OUTPUT		
Media	Speed	No. of Multiplexed Channels
Flexowriter	10 chars/sec	
Teletype via Buffer	$10 \mathrm{char} / \mathrm{sec}$	7
Charactron via displ console	$\begin{aligned} & \text { lay } \\ & 15,000-20,000 \mathrm{ch} / \mathrm{s} \end{aligned}$	s 30
Flight strip via dis play console	$15,000-20,000 \mathrm{ch} / \mathrm{s}$	/s 30
Flight strip punch and printer	$10 \mathrm{char} / \mathrm{sec}$	1.2
Data Link	$30 \mathrm{char} / \mathrm{sec}$	7
Analog-Digital conv to radar trackers	$30 \mathrm{char} / \mathrm{sec}$	2
Inter Computer via buffer	200,000 char/sec	1

CIRCUIT ELEMENTS OF ENTIRE SYSTEM
(For a minimum system)

Tlype	Quantity
Thbes	0
DIodes	
About 5 types	1,500
Transistors	23,000

2N393
$2 N 599$
2 N 416
2 N 498
$2 \mathrm{~N}_{4} \mathrm{O}_{4}$
$2 N 595$
and a few others

CHECKING FEATURES

Checking features include parity on all registers, and all information exchanges between units. A dual adder is used in the arithmetic unit. Complete checking is performed.

Maddocks Photo for Librascope Division, GP, Inc.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
 Power, computer 3 Kw
 Power, alr conditioner 2 Kw
 Volume, computer 140 cu ft
 Area, computer 23 sq ft
 Floor loading $20 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$
 Air conditioner is internal
 Weight, computer 3,000 lbs
 Air conditioner is included in above

 PRODUCTION RECORD
 Number produced to date 2
 Number in current operation 1
 Number in current production 2
 Time required for delivery 12 months

RELIABILITY, OPERATING EXPERIENCE,

 AND TIME AVAILABILITYConstruction techniques utilized to insure reliability includes "NOR" circuitry, RTL logic, 100% incoming inspection, rigid testing, "worse, worse" case type of design, extensive field reports on failures plus immediate corrective action, and the use of double rank registers.

ADDITIONAL FEATURES AND REMARKS

System is particularly suited to systems requiring random retrieval from large unsorted files and systems with large numbers of input-output devices.

FUTURE PLANS

It is planned to change to a 6 microsecond memory cycle time and increase the pulse rate, which will reduce the operation times by a factor of 4. Also, index registers will be added and the drum capacity will be increased.

INSTALLATIONS
Iibrascope Division of General Precision, Inc. 808 Weatern Avenue
Glendele 1, California

MANUFACTURER

Librascope ASN 24 Airborne Digital Computer

APPLICATIONS

The ASN-24 Computer is a highly versatile generalpurpose electronic digital computer which by virtue of its non-fixed internally-stored program, is easily adaptable to many commercial, scientific and military uses. In addition, its small size and weight and low power requirements make it particularly well suited for application in compact systems.
While the ASN-24 Computer can be utilized for extensive on-line general purpose computing applications, it has been designed primarily to satisfly the complex environmental and operational performance requirements of airborne/spaceborne systems realtime applications. The computations may be made from doppler derived ground speed, manually fed fixes, true heading, celestial position determination, and radio aids. Automatic inputs of the following form may be accepted. (When utilized with appropriate complementing input-output equipment):

Compass heading
Astro compass heading

Librascope Division
General Precision, Incorporated

True air speed
Doppler ground speed and drift angle
Inertial velocity
Radio aids
TACAN range and bearing
Automatic sextant (Celestial altitude and azimuth)
Altitude above terrain or above sea level
An internal standard for both sideral and solar time

Star tracker
New equipment as it is developed
Information may also be fed into the computer manually. Manually stored information may be latitude, longitude, range, bearing, wind force or angle, or any direct fix data not available from the aircraft's instrument.

Basic data necessary for navigation may be set manually into the computer before take-off, or in the air.

The ASN-24 will perform the following basic computations as well as solve other desired navigational problems:

Ground position in latitude and longitude with computing errors not to exceed 0.01% of distance traveled.

Ground track
Polar navigation
Great circle course and distance to alternate destinations

Magnetic variation and true heading
Wind direction and velocity (and has provision for wind memory)

Celestial fixes
Position from radar or radio aids (and will check these fixes for credibility)

Range and bearing to a moving target
Range and bearing to a collision point with a moving target

Time to destination
Altitude and azimuth of a celestial body
Image motion compensation and timing for aerial photography

PROGRAMMING AND NUMERICAL SYSTEM

$T_{c \alpha}\left(P_{24}-P_{20}\right)$ represents the track address of the
$T_{\beta}\left(P_{19}-P_{15}\right)$ represents the track address of the operand (except for transfer and store orders)
$S_{\beta}\left(P_{14}-P_{9}\right)$
represents the sector address of the operand (except for transfer and store orders)
$S_{\alpha}\left(P_{8}-P_{3}\right) \quad$ represents the sector address of the next instruction
$0\left(P_{2}-P_{0}\right)$ represents the order to be performed
Transfer Orders: $\left(T_{\beta}, S_{\beta}\right)$ represents the track and sector addresses of the next instruction if the contents of the accumulator is positive
Store Orders: $\quad\left(T_{\beta}, S_{\beta}\right)$ defines the location into which the contents of the accumulator is stored, or defines the modified store order to be performed

Automatic built-in subroutines include Add, Subtract, Multiply, Divide, Extract, Clear and Add, Conditional Transfer on Sign of Accumulator, Store, and Modified Store (Multiple).

Registers include 4 recirculating registers. These are the Instruction, Accumulator, Multiplier, and Multiplicand.

ARITHMETIC UNIT

STORAGE

	No. of	No, of	Access
Medium	Words	Digits	Microsec
Magnetic Drum	2,560	64,000	10,000 Mex
			156 Min

INPUT

Media	Speed
Incremental Train	$0-6000 \mathrm{pps}$

Shaft Position to Sample: 100/sec
Binary Coded Discs Slew Rate: 800 bits/sec speed can be made higher
Input/output equipment must be designed for each particular application; however, the particular design and wide applicability of the ASN-24 Computer insures minimum required design effort for input/output equipment.

OUTPUT

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Type
Quantity
3,553
382
Diodes
382
Only silicon diodes and transistors are used for high temperature operation capability. These units have high back resistance and low leakage characteristics at high temperatures. The higher collector voltage ratings of silicon transistors permit larger logic swings, these reducing the susceptibility of the computer to noise.
The resistors are $1 / 4$ watt, carbon composition type, have low dielectric loss, DC resistivity, and high thermal shock resistance.
Most of the capacitors are a solid tantalum type which have high dielectric strength and
have no derating of voltage over a large temperature range. The very small capacitors are the subminiature ceramic type.

CHECKING FEATURES

Routines programmed to check all instructions or order codes and the contents of the memory. Discrete signals, suitable for driving indicators, generated to indicate successful completion of check routines. The support equipment includes a FillTest Unit, which will.fill and check memory contents in conjunction with a tape reader and control the computer program with one-step or loop operation. It also provides test route and synchronization signals for oscilloscope presentation of computer information and Card Checker will check operation of individual circuit and logic cards.

POWER, SPACE, WEIGHT, AND SITE PREPARATION					
Power, computerDoes not include$\mathrm{I} / 0$ $0.132 \mathrm{Kw} \quad 0.189 \mathrm{kVA} \quad 0.7 \mathrm{pf}$					
Volume	computer	0.55 cu ft			
	omputer				
Weight, computer 37 lbs					
System requires a suitable surface, table, etc., that is fairly steady, can support 31 lbs. etc.					
System requires only electrical power outlets,					
DC and 3 phase, 400 cycle AC.					

PRODUCTION RECORD

Number produced to date

4
Number in current operation 3
$\begin{array}{ll}\text { Number in current production } & 12 \\ \text { Number on order } & 16\end{array}$

PERSONNEL REQUIREMENTS

One 8-Hour Shift
Supervisors
4
Analysts
-1
lerkg
Engineers
3
4
20
Technicians 7
Draftsmen 13

ADDITIONAL FEATURES AND REMARKS

Outstanding features include extremely wide variety of applications, operation under sea-level to space environments, light weight, low power drain, in actual operation in field, programmable high speed (200 times (sec). Integration of inputs and/ or extrapolation of outputs independent of main authentic section, and data read-out for telemeters.

Basic computer unit designed and in field operation, input-output can be designed to meet a multitude of applications with minimum cost and time expenditures. Tie-in with pulse integrating accelerometers.

Magnetic Memory Drum
Capacity and Tracks:
41 tracks (1600 bits/track) of non-volatile main memory, arranged as follows: 38 tracks with 1 read head each; 2 tracks with 1 read and 1 write head each; 1 track with 1 read head and a 200 bit recirculating register.
l 1600 bit clock track
225 bit recirculating registers (2 registers on each of 2 tracks)
125 bit recirculating register with 4 additional
heads on the same track
1 track with head spacings for either 200 bit or 800 bit recirculation.

Speed:

6,000 rpm
Clock Frequency:
160 kc

Motor:

Location: Contained within drum
Power: $\quad 35$ watts from 3 phase, 400 cycle, 208
volt Line-Line (60 watts starting power)
Runout:
0.0001 T.I.R.

Drum Assembly Dimensions (including shroud, a head mounting surface surrounding the drum proper; cover; and heads):
$61 / 2$ inch diameter $\times 5$ 11/16 inches long
Drum Assembly Weight (including shroud, cover and heads):
$111 / 2$ Ibs
Drum Surface:
The entire drum surface is milled, similar to the clock track on many other drums (i.e. slotted), with the slots parallel to the axis of rotation. There are 1600 slots around the drum periphery. After milling, the slots are filled with 3 M iron oxide.

Heads:
Separate read and write heads are used with this drum. Minimum readback from read head is 0.4 volts peak to peak. The write head requires a 300 ma peak clurrent of 2 microseconds duration through a half.. winding. Storage tracks with only read heads requires special techniques.

Environmental Specifications
Ambient Temperature Range:
$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Humidity:
Entire assembly can be hermetically sealed
Altitude:
Sea-level to space
Shock:
20g for 11 milliseconds
Vibration:
6 g from 15 cps to 2000 cps
Constant Acceleration:
log radially, $3 g$ axially

FUTURE PLANS
Many possible new applications being investigated and radiation testing of circuitry is being planned.

MANUFACTURER

Librascope Model CP 209

APPLICATIONS

System is used for airborne navigation and bombing ballistics, including loft, and real-time, high speed tracking problems.

PROGRAMMING AND NUMERICAL SYSTEM
Internal number system Binary
Binary digits/word 14
Binary digits/instruction 6
Instructions/word Variable-One, Two or Three
Instructions decoded 30
Arithmetic system Fixed point
Incremental or Digital Differential Analyzer
Instiruction type
System can process 8 operands, storing them in 3
parailel positions.
Number range $\pm\left(2^{27}-1\right)$

Automatic built-in subroutines include integration and sine-cosine.

	ARITHMETIC UNIT Incl Stor Access Exclud Stor Access Microsec Microsec
Add	5959
Mult	5959
Div	$177 \quad 177\left(\begin{array}{c}\text { (by sub } \\ \text { routine })\end{array}\right.$
Construction (Arithmetic unit only)	
Vacuum-Tubes	304
Transistors	100
Condenser-Diodes	des 4,500
A-D inputs	12
D-A outputs	14
Arithmetic mode	Parallel Arithmetic Units operating Serially
Timing	Synchronous
Operation	Sequential
	STORAGE
Medium	No. of Words
Magnetic Drum	85 Computational Blocks with 4 Integrand Lines
	INPUT
Media	
Paper Tape	Used to fill Memory
Analog Digital Converters	200 divisions/sec
Manuel Inputs	

Librascope Division
General Precision, Inc.
OUTPUT

Medium
Digital-Analog Converters

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Type
Thbes
6021
6111
5784-WA
5639
Diodes
406621
Transistors
2N338
2N657
Quantity
33
197
36
36

Medium
Digital-Analog Converters

Speed

CHECKING FEATURES

Checking features include a diagnostic routine programmed for maintenance.

POWER, SPACE, WEIGHT, AND SITE PREPARATION

Power, computer	1.76 Kw
Volume, computer	3.0 cu ft
Area, computer	1.77 sq ft
Floor loading	133 lbs concen max
Weight, computer	133 lbs

PRODUCTION RECORD

Number produced to date
48
Number in current operation

Number in current production
Number on order
Anticipated production rates
Tine required for delivery
5/month 10 months

PERSONNEL REQUIREMENTS

One 8-Hour Shift
Operators 1
Technicians
1
Training made available by manufacturer to users includes a factory training course for maintenance men.

RELIABILITY, OPERATING EXPERIENCE,

 AND TIME AVAILABILITYFleet service records indicate that failure-free operation time averages 90%.

ADDITIONAL FEATURES AND REMARKS
Outstanding features include a stored program, retraceable sine-cosine operation, K-Ine scaling for flexibility and exact multiplication.

Photo by Librascope Division, General Precision, Inc.

LIBRASCOPE MK 38

MANUFACTURER

Librascope Attack Console Mk 38 (U. S. Navy)
Librascope Division
General Precision, Inc.

Photo by Librascope Division

APPLICATIONS

The system consists of a serial, incremental, computer consisting of two identical sections working from a common control and input-output section. It is used for real-time fire control problems.

PROGRAMMING AND NUMERICAL SYSTEM

Number of instructions per word 18
Number of instructions decoded 70
Arithmetic system Fixed point
Instruction type One-address operation orders Two-address increment orders Four-address distribution orders
Operation orders consist of integration, remainder,
digital servo, transfer, and sine-cosine generation.
Distribution orders take the increment outputs of
the operation orders and store them in temporary
registers.
Increment orders communicate the increment outputs
between the operation orders and make decisions on incremental transfers.
Number range $\pm 2^{15}$
Instruction word format

	ARITHMETIC UNIT
Time	
Operation	Microseconds
Integration	72
Remainder	72
Servo	72
Tremsfer	72
Sine-Cosine	144
Arjthmetic mode	Serial
Timing	Synchronous
Operation	Sequential

	STORAGE		
	No. of	No. of	Access
Medium	Words	Digits	Microsec
Magnetic Drum	6,874	122,112	$4 / \mathrm{bit}$

INPUT

Media	Speed
Anslog-digital converters	Each sampled every 10
32 max, 18 used	millisec.
Swi.tches 16 used	Each sampled every 10
	millisec.
Paper Tape	20 char/sec
Tape reader is used for initial fill only.	

OUTPUT

Media
Servo output 32 max, 1.5 used

Rel.ay Lighter 16 used

Speed
Repositioned every 10 millisec.
Repositioned every 10 millisec.

CIRCUIT ELEMENTS OF ENTIRE SYSTEM	
Type	
Quantity	

CHECKING FEATURES

Built in Test Program.
Marginal Check Power Supplies.
Card Tester.
POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer

Volts	cps		Kw	KVA	PF
115	400	3	2.74	3.92	0.70
115	400	1	1.109	2.64	0.42
115	60	1	0.032	0.115	0.28
28	60	1	0.29	0.29	1.00
28	DC		0.294	0.294	1.00

Volume, computer $\quad 26.67 \mathrm{cu} \mathrm{ft}$
Area, computer $\quad 4.67 \mathrm{sq} \mathrm{ft}$
Room size, computer 8 x 9 ft
Power, air conditioner Forced air
Weight, computer 3,000 lbs, Total
(Includes Analog Section)
Refer to OP 2687 for installation requirements.
PRODUCTION RECORD

Number produced to date	14
Number in current operation	3
Number in current production	6
Number on order	54
Anticipated production rates	3 per month
\quad Above data is as of 29 June 60	

PERSONNEL REQUIREMENTS
One 8-Hour Shift

Supervisors	One 8-Hour shift
Operators	1
Technicians	2
	1

Training made available by manufacturer to users includes a 6 month course for Navy personnel at Key West for operation and maintenance of entire system.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

System features and construction techniques utilized by manufacturer to insure required reliability include built in test programs, giving both identical sections the same program for comparison testing, a card tester with fixed pattern for testing all circuit cards, silicon components used for greater heat stability, and pluggable etched circuits cards for quick replacement.

ADDITIONAL FEATURES AND REMARKS

Outstanding features include the option to reprogram the fixed program gives the computer the facility of handling a weapons system compatible with the number and range of analog-digital converters.

FUTURE PLANS

Plans include continued adaptation of computing equipment to any rocket thrown torpedo or similar missile requirement. Incorporation of electric set and wire-guide torpedoes as well as other short range weapons.

Librascope Digital Computer Mk 130 Mod O (U.S. Navy)
General Precision, Inc.

APPLICATIONS

Computer performs target motion analysis, target prediction, and data smoothing for Fire Control System Mk 113.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system
Binary
Number of binary digits/word 18 bits plus sign
Number of digits per instruc- 5 bits for address tion

7 bits for non-address orders
Arithmetic system
Fixed point
Floating point is programmed as a subroutine of two consecutive words; 8 bits are used for the exponent and 30 bits are used for sign and numeric value.
Instruction type
Number range

One address
0 to $\left(2^{19}-1\right)$

Photo by Librascope Division

Instruction word format
Addressable order

1	5	1	12
Sign	Order	B	Address

Non-address order		5		
Sign	13	Non-Address Order		I/O Device Designation
:---				
or				
Number of places for shifts				

Automatic built-in subroutines
The trapping of control is dependent on the over-
flow of the delay line (relative clock). When trapped, computer obeys the instruction in location (0002) 10 of memory.
Registers and B-boxes
One B Modification register, usually known as
index register.
Approximately 3,650 instructions are decoded for a fire control program.

There is also an indirect addressing feature available. A bit in the sign position is utilized for this purpose. This differs in that instead of referring to an address 0001 the desired address is found in location 0001. This process may be carried further.

ARITHMETIC UNIT

Incl. Stor. Access Exclud. Stor. Access

	Microsec.	Microsec.
Add	40	16
Mult	$40-424$	$16-400$
Div	$40-460$	$16-436$
Construction (Arithmetic unit only)	Transistors	
Arithmetic mode	Parallel	
Timing		Synchronous
Operational		Sequential

The machine has a microprogram unit which controls its function. The microprogram unit is synchronous, the arithmetic unit is asynchronous.

	STORAGE		
	No. of	No. of	Access
Medium	Words	Digits	Microsec.
Magnetic Core Memory	4,096	Sign digit +	20
		18 digits	

No magnetic tape is associated with the Mk 130 Mod 0.

INPUT

ia	Speed
Swiltch Bank on test panel Instantaneous	
Jnformation is read directly into the accumulator.	
Anslog Modules (Digital 157 times per second	
Data from Shaft encoders)	
Jnformation is converted from analog voltages to	
binary via I/O Buffer, is read into the K Register.	
From the K Register, the program gets the information into the Accumulator.	
Flexowriter or Ferranti tape reader	Photo reader original rate 530 chars/sec
The speed is dependent the reel.	he amount of tape on
Swl.tches in Mk 50, Mk 51, 128 micro sec pulses and. Mk 75 of FCS Mk 113 and	
all. Mods, and Sensor opera-	
tor's Mark Signals	
Some of these signals	stretched to more than

OUTPUT

MediaSpeedAnslog Modules (Digitaldata from shaft encoder)Frogram transfers information from Accumulator toK Register, then via I/o Buffer to analog componentsLight Banks on test panel \quad InstantaneousThe accumulator and the counter register are dis-played.Iights on Mk 51 of FCSMk 113 all modsF'or quality of sol'n lights, relative course light,constraint lights, etc.	

To relays in Mk 50, 51 and Instantaneous
75 of FCS Mk 113 all mods
To signal that range, course, speed, and bearing for a particular channel has been calculated and are available as analog information.

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Type	Quantity None
Tubes	
Diodes	97
IN251	76
IN270	38
IN429	11
IN537	97
IN645	11,762
IN659	2,412
IN663	22

Does not include diodes in which less than 10 per type are used.
Transistors

2N335	20
2N388	1,317
2N501	3,232
2N597	68
2N599	2,361
2N665	17

Does not include transistors in which less than 10 per type are used.
Magnetic Cores 82,000
Used in computer memory and switching.
The Mk 130 Mod 0 uses "resistor coupled transistor logic" (RCIL) or "nor" logic throughout.

CHECKING FEATURES

Fixed checking features include a card test panel, capable of checking all circuit boards, a computer test panel, providing manual communication with all portions of computer, and a margin check panel, wherein switch settings determine voltage variation for marginal checking.

Optional checking features include a test console, which can duplicate computer test panel and in addition can furnish input/output facilities of flexowriter, high speed punch, switch inputs, camp outputs, digital shaft encoders, and output servo modules. It is used for factory checkout only.

Existing computer circuitry can be utilized to activate portable flexowriter or high speed punch without use of test console if desired. Portable input/output devices not available at this time but can be developed with minimum design effort.
POWER, SPACE, WEIGHT, AND SITE PREPARATION

PRODUCTION RECORD

Number produced to date
Number in current operation
Number in current production Number on order
Anticipated production rates Time required for delivery

1
1
1
8

1 per month
6-8 months

PERSONNEL REQUIREMENTS

Training made available by manufacturer to users includes a factory maintenance course on the Mk 130 digital computer, which comprises 3 to 4 weeks of instruction. The Mk 130 digital computer is an unmaned piece of equipment in its tactical application. Maintenance will be performed by user personnel (U.S. Navy) aided by Librascope Field Service.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

All circuitry is completely transistorized and mounted in readily accessible modules. Test points have been provided on all circuit modules and chassis assemblies for ease of maintenance. A circuit module tester capable of testing all circuit modules is provided as part of the digital computer. All subassemblles are accessible from the front of the computer. Diagnostic routines are available to the user. Circuitry is conservatively designed and will operate over an ambient temperature range of $0^{\circ} \mathrm{F}$ to $110^{\circ} \mathrm{F}$. During prototype evaluation only two f'allures have occurred in over 1000 hours of operation.

ADDITIONAL FEATURES AND REMARKS

Unique system advantages include a micro-program unit which can be modified to create new or variations of existing commands to tailor computer operation to suit individual situations without major redesign.

Photos by Librascope Division, General Precision, Inc.

Integrated System

Instructions decoded
Arithmetic system
Floating point is programmable.
Fixed point
Instruction type

0	1	12	13	16	17	18	19	24	25
One address	30	31	Sp						
Si.gn			Instruc- tion		Irack	Sector		Spacer	

A complete set of compiler and utility programs are available.

Registers include counter register, accumulator, and instruction register.

ARITHMETIC UNIT
Incl Stor Access Exclud Stor Access Microsec Microsec
Add

$7,750($ Mean access $)$	250
23,000 (Mean access)	15,000
23,000 (Mean access)	15,000

Construction (Arithmetic unit only

Vacuum tubes . 175

Diodes 1,750
Arithmetic mode Serial
Timing
Operation Sequential

Photo by Frankford Arsenal
Though operation is listed as being sequential, the input system of the LIBRATROL 500, since it is independent of the computing portion of the machine, is capable of inputting information while calculation is proceeding concurrently.

STORAGE

Manufacturer

Media

Magnetic Drum (Main)
Magnetic Drum (Buffer)

Access time is variable between 500 and 15,000

microseconds.

Magnetic tape will be developed.

Frankford. Arsenal			
	No. of	No. of	Access
Medium	Words	Digits	Microsec
Magnetic Drum	4,096	31. binary	9,000 (avg)
Public Service			
Magnetic Drum	4,096	32 binary	

Photo by Librascope Division, General Precision

INPUT

Diodes
1N617 1,450 approx

POWER, SPACE, WEIGHT, AND SITE PREPARATION

Manufacturer

Power, computer 2.5 Kw
Volume, computer 49 cu ft
Area, computer $\quad 13.7$ sq ft
Room size
24 sq ft
Floor loading
$78 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$
Weight, computer $\quad 1,000 \mathrm{lbs}$ (nominal)
A separate 115 volt, 20 ampere circuit is reconmended Frankford Arsenal
Power, computer 2.3 KVA
Volume, computer $\quad 30 \mathrm{cu} \mathrm{ft}$
Area, computer 10 sq ft
Room size $20 \mathrm{ft} \times 60 \mathrm{ft}$

Weight, computer $\quad 1,000 \mathrm{lbs}$ Public Service
Power, computer 2 Kw
Power, air condi (2 required) 7. 25 Kw each
Volume, computer $\quad 47.4 \mathrm{cu} \mathrm{ft}$
Volume, air conditioner 89.4 cu ft each
Area, computer 13.22 sq ft
Area, air conditioner 29.8 sq ft each
Floor loading $\quad 110 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$
Capacity, air conditioner 7.5 Tons, each
Weight, computer l,450 lbs
Reinforced floor (wood).

PRODUCTION RECORD
Manufacturer

Number produced to date	Over 400
Number in current operation	380
Number in current production	15
Number on order	15
T:-Lme required for delivery	3 months

COST, PRICE AND RENTAL RATES
Manufacturer

1 Libratrol 500 Computer with	$\begin{aligned} & \text { Cost } \\ & \$ 84,500 \end{aligned}$
120 Input channels and analog	
to digital converter	
Franhford Arsenal	
Baste System	
Computer and Flexowriter	89,000
Additional Equipment	
Commutator extender	5,000
Digital inputs \& high speed input mode	20,000
300 magnetic latching mercury wetted relays	20,000
Spare parts	5,000
D/A converters (5)	1,000
Total	\$51,000
Public Service	
Basic System	
Computer, Digitizer, l-Flexowriter Additional Equipment	90,000
1.Flexowriter	4,000

PERSONNEL REQUI REMENTS

Manufacturer			
	One 8-Hour	Two 8-Hour	Three 8-Hour
	Shift	Shifts	Shifts
Supervisors	1	1	1
Programmers	1	1	1
Operators	1	2	3
Engineers	1	1	1

Thirty days of instruction time is included in the sele price for programing and maintenance training of customer personnel.

Frankford Arsenal

One	8-Hour Shift
Used	Recommended
1.5	1.5

Programmers 1.51 .5
Method of training is informal. Public Service
The department, which is the principal user of this computer has 16 employees. The two engineers in the department, program and maintain the computer. Two girls prepare tapes and, to a large extent, operate the computer, and file tapes and work sheets. While it is planned to train additional department personnel to work with the computer, there is no need for increasing the number of employees doing any one computer job.

Methods of training includes on-the-job training.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Manufacturer

The combination of conservatively rated, carefully engineered components, with simplicity of design, conspires to allow the computing elements to function with only 113 vacuum tubes. Reliability should normally exceed 99% up-time over a 6 month period. Public Service
Good time
166 Hours/Week (Average)
Attempted to run time 168 Hours/Week (Average) Operating ratio (Good/Attempted to run time) 0.988 Above figures based on period 1 May 60 to present Time is available for rent to qualified outside organizations.
The reliability figures refer only to basic computer operation. We have had difficulty with input of data through the analog-digital system which has been combined with the computer. Reliability figures on the total system would be greatly lower. Because of the input problem the system has not as yet been accepted.

ADDITIONAL FEATURES AND REMARKS

Public Service
An outstanding feature is that the system permits computer-controlled input of telemetered values. It has two Flexowriters (off-line and on-line) which are controlled by the program.

The fact that the system permits working off-line programs and a continuing on-line program is a unique advantage.

FUTURE PLANS

Frankford Arsenal
It should be noted that the Libratrol 500 Computer has been assimilated into the Automatic Checkout equipment. It is now merely a component of the system, and is no longer identifiable as a Libratrol 500 Computer. The questionnaire answers, however, are with respect to the computer portion of the checkout system only, 1.e., only the computer memory is discussed although additional memory capability is inherent in the checkout system.

Public Service
Possible replacement in 5 or 6 years is planned.

INSTALLATIONS

U. S. Army Ordnance Arsenal, Frankford Bridge and Tacony Streets Philadelphia 37, Pennsylvania
Public Service Company of Colorado 900 15th Street
Denver, Colorado

LIBRATROL 1000

Fhoto by Librascope Division, General Precision, Inc.

APPLICATIONS

System is intended for general purpose computing, where computing equipment must communicate directly with equipment external to the computer via digital or voltage (analog) inputs and where computing equipment must develop control signals to equipment externall to the computer. Examples of applications are quality control for both contonuous and batch production processes-real time, process control for both continuous and batch processes, and equipment test stand instrumentation - data acquisition, logging, and calculations.

MANUFACTURER

Librascope Division
General Precision Equipment Corporation

PROGRAMMING AND NUMERICAL SYSTEM
Internal number system Binary
Binary digits/word
Binary digits/instruction 5
Instructions per word 1
Instructions decoded 32
Arithmetic system Fixed point
Floating point is programmable.
Instruction type Two address
Instruction word format

	Operand Address		Next Inst Address		
S1 4	517	$12 \quad 17$	$18 \quad 24$	$25 \quad 30$	31
Command	Track	Sector	Track	Sector	Address Modify Flag

A complete set of compiler and utility programs are available.

Additive index register and double length accumulator.

Lower accumulator can be made to operate on eight words at a time.

ARITHMETIC UNIT

ARITHMETIC UNIT	
	Incl Stor Access Exclud Stor Access Microsec Microsec
Ad.d	1,000 250
Mult	17,000 16,250
Div	17,000 16,250
Arithmetic mode	Serial
Timing	Synchronous
Operation	Sequential
Though operation is listed as being sequential, the	
in.put system of	the $\mathrm{L}-1000$, since it is independent
of the computing portion of the machine, is capable	
of receiving information while calculation is pro-	

STORAGE

> No. of No. of
> Words Digits

Media	No. of No. of	Access	
Magnetic Drum (Main)	8,000	256,000	Microsec
Magnetic Drum (Buffer)	64	2,016	250
Magnetic Tape		250	
No. of units that can be connected	64 Units		
Magnetic tape is a future development.			

	INPUT
Media	Speed
Analog	60 samples/sec (2,000
Digital	$60 \mathrm{char} / \mathrm{sec}$ (Standard)
Paper Tape	10/60 char/sec (Standar
Typewriter	10 char/sec (Standard)
	OUTPUT
Media	Speed
Paper Tape	$60 \mathrm{char} / \mathrm{sec}$ (Optional)
Typewriter	$10 \mathrm{char} / \mathrm{sec}$ (Standard)
Control (analog or digital)	120 char/sec (Standard)
Line Printer	$300 \mathrm{char} / \mathrm{sec}$ (Optional)

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Type Quantity
Tubes
CRT \quad I (digital displey for monitoring)
Diodes
1N617 2,400
Transistors 650 (basic system)
2N1301
2N393
$2 \mathrm{~N}_{4} 4$
$2 N 357$
2N597
2N1130

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer 2 Kw
Volume, computer $\quad 48 \mathrm{cu} \mathrm{ft}$
Area, computer 12 sq ft
Room size 24 sq ft
Capacity, air conditioner I Ton
Weight, computer 1,000-1,200 lbs
Air conditioner is included and self-contained

PERSONNEL REQUIREMENTS

One operator required for each shift.
Training made available by the manufacturer to the user includes programing and maintenance.

FUTURE PLANS
Magnetic tape input and a core buffer unit are planned.

INSTALLATIONS
Librascope Division
General Precision Equipment Corporation
808 Western Avenue
Glendale, California

Photo by Massachusetts Institute of Technology
$\left.\begin{array}{l}\text { Instruction type } \\ \text { Number range }\end{array} \begin{array}{l}\text { (Floating point sub-routines) } \\ \text { One address }\end{array}\right)$

Registers and B-boxes include 5 sets of registers of 8 bits each and a real time clock register.

Negative numbers are treated in two's complement form.

Arithmetic algorithms handle either positive or negative numbers.

CG-24 CHARACTERISTICS

GENERAL

CONSTRUCTION: SOLID STATE
 APPLICATIONGENERAL-PURPOSE PLUS REAL-TIME CONTROL
 TIMING SYNCHRONOUS, 330 Kcps .
 OPERATION SEQUENTIAL, SUBJECT TO SELF-MODIFICATION

NUMERICAL SYSTEM

INTERNAL NUMBER SYSTEM • . . 27-BIT BINARY WORDS,
 INCLUDING TWO PARITY BITS

SINGLE-ADDRESS INSTRUCTIONS.
FIXED-POINT ARITHMETIC SYSTEM, PROGRAMMED FLOATING POINT SUBROUTINE.

ARITHMETIC UNIT

STORAGE SYSTEM
8192 WORDS, COINCIDENT CURRENT MAGNETIC CORES $12 \mu \mathrm{~s}$
CYCLE TIME
TERMINAL EQUIPMENT

FLEXOWRITER
 CRT DISPLAY WITH NUMERIC GENERATOR
 Photoelectric tape reader.

Photo by Massachusetts Institute of Technology

	ARITHMETIC UNIT	
	Incl. Stor. Access	
	Microsec	Exclud. Stor. Access
Microsec		

Construction, arithmetic unit only
Arithmetic unit consists of transistors and diodes.
Arithmetic mode Parallel
Multiplication and division operations consist
of serially adding or subtracting. Addition and
subtraction are parallel operations.

Timing

Synchronous
Operation Sequential and concurrent

The 7-channel digital tape units are Ampex FR-300 with packing density of 200 bits/inch in each channel. These are operated at 75 in. per second. TWo units were installed in August 1960.

INPUT	
Media	Speed
Magnetic Tape	15,000 char/sec
Faper Tape	6 binary digits/char
	200 char/sec
	6 binary digits/char
	Ferranti Photoreader
Keyboard	Flexowriter
Manual	Toggle switch
	OUTPUT
Media	Speed
Magnetic Tape	15,000 char/sec
	6 binary digits/char
Faper Tape	135 char/sec
	6 binary digits/char
Keyboard	Soroban Punch
	570 ltrs/min
	on line
	Flexowriter
Display with camera	18,000 octal digits/sec
	Numbers are formed as Lissajou
	figures from X-Y inputs

Two servo units are connected to the lower accumulator in such a fashion as to provide for program control of elevation and azimuth angle synchro data for a radar antenna.

In June 1960 an alpha-numeric display (using the 6 bit Flexowriter code) was connected to CG 24. It has added photographic facilities. It includes two CRI's. The speed is 75 microseconds per figure or letter.

An input buffer provides for real time input of radar position and range rate data.

CIRCUFT ELEMENTS OF ENTIRE SYSTEM	
Type	Quantity
Thubes	
K1354P11M	1
Ki354P7M	1
5965	6
6080	2
6073	7
5651	4
6BL7	1
8013	2
$12 \mathrm{AX7}$	2
2 D 21	2
CRI display circuits	
Diodes	
S347G	21,700
SG22	7,900
HD2085	3,600
'Total	33,200
Transistors	
$4 \mathrm{JD2A6}$	7,950
2 N 123	6,250
2N385	2,850
M2017	875
GrI34	500
CK750	320
904A	185
Gr83	60
Total	18,930

Magnetic Cores
S-1 Ferrite
229,376
Component count as of May 1958

CHECKING FEATURES

Fixed
Core memory: parity check on each half word Magnetic tapes: parity check (IBM mode)
Perforated tapes: modulo 25 check sum.
Optional
Magnetic tapes: Programmer may use error correcting mode. This provides 2 error detection, 1 error correction. The mode gives 3 of the 7 tracks for data.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer 4.6 Kw (May 1960)
Power, air conditioner 4.5 Kw (Including Room)
Volume, computer
680 cu ft
Area, computer $\quad 110 \mathrm{sq} \mathrm{ft}$
Room size allocated 1,200 sq ft
Capacity, air conditioner 5 Tons
Weight, computer 5,000 lbs
The computer requires 110 sq . feet of floor space. A set of 3 rooms (total area 1200 sq. ft.) is devoted to computer, tapes, maintenance, stock and input buffers. The air conditioner supplies 2500 $\mathrm{cu} . \mathrm{ft} / \mathrm{min}$. from an ll-inch high plenum underneath the computer proper. The air conditioner services other parts of the building. The 5 ton capacity is an estimated fair proportion. Computer logic power is derived from 400 cycle rotating machinery.

PRODUCTION RECORD

Number produced to date 1
Number in current operation
1
System is not being produced.

COST, PRICE AND RENTAL RATES
CG 24 was built as part of an experimental prototype system. It cost approximately $\$ 1,000,000$.

PERSONNEL REQUIREMENTS
Typical Personnel
One 8-Hour Shift
Supervisors
1
4
Programmers $\frac{1}{4}$
Operators
Engineers
Technicians

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

CG 24 has been operating for about 2 years. It has been on power almost constently, being operated an average of 8 hours per day.
Faults have been primarily due to connections (Arkless wiring originally unsoldered has been soldered), other contacts and receptacle pins, memory adjustments (generally not component failures), and photo reader (generally not component Pailures). Qualitatively, it is difficult to assign many (if any) semiconductor failures to aging. Rather, most are traceable to man-made shorts.

ADDITIONAL FEATURES AND REMARKS

Unique system advantages include a very flexible arrangement for receiving and processing long range radar echo data, for directing antenna, and for simulating major parts of receiving and processing equipment.

INSTALLATIONS
Lincoln Laboratory
Massachusetts Institute of Technology
Lexington, Massachusetts

MANUFACTURER

Lincoln Laboratory
Massachusetts Institute of Technology

Photo by Lincoln Laboratory, Massachusetts Institute of Technology

APPLICATIONS

Manufacturer
An experimental digital computer used to test advance design techniques, including very large core storage and transistor circuitry.
The research reported in this computing system description was sponsored jointly by the Army, Navy and Air Force under contract with the Massachusetts Institute of Technology.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system	Binary
Binary digits/word	18
Binary digits/instruction	18
Instructions/word	1
Instructions decoded	25
Arithmetic system	Ring-adder
Instruction type	One address
Number range	Not appropriate
Three instructions are addressable and 1 is micro-	
programmable.	

Internal number system Binary
inary digits/word 10
Binary digits/instruction 18
stuctions/word
ructions decoded
Arithmetic system
Number range
Ring-adder
Not appropriate
programmable.

ARITHMETIC UNIT

Incl Stor Access Exclud Stor Access

Add time
Mult time
Div time
Construction
Arithmetic mode
Timing
Operation
Microsec Microsec

Microsec Microsec
6
1,000

号
1,000 1,000
1,000 transistors
Parallel
Synchronous
Concurrent

Computer performs 83,000 additions per second.
Mulitply and divide is programmed.

STORAGE

Media	Words	Digits	Microsec
Magnetic Core	65,536	$18 /$ word	3
Flip-flop	1	$18 /$ word	0.5
Toggle Switch	16	$18 /$ word	3
A parity bit is additional.	Read-rewrite time is		
6 microseconds.			

\quad Media
Photo Reader
Flexowriter
Ioggle Switch

INPUT
Photo Reader Iloggle Switch

Speed

250 lines/sec
Manual
Manual

OUTPUT

Media
Flexowriter
Iisplay (CRT)

Speed
Flexowriter
Iisplay (CRT)
10 char/sec
16 microsec/spot
CIRCUIT ELEMENTS OF ENTIRE SYSTEM
Thubes
440
I.ube types

3
Crystal diodes
350
Magnetic cores 1,245,773
Transistors
3,500
Separate cabinets
Three major tube types, a small number of others. Most tubes are used in the large memory. The transistors are the Philco L-5l22 Surface Barrier Transistor.

CHECKING FEATURES
F'arity check on memory systems. Marginal checking is built in.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer 10 Kw
$\begin{array}{lr}\text { Volume, computer } & 1,000 \mathrm{cu} \mathrm{ft} \\ \text { Area, computer } & 200 \mathrm{sq} \mathrm{ft}\end{array}$
Capacity, air conditioner
40 Tons
Weight, computer
4,000 lbs
Above figures are approximate. Air conditioner is necessary for memory only.

PRODUCTION RECORD

Number produced 1
Number in operation
2.

ADDITIONAL FEATURES AND REMARKS

One picture shows close-up view of magnetic core memory plene and other picture shows random-access core memory, frame of memory-core selection-switch drivers, computer arithmetic element and control element, and computer operating console.

INSTALLATIONS

Lincoln Laboratory
Massachusetts Institute of Technology
Lexington 73, Massachusetts

Lincoln Test Experimental Computer 2

APPLICATIONS

Computing system is used for scientific research and for the simulation, analysis, and control of real time systems.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system	Binary
Binary digits/word	$36+1+1$
Binary digits/instruction	$36+1+1$
Instructions per word	1
Instructions decoded	64
Arithmetic system	Fixed point (Ones comple-
	ment binary)
Instruction type	Indexable; Indisect ad-
	dressing on all instructions
Number range	$-\left(1-2^{-35}\right)$ to (1-2-35)

Instruction word format

1	1	5	6	6	1	17
meta bit	hold bit	configu- ration reg. no.	op code	Index regis ter	indirect address bit	base address

MANUFACTURER

Lincoln Laboratory
Massachusetts Institute of Technology

Photo by Lincoln Laboratory, MIT

[^0]
Memory Stall

One bit of each computer memory word is used for parity checking. The other is used as a tag bit for program debugging.

ARITHMETIC UNIT

Incl. Stor. Access Exclud. Stor. Access

Photo by Lincoln Laboratory, MIT

STORAGE

	No. of	ReadWrite	No. of	
Media	Words	Time	Digits/Word	Microsec
Magnetic Core S Memory	65,536	6.4	$36+1+1$	3.4
Magnetic Core T Memory	4,096	4.4	$36+1+1$	2.2
Toggle switch, plugboard, etc	80	4.8	$36+1$	2.6
Magnetic Core Index Memory		3.4	$18+1$	0.6
Magnetic Film Config. Memory	y 32	0.8	$9+1$	0.3
Magnetic Tape				
No. of units that can be connected 512				Units
No. of lines /er linear inch 330				Lines/inch
Channels or tracks on the tape 10				Tracks/tape
Blank tape separating each record				Inches
Tape speed			30-1000	Inches/sec
Transfer rate			3,300-37,500	Chars/sec
Start time			250	Millisec
Stop time			10,000-250	Millisec
Physical properties of tape				
Width			3/4	Inches
Length of reel			7,200 F	
Composition			Mylar t	type 189 3M

Tape reels are not changed.

Fixed address system (like drum). Variable read speed.
32 tape unit drives can be treated as 10^{10}-bits of internal storage.
1.4" NARTB reel.

Recording channels are paired. One pair is used for timing marks, another for block marks, and the remaining three for information. Three lines of information form the standard unit of information, a 9 bit character.

INPUT

Media
Paper Tape
Speed is not constant. Accelerates sec peak speed to line width.
Keyboard 106 bit char/sec
Lincoln Writer input
Analog-Digital Converter 40,000 11 bit samples/sec Epsco Datrac converter
Ifight pen/eye Manual
Signals selected by operator
Random No. Gen.
Radioactive source
Miscellaneous Input
18,000 9 bit word.s/sec
80 KC
9 channel pulse input to computer from miscellaneous devices.

OUTPUT

Media
Paper Tape Soroban punch
Xerox printer

Speed

1807 bit lines/sec
20 lines/sec
1300 char/sec
88 characters can be printed in 2 sizes. 6 bit vert. \& 9 bit horiz. axes resolution.
Typewriter 106 bit char/sec
Lincoln Writer output
CRT point display \& Camera $10 \mathrm{KC}-40 \mathrm{KC}$
10 bit resolution in both axes
Miscellaneous output Up to 500 cycles
9 channel switch for computer control of low rate devices
Large board plotter
$15 \mathrm{in} / \mathrm{sec}$ slew speed
PACE plotter
Several input-output units can operate simultaneously so long as the time required by all the units operating does not saturate the central computer. Each unit has at most a single-line buffer; whenever a line of data needs to be transmitted to or from the central computer the unit causes the central computer to use its associated program counter. The machine can compute while in-out units are operating.

At peak rate, about 80,000 computer words/sec can be transferred into or out of the computer.

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Type	Quantity	Use
Tubes		
6888	69	Clock pulse amplifiers
5998	312	S memory
Z-2177	296	S memory
Misc. Types	88	
Diodes		
CTP592	3,000	Input-output circuitry
IN625	736	Input-output circuitry
Misc. Types	1,488	Input-output circuitry

Transistors		
L5122	26,042	
L5134	31,928	
2N501	320	
2N357	1,016	
Misc. Types	2,227	
Magnetic Cores		
	$2,490,880$	S memory
	155,648	T memory
	2,432	X memory

All the vacuum tubes are used in the 65,536 word memory and in the generation of the computer clock pulses.

Resistor coupled transistor logic in the central computer operates at a 5 megapulise per second rate.

Thin magnetic film memory contains 320 magnetic spots.

CHECKING FEATURES

Checking features include a single bit odd parity check on ail memories, a voltage margin check on a.ll bias voltages, and a manual switching system selects circuits to be checked. A built-in sync system facilitates locating machine errors. A library of test programs are used which check the operation of the computer and which attempt to induce errors.

POWER, SPACE, WEIGHT, AND SITE PREPARATION	
Power, computer	20 Kw
Power, air conditioner	17 Kw
Area, computer	$1,500 \mathrm{kVA} \quad 0.8 \mathrm{pf}$
Area, air conditioner	350 sq ft
Room size, computer	54 x 29
Room size, air conditioner	17 x 20
Capacity, air conditioner	25 Tons
Cables run through overhead wireways. Air condi-	
tioning ducts also runoverhead. An 8 ft high false	
ceiling is hung to cover these. Otherwise building	
ls standard. Most power supplies are solid state.	
Principally required for memories.	

PRODUCTION RECORD

Number produced to date I
Number in current operation I
One-of-a-kind research computer

PERSONNEL REQUIREMENTS

Problem originators are trained to use the computer. Paper-tape preparation facilities and utility programs available to all computer users.

Three engineering assistants and one technician are available to do routine maintenance and to make changes in the computer system.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

As a research machine, TX-2 operating experience is good but though data is kept on machine failures, no reliability figures have been computed.

Basic circuits and components are similar to MIT's IX-O machine.

ADDITIONAL FEATURES AND REMARKS

Outstanding features include an operating thin magnetic film memory; 65,536 word magnetic core memory. Fixed address magnetic tape system. Multi-ple-sequence operation of computer and simultaneous operation of input-output units permits considerable flexibility in use of in-out units. Maximum execution time for any one arithmetic instruction can be reduced to one memory cycle time by overlapping instructions and memories.

Unique system advantages include multiple-sequence operation, configuration control over operands, thin magnetic film memory used in control element of computer, and 64 index registers stored in random access magnetic core memory.

The Lincoln Writer input-output unit permits considerable flexibility in communicating with the computer.

FUTURE PLANS

Another 4096 word magnetic core memory will be installed in order to increase opportunities for overlapping operation of memories.

A magnetic tape unit will be installed which will be compatible with units used on many commerciel computers.

Input-output units will be added as the needs develop.
A new control console will replace the present console.

INSTALLATIONS

Lincoln Laboratory
Massachusetts Institute of Technology
P. O. Box 73

Lexington 73, Mass.

LITTON C 7000

Litton Inđustries, Model C 7000

APPLICATIONS

System is designed for real time control systems applications requiring very high computing rates.

PROGRAMMING AND NUMERICAL SYSTEM

MANUFACTURER

Litton Industries
Electronic Equipment Division

STORAGE			
	No. of	No. of	
Media	Words	Digits(Binary)	Microsec
Cores	1,280	28,160	4
MagneticDrum 12,800 281,600	5,000 (Avg)		

INPUT

Internal number system
Binary digits/word
Binary

Instructions per word
Instructions decoded
Arithmetic system

Instruction type
Number range
Instruction word format

00	01	06	$07 \quad 09$	10
Break- point	Operation Code	Index Tag	Address	

Automatic built-in subroutines include square root and gray code to binary conversion.
Three index registers are included.

Incl Stor Access	Exclud Stor Access
Microsec	Microsec
4	2
26 (Average)	22
46	42
Parallel	
Synchronous	
Sequential	

Special hi speed multiplication technique is used. There is extensive overlapping in the execution of sequential instructions resulting in a very high speed computer.
arithmetic is used
One address
-1 to $+1-2^{-20}$

ARITHMETIC UNIT

Add
Mult
Div
Arithmetic mode Ifiming Operation

Media
128 Word Drum Buffer
Flexowriter
Paper Tape

LITTON DATA ASSESSOR
 MANUFACTURER

APPLICATIONS

System is designed for general purpose computing and for special purpose problems, which take advantage of the internal information transfer in the computer. The useful characteristics are dual hale word arithmetic (simultaneous operation on two hale words), real time input-output functions, large amounts of data comparison, external control and communication, and computer-computer communication.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system

Binary digits/word
Binary digits/instruction
Instructions per word
Instructions decoded
Arithmetic system
30 bits plus sign or two half words each of 15 bits
plus sign
Instruction type One address Number range Fither $\pm\left(2^{30}-1\right)$ or two half words of $\pm\left(2^{15}-1\right)$
Input-output functions are automatic.
All B-box operations are included within each order. These include choice of B-box and whether the B-box itself should be modifiled.

Each cormand associated with information transfer contains stencil bits which allow full word, half word, or shifted half word transfer. In addition, it is possible to transfer a word logically multiplied by a stencil word.

Up to eight independent magnetic tape units could be connected to the computer.

INPUT	
Media	
Data Link	Speed
Analog/Digital Converter	$750 \mathrm{bits} / \mathrm{sec}$
Control Panel	$20 \mathrm{bits} / 6$ microsec

OUTPUT

Media
Cathode Ray Tube
Control Equipment

Speed

Outputs are programmable. The 30 bits $/ 6$ microsec ment specified is for a me specifled is for a special purpose application. information up to a total maximum rate of 32 bits each 6 microseconds. The ability of each input buffer is programmable, but the various functions are controlled by the availability of external data.

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Type
FUTURE PLANS
Dilones
Quantity
23,000
1,000 memory
16,000 logic
6,000 clamps on the outputs or inputs of flip-flops or boosters Mransistors 3,100

275 flip-flops at 4 each
200 power boosters at 2 each
800 double inverters at 2 each
Magnetic Cores 34,000
The basic building blocks of the system are 4 transistor flip-flops, 2 transistor power boosters, and 2 transistor double inverters. In addition, there are several cards of fast adder carry propogation logic. The major number of cards in the system contain diode logic. There are numerous cards which are required for the mechanization of the core memory. Plans include provision of a separate memory for input -output to avoid interference with computation, additional memory modules, and geranium modules with silicon for wide ambient temperature range.

CHECKING FEATURES

There exists a parity bit in each word in core storage. If a parity bit failure occurs, or an incorrect order occurs, the error flip-flop turns on.
Program can be used to interpret error information. Under operator control, an error will either turn off the computer or cause the program to tally and classify such errors.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer $1.5 \mathrm{Kw} 2.0 \mathrm{KVA} \quad 0.75 \mathrm{pf}$
Volume, computer 21 cu ft
Area, computer
Room size
9 sq ft
$7 \mathrm{ft} \times 7 \mathrm{ft} \times 7 \mathrm{ft}$ high
Floor loading
Weight, computer
(Suitable for Helihut use)
$60 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$
The computer will work in an environment from $20^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$, and as such, no air conditioning was planned for the initial installation. Present system operates at 60 cps . A 400 cps model can be made available.

PRODUCTION RECORD

Number in current production	1
Number on order	1
Time required for delivery	$6-8$ months

PERSONNEL REQUIREMENTS

One operator is required for each shift. The present mechanization contains a self checking program and as it works on a real-time problem, it proceeds automatically. Because of this, a single operator is all that REL TABTJGTY OPERATING EXPERIENCE. ADDITIONAL FEATURES AND REMARKS
The design of the circuits is based upon very conservative techniques in order to assure a high degree of reliability. The worst-case method of analysis has been used to insure that the circuits operate satisfactorily while being subjected to the most adverse combination of component tolerances and parameter variations. In addition, all of the components have been derated with respect to allowable dissipation, voltage, etc. Component characteristics, such as current gain, are based upon history-derived estimate of the end-of-life value.

Provision is made in the Data Assessor for automatic checking. If a parity error should occur in the core memory, or if an incorrect order should be read, the appropriate error flip flop will turn on and this information would be entered into the computer. A switch on the control panel can be set to either stop the computer after an error, or allow the program to analyze the error. The program can be set to determine and tally the various types of errors. The program can then either correct them if they occur rarely or stop the computer and alert the operator if they occur often.

The Data Assessor is mechanized to provide all the error checking information necessary for complete error detection and checking. The amount of error checking performed depends on the type of program used. Outstanding features include self modifying Bbox operation, built in stencil in each order, dual half word arithmetic, programable (serial or parallel) input-outputs, alarm clock, and simplified communication between computer components. The computer operates at the rate of about 75,000 operations per second. Each operation can occur between two sets of independent variables, such as X, Y navigation. Inputs-outputs do not interrupt the program.

APPLICATIONS

Located at the Staughton Hall, 707 22nd Street, NW, Washington 7, D.C., the system is used for the numerical simulation of naval operations in the area of supply, mathematical studies in the area of matrix games, situations of attrition, and certain kinds of war game studies. System is also used directly as a research instrument in the development of concepts bearing upon data processing operations by the military.

PROGRAMMING AND NUMERICAL SYSTEM
Internal number system Binary coded decimal Jigits per word
Arithmetic system
Instruction type
Three address (approx)
Number range $-\left(5.10^{11}-1\right) \leqslant N \leqslant\left(5.10^{11}-1\right)$

Instruction word format
Normal mode of program storage is by way of wired instructions (many address) on a plugboard. A program may be stored internally and decoded by means of a control program wired on a plugboard. This latter method has been little used because of its low speed.

There are 15 registers.

MANUFACTURER

Engineering Research Associates, Inc.

Photo by George Washington University

ARITHMETIC UNIT

Operation
Ad.d
Mult
Div
Construction (Arithmetic unit only)
Vacuum-Tubes
4,500
Condenser-Diodes
Arithmetic mode
Timing
Operation

System is serial in decimal digits, parallel in bits for each decimal digit.

STORAGE

	STORAGE			
	No. of			
Media	Words	Nig/Word	Access	Microsec
Magnetic Drum	var. $14,000-37,000$	$12-4$	16,000	
Magnetic Drum	$7,000-80,000$	$60-4$	16,000	
High speed	15	12	220 Kc	
registers			Shift rate	

Total digit capacities of drums are about 185,000 and 400,000 respectively.

Second drum has usual read and write. The location or absence of a given word may be determined in one revolution by means of one of a system of SEARCH instructions.

Media
Card (collator)
Paper Tape

INPUT

Paper tape input are Ferranti readers. Card rate is alternating from each of two pockets.

OUTPUT

\quad Media	Speed
Card	50 cards $/ \mathrm{min}$
Paper Tape	60 char $/ \mathrm{sec}$ two
Two paper tape outputs are teletype perforators.	

CIRCUIT ELEMENTS OF ENTIRE SYSTEM
Type
Thabes
Quantity
Diodes
4, 500
Transistors
5,000
Magnetic Cores
3,240 (bits)

CHECKING FEATURES

Most commonly used checking feature is that machine will detect presence of non-numeric binary codes and will stop or branch.

POWER, SPACE, WEIGHT, AND SITEPREPARATION	
KVA, computer	19
KVA, air conditioner	22
Volume, computer	910 eu ft
Volume, air conditioner	130 cu ft
Area, computer	130 sq ft
Area, air conditioner	18 sq ft
Room size, computer and.	918 sq ft
air conditioner	
Floor loading	$7.4 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$
Capacity, air conditioner	86 lbs concen max
Computer was installed in a gutted area of build-	
ing with heavy floor. Further ceiling support was	
provided. Motor generator set was installed in a	
small addition to main building. Building was an	
apartment house.	

PRODUCTION RECORD
Number produced to date I
Number in current operation \qquad
COST, PRICE AND RENTAL RATES
Cost/Price for basic system Computer and one drum Ferranti readers and
$\$ 350,000$
4,000
tape punches
Total \$354,000
Cost/Price for additional equipment
Input Output buffer $\$ 95,000$
Second drum (see above) 200,000
Computer and equipment cited is owned by Office of Naval Research.
Rental rates for additional equipment includes \$200/ monthly for collator and punch used for Input-Output.

PERSONNEL REQUIREMENTS

	One 8 -Hour Shift
Analysts	3
Programmers	4
Clerks	2 keypunch operators
Engineers	2
Technicians	2

Operation tends towards open shop.
Method of training used is "write, load and debug."
Additional shift operations are filled in by pro-
gramming staff or by the hiring on temporary basis
of "computer Watchers" when tending is all that is required.

No increase in engineering staff would probably
be required if we ran 2 shifts all the time.
Computer is capable of protracted good time.
Personnel cited above is approximation of relative-
ly informal organizational setup.
The engineers cited are capable of work at all levels of electronic engineering and have extensively modified the original computer (delivery February 1953) both logically and in the matter of capacity of certain elements.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Good time
37 Hours/Week (Average)
Operating ratio (Good/Attempted to run time) 0.9
Above figures based on period l Jan 56 to 30 Jun 56
Time is available for rent to outside qualified organizations.

Our down time figures would indicate that our "would have run if computer were OK time" would be about 10% of our good time, hence the indicated ratio. During 1958 and 1959 a heavy modification program has reduced good time. Our current (last six months) good time is 16 , with a somewhat lower operating ratio, i.e. 0.75.

ADDITIONAL FEATURES AND REMARKS

The search logic as noted above. Given that a certain register contained the word w , one or another of the search instructions would determine its absence, the address of its location)somewhere), or of its "next" location, or of its "first" location in about 16 milliseconds.

FUTURE PLANS

A new adder is being built for this machine.
The operation is serial and digital addition will occur every two drum (shift) clocks instead of during the 7 now used.

Division, 11 decimal digits divided by 11 decimal digits plus signs will be installed.

INSTALLATIONS
The George Washington University
Logistics Research Project
707 22nd Street, N. W.
Washington 7, D. C.

MAGNEFILE B
Magnefile Electronic Data Processing System B

APPLICATIONS

Inventory control for retail sales department store. Special purpose, no longer in production.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system	Decimal
Decimal digits/word	8
Instructions/word	Instructions wired in
Instructions used	7
Arithmetic system	Fixed point
Instruction type	One address
Three addresses are entered simultaneously.	

ARITHMETIC UNIT

Add time (exclud stor access) $\quad 150,000$ microsec Construction
Basic pulse repetition rate
Arithmetic mode
riming
Operation
STORAGE

Medium	Words	Access Mic
Magnetic Drum	4,040	300,000
	INPUT	OUTPUT
		Speed
Medium		4 char $/ \mathrm{sec}$
Full Keyboard		$7 \mathrm{char} / \mathrm{sec}$

Photo by Electronics Corporation of Americe
CIRCUIT ELEMENTS OF ENTIRE SYSTEM
Tubes $130-6$ Types

Crystal diodes 40
Different plug-in units 10
Separate cabinets
CHECKING FEATURES
Continuous checking total
POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer 0.6 Kw
Area, computer $\quad 3.5 \mathrm{ft} \times 2.5 \mathrm{ft}$
Weight, computer 400 lbs
COST, PRICE AND RENTAL RATES
Approximate cost of basic system \$20,000.
PERSONNEL REQUIREMENTS
One operator required during operation. A service technicion is called when needed.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Passed Customer Acceptance Test 15 February 1954.
INSTALLATIONS
B. Altman and Company

Fifth Avenue
New York, New York

APPLICATIONS

Inventory control. No longer manufactured.
PROGRAMMING AND NUMERICAL SYSTEM

Internal number system	Decimal
Decimal digits/word.	4 ?
Instructions/word	Instructions wired in
Instructions used	77
Arithmetic system	Fixed point
Instruction type	One address

ARITHMETIC UNIT

Add time (exclud stor access)
Construction
Basic pulse repetition rate
Arithmetic mode
Timing
Operation

100,000 microsec Vacurm tubes $40 \mathrm{Kc} / \mathrm{sec}$ Serial Asynchronous Sequential

STORAGE

Media	Words	Access Microsec
Magnetic Drum	8,000	50,000
Magnetic Drum	500	50,000

The larger drum stores $8,00021 \mathrm{dec}$ dig words. The smaller drum stores 50042 dec dig words.

INPUT OUTPUT

Media

Full Keyboard
Typpewriter

Speed

Manual (4 char/sec)
10 char/sec

Remote keyboards may be added.

MANUFACTURER

Electronics Corporation of America Business Machines Division

Photo by Electronics Corporation of America
CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Tubes
Crystal diodes
140
2.40

Different plug-in units 12
Separate cabinets

POWER, SPACE, WEIGHT, AND SITE PREPARATION

Power, computer	$I \mathrm{Kw}$
Area, computer	5 ft x 3 ft

Area, computer
5 ft x 3 ft
Weight, computer
700 lbs
PRODUCTION RECORD
Number produced
1 No longer in production

COST, PRICE AND RENTAL RATES
Approximate cost of basic system $\$ 50,000$. No longer in production.

PERSONNEL REQUIREMENTS

AND TIME AVAILABILITY
Passed Customer Acceptance Test 5 August 1953.
INSTALLATIONS
B. Altman and Company

Fifth Avenue
New York, New York

MANUFACTURER

University of California
Los Alamos Scientific Laboratory

APPLICATIONS

University of New Mexico Research Center Located at University of New Mexico Research Center, 2.206 Lomas Blvd., N.E. (Box 181), albuquerque, New Mexico, the system is used for general purpose scientific computations, providing a computer service to faculty and students of the university.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system
Binary digits per word
Binary digits/instruction
Instructions per word
Instructions decoded
Binary digits/instruction not decoded
Instructions used
Arithmetic system
Instruction type
Number range

Binary

40
8
2
36
2
25
Fixed point
One address
$-1 \leq n<1$

ARITHMETIC UNIT

Exclud Stor Access Microsec

80
Add time
$\begin{array}{ll}\text { Mult time } & 1,000 \\ \text { Div time } & 1,000\end{array}$
Construction
Arithmetic mode
Timing
Operation

Vacuum tubes
Parallel
Asynchronous
Concurrent

ARITHMETIC UNIT		
	Exclud Stor Access Microsec	
Add time	80	
Mult time	1,000	
Div time	1,000	
Construction	Vacuum tubes	
Arithmetic mode	Parallel	
Timing	Asynchronous	
Operation	Concurrent	

STORAGE

Media	Access	
Electrostatic (CRT)	Words	1,024
Magnetic Drum	10,000	50 words in 83,16
Cathode Ray Tube is of the Williams type.		

INPUT

Media
Paper Tape
Magnetic Tape
1,024 words in 48 seconds
1,024 words in 45 seconds

OUTPUT

\quad Media	Speed
Printer (Teletype)	36 words $/ \mathrm{min}$
Printer (Anelex)	3,600 words $/ \mathrm{min}$
Paper Tape	81 words $/ \mathrm{min}$
Magnetic Tape	1,024 words in 45 seconds

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Tubes	2,400
Tube types	7
Crystal diodes	500
Different plug-in units	1 Electrostatic
	6 Magnetic Drum
Separate cabinets	4

Separate cabinets 4
Type 2BPI cathode ray tubes (Williams) are used in the storage unit.

CHECKING FEATURES

Check sum on filling storage by paper tape and mag.. netic tape.
Check sum on filling magnetic drum.

POWER, SPACE, WEIGHT, AND SITE PREPARATION University of California
Power, computer 35 Kw
Volume, computer $\quad 128 \mathrm{cu} \mathrm{ft}$
Area, computer 20 sq ft
Capacity, air conditioner 10 Tons
U of New Mexico
Site preparation include channeled floor for air conditioning and power, ceiling ducts for air conditioning, and a special room for the motor-generators (D.C. supply).

COST, PRICE AND RENTAL RATES

Approximate cost of basic system $\$ 250,000$.
Approximate cost of high speed printer and magnetic drum \$48,000.

Prices include development, construction and overhead.

PERSONNEL REQUIREMENTS

U of New Mexico
System is to be operated and maintained by one person. It is expected to be operating prior to 1 Jan 1961 at the University of New Mexico.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

U of New Mexico
Average error-free running period 5 Hours Good time 11,493 Hours Attempted to run time 12, 399 Hours Operating ratio (Good/Attempted to run time) 0.93 Above figures based on period from Mar 52 to Jan 57 Passed Customer Acceptance Test Mar 52
Time is available for rent to outside organizations. The machine was moved to the University of New
Mexico in 1958. Installation was started in 1959.

FUTURE PLANS

U of New Mexico
The machine is being studied by approximately six graduate students at the Master of Science level, with three masters thesis being written on proposed system changes, including, replacing the single channel tape system with a multi-channel system, a logical study of a program interchange between MANTAC I and a NATIONAL IO2A, and modifications to the existing adder in the machine.

INSTALLATIONS
University of New Mexico
Research Center
2206 Lomas Blvd. N.E.
Albuquerque, New Mexico

MANUFACTURER

University of California
Los Alamos Scientific Laboratory

APPLICATIONS

University of California, Los Alamos Scientific Laboratory
Iocated at Los Alamos, N. M., the system is used for studies in automatic programing, symbolic manipulations (e.g., algebra, differential calculus), mathematics, esp. combinatorial and algebraic transformations, Monte Carlo, crystallography, and general applied mathematics.

PROGRAMMING AND NUMERICAL SYSTEM
Internal number system
Binary digits/word
Binary
Binary diglts//ora 48
Binary digits/instruction
Instructions per word.
Instructions decoded
Arithmetic system
Instruction type
Number range

94
Fixed and floating point One address
2^{112}

Instruction word format

1	2	8	9	10	11
Break Point		Order	Index	Address	

Automatic coding includes MADCAP (86 characters, full sub- and superscripting). Display quotients are planned.

Registers and B-boxes include 3 B-boxes, a universal register, a storage register and a remainder register.

ARITHMETIC UNIT

	Incl Stor Access	Exclud Stor Access
	Microsec	Microsec
Mult	180 avg	180 avg
Div	300 avg	300 avg
Construction (Arithmetic unit only)		
Vacuum tubes		2,850
Diodes	1,040	

Parallel
THining
Operation
Asynchronous
Sequential
STORAGE

Media

Cathode Ray Tube	12,288	49	15 (avg)
(Barrier Grid)		4,096	49

Magnetic Tape
No. of units that can be connected 3 Units
No. of chars/linear inch of tape $300 \mathrm{Char} /$ inch
Channels or tracks on the tape
BLank tape separating each record
1 Track/tape
6 Inches
Tape speed
Mransfer rate
Start time 60 Inches/sec

Stop time
Average time for experienced
operator to change reel of tape 60 Seconds .
Physical properties of tape
Width
0.25 Inch

Length of reel
Composition I l/2 mil mylar sandwich
Thwo physical tracks on tape combine to form a single information channel.

INPUT

Media

Magnetic Tape
Paper Tape
Keyrboard

Speed
270 words/sec
250 char/sec
Manual

OUTPUT

Media

Magnetic Tape
Printer
Punch
Electric Typewriter
Frinter speed is 900 lines/min.
CIRCUFT ELEMENTS OF ENTIRE SYSTEM
Type

Tubes	Quantity
Diodes	5,190
Transistors	3,050
Magnetic Cores	1,160

$\begin{array}{lr}\text { Transistors } & 1,160\end{array}$
Magnetic Cores 200,700
95\% of the tubes are Type 5965. 5\% are high power drives.

CHECKING FEATURES

Parity check on electrostatic storage and magnetic tape.
Load sums for identification
(+) Exponent spill
Overflow
(-) Exponent spill

PRODUCTION RECORD		
Number produced to date	1	
Number in current operation	1	

COST, PRICE AND RENTAL RATES
The total cost is about $\$ 350,000$.
PERSONNEL REQUIREMENTS

	One 8-Hour Shift
Supervisors	3
Analysts	4
Programers	8
Coders	2
Clerks	1
Operators	1
Engineers	4
Technicians	4
\quad Operation tends toward open shop.	

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY
Average error-free running period Several Hours Good time 50 Hours/Week (Average) Attempted to run time 52 Hours/Week (Average) Operating ratio (Good/Attempted to run time) 0.96 Above figures based on period from 1958 to present Time is not availeble for rent to outside organization.

ADDITIONAL FEATURES AND REMARKS

3 indexing registers (B registers) for automatic, address modification and cycle counting (independent of arithmetic elements).

Semi-automatic exit from sub-routines.
Large base for floating point operation to increase speed of floating point additions.
"Madcap", Mathematical and Descriptions Coding Assembly Program, will translate a series of logical and algebraic statements into a computer ready code, this will use a seven hole tape, standard coding uses five holes. Tape reader can handle either.

INSTALLATIONS

University of California
Los Alamos Scientific Laboratory
P. O. Box 1663

Los Alamos, New Mexico

MANIAC III

Mathematical Analyzer Numerical Integrator and Computer

APPLICATIONS

This system will be used by all interested departments of the University of Chicago.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system Binary digits/word				Binary			
				48			
Instructions per word				1			
Instructions decoded				94			
Arithmetic system				Floating point			
Instruction type				Two address			
	er rang	tion ra nent ra	nge (1	$\begin{aligned} & 1-2^{-39} \\ & 127 \text { to }-1 \end{aligned}$	$\begin{aligned} & \text { to }-1 . \\ & 127 \end{aligned}$		
Instruction word format							
1	7	1	5	14	1	5	14
Tag	Opera- tion	Inflector	Modi-\| fier	Address	Inflector	ModiPier	Address

Registers and B-boxes
3 Arithmetic Registers
8 Transistor Storage Registers
8 Index Registers
2 Indicator Registers
Four different types of arithmetic (significant digit floating point, specified point, normalized, basic), all using same number format (exponent-fraction).

Special exponent used to denote absolute zero (essentially zero with exponent -(x).

ARITHMETIC UNIT		
	Incl Stor Access	Exclud Stor Access
Add	$24+n / 2$	$18+\mathrm{n} / 2$
Mult	7	65
Div	81	75
$\mathrm{n}=$ difference	of exponents.	
Construction (Arithmetic unit only)		
Transistors	10,000	
Condenser-diodes	es 16,000	
Arithmetic mode	Parallel	
Timing	Asynchronous	
Operation	Concurent	

MANUFACTURER

University of Chicago
Institute for Computer Research

STORAGE	
$\begin{aligned} & \text { No. of Words } \quad \text { No. of Digits } \\ & 8,192 \end{aligned}$	Access Microsec 1
Plans in progress to include an ad words.	additional 8,192
Magnetic Tape	
No. of units that can be connected	ed 4 Units
No. of char/linear inch of tape	250 Char/inch
Channels or tracks on the tape	8 Tracks/tape
Blank tape separating each record	d. 5 Inches
Tape speed	150 Inches/sec
Transfer rate 3	37,500 Char/sec
Start time	5 Millisec
Stop time	5 Millisec
Average time for experienced	
operator to change reel of tape	60 Seconds
Physical properties of tape	
Width	0.5 Inches
Length of reel	2,500 Feet
Composition	Mylar

	INPUT
Media	Speed
Paper Tape	350 char/sec
Keyboard (Xype-	Manual Alphabetic and numeric
Writer)	
Magnetic Tape	37,500 char/sec

OUTPUT

Media	Speed
Paper Tape	60 char/sec
Iypewriter	10 char/sec
Line Printer	600 lines/min
Magnetic Tape	37,500 char/sec
CIRCUIT ELEMENTS OF ENTIRE SYSTEM	
Type	Quantity
Diodes	20,000
Transistors	12,000
Magnetic cores	500,000

CHECKING FEATURES
Parity on tapes and core storage.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer $2 \mathrm{Kw} 2 \mathrm{KVA} \quad 1.0 \mathrm{pf}$
Area, computer
Room size, computer
Floor loading

Weight, computer 64 sq ft
25 ft x 30 ft
50 lbs/sq ft max
$20 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$
50 lbs concen max
600 lbs
Room temperature controlled to 75° F., humidity 40%

- 60%. Cable ways under floor, or false floor.

PERSONNEL REQUIREMENTS
Open shop policy.

ADDITIONAL FEATURES AND REMARKS
All arithmetic performed on operands in exponentcoefficient form; several options for sealing of result allow calculation to be performed, "generalized fixed point", "normalized", significance-mode, or multiple-precision as convenient.

INSTALLATIONS

University of Chicago
Institute for Computer Research
Chicago 37, Illinois

MERLIN

MERITIN

APPLICATIONS

Located at Upton, New York, the system is used for Atomic Energy Commission programs, including areas of physics, chemistry, biology, medicine, reactor studies, acceleration design and meteorology.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system	Binary
Number of binary digits per word	48
Number of binary digits per	
Instruction	48
Number of instructions per word	1
Number of instructions decoded.	Approx 90
Arithmetic system	Floating point
	Fixed point
Instruction type	One address (mostly)
	Two address (some)
Number range	$2^{-120}-2^{120}$

Instruction word format

Y	Z	b	b^{\prime}	m	m^{\prime}

Automatic built-in subroutines Square-root
Registers and B-boxes
6 B-boxes
3 shifting and 4 non-shifting registers, the
latter for fast access storage, in Arithmetic Section Pathfinder for subroutine return
16 bit Sense Register
48 bit word has one multi-address instruction. The numerical operand represents number in the form $2^{8 \mathrm{e}} \mathrm{X}$: four bits specify magnitude of exponent e , one bit its sign; 40 bits the magnitude of the fractional part X and one bit its sign. Of the remaining two bits of the word (tag bits), one may be automatically detected by control. Fetching of next sequenced instruction begins before completion of operation. MERLIN is patterned after MANLAC II (Los Alamos).

ARITHMETIC UNIT
Incl. Stor. Access Exclud. Stor. Access

	Microsec.	
Add	$8 \mu \mathrm{~s}(3.5)$	Microsec.
Mult.	$140 \mu \mathrm{~s}$	-
Div.	$330 \mu \mathrm{~s}$	130
		320

Add
Div. $\quad 330 \mu \mathrm{~s} \quad 320$

MANUFACTURER

Brookhaven National Laboratory

OUTPUT		
Media	Speed	
Flexowriter	10 char/sec	Friden
Paper Tape	60 char/sec	Teletype
Magnetic Tape	20K char/sec	Ampex FR 300
Printer	10 lines (96 char)/	Shepard
	sec	

CIRCUIT ELEMENTS OF ENTIRE SYSTEM		
Type	Quantity	
Tubes		
5965	2,500	Blocking Osc. Flip Flops and Cathode followers
6197	400	Pulse Drivers
12 El	18	Deflection Amplifiers and Pulse Amps.
OA2	24	Regulators
Diodes		
T3G	16,000	Gating and Switching
T5G	350	Gating and Swltching
In643	150	Gating and Switching
Zenor Diodes		
Various	40	Bias Supplies
Transistors		
2 N 247	400	Memory Read Amplifier and Buffer
2N393	100	Memory Discriminator
2 N 344	300	Memory Strobe and Parity
2 NL 091	20	Fmitter Followers
Magnetic Cores		
Various	1,200	Blocking Oscillator and Pulse Transformers

CHECKING FEATURES

Parity check at input/output and memory output. Single bit error correction to be added at memory output.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer 40 Kw 45 kVA 0.9 pf Power, air conditioner 16 Kw 18 KVA 0.9 pf Volume, computer 1500 cu ft
Area, computer Room size, computer 165 sq ft

Volume, air conditioner
Area, air conditioner Room size, air conditioner Capacity, air conditioner

1400 sq ft
150 cu ft
25 sq ft
1200 sq ft
20 Tons

PRODUCTION RECORD
Nunber produced to date Nunber in current operation 1

COST, PRICE AND RENTAL RATES
Cost

PERSONNEL REQUIREMENTS
One 8-Hour Shift Used
Supervisors
Analysts
1
Programers 7
Clerks 1
Engineers 2
Technicians 3
Operation tends toward open shop.
Formal two week course ($11 / 2 \mathrm{hr} /$ day).
Individual assistance as required.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Time is available for rent to outside organizations on a qualified basis.

Operating figures are not yet available.
Computer is in final stages of debugging and is available on a limited basis.

ADDITIONAL FEATURES AND REMARKS
outstanding features include 4 fast access temporary storage registers.

FUTURE PLANS

An additional 8000 words of Radechon memory will be incorporated with a self-correcting code. An 8000 word magnetic core memory will also be added.
Modifications, including specialized input-output equipment, will be undertaken on the basis of specific research requirements.

INSTALLATIONS
Brookhaven National Laboratory Upton, New. York

MANUFACTURER

Marchant Calculators, Incorporated
(Now Smith-Corona Marchant, Inc.)
Data Processing Systems Division

Picture by The Atlantic Refining Company, Incorporated, Dallas, Texas

APPLICATIONS

The Atlantic Refining Company Scientific and engineering. Utilized by the Atlantic Refining Company's Research and Development Department for research and development in oil exploration and production. Scientific and engineering applications include synthetic seismograms, geophone responses, chemical process designs and fluid flow in porous media.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system Digits per word
Digits per instruction Instructions per word Instructions decoded Arithmetic system Instruction type

Bin coded and Hexa dec 10 decimal
10 decimal
1
71
Fixed point
One address

ARITHMETIC UNIT

STORAGE

INPUT

Media	Speed
Paper Tape (Flexowriter)	600 char/min (6 channel
	tape)
Ferranti Photoelectric	300 words/min (limited
Reader	by loading program)
Keyboard	Manual

OUTPUT

Media	
Speed	
Paper Tape (Flexowriter)	$600 \mathrm{dig} / \mathrm{min}$
Friden Punch	30 char $/ \mathrm{sec}(6$ channel)

COST PRICE AND RENTAL RATES
Approximate cost of basic system Approximate cost of Flexowriter \$85,000 Approximate cost of Spare Flexowriter \$ 2,950 \$ 2,950

	PERSONNEL REQUIREMENTS					
	One 8-Hour Shift		Two 8-Hour Shifts		Three 8-Hour Shifts	
	Used	Recom	Used	Recom	Used.	Recom
Operators	1	1	1	2	1	2
Typist	0	1	0	1	0	1

Methods of training used On the Job

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Spare Flexowriter can also be used for the separate preparation of data and programs.

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Tubes	850
Tube types	7 cover 95%
Crystal diodes	2,000
Separate cabinets	1

Separate cabinets
2,000

There are 75 types of plug-ins at $\$ 10$ each.
50% of the machine uses 7 types of plug-ins.
The major types of tubes are the 5963,5687 , 12BH7, 12AM7, 5965, 5915, 2D21.
A cold water supply and a desk for the Flexowriter is included.

CHECKING FEATURES

Timing circuits
Twenty jacks for applying marginal voltages

POWER, SPACE, WEIGHT, AND SITE PREPARATION

Power, computer
Space, computer
Space, air cond.
Wel.ght, computer
Capacity, air cond.
Designed for cooling by water between 60° and $65^{\circ} \mathrm{F}$.
$5 \mathrm{KW}, 220$ volt
91 cu ft, 20 sq ft
Dimensions $4.5 \times 4.5 \times 4.5 \mathrm{ft}$ plus desk
2,000 lbs
2 tons

Good time
Attempted to run time
to run time)
Above figures based on period from 26 Feb 60 to 26 Mar 60
Acceptance test I Mar 55
Time is not available for rent to outside organizations.

Magnetic drum replaced in 1958.
Converted from one-address to two-address operation in 1959.

FUTURE PLANS
Incorporation of a Moseley system, to have the following items:

Tape Translator
X-Y Recorder
Character Printer
Curve Follower

PRODUCTION RECORD
Produced
Operating
Delivery time

1 Model C and 1 Model II
1 Model C and 1 Model II
No longer manufactured

INSTALLATIONS
Atlantic Refining Company
Research and Development Laboratory 4500 W. Mockingbird Lane
Dallas, Texas

MISTIC
Michigan State Digital Computer

Instruction word format
ORDER ADDRESS ORDER ADDRESS Type Variant Type Variant 4 bits 4 bits 12 bits 4 bits 4 bits 12 bits

Two 40 -bit shifting registers and one 40 -bit fixed register for arithmetic operations.

Two separate 2-bit registers will hold a bank address for 16,384 word core memory, one register each for operands and instructions.

ARITHMETIC UNIT

Operation, Incl stor. access	Microseconds
Add time	100
Mult time	1,000
Div time	1,100
Excl stor. access	80
Add time	980
Mult time	1,080
Div time	
Construction (Arithmetic unit only)	
Vacuum tubes type	Quantity
5844	580
7044	236
5670	120
Arithmetic mode	Serial

STORAGE			
Medie.	Number	Digits per	Access
	of Words	Word	Microseconds
Cathode Ray Tube	1,024	40 bin	20
Magnetic Core	16,384	40 bin	20
The MC memory will replace the CRT memory.			

INPUT

Media	Speed
5-level Photodiode Paper Tape	300 char/sec
Cards	200 cards/min
Above speeds are maximum. Card decoding is pro-	
grammed so that input is 100 cards/minute for most	
applications.	

OUTPUT

Media	Speed
Paper Tape	60 char $/ \mathrm{sec}$
Teletypewriter	$10 \mathrm{char} / \mathrm{sec}$
Cards	100 cards $/ \mathrm{min}, \max$
Cards are program decoded.	
CRT output is under construction.	

CIRCUIT ELEMENTS OF ENTIRE SYSTEM
Tubes

Type	Quan
5844	1,300
5670	650
7044	400
5726	100
Misc.	160
Total	2,610

CHECKING FEATURES

Division algorithm automatically checks for overflow and division by 0 .

POWER, SPACE, WEIGH	AND SITE PREPARATI
Power, computer	18.5 K.W., input to computer
Power, air conditioner	$10 \mathrm{~K} . \mathrm{W}$. , including fan, water pump and cooling tower fan
Volume, computer	500 cu ft
Volume, power supplies	200 cu ft
Volume, air conditioner	150 cu ft
Volume, cooling tower	320 cu ft
Area, computer	$75 \mathrm{sq}$.
Area, power supplies	30 sq ft
Area, air conditioner	32 sq ft
Area, cooling tower	32 sq ft
Room, computer	12 ft x 18 ft
Room, power supplies	8 ft x 9 ft
Air conditioner	10 Horsepower

PRODUCTION RECORD

$\begin{array}{ll}\text { Number produced to date } & 1 \\ \text { Number in current operation } & 1\end{array}$

PERSONNEL REQUIREMENTS

Typical Personnel	One 8 -Hour Shift
Supervisors	1
Analysts	2
Programmers	2
Clerks	1
Librarians	1
Operators	1
Engineers	1
Technicians	1

The computer is operated on an open-shop basis so that most of the functions other than direct operation and maintenance of the computer are taken care of by the various users.

INSTALLATIONS

Michigan State University
East Lansing, Michigan

FUTURE PLANS

A 40-bit 16,384 word core memory is under construction and will replace the existing 1,024 word CRT memory in the Fall of 1960.
A CRT output with an attached camera is also under construction which will permit analog output directly from the computer. This will be made available in the Fall of 1960.

MANUFACTURER

Sylvania Electric Products, Incorporated

Photo by Sylvania Electric Products, Inc.

APPLICATIONS

Presently located at the Needham Industrial Park, the MOBIDIC "A" is a mobile, highly-relizble, high speed, general purpose computing facility for use by field commanders for combat support data processing, combat control data processing, combat computation, and logistic computations.

The Real Time System consist of Real Time InputOutput registers, both of which are capable of communicating with an external device (including another MOBIDIC) over nine lines (6 data, 1 parity, 2 control). The Input system incorporates a program interupt feature.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system Binary
Binary digits/word 36 plus sign \& parity bits Binary digits/instruction 36 plus spare \& parity bits
Instructions per word
Instructions decoded
Arithmetic system
1
Fixed point
Assumed binary point at left end of word, between
bits 36 \& 37
Instruction type One address
Some instructions are two address, e.g. load, move,
Number range $-\left(1-2^{-36}\right)$ to $+\left(1-2^{-36}\right)$

Instruction word format
Standard Computer Instruction Word

38	37	36	31	30	28
27	16	1513121			
Parity	Spare	Op. Code	Index Reg. Selection	Minor Address	Major Address

Input-Output Instruction Word

38	37	3631	30	22	$21 \quad 16$
Parity	Spare	In- Out Comd	Word-Block Counter	Device Selec- tion	Storage Address

Automatic coding includes the Mobidic Assembly Program.

Registers include 6 in the Central Processor, 4 Index, 2 in the Communications Converter, and 2 in the In/Out Converter.

Instructions consist of 15 Arithmetic, 8 Transfer,
l'7 Logical, 3 Sense, and 9 Input-Output instructions.
Index Registers are expansible to a total of 7 .

ARITHMETIC UNIT

	Incl. Stor. Access	Exclud. Stor. Access
	Microsec	Microsec
Add	16	8
Mult	86	78
Div	88	88
Construction (Arithmetic unit only)		
Transistors	6,000	
Arithmetic mode	Parallel	
Timing	Synchronous	
Operation	Sequential	
Mostly sequential, however processing may proceed		
during input-output operations.		

STORAGE

INPUT

Paper Tape 5 channel
11/16 inch tape
Paper Tape 8 channel
1 inch tape
Real Time Channel
character by character
Cards
200 cards/min
The Real Time System was designed to operate with the Collins Kineplex equipment whose speed is 300 characters/sec. or with another MOBIDIC; however, it can operate with any compatible transmission equipment.

OUTPUT

Media		Speed
Paper Tape 5 channel	100 char/sec	$11 / 16^{\prime \prime}$ tape
Paper Tape 8 channel	100 char/sec	1 inch tape
Real Time	120,000 char/sec char by char	
Flexowriter	10 char/sec	

\quad CIRCUFT ELEMENTS OF ENTIRE SYSTEM	
Quantity	
Type	
Diodes	
SG-225	6,000
Transistors	
2N393	32,000
Megnetic Cores	311,200

CHECKING FEATURES

Checking features include parity on memory transfer and input-output, overflow, non-existant memory, non-existant instruction, and non-existant device (I/O). Marginal checking may also be performed. Diagnostic Routines to check the machine and indicate instruction which fail and aid in the localization of failures are available.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer $\quad 29.76 \mathrm{Kw} 37.2 \mathrm{KVA} \quad 0.8 \mathrm{pf}$
Power, air conditioners $4.64 \mathrm{Kw} 5.8 \mathrm{KVA} \quad 0.8 \mathrm{pf}$
Volume, computer $\quad 1,440 \mathrm{cu} \mathrm{ft}$
Area, computer
240 sq ft
Floor loading
$300 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$
240 lbs concen max
Volume, two air conditioners $\quad 72 \mathrm{cu} \mathrm{ft}$
Area, two air conditioners $\quad 48 \mathrm{sq} \mathrm{ft}$
Capacity, two air conditioners 6 Tons
Weight, computer 12,000 lbs
Weight, air conditioners 1,200 lbs
The computer is mounted in a 30 foot van, air conditioning ducts on the right and left ceilings, and
the heater duct at floor level behind the I/O con-
verters, Central Processor, and memory units.
Air-conditioning is for operator comfort only.

PRODUCTION RECORD

Number produced to date 1

Number in current operation
1
Time required for delivery
18 months
System is being tested and evaluated.

COST, PRICE AND RENTAL RATES

Large computer system such as this one is seldom duplicated from one installation to another. Individual problem and application normally requires unique configuration and special features that establish either purchase or lease price. Upon completion of a feasibility study when the requirements are known, along with a calculated growth, costs could be determined.

PERSONNEL REQUIREMENTS
Training will be dependent on the requirements of the user. However, it is recommended that personnel have a minimum of 4 weeks of formal class room lectures followed, if possible, by closely supervised on-the-job-training.
Number of operating personnel will depend on the requirements of the user.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Time is not available for rent to outside organizations.

ADDITIONAL FEATURES AND REMARKS

Outstanding features include ruggedization for field use. System operates between $-25^{\circ} \mathrm{F}$ to $125^{\circ} \mathrm{F}$ and 0 to 97% relative humidity. It is built on a modular basis, expansible in memory (to 7), I/0 converter (up to 4), and $1 / 0$ equipment (to 63).

Unique system advantages include containment in 240 sq ft . It is a completely mobile, large scale, general purpose system. System is designed for reliability, mobility, flexibility, fixed plant, and strategic installation, with minimum space requirements, and minimum pre-installation cost, such as air conditioning and power. This machine is a member of the Army FTEHDATA Family of Computers. It uses the FIELDATA code and is compatible with other FTEIDATA machines.

INSTALLATIONS

One MOBIDIC will be installed for the 7th Army Stock Control Center in Germany. Other systems will be installed to cover a wide range of applications.

APPLICATIONS

The MOBIDIC B is a duplexed general purpose computer being developed for inclusion into a tectical army operation center. The machine's mechanized instruction list was selected for optimized operation in the processing of data rather than for scientific calculations. The two machines may be synchronized together and run as one machine or they may be used separately.

The MOBIDIC B has two real time in-out registers and possible sources of such real time data are radar equipment, weather stations, drone aircraft and other MOBIDICS. This computer is also suited for applications such as message switching centers. One processor receives the incoming message and does the incoming processing and then stores the message in the common mass memory. The second processor would serve as the output message processor, taking the message from the common mass memory completing the processing and transmitting it out. If one machine failed, the second could handle the work at a reduced system speed.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system Binary
Binary digits/word 36 plus sign bit \& parity
Binary digits/instruction 36 plus spare bit \& par Binary digits/instruction 36 plus spare bit \& parity Instructions/word 1
Instructions decoded $55+9$ special subroutine instructions
Arithmetic system Fixed point
Assumed binary point at left end of word, between bits 36 and 37
Instruction type One address
Some instructions are two address, e.g. load, move, etc.
Number range $\quad-\left(1-2^{-36}\right)$ to $+\left(1-2^{-36}\right)$
Instruction word format

38	37	3631	$30 \quad 28$	2716	151312
Parity	Spare	Op. Code	Index Reg. Selection	Minor Address	Ma.jor Address

Standard Computer Instruction Word

38	37	36	31	30	22	21
Parity	Spare	In- Out Comd	Word-Block Counter	Device Selection	Storage Address	

Input-Output Instruction Word
Automatic coding includes MOBIDIC Assembly Program. Registers include 8 in the central processor, 2 in the communications converter, 2 in the In/Out Converter and 7 index registers.

Instructions consist of 15 Arithmetic, 9 Transfer, 18 Logical, 3 Sense, 10 Input-Output, and 9 Special instructions.

ARITHMETIC UNIT

	Incl. Stor. Access	Exclud. Stor. A
	Microsec	Microsec
Add	42	34
Mult	88	80
Div	Not mechanized	
Construction		
Transistors	Arithmetic unit only)	
Arithmetic mode	Parallel	
Timing	Synchronous	
Operation	Sequential	

STORAGE

Media	No. of	No. of	Access
Words	Bits/word	Microsec	
Magnetic Core	8,192	8	8
Disk	6.25×10^{6}	8	1×10^{6}

Expansible to a total of 7 core memories of 4,096 words each
Magnetic Tape
No. of units that can be connected 63 Units
No. of chars/linear inch of tape 300 Chars/Inch
Channels or tracks on the tape 8 Tracks/tape
Blank tape separating each record 1.5 Inches
Tape speed
150 Inches/sec
Transfer rate 45,000 Chars/sec
Start time
1.5 Millisec

Stop time 1.5 Millisec

Average time for experienced 120 seconds
operator to change reel
Physical properties of tape
Width $1 / 2$ Inches

Length of reel
3,600 Feet
Composition
INPUT

Media	Speed
Paper Tape 5 channel	$200 \mathrm{char} / \mathrm{sec}$ (start-stop)
11/16 inch tape	$270 \mathrm{char} / \mathrm{sec}$
Paper Tape 8 channel	$200-270 \mathrm{char} / \mathrm{sec}$
1 Inch tape	
Real Time Channel	$120,000 \mathrm{char} / \mathrm{sec}$
character by character	
Card.s	200 cards $/ \mathrm{min}$

Cards $\quad 200$ cards/min
The Real Time System was designed to operate with the Collins Kineplex equipment whose speed is 300 characters/sec. or with another MOBIDIC; however, it can operate with any compatible transmission equipment.

OUTPUT

Media	Speed	
Paper Tape 5 channel	100 char/sec	11/16" tape
Paper Tape 8 channel	100 char $/ \mathrm{sec}$	1 Inch tape
Real Time	120,000 char $/ \mathrm{sec}$	char by char
Flexowriter	10 char $/ \mathrm{sec}$	

CIRCUIT ELEMENTS OF	
Type	
Quantity	
Diodes	6,000
SG225	60
Transistors	Approx.
2N393	30,000
Magnetic Cores	655,360

CHECKING FEATURES

Checking features include parity on memory transfer and input-output, overflow, non-existant memory, non-existant instruction, and non-existant device (I/O). Marginal checking may also be performed. Diagnostic Routines to check the machine and indicate instruction which fail and aid in the localization of failures are available.

POWER, SPACE, WEIGHT, AND SITE PREPARATION

Power, computer	34.2 Kw	42.75 KVA	0.8 pf
Power, air conditioner	6.6 Kw	8.25 KVA	0.8 pf
Volume, computer	690 cu ft		
Volume, air conditioner	72 cu ft		
Area, computer	115 sq ft		
Area, air conditioner	48 sq ft		
Weight, computer	$12,600 \mathrm{lbs}$		
Weight, air conditioner	$1,200 \mathrm{lbs}$		
Capacity, air conditioner	Two at 1.5 Tons each		

Air conditioners are for personnel comfort only
Computer is mounted in a 30 ft van and a shelter of approximately the size of an S-109.

PRODUCTION RECORD
Number in current production
Number on order
Time required for delivery 18 months

ADDITIONAL FEATURES AND REMARKS

Outstanding features include reggedization for field use. System operates between $-250^{\circ} \mathrm{F}$ to $+125^{\circ} \mathrm{F}$ and 0 to 97% relative humidity. It is built on a modular basis, expansible in memory (to 4), I/O converter (up to 4), and I/0 equipment (to 63).

Unique system advantages include containment in 335 sq ft. It is a completely mobile, large scale, general purpose system. System is designed for reliability, mobility, flexibility, fixed plant, and strategic installation, with minimum space requirements, and minimm pre-installation cost, such as air conditioning and power. This machine is a member of the Army FTELDATA Family of Computers. It uses the FIEIDATA code and is compatible with other FIETDATA machines.
The 40 bit word length in storage is made up of:
36 bit magnitude
1 bit sign
1 bit parity
1 busy-bit
1 spare-bit
40 Total in storage

APPLICATIONS

MOBIDIC C, D, and 7 A are mobile highly reliable, high speed, general purpose computing systems for use by the field commanders for combat support data processing, combat control data processing, combat computations and logistic computations.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system	Binary
Binary digits/word	36 plus sign \& parity bits
Binary digits/instructi	36 plus spare \& parity bits
Instruction per word	1
Instructions decoded	52
Arithmetic system	Fixed point
Assumed binary point bits $36 \& 37$	left end of word, between
Instruction type	One address
Some instructions ar	vo address, e.g. load, move,
Number range	$\left.-2^{-36}\right)$ to $+\left(1-2^{-36}\right)$
Instruction word format	

Standard Computer Instruction Word

38	37	36	31	30	28	27	16
15	13	12	1				
Parity	Spare	Op. Code	Index Reg. Selection	Minor Address	Ma,jor Address		

Input-Output Instruction Word

38	37	3631	$30 \quad 22$	2116	$15151312 \quad 1$
Parity	Spare	In- Out Comd	Word-Block Counter	Device Selection	Storage Address

Automatic coding includes the Mobidic Assembly Program.

Registers include 6 in the Central Processor, 4 Index, 2 in the Communications Converter, and 2 in the In/Out Converter.

Instructions consist of 15 Arithmetic, 8 Transfer, 1.7 Logical, 3 Sense, and 9 Input-Output instructions. Index registers are expansible to a total of 7 .

ARITHMETIC UNIT

Incl. Stor. Access Exclud. Stor. Access

STORAGE

		No. of	Access
Medium	No. of Words	Bits/word	Microsec
Magnetic Core	2 ea (4096)	40	8

Expansible to a total of 7 magnetic core memories of 4,096 words each.
Magnetic Tape
$\begin{array}{ll}\text { No. of units that can be connected. } & 63 \text { Units } \\ \text { No. of chars/linear inch } & 300 \text { Chars/inch } \\ \text { Channels or tracks on the tape } & 16 \text { Tracks/tape }\end{array}$
Blank tape separating each record 1-1/2 Inches
Tape speed
1-150 Inches/sec
Iransfer rate 300-45,000 Chars/sec
Start time
3 Millisec
Stop time
3 Millisec
Average time for experienced
operator to change reel
120 Seconds
Physical properties of tape
1 Inch
Length of reel 3,600 Feet
Composition
Mylar
MOBIDIC C \& MOBIDIC D each have (8) tape units while MOBIDIC 7A has 11.

INPUT

Media speed
Paper Tape 5 channel 200 char/sec (start-stop) to
$11 / 16$ inch tape 270 char/sec
Paper Tape 8 channel 200-270 char/sec
1 inch tape
Real Time Channel 120,000 char/sec
character by character
Cards $\quad 200$ cards/min

OUTPUT

Media
Speed
Paper Tape 5 channel 100 char/sec $11 / 16^{\prime \prime}$ tape Paper Tape 8 channel 100 char/sec 1 inch tape Real Time 120,000 char/sec Flexowriter $\quad 10 \mathrm{char} / \mathrm{sec} \quad$ char by char

CIRCUTT ELEMENTS OF ENTIRE SYSTEM

Type Quantity
Diodes
SG225 6,000
Transistors
2N393 30,000
Magnetic Cores 335,872
MOBIDIC is a completely Solid State computer

CHECKING FEATURES

Parity on memory transfer and input-output, over flow, non-existant memory, non-existant instruction, non-existant device (I/O), marginal checking, and diagnostic programs to check the machine and indicate instructions which fail and aid in the localization of failures.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer $\quad 44.8$ Kw 56 KVA 0.8 pf
Power, alr conditioner $9.28 \mathrm{Kw} 11.6 \mathrm{KVA} \quad 0.8 \mathrm{pf}$
Volume, computer
Volume, air conditioner
Area, computer
Area, air conditioner
Weight, computer
Weight, air conditioner
1200 lbs - Total for 1 van
2400 lbs - Total for 2 vans
Capacity, air conditioner $11 / 2$ Mons
18,000 BIIU/hr each
No special site requirements. MOBIDIC C, D, 7A are mounted in two 30^{\prime} vans. KVA \& Kw ratings include air conditioning for two vans. Kw and KVA maximum for entire system. Air conditioning is for operator comfort only. Air conditioners are two per van.
All figures are for two vans.
PRODUCTION RECORD
Number produced to date
I - AN - MYK - $1(\mathrm{v})$
Number in current operation 1
Number in current production 3
Time required for delivery 18 months

ADDITIONAL FEATURES AND REMARKS

Outstanding features include reggedization for field use. System operates between $-25^{\circ} \mathrm{F}$ to $+125^{\circ} \mathrm{F}$ and 0 to 97% relative humidity. It is built on a modular basis, expansible in memory (to 7), I/0 converter (up to 4), and I/O equipment (to 63).

Unique system advantages include containment in 480 sq ft . It is a completely mobile, large scale, general purpose system. System is designed for reliability, mobility, flexibility, fixed plant, and strategic installation, with minimum space requirements, and minimum pre-installation cost, such as air conditioning and power. This machine is a member of the Army FIEJDATA Family of Computers. It uses the FIEIDATA code and is compatible with other FIELDATA machines.

The 40 bit word length in storage is made up of: 36 bit magnitude
1 bit sign

- 1 bit parity

1 busy-bit
1 spare-bit
40 Total in storage

Photo by Reader's Digest Association

APPLICATIONS

Statistical. and business data processing, accounting, coding and controls.
System is no longer being manufactured.

PROGRAMMING AND NUMERICAL SYSTEM

Internal munber system Decimal digits/word Instructions decoded Arithmetic system Instruction type Number range
Programming system is designed for special application. Operations include addition, subtraction, unit entry, buik entry and transfer.

Binary coded decimal 6 2
8
8 8
Fixed point One address One address
0 to 999,999

ARITHMETIC UNIT

Incl Stor Access : Exclud Stor Access Microsec

25,000
icrosec
240
Add time
Construction
Basic pulse repeti
Arithmetic mode
Timing
$150 \mathrm{Kc} / \mathrm{sec}$
Serial
Asynchronous

Operation

Sequential
The addition time given above is for the addition of two 6-digit decimal numbers.

STORAGE

Medium			Access
Magnetic Drum	20,000	Digits	Microsec
Access time given above is average.	System stores		
500,000 binary digits in 50 milliseconds access time.			

Photo by Reader's Digest Association
PRODUCTION RECORD
Reader's Digest Association
Number produced 1
Number in operation $\quad 1$

COST, PRICE AND RENTAL RATES

Reader ${ }^{\text {® }}$ s Digest Association
Approximate cost of basic system $\$ 100,000$. System is no longer in production.

PERSONNEL REQUIREMENTS

Reader's Digest Association

RELIABILITY, OPERATING EXPERIENCE,

 AND TIME AVAILABILITYReader's Digest Association
Good time
Attempted to run time 6,188 Hours Operating ratio (Good/Attempted to run time) 0.97 Figures based on period from Sep 55 to Jan 57
Passed Customer Acceptance Test Sep 54 Additional features include external programming, dual entry to memory with single address and an address check.

System no longer manufactured.

APPLICATIONS

Business data processing.
System is no longer being manufactured.
PROGRAMMING AND NUMERICAL SYSTEM

Internal number system
Decimal - Excess 3
Decimal digits per word Arithmetic system
Instruction type
10
Fixed point
Fumber range
Program is stored internally and on tape.

STORAGE

	STORAGE
Medium	Access
Magnetic Drum	Words
50,000 decimal digits stored.	Microsec
Buffer storage in magnetic cores.	7,500

INPUT

Media
Punched Tape
Punched Cards

OUTPUT

Media
Punched Tape
Punched Cards

Speed
400 char/sec 600 cards/min

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

ITubes
600
Tube types 3

Crystal diodes
Magnetic elements 1,000
Number of different plug in units 5
Humber of separate cabinets

Airborne Instruments Laboratory, Incorporated Mountain Systems Incorporated

CHECKING FEATURES

Number checks
Address checks
Odd number check

POWER, SPACE, WEIGHT, AND SITE PREPARATION	
Power, computer	4 Kw
Volume, computer	40 cu ft
Area, computer	20 sq ft
Weight, computer	$1,000 \mathrm{lbs}$

PRODUCTION RECORD

Number produced
1
Number in operation
System out of production.

COST, PRICE AND RENTAL RATES

Approximate cost of basic system \$120,000.
Price includes input and output equipment described.
Other equipment dependent upon specific application.
System is no longer being manufactured.

PERSONNEL REQUIREMENTS

One operator required during operation.

ADDITIONAL FEATURES AND REMARKS

Special translator or converter feature reads an abbreviation on a punched card, looks up corresponding code from a list of 5,000 and punches a code number into the same card at a reading and punching rate of 500 per minute.

High speed tallying feature performs 1,440,000 unit additions per hour into selected registers.

Transactions, from a total of 4,000 categories, can be read at random and added to an appropriate one of 4,000 registers.

System no longer being manufactured.

INSTALLATIONS

Readers Digest Association, Incorporated.
Condensed Book Club
Pleasantville, New York

APPLICATIONS

Reader's Digest Association, Incorporated Large scale translation; statistical processing and general purpose computation.
System is no longer being manufactured.

\quad PROGRAMMING AND NUMERICAL SYSTEM	
Internal number system	Binary coded decimal
	and alphanumeric
Decimal digits/word	6
Decimal digits/instruction	2
Instructions decoded	I2
Arithmetic system	Fixed point
Instruction type	One address (for general
	purpose applications)

ARITHMETIC UNIT

	IncI Stor Access Microsec	Exclud Stor Access Microsec
Add time	8,000	288
Mult time	8,000	8,000
Div time	8,000	8,000

Construction Vacuum tubes and magnetic cores Arithmetic mode

Timing

Operation
Serial
Asynchronous
Sequential

Concurrent for punched cards in any of three modes.
The multiply and divide times given above include re-record time.

STORAGE			
Media	Words	Characters	Microsec
Magnetic Drum	6,000	36,000	8,000
Magnetic Drum	4	24	576
Magnetic Cores	2	12	288
INPUT			
Media	Speed		
Punched Cards	360 cards/min		
Paper Tape			
Paper tape is used for report programming and testing.			

MANUFACTURER

Airborne Instruments Laboratory, Incorporated (Parent) Mountain Systems, Incorporated

	OUTPUT
\quad Media	Speed
Punched Cards	360 cards $/ \mathrm{min}$
Paper Tape	20 char/sec

Punched cards are used for translation and paper tape for reports.

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Thubes	2,000 (approx)
Thube types	3 (major)
Crystal diodes	3,000 (approx)
Magnetic cores	396

CHECKING FEATURES

Odd-even checks on numerical calculations are used.
POWER, SPACE, WEIGHT, AND SITE PREPARATION

Power, computer
Volume, computer
Area, computer
Weight, computer

5 Kw
240 cu ft
40 sq ft 3,000 lbs

PRODUCTION RECORD
Number produced
Number in operation
1
System is no longer being manufactured.
COST, PRICE AND RENTAL RATES
Approximate cost of basic system $\$ 150,000$. System is out of production.

PERSONNEL REQUIREMENTS
Daily Operation Engineers Tech and Operators One 8-hour shift $0 \quad 2$

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY
Passed Customer Acceptance Test October 1956. System is no longer being manufactured.

INSTALLATIONS
Reader's Digest Association, Incorporated
Condensed Book Club
Pleasantville, New York

MANUFACTURER

Airborne Instruments Laboratory, Incorporated (Parent) Mountain Systems, Incorporated

Photo by Airborne Instruments Laboratory, Inc.

APPLICATIONS

Manufacturer
Business data processor. System no longer being manufactured.

Hickok Manufacturing Company, Incorporated A perpetual inventory, furnishing reports to the Central Planning and Packaging Departments.

PROGRAMMING AND NUMERICAL SYSTEM
Internal number system Binary
Binary digits/word 20
Binary digits/instruction 60
Arithmetic system
Instruction type
Decimal-binary
One address, consisting of two parts. Address "A" selects a magnetic drum read-record head and address "B" se-
lects a particular location on the drum.

Number range	"A" ranges from 0 to 66
	" B " ranges from 0 to 150

ARITHMETIC UNIT

Add time (Includ	stor access) Microsec 32
Construction	Vacuum tubes, using a combination of trigger pairs, pullers, and cathode followers. A crystal diode matrix is also used.
Arithmetic mode	A combination series-parallel shift register is utilized.
Timing	Synchronous
Operation	Sequential
Three types of	pulses are used to control operation.
Serial feed is	by use of 5 channel paper tape.
Basic operatio	as are addition, subtraction and balance.

	STORAGE		
Media	Words	Digits	Access
Magnetic Drum	10,000	50,000	
Shift Register	1	5	32
Paper Tape Paper tape is utilized for permanent			
storage in			

INPUT

Medium
Paper Tape $600 \mathrm{char} / \mathrm{min}$
Above tape is 5-channel tape, which is prepared by an IBM 063 Card-to-Tape Converter or a Flexowriter typewriter.

OUTPUT

Medium Speed

Paper Tape
Direct to paper tape or via a Flexowriter typewriter.

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Thibes

Thube types
535
Crystal diodes
150
Separate cabinets
4
Crystal diode types used are the $1 N 35$ and the 130116 . Tube types used are the 5965, 5915, 6AN5, 1.2BH7, 12AX7, 2D21, 5963, and. 6AS6. All four cabinets are inter-cabled.

The IBM 063 Card-to-Tape Converter and the Flexoweiter are located in an adjoining room. The Flexowriter can be cabled directly to the computer so as to print out in hard copy as the computer is in operation.

CHECKING FEATURES

Checking is performed by using predetermined "heads" and "spots" on the drum and tapes with known answers. A visual check is made.

POWER, SPACE, WEIGHT, AND SITE PREPARATION

Volume, computer	120 cu ft
Area, computer	16 sq ft
Four cabinets	$2 \times 2 \times 7.5 \mathrm{ft}$ each
Weight, computer	600 lbs

COST, PRICE AND RENTAL RATES
Hickok Manufacturing Company, Inc.
Approximate cost of besic system \$85,000
Approximate cost of Flexowriter 1,200
Rental rates of IBM 063 Card to Tape Converter ($\$ 65.00$ plus $\$ 6.50$ tax) $/$ month.
System is no longer manufactured.

PERSONNEL REQUIREMENTS

Hickok Manufacturing Company, Inc.
One operator and l clerk are utilized to operate the system on a one 8 -hour shift/week basis. One engineer is utilized for developing methods and procedures.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Average error-free running period 30 Hours Good time 145 Hours/Week
Attempted to run time 168 Hours/Week
Operating ratio (Good/Attempted to run time) 0.87
Figures based on the last three years.
Passed Customer Acceptance Test July 1954
System is no longer being manufactured.

INSTALLATIONS
Hickok Manufacturing Company, Incorporated Rochester, New York

MANUFACTURER
Monroe Calculating Machine Company Electronics Division

APPLICATIONS

Air Force Cambridge Research Center Scientific calculation.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system
Decimal digits/word
Decimal digits/instruction
Instructions per word
Instructions decoded
Instructions used Arithmetic system
Instruction type
Number range

Binary coded decimal 20
10
1
11
11
Fixed point
Four address
$10^{-10} \leq \mathrm{n} \leq 10^{10}-1$

ARITHMETIC UNIT
Incl Stor Access
Microsec
120,000
540,000
540,000
Vacuum tubes
$10 \mathrm{Kc} / \mathrm{sec}$
Serial
Synchronous
Sequential

APPLICATIONS

Computing problems normally encountered by Topographic Troops in surveying operations.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system Decimal digits/word Decimal digits/inst Arithmetic system
Instruction type
Binary coded decimal

Fixed point
Four address

ARITHMETIC UNIT

Includ Stor Access

Add time

Mult time
Div time
Construction
Basic pulse repetition rate Timing
Operation

Microsec
120 (approx)
540 (approx
540 (approx)
Vacuum tubes
$10 \mathrm{Kc} / \mathrm{sec}$ Synchronous
Sequential

STORAGE

Media Magnetic Drum Paper Tape

Words

 300Access
Microsec
18,000

Access time on drum is for 100 twenty digit numbers. Drum is 6 inches in diameter, 20 inches long and rotates at a speed of $3,550 \mathrm{rev} / \mathrm{min}$.

INPUT

Photo by U. S. Army Corps of Engineers, Engineer Research and Development Laboratories

CIRCUFT ELEMENTS OF ENTIRE SYSTEM	
Tubes	800 (approx)
Crystal diodes	1
Tube types	$5814 \mathrm{~A}, 5726,5751,5844,6005$, and
	5725

CHECKING FEATURES
Storage selection indicators.
POWER, SPACE, WEIGHT, AND SITE PREPARATION

Area, computer $\quad 441 / 2$ in $\times 72$ in $x 31$ in Desk
Weight, computer $1,686 \mathrm{lbs}$, including Flexowriter

PRODUCTION RECORD

Number produced 1
No longer in production.
COST, PRICE AND RENTAL RATES
Manufacturer
System is no longer being manufactured.
Engineer Research and Development Laboratories
Approximate cost of basic system $\$ 86,074$.

PERSONNEL REQUIREMENTS
Engineer Research and Development Laboratories One person required for operation and one person required for servicing unless one person is trained to perform both operation and servicing.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Operating ratio (Good/Attempted to run time) 0.85 Passed Customer Acceptance Test March 1955

Computer has operated for several days without any down time; however, the only actual ligure is the 2,069 hours taken from the running time meter.

ADDITIONAL FEATURES AND REMARKS

Pre-addressed tapes
Single cycle operation where program is checked line for line.
Pre-determined automatic sequencing.
Shock-mounted for van installation; mobile.

INSTALLATIONS

U. S. Army Corps of Engineers

Topographic Engineering Department
Engineer Research and Development Laboratories
Fort Belvoir, Virginia

Monroe Calculating Machine Company Electronics Division

Photo by Monroe Calculating Machine Company, Electronics Division

APPLICATIONS

Scientific calculation.
PROGRAMMING AND NUMERICAL SYSTEM
Internal number system Bins.ry coded decimel Decimal digits/word 20
Decimal digits/instruction 10
Instructions per word 2
Instructions used
Arithmetic system
Instruction type
200
Fixed point
Four address
Number range. $\pm \mathrm{xxxxx} \times x \times x x \mathrm{x}$. xxxxx xxxxx
Fixed point is centrally located

ARITHMETIC UNIT

Incl Stor Access
Microsec
Add time
Mult time
Div time
Construction
600,000
600,000
Vecuum tubes and crystal diodes

Basic pulse repetition rate	$10 \mathrm{Kc} / \mathrm{sec}$
Arithmetic mode	Serial
Timing	Synchronous
Operation	Sequential
Automatic positioning of numerical results about	
the decimal point.	

STORAGE

	SIORAGE	Access
Medium	Words	Microsec
Magnetic Drum	200	$16,670 \mathrm{max}$
4,000 digits of magnetic drum storage.		

INPUT

Media

Keyboard Punched Tape

Speed

Manual
Punched Card
10 char/sec
nol to 17 cards/sec
Standard teletype or Kleinschmidt units for tape processing.

Photo by Monroe Celculating Machine Company, Electronics Division

OUTPUT

Media
Printed Copy
Punched Tape Punched Card.
unched Card $17 \mathrm{char} / \mathrm{sec}$
Standard teletype or Kleinschmidt units. 60 char/ sec. Punched tape and punched card is optional.

INSTALLATIONS

Several systems are at U. S. Air Force installations in Japan and Germany. These are under Monroe maintenance. The systems installed in the United. States are not under Monroe maintenance.

Howard University

CHECKING FEATURES

Parity checks
MAID (Monrobot Automatic Internal Diagnosis) and dual arithmetic and control units.

APPLICATIONS
System is used primarily for billing, and invoice writing.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system	Binary
Binary digits/word	62 bits
A plugboard program	is used.
Instructions decoded	16
Arithmetic system	Fixed point
Instruction type	One address
Number range $\quad 0$ to 1018	
System has 15 registers.	

ARITHMETIC UNIT

	Incl. Stor. Access	
	Microsec	Exclud. Stor. Access
Add	12,000	3,000
Mult	13,500	per decimal digit of
		multiplier
Div	54,000	per decimal digit of
		quotient

Construction (Arithmetic unit only)
Vacuum-Thbes 64
Diodes $\quad 1,000$
Arithmetic mode Serial
Timing
Synchronous
Operation Sequential
Multiplication is accomplished by manual input of the multiplier digits. Therefore, actual speed is operator limited.

During division the quotient digits are printed, and the actual speed is therefore printer limited.

STORAGE

	No. of	No. of	Access
Medium	Words	Digits	Microsec
Magnetic Drum	15	18	decimal dig
	12,500 avg		

INPUT

Media
Electric Typewriter
Plugboard
Plugboard is used for constants and alphabetic characters.

Typewriter input is operator limited.

MANUFACTURER
Monroe Calculating Machine Company

OUTPUT	
Media	Speed
Electric Typewriter	$10 \mathrm{char} / \mathrm{sec}$
Numerical and alphabetic	
IBM 024 Card Punch $\quad 10 \mathrm{char} / \mathrm{sec}$Numerical	
CIRCUYT ELEMENTS OF ENTIRE SYSTEM	
Type Quantity	
Tubes	
Primarily 5965	
Diodes	
Primarily 1 N636	

POWER, SPACE, WEIGHT, AND SITE PREPARATION
KVA, computer 0.75
Volume, computer $\quad 32 \mathrm{cu} \mathrm{ft}$
Area, computer 10.6 sq ft
Floor loading $\quad 40 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$
150 1bs concen max
Weight, computer 450 lbs
Site preparation not necessary.

PRODUCTION RECORD

Number produced to date 70
Number in current operation 70
Time required for delivery 3-6 months
COST, PRICE AND RENTAL RATES
Computer with Typewriter
List of additional equipment
IBM (024) Intercoupler
(IBM 024 - see IBM price list)
90-day guarantee parts and labor.

PERSONNEL REQUIREMENTS
One clerk is required for each 8 -hour shift. Ordinary typists are trained at customer location in one day.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY
Ambient temperature to $130^{\circ} \mathrm{F}$
Voltage margins, $\pm 25 \%$
Pre-aged tubes used throughout.

ADDITIONAL FEATURES AND REMARKS

Computer has fewer tubes (74) then any other product known to us. Calculation is so fast operator experiences no delay. System handles fractions of any kind, feet, inches, gross, dozen, board feet, etc. Foreign currency such as pounds, shillings, pence, are handled. Step-rate utility billing is automatically performed.

System operates as a decimal machine externally.
Input and output conversion are automatic. Decimal shift left and shift right instructions make this possible.

FUTURE PLANS

Punched tape output planned soon.

MONROBOT XI

Monroe Calculating Machine Mark XI

MANUFACTURER

Litton Industries
Monroe Calculating Machine Division

APPLICATIONS

The Monrobot Mark XI is a stored-program, general purpose electronic business computer capable of operation with a wide variety of input-output equipment.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system
Binary digits/word
Binary digits/instruction
Instructions/word
Instructions decoded
Instructions used
Arithmetic system
Instruction type
Number range

Binary
32 including sign
16
2
2
27
27
Fixed point; programmed floating point
One address
0 to $2^{31}-1$ or 0 to $\pm 10^{9}$ or
0 to $\pm 2,147,483,647$

Instruction word format

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
Instruction	Address													
In														

ARITHMETIC UNIT

Incl. Stor. Access Exclud. Stor. Access

Microsec	Microsec
9,000	3,000
34,000	28,000
500,000	500,000

Division is programmed.

Construction (Arithmetic unit only)

Transistors
Diodes
Arithmetic mode
Timing
Operation

190
1,675
Serial
Synchronous
Sequential.

STORAGE

	No. of	No. of	Average Access
Medium	Words	Digits	Microsec
Magnetic Drum	1,024	32,768	6,000

INPUT

Media

Punched Paper Tape
Electric typewriter 16-key numeric keyboard 80-column card Tel.etypewriter

Speed

20 char/sec
10 char/sec
10 char/sec
$10 \mathrm{char} / \mathrm{sec}$
IThe machine can accomodate any three of the above input devices simultaneously. Punched paper tape may be any code, 5 to 8 level. Quoted input and output speeds include conversion to and from binary as well as translation of any tape language to machine code. Higher speeds are possible using pure binary input and output.

OUTPUT

Media
Punched Paper Tape
Electric Iypewriter
80..column Card

Teletypewriter
The machine can accomodate any three of the above output devices simultaneously. Punched paper tape may be any code, 5 to 8 level.

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Type
Quantity
Tubes
5727
Diodes
Pr:Imarily 1N636
10-30 (10 tubes/output device)

Transistors
Pr:lmarily $2 \mathbb{N 4} 12$
2,300
383

CHECKING FEATURES

Pajcity check on input and output.
Parcity may be omitted.
Action taken on parity failure depends upon program. With Teletype or other parity-less codes, parity is not used.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer $0.850 \mathrm{Kw} \quad 0.940 \mathrm{KVA} 0.9 \mathrm{p}$ Volume, computer
Area, computer
Room size
Floor loading
Weight, computer
System requires $15 \mathrm{amp}, 110$ volt, AC, 60 cps line.

PRODUCTION RECORD

Number produced to date 7
6
Number in current operation 6 Time required for delivery 6-9 months

COST, PRICE AND RENTAL RATES

Cost of computer with operator desk, 1 typewriter, 1 tape reader, and 1
tape punch \$24,500
Additional Equipment
16-key numeric keyboard 300
Tape Reader 1,250
Tape Punch 700
$\begin{array}{ll}\text { Typewriter } & 2,350 \\ \text { Buffer for third device }\end{array}$
Buffer for third device
Above prices are approximate.
Monthly rental of computer with operator desk
1 typewriter, 1 tape reader, and 1 tape punch,
including service $\$ 700$
Maintenance contracting is $\$ 1,200 /$ year after 90 -day service guarantee.

PERSONNEL REQUIREMENTS

Manufacturer makes a programmers' school available to users. One operator is required for each 8-hour shift. Virtually no operator training is required.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Conservative solid-state design assures long life and wide margins under all but the most extreme operating conditions. Pluggable printed circuit boards provide trouble-free operation as well as ease of maintenance. Monrobot XI operates with full $\pm 25 \%$ voltage margins at $110^{\circ} \mathrm{F}$ ambient.

ADDITIONAL FEATURES AND REMARKS

The Monrobot Mark XI accepts alpha-numeric information in any code from up to three independent input devices and can output information to any combination of three independent devices.

System can simultaneously prepare independent output documents in any format, and can merge transaction and unit record input tapes in any format.

MANUFACTURER
Monroe Calculating Machine Company
Electronics Division

Photo by Monroe Calculating Machine Company, Flectronics Division

APPLICATIONS

Item inventory and monetary accounting.

PROGRAMMING AND NUMERICAL SYSTEM	
Internal number system	Binary coded decimal
	and sexadecimal
	96
Binary digits/word	12
Decimal digits/instruction	2
Instructions per word	36
Instructicns decoded	36
Instructions used	Fixed point (arbitrarily
Arithmetic system	located)
	Three address (modified)
Instruction type	Variable
Number range	
Words may be made up of either numeric or alpha-	
numeric characters.	

ARITHMETIC UNIT

Add time Mult time Div time Construction

Basic pulse repetition rate

Arithmetic mode Timing
Operation

Includ Stor Access

Microsec
8,000
68,000
77,000
Vacuum tubes and crystal. diodes
$60 \mathrm{Kc} / \mathrm{sec}$ (rapid access)
$104 \mathrm{Kc} / \mathrm{sec}$ (general storage)
Serial
Synchronous
Sequential

STORAGE

Media	Nords Miccess
Magnetic Drums	20,000/drum (general storage)
25,000 (avg)	

INPUT

Media	Speed
Keyboard (Flexowriter)	10 char $/ \mathrm{sec}$
Keyboard (Model 28	6 char $/ \mathrm{sec}$
TCeletype 12 Units)	
Paper Tape (Ferranti)	200 char $/ \mathrm{sec}$
Magnetic Tape	400 char $/ \mathrm{sec}$

OUTPUT

OUTPUT	
Media	Speed
Paper Tape (Flexowriter)	10 char/sec
Printed Page (Flexowriter) and Model 28 Teletype)	$10 \mathrm{char} / \mathrm{sec}$
Magnetic Tape	$400 \mathrm{char} / \mathrm{sec}$
	r
CHECKING F	EATURES

Parity checks MAID (Monroe Automatic Internal Diagnosis) System used for malfunction detection and location.

INSTALLATIONS
System was installed for the U. S. Air Force under Contract No. AF33(616)-2158.

NAREC

Naval Research Electronic Computer

APPLICATIONS

General purpose scientific calculation and data processing.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system	Binary
Binary digits/word	48
Binary digits/instruction	24
Instructions/word	2
Instructions decoded	44
Arithmetic system	Fixed point
Instruction type	One address
Number range	-1 to +1

Instruction word format

Address				Order	
4	4	4	4	4	4

Half-word, six four-bit sexadecimal characters
Automatic built-in subroutines include punched tape input and output routines and variable length data transfer instructions (2 address).

Automatic coding includes floating point interpretive routines, containing standard mathematical subroutines as basic instructions.

Registers:

7-48 bit parallel registers in arithmetic section, including one adder and one inverter of which two are directly programmable.
I - 48 bit parallel register in control section

MANUFACTURER
U. S. Neval Research Laboratory

Official United States Navy Photo
l-16 bit parallel register in control section (program counter)
l - 48 bit serial - parallel output buffer register
2-48 bit multiple use comparator registers
1-48 bit core memory information register
1 - 14 bit core memory address register
2-48 bit and 1 - 16 bit manual switch registers
ARITHMETIC UNIT

The above information on magnetic tape is preliminary only, as definite plans are now being formulated. The tape system should be installed in the NAREC by July 1961.

	INPUT
Media	Speed
Magnetic Tape	120 in/sec
Paper Tape	$25-100$ in/sec
Dual speed photoelectric reader at 250 and 1000	
char/sec using mylar-aluminum foil and paper tape.	

OUTPUT

Media
Paper Tape

Speed

High and medium speed paper tape punch
Magnetic Tape
120 in/sec
Line Printer
Line Printer will be installed by July 1961.
Speed of 600-1200 lines/minute is anticipated.

CIRCUIT ELEMENTS OF ENTIRE SYSTEM	
Type	Quantity
Tubes	
5687	600
5670	600
6AN5	$1, \frac{100}{300}$
	Does not include electrostatic memory which is

Does not include electrostatic memory which is being replaced by magnetic core memroy.
Diodes

D1odes	16,000
1N89	1,800
SG22	7,000
DR211	4,000
1N690	250
65005	350
$651 C 0$	600
$651 C 7$	30,000

Zener Diodes
(Texas Instruments)

1N89 used in arithmetic section. All others used in magnetic core memory.
Transistors

2N1478	1,000
2N600	500
2N1122	3,000
2N1123	300
	4,800

All Philco transistors are used in Telemeter Magnetics Core Memory.
Magnetic Cores
.050 inch x .030 inch 900,000
Telemeter Magnetics 501-10
Capacitors

Resistors

CHECKING FEATURES

Automatic comparison bit by bit of all transfers between registers in arithmetic and control sections by means of 2 - 48 bit comparator registers.

Magnetic tape system will have conventional parity checks and sense instructions.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer
25 Kw
Power, air conditioner
Volume, computer
15 Kw
Area, computer
$1,000 \mathrm{cu} \mathrm{ft}$
125 sq ft
Room size, computer
$30 \mathrm{ft} x 80 \mathrm{ft}$
Capacity, air conditioner 25 Tons
Weight, computer 5,000-10,000 lbs
Site preparation included concrete trenches in floor for power wiring and coaxial cables. Power includes both M-G sets and electronic power supplies.

PRODUCTION RECORD

Number produced to date 1
Number in current operation 1

COST, PRICE AND RENTAL RATES

Total system cost approximately $\$ 1,500,000$.
PERSONNEL REQUI REMENTS
One 8-Hour Shift Two 8-Hour Shifts

Supervisors	2	2
Programmers	10	20
Clerks	2	2
Engineers	1	2
Technicians	3	5
Operation tends toward semi-open shop.	Includes	

Operation tends toward semi-open shop. Includes programmers in central facility and in other groups of the Laboratory. Programmers above includes analysts and coders. The above does not provide for magnetic tape or printer operation. Technicians above includes operators.

Training made available by manufacturer includes in-service programing courses by Research Computation Center for rest of the NRL.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Approximately 1 hour per shift is required for scheduled maintenance.
Operating efficiency (ratio of good time to scheduled operating time) has averaged 85% over the past four years (1956-1960) of full time operation. This is expected to improve considerably in the future due to the current replacement of electrostatic storage by magnetic core storage.

ADDITIONAL FEATURES AND REMARKS

Outstanding features include a special console, which displays the contents of core memory address abd information registers and permits direct manual read and write to core memory locations.

Unique system advantages include computation monitored from control console without loss of time to stop computer at desired location or instruction in many different ways in order to facilitate program and machine checking. Instruction code and layout is very simple to use and remember, yet is extremely powerful and flexible.

Flexowriters are used in parallel to print results of several problems simultaneously. A centralized operating area consists of photoelectric tape readers, high speed punch, Flexowriter and core memory console adjacent to main control console.

FUTURE PLANS

Magnetic core memory installed in October 1960. Magnetic tape system and line printer will be installed by July 1961.

INSTALLATIONS

U. S. Naval Research Laboratory

Washington 25, D. C.

NATIONAL IO2A

National Cash Register Company
Model CRC 102A
Built by former Computer Research Company

APPLICATIONS

Manufacturer
General purpose scientific applications Chemical Warfare Laboratories, U.S. Army Chemjeal Center
Scientific
U.S. Naval Ordnance Test Station (China Lake)

Data reduction general purpose
U.S. Naval Postgraduate School

Located at Monterey, California, the system is used

MANUFACTURER
National Cash Register Company

Photo by U. S. Army Chemical Center
for scientific applications, including student and faculty research in practically all phases of the physical sciences, for data processing, including weather prediction, and for simulation, including electronics systems and games (business, industrial and military).

Holloman Air Development Center (ARDC)
Trajectory calculations, heat transfer problems, solution of various kinds of linear simultaneous equations and other algebraic equations.

Photo by U.S. Naval Post Graduate School Official Photograph U.S. Navy
U.S. Air Force School of Aviation Medicine Located at Brooks Air Force Base, Texas, the system is used for matrix algebra (Covariance, symmetric and non-symmetric mult. and inversion programs, corr), factor analysis (Factoring the correlation matrix and rotating the factor vector), for general analysis statistics (Mean, variance, and st. deviations; and analysis of variance), time series analysis (Circular serial correlation, autocorrelations, periodograms), and for Monte Carlo methods, generating pseudo random fractions (runs, means, frequency).

PROGRAMMING AND NUMERICAL SYSTEM

Manufacturer

Internal number system

 Binary digits/word Binary digits/instruction Instructions per word Instructions decoded Instructions used Arithmetic system Instruction typeNumber range
Binary
42 (One for timing)
41
1
27
27
Fixed point
Three address
$-\left(1-2^{-36}\right)$ to $\left(1-2^{-36}\right)$

ARITHMETIC UNIT

Add
Mult
Div
Construction

Microsec	Microsec
19,900	7,400
37,500	25,000
38,500	25,800

Incl Stor Access Exclud Stor Access

300 Vacuum tubes
Rapid access word registers 8 Basic pulse repetition rate $100 \mathrm{Kc} / \mathrm{sec}$ Arithmetic mode

Serial Timing

Synchronous Operation

The speed can be increased by a factor of 8 when a buffer is used.

STORAGE

Media	Words	Microsec Access
Magnetic Drum	1,024	12,500 (avg)
Magnetic Tape	$112,800 /$ reel	6,000
Up to 7 tape units may be used with one computer.		
Magnetic drum rotates at $40 \mathrm{rev} / \mathrm{sec}$.		

Media

Magnetic Drum
Magnetic Tape

Magnetic drum rotates at $40 \mathrm{rev} / \mathrm{sec}$.

INPUT	
Manufacturer	
Media	Speed
F'Lexowriter	Typing Speed
Punched Paper Tape	10 char/sec
Magnetic Tape	1.6 char/millsec
U.S. Army Chemicel Center	
Flexowriter	Typing Speed
Funched Paper Tape	10 char/sec
Magnetic Tape	64 words/sec
U.S. Naval Ordnance Test Station	
Funched Paper Tape	10 char/sec
IT3M Cards (523 modi	50 cards/min
U.S. Navel Post Graduate School	
Paper Tape	10 char/sec
Cards	60 cards/min
	240 words/min
Magnetic Tape	60 words/sec
School of Aviation Medicine	
F'lexowriter	Typing Speed
Punched Paper Tape	10 char/sec
IT3M Cards	50 or 100 cards/min
Magnetic Tape	1.6 char/millisec

OUTPUT

Manufacturer	
Media	Speed
Magnetic Tape	600 char $/ \mathrm{sec}$
Flexowriter	10 char $/ \mathrm{sec}$
Punched Paper Tape	$10 \mathrm{char} / \mathrm{sec}$
U.S. Army Chemical Center	
Magnetic Tape	$64 \mathrm{words} / \mathrm{sec}$
Flexowriter	$10 \mathrm{char} / \mathrm{sec}$
Punched Paper Tape	10 char $/ \mathrm{sec}$
U.S. Naval Ordnance Test	Station
Flexowriter	10 char $/ \mathrm{sec}$
Punched Paper Tape	10 char $/ \mathrm{sec}$
IHM Cards (523 modified)	50 cards $/ \mathrm{min}$

U.S. Naval Post Graduate School
A. digital point is used, which operates independent-
ly of computer. No conversion is necessary for plotting. The plotter is manufactured by the California Computer Products Corporation.

Paper Tape	10 char $/ \mathrm{sec}$
Cards	60 cards $/ \mathrm{min}$
Magnetic Tape	60 words $/ \mathrm{sec}$
School of Aviation Medicine	
Flexowriter	10 char $/ \mathrm{sec}$
Paper Tape	$10 \mathrm{char} / \mathrm{sec}$
Cards	50 or $100 \mathrm{card} / \mathrm{sinn}$
Magnetic Tape	600 char $/ \mathrm{sec}$

CIRCUFT ELEMENTS OF ENTIRE SYSTEM

Tube
400
$\begin{array}{lr}\text { Tube types } & 12 \\ \text { Crystal diodes } & 8,000\end{array}$
U.S. Army Chemical Center

Tube types used include 12ATT, 12BH'7, 6BQ7, 5687, 5963, 6080, 5881, and 6AN5. System utilizes 265 tubes and 6,000 diodes and consists of operators console, computer proper, and magnetic tape unit.

CHECKING FEATURES

Duplicate recording on magnetic tape
"Overflow" alarm"
"No command" alarm

POWER, SPACE, WEIGHT, AND SITE PREPARATION

Manufacturer	
Power, computer	7.7 Kw
Weight, computer	$2,700 \mathrm{lbs}$
U.S. Army Chemical Center	

Computing system occupies 135 cu ft , air conditioner
48 cu ft . The computing system weighs 3,400 lbs,
air conditioner weighs 12,000 lbs. The capacity of
the air conditioner is 6 Tons.
U.S. Naval Ordnance Station

System operates a $230 \mathrm{v} \pm 5 \%$ Iine, liberates 35,000
BIU/hour. Computer occupies 72 cu ft and 12 sq ft
(Dimensions are 30 by 59 by 73 inches).
U.S. Naval Post Graduate School

Power, computer $5.5 \mathrm{Kw} \quad 7.7 \mathrm{KVA} \quad 0.71 \mathrm{pf}$
Volume, computer 108 cu ft
Volume, air conditioner 360 cu ft
Area, computer 18 sq ft
Area, air conditioner $\quad 36$ sq ft
Room size Approx 2,800 sq ft
Floor loading $200 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$
700 lbs concen max
Capacity, air conditioner 25 Tons
Weight, computer Approx 2,000 lbs, total
Lobby section of one of the school buildings was partitioned. False flooring, air conditioning and
power were installed in the laboratory section which
houses two computers (CDC 1604 and NCR-CRC-102A)
and their associated peripheral equipment.
School of Aviation Medicine
Power, computer 5.5 Kw 7.7 KVA 0.7 pf
Volume, computer $\quad 72 \mathrm{cu} \mathrm{ft}$
Area, computer 12 sq ft
Room slze $20 \mathrm{ft} x 12 \mathrm{ft}$
Floor loading 225 lbs/sq ft
Capacity, air conditioner 5 Tons
Weight, computer 2,700 lbs
Air conditioner central unit
System required primary power source due to sensitivity to power fluctuations.

PRODUCTION RECORD

Manufacturer
Produced 16
Operating 16

COST, PRICE AND RENTAL RATES

U.S. Army Chemical Center

Approximate cost of basic system. \$70,000
Approximate cost of additional equipment
\$25,000
Rental rates for basic system $\$ 2,400 /$ month
U.S. Naval Post Graduate School

Computer, 2 tape drives, console, Flexowriter
(paper tape reader and punch), point plotter cost approximately $\$ 100,000$.

Rental rates for additional equipment, to include
the 2 IBM 523, IBM 402, IBM 082, and IBM 026 is
$\$ 600$ per month.
Approximately $\$ 9,500$ per year is paid to the Na -
tional Cash Register Company for maintenance service. School of Aviation Medicine
The 102A Computer cost approximately $\$ 80,000$.
The 126A Magnetic Tape Unit cost approximately
\$15,000.
Two IBM Summary Punches (No. 523) rent at approximately $\$ 2,100$ per year.
Air Force personnel perform servicing of the system.

PERSONNEL REQUIREMENTS

U.S. Army Chemical Center

One 8 -hour shift requires 1 engineer and 1 techni-cian-operator.
U.S. Naval Ordnance Test Station

One 8 -hour shift requires 1 engineer, 2 programmers, and 1 "open shop" personnel.
U.S. Naval Post Graduate School

The computers are available for student and faculty research 24 hours per day. Those students and faculty who have been checked-out on the operation of the computers and peripheral equipment are permitted out-of-hours production runs on the computers. Potentially the school has approximately 1,000 programmeroperators under this system. At the present time the CDC 1604 operates approximately 14 hours per day and the NCR 102A 20 hours per day, 7 days per week.

Course work is given in the Engineering School on programming, operation and applications.

Seminars are given at the school.
School of Aviation Medicine One 8-Hour Shift

Analysts

Programmers
1
Operators
Eingineers
Operation tends toward open shop.
On-the-job training (OJT) is given.
Gule Research and Development Company
Central computing section consists of 1 engineer, 1. operator, 1 secretary-librarian, and 5 administrative, numerical analysis and programming personnel, f'or slightly more than an 8-hour shift.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

U.S. Army Chemical Center

Good time
3,380 hours
Attempted to run time 5,200 hours
Operating ratio (Good/Attempted to run time) 0.65
Figures based on a 2.5 year period
Passed Acceptance Test
Jun 54
U.S. Naval Ordnance Test Station

Average error-firee running period 80 hours
Operating ratio (Good/Attempted to run time) 0.90
Figures based on period 1 Jan 55 to 10 Nov 56
Passed Acceptance Test 1 Jun 54
U.S. Naval Post Graduate School

Fassed Acceptance Test Summer of 1953
Tlime is not available for rent to outside organizations.

Since August 1958, the NCR 102A has averaged in
excess of 100 hours per week operating time and has
averaged less than 2 hours per week of forced downtime due to equipment failure. . Each working day there is a two hour preventive maintenance period. School of Aviation Medicine
Good time 36 Hours/Week (Average)
A.ttempted to run time $\quad 40$ Hours/Week (Average)

Operating ratio (Good/Attempted to run time) 0.90
Above figures based on period from Fall 54 to 1 Jul 59 Thme is not available for rent to outside organizations.

ADDITIONAL FEATURES AND REMARKS

Holloman Air Development Center (ARDC)
Two systems have been in use since 1953. Adaitional input/output equipment includes 3 magnetic tape units (NCR 128), and 1 summary card punch (IBM 523).
U.S. Army Chemical Center

The three-address system permits ease of programming and coding not present in one or two address systems.

Additional features include: Bit positions available in the structure of commands for flagging internal addresses for automatic coding and repositioning of programmed routines. Logic designed such that. automatic links to and from subroutines are accomplished easily. Large storage capacity and threeaddress commands. Tape unit searches independently of the computer, once the block address is set up. High speed paper tape input reader. A visual display of the control register while computing and when idle. All logical diodes accessible, diodes are of clip-in type, plug-in units replaceable for repair.
U.S. Naval Post Graduate School

The system is used primerily for the education of the officers in the Engineering School. Other computing time after normal training hours is used by government agencies in the Monterey area on a non-interference basis.

The plotter output is considered to be a very valuable part of the system permitting rapid observation of results. The binary information is plotted directly on graph paper, thus avoiding the problem of converting to decimal. The plotter has three plotting symbols.

Gulf Research and Development Company
Auxiliary equipment consists of:
2 NCR 126 Magnetic Tape Units.
TWo Flexowriters, each capable of serving as the in-put-output device for the computer. A third Flexowriter, not modified, for input-output functions.

One IBM 514 Reproducing Punch, modified for use as an output device.
A photoelectric paper tape system based upon a Ferranti reader has been constructed.

Two more one-word recirculating registers have been made addressable, making them correspond roughly to the accumulator and Q-register of a typical one. address. computer.

INSTALLATIONS

Holloman Air Development Center (ARDC)
Holloman Air Force Base, New Mexico
School of Aviation Medicine
Randolph Air Force Base, Texas
Chemical Warfare Laboratories
U. S. Army Chemical Center, Maryland
U. S. Naval Ordnance Test Station

China Lake, California
U. S. Naval Post Graduate School Monterey, California
A. V. Roe, Ltd.

Malton, Ontario, Canada
Great Lakes Pipe Line Company Kansas City, Missouri
Gule Research and Development
P. O. Drawer 2038

Pittsburgh 30, Pennsylvania
Polytechnic Institute of Milan Milan, Italy
Royal Canadian Air Force Edmunton, Alberta, Canada

NATIONAL IO2D

NCR CRC Model 102 D
MANUFACTURER
The National Cash Register Company

Photo by The National Cash Register Company

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system Decimal digits/word Binary digits/instruction Instructions per word Instructions decoded Arithmetic system Instruction type
Number range

Binary coded decimal 9 plus 6 bin dig/word 42
1
27
Fixed point
Three address
$-\left(1-10^{-9}\right)$ to $+\left(1-10^{-9}\right)$
$-\left(1-2^{-36}\right)$ to $+\left(1-2^{-36}\right)$

1. Computer, 2 Control Consol, 3 High Speed Paper Ilape Reader, 4 Magnetic Tape Units, 5 High Speed Paper Tape Punch

ARITHMETIC UNIT

Manufacturer	
Incl Stor Access Microsec	Exclud Stor Access Microsec
Add 7,800	4,000
Mult 21,100-49,100	15,000
Div 21,100-53,200	15,500
Construction	Vacuum tubes
Rapid access word registers	8
Basic pulse repetition rate	$100 \mathrm{Kc} / \mathrm{sec}$
Arithmetic mode	Serial
Timing	Synchronous
Operation	Sequential

STORAGE

Manufacturer			Access
Media	Words	Digits	Microsec
Magnetic Drum	1,024	43,008	12,500 avg
Magnetic Tape	102,00/reel	918,000/reel	
Pitman-Dunn Laboratories			
	No. of	No. of	Min Access
Media	Words	Digits/Word	Microsec
Magnetic Drum	1,032	14 octal or	390
			9 decimal
Magnetic Tape	110,000	Same	

Photo by The National Cash Register Company

Magnetic tape searches approx. 90"/sec., reads/ writes $15^{\prime \prime} / \mathrm{sec}$. (approx. 59 words/sec)

INPUT

Manufacturer

Media	
Paper Tape (Flexowriter)	Speed
Paper Tape (Photoelectric)	$10 \mathrm{char} / \mathrm{sec}$
Magnwtic Tape	$200 \mathrm{char} / \mathrm{sec}$
Keyboard (Flexowriter)	$600 \mathrm{char} / \mathrm{sec}$
Punched Cards	Manual
Pitman-Dunn Laboratories	
Keyboard or Paper Tape	$600 \mathrm{char} / \mathrm{min}$
Hi-Speed Tape Reader	$160 \mathrm{char} / \mathrm{sec}$
Magnetic Tape	$59 \mathrm{words} / \mathrm{sec}$
IBM Card Reader	100 cards $/ \mathrm{min}$

Six channel Flexowriter is used. Cards contain 4 words each.

Photo by The National Cash Register Company

OUTPUT

Manufacturer

Media
Paper Tape (Flexowriter)
High Speed Punch
Magnetic Tape
Punched Cards
Pitman-Dunn Laboratories
Typed Page
Paper Tape (High Speed)
Card (IBM)

Manufacturer

Tubes	425
Tube types	15
Crystal diodes	8,500

CHECKING FEATURES

Manufacturer
Duplicate recording on magnetic tape
"Overflow" alarm
"No command" alarm

Speed
10 char/sec
60 char/sec 600 char/sec 4,000 char/min

6 char/sec
60 char/sec 100 cards/min

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

$\begin{array}{lr}\text { Tube types } & 15 \\ \text { Crystal diodes } & 8,500\end{array}$

POWER, SPACE, WEIGHT, AND SITE.PREPARATION
Manufacturer

Power, computer	7.7 Kw
Area, computer	250 sq ft
Weight, computer	$2,700 \mathrm{lbs}$

Weight, computer 2,700 lbs
Pitman-Dunn L̇aboratories
Power, air conditioner 61.5 KVA
Volume, computer $\quad 154.5 \mathrm{cu} \mathrm{ft}$
Volume, air conditioner . $2,318 \mathrm{cu} \mathrm{ft}$
Area, computer 49 sq ft
Area, air conditioner 206.5 sq ft
Room size, computer 19 ft x 39 ft
Room size, air conditioner $\quad 11 \mathrm{ft} \times 25 \mathrm{ft}$
Floor loading
Capactity air conditioner
Weight, computer 4,110 lbs
Weight, air conditioner 6,600 lbs
Weight, cooling tower 2,500 1bs
Power includes Input-Output systems.
One 5 KVA and one 10 KVA Sol A transformers are
used for voltage regulation. Power outlets for main computer and auxiliary equipment were installed. Air

Photo by the Georgia Institute of Technology
conditioner services personnel and an analog computer also.

COST, PRICE AND RENTAL RATES

Manufacturer

Approximate cost of basic system \$65,000
Approximate cost of additional equipment
Magnetic Tape Unit Model 126
H1gh Speed Reader Model 160
High Speed Punch Model 170 Flexowriter

2,900
Rental rates for basic system $\$ 2,400 /$ month
Rental rates for additional equipment
High Speed Reader Model 160
High Speed Punch Model 170
Flexowriter
27/month
220/month
150/month

Pitman-Dunn Laboratories
Computer w/console, Flexowriter mag. tape unit, hispeed reader, hi speed punch, including transportation and installation cost $\$ 83,370$.

Off-line Flexowriter cost \$2,900 additional.
IBM equipment includes $2-523^{\prime}$ s, 2-026's, 1-082,
$1.085,1-514$, and 1-402, which rents at $\$ 12,624 /$ year.
Maintenance for purchased equipment is $\$ 12,624 /$ year.
PERSONNEL REQUIREMENTS
Pitman-Dunn Laboratories
One 8-Hour Shift
Analysts
Irogranmers
Technicians
1
2

Operation tends toward closed shop.
Methods of training includes basic programming course and use of the programming manuels. Programmers code and run their own problems.

The National Cash Register Company
One 8-Hour Shift
Supervisors 1
Coders, Programmers \& Analysts 3
Technicians 1
Operation tends toward open shop. Individuals may have programs entirely written by department personnel, written by themselves with assistance from department, or written entirely by thwmselves. Individuals desiring running time for a problem most commonly supply their own operator.

Methods of training used includes on-the-job train-
ing of department personnel, informal training of
other research personnel.
RELIABILITY OPERATING EXPERIENCE, AND TIME ÂVAILABILITY
Pitman-Dunn Laboratories
Average error-free running period 4 Hours
Good time
26 Hours/Week (Average)
Attempted to run time 39 Hours/Week (Average)
Operating ratio (Good/Attempted to run time) 0.67 Above figures based on period 1 Apr 59 to 30 Apr 60 Passed Customer Acceptance Test Jan 58
Time is not available for rent to outside organizations.
4 hours of preventive maintenance is performed.
The National Cash Register Company
Good time
Attempted to run time
28.5 Hours/Week (Average)

32 Hours/Week (Average)

High Speed Reader
Operating ratio (Good/Attempted to run time) 0.89 Above figures based on period from Jul 59 to Aug 60 Time is not available for rent to outside organizations.

ADDITIONAL FEATURES AND REMARKS

Pitman-Dunn Laboratories
Outstanding features include 3 address system, which is easy to use.

Photo by The National Cash Register Company

FUTURE PLANS

PItman-Dunn Laboratories
System expected to be replaced by second quarter Fiscal Year 61 with system comparable with DATATRON 205, IBM 650, or UNIVAC Solid State.

High Speed Punch

INSTALLATIONS

Dow Chemical Company
Midland, Michigan
Rice Electronic Computer Center Georgia Institute of Technology A.tlanta, Georgia

Research and Development Division The National Cash Register Company Diayton, Ohio

Photo by The National Cash Register Company

The National Cash Register Company Hawthorne, California
Pitman-Dunn Laboratories
Frankford Arsenal
Philadelphia, Pennsylvania

APPLICATIONS

Located in Ward Hall, U. S. Naval Academy, the system is used to demonstrate to Naval Academy faculty and midshipmen, automatic calculations using a large data processing/scientific type digital computer.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system
Decimal digits/word
Binary coded decimal Decimal digits/instr Instructions/word Instructions decoded Arithmetic system Instruction type
Number range
The
The excess-three system of binary coded decimal notation is used.

Photo by U. S. Naval Academy
MANUFACTURER
National Cash Register Corporation

ARITHMETIC UNIT	
	Incl Stor Access
Operation Time	Microsec
Add	15,000
Mult	40,000
Div	40,000
Construction (Arithmetic unit only)	
Vacuum-tubes	625
Diodes	2,040
Arithmetic mode	Parallel
Parallel by bit, serial by digit.	
Timing	Synchronous
Operation	Sequential

ARITHMETIC UNIT

Access

STORAGE

No. of No. of	Access
Media Words Digits	Microsec
Drum 11,000 121,000	3,000
Magnetic Tape	
No. of units that can be connected	99 Units
No. of char/Iinear inch of tape	134 Char/inch
Channels or tracks on the tape	10 Tracks/tape
Blank tape separating each record	10 Inches
Trape speed	15 Inches/sec
Transfer rate	2,010 Char/sec
Start time	3 Millisec
Stop time	3 Millisec
Average time for experienced	
operator to change reel of tape	120 Seconds
Physical properties of tape	
Width	1 Inch
Length of reel	3,600 Feet
Composition	Mylar or Acetate
All tape must initially be pre-cl	ocked off-line.

INPUT

Media	Speed
Card (IBM)	100 card. $/ \mathrm{min}$
Magnetic Tape	$15 \mathrm{in} / \mathrm{sec}, \mathrm{l} 2 \mathrm{c} \cdot \mathrm{char} / \mathrm{in}$
Paper Tape	l20 char $/ \mathrm{min}$
Keyboard (Flexowriter)	Manual

OUTPUT
Media

High Speed Printer	600 lines/min, 120 char/Iin
Magnetic Tape	$15 \mathrm{in} / \mathrm{sec}$, 121 char/in
Cards (IBM)	100 cards/min
Typewriter (Flexo)	120 char/min
Paper Tape	120 char/min
CIRCUIT ELE	ENTS OF ENTIRE SYSTEM
Type	Quantity
Thbes	800
Diodes	2,500

CHECKING FEATURES

Unwanted Digit

Command Check
Overflow
Conditional Halt
POWER, SPACE, WEIGHT, AND SITE PREPARATION

Power, computer	208 Volts	3 phase
Power, air cond	208 Volts	30 cps
Volume, computer	$65,774 \mathrm{cu} \mathrm{ft}$	60 cps
Volume, air conditioner	126 cu ft	
Area, computer	$1,711 \mathrm{sq} \mathrm{ft}$	
Area, air conditioner	18 sq ft	
Room size, computer	$1,800 \mathrm{sq} \mathrm{ft}$	
Capacity, air conditioner	15 Tons	
Weight, computer	$12,000 \mathrm{lbs}$	
Weight, air conditioner	$1,000 \mathrm{lbs}$	
Building was modified for computer installation.		

PRODUCTION RECORD

Number produced to date
Number in current operation
I Produced for U. S. Navy Bureau of Aeronautics to their design specifications.

COST, PRICE AND RENTAL RATES

Basic System
Original cost, $\$ 1,000,000$ to Navy BUAFRR (original owner). System consists of control console, arithmetic section, high speed printer, 8 magnetic tape units, and memory section.

Additional Equipment
For the IBM 514, IBM 523, IBM 024, the total rent is $\$ 108.00$ per month (including educational discount 60\%).

PERSONNEL REQUIREMENTS

 One 8-Hour Shift| Supervisors | 1 |
| :--- | :--- |
| Operators | 2 |

Operators
1
Technicians
Operation tends toward open shop.
Methods of training used is classroom and on-thejob training.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Operating experience over four year period approximately 98% of scheduled production at previous locetion in Washington, D. C. (Navy Bureau of Weapons).

ADDITIONAL FEATURES AND REMARKS

Outstanding features are block search on tape handles at rate of 600 words $/ \mathrm{sec}$, off-line preparation and verification of tape input, and large memory with maximum of 10 word access.

FUTURE PLANS

Addition of X-Y plotter and weapons system simulation for educational purposes.

INSTALLATIONS
U. S. Navel Academy

Weapons Department
Annapolis, Maryland

NATIONAL 304

National Cash Register 304

MANUFACTURER
National Cash Register Company

Photo by National Cash Register Company

APPLICATIONS

Manufacturer
The system is a general-purpose data processing system for industrial, governmental and educational organizations. It is intended for commercial and scientific applications. All commonly-used inputs and outputs, a magnetic tape system with unique characteristics, and flexibility in system organization result in a powerful system with versatility of application.
U.S. Marine Corps, Camp LeJeune

Located on the base, the system is used for USMC personnel accounting.
U.S. Marine Corps, Camp Pendleton

Located at the U. S. Marine Corps, Camp Pendleton the system will be used to maintain current magnetic tape records on approximately one half the Active and Organized Reserve Establishments of the Marine Corps. Weekly, Changed Record Tapes will be forwarded to Headquarters, Marine Corps to overlay

Headquarters' Tape Records. Headquarters will prepare personnel reports for itself, Navy Department, and Department of Defense from its Magnetic Tape Files. Meanwhile, this installation will prepare "Field Personnel Reports" for 14 major field commands in the western complex. (DPI, MCB, Camp Lejeune, North Carolina performs the same function for the eastern complex, 1.e., the other half of the Marine Corps.) Implementation of the system is scheduled for August 1960.
U.S. Marine Corps, Headquarters

Located at the Arlington Navy Annex, the system is utilized for military personnel accounting.
The three U.S. Marine Corps NCR 304 Data Processing Systems are utilized in an integrated Military Personnel Accounting and Reporting System. The systems located in California and North Carolina servicing the two major Marine Corps bases and reporting to the system located in Washington D. C.

[^1]Bureau of Yards and Docks
Located at the Bureau of Yards and Docks, Washington D. C., the system is used for the management of the Military Construction Program, the inventory of Automotive Equipment, the inventory of Construction Equipment, and for engineering applications.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system Binary Coded Decimal
Alphanum cher/word 10
Alphanum char/word $5-60$
Words/Instruction $1 / 2-6$
Instructions decoded 83 one address
37 three address w/variations
Arithmetic system
Floating point
MICROFLOW provides exponents in range of -50 to
+49 and automatic normalizing of result
Fixed point
Automatic alignment takes place
Instruction type One address (MICROFLOW)
(Scientific-type)
Three address (Multi-address)
(Business-type)
Number range $-\left(1-10^{-10}\right)$ to $+\left(1-10^{-10}\right)$

Photo by American United Life Insurance Company
$R=$ Index Register
$\mathrm{Al}, \mathrm{Ar}=$ left and right field of A Address
$\mathrm{Bl}, \mathrm{Br}=$ left and right field of BAddress
$\mathrm{Cl}, \mathrm{Cr}=$ left and right field of C Address
The programmer in translating procedures for the 304 System will use the NEAT (National's Electronic Autocoding Technique) format. The programer might write the following to add the 01d Quantity on Hand to the Number Received to arrive at the New Quantity on Hand:

ADD (V) (R) OQOH QREC NQOH
The NEAT assembly process will translate the NEAT format into the necessary absolute machine language.

It could be considered that all instructions in the basic 304 Command List are automatic built-in subroutines. There are a number of operation codes that were designed specifically for business data processing such as Edit, Merge, Move, Sift (or table look-up), and Summarize that are powerful instructions and in some cases are self-incrementing.

As an example, the Merge instruction will serve to illustrate the nature of these business-type opera-
tions. Specified in NEAT format would be the following mnemonic designators and parameters:

Designate first word, first item, each string
Number of items in each string
Relative position of Major Key (if any), within
item
Relative position of Minor Key within item
Number of keys (1 or 2) for the Merge
Length of each item
Specify three exits (Cutoff Merge only)
NEAT (National's Electronic Autocoding Technique) wes in operation before the first deliveries of the National 304 System. This system enables systematic organization in the approach to a problem, an assemblycompiler and a complete library of generators, service programs, and subroutines. COBOL or COBOL-like language will become part of the system in a reasonable time.

Each instruction may be relative to one of 10 Relative Index Registers. The particular Index Register and the portions of the instruction which are to be relative are specified within the instruction.

Camp Lejeune, $\mathbb{N} . \mathrm{C}$.

ARITHMETIC UNIT

Merge Flow Diagram

Operation	Sequential internally Concurrent with copy or search of magnetic tape or printing

STORAGE

Manufacturer

Manufacturer			
	No. of	No. of	Access
Media	Words	Alpha-Numeric	Microsec
Magnetic Core	2400-4800	24,000-48,000	6/alphenum
Magnetic Tape, per reel.	850,000	8,500,000	$21 / 2 \mathrm{~min}$
No. of units that can be connected			
No. of chars/linear inch of tape			
Channels or tracks on the tape			
Blank tape se	rating each	record	None
Tape speed		150	Inches/sec
Transfer rate characters)	alpha-num	ric 30,000	Chars/sec
Start time		3.5	Millisec
Stop time		3.5	Millisec
Average time operator to ch	or experi ge reel	ed 30	Seconds

Physical properties of tape	
Width	$1 / 2$ Inch
Length of reel	3,600 Feet

The unique 304 magnetic tape system is composed of sub-systems of National 330 Controllers and National 332 Magnetic Tape Handlers. The Central 304 Processor may handle up to eight 330 Controllers, and each Controller may handle up to eight Handlers to provide an upper limit of 64 Handlers available.
A record on magnetic tape may contain 10 or more words. Multipie variable-length records may be written onto magnetic tape with a single acceleration. The contents of one magnetic tape may be read and simultaneously written onto another tape unit until a desired record is reached. The copying may be shared with computing, printing, input or output. Several copy operations may be in progress simultaneously.

All conditions which may arise during magnetic file operations are automatically detected and identified by the Processor without progranmed testing. Then a standard routine, called SIEP (Standard Tape Executive Program), will perform all tape management
operations including:
Repeat in case of error, write "Skip" record after proper number of tries
Repeat, or jump, on busy Handler or Controller
Indicate attempt to use locked-out tape
Alternate Tape Units at end of tape
Tape identification, and label-checking
Memory dump, and rescue points
Iog of tape operations
Executive control over sequencing from one progrem to the next, or overlays
The time-sharing ability of magnetic tape copy allows for convenient file-splitting, or multi-progremming of different jobs where reference to the file is for less than every record. Thus, completely independent programs can be written and checked out, then tied together with the timing interlace being performed by the equipment.
In order to improve the efficiency of Magnetic File
Operations, any quantity of numeric information may
be packed from 6-bit code to 4 -bit code with a sin-

Photo by National Cash Register Company
gle instruction. Thus, utilization of tape storage, and transport speed, will both be increased by 50% for numeric information.
When the packed information is brought into memory, a single instruction will reverse the transformation. Only that information requiring arithmetic operation need be unpacked; sorting, table lookup, and all other logical operations, can be performed on packed information.
U.S. Marine Corps, Camp LeJeune

Medium No. of Words No. of Digits
Core Menory
U.S. Marine Corps, Carmp Pendleton

Magnetic Core 2400
U.S Marine Corps, Headquarters

Magnetic Core 2400
Magnetic Tape 864,000
American United Life Insurance Company
Magnetic Core 4800
Magnetic Tape 850,000

Official Marine Corps Photo

S. C. Johnson \& Son, Inc.Medium No. of Words No. of Digits	Access
	Microsec
Magnetic Core 240010	
National Cash Register Company, Hawthorne	
Magnetic Core 4800	6/alpha-
	num char
Magnetic Tape 1.08 million word/reel	3 min
(10 char/word)	
Bureau of Yards and Docks	
Magnetic Core 4800 48,000	60
Magnetic Tape may be considered as stora	medium.

INPUT

Manufacturer		
Sedia	Speed	
Punched Cards	2000 cards/min	Photo-electric
Punched Paper Tape	$1800 \mathrm{char} / \mathrm{sec}$	Photo-electric
Magnetic Tape	30 Kc	alpha-numeric

Punched Cards and Punched Paper Tape may be handled on-line with the 304 Processor or converted to magnetic tape with the 320 Multi-Purpose Converter.

Camp Pendleton, California

Official Marine Corps Photo

S. C. Johnson \& Son, Inc.

Media Speed	
Magnetic Tape	30,000 cher/sec
Punched Paper Tape	1,800 char/sec
Punched Cards	2,000 cards/min
Console Flexowriter	10 char/sec
National Cash Register Company, Hawthorne	
NCR 380 Card Reader 2,000 cards/min	
NCR 360 Paper Tape Reader 1,800 char/sec	
Conscle $10 \mathrm{char} / \mathrm{sec}$	
Magnetic Tape 30,000 char/sec	
The Paper Tape Re	can handle 6 codes.
core matrices are on the unit. Bureau of Yards and Docks	
Magnetic Tape 6 - 30,000 char/sec $3600 \mathrm{ft}=8.5 \times 10^{6} \mathrm{char}$	
Paper Tape 1,800 char/sec3 code option, 10 char/in	
Punched Cards $\quad 2,000$ cards/min	
Console Typewriter $\quad 10$ char/sec max. Manual type-in or paper tape read	

OUTPUT

Manufacturer	
Punched Paper Tape $60 \mathrm{char} / \mathrm{sec}$	
Line Printer	850-1200 printing 850 alpha numeric 5040 spacing 1200 numeric
Punched Cards	100 cards/min (lines/min)
Magnetic Tape 30,000 char/sec	
The Paper Tape Punch or the High Speed Line Printer	
may be controlled on-line by the 304 Processor or off-	
line by the 320 Multi-Purpose Converter. The Line	
Printer may also be controlled off-line by the 322	
Printer Converter. Punched cards can be produced off-line using an IBM 523 with source information on	
magnetic tape and under control of the 320 Converter. U.S. Marine Corps, Camp Lejeune	
Magnetic Tape	
Flexowriter typing \& punching	
Punch Cards	
Printer	
IBM Type 523 as IBM card output media	

[^0]: All fixed programs are in toggle switch or plugboard storage.

 Automatic coding includes standard compiler, which provides full symbolic coding facilities.

 All four arithmetic registers and the exchange register are addressable as part of memory. There are sixty-four 18-bit parity-checked index registers.

 Indirect addressing can be repeated indefinitely.
 33 program (instruction) counters are provided, only one of which is used at a time.

 Each in-out unit is associated with a program counter. Choice of program counter is determined by in-out unit, by program, and by relative priority of program counters.
 Any instruction can specify a configuration of the computer during the execution of the instruction. A 36 bit operand word can be divided into one 36 , one 27 and one 9, two 18, or four 9 bit subwords formed from the 9 bit quarters. The 9 bit quarters can be permuted among themselves. Any or all of the subwords can be used simultaneously. For example, two 18 bit multiplications are done by one multiply instruction in less time then one 36 bit multiplication.

[^1]: American United Iife Insurance Company
 Located at 30 W. Fall Creek Parkway, N. Dr. Indianapolis, Indiana, the system is used to maintsin Master Tape Files of policyholders, agents, payroll, general ledger, mortgages, securities, updeite daily any transactions that affect any master record or file, compute commissions, journalize deilly - Maintain accounting controls, balance books of account. Perform premium billing and policy conservation advices, control disbursements, bank reconciliations, and compute dividends, cash values, premiums, reserves, interest, etc.
 S. C. Johnson \& Son, Inc.

 Iocated at 1525 Howe Street, Racine, Wisconsin, the system is used for order processing, inventory control, accounts receivable, credit and collection, freight allocation, sales statistics, and allied financisl reports.

 National Cash Register Company, Hawthorne
 Located at the National Cash Register's Flectronics Division, Hawthorne, California, the system is used for electronic data processing service to business, industry and government. Complete facilities for handling customer created input - punched paper tape and cards. It is used for progrem check out for 304 customers. The system is used internally by the National Cash Register Company for programming research, automated logical design, and data processing. Back up support for other 304 systems is additional use.

