and requires a sub-routine to be stored only once in any part of the memory.

New Instructions
But for several minor exceptions, Univac II executes all Univac I instructions in exactly the same manner as Univac I. Certain of these instructions, however, have been assigned new functions which serve to extend their overall flexibility. The V instruction, for example, will now transfer from one to nine words instead of merely two as was formerly the case, and the Y-Z instructions will now transfer groups of words ranging from ten to sixty in number in steps of ten words. Formerly, ten words and only ten words could be transferred when using this instruction. As a further example of the greater flexibility permitted in Univac II, the extract function (or E instruction), formerly limited to register A, has been generalized so that it now covers all instructions which read out of the memory (A, B, D, L, M, N, P and S). The EF instruction permits recombination of selected characters from register A with the remaining characters of the word in memory location. Instruction A has been extended in usefulness also, and in addition, an I instruction (transfer from register L to memory) has been adopted as a standard command.

Overflow
With Univac II the addition of a 1 to the control counter reading following overflow is automatic. When using Univac I programs on Univac II a special switch will inhibit the addition of 1 to the control counter reading following overflow and cause the 3 rd instruction digit to be interpreted in the memory switch as a decimal zero regardless of its actual value. Therefore, in Univac I programs where the 2nd and 3 rd instruction digits have been used for overflow control, the presence of these digits will not influence the execution of the instruction.

Compatability Switch
A switch provides three circuit corrections to promote compatibility of Univac I and II programs. Any other incompatibility will require program corrections. With the switch in position to handle Univac I programs, the Univac II will treat the 3rd instruction digit as zero, for V, W, Z and Y instructions, treat the 2nd instruction digit as zero and restore the Univac I mode of overflow action on the control counter.

Tape Handling Operations
As many as 16 Uniservos may be connected to Univac by a metallic duct carrying the necessary cables. Univac can read from tapes mounted on these Uniservos with the tapes moving forward or backward. Univac can record on a tape moving forward. It can read from one Uniservo, write on a second and rewind all other Uniservos simultaneously. Unless there is another read, write or rewind instruction inmediately following, Univac may continue to compute while the reading, writing and rewinding operations are being performed.

Tape recording for Univac II must be done according to the following:
Spacing per block (with 1 in between blocks) Pulse density per inch Blocks per reel
Read time per block
Per reel
Rewind time per reel
Feet utilized

PROGRAMMING SPECIFICATITONS

Library and compiler routines for mathematical and commercial use, and service routines for maintenance uses, are available to the customer.

Modified or Added Instructions
I instruction providing for transfer of information from register rL to memory.

Field selection as specified by a second instruction digit F. For the instructions A, B, D, L, M, N, P and S it operates so that the word transferred from memory location M contains only those digits from the columns of " m " which correspond to the columns in register F containing "odd" characters. The remaining column positions of the word, transferred from " m " to the receiving register contain decimal zeros.
The EFIm instruction permits insertion into a word in memory location " m " of the characters in those columns of register A which correspond to the columns containing "odd" characters in register F. "Odd" characters in the Univac code have a binary zero in the least significant binary position. rA will also contain the complete word which is restored at memory location " m ".

Add to memory. The add to memory instruction is effected by adding a special designator (H) in the 2nd digit position of the A instruction. It results in the execution of an A instruction followed by an autometic H instruction. Register rA will retain the total $(r X+r A)$ at the conclusion of the add to memory instruction. An equivalent subtractive operation is performed by the SH instruction.

Multiple Word Transfer
The $V n_{1} m_{1}, W n_{2} m_{2}$ word transfer instructions transfer one to nine words as specified by the numeric (n) appearing in the second digit position. Register rW provides the transfer storage. The transfer is made using V and W instructions as for Univac I except that no reversal of position occurs in a 2 word transfer as may in Univac I. Note also that if the second digits of the V and W instructions are not equal special transfers result. If $n_{1}>n_{2}$. The first ($n_{1}-n_{2}$) words transferred from m_{1} to $r W$ are not transferred from $r W$ to m_{2}. If $n_{1}<n_{2}$. The ($n_{2}-n_{1}$) words transferred to $r W$ by a previous V instruction are transferred to m_{2} followed by the n_{1} words of the current V instruction. When $n=0$ the instruction will be processed as a skip instruction.

The $\mathrm{Yn}_{1} \mathrm{~m}_{7}, \mathrm{Zn}_{2} \mathrm{~m}_{2}$ pair of instructions permits the transf'er ${ }^{\prime}{ }^{\prime}{ }^{\prime}$ groups of $10,20,30,40,50$, or 60 words as designated by a numeric (1 through 6) in the second digit position of the instruction. The Y, Z instructions use $r Z$ as transfer storage. If the second digits of the Y and Z instructions are not equal, special transfers result. If $n_{1}>n_{2}$. The first $n_{1}-n_{2}$) tens of words transferred from M_{1} to $r Z$ will not be transferred to M_{2}. If $n_{1}<n_{2}$. The $\left(n_{2}-n_{1}\right)$ tens of words transferred to $r Z$ by a previous Y instruction are transferred to m_{2}, followed by the n_{1} tens of words of the current Y instruction. When $\mathrm{n}=0,7,8$, or 9 , the instruction will be processed as a skip instruction.

Tape Writing Density Controls
5 nm instruction causes writing of 200 pulses per inch except that manual countermanding pushbuttons will be provided to select one or more Uniservos on which the 5 nm instruction will be interrupted as
calling for a 124 pulse per inch writing density. These manual pushbuttons will be in addition to those available for block subdivision and delta (\triangle) second digit decoding of in/out instructions.

7 nm instruction causes writing at 50 pulses per inch. Block subdivision controls will operate as in Univac I with all densities. Block divisions (space between blocks) will be l inch except for the 124 ppi density. This will be 2.4 inches.

Memory Clear

A protected switch will provide for memory clear (rM) to decimal zero. Register rM will clear on read-in.

Buffer Register Clear
Registers r0, rI, rZ and rW clear only on read-in. Instruction Execution THme
Basic machine cycle is reduced from four to three cycles (α cycle is omitted).

All instructions are performed at minimum latency rates.

USN ESO
Outstanding features incIude self-checking of the computer through use of duplicate circuitry in both the arithmetic and logical units.

Standard tape labelling techniques are used; storage, shipping, protection from humidity, temperature and physical handling problems are minimal. System operates with metallic magnetic tape. Back-up master tape files are stored in a remote location as protection against loss of information through electrical, fire or other damage to the tapes stored in computer center libraxy.

This activity has experienced a high performance rate in the use of metallic magnetic tape with its ADP system. A number of tests have been made with various types of mylar base tape; but, to date, the performance of mylar tape on Univac II is unsatisfactory.

Metropolitan Life
Outstanding features are that the system is completely self checking and simple to operate. Each tape is kept in a cardboard box, labeled on the reel and on the edge of the box, stored like books on open shelving with stall dividers every three reels, in locked fenced-in area. No special humidity, fire, or dust protection needed for metal tapes.

Pacific Mutual

Outstanding features include self checking and duplicated circuitry affording basically error free output. The Unitypers allow a complete tape system, completely devoid of any type of punch card.

If anything, we have erred in over controlling for everything except humidity, which we do not control.

We feel that for our job we have the best equipment presently available and are trying to keep aware of the next generation.

USS
Metal cases are used for ordinary filing. Fireproof cabinets for some master tapes.

PRODUCTION RECORD

Number of systems delivered

FUTURE PLANS

USN ESO
No new components or modifications to the installed ADP system are contemplated by this activity.

It is planned to retire the present ADP system and replace it with a more powerful, solid-state ADP system during FY 1962.

Several new applications will be programmed for processing, in addition to the applications already in production on the present ADPs, at such time as the replacement system is installed. Metropolitan Life
Plan to get from two to four more systems of the 3rd generation type such as Honeywell 800, IBM 7080, etc.

Plan to extend tape files from present 6 million policies, to include other types for about 40 million policies, and expect to run these files daily instead of bi-weekly, and extend the area of operations performed.

Plan to be installing in many areas of work previously deferred because of lower expected savings and/or greater planning effort.

Pacific Mutual
We have gone from Univac I to Univac II and anticipate moving to Univac IIII - IBM 701 - Datamatic 801RCA 501 or some other system as soon as the new generation of computer renders ours so obsolete as to be impractical to retain. This could conceivably be in 1963, 64 or 65.

We are continually investigating, modifying, etc., our system and equipment and looking to add new applications.

USS
Additional applications of the same type as currently processed will be installed.

New systems being reviewed and evaluated for consideration.

INSTALLATIONS

U. S. Navy Electronics Supply Office Great Lakes, Illinois
U. S. Department of Agriculture

Commodity Stabilization Service
Kansas City, Missouri
Metropolitan Life Insurance Company (3)
1 Madison Avenue
New York 10, New York
Metropolitan Life Insurance Company (1)
315 Park Avenue So.
New York City, New York
Pacific Mutual Life Insurance Company
Pacific Mutual Building
Los Angeles, California
United States Steel Corporation
1509 Muriel Street
Pittsburgh 3, Pennsylvania
U. S. Department of Agriculture

Kansas City Commodity Office
Kansas City, M1ssouri

MANUFACTURER
Remington Rand Univac
Division of Sperry Rand Corporation

Photo by Remington Rand Univac, Division of Sperry Rand Corporation

APPLICATIONS

System is designed for commercial data processing as well as scientific applications. The UNIVAC III is a medium-cost, high performance electronic data processing system designed to meet the broadest possible needs of business and science. The magnetic core memory holds from 8,192 to 32,768 words in increments of 8,192 words each with a cycle time of 4.5 microseconds. Words can be pure binary, binary coded decimal, UNIVAC Xs-3, or any other form. UNISERVO III tape units allow reading, writing, and computing simultaneously. The read-write rate is 200,000 digits per second.

Up to thirty-two Uniservo III tape units and six Uniservo II tape units are possible. Auxiliary online units may include card-readers which operate at a rate of 700 cards per minute, high-speed printers at 700 lines per minute, card punch units at 300 cards per minute, mass storage and other devices. The UNIVAC III is compatible with other UNIVAC tape
units or with those of other manufacturer.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system	Binary or binary coded dec
Binary digits/word	24
Decimal digits/word	6
Alphanumeric char/word	4
Instructions per word.	1
Instructions decoded	75 (approx)
Arithmetic system	Fined point
Instruction type	one-plus-one
Number range	
	Binary $\pm\left(2^{96}-1\right)$
	Decimal $\pm\left(1.0^{24}-1\right)$

Binary or binary coded dec 24

4
1
75 (approx)
Fixed point
one-plus-one

Decimal $\pm\left(1.0^{24}-1\right)$

Instruction word format

Parity	Indirect Address or Field Select ont	IR	Oper Code	AR/IR	m Address
2726	25	2421	2015	14	11
10	10				

Automatic built-in subroutines includes automatic interrupt.
Automatic coding includes COBOL and assembly system.
Registers includes four accumulator registers, fif-
teen index registers, and thirteen memory address counters.

All instructions are automatically modified by the Index Register designated. System is able to select as an operand from one bit to ninety-six bits through use of a field select control word. From one to fourword operands are possible.

All users of UNIVAC III will be provided with a comprehensive programming package. The initial pack will contain COBOI, SALT Assy (Symbolic Assembly Ianguage Translator), sort and merge generators, and an executive routine including contingency and error check routines.

ARITHMETIC UNIT

Incl Stor Access Microsec 8	Exclud Stor Access Mi.crosec 8 $6+6$ Digits
Mult 48-124	48-124 6x6 Digits
Div 68-144	68-144 6/6 Digits
Arithmetic mode	Serial by digit
	Parallel by bit
Timing (Computer)	Synchronous
Operation (System)	Concurrent
The computer instruction execution cycle is such	

that the effective access time is zero.

2,000 digits/inch.

INPUT
$\begin{array}{cc}\text { Media } \\ \text { Cards } & 700 \text { cards } / \mathrm{min}\end{array}$
80 or 90 column. No plugboard
Uniservo III 200 pulses/sec (Digital)
Up to 32 in system
i33.3 (Alphanumeric)
Parallel read-write
Uniservo II 25 pulses/sec (Alphanumeric) For compatibility with other Univac Tape Systems Paper Tape

OUTPUT

Media
Cards
300 cards/min
80 or 90 column. No plugboard
Card Printing Print - 900 lines/min
Punch Punch - 150 cards/min
Punches and prints same card in one pass.
High Speed Printer 700 lines/min
Editing program controlled.
Paper Punch

CHECKING FEATURES

Modulus 3 word parity checking, arithmetic, transfer and comparison operations, and logical checks.

POWER, SPACE, WEIGHT, AND SITE PREPARATION

Power, computer $75.2 \mathrm{Kw} 94 \mathrm{KVA} \quad 0.80 \mathrm{pf}$
Volume, computer
Area, computer
900 cu ft
Room size
Floor loading
Weight, computer
$1,500 \mathrm{sq} \mathrm{ft}$
$43 \mathrm{ft} \times 43 \mathrm{ft} \times 12 \mathrm{ft}$
$200 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$
1,100 lbs concen max

Heat exhaust vents should be located at roof of each unit. Air conditioning output ducts should be near unit inlet vents. Total input line current 261 amperes/ine. Recommended main circuit breaker 400 amperes/line. 115 volt convenience outlets should be located every 6-8 ft approximately $21 / 2$ $f t$ off floor.

These figures include the Univac III large system w/l6 tape.

PRODUCTION RECORD
Number on order
Time required for delivery

25
18 months

COST, PRICE AND RENTAL RATES

Basic System Units	Price	Monthly Rental
Computer - 8 K Memory	\$390,000	\$ 8,000
High Speed Reader	35,000	750
Punch Unit	40,000	850
High Speed Printer	79,000	1,650
Uniservo III Synchron-Izer-Max. 16 Uniservos	145,000	2,900
Uniservo III Power Supply	17,500	350
Uniservo III Additional Equipment	$\begin{aligned} & 24,000 \text { ea. } \\ & \text { Units } \end{aligned}$	500 ea.
Card Punching Printer \$	\$ 197, 500	\$ 4,300
Uniservo II	20,000	450
Uniservo II Synchronizer	92,500	1,925
Uniservo II Power Supply	17,500	350
Memory-Add. 8 K -	67,500	1,400
Add. 24 K	193,500	4,030
$\cdots \cdots$ Uniservo III chronizer or Mass nory Device	145,000	2,900

Maintenance/service contracting is included in rental price.

PERSONNEL REQUIREMENTS

Training made available by the manufacturer to the user includes a program-systems course for experienced programmers of 5 weeks duration and for inexperienced programmers of 8 weeks duration.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

The system is completely self-checking.

ADDITIONAL FEATURES AND REMARKS

Outstanding features are modularity, field selection, multiple word operand, index registers, scatter-read-gather write, and indirect addressing.

Unique system advantages includes automatic interrupt, combined with above features.
The normal procedures for handling Mylar tape may be used.

A one addressable modulus 24 hour clock is included. It keeps time in tenths of a second and has a digital output which can be read by the computer program.

As faster components become available and more powerful input-output units are developed, they will be incorporated in this system without requiring program changes.

Typical Expanded System

Tape Line Configurations

Diagram by Sperry Rand Corporation, Remington Rand Univac Division

UNIVERSAL DATA TRANS

Photo by U. S. Naval Weapons Laboratory, Dahlgren, Va.

APPLICATIONS

Located at the Naval Proving Ground, the system is used for conversion of scientific or management data from one medium or format to another, primarily in the processing of input and output for the NORC or other computers.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system
Binary
Binary digits/word
Binary digits/character
Instruction word format

MO	MI	M2	M3
$8 \quad 1$	86	5 1 8 1	81
$\begin{aligned} & \text { Operation } \\ & \text { Code } \end{aligned}$	B-Register Specification	Address Specification of Reference to Memory	Imint Value of Bx

Since there are no multiply or divide orders, the operating binary point may be considered to be in any
convenient location. The carry (borrow) bit may be propagated from character to character in addition (subtraction) with use of double precision orders. A single reference to the memory brings out four characters designated as MO, MI, M2, and M3 into the memory register. Addresses evenly divisible by four always correspond to the character read out as MO. Instruction words consist of the four characters MO, M1, M2, and M3. Instruction words are logically divided into 4 fields as shown above, namely: Operation Code, B-Register specification, Address Specification of reference to memory and the Limit Value of Bx.

The operation of the system depends upon the microprograming of the computer to generate special orders which will transfer data from the particular external input device currently in use to the computer memory and from the memory to the external output device currently in use. The use of micro-programing, which is accomplished by use of a plughoard, allows an efficient transfer of data between the computer memory and the external devices with a minimum of special equipment. Conversion of the data within the memory from one form to another is accomplished by
the use of an appropriate stored program. This gives a very flexible system since all that is required to change the system from one job to another is to change the connections to the external equipment, insert a different plugboard, and load a new program into the computer memory. This system was conceived, designed. and is under construction by the Computer Research and Development Branch of the Computation and Exterior Ballistics Laboratory of the U. S. Naval Proving Ground, Dahigren, Virginia.

IThe system registers are:
1 Input register
1 Output register
2 Computing registers
6 B-registers (address modifiers)
1 Instruction register
1 Instruction counter
Indicator latches (single bit registers)
Other special registers
External devices communicate with the computer via the input and output registers under control of the computer. The input register can select at high speed from either of two different external devices. The output register is normally connected to only one unit. Indicator latches are used both to control the external devices and to signal the condition of the external devices to the computer. Special electronic signal generating equipment tailored to each type of external device is used to facilitate commuication with the input register, output register, indicator latches and the external device.

ARITHMETIC UNIT

Operation time, incl 1 memory access 11 microsec Operation time, incl 2 memory accesses 21 microsec Two memory accesses are required for such orders as read out and store orders.

STORAGE		
No. of	No. of	Access
Words	Digits	Microsec
2,048	36	bits/word

INPUT OUTPUT

Media	Speed
Magnetic Tape (NORC)	$70,000 \mathrm{dec} \mathrm{dig} / \mathrm{sec}$
Magnetic Tape (Potter 906)	$37.5 / 75 \mathrm{in} / \mathrm{sec}$
	$200 \mathrm{char} / \mathrm{inch}$
Paper Tape (Digitronics)	$300 / 600 \mathrm{char} / \mathrm{sec}$ (read)
Paper Tape (Teletype)	$60 \mathrm{char} / \mathrm{sec}$ (read)
Paper Tape (Flexowriter)	$10 \mathrm{char} / \mathrm{sec}$ (read)
Paper Tape (Teletype)	$60 \mathrm{char} / \mathrm{sec}$ (punch)
Paper Tape (Flexowriter)	$10 \mathrm{char} / \mathrm{sec}$ (punch)
Magnetic Tape (Analogue, Ampex Model FR-lo0A)	
Speeds are l.875, 3.75, 7.5, 15,30 and 60 in/sec.	
Cards (Remington Rand)	450 cards/min (read)
Cards (Remington Rand)	100 cards/min (punch)
Cards (IBM Model lol)	450 cards/min (read)
Cards (IBM Model 5l4)	100 cards/min (punch)
Typewriter (Flexowriter)	Keyboard (entry)
Typewriter (Flexowriter)	10 char/sec (print)

CHECKING FEATURES

The computer has automatic circuitry built into the system to check the accuracy of its operation. This check adds a parity bit to the 8 bits in each character so that the modulo two sum of the binary one's of these 9 bits is always odd. This check bit is generated after data enters the input register, is corrected as the characters are modified by various orders, and is stored in the memory along with the character. An automatic check is made for the presence of the proper parity count as the data is transferred from the memory into the working registers or the instruction register. The values in the B registers are checked automatically as they are used and there are checks on the execution of the overlay and shifting operations in the computing registers.
Whenever possible checks will be made on the accuracy of data transmission between the computer and the external devices. For example, in card reading, data will be loaded into two independent shift registers from two reading stations, and after the card images are assembled in memory they will be checked against each other. In punching data into cards, the card will be read back into the computer after being punched and this card image will be checked against the card image sent out to the punch. When magnetic tapes are written the data will be read back into the computer and a check will be made on the correctness of the data.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer $5 \mathrm{Kw} \quad 6 \mathrm{KVA} 0.83 \mathrm{pf}$

Room size, computer 480 sq ft
No special preparation. Air conditioned as a small part of a large system.

PRODUCTION RECORD

Number produced
Number in operation
1

COST, PRICE AND RENTAL RATES
Total approximate cost $\$ 350,000$ for all units listed except IBM 101 and 514, which are rented.

PERSONNEL REQUIREMENTS

	Three 8 -Hour Shifts
Progranmers	3
Operators	4
Engineers	1
Technicians	1
Operation tends toward closed shop.	
Methods of training used is on-the-job.	

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Time is available for rent to qualified outside organizations. System has been in use on several projects since January 1960. Some engineering work continues. It may be used by government agencies or contractors when time is available.

ADDITIONAL FEATURES AND REMARKS
 The most outstanding difference between the com-

 puter of the Universal Data Transcriber and any other single address binary computer is the availability of the plugboard and the plugboard instructions. The plugboard is divided into three regions. The first region consists of information coming from equipment in the computer to the plugboard. This includes all of the registers, such as Register 1, Register 2, Input Register, Output Register, Instruction Register, Instruction Counter, B7, and the indicator latches, plugboard instruction specification and the internal clock. Also in this region are external inputs from the various input and output devices which have been converted to the proper signal level.s. The second region of the plugboard consists of a set of approximately 75 logical packages. These packages are identical to those used in the construction of the rest of the computer. In the third region of the plugboard are exists from the plugboard of the control lines in the computer. These lines control the transfer of data from "register to register", use of the B Registers, controlling memory cycles, setting of indicator latches, shifting various registers, etc. Thus by using all three regions of the plugboard almost any conceivable (or desirable) cycle of actions can be controlled from the plugboard. This feature is primarily for use with external devices to get data to or from them and the memory of the UDT.The indicator latches in the computer are used primarily for communication between the UDT and external devices. For example, some of the indicator latches could be wired, via the plugboard, to control the stopping, starting, or reading or writing of a tape unit. Other indicator latches could be used to indicate to the UDI that an external device is in certain conditions, for example, that a card reader is moving cards, or ready to scan one row of information, or that it is out of cards, etc. Thus the program can control external devices, and external devices can be sensed by the program by use of the indicator latches.
Another feature of the UDI is the "Program Interrupt" ability. If a particular exit on the plugboard is energized the computer will go into a program interrupt cycle. This exit can be energized from an indicator latch, or combinations of indicator latches and various conditions by wiring on the plugboard. When this condition occurs the computer will automatically make a program transfer to instruction location 4 at the end of the current instruction. The address (Y) of the instruction which would have normally been executed next, if the program interrupt condition had not occurred, will be automatically stored in character locations 1 and 2 in a form so that if the character in location 0 is the code for a program transfer (jump) command and the instruction at location 0 were to be executed, the computer would jump to the proper address (Y). When this feature is used the program, starting at location 4, must be suitable to take the appropriate
action for the condition which caused the jump. After this is done, the program would normalily remake the appropriate registers, and then jump to location 0, which would cause the jump back to the main program at the proper place. By using this feature the computer can react rapidly to external control information without requiring repeated sensing on the condition.

The major advantage of the Universal Data Transcriber is its flexibility. It is not tailored to any specific computer or type of data conversion and is therefore not likely to become obsolete as fast as many specialized converters. The micro-programming and stored program features makes it easy to implement almost any desired conversion with a minimum of engineering effort and special equipment. The major disadvantage to this approach is that it is more expensive than any single specialized converter.
To establish the capabilities of the Universal Data Transcriber several preliminary programs have been prepared. One program for converting 80 column alphanumeric IBM cards to NORC magnetic tape provides for arbitrary code and format conversion, specified by header cards, and converts data to magnetic tape at a rate of 450 cards per minute. Sinailar programs have been developed for conversion from one magnetic tape system to another. If there is a conversion in both the code representation of the data and in the format, but not in the number base, the system can convert 4, 5, 6, 7, or 8 bit characters from one form to another at a rate of approximately 3,000 characters per second. Conversion can be made from 48 bit binary words to decimal digit words at a rate of approximately 16 words per second. Conversion can be made from 13 digit decimal words to binary words at rates in excess of 50 words per second.

The Universal Data Transcriber is being designed and constructed at the U. S. Naval Proving Ground, Dahlgren, Virginia. Subcontractors are providing the memory, logical building blocks, and various specialized input and output circuitry.
The logical building blocks are all transistorized megacycle SEAC type circuitry built by Computer Control Company. Some of these are being modified to provide two phase operation where the extra speed is required. The memory is an all transistorized magnetic core memory with a full read-write cycle time of 10 microseconds , and operates in parallel on a 36 bit word or 4 characters of 9 bits each. The $80-$ brush reading station of the IBM 101, used as a 450 card per minute reader, will load the data from a row in the card in parallel into a magnetic shift register which will be shifted into the computer on four wires in 600 microseconds. A similar circuit will be used on the second reading station so as to provide a check on the reading. Data is punched into IBM cards at 100 cards per minute by serially shifting, one bit at a time, at a 100,000 cycle shift rate, the 80 bits in the row to be punched. This shift register will pick up relays which will control the punch magnets in an IBM 514. The reading station which follows the punching station will be equipped with magnetic shift register for reading back the data from the punched card for a check. The same shift register and relays which are used in punching is 120 bits long so that it can be used to control the printing on an IBM 407. A Flexowriter is permas nently attached to the system to provide commuication between the computer and the operator and is used as an input for the program tapes, and as an input or output of $5,6,7$ or 8 channel paper tape. A NORC magnetic tape unit is used to provide communication
to or from the Naval Ordnance Research Calculator.

INSTALLATIONS
Computation and Analysis Laboratory
Naval Weapons Laboratory
Dahlgren, Virginia

VERDAN

Autonetics VERDAN MBL-D9A Computer

APPLICATIONS

The computer is used in real time control systems, such as inertial navigation, bombing, weapon system central digital computer, flight control, ground checkout and alinement, and process control.

As a data system, it is used for scientific computation, impact predicition, and mission readiness.

The VERDAN computer consists of three interconnected computational centers: (1) an incremental or DA section (2) a whole valve or GP section and (3) an input-output section. All three centers may be operated simultaneously. The GP section directs all computation.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system Binary digits/word Binary digits/instruction Instructions/word
Instructions decoded
Arithmetic system
Instruction type
Number range

$$
\text { As an integer: }-\left(2^{23} \leq W<\left(2^{23}-1\right)\right.
$$

$$
\text { As a fraction: }-1 \leq W<1-2^{-23}
$$

Instruction word format

0	1	2	8	9	12	13	16	17	23
Not Used	Sector of Next Instruction	Operation Code	Channel	Sector					
	Operand Address								

ARITHMETIC UNIT

STORAGE

Medium	No. of Words	Digits/Word
Rotating Disc Memory	1,664	24
The average access time is one half of a disc rev		

The average access time is one half of a disc revolution, or 5 milliseconds.

Magnetic tape is under development.

MANUFACTURER

Autonetics
Division of North American Aviation

INPUT

Media
16 DC Voltages
($\pm 0.5 \%$ Range $\pm 10 \mathrm{~V}$)
3 Ternary Coded Pulse
(using 8 integrators)
32 Shaft Encoder
(20 significant bits)
3 Resolver Incremental
(using 8 integrators)
Tape Reader
Manuel Control

OUTPUT

Media
15 DC Voltages 100 Speed
Serial Digital 332.8 bits/sec
16 Shaft Encoder 100 times/sec (20 significant bits)
4 Bin Code $\quad l 00$ times/sec
4 Ternary Code 100 times/sec
Nixie Display on control panel
Paper Tape Punch 5 channel
Bypewriter

CIRCUFT ELEMENTS OF ENTIRE SYSTEM

Type	Quantity
Diodes	10,000
Transistors	1,500
Capacitors	670
Resistors	4,500

CHECKING FEATURES

Parity on input..output. The same problem can be run on GP and DDA internally and answers compared.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer 0.320 Kw 0.8 pf 400 eycle, 3 phase Volume, computer 1.4 cu ft
Weight, computer 82 lbs
Air conditioner is not normally required if input air is between $0^{\circ} \mathrm{F}$ and $90^{\circ} \mathrm{F}$. Blower must be supplied by user.

PRODUCTION RECORD

Number produced to date	180
Number in current operation	180
Number on order	883 (approx.)
Anticipated production rates	$5 /$ week
Time required for delivery	10 months

COST, PRICE AND RENTAL RATES

Basic system consists of the computer - VERDAN, manual control panel, and paper tape reader. Additional equipment includes paper tape punch, tape prep. equipment, test equipment - C297A, and typewriter. Prices are available upon formal request to Autonetics.

PERSONNEL REQUIREMENTS

This computer was primarily designed for unmanned control systems and thus can operate for long periods of time unattended.

Training made available by the manufacturer to the user includes programming course and operation and maintenance course.

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Calculated mean time before failure, from parts count, is 160 hours. Realized MIBF under steady state operation is 250 hours.

ADDITIONAL FEATURES AND REMARKS

Outstanding features include multiple input-output, combination GP/DDA, and small size.

Due to the manner in which the inputs and outputs are handled - internally - the computer does not halt while inputing or outputing, thus the GP, DDA and input-output operations can proceed simultaneously, making this machine almost ideally suited to the real-time control problem.

The VERDAN contains a non-volatile magnetic memory. Provisions are incorporated such that in case of power failure, all intermediate information is stored on a memory channel. Upon resumption of power, the flip flops and registers etc., are reset and the program computation resumes at the point of interruption.

FUTURE PLANS

A digital, addressable magnetic tape reader and writer is under development as an accessory for this machine, in order to extend its capabilities.

INSTALLATIONS

Autonetics
Division of North American Aviation
9150 E. Imperial Highway
Downey, California

WESTINGHOUSE AIRBORNE
 Westinghouse Airborne Digital Data Processor

Operand Memory

APPLICATIONS

System is used to process radar data, generate synthetic displays, and direct antenna. The computer is used also to conduct built in system tests, perform diagnostic tests of the Data Processor itself and generate calibration displays.

The Westinghouse Airborne Digital Data Processor is a problem oriented general purpose digital computer developed by Westinghouse for the Bureau of Aeronautics. Problem orientation of the Data Processor stems from its function as a sub-system of a radar processing system with multiple target handling capability.

MANUFACTURER
Air Arm Division
Westinghouse Electric Corporation

Photo by Westinghouse Electric Corporation

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system Binary
Binary digits/word. 24
Binary digits/instruction 21
Instructions/word One (two instruction
words per memory line)
$\begin{array}{ll}\text { Instructions decoded } & 4096 \\ \text { Arithmetic system } & \text { Fixed point }\end{array}$
Instruction type One address
Number range $-1<\mathrm{n}<+1$
Instruction word format

21.	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3				
Inst. Field					Ind	dex				Address Field												

Field Designation for Instruction Word

Power Supply

Registers and B-boxes

Accumulator	X-Register
Q-Register	3 Index Registers
M-Register	IS-Register
Stared Data processing program consists of	

Stored Data Processing program consists of many sub-routines.

Data-constant words are expressed in a complement form. Operand words are stored two words per operand memory line. Programmer has choice of left or right word, left or right half of left word, or left or right half of right word. These choices provide for maximum use of data locations.

ARITHMETIC UNIT

Incl. Stor. Access Exclud. Stor. Access

	Microsec
Add	3
Mult	20
Div	40
Construction (Arithmetic unit only)	
Transistors	2,600
Arithmetic mode	Parallel
Timing	Synchronous
Operation	Sequential

Photo by Westinghouse Electric Corporation

c	STORAGE		
No. of Words	No. of	Access	
Mig/Words	Microsec		

Physical properties of tape Width
Length of reel
Composition
0.5 Inches

2,400 Feet
Mylar
Selected data recorded on tape compatible with IBM
727 tape unit.
Provides checking feature for processed data.

INPUT

Media
Hi-speed Block Transfer
Voltage to Digital 75 microsec $\quad 0.1 \%$ Resolution Sense Inputs

Special input unit designed to receive information from radar and present it to Data Processing units.

OUTPUT

Media

H-speed Block Transfer Digital to D-C Voltages 0.1% Resolution Digital to A-C Voltages
0.2\% Resolution

Special output unit designed to receive data from the arithmetic/control unit, decode data, output to the antenna director, display of tracked targets on console, and output to tape unit.

Photo by Westinghouse Electric Corporation

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Type
Diodes
Transistors
Magnetic Cores 113,600
Gating systems operate on DC levels with approximately 10 millimicroseconds of delay per stage.

Multi-aperture core Instruction Memory with NonDestructive Read-out.

CHECKING FEATURES

Internally Programmed Self Test
Arithmetic/control monitor capable of testing and holding the contents of a particular register at any prescribed time.

Readily accessible test points permit rapid trouble shooting without removing cards or units from mounting structure.

Photo by Westinghouse Electric Corporation

POWER, SPACE, WEIGHT, AND SITE PREPARATION

Power, computer and power 1.8 Kw 1.8 KVA 1.0 pf

 Volume, computer $\quad 6.5 \mathrm{cu} \mathrm{ft}$Area, computer Dependent on mounting application Weight, computer 250 lbs

Data Processor is designed for airborne use.
Mounting structure depends on space available. Cooling required is a blower with a capacity of 200 cfm at max amb temperature $38^{\circ} \mathrm{C}$ min air density .052 $1 \mathrm{bs} / \mathrm{ft}^{2}$. System requires $115 \mathrm{v}, 400$ cycle, 3 -phase, 600 watts/phase, or 28 v D.C. 3 wire.

PRODUCTION RECORD

Number produced to date
Number in current operation
Current operating models are prototype.

RELIABILITY. OPERATING EXPERIENCE, AND TIME AVAILABILITY

System features and construction techniques utilized by the manufacturer to insure required reliability include selected standard parts proven long life items with extensive life testing operations, electrical components derated to operate at 20% of nominal voltages and power ratings, and circuits designed
to accomodate wide swings in component parameters.

ADDITIONAL FEATURES AND REMARKS

Outstanding features include Hi speed (300,000 operations/sec) in a ruggedized, small package, high reliability, and general purpose command repertoire with three Index Registers.

Unique system advantages include Non-Destructive Instruction Store with 1 microsecond memory cycle time, and split word storage, allowing progranmer a choice of a 24 bit whole word or a 12 bit half word.

INSTALLATIONS

Westinghouse Electric Corporation
Air Arm Division
Avionics Systems Section (454)
Box 746
Baltimore 3, Maryland

The Whirlwind Computer

MANUFACTURER
Massachusetts Institute of Technology Digital Computer Laboratory

APPLICATIONS

Manufacturer

Scientific and engineering computation. The research reported in this computing system description was sponsored by the Office of Naval Research.
Air defense experiments leading to development of the SAGE System.
The Whirlwind I Computer was declared excess to the needs of the M.I.T. Lincoln Laboratory in the spring of 1959. Subsequently, the computer was leased by the Office of Naval Research to the Wolf Research and Development Corporation, Boston, Mass. The Wolf Research and Development Corporation then undertook the disconnecting and moving of the computer from the M.I.T. Barta Building. This move which commenced about 1 January 1960 was successfully completed by 1 May 1960. The computer is presently stored in a Navy warehouse and it is planned to move the machine and make it operational at a new site during early 1961.

Photo by Massachusetts Institute of Technology

PROGRAMMING AND NUMERICAL SYSTEM

The basic operation code has been supplemented by a comprehensive system of service routines, providing for direct read-in of Flexowriter-coded perforated paper tapes, the logging of each problem on film and paper tape for subsequent processing, assembly during read-in of a suitable set of instructions including interpretive programed-arithmetic (optional floating

Photo by Wolf Research \& Development Corporation
point), up to several hundred cycle counters (B-boxes), output routines, error detection, and automatic post mortems.
Routines are normally coded with mnemonic operations, symbolic addresses, relative addresses, program preset parameters, special psuedo-codes, and special control words.

The service routines are stored on magnetic tape and are selected automatically during read-in.

ARITHMETIC UNIT

	Incl Stor Access Microsec	Exclud Stor Access Microsec
Add	22	8
Mult	$34-41$	23.5
Div	71	57
Construction	(Arithmetic unit only)	
Type	Quantity	
6145	517	
7AK7	441	
6SN7	96	
3E29	14	
6Y6	51	
Basic pulse repetition rate	I Megacycle/sec	
ArIthmetic mode		Parallel
Timing		Synchronous
Operation		Concurrent

STORAGE

Media	Access	
Magnetic Core	6,144	Microsec
Two Magnetic Drums	36,848	7
Five Magnetic. Tapes	$125,000 /$ tape	8,300
Toggle Switch	32	
Flip-flop	5	1
A		

A word consists of 16 digits plus a parity digit. Read-rewrite time is 7 microseconds. Drum access time is average value.
Magnetic Tape
No. of units that can be connected 4 Units
No. of words/linear inch of tape 13 Words/inch
Channels or tracks on the tape 6 Tracks/tape
Blank tape separating each record 0.6 Inches
Tape speed 30 Inches/seo
Transfer rate 390 Words/sec
Start time
6.0 Millisec

Stop time
6.5 Millisec

Average time for experienced operator
to change reel of tape
60 Seconds
Physical properties of tape
Width $1 / 2$ Inches
Length of reel 800 Feet

Composition Acetate
Magnetic core storage consists of two banks of 1024
words each and one bank of 4096 words. These are divided into 6 fields of 1024 words, any two of which
may be used at a given time. A change fields instruction permits selection of the two fields to be used. A word consists of 16 digits plus a parity digit. Read-rewrite time is seven microseconds.
Magnetic drum storage consists of an auxiliary drum containing 12 groups each consisting of 2048 words plus six groups of 2048 words each contained on a buffer drum. The buffer drum contains four other groups which are used for input-output buffering of digital data.

A total of five magnetic tape units is available, of these a maximum of four may be connected to the computer at any one time and up to three may be connected to the associated delayed (off-line) printout system.

INPUT

Media	Speed
Paper Tape (Ferranti)	200 Iines $/ \mathrm{sec}$
Paper Tape (Flexowriter)	14 Iines $/ \mathrm{sec}$
Magnetic Tape	30 in $/ \mathrm{sec}$
Light Guns (Teletype)	Manual
Paper Tape	60 words $/ \mathrm{min}$
Switches	Manual
Digital. Data Input	1,300 points $/ \mathrm{sec}$
Real Time Clock	60 pulses $/ \mathrm{sec}$

OUTPUT

Media	Speed
Magnetic Tape	188 char $/ \mathrm{sec}$
Oscilloscope-camera	200 char $/ \mathrm{sec}$
Paper Tape (Flexowriter)	10 char $/ \mathrm{sec}$
Oscilloscope-Camera	2 frames $/ \mathrm{sec}$
Oscilloscope-Display	6,000 points $/ \mathrm{sec}$
Printed Page (Flexowriter)	10 char $/ \mathrm{sec}$
Paper Tape (Teletype)	60 words $/ \mathrm{min}$
Printer (Teletype)	60 words $/ \mathrm{min}$
Digital Data Outputs	1,300 pulses $/ \mathrm{sec}$
Audible Alarm-Lights	4 words $/ \mathrm{sec}$

The oscilloscope displays vectors at the rate of 6,000 vectors/sec and characters at the rate of 3,000 char/sec. An IBM 523, modified, is used for reading and punching. Magnetic tape may be used for delayed Flexowriter output (off-1Ine).

CIRCUIT ELEMENTS OF ENTIRE SYSTEM

Type	Quantity
Thabes	14,500
7AK7	6,145
6145	5,665
40 Types	
Diodes	14,000
Transistors	None
Magnetic Cores	104,448
Used in core memory only.	

CHECKING FEATURES

Arithmetic element checks, parity checks of core memory and magnetic drums, and information transfer checks.

Marginal checking is done one hour daily to determine if any computer circuits have deteriorated during the past 24 hours.

POWER, SPACE, WEIGHT, AND SITE PREPARATION
Power, computer 200 KVA
Power, aix conditioner Volune, computer

150 KVA
Volume, input-output
$4,400 \mathrm{cu} \mathrm{ft}$
volume, input-output
2,100 cu ft
Volune, air conditioner
4,200 cu ft
Area, computer
450 sq ft
Area, input-output
210 sq ft
Area, air conditioner
525 sq ft
Room size, computer
$30 \mathrm{ft} \times 70 \mathrm{ft}$
Room size, input-output $25 \mathrm{ft} \times 4.0 \mathrm{ft}$
Room size, air conditioner
$30 \mathrm{ft} \times 50 \mathrm{ft}$
Floor loading
Capacity, air conditioner
$12 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$
60 lbs concen max
110 Tons
Weight, computer
37,000 lbs
Weight, air conditioner
16,000 lbs

PRODUCTION RECORD
Number produced to date
1

PERSONNEL REQUIREMENTS

	One 8-Howr Shift	Tho 8-Hour Shifts	Three 8-Hour Shifts
Supervisors	1	1	1
Librarians	1	1	1
Operators	1	2	3
Engineers	1	1	1
Technicians	2	4	6
In-Output Oper	2	2	2
Tape Handlers	2	2	2

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Average error-free running period 19.4 Hours
Good time 3,172.3 Hours

Attempted to run time 3,237:9 Hours
Operating ratio (Good/Attempted to run time) 0.98 Figures based on period 15 May 56 to 24 Sep 56
Passed Customer Acceptance Test 1.950

ADDITIONAL FEATURES AND REMARKS
Outstanding features are the display system including twenty-five $16^{\prime \prime}$ display scopes, $195^{\prime \prime}$ display scopes, 13 light guns, manual intervention switches and audible alarms. Digital data inputs and outputs via telephone IInes, teletype input and output and real time clock.

INSTALLATIONS

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

MANUFACTURER

University of Wisconsin
Department of Electrical Engineering
Cnmmititnre T-nnuntinn

Photo by the University of Wisconsin

APPLICATIONS

General purpose scientific and engineering computation, engineering experimentation and training.

PROGRAMMING AND NUMERICAL SYSTEM

Internal number system
Binary digits/word
Binary
Binary digits/instruction
50
Instructions/word
50
Instructions decoded
Instructions used
Arithmetic system Instruction type

16
Floating point
Three address

Number range $\quad 40$ binary digits times $2^{ \pm 255}$
Instruction word format

10	4	12	12	12
X	T	A	B	C
SPECIAL	TTYE	ADDRESS	ADDRESS	ADDRESS
$50-41$	$40-37$	$36-25$	$24-13$	$12-1$

1 bit (\#49) used to select fixed point operation, breakpoint operation, etc.
6 bits (\#41-46) used (along with 12 bits) to allow completely general Extract operation: Extract any number of bits from any stored word, shift right or left any number of places, insert into any other stored word.

ARITHMETIC UNIT

Incl. Stor. Access.
Microsec

Add	16,700
Mult	16,700
Div	16,700

16,700
onstruction (Arithmetic unit only) Type

Quantity
Tubes
400

6211	400
5844	100
6 AW8	4

6СM6 6
Diodes
1N38 200
Rapid access word registers Basic pulse repetition rate Arithmetic mode
Timing
Operation
$\quad 7$
$100 \mathrm{Kc} / \mathrm{sec}$
Serial
Synchronous
Sequential
Concurrent

7
Serial
Synchronous
Concurrent
Operations are carried out on four instructions simultaneously (Integral Synchronization) resulting in efficient use of access time. The four concurrent operations are read order N, locate two operands called for by order $\mathrm{N}-1$, perform arithmetic of order $\mathbb{N}-2$, and deliver result of order N-3. Floating point makes efficient use of otherwise long addition time.

	STORAGE		
	No. of	No. of	Access
Media	Words	Digits	Microsec
Magnetic Drum	1,024	51,200	$0-16,700$
Magnetic Drum	4	550	
Magnetic Drum	3	440	

INPUT

Media	Speed
Punched Paper Tape	10 sexadec char/sec
Flexowriter Keyboard	Manual

OUTPUT

Media	Speed
Punched Paper Tape	10 sexadec char/sec
Flexowriter Typewriter	10 sexadec char/sec
Oscilloscope Monitor	
CIRCUIT ELEMENTS OF ENTIRE SYSTEM	
Type	Quantity
Tubes	
5844	650
6211	650
6AQ5 - 6CM6	100
6AW8	14
6AG5	32
Diodes	
1N38	400
1N1128	3
1 N 1128 R	3
6 AQ6 being replaced b	6CM6

CHECKING FEATURES

Manually operated marginal checking voltages Set of diagnostic routines

POWER, SPACE, WEIGHT, AND SITE PREPARATION

Power, computer	LO. 5 Kw
Power, air conditioner	7.5 Kw
Area, computer	40 sq ft
Area, air conditioner	15 sq ft
Capacity, air conditioner	7.5 Tons

PRODUCTION RECORD
Produced.
1
Operating I

PERSONNEL REQUIREMENTS

One 8-Hour Shift
Engineers
Technicians
Students

ADDITIONAL FEATURES AND REMARKS

Extract instruction and floating point controls. Remote control.
Digits in instructions corresponding to the sign of significant digits in numbers are not used in any instruction. Extract instruction is the only instruction which makes use of digits corresponding to exponent in numerical data.
System is financed by the Wisconsin Alumni Research Foundation and the University of Wisconsin, College of Engineering, Department of Electrical Engineering.
Design was governed largely by striving for simplicity of operation. Outstanding features include integral synchronization, general extract, fixed or floating point operation and a 50 bit word length.

FUTURE PLANS

Indirect addressing with automatic modification has been designed and a photoelectric reader and high speed punch have been acquired.

INSTALLATIONS
Computing Laboratory
Department of Electrical Engineering
College of Engineering University of Wisconsin Madison 6, Wisconsin

WRU SEARCHING SELECTOR
 Western Reserve University Searching Selector

APPLICATIONS

Located at 10831 Magnolia Road, Cleveland 6, Ohio, the system is used for the scanning of encoded abstracts of scientific publications for literature searching purposes. Applied to literature projects of American Society for Metals, American Diabetes Association, and Communicable Disease Center (Atlanta, Ga.).

MANUFACTURER

Western Reserve University

Photo by Western Reserve University

STORAGE

Media

Paper Tape Library
Relays
The paper tape library is scanned at Flexowriter speeds.

INPUT

Medium
Paper Tape
10 char/sec

OUTPUT

Speed
Medium
Typed Page
Paper Tape
10 char/sec
10 char/sec

PERSONNEL REQUIREMENTS

	One 8-Hour Shift	Two 8-Hour	Shifts	
	Used	Recomm	Used	Recomm
Analysts	1	1	1	1
Programmers	1	1	1	1
Operators	1	1	2	2

RELIABILITY, OPERATING EXPERIENCE, AND TIME AVAILABILITY

Good time
Attempted to run time $\quad 70$ Hours/Week (Average)
Operating ratio (Good/Attempted to run time) 0.86 Above figures based on period 1 Jan 60 to 1 May 60 Time is available for rent to qualified outside organizations.

ADDITIONAL FEATURES AND REMARKS

The starting point for designing this equipment was the realization that documentation systems are called upon to meet a wide variety of information requirements. These range from narrowly defined specific inquiries to comprehensive correlations. More detailed analysis revealed that any given requirement almost without exception invclves a combination of several concepts. Both subject indexing, as ordinarily practiced, and the pigeon-hole type of classification systems make use of preestablished concept combinations insofar as such combinations are used at all. Hand-sorted punched cards and various mechanized systems have demonstrated during the past ten years that highly advantageous benefits may be realized by defining searching and selecting operations in terms of concept combinations not established or anticipated at the time of analyzing the subject contents of documents.
The Western Reserve Searching Selector permits an exceptionally wide range of concepts to be used in defining and conducting searching operations. Thus, the scope of a search may be defined not only in terms of specific substances, devices, attributes, processes, conditions, organisms, persons, locations, etc., but also in terms of generic concepts and their relationships to specific terms. Furthermore, observational relationships, for example the roles in a given experiment or situation of various substances, devices, etc, taken either specifically or generically, may also be designed as points of reference in defining searches.

This wide range of possibilities is accomplished by the ability of the Western Reserve Searching Selector to detect combinations of symbols and combinations of combinations at a multiplicity of levels. At each level, combinations may be defined in terms of logical product, logical sum, logical difference or derived complex logical relationships. The different combinational levels may be thought of as analogous to the combining of letters to construct sentences, sentences to construct paragraphs, etc. The machine is able automatically to detect the start and end of each organized symbolic unit analogous to word, phase, sen-

tence, or paragraph. Encoded abstracts Keyboard operation on Flexowriter Punched paper tape- 8 channel Scanning of punched tape by Flexowriter Identification of alpha-numerical of symbols by WRU Selector Signal to Flexowriter if wanted abstract is identifiedFlexowriter types out serial number and bib- liographic reference of wanted abstract

Selector Operations
This use of analogy, though illuminating, must not be regarded as definitive. Actually, to avoid the complexity of phrasing and sentence structure encountered in natural language, well-defined rules for indicating relationship of a syntactical nature have been worked out. Application of these rules results in the expressing of the subject content of a given document in the form of a telegraphic-style abstract with syntactical relationships rendered explicit by carefully defined role indicator. Encoding the terminology in such abstracts explicitly indicates the relationship of each term to concepts of generic scope.

Prior to conducting a search, an information requirement is analyzed in terms of appropriate specific and generic terms, role indicators and logically defined relationships between them. The information requirement is thus analyzed on the same basis as is used to record the information contents of documents in the form of encoded abstracts. The searching step as performed by the Searching Selector consists of a series of logically defined matching operations involving the common set of terms used for analyzing the information requirement and the information contents of documents.

The Searching Selector has been designed so that ten searches may be conducted simultaneously. Such searches may be interrelated as to scope or completely independent.

FUTURE PLANS

The system has been replaced during 1960 with the GE 250 computing system.

INSTALLATIONS
Center for Documentation and Communication Research Western Research University
Cleveland 6, Ohio

CHAPTIER III
ANALYSIS AND TRENDS

ANALYSIS AND TRENDS

INIRODUCTION

The information for each of the 222 systems described in Chapter II has been subdivided into eighteen topics, permitting the data to be presented in an organized manner and simplifying the comparison of features of the different systems. The following paragraphs, paralleling the subdivisions of the systems descriptions of Chapter II, are an attempt to quantitatively analyze the data and show recent trends in the field of computing machinery. It is emphasized again that the information given in Tables II through XV in this Chapter is to be used with caution. The tables have been constructed only to show trends, permit limited comparison of systems and show the present state of the art. Information pertaining to a specific system should be obtained from the system description in Chapter II or directly from manufacturers and users.

DESIGNATION OF COMPUTING SYSTEMS

The names of various types of computing systems existing in the United States stem from different sources. It would have been convenient if some system of classification and standard nomenclature had been established many years ago. The nomenclature could have incorporated the name of the manufacturer and model number, the nature or application of the system, or the name or location of the operating agency. However, a system of nomenclature was not established, resulting in an odd mixture of names for computing systems. Many computing systems bear the name of the manufacturing organization, for example IBM 704, HONEYWELL 800, NATIONAL 304, ILLIAC, and RCA 501. The names of some machines indicate the nature or purpose of the system, for example WESTINGHOUSE AIRBORNE, VOTE TALLY SYSTTEM, CUBTC AIR ITRAFFIC, WHIRLWIND and FIDVAC. Other machine titles indicate the name of the operating agency, such as DYSEAC, SEAC, NORC, OARAC, ORACLE and ORDVAC. Some titles are indicative of the location of the system, such as LARC. The names of some machines are trade names like UNIVAC II and EJIECOM 125. There are some machines named after specific persons, as are ALWAC III E and JOHNNIAC. Arbitrary names, like GEORGE, also exist. Another trend in computing machine nomenclature has been to develop names which were contractions or pronouncable abbreviations of significant titles. Examples of this are EDVAC, for Electronic Discrete Variable Automatic Computer; MANLAC, for Mathematical Analyzer and Numerical Integrator And Computer; and ORDVAC, for ORInance Variable Automatic Computer.

MANUFACTURERS OF COMPUITNG SYSTIEMS

In the interest of national defense, the development of electronic computing systems could not wait until normal economic laws brought about the supply of systems through cormercial demand. The Department of Defense supported research and development in the field of electronic digital computers to be utilized for rapid scientific computation on defense projects.

The world's first electronic digital computer, the ENIAC, designed and developed by the Moore School of Electrical Engineering of the University of Pennsylvania, for the Ballistic Research Laboratories was placed in operation at the Aberdeen Proving Ground in January 1947. Many early electronic machines were manufactured at educational institutions such as the Institute for Advanced Study, MIT, Harvard and the Universities of Pennsylvania and California. Parallel research was performed by industry, and by 1950, large scale digital electronic computers were being delivered commercially. At the present time mass production of large scale systems is well underway. Several thousand large scale systems of various types have been mass produced, and thousends are on order. Table I shows the manufacturers of all the machines described in Chapter II and Table II shows the approximate quantities of these systems which have been produced.

APPLICATIONS OF COMPUTING SYSTIEMS

The installation of the ENIAC, at the Ballistic Research Laboratories of the U. S. Army Ordnance Corps marked the beginning of the widespread use of electronic computing machines. Since the advent of the ENIAC, a large expansion has taken place in the computer field. Investment rates in computing equipment in the United States have risen from ten million dollars per year in 1953 to one hundred million dollars per year in 1956. Present expenditures for computing equipment has passed the billion dollars per year mark.

Almost every commodity industry such as oil, steel and rubber is utilizing computing equipment for both scientific and commercial applications. Service industries, such as banking, transportation, and insurance have applied large scale systems toward the solution of problems in the fields of accounting, reservations control, and bookkeeping. Manufacturers have used computing systems for design engineering and scientific research. Many systems are being utilized for inventory and stock control. The determination of manufacturing plant location and stock parts storage are being made by linear programming methods. Electronic computers are being utilized by the construction industry for design and location of structures and road nets. Many digital computers form a part of closed loop industrial process control systems.

Many problems require the processing of large quantities of data, such as is obtained from missile tracking, telemetering, mineral deposit prospecting and record keeping. The use of electronic computing equipment permits the processing of large quantities of such data over relatively short periods of time.

Many "on-line" applications of both general and special purpose computers are being made. These control applications include such examples as control of wind tunnel testing and continuous-flow manufacturing. Computers are being used for aircraft and missile fire and flight control, both as ground based and missile borne systems.

A discussion of applications of specific systems will be found under the sub-heading "APPLICATIONS" In the various computing systems descriptions given in Chapter II.

PROGRAMMING AND NUMERICAL SYSTHEM

Internal Number System

Many types of number systems have been utilized for the development of logical designs of computing systems. Among these number systems are the straight binary, octal, binary coded decimal, straight decimal, sexadecimal, biquinary, binary coded alphamumeric, and binary coded decimal (excess three). Of 187 different relevant systems, 131 utilize a straight binary system internally, whereas 53 utilize the decimal system (primarily binary coded decimal) and 3 systems utilize a binary coded alphanumeric system of notation. Of course, in nearly every computing system, information is ultimately handled in binary form, particularly in storage and in arithmetic units. The primary method of storage exploits the inherent properties of material media, such as semiconductors, and ferroelectric and ferromagnetic materials. The state of conduction or the polarization of ferroelectric and ferromagnetic materials determine the nature of the information which is stored or being processed. Decimal digits are handled as groups of four bits, or tetrads. Alphanumeric data usually requires the use of six bits, permitting 64 different symbols. Some systems utilize seven bits for expressing a single character, permitting 128 different characters, or may utilize a single bit as an "odd-even" check bit. Programers and coders preparing problems for solution on these systiems may work with decimal or alphanumeric notation and need not be concerned with the binary coding performed automatically by the machine.

Word Length

The selection of word length for computing systems is based upon many considerations. For information words, the precision required for the solution of problems may be the major consideration. For instruction words, word space must be allocated to the address of the operand (or operands for multi-
address codes), the command, and perhaps spares, tags, or check digits. For example, the ORDVAC utilizes 39 bits plus sign for an information word. One-half of a word, or 20 bits , 1 s subdivided into a l2-bit address portion (for 4,096 high speed storage locations), a 6 bit comand portion for 64 commands, and a 2-bit spare digit portion for special applications and versatility. The variation of word length among existing systems is rather wide. Table III shows the word lengths of the 222 systems described in Chapter II, in ascending order of magnitude. The average or nominal word length for fixed word length machines is approximately 40 binary or 12 decimal digits.

Number of Instructions Per Word

In many systems the machine word structure permits several instructions to be expressed by a single word. Of 171 systems, 107 were reported as operating on a one instruction per word basis and 28 were reported as operating on a two instructions per word basis. Several systems required two words to express a complete instruction and, in some systems, several instructions could be expressed by a single word, at the option of the programmer.

Arithmetic System

Most of the earlier machines operated on a fixed point arithmetic system. The binary or decimal point was arbitrarily fixed at either the right or left end of the number. For some systems a centered decimal point permitted the direct expression of whole and fractional parts of numbers. Scaling is required, for example, when a decimal or binary point is located at the left end of a number, in which case all quantities must be scaled between the values of minus one and plus one.

Many of the later machines were manufactured with built-in automatic floating point equipment, permitting numbers to be expressed as fractional parts and exponent parts. The exponent usually is a power of two or ten. Floating point circuitry was added to many of the older systems. A review of this sub-heading in the systems descriptions found in Chapter II and an exomination of Table III will show the distribution of fixed and floating point equipment.

Instruction Type

Internally programed automatic computers require that part of the instruction word be devoted to the address (or addresses) of the operand (or operands). The question of how many addresses are to be incorporated into a single word has been answered in many ways. In single address machines, the address of one operand is given in the address portion of the instruction word. In two address machines, the address of two operands are given, for instance the addresses of the minuend and subtrahend are given for a subtract instruction. For three address machines, the address for storing the result, e.g., the sum, difference, product, quotient or square-root, is given. The three address machines usidally refer automatically to the next storage location, in sequence, for the next three-address instruction word. Machines using the four-address instruction will express the location of two operands, the location for storing the results of the operation, and the location of the next instruction, all in one four-address word. In a $1+1$ system of notation the address of an operend for the current instruction is given, along with the address of the next instruction to be performed. Coding for four-address machines is somewhat simplified, however, a more complex machine structure is necessary. The following table shows the distribution of different addressing systems among the types of computers described in the handbook. Instruction Type Different Systems Using Given Type Instruction
One-address 116
Two-address 23
One or two-address (optional) 13
Three-address 20
Four-address 7
One-plus-one and one-over-one address 8
One and one-half address 3
One or three-address (optional) 2

One or one-plus-one address (optional)	2
One, two, or three-address (optional)	2
One, two, or four-address (optional)	1
Modified three-address	1
Three or four-address (optional)	1
Variable up to five-address (optional)	Total
	$\frac{1}{200}$

Instruction Word Format

Most systems require adherence to a specific format or sets of formats for preparing coded instructions, in the machine language. The instruction word format thus outlines the form in which the instruction is prepared. An accounting must be made of each digit or character of the instruction word.

ARIIHMETIC UNITS

Operation Time

Since the primary function of an arithmetic unit in any computer is to perform repetitive arithmetic operations rapidly, the time required to execute an add instruction or a given sequence of arithmetic or logical instructions, is extremely important when selecting a computing system for a specific application. Tables IV and V were prepared to show at a glance the general state of the art with respect to arithmetic speeds. It must be emphasized that the values stated in the table are on an "as reported basis". The reader is reminded that the tables must be used with caution, since many clarifying or related remarks have been omitted for the sake of simplicity. Refer to the system descriptions of Chapter II for further detail.

Table IV shows the approximate relative order of add time when including the storage access time. In many systems, it is not possible to determine the time required for one addition without considering storage access. This may be due to the fact that in many types of operation, sums may form in an accumulator as the addend is brought from storage, hence access time may be inseparable from add time.

Construction of Arithmetic Units

Most of the computing systems described in this report utilize tubes or transistors as the basic driving element in the arithmetic unit. Several systems utilize magnetic cores in the arithmetic unit. Gating for arithmetic and logical units is most usually performed by diodes, transistors, or vacuum tubes. A review of the construction methods used in arithmetic units is discussed under this topic in the systems descriptions.

STORAGE

An extremely diverse and dynamic field of interest in the study of computing systems is the subject of storage devices. Many ingenious devices, utilizing the ability of various material media to store or record energy transformations, have been devised. Early forms of storage involved mechanical deformation of material media. These are exemplified by cams, springs, gears, music box cylinders, perforated player piano rolls, code wheels and perforated paper tape. All these storage devices required the movement of large masses of material and consequently long access time was inherent. The capacity, in terms of stored information per unit volume of material, was very low.

During World War II, the search for more rapid access storage devices led to the use of the vacuum tube. The two states, that of conduction and that of cut-off, permit information storage on a binary basis. This system, as was used on the ENIAC, proved effective from an access time consideration, however, the system was extremely bulky and required thousands of electronic vacuum tubes for a storage unit consisting of only 20 words of 10 decimal digits each.

Chronologically, the next development was the use of acoustic delay lines of mercury and quartz. A transducer at each end of a length of these materials permits energy conversions and allows the storage of information in the form of high frequency (e.g. 8 megacycles/sec) pulse packets. The information is
continuously recirculated. Information is inserted or read out through the use of standard gating techniques. Among the computers utilizing acoustic mercury delay lines are the DYSEAC, EDVAC, ELECOM 125, SEAC and UNIVAC I. Quartz acoustic delay lines were also used. Other types of delay lines used for storage of information are the magnetostrictive and the electromagnetic or distributed L-C network. See Tables VI, VII and VIII, which list the computing systems utilizing delay line storage units. Although in operating principle there is no difference, it is necessary to make a distinction between a delay line used in a storage loop in which information is continuously circulated, and a delay line used only for purposes of timing the arrival of information at selected points for performing various logical operations. In the latter, the function is delay, or temporary storage, rather than permanent storage. Since delay lines store information serially as a train of electrical or sonic pulses, average random access time is limited to half of the time length of the delay line plus the time equivalent to one word length. Because of the serial nature of the system, delay line storage units are limited in speed. Notice how the delay line types of systems lie near the bottom of the Access Time of High Speed Storage, Table VI.

The search for shorter access time brought about the development of the electrostatic storage unit, also called the cathode ray tube storage device. The material medium in motion was now limited to electrons, i.e., in beams and on charged areas on the screen of a cathode ray tube. These charged areas behaved somewhat like an array of charged capacitors. Selection of storage locations and the transfer of information was efficiently performed by an easily deflected pencil or beam of electrons which was used for both writing and interrogation. Parallel transfer, in which all digits of a given word are transferred simultaneously, became possible with this type of storage system.

The electrostatic storage system, with the inherent problems associated with high accelerating voltages, screen imperfections and other tube failures, bas all but yielded to the utilization of magnetic cores for the storage of information. A 32×32 array of ferrite cores, which might constitute a typical storage plane, may measure only a few inches on each side. The cores are placed at the intersection of the wires of a mesh, and a third winding may be threaded through all the cores for sensing stored data. The storage takes place in the form of magnetically oriented molecular or atomic dipoles which retain their orientation upon removal of the magnetizing force. Many manufacturers intend to provide computing systems with large capacity core storage units. Advances have been made in the use of perforated ferrite plates and magnetic films deposited on glass as a magnetic storage unit. Two such systems, the LINCOLN TX 2 and the UNIVAC 1107 utilize thin films. The storage principle is the same as for magnetic cores. Table VI shows the access tine of high speed storage units in their approximate relative order of magnitude for the storage units used in various computing systems. It must be emphasized that the question of precisely what constitutes access time cannot easily be resolved unless a common understanding as to the definition is reached. In the usual sense, one may consider access time as the elapsed time between the initiation of a conmand to transfer an item of information, usually one word, from one address in the storage to another designated register, and the complete axrival of the item at the designated location. In many systems, particularly serial storage units, access time depends upon the time location of the word in the serially circulating group of word.s at the instant the transfer command is initiated. For this and other reasons, much misunderstanding can arise in the consideration of access time. the data presented in Table VI should therefore be considered to be approximate and should be used with caution.

The capacity of high speed storage units has risen during the past few years as rapidly as access time has diminished. Table VII shows the capacity of high speed storage units in terms of numbers of words and word lengths, arranged in relative order of magnitude of equivalent binary capacity.

Rapid access storage of limited capacity is usually supported by a larger capacity storage unit for a well balanced storage system. This permits the transfer of large blocks of information from the rapid access storage unit to the large capacity storage unit for use at another location or time in the
computation process. The most prevalent devices for auxiliary storage of this type are the magnetic drum or the magnetic disc. The access time for lerge blocks of information is of the order of tens of milliseconds for most magnetic drum or disc units. Many computing systems utilize magnetic drums or discs as the primary storage unit. Several systems utilize large capacity drum or disc units particularly for commercial type applications, such as payroll, stock inventory, and personnel records where access times of the order of microseconds are not required. Table IX shows the capacity of various drum or disc storage systems currently in use. It should be remembered, when glancing at Table IX, that although an attempt was made to show maximum capability, additional drum or disc units can be attached to some systems. Many systems employ magnetic tape as a medium of storage. Although access time is relatively long because of its inherently serial nature, a large volume of data can be stored on tape with a high packing density in terms of data units per unit volume.

The characteristics of a storage device, namely, capacity and access time are two aspects of a storage system which come under consideration when designing or using a machine. The user or manufacturer of a system, at times, can trade capacity for access in the sense that under certain conditions he can accomplish an equivalent amount of computation with a large capacity, somewhat longer access time system as with a small capacity, short access time system. This is the old problem of trading time for space or vice versa. There are limits to this however, for example, when access time approaches the order of milliseconds, computation is seriousily slowed down. Since large capacity and short access time are features to be desired, let us examine a quantity determined by the expression: $\log _{10}$ (Capacity in Equivalent Binary Digits/Access Time in Seconds)

In early storage devices, such as music boxes and signal coding equipment, this number is of the order of two to three. Relay storage units have a number of the order of four or five. Tube registers of the FNIAC vacuum tube accumulator storage type, enabled this figure to be as high as 6.3. Magnetic drum storage units are in the region of 6 to 7 . Acoustic delay line storage systems show that this figure is in the range 8.6 to 9.6 . The cathode ray tube storage (electrostatic) raised the figure as high as 10.79. The magnetic core storage unit permitted an increase of this figure to over 12. Thin films have now acrived on the scene as a practical storage medium. The following table shows the growth, or increase of this number, as development of computing system components progressed:

Storage Device	Approx. Median $\log _{10}$	Approximate Year of Development
Early Mechanical	$2-3$	Prior to 1930
Electromechanical	$4-5$	1935
Vacuum Thbe	$5-6$	1940
Magnetic Drum	$6-7$	1945
Electrostatic (CRT)	$9-10$	1950
Static Magnetic (Mag. Core)	$9-12$	1955
Thin Film	$10-?$	1960

Table VIII is a tabulation of the $\log _{10}$ Capacity/Access figures for the high speed storage units of various computing systems in approximate relative order of magnitude.

TNPUPT-OUTPUTI

The above discussion on arithmetic units and storage devices have shown the great strides that have been made in these fields during the past several years. Arithmetic operation and storage access times have decreased and storage capacity increased. Yet, the communication link between the person and the machine still presents a major problem. Paper tape and cards, inherently bulky, are prevalent and relatively slow, particularly for scientific applications. The main convenience afforded by cards, particularly in comercial systems, is their capability of storing a complete item of information on one card, which may be handled separately or as part of a group, such as data on an insurance policy, a
payroll line, a stock item, a set of corresponding test data, etc. There is no doubt that punching cards is a slow process. Paper tape perforators are also relatively slow in the sense that the data to be punched is usually available at a rate faster than paper may be mechanically perforated, although high speed perforators are being developed and are finding application. Keyboard input systems are useful primarily for the manual insertion of words for test or other special purposes.

In addition to paper tape and card readers and punches, many systems utilize high speed printers and magnetic tape units as a medium of input and output. Magnetic tape output still requires a conversion from magnetic tape to cards or printed page in order that the information be available to operating personnel. However, since human intervention is gradually being reduced, the use of magnetic tape for input, output and storage is increasing rapidly. The prevalence of various input-output media for the 222 computing systems described in this report may be determined by examining the data under the sub-heading "INPUI" and "OUTPUT" in the systems descriptions given in Chapter II.

One method for decreasing machine time spent waiting for reading and writing instructions to be carried out is to provide for concurrent operation. The later machines have built-in circuitry for permitting reading and writing to take place during computations. Apparently the only stipulation is that a given storage location does not become involved in reading, writing and computing at the same time. Many machines, for example, compute while punching and reading cards or while "looking-up" information on tape. Others fetch the next instruction out of storage while performing an operation.

Another method of reducing reading and writing time and to avoid a large amount of lost time when a large amount of machine reading and writing is necessary is to provide for reading and writing on a high speed device such as a magnetic tape or wire unit and allow "conversion" to another medium to take place off the machine at "leisure". Magnetic tape-to-card converters and inverters are becoming available as well as magnetic tape-to-printed-page converters. Paper tape and cards may sometimes be considered as forms of storage, since information recorded on these media may be returned to the machine. Considerable progress is being made in the field of printed page readers. See, for example, the IBM 1401 System.

It is often necessaxy to have computing systems capable of communicating with one another directly. For this reason, input-output media conversion is becoming quite prevalent and large conversion equipment is rapidly becoming available. Input-output schemes are so many and varied, that a complete treatment of this subject is beyond the scope of this report.

CIRCUIT EUPMENTS OF THE ENNTIRE SYSTIEM

There are many impressions which come to mind when one examines such things as transistor, tube and crystal diode counts in a large scale computing system. There is a tendency to visualize a large, sprawling system when the tube count is high. There may be large tube-changing programs based on experience in effect on these large systems. Failure rates, preventive maintenance techniques, tube life problems, design limitations and tube specifications must all be considered on a systematic basis when the tube count is high. Tube count and a knowledge of tube operating characteristics may yield an approximate estimation of some of the problems that may be encountered in the operation of the system. Table X shows the approximate number of tubes utilized in some of the computing systems described in this report. Maintenance of transistorized systiems has become somewhat simpler than maintenance of vacuum tube systems. Power and space requirements for transistorized systems are considerably reduced.

The servicing of a large electronic computing system can be materially simplified by reducing the number of tube types in the system. Standards for tube testing need apply to fewer tube types and tube checking can be further systematized due to a reduced number of test variations. Of course, a test specification or test criterion must be established for the most severe application for which the particular tube type will be applied. A severe or special circuit requirement may be better served through
the use of another tube type. This, then increases the number of tube types. Normally, it is possible to select a type of tube for a group of duties. In a given system, for example, a certain type is selected for driving, for voltage amplification, for flip-flop circuits, normally "on" or "off" conditions, etc. This establishes a number of tube types for a given system and any modification of the system usually should include this "tube type" complement.

The question of crystal diode reliability, diode testing techniques, and diode logical network design, such as individual clemps versus wired plug-in units, become subjects of interest when diodes are utilized. The quantity of diodes in a given computing system may be indicative of the nature of the servicing problem, but only when the failure rates, life and circuit demands placed upon the diode are known. To some extent, malfunctions due to diodes can be aggravated by elevated temperatures. The printed circuit logical package, containing a specific array of "And" and "Or" gates have become the most prevalent means of fabrication. The extent of crystal diode use is shown in Table XI.

Many recently developed systems utilize transistors for driving, switching (gating) and other logical functions. Reduced power and reduced space requirements are advantages of these systems. The question of reliability is rapidly being resolved, as printed circuits and packaging techniques continue to be improved. Table XII shows the quantity of transistors utilized in the various computing systems described in Chapter II.

CHECKING FEAITURES

The question of what type of checking features should be incorporated into a given general purpose computing system is still being tossed about by various manufacturers. The type of built-in check varies from manufacturer to manufacturer and from system to system.

It is usually possible to check all machine calculations by programing techniques. A well designed system can proceed for many hours without a malfunction. If this is the case, it is entirely possible that the installation of a checking system can do more harm than good since the checking features can malfunction and cause an alarm or stoppage when a machine malfunction has not occurred. For example, the second unit of twin arithmetic units can meilfunction, the comparer of a redundancy checker can malfunction, or a forbidden pulse combination decoder can malfunction, all yielding false indications of a machine malfunction. For those systems which do not have built-in checking circuits, the operator or programmer must program a check or the output may be reviewed.

About 87% of the 222 computing systems reported utilize some form of automatic built-in check. A redundancy or duplication check is used in about 8% of the systems. Some type of overflow or exceed capacity is used on about 23% of the systems and an odd-even parity check in one form or another is used on 50% of the systems. Interesting to note here is that in 1957 only 20% of the systems had a form of parity check. Various kinds of transfer checks are used on 19% of the systems. Approximately 28% of the systems established a checking system by detecting pulse combinations which are not supposed to occur anywhere in the system. Forbidden pulse combinations checking stations are scattered around the system, e.g. in memory transfer points, recording stations, reading stations, etc. The various nemes that have been applied to this type of check are forbidden pulse combination, unused order (instruction), unallowable order digit, improper operation code, improper command, false code, forbidden digit, non-existent code, and unused code. There is a distinction to be made between the terms order, instruction, and command. The preferred definitions are given in the glossary of computer engineering and programing terminology, Chapter IV. The following table shows the approximate distribution of checking methods in the systems described in this report. Many systems utilize more than one check technique.

Distribution of Automatic Checking Schemes Among 222 Different Computing Systems	
Parity (arithmetic, transfer, storage, recording)	99
Overflow (underflow, exceed capacity, divide by zero, divide overflow,	47
oversized quotient)	48
Transfer (echo, compare, velidity)	19
Non-existent command.	15
Non-existent memory address	15
Redundancy (equipment, operations)	14
Character code (non-numeric, 11legitimate char, " 21 ones", sign)	14
Forbidden pulse combination (general)	13
Arithmetic (Modulo 3, 4, 9, 25, residue)	12
Timing (clock, synchronism, jitter)	9
Count (hole, address, row, block, word, random error)	8
Non-existent device	7
Miscellaneous (instruction-data, logic, inactivity, unwanted digit, free time)	26
No built-in check	22

POWER, SPACE, WEIGHT, AND SIITE PREPARATION

Important aspects of computing systems are the physical factors of power, space and weight.
Power requirements may very well dictate the physical location of a large computing system within a building, particularly when the power required is in excess of 50 Kw . For most systems, however, the power is brought to the most favorable computer location from the point of view of personnel accessability for operation and servicing. Table XIII shows the power requirement of various domestic digital computing systems, operational or about to become operational in the United States.

An interesting figure might be the relation between the number of tubes utilized in a computing system and the power requirement. In order to determine whether or not a consistent tube to power ratio could be established, the ratio was determined for the computing systems for which the data was available. For the vast majority of computing systems the tube-power ratio is approximately llo tubes/kilowatt. A sample taken of transistorized systems shows that the ratio of transistor quantity to power is about 6,000 transistors/kilowatt.

The problem of space requirements has been solved in so many ways it is impossible to determine a consistent relation between space requirement and any other factor. Large computing complexes have been installed in areas ranging from a corner of a basement to an entire floor of a large building. The pictorial coverage of computing systems and the space requirements discussed under the sub-heading "POWER, SPACE, WEIGHT, AND SITE PREPARATION" In the systems descriptions of Chapter II give the space requirements of the computing systems described in this report. The dimensions of various components of utilized systems are important when considering clearance in rooms, passages, doorways and elevators.

Air conditioning requirements vary considerably from system to system. Air conditioners for computing equipment may utilize water to absorb the heat from circulated air, use a secondary loop of air, force the heated air to the outside, or utilize an outdoor evaporator. The smaller systems circulate room air and depend on the ambient temperature to cool. Almost 100% of the power required by the system is dissipated in the form of heat and must be removed. The large systems usually require separate heat removal facilities. For many systems, humidity and dust control within the machine are required in order to maintain satisfactory operation.

The factor of weight can be important when the floor loading limits for distributed and concentrated loads are within the weight range of the computing equipment. Many systems may require reinforced or specially constructed buildings. Many items of peripheral equipment may cause concentrated loads in
excess of maximum permissable concentrated loadings on some structures. Vibration and shock caused by some equipment such as tabulators and card punches can cause trouble in other components. Shock and vibration absorbing pads are required in such cases. When unitized construction is used, the weight of a single unit must also be considered when transporting and installing.

Many systems require extensive site preparations. Others may be "plugged in" to any convenient outlet. This topic is adequately discussed in the systems descriptions of Chapter II.

PRODUCTITON RECORD

In almost any new and rapidly changing field there will be many instances in which an experimental prototype of a large piece of equipment will be built. This is the result of the normal course of events, namely, a feasibility study, a research effort, a development effort and a prototype construction. Mass production then occurs when the demand for systems is sufficient to warrant production in quantity.

A review of the sub-heading "PRODUCTION RECORD" will give an indication of the production status of various computing systems. The quantity produced, the quantity in current production, in current operation, and on order are given. Delivery times quoted show that immediate delivery is now possible for many computing systems. Table II shows the quantities of the various systems that have been produced. Information on unreported systems was considered proprietary by the manufacturer.

COST, PRICE AND RENTAL RATE

Perhaps the most elusive and intricate item considered in the systems descriptions of this report is the question of initial cost, blandly described as "approximate cost of basic system". Manufacturers are quite naturally quoting current prices for their respective systems. The "one of a kind" system usually includes all research, development, construction, overhead and sub-contracting costs. The "basic system" usually includes minimal input devices, the controls, the storage system, the arithmetic unit, and minimal output devices. All conversion equipment such as card-to-printed page (tabulators), card-to-tape, tape-to-card etc. are considered peripheral equipment, and both the quantity and type is dependent upon specific system application. These are not included in the cost or price of the basic system. Prices of these may be found under "Additional Equipment". In order to determine the cost of a given system, refer to the system description. Table XIV shows the approximate relative cost of various computing systems. No attempt was made to resolve or explain any discrepancies between prices quoted by manufacturers and those quoted by users. It should be remembered that users prices reflect old sales, rental. rates were established by contracts written years ago, manufacturers are offering discounts on older systems, charging greater service rates for older systems, offering educational discounts, etc.

The methods of computing system or component acquisition include direct purchase at a fixed price, direct purchase on a cost plus fixed fee basis, continuous rental, and rental with all or part of the rental applicable toward purchase. Most forms of rental include servicing. Direct purchase can include a service contract. Rental rates are of the order of 3 per cent of the direct purchase price per month. The sale and lease policy of various manufacturers is given under the sub-heading "COST, PRICE AND RENTAL RATE" in Chapter II.

Table XIV shows the nominal price one may expect to pay for a basic system. For many systems, one might add 20 to 80 per cent for required peripheral equipment. Most prices include installation but not shipping costs. Some of the figures reflect prices which are not current and have not taken into account general price rises during the past several years. Some figures include initial service or some type of warranty. The figures quoted in Table XIV are for general consideration only, and are not for purposes of acquisition. Indeed, many systems are not available, even at the price quoted, since the price stated is actually the construction "cost" to the owner.

An attempt was made to discover whether a "system cost per tube" figure could be established. For the larger systems, the figure is of the order of 200 dollars per tube installed and for the smaller systems approximately 100 dollars per tube. However, a glance at Tables X and XIV will show that such a figure can be calculated with some difficulty. An attempt to determine a figure such as "cost per cubic foot" of electronic computing equipment would be equally difficult. Such exercises are left to the reader should such figures be of any interest.

PERSONNEL REQUIREMENTS

Personnel problems have confronted computing system operators and manufacturers from the very outset, in all phases of computer research, development, manufacture, installation, operation, inprovement and servicing. Various grades of skills are required in the fields of engineering, physics and mathematics. Each large system has a crew of engineers and technicians for improving and servicing and a group of mathematicians and operators for problem analysis, coding and programming. In the very small systems, all of these functions may be performed by one or two persons. The systems descriptions in Chapter II show various estimates made by manufacturers and operators of what the personnel requirements are or should be for various systems. The estimates, in some cases, do not show the personnel required for overtime, vacations, illness and training purposes. Just as in any application of manpower to machines, it is necessary to provide sufficient manpower so as to maximize mach:Ine utilization whenever possible. Many installations consist of multimillion dollar computer complexes. Such large capital investments must be utilized at maximum efficiency in order to avoid severe losses. Twenty-four how operation increases the daily output and provides for more efficient utilization of capital equipment. Ulimate requirements for personnel depend to a large extent upon the nature of the application, particularly as pertains to coders, programers and analysts.

RELIABILIITY, OPERATING EXPERIENCE AND TTME AVAILABILITY

The most discussed and most controversial issues in the field of computing machinery occur on the subjects of reliability, efficiency and system evaluation. The determination of the reliability of a system is difficult, primarily because of a lack of a common understanding or interpretation of the definitions of computer operating terms. What actually constitutes "good time" on a computing system? What is "down time", "scheduled engineering", "useful production and code checkilng"? An attempt has been made to provide working definitions of these and other terms in the revised Glossary of Computer Engineering and Programing Terminology given in Chapter V of this report. The very crude "Operating Ratio", as is used in the systems descriptions of Chapter II, is defined as the "Good Time" obtained on the machine divided by the total time one actually "Attempted (or Wanted) to Run" the system. The question arises as to where to put the time lost in scheduled engineering (preventive maintenance), since technically, one is not attempting to run the system during this period, yet the system is not actually "down". Many systems, are operated for 168 hours per week. The operating ratio for these systems would require that 168 be used as the denominator and the number of useful output hours as the numerator, ylelding a much smaller (but perhaps truer) ratio than a system operated on an 8-hour 5-day week shift and using off-time for servicing. This latter type of operation may yield operating ratios of the order of .90 to 1.0 and give a false indication of reliability.

The question of how one determines the average error-free running period is also a difficult one. It may be estimated or calculated by actual counts of the periods of malfunction-free operation. It may be the period used as a guide by coders to prevent losses due to running for extended periods between obtaining output information, particularly where volatile storage media are being used. Many questions regarding the subject of "REHIABILITY, OPERATING EXXERTENCE AND TITME AVAILABILITY" are answered under this subheading in the computing systems descriptions given in Chapter II. A search of the system descriptions under this subheading will reveal those installations which have computer time available to organizations outside of the operating organization.

Many computing systems are approaching the age of retirement and replacement. Constant improvements have already replaced many of the original components of a system. The next few years will see the retirement of many of the older systems. Such retirement may take the form of salvage of parts, use for educational and training purposes, or scrap. Many older models are available at reduced prices. A used computer market is developing. In accepting a used computer, one must be prepared to accept a few headaches. Table XV shows how long some models of computing systems have been in existence.

ADDITIONAL FEATURES AND REMARKS

Under this subheading has been placed general information concerning specific computing systems which did not have a "place" in the previous fourteen subheadings. Included under this subheading are remarks concerning the pictures, information which arrived too late to be added to the system description under a proper heading, special features of the system and other miscellaneous items of information. Under this subheading one will find what manufacturers and users considered to be the outstanding features and unique system advantages of the particular system. Under this subheading are remarks concerning the labelling, storage, shipping and protection from humidity, temperature and physical, electrical, fire or other damage of magnetic tapes.

FUIURE PLANS

The electronic digital computer field is a dynamic one. Plans for acquisition and improvement of systems and components are continually being made and modified. The plans of various operators and manufacturers are given under the subheading "FUIURE PLANS" in ths systems descriptions of Chapter II. Interesting to note are the transitions to new systems being made by many users. "Second generation" (solid state) computers are now at hand.

INSTALIATIONS
A primary source of information concerning electronic digital computing systems is the operating organizations. The acquisitional and operational problems of one organization may have already been solved in one way or another by other organizations. Benefiting from the experience of others can be profitable, if only to avoid mistakes. Under the subheading "INSTALJATIONS" in the systems descriptions of Chapter II, a list of the owners and operators of specific systems is given in order that contacts between owners and prospective owners may be established. Many co-operative "plans" have come into existence, under which owners or operators of specific systems have engaged in sharing computer experience. Many computer sharing contracts have been drawn and many computer centers have been established, offering computer time and personnel for the solution of customers problems.

TABLE I

MANUVACTURERS OF COMPUTITNG SYSTHMS

MANUFACIURER

Airborne Instruments Laboratory
Deer Park
Long Island, New York
Alwac Computer Division
El-Tronics, Incorporated
13040 s. Cerise Avenue
Hawthorne, California
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois
Automation Management Incorporated
P.0. Box 217

25 Brigham Street
Westboro, Massachusetts
Autoneties Division
North American Aviation Corporation
9150 E . Tmperial Highway
Downey, California
Bell Telephone Laboratories, Incorporated
Whippany, New Jersey
Bendix Computer Division
Bendix Corporation
5630 Arbor Vitae Avenue
Los Angeles 45, California
Brookhaven National Laboratories
Upton, New York
Burroughs Corporation
60'71 second Avenue
Detroit 32, Michigan

Computer Control Company
Western Division
2251 Barry Avenue
Los Angeles 64, Califormia
Concord Control Incorporated
1282 Soldiers Field Road
Boston 35, Massachusetts
Control Data Corporation
501 Park Avenue
Minneapolis 15, Minnesota
Cubic Corporation
5575 Kearny Villa Road
San Diego 11, California
Digital Equipment Corporation
Maynard, Massachusetts
Digitronics Corporation
Albertson Avenue
Albertson, New York

SYSTEM
MODAC 4O4, MODAC 410, MODAC 414, MODAC 5014

ALWAC II, ALWAC III E

GEORGE

PERKK I II

AN/MJQ 1 REDSTIONE, FADAC, JUKEBOX, RECOMP I CP 266, RECOMP II, REPAC, VERDAN

LEFPRECHAUN

BENDIX CUBIC IRACKER, BENDIX D 12, BENDIX G 15, BENDIX G 20

MERLIN

BURROUGHS 204, BURROUGHS 205, BURROUGHS 220, BURROUGHS D 103, BURROUGHS D 104, BURROUGES D 105, BURROUGHS D 107, BURROUGHS D 201, BURROUGHS D 202, BURROUGHS D 203, BURROUGHS D 204, BURROUGHS D 208, BURROUGHS D 209, BURROUGHS E 101, BURROUGHS E 102, BURROUGHS E 103, UDEC I II III

CCC REAL TTIME, SPEC

NUMERTCORD

CDC 160, CDC 1604

CUBIC AIR IRAFFIC, CUBIC TRACKIER

PROGRAMMED DATA PROCESSOR

DIGIITRONIC CONVERTIER

TABLE I (CONTINUED)

MANUFACTURERS OF COMPUTITVG SYSTHMS

MANUFACIURER

Electronics Corporation of America Business Machines Division Cambridge 42, Massachusetts

General Electric Company
Computer Department
13430 N. Black Canyon Highway
Phoenix, Arizona.
General Mills
Mechanical Division
1620 Central Avenue
Minneapolis 13, Minnesota
Geotechnical Corporation
3401 Shiloh Road
Garland, Texas
Hampshire Engineering Company
2300 Washington Street
Newton Lower Falls 62, Massachusetts
Hogan Laboratories, Incorporated
155 Perry Street
New York 14, New York
HRB Singer, Incorporated
Science Park
State College, Pennsylvania
Hughes Aircraft Company
Digital Systems Department
Florence and Teale Streets
Culver City, California
International Business Machines Corporation 590 Madison Avenue
New York 22, N. Y.

Intelex Systems Incorporated
67 Broad Street
New York 4, New York
Towa State University
Ames, Iowa
IIT Laboratories
500 Washington Avenue
Nutley 10, New Jersey
READIX
J. B. Rea Company, Incorporated
J. B. Rea Company, Incorporated

Santa Monica, California

SYSTHEM
MAGNEFIIE B, MAGNEFIIE D

GENERAL ELECTRIC 100 ERMA, GENERAL ELECTRIC 210, GENERAL EIECTRIC 225, GENERAL ELECTIRIC 250, GENERAL ELECTRIC 312, OARAC

GENERAL MIIJS AD/ECS, GENERAL MITISS APSAC

GEOTECH AUIOMATIC

CCC 500, HAMPSHIRE TRTDS 932

CIRCLE

HRB SINGER

HUGHES ADV AIRBORNE III, HUGHES BM GUIDANCE, HUGHES D PAT, HUGHES DIGITAIR, HUGHES IRI X, HUGHES M 252

AN/ASQ 28 (v) EDC, AN/ASQ 28(v) MDC, AN/FSQ 7 AN/FSQ 8 (SAGE), AN/FSQ 31(v), AN/FSQ 3I, AN/TYK 7 v INF'ORMER, ASC 15 , IBM 305 RAMAC, IBM 604, IBM 607, IBM 608, IBM 609, IBM 610, IBM 632, IBM 650 RAMAC, IBM 701, IBM 702, IBM 704, IBM 705 I II, IBM 705 III, IBM 709, IBM 1401, IBM 1410, IBM 1620, IBM 7070, IBM 7074, IBM 7080, IBM 7090, IBM CPC, IBM STRETCH, NORC, STORED PROGRAM DDA.

INTELEXX AIRLINE RESERVATION

CYCLONE

IITI BANK LN PROC, IIT SPES 025

TABLE I (CONTINUED)

MANUFACTURERS OF COMPUTING SYSTEMS

MANUFACTURER
Laboratory for Electronics
1079 Commonwealth A.venue
Boston 15, Massachusetts
Leeds and Northrup Company
4901 Stenton Avenue
Philadelphia 44, Pennsylvania
Librascope Division
General Precision Incorporated
808 Western Avenue
Glendale 1, California
Lincoln Laboratory
Massachusetts Institute of Technology
Lexington 73, Massachusetts
Litton Industries
Electronic Equipments Division
5500 Canoga Avenue
Woodland Hills, California
Marchant Calculators, Incorporated
Electronic Division
Oakland 8, California
Massachusetts Institute of Technology
Digital Computer Laboratory
Cambridge 39, Massachusetts
Michigan State University
East Lansing, Michigan
Minneapolis Honeywell Regulator Company
2753 4th Avenue South
Minneapolis 8, Minnesota
Monroe Calculating Machine Company
555 Mitchell Street
Orange, New Jersey
National Cash Register Company
Dayton 9, Ohio
Norden Division
United Aircraft Corporation
3501 Harbor Boulevard
Costa Mesa, California
Norden Division
United Aircraft Corporation
58 Commerce Road
Stamford, Connecticut
Oak Ridge National Laboratory
Oak Ridge, Tennessee and
Argonne National Laboratory
Argonne, Illinois, jointly
Oklahome University
Norman, Oklahoma

SYSTEM
DE 60, DIANA, RASTAC, RASTAD

LEEES NORTHRUP 3000

LGP 30, LIBRASCOFE 407, LIBRASCOPE AIR TRAFFIC LIBRASCOPE ASN 24, LIBRASCOPE CP 209, LIBRASCOPE MK 38, LIBRASCOPE MK 130, LIBRATROL 500, LIBRATROL 1000

LINCOIN CG 24, LINCOLN TX 0, LINCOIN TX 2

LIITTON C 7000, LITTTON DATA ASSESSOR

MINTAC II

WHIRLWIND II

MISTIC

DATAMATIC 1000, HONEYWELL 290, HONEYWELL 800

DISTRIBUTAPE, MONROBOT III, MONROBOT V, MONROBOT VI, MONROBOT IX, MONROBOI. XI, MONROBOT MU

NATIONAL 102 A , NATIONAL 102 D , NATIONAL 107, NATIONAL 304, NAITONAL 315, NATIONAL 390

NORDEN VOIE TALLY

SCRIBE

ORACLE

OKLAHOMA UNIV

TABLE I (CONTINUED)

MANUFACTURERS OF COMPUTIING SYSTEMS

MANUFACTURER	SYSTEM
Packard Bell Computer Corporation	PACKARD BELU 250, TRICE
1905 Armacost Avenue	
Los Angeles 25, California	
Pennsylvania State University	PENNSTAC
Electrical Engineering Department	
University Park, Pennsylvania.	
Philco Corporation	AN/TYK 6v BASICPAC, AN/TYK 4 v COMPAC,
3900 Welsh Road	PHILCO 1000, PHILCO 2000, PHILCO 3000,
Willow Grove, Pennsylvania	PHILCO CXPQ
Radio Corporation of America	BIZMAC I, BIZMAC II, RCA 110, RCA 200,
Electronic Data Processing Systems Division	RCA 300, RCA 301, RCA 501, RCA 601
Camden 2, New Jersey	
Ramo Wooldridge Division	RW 300, RW 400
Thompson Ramo Wooldridge, Incorporated	
Canoga Park, California	
The Rand Corporation	JOHNNIAC
1700 Main Street	
Santa Monica, California	
Remington Rand Univac Division	AF/CRC, AN/USQ 20, AIHENA, BOGART, LOGISTICS,
Sperry Rand Corporation	TARGET INIERCEPT, UNIVAC 60, UNIVAC 120,
315 Park Avenue South	UNIVAC 490, UNIVAC 1101, UNIVAC 1102,
New York 10, New York	UNIVAC 1103 1103A, UNIVAC 1105, UNTVAC 1107,
	UNIVAC FILE 0, UNIVAC FIIE 1, UNIVAC IARC, UNIVAC SOLID STATE 80/90, UNIVAC STEP,
	UNIVAC I, UNIVAC II, UNIVAC III
Rice University	RICE UNIVERSITY
Houston 1, Texas	
Royal McBee Corporation	RPC 4000, RPC 9000
Port Chester, New York	
Sylvania Electric Products, Incorporated	MOBIDIC A, MOBIDIC B, MOBIDIC C D AND 7A,
189 B Street	SYLVANTA S 9400, SYLVANIA UDOFIT
Needham 94, Massachusetts	
The Teleregister Corporation	TELEREGISTEER MAGNET BID ASKED, TELAREGISTER
445 Fairfield Avenue	MAGNET INVENT CONT, TEIEREGISTER TELEFTIE,
Stamford, Connecticut	TELEREGISTER UNIFIED AIRLINE
Underwood Corporation	ELECOM 50, ELECOM 100, ELECOM 120,
1 Park Avenue	ELECOM 125125 FP
New York 16, New York	
University of California	MANIAC I, MANIAC II
Los Alamos Scientific Laboratory	
P.O. Box 1663	
Los Alamos, New Mexico	
University of Chicago	MANIAC III
Institute for Computer Research	
Chicago 37, Illinois	
University of Illinois	ILLIAC, ORDVAC
Digital Computer Laboratory Urbana, Illinois	

TABLE I (CONTINUED)

MANUFACTURES OF COMPUTING SYSTEMS

MANUFACTURER	SYSTEM
University of Pennsylvania	EDVAC
Moore School of Electrical Engineering	
Philadelphia, Pennsylvania	
University of Wisconsin	WISC
Department of Electrical Engineering	
Madison 6, Wisconsin	
U. S. Army Ordnance Corps	BRLESC
Ballistic Research Laboratories	
Aberdeen Proving Ground, Maryland	
U. S. Navy	NAREC, UNIVERSAL DATA TRANS
Naval Research Laboratory	
Washington 25, D.C.	
U. S. Department of Commerce	AMOS IV, DYSEAC, SEAC, SWAC
National Bureau of Standards	
Data Processing Systems Division	
Connecticut and Van Ness Avenues	
Washington 25, D.C.	
Western Reserve University	WRU SEARCHTNG SELECTOR
Center for Documentation and Communications Research	
Cleveland 6, Ohio	
Westinghouse Electric Corporation	WESITINGHOUSE AIRBORNE
Air Arm Division	
Box 746	
Baltimore 3, Maryland	

TABLE II

QUANTITY OF COMPUTITVG SYStIEMS MANUFACIURED OR OPERATIONAL

Quantity	System	Quantity	System
Over 2,993	IBM 604	Over 8	RECOMP II
(Est All Models) 1,500	TBM 650	8	GENERAL ELECTIRIC 210
693	IBM CPC	8	NUMERTCORD
462	LGP 30	Over 7	UNIVAC II
Over 400	LTBRATROL 500	7	AN/TYK 6v BasICPAC
Over 300	bendix a 15	7	CDC 160
Over 267	IBM 607	7	CUBIC TRACKER
(Incl e 101) 210	BURROUGHS E 103	7	MONROBOT XI
200	UNIVAC STIEP	Over 6	PHILCO 2000
180	verdan	6	ELEBCOM 125 125FP
(Incl Mod 1) 164	UNIVAC FILE 0	6	NATTONAL 304
164	UNIVAC FILE 1	6	national 390
127	BURROUGHS E 101	6	READIX
(Inc1 204) 112	BURROUGES 205	Over 5	BURROUGHS E 102
110	UNIVAC SOLID STATE 80/90	Over 5	DATAMATIC 1000
100	BURROUGHS D 104	5	BURROUGESS D 204
Over 90	IBM 1401	5	ELICCOM 120
(Est) 70	IBM 704	5	FOSDIC
70	MONROBOT IX	5	trice
50	AN/FSQ 7 AN/FSQ 8 (SAGE)	Over 4	nattonal 102 d
48	IIPRASCOPE CP 209	Over 4	UNIVAC 120
45	UNIVAC 1105	4	GENERAL ELECTRIC 312
42	BURROUGHS 220	4	IILITAC
Over 30	IBM 709	4	ITBRASCOPE ASN 24
25	UnIVAC III	4	RW 400
24	RCA 501	3	ALHAC III E
Over 18	IBM 701	(Incl All Modets) 3	BIzmaC I
18	GE 100 EFMA	(Incl All Models) 3	BIZMAC III
18	RW 300	3	DIGITRONIC CONVERTEER
16	nattonal 102 A	3	DISIRTBUTAPE
14	LIBRASCOPE MK 38	3	KLECOM 50
Over 13	IBM 702	3	ELIECOM 100
Over 13	IBM 705 III	3	HRB SINGER
Over 13	UNIVAC 11031103 A	3	PACKARD BELL 250
Over 12	BURROUGES 204	3	UNIVAC 1102
12	TIELEREGISITER UNIFIED AIRLINE	2	ALHAC II
10	CDC 1604	2	CIRCLIS
10	गUKEBOX	2	GENERAL MITLS AD/ECS
10	RFC 4000	2	IBM SITEETCH
10	RPC 9000	2	LIBRASCOPE AIR TRAFFIC
9	DE 60	2	PHITCO 3000
Over 8	IBM 7090	2	UDEC I II III

TABLE II (CONTINUED)

QUANTITY OF COMPUTING SYSTEMS MANUFACITURIFD OR OPERATIONAT

Quantity	System	Quantity	System
2	WESTITNGHOUSE ATRBORNE	1	MODAC 41.4
1	AF/CRC	1	MODAC 5014
1	AMOS IV	1	MONROBOIT IIT
1	AN/USQ 20	1	MONROBOT V
1	BOGART	1	NAREC
1	BRLESC	1	NATIONAL 107
1	BURROUGHS D 201	1	NATITONAL 315
1	BURROUGHS D 202	1	NORC
1	CCC REAL TIME	1	NORDEN VOTE TALUY
1	COMPAC	1	OARAC
1	CUBIC AIR TRAFFIC	1	OKLAHOMA ONIVERMSITY
. 2	CICLONE	1	ORACTE
1	DIANA	1	ORDVAC
1	DYSEAC	1	PENNSTAC
1	EDVAC	1	PERK I II
1	GENERAL MIILS APSAC	1	PHIICO 1000
1	GEORGE	1	PHITCO CXPQ
1	GEOTHECH AUTOMATIC	1	PROGRAMMEI) DATA PROCESSOR
1	HAMPSHIRE CCC 500		Procramm Dal
1	HAMPSHIRE ITRIDS 932	1	RASTAD
1	InTIELEX AIRLINE RESERVATIION	1	RCA 200
1	ITT BANK LN PROC	1	RCA 300
1	ITI SPES 025	1	RCA 301
1	JOHNNTAC	1	RCA 601
1	LEPPRECHAUN	1	RECOMP I CPP 266
1	IIBRASCOPE MK 130	1	REPAC
1	LIINCOLN CG 24	1	RICE UNIVIPRSITT
1	LITVCOLN TXX 0	1	Stac
1	LINCOLN IXX 2	1	SPEC
1	LOGISTICS	1	STORED PROGRAM DDA
1	MAGNEFILE B	1	SWAC
1	MAGNEFILE D	1	SYLVANIA S 9400
1	MANIAC I	1	SYLVANIA UDOFTI
1	MANIAC II	1	TARGET ITITERCEPT
1	MANIAC ITI	1	THIEREGISITER MAGNEI BID ASKED
1	MERLIN	1	TELEREGISITER MAGNET INVENT CONT
1	MTNIAC II	1	UNIVAC 490
1	MISTIC	1	UNIVAC 1101
1	MOBIDIC A	1	UNIVAC IAFC
1	MOBIDIC B	1	UNIVERSAI DATA TRANS
1	MOBIDIC C D \& 7A	1	WHIRLWIND II
1	MODAC 404	1	WISC
1	MODAC 410	1	WRU SEARCHING SEIECTOR

TABLE III(CONTINUED)

WORD Lengin of compurcivg stsiems

WORD LENGITH DIGITS	$\begin{gathered} \text { ARITHMEIIC } \\ \text { POINT } \end{gathered}$	INSIRUCITIONS PER WORD	ADDRESSES PER WORD	SYSTEM
18 BIn	Fixed	0.5	$1+1$	RW 300
19 Bin	Fixed	1	3	HUGHES D PAT
19 Bin	Fixed	1	3	HUGHES LRI X
19 Bim	Fixed	1	1	LIBRASCOPE MK 130)
20 Bin	Floating	1	1	BURROUGHS D 103
20 Bin	Fixed	-	-	CUBIC AIR TRAFric
20 Bin	Fixed and Floating	1	1	GENERAL ELECITRIC 225
20 BIn	Fixed	$1+1$	1	GENERAL ELECIRIC 312
20 Bin	Fixed	-	-	HAMPSHIRE CCC 500
20 Bin	Fixed	2	1	HUGHES M 252
20 Bin	-	0.5	1	MODAC 5014
20 Bin	-	-	1	RCA 200
6 Dec	Fixed	1	1	GENERAL ELECITIC 210
6 Dec	Fixed	-	1	MODAC 404
6 Dec	Fixed	-	1	MODAC 414
21 Bin	Fixed	1	1	BURROUGHS D 201
21 Bin	Fixed	-	-	CUBIC TRACKER
21 BIn	Fixed	1 or 0.5	1 or $1+1$	LEEEDS NORIHROP 3000
21 Bin	Fixed	1	1	LIITION C 7000
21 Bin	Fixed	1	1	SYLVANIA UDOFIPI
22 Bin	Fixed	1	1	BURROUGHS D 202
22 Bin	Fixed	-	-	HAMPSHIRE IRIDS 932
22 Bin	Fixed	1	4	LIBRASCOPE 407
22 Bin	Fixed	1	1	PACKARD BEIL 250
22 Bin	Fixed	1	1 or $1+1$	PHIICO 3000
22 Bin	Fixed	5	-	STORED PROGRAM DDA
23 Bin	Fixed	1	1	AN/ASQ 28 (v) MDC
7 Dec	-	-	-	GE 100 ERMA
24 Bin	Fixed	1	1	ATHENA
24 Bin	Fixed	1	$1+1$	BURROUGHS D 203
24 Bin	Fixed	1	1	BURROUGHS D 208
24 Bin	-	-	-	TIELEREGISTHER MAGNET BID ASKEED
24 Bin	Fixed	-	1	RCA 170
24 Bin	Fixed	1	1	TAFGET TNTERCEPTT
24 Bin	Fixed	1	1	UNIVAC 1101
24 Bin	-	1	1	UNIVAC 1102
24 Bin	Fixed	1	$1+1$	UNIVAC III
24 Bin	Fixed	1	J. 5	VERDAN
24 Bin	Fixed	1	1	WESITINGHOUSE ATRBORNE
25 Bin	Fixed	1	$1+1$	CCC REAI TITME
25 Bin	Fixed	1	$1+1$	LIBRASCOPE ASN 24

TABLE III (CONTINUED)

WORD LANGTH OF COMPUTITVG SYSIEMMS

$25 \operatorname{Bin}$
$26 \operatorname{Bin}$
$26 \operatorname{Bin}$
27 Bin
27 Bin
8 Dec
8 Dec
8 Dec
8 Dec
29 Bin
29 Bin
30 Bin
30 Bin
30 Bin
9 Dec
31 Bin
31 Bin
32 Bin
32 Bin
32 Bin
32 Bin
32 Bin
32 Bin
33 Bin
33 Bin
33 Bin
33 Bin
34 Bi:
10 Dec

ARITHMETIC
POINT
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed and Floating
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed.
Fixed
1
Fixed
Ffxed
Fixed
Fixed and Floating
Flixed and Floating
Fixed and Floating
Fixed
Fixed and Floating
Fixed and Floating
FIxed and Floating
Fixed and Floating
Fixed
Fixed
Fixed
Fixed

INSIRUCTIONS PER WORD

1
1
1
3
-
-
1
1
-
-
1
1
1
-
-
-
1
1
1
1
1.

2
1
$0,1,2,3,4$ 2, 3, 4

1
1
1
-
I
1
. 1
-
1
1
1
1
1
1
-
1

ADDRESSES PER WORD	SYSTEM
1	LINCOIN CG 24
$1+1$	AN/ASQ 28 (v) EDDC
2	RW 400
2	ASC 15
-	TRICE
-	BENDIX D 12
3	ELECOM 120
1	LIBRASCOPE AIR ITRAFFIC
1	MAGNEFITE B
-	BENDIX CUBIC ITACKER
2	BENDIX G 15
1	AN/USQ 20
3	ELECOM 100
1	UNIVAC 490
1 or 2	IBM 608
1	BURROUGHS D 204
1	LIBRAITROL 500
1	AN/FSQ 7 AN/FSQ 8 (SAGE)
1	IIBRATROL 1000
1	LIITMON DATA ASSESSOR
1	LGP 30
1	MONROBOT XI
1 over 1	RPC 4000
1	ALWAC II
1	ALWAC III E
1	BENDIX G 20
1	ITIT SPES 025
1	BURROUGHS D 107
-	AF/CRC
1	BURROUGHS 204
1	BURROUGHS 205
1	BURROUGHS 2.20
-	ELECOM 50
2	ELECOM 125 125FP
1	IBM 650 RAMAC TAPES
1	IBM 7070
1	IBM 7074
1	INTEIEXX AIRLTNE RESERVATION
1	MINTAC II
1	MODAC 410
2	OARAC

TABLE III (CONTINUED)

WORD LENGITH OF COMPUIITNG SYSIEMS

WORD LENGITHDIGITS
10 Dec
10 Dec
10 Dec
35 B. \ln
36 Bin

37 Bin
37 Bin
37 Bin
37 Bin
37 Bin
11. Dec

11 Dec
38 Bin
38 Bin
38 BIn
38 Bin
38 Bin
38 Bin
40 Bin

ARITHMFIIIC POINT
Fixed and Floating
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed

FHxed and Floating
Fixed and Floating
Flyed and Floating

Fixed and Floating
Fixed and Floating
Flxed and Floating

Fixed
Fixed
Fixed
Fixed
Fixed and Floating

Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed and Floating
Fixed
Fixed
Fixed.
Fixed
Fixed
Fixed.
Fixed
Fixed
Fixed and Floating

INSIRUCTIONS ADDRESSES PER WORD - 1

1 or 2
1.5
1.5
$1+1$
1
1
1
1
1
2
2
2
1
-
3
1
1
4
1
-
3
$1+1$
1
1
1
1 or 2
1 or 2
1 or 2
1
2
1
1
2
1
1
1
1

1
1

SYSTIEM

READIX
UDEC I II III
UNIVAC SOLTD STATE 80/90
UNIVAC STIEP
FADAC
GENERAL MITIS APSAC
TBM 701
IBM 704
IBM 709
IBM 7090
PHILCO 1000
UNIVAC 1103 1103A.
UNIVAC 1105
UNIVAC 1107
UNIVERSAL DATA ITRANS
NATIONAL 102 D
AN/TYK 6v BASICPAC
GENERAL MILLS AD/ECS
SWAC
SYIVANJA S 9400
TEIEREGISTHER MACNETY INVENTT CONT
NATIONAL 107
PENNSTIAC
AN/TYK 7v INFORMER
COMPAC
LINCOLN TX 2
MOBIDIC A
MOBIDIC B
MOBIDIC C D \& 7A
CYCLONE
georas
ILIITAC
JOHNNIAC
JUKEBBOX
mantac I
mistic
ORACLIE
ordvac
RECOMP I CP 266
RECOMP II

TABLE III (CONTINUED)
 WORD LENGITH OF COMPUTING SYSTHEMS

WORD LEFGITH DIGITS	ARIIHMEITC POIINT	INSTRUCITIONS PER WORD	ADDRESSES PER WORD	SYSTEM
40 Bin	Fixed and Floating	2	1	RHPAC
12 Dec	Fixed	1	1	BURROUGHS E 101
12 Dec	Fixed	1	1	BURROUGHS E 102
12 Dec	Fixed	-	1	BURROUGHS E 103
12 Dec	Fixed	1	3	DATIAMATIC 1000
12 Dec	-	-	2	IBM 609
12 Dec	Fixed	-	1	IBM 632
12 Dec	Fixed	1	1	ITIT BANK LN PROC
12 Dec	Fixed	-	3	LOGISTICS
12 Dec	Fixed	1	4	NATIONAL 390
12 Dec	Fixed	6	1	RPC 9000
12 Dec	Fixed	2	1	UNIVAC I
12 Dec	Fixed	2	1	UNIVAC II
12 Dec	Fixed and Floating	1	1	UNIVAC LARC
42 Bin	Fixed	1	3	NAITIONAL 102 A
44 Bin	Fixed	2	1	CIRCLE
44 Bin	Fixed and Floating	1	4	EDVAC
45 Bin	Fixed.	1.	3	DYSEAC
45 Bin	Fixed	1	3 or 4	SEAC
48 Bin	Fixed and Floating	2	1	CDC 1604
48 Bin	Fixed and Floating	1	3	HONEYWETL 800
48 Bin	Fixed and Floating	2	1	MANIAC II
48 Bin	Floating	1	2	MANIAC III
48 Bin	Fixed and Floating	1	1 or 2	MERTITN
48 Bin	Fixed	2	1	NAREC
48 Bin	Fixed and Floating	2	1	PHITCO 2000
48 Bin	Fixed	2	1	PHIICO CXPQ
50 Bin	Fixed and Floating	1	1	AN/FSQ 31 (V)
50 Bin	Fixed and Floating	1	1	AN/FSQ 32
50 Bin	Fixed and Floating	1	3	WISC
15 Dec	Fixed and Floating	-	1	IBM 610
52 Bin	-	-	-	BURROUGHS D 104
54 Bin	Floating	1	1 or 3	OKIAHOMA UNIVERSITIY
54 Bin	Fixed and Floating	1	1	RICE UNIVERSITY
15 Dec	Fixed and Floating	1	3	NORC
10 Alphanum	Fixed and Floating	0.5 to 6	1 or 3	NATİNAL 304
62 Bin	Fixed	-	1	MONROBOT IX
18 Dec	Fixed	-	up to 5	DE 60
64 Bin	Fixed and Floating	1 or 2	1 or 2	IRM STRETCH
68 Bin	Fixed and Floating	3	1	BRLESC
20 Dec	Fixed	1	4	MONROBOT III
20 Dec	Fixed	-	4	MONROBOT V
20 Dec	Fixed	2	4	MONROBOT VI

TABLE III(CONTINUED)

WORD LENGTTH	ARITHMEITIC	INSIRUUCTIONS	ADDRESSES	SYSTHEM
DIGITS	POINT	PER WORD	PER WORD	
12 Alphanum	Fixed	1	3	UNIVAC FILE 0
12 Alphanum	Fixed	13	3	UNIVAC FIIE 1
96 Bin	Fixed	2	3	MONROBOT MU
42 Dec	Fixed	-	1	MAGNEFITE D
Variable	Fixed	3	-	BIZMAC I
Variable	Fixed	3	-	BIZMAC II
Variable	Fixed	1	2	DIANA
Variable	-	-	-	FOSDIC
Variable	Fixed	-	2	IBM 305 RAMAC
Variable	Fixed	-	1	IBM 702
Variable	Fixed	-	1	IEM 705 I II
Variable	Fixed	-	1	IBM 705 III
Variable	Fixed	-	1 or 2	TBM 1401
Variable	-	-	-	IBM 1410
Variable	Fixed	-	2	IBM 1620
Variable	Fixed	-	1	IBM 7080
Variable	-	Variable	1	RASTAC
Variable	-	2	-	RASTAD
Variable	Fixed	Variable	2	RCA 301
Varlable	Fixed.	Variable	2	RCA 501
Variable	Fixed and Floating	1 or 2	1,2 or 3	RCA 601
Variable	-	1 to 3	1	SCRIBE
Variable	Fixed	-	1	TELEREGISTER
Variable	Fixed	-	3	UNIVAC 60
Variable	Fixed	-	3	UNIVAC 120
```Systems indicated as "floating-point systems have built-in automatic "floating-point" circuitry. \\ "Fixed-point" systems may be programed for "floating-point" operation through the use of subroutines.```				

## TABLE IV

ARIIHMEIIC OPERATION TTME (EXCLUDING ACCESS) OF COMPUITING SYSTEMS

ADD TTME	MUATIPITY TTME	DIVIDE TTIME	
MICROSECONDS	MICROSECONDS	MICROSECONDS	SYSTIEM
0.75	300	600	PROGRAMMED DATA PROCESSOR
0.8	7.4	24	UNIVAC 1107
1	1,000	1,000	LTNCOLT ${ }^{\text {IX }} 0$
1-3.0	20	60	BRLPSSC
1.38-1.50	2.48-2.70	9.00-9.90	IBM SIREICH
1.4	5 to 17 (9x36 Bits)	17.2 to 75 (9/36)	LINCOLN TX 2
1.4	20	40	WESTITMGHOUSE ATRBORNES
1.7	40.3	43	PHICO 2000
2	25-100	100	BURROUGHS ${ }^{\text {D } 204}$
2	22	42	LIITION C 7000
2.5-27.5	14-61.5	5-63.5	AN/FSQ 31 (V)
2.5-27.5	14-61.5	56.5-70	AN/FSQ 32
3	56	68	BURROUGHS D 201
3	34	73	BURROUGHS D 202
3	-	-	ITT SPES 025
3-4	100	100	OKIAHOMA UNIVERSITY
3-7	26-485	27-595	GEDRGE
3.5	130	320	MERLLTM
4	39	40	SILVANIA S 9400
4	8	28	univac larc
4.8-12	7.2-72	72	UnIVAC 490
5	20	40	TARGET INTERCEPT
5	260	324	UNIVAC 1101
5.3	296	-	SWAC
5.5	130	200	PHITCO 1000
6.0	10.5	45.0	AN/FSQ 7 AN/FSQ 8 (SAGE)
6	48-90	48-90	LIITION DATA ASSESSOR
6	450	650	narec
6	10	25	RCA 601
6.4	1,000	1,800	CDC 160
6.6	-	-	HORDEN VOIE tally
7.8	-	-	FADAC
8	78	88	MOBIDIC A
8	78	80	MOBIDIC C D \& 7 ${ }^{\text {a }}$
8	-	-	ORACLE
9	76.5-185.5	76.5-312.5	UIIVAC III
9.6	35.2-112	112	AN/USQ 20
10	-	-	CUBIC TRACKIR
10	385	385	Jomuriac
10	-	-	TRELEREGISTIER UNIFIES AIRLITE
12	240	240	COMPAC
12	74	74	LINCOLAT CG 24
12	276	252	PACKARD BEIL 250

ADD TTME
MICROSECOND:

12
12
13
13
14
15
16
17
$18+n / 2$
20
21.5

22
23/Dig
24
24 or 48
25
26
28
32

## 34

36
36
40
40
40
40 to 130
43 48 48






MULITIPTY TTMME
MICROSECONDS
86
376
56
-
700
31
16 to 400
264

DIVIDE TIME	SYSTHM
156	RCA 300
400	an/TYK 7v InFormer
98	BENDIX G 20
-	SPEC
700	ORDVAC
227	NORC
16 to 436	LIBRASCOPE MK 130
340	UNIVAC 1102
75	MANIAC III
480	GENERAL ELECTRIC 225
-	IBM 632
370	LIBRASCOPE AIR TRAFFIC
-	IBM 702
288	AN/ASQ 28 (v) MDC
444	IBM 701
-	CCC REAL TIME
750	BURROUGHS D 208
470	UNIVAC 11031103 A
1,168	GENERAL ELECTRIC 210
-	MOBIDIC B
-	NATIONAL 315
472	UNIVAC 1105
1,000	Attena
900	IIISIAC
75	RICE UNIVERSITY
-	INITET Fix AIRLINE ResErvation
-	BENDIX D 12
2,112	DYSEAC
2,112	SEAC
2,131	DATAMATIC 1000
177	LIBRASCOPE CP 209
920	GENERAL MILIS AD/ECS
3,420	NATTONAL 304
1,170	CYCLONE
1,000	MANIAC I
1,080	MISIIC
2,000	VErdan
84/Bit	HUGHES D PAT
84/Bit	HUGHES LRI X
-	UNIVAC SOLID STATE 80/90
-	UNIVAC STEP
3,000	BURROUGHS D 203

## TABLE $\mathbb{V}$ (CONTINUED) <br> ARITHMETIC OPERATION TTIME (EXCLUDING ACCESS) OF COMPUTING SYSTEEMS

ADD TTME MICROSECONDS	MULTITPLY TTIME MTCROSECOND	DIVIDE TTINE MICROSECONDS	
MICROSECONDS		MICROSECONDS	SYSTEM
88	968	1,936	HUGHES M 252
88-176	3,912	5,912	UDEC I II III
91	800	1,200	OARAC
94	2,985	5,076	PENNSTAC
96	1,920	2,496	GENERAL ELECTRIC 312
100	760	1,320	HONEYWELL 290
100	2,000	4,000	LIRRASCOPE 407
105	$105+105 / \mathrm{Bit}$	105/Bit	HUGHES DIGITAIR
$80+16$ (Aug + Add)	-	-	TELEREGISTER TELMFILE
120	1,500	-	geveral millis apsac
120	1,680	2,990	UNIVAC II
130	2,730	2,730	LEEDS NORIHROP 3000
132	2,772	2,772	PHILCO 3000
156	3,276	3,276	AN/ASQ 28 (v) EDC
156	1,872	-	ASC 15
156	3,907	4,063	LIBRASCOPE ASN 24
$120+40 c$	$160+288 \mathrm{~N}+145 \mathrm{MN}$	Prog	BIZMAC I
$120+40 c$	-	-	BIZMAC II
170	680-10, 710	-	Itit bank in proc
185	2,055	3,970	BURROUGHS 220
186	2,577	4,270	DIANA
200	1,700	1,700	HUGHES ADV AIRBORNE III
220	1,760	5,300	HAMPSHIRE TRTDS 932
220	11,000	13,420	IBM 608
230	1,980	3,520	RPC 9000
240	--	-	MODAC 404
240-420	1,900-9,600	1,300-2,400	RCA 501
250	250	-	CUBIC AIR TRAFFIC
250	17,000	17,000	IGP 30
250	15,000	15,000	LIBRATROL 500
250	16,250	16,250	LIBRATROL 1000
250	17,000	17,000	RPC 4000
270	-	-	BENDIX G 15
282.6	1,907.6	3,707.6	UNIVAC I
288	8,000	8,000	MODAC 414
330	18,300	18,700	ELECOM 120
330	18,300	18,700	ELECOM 125 125FP
428	8,500	8,000	HAMPSHIRE CCC 500
440	16,000	24,000	REDIX
450	13,600	14,800	MINIAC II
500	20,000	20,000	CIRCLE
500	14,000	17,000	IBM 604

## TABLE IV (CONTINUED)

ARIITHETITC OPERATION TIME (EXCLUDING ACCESS) OF COMPUTING SYSTEMS

ADD TIME   MICROSECONDS	MULTIPLY TTME   MICROSECONDS
520	12,940
540	10,800
540	10,800
600	7,000
650	39,000
$672-768$	$2,210-19,600$
760	13,180
780	2,990
1,000	32,000
1,000	17,000
1,000	20,000
1,200	16,300
1,200	16,300
1,350	12,400
3,000	140,000
3,000	-
3,000	28,000
4,000	15,000
7,400	25,000
42,500	241,500
100,000	-
150,000	-
280,000	$1,155,000$


DIVIDE TTME	
MICROSECONDS	SYSTEM
15,700	IBM 607
11,340	JUKEBOX
10,800	Repac
7,000	MODAC 410
-	ELECOM 50
6,000-23,400	IBM 650 RAMAC TAPES
15,480	IBM CPC
3,120	RW 300
32,000	ALWAC II
17,000	ALWAC III E
20,500	RECOMP I CP 266
20,000	UNIVAC FILE 0
20,000	UNIVAC FILIE 1
12,700	RECOMP II
140,000	DE 60
-	MONROBOT IX
500,000	MONROBOT XI
15,500	NATIONAL 102 D
25,800	NATIONAL 102 A
291,500	BURROUGHS E 103
-	MAGNEFIIE D
-	Magnerile b
1,155,000	IBM 610

## TABLE $\mathbb{V}$

arithmettc oprration ting (includiva access) of Computing systems

ADD TIME MICROSECONDS
2.5-27.5
2.5-27.5
3
3.7-11.7
4
4
4
4.36-32.70
4.8
4.8-9.6
5
5
5
5-6
6
6.4-19.2
7-16
7.2-12
8
8
9
9.75
10
10
10
10
10.2-12.6
12.0
12
$13.08(6+6)$
16
16
16
16
17/Digit
20
20.7
22
22
22
22-26


MULTIPLY TIME
MICROSECONDS
$14-61.5$
$14-61.5$
20
$42.3-50.3$
26
12.7
8
$4.36-30.52$
9.6 to 19.2
25.2 to $0.8 N$
65
300
10
25
1,000
-
108
$19.2-84$
140
43
$76.5-184.5$
13.75
40
56
25
-
$30-108$
16.5
$60-102$
$140(6 \times 6)$
$35.2-112$
-


DIVIDE TITME MICROSECONDS	SYSTEM
5-63.5	AN/FSQ 31 (v)
56.5-70	AN/FSQ 32
40	WESTIINGHOUSE AIRBORNE
45-53.0	PHILCO 2000
46	LITPTON C 7000
31	UNIVAC 1107
28	UNIVAC LARC
6.54-32.70	IBM 7090
19.6 to 80.0	LINCOLN TX 2
63.6-66.4	CDC 1604
80	BURROUGHS D 103
600	PROGRAMMED DATA PROCESSOR
105	SYLVANIA UDOFIT
65	BRLESC
1,000	LITVCOLN TX 0
-	CDC 160
108	OKIAHOMA UNIVERSITY
84	UVIIVAC 490
330	MERLIN
44	SYLVANIA 59400
76.5-312.5	UNIVAC III
28.75	RCA 601
80	BURROUGHS D 202
70	IBM 7074
45	TARGET INTERCEPT
-	TRICE
108	BURROUGHS D 204
51.0	AN/FSQ 7 AN/FSQ 8 (SAGE)
60-102	LITHPON DATA ASSESSOR
210 (10/6)	IBM 7080
112	AN/USQ 20
-	ITTY SPES 025
88	MOBIDIC A
88	MOBIDIC C D \& 7A
-	IBM 705 I II
-	CUBIC TRACKER
425	AN/TYK 7v INFORMER
575-725	narec
-	Stored program dia
71	WHIRLWIND II
238-242	AN/TYK 6v BASICPAC


$\text { TABLE } \begin{array}{r} \text { (CONTINUED) } \end{array}$		
ARITHMETITC OPERATION TTME (INCLUDING ACCESS) OF COMPUTING SYSTEMS		
MUUITIPLY TIME	divide TTME	
MICROSECONDS	MICROSECONDS	SXSTEM
264	288	AN/ASQ 28 (v) MDC
252	252	COMPAC
162	450	HONEYWELL 800
84	84	LIINCOIN CG 24
96	$1 \quad 168$	RCA 300
71	81	MANIAC III
24-240	36-240	IBM 704
24-240	36-240	IBM 709
75	75	BURROUGHS D 201
75	-	CCC REAL TIME
400	400	Johnnsac
700	750	BURROUGHS D 208
70	112	Bendix g 20
-	-	BURROUGHS D 209
366	380	LIBRASCOPE AIR TRAFFIC
-	-	MODAC 5014
-	-	NORDEN VOTE tally
80	128	KW 400
456	456	IBM 701
230	426	BURROUGHS D 107
250	500	GENERAL ELECTRIC 225
375	520	Le:Prechaun
40 to 42.4	40 to 460	IIBRASCOPE MK 130
88	-	MOBIDIC B
294	1,044	NATIONAL 315
239	486	UNIVAC 11031103 A
-	-	PHILCO CXPQ
85	85	RICE UNIVERSITY
-	-	Intelex atrline reservation
728	868	RCA 110
59	177	LIBRASCOPE CP 209
116	508	UNIVAC 1105
550	1,200	GENERAL ELECTRIC 210
368	-	SWAC
370-590	590	ORACLE
672 to 1,488 ( $10 \times 10$ )	792 to 984	IBM 7070
840	940	GENERAL MILIS AD/ECS
$84+84 / \mathrm{Bit}$	$84+84 /$ Bit	HUGHES LRI X
3,000	3,000	BURROUGHS D 203
300-1,700	-	AF/CRC
665-865	950	ILIIAC

## TABLE ₹ (CONTINUED)

ADD TTME	MULTTIPLT TIME	DIVIDE TITME	
MICROSECONDS	MICROSECONDS	MICROSECONDS	SYETHEM
95.8	770.8	3,159.2	IEM 705 III
100	990	1,200	CYCLONE
100	1,000	1,100	MISTIC
108	372	348	PACKARD BEIL 250
120	1,520	16,200	GENERAL MmILS APSAC
120	540	540	MONROBOT V
120	1,320	3,480	NAITIONAL 304
160	1,720	3,030	UNIVAC II
160	-	-	VERDAN
170	680-10, 710	-	ITIT BANK IN PROC
176-264	4,000	6,000	UDEC I II III
192	2,016	2,592	GENERAL ELECTRIC 312
$160+16$ (Aug + Add)	$80+16$	$80+16$	TELEREGISTER TELEFITIE
192-1,536	2,208-3,552	2,256-3,600	EDVAC
192-1,536	2,304-3,648	2,304-3,648	DYSEAC
192-1,540	2,300-3,650	2,300-3,650	SEAC
200	2,070	3,985	BURROUGHS 220
200	860	1,420	HONEYWELL 290
210	$105+105 / \mathrm{Bit}$	105/Bit	Hughes digitatr
210	7,800	-	RCA 301
220	1,760	5,300	HAMPSEIRT TRTDS 932
221	-	-	SPEC
224	13,860 (6x6)	17,640 (6/6)	IBM 609
230.4	1,008	2,304	DATAMATIC 1000
250	250	-	CUBIC AIR TRAFFIC
264	1,144	2,112	HUGHES M 252
300	1,960	2,170	IBM 1401
312	2,028	-	ASC 15
400-17,000	10,000-26,000	10,000-26,000	OARAC
428	8,500	8,000	HAMPSHIRE CCC 500
440	25,000	40,000	READIX
500	500-1,000	-	Logistics
500	17,000	17,000	RPC 4000
525	2,150	3,950	UNIVAC I
540	2,430-16,700	2,430-16,700	bendix G 15
540	10,800	11,300	RECOMP II
560	3,137	4,830	DIANA
624	3,744	3,744	AN/ASQ 28 (v) EDC
625	4,219	4,375	LTBRASCOPE ASN 24
780	2,990	3,120	RW 300
910	3,600	3,600	LEHEDS NORTHROP 3000

## TABLE $\overline{\text { Z }}$ (CONTINUED)

ADD TTME	MULTIPPIY TTME	dIvide TIME	
MICROSECONDS	MICROSECONDS	MICROSECONDS	SYSTEM
924	4,224	4,224	PHILCO 3000
960 (10 Dig)	17,700 (10 Dig)	16.8	IBM 1620
1,000	17,000	17,000	ALWAC III E
1,000	17,000	17,000	LIBRAIROL 1000
1,019-1,188	9,300	12,680	BURROUGHS 204
1,019-1,188	9,300	12,680	BURROUGHS 205
1,110	2,860	3,520	RPC 9000
1,360	1,275	1,275	UNIVAC SOLID STATE 80/90
1,360	1,275 +	1,275 +	UNIVAC STEP
1,980	22,240	22,740	REPAC
2,000	21,000	21,500	RECOMP I CP 266
3,445	5,335	7,426	PENNSTAC
3,500	22,000	22,000	ELECOM 125 125FP
7,750	23,000	23,000	LIBRATROL 500
7,800	21,000 to 49,100	21,000 to 53,200	NATIONAL 102 D
8,000	17,000	17,000	LGP 30
8,000	8,000	8,000	MODAC 414
8,000	68,000	77,000	MONROBOT MU
8,700	23,800	27,500	UNIVAC FILE 0
8,700	23,800	27,500	UNIVAC FITE 1
9,000	34,000	500,000	MONROBOT XI
9,590	19,850	20,390	JUKEBOX
11,000	250,000	400,000	NATTONAL 390
11,200	24,300	25,600	MINIAC II
12,000	13,500	54,000	MONROBOT IX
15,000	40,000	40,000	NATTONAL 107
16,700	16,700	16,700	WISC
17,010	-	-	THLEREGISTER UNIFITED AIRLINISS
19,900	37,500	38,500	NATITONAL 102 A
20,000	-	-	ELECOM 100
25,000	-	-	MODAC 404
30,000	60,000-190,000	100,000-370,000	IBM 305 RAMAC
50,000	250,000	250,000	burroughe m 101
50,000	250,000	250,000	BURROUGHS E 102
51,000	250,000	300,000	BURROUGHS E 103
60,000	220,000	200,000	DE 60
110,000	2,500,000	-	TBM 632
120,000	540,000	540,000	MONROBOT III
135,000	600,000	600,000	MONROBOT VI

## TABLE VI

ACCESS TTIME OF HIGH SPEED STORAGE UNITS

ACCESS TITME	storage	
MICROSECONDS	MEDIUM	SYSTEM
0.2-0.8	MC	WESITINGHOUSE AIRBORNE
0.3 and 1.8	MC and TF	UNIVAC 1107
0.5-2.18	MC	IBM STRETCH
0.88	DL	RPC 9000
0.9-1.5	MC	RCA 601
1.0	-	MANIAC III
1.07	MC	UNIVAC III
1.9	MC	UIITVAC 490
2	MC	BRLESC
2	MC	BURROUGHS D 202
2	MC	BURROUGHS D 208
2 or 10	MC	PHILCO 2000
2.1	MC	HONEYWELL 800
2.2 and 3.4	MC	LINCOLN TX 2
2.4 and 15	MC and CRT	MANTAC II
2.5	MC	AN/FSQ 31 (v)
2.5	MC	AN/FSQ 32
2.5	MC	BURROUGHS D 201
2.8	-	TARGET INTERCEPT
2.18	MC	IBM 7080
2.18	MC	IBM 7090
3	MC	LITVCOLN TX 0
3	MC	NAREC
3	MC	RCA 300
3-4	MC	NORDEN VOTE TALITY
4	MC	IBM 7074
4	MC	LITHION C 7000
4	MC	SYLVANIA S 9400
4	MC	UNIVAC IARC
4.5/Alphanum	MC	IBM 1410
4.8	MC	CDC 1604
5	MC	BURROUGHS D 103
5	MC	PROGRAMMED DATA PROCESSOR
5	MC	SIIVANIA UDOFIT
6	MC	AN/FSQ 7 AN/FSQ 8 (SAGE)
6	MC	IBM 7070
6	MC	ITI BANK LN PROC
6	MC	LITHON DATA ASSESSOR
6	CRT	MERLITN
6/Alphanum	MC	NATIONAL 304
6	MC	NATITONAL 315
6.4	MC	CDC 160
7	MC	RCA 301
7	MC	WHIRLWIND II
7.5	MC	GEORGE
8	MC	AN/TYK 7v TIFORMER
8	MC	AN/USQ 20
8	MC	GENERAL MILIS AD/ECS

## TABLE ZI (CONTINUED)

ACCESS TIME OF HIGH SPEED STORAGE UNITS

ACCESS TIME	storage	
MICROSECONDS	MEDICM	SYSTEM
8	MC	ITTY SPES 025
8	MC	LePRECHAUN
8	MC	MOBIDIC A
8	M	MOBIDIC B
8	MC	MOBIDIC C D \& 7A
8	CRT	NORC
8	CRI	OKIAHOMA UNIVERSITY
8	CRIP	SWAC
8	MC	UNIVAC 11031103 A
8	MC	UNIVAC 1105
8 to 16	CRT	Mantac I
8.4	MC	BENDIX G 20
9.3	MC	IBM 705 III
10	MC	GENERAL MILIS APSAC
10	MC	INTELEX AIRLINE RESERVATION
10	MC	LIBRASCOPE AIR TRAFFIC
10	MC	NTMERICORD
10	CRT	RICE UNIVERSITY
10	MC	RW 400
10	DL	TIRTCE
10	MC	UNIVAC 1101
10	MC	UNIVERSAL DATA trans
10/B1t	-	CUBIC TRACKER
11.5	MC	IBM 1401
12	MC	AN/TYK 6v BASICPAC
12	MC	COMPAC
12	MC	DATAMATIC 1000
12	MG	IBM 701
12	MG	IBM 704
12	MC	IBM 709
12	MC	LITCOIN CG 24
12	MC	PHILCO 1000
12	MC	PHILCO CXPQ
12 and 216	CRT and DJ	SEAC
14	MC	SCRIBE
15	MC	BURROUGHS 220
15	MC	Johnniac
15	MC	ordvac
15	MC	RCA 501
16	MC	TteIEREGISTER TTELHFIILE
17	MC	IBM 702
17	MC	IBM 705 I II
18	CRI!	ORACLE
18-36	CRI	IILIAC
20	MC	BIZMAC I
20	MC	BIZMAC II
20	MC	DIGITRONIC CONVERTER
20	MC	GENERAL EIECTIRIC 225

## TABLE VII (CONTINUED)

ACCESS TINE OF HIGH SPRED STORAGE UNITS

ACCESS TTMM	StCORAGE	
MICROSECONDS	MEDIUM	SYSTHEM
20	MC	HONEYWELL 290
20	MC	IBM 1620
20	MC	IIBRASCOPE MK 130
20 and 20	CRT and MC	MISTIC
21.5	MC	IBM 632
22	DL	STORED PROGRAM DDA
22/Bit	MC	NATIONAL 390
24	MC	AN/ASQ 28 (v) MDC
30	CRT	CYCLONE
32	MC	GE 100 ERMA.
32	MC	GENERAL ELECTRIC 210
34	MC	DIANA
40	MC	ATHENA
40	MC	UNIVAC II
40.4 to 404	DL	UNIVAC I
48-384	DL	DYSEAC
48-384	DL	EDVAC
84	MC	HUGHES D PAT
88	MC	UDEC I II III
96-129	VIT	LOGISTICS
208	DL	SPEC
220	MC	IBM 608
250-500	DL	CCC REAL TTME
288	MC	MODAC 414
500	MC	ALWAC III E
500	VT	IBM 604
520	VI	IBM 607
625	MC	HUJGHISS BM GUIDANCE
760	VI	IBM CPC
900	MC	UNIVAC FITS 1
3,000	MC	BURROUGHS D 104
	KHY TO SYMBOLS	
CRT Cathode Ray Tube (Electrostatic)		
MC Magnetic Core (Static Magnetic)		
DL Delay Line (Sonic, Electric, Magnetostrictive)		
VIT Vacuum Thbe		
TF Thin Magnetic Film		

## TABLE VII

CAPACITY OF HIGE SPEkD STORAGE UNITS
CAPACIITY
WORS - DIIIIS/WORD
16,384 to $262,144-64 \mathrm{Bin}$
81,920 to $163,840-50 \mathrm{Bin}$
65,536 to $131,072-50 \mathrm{Bin}$
$97,500-12 \mathrm{Dec}$
$69,632-38 \mathrm{Bin}$
65,536 and $128-36 \mathrm{Bin}$
$69,632-32 \mathrm{Bin}$
up to $262,144 \mathrm{Alphanumeric} \mathrm{Char}$
4,096 to $32,768-48 \mathrm{Bin}$
$32,768-48 \mathrm{Bin}$
$262,144-6 \mathrm{Bin}($ Var $)$
up to $32,000-12 \mathrm{Dec}$
$32,768-38 \mathrm{Bin}$
$32,768-36 \mathrm{Bin}$
up to $32,768-36 \mathrm{Bin}$
4,096 to $32,768-36 \mathrm{Bin}$
$65,536-18 \mathrm{Bin}$
$20,000-16 \mathrm{Dec}$
2,000 to $10,000-10 \mathrm{Dec}$
5,000 or $9,990-10 \mathrm{Dec}$
5,000 or $9,990-10 \mathrm{Dec}$
2,048 to $16,384-20 \mathrm{Bin}$
$4,096-32,768-33 \mathrm{Bin}$
$32,768-30 \mathrm{Bin}$
to $16,384-22 \mathrm{Bin}$
8,1900

storage	
MEDIUM	SYSTEM
MC	IBM STRETCH
MC	AN/FSQ 32
MC	AN/FSQ 31 ( v )
MC	UNIVAC LARC
MC	LINCOLN TX 2
MC and TF	UNIVAC 1107
MC	AN/FSQ 7 AN/FSQ 8 (SAGE)
MC	RCA 501
MC	PHILCO 2000
MC	CDC 1604
MC	RCA 601
MC	HONEYWELL 800
MC	SYLVANIA S 9400
MC	IBM 7090
MC	IBM 704
MC	IBM 709
MC	LIITCOLN TX 0
CRT	NORC
MC	benvil ${ }^{\text {G } 20}$
MC	AN/USQ 20
MC	UNIVAC 490
nc	IBM 7080
MC and CRT	Mantac II
MC	NAREC
MC	UNIVAC III
CRT and MC	MISTIC
MC	BURROUGHS D 107
MC	ITT SPES 025
CRT	OKTAHOMA UNIVERSITY
MC	IBM 705 III
CRT	RICE UNIVERSITY
MC	UNIVAC 11031103 A
MC	UNIVAC 1105
MC	NATTONAL 315
CRT	MERLIN
-	MANIAC III
MC	PACKARD BELL 250
MC	BURROUGHS 220
MC	INITELEX ATRLINE RESERVATION
MC	IBM 7070
MC	TBM 7074
MC	GENERAL EIECTRIC 225

## TABLE VIII (CONTINUED)

CAPACIIY OF HTGH SPEED STORAGE UNITIS

CAPACIIT	STORAGE	
WORDS - DIGITS/WORD	MEDIUM	SYSTEM
8,192-40 Bin	MC	MOBIDIC A
8,192-40 Bin	MC	MOBIDIC B
8,192-40 Bin	MC	MOBIDIC C D \& 7A
12,236 and $15-25$ and 14 Bin	-	TAARGET INTHRCEPPT
4,096-72 Bin	MC	BRIESC
2,400 to 4,800-10 Alphanum	MC	NATIONAL 304
40,000 Alphanumeric Char	MC	IBM 705 I II
40,000 Alphanumeric Char	MC	IBM 1410
8,192-27 Bin	MC	LINCOLN CG 24
4,096-52 Bin	MC	CDC 160
20,000 to 60,000 Decimal Digits	MC	TBM 1620
4,096-48 Bin	MC	PHILCO CXPQ
8,189-22 Bin	MC	SYLVANIA UDOFTIT
4,096-42 Bin	MC	GEORGE
4,096 - 40 Bin	MC	JOHNNIAC
4,096-40 Bin	MC	ORDVAC
4,000 or $8,000-6 \mathrm{Dec}$	MC	GENERAL ELECTRIC 210
4,096-38 Bin	MC	AN/TYK 6v BASICPAC
4,096-38 Bin	MC	AN/TYK 7v INFORMER
4,096-38 Bin	MC	COMPAC
4,096-37 Bin	MC	GENVERAL MIILS AD/ECS
4,096-18 or 36 Bin	MC	IBM 701
4,096-36 Bin	MC	PHILCO 1000
20,000 Alphanumeric Char	MC	RCA 301
4,096 and 1,024-21 and 24 Bin	MC	WESTITNGHOUSE AIRBORNE
4,000-8 Dec	MC	LIBRASCOPE AIR TRAFFIC
8,192-13 Bin	MC	RCA 300
256 to 4,096-24 Bin	MC	RCA 110
4,096-24 Bin	MC	UNIVAC 1101
6,144-16 Bin	MC	WHIRLWIND II
1,400-16,000 Alphanumeric Char	MC	IBM 1401
4,000-7 Dec	MC	GE 100 ERMA
2,048-45 Bin	CRI and DL	SEAC
2,048-40 Bin	CRT	ORACLE
2,000 - 12 Dec	MC	DATAMATIC 1000
2,000-12 Dec	MC	UNIVAC II
4,096-19 Bin	MC	IIBRASCOPE MK 130
1,024 to 4,096-18 Bin	MC	HONEYWELL 290
1,024 or 4,096-18 Bin	MC	PROGRAMMISD DATA PROCESSOR
2,048-36 Bin	MC	UNIVERSAL DATA TRANTS
10,000 Alphanumeric Char	MC	IBM 702
15,000 Decimal Digits	MC	TELEREGISTER TELSETILE

## TABLE VII (CONTINUED)

CAPACITY OF HIGH SPEED STORAGE UNITIS

CAPACITY	STORAGE	
WORDS - DIGITS/WORD	MEDIUM	SYSTEM
8,192 Alphanumeric Char	MC	BIZMAC II
256 and 1,536-29 and 27 Bln	MC	BURROUGHS D 204
1,024-44 Bin	DL	EDVAC
1,024-40 Bin	CRT	CYCLONE
1,024-40 Bin	CRT	ILILIAC
1,024-40 Bin	CRT	MANIAC I
1,000-12 Dec	DL	UNIVAC I
200 to 10,000 Decimal Digits	MC	DIANA
1,024-32 Bin	MC	LITHON DATA ASSESSOR
1,280-22 Bin	MC	IITMION C 7000
4,096 Alphenumeric Char	MC	BIZMAC I
$512-46 \mathrm{Bin}$	DL	DYSEAC
1,024-23 Bin	MC	AN/ASQ 28 (v) MDC
512-36 Bin	MC	GENERAL MILIS APSAC
1,024-18 Bin	MC	LEPRECHAUN
512-32 Bin	MC	BURROUGHS D 104
256 and 512-24 and 16 Bin	MC	BURROUGHS D 208
512-22 Bin	MC	BURROUGHS D 202
600-17 Bin	MC	NORDEN VOTE TALTY
600-17 Bin	MC	SCRIBE
256-39 Bin	CRT	SWAC
200-12 Dec	MC	NATIONAL 390
320-25 Bin	DL	CCC REAL TTME
256-24 Bin	MC	ATHENA
1,024-6 Bin	MC	DIGITRONIC CONVERTIER
100-12 Dec	MC	ITT BANK LN PROC
100-10 Dec	MC	UDEC I II III
219-15 Bin	DL	STORED PROGRAM DDA
77-12 Dec	DL	RPC 9000
128-21 Bin	MC	BURROUGHS D 201
128 and 20-13 and 21 Bin	DL	SPEC
20-12 Alphanum	MC	UNIVAC FILE 1
32-12 Dec	MC	IBM 609
81-16 Ein	MC	BURROUGHS D 209
$64-8$ to 20 Bin	-	CUBIC ITRACKER
40-9 Dec	MC	IBM 608
334 Decimal Digits	MC	NUMERICORD
32-33 Bin	MC	ALWAC III E
15-12 Dec	VT	LOGISTICS
12-10 Dec	VT	UNIVAC 120
20-20 Bin	MC	BURROUGHS D 103

## TABLE VII (CONTINUED)

CAPACITY OF HIGH SPEED STORAGE UNITS
CAPACIITY
WORDS - DIGITS/WORD
$15-22$ Bin
$8-12$ Dec
$16-20 \mathrm{Bin}$
$9-22$ Bin
$9-3$ or 5 Dec
$9-3$ or 5 Dec
37 Decimal Digits
$3-19$ Bin
$2-6$ Dec
$1-27$ Bin/Module
Var -7 Dec
STORAGE
MEDIUM

HAMPSHIRE ITRTDS 932
IBM 632
RCA 200
HAMPSHIRE CCC 500
IBM 604
IBM CPC
IBM 607
HUGHES D PAT
MODAC 4.14
TRICE
RW 400

KEY TO SYMBOLS

CRI	Cathode Ray Thabe (Electrostatic)
MC	Magnetic Core (Static Magnetic)
DL	Delay Line (Sonic, Electric, Magnetostrictive)
VI	Vacuum Tube
IF	Thin Film

## TABLE VIII

LOG $_{10}$ CAPACIIY/ACCESS TIME OF HIGH SPEED STORAGE UNITS

$\mathrm{LOG}_{10}$ CAPACITY/ACCESS	STORAGE MEDIUM	SYSTEM
13.527	MC	IBM STRETCH
12.515	MC	AN/FSQ 32
12.418	MC	AN/FSQ 31 (v)
12.242	MC	RCA 601
12.134	CRT	NORC
12.118	MC	UNIVAC 1107
12.054	MC	LINCOLN TX 2
11.997	MC	UNIVAC LARC
11.896	MC	PHILCO 2000
11.867	MC	UNIVAC III
11.794	MC	HONEYWELL 800
11.733	MC	IBM 7090
11.713	MC	UNIVAC 490
11.644	MC	IBM 7080
11.633	MC	WESTINGHOUSE AIRBORNE
11.594	MC	Lincoln tx 0
11.594	-	MANIAC III
11.569	MC	AN/FSQ $7 \mathrm{AN} / \mathrm{FSQ} 8$ (SAGE)
11.418	MC	NAREC
11.168	MC	BRLESC
11.109	MC	BENDIX G 20
11.090	MC	AN/USQ 20
11.040	-	taRGet INTERCEPT
11.021	MC	RCA 501
10.992	MC	IBM 709
10.983	MC	IBM 704
10.922	MC	mantac II
10.875	MC	IBM 7074
10.833	MC	NATIONAL 315
10.830	MC	ITT SPES 025
10.824	CRT	MERLIN
10.809	CRT	OKIAHOMA UNIVERSITY
10.766	MC	IBM 7070
10.742	MC	UNIVAC 11031103 A
10.742	MC	UNIVAC 1105
10.727	MC	IBM 1410
10.713	MC	IBM 705 III
10.681	MC	NATIONAL 304
10.646	CRT	RICE UNIVERSITY
10.614	MC	BURROUGHS D 107
10.611	MC	MOBIDIC A
10.611	MC	MOBIDIC B
10.611	MC	MOBIDIC C D \& 7A
10.556	MC	SYLVANIA UDOFTT
10.550	MC	RCA 300

## TABLE VIII (CONTINUED)

$\mathrm{LOG}_{10}$	CAPACIIT/ACCESS	TIME OF HIG	STORAGE UNITS
		STORAGE	
$L^{\text {LOG }}{ }_{10}$	CAPACITY/ACCESS	MEDIUM	SYSTEM
	10.542	CRT and MC	MISTIC
	10.532	MC	INTELEX AIRLINE RESERVATION
	10.521	MC	CDC 160
	10.516	MC	CDC 1604
	10.493	MC	SYLVANIA S 9400
	10.474	MC	GE 100 ERMA
	10.360	MC	GEORGE
	10.356	MC	BURROUGHS 220
	10.289	MC	AN/TYK 7v INFORMER
	10.278	MC	GENERAL MILLS AD/ECS
	10.266	MC	LINCOIN CG 24
	10.234	MC	RCA 301
	10.215	MC	GENERAL ELECTRIC 225
	10.214	MC	PHILCO CXPQ
	10.168	MC	PROGRAMMED DATA PROCESSOR
	10.150	MC	IBM 705 I II
	10.146	MC	WHIRLWIND II
	10.122	MC	AN/TYK 6v BASICPAC
	10.113	MC	COMPAC
	10.090	MC	PHILCO 1000
	10.088	MC	IBM 701
	10.038	MC	JOHNNTAC
	10.038	MC	ORDVAC
	10.037	MC	LIBRASCOPE AIR IRAFFIC
	10.008	MC	IBM 1620
	9.992	MC	UNIVAC 1101
	9.922	MC	IBM 1401
	9.868	MC	UNIVERSAL DATA TRANS
	9.855	MC	BURROUGHS D 208
	9.846	MC	LITHON C 7000
	9.832	MC	DATAMATIC 1000
	9.750	MC	BURROUGHS D 202
	9.736	MC	LITTION DATA ASSESSOR
	9.710	CRT	MANIAC I
	9.708	MC	GENERAL ELECTRIC 210
	9.658	CRT	ORACLE
	9.590	MC	LIBRASCOPE MK 130
	9.584	CRT	SEAC
	9.566	MC	HONEYWELL 290
	9.553	DL	RPC 9000
	9.548	MC	IBM 702
	9.531	MC	NORDEN VOTE TALIY
	9.504	MC	TEELEREGISTER TEIEFILE
	9.390	MC	BIZMAC II
	9.364	MC	IEPRECHAUN
	9.356	CRT	ILLIAC
	9.310	MC	UNIVAC II
	9.265	MC	GENERAL MILILS APSAC

## TABLE VIII (CONTINUED)

LOG $_{10}$ CAPACITY/ACCESS TTME OF HIGH SPEED STORAGE UNITS

$\mathrm{LOG}_{10}$	CAPACTITY/ACCESS	STORAGE MEDTIM	SYSTMEM
	CAPACITY/ACCESS		SYSTEM
	9.135	CRT	CYCLONE
	9.097	CRT	SWAC
	9.090	MC	BIZMAC I
	9.032	MC	BURROUGHS D 201
	9.004	DL	UNIVAC I
	9.000	MC	DIANA
	8.992	MC	AN/ASQ 28 (v) MDC
	8.973	DL	EDVAC
	8.844	MC	IIT BANK LN PROC
	8.728	MC	SCRIBE
	8.709	DL	DYSEAC
	8.570	MC	NATIONAL 390
	8.487	MC	DIGITRONTC CONVERIER
	8.186	MC	ATHENA
	8.184	DL	STORED PROGRAM DDA
	8.056	MC	NUMERICORD
	7.904	MC	BURROUGHS D 103
	7.587	MC	UDEC I II III
	7.204	DI	CCC REAL TIME
	7.183	MC	IBM 632
	7.000	DL	SPEC
	6.806	-	CUBIC TRACKER
	6.805	VT	LOGISTICS
	6.746	MC	IBM 608
	6.738	MC	BURROUGHS D 104
	6.431/Module	DL	TRICE
	6.324	MC	ALWAC III E
	6.284	VT	IBM 607
	6.204	MC	UNIVAC FILE 1
	5.832	MC	HUGHES D PAT
	5.401	VT	IBM 604
	5.218	VT	IBM CPC
	5.154	MC	MODAC 414

KEY TO SYMBOLS

CRT	Cathode Ray Tube (Electrostatic)
MC	Magnetic Core (Static Magnetic)
DL	Delay Line (Sonic, Electric, Magnetostrictive)
VT	Vacuum Tube

## TABLE IX

CAPACITY OF MAGNEIIC DRUM OR DISC STORAGE UNITS

CAPACITY		
2,097,152 to 67 68	67,108,864-64 Bin	IBM STRETCH
	652,000,000 Alphanum Char	diana
	72,000,000-12 Dec	UnIvac larc
	24,050,000-10 Dec	UNIVAC SOLID STATE 80/90
	23,040,000-10 Dec	UNIVAC STEP
	6,500,000-36 Bin	UNIVAC 1107
	6,000,000-38 Bin	SYLVANIA S 9400
	62,000,000 Decimal Digits	RAStac
	62,000,000 Decimal Digits	RASTAD
600,000 to	to 4,800,000-10 Dec	IBM 7070
600,000 to	to 4,800,000-10 Dec	IBM 7074
	3,750,000-38 Bin	AN/TYK 7v INFORMER
	20,000,000 Alphanum Char	IBM 305 RAMAC
	20,000,000 Alphanum Char	TBM 1401
10,000,000 to	0 $20,000,000$ Alphanum Char	IBM 1410
	24,000,000 Decimal Digits	UNIVAC III
32,768 to	to 1,048,576-48 Bin	PHILCO 2000
	6,250,000-8 Bin	MOBIDIC B
	6,000,000 Alphanum Char	IBM 705 III
	1,114,112-30 Bin	UNIVAC 490
139,264 to	- 557,056-50 Bin	AN/FSQ 31 (v)
139,264 to	- 557,056-50 Bin	AN/FSQ 32
21,000 to	- 117,000-4 to 60 Dec	Logistics
	600,000-10 Dec/Unit	IBM 650 RAMAC TAPES
1,079 to	- 151,070-12 Alphanum Char	UNIVAC FILE 0
1,070 to	- 151,070-12 Alphanum Char	UNIVAC FILE 1
	256,000-8 Dec	LIBRASCOPE AIR TRAFFIC
	135,168-32 Bin	AN/FSQ $7 \mathrm{AN} / \mathrm{FSQ} 8$ (SAGE)
	65,536-33 Bin	ITT SPES 025
	20,010-96 Bin	MONROBOT MU
	24,576-72 Bin	BRLesC
	1,500,000 Binary Digits	TELEREGISTER MAGNETRONIC INVENTORY CONTROL
	1,300,000 Binary Digits	TELEREGISTER UNIFIED AIRLINE
4,096 to	- 51,200-24 Bin	RCA 110
	8,500-42 Dec	MAGNEFILE D
16,384 to	o 32,768-36 Bin	UNIVAC 1105
2,048 to	o 50,000-20 Bin	GENERAL ELECTRIC 312
	16,384-48. Bin	PHILCO CXPQ
	40,728-19 Bin	HUGHES D PAT
8,192 or	r 16,384-18 or 36 Bin	IBM 701
	16,384-36 Bin	IBM 704
8,192 or	r 16,384-36 Bin	IEM 709
	16,384-36 Bin	UNIVAC 11031103 A
	36,864-16 Bin	WHIRIWIND II
26,624 and	nd 6,656-16 and 24 Bin	AN/ASQ 28 (v) MDC

## TABLE IX (CONTINUED) <br> CAPACITY OF MAGNEIIC DRUM OR DISC SIORAGE UNIIS



## TABLE IX (CONTINUED)

CAPACITY OF MAGNETIC DRUM OR DISC STORAGE UNITS

CAPACITY
WORDS - DIGITS/WOR
4,096-32 Bin
4,160-31 Bin
6,004 - 6 Dec
6,784-18 Bin
4,040-8 Dec
5,225-21 Bin
18,000 Alphanum Char
10,000 - 3 Dec
100,000 Binary Digits
3,840-26 Bin
99,584 Binary Digits
2,048-48 Bin
2,500-11 Dec
2,064-40 Bin
2,560-32 Bin
22,000 Decimal Digits
2,112-33Bin
3,000-22 Bin
2,560-25 Bin
2,176-29 Bin
1,031-50 Bin
1,024-42 Bin
1,664-24 Bin
1,024-9 Dec + 6 Bin
1,992-17 Bin
1,024-32 Bin
784-40 Bin
1,025-20 Bin
300-20 Dec
$650-8$ Dec
1,024-16 Bin
512-30 Bin
200-20 Dec
200-20 Dec
32 to $160-18 \mathrm{Dec}$
220-12 Dec
220-12 Dec
220-12 Dec
84-31 Dec
100-10 Dec
114-29 Bin 15-18 Dec Variable Variable

SYSTEM
LGP 30
LIBRATROL 500
MODAC 414
LIBRASCOPE MK 38
MAGNEFILE B
BURROUGHS D 201
BIZMAC I
AMOS IV
TELEREGISTER MAGNETRONIC BID ASKED
AN/ASQ 28 (v) EDC
ASG 15
BURROUGHS D 104
Pennstac
RECOMP I CP 266
LITTION DATA ASSESSOR
AF/CRC
AIWAC II
LIBRASCOPE 407
LIBRASCOPE ASN 24
BENDIX G 15
WISC
NATTONAL 102 A
VERDAN
NATIONAL 102 D
HUGHES ADV AIRBORNE III
MONROBOT XI
SCRIBE
CUBIC AIR TRAFFIC
MONROBOT V
BENDIX D 12
HRB SINGER
ELECOM 100
MONROBOT III
MONROBOT VI
DE 60
BURROUGHS E 101
BURROUGHS E 102
BURROUGHS E 103
IBM 610
ELECOM 50
BENDIX CUBIC TRACKER
MONROBOT IX
RW 400
TELEREGISTER TELEFILE

$\begin{gathered} \text { TUBE } \\ \text { QUANTITY } \end{gathered}$	SYSTEM
5	PERK I II
6	BURROUGHS D 201
10 to 30	MONROBOT XI
13	RW 300
14	DE 60
15	AF/CRC
22	NORDEN VOTE TALLY
28	LINCOLN CG 24
48	PHILCO CXPQ
65	HAMPSHIRE TRTDS 932
74	monrobot IX
113	LGP 30
130	MAGNEFILE B
140	MAGNEFILE D
150	DISTRIBUTAPE
150	IBM 632
150	RASTAC
150	RASTAD
160	BURROUGHS E 101
160	burroughi e 102
160	ELECOM 50
164	HAMPSHIRE CCC 500
175	LIBRATROL 500
215	UNIVAC SOLID STATE AD/90
215	UNIVAC STEP
230	ELECOM 100
240	BENDIX G 20
250	ALWAC II
250	BURROUGHS E 103
263	READIX
302	LIBRASCOPE CP 209
400	ELECOM 120
400	NATIONAL 102 A
409	HUGHES DIGITAIR
425	NATIONAL 102 D
440	LINCOLN TX 0
450	ELECOM 125125 FP
450	PHILCO 2000
481	HUGHES ADV AIRBORNE III
535	MODAC 5014
600	MODAC 410


TUBE QUANTITIY	SYSTEM
600	NUMERICORD
700	BENDIX D 12
765	LINCOIN TX 2
780	ALWAC III E
800	MONROBOT III
800	MONROBOT V
800	national 107
800-1,000	CIRCLE
835	BENDIX G 15
850	MINIAC II
900	DYSEAC
1,000	MODAC 404
1,200	FOSDIC
1,200	OARAC
1,202	BURROUGHS 204
1,202	BURROUGHS 205
1,250	IBM 604
1,300	DIANA
1,300	NAREC
1,342	PENNSTAC
1,376-5,467	IEM 650 RAMAC TAPES
1,500	IBM CPC
1,800	BURROUGHS 220
1,800	SYLVANIA UDOFTT
1,800	WISC
2,000	MODAC 414
2,000	OKIAHOMA UNIV
2,044	IBM 305 RAMAC
2,148	UNIVAC 60
2,200	BURROUGES D 103
2,281	SEAC
2,396	CYCLONE
2,400	mantac I
2,500	SWAC
2,584	IBM 607
2,610	MLSTIC
2,695	UNIVAC 1101
2,700	UNIVAC 1102
2,942	MERLIN
3,000	UDEC I II III
3,430	ORDVAC

## TABLE X (CONTINUED)

TUBE QUANTITY IN COMPUTING SYSTEMS

TUBE   QUANTITY	SYSTEM
3,500	GEORGE
3,556	RICE UNIVERSITY
3,600	DATAMATIC 1000
3,907	UNIVAC 1103 1103 A
4,000	IBM 701
4,427	ILLIAC
4,500	LOGISTICS
4,500	TELEREGISTER UNIFIED ALRLINE
5,000	BIZMAC II
5,000	IBM 704
5,000	JOHNNLAC
5,000	ORACLE


TUBE   QUANITIT	SYSTEM
5,190	MANLAC II
5,200	UNIVAC I
5,200	UNIVAC II
5,937	EDVAC
6,120	BRLESC
7,000	BURROUGHS D 104
8,293	UNIVAC I105
9,800	NORC
10,000	IBM 7O2
14,500	WHIRLWIND II
30,000	BIZMAC I
50,000	AN/FSQ 7

## TABLE XI

CRYSTAL DILODE QUANTITY IN COMPUITING SYSTEMS

CRYSTAL DIODE QUANITIY	SYSTEM
1	monrobot V
40	magnerile b
100	MONROBOT III
115	PHILCO CXPQ
150	MODAC 5014
164	IBM 632
200	ORACLE
240	magnerile D
300	LEPRECHAUN
300	RCA 200
350	WISC
350	Lincoln tx 0
406	IBM 305 RAMAC
500	Johnviac
500	MANIAC I
886	STORED PROGRAM DDA
915	ORDVAC
950	AN/TYK 6v Basicpac
1,000	HAMPSHIRE CCC 500
1,000	MONROBOT IX
1,113	IBM 1620
1,200	PHILCO 2000
1,250	CUBIC TRACKER
1,344	TARGET INTERCEPT
1,450	LIBRATROL 500
1,500	LGP 30
1,500	LIBRASCOPE AIR TRAFF IC
1,617	SPEC
1,626	BURROUGHS D 209
1,800	BURROUGHS E 101
1,800	BURROUGHS E 102
1,964	DISTRIbUTAPE
2,000	BURROUGES E 103
2,000	CUBIC AIR TRAFFIC
2,000	DE 60
2,000	ELECOM 50
2,000	FOSDIC
2,000	MINIAC II
2,000	MODAC 404
2,000	SYtVanta S 9400


CRYSTAL DIODE QUANTITY	SYSTEM
2,200	BENDIX D 12
2,200	EIECOM 100
2,265	GENERAL ELECTRIC 312
2,292	RCA 300
2,300	MONROBOT XI
2,400	LIBRATROL 1000
2,500	ELECOM 125 l2SFP
2,500	NATIONAL 107
2,385	UNIVAC 1101
3,000	HAMPSEIRE TTRTDS 932
3,000	LEEESS NORTHROP 3000
3,000	MODAC 410
3,000	MODAC 414
3,000	PROGRAMMED DATA PROCESSOR
3,000	TELEREGISTER UNIFIED AIRLINE
3,000	UNIVAC 1102
3,050	mantac II
3,364	HUGHES ADV ATRBORNE III
3,500	ALWAC II
3,500	COMPAC
3,553	LIBRASCOPE ASN 24
3,800	BURROUGHS 204
3,800	BURROUGHS 205
3,943-11,428	IBM 650 RAMAC TAPES
4,000	HUGEES M 252
4,000	NATIONAL 390
4,000	RW 300
4,000	SWAC
4,075	READIX
4,200	PHILCO 3000
4,289	HUGHES DIGITAIR
4,395	AN/ASQ 28 (v) EDC
4,400	BENDIX G 15
4,500	ELECOM 120
Over 4,500	LIERASCOPE CP 209
4,700	NORDEN VOTE TALLY
5,000	LOGISTICS
5,000	NUMERICORD
5,000	SCRIBE
5,194	IBM 609

# TABLE XI (CONTINUED) 

CRYSTAL DIODE QUANTITY IN COMPUIITNG SYSTEEMS

CRYSTAL DIODE QUANTITY	SYSTEM
5,194	IBM 609
5,200	BURROUGHS D 201
5,224	LIITCOLN TX 2
5,316	JUKEBOX
5,400	HUGHES D PAT
5,768	Pennistac
6,000	GEORGE
6,000	MOBIDIC A
6,000	MOBIDIC B
6,000	MOBIDIC C D 7A
6,000	UDEC I II III
6,213-14,171	IBM 1401
6,314	AN/TYK 7V INFORMER
6,900	BURROUGES D 203
7,000	BURROUGHS D 208
7,000	CDC 160
7,000	OARAC
7,000	RECOMP I CP 266
8,000	NATIONAL 102 A
8,000	NATTONAL 304
8,000	RASTAC
8,000	RAStad
8,500	NATIONAL 102 D
8,956	UNIVAC 11031103 A
9,000	HONEYWELL 290
10,000	IBM 704
10,000	RECOMP II
10,000	VERDAN
11,090	BURROUGHS D 204
12,000	BURROUGHS D 202
12,000	EDVAC
12,000	REPAC
12,800	IBM 701
13,000	RICE UNIVERSITY
13,076	AN/ASQ 28 (v) MDC
13,160	BURROUGHS D 107
13,500	ALWAC III E
14,000	BURROUGBS D 103
14,000	WHIRIWIND II

CRYSTAL DIODE
QUANTIITY SYSTEM

14,500 BIZMAC II
14,515 LIBRASCOPE MK 130
15,000 GENERAL MILILS AD/ECS
15,500 TELEREGISTEER TELEFTIE
15,651 ILBRASCOPE MK 38
15,985 WESTINGHOUSE AIRBORNE
16,000 OKIAHOMA UNIV
16,415 UNIVAC 1105
16,540 MERLITN
17,000 IBM 702
18,000 UNIVAC I
18,000 UNIVAC II
20,000 GFNERAL MIEJS APGAC
20,000 MANIAC III
20,000 SYLVANTA UDOFTTI
22,000 CCC REAL TIME
23,000 LITHON DATA. ASSESSOR
24,000 SEAC
24,500 DYSEAC
25,000 BURROUGHS D 104
30,000 HONEYWELL 800
30,000 ITT BANK IN PROC
30,000 MAREC
30,000 NORC
33,000 AITHETA
33,200 LINCOLN CG 24
33,787 AN/USQ 20
36,505 UNIVAC SOLTD STATE 80/90
36,505 UNIVAC SIEBP
38,000 BENDIX G 20
50,000 LIT SPRS 025
60,000 DATAMATIC 1000
62,000 DIANA
70,000 BIZMAC I
90,417 UNIVAC 1107
100,000 CDC 1604
126,300 BRLESSC
$170,000 \quad \mathrm{AN} / \mathrm{FSQ} 7 \mathrm{AN} / \mathrm{FSQ} 8$ (SAGK)
229,000 AN/FSQ 31 (v)
305,000 AN/FSQ 32

## TABLE XII

TRANSISTOR QUANTITY IN COMPUTING SYSTEMS

TRANSISTOR QUANTITY	SYSTEM
0-211	IBM 650 RAMAC TAPES
6	Pennistac
16	BENDIX G 15
64	DISTRIBUTAPE
75	ALWAC III E
100	ORACLE
100	RASTAC
100	RAStad
Over 100	LIBRASCOPE CP 209
200	BIZMAC I
200	DE 60
279	SPEC
300	NUMERICORD
309	STORED PROGRAM DDA
328	EDVAC
382	ITBRASCOPE ASN 24
383	MONROBOT XI
400	PACKARD BELL 250
500	DATAMATIC 1000
500	SYLVANIA UDOFTT
580	RW 300
592	AN/ASQ 28 (v) EDC
650	LIBRATROL 1000
700	BURROUGHS D 209
703	AN/FSQ 7
820	MERLIN
885	JUKEBOX
900	HAMPSHIRE TRTDS 932
9.19	UNIVAC SOLID STATE 80/90
919	UNIVAC STEP
1,100	HUGHES M 252
1,148	UNIVAC 1105
1,150	NATIONAL 390
1,160	MANIAC II
1,200	UNIVAC II
1,300	LEEEDS NORTHROP 3000
1,400	CDC 160
1,500	GENERAL MILIS AD/ECS
1,500	GENERAL MILILS APSAC
1,500	HONEYWELL 290
1,500	PHILCO 3000
1,500	RCA 200
1,500	REPAC
1,500	VERDAN


TRANSISTOR QUANTITY	SYSTEM
1,600	CUBIC TRACKER
1,600	RECOMP I CP 266
1,683	HUGHES LRIX
1,697	AN/ASQ 28 (v) MDC
1,800	HUGHES D PAT
1,820	BURROUGHS D 208
1,887	IBM 609
1,900	RICE UNIVERSITY
2,000	RECOMP II
2,000-3,000	OKIAHOMA UNTV
2,091	ORDVAC
2,563	LIBRASCOPE MK 38
2,572	GENERAL ELECTRIC 312
2,600	CUBIC AIR trafric
2,700	CCC REAL TIME
2,700	PROGRAMMED DATA PROCESSOR
3,000	FOSDIC
3,088	IBM 1620
3,100	LITtion data assessor
3,470	BURROUGHS D 107
3,500	LINCOLN TX 0
3,500	SCRIBE
3,500	TELEREGISTER TELEFILE
3,900	NORDEN VOTE TALLY
4,000	NATIONAL 304
4,200	BURROUGES D 104
4,315-9,805	IBM 1401
4,800	NAREC
5,000	BURROUGHS D 202
5,000	IEPRECHAUN
5,400	RCA 300
5,550	PHILCO CXPQ
6,000	HONEYWELL 800
6,500	BURROUGHS D 203
6,600	BURROUGHS D 201
7,015	LITBRASCOPE MK 130
7,500	ATHiema
7,597	WESTINGHOUSE ATRBORNE
8,500	BURROUGES D 204
8,740	BRLESC
8,900	BENDIX G 20
10,000	COMPAC
10,000	ItT bank in proc
10,000	LOGISTICS

## TABLE XII (CONTINUED)

TRANSISTOR		TRANSISTOR	
QUANTITY	SYSTEM	QUANIITY	SYSTEM
10,265	AN/USQ 20	30,000	MOBIDIC C D 7A
10,789	AN/TYK 7v INFORMER	32,000	MOBIDIC A
12,000	MANIAC III	36,000	SYLVANTA S 9400
14,188	AN/TYK 6v BASICPAC	Over 36,000	IBM 7080
18,930	LINCOLN CG 24	51,000	ITT SPES 025
20,000	GEORGE	56,000	PHILCO 2000
20,000	TARGET INTERCEPT	61,533	LINCOLN TX 2
23,000	LIBRASCOPE AIR TRAFFIC	138,000	AN/FSQ 31 (v)
25,000	CDC 1604	200,000	IBM STRETCH
25,522	UNIVAC 1107	201,000	AN/FSQ 32
30,000	MOBIDIC B		

## TABLE XIII

APPROXIMATE POWER REQUIREMENT OF COMPUTING SYSTEMS

POWER	
KILOWATTS	SYSTEM
0.010	HRB SINGER
0.020	RCA 200
0.029	STORED PROGRAM DDA
0.030	HUGHES BM GUIDANCE
0.060	SPEC
0.10	PACKARD BELL 250
0.13	LIBRASCOPE ASN 24
0.13	RCA 300
0.15	ASC 15
0.15	DE 60
0.16	IEPRECHAUN
0.20	RPC 9000
0.22	BURROUGHS D 208
0.25	AN/ASQ 28 (v) EDC
0.25	LIBRASCOPE 407
0.30	HUGHES D PAT
0.30	RECOMP I CP 266
0.31	AN/TYK 7v INFORMER
0.32	VERDAN
0.37	HUGHES M 252
0.40	CCC REAL TIME
0.50	JKEBOX
0.50	RECOMP II
0.50	RW 300
0.60	LEEEDS NORTHROP 3000
0.60	MAGNEFILE B
0.60	REPAC
0.67	MONROBOT IX
0.70	CDC 160
0.70	FADAC
0.70	PHILCO 3000
0.73	RPC 4000
0.75	IBM 632
0.80	AN/ASQ 28 (v) MDC
0.80	PROGRAMMED DATA PROCESSOR
0.85	HUGHES LRI X
0.85	MONROBOT XI
0.86	BURROUGES D 203
0.86	GENERAL MILLS APSAC
0.90	BURROUGHS D 201
0.90	TRICE
0.95	LItrton C 7000
1.0	AN/MJQ 1 REDSTONE


POWER	
KIIOWATTS	SYSTEM
1.0	BURROUGHS D 107
1.0	CUBIC TRACKER
1.0	GENERAL MILIS AD/ECS
1.0	GEOTECH AUTOMATIC
1.0	HAMPSHIRE CCC 500
1.0	IBM 609
1.0	MAGNEF ILIE D
1.1	LGP. 30
1.2	PHILCO 1000
1.4	HONEYWELL 290
1.5	HAMPSHIRE TRTDS 932
1.5	HUGHES ADV AIRBORNE III
1.5	IBM 610
1.5	LITTION DATA ASSESSOR
1.8	BURROUGHS D 202
1.8	BURROUGHS E 103
1.8	LIBRASCOPE CP 209
1.8	WESTINGHOUSE ALRBORNE
1.8	BURROUGHS D 204
2.0	DISTRIBUTAPE
2.0	ELECOM 50
2.0	IBM 1620
2.0	LIBRATROL 1000
2.0	MANIAC III
2.1	IBM 608
2.5	AN/USQ 20
2.5	LIBRATROL 500
2.5	MONROBOT III
2.5	TARGET INTERCEPT
2.7	SCRIBE
2.9-12	IBM 1401
3.0	BURROUGES E 101
3.0	BURROUGHS E 102
3.0	CIRCLE
3.0	LIBRASCOPE AIR TRAFFIC
3.0	MODAC 404
3.1	BENDIX G 20
3.5	BENDIX G 15
3.5	ELECOM 100
3.6	COMPAC
4.0	ALWAC II
4.0	GENERAL ELECTRIC 312
4.0	MODAC 410

## TABLE XIII (CONTINUED)

APPROXIMATE POWER REQUIRENENT OF COMPUIING SYSTEMS

POWER		POWER	
KILOWATTS	SYSTEM	KILOWATTIS	SYSTEM
4.3	BENDIX CUBIC TRACKER	14	BURROUGHS 204
4.3	NATIONAL 390	14	BURROUGHS 205
4.5	LIPRASCOPE MK 38	14	IBM 7080
4.5	norden vote tally	15	UNIVAC 1101
4.5	RCA 110	16	IBM 650 RAMAC TAPES
4.6	LINCOLN CG 24	17	IBM 7070
5.0	ALWAC III E	17	LOGISTICS
5.0	ELECOM 120	18	MISTIC
5.0	ELECOM 125 125FP	18	Sylvania S 9400
5.0	FOSDIC	19	CYCLONE
5.0	LİRRASCOPE MK 130	20	AN/TYK 6v BASICPAC
5.0	MINIAC II	20	LINCOLN TX 2
5.0	MODAC 414	20	RICE UNIVERSITY
5.0	MONROBOT V	21	OARAC
5.0	UNIVERSAL DATA trans	22	SEAC
5.5	ATHENA	22	UNIVAC 1102
5.6	RCA 501	24	SYLVANIA UDOFPT
5.8	IBM 7090	25	NAREC
6.0	Itt bank lin proc	26	IBM 7074
6.0	NUMERICORD	26	RCA 301
6.8	IBM 604	27	ILLIAC
7.2	pennstac	29	BURROUGHS D 103
7.5	BENDIX D 12	30	BURROUGHS 220
7.5	CDC 1604	30	ITPT SPES 025
7.7	NATTONAL 102 A	30	MOBIDIC A
7.7	NATIONAL 102 D	30	SWAC
8.0	READIX	30	UDEC I II III
8.0	UNIVAC 120	30	UNIVAC 1107
8.5	IBM CPC	31	UnIVAC 490
9.0	GENERAL ELECTRIC 210	32	HONEYWELL 800
9.0	PHILCO CXPQ	33	MANLAC II
10	LINCOLN TX 0	34	MOBIDIC B
10	RW 400	35	BRLesC
10	WISC	35	MANIAC I
11	IBM 305 RAMAC	37	BIZMAC II
12	DYSEAC	38	NATTONAL 304
12	IBM 607	39	UNIVAC SOLID STATE 80/90
12	OKLAHOMA UNIV	40	MERLIN
13	AF/CRC	40	ORDVAC
13	GENERAL ELECTRIC 225	45	MOBIDIC C D \& 7A
13	RAStac	45	PHILCO 2000
13	RASTAD	45	RCA 601
13	UNIVAC STEP	50	GEORGE

## TABLE XIII (CONTINUED)

APPROXIMATE POWER REQUIREMENT OF COMPUTING SYSTEMS

POWER   KILOWATTS	SYSTEM	POWER   KILOWATTS	SYSTEM
52	EDVAC	95	DATAMATIC 1000
55	JOHNNIAC	100	IBM STREICH
60	BURROUGHS D 104	107	AN/FSQ 32
69	IBM 705 I II	109	AN/FSQ 31 (v)
71	UNIVAC FILE O	113	IBM 709
71	UNIVAC FILE 1	124	UNIVAC II
74	UNIVAC I103 1103 A	131	IBM 705 III
75	IBM 702	150	GE 100 ERMA
75	ORACIE	160	UNIVAC IIO5
75	UNIVAC III	167	UNIVAC LARC
76	IBM 701	168	NORC
76	IBM 704	180	WHIRLWIND II
81	UNIVAC I	246	BTZMAC I
90	DIANA	750	AN/FSQ 7 AN/FSQ 8 (SAGE)

## TABLE XIV

APPROXIMATE COST OF COMPUTING SYSTEMS
(BASIC OR TYPICAL SYSTEM)

$\operatorname{CosT}$	SYSTEM	$\operatorname{cost}$	SYSTEM
\$ 1,000	PERK I II	\$ 86,074	MONROBOT V
6,000	IBM 632	87,500	RPC 4000
9,650	MONROBOT IX	95,000	RECOMP II
15,000	HRB SINGER	97,000	ELECOM 120
17,000 to 20,000	Itt bank ln PROC	97,500	UNIVAC 120
18,000	DE 60	98,000	RW 300
19,195	SPEC	100,000	MODAC 404
20,000	GEOTECH AUTOMATIC	100,000	PEnnstac
20,000	MAGNEFILE B	110,000	PROGRAMMED DATA PROCESSOR
22,500	ELECOM 50	120,000	MODAC 410
24,500	MONROBOT XI	120,000	RPC 9000
29,750	BURROUGHS E 101	125,600	IBM 1401
29,750	BURROUGHS E 102	127,000	FOSDIC
29,750	BURROUGHS E 103	141,980	GENERAL MILIS AD/ECS
36,000	IBM 609	150,000	MODAC 4.14
40,500	PACKARD BELL 250	155,000	ELECOM 125 125FP
45,000	DISTRIBUTAPE	160,000	BURROUGHS D 204
49,500	BENDIX G 15	167,850	IBM 305 RAMAC
49,500	LPG 30	170,000	HONEYWELL 290
50,000	ALWAC II	175,000	UNIVAC STEP
50,000	HAMPSHIRE CCC 500	182,000	IBM 650 RAMAC TAPES
50,000	MAGNEFILE D	185,000	OARAC
50,000	TRICE	196,000	RCA 301
50,000 to 100,000	HAMPSHIRE TRTDS 932	200,000	BURROUGHS 204
55,000	bendix D 12	200,000	BURROUGES 205
55,000	IBM 610	200,000	GENERAL ELECTIRIC 225
56,300	NATIONAL 390	200,000	RAStac
60,000	CDC 160	200,000	RAStad
60,000	ELECOM 100	225,000	GENERAL ELECTRIC 210
64,000	IBM 1620	225,000	NUMERICORD
65,000	NATIONAL 102 D	230,000	IBM 701
70,000	NATIONAL 102 A	250,000	mantac I
70,000	READIX	257,000	RCA 501
75,000	IBM CPC	300,000	IULIAC
75,000	UNIVAC 60	300,000	TELEREGISTER MAGNET INVENT CONT
76,950	ALWAC III E	300,000	untvac FILE 1
80,000	AN/MJQ I REDSTONE	300,000	UNIVAC FILIE 0
80,000	CIRCLE	320,000	BURROUGES ²O $^{\text {a }}$
82,500	NATIONAL 315	347,500	UNIVAC SOLId STATE 80/90
84,500	LIBRATROL 500	350,000	MANLAC II
85,000	miniac II	350,000	UNIVERSAL DATA TRANS
85,000	MODAC 5014	354,000	LOGISTICS
85,200	GENERAL ELECTRIC 312	358,000	IBM 702

# TABLE XIV (CONTINUED) 

APPROXIMATE COST OF COMPUIING SYSTEMS
(BASIC OR TYPICAL SYSTEM

\$ 366,600	NATTONAL 304
400,000	RICE UNIVERSITY
400,000	SWAC
467,000	Edvac
478,000	BENDIX G 20
500,000	AN/TYK 6v BASICPAC
500,000	GEORGE
500,000	UDEC I. II III
500,000 (Donated)	UNIVAC 1101
600,000	MERLIN
600,000	NORDEN VOTE tally
600,000	ORDVAC
700,000	UNIVAC III
750,000	CDC 1604
750,000	UNIVAC I
800,000	AF/CRC
813,250	IBM 7070
839,700	RCA 601
895,000	UnIVAC 1103 1103A
970,000	UNIVAC II
975,000	HONEYWELL 800
1,000,000	ITT SPES 025
1,000,000	LINCOLN CG 24
1,000,000	NATIONAL 107
1,284,350	IBM 7074
1,400,000	UNIVAC 1102
1,500,000	NAREC
1,500,000	UNIVAC 490
1,600,000	PHELCO CXPQ
1,640,000	IBM 705 I II
1,800,000 to 2,700,000	UNLVAC 1107
1,932,000	UNIVAC 1105
	IBM 704
2,000,000	BRLESC
2,179,100	DATAMATIC 1000
2,200,000	IBM 7080
2,500,000	NORC
2,630,000	IBM 709
2,898,000	IBM 7090
4,500,000	BIZMAC I
6,000,000	UNIVAC LARC

## TABLE XV

CHRONOLOGICAL ORDER OF INITIAL DATE OF OPERATION OF COMPUTING SYSTEMS

INITIAL DATE		InItial date	
Of OPERATION	SYSTEM	of OPERATION	SYSTEM
May 1950	SEAC	1955	UNIVAC 60
1950	WHirliwind II	1955	UNIVAC 120
Mar 1951	SWAC	1955	UNIVAC 1102
Mar 1951	UNIVAC I	Feb 1956	READIX
1951	EDVAC	Apr 1956	AF/CRC
Mar 1952	MANIAC I	Apr 1956	IBM 704
Mar 1952	ORDVAC	Oct 1956	MODAC 414
Sep 1952	illitac	1956	BENDIX G 15
1952	ELECOM 100	1956	BIZMAC II
Mar 1953	LOGISTICS	1956	ELECOM 50
Apr 1953	OARAC	1956	ELECOM 120
May 1953	IBM 701	1956	ELECOM 125 125FP
Aug 1953	MAGNEFILE D	1956	IBM 608
Aug 1953	UNIVAC 11031103 A	1956	LEPRECHAUN
Dec 1953	UDEC I II III	1956	MONROBOT MU
1953	IBM 604	1956	NAREC
1953	national 102 A	1956	PHILCO 1000
Feb 1954	MAGNEFILE B	1956	RECOMP I CP 266
Mar 1954	Johnniac	1956	TELEREGISTER MAGNET INVENT CONT
Apr 1954	DYSEAC	Sep 1957	GEORGE
Jun 1954	ALWAC II	Sep 1957	UNIVAC FIILE 0
Jun 1954	CIRCLE	Nov 1957	AN/FSQ $7 \mathrm{AN} / \mathrm{FSQ} 8$ (SAGE)
Jul 1954	MODAC 5014	1957	IBM 709
Sep 1954	MODAC 404	1957	LIINCOLN TX 0
1954	BENDIX D 12	1957	MANIAC II
1954	BURROUGHS 204	1957	PHILCO 2000
1954	BURROUGHS 205	May 1958	UNIVAC II
1954	IBM 650 RAMAC TAPES	Sep 1958	AN/MJQ 1 REDSTTONE
1954	LGP 30	1958	IBM 610
1954	WISC	1958	LINCOLN TX 2
Feb 1955	IBM 702	1958	WRU SEARCHING SELECTOR
Feb 1955	MONROBOT III	Jan 1959	RCA 501
Feb 1955	NORC	Feb 1959	burroughi 220
Mar 1955	MINIAC II	Feb 1959	UNIVAC 1105
Mar 1955	MONROBOT V	Jul 1959	GE 100 ERMA
Aug 1955	UNIVAC 1101	Sep 1959	FOSDIC
Nov 1955	BIZMAC I	Nov 1959	NATIONAL 304
1955	ALWAC III E	1959	AN/TYK 6v BASICPAC
1955	BURROUGHS E 101	1959	GENERAL ELECTRIC 210
1955	IBM 705 I II	1959	LIBRASCOPE AIR TRAFFIC
1955	MODAC 410	1959	LIBRASCOPE ASN 24
1955	pennstac	1959	RASTAD

## TABLE XV (CONTINUED)

CHRONOLOGICAL ORDER OF INITIAL DATE OF OPERATION OF COMPUTING SYSTEMS

INITIAL DATE	SYSTEM
1959	RPC 9000
1959	RW 300
1959	TRICE
1959	UNIVAC SOLID State 80/90
Jan 1960	CDC 1604
Jan 1960	HUGHES BM GUIDANCE
Jan 1960	UNIVERSAL DATA TRANS
Apr 1960	SYLVANIA UDOF'TT
Apr 1960	UNIVAC LARC
Aug 1960	BENDIX CUBIC TRACKER
Oct 1960	BURROUGHS D 209
1960	AMOS IV
1960	AN/USQ 20
1960	CUBIC AIR TRAFFIC
1960	CUBIC TRACKER
1960	DIANA
1960	FADAC
1960	GENERAL ELECTRIC 225
1960	GENERAL MILIS APSAC
1960	GENERAL MLLIS AD/ECS
1960	GENERAL ELECTRIC 312
1960	HAMPSHIRE TRTDS 932
1960	HRB SINGER
1960	HONEYWELL 800
1960	HUGHES DIGITAIR
1960	INIELEX AIRLINE RESERVATION
1960	IBM 1401
1960	IBM 1410
1960	7070
1960	IBM 7080
1960	IBM 7090
1960	IBM STRETCH
1960	LEEDS NORTEROP 3000
1960	LIIBRASCOPE MK 130
1960	LITBRASCOPE 407
1960	LIBRATROL 1000
1960	LITTON DATA ASSESSOR
1960	MANIAC III


INITIAL DATE of OPERATION	SYSTEM
1960	MERLIN
1960	MOBIDIC A
1960	MOBIDIC B
1960	MOBIDIC C D \& 7A
1960	NATIONAL 315
1960	NATIONAL 390
1960	NORDEN VOTE taluy
1960	ORACLE
1960	PACKARD BELL 250
1960	PERK I II
1960	PHILCO 3000
1960	Programmed data processor
1960	RCA 200
1960	RCA 300
1960	RPC 4000
1960	RASTAC
1960	RW 400
1960	REPAC
1960	SCRIBE
1960	SPEC
1960	STORED PROGRAM DDA
1960	SYLVANIA S 9400
1960	TARGET INTERCEPT
1960	UNIVAC III
1960	UNIVAC STEP
1960	WESTINGHOUSE AIRBORNE
Apr 1961	BRLESC
Jul 1961	RCA 601
Nov 1961	UNIVAC 490
1961	AN/TYK 7v INFORMER
1961	IBM 7074
1961	ITT BANK LN PROC
1961	ITT SPES 025
1961	OKIAHOMA UNIV
1961	RCA 110
1961	RICE UNIVERSITY
1962	univac 1107

CHAPIER IV
BIBLIOGRAPHY

## BIBLIOGRAPHY

1. Bell, Wm. D. "A Management Guide to Electronic Computers", McGraw-Hill, 1957.
2. Berkeley, E. C. "Computers: Their Operation \& Applications", Reinhold, 1956.
3. Berkeley, E. C. "Gient Brains", John Wiley, 1949.
4. Caldwell, Samuel H. "Switching Circuits \& Logical Design", John Wiley, 1958.
5. Canning, Richard G. "Installing Electronic Data Processing Systems", John Wiley, 1957.
6. Canning, Richard G. "Electronic Data Processing for Business \& Industry", John Wiley, 1956.
7. Casey, R. S. and Perry, J. W. "Punched Cards", Reinhold, Copyright 1951, Second printing 1952.
8. Chapin, Ned "An Introduction to Automatic Computers", Van Nostrand, 1957.
9. Charnes, A., Cooper, W. W., Henderson, A., et. al. "Introduction to Linear Programing", Wiley, 1953.
10. Culbertson, James T. "Mathematics \& Logic for Digital Computers", Van Nostrand, Copyright 1958.
11. Doss, Milburn P. "Information Processing Equipment", Reinhold, 1955.
12. Dwyer, P. A. "Linear Computations", Wiley, 1951.
13. Eckert, W. J. and Jones, R. "Faster, Faster", McGraw-Hill, 1955.
14. Gottlieb, C. C. and Hume, J. N. P. "High-Speed Data Processing", McGraw-Hill, 1958.
15. Grabbe, E. M., Ramo, S. and Wooldridge, D. E., (Editors) "Handbook of Automation, Computation and Control", Vol I: Control Fundamentals; Vol II: Computers \& Data Processing; Vol III: Systems \& Components, Wiley, 1959.
16. Gregory, R. H. and Van Horn, R. L. "Automatic Data Processing Systems", Wadsworth Pub. Co., 1960.
17. Harvard University, Staff of Computation Lab. "Synthesis of Electronic Computing \& Control Circuits", Harvard University Press, 1951.
18. Harvard University, Staff of Computation Lab. "Description of a Magnetic Drum Calculator", Harvard University Press, 1952.
19. Householder, Alston S. "Principles of Numerical Analysis", McGraw-Hill, 1953.
20. Keister, Wm., Ritchie, A. E., Washburn, S. H., et. al. "Design of Switching Circuits", Van Nostrand.
21. Korn, G. A. and T. M. "Electronic Analog Computers", McGraw-Hill, 1956.
22. Kozmetsky, G. and Kircher, P. "Electronic Computers \& Management Control", McGraw-Hill, 1956.
23. Lewis, I. A. D. and Wells, F. H. "Millimicrosecond Pulse Techniques", Pergamon, 1955.
24. McCracken, D. D. "Digital Computer Programming", Wiley, 1957.
25. Millman, Jacob \& Taub, H. "Pulse \& Digital Circuits", McGraw-Hill, 1956.
26. Montgomerie, G. A. "Digital Calculating Machines \& Their Application to Scientific \& Engineering Work", Van Nostrand, 1957.
27. Murphy, John S. "Basics of Digital Computers", John F. Rider, Copyright 1958.
28. Ore, Oystein "Number Theory \& Its History", McGraw-Hill, 1948.
29. Phister, M., Jr. "Logical Design of Digital Computers", Wiley, 1958.
30. Pressman, Abraham I. "Design of Transistorized Circuits for Digital Computers", John F. Rider, 1959.
31. Richards, R. K. "Arithmetic Operations in Digital Computers", Van Nostrand, 1955.
32. Richards, R. K. "Digital Computer Components \& Circuits", Van Nostrand, 1957.
33. Scott, N. R. "Analog \& Digital Computer Technology", McGraw-Hill, 1960.
34. Smith, Charles V. L. "Electronic Digital Computers", McGraw-Hill, Copyright 1959.
35. Soroka, W. W. "Analog Methods in Computation \& Simulation", McGraw-H111, 1954.
36. Stewart, W. Earl "Magnetic Recording Techniques", McGraw-Hill, Copyright 1958.
37. Stibitz, Geo. R. and Larrivee, Jules A. "Mathematics \& Computers", McGraw-Hill, 1957.
38. Svoboda, Antonin "Computing Mechanisms \& Linkages", McGraw-Hill, 1948.
39. Tompkins, C. B., Wakelin, J. H. and Stifler, W. W., Engineering Res. Associates "High Speed Computing Devices", McGraw-Hill, 1950.
40. Wass, C. A. A. "Introduction to Electronic Analogue Computers", Pergamon, 1955.
41. Wilkes, Maurice V. "Automatic Digital Computers", Wiley, 1956.
42. Weik, Martin H. "A Survey of Domestic Electronic Digital Computing Systems", Ballistic Research Iaboratories Report No. 971, Reprinted. by United States Department of Commerce Office of Technical Services, PB111996.
43. Weik, Martin H. A Second Survey of Domestic Electronic Digital Computing Systems", Ballistic Research Laboratories Report No. 1010, Reprinted by United States Department of Commerce Office of Technical Services, 111996 R.
44. Automatic Data Processing Systems: Department of the Army Regulations and Pamphlets Acquisition and use for business type operations: policies, AR 1-250 procedures, etc.
Catalog of commercially available DA Pam 1-250-4
Conducting studies DA Pam 1-250-1
Industrial, scientific, and office types, Logistics AR 701-7440 responsibilities
Introduction
Program planning guide
DA Pam 1-250-3
DA Pam 1-250-2

CHAPTER V
GLOSSARY OF COMPUIER EMGIINHARING AND PROGRAMMING TIERMINOLOGY
(REVISED)
a suffix meaning "automatic computer" as in ORDVAC, EDVAC, ENIAC, etc.

## ACCESS, RANDOM

access to storage under conditions in which the next position from which information is to be obtained is in no way dependent on the previous one.

## ACCESS TTME

(1) the time interval between the instant at which information is: (a) called for from storage and the instant at which delivery is completed, i.e., the read time; or (b) ready for storage and the instant at which storage is completed, i.e., the write time. (2) the latency plus the word-time.

## ACCUMULATOR

the "zero-access" register (and associated equipment) in the arithmetic unit in which are formed sums and other arithmetical and logical results; a unit in a digital computer where numbers are totaled, 1.e., accumulated. Often the accumulator stores one operand and upon receipt of any second operand, i.t forms and stores the sum of the first and second operands.

## ACCURACY

freedom from error. Accuracy contrasts with precision; e.g., a four-place table, correctly computed, is accurate; a six-place table containing an error is more precise, but not accurate.

## ADDER

a device capable of forming the sum of two or more quantities.

## ADDRESS

a label such as an integer or other set of characters which identifies a register, location of device in which information is stored.

## ADDRESS, ABSOLUTE

the label(s) assigned by the machine designer to a particular storage location; specific address.

## ADDRESS, RELATITVE

a label used to identify a word in a routine or subroutine with respect to its position in that routine or subroutine. Relative addresses are translated into absolute addresses by the addition of some specific "reference" address, usually that at which the first word of the routine is stored, e.g. if a relative address instruction specifies an address $n$ and the address of the first word of the routine is k , then the absolute address is $\mathrm{n}+\mathrm{k}$.

## ADDRESS, SYMBOLIC

a label chosen to identify a particular word, function or other information in a routine, independent of the location of the information within the routine; floating address.

## ALLOCATE

to assign storage locations to the main routines and subroutines, thereby fixing the absolute values of any symbolic addresses. In some cases allocation may require segmentation.

## AMPLIFIER, BUFFER

an amplifier used to isolate the output of any device, e.g. oscillator, from the effects produced by changes in voltage or loading in subsequent circuits.

## AMPLIFIER, TORQUE

a device which produces an output turning moment in proportion to the input moment, wherein the output moment and associated power is supplied by the device, and the device requires an input moment and power smaller than the output moment and power.

## ANALOG

the representation of numerical quantities by means of physical variables, e.g. translation, rotation, voltage, resistance; contrasted with "digital".

## ANALYZER, DIFFERENTIAL

an analog computer designed and used primarily for solving many types of differential equations.

## AND-OPERATOR

a logical operator which has the property such that if $P$ and $Q$ are two statements, then the statement " $P$ and $Q$ " is true or false precisely according to the following table of possible combinations:

$P$		$Q$	$P$ and $Q$		
false	0	false	0	false	0
false	0	true	1	false	0
true	1	false	0	false	0
true	1	true	1	true	1

The "and" operator is often represented by a centered dot (•), or by no sign, as in P . $Q$ or $P Q$; the term conjunction is applied to this operator.

## AND-GATE

a signal circuit with two or more input wires which has the property that the output wire gives a signal if and only if all input wires receive coincident signals.

## AQUADAG

a graphite coating on the inside of certain cathode ray tubes for collecting secondary electrons emitted by the screen.

## ARITHMEITIC UNIT

that portion of the "hardware" of an automatic computer in which arithmetic and logical operations are performed.

## ASSEMBLE

to integrate subroutines (supplied, selected, or generated) into the main routine, by adapting, or specializing to the task at hand by means of preset parameters, by adapting, or changing relative and symbolic addresses to absolute form, or incorporating, or placing in storage.

## ATTENUATE

to obtain a fractional part or reduce in amplitude an action or signal. Measurement may be made as percentage, per unit, or in decibels, which is 10 times $\log _{10}$ of power ratio; contrasted with amplify.

## AUTOMATION

the entire field of investigation, design, development, application and methods of rendering or making processes or machines self-acting or selfmoving; rendering automatic; theory, art of technique of making a device, machine, process or procedure more fully automatic; the implementation of a self-acting or self-moving, hence, automatic process or machine.

## AVAILABLE-TTME, MACHINE

time during which a computer has the power turned on, is not under maintenance, and is known or believed to be operating correctly.

## AZIMUTH

the angular measurement in an horizontal plane and in a clockwise direction from a specific reference direction, usually a form of North, i.e., true azimuth is measured from true north, magnetic azimuth from magnetic north, grid-azimuth from grid north or thrust or bese line.

BAND
a group of recording tracks on a magnetic drum.

## BASE

a number base; a quantity used implicitly to define some system of representing numbers by positional notation; radix.

## BEAM, HOLDING

a diffused beam of electrons used for regenerating the charges stored on the screen of a cathode ray storage tube.

## BIAS

the average D.C. voltage maintained between the cathode and control grid of a vacuum tube; a fixed reference located with respect to a neutral or zero reference.

## BINARY

a characteristic or property involving a selection, choice or condition in which there are but two possible alternatives.

## BINARY, NUMBER

a single digit or group of characters or symbols representing the total, aggregate or amount of units utilizing the base two; usually using only the digits " $O$ " and "1" to express quantity.

## BIQUINARY

a form of notation utilizing a mixed base; see Notation, Biquinary.

BIT
a contraction of binary digit; see Digit, Binary.

## BLOCK

a group of words considered or transported as a unit; an item; a message; in flow charts, an assembly of boxes, each box representing a logical unit of programming, usually requiring transfer to and from the high speed storage; in circuitry, a group of electrical circuits performing a specific function, as in a "block" diagram, in which a unit, e.g., an oscillator, is represented as a geometric figure (symbol).

## BLOCK, INPUI

a section of internal storage of a computer reserved for the receiving and processing of input information; input buffer.

## BOOTSTRAP

the special coded instructions at the beginning of an input tape, together with one or two instructions inserted by switches or buttons into the computer; in circuitry, a positive feedback or regenerative circuit

## BORROW

a negative form of carry; see Carry; normally arising in direct subtraction by raising a lower order (less significant digit) and compensating by lowering a higher order digit e.g. when subtracting 67 from 92, a tens digit is "borrowed" from the 9, thus the 7 of 67 is subtracted from 12, yielding 5 as the units digit of the difference and then 6 is subtracted from 8 (or 9-1) yielding 2 as the tens digit. Thus, 25 is the difference.

## BRANCH

a conditional jump; a point of decision in a program where a new routine or sub-routine is entered upon.

## BREAKPOINT

a point in a routine at which the computer may, under the control of a manually-set switch, be stopped for a visual check of progress.

## BUFF'ER

an isolating circuit used to avoid any reaction of a driven circuit upon the corresponding driving circuit, e.g. a circuit having an output and a multiplicity of inputs so designed that the output is energized whenever one or more inputs are energized. Thus, a buffer performs the circuit function or isolation which is equivalent to the logical " $O R$ ".

## BUS

a path over which information is transferred; a trunk; an electrical conductor, channel or line; a heavy wire or heavy lead upon which many connections are made.

## CABLE

an electrical conductor designed to provide common electric potential between two or more points.

## CABLE, COAXIAL

a transmission line consisting of two conductors concentric with and insulated from each other.

## CALL-NUMBER

a set of characters identifying a subroutine and containing information concerning parameters to be inserted in the subroutine, information to be used in generating the subroutine, or information related to the operands; a call-wora when exactly one word is filled.

## CAPACITANCE

the property of two or more bodies which enables them to store electrical energy in an electrostatic field between the bodies; a measure of the ability to store electric charge.

## CAPACITY

the upper and lower limits of the numbers which may be processed in a computer register, e.g., in the accumulator, e.g. the capacity of a computer may be ten decimal digits or the capacity of a computer may be +.0000000001 to +.9999999999. Quantities which exceed the capacity usually interrupt the operation, of the computer in some fashion; the quantity of information which may be stored in a storage unit; see Capacity,Storage.

CAPACITY, STORAGE
maximum number of words or characters which a device is capable of storing; a measure of the ability of a device to store information for future reference.

## CARD

heavy, stiff paper of uniform size and shape, adapted for being punched in an intelligible array of holes. The punched holes are sensed electrically by wire brushes, mechanically by metal feelers, or photoelectrically. One standard card, is $73 / 8$ inches long by 3 and $1 / 4$ inches wide and contains 80 columns in each of which any one or more of 12 positions may be punched.

## CARRIAGE, AUTOMATIC

a typewriting paper guiding or hoiding device which is automatically controlled by information and progrem so as to feed forms or continuous paper to a set of impression keys and to provide the necessary space, skip, eject, tabulate, or performing operations.

## CARRIER WAVE

the basic frequency or pulse repetition rate of a signal, bearing no intrinsic intelligence until it is modulated by another signal which does bear intelligence. A carrier may be amplitude, phase, or frequency modulated. For example, in a typical mercury delay line memory of a digital computer, the 8 megacycle/second sound wave carrier is amplitude (pulse) modulated by a 1 megacycle/second pulse code signal, the presence or absence of a pulse determining whether or not a one or a zero is present in the binary number being represented.

## CARRY

(1) A signal, or expression, produced as a result of an arithmetic operation on one digit place of two or more numbers expressed in Positional Notation and transferred to the next higher place for processing there; (2) Usually a signal or expression as defined in (l) above which arises in adding, when the sum of two digits in the same digit place equals or exceeds the Base of the number system in use. If a carry into a digit place will result in a carry out of of the same digit place, and if the normal adding circuit is bypassed when generating this new carry, it is called a High-Speed Carry, or Standing-onNines Carry. If the normal adding circuit is used In such a case, the carry is called a Cascaded Carry. If a carry resulting from the addition of carries is not allowed to propagate (e.g., when forming the partial product in one step of a multiplication process), the process is called a Partial Carry. If it is allowed to propagate, the process is called a Complete Carry. If a carry generated in the most significant digit place is sent directly to the least significant place (e.g., when adding two negative numbers using nine complements) that carry is called an End-Around Carry. (3) In direct subtraction, a signal or expression as defined in (1) above which arises when the difference between the digits is less than zero. Such a carry is frequently called a Borrow. (4) The action of forwarding a carry. (5) The command directing a carry to be forwarded.

CARRY, COMPLEIE
see Carry
CARRY, CASCADED
see Carry
CARRY, HIGH-SPEED
see Carry
CARRY, PARTIAL
see Carry
CARRY, STANDING-ON-NINES
see Carry

## CATHODE-FOLLOWER

a vacuum-tube circuit in which the input signal is applied to the control grid and the output is taken from the cathode, possessing high input impedance and low output impedance characteristics.

## CELL

storage for one unit of information, usually one character or one word; a location specifled by whole or part of the address and possessed of the faculty of store; specific terms such as column, field, location and block, are preferable when appropriate.

CELL, BINARY
an element that can have one or the other of two stable states or conditions and thus can store a single bit of information.

## CHANNEL

a path along which information, particularly a series of digits or characters, may flow. In storage which is serial by character and parallel by bit (e.g., a magnetic tape or drum in some codeddecimal computers), a channel comprises several parallel tracks. In a circulating storage a channel is one recirculating path containing a fixed number of words stored serially by word.

## CHARACTER

one of a set of elementary symbols such as those corresponding to the keys on a typewriter. The symbols usually includes the decimal digits 0 through 9 , the letters A through $Z$, punctuation marks, operation symbols, and any other single symbols which a computer may read, store, or write; a pulse code representation of such a symbol.

## CHECK

a means of verification of information or operation during or after an operation.

## CHECK, BUILIT-IN AUTOMATIC

any provision constructed in "hardware" for verifying the accuracy of information transmitted, manipulated, or stored by any unit or device in a computer. Extent of automatic checking is the relative proportion of machine "hardware" devoted to checking:

## CHECK, CODE

to check a particular coded problem for errors; to de-bug a code.

## CHECK-DUPLICATION

a. check which requires that the results of two Independent performances (either concurrently on duplicate equipment or at a later time on the same equipment) of the same operation be identical.

## CHECK-FORBTDDEN-COMBINATION

a Check (usualily an Automatic Check) which tests for the occurrence of a nonpermissible code expression. A self-checking code (or error-detecting code) uses code expressions such that one (or more) error(s) in a code expression produces a forbidden combination. A parity check makes use of a selfchecking code employing binary digits in which the total number of 1's (or 0's) in each permissible code expression is always even or always odd. A check may be made for either even parity or odd parity. A redundancy check employs a self-checking code which makes use of redundant digits called check digits. Some of the various names that have been applied to this type of check are forbidden pulse combination, unused order (instruction) unallowable digits, improper operation code; improper command, false code, forbidden digit, non-existent code, and unused code.

## CHECK, MAITHEMATICAL or ARITHMETICAL

a check making use of mathematical identities or other properties, frequently with some degree of discrepancy being acceptable; e.g., checking multiplication by verifying that $A \cdot B=B \cdot A$, checking a tabulated function by differencing, etc.

## CHECK, MODULO N

a. form of check digits, such that the number of ones in each number A operated upon is compared with a check number $B$, carried along with $A$ and equal to the remainder of $A$ when divided by $N$, e.g., in a "modulo 4 check", the check number will be 0, 1,2 , or 3 and the remainder of $A$ when divided by 4 must equal the reported check number $B$, or else an error or malfunction has occurred; a method of verification by congruences, e.g. casting out nines.

CHECK, ODD-EVEN
a check system in which a one or zero is carried along in a word depending on whether the total number of ones (or zeros) in a word is odd or even.

## CHECK, PARITY

a summation check in which the binary digits, in a character or word, are added (modulo 2) and the sum checked against a single, previously computed parity digit; i.e., a check which tests whether the number of ones is odd or even.

## CHECK, PROGRAMMED

a system of determining the correct program and machine functioning either by running a sample problem with similar programming and known answer, including mathematical or logical checks such as comparing A times B with B times A and usually where reliance is placed on a high probability of correctness rather than built-in error-detection circuits; a check system built into the actual program being run and utilized for checking during the actual running of the problem.

## CHECK, REDUNDANT

a check which uses extra digits, short of comple'te duplication, to help detect malfunctions and mistakes.

## CBECK, SUMMATION

a check in which groups of digits are summed, usually without regard for overflow, and that sum checked against a previously computed sum to verify accuracy.

## CHECK, TRANSFER

verification of transmitted information by temporary storing, re-transmitting and comparing.

## CHECK, TWIN

a continuous duplication check achieved by duplication of hardware and automatic comparison

## CHECKING; MARGINAL

a system or method of determining computer circuit weaknesses and incipient malfunctions by varying the power applied to various circuits, usually by a lowering of the D.C. supply or filament voltages.

## CLAMPING-CIRCUIT

a circuit which maintains either amplitude extreme of a waveform at a given voltage level, or potential.

## CLEAR

to replace all information in a storage device by ones or zeros as expressed in the number system employed.

## CLOCK, MASTER

the source of standard signals required for sequencing computer operation, usually consisting of a timing puíse generator, a cycling unit and sets of special pulses that occur at given intervals of time. Usually in synchronous machines the basic frequency utilized is the clocking pulse.

## CLOSED-SHOP

this is intended to mean that mode of computing machine support wherein the applied programs and utility routines are written by members of a specific specialized group whose primary professional concern is the use of computers.

## CODE

a system of symbols or their use in representing rules for handling the flow or processing of information; to actually prepare problems for solution on a specific computer.

## CODE, COMFUTER

the code representing the operations builut into the hardware of the computer; reperatoire of instructions.

## CODE, HXCESS-THREE

a coded decimal notation for decimal digits which represents each decimal digit as the corresponding binary number plus three, e.g. the decimal digits $O$, 1, 7, 9 are represented as 0011, 0100, 1010, 1100, respectively. In this notation, the nines complement of the decimal digit is equal to the ones complement of the corresponding four binary digits.

## CODE, INSTRUCTIION

an artificial language for describing or expressing the instructions which can be carried out by a digital computer. In automatically sequenced computers, the instruction code is used when describing or expressing sequences of instructions, and each instruction word usually contains a part specifying the operation to be performed and one or more addresses which identify a particular location in storage. Sometimes an address part of an instruction is not intended to specify a location in storage but is used for some other purpose. If more than one address is used, the code is called a multiple-address code.

## CODE, INTERPRETER

a code which is acceptable to an interpretive routine.

CODE, MULIIPLE-ADDRESS
an instruction or code in which more than one address or storage location is utilized. In a typical instruction of a Four-Address Code the addresses specify the location of two operands, the destination of the result, and the location of the next instruction in the sequence. In a typical Three-Address Code, the fourth address specifying the location of the next instruction is dispensed with, the instructions are taken from storage in a preassigned order. In a typical Two-Address Code, the addresses may specify the locations of the operands. The results may be placed at one of the addresses or the destination of the results may be specified by another instruction.

## CODE, OPERATIONAL

that part of an instruction which designates the operation to be performed.

## CODING

the list, in computer code or in pseudo-code, of the successive computer operations required to solve a given problem; repertoire of instructions.

CODING, ABSOLUTIE, RELATIVE or SYMBOLIC
coding in which one uses absolute, relative, or symbolic addresses, respectively, i.e., coding in which all addresses refer to an arbitrarily selected position, or in which all addresses are represented symbolically.

## CODING, ALPHABETIC

a system of abbreviation used in preparing information for input into a computer such that Information is reported in the form of letters, e.g., New York as NY, carriage return as CN, etc.

## CODING, AUTOMATIC

any technique in which a computer is used to help bridge the gap between some "easiest" form, intellectually and manually, of describing the steps to be followed in solving a given problem and some "most efficient" final coding of the same problem for a given computer; two basic forms are Routine, Compilation and Routine, Interpretation.

## CODING, NUMERIC

a system of abbreviation used in the preparatinn of information for machine acceptance by reducing all information to numerical quantities; in contrast to alphabetic coding.

## COLTATE

to combine two or more similarly ordered sets of 1tems to produce another ordered set composed of information from the original sets. Both the number of items and the size of the individual items in the resulting set may differ from those of either of the original sets and of their sums, sequence 23,24 , 48 may be collated into $12,23,24,29,42,48$; to combine two or more sequences of items according to a prescribed rule such that all items appear in the final sequence.

## COILATOR

a machine which has two card feeds, four card pockets and three stations at which a card may be compared or sequenced with regard to other cards so as to select a pocket in which it is to be placed, e.g., the machine is suitable for matching detail cards with master cards, merging cards in proper sequence, etc.

## COLUMN

one of the character or digit positions in a positional notation representation of a unit of information, columns are usually numbered from right to left column, zero being the right-most column if there is no point, or the column immediately to the left of the point if there is one; a position or place in a number in which the position designates the power of the base and the digit is the coefficient, e.g., in 3876, the 8 is the coefficient of $10^{2}$, the position of the 8 designating the 2 .

## COMMAND

a pulse, signal, or set of signals initiating one step in the performance of a computer operation; that portion of the instruction word which specifies the operation to be performed; See instruction and order.

## COMPARATOR

a device for comparing two different transcriptions of the same information to verify the accuracy of transcription, storage, arithmetic operation or other process, in which a signal is given dependent upon the relative state of two items, i.e. larger, smaller, equal, difference, etc.

## COMPARE

to examine the representation of a quantity for the purpose of discovering its relationship to zero, or of two quantities usually for the purpose of discovering identity or relative magnitude.

## COMPARISON

determining the identity, relative magnitude and relative sign of two quantities usually in order to inftiate an action.

## COMPARISON, LOGGICAL

the operation concerned with the determination of similarity or dissimilarity of two items, e.g. If A and $B$ are alike, the result shall be"l" or yes, if A and $B$ are not alike or equal, the result shail be " 0 " or no, signifying "not alike".

## COMPILER

a program making routine, which produces a specific program for a particular problem by determining the intended meaning of an element of informatinn expressed in pseudo-code, selecting or generating the required subroutine, transforming the subroutine into specific coding for the specific problem, assigning specific storage registers, etc. and entering it as an element of the problem program, maintaining a record of the subroutines used and their position in the problem program and continuing to the next element of information in pseudo-code.

## COMPLEMENT

a quantity which is derived from a given quantity,
expressed to the base $n$, by one of the following rules and which is frequently used to represent the negative of the given quantity. (a) Complement on n ; subtract each digit of the given quantity from $\mathrm{n}-1$, add unity to the least significent digit, and perform all resultant carrys. For exemple, the twos complement of binary 11010 is 00110; the tens complement of decimal 456 is 544 . (b) Complement on $\mathrm{n}-1$ : subtract each digit of the given quantity from $n-1$. For example, the ones complement of binary llolo is OOlOl; the nines complement of decimel 456 is 543.

## COMPUTER

any device capable of accepting information, applying prescribed processes to the information, and supplying the results of these processes; sometimes, more specifically, a device for performing sequences of arithmetic and logical operations; sometimes, still more specifically, a stored-program digital computer capable of performing sequences of internally-stored instructions, as opposed to calculators on which the sequence is impressed manually (desk calculator) or from tape or cards (card programmed calculator).

## COMPUTER, ANALOG

a calculating machine which solves problems by translating physical conditions like flow, temperature or pressure into electrical quantities and using electrical equivalent circuits for the physical phenomenon.

## COMPUTER, ASYNCHRONOUS

a calculating device in which an operation is initiated by a signal generated upon completion of a previous operation; contrasted with Synchronous Computer.

## COMPUIER, AUTOMATIC

a calculating device which handles long sequences of operations without human intervention.

## COMPUIER, DIGITAL

a calculating device utilizing numbers to express all the variables and quantities of a problem. The numbers are usually expressed as a space-time distribution of punched holes, electrical pulses, sonic pulses, etc.

## COMPUIER, SYNCHRONOUS

a calculating device in which the performance of all operations is controlled with periodic signals from a master clock.

## CONJUNCTION

in logical design, normally an "And" function; see And-Operator.

## CONIENTS

the information stored in any storage medium. Quite prevalently, the symbol ( ) is used to indicate "the contents of"; e,g., (m) indicates the contents of the storage location whose address is m ; (A) indicates the contents of register $A$; $\left(T_{2}\right)$ may indicate the contents of the tape on inputoutput unit two.

## CONIROL

(1) Usually, those parts of a digital computer which effect the carrying out of instructions in proper sequence, the interpretation of each instruction, and the application of the proper signals to the arithmetic unit and other parts in accordance with this interpretation. (2) Frequently, one or more of the components in any mechanism responsible for interpreting and carrying out manually-initiated directions. Sometimes called manual control. (3) In some applications of mathematics, a mathematical check.

## CONTIROL, CASCADE

an automatic control system in which various control units are linked in sequence, each control unit regulating the operation of the next control unit in line.

## CONTROL-SEQUENCE

the normal order of selection of instructions for execution. In some computers, one of the addresses in each instruction specifies the control sequence. In most other computers the sequence is consecutive except where a Jump occurs.

CONTROL, SEQUENTIAL
a manner of operation of a computer such that instructions are fed to or stored in the computer in a given order during the solution of a problem and the computer executes these instructions in a given order.

## CONTROL-UNIT

that portion of the hardware of an automatic aigital computer which directs the sequence of operations, interprets the coded instructions, and initiates the proper commands to the computer circuits to exeçute the instructions.

## CONVERT

to change numericai information from one number base to another (e.g., decimal to binary) and/or from some form of fixed point to some form of floating-point representation, or vice versa; occasionally to transfer information from one recorded medium to another.

## CONVERIER

a unit which chenges the language of information from one form to another so as to make it available or acceptable to another machine, e.g., a unit which takes information punched on cards to information recorded on magnetic tape, possibly including editing facilities.

## COPY

to reproduce information in a new location, replacing whatever was previously stored there, and usually leaving the information unchanged at the original location.

## CORE, MAGNETIC

a magnetic material capable of assuming and remaining at one of two or more conditions of magnetization, thus capable of providing storage, gating or switching functions, usuelly of toroidel shape and pulsed or polarized by electric currents carried on wire adjacent the material.

## COUNTER

a device, register, or storage location for storing numbers or integers, permitting these integers to be increased or decreased by unity or by an arbitrary number or integer, and capable of being reset to zero or to an arbitrary number.

## COUNIER, CONTROL

a device which records the storage location of the instruction word, which is to be operated upon following the instruction word in current use. The control counter may select storage locations in sequence, thus obtaining the next instruction word from the subsequent storage location, unless a transfer or special instruction is encountered.

COUNITER, RING
a loop of interconnected bistable elements such that one and only one is in a specified state at any given time and such that, as input signals are counted, the position of the element in the specified state "moves" in an ordered sequence around the loop.

## COUPLING

the means by which energy is transferred from one circuit to another; the common impedance necessary for coupling.

## COUPLING, CAPACITIVE

a method of transferring energy from one circuit to another by means of a capacitor that is common to both circuits.

## COUPIING, DIRECT

a method of transferring energy from one circuit to another by means of resistors common to both circuits.

CRT
cathode ray tube; a device yielding a visual. plot of the variation of several parameters by means of a proportionally deflected beam of electrons.

## CYBERNETICS

the comparative study of the control and intracommunication of information handling machines and nervous systems of animals and man in order to understand and improve communication.

## CYCLE

a set of operations repeated as a unit; a nonarithmetic shift in which the digits dropped off at one end of $a$ word are returned at the other end in circular fashion; cycle right and cycle left. To repeat a set of operations a prescribed number of times including, when required, supplying necessary address changes by arithmetic processes or by means of a hardware device such as a B-box or cycle-counter.

## CYCLE COUNTI

to increase or decrease the cycle index by unity or by an arbitrary integer or number.

## CYCLE-CRITERION

the total number of times the cyrcle is to be repeated; the register which stores that number.

## CYCLE-INDEX

the number of times a cycle has been executed; or the difference, or the negative of the difference, between that number and the number of repetitions desired.

CYCLE, MAJOR
the maximum access time of a recirculating serial storage element; the time for one rotation, e.g., of a magnetic drum or of pulses in an acoustic delay line; a whole number of minor cycles.

## CYCLE, MEMORY

a repeated, periodic sequence of events occurring when information is transferred to or from the storage device of a computer. Storing, sensing, and regeneration form parts of the storage sequence. Usually a"timing chart", showing pulse times on all leads to a storage cell describe such a cycle.

## CYCLE, MINOR

the word time of a serial computer, including the spacing between words.

CYCLE, RESET
to return a cycle index to its initial value.

## DAMPING

a characteristic built into electrical circuits and mechanical systems to prevent rapid or excessive corrections which may lead to instability or oscillatory conditions, e.g., connecting a resistor on the terminals of a pulse transformer to remove, natural oscillations; placing a moving element in oll or sluggish grease to prevent overshoot.

## DATA-REDUCTION

the art or process of transforming masses of raw test or experimentally obtained data, usually gathered by instrumentation, into useful, ordered, or simplified intelligence.

DATA-REDUCTION, ON-LINE
the processing of information as rapidly as the information is received by the computing system or as rapidly as it is generated by the source.

## DEBUG

to isolate and remove all malfunctions from a computer or all mistakes from a routine.

## DECADE

a group or assembly of ten units, e.g., a decade counter counts to ten in one column; a decade resistor box inserts resistance quantities in multiples of powers of 10 ; ten years.

## DECIMAL, CODED, BINARY

decimal notation in which the individual decimal digits are represented by some binary code, e.g., in the 8-4-2-1 coded decimal notation, the number twelve is represented as 00010010 for 1 and 2, respectively, whereas in pure binary notation, it; is represented as 1100 . Other coded decimal
notations are used, e.g., 5-4-2-1, excess three, 2-4-2-1, etc.

## DECODE

to ascertain the intended meaning of the individual characters or groups of characters in the pseudo-coded program.

## DECODER

'a device capable of ascertaining the significance or meaning of a group of signals and initiating a computer event based thereon; matrix.

## DECREMENT-FIELD

a portion of an instruction word set aside specifically for modifying the contents of a register or memory location specified by the tag digits of the same instruction word.

## DEFLECTION-SENSITIVITY

In connection with Cathode Ray Tubes, it is the quotient of the displacement of the electron beam at the place of impact by the change in deflecting as was. It is usually expressed.in millimeters per volt applied between the deflection electrodes, or in millimeters per gauss of the deflecting magnetic field.

## DELAY-IINE, ELECTRIC

a transmission line of lumped or distributed capacitive and inductive elements in which the velocity of propagation of electromagnetic energy is small compared with the velocity of light. Storage may be accomplished by re-circulation of wave patterns containing information, usually in binary form.

## DELAY-IINE, MAGNETIC

a. magnetic medium along which the velocity of propagation of magnetic energy is small relative to the speed of light. Storage is accomplished by recirculation of wave patterns containing information, usually in binary form.

## DELAY-LINE, MERCURY or QUARTZ

a sonic or acoustic delay-line in which mercury or quartz is used as the medium of sound transmission, with transducers on each end to permit conversion to and from electrical energy; See Delay-1ine, Sonic or Acoustic.

## DELAY-LINE, SONIC or ACOUSTIC

a device capable of transmitting retarded sound pulses, transmission being accomplished by wave patterns of elastic deformation. Storage is accomplished by re-circulation of wave pattersn containing information, usually in binary form.

## DENSIITY, PACKING

the number of units of useful information contained within a given linear dimension, usually expressed in units per inch, e.g., the number of binary digit magnetic pulses stored on tape or drum per linear inch on a single track by a single head.

DESIGN, LOGICAL
(1) The planning of a computer or data-processing system prior to its detailed engineering design.(2) The synthesizing of a network of logical elements to perform a specified function. (3) The result of (1) and (2) above, frequently called the logic of the system, machine, or network.

## DIAGRAM, BLOCK

a schematic representation of a sequence of Bubroutines designed to solve a problem; a coarser and less symbolic representation than a flow chart, frequently including descriptions in English words; a schematic or logical drawing showing the electrical circuit or logical arrangements within a component.

## DIAGRAM, LOGICAL

In logical design a diagram representing the logical elements and their interconnections without necessarily expressing construction or engineering details.

## DIFFERENTIATOR

a device whose output function is proportional to a derivative of its input function with respect to one or more variables.

## DIGIT

one of the $n$ symbols of integral value ranging from $O$ to $\mathrm{n}-1$ Inclusive in a scale of numbering of base $n$, e.g., one of the ten decimal digits, 0,1 , 2, 3, 4, 5, 6, 7, 8, 9 .

## DIGIT, BINARY

a. whole number in the binary scale of notation; this digit may be only 0 (zero) or 1 (one). It may be equivalent to an "on" or "off" condition, a "yes" or a. "no", etc.

## DIGIT, DECIMAL, CODED

one of ten arbitrarily-selected patterns of ones and zeros used to represent the decimal digits.

## DIGITAL

the quality of utilizing numbers in a given scale of notation to represent all the quantities that occur in a problem or a calculation.

## DIGITIZE

to render an analog measurement of a physical variable into a numerical value, expressing the quantity in digital form.

## DIGITS, EQUIVALENT BINARY

the number of binary digits required to express a number in another base with the same precision, e.g., approximately $31 / 3$ times the number of decimal digits is required to express a decimal number in binary form. For the case of coded decimal notation, the number of binary digits required is 4 times the number of decimal digits.

## DISJUNCTION

in logical design, normally an "OR" function; see OR-Operator

DOWN-TTME
the period during which a computer is malfunctioning or not operating correctly due to machine failures; contrasted with available time, idle time or standby time. Scheduled maintenance time is also considered down-time, in as much as the computer is unable to operate during this period.

DRUM, MAGNETIC
a rotating cylinder on whose magnetic-material coating information is stored in the form of magnetized dipoles, the orientation or polarity of which is used to store binary information.

## DUMMY

an artificial address, instruction, or other unit of information inserted solely to fulfill prescribed conditions (such as word-length or block-length) without affecting operations.

DUMP, A. C.
the removal of all A. C. power, intentionally, accidentally or conditionally from a system or component. An A. C. dump usually results in the removal of all power.

DUMP, D. C.
the removal of all D.C. power, intentionally, accidentally, or conditionalily, from a system or component.

DUMF, POWER
the removal of all power accidentally or intentionally.

ECCLES-JORDAN (TRIGGER)
a direct coupled multivibrator circuit possessing two conditions of stable equilibrium. Also known as a flip-flop circuit or "toggle".

## ECHO CHECKING

a system of assuring accuracy by reflecting the transmitted information back to the transmitter and comparing the reflected information with that which was transmitted.

## EDIT1

to rearrange information. Editing may involve the deletion of unwanted data, the selection of pertinent data, the insertion of invariant symbols such as page numbers and typewriter characters, and the application of standard processes such as zerosuppression.

## ELECTRONIC

pertaining to the application of that branch of science which deals with the motion, emission and behavior of currents of free electrons, especially in vacuum, gas or phototubes and special conductors or semi-conductors. Contrasted with electric which pertains to the flow of large currents in wires or conventional conductors.

## ELEMENT, LOGICAL

in a computer or data-processing system, the smallest building blocks which can be represented by operators in an appropriate system of symbolic logic. Typical logical elements are the and-gate and the flip-flop, which can be represented as operators in a suitable symbolic logic.

## ELEVATION

the angular measurement in a vertical plane from a specific reference, usually the horizontal plane.

## ENCODER

a network or system in which usually one input is excited at a time and each input produces a combination of outputs. Sometimes called matrix.

## ERASE

to replace all the binary digits in a storage device by binary zeros. In a binary computer, erasing is equivalent to clearing, while in a coded decimal computer where the pulse code for decimal zero may contain binary ones, clearing leaves decimal zero while erasing leaves all-zero pulse codes.

ERROR
the amount of loss of precision in a quantity; the difference between an accurate quantity and its calculated approximation; errors occur in numerical methods, e.g. an error introduced by the truncation of a power series defining a transcen dental function. This may be classified as an error introduced by the numerical method, there is no mistake involved and the computer is operating properly; mistakes occur in programming. coding. dates transerintion. and operating; thus, usually humans make mistalkes, e.g., assigning a wrong aadress wnen coaing a problem; malfunctions occur in computers and are due to physical limitations on the properties of materials. An error is sometimes considered to be the differential margin by which a controlled unit deviates from its target value.

## ERROR, INHERIIED

the error in the initial values; especially the error inherited from the previous steps in the step-by-step integration. This error could also be the error introduced by the inability to make exact measurements of physical quantities.

## ERROR, ROUNDING

the error resulting from deleting the less significant digits of a quantity and applying some rule of correction to the part retained. A common round-off rule is to take the quantity to the nearest digit. Thus, p1, $3.14159265 . .$. , rounded to four decimals is 3.1416. Note; Alston S. Householder suggests the following terms: "initial errors","generated errors", propagated errors" and "residual errors". If $x$ is the true value of the argument, and $x^{*}$ the quantity used in computation, then assuming one wishes $f(x), x-x^{*}$ is the initial error; $f(x)-f\left(x^{*}\right)$ is the propagated error. If $f_{a}$ is the Taylor, or other, approximation utilized, then $f\left(x^{*}\right)-f_{a}\left(x^{*}\right)$ is the residual error. If $f^{*}$ is the actual result then $f_{a}-f^{*}$ is the generated error, and this is what builds up as a result of rounding.

ERROR, TRUNCATION
the error resulting from the use of only a finite number of terms of an infinite series, or from the approximation of operations in the infinitesimal calculus by operations in the calculus of finite differences.

## EXCHANGE

to interchange the contents of two storage devices or locations.

## EXCLUSIVE-OR-OPERATOR

a logical operator which has the property that if $P$ and $Q$ are two statements, then the statement $P \not \equiv Q$ (i.e. $\not \equiv$ is Exclusive-Or Operator) is true or false depending whether the variables are odd or even, e.g.

$P$	$Q$	$P \not \equiv Q$	
0	1	1	(odd)
1	0	1	(odd)
1	0	1	(even)
0	0	0	(even)

Note that the Exclusive-OR is the same as the Inclusive-Or, except that the case for both inputs present yields no output. See Inclusive-oR; $P \neq Q$ is True if $P$ or $Q$ are true, but not both. Primarily used in comparator circuits.

## EXTRACT

to remove from a set of items of information all those items that meet some arbitrary criterion; to replace the contents of specific parts of a quantity (as indicated by some other quantity called an extractor) by the contents of specific parts of a third quantity, e.g., if the number 01101 is stored, the machine can remove and act upon or according to the third digit, in this case a 1.

FACTOR, SCALE
one or more coefficients used to multiply or divide quantities in a problem in order to convert them so as to have them lie in a given range of magnitude, e.g., plus one to minus one.

## FTEED, CARD

a mechanism which moves cards serially into a machine.

## FERROELECTRIC

a phenomenon exhibited by materials within which permanent electric dipoles exist and a residual displacement in the D-E plane occurs, where $D=E+4 \pi P$, (vectorial), in which $D$ is the electric displacement vector, E is the applied electric field strength and $P$ is a measure of the degree of polarization. Thus, $E$ is measurable, e.g., as potential difference per unit length force per unit charge, or lines of force per unit area. The polarization $P$, is measured in dipoles per unit volume or charge moved across a unit area upon application of an electric field. In ferroelectric materials there is a residual polarization, $\mathrm{P}_{\mathrm{r}}$.
Note the similarity for ferromagnetics: $B=H+4 \pi M$, where $B$ is the magnetic induction, i.e. total lines of force per unit area, H is the magnetic field intensity usually produced by a distribution of electric currents and $M$ is the magnetic polarization. It is because of the similarity of behavior, described by these two equations, that the phenomenon of ferroelectricity is described using the prefix "ferro", i.e. "pertaining to or like unto iron".

