PRODUCT SPECIFICATION
S-Memory Processor A 22016760 Released 1/9/76

DETROIT

D. Kosinski - CPM
R. Stackhouse - CPM
D. Bookwalter - CPM
C. Chamberlain - Tech Pub
J. Raker - Int'1
T. Allison - Int'1 (2)
R. Gould - Int'1
H. Hayde - Int'!
J. Holton - Int'1
C. Nash - Int'1
E. Seif - Int'1
H. Nelson - BM\&SS
J. Shifman -- CSG
E. Rindels -- BMG
W. Cunningham - BMG
E. Paulsen - TIO

PLYMOUTH
D. Calkins

DOWN INGTOWN
J. Berta

PAOLI
G. Smolnik

McLEAN
L. Guell
A. Kosla

PASADENA
D. Gale
J. Malson

MISSION VIEJO
T. Gibson

WESTLAKE
H. Smith
J. Dowling

GENNEVIELIERS
A. Isola

CUMBERNAULD
D. Wright

SENEFFE
J. Jeanty

GLENROTHES
B. Slattery

LIEGE

J. Wery
A. Beaujean

MIDDLESEX
W. Marshall

SANTA BARBARA
R. Bunker

Manufacturing (2)
Quality Assurance
TIO (2)
Software (30)
W. Keenan (5)

Hardware - J. Vigil
J. Trost
S. Bhagwan (2)
F. E. TRAINING DEV. GROUP
M. McCoy

3374 Rio Hondo Avenue
E1 Monte, California 91731

PATENT ATTORNEY
Mr. D. Bruce Prout
Christie, Parker \& Hale
201 South Lake Avenue
Pasadena, California 91101

TIREMAN

F. Williams

PRODUCT SPECIFICATION

REVISIONS

$\begin{aligned} & \text { REV } \\ & \text { LTR } \end{aligned}$	REVISION ISSUE DATE	PAOES REVISED ADDED DELETED OR CHANGE OF CLASSIFICATION	PREPARED BY	APPROVED BY
F	1-8-76	Revised document primarily to reflect addition of S-Processor-2. Preface: Added information on S-Processor-2 Re1 Specs: Added PS 非2209 7968, SDS 非2210 0143. Sec 2.0: Added M\&E 2208 3141, 2208 3158, 22128276. Sec 3.1.11: Added PERR. Sec 3.3.10: Added reference to $S-$ Proc-2. Added note on M-op fetch. Added note on addressing non-present memory. Sec 3.3.12: Added reference to S--Proc-2. Sec 3.3.14: Revised, expanded U-Register information. Sec 3.3.15: Revised eigth paragraph (bus interrupt). Added paragraph on $\mathrm{C}-\mathrm{Reg}-$ ister bit reset. Sec 3.3.16, 3.3.17: Deleted references to MOVE, MOVE SCRATCHPAD. Sec 3.3.19, 3.3.20: Expanded to include operations from control panel. Sec 3.4.1: Exception (4) expanded to includ SUM, DIFF; Exception (5) revised; Exception (6) deleted; Exception (7) renumbered to (6). Sec 3.4.19, 3.4.20, 3.4.21: Added notes reference reset of bits in C-Register. Sec 3.5: Deleted (branch taken) after BIAS Reorganized and copy edited entire document for entry into Product Specification data base. New section sequence is as follows. Asterisks indicate revisions referred to above.	WFK	OqWHmuse

"THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO BURROUGHS CORPORATION AND IS NOT TO BE DISCLOSED TO ANYONE OUTSIDE OF BURROUGHS CORPORATION WITHOUT THE PRIOR WRITTEN RELEASE FROM THE PATENT DIVISION OF BURROUGHS CORPORATION''

PRODUCT SPECIFICATION

REVISIONS

"THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO BURROUGHS CORPQRATION AND IS NOT TO BE DISCLOSED TO ANYONE OUTSIDE OF BURROUGHS CORPORATION WITHOUT THE PRIOR WRITTEN RELEASE FROM THE PATENT DIVISION OF GURROUGHS CORPORATION',

$$
\begin{aligned}
& S-M E M O R Y P R O C E S S O R \\
& \text { PRODUCY S OPECIFICATIDN } \\
& \begin{array}{lllllllll}
\# & 2 & 0 & 1 & 6 & 6 & 0
\end{array}
\end{aligned}
$$

TABLE OF CONTENTS:
1.0 INTRODUCTION 1
PURPOSE 1
PRODUCT IDENTIFICATION 1
1.2
RELATEO SPECIFICATIONS 2
1.33
2.0GENERAL DESCRIPTION
8
3.0 PRODUCT DESCRIPTION
8
PROCESSOR REGISTERS
8
Mar(a)9
M9
TAS 10
X AND Y 10
L 10
「 11
FA 11
FB 12
SCRATCHPAD 12
FLCN 13
BR AND LR 13

C 13
CP (CYF, CPU, CPL) 13
CA. CB. CC. CD 14
MAXS, MAXM 16
U 16
dATA. 16
CMND 17
NULL 17
READ 17
HRIT 17
24-BIT FUNCTION BOX 18
SUM 19
DIFF 19
XANY, XORY, XEOY 20
CMPX. CMPY 20
MSKX.MSKY 20
BICN 20
XYCN 21
XYS T 22
INCN. PERR 23
4-BIT FUNCTION BOX 23
M-INSTRUCTIONS 24
REGISTER MOVE 24
SCRATCHPAD MOVE 25
SWAP F WITH DOUBLEPAD WORD 26
MOVE 8-BIT LITERAL 25
MOVE 24-BIT LITERAL 27
READ/WRITE MEMORY 27
COUNT FA/FL 28
SCRATCHPAD RELATE FA 29
EXTRACT FROM REGISTER T 29

[^0]SHIFT/ROTATE REGISTER T LEFT
30
SHIFT/RDTATE REGISTER X/Y LEFT/RIGHT 31
SHIFT REGISTERS XY LEFT/RIGHT 31
NORMALIZE X 32
CALL 32
BRANCH 33
BIAS 33
SET CYF 34
4-BIT MANIPULATE 34
BIT TEST BRANCH FALSE 35
BIT TEST BRANCH TRUE 35
SKIP HHEN 36
CASSETTE CONTROL 37
HALT 37
NO OPERATION 38
NO OPERATION 38
M-INSTRUCTION TIMING 39

BURROUGHS CORPORATION COMPUTER SYSTEMS GROUP SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#2201 6760
1.0

INTRODUCTION

PURPOSE
This specification defines the functional requirements of two S-Memory Processors intended for general purpose data processing. Environmental conditions. safety conditions. reliability parameters, power requirements, etc.o are specified in P.S. \#19131739. B1700 CENTRAL SYSTEMS.

Both processors have $1 / 0$ bus interfaces for communication with the $1 / 0$ subsystem. control panel interfaces for comennication with che control and memory-tomprocessor interfaces for communcation with main memory (81700 S-Memory).
S-Memory-processor-1 can address up to 64 K bytes (512k bits) of memory. S-Memory-Processor-2 can address up to 128 K bytes (1024K bits).

Both processors are capable of operating with $2 M H z$ as well as 4 MHz clocks.

An appropriate processor adapter, either $2 M H z$ or $4 M H z$. is required with S-Processor-1; S-Processor-2 requires no adapter but only a field adjustment of the clock rate.

PRODUCT IDENTIFICATION

2205	0967	S-MEMORY PROCE	SSOR-1	
2208	3141	S-PROCESSOR-1	ADAP TER,	2 MHz
2208	3158	S-PROCESSOR-1	ADAPTER.	4 MHz
2212	8276	S-MEMORY PROCE	SSSOR-2	

BURROUGHS CORPDRATION COMPUTER SYSTEMS GROUP SANTA BARBARA PLANT

COMPANY CONFIDENTIAL S-MEMORY PRDCESSOR
P.S. \#2201 6760

RELATED SPECIFICATIONS

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. 22016760

GENERAL DESCRIPTION
The S-Memory Processor cor s-Processory provides the combinatorial and arithmetic portion of the system along with other registers and hard storage that are appropriate for efficient operation.

The S-Processor provides hardware sensitivity to a set of low-level micro-functions which are used in a program string to fetch and execute instructions. This micro-program is contained in main memory (B1700 S-Memoryl.

Included in the $s-p r o c e s s o r ~ a r e ~ r e g i s t e r s ~ a n d ~ p s e u d o ~$ registers which are addressable by the individual micro-operators.

The registers are normally addressed by a 4 -bit group (row) number and a 2-bit select (column) number as shown in Table 1 .

Some of the registers listed, such as the pseudo Sum Register, can serve only as source registers while others are capable of serving both as source and destination registers. Also. some of the registers listed are actually subregisters which. although parts of larger registers. can be individually addressed and manipulated.

Table 2 summarizes the various conditions available by addressing particular pseudo source registers and actual registers; figure 1 lists the micro-instructions and their variants; and figure 2 is a diagram of the major registers.

Only the MAR(A). M, C, U, ML, and MIR registers are reset by a control panel CLEAR signal.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#22016760

TABLE 1: M-PROCESSOR REGISTER SELECTION

			0	SELECT NUM 1	2	3
	0	1	TA	Fu	X	SUM
	1	1	18	FT	Y	CMPX
	2	1	TC	FLC	r	CMPY
	3	1	T0	FLD	L	XANY
		1				
	4	1	TE	FLE	A	XEOY
	5	1	TF	FLF	M	MSKX
	6	1	CA	BICN	BR	MSKY
	7	1	CB	FLCN	LR	XORY
		1				
GROUP	8	1	LA	TOPM*	FA	OIFF
NUMBER	9	1	LB	UNASSIGNED	FB	MAXS
	10	1	LC	UNASSIGNED	FL	MAXM
	11	1	Lo	PERRA	TAS	u
		1				
	12	1	LE	XYCN	CP	MBR*
	13	1	LF	XYST	MSM*	DATA
	14	1	CC	CNCNO	READ	CMND
	15	1	CD	$C P U$	WR IT	NULL

*) TOPM. PERR, INCN, MSM. AND MBR are not physically present in the Blroo S-Memory Processor-1 or -2. When any of them is addressed as a source, a binary value of zero is returned. When addressed as destination. the data is tost. (See P.S. \#1913 1747. M-MEMORY PROCESSCR, for meaning in the 31700 M-Memory Processors.l

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S - MEMORY PRDCESSOR
P.S. \#22016760

TABLE 2: SUMMARY OF REGISTER CONDITIONS
BICN: 1 LSUY 1 CYF 1 CYD $1 C Y L$
$X Y C N: \quad|M S B X| X=Y|X<Y| X>Y \mid$

XYST: 1 LSUX 1 INT 1 Y neq $01 X$ neq 01

Software

- CONTROL PANEL

1 TIMER
1 I/O BUS
CONTROL PNL
CC: 1 FLIP-FLOP 1 I \qquad

0

BURROUGHS CORPORATION COMPUTER SYSTEMS GROUP SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PRDCESSOR
P.S. \#22016760
3.0 PRODUCT DESCRIPTION
3.1

PROCESSOR REGISTERS
3.1 .1

MAR(A)
The MAR(A) Register is a micro-program address register capable of addressing micro-operators located in s-Memory. When used in this manner the lower-order 4 bits are ignored and the operator is fetched and stored in the M Register, bypassing the rotator (fieldisolation unit). [The MAR(A) Register is comprised of 19 bits in S-Processor-1 and 20 bits in S-Processor-2.]

Binary increments from 0 through 4095 (muttiplied by 16) may be added to or subtracted from MAR(A) by means of a high-speed carry adder that facilitates micro-program branching. MAR(A) is automatically incremented by binary 16 during run mode. Wrap-around can occur and is permitted.

Note: The fetch of an M-op from the last (highest addressed) 16 bits of installed S-Memory is not permitted since the automatic fetch of the next M-op will in some cases address portions of memory that are not present which, in turn, may result in parity errors. In addition. the maximum allowable S-Memory is subject to change.

The MAR(A) Register addresses 16-bit micro-operators in S-Memory by assuming them to be located at bit boundary addresses exactly divisible by 16. These addresses are obtainable by ignoring the rightmost 4 bits of the register.

The MAR(A) Register is addressable as a source and as a sink. When addressed as a source, all bits are produced. However. the rightmost 4 bits are masked to zeros. When addressed as a sink. the rightmost 4 bits of the source are moved to the rightmost 4 bits of the MAR(A) Register. but are not significant.

The MAR(A) Register also serves to address S-Memory for the READ/WRITE micro-operator. In this case the address of the next nicro-operator is temporarily stored in a scratchoad holding register and the address in fa is moved to the

MAR(A) Register. The most significant bits of fa are ignored. The least significant bits are not ignored and are used to address memory at any bit location. The data is passed through the rotator.

Note: When addressing S-Memory via the REAO/WRITE micro-operator, data returned from non-present memory locations will be zeros with odd parity if the address in MAR(A) is in-bounds, and zeros with wrong parity if the address in MAR(A) is out-of-bounds. In addition. if maximum S-memory is installed, data and parity from the extremes of memory (lowest addressed portion if addressed in the forward direction and highest addressed portion if addressed in the backward direction) will be bit-ored with the zeros and odd parity bits, obtained because of the out-of-bounds condition. Thisp in some cases. may result in parity error.

M
The M Register (micro-register) is a 16-bit register used to hold the active micro-instruction (M-instruction or micro-operator or M-op). The state of this register is decoded to enable the different control signals within the processor to perform the operations called for by the M-Op. The M Register is broken into 4 fields for decoding that are structured such that 60 distinct M-ops can be decoded.

The M Register is addressable as a source and as a sink (destination). When used as a sink register, the source is bit-oked with the upcoming M-op. Exception: In rape mode, the source is not bit-DRed with the upcoming M-op.

A STACK

The A Stack is 16 words deep by 24 bits wide, does not have automatic hard overflow, and operates as a push-down stack with a tast-in, first-out type of structure. Using this stack. the microcoded routines operate in the normal software call-return type of programming. This allows for a highly shared microcode structure and reduces the associated memory requirements. Although the A Stack is not intended to be used as an operand stack. it has purposely been made 24 bits wide to allow limited

BURROUGHS CORPDRATION COMPUTER SYSTEMS GROUP SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#2201 6760
capabilities for operand storage.
wrap around of the TASMpinter is provided. That is. (32) consecutive pops or (32 consecutive pushes will cause the TAS pointer to contaimits original contents.

TAS
The TAS (Top of Stack) Register is a 24-bit register which is the top of the A Stack. The TAS Register is addressable as a source and as a sink. References to TAS result in the stack being automatically pushed or popped.
X AND Y

The X Register and the Y Register are 24-bit general purpose registers used primarily to hold and to act as a source for the two operands of the arithmetic and combinatorial unit. Each register is addressable as a source and as a sink.

Both registers along with the L Register and the T Register. are capable of read/urite operations with main memory.

Both registers are capable of the SHIFT/ROTATE operation. The X Register is capable of the NORMALIZE operation.

The L Register is a 24-bit general purpose register used typically to hold logical flags for the micro-program code. The L Register, as well as each 4-bit group of L (denoted as LA. LB. LC. LD, LE, and LF) is addressable as a source and as a sink.

Since the L Register is adtressable in 4-bit groups, its contents are available for analysis and atteration via the 4-bit function box. MANIPULATE, SKIP and BIT-TEST-BRANCH instructions can operate on L data.

The L Register is one of 4 registers (X. Y. L. and \quad) capable of read/write operations with main memory.

BURROUGHS CORPORATION
COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP
S-MEMORY PROCESSOR
SANTA BARBARA PLANT
P.S. \#2201 6760
3.1 .7
3.1.8
r

The \quad Register is a 24-bit generat purpose register used primarily for the interpretation of 5 -language instructions. The T Register. as well as each 4-bit group of T denoted as TA. TB. TC. TD. TE, and TF, is addressable as a source and as a sink.

Since the r Register is addressable in 4-bit groups. its contents are available for analysis and alteration via the 4-bit function box. MANIPULATE. SKIP and BIT-TEST-BRANCH instructions can operate on T data.

The T Register is one of 4 registers (X, Y, L, and T) capable of read/write operations with main memory.

The T Register is also capable of the SHIFT/ROTATE and EXTRACT operations.

FA

The FA Register (field Address) is a 24-bit register used primarity to hold an absolute bit address for main memory. It has the capability of directly, addressing any bit in the memory starting at any point.

The FA Register is addressable as a source and as a sink.
The FA Register is capabte of being counted up or down by a literal in a micro-instruction or by the value contained in CPL in order to facilitate iteration through a memory field. It can be incremented or decremented by a value in a left scratchpad word. It also has the capability of being loaded. stored. or swapped along with FB into a double scratchpad word.

Neither overflow nor underflow of $F A$ is detected. The value of $F A$ may go through its maximum value or its minimum value and wrap around.

BURROUGHS CORPORATION
COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP
S-MEMORY PROCESSOR
SANTA BARBARA PLANT

The fB Register is a 24-bit register which can be functionally divided into three portions: a 4-bit FU (Field Unit) Register, 4 -bit FT (Field rype) Register. and a 16-bit fL (Field Length) Register.

The fB Register, as well as each 4-bit portion of fB (denoted as FU. FT. FLC, FLD. FLE, and FLF) is addressable as a source and as a sink. In addition. the 16-bit portion comprised of FLC, FLD. FLE, and FLF and denoted as FL is also addressable as source and as a sink.

The FU Register hotds the length of the unit which makes up a field in memory. The fi Register holds field type information white the FL Register holds the total length of the field. FL is capable of describing fields up to 65.636 bits and can be adjusted up or down by a literal in a micro-instruction or by the value contained in CPL in order to facilitate iteration through a memory field.

Note: Overflow of $F L$ is not detected. The value of $F L$ will go through its maximum value and wrap around. Underflow of $F L$ is detected and will not urap around. The vatue of zero is left in FL.

Since the F B Register is addressable in 4-bit groups, its contents are available for analysis and alteration via the 4-bit function box. MANIPULATE. SKIP and BIT-TEST-BRANCH instructions can operate on f g data.

FB has the capabitity of being suaped along with fA into a double scratchpad memory word.

FU and $F L$ along with corresponding portions of the first cell of scratchpad are used to set the various conditions of FLCN (see Section 3.1.11. FLCN) and the various conditions of the CP register (see Section 3.4.16. BIAS).

SCRATCHPAD

A scratchpad memory of sixteen $48-\mathrm{bit}$ words is provided to hold field descriptors during the iteration of operands. Some cells may be used to hold $S-L a n g u a g e ~ s t a c k ~ p o i n t e r s$

BURROUGHS CORPORATION COMPANY CONFIDENTIAL COMPUTER SYSTEMS GROUP S-MEMORY PROCESSOR SANTA BARBARA PLANT P.S. \#22016760
and other processor registers which are under constant manipulation.

The FU and fL portion of the FB Register and like portions of the first cell of the scratchpad are used to set the various conditions of FLCN (see section 3.1.11. FLCN) and the various conditions of the $C P$ register (see Section 3.4.16. BIAS).

BR AND LR
The LR and BR Registers are both 24-bit registers. addressable as sources and destinations.
$3.1 .13 \quad \mathrm{C}$
The C (control) Register is a 24-bit register which is not addressable is an entity but which is functionally divided into one 8-dit section and four 4-bit sections.
3.1 .13 .1

CP (CYF, CPU, CPL)
The 8-bit section, addressed as $C P$, is comprised of the arithmetic unit carry flip-fiop (CYF), the 2-bit unit control for the arithmetic unit (CPU) and the 5-bit variable data length control (CPL). CPU is addressable as a sink only.

BURROUGHS CORPORATION	COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP	S-MEMORY PROCESSOR
SANTA BARBARA PLANT	P.S. $\$ 22016760$

3.1.13.2
$C A=C B, C C, C D$
The remaining 16-bits of the C Register are addressable in 4-bit groups as CA. CB, CC and CD. Their contents are available for analysis and alteration via the 4-bit function box. MANIPULATE, SKIP and BIT-TEST-BRANCH instructions are apolicable.

The 4-bit groups designated as $C A$ and $C B$ have no special functional assignment and are avaitable as general purpose 4-bit storage registers.

The two 4-bit registers designated as CC and CD are used for the storage of various processor states and conditions as shown below:

S-MEMORY PROCESSOR
P.S. \#2201 6760

The control panel state lamp fip-flop when true will cause the STATE lamp to light.

The timer interrupt signal is developed from the primary power frequency. field adiustable for either 50 Hz or 60 Hz . The interrupt signal is received and is used to set the appropriate cC bit once every 100 miliiseconds.

The I/0 Bus interrupt level is derived from the various $1 / 0$ controls connected to the processor's I/D Bus. The level is the result of a service request by one or more controls and is used to set the interrupt bit every clock time.

The control panel interrupt level is derived from the on position of the control panel's INTERRUPT switch. The level from the switch is used to set the interrupt bit every clock time.

The memory read data parity error interrupt is set as a result of a parity error signal received from the interface to main memory.

No reaction occurs as a result of any interrupt until the micro-program tests the interrupt bit.

A micro-instruction or the control panel CLEAR pushbutton is capable of resetting a bit in the C Register. The bit oeing reset will be false for at least one clock period following the reset regardiess of the continued existence of the condition to set the bit (e.g.. control panel or service request interrupts). Any test micro-operator executed in this clock period will find the bit false. If the condition does not continue to exist beyond the reset time, a failure to set the bit may occur (e.g.e timer interrupte.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#22016760

MAXS. MAXM

MAXS is a 24 -bit pseudo register that can be field-adjusted to give the actual size of the main memory installed in the system. It is addressable as a source only. MAXS has 4 -byte resolution. The least significant 15 bits and the most significant 5 (S-Processor-1) or 4 (S-Processor-2) bits of the register are always zeroes. MAXM. also a 24-bit pseudo register, almays has a value of zero for the S-Processors.

U

The U Register is a 16 -bit register used primarily to accumulate the bit-by-bit input from the control panels tape cassette. The U Register is addressable as a source register only.

In RUN mode, if data is not yet available in the register. the micro-operator will be delayed. Data not accepted in time will be lost.

In TAPE mode, the register s contents are automatically moved to the M Register for execution except when executing micro-operators that reference the U Register as a source. In these cases the source data is moved directly from the U Register to the destination and will not be treated as an instruction to be executed. The next instruction from the tape will follow this data. For MOVE 24-BIT LITERAL, the 8 bits of the literal in the M Register are also moved to the destinatione for CONDITIONAL BRANCH, the A Register may be changed but the next micro-operator read from the tape will also be executed.

Note: In RUN mode, the U Register may not be addressed after the issuance of a CASSETTE STOP micro.

DATA

DATA is a 24-bit pseudo register that can act as a source or as a destination. It is used to transfer data to and from the I/0 Bus. When it is used as a sourcep the

BURROUGHS CORPORATION
COMPANY CONFIDENTIAL COMPUTER SYSTEMS GROUP SANTA barbara plant

S-MEMORY PRDCESSOR
P.S. \#22016760
processor generates the RC (RESPONSE COMPLETE) signal to the interface and accepts the 24-bits of data from the bus. When used as a destination, the processor generates the RC signal to the interface and the data from the designated source to the bus.

CMND

CMND (Command) is a $24-b i t$ pseudo register that can act as a destination only. It is used to transfer commands to devices on the $1 / 0$ Bus. The processor generates the CA signal to the interface and moves the data cor the command) from the designated source to the bus.

NULL
NULL is a 24-bit pseudo register that can act as a source and as a destination. When addressed as a source, all zeros are supplied to the destination. When addressed as a destination. the source data is not accepted. However. NULL is useful as a destination in order to pop the TAS Register without affecting other registers.

READ

READ is a 24-bit pseudo register that is not permitted to be addressed either as a source or as a destination in the
 operation from the control panel. (See P.S. \#1913 1747 for meaning in the M-Processors.)

WRIT

WRIT is not permitted to be addressed as a source or as a destination. but is used in conjunction with a memory write operation from the controt panel.

BURROUGHS CORPORATION COMPUTER SYSTEMS GROUP santa barbara plant

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#2201 6760

24-8IT FUNCTION BOX

The 24-bit "function box" is composed of a 24-bit arithmetic unit and a 24-bit combinatorial unit. It has as data inputs the contents of the X and Y Registers and the carry flip-flop (CYF). It also uses the CPU and CPL portions of the C Register.

All results from the combinatorial section are generated immediately and are continuously available to the micro-programmer. A move to one of the input registers or an alteration of a value in the $C P$ portion of the C Register immediately generates a new result. The results are avaitable to the next micro-instruction and are accessed by moving the contents of a result register to a destination register or by testing one of the 4 -bit condition registers.

The results are most of the commonly used functions between two operands. These include the And. Or. Exclusive-Or. sum, carry-out, difference, and borrom functions and the set of equal-top greater-than. and less-than retationals. The results of the unary operations of complementation and masking are also avaitable.

The results of the arithmetic unit are under control of the CPU and the CPL Registers as follows.

CPU	UNIT TYPE	POSSIBLE CPL VALUES	DATA TYPE	
00	$1-b i t$ operands	1 to 24	Binary	
00	$4-$ bit operands	$4,8,12,16,20,0 r$	24	$4-b i t$ binary
10	Undefined			
11	Undefined			

For valid arithmetic operationse the operand tength (as specified by CPL) must be an exact multiple of the length of the unit specified by CPU.

The contents of each of the registers described in the following subsections are imediately available to the micro-programmer.

BURROUGHS CORPORATION
COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. $\$ 22016760$

COMPUTER SYSTEMS GROUP
S-MEMORY PROCESSOR
SANTA BARBARA PLANT
P.S. \#22016760
3.2 .1
3.2 .2
sum
SUM is a pseudo register equal to the sum of the X, Y, and CYF Registers $(X+Y+C Y F)$. Zero bits in the more significant bit positions of the $24-b i t$ result are produced when the length as determined by CPL (5-bit variable data length control) is less than 24. Results are not defined for CPL values 25 through 31. The carry-out level is generated from the bit position of the output specified cy CPL. If CPL $=0$, the carry-out level is equal to CYF. If CPL $=1$, the carry-out level is generated from the rightmost bit of X, Y and CYF. See section 3.1.13.1, CP (CYF. CPU. CPL).

If CPU (2-bit arithmetic unit control) $=00$. the binary sum is produced. See Section 3.1.13.1. CP (CYF. CPU. CPL).

If CPU $=01$, the decimal sum is produced by considering the X and Y inputs to be comprised of six $4-b i t$ units. Results are not defined for non-Binary Coded Decimal (BCD) units. CPL must be multiple of four.

If $C P U=10$ or 11 , the sum is undefined.

DIFF
DIFf is a pseudo register equal to the difference of the X. Y, and CYf Registers (X - Y - CYF). Zero bits appear in the more significant bit positions of the 24-bit result when the length as determined by CPL is less than 24. Results are not defined for CPL values 25 through 31 . The borrow-out level, generated from the static comparison of all 24-bits of $X \& Y$, is true if $X<Y$ or if $X=Y$ and CYF is true.

If $C P U=00$, the binary difference is produced.
If CPU = 01. the decimal difference is produced by considering the $X \& Y$ inputs to be comprised of six 4-bit units. Results are not defined for non-BCD units. CPL must be a multiple of four.

If $C P U=10$ or 11 , the difference is undefined.

BURROUGHS CORPORATIDN
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#2201. 6760

A negative result is in 2° s complement form in the binary case and in $1^{\circ} \mathrm{s}$ complement form in the decimal case.

XANY, XORY, XEOY
XANY (X ana Y), XORY (X or Y), and XEOY (X exclusive-or Y) are 24-bit pseudo registers that hold the results of the specified logical functions. Zero bits are produced in the more significant bit positions of the $24-b i t$ result when the length as determined by CPL is less than 24 . Results are not defined for CPL values 25 through 31.

CMPX, CMPY

CMPX (complement of X) and CMPY (complement of Y) ire 24-bit pseudo registers that hold the 1 's complemen of the specified registers. Zero bits are produced in the more significant positions of the 24-bit result hen the length as determined by CPL is less than 24 . ca values 25 through 31 have undefined results.

MSKX, MSKY
MSKX, (mask of X) and MSKY (mask rf Y) are 24-bit pseudo registers that hold the mask of the appropriate register (X or Y). Beginning with LSB ff X or Y, the number of bit positions included in the rask is determined by the value of CPL. Zero bits are prodaced in the more significant bit positions of the 24 ofit result when the length as determined by CPL is less that 24. Results are not defined for CPL values 25 through 31 .

BICN
BICN (binary conditions) is a 4 -bit pseudo register that holds the following binary conditions. considered as a 4-bit group. and addressable as a source only:

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#2201 6760

NOTE: CYF is also addressed by the SET CYF M-Instruction as well as being available in the (8-bit) group addressed as CP.

3ICN: 1 LSUY 1 CYF 1 CYD 1 CYL 1

11 Borrow-out Level
1 Carry Flip-Flop
Least Significant Unit of Y
The carry-out level is a function of X, Y, CPL, and CPU. See Section 3.2.1. SUM. The borrow-out level is a function of X, Y. and CYF. See Section 3.2.2. DIFF.

LSUY is true if the least significant unit of y is equal to 1 and $C P=00$, or if the least significant unit of Y is equal to 1001 and $C P U=00$.

3.2 .7

XYCN

XYCN (XY condition) is a 4-bit pseudo register that holds the following relational conditions, considered as a 4-bit group and addressable as a source only:

$X Y C N: 1$ MSBX $1 X=Y$ I $X<Y$ I $X>Y$ I

MSBX is true if the bit in X referenced by CPL is 1. CPL = 1 references the rightmost bit of X while $C P L=24$ references the leftmost bit. $M S B X=0$ if $C P L=0$.

The relational results are based on the binary value of all 24 -bits of X and Y.

BURROUGHS CORPORATION COMPUTER SYSTEMS GROUP SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#22016760
$3.2: 8$
sYST
XYST (XY states) is a 4-bit pseudo register that holds the following relational conditions. considered as a 4-bit group and addressable as a source only:

LSUX is true when the least significant unit of x is equal to 1 and $C P U=00$, or when the least significant unit of X is equal to 1001 and $C P U=$ is not equal to 00 .

The relational results are based on the binary value of all 24 bits of X or Y.

INT is true if any of the following conditions as reflected in (INCN.) CC, and CD are true. (See Section 3.2.9. INCN and 3.1.13.2. CA. CB. CC. CD.)

1. Timer Interrupt
cc (1)
2. Bus I/O Interrupt

CC (2)
3. Control Panel Interrupt $\operatorname{CC}(3)$
4. Memory Parity Error Interrupt

BURROUGHS CORPORATION
COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#22016760

INCN. PERR

INCN (interrupt conditions) and PERR (Parity error) are 4-bit pseudo registers which are not physically present in the s-Processors. When either is addressed as a source. a binary value of zero is yielded; when addressed as destinations, the data is lost.
3. 3

4-BIT FUNCTION BOX

The 4 -bit function box (4-bit arithmetic and combinatorial section of the processor) can accept. as one of its inputs. the contents of any of the following 4-bit registers and pseudo registers.

$T A$	$T B$	$T C$	TD	TE	TF
LA	$L B$	LC	LD	LE	LF
FU	FT	FLC	FLD	FLE	FLF
CA	$C B$	$C C$	$C D$		
$C A$	$C B$	$C C$	$C D$		

Outputs include the result of most of the commonly used functions between two operands; for example: Set. And. Or. Exclusive-0r. Binary Sum and Difference (both modulo 16). Outputs are directed back to the source register.

The sum and difference output can be tested for overflow and underflow respectively and, based on the test. a skip of one instruction can be made.

The 4 -bit function box also provides for the selective testing of one of the bits of a four-bit group and relative branching based on the result of the test. A skip of one instruction based on the result of testing on a combination of up to four bits in the group is also provided.

BICN, XYCN, XYST, and FLCN are not actually registers but can be sourced as if they were. They can be changed only as a result of changing the condition which they reflect.

BURROUGHS CORPORATIDN COMPUTER SYSTEMS GROUP SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#2201 6760

3.4

3.4 .1

REGISTER MOVE

	10 P	1 SOURCE	1 SOURCE	1 DESTINATION	1 DESTINATION
FORMAT:	1 CODE	1 REGISTER	1 REGISTER	1 REGISTER	1 REGISTER
	10001	1 GROUP \#	1 GROUP \#	1 SELECT \#	1 GROUP \#
	1	$10-15$	$10 \ldots 3$	$10 \ldots 3$	$10 \ldots 15$

Move the contents of the source register to the destination register. If the source register is smaller than the destination register, data are right justified with left (most significant) zero bits supplied. If the source register is larger than the destination register. data are truncated from the left.

The contents of the source register are unchanged unless it is also the destination register.

Exceptions:

1. When M is used as a destination register in run or step mode, the operation is changed to a bit-or which modifies the next micro-operation. It does not modify the instruction as stored in the memory. In tape mode, no bit-OR takes place.
2. CPU, HRIT, READ, and CMND are excluded as source registers.
3. BICN. FLCN. XYCN. XYST. INCN. READ. WRIT. SUM. CMPX, CMPY, XANY, XEOY, MSKX, MSKY, XORY, DIFF, MAXS. MAXM, and U are excluded as destination registers.
4. When DATA. SUM. or DIFF is designated as a source. CMND and DATA are excluded as destinations.
5. U is excluded as a source in STEP mode but is permitted as a source in RUN or TAPE mode. When U is used as a source. TAS. MAR(A) and M registers are excluded as destinations.

BURROUGHS CORPORATION COMPUTER SYSTEMS GROUP SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#22016760
6. When A. M. CP, or DATA is designated as a source, all 4-bit registers are prohibited as destinations.

Move the contents of the register (SCRATCHPAD) to SCRATCHPAD (register). If the move is between registers of unequal lengths. the data is right justified with left (most significant) zero bits supplied or with data truncated from the left, whichever is appropriate.

The contents of the source register are unchanged.
Exceptions:

1. When M is used as a destination register, the operation is changed to a bit-DR which modifies the next micro-operation. It does not modify the instruction as stored in the memory.
2. CPU, WRIT, READ, and CMND are excluded as source registers.
3. BICN, FLCN, XYCN, XYST, INCN, READ, WRIT, SUM, CMPX, CMPY, XANY, XORY, XEDY, MSKX, MSKY. DIFF, MAXS. MAXM and U are excluded as destination registers.
4. Mas a source results in a transfer of 24 zeroes.
5. U is excluded as a source in STEP mode.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
santa barbara plant

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#2201 6760
3.4 .3
3.4 .4

Move the contents of the $F A$ and $F B$ registers to holding register. Move the contents of the left and right word of the source scratchpad word to the $F A$ and $F B$ Register respectively. Move the contents of the holding register to the left and right word of the destination scratchoad word.

B-BIT LItERAL

Move the 8 -bit literal given in the instruction to the destination register. If the move is between registers of unequal lengths. the data is right justified with left (most significant) zero bits supplied. The register select number is assumed to be 2 .

Exceptions:

READ and WRIT are excluded as destination registers.

BURROUGHS CORPORATION COMPUTER SYSTEMS GROUP SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#2201 6760

Move the $24-b i t$ literal given in the instruction to the destination register. If the move is between registers of unequal lengths, the literal is truncated from the left. The register select number is assumed to be 2 .

Exceptions:

- - - - - - - -

M. CP. READ, and WRIT are excluded as destination registers.
3.4 .6

READ/HRITE MEMORY

FORMAT:

Move the register's (memory's) contents to the memory (register). If the value of the memory field length is less than 24, the data from memory is right justified with left (most significant zero bits supplied while the data from the register is truncated from the left.

The contents of the source is unchanged.
Register $F A$ contains the bit address of the memory field while the memory field direction sign and memory field length is given in the instruction.

BURROUGHS CORPORATION CDMPUTER SYSTEMS GROUP SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSDR
P.S. \#2201 6760

If the value of the memory field length as given in the instruction is zero, the value in CPL is used.

Memory field length values (or CPL values if MFL = 0) of 25 and 26 are truncated to the value 24. When used on a write operation. the value 25 and 26 cause odd and even parity respectively to be written into memory regardiess of the parity of the read data.

For a description of the count variants. see section 3.4.7. COUNT FA/FL.

COUNT FA/FL

Increment (decrement) binarily the designated register (s) by the value of the literal containea in the instruction or by the value of CPL if the value of the literal is zero.

Neither overflow nor underflow of FA is detected. The value of FA may go through its maximum value or its minimum value and wrap around.

Overflow of $F L$ is not detected. The value of $F L$ will go through its maximum value and wrap around. Underflow of FL is detected and will not wrap around. The value of zero is left in FL.

Literal values (or CPL values if LIT $=0$) of 25 through 31 are truncated to the value 24.

BURROUGHS CORPORATION COMPUTER SYSTEMS GROUP SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
S-MEMORY PROCESSDR
P.S. \#2201 6760

Count variants are as follows:

```
V=000 No count
    0 0 1 ~ C o u n t ~ F A ~ U p
    010 Count FL Up
    011 Count FA Up and FL Down
    100 Count FA Down and FL Up
    101 Count FA Down
    110 Count FL Down
    111 Count FA Down and FL Down
```

SCRATCHPAD RELATE FA

	1	0 P	1	RESERVED	1	SIGN	OFF	1	LEF 1	SCRATCHPAD	
FORMAT:	1	CODE	1		1	SPAD	WORD	1	WCRD	ADDRESS	
	1	00001000	1	000	1	O-PO	SITIVE	1	0...	15	
	1		1		1	1-NE	ATIVE	1			

Replace the contents of the FA Register by the binary sum of the fa Register and specified scratchpad register.

Neither overflow nor underflow of $F A$ is detected. The value of $F A$ may go through its maximum value or its minimum value and wrap around.

EXTRACT FROM REGISTER T

FORMAT:	1	DP	1	ROTATE	1	DESTINATION	1	EXTRACT	1
	1	CDOE	1	BIT COUNT	1	REGISTER	1	BIT COUNT	1
	1	1011	1	0... 24	1	00-X	1	0... 24	1
	1		1		1	01-Y	1		1
	1		1		1	10-T	1		1
	1		1		1	$11-L$	1		1

Rotate Register T left by the number of bits specified and then extract from the right the number of bits specified. Move this result to the destination register suoplying (eft most (most significant) zero bits if the extract

BURROUGHS CORPORATION COMPUTER SYSTEMS GROUP SANTA BARBARA PLANT

COMPANY CBNFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#2201 6760
count is less than 24 .

The contents of the source register are unchanged unless it is also the destination register.

A rotate value of 24 is equivalent to 0 .
SHIFT/ROTATE REGISTER T LEfT

	1 DP	1 DSTNATN	1	DSTNATN	1	S/R	VARIANT		S/	
FORMAT:	1 CODE	1 REGISTR	1	REGISTR	1	0	SHIFT		BI	COUNT
	11010	1 GRJUP \#	1	SELECT\#	1	1 -	ROTATE			
	1	1 0... 15	1	0... 2	1			1		

SHIFT (ROTATE) Register \quad left by the number of bits specified and then move the $24-b i t$ result to the destination register. If the move is between registers of equal lengths the data is right justified with data truncated from the left.

The contents of the source register are unchanged unless the source register is also the destination register.

Zero fill on the right and truncation on the left occurs for the SHIFT operation.

If the value of the SHIFT/ROTATE count as given in the instruction is zero. the value given in CPL is used.

Exceptions:

1. When M is used as a destination registere the operation is changed to a bitor which modifies the next micro-operation. It does not modify the instruction as stored in the memory.
2. BICN, FLCN, XYCN, XYST, INCN, READ, and WRIT.

BURROUGHS CORPORATION
COMPANY CONFIDENTIAL COMPUTER SYSTEMS GROUP
S-MEMORY PROCESSOR
SANTA barbara plant

3.4.11

SHIFT/ROTATE REGISTER X/Y LEFT/RIGHT

SHIFT (ROTATE) Register X or Register Y (eft (right) by the number of bits specified.

Zero fill on the right and truncation on the left occurs for the left shift. Zero fill on the left and truncation on the right occurs for the right shift.
3.4 .12

SHIFT REGISTERS KY LEFT/RIGHT

SHIEI the concatenated X and r registers left (right) by one bit The register X is the leftmost (more significant) half of the concatenated 48-bit $X Y$ register.

Zero fill on the right and truncation on the left occurs for the left shift. Zero fill on the left and truncation on the right occurs for the right shift.

If the value of the shift count as given in the instruction is not 1 , an undefined result will occur.

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#22016760
3.4 .13
3.4 .14

NORMALIZE X

SHIFT the X Register left while counting $F L$ down until $\mathrm{FL}=0$ or untit the bit in X referenced by $\mathrm{CPL}^{\mathrm{P}}=1$. Zeros are shifted into the rightmost end of x.

CPL $=1$ references the rightmost bit of X white CPL $=24$ references the leftmost bit of X. CPL is undefined.

CALL

Push the address of the next in-line micro-instruction into the A Stack and then fetch the next micro-instruction from the location obtained by adding the signed displacement value given in the instruction to the address of the next in-line micro-instruction.

A displacement value indicates the number of 16-bit words.
Note: When the A Address is stored in the A Stack, it is multiplied by 16 and stored as a bit address.

Note: Exit is accomplished by employing the REGISTER MOVE instruction with the TAS as the source register and MAR(A) as the destination register.

BURROUGHS CORPORATION COMPUTER SYSTEMS GROUP santa barbara plant

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#22016760
3.4. 15

BRANCH

Fetch the next micro-instruction from the location obtained by adding the signed displacement value given in the instruction to the address of the micro-instruction next-in-line.

A displacement value indicates the number of 16 -bit words.
3.4.16

BIAS

Set CPU to the value 1 if the value of $F U$ is 4 or 8 and to 0 otherwise, unless $V=2$. If $V=2$, CPU is undefined.

Set the value of CPL to the smallest of the values denoted on each line in the following table.
v values

- ------

0 FU
124 and FL
$2 \quad 24$ and SFL
$3 \quad 24$ and $F L$ and $S F L$
4 CPL
$5 \quad 24$ and CPL and FL
6 CPL
7 not defined

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT
S-MEMORY PROCESSOR
P.S. \#2201 6760

If test flag equats 1 and final value of CPL is not zero. the next 16-bit micro-instruction is skipped.
3.4 .17
3.4 .18

SET CYF

Set the carry flip-flop as specified by the variants.
$v=1$ Set CYF to 0
2 Set CYF to 1
4 Set CYF to CYL 8 Set CYF to CYD

Note CYD $=(X<Y)+(X=Y) C Y F$.
4-Bit manipulate

Perform the operation specified by the variants on the designated register.
$V=0$ Set the register to the value of the literal.
1 Set the register to the logical And of the register and literal.
2 Set the register to the logical Or of the register and literal.
3 Set the register to the logical Exclusive-Or of the register and literal.
4 Set the register to the binary sum (modulo 16) of the register and literal.
5 Set the register to the binary sum (modulo 16) of the register and literal, and skip the next M-Instruction if a carry is produced.

BURROUGHS CORPORATION COMPANY CONFIDENTIAL COMPUTER SYSTEMS GROUP S-MEMORY PROCESSOR SANTA BARBARA PLANT
P.S. \#2201 6760

6 Set the register to the binary difference cmodulo 16) of the register and literal.

7 Set the register to the binary difference cmoduto 16) of the register and literale and skip the next M-Instruction if a borrow is produced.

Exception

BICN, FLCN, XYCN, XYST, and CPU. when specified as oper and registers, are not changed as a result of this operation. However, the carry and borrow outputs are produced and a skip can result.

Test the designated bit within the specified register and branch relative to the next instruction by the signea displacement value if the bit is zero. If the bit is one. a displacement value of zero is assumed and control passes to the next in-line M-instruction. A displacement value indicates the number of 16 -bit words from the next in-line instruction.

See section 3.1 .13 .2 for information on the reset of tits in the C Reyister.
3.4 .20

BIT TEST BRANCH TRUE

Test the designated bit within the specified register and branch relative to the next instruction by the signed
BURROUGHS CORPORATION
COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

S-MEMORY PROCESSOR
P.S. \#2201 6760
displacement value if the bit is one. If the bit is zero. a displacement value of zero is assumed and control passes to the next in-line $M-i n s t r u c t i o n$. A displacement value indicates the number of $15-b i t$ words from the next in-line instruction.

See Section 3.1.14.2. CA. CB, CC. CD. for information on the reset of bits in the C Register.

SKIP NHEN

Test only the bits in the register that are referenced by the "1" bits in the mask. ignoring all othersunless $V=$ 2 or $V=6$. If so. compare all bits for an equal condition. Then perform. the action as specified below.
$V=0$ If any of the referenced bits is ame skip the next M-instruction.
1 If all of the referenced bits are "1", skip the next M-instruction.
2 If the register is equal to the mask, skip the next $M-i n s t r u c t i o n$.
3 Same as $V=1$. but also clear the referenced bits to zero without affecting the non-referenced bits.
4 If any of the referenced bits is a "1". do not skip the next $M-i n s t r u c t i o n . ~$
5 If all of the referenced bits are "i" do not $3 k i p$ the next M-instruction.
6 If the register is equal to the mask. do not skip the next instruction.
7 Same as $V=4$, but also clear the referenced bits to zero without affecting the non-referenced bits.

Note: If the mask equals 0000. the "ANY" result is false. The skip is not made for $V=0$ and is made for $V=4$. If the mask equals 0000 . the *ALL" result is true. The skip is made for $V=1$ and V $=3$ and is not made for $V=5$ and $V=7$.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA barbafa plant

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#2201 6760

Exceptions:

1. BICN. FLCN. XYCN. and XYSY cannot be cleared with V $=3$ or 7. However, they can be tested.
2. See Section 3.1.13.2 for information on the reset of bits in the C Register.
3.4 .22
3.4 .23

CASSETTE CONTROL

FORMAT: 1 OP CODE I VARIANTS I RESERVED

Perform the indicated operation on the tape cassette.
$V=\begin{array}{lll}0 & \text { Start Tape } \\ 1 & \text { Stop Tape (The processor atso halts if it is in }\end{array}$ TAPE mode.)
2 Stop Tape if x cThe processor also halts regaraless of mode.)
3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 Reserved
Note: All Stop rape variants cause the tape to halt in the next avaitable gap.

HALT

FORMAT: I OP CODE
100000000000000011

Stop execution of the micro-instructions. The next micro to be executedis fetched and stored in the M Register and the $\operatorname{MAR}(A)$ register points to the next following micro.

COMPANY CONFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#22016760
3.4 .24

NO OPERATION

FORMAT: 1 OP CDDE 1 RESERVED 1
1000010101000000001

BURRDUGHS CDRPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CDVFIDENTIAL
S-MEMORY PROCESSOR
P.S. \#22016760

```
M-instruction Clocks
REGISTER MOVE 2
    (BCD source -- SUM, DIFF, BICN with CPU = 01) 3
    (MAR(A) as destination)
    (BCD source and MAR(A) destination) 5
    (U as source) Many
SCRATCHPAD MOVE 2
    (BCD source -- SUM, DIFF, BICN with CPU = 01) 3
    (MAR(A) as destination)
SWAP F WITH DOUBLEPAD WORD 10
MUPE 8-BIT LITERAL
    (MAR(A) as destination) 4
#OHE 24-BIT LITERAL 6
    (TAPE mode)
WRITE MEMORY
READ MEMORY
Many
READ MEMORY (
COUNT FA/FL 4
SCRATCHPAD RELATE FA 4
EXTRACT FROM REGISTER T S
SHIFT/ROTATE REGISTER T LEFT 3
    (MAR(A) as destination) 5
SHIFT/ROTATE REGISTER X/Y LEFT/RIGHT
SHIFT REGISTER XY LEFT/RIGHT
NORMALIZE
    (if FL goes to zero)
    (if MSBX = 1) 4
7/bit
7/bit shifted
CALL
BRANCH
BIAS 2
4
    (branch taken) 4
SET CYF
4-BIT MANIPULATE
    (skip taken)
        2
        4
BIT TEST BRANCH FALSE <
    (branch taken) 4
    (BCD source -- BICN with CPU = 01) 3
    (BCD source and branch taken)
```

BURROUGHS CORPORATION	COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP	S-MEMORY PROCESSOR
SANTA BARBARA PLANT	P.S. 22016760

$M-i n s t r u c t i o n s$
Clocks

------ -
BIT TEST BRANCH TRUE
(branch taken) 4
(BCD source-- BICN with CPU = 01) 3
(BCD source and branch taken) 5
SKIP WHEN 2
(branch taken) 4
(BCD source--BICNwith CPU =01) 3
(BCD source and branch taken) 5
CASSETTE CONTROL 2
HALT 2
NO P

[^0]: 3.4.10
 3.4. 11
 3.4. 12
 3.4.13
 3.4. 14
 3.4 .15
 3.4 .16
 3.4.17
 3.4. 18
 3.4.19
 3.4 .20
 3.4. 21
 3.4. 22
 3.4. 23
 3.4. 24
 3.4. 25
 3.5

