module view local menu.

160

Part One: Guide and Reference

Watch ({Ctrl)-W)

The best way to use this command to add identifiers to the Watches view is to
move the text cursor to a variable’s name and press (Ctrl)-W. If the text cursor
is not pointing to a symbol that TD recognizes, a prompt box will open in
which you can type the identifier.

You don’t have to highlight the entire variable name to add it to Watches.
Also, the text cursor does not have to be under a name’s first letter. If you have a
mouse, click the left button anywhere on an identifier and press {Ctrl)-W to
add it to Watches.

Hint: If you have a mouse, you can click and drag the mouse pointer to highlight
text in the Module window. If you don’t have a mouse, press (Insert) and the
cursor movement keys.

Module ({Ctrl)-M)

This command opens a pick list of module names (see Figure 5.23). It has the
same effect as pressing (F3)—one key instead of two. So, the Module local
command is one of a very few TD commands that you’ll probably never use.
Pick another module to replace the one now in the Module window or press
{Esc) to cancel the command.

File ({Ctrl)-F)

When viewing modules with multiple source files—usually one or more include
files inserted into a main program file with a compiler command—press
{Ctrl)-F and select one of the listed files. This does not change the module
currently on view. It selects which of two or more files that make up that
module to display in the Module window.

To view a different module, use the Module command (or press {(F3)). Also,
this is not the correct command to view header files in C programs. To do that,
use View:File.

Hint: Use this command to find out if a module includes any other sources during
compilation. If only one file name is listed after you press {Ctrl)-F, the current
module includes no other files.

Chapter Five: Views and Local Commands 161

Previous ({Ctrl)-P)

Press (Ctrl)-P to return to a previous location after scrolling away, using the
Goto command, initiating a Search, or issuing any other command that changes
the current position.

The command functions as a toggle—it doesn’t let you page back through
multiple locations. It can return to a previous module, though, so this is a
quick way to reload a module after pressing (F3) to view a different source-
code file.

To return to the current statement, not necessarily the previous view, press
{Ctrl)-0O, not (Ctrl)-P.

Line ((Ctrl)-L)

After pressing (Ctrl)-L, enter a line number for the current module. If that
number is in range of the lines in the module, TD will reposition the Module
window to that new line.

This command is often helpful for inspecting code when you receive
warnings from the compiler or from a C LINT program—a utility that combs
“fuzzy” C code and reports questionable statements by line number. You can
enter those numbers with the Line command and then type (Alt)-VC to view
the machine code for that statement.

The command is also useful for setting multiple breakpoints in code when
you have a printed listing. Press {(Ctrl)-L, enter a line number, and press (F2)
to set a breakpoint on that line. With a little practice, you can set a half dozen
breakpoints in a module in a few seconds this way. It’s much faster in some
cases than scrolling through the text hunting for the lines you want.

Search ({Ctrl)-S)

Use this command to search for text in the current Module—similar to the way a
text editor’s search command works. If TD finds the argument you enter, it
positions the Module window to that line. If not, it displays “Search expression
not found.”

You can use wild cards in search arguments. For example, the expression
TC* finds all words beginning with TC. TC??? finds all occurrences of TCxxx
where xxx are any characters. These wild cards are similar to those you can use
with the DOS DIR command.

Hint: Searching begins from the current location. To hunt for text in the entire
module, press {Ctrl)-(Page Up) before starting a new search.

162

Part One: Guide and Reference

Next ((Ctrl)-N)

After using the Search command, press {Ctrl)-N to find the next occurrence of
the search argument. If there are no more occurrences, TD displays “Search
expression not found.”

To repeat other previous searches, press {Ctrl)-S and use the cursor keys
to select a saved search argument from the history list.

Origin ({Ctrl)-0)

Press (Ctrl)-O to display the statement that will execute for the next Run
command. This is especially useful after paging away from a breakpoint or after
viewing other modules. Also, after pressing (Ctrl)-(F2) to reset a program,
press {Ctrl)-O to display the program’s first statement.

As with the CPU view’s Origin command, it’s a good idea to press {Ctrl)-O
before entering expressions to make sure TD scopes any local symbols to the
origin, not to another location in the source code you happen to be viewing.

Hint: The current statement is marked with a right-pointing triangle (®). If that
symbol appears in the Modu le window, press { Ctrl)-O to move the text cursor to
the marked line. This may be easier than using cursor movement keys or the
mouse to do the same.

Goto ({Ctrl)-G) (Default)

To find the source-code line associated with machine code at a specific address,
enter that address and press (Enter). Because this is the default command, you
don’t have to press {Ctrl)-G first—just start typing. The address can be any-
thing that evaluates to a constant, but usually, you’ll enter a procedure or
function name, an assembly language label, or a line number such as
#mymodule#24 (or mymodule.24 in Pascal). You can also enter an expres-
sion that refers to a pointer. As long as the expression evaluates to an address,
Goto can use it.

Address values must be in a form that’s suitable for the current language. TD
prefaces offset values—for example, $0100 (Pascal), 0x0100 (C), or 0100h
(assembly language)—with the current code segment CS. Or, you can enter an
explicit address such as CS:$085E to find a source-code line after a runtime
error that reports the source of the fault by address.

When searching for runtime errors this way, be aware that TD loads your
program into a different area from where that same code runs when executed
directly from DOS. For that reason, you may have to add the current value of CS
to the segment value reported in the error. For example, for a runtime error at

Chapter Five: Views and Local Commands 163

02F0:0800, enter the address expression (CS+ $02F0):$0800 (using the
appropriate formats for hex values in your language) to find the buggy source-
code statement.

Hint: Enter the name of any procedure or function (or fully qualified object
method) to jump to that routine’s source code. You don’t have to choose any
commands. Just make the Module view active and start typing. This is one of the
fastest ways to hop around in a large program, provided, that is, you know the
names of the subroutines you want to see.

Edit ((Ctr])-E)

If you specified an editor name with TDINST (see chapter 3), you can press
{Ctrl)-E to edit the current module. When you use this command, TD exits to
DOS and appends the module’s file name to the editor and path you entered
with TDINST. If all goes well, this should load the module into your editor.
When you are done making changes, quit your editor to return to TD. As I
mentioned before, you can also use this command to run other programs and
batch files. You don’t have to use it to run only text editors.

Numeric Processor View

As you might expect, the Numeric processor view (see Figure 5.25) shows you
the inner workings of a numeric data processor (NDP) such as an 8087, 80287,
or 80387 (and, I assume, the on-board NDP on newer 80486 processors). But
even if your system lacks a hardware NDP, also known as a math coprocessor,
you can still use this view to inspect and manipulate an NDP emulator linked
into your code.

Figure 5.25. Numeric processor view.

The Numeric processor view is divided into three panes. The large pane on
the left shows the NDP or emulator’s internal registers stack—a small amount of

164

Part One* Guide and Reference

memory inside the chip that stores intermediate values. The middle pane lists
the NDP control flags. The right pane lists status flags. Refer to an Intel or other
NDP reference for the meanings of these fields. (See Bibliography.)

NDP Stack Values

The register stack values in the left pane of the Numeric processor window
are divided into three columns. The first column shows the register’s status—
Valid, Zero, Special, or Empty. The next column lists the register’s index
number, 0 to 7. The final column (which is blank if the status is Empty) shows
the value stored in this register.

The Numeric Processor View’s Window Title

The Numeric processor view’s window title (see Figure 5.25) shows whether an
Emulator or real NDP is being used (an 80387 in the figure). After this are three
labels: IPTR (instruction pointer), OPCODE (operation code), and OPTR (operation
pointer). IPTR addresses the current NDP instruction (the one just executed).
OPCODE is the hex value of that instruction, and OPTR is the transfer address from
that instruction. Not all instructions have such addresses.

The two IPTR and optional OPTR addresses are 20-bit absolute values. To
convert these values to segment and offset logical pairs, lop off the last digit for
the offset and append 0 to what’s left for the segment. For example, if IPTR
equals O10EF, it refers to the normalized logical address 10EO:F. (A normalized
pointer’s offset is within the range 0 to 15 decimal.)

Hint: Open the CPU view, press {Ctrl)-G to choose the Goto command, and enter
a converted logical address to find the NDP instruction in memory. Remember to
enter address values in a form that’s appropriate for your language.

Numeric Processor View Local Menu

The Numeric processor view’s left pane (see Figure 5.25) has three local com-
mands. The middle and right panes have one each (see Figure 5.26). This

section explains the view’s local commands.
I

Figure 5.26. Numeric processor view local menus.

Empty
Change

Chapter Five: Views and Local Commands 165

Zero ((Ctrl)-Z)

Highlight a stack slot in the left pane and press {Ctrl)-Z to clear that value to 0.

Hint: Pressing O(Enter) does the same job and might be easier if you're not a
touch typist.

Empty ((Ctrl)-E)

Highlight a stack slot in the left pane and press (Ctrl)-E to empty that register.
An empty register contains no value. This is not the same as setting the register
to 0.

Change ((Ctrl)-C) (Default)

Highlight any stack slot in the left pane and enter a new value to insert in that
register. This is the default command, so you can just start typing. You don’t
have to press (Ctrl)-C first.

You can enter integer values such as 1234 and 56, hex values in a form that’s
appropriate for your language ($FF, OxFF, OFFh, and so on), or floating point
values in decimal (3.14159) or scientific notation (3.755e-2).

You can also enter an expression (see chapter 9). For example, to enter the
value of a variable NumLoops into an NDP register, highlight the register’s slot,
enter the variable’s name, and press (Enter).

Toggle ({Ctrl)-T) (Default)

Highlight a flag in the middle or right Numeric processor panes and choose
Toggle to flip that flag from 0 to 1, or from 1 to 0.

Hint: Because this command is the default for these two Numeric processor
panes, you can press (Enter) or {Space) to toggle a flag on and off. This is easier
than pressing (Ctrl)-T or choosing this command from the local menu.

Registers View

Use the Registers view to examine and change register and flag values in your
system’s 80x86 processor. If your system has an 80386 or 80486, you can also

166 _Part One: Guide and Reference

choose whether to view registers as 16- or 32-bit values. Figure 5.27 shows both
of these views.

rﬁ[lkﬁ& (3 L1 (3
c=g c~g
bx 6801 |z-0 ebx B0000BO) | z=0
cx 7208 |s=8 ecx B0007200(s=0
dx F02 |o=B edx BAPE3F02|o=8
si 911 |p- esi 80009011 |p=-8
di 8587 |o=B edi 6000856A| =0
bp FEC |i=l ebp BOGBIFEC|i=1
sp 08 d-8 esp d-8
ds 911 ds 9011
es 9411 es 9011
ss 9993 fs 0008
cs 8974 gs 0009
ip 846AR ss 993
cs 8974
Ip 846A

Figure 5.27. 16- and 32-bit Register views.

The Registers view is identical to the CPU window’s Registers and Flags
panes. The views are available separately to make it easy to inspect register and
flag values without obscuring two-thirds of your display behind other CPU panes
that you don’t need to see. The local commands in the view and CPU panes are
also identical.

Register View Local Menus

The two panes in the Registers view show register values (left) and flags
(right). The following information describes the six local commands in these
panes (see Figure 5.28).

Increment ({Ctrl)-I)

Highlight any register in the Registers view’s left pane and press (Ctrl)-I to
increment that register value by 1.

Hint: Hold down {Ctrl)-I and let your keyboard’s auto-repeat capability increase
register values rapidly. This is sometimes easier than typing new values with the
Change command. (Press (Ctrl)-D to decrement the register if you go too far.)

Increment

e Gl

Registers 32-bit No

Figure 5.28. Register view local menus.

Chapter Five: Views and Local Commands 167

Decrement ({Ctrl)-D)

Highlight any register in the Registers view’s left pane and press (Ctrl)-D to
decrement the register’s value by 1.

Zero ({Ctrl)-Z)

Press (Ctrl)-Z to set a register to 0. I find it’s easier to just type O(Enter), but
try it both ways.

Change ({Ctrl)-C) (Default)

To change the value of any register, highlight it, enter the new value, and press
(Enter). There’s never any good reason to choose this command from
the local menu or to press (Ctrl)-C. Just move the highlight bar and start
typing.

Remember to enter new values in a form that’s suitable for your language—
for example, $FACE (Pascal), 0xFACE (C), or OFACEh (assembly language).

Hint: To set more than one register to the same value, enter the first normally,
highlight the next, and press (Space){Cursor Down){Enter). This selects the
previous entry from the Change command’s history list for each register in turn.

Registers 32-bit ({Ctrl)-R)

Toggle this setting from No (16-bit registers) to Yes (32-bit registers) on systems
that have 80386 or 80486 processors. Changing this setting has no effect on
register values, and you can switch between the two views as often as you like.

Notice that in Figure 5.27 the 32-bit view also shows the additional two
segment registers FS and GS, available only on 32-bit processors.

Toggle ({Ctrl)-T) (Default)

The Flags pane in the Registers view has only one command, Toggle, which
you can choose by pressing (Ctrl)-T.

Hint: Because Toggle is the default command in the Flags pane, you can just
highlight any flag and press {(Enter) or {Space) to change it from 0 to 1 or from
1t0 0.

168 Part One: Guide and Reference

Stack View

The Stack view shows the chain of function, procedure, and object method
calls that led to the current location. If no subroutine calls were made to arrive
at this place in the program, the Stack view will be empty. You might want to
open this view before tracing code with Run-menu commands. That way, you
can see the hierarchy of nested subroutine calls as it develops.

When procedures and functions return to their callers, the list of entries in
the Stack view shrinks. When the program makes new calls, it grows. For
example, Figure 5.29 shows that module TCSCREEN has called a procedure
(actually an object method call) named INIT. When INIT returns, that line will
be removed from the window.

[1}=Stack————=3[1]1}
TCSCREEN

4

Figure 5.29. Stack view.

The Stack view is also useful for spotting calls to procedures and functions
that shouldn’t be happening—or that are being made out of order. A quick
glance at the Stack view shows you the full sequence of calls that led into the
current subroutine.

The Stack view works only on a source-code level. You can’t use this window to
view calls and returns executed in the CPU window.

Stack View Local Menu

The Stack view has a simple local menu with two commands, described next
(see Figure 5.30).

Inspect ((Ctrl)-I) (Default)

Highlight any line in the Stack view and press (Ctrl)-I to view that place in the
program. This is a great way to follow the chain of function and procedure calls
that led to a bug. Use the Stack view to trace back through those calls until you
find what went wrong. Choosing this command activates or opens the Module
window.

Chapter Five: Views and Local Commands 169

Hint: Because Inspect is the default command, you can just press (Enter) to
inspect a highlighted Stack entry. This is faster than choosing the command from
its menu or pressing {Ctrl)-I. Press (F6) a few times to return to the Stack view.

Locals

Figure 5.30. Stack view local menu.

Locals ({Ctrl)-L)

The Locals command opens a Variables view window (described in the next
section). Highlight a function, procedure, method name, or a recursive instance
of a subroutine in the Stack window and press (Ctrl)-L to see all local symbols
available to the code at this point in time.

When Variables opens, it shows global symbols in the top pane, locals in
the bottom. The highlight bar will rest on one of the local variables in the
procedure highlighted in the Stack window. Press (Enter) to inspect those
symbols in more detail.

Variables View

As a name, the Variables view is an understatement. This window shows not only
variables, but all global and local program symbols available to TD (see Figure 5.31).
In fact, this view is the symbol table, minus source-code line numbers.

The Variables view is divided into two panes. On top are global symbols:
variables, constants, methods, procedures, and functions. On the bottom are
the local symbols currently within the scope of an active procedure, function,
or object method. The Turbo Debugger User'’s Guide calls the top section the
global pane and the bottom the static pane.

TCRUN. PROGRAMOBLECT . GETCOMMANDS B7045: 1F 22
TCRUN. PROGRAMOBLECT . SETD| SPLAVRREA®B7145: 28,

CLERRSCREEN £8574:0000
MOVETEXT 88974:0052
SCROLLTEXT 88974:814D
EGAINSTALLED £8974:6236

Figure 5.31. Variables view.

170

Part One: Guide and Reference

Use the global pane to examine global variables and other global symbols at
a glance. Because the symbols are grouped by module, this pane is a great way
to inspect a series of variables. It’s much faster than adding those same variables
one by one to Watches or opening inspector windows for them. Use the static
pane to view local variables declared inside procedures and functions.

Note: Before the Variables view will show a procedure or functions local
symbols correctly, you must be sure to execute that routine’s startup code. If the
current line marker (™) points to a Pascal procedure or function’s begin or if it
points to a C function’s opening brace, then press {(F7) or (F8) to see the local
symbols in the bottom pane.

For C and assembly language programs, symbols in Variables are sorted
alphabetically; therefore, you can use TD’s incremental matching capabilities.
As you type, the window automatically scrolls to symbols that begin with the
letters you enter. To find C identifiers, you might have to type one or two
leading underscores. Press (Home) to move the cursor to the beginning of a
line (or {(Ctrl)-{Page Up) to move to the top of the list) before starting a new
incremental search.

Unfortunately, Pascal symbols are not sorted alphabetically, which disables
incremental matching for programs in this language. Instead, symbols declared
in the same units are listed together.

Variables View Local Menu

There are only two local commands in the Variables view, both of which are
the same for the top and bottom panes (see Figure 5.32). The next sections
explain how to use the commands.

Change

Figure 5.32. Variables view local menu.

Inspect ((Ctrl)-I) (Default)

Press {(Enter) to inspect a highlighted symbol in the top or bottom panes of
the Variables view. You can also choose the command from its menu or press
(Ctrl)-I, but pressing (Enter) is easier. If that symbol refers to code, the
command activates or opens the Module window and displays the source code
associated with that symbol (usually a procedure or function name). (If the CPU
window opens instead, then TD couldn’t find the source-code file.) If the

Chapter Five: Views and Local Commands 171

highlighted symbol refers to a variable, the Inspect command opens an inspec-
tor to show the variable’s value.

Change ({Ctrl)-C)

Press {(Ctrl)-C and enter a new value for a highlighted variable in the top or
bottom panes of the Variables view. The command works only for variables—
if you try to change a procedure or constant, TD will tell you the symbol
“Cannot be changed.”

Watches View

The Watches view lets you watch over one or more variables at any moment
during a program’s execution (see Figure 5.33). Even better, when tracing code
with 2 Run menu command (usually by pressing (F7) or (F8)), changes to
variables made by statements are displayed instantly in Watches. For example,
you can examine a loop index as it cycles from a minimum to a maximum value,
watch a string take shape as a series of operations add characters to it, or watch
the results of a complex expression. The Watches view lets you see all the
individual values that make up these and other data structures.

[1]=Uatches 2=[111415
15360 C3ACHRD @ LR -
0000 : SCREENPOINTER]
Vi deoType (6> : VIDEOTYPES l
LastMode 3@ : l:[ﬂl;l

Figure 5.33. Watches view.

When you first start TD, the Watches window occupies a narrow strip of
real estate near the bottom of the screen, just under Module. As you add new
symbols to the window, it automatically expands up to a limit specified with
TDINST (see chapter 3). This lets you add several symbols to Watches without
having to resize the window to see its contents.

Hint: If you resize the Module or Watches window, Watches loses its magical
ability to grow and shrink automatically. To restore this feature after adjusting
either of these windows, choose the System (=) menu’s Restore standard
command. This won’t work, however, if you save a nonstandard window Layout
with Options:Save options. When that happens, instead of quitting TD and
deleting TDCONFIG.TD, save a new configuration without the Layout and then
press (Alt)-{Space)S.

172

Part One: Guide and Reference

Viewing Variables

Most symbols added to Watches are variables. As Figure 5.33 shows, the win-
dow displays the variable’s name and value followed by a colon and data type.
Unless you change Options:Display options:Integer format, integer values
appear in decimal and in hex (in parentheses). Other variables display in
appropriate forms.

Because Watches displays variables on single lines, complex items such as
records and objects may be less than clear. In such cases, fields are strung
together inside braces or parentheses, and separated by commas like this:

Reg (16,242,4400,1550,28216,...,6) :Registers

Because fields are not labeled, this view is good only for a quick summary
of the structure’s values. For a better picture, highlight the line in Watches and
press {Ctrl)-I (see the Inspect local command later in this chapter).

Adding Symbols to Watches

There are many ways to add new symbol names to Watches, but the easiest is to
move the text cursor to any character of a symbol (usually a variable name) in
the Module window and press (Ctrl)-W. You can also use the Data:Add watch
command (press {(Ctrl)-(F7)) and type in a variable’s name. Or, you can use
the Watch local command in the Watches window.

When you add local symbols to Watches, if those symbols are not within
the current statement’s scope, TD displays its “unknown value” symbol—????.
Later, when those variables come within the active scope, Watches will display
their values. Unfortunately, this also means that TD doesn’'t catch typing mis-
takes. If you mistype an identifier—for example, Clout instead of Count—TD
assumes the symbol hasn’t come into scope, even though that will never
happen.

You can also add expressions to Watches—you don’t have to limit entries to
plain symbols. For example, you can watch an expression such as Count - 1. TD
evaluates the expression each time it displays the symbol’s value; therefore, the
displayed value in this example will always be one less than Count. This can be
useful for monitoring loop indexes in code such as:

for Count := Min to Max do
al Count - 11 := bl Count - 1 1;

Hint: When debugging object-oriented Pascal and C+ + code, enter self (Pascal)
or this (C+ +) into Watches. As you trace into various method calls, the window
will show the instances of objects as they activate each method.

Chapter Five: Views and Local Commands 173

Watches View Local Menu

There are six local commands available in the Watches view, each described
next (see Figure 5.34).

Delete all

I nspect
Chonge

Figure 5.34. Watches view local menu.

Watch ((Ctrl)-W, (Insert)) (Default)

Choose this command to enter the name of a variable to add to those in Watches.
As mentioned before, there are easier ways to watch new symbols, but the
command comes in handy when Watches is already active and you want to add
another variable to the window.

Hint: Because this is the default command, you can just start typing; you don’t
have to press (Ctrl)-W or (Insert) first. Also, when entering many similarly
named variables such as varl, var2, and var3, to save typing time, enter the first
one and press (Enter). Then, press {Space){Cursor Down) to select the
previous entry from the command’s history list. You can then edit the text to add
the next variable.

Edit ((Ctrl)-E)

Highlight any line in Watches and press {Ctrl)-E to insert the symbol into a
small dialog box, where you can edit its name. When you’re done, press
(Enter) to replace the highlighted line with the edited symbol.

The command is useful for editing a complex variable so you can view one
field from a record or an instance variable in an object. For example, using the
earlier example for Reg, you could highlight that line, press (Ctrl)-W, and
change the symbol to Reg.AH to show only that field value.

Hint: You can also press {(Enter) instead of {Ctrl)-E to call up this command.
When Watches is active, think of (Enter) as the “Edit” key.

174 Part One: Guide and Reference

Remove ({Ctrl)-R, (Delete))

Highlight any line in Watches and press (Ctrl)-R or {(Delete). TD removes
that line without disturbing any others.

Delete all ((Ctrl)-D)

Press (Ctrl)-D to delete all lines in Watches.

Inspect ((Ctrl)-I)

Highlight a line in Watches and press {Ctrl)-I to open an inspector window for
that variable or other symbol. See chapters 3, 20-22, and others for more
information about using inspectors.

The Inspect command is useful only for inspecting symbols that evaluate
to memory addresses. You can still inspect an expression such as Count - 1, but,
in that and similar cases, the inspector window opens to a constant value.

Hint: When watching self or this in Watches for object-oriented debugging,
highlight that line and press {Ctrl)-I{Ctrl)-H to see where the object instance
fits in the hierarchy of other objects. I memorized this command by associating I
and H with Instance Hierarchy, although that’s not what the I stands for.

Change ({Ctrl)-C)

Press (Ctrl)-C and enter a new value for the highlighted symbol in Watches.
You can change the values of variables, but not expressions or functions.

Summary

The 14 commands in the View menu are some of TD’s most powerful features.
While debugging, you’ll probably use these commands more frequently than
others. View-menu commands open views (windows) that show a program’s
source code, variables, machine code, processor registers, and other informa-
tion. TD normally opens two of these views, Module and Watches, at the start of
each new debugging session.

Each view has a private menu of local commands, which perform various
operations inside the current window. You can select these commands as you
do others, but it’s easier to press (Ctrl) plus the command’s hot key. That way,
you don’t have to open the menus. Most views also assign one local command as

Chapter Five: Views and Local Commands 175

an automatic default, selected when you just start typing. Learning these short-
cuts can save a lot of time.

This chapter contains many tips for using all 14 View-menu commands. Hot
keys and defaults are also listed for all local commands. Together, chapters 4
and 5 form a complete reference to TD’s menus, windows, views, and hot keys.

Chapter 6

Using TD’s Utility Programs

PACKED WITH TD are several utility programs. Use them to convert
CodeView debugging information to TD’s format, to display details about
object-code and other files, to unpack archive files downloaded from bulletin
boards, and to perform other jobs that make debugging a little less painful. (Any
program that can help find bugs is welcome!)

This chapter is a reference to TD’s utilities and command-line options. Each
utility is listed in alphabetic order. As in previous chapters, instead of duplicating
what you can find in the Turbo Debugger User’s Guide, I've tried to concentrate
on sharing tips that will help you get the most from these programs.

Displaying On-line Help

To display instructions for TDCONVRT, TDMAP, TDPACK, TDRF, TDSTRIP,
TDUMP, and UNZIP, enter the program name with no arguments or option letters
and press {Enter). For TDINST, TDNMI, and TDREMOTE, enter the program
name plus -?. For example, to display TDREMOTE’s instructions, enter:

tdremote -?
Or, to print a copy of the help text, enter:

tdremote -? >prn

Some programs also recognize -h as the “help” command-line option. Because the
-? and -h commands are the same for all programs that use them, to save space
here, these switches are not listed among other options.

177

178 Part One: Guide and Reference

Error Messages

The meanings of most error messages should be obvious, so I haven’t dupli-
cated them here. For more help with these messages, list or print the
MANUAL.DOC file on one of the TD master disks.

About the Syntax Descriptions

. This chapter lists the complete syntax for each TD utility. Square brackets
represent optional items. The word options stands for one or more option
letters, always preceded by a dash (=) or a slash (/). A vertical line means “or.”
For example, [.EXE|.COM] indicates that you can type either .EXE or .COM.
Symbols such as (file), (infile), and (outfile) represent file names. The
symbol (ext) represents any file-name extension. {(#) stands for an integer
value. An ellipsis (...) implies that you can repeat the previous item any number
of times.

In general, TD’s utilities operate similarly. But there are nagging inconsis-
tencies. For example, TDCONVRT runs silently with the -s switch, while
TDMAP requires -q to do the same. Also, help messages are inconsistent, listing
combinations of upper- and lowercase letters preceded by slashes in some cases
and dashes in others. To keep this chapter from looking too much like a flea
market of command-line options, I've remodeled a few facts here and there. For
that reason, you may notice several differences between this chapter and the
instructions displayed by the utilities.

Most TD utilities are written as filters that write to the DOS standard output file.
To pause long listings, you can pipe that output with a vertical bar character (|) to
the DOS MORE filter, which must be in the current PATH. For example, enter
tdmem -v | more to pipe TDMEM’s verbose (-v) output to MORE. You can then
press {Space) or (Enter) to view the information a page at a time.

TDCONVRT.EXE

Use this program to convert Microsoft CodeView debugging information in
compiled and assembled code files to TD’s format. As you’d expect, most
Microsoft languages can add CodeView data to compiled code—similar to the
way Borland languages add TD information. But several other compilers and
assemblers can also create CodeView symbols. For those products, you can
probably use TDCONVRT to prepare code for debugging with TD.

Chapter Six: Using TD's Utility Programs 179

See chapter 2 for more information about using TDCONVRT with various com-
pilers and assemblers.

TDCONVRT Syntax and Options

The complete syntax for TDCONVRT is:

tdconvrt [options] [<infile> [<outfile>]]

The default {infile) extension is .EXE. The default {outfile) extension is
.TDS.

This option creates a separate .TDS file containing the symbol table from
(infile). If you don’t specify an {outfile) name, it will have the same name as
the input file, but with the extension changed to .TDS. For example, after
compiling SAMPLE.C to SAMPLE.EXE, if you enter:

tdconvrt -c sample

TDCONVRT reads the CodeView information from SAMPLE.EXE and
writes that same data to SAMPLE.TDS. It does not modify the original
SAMPLE .EXE.

When you debug a CodeView .EXE and a .TDS file with the same file
names in the same directory, TD first tries to read the debugging information
from the .EXE file. If that data is not in TD format, it then looks for the .TDS
file.

Hint: Use the -c option if you want to run CodeView and TD on the same program
without having to recompile.

This option tells TDCONVRT to “shut up”—that is, to run silently. Use this
command if you run TDCONVRT from a batch file or with MAKE, and you
don’t want to clutter the display with messages you don’t care to read.

180 Part One: Guide and Reference

MAKE is a utility program supplied with TASM, TP, TC, and many other compilers
and assemblers. It reads a text file, called a MAKE file, which lists the dependen-
cies between compiled and source code. MAKE uses this information to issue the
minimum number of commands required to recompile and link a multimodule
application.

TDDEV.EXE

Run TDDEV with no parameters for a list of character and block device drivers
currently installed, probably by DEVICE= commands in CONFIG.SYS. The
program is smart enough to detect any drivers installed after booting,
in which case it displays “Detected device drivers patched in after
CONFIG.SYS.”

See chapter 19 for help with device-driver debugging.

TDDEV Syntax and Options

The complete syntax for TDDEV is:

tddev [options]

Specify the -r option for a “raw” report, listing additional facts about installed
drivers, including strategy and interrupt entry point addresses.

TDINST.EXE

Run TDINST to modify various settings in TD.EXE, to create a custom
TDCONFIG.TD configuration file, or to modify the parameters in an existing
configuration.

Chapter Six: Using TD's Utility Programs 181

TDINST Syntax and Options

The complete syntax for TDINST is:

tdinst [option] [<outfile>]

If you don’t want to modify the original TD.EXE file, copy it to another file
and specify that file’s name as the optional TDINST (outfile). When you choose
the Save command, TDINST will modify the file copy, not the original TD.EXE.

-c{file)

Use the -c option and a file name to edit a TDCONFIG.TD or other configura-
tion file created earlier with TDINST or by using TD’s Options:Save options
command. Don’t put any spaces between the option letter and the file name.
For example, this loads BCFG.TD into TDINST for editing:

tdinst -cbcfg.td

When you Save the configuration, choose the Save configuration file
subcommand to modify BCFG.TD or another file. Or, choose Modify td.exe to
transfer the configuration to TD.EXE (or a copy of that file).

TDMAP.EXE

If your language can’t generate TD or CodeView debugging information, but if it
can create a .MAP file, you can use TDMAP to prepare the code for debugging
with TD.

TDMAP reads a .MAP text file—a road map of a compiled or assembled
program’s symbols and line numbers. It translates the information in the .MAP
file to TD’s format and writes that information to the .EXE file to prepare it for
debugging.

If TDMAP can’t read your language’s .MAP file, use the Turbo Linker
(TLINK) /m option to create a sample .MAP file of a test program assembled
with TASM. This will give you a template .MAP file to compare with the one
from your language. In some cases, you might need to make minor fixups to
convert foreign map files for TDMAP.

See chapter 2 for examples of TDMAP in action.

182

Part One: Guide and Reference

TDMAP Syntax and Options

The complete syntax for TDMAP is:

tdmap [options] [<mapfile>[.MAP] [<outfile>] [optionsl]

Usually, you won’'t need to specify an {outfile), TDMAP assumes that file
has the same name as {mapfile), but ends with the extension .EXE.

If the .MAP file’s date and time stamp is older than the .EXE file’s; TDMAP displays
a warning. To avoid this, use the TOUCH utility supplied with TASM to update the
file’s date and time.

Unless you specify the -b option, TDMAP lists all variable types as word, or
array of word. The option forces symbols to be of type byte or array of byte.
Use the option if your language aligns variables to byte addresses.

This option reveals one of TD’s weaknesses when debugging programs
from languages that can’t generate TD or CodeView debugging information
directly. When debugging from a .MAP file, all symbols are represented as bytes
or words. Even so, you can use type casts to convert selected variables to more
readable forms. See chapter 9 for help.

Use -c to tell TDMAP that map-file symbols are case-sensitive. With this option
in effect, MyVAR, myVar, and MYVAR represent three different symbols. TDMAP’s
default is to ignore case differences.

Hint: If you have trouble getting TD to recognize variable names and other
symbols, try using combinations of TDMAP’s -c option along with TD’s -sc
command.

-e{ext)

Some languages that recognize default file-name extensions create .MAP files
with file names that lack extensions. For example, the .MAP file might refer to
MYFILE, which the language assumes to mean MYFILE.C. So that TD knows

Chapter Six: Using TD's Utility Programs 183

this same detail, use options such as -eC and -ePAS. Don’t type any spaces or a
period between the -e and the extension’s first character. The extensions can be
in upper- or lowercase.

q
Tell TDMAP to “be quiet”—that is, not to display a progiess report while
converting .MAP files. Because a large program can take several seconds to
convert, using this option can speed the process. You might also use it to reduce
display clutter when running TDMAP from a MAKE file.
TDMEM.EXE

Run TDMEM to display a system memory map, including a report of total and free
expanded and extended memory. The program is especially useful for locating
TSRs and other resident code for debugging (see chapter 19). In addition to other
facts about various items in memory, TDMEM also displays each program’s PSP
(Program Segment Prefix) address, plus a list of “hooked vectors,” in other words,
interrupts that the TSR has redirected through its own routines. These facts can be
vital for finding bugs that are caused by two or more conflicting TSRs.

TDMEM Syntax and Options

The complete syntax for TDMEM is:

tdmem [options]

Use the verbose switch -v for a long-winded report, including the number of file
handles allocated to a process.

TDNMI.COM

This utility installs a small resident program in memory that periodically (about
two times a second) clears the nonmaskable interrupt on systems that mask out
NMI for their own reasons. (Actually, it’s impossible to mask the NMI. But it is

184 Part One: Guide and Reference

possible to disable the ports that lead to the CPU’s NMI pin, thus effectively
masking the “nonmaskable” interrupt. TDNMI clears these ports.)

TDNMI also continually resets the breakout latch in a Periscope debugging
board. This lets you press that board’s breakout switch to activate TD.

Note: Most people should 7ot run this program. Install TDNMI once every time
you boot only if you have a Periscope debugging board or if your system disables
NMI. If you need to use the program, insert the line c:\td\tdnmi in
AUTOEXEC.BAT. Replace C: \ TD with the directory where TDNMI.EXE is stored.

TDNMI Syntax and Options

The complete syntax for TDNMI is:

tdnmi [<option>]

PN

Specify -p to reset the Periscope board’s breakout latch at the default address
0300h. Or, if you reconfigured your board, specify a different address imme-
diately after -p, for example, -p310.

TDPACK.EXE

If you are having trouble debugging large programs, try running the code or
symbol file through TDPACK. This will compress the debugging information in
the file by combining duplicate strings and other items. With luck, this will free
enough space so you can load the program into TD.

If you still can’t load the program, turn to chapter 3 for other ways to limit TD’s
memory use.

TDPACK Syntax

The complete syntax for TDPACK is:

Chapter Six: Using TD's Utility Programs 185

tdpack [<file>[.EXE|.TDS|.COM1]

If you don’t specify a file-name extension, TDPACK attempts to open
(file).EXE. If that doesn’t work, it tries to open {file).TDS. If you specify
.COM, TDPACK tries to open {file). TDS because it assumes you’'ve created
.COM and .TDS files with TDSTRIP’s -c and -s options. (Symbol tables are never
stored in .COM files; therefore, it would make no sense for TDPACK to operate
directly on .COM programs.) TDPACK has no command-line options.

See also TDSTRIP in this chapter and “Assembling .COM Programs” in
chapter 2.

TDREMOTE.EXE

Run TDREMOTE on a remote computer connected to a host system’s RS-232
port by a serial cable. You can then use TD’s -r option to debug programs in
remote mode, and you can use the TDRF utility to give simple commands to the
remote computer. (Chapter 17 describes how to use TDREMOTE.)

TDRE.EXE

After starting TDREMOTE on a remote computer connected to a host system’s
RS-232 port by a serial cable, you can use TDRF to delete files, change directo-
ries, transfer files, and give other simple commands to the remote computer.
(Chapter 17 describes how to use TDRF.)

TDSTRIP.EXE

Use TDSTRIP to remove TD’s symbol table from a compiled and linked .EXE
code file. You might do this to prepare “beta” test versions of your program
files that are identical to your own test copies minus the debugging information.
More often, however, you’ll use TDSTRIP instead of the DOS EXE2BIN
utility to convert an .EXE file to a .COM-style code file with debugging informa-
tion stored in a .TDS data file (see chapter 2). You can also use the program to
prepare .TDS files for debugging TSRs and device drivers (see chapter 19).

Note: Tests show that TDSTRIP does not always produce the same results as
recompiling a program without debugging information. A stripped code file is
probably safe for distribution, but if it were my code, I would still recompile it
before “pressing” the final master.

186

Part One: Guide and Reference

TDSTRIP Syntax and Options

The complete syntax for TDSTRIP is:

tdstrip [options] [<infile> [<outfile>]]

The (infile) may be an .EXE or .OBJ file that contains TD debugging
information. The purpose and format of {outfile) depends on whether you
specify the -s and -c options. See the descriptions of those options. and
“TDSTRIP Examples” later on for sample TDSTRIP commands.

Specifying -s strips debugging information from (¢nfile), which must have the
extension .EXE. Exactly what happens to that information depends on whether
you also specify -c and an optional output file name. (See “TDSTRIP
Examples.”)

This option converts an .EXE file to a .COM file, similar to the way the DOS
EXE2BIN utility works. Because .COM files can’t store debugging information,
you’ll probably use -c and -s together to copy the symbol table to a . TDS file. You
can then debug the .COM file with TD. The next section explains how this works.

TDSTRIP can’t convert every .EXE file to a .COM program. For a successful
conversion, the program’s origin must begin at offset 0100h, and it can’t specify a
stack segment or include any references that require “fix ups” at runtime.

TDSTRIP Examples

Even though TDSTRIP has only two options, it’s difficult to use correctly. I've
found that if I don’t specify file-name extensions for {infile) and {outfile), but
let TDSTRIP add them for me, I stay out of trouble. If you do specify exten-
sions, be sure to use the correct ones, or you can easily create a .TDS data file
named MYPROG.EXE, which, if you try to run it, will lead to a colossal crash.

The following sample command lines cover most TDSTRIP option and file-
name combinations and should answer many questions about how to use the
utility.

Chapter Six: Using TD's Utility Programs 187

TDUMP.EXE

To remove debugging information from SAMPLE.EXE, permanently losing
that information, enter:
tdstrip sample

To create NEWFILE.EXE without debugging information but without
changing the original SAMPLE.EXE file (same as copying SAMPLE.EXE to
NEWFILE.EXE and then typing tdstrip newfile), enter:

tdstrip sample newfile

To strip debugging information from SAMPLE.EXE and transfer that same
information to a new file named SAMPLE.TDS—useful for debugging
TSRs—enter:

tdstrip -s sample

To strip debugging information from SAMPLE.EXE and transfer that same
information to a new file named NEWFILE.TDS, enter:

tdstrip -s sample newfile

To strip debugging information from SAMPLE.EXE, create SAMPLE.COM,
and delete SAMPLE.EXE—which also permanently throws away any debug-
ging information—enter:

tdstrip -c sample

To create NEWFILE.COM without changing the original SAMPLE.EXE—
thus preserving debugging information in that file—enter:

tdstrip -c sample newfile

To copy debugging information from SAMPLE.EXE to a new file named
SAMPLE.TDS, creating SAMPLE.COM and deleting the original
SAMPLE.EXE file—useful for preparing .COM programs for debugging—
enter:

tdstrip -s -c sample

To copy debugging information from SAMPLE.EXE to NEWFILE.TDS,
creating SAMPLE.COM and deleting the original SAMPLE.EXE file,
enter:

tdstrip -s -c sample newfile

TDUMP is a remarkable program that has all sorts of uses. With this single
program, you can display an ASCII text file, examine bytes in data files,
decipher an object-code file’s internal format, print the debugging information
added to an .EXE file, check a file’s integrity, and perform other chores that can
make debugging less painful.

188 Part One: Guide and Reference

TDUMP Syntax and Options

The complete syntax for TDUMP is:

tdump [options] [<infile> [<outfile>] [optionsl]

{

You must specify an {infile). Because TDUMP recognizes no default exten-
sions, to dump SAMPLE.EXE you must type that file’s full name. TDUMP writes
its output to an optional outfile) in ASCII text format. You can add one or
more options either immediately after TDUMP or after the file names.

-a
This option tells TDUMP that {infile) contains ASCII text. The result is similar
to a bump window’s byte list, but with each byte converted to a character. Any .
characters not in the ASCII range of 32-126 are displayed as periods.

-a7
This option displays characters in an ASCII text file with all high bits forced to
0. Use this option to dump WordStar and similar text files, which use the
“extra” bit in characters as a formatting matrker.

-b{#)
Start dumping at an offset equal to {#), expressed in the C language’s hexadeci-
mal format. For example, -b0x0100 starts dumping at hexadecimal offset 0100.

-e
Force executable code-file display, the default for files that end in .EXE. Use this
option only when dumping executable code files that use a different file-name
extension.

-el

Usually, when dumping an .EXE file with debugging information, TDUMP
displays any line numbers and hex offsets in this format:

Chapter Six: Using TD's Utility Programs 189

-elr

Line Numbers:
7:01FAh 10:0203h 9:0217h 11:021Ah

Specify -el if you don’t want to see this information.

When dumping .EXE files, TDUMP normally displays relocatable address
entries in the form:

Relocation Locations (1 Entry)
0000:0001

Specify -er if you don’t want to see this information.

This is shorthand for -el -er. Use it to not display line numbers and relocation
details.

Use this option to force TDUMP to display a file’s contents as hexadecimal bytes
and their ASCII equivalents—similar to the default format for a TD Dump
window. This is the default setting for unrecognized file-name extensions. Use it
only to display hex dumps for .EXE, .DLL, .OBJ, .LIB, and .TDS files, all of
which TDUMP recognizes as containing formatted data. (.DLL stands for
Dynamic Link Library, normally associated with OS/2. TD can’t debug OS/2
code, but the presence of features like this suggests that such support might not
be far away.)

TDUMP displays the object-code modules in library files ending in .LIB. If your
libraries end in a different extension, you must use this option to tell TDUMP
that a file is a library. Otherwise, it will dump the file in hex.

Use this option only with TC+ + programs to demangle function and variable
names in compiled code. If you don’t use this option, these identifiers will
appear in strange (mangled) forms, which, in a nutshell, allow C+ + and C

190

Part One: Guide and Reference

-0iID

-oxID

object-code files to be linked and processed by other utilities that normally
recognize only C syntax. Use the -m option to dump compiled TC+ + pro-
grams and view symbols the way you wrote them.

TDUMP normally displays the formatted contents of object-code files ending in
.OBJ. If your object-code files end in a different extension, you must use this
option to tell TDUMP that the file contains object-code records. Otherwise, it
will dump the file in hex.

This option verifies the checksum for object-file records. Or, at least that’s what
I think it should do. In the current TD 2.0 release, this option appears to have
no effect.

Obiject-code files (and library files that contain object-code modules) store rec-
ords that list various facts. Each record is identified by an Object File Record ID.

To list only specific object-file records, specify the option -0ilD. Replace /D
with the record ID you want to see. This is very useful for extracting informa-
tion from .OBJ and .LIB files. For example, for a list of an object file’s segment
definitions, enter the command:

tdump -0iSEGDEF sample.obj

Or, to display the public symbols in a library, enter:

tdump -0iPUBDEF sample.lib

You can also use more than one -0iID command to list multiple object-code
records. Once you figure out the forms that are useful to you, enter them into a
batch file so you don’t have to look them up later. Consult a DOS technical
reference for other record IDs (see Bibliography).

Similar to -oi, this option lists all object-code records except the one identified.
Use multiple -oxID commands to exclude more than one object-code record ID
from the output.

Chapter Six: Using TD's Utility Programs 191

Useful commands include -oxCOMENT (yes, there is only one M) and
-oxLINNUM, which reduces TDUMP’s usually lengthy output to a more man-
ageable size.

v

Specify -v (the verbatim switch) if you want to dump the “whole ball of wax”
for an .OBJ file. The bytes from the file are dumped after each formatted object-
code record. Using this option also suppresses comments normally added by
TDUMP to document various object-code components. (This one is for pro-
gramming “Hall of Famers” who can read object code as though it were Pascal
or C. Don’t bother with this option unless you really understand how .OB]J files
are put together.)

UNZIP.EXE

To save disk space, many of TD’s files are compressed into archives, identified
by the file-name extension .ZIP. Use the UNZIP utility to extract one or more
files from these packed archives on TD’s master disks. Usually, the automated
INSTALL program runs UNZIP for you. But, if you decide not to unpack
archived files at that time, or if you’re installing TD on floppy diskettes, you can
run UNZIP manually on individual .ZIP files to extract the files you need.

You can also use UNZIP to extract files from archives downloaded from
bulletin boards, Compuserve, Bix, and similar on-line services.

Warning: Some versions of this utility do not work properly with the popular PC-
KWIK disk caches. If UNZIP hangs, reboot without the cache and try again. The
problem is caused on 80386 or later machines by PC-KWIK’s use of BIOS routines
to access extended RAM. Unfortunately, not all BIOS implementations preserve the
upper 16-bits of the 32-bit EAX register, which, apparently, UNZIP uses if avail-
able. Future versions of the cache and archiving software watch for and fix the
conflict, so you may never run into this bug.

UNZIP Syntax and Options

The complete syntax for UNZIP is:

192

Part One: Guide and Reference

unzip [options] [<infile> [<outpath>] [<file>...]1]

The (infile) must be a .ZIP file. You can’t use this program to extract files
from .ARC files, which use a different compression scheme. (Some other
Borland language disks contain a program UNPACK.COM that can unpack these
older-style archives.)

Specify an {outpath) such as C: \ DEMOS to direct UNZIP’s output to that
directory. If you don’t specify an {outpath), UNZIP deposits extracted files in
the current directory.

To extract only specific files from an archive, list the file names
after {infile) and an optional output path. Separate multiple file names with
spaces. You can also use wild cards such as *.PAS to extract files with similar
names.

Hint: Copy a .ZIP file to a RAM drive and unpack the files there. This makes UNZIP
really zip! You can then inspect each unpacked file and decide whether to copy it
to a floppy or hard disk directory.

Some of the following options are not documented, but work in the version
I used to write this chapter.

-C, -C

When you just want to read the contents of an archive, use the -c (console)
option to direct output to the display. Use -cm (console, more) to pause the
display between pages. At the end of each page, press (Space) to continue,
(Enter) for the next line, or (Esc) to advance to the next file. Press {(Ctrl)-C
at any time to return to DOS.

Hint: Press (Esc) to skip .EXE and other binary files, displayed as gibberish. I
often run UNZIP with a command like unzip -cm *.zip to scan all archive files
quickly in the current directory. Usually, this is faster than entering each file name
individually.

Use this option if you don’t want UNZIP to warn you before overwriting an
existing file.

Chapter Six: Using TD's Utility Programs 193

Similar to -c, this option directs output to the printer. Use it to print archived
text files without having to extract those files from the archive.

This option tests an archive’s integrity. It displays a list of an archive’s contents
and verifies whether files can be safely extracted.

[b|c|d|e|n|p]s|r]

Summary

These options list an archive’s contents. Use them to see a directory of a .ZIP
archive without extracting the files it contains. Add an optional letter after -v to
select brief output (b), and sort by CRC (c), by date (d), by extension (e), by file
name (n), by percent of compression (p), by size (s), and in reverse order (r). For
example, enter unzip -vber tdexmple for a brief list of an archive sorted in
reverse order by extension.

Note: UNZIP is a slightly modified version of PKUNZIP, published as pay-if-you-
use-it shareware by PKWARE, Inc. (See Bibliography). This program and others are
available on most bulletin boards and on-line services. Write to the company for
more details and for information about utilities that let you create your own
compressed archives.

TD’s utility programs perform a variety of miscellaneous jobs. This chapter
describes how to use TD’s utilities, and it lists their command-line options. (See
chapter 17 for help with TDREMOTE and TDRF.)

To display instructions for most utilities, enter the program’s name and
press {Enter). Or, specify the -? or -h command-line options.

Part Two

The Art of Debugging

Chapter 7

Developing a
Debugging Strategy

IF YOU HAVE a modem, you probably know about Compuserve’s software
Jorums—on-line bulletin boards where programmers can trade messages, tips,
and techniques. Programming is a lonely craft, and the forums give program-
mers from all over the world a chance to meet and share ideas. Joining a forum
is a great way to learn tricks of the trade and to get answers and suggestions
about puzzling problems. It also makes interesting reading.

For example, I don’'t know how many times I’ve seen a message that goes
something like this:

Everybody—I’ve discovered a bug in Turbo Pascalll! In my 15,000-line point-
of-sale package, I store linked data on the beap to categorize records accord-
ing to subject, priority, etc. I use New() and Dispose() to manage the mess.
Everything seems to be working just fine, but then something damages my list
pointers. I'm sure it’s not my code because I tested it. Is this a bug in the
compiler? What should I do? —Confused.

Poor Confused. He or she has contracted a common ailment known as “the-
compiler-is-bad syndrome.” (Hardware engineers often catch a related “the-
chip-is-bad virus.”) True, compilers do have bugs. So do chips. But, most of the
time, if something goes wrong, you’ll find the culprit in your own work. There
may be a bug in Turbo Pascal, but, more likely, the problem is hiding in

3, &«

Confused’s “tested” code. Here’s how I might respond:

Dear Confused—Can you isolate and upload a small section of your program
that seems to be causing the problem? Maybe you 've used a disposed pointer
somewbere. —Tom

No one in his right mind would accept an invitation to go bug busting in a
strange 15,000-line program. Before looking for goblins, the first step is to

197

198 Part Two: The Art of Debugging

isolate the section of the code that’s haunted. Often, after posting that advice,
I'll receive a reply similar to this:

Tom—I started extracting code to upload and then, what do you know), I found
the bug!!! You were right. I disposed a pointer and then used it two statements
later (sigh). Everything’s working now. Thanks so much for your belp. —
Confused No More.

I'll gladly accept credit for helping even though I didn’t do anything.
Confused found the bug simply by isolating suspect statements that had not
been as thoroughly tested as Confused thought. If you remember nothing else
from this book, remember to isolate your bugs. You’ll be amazed at how much
time that simple strategy alone can save during debugging.

After all, that’s the goal of learning how to use TD—to let you quickly find
bugs so you’ll have time to pursue more valuable treasure. Nobody wants to
waste efforts on fruitless crusades for bugs. But that’s exactly what many
programmers do. Instead of methodically searching for the cause of a bug, as
soon as a problem appears, they load into TD all 38 modules of a 150K program
that took six months to develop. Then, they single-step through each statement,
hoping to discover just what has gone wrong.

Resist this natural urge to puzzle out the cause of a bug. Instead, learn how
to use TD’s tools and to apply the principles outlined in this chapter. Debug like
you play chess. Plan ahead. Develop a strategy. And then go in for the kill.

The Elements of Debugging Style

Every programmer should read Brian W. Kernighan and P. J. Plauger’s 7he
Elements of Programming Style at least once a year. It’s filled with gems like
“Make it clear before you make it faster” and “Let the data structure the
program.”

But, while researching this book, I could find almost no similar advice for
debugging. Could it be that, by not discussing the subject, programmers
secretly hope the need for debugging will disappear? I can’t answer that ques-
tion. But, I can offer my own list of suggestions for developing a good debug-
ging style—a condensed sampling of the front-line strategies that have saved my
skin in countless bug battles over a dozen or so years:

® Recognize that bugs are inevitable. You may find a bug in the compiler, but
you’re more likely to find the error in your own code. Accept this. Every-
body makes mistakes.

® Ler go of frustration. That’s easier to say than to accomplish, but when a
bug plagues your code, instead of boiling over while hunting for the cause,
take a short break, and then start fresh. Enjoy your work!

Chapter Seven: Developing a Debugging Strategy 199

Use well-known programming algorithms. There’s no need to rediscover
programming principles from scratch. Invest in books of algorithms, clip
subroutines from magazine articles, purchase the top-rated toolkits for your
language, and build your own procedure, function, and object-class
libraries. You’ll prevent many bugs by constructing code on existing frames
instead of reinventing the wheels for each new project.

Isolate your bugs. Don’t just hunt through code looking for mistakes. Use
TD to narrow bug searches first to a module, then to a subroutine, and
finally to a statement or two. Divide and conquer.

Document your bugs. When you discover a bug, carefully document the
steps and input data that caused the error. You must be able to duplicate a
program’s bugs. That way, after fixing the problem, you can repeat those
same steps to verify that your repairs are working. How else will you prove
that the wicked bug is dead?

Develop repeatable tests. Don’t postpone testing and debugging until
you’ve finished a large project. Test as you go. And, be sure to create your
test code and data with the same care that you apply to your main work.
Sloppy testing is a natural habitat for bugs.

Turbo Debugger’s Tools

As you learned in part 1, TD has many commands, views, menus, windows, and
other features. But among its many strengths, four main abilities offer the most
power for developing useful debugging strategies:

Breakpoints
Code tracing
Data inspection

Expression evaluation

The following sections briefly introduce these four concepts, which you’ll

meet again in future chapters.

Breakpoints

All breakpoints have two parts: a condition and an action. Usually, the condi-
tion is simply the address of a machine-code instruction—often the first such
code of a high-level C or Pascal statement. When the program reaches the code
breakpoint’s address, TD executes the planned action, which normally halts
the program so you can view variables and inspect other facts about

200

Part Two: The Art of Debugging

misbehaving code. In addition to halting the program, breakpoint actions can
also write information to the Log window or execute a subroutine.

TD sets code breakpoints by vectoring type 3 interrupts to its breakpoint
handler. For each code breakpoint that you set, TD swaps the byte at the
breakpoint location with an int 3 software interrupt instruction (byte value CC
hex). When the code executes the interrupt, TD’s breakpoint handler gains
control and swaps the original byte back to memory. After the handler executes
the breakpoint action, to continue the program, TD restarts the code beginning
at the breakpoint’s address.

Actually, the process of handling code breakpoints is a little more complicated
than that. After intercepting a type 3 interrupt, TD replaces the original byte that it
saved when you set the breakpoint. To continue executing the program, the
breakpoint handler decrements the IP value pushed onto the stack by int 3 so that
the next iret will execute the code at the breakpoint location. It then throws the
processor into single-stepping mode (see the next section), executes the restored
instruction at the breakpoint, regains control, again swaps CC hex with the byte at
the breakpoint address (so that the handler will run if this location is reached later
on), clears single-stepping mode, and continues execution. Luckily, TD handles
these details automatically. You don’t need to understand them to be able to use
the debugger.

TD also lets you set two kinds of data breakpoints. The first of these, called
a changed-memory breakpoint, periodically examines memory addresses for
changes to values stored there. The second, called an expression-true break-
point, monitors bytes in memory to become equal to specific values. When one
of these data breakpoint conditions is satisfied, TD executes the planned action,
just as it does for code breakpoints.

If your system has an 80386 or 80486 processor, and if you’ve installed
TDH386.SYS or if you have a Trapper debugger board, TD can use the hard-
ware’s debugging registers and related features to set data breakpoints (see
chapter 18). With the appropriate hardware, changes to monitored locations
generate a debug exception (a type 1 interrupt) that activates TD’s data break-
point handler. Without this special help, TD can still set changed-memory and
expression-true breakpoints, but it has to examine memory locations by brute
force between source-code lines or machine-code instructions. This is why
setting data breakpoints makes programs run slowly on systems with 8088,
8086, and 80286 processors.

Most often, you’ll set code breakpoints to narrow the search for a bug. You'll
create data breakpoints to find statements that are changing values unexpectedly
or to discover how and why a variable reaches a specific value. For any of the
three kinds of code and data breakpoint conditions, you can specify any one of
the three possible actions to halt the program, make a log entry, or execute a
subroutine—a total of nine breakpoint condition and action combinations.

Chapter Seven: Developing a Debugging Strategy 201

See chapter 8 for more information about how to use each of the three
kinds of breakpoint conditions and actions.

Code Tracing

All 80x86 processors can execute machine-code instructions one at a time—or,
more correctly, they allow a program like TD to gain control between the
execution of instructions. Called single-stepping, this feature is enabled when a
program sets the trap flag (TF), which causes the processor to issue a type 1
interrupt after most instructions. (A few instructions, for example, assignments
to segment registers, suppress the type 1 interrupt signal for the next instruc-
tion; therefore, these machine codes can’t be traced.) When you use TD’s Trace
into, Step over, and Animate commands, the debugger intercepts the interrupt
signal, letting you run programs one line or instruction at a time or in slow
motion, which can help find bugs by slowing fast actions to inspectable levels.

Code tracing and breakpoints are natural partners. Many times, you’ll set a
breakpoint to halt a program at a test location, and then single-step through
additional statements at that place. For this reason, chapter 8 discusses break-
points and code tracing together.

Data Inspection

If you've never used a debugger before, you've probably inserted output
commands in your program to display or print the values of variables at
strategic locations. Or, perhaps you’ve written subroutines to save values in disk
files for inspection after a test run.

Such methods should be entombed with hex pads, toggle switches, core
dumps, and other relics from computing’s pioneer days. With TD’s abilities to
inspect data structures of all kinds, you’ll never have to use those old tech-
niques again. Instead, you can inspect your program’s variables in one of two
main ways:

® Watching
* Inspecting

Both of these data inspection methods are similar. When you watch a
variable by adding it to the Watches window, TD lists the variable’s name, value,
and data type on a single line. As you encounter breakpoints and use TD’s code-
tracing commands, you instantly see changes to all variables listed in Watches. If
a variable changes unexpectedly or becomes equal to an unplanned value,
you’ll know immediately in which section of code that happened. You can
also change the value of any variable to test the effects of new data on a
program.

202

Part Two: The Art of Debugging

Inspecting takes the concept of watching variables one step further, show-
ing you the intimate details of any variable from the simplest character to the
most complex object-oriented structure you can devise. With TD’s inspector
windows, you can trace through a linked list, inspect an array, or examine the
fields of a Pascal record or a C struct.

TD automatically updates inspector windows with new values as you exe-
cute code. You always see the current value of a variable in an inspector
window. You can also use inspectors to enter new values into variables.

See chapter 4 for general information about using inspectors. Also see
chapters 20-22 for details about inspecting specific data types in C, Pascal, and
assembly language.

Note: You can also watch and inspect C and Pascal procedures and functions. In
that case, however, you see the subroutine’s address and, if it’s a typed function,
the data type it returns. In other words, you can inspect code as data, but you can’t
change it.

Expression Evaluation

The fourth main debugging tool that you’ll find especially helpful for develop-
ing useful debugging strategies is also one of TD’s most versatile features. Along
with breakpoints, code tracing, and data inspection, TD can evaluate just about
any expression your compiler or assembler can parse (translate). You can use
TD’s expression evaluator to:

® Inspect and change variables, similar to the way you can perform those
same tasks by watching and inspecting.

® Convert integers from hex to decimal and perform calculations. TD’s
expression evaluator makes a handy on-screen calculator.

® See the result of an expression before it executes. For example, if an
expression is passed to a procedure or function, you can evaluate the
expression’s result without having to call the subroutine.

* Experiment with new expressions without having to recompile your pro-
gram. You can copy an expression from your source code, make adjust-
ments, and have TD evaluate the result. When the new expression passes
muster, you can add the finished version to your source code.

e Call subroutines in your code independently of TD’s other code-tracing
capabilities. This lets you patch code on the fly and even create custom
debugging commands.

You must take a great deal of care to use the last of these suggestions
properly. In fact, many programmers will never need it. But imagine the control

Chapter Seven: Developing a Debugging Strategy 203

it offers. You can test the effects of a subroutine without having to run your
program to the place where that subroutine is called—a fact that’s useful when a
bug crashes the code before reaching that spot. And, you can run “what if” tests
to inspect what happens if you were to call a routine after a breakpoint halts the
code.

Usually, you’ll enter expressions or copy them from your source code into
TD’s Evaluate/modify dialog box (press {Ctrl)-{F4)). But you can also evalu-
ate expressions by adding them to the Watches window or to an Inspector. TD
will then reevaluate the expression every time it gains control—in between
every instruction if you want. Or, you can insert an expression as the action for
a breakpoint, splicing code to call a subroutine when the breakpoint condition
hits or just to save the result of the expression in the Log window. In fact, just
about any time TD prompts for a constant value or an address, you can enter an
expression. i

When entering expressions, you must be careful to use data formats suitable
to the current language. See chapter 9 for more information about how to enter
expressions for C, Pascal, and assembly language.

Bug Species

Most bugs are unique. That’s one reason they’re so hard to find. Even so, all
bugs belong to one of these three species:

® Syntax errors—program doesn’t compile
® Runtime errors—program compiles but doesn’t run
® Logical errors—program runs but doesn’t work

Become familiar with these kinds of bugs and the differences between
them. That way you’ll avoid making the same mistakes over and over. Eventu-
ally, you’ll be able to recognize classes o