
BURROUGHS CORPORATION
COMPUTER SYSTEMS GftOUP
SANTA BARBARA PLANT roP

COMPANY CONFIDENTIAL
Bl 000 MCP tI

P.S. 2212 5462 Ct>

INTRODUCTION •••••••••••••••••••••••• 1-1
RELATED DOCUMENTATION 1-1
S·HACHINE ••••••••••• • ••••••••••• 1•2
SOFTWARE 1-3
FIRMWARE •••••••••••••••••••••••• 1•4

TERMINOLOGY AND OEFINITIONS ?•1
ME~ORY MANAGEMENT ANO MEMORY LINKS • • • • • • • • • • 2•1
SEGMENT DICTIONARIES AND SYSTEM DESCRIPTORS Z·i
INTERPRETER HANAGEHENT~ PARAMEfER BLOCKS 4ND DICTIO~ARIES 2•5
CODE FILES, PROGRAM PARAMETER BLOCKS AND FILE PARAMETER BL2•S
FILE INfORtUrlON BLOCKS ,. • • • • • • • • • • • • • • • 2•9
RUN STRUCTURE ?-to
RUN STRUCTURE NUCLEUS • • • • • • • • • • • • • • • • 2•11
DATA AND FILE DICTIONARIES 2•12
~E-ENTRANT PROCESSING AND CODE SEGMENT DICTIONARIES •• 2•12

THE l/D SUBSYSTE~ J•l
I/O DESCRIPTORS •••••••••••••••••••• 3•2
GISMO - THE l/O DRIVER 3-4
CHANNEL TABLE • 1•6
GISMO/HARDWARE INTERFACE 1•7
CA/RC CYCLES • 3•ti
PROCESSOR I/O INSTRUCTIONS 3·~
SERVICE REQUEST • l·J
STATUS COUNTS 3-10
DATA TRANSFERS •••••••••••••••••••• 3-12
I/O CHAINING 3-15
DISK I/O CHAINING ••••••••••••••••••• 3-14
OISK I/O OVERLAPPED SEEKS 3-15
JAPE I/O CHAINING • • • • • • • • • • • • • • • • • • 3-16
MONITORING OF PERIPHERAL Sl-TUS 3-1~
I/D ASSIGNMENT TABLE • • • • • • • • • • • • • • • • • 3-11
UNIT MNEMONICS 3•22
TEST.AND.WAIT 1/0 OPERATORS • • • • • • • • • • • • • 3-?3
STATUS PROCEDURE 3•'-:S

DISK IDENTIFICATION • PACK LABELS ••••••••• J-?4
PACK INFORMATION TABLE 3-~5

TAPE LABELLING, INITIALIZATION ANO PURGING •••••• 3-26
PE/NRZ EXCHANGES J-31
FILE STRUCTURES •••••••••••••••••• 3-33

CONVENTIONAL FILES 3-33
FILE NAMING CONVENTIONS • • • • • • • • • • • • • • • 3-J5
LOGICAL DISK FILES 3-36
PH f SI CAL 0 IS K Fl l ES • • • • ,. • • • • • • • • ,. • • • • 3- 16

DISK SPACE ALLOCATION 1•15
FILE ACCESS AND IOENJIFICAJION •••••••••• 3-37
OISK FILE IOENTIFICAIIO~ 3-~a
MULTI-PACK FILES • • • • • • • • • • • • • • • • • 3-39

SASE PACKS 3-40

rc-2

BURROUGHS CORPORATION
COMPUTER SYSTEHS GROUP
SANTA BARBARA PLANT

COMPANY CO~f IGENTIAL
Bl 000 MCP II

P.S. 2212 5462 CE>

CONTINUATION PACKS
MULTI-PACK FILE INfOR"ATION TABLE
MULTI-PACK FIL£ GENERAL RESTRICTIONS •••••

PRINT£n FILES
LINAGE Clause ••••••••••••••••••••
PRINTER AND PUNCH BACKUP CAPABILITIES
BACKUP FILE BLOCKING FACTORS •••••••••••••
BACKUP FILE CONTROL INFORMATION
BACKUP FILE LOGICAL RECORD FORMAT • • • • • • • • • •
Relative files
Direct Files •••••••••••••••••••••
Relative file Data Structure
Relative Fite D~sk Initialization ••••••••••
Relative file Parameter Blocks <FPBsl
Retative Dist Fite Headers CDFHsl •••••••••••
Re t ~ ti v e F it e In f or· m at i o n Bl o c ks < f I Bs l
Relative file Communicate Operators •••••••••
Indexed Sequential Fites
Direct Files •••••••••••••••••••••
Index files
Cluster Files ••••••••••••••••••••
IAdexed Sequential Data File Structure
Indexed Sequential Index file Structure ••••••••
Indexed Sequential Memory Structures
FIB Dictionaries •••••••••••••••••••
Indexed Sequential User Specific Information (USI>
Indexed Sequential File Global Information CGlOBALSJ •
Disk Fite Header Extensions
Indexed Sequential Disk file Header Extension
Indexed Sequential Available Space Atlocation

• • ·• .
Index file Table Splitting ••••••••••••••
Current Record Pointer <CURRENT>
CURRENT Maintenance •••••••••••••••••
Indexed Sequential Buffar Management
Indexed Sequential Buffer Oescriptor <BO> •••••••
Concurrent Update Operations
Disk I /0 Err or Procedures • • • • • • • • • • •
The Offset Procedure
The Strobe Procedure •••••••••••••••••

3-40
3-le 1
J-1t2
3-45
.)-4·j

1-48
3-1'9
3•5 l
3-Sc!
:S-54
J-54
3-54
3-55
.3-55
3•5'.)
3-55
.J-56
3-53
J-56
1-c;a
3-59
S·6 t
3•6l
3-613
3-61
l-68
J-69
1-72
3-72
3-72
3• 7')

3-75
3-76
3-11
J-78
3-19
3-79
3-80
J-61
3-82 The E~ror Correction Procedure

Oata and Address Error Recovery
Data and Address Error Recovery
Data and Address Error Recovery
Data and Address Error Recovery
Remainder of the Dist 1/0 Error

Tape I/O Error P~ocedures

- 215 And 225 Drives
- 205 And 206 O~ives
- 207 Drives •••••
- Disk Cartridges
Procedure ••••••

• 3- ez
.S -8 .S
3-e.s
3-84
3-84
3-es

S-MEHORY MANAGEMENT AND MEMORY REQUIREMENTS •• • •••• •
GENERAL MEMORY MANAGEMEN1 CONCEPTS
LINKED MEMORY ••••••••••••• • ••• • •••
TYPES Of MEMORY REQUESTS

THE FENCE •••••••••••••••••••••
MINIMIZATION Df •cHECKERBOAROING•
VICTIM SELECTION • , •••••••••••••••••

ROUND-ROBIN ~ICTIM SELECTION

4•1
4-1
4-l
4-?
4-5
4-4
4-4
4-5

TC·>

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

CO"PANY CONFIDENTIAL
fJlOOO MCP II

P.S. 2212 5462 CE)

WORKING SET DETERMINATION • • • .. • • • • • • • • • • • 4•6
SECOND CHANCE VICTIM SELECTION
PijlORITY VICTIM SELECTION ••••••••••••• 4-7

PROGRAMMATIC DETECTION Of MEMORY THRASHING 4•1
MEMORY INITIALIZATION ••••••••••••••••• 4-10
MEMORY REQUIREMENTS
OPERATING SYSTEM STATIC REQUIREMENTS
OPERAflNG SYSTEM DYNAMIC REQUIREMENTS

. .. . 4-15
• • •• 4-15

PROGRAH-DEPENOENI STATIC REQUIREMENTS •••••••••
4-?t
4-20
4-28 PROGRAM-DEPENDENT DYNAMIC REQUIREMENfS

H-HEHORY MANAGEMENT •••••••••••••••••••• 5•1
DISTRIBUTION 5•1
CONfENTION ••••••••••••••••••••••• 5-1

PROCESS CPROGRAH> MANAGEMENT &-1
DEMAND MANAGEMENT • 7 • t

HCP OUTER LOOP
TIMER INTERRUPT ••••••••••••••••••••
1/0 INJERRUPfS
JOB SCHEDULING AND INITIALIZATION • • • • • • • • • • •

1-1
l •l
7-l
7 •2

COMMUNICATES 7·5
PROGRAM REINSTATE • • • • • • • • • • • • • • • • • • • 7•4
PROGRAM COMMUNICATES 7•4

COMMUNICATE FORMAT • • • • • • • • • • ·• . • • • •
READ CMICRO MCPJ 7•&
WRITE (MICRO HCPl • • • • • • • • • • • • • • • 7-1
SEEK CMICRO HCP> 7-12
SORTER CONTROL •••••••••••••••• 7-13
SORTER READ <MICRO HCP> 7-15
OPEN <DM> ••••••••••••••••• • • 7-15
CLOSE COM> 1-11
OPEN • 1-11
Disk file OPEN
CLOS£ •
POSITION <MICRO HCP (BACKUP FILES ONLY>>
ACCESS FILE PARAMETER BLOCK CfPBJ ••••••
ACCESS FILE INFORMATION BLOCK Cf18l
OAfA OVERLAY •••••••••••••••••
ACCESS DISK FILE HEADER (QfH)

7-2,3
1-32
7-33
7-41
7-42
7-42
7-45

FINO/MODIFY COM> •••••••••••••
STORE (OM)

• • 1-45
7-45

DELETE <OH) •••••••••••••••••• 7-46
7-46 CREATE/RECREATE <DMJ

SWITCH.TAP£.OIRECTION
TERMINATE (STOP RUN>

• • • • • • • • • • • • 7-47

FREE <OMl •••••••••••••••••••
7-47
7-50
7-50 TIME/DATE/DAY

INITIALIZER IlO
WAIT CSNOOZEl

• • • • • • • • • • • • • • • 7-51
7-52

ZIP •••••••••••••••••••••• 7-52
ACCEPT 7-53
OISPLAY • • • • • • • • • • • • • • • • • • • 7-53
USE/RETURN 7-54
SORT HANDLER • • • • • • • • • • .• • • • • • • 7-54
SOL TRACE 7•55

TC-4

BURROUGHS CORPORATION
COHPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFICEHTIAL
81000 HCP II

P.S. 2212 5462 CE>

EMULATOR TAPE <~ICRO MCPJ • • • • • • • • • • 7-SS
COBOL PROGRAM ABNORMAL ENO 7•57
SORT EOJ • • • • • • • • • • • • • • • • • • • 7-Si
FREEZE/THAW RUN STRUCTURE 7·55
COMPILE CARO INFORMATION ••••••••••• 7-58
DYNAMIC MEMORY BASE 7-59
MEMORY DUMP TO DISK •••••••••••••• 7-59
GET SESSION NUMBER 7-61
oc.INlfIATE.IO •••••••••••••••• 7-61
NOL/MACRO COMMUNICATES
DCWRITE ••••••••••••••••••••

7-62
7-62
7-62 QUICK QUEUE WRITE (REMOTE f ILESl

QUICK QUEUE WRITE CSTAfION NUMBER> • • • ••• 7-62
ACCESS USERCODE fllE 7-62
PROGRAH CALLER • • • • • • • • • • • • • • • • 7-63

7-64 LOAD.OUMP MESSAGE
COMPLEX WAIT CMICRO MCP>
MESSAGE COUNT

• • • • • • • • • • • r-64
7-65

RECOVERY COMPLETE ••••••••••••• • • 7-fij
7-65 GET.ATTRIBUTES

CHANGE.ATTRIBUTES
ACCESS.GLOBALS

• • • • • • • • • • • • • • 7-66
1-66

INDEXED SEQUENTIAL POSITION •••••••••• 7-67
7-6~ INDEXED SEQUENTIAL READ

INDEXED SEQUENTIAL WRITE • • • • • • • • • • •
INDEXED SEQUENTIAL REWRITE 7•69
INDEXED SEQUENfIAL DELETE ••••••••••• 7·69

1-10 RELAliWE I/O COHMUNICATE • START
RELATIVE I/O COMMUNICATE - WRITE
RElAfIVE I/O CDMHUNICAJE - REWRITE

••••••• 1-10

RELATIVE 1/0 COMHUNICATE • OELETE •••••••
RELAfIYE I/O COMMUNICATE - READ
SEQUENlIAL REWRITE CHMCP> ••••••••••
INDEXED/SEQUENTIAL OPEN

INTER-PROCESS COMMUNICATION ••••••••••••••••

7-71
1-11
7•72
7-72
7-73
a-1
a-1 QUEUE SYSTEM AND INTERFACES

DESIGN PHILOSOPHY
QUEUE FILE FAMILIES

••••••••••••••• a-1

QUEUE DESCRIPTORS •••••••••••••••
QUEUE DISK

a-1
8-2
a-z

MESSAGE DESCRIPTORS •••••••••••••• a-1
MESSAGE BUFFERS a-1

QUEUE ATTRIBUTES •••••••••••••••••• 8•4
QUEUE FILE LOGICAL I/O OPERATIONS

WRITING TO THE TOP Of A QUEUE FILE • • • • • • 3-1
MESSAGE.COUNT COfiMUNICATE 6•1

INTER-PROGRAM COMMUNICATION •••••••••••••••• 8-10
RUN UNIT DEFINITION
IPC IMPLEMENTATION Of SHARED DATA
IPC RUN STRUCTURE NUCLEUS CHANGES

~-10

• • • • • • • • • • a-11

RS.RUN.UNIT 811(16) ••••••••••••••••
~-12

1-12
RS.RUN.UNIT.LINK BITC16)
RS.IPC.DICT 8IJ(24> •••••••••••••
RS.IPC.PARAMETER.LIST 3IT(24>

a-12
•• 3-12

6-ll

rc-i

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

CO~PANY CONFIDENTIAL
:nooo MCP n

P.S. 2212 5~62 CE>

RS.IPC.DICT.SIZE BITC16) • ••••••••••••
. RS.EXECUTE.TYPE BIT(4)

RS.NAME CHARACTER<JO)
RS.CALLERS.LR BITCZ4J

• • • • • • • • • • • •

RS.IPC.EVENT BIT Cl) ••••••••••••••
RS.CANCELED BITClJ

IPC Program Parameter Block C~anges
PROG.IPC.SIZE BITC16>

• • • • ·• . . • •

8-13
~-u

B·LS
8-14
8- .14
13 -14
a-14
8- lit

PROG.IPC.PfR 8IJ(24) •••••••••••••
PROG.IPC.MAX.SEND.PARAMS BITC16)

• • 8-15
8-t»

IPC.DICTIONARY •••••••••••••••••• • • 8•1'5
IPC COMMUNICATE OPERATOR
IPC Verb Operation ••••••••••••••••••
IPC CALL OPERATION
IPC CANCEL OPERAJION •••••••••••••••••
IPC E~IT PROGRAM OPERAFION
IPC TER~INATiDN CONSIDERATIONS ••••••••••••
IPC MICRO MCP/S.MCP COMMUNICATION
IPC PfiOGRAH DUMPS • • • • • • • • • • • • • • • • • •
IPC CANDIDATES FOR ROLL-OUT
!PC JASK CONSIDERATIONS ••••••••••••••••
IPC PROGRAM NAME SPECifICAflONS

a-10
a-15
8-17
8-B
8- t ·:J
8 - 1 J.,
8•2iJ
a-,21
d-;~ 1
s-21
fl-21

BURROUGHS CORPORATION
COMPUfER SYSTEMS GROUP
SANTA BARBARA PLANT

1 -1

CO~PANY CONfICENTIAL
31000 MCP II

P.S. 2212 5462 (£)

The purpose of this document is to define and discuss the Master
Control Program II CHCPl for the 81000 machines. The concept and
design of the MCP will be discussed and the functional
specifications of the HCP 1 s operations will be catatoqued.

The sort~ data communication, and data management syste•s will
not be discussed in any depth in this document. Detailed
descriptions of these features appear in other Burrough~
publications <See Related Documentation below).

Name

a1000 MCP Utilities
81000 Network Definition Language
BlOOO Data Management Systams Il
01800/81700 Sort
81000 Software Operational Gulde

Number

P.S. 2212 55/9
P.S. 2212 5223
P.S. 2212 5470

P.S. 2201 6752
1058731

These specifications are written for those people with
prog~amming experience and a knowledge of basic softwar~
concepts. Those unfamiliar with operating system desigr wilt
gajn insight into the Burroughs ohilosophy of svste~ manage•ent.
Those individuals familiar with operating systems of other
manufacturers or of other Burroughs machines will gain an
understanding of the Master Control Program irnplEmentej
specifjcally for the Burroughs 81000.

Also included in this specification are Drief descriptions of
various functions performed by the micro-coded 110 driver
routines. These same routines ~re often referred to as "GlSMO"
and "l/O interp~eter•. The discussions arE necessary for
completeness and for a thorough understanding of the BlOOO
operating system of which the 1/0 driver is an integral part.

MCP II is a modular. supervisory program that assumes co•mon
togically complex functions to simplify and expedite the tas~s of
programming and system operatio~. Its most important duties
include such functions as:

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

l-?

COMPANY CONFICENTIAl
31000 MCP II

P.S. 2212 5462 (£)

• Scheduling~ initiation, running~ and tar~ination of jobs

* Providing a symbolic means of communicating with the system
while shielding the user from the detail of the hardware

Providing a family of common facilities such as management
of input/output operations and file maintenance

* Managing the systam•s resources for optimum utilization in a
•ulti-programming envir~nment

The 81000 is a small-to-medium scale~ general purpose compute•
system. Its distinguishing feature is its flexibility, made
possible through inteTpretive processing. In an~ computer system
a representation of any process has two components: <ll a famjly
of structures representing the state of that process, and C2l d

series of operators able to manipulate those structures. Until
the advent of fourth generation computers~ both components were
represented in the machine hardware itself. ~ compiler o~

language translator transformed tbe source code Ce.g., C000lr
FORTRAN> into a "machine language" Cobject code) which was
defined in terms of the hardwar~ architecture.

for the set of processes able to be generated ~Y any particular
programming tanguage. there exists a machine architecture which
best represents those processes. for instance, COBOL is d

character-oriented language and performs decimal arithmetic
exctusivety. Because of its data manipulation features, it •ight
best utilize a machine architecture with multi-address operators,
capabte of performing efficient ttmoves,• "compares•" and simple
expression evaluation. On the other hand, FORTRAN was designed
to compute complex mathematical functions. It favors a stack
structure for parameter passing and coaplex expression
evaluation. It perfor~s binary arithmetic and would prefer 30-
to 50-btt word sizes.

The difficulty of designing a hardware structure capable cf
handling two such divergent lan~uages in the most efficient
manner becomes apparent. It would be possibler in principle at
least• to design the hardware in such a way as to adecuatelv
represent both sets of structures. However, this would prove to
be prohibitively expensive. The typical approach, therefore, has
been to either design the hardware to favor one tanguage at the
expense of others or to design a compromise structure capable of
handling several languages, but none in the most efficient
manner. The wide variety of programming languages in current use
has placed a great strain an the capacity of the hardware to
efficiently execute code compitad from very diffErent tangLages.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP H

P.S. 2212 5462 CE>

It is to this problem that designers of fourth generation
software' and tbe 81000 in particular. have addressed the1setves.
Rather than build a particular structure into the hardware, the
conceot of the "soft machine" has been developed whereby the
ideal environment of structures and operators is programFatically
simulated.

The 81000 hardware was designed with as little explicit structure
as possible. Because memory may be addressed to the bit~ no one
structure is inberenUy favored over any other. The only
required structure is that which will altow the simulat~on of any
"soft machine". Thus the range of structures able to bu
represented on the BlOQO is unlimited.

As st3ted praviousty~ for every compiter language there exists a
machine architecture within which the algorithms generated by
that compiler wilt best run. On the 81000 this hypothetical
environment is called the "S-machineft. An S·machine has been
defined for each language sucb that any process may ba
represented in its most efficient or most natural for11•
unrestrained by any arbitrary hardware configuration.

Compilers on the BlOOO generate code files which contain Cl> the
information nece$sary to initialize the appropriate s-machine at
run time, and (2) the "S-code~ to be executed on this S·machine.
S·code is written in s-tanguage~ the machine language for an
S-machine. Execution is achieved by the S-code being
interpreted" an S-operator at a time.- by a micro-prograa ca4.teJ
an int e:r pr et er.

The term "software•. as used jn this document, refers to at•
program•ing supplied by the Santa Barbara Plant. When the term
is used, it most likely is referring to programs that are written
in a higher-level language. This may not at way~ be the ca~e· but
typically, the term witl refer to the compilers and utility
programs created by the Program~ing Activity.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
31000 HCP II

P.S. 2212 5462 ([)

The firmware consists of a set of interpreters, those portions of
the MCP which are micro-coded and reside in an entity ~nown as
the MICRO/HCP~ and a program called nGISMo•. for each s-tan9u3ge
a micro-coded program catted an interpreter acts upon the
hardware and executes the compiled s-code as defined by the
S-machine. The BlOOO software has been implemented in such a way
that any number of interpretive structures may be active in the
system at any given time. This is achieved by dynamic3lly
establishing• upon de~and• the S-machine structure for an~
process.

For instance, the HCP• ~hich is itself a program• is written in a
high-level la~guage~ sot~ that is designed specifically for
writing software. It has its own optimum environment Cthe SOL
S-machine> consisting of the structures and operators reauired
for software applications. It has its own S·tanguage and its own
interpreter (the SOL interpreter>. Running simultan~ously in thu
system may be another program written in a different language
(e.g.~ COBOL). This program also has its own structure Cthe
COBOL S-machine>• S-language~ and interpreter. The syste~, when
executing the MtP~s supervisory functions, assumes the
architecture of the SOL S-machina and• when executing the COBOL
instructions' ta~es on the COBOL s-machine structure. This
swjtching of interpreters and process environments is reanaged
completely by the software and is invisible to the user of the
machine.

The 81000 HCP has actually evolved to its present state.
Origjnalty, all functions of the MCP were coded in SOL.
Beginning with the 4.0 release of the software, the most co•monty
used ~outines of the MCP were written in micro-code and placed in
GISHO. This resulted in substantial performance improvements.
Beginning with the s.1 release of the software. these coMaonty
used routines were removed from GISMO and ptaced in the entity
mentioned previously, the MICRO/HCP.

these specifications have also evolved along with the HCP. Many
of the funct~ons described herein are now pErformed by th~
MICRO-HCP~ though the furction itself rema~ns exactly the sa2e ai
it was when it was performed by SOL code. Since this docu~ent i!
intended to be a functional specification of the 81000 operatin~
system, all MCP functions are described herein. Whether the
function is performed bV SOL code or by micro code should bd
completely transparent to the user. Actually, the functionat
result is the same for both, but the time and resourc~
requirements are not identical. The difference is therefore not
always transparent.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

1-5

COMPANY CONFICENTIAL
fH 000 HCP II

P.S. 2212 5462 CE>

Throughout thjs document• the acronym "HCP" may be referring to
the MICRO/HCP or to the SDL HCP. !n cases where the distinction
is important, •HCP" witl not be used but the tw6 te~ms mertioned
above will be. This document• thenr will. actually be a
functional specification. of th·e operating systeJb as it was
originally intended to be• though it will actually be describing
two separate and distinct programs. Since GISMO is also a
critical part of the operating system, the document may also
touch upon portions of GISMO.

GISMO is a micro-coded family of critical routines common to atl
processes. GISHO may also be referred to in this document as
~-, an acronym for '-!_ntrat Service Module. It is a central
module of ser~ice routines used by all programs in the system and
performs three basic functions:

1. Switching of control between alt contending processes in the
sys te1n.

'2. Recognition and queue·ing of interrupts received from the I/H
controls or from other processes in the system#

3. Initiation and management of the I/O controls connected to
the •achines• usually at the request of another process.

Processor allocation• the switching of control between two or
more processes~ is handled by the "Micro Scheduler" module in
GISMO. This module may be thought of as a.n "Outer loop"". It ha;
absolute control over the process which will be performed next on
the syst,Eun.

Interrupt resolution consists of routines which perform cert3in
functions depending on the type of interrupt and certain other
critical conditions. The interpre~er in control senses the
interrupt and calls upon GISMO to take the required action.

GISMO•s service request modute Csoft I/OJ performs the function
of a hardware device capable of performing a memory access at the
request of an l/O control. An 110 control on the 81000 is a
hardware device which acts as an interface between soft I/O and a
peripheral device. It requests access to memory on behalf of the
device and manages the device itself. The collection of I/O
controls is called the 1/0 sub-system.

Typical data transfer operations involve freQuent but brief catls
upon soft I/O by the I/O sub-system. The firmware was designed

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

CO"PANY CONFIGENTIAL
BlOOO MC? II

P.S. 2212 5462 (£)

in such a way that between the execution of any two S-operatorsr
th e i n t er pr e t e r i n c o n tr o l w it t c h e c 1<. a fl a g i n t he p1r o c e s s or
<catted the S __ ervice Regllest Bit> to see if the I/O sub-_!l._§teft! is
demanding attention. If it is, the interpr·eter passes contra[' to
GISMO which performs the necessary memory access and returns
c o n t r o l to t h e i n t er pr et 1e r .•

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

CO~PANY CONflCENf lAL
81000 MCP II

P.S. 2212 5462 CE>

Before praceeding with a detailed description of what the ~CP
does and h~w it goes about it• it wilt be necessary to define a
number of terms and data structures whose names are used
familiarly throughout the document. The reader should krow the
meanings of the terms~ but a thorough understanding of the many
diverse programming structures pr,asented herein is 11ot .recuired.
The structures are presented only in the interests of
comoleteness, and as a possible aid in understanding the
narrative descriptions of the HCP's functions~ presented in the
later sections of the specification.

The HCP organizes and attocates space in memory throu~h the us?
of fields known as memory links. Each link immediately precedes
the block of memory it describes and includes such information
as: The size of that block of memory; the type of use (if anyl
to which it is put; and pointers to the immediately p<Ecedinq
and succeeding links. If the block of memory is classified as
available Ci.e.. not currently in use by any process>• an
additional set of descriptors point to the links of the prie>r
available and next available blocks of memory. Thus it is
possible to search all links or only those links describin~
available memory. ~ program~atic descript~on is given betow:

DEFINE MEHORY~LINK.SIZE AS #181#;
DECLARE HEHORY.LINK TEMPLATE SIT<HEMORY.LINK.Sl1E>;
DEFINE MEMORY.LINK.DECLARATION AS #
DECLARE 01 DUMMY REMAPS MEMORY.LINK•

·2 ML. 0 l SK
~'2 Ml.GROUP.~

3 Ml.POINTER
3 M·L. JOB. NUMBER
5 ML. JYPE
3 ML.SAYE

2 Ml.SIZE
2 ML.PRIDRITY.fIElD

1 Ml.DK.INTERVAL
3 Ml.CURRENT.OK.INT
3 ML.INCOMING.PRIORITY
3 ML.RESIOE~CE.PRIORifY

4 ML.RP.WHOLE
4 Hl.RP.fRACTION

'2 Ml.FRONT
2 ML. 1BA CK
2 Mt.USAGE .. SIJS

ADDRESS"
BIT!iiQ),
BITCG),,
BIT{ 1 h
BIT(24),,
SITCJO),
Bli(lO),
SITC10)11
BITC5h
BITC5),
BH(lt,),,
BIT(l),
HITC24h
fHTC2·td•
BITC2),.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA dARBA~A PLANT

USEC ML.DISK

3 Mt.PREVIOUS.SCAN.TOUCH
3 ML.CURRENT.SCAN.TOUCH

,. ML. PO INTER
.Ml.JOB.NUMBER
,,fift. TYPE
JJML.SAVE
,.ML.SIZE
.. ML.FRONT
,HL.8ACt\

> OF MEMORY.LINK.OECLARATIONJ

DEFINE Q.Mt.OECLARATIDN AS#OEClARE
01 Q.MEMORY.LINK TEMPLATE

COMPANY CONFICENTIAL
B1000 MC? II

P.S. 2212 5462 ([)

BIT Cl),.
BI"TClL;t;

02 FILLER
02 Q.ML.f .AVt

BlTCMEMORY.LINK.SIZE>
ADORE SS , 02 Q ... ML.B.AVL

DEFINE
TAKE.LO

TAKE.RIGHTMOST
;

ADORE SS

AS#O#
AS#l#

DEf INE
COO£ AS

% TYPES FOR "ML.TYPE"
#01%

I' AVAILABLE AS #2#%
I' RN. S AS #3#%
I' MCP.TEMP AS 14#%
·~ US£R,.FILE AS #5#%
I' 5£G.OICTV AS #6#% , MICROCODE 111 #%
I' OICT.MASTER AS #8#
I' QUEUE.DIRECTORY.TYPE

AS #9#

• MSG.BUF.f£RV
AS 1110# , MESSAGE.LIST.TYPE

AS #11#
., TO. BE. FORGOT JEN AS 112#
• OATA.SEG .A5 # 13#
I' DBM.BUFFER AS #14#

TERMINATING LINK AS 115#% , HCP.PERM AS tH6#%

• PSR.MEK AS :#17#'.Z , MCP.IOAT AS #181% , DISK.HE.ADER. AS :/J.19#%

" PACK.HEM AS #20#%
II 'SD.CtHNR AS #21#%
.~ SCHEO.MEH AS #22#%

• SORT .MDI AS 123#%
.,. OCH. HEH AS #24#%
,, MICROCOOE.NON.OVERLAYASLE AS #25#%

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

, QUEUE.AVL.BUF.V AS #26#
, OMS.DISK.HOR AS#27#%
, OHS.STRUCTURE AS#28#%
, OHS.TEMP AS #29#%
, OMS. Gt OB.AL S AS # 30#%
r OHS.TEMP.LOCK.DESCR AS #31#
, XM.MEHORY AS #32#
, PERH.SPO.BUFF AS #33#
;

COMPANY CONFIDENTIAL
:S1000 HCP Il

P.S. 2212 5462 <El

ftTEHPLATE" in the above description is defined as "REMAPS BASE•.
ihis is not important to an understanding of memory tin6<
operation. •ADDRESS" is defined in the MCP symbolic as
•aITC24)•. The word "ADDRESS• here is used as a denotation of
memory address. Hence, •ML.SACK• in the description above is 3

pointer to the previous •emory tjnk and "Hl.fRONftt is a pointer
to the succeeding link. Ml.SIZE wilt contain the size of the
area, in bits~ and Ml.GROUP is valid only if the area is in use.
ML.POINTER will contain the memory address of the segment
dictionary entry associated with this me•ory area. Segment
dictionaries are desc~ibed in the next section. ML.JOB.NUMBER
wilt contain the job number of the program using the area.
HL .• SAV£, the description of 'which is defined as "BOOlEAN11"' is set
on if the memory area must b·~· saved on disk before it 'is
overlaid.

As can be determined by adding the sizes of the various
components, a memory link requires 181 bits of storage space.
Since me•ory is allocated dynamically, it is often difficult to
p~edict with any degree of accuracy exactly how much memory ~ill
be required by any tast. The sizes of all memory links involve1
must be included in the catculations. This is discussed further
i n a t a t er p a r a gr a p h •

\t .U:..Lua 4. me m or Y i s s u p p or t e d by a 1 l ow 1 n g pr o c e s s s e g 11 en t at i on • B y
segmenting code• dataP and interpreters and dvnamicalty m6ving a
segment into or out of memory as required, the ~ystem is able to
function as if it had "virtually infinite" memory capacity. Tha
MC P man a g e s t h i s f a c U i t y th r o u ~l h t hr e e s tr u c t ur e s : CD de Se gm e l}J
D i c..t i g o a r i e s , 0 a t a S e g 11 e n t O i c ti on ar i e s " an d In t e ~J?.!Jll-.e.L. _5..e...am__~ n t
Qictionaries. Each dictionary consists of a string of syste~-
descriptors each of which describes one segment including its
length# location and status. As a segment is moved in or oLt of
memory its dictiona~y entry is up1ated accordingly.

At run time the
dictionaries from

HCP creates the code and data segment
information in the program•s code file. Tha

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

z-4

COMPANY CONFIDENTIAL
81000 MC? II

P.S. 2212 5462 CE>

interpreter segment dictionary is created from the interpreter
code fila in the same manner and is referenced by an entry in the
interpreter dictionary~ a $tructure fixed in memory at
Clear/Start time. The run structure of the .prograre contains
pointers to the code and data segment dictionaries and an index
into the interpreter dictionary. A programmatic d~scription is
given below:

DE Cl ARE
01 SYSJEM.OESCRIPTDR TEMPLATE BITCSY.SIZE);

%
DEFINE SY.DECLARATION AS #SY.DECL<SYSfEH.OESCflIPTORllJ%
DEFINE SY.DECL(XJ AS #DECLARE%

n.;

01 DUMMY REMAPS x,%
02 SY.IN.USE
02 SY.MEDI,!\
02 SY.LOCK
OZ SY.IN.PROCESS

02 SY.INITIAL

02 SY.FILE

02 SY.OK.FACTOR
OZ SY.SEG.PG
02 SY.TYPE

02 SY.ADDRESS
03 FILLER
03 SY.CORE

02 SY.LENGTH

0.IT'Cll•
8ITC1>•
BI TC 1 h
9IT·C1J,

er re 1 h

9ITC3)
Bif(l),,
BITC4>•

BITC36),
SITClZ),
BIT(24)~

tHTC24H

% TO HELP MEMORY M•~AGEMENT
% O=OISK~ l=S·MEMOR,
%
%
%
%
%.
%
%
%
%
%

TRUE If THERE IS AN I/C IN
PROCESS FOR THE INFORHAf ION
REPRESENTED BY THIS DESCRIPTOR.
IF TRUE, ftSY.CORE" CONfAINS A
POINTER TO THE l/O CESC~UPTOR.
"ADDRESS" IS REAO·O~LY HCTHER
copy, HENCE If "WRIJEft THEN GET
NEW DISK AND REPLACE ADDRESS.
THE OBJECT Of THIS DESCrtIPTOR

I IS A FILE WHOSE USERCOUNT MUSI
% BE OECREME"TED WHEN THIS
% DESCRIPTOR IS RETIRED.
i MEMORY DECAY FACTOR
% MEMORY.ACTIVITY AUDITIN~
% UNITS FOR SY.LENGTH.
% 0 ': BITS
I 1 - DIGITS (4 BIT>
% 2 = CHARACTERS (8 BIT)
% 3 : NORMAL DESCRIPTORS
% 4 = DISK SEGMENTS
% 5 = SYSTEM DESCRIPTORS
% 6 = SYSTEM INTRINSIC
% 1 = I~CIRECT REFERENCE
% ADDRESS GIVES RELATIVE
% DISPLACEMENT IN BITS
% (SIGNED NUMBER).
X 8= tHCROS
%
%
%
%
%
%

PORT,CHANNEL AND UNIT.
CORE, OR ADDRESS WITHI~ UNIT.
NUMBER Df UNITS, AS DETERMINED
BY SY.TYPE.

BURRUUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

%
%

DEFINE NO.DECLARATION AS#
DECLARE

2 -:;

COMPANY CONFIOE~TIAL
91000 HCP II

P.S. 2212 5462 CEl

01 DUMMY REMAPS NORMAL.DESCRIPTOR Bif<ND.SIZE>~
02 NO.DK.FACTOR BIT{3)r
02 FILLER BIT{6),
02 ND.CORE 8ITC24),
02 NO.TYPE BITC3>•
02 ND.LENGTH BITC24JJ#J

SY.SIZE is defined in the HCP code as eighty. Hence eighty bits
are required to contain one segment dictionary entry. or system
d•scriptor. The use of the term "DESCRIPTOR" in 81000
documentation is often misleading and ambiguous. There are many
different types of descriptors.,. all of which have diffe..-er.t
memory requirements and formats. ConseQuentty. syste~

descriptors witt always be referred to as such or as segment
dictionary entries.

The co•ments on the variou1 fields compr1s1ng the system
descriptor are largely self-explanatory. Perhaps som9
explanation of selected fields would be beneficial, however.
SY.LOCK is set true if the system descriptor describes a data
field and if the interpreter is currently accessing the field.
This is to avoid the situation which arises in a simpta
replacement statement where the sending and receiving fietd are
both in overlayable segments. In order to do the replacement•
both data segments must be in memory simultaneously.

SY.INITIAL is true for initiatjzed data only. The most common
case of this occurs when executing a COBOL program and t~e
programmer has used the value clause to ijnitiali2e data fields
and the data ft~td itself is in an overlayable segment.
SY.AOORESS may be either a djsk or a memory address~ depending on
the setting of SY.MEDIA. If it is a memory address, the ~ost

significant twelve bits are ignored. If it is a dis• addressP
the most significant twelwe bits contain the port, channel and
unit associated with the disk address.

The 81000 HCP maintains a list or directory of all files or disk.
file stored on disk has a unique name, which may consist of LP t~
three fields~ each of which ~ay consist of up to ten characters.
As.so:cll...t..ed with each fHe on disk is an item catted a "Disk f_ite
He..a.d~. The disk fite header serves essentially to de.scribe the
file. Atl of this is described in detail in later sections.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~l

COMPANY CONFIDENTIAL
91000 ~C? II

p.s. 2212 5462 (£>

This brief discussion is _being included at this point to
facilitate the following discussions on interpreters.

Inctuded in the disk file header is a field whjch denotes the
type of file. There are separate type numbers for data filesr
co de fi l e s • i n t er pr et er s, and so for t h. C OJ:le f i t es C pr o gr am s >
and ___ int e1r pr et er s are fur th·er __d_e~r i bed ~-the _!_!r· st dj_~_t ___ s~_9ti~_!tt
co n t ~ i n e d i n t he f i t e .• ' _ T h i s ----~ e g me n t i s c .a ll e -er· -t h e -~fr Q gr-~~
P~i_t11il_ar=-==--1ITiiC-rr-----or ___ . the "In t·er pre-fer ---tl ar a met er at ocJt •.,
respectively. A detailed description of the program paramter
bloci< is presented in a tater section. -A programsatic
de s c r i p t i on o f th e i n t er pr et er par a me t er bl o c ·k i s PT e s en t e d
be(ow.

tn

DEFINE IPB.OECLARATION AS#
DECLARE 01 DUMMY REMAPS IPB Blf(1440>•

02 FILLER 8ITC1192l•
OZ IP8.HAROWARE CHAR(llr
02 IPB~ARCHITECTURE.NAME CHARClQ),
02 IP8.CCMPILER.LEVEL BIT•
02 IPB.MCP.LEVEL BITC8)~
02 IPB.GISMO.LEVEL 8Il(8)p
02 IPB.ARCHITECTURE.ATTR[BUTES SITCSQ),
02 FILLER Bl1(56)J

IPB.HARDW-RE will contain either an "Sft or an "M"~ dependifg upon
whether the interpreter was generated fot" an S-memory or an
M-memory processor. All B1600's are considered to be M-memory
processors. IPB.ARCHITECTURE.NAME witt contain the generic name
of the compiler, such as COBOL or FORTRAN. IPB.COMPILER.tEVEL
wilt be a number which will correspond to the release level of
the software• as described below. IPB.MCP.LEVEL~ IPB.GISMO.LEVEL
and IP8.ARCHITECTURE.ATTR19UTES are parts of the inte~oreter
verification feature of the MCP.

The 81000 MCP includes facilities to recognize the hardware
configuation it is executing upon and select the corTespondjnq
interoreter from the disk directory. Atl programs which are
compiled for execution on a 81000 wilt have an interpreter ~TYPEn
requested the program parameter block of the code fite <described
in a later section), or the specific name of the interprete.- to
be used. As explained in a later section• the program parametar
block contains sp3ce for three names to be associated with an
interpreter. For discussion purposes here. the three names will
be referred to as the "PACK" name, the "fAMILYu name a~d the
~OFFSPRING" name.

;~ -l

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFICENTIAL
31000 MCP II

P.S. 2212 5462 CE>

The 31000 compilers generate the last two names of the
interpreter only. The family name generated always correspond$
to the language the program is written in, such as "CCBOL~ or
"fORTRANw. The offspring name is always one of the reserved
words •tNTERP"• •DEBUG• or "lRACEn. 4t BOJ, the MCP modifies the
offspring name by concatenating one nume~ic character denoting
the compiler level and either the character ~M" or "S" d~pending
upon whether the machine is eQuipped with an s-me~ory o~ an
M-memory processor.

The tevel number concatenated is contained in the program
parameter block as "PROG.COMPILER.LEVEL•. Every ti•e the
compiters are changed in such a manner that the interpreter must
atso be changed~ the level number generated by the compiler is
incremented. The interpreters are then modified accordingly and
released to the field under a new name. The new name wilt be the
same as the old one, except for the tevet number contained in thd
name. for a COBOL program which is being executed on a
81120-series machine and had been compiled by the 4.1 COBOL
compiler~ the MCP witl generate "COBOl"/flINTERPlM" as tha
interpreter name to be used for the execution. It should be
noted that this feature was first included in the 4.l software
release. Level numbers were not included in the progf'am
parameter block pr~or to the 4.1 release.

Once the interpreter name is generated~ the disk directory is
searched for the interpreter. Upon finding the interpreter~ the
HCP wilt bring it :into S·memory, if it is not alread-y there, and
construct an entry in the "INTERPRETER.DICTIONARY•. All
interpreters are re-entrant on the BlOOO. All of this is
described in greater detaft in the paragraph which fottow. fach
ent'Y in the interpreter dictionary has the following for~at.

DEf INE IO.DECLARATION AS#OEClARE
01 DU~MY REMAPS INTERPRETER.DICTIONARY,

02 IO.SEG.OIC SY.OSCR,
02 ID.ENTRY.IN.USE BOOLEAN,
02 ID.RSONT.USERCOUNT 8IT<7>•
02 IO.TOTA~.USERCDUNT BITC7>~
02 ID.MIN.H.SIZE BITC4>~

02 IO.MAX.H.SIZE 8ITC4J,
02 IO.PARTIAL.BIT BOOLEAN,
02 ID.BLOCK.COUNT BITC4l•
02 FILLER BIT<19J,
02 IO.M.PRESENCE.BIT BOOLEAN,
02 !D.M.ADDR BIT<12),
02 ID.TOPM BITC4),
02 IO.MEDIA BIT<2>•
02 IO.LOCK ' BOOLEAN,
02 FILLER BIT C13J,
02 ID.TYPE 8ITC4J,

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~T

!)2 IO.ADDRESS
1.>J FILLER
03 ID.CORE

02 ID.LENGHi

CO~PANY CONFICENTIAL
31000 MCP II

P.S. 2212 5462 CE)

BITC36),
BITC12>•
61TC24),
9ITC24 H1H

Th.ere is one entry in the interprete:r dictionary for each
interpreter presently in use. The I/O driver is always the first
interpreter ·entered in the dictionary, tne Hierro HCP is thd
second entry and SOL is always the tbjrd entry in the dictiorary.
On the 01000, it is possible to segment interpreters.
Consequently~ a code segment dictionary is constructed for each
interpreter as it is brought into ~emory. The system descri~tor~
the first item in the interpreter dictiona~y~ is a pointer to the
interpreter's code segment dictionary. Interpreters may be
segmented• exactly as programs are. The same routines in the HCP
are used for handling program segments and interpretEr segmerts.

A certain amount of information about each program currently
bejng executed is maintained in memory by the MCP. The field in
which this information ~s 1aintained ~s known as the Aun
Structure Nucleus of the program. It is abbreviated as
RS.NUCLEUS. In the RS.NUCLEUS,. there is an index into the
interpreter dictionary. All pTograms being executed at any given
time which are using the same interpreter will have the same
index in the field in their respective nucleus. In this manner,
interpreter re·entrancy is accomplished.

The remaining field in the interpreter dictionary entry will not
be described in detail at this point. for a more detailed
description of interpreter management~ the reader is referred to
the section of this document which deals with "•memory
management. It should be sufficient at this point to say that
all interpreter segments except the first are treated as ordinary
code and are con~idered overlayable. The first segment of each
interpreter is not treated as code and is not overlayabte~
however.

The I/O driver, which is considered an interpreter.
exception to the above statements.

i s an

The ~·<;od..L_'lU_!_<!J_!Jv~ .. ~L prograrJL_fJlU.st.C.Q_nt_(lin tw_o types oJ f'ecori;ts
to at l.!ui __ ~_t-!_CP __ J~--~-~-ri~g~ ___ :t~-~--- ~-~.-~-~t~tt.! Q!!_~J _ _ijtat p·r ogr a 11,: the
"fit . .e_. ___ Paf'ameter· Block" ffPShi and t_~...frogram f>arameter Bloc~"
CPPBJ~ lh~t;H'-L.is one ff'B-for.each tf4.e dectar•ed-Tn·--a-pr-ogram, pl~s
o-ri--e· entry tor afrace-Ti le.-----------·-- ·--------------------·-- . -------

BURROUGHS CORPORATION
C 0 MP UT£ R S Y STE MS GR 0 UP .. fa -i. ~
SANTA 'BARBARA PlA~T olrb

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE)

~
The first 2880 bits ~two disk segments> of every code file is the
"Program Parameter Stock~ (PPB> ~hose format is rigidly defined
by the HCP. Every compiter generates a PPB of the same for~at.
It provides, for the MCP, all the vital statistics of the program
including: The orogram•s name; the name of the i~te~preter to
be used during execution; the relative addresses of the FPB's'
IPB~ code segment dictionary and data sagfflent dictionary. memory
reQuirements for the program~s execution; and tracing
information.

At run tiae a working copy of the PPB is written into a te~porary
or permanent tog Cas dictated by the system options>. The first
two seqments of this four segment entry are an exact copy of the
PPB from the code file. Another segment is generated by the HCP
and documents certain features of that particutar execution. A
final segment is reserved for an abno~mal termination message.

[f the code file is an interpreter code file• it contains an
additionat segment called the "Interpreter Parameter Block". It
contains ~nfarmation concerning the software compatibility of the
interpreter. A field in a program•s PPB specifies under which
i n t er pr e t er 1 t w 1 l 1 r u n. ~he n t he pr o gr a m i s s ch e du t e d for
execution• the IPB of the interpreter named in the PPB is checked
to insure that the inte~preter is compatible with both the code
file and the system software. The HCP informs the system
operator via a SPO message if the interpreter cannot run. Refer
to the approp~iate MCP listing for a programmatfc description.

j ~,...._,_.,J
The "file Parameter Aiock"' <FPB-J ;s a 1440•bjt record ccaile.!l by
the compiler from the user•s file attribute declarations. Its
format is rigidly defined by the MCP~ and it contains the vital
statistics which allow the HCP to manage the f~le's usage. When
a job is scheduled fo~ execution~ a working copy of the fP8 is
written into a permanent or temporary log (depending on syste~
options). In addition to recording the file's attributes. the
HCP documents the use of the file during that job's execution.
It records such information as the number of times the file was
opened and closedJ the tota(amount of time the file was open;
the number of records readJ the number of I/D errors; and the
fite type. Refer to the approp<iate MCP listing for a
program~atjc description.

As eac~ file is opened by the user program, a structure ~no~n as
a fjle Information Block CfIBl is created in memory by the ~CP.
The FIB contains all information necessary for the MCP to piilii~
normat, requested~ 110 operations on the file. Much of the
information in the FIB ~s taken directly from the FPS. Other

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANJ

COMPANY CONFIDENTIAL
"HOOO ~CP II

P.S. 2212 5462 CEJ

information in the structure is inserted by the 'cp~ basea upon
the characteristics of the per~pheral device assigned to the
f~le. Device assignment is discussed in the section of this
specification which describes the Open Communicate.

FIB•s vary in size• depending upon the type of device assigned to
the file. Due to the amount of information which ~ust be
maintained, a disk file fIB is much larger than that of a card
punch file~ for exampte.

I/O descriptors and buffer memory areas are attocated and
initialized by the HCP at the same time. There wilt therefore be
one memory tink only# for each file that is active in a progra•.
Buffer areas and descriptors are not nor,malty shared between
files, though the Oata Management sUb$ystem, the Data
Communications subsystem• the Relative file impte~entation and
the Indexed file imptemeration offer some exceptions to this
,rut e.

A complete structural description of the FIB witl rot be
presented herein, due primarily to the length of the structure.
At s o • th e F HJ i s o f in t er e st to the v ar i o u s port i on~ o f t hi?
Operating System only. The programmatic description of the
structure is readily available in the MCP listing. 5jzes of
fIB~s for the different peripheral devices are presented in the
following table.

file Assigned to:

Reader-Sol' ter·
Printer
Remote Device
Tape
Di sir:
Qu,eue
All Other Devices

Size in Bits

742
:724
557
1?. 4
916
385
612

T h e s tr Y.U u r e i n m e .m or y t h a t r e pr e s en t s t he s t a t e o f a n y p r o ~-~Ji.. i ~
iA the run structure. Each process has a unique run structure.
When a job is in1tfatized before execution• the MCP creates th3
run structure from an analysis of the program's code filer and
adds certain information it wi,tl n·eed for management of th,a
execution. ACl run structures are linked together by priority.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

2-11

COMPANY CONFIDENTIAL
131000 HCP II

P.S. 2212 5462 (£)

A run structure consists of a proqram•s data or address space~
the MCP 1 s ··at s ace called the run structure ~ucleus, and
the fite and data segment tc 1onar1es. e progir·am•s-address
space• residing between its base and limit registers~ is that
area of memory that may be accessed and martipulated by the
program itse·tf. A program•s base registe.r is a memory address
that marks the lower bound of its addressable space. The limit
register specifies the upperbound. A program may not access
memory that is outside its own base to limit area, though thii
tenet is enforced by the interpreters and not the MCP.

A program•s address space may contain ooth reside~t ani
overtayable data. The resident data area contains those fietds
which wilt be present in memory throughout the duration of the
execut~on. The overlayable data space contains segmented data
which may be brought into or out of memory as needed.

The Run Structure Nucleus is an area structured and •aintained by
the HCP and contains the essential information about the program.
It resides in memory directly above the program•s limit register
and is accessible by the MCP and the program•s interprete~. It
contains such information as:

Pointers to

BASE ANO LIMIT
SEGMENT IlICTIONARIES (CODE ANO DATA>
F IL E DJ: CT I 0 N AR J
INTERPRETER OICllONARY ENTRY
NEXT RUN STRUCTURE (BY PRIORITY)
CODE fllE ON DISK
DISK LOCATION Of RUN STRUCTURE IF ~RnLLED OUT"
PROGRAH•s LOG ENTRY
VI~fUAL DATA SPACE ON DISK
NEXT INSTRUCTION TO 8£ £XEtUT£D
CMS POINTERS

* Structures necessary for communication between the progra~ and
the HCP

* Fields to reflect the state of the S·machine

* Fields for program switches

A programmatic description may be obtained from the MCP tisting.

BURROUGHS CORPORAf ION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

CO~PANY CONFIOENTIAl
31000 ~CP II

P.S. 2212 5462 ([)

The data segment dictionary resides at the ena of the Run
Structure Nucleus and is pointed to by a field in the nucleus.
If there is no segmented data and the user has not ~eQuested that
his resident dat• area be initialized, then the pointer wilt be
null,. and there will be no dictionary.

Each entry in the dictionary is an 80-bit system descriptor
pointing to one data seg~ent.

Th e t a s t et e me n t o f a r LI n st r u c t ur e i s t h e f i t e d i ct i o n a r y •
There is one 80-bit descriptor for each declared file plus one
additional descriptor for a trace file {used for tracing>. While
a flte is open,. its dictionary entry points to the fite•s FI3 in
memory. If a file has never been opened• its entry is null. If
a file has been temporarily closed (i.e., "CLOSE ROLLOUT•), it~
dictiona~y entry points to its FIB which has been written to
disk. After a pe~~anent close, the file's dictionary entry will
a9ain be nutt.

The 81000 MCP allows re-entrant processing, the ability of two or
more processes to use the same code segment dictionary and•
thereby, the same code. The code segment(s} and code segment
dictionaf'Y reside outside a p:rogram•s f'un structureP and a fiet1
in the run structure nucleus points to its code segmeflt
dictionary. A structure catted the segment dictionary containe,;r
contains the information necessary to govern the use of a
parti 0cular code segment dictionaf'y. When a job is b,eing
initiated for execution, the HCP determines whether or not tha
code segment dictionary desired by tha job is already in use. If
it is' that dictionary will be used. The segment djctionary
container reflects, among other things, the number of processes
using the dictionary it describes~ If there is more than one
user, the segment dictionary container wilt remain in memory
until alt users have completed execution.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~J

COMPANY CONFIDENTIAL
31000 MCP H

P.S. 2212 5462 {€)

This s·ection of ·the specifications is a description of:

t. I/O Descriptors
2. GISHO Operation

t. Channel Table
2. GISHO/Hardware Interface

1. CA/Rt Cycles
2. Processor 110 Instructions
3. Service ReQuest
4. Status Counts
5. Data Transfers

3. !10 Chaining
4. Dis~ I/O Chaining
5. Disk I/G Dverlapoed Seek
6. Tape l/O Chaining

3. Honitorinq of Peripheral Status
1. I/O Assignment Table
z. Unit Mnemonics
3. Test and Wait I/O Oper~tors
4. STATUS Procedure
5. Disk Identification - Pack labels
6. Pack Information fable
1. Tape labelling~ Initialization and Purging
8. Tape PE/NRZ Exchanges

4. file Structures
1. Conventional files

1. file Attributes
2. fjle Naming Conventions
3. Logical Disk files
4. Physical Dis~ Files

1. Disk Space Allocation
2. File Access and Identification
3. 0jsk file Identification
4. Disk Fite Header

5. Hulti•Pack Files
1. Base Packs
2. Continuation Packs
3. Multi•Pack Fite Information Table
4. Mutti·Pack Fite General qestrictions

6. Pr i n t er f H es
1. Logical/Physical l/O Relationship
2. Logical Page implementation

T. Printer and Punch Backup Capabilities
1. Bactup file Stocking factors
2. Backup file Control Information
3. Backup File Record Format

2. Relative files
l. 01rect fi 1les

) - ?

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
BlOOO ~CP II

p.s. 2212 5462 CE>

2. Data Structure
J. Dist Initialization
4. Fite Parameter Blocks
s. Dis~ Header
6. Fite Information Blocks
1. Communicate Operators

3. Indexed Sequential files
1. Direct Files
2. Index Files
3. Cluster files
4. Data file Structure
5. Index file Structure
6. Memory Structures

1. f 18 Dictionaries
2. User Specific Information CUSI>
3. file Global Information CGLDBALS>
4. Structure Descriptor
5. Disk File Header Extension

7. Available Space Allocation
a. Index file fable Splitting
9. Current Record Pointer
10. Current Maintenance
11. Buffer Management
12. Buffer Descriptor
13. Cancurrent Update Operations

5. The I/O Error Procedures

There is some overlap between the information contained ir this
section of the specification ~nd that contained in the Demand
Management section of the document. The Demand Managemen~
section was originally intended to cover the management of the
peripheral after it had been assigned to a user as a file; th~
1/0 Subsytem section was intended to cover the management of th~
device up to that time. This division is not always possibleP
particularly in the case of disk devices. The reader may have to
refer to both sections of the document to find the answer to a
specific question.

Normal state programs request I/O functions in a symbotic fashion
<e.g., Write a Record). The MCP must transform these expressions
into explicit l/O operators catted I/O descriptors. An 1/J
descriptor allows the HCP to coemunicate directly with 1

peripheral device via the soft I/O routines of GISHO. GISHJ
manages the execution of these operators by the I/O subsystem.
Each 1/0 descriitor provides such information as the type of I/J
operation reQuested• source or destination memory addresse!P tha
device which is to execute the operators, and space fo~ result
information used when control is passed back to the HCP. Certain
other fields vary with the type of descriptor and contain

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
31000 MCP II

P.S. 2212 5462 (£)

information pecutiar to its specific function.

Any number of 1/0 descriptors may be linked together to form d

single •chain" and "dispatcb9d~ in one HCP operation to lessen
the MCP•s interaction with the I/O subsystem.

The transformation of togical I/O requests to physicat I/O
descriptor manipulation js discussed in the Demand Management
section of this specification. The discussion below is intended
to describe the operations performed upon the descriptor after it
has been transformed. A prog<ammatic description of an IIO
descriptor is given below. This particular descriptor is typical
of one which might be constructed for a disk file.

DEfINE IO.DESC.OECLARATION AS 1%
DECLARE 01 DUMMY REMAPS IO.DESC

• OZ IO.RESULT WORD
• 03 IO.COMPLETE BIT (11
, 03 IO.EXCEPTION BIT (lJ
, -03 IO.PACK.NOT.READY BIT <ll
,, 03 IO.OATA.ECC.ERROR Bif Cll
,, 0 3 f ILLER BIT (.i)

- 03 10.MEM.PARITY.ERROR BIT Cl>
, 03 IO.WRITE.LOCKOUT BIT (1)
.P 0 3 f Ill ER 8 IT C 2)
,, 03 IO.ADDRESS.PARITY.ERROR BIT Cl>
, 03 IO.SECTOR.ADDRESS.ERROR BIT (1)
~ 03 IO.SEEK.TIMEOUT BIT (ll
,, 03 FILLER BIT CB
, 03 ID.TRANSMISSION.PARITY.ERROR BIT Cl>
• 03 IO.RESULT.BIT.17 BIT (11
- 03 IO.PORT.RS BIT (3)
• 03 IO.CHANNEL.RS 8IT (41
, 02 IO.LINK ADDRESS
• 02 IO.OP WORD
• 03 ID.OP.OP BIT C3l
,, 03 IO.OP.H BIT <1>
P 03 IO.OP.W BIT Cll
, 03 IO.OP.V BIT Cll
• 03 IO.OP.£ BIT Cl>
, 03 IO.OP.O BIT (ll
- OJ IO.OP.NNN BIT (3)
, 03 FILLER BIT (5)
, 03 IO.OP.P SIT (1)
- >QJ fillER BIT (3)
~ 03 IO.OP.UNIT BIT (4)
, 02 lO.B£GIN ADDRESS
, 02 IO.END ADDRESS
, 02 IO.DISK.ADDRESS ADDRESS
, 02 IO.M.EVENTS BIT (8)
, 03 IO.M.EVENTS.IOC BIT <I>

BURROUGHS CORPOR4TION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

., 03
r 03

• OJ
, 03 ,, 03 ,, 03
.,, OJ , 02
02 ,, 02
~ 02 , 02
, 03 , 03 ,, 02

lO.H.£VENT S. SIOC
filLER
IO.M.EVENTS.INT.H

COMPANY CONFIDENTIAL
81000 HCP 11

P.S. 2212 5462 (£)

BIT (1)

Blf (l)

an (1}
IO.M.EVENTS.S.INT.SENT SIT (1)

IO.M.EVENTS.H.INT.SENT SIT (1)

FILLER BIT (1)

IO.H.EVENTS.INT.S BIT (1)

IO.HCP.IO BIT (16)
10.r1a A OD RESS
!O.fI3.lINK ADORE SS
IO.BACK.LINK ADDRESS
IO.PORT.CHAN BIT (7)

10.PoR·r SIT (3)

IO.CHA~N£L SIT (4)
ID.BEEN.THRU.ERROR 8 IT (1} #;

With the exception of the Multi-Line Control used on Data
Communications configurations, on the 81000 hardware the IIU
controls have no direct connection with main memory. Atl datA
tr an sf er s bet ween the contra{ s and memory mu st go thro Lgh t hH
processor. GISMO is a set of micro-coded routines whose pri~ary
function is to interface between the MCPs and the actual
hardware. This allows the MCPs to view the I/O subsystem as an
110 processor. The MCP can initiate I/O Descriptors and GISMO
witt handle initiation of the control~ data transfer and
termination. The MCPs can queue several descriptors for
execution by a control# by properly setting the link f ietd! in
the descriptors~ and GISNO will initiate each one in turn.

User programs make requests to the Micro MCP# and sometimes th~
Hicro MCP must ask that the request be handled by the S.HCP# but
in either easer the MCP wilt pass the reQuest to GISMO who in
turn will pass it on to the I/O control.

The I/O subsystem atlows fifteen controls or channels to be
connected to any machine. After GISHO initiates a control• it
does not wait for completion of the operation but returns control
to its caller. Consequentty, onep and possioly more operations
may be in process on the machine at any given ti~e. At any g~ven
moment~ however. when GlSMO is executing it may only address on~
control.

The primary communication between the MCPs and GISMO is throuqn
the I/D descriptors. The S.MCP will initiate I/O operations
using the DISPATCH s-aperator and the M.MCP contains micro-code
to perform a similar function. fhi5 S-operator requires t~o
parameters~ the port and channel of the device being addressed

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
Bl 000 MCP II

?.S. 2212 5462 CEJ

and the memory
contains all of
operation.

address of the desc~iptor.
the information needed

The I/O decsriptor
by GISMO for the

An I/O descriptor is usually located by its "Reference Address"'
the memory address of the result descriptor fietd of the 1/J
descriptor. The result descriptor field is often referred to as
the •Rs fietd•• or Result Status field. Alt of the descriptor~
associated with a given control will be linked together in
memory, by setting IO.LINK to the memory address of the RS fielJ
of the next descrjptor. The descriptors are also linked in the
reverse direction, using the ID.BACK.LINK field• to facilitate
addinq and deleting descriptors. A link field may not be zero.
but a descriptor may be linked to itsetf.

The Reference Address points to the RS field. Each RS fietd is
twenty-four bits in length. The bits in the RS field have
differerit Geanings at diffe~ent ttmes. GISMO is most concerned
with the setting of the bits when the I/O is initiated. fhe MCPs
are more concer~ed with the setting of the bits when the I/O is
complete. When the descri;tor is ready for initiation• the RS
field ~s formatted as shown in tbe following diagra~. This field
is usuattr referred to as the result status field when the
descriptor is ready for execution or is in process and as ~
result descriptor field when the I/O operation is complete.

idits 0-1 RS Status Bits

00 - Ready to be Executed
01 - .f.10 Curren ti y in Proc,ess
10 - I/O Comolete with no Exception
11 - I/O Complete with Exception

Bits 2-11 - Gismo Toggles

MCPs may not alter any bits in this fiald if
RS Status :.: 01.

Bits 12-14 - Port to which this I/O is directed. CNot used>

Bit 1'5

Bit 16

- Interrupt requested on I/O Completion.

- High-Priority interrupt requested on I/O
Completion.

Bits tT-19 - Port to which interrupts are to be sent upon
I/O Completion <Always Processor Zero>.

Bits 20-23 - Channel on which I/Dis to be oerformed.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
01000 HCP II

P.S. 2212 5462 CE)

The leftmost bit of an RS field is alway~ set when the operation
is complete. Consequentty, storing a resutt descriptor locts the
descriptor to GISMO. The ~CP may lock a descriptor as welt• if
the status field is not 01. Gismo will only initiate "ready"
desc,riptorsr those whose status bits are eQuat to 00. When the
operation is initiated, GISHO sets the status bits to 01. The
GISMO toggles area js used by GISMO when an I/O is in process to
store information which it needs concerning the operation.

Another structure associated with peripheral management js the
channel table. There is one channel table for each port and eac~
element of the table descTibes one channel of that port. While
GISMO uses the I/G descriptor to communicate directly with the
I/O subsystem, the channel table is a structure for passing
information between the MCP and GISMO. the channel tab•e
reflects the itatus of a particular channel. Certain information
is passed to GlSMO during a •dispatch" operation and is used by
soft 110 in ~anaging the execution of that operation. Certain
fields are updated before GISMD passes control back to the MCP
which direct the course of action the MCP will take. A
programmatic description is given below:

DEFINE CHANNEL.TABLE~OECLARATION AS # %
DECLARE 01 DUMMY REMAPS CHANNEL.TABLE % ,
.,
• ,.
,
,.
,,
:P

,
.,

"
h

%
%
% ,,

~

,,
.,,
,,
; #

Ol CHANNEL.BUSY'
02 CHANNEL.PENDING
02 CHANNEL.EXCEPTION
02 CHANNEL.PAUSE
02 CHANNEL.OVERRIDE
02 CHANNEL.EXCHANGE
02 CHANNEL.OLD.MOOE
02 CHANNEL.INTEGRITY
02 CHANNEL.NG.HALT
02 f IllER
02 CHANNEL.f YPE

1)2 CHANNEL.LAST
02 CHANNEL.EXCHANGE.PC

03 CHANNEL.EXCHANGE.P
03 CHANNEL.E~CHANGE.C

02 CHANNEL.REf.AODR
; %

BOOLEAN %
BOOLEAN %
BOOLEAN l
BOOLEAN %
BOOLEAN %
BOOLEAN %
BOOLE;\N I
BOOLEAN %
'BOOLEAN %
BIT CJ) %
BIT ,Cit) '.%

T'tPE = 0 =
TYPE = 1 =
TY?E ·- 2 =
TYPE = 3 =
BOOLE AN %
'BIT 'Cll '%
Blf (J) %
BIT (4) %
ADDRESS %

0 = TAPE· DISK. c~s

DEVICE TYPE FOF DUMP
SERIAL DEVICE
OI SK
TAPE
CASSETTE

DELIMITS CHAN TABLE

In the CHANNEL.TABLE, BUSY is set and reset by GISMO only. It is
set when the control is busy. PENDING is also set and reset by

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

3 -.1

COMPANY CONFIDENTI4l
B1000 MCP 11

P.S. 2212 5~62 (()

GISHO. It is used on tape and disk devices onty and it tells
GISMO to continue linking through the head of the q~eue.
EXCEPTION is used on all devices except tape and dis~. It causes
GISHO to inhibit dispatch operations on the channel until a prior
exception condition ha$ been handled by the MCP.

PAUSE is also known as the fIMER bit. It is set by the MCP and
it never changes. It caus9s GISMO to issue a dispatch to th~
channel at each 100 millisecond timer interval and is used to
jmplement JEST.AND.WAIT operations on tape and disk controts.
This is discussed in more detail tater.

The OVERRIDE bit is used Gn atl devices and causes GISMO to reset
BUSY~ PENDING and EXCEPTION when a new operation is dispatched.
It is set by the MCPs and reset by GISMD. Essentiatty~ it causes
GISHO to override an existing operation with a new operation.

The EXCHANGE bit is set by the HCP and it never changes. It is
used on tape and disk controls only and it means that the
information in EXCHANGE.PC is valid, that there is •nother
control connected to this c~~trot by a hardware exchange. The
OLD.MODE bit~ also known as the PAUSE bit- is also set br the MCP
and never changes. It is set for Single-Line Cortrols and for
Disk Cartridge Control One. It causes GISMO to pause for 100
milliseconds when a tocked descriptor or a Pause I/O descriptor
is encountered. If this bit is not set• GISHO witl stop in this
circu~stance on these controls.

fhe INTEGRITY bit is set by the MCP when the channet table entry
is initiatized. It is also used by the MCP to stop GIS~O from
tinki~g on the channel.

The TYPE field is used ontr by the Dump Analyzer program. It is
necessary because the analyzer may have no other means of
determining this information. The REF.AOOR field contains the
address of the descr~ptor that is in process on this channel. It
is considered the head of the queue by GISHO.

The I/O descriptor contains most of the information GISMO needs
to accomplish an 110 operation. In the actual hard~are
interface' the OP• BEGIN, ENDP CISK.ADORESS and ACTUAL.ENO fields
are used~ The ACTUAL~END field is twenty-four bits in length and
immediately preceeds the RS field in each descri~tor. It is not
shown •n the preceding I/O descriptor d~agram. The fieto~is used
by GISMO while the operation is in process to store the uamory

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

3-e

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5~62 CEl

address of the data that is to be transferred to or fro~ the
memory buffer. When the operation is complete,. ACTUAL.END ~itl
contain the address of the next bit that data would have been
tr·ansferc·ed to or h"·om.

Each control is able to buffer~ or store,. a certain amount of
data to be transferred. The amount varies among the devices.
for some devices,. such as the card r·eader and line Pf'inteif", it is
a full record. For others, the size of the b~ffer may vary and
each contol may contain a portion of the data. Disk controls•
for example,. are equipped with a certain number of 180-byte
hardware buffers. The amount of data that may be contained in
the controls and the procedures that GISHO must follow in the
execution of an operation are fiKed when the cont,ol is designed
and do not change afterward.

The hardware in the processor that is used by GISMO is the
Command Register, the Gata Register and the Service Request
levet. The Command Register is used to send irformation to a
control, the Data Register to receive from the control and the
Service Request level indicates that a control needs attention
from G.ISMO.

Host transactions with the control consist of a
Command-Activate/Response-Complete CCA/RC> cycle. Data or
command infor~ation is sent out to a control with a CA. Control
information or data is returned with a RC.

The processor instructions whch GISMO uses to accomptish an
operation are:

TE ST Sf A tUS

GISHO requests and the controt returns its current status
count and the device IO. GISMO uses this information to
decide what to do next.

TEST & CLEAR

This operation clears the control.

TEST SERWICE REQUEST

GISHO requests, and the processor returns, a mask of ail

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
01000 MCP 11

P.S. 2212 5462 CE>

channels that are currently requesting service.

TE RM INA "TE 0 A f ,A

This operator is used to terminate data transfer when the
media~ disk and tape for example, has no fixed record size~

TR AN Sf ER our A

Moves one or two bytes of data from 11,emory "'to the controt
for output io the devjce. Data is sent at CA time; th~
control returns its status at RC time.

TRANSFER OUT B

Moves three bytes of data from memory to the control for
output to the device.

'.fRANSfER IN

Moves one, two or three bytes of data from the control ta
main memory on input operations. The d2ta is sent at RC
time. When one or two bytes is transferred~ the control
also sends its status.

The Service Request level is a toggte in the processor which is
settable by any control. It is OR-ed into the· nAny Interrupt•
toggle. Each Interpreter, prior to executing an S·oerator# ~itt
test the Any Interrupt toggle and~ if it is set, transfer contrcl
to GISMO instead. GISMO witt determine what caused the toggle to
be set. In this case, it wilt discover that Service Request is
raised.

It wilt then do a JEST SERVICE REQUEST CA/RC cycle. The RC wilt
return 3 mask of all controls that are currently requesting
service. GISHO will salect the highest channel from this mask
and begin handling that control. Conrots are usually in status
count 11 or 18 when they raise Service Request. This status
indicates that the control is ready to send a Reference Address
to GISMO. GISHO acceots the Reference Address and uses it to
locate 1/0 descriptor in memory.

GISMO witl then do a TEST SIATUS CA/RC cycte to detemine wh~t
service the control is requesting. Once the requested service
has been performed~ and the control no tonger is requestirg
service, GISMO will again perform a tEST SERVICE REQUEST CA/RC
cycle. It witt continue handling Service Requests from various
controls until the TEST SERVICE REQUEST returns all zeros. GISMO

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

then returns control to the Interpreter that was tnterru~ted.

The Status Count returned by a control is the arimary means in
which GISMO determines what is to be done next in an 110
operation. OpeTations may consist of sending the Op coda and
file address, sending the Reference Address, receiving the
Reference Address~ sending or receiving data and receivirg the
result. Various controls perform these steps in different
orders.

All controls begin in Status Count 1 and return to Status Count l
after Status Count 23. Each Status value has a particular
meaning. So•e counts always appear in series together. All
controls begin an operation by going through Status Counts 1
throuqh 6. A simplified table of the attowable Status Count
transitions is shown in the table below.

To send each of the twenty-four bit. fjetds OPP DISK.ADDRESS and
Reference Address~ three TRANSFER OUT operations are used, each
CA/RC sending one byte. For each TRANSFER our, the Status
Counter advances by one. Si•ila~lY• to receive either the Result
Descriptor or the Reference Add~ess, three TRANSFER IN operations
are used, each CA/RC receiving one byte.

'-"

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
~1000 MCP II

P.S. 2212 5462 CE)

S ta tu s Co un t

0

1

1, 21' l

1., 5,. 6

lr s,. '9

1-0

11,. 12. 13

14

15

15

17

18. l':i· 20

21,. 22, 23

Mearling

Control Not P~esent

Cleared (Initial> State

Ready to Receive op,. Bytes 1, 2 and 3

Ready to Receive DISK ADORESS• Bytes 1, z,. 3

Ready to Receive Reference Address,. Bytes 1. 2• i

dusy (Operation in process>. from lOr Controls
usuatly go to Status 11 or 18 and raise
Servic,e Request.

Ready to Send Reference Address• Bytes l• 2,. 3.

Ready to Receive Oata (output>

Ready to Send Data Cinput)

£nd of Hardware 'Suffer - Ready to Send of' Receive
Last Byte. More Buffers Remain.

End of Hardware Buffer and Last Buffer.

Re ad y to Se Ad R e fer e n c e A d dr e s s IP By t e s 1 ~ 2 - J •
Implies that a Result Descriptor is to Fottow.

Ready to Send Result Descriptor• Bytes 11 2, 3.

Table x.x - Typical Control Status Counts and their Mearing

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANI

COMPANY CONFIDENTIAL
BlOOO MCP II

P.S. 2212 5462 CEl

GISHO transfers data to and from the control in one or 11ore
iterations; each iteration wilt involve only one control b~ffer.
for some devices• there is only one buffer and this buffer w~tl
always contain the full physical record. GISMO will only perform
data transfer once per I/O operation for these controts. Other
controls have physical records of undefined length; for these
controts. there are usuatty multiple buffers of fixed length in
the control and each iteration of GISMO wilt fitl or empty one of
these buffers.

Whenever Service Request ~s raised and GISMD is invoked• the
requesting control will first send the reference address. GIS~O
witl then test the contTot•s status. If the control is in Status
14 or 15, GISMO will begin data transfer. for each operation,
data transfer witl continue until either tha control's buffer is
empty or the END address of the I/D descriptor is reached. In
the first case, the control wtll hava gone to Status 1 after the
last data character<s>. GISMO will test its status, see that it
is in Status 7 and send it the Reference Address~ thus co~pteting
the iteration. In the latter case~ on most contfols• GISKO witl
send it a TERMINATE com~and. Some controls require data transfer
to continue until the end of the control•s buffer. On input•
GISMO witt accept the remaining data from these controls but will
not store jt in memo~y. On output GISMO witt send blan~s to
these controls.

Data is always trahsferred to a control in one, two or three byte
portions. Most "Seriat" devices. such as printers and card
devices# use one byte transfers. This data transfer is perfo~med
from a loop within GISHO which consists of a CA/RC cyc(e,
transferring one data byte• until the control's buffer is full or
the END address is reached. A buffer full condition is dEtected
by the controt sending or receiving the last data byte in Status
Count 16 or· 17.

Many disk and tape controls transfer data two bytes per C~/RC.
Ois~ input and output is always terminated by G!SMO when the END
address is reached• possibly in the tast of muttipte disk
sectors. When the record tength is an odd number, GIS~O will
nor~atize the last byte as required. On output operations. the
control wilt pad the reeainder of the last buffer Cand hence
s e c t or > w i t h z er o s •

Tape outputP possibly in the last of muttipte buffers~ is also
terminated by GISMO when the END address is reached. When the

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

) - 1 s

COMPANY CONFIDENTIA~
81000 HCP II

P.S. 2212 5462 (£)

physicat record size is an odd number of characters, GISMO will
normalize the last byte for the last CA/RC cycle. It will send a
TERMINATE command• followed by a special command.which witl
indicate •odd character count" to tell the control that the tast
data transfer consisted of one byte onty. Tape input operat~ons
witl terminate either when the END address is reached or when the
end of the physical record is encountered. which may be in the
last of multiple buffers. If the end of the physical recor1
occurs and the length of the record is an odd nuaber of
characters• the contcol wilt set a flag in the RC portion of the
tast CA/RC cycle. GISMO wilt then normalize the last byte of the
record.

Atl disk pac• controts. the SN head-per-track control and att
phase-encoded tape controls use three byte data transfers. In
this case only, an exception is made to the general rule that att
transactions involve one CA and one RC. On these controls~ one
CA may be followe~·bY one or more RCs. This is accomplished as
fottows.

Prior to entering the transfer loop• on input. GISMO witt u~e a
special CA/RC cycle to ast the control how siny butes jt has to
send. It will then initiate the transfe~ loop ~ith a CA and
continue it with as many RCs as are required~ rece1v1~9
twenty-four bits of data on each RC. for output• GISMO will tell
the control how many bytes it has to send. It wilt then initiate
the transfer loop with a CA command of TRANSFER OUT s~ and
continug it with as many RCs as are required~ sending the data
out with the RC.

The I/D subsystea of the 91000 system does not use queues ior I/D
operations. Using the facilities presented in the precedjng, it
connects all I/O descriptors that are directed to the sa~e
control• or group of controls connected by an exchange~ in a
circular chain. This eliminates the necessity of an I/D co•ptete
interrupt being directed to the HCP, p~ovided the producer of I/D
requests. most often a user program• does not prod~ce the
requests faster than they can be satisfied. In other ~ords, if
the 1/0 subsystem is campleting operations before the~ are
actually required by the userP than the user wilt never need to
wait on the completion of an I/O reQuest and the HCP witl never
have to suspend the prog~am waiti"g far such a co~pletion.

Even if this isn•t the case, if the use~ prog~am is forced to
wait upon the completion of his I/O requests~ the amount of
processing that must be done to accomplish the suspension and to
reinstate the progra~ upon co~ptetion is minimized using

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
B1000 HCP II

P.5. 2212 5462 <£>

chainjnq. The processing is limited to only that which is
concerned with program execution and no processing is required to
tetl the I/O subsystem what it should do next. This information
is already contatned in the 1/0 descriptor.

for all devices except tape and dis~~ then~ the HCP constructs 1

circular chain of descriptors in memory. GISNO executes the
requested operations in turn~ as each descripto~ is untocted by
the MCP. Upon encountering a locked descriptor# Gl5MO simply
pauses or stops until the descriptor is unlocked. Thts will
occur when the user program next executes an I/D request or when
the file is closed for any reason. If the progra• must wait upon
an operation~ an I/O coeotete interrupt is requestedr using the
appropriate bit in the R5 field• and the program is suspended
pending the occurrence of the interrupt.

The dist I/O subsystem operates somewhat differently from the
operation just deseribed. Since each disk I/O descriptor
contains a disk address fietd, it is not necesary for the
operations to execute in any parttcular orde~. Various •eans are
provided in the software to prevent any contention problems th~t
might arise. It may be noted that these same means are necessary
on l/O s~bsystems which utilize queueing instead of chaining.

Att I/O descriptors for all disk controls that are connected to
the srstem are connected in the same ehain. I~ the system is
equipped with more than one control• then each Channel Table
entry ~ill point to the head of the chain~ If GISMO encounters a
descriptor which is not ready for execution or ~hich is already
in process~ specified by the first two bits of the RS field being
set to anything other than oo. it does not stop or pause but
continues to the next descriptor in the chain. Atso, if an
exception condition occu~s, GISMO does not stop or pause as it
does on other controls. Both of these actions are specified by
the CHANNEL.NO.HALT bit in the Channel Table.

Since GISMO continues linking in both of the cases mertioned
above~ it must know when it has examined all of the descriptors
in the chain. When it has examined alt of the descriptors~ it
must stop to free the processor for other execution. To
accomplish this1 the REf.AOOR field in the Channel Table is used
to mark the beginning of the chain. When a disk operation is
dispatched by the HCP, the reference address passed by the
dispatch is discarded and the REf.AOOR fjeld is used in5tead.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

3-U

COMPANY CONf IOEHTIAL
!31000 HCP II

P.S. 2212 5462 CE>

In order to operate properly with dispatch operations occurring
in an order different from the order of the descriptor tink
fields~ GISMO must be able to override stopping when it has been
through the entire chain once. for example• if descriptors A# a.
and c are oresent in the chain and if a ~s dispatched~ GISMO ~ill
tin~ to and initiate B. If,. during the time that 8 is io
process. A is dispatched, GISMO must link past C and the REf.ADDR
field and find and initiate A.

To accomplish this, the PENDING bit in the Channel Table is used.
This bit is set by a dispatch operation and reset by GISHO. If
GISMO arrives at the descriptor addre~sed by the REF.ADOR field
and jf the PENDING bit is set. it does not stop but resets
PENDING and continues linking. If PENDING is atr~ady reset at
this point, then GlSMO stops.

Since alt descriptors for at! dis• controts are maintained in tha
same chain• GISMO must be able to recognize descriptors which are
addressed to controls different from the one it is handling.
This is accomplished using the IO.CHANNEL.RS fietd of the I/D
descriptor. Upon eflcountering an unlocked I/O descripto~~ GISMO
compares this field to the channel it is executing upon and if
the two are not equal~ it does not mark the descriptor in process
but continues linking.

When an 1/0 operation is initiated on a moveable arm disk device
and the arm is presently positioned to a cylinder different fro~
the one specified in the descriptor, it is necessat'y to
reposition the arm to the proper cylinder. This operation is
known as a •seek"· On the 81000 system* att see~ operations are
implicit; there is no expl~cit Seek operation in the hardware.
The HCPs initiate disk I/D operations without regard for the
current arm position and~ if ~rm movement is required• it is
accomplished by GISMOr the control and the device withcut the
HCP•s participation. The MCP does not know tbat a seek is being
performed or required.

On this system. alt seek op•rations are "overlapped". This means
that the arm of any given drive may be in motion simuttaneoustr
with the arm of any other driveCsJ. Also# the control may be
performing data transfer o~ any other operation while the arms
are in motion.

This is accomptished by the control ~eturntng a result descriptor
with Bit 11, IO.RESULT.BIT.11, set to zero. Esssentialty. this
informs GISMO that some special 3Ction is necessary and that

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBAR~ PLANT

3-16

COMPANY CONFICENTIAL
81000 MCP II

P.S. 2212 5462 CE>

GISHO should not store the result descriptor in memory. In this
particutar case~ the control atso informs GISMO that the setectej
drive ts now seeking. GISMO will initiate no further operations
upon that drive until informed~ by the hardwarg, that the seek
operation has completed.

OCC-2 <Cartridge> and all disk pack controls notify GISHO that a
seek operation has completed by rai~ing Service ReQuest white ir
Status Count l. GISMO will again send the descriptor to the
control and this time~ after any required latency period, data
transfer witl occur. DCC·l does not notify GISMO when a seek
operation has completed but must be "polled" periodicalty by
GISMO. The pause time period for occ-1, the time between the
poll operations, is two milliseconds.

Jhe Disk Subsystem Controller COSC> offerred on GEM processors
introduces some exceptions to the statements above. These
exceptions witl be defined in a subsequent version of the
specification.

l!ff llD £tiA1Nlli~

The chaining of I/O descriptors for magnetic tape controls is
perhaps the most complex of the three basic types. J~e

complexity is caused by the fact that tape 1/0 descriptors
directed to each separate tape unit must be exec~ted jn logical
sequence and there may be several such units attached to the sa•e
control(s). It doesn't matter ~bich unit GISMO addresse! next
but the descriptor that is used to address the unit must be t~e
next logical descriptor in the nsubchain" for that unit. It is
therefore necessary to break the channel chain into subchains~
with one subchain for each physical unit, and to imoteaent a
means of remembering the next logical descriptor that must be
used within each subchain.

8otb of these requirements are satisfied by the lock descriptor.
Lock is a pseudo I/O operation which is handled completely by
GISMO and actually causes no physical I/O operations. It atso
serves as a means of resolving contention problems betwee~ the
MCPs 3nd GISHO and between two or more tape controls which are
attached to the same units by an exchange. lock operates as
described below.

Tha HCP~ when the system is Clear/Started, constructs a tape
chain with one Lock descrjptar for each unit connected to the
system. The ACTUAL.ENO fietd of a lock descriptor is not used
and the LINK field will contain the memory address of the next
Loe• descriptor. The BEGIN and ENO address fields of the lock

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE>

descriptor wilt contain the address of the TEST.AND.WAIT I/J
descriptor that the MCP uses to monitor the status of each unit.
This is discussed .in a later paragraph.

When a file is opened on a tape unit, the HCP changes the SEGIN
and END address fields in the Lock descriptor. The HCP now
constructs a subchain for the unit which will consist of one I/J
descriptoT for each buffer requested by the user. The BEGIN and
END addresses of the lock descriptor will be set to the memory
add~ess of the first physical 1/0 descriptor in the subchain anj
the TEST.AND.WAIT descriptor will be removed from the subchain.
The BEGIN address field will not be altered from this poirt until
the fite is Cto1ed. The END address witt be ~odified by GIS~O
each time it executes an operation in the subchain. In effect,
The ENO add~ess field is used to re~ember the next logical
operation that is to be performed on the unit.

The LINK fields in each I/O descriptor in the subchain wilt all
address the next physical descriptor in the subchain, as ther do
for all other controls. An exception to this is the last
physical descriptor in the subchain. The LINK field of this
descriptor witl contain the address of the lock descriptor for
that unit. This prevent one unit from monopolizing th~ entire
control; it insures that GISMD witl periodically determine if
there is anything to be done on the other units.

The REf.ADOR fietd of the Channel Table entry for a tape chain
will contain the address of the first Lock descriptor in the
chain. Gismo~ upon receiving a Dispatch for a tape controt~ ~itl
discard the ·Reference Address passsed and start at the addre·ss
provided by the REf.AOOR field. GISHO first attempts to l-0ck the
lock descriptor by swapping Ol into the first two bits of the RS
field. If successfut~ it fetches the address in the END field of
the Lock descriptor and proceeds to that address. If t~is
descriptor is unlocked• it begins the operation specified. If
not.r it returns to the loc·k descr·iptor and stores the address,.
which it previously fetched from the ENO address field bac~ into
the ENO address f1eld.

Assume now that the desc~iptor at the address fetched from the
END field of the Lock descriptor was unlocked. GISMO begi~s this
operation and- assu~ing that the operation cannot be co•pletej
without some intermediate Service Requests~ returns to the lock
descripto~ and continues tinkin9 through the chain. EventuatlyP
th e c on tr o l w H t r a i se S .er· v i c e Re q ue st an d r e f e,.. enc e t ha
initiated descriptor. Upon completion of that descriptor, Gii"J
witt store a result and fetc~ the LINK field of the descriptor.
It will then proceed to the new descriptor and again check to see
if it is tocked. If it is• GISHO returns to thE lock descriptor
for the unit and stores the new address in the END address field.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
BlOOO "CP U

P.s. 2212 5462 CE>

The new descriptor now becomes the next loqicat descriptor to be
executed on that unit. In this manner• GISHO effectively
maintains a logical sequence of operations that are to be
performed on any tape unit.

It may be noticed from the foregoing that there is no possibitit)
of conflict for a unit between two or more controls connected by
an exchange. since GISMO first attempts to tock the lock
descriptor before proceeding down a subchain. Similarly- the HCP
must tock the subchain before atter~ng any descriptor in the
subchain.

JS01:111DRI~.G flE fEBlfli.ERAJ. .SIAl.US

The MCP attempts to monitor the status of alt perjpherat devicei
that are attached to the system. To do th~SP it must remembffr
the status of each device and maintain a certain amount of
information about each. Tbe major portion of the info~mation

about all of the devices connected is maintained ~n the I/O
Assignment Table (!OAT>.

The 110 Assignment fable {lOATl allows the HCP to keep track of
atl peripheral units except the system's SPO and those devices
associated with data com$unication. ·rach u~it is identified by
~ort~ channel• and unit numbers as welt as by a symbolic name.
Various fields reflect the status of the unit Ce.g., AVAILABLE,
SAVED• REWINDING~ LOCKED>. A programmatic descriotion is given
bet ow:

DEFINE IOAl.SIZE AS 1512#;
DEFINE IOAJ.DECLARATION AS
DECLARE l OUHHY REMAPS IOAT~

02 UNIT.INITIAL
03 UNIT .HOWR
() l UN n· .PCO

04 UNIT.PORT.CHANNEL
05 UNIT.PORT
05 UNIT.CHANNEL

Oft FILLER
04 UN IT .UNI f

03 UNIT.NAME
02 UNIT.LABEL.ADDRESS

03 fill ER
03 UNIT.PACK.INFO

02 UNIT.RS
02 UNIT.FLAGS

%G l 0 8 A l

BIT (66), t
BIT (6),
SIT Cl 2), %
BIT C7lr %
BIT (3), %
BIT {4), %
BOOLEAN• %
BIT (4)11 %
CHAR (6),
DStC. A DR,.
BIT (12>.
ADDRESS,

1 0 A f

ADDRESS.% USER LIMil REGISTER
Blf(36.h

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 221Z 5462 CE>

03

02

02
02
02

OJ UNIT.AVAILABLE
03 UNIT.AVAILABLE.INPUT
03 UNIT.AVAILABLE.OUTPUT
03 UNJT.WAif.fOR.NOJ.READY
03 UNIT.T£Sf.ANO.WAIT
03 UNIT.SAVED
03 UNIT.REWINDING
03 UNIT.EOF.SENSED
03 UNIT.LOCKED
03 UNIT.LA8£L.SENSEO
03 UNIT.PRINT.BACXUP
03 UNIT.PURGE
03 UNIT.LOCK.AT.TERM
Gl UNIT.TO.BE.SAVED
03 UNIT.FLUSH
01 UNIT.TAPEF
03 UNIT.OISKf
03 UNif .SJOPPEO
03 UNIT.TRANSLATE

BOOLEAN,
BOOLEANP

03 UNIT.CTRL.CARD.USING
03 UNIT.REMOTE.JOB
OJ UNIT.CLOSED
OJ UNIT.CLEARED
03 UNIT.HULTI.FILE
OJ UNif .EOf
Ol UNIT.TAPE.FILE.STATUS

BOOLEAN~
BOOLEAN,
BOOLEAN,
BOOLEAN•
BOOLEAN,
BOOLEAN~

BOOLEAN>
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOlEAN
BOOLEAN•
BOOLE A NP
BOOLEAN,
BOOLEAN,%
BOOLEAN,

BOOLEAN•
BOOLEAN, %
BOOLEAN,
BOOLEAN, %
BOOLEAN,
BOOLEAN~ %
BOOLEAN•

FLUSH ro EOF

8ITC3)~J 0 = NOT RELEVANT(_ANSil
% 1 = BOV<BEG Of ~ULUME
% 2 = BOF(BEG OF FILE>
X 3 = £0VCEND OF VOLUME>
% 4 - EOfCEND Of FILE>
% 5 - PFBCPAOCESS f ILE Bl~

% 1 - UNDEf IhED
03 UNIT.TAPE.XCH BODlEAN,l FOR MIS-~ATCHEO UNITS
03 UNIT.NO.TRANS.TBLE BOOLEAN•IPC-5

UNIT.OfFLINE.YET.tN.USE BDOlEAN•%FOR ASSIGNED UNITS.
03 UN[f.AUOif BOOLEAN- % OHS AUDIT TAPE
03 UNIT.RESERVED.BY.AB BOiLEAN,% ~UJO BACKUP 6.1
03 UNIT.LASEL.OP Slf(3J-% O=aOOEOOX~ ODO fHANS

UNIT.DRIVE.TYPE
% VALUE
% 0
% l
% 2
% 3
% 4
% 5
% 6
% 1

OCCl/2/3
32X2Ql
32X406
64X203
64X406

NI A
NIA
NIA
NIA

UNIT.STATUS
UNIT.TO.BE.POWERED.OFF
FILLER

% l=~oocooxa ODD NO fRANS
% 2=a00600X~ EVEN TRANS
% J=~00400Xa EVEN NO TRAN~

BITC4J~% DISK ONLY
.DPCl/2 DfCl OfC3

N/A NIA N/A
215 SYS.MEM SN
225 N/A NIA
NIA lC•l NIA
201 1C•4 NIA
205 1A•3 N/A
206 lA-4 N/A
N/A N/A NIA

BIT (15>•
BOOLEAN~
BITC7)~

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

1;

02
02
02

oz
02
02

%

UN IT. JOB .• NUMBER
UNIT.fI0.AODRESS
UNIJ.lABEl.JYPE

% 0 =
% 1 =
% 2 =
'% 3 -

UNIJ.IRANS.JBLE.IO
f IlLER
UN I T. TEST • DES C

D E l I M I f

. COMPANY CONFIDENTIAL
01000 HCP II

P.S. 2212 5462 (El

BIT(16>~

ADDRESS~

BIT ·C 2 1 ~
OMITTED
BURROUGHS
USASI
INSTALLATION

BITC8l, %PC-5 TRAIN ID
WORD~% PLEASE DO NOT DISTURB
BIT <DESCRIPTOR.SIZE);

I 0 A T D E f I N E

The entire IOAT is constructed by the MCP whan the systea is
Clear/Started. During the Clear/Start operation- the HCP directs
a Test descriptor to each of the controls that are connected to
the system. When it discovers a controt that may have more than
one unit connected to it, it sends a lest descriptor to each
possible unit and makes one entry in the IDAT for each unit that
is connected.

The UNIT.HDWR fietd in the IOAT wilt contain the hard~ara
identifier returned by the test descriptor. The fotlowirq is 3

list of hardware ty.pes and os·ec.u:lo-~types that are sup.ported by the
HCP. Pseudo-types are used in the device assignment process to
indicate generic types• such as ~any magnetic tape device" which
would include seven-track• nine-track• phase encoded, NRZ and so
forth.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

DEVICE

Reserved
80 cot READER.PUNCH.PRINTER
80 cot CARO PUNCM
Reserved
fDC.t
96 col READER PUNCH PRINTER
PAPER TAP(READER
PAPER TAPE READER-1
PRINTER
READER SORTER-2
READER SORTER
DISK FILE (Any head per track)
DFC-1
occ-z
occ-1
OPC•l
DISK PACK <occ-1. occ-21 DPC-1)
DISK <Any disk)
OFC-3 (5•N)
96 cot READER
PAPER TAPE PUNCH
80 col C~RO READER
SP0-1
SP0-2
TAPE 9 TRK NRZ
TAPE 1 TRK NRZ
TAPE PE C9 JRK)
TAPE CAny tape)
TAPE.9 {Any ~ lRK tape)
Reserved
CASSETTE
LPC-5
QUEUE FILE
REMOTE fllE

CO~PANY CONFIDENTIAL
81000 "CP II

P.S. 2212 5462 CE>

FILE STMT HOW~ TYPE

00
DATA.RECORDER.BO 01
CARD.PUNCH 02

03
04

READER.PUNCH.PRINTER 05
PAPER.TAPE.READER 06
PAPER.TAPE.READER 07
PRINTER OB
READER.SDRTER.2 09
READER.SORTER 10
DISK.FILE 11
DISK.FILE.! 12
DISK.CARTRIDGE 13
OISK.CARTRICGE 14
OISK.PACK.10 15
DISK.PACK 16
DISK 17
DISK.FILE.l 13
READER.96 19
PAPER.TAPE.PUNCH 20
CARO.READER 21

22
CRT SPO 21
fAPE.9 24
TAPE.7 25
f APE.PE 26
TAPE 27
IAPE.9 28

29
CASSETTE 30
PC.5 31
QUEUE 62
REMOTE 63

Table 3.x - Hardware types supported by HCP

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBAR~ PLANI

COMPANY CONFIDENTIAL
Bl 000 MC? 11

P.S. 2212 5462 CEl

In the table above, the File Statement column CFILE SiMT> is for
use in the HCP,s FILE Control Card and is explained in the
~!2.f.t~u:.~-~.'2iC.:i.lign.a!_!iJ.ti.d§.a. Generic hardware type numbers are
no t st or e d i n th e l 0 AT • R a th er , t h e ac t u a l 1 de n t i f i er s r et ur n e d
by the hardware a~e used.

Unit mnemonics are also assigned by the MCP during the
Clear/Start p<ocess. These mnamonics allow the operator and the
HCP to identify devices uniquely. The table below tists the form
of the 1nemonic that will be ~ssigned to the variOU$ types of
devices.

Card Reader
Card Punch
Data Recorders
Print er s
Tape Units
Disk <head~per-track)
Disk Pack
Disk Cartridge
Paper Tape Readers
Paper Tape Punches
Reader-Sorters
Cassettes
f'lexi·Disk

CRx
Cf>x
CDx
lPx
MTx
none
OPx
ocx
PRx
PPx
RSx
CSX
f Ox

All units wilt be assigned a three-character mnemonic which
begins with the first tw-0 letters listed in the table above. The
third character will be unique to the unit. The first unit of
that type encountered by the MCP during the Clear/Start operation
is assigned the letter #A·~ the second ftB" and so forth.
Assignment proceeds alphabetically ~nd the mnemonic assigned does
not change unless the system configuration changes.

The assigned unit mnemonic is sto~ed in the IOAT in the UNIT.NAME
field. The entire IOAT is majntained in memory. To minimize
storage requirements- some information which relates to the unit
is not stored in the IOAT but is mairitained on dis~. file
Identifiers and any other information which is seldom used by the
HCP aTe stored in an INTERNAL.LABEL field on disk. The disk
address of this f ietd is ma~ntained in the IOAT in the
UNIT.LABEL.ADDR£SS field. Information in this field is typically
updated br the SJAIUS procedure in the HCP.

The STATUS procedure ts executed whenever the Ready status of an
unassigned device changes. The HCP is made aware of a status
change by JEST.AND.WAIT I/O operators. These operators do not

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
'61000 HCP II

P.S. 2212 5462 CE>

truly wait on a unit status change but this function is erulated
by GISMD.

Ibe HCP must know when a unit goes from~ Not Ready conditio~ to
a Re a d y con d i ti on s o t h at i t c an r e ad the· l ab el on the me d i a and
update the INTERNAL.LABEL information on disk. It must know when
a unit changes from Ready to Not Ready so that ~t can maTk the
unit unavailable and initiate a TEST.ANO.WAIT.FOR.READY on the
unit. TEST.AND.WAIT operations allow the soecifica~ior of
certain conditions for completion~ such as Test and Wait for
Heady~ Not Ready, Ready to Transmit, Ready to Receive and !a
forth. GISHO wilt not consider the operation cosplete unless the
specified conditions are met.

On disk and tape controls, which allow more than one unit per
controt~ we cannot tie up the entire control ~ith a Test ard ~ait
operation to one unit. For occ-z, all disk pact and all taoe
controls• the PAUSE bit in the Channel Table is used to i•plement
a periodic test of alt such units. At each 100 millisecond timer
interval~ GISMO searches through the Channel Table looking for
entries with this bit set to zero. When such an entrv is found,
GISHO initiates that chain at the address specified by REF.ADOR•
also in the Channel fable. During this execution, GISHO witt
initiate all Test operations encountered in the chain. If the
conditions for comptetion specified in the operator have been
met- GISMO will store the result descriptor returned by the
operation and queue an interrupt for the HCP; the HCP always
requests an intetrupt in fest ~nd Wait descriptors.

The HCP also sets the type field of this I/O descriptor~
IO.HCP.Io, to a value which indicates •status Change•. In the
MCP•s I/O Complete procedure. which js invoked onty when an
interrupt is retuf'ned from an lfO oper·ation1 the value stored in
IO.HCP.IO will cause invocation of the HCP's STATUS ProcedLre.

As mentioned previousf yp the STATUS Procedure is executed onty
when the status of an unassigned peTipheral changes, If a
peripheral is being used by a p~ogram and if ~t goes to a Not
Ready condition, the situation is handled by the I/O Error
Procedure. When an assigned peripheral goes from Not Ready to
Ready~ no action is required by the MCP since the Test a~d Wait
descriptor eKecuted in this case ~jll have a LINK field set to
the next logical operation to be performed on the device.

BURROUGHS CORPORATION
COMPUTER SYSfEHS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CEJ

Peripheral devices which are capable of input operations ~s~atty
have l~bels written on the media. The MCP is equi~ped to
recognize several different label fo¥mats on disk and tap9
devices and it expects to read control instructions from all card
devices which have input capabilities. Control instructions are
discussed in the ~~il~jC~ ~~ICA!i~nil i~idi and in Product
Specification 2219 0144, !'f ~2D1C21 linl~J and wilt not be
discussed here. Essentially• when a card device becomes Ready
for input purposes• the Status Procedure reads the first card and
control ~s passed to the Control Card Procedure.

On disk and tape devices. when a unit becomes Ready, the Status
Procedure attempts to read a label from the media. The fottowing
is a description of the va~icius label formats, on disk and tape
devices• the HCP is capabte of recognizing.

Every dis• pact, dist cartrjdge~ or head-per-track sub-system js
identified by a standard "ANSI" pact label. This pack label~
written in EBCDIC (8 bit code>- is two pack sectors tong C360
bytes>~ and occupies the first two sectors on a pack~ I.£.,
cylinder o. track o, sectors D and 1. Sector O contajns oack
identification information and sector 1 js reserved for future
implementation of pack security procedures. A orog~ammatic
descriptjon is given belo~:

DEFINE PACK.LABEL.OECLARATION AS #%
DECLAft£ 01 DUMMY REMAPS PACK.LABEL%
• 02 PL.VOLi CHAR (41 t
~ 02 Pl.SERIAL.NO CHAR (6) %
02 Pl.ACCESS.CODE CHAR (1) %
, 02 PL.ID CHAR (17) %
, 03 PL.ffAME CHAR (10) %
, OJ f IllER CHAR (7) %
, 02 PL.SYSfEM.INJERCHANGE CHAR (2) %

, 02 Pl.CODE
, 02 FILLER , 02 PL.OWNER.IO
~ 02 PL.TYPE

• Ol Pl.CONTINUE , 02 FILLER , 02 PL.INT
• 02 PL.VDL2

CHAR
CHAR
CHAR
CHAR

CHAR
CHAR
CHAR
CHAR

(1)

(6)
(14)
{1)

{1)

(26)
(t)
(4)

%
%
%
%
%
t
%
%
?
?
%
%
%
%

"VDLl"
SERIAL CCAN> NU~BER
ACCESS CODE
PACK ID

SYSTEM INTERCH•NGE/COO~

00 = INTERCHANGE
17 - 01000 INfERNAL
35 - 93500 INTERNAL
ETC, ETC~ ETC

PACK CODE oa = SCRATCH

"R" = RESlRICTED PACK
"U" = USER PAC~
"S• = SYSTEM.PAC~
CONTINUATION FLAG •c•

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

• 02 PL.DATE.INITIALIZED
, 02 Pl. UHT .SYSTEM
, 02 PL.DISK.DIRECTORY
• 02 Pl.HA5f£R.AVAll
• 02 PL.OISK.AV~Il1BLE , 02 PL. INTEGRITY

, 02 Pl.ERROR.COUNT
~ OZ PL. SECTORS. XO
~ 02 Pl.lEMP.fABlE

--
02 PL.PCD , 02 PL.ASSIGNED.TO.BPS

CHAR (5)

CHAR (6)
CHAR (8)
CHAR (8)
CHAR (8·)

CHAR (1)

CHAR (6)

CHAR (6)
CHAR (8)

CHAR en
CHA.R H»

%
%
%
%
%
%
%
%

3-2'1

CCMPANY CONFIDENTIAL
iHOilO MCP II

P.S. 2212 5462 CE>

INITIALIZING SYiTEH
DIRECTORY ADDRESS
MASTER AVAitAalf TABLE
WORKING AVAILABLE TABLE
0 ·= NORMAl
1 = RECOVER~ ~E~UIREO

% REMOVED SECTORS
i TEMP TABLE LINK
% LAST PORT, CHAN, DRIVE
% BASE PACK SERI~l NUMBER

In the case of disk devices• additional information~ beyond tnat
which can be stored in the lOAT. is requirEd by the HCP for
proper operation. The ST4TUS Procedure and others maintain this
information in a t"eseirved area in memory know" as the Pact<'
Information Table <PACK.INFO).

The pact information table is an HCP maintained linked list of
all user -disk pac's and cartridges currently on line. [t

contains such information as the name• serial nu~ber, hardware
unit• number of users~ arid addresses of the disk directory.
available table• and temoorary tabte. This structure atlcks a
pack or cartridge to be externalty referenced by nase. A
programmatic description is given below:

DEFINE PACK.INFO.DECLARATION AS #%
DECLARE Ol DUMMY REMAPS PACK.INFO•

02 ?.NAME NAME,
02 P.SERIAL.NO WORD~
02 P.CISK.DIRECJORY OSK.AOR,
02 P.OISK.AVAilABLE DSK.AOR,
02 P.TEHP.TABLE DSK.AOR,
02 P.UNIT.NAME CHAR (6)#
02 P.PCO BIT <12),

03 P.PORT.CHAN SIT CTJ,
OJ FILLER BIT Cl),
03 P.ORIVE.NO Blf (4),

02 P.NO.USERS BIT (8),
02 P.NO.MPF.USERS BIT (8),
02 P.TO.BE.POWERED.QOWN BOOLEAN-
02 P.RESfRICIED BIT (JJ,

02 P.CONTINU£
02 P.SCRATCH

BOOLE A th
BOOLEAN,

%
%
%
%
I
%

0 = SYSTEM RESOURCE PACK
1 = RESTRICTED
2 - UNRESTRICTED USER
3 = INTERCHANGE
1 = CONTINUATION P.ACK
1 = SCRATCH PACK

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

7 - ., .
J "- 0

COMPANY CONFIDENTIAL
Bl 000 MCP II

P.S. 2212 5~62 CE>

02 P.fUll
02 P.xc

800LEAN~ % 1 = NO HORE AVL DISK

02 P.ASSIGNEO.TO.BPS
02 P.BACX.LINK
02 P .• LUtK

BOOLEAN# %PACK HAS UNDERGONE XC.
WORD, % ASSIGNED TO BASE PACK #
AOIJRESS,
ADDRESS;

HCP II includes the capability to create and recognize t~~

different forms of magnetic tape labels. The standard label
format for the 81000 system will conform to that specified in the
publication entitled •fhe American National Standard Magnetic
Tape Labels for Information Exchan1e" which is dated 1969 and
pub t i shed b y t he Am er i can Na ti on at S t and a r d s I n s t i tu t e , I n c •
(ANSIIJ. These labels are commonly known as •ANSII• Version l"
labels. It should be noted that •standard label format- for tha
system means that any P!f''Ogram which requests standard labels in
its file declaration witt cause ANSII labels to be written when
the fite is assigned to magnetic tape~ and the file is openej
outout. Users are allowed to create the label in ASCII if they
so desire.

ANSII labels as implemented on the BlOOO system contain several
deviations from the standard as presented by the ANSII documents.
The dev·i at ions are necessary in order to insure that we are
compatible with the 86700 system. The most note~ortby deviation
is the recording mode of the label itself; it is written in
EBCDIC character code unless ASCII is specifically requested via
the "SNft command.

ANSII label format~ as implemented. consists of three physical
blocks on the tape~ followed by a tape mark. The first of the
three blocks is known as the Volume Header. A progra~matjc
description is p~esented below.

0 l VOL UM£. HEADER
02 fIU .. £R CHARACTER<4>

%This field will always contain •volt"
02 VOLUME.ID CHARACTER(6)
02 ACCESSABILITY . CHARACTER<l>

%This fietd is not used by tha 01000
02 RFS %This field is reserved in the ANSII Standard. It is

%being used as follo~s by the 81000 and the 96700.
03 MULlI.f ILE.IO CHARACTERC171

% no• if there is no HflD
% wxo" if Scratch
% •BACKUP" if Backup

Ol SYS.SYMBOL CHARACTERC2J

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 ~CP II

P.S. 2212 5462 <E>

% Will contain
03 TAPE.TYPE

"17" if created on BlOOO
CHAR,i\·CTERCl)

% O = Scratch
% 1 = U sar
x 2 = a a..: 1< u p
% l ·- l i br ar y

03 .f Illt:R CHAR,~CTER(G)

CHARACT£R(14) 02 OWNER. ID
% This

02 f lllER
02 VERSION

field is not currently usable on the 81000 syste•
CHARACTERC28)

% Will contain
% changed

CHARACTER Cl)
"1" until such time as the tabel forsat. is

The second of the three physical blocks is ~nown as "Header One•.
The format is also used for End-of-File and End-of•Volu•e. A
programmatic description is gtven below.

01 HEADER1.0ECLARATION
02 f IllER CHARACTERC4>

% Hay contain wHRDl"P "EOft•, or "EDvt•
02 FILE.ID CHARACTERC17l
02 FILE.SET.ID CHARACTERC6)

% This field will contain the first six characters from
% the MfID f jeld in the VOll block

02 FILE.SECTION.NO CHARACTER<4J
% Used for Reel number by 86700 and 81000

02 FilE.SEQ.NO CHARACTERC4)
% Ordinal number of the file within a Multi-Fite

02 GENERATION.NO CHARACTER<4> I Unused
02 GENERATION.VERSION.NO CHARACTERC2> 1 Unused
02 CREATION.DAfE CHARACTERC6) % bYYCOO
02 EXPIRATION.DATE CHARACTER(6) % bYYODD
02 ACCESSABILifY CHARACTERCt> % Unused
02 BLOCK.COUNT CHARACTER(6)

% Zero if this is a Header.One block
02 SYSTEM.CODE CHARACTERC131 % "81100"
02 f IllER CHARACT£RC7l

The third physical block is known as "Header Two•. It is also
used at End-of-file and End-of-Volume. Its format is shown
bet ow:

01 HEADER2.0EClARATION
ll2 FILLER CHARACTER(4)

% May contain •HDRZ"' "EDF2"~ or ~rav2•
D2 RECORD.FORMAT CHARACTER(!)

% F = fixed
J \I = Var i ab l e
% S = Spanned (Not yet implemented by any Burroughs system)

BURROUGHS CORPORATION
COMPUTE~ SYSTEMS GROUP
SANTA BlRBARA PLANT

% U = U,nde H ned
02 BLOCK.LENGTH
02 RECQRO.LENGTti
02 RESl.SYSTEM.USE

03 DENSITY
'% 0 = > 800
% 1 = > 556
'% 2 = > 200
% 3 = > 1600

0 3 SENT INAL
03 PARITY

CHARACTERC5l
CHARACTER·CS>
CHARACTERC35)
CHARACTERCl)

COMPANY CONFIDENTIAL
BlOOO MCP II

?.S. 2212 5462 <E>

CHARACTER<1> I Unused
CHARACTERClJ

% 0 = Even; l = Odd

02
02

0.3 EXT.FORM
% 0 = Unspecified
% 1 - a in ar y
%. 2 = A SC I I
4 :1 ·- BCL
% 4 = ESCDIC

0 3 f Ill ER
BUFFER.Off SE J
f ILLER

CHAR.,CTER C 1)

CHARACT.£RC31)
CHAR."CTERC2> ,% Unused
CHARACTERC28)

As mentioned in a prior paragraph• the MCP writes ANSII format
i.abel s on tapes whenever a ·fHe is opened output and th.~
LABEL.TYPE field in the FPB is set to zero. If the user ~ish•s
to continue writing the old Burroughs format labets, he must
modify this field in all of the files in his programs. This may
be accomptished by recompilation, by the use of a file Attribute
communicate operation within the program, by the use of t~e
HODIFY control instruction or by tbe use of a FILE card when the
program is executed. Presently valid values fo~ the LABEL.TYPE
fi e:ld are:

0 = ANSH
1 = Unt ab el led
2 = Bur,ro ughs

ANSII Labels, though they are written when the file is openea
output~ are actuatly created on att magnetic; tapes prior to that
time. A keyboard message has been implemented in the ~CP for
purposes of creating the initial ANSII label on all tapes. The
mnemonic of the message is "SN" which used to be an acronym for
Serial Nu3ber. The syntax fo~ SN is:

SN <unit mnemonic> <volume-identifier> I ASCII I

<Volume identifier> may consist of one to six alphanumeric
characters and is inserted in the VOLUME.ID field of the VOtl
block of the label which is created. This operation is~ for
conversational 6urposes, known as "initializingft the tape. All
tapes and cassettes must be initialjzed on the 81000 before the

BURROUGHS CORPORATION
COMPUTER srsJEHS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

MCP wilt consider them scratch. This applies to seven-track• as
well as att versions of nine-track tapes.

The <volume identifier> teyed in witl remain on the tape until
the tape is re-initialized. The tape may be purged at any time#
provided the ANSII label is still intact on the tape. Tapes
which have Burroughs labels on them must be re-initialized and
may not be purged. Purging. here, implies the use of the ~PG~
keyboard message. Similarly• unlabelled tape~ may not be purged,
but may be re-initialied. The <volume identifier> is now ~art of
the output of the •ot" message. Tha presence of the reserved
word ASCII in an SN statement causes the label to be written in
ASCII character codes.

The capability of creating and recogn121ng ANSII labets was not
included in the HCP prior to the 5.0 release of the software.
Before the 5.0 release, alt labels created by the 81000 system
were the old Burroughs labels first implemented on the 85500
system. A programmatic description of these labels, as ther are
created on the 81000# is shown below. As can be seen from the
description. certajn fie(ds have been added to the labels to
improve their utility. These fields are meaningful to the 81000
system onty. A programmatic description is p~esented below.

DEFINE SfANDARO.LABEL.OECLARATION AS # %
DECLARE 01 DU~MY REMAPS L.LABEL.RECORO %
OZ L.LABEL CHAR (9) % . • LABEL
02 L.HfIG CHAR (7) %
• 02 L.Zl CHAR (1) X
, 02 L.to CHAR C7l %
• 02 L.REEL CHAR (3) %
02 L.ow CHAR (5) %
02 L.CICLE CHAR CZJ %
, 02 L.PlO CHAR (5) %
, 02 L.S CHAR Cl> %
, 02 L,.ec CHAR (5) %.
, 02 l.RC CHAR (7) %
• 02 l.P8 CHAR (1) %
• OZ L.SERIAL CHAR (5) %
• OZ L.SJSTEM CHAR (5) %
, 02 L.BUFSIZE CHAR(8) %
03 t.SSIZE Blf(24J %
, 03 l.RSIZE Blf(24> %
, 02 L.RECSIZE CHAR(8) %
• 02 L.MOOE CHAR(l} %

%

"

DATE WRITTEN
•o•
PURGE DiHE
SENTINNEl Cl = ENO-Of-REEL>
BLOCK CQUNf
RECORD COUNT
PRINT BACKUP FLAG
SERI AL NUMBER
CREATING SYSTEM
NEW FORMAT DECIMAL BLOCK SIZE
OLD fOHMAf BINARY
OlO f OR~AT BINARY
NEW FORMAT DECIMAL RECORD SIZE
NEW FORMAT RECORDING MODE FOR
TAPE FILE

All labels on the 81000 system a~e written in odd parity.
8eginnin9 with the 4.2 release of the software, tape marks ara

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
31000 MCP II

P.S. 2212 5462 CE>

written in even parity. eKcept where prohibited by the control.
Jhis was dsne as an accomodation to the 8300 system, which can
read only seven-track tape and cannot recognize tape marks which
are written in odd parity.

HCPII witl write tapemarks and ending labels on any output
labeled tape that is ~ot at BOT when a Clear/Start is dona. This
wilt alto~ the user to read that tape and recover the data.
There is one restriction. If the tape is to be read in reverse,
the user must specify blocking infarmation.

ANSII labels are also written as the standard label on
seven-tract tape. When this is done~ the labels are wrjtten with
translation to BCL. Burroughs labels• when written ta
seven-tract tape~ are ·written in odd parity wjth the EBCDIC/BCL
translator enabled.

The STATUS Procedure makes all possible attempts to recognize ~
label when a tape unit becomes Ready. On seven-tract tape,
particutarty, there a~e several different variations of paritv
and recording mode that may have been used to create the tape.
Seven-track tape can be wrJtten with or without cha~acter
translation from EBCDIC to BCt. lhe HCP will atte•pt to read
tape labels with att possible variations before giving up.

When the MCP cannot recognize a label. the unit is considered
available for input purposes if the tape does not have a Write
Ring in it. In this case• it must be manually assigned to a
program by the operator~ either when the program reQuests ths
file or when the Job is executed. If the ta~e does certain 3

Write Ring, it must be initialized. using the SN instruction
decsribed above. Only when the tape has a Write Ring and
contains a valid ANSI label indicating •scratch" is it considered
avaitable for output purposes automaticaltr by the MCP.

It is also the responsibility of the STATUS Procedure to record
the other information returned by the Test 110 operation. This
information is c'uciat to the proper operation of the taoe
subsystem. In partjcular, if the system is equipped kith 3

PE/NRZ exchange• the operation of the STATUS Procedure when a
unit becomes Ready is as described below.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
HlC-00 HCP II

P.S. 2212 5462 CE>

w•th the inclusion of the M4/M5 HEC supplied by the Westlake
Pt ant and described by P.S. #Z047 4490, it is possibt• for a
tape unit to operate in either Phase Encoded <PE> or Non-Return
to Zero <NRZ> recording mode. This can only be accomplished on
the 81000 hardware b~ connecting one NRZ control and one PE
control to the MEC. The NRZ control is designated MTC-2 and the
PE control is designated MTC-4. A tape subsystem so connected is
spoten of as an exchange subsystem by hardware personnel.
According to the software definition of a subsystem~ att centrals
in the subsystem must be identical. The code in the I/O driver
whjch interfaces to MTC-2 is distinctly different from that which
interfaces with MTC-4. A request for a unit which is ope~atinq
in the NRZ mode can only be handled by HTC-2.

To solve this problem• considerable coding has been inc~rporated
in the HCP. The problem has been rectified in the most efficient
manna~ possible, however. Two separate chains of de~criptors#

one for each control• are constructed by the HCP at Clear/Start
time. The two chains are maintained by the HCP dynamicalty. fro~
that point.

Recording mode information is supplied by the test operator and
actua;tly is returned as tha density fje;ld in the result
descriptor. A density selection of 1600 bpi, for exa•pte~
indicates that the unit has be~n selected to be ir the
phase-encoded recording mode and that the 1/0 descriptors for th9
unit should be in the HTC-4 chain of descriptors. If the
subchain for the unit is not in the proper chain, the MCP witl
move the entire subchain to the proper chain. The movemeTit of
the subchain is ontv attempted when the unit is not in use. of
course. Selecting a different density white the unit is being
used constitutes an error on the part of the operator. Th!
oparator is notjfied of the error and the program is allowed to
contjnue processing only when the proper density has been
selected on the unit.

This solution is only possible if both controls are capable of
reporting recordjng density property. MTC-Z can report the fact
that a unit is setected to be in the 1600 bpi density.
Similarly, MfC•4 is abte to report the fact that a unit is in the
800 bpi density. Density infor~ation is commonly used by the HCP
only when a unit goes from a not-ready state to a ready state.
The movement of the subchain ia tberefore perfurmed by the MCP
status routine when the unit become~ ready.

Unit mneaonics are not affected
exchange. A unit selected as MJA,

by the pr es enc e of a P £ f NR l
fo,r example• wH1 always be

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA 8ARSARA PLANT

COMPANY CONFIDENTIAL
01000 MCP II

P.S. 2212 5462 CE>

known as MTA. regardtess of which chain contains its subchain• or
which density is selected by the operator.

Oue to differences in the unit numbering scheme between HTC-2 and
MTC·4~ there can be no more than eight magnetic tape units
connected to a PE/NRZ tape subsystem. This capabiljty is not
available on any version of the software prior to the 5.1 release
version.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANI

COMPANY CONFIDENTIAL
81000 ..-cP II

P.S. 2212 5462 <£>

A file is a group of related records. Files are of central
importance in the I/O Subsystem since effectively att of the
communication between user pragrams and the subsystem is
accomptished through files.

The BlOOO Operating Systea supports three different fite t)pes or
structures. exclusive of Data Management System structures, which
correspond roughly to those file types defined in the ANSI '74
COBOL Language. In that language, these types are called
Sequential- Relative and Indexed Sequential. Sequent~al and
Indexed Sequential files, in COBOL~ can both be accessed in a
random manner and the use of the word •sequential" tends to add
confusion. In this document- the three types will be reffe~red
to as Conventionat files• Retattve files and IndEXEd files.

The basic definition of Conventional file structures is found in
the COBOL ~68 Language, though many functions have been added to
the basic definition. To a program, a file represe~ts a large
collection of ordered data that eKists apart from the p~cgra~.
The program needs to interact with parts of that data from time
to time and the I/O Subsystem makes this interaction possible.
The I/O Subsystem moves the data into and out of user wor~inq
areas in ma1n meaH>ry, to which the program has access.

The unit of data moved into and out of the user~s working a~ea is
the record. fhe record is considered• by the 1/0 Subsystem,. to
be a string of bits• which the user program will probably group
into characters or words in some manner~ but the I/O Sutsystem
deals only with entire records and delivers and receives one
record at a time to and from the user program.

A file has some structure as seen by the user prog~am. The
~ecords may be all of the same length or they may be of variable
tenqth. length information $Ust be declared by the program er
contained in the record itself oi exist in an accessible fer• in
the physical file or exist in the information which the HCP
maintains about the fH.'e• If.. the recor·d tength is variable,. tnen
the length of each record_ must exist in that record,. Tn-tne- first
f o ur c ti ar act er po s it i on s .. _ -.-··--"·::\ ·----··· .. ·· - · ··-· ·-·--·-·-·--------- · ·-· -.. -
--.. ---·-- . ---------{ ""''~. ~)

'· ~ f v d ··*·""'

BURROUGHS CORPORATION
COMPUTER srsTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

The fite~ as it is stored on some recording medium~ is often
refferred to as a physical file. A physical file •ay have sose
additional elements bf structure. It may contain blocks. ~
bloc~ is a group of physically contiguous records which a~e
transfer~ed to and from the physical medium as a group. fhe
storage devic~ itself may impose some structure upon the fite.
As discussd previaus(y, data is transferred to disk in 1440-bit
increments. A block of records to be written to disk ~ust
therefore total some integer mult~pte of 1440 bits. The dis•
itself may be used to store many disjoint physical files. To
minimize storage .avaHabHity problems• the HCP allows disk files
to be bro~en into •areas•• each of which will contain root for a
specified number of blocks. This is described in more detail
later.

The physical fite inherits many of its properties from the
togicat fite declared by the user program which creates it. When
the user pro gr am mer· de d. a r· es a l o g i c ~ l f H e.,. the co• pit er
gene~ates a file Parameter Block which contains the specified
values for the various attributes of th~ file. File Paramete~
Blocks <FPBsJ are defined in Section 2 of this specification.
The HCP' and more specifically the OPEN procedure~ converts the
attributes specified by the user to an actual physical file.
More attributes are added to the physical file when it is
assigned to a device.

Any fite may be described by its attributes. File attributes are
syste• controt parameters which are used by the I/O Subsystem.
The attributes contain atl of the information the subsystem needs
when it connects a physical file to a logical file dectared in a
user progf'an1 and when it controls the access to that physical
fi:le.

Kost of the attributes associated with an_t_ _ _Ji!e are con_~a_toed. ir:
th e f i l e P ar am et er at o c k c r f> a > for t ha t fi dt e • -- -t-,ii ta i n t y ,. t h a r Pa
is fhestorage medium torr the attribo~i-es tha·t are declared by th~
user and generated by the compiler. Additional attributes will/
be obtained when the file is opened and assigned to a device.7
When a file is open. its attributes may be stared in the FPB• the\
Fite Information Block <FIB>• the Disk file Header <DFH> and t.·he)
I/O Assi9nmment Table CIOAT>. All of these structures have been
pr· e sen t e d pr e v i o us :l y • ~-

Beginning with the 8.0 version of the MCP# a co•m~nicate
operation was added to altow user programs to dynamicalty modify
selected attributes of a fite. In subsequent versions of the
HCP• the list of modifiable attribtes has been expanded. fhe
Fite Att~ibute communicate operation is described in the Demand
Management section of this document.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

CO~PANY CONFIDENTIAL
St 000 MCP II

P.S. 2212 5462 CE>

All names associated with files on the 81000 HCP may be a 1aximum
of ten cbaracters in length. Names in excess of ten characters
will be truncated to the first ten .• loo,Jdng at the description
of the FPB presented in Section 2 of this specificatior• tha
first field in the fPB• fPB.fILE.NAHE is the internal name of the
file. "Internal"• in this case• means internal to the user
program. This is the name which appears in the Fite Declaration
of the user program and the name ~hich the progra•me' uses in atl
references to the file withjn the program.

The next three name fields in the FPS provide the "file
Identifier• for HCP purposes. Att physical files introduced to
the system may have one or two names. files assigned to djsk
pact may have a third name which wilt correspond to the pac~
name, the name contained in the pack label.

If __ a .f..il.Lhas one -M_me only.,, that name is stored Jn ____ Ute ___ field
f Pa .. HUL.I I._f_{lE • I 0 an dtlle-ffef(f--fp-8 ~-fitf~--fi5-·--5-h-ou--l d be f i t l e d w i th
blanks. fPB.HUlTI.FILE.10 is often referred to as the 9fa~ity
10• and is only important if the file is assigned to disk er
tape. If a file has two names, the second name is stored in the
fPB.flLE.ID fietd.

The assignment of physical files to logical files is discussed in
the Demand Management Section. of t~is specification in the
description of the OPEN commanicate.''operation. Stated in its
simplest form, the HCP attempts to associate one or two names
with each device that is connected to 'the syste.11 and that is
capable of input operations and to match this external name to
the file ldentjfier specified in an FPS when a user OPENs a file.
On output files, the MCP simply attempts to assign an available
device of the requested hardware type.

There are two exceptions to the state~ents in the pTecedinq
paragraph. When an output file is directed to Printer or Punch
devices, the output data may be actually ~tored on disk for later
retrieval. Such files are known as aactup files and ara
discussed later. Input card files may be toaded to dist files
prior to the time they are required by a program. When the
program then requests the card fite• MCP may automaticatlJ
substitute the previously toaded dist files. This is known as
the Psuedo-Reader facility and is discussed in Product
Specification 222Z 2265• .S!j!~HlJ.Q~llU.•

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP ll

P.S. 2212 5462 CEJ

it is the HCP's responsibiltiy to convert a logical disk file as
declared in a user progf'ath to an actual physical disk fi.le.
This can only occur by a program opening a new disk flte• where
"new" in this context specifies that the program intends to
create a file and the phvsical disk files that are currently
known to the system are of no concern to the user.

Except in the case of Multi-Pack files. files that extend over
more than one physical pack or cartridge. a new file can only
become a permanent file that exists when the prog,am is no tonger
executing by the same user 4oing a close operation on the f·ite
and specifying in the CLOSE communicate operator that the fite is
to become permanent. This implies that th~ file identifier is to
be entered in the dis~ directory and remembered by the HCP
forever. fhis also implie$ that the disk storage space occupied
by that file is to be. used for no other purpose except the
various user manipulations that may occur within that fileP
utilizing a logical file with the same File Identifier. Tba
Close op&ration is also described in detail in the De~and
Management section of this specification. Basicatty, the Open
and Close operations both obey the rules presented in the
definition of the COBOL Language.

In ordef" to manage alt of the available storage St>ace on a di sit
deviceP the HCP must maintain tables Which tell it the storage
locations that are available for use• the names of the files that
are already stored on the disk and the physical characteristics
of those fHes.

The~e are three tables. each with the same format, that are used
by the MCP to allocate disk space. The master avaitable table is
a non-expandable table of thre~ contiguous segments begin~ing at
the second sector Gn dist. It cantains a list of alt unusable
segments which have been •xo·ed" by the operator. The working
available table is a 10-segment table beginning at the 47th disk
segment. It contains a list of alt available or unused space on
disk and is expandable as needed. Tbe te~porary table is five
contiguous segments and contatRs a list of alt segments in use
but not reflected in the dist directory. This expandable tabte
begins at tha 57th sector. At Clear/Start time~ all sectors in
the temporary table are returned to the avajlabte table. A
prog,ammatic description is given below:

BURROUGHS CORPORATION
COMPUfER SYSTEMS GROUP
SANTA BARBARA PLANf

D£f INE
DISK.AVAILABLE.DECLARATION AS#

OE Cl ARE

CO~PANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE}

01 DUMMY REMAPS OISK.AVAILASLE BITCSEG.SIZE>•
02 AVL.fQft.LIHK os~.AOR,

02 AVL.BACK.LINK DSK~AOR1
02 AVL.SELF OSK.AQR,
02 FILLER BITC4J,
02 AVL.BLOCK(22>~

03 AVL.AOORESS OSK.ADR~
Ol AVL.lENGTH WORO;#;

The disk directory is the structure which catalogues and points
to at(fHes on dist .• Each entry contains the file's nase, type,
and Dis~ File Header CDFHJ address. The directory is a two·tevet
structure containing a prisary or -master" directory and a
secondary directory. The master directory is created at Cold
Start as 16 contiguous disk sectors beginnjng at sector Jl. Each
sector· contains entries for· eleven fites. As each sector is
filled• another disk segment ts allocated and linked to the
filled sector. If a fite has two names~ the orimary name
CMulti-file IDentification> is otaced in the •aster directory
with a pointer t-0 a secondary directory~ where all the fites with
that MFID are listed. The secondary directory is structured and
linked in the same fashion as the master director). 4
programmatic description is given below:

DECLARE 01 DIRECfORY REHAPS BASE,
02 DISK.SUCCESSOR
02 DISK.PREDECESSOR
02 DISK.SELF
02 f IllER
02 1HSK .• NAME
02 DISK.ADDRESS
02 DISK.FILE.TYPE
:J2 f ILLER

DSK.AOR~
O,SK.AOR,
OStC.ADR ..
BIT (12),
NAM£•
OSK .• A DR~
BIT (4),
BIT (1200); % 11 ENTRY PEH SEG

The Dis1c file Header '(DFIH is a variable-length header rec~!"_!'.f..!
t~~ size of which is dependent upon the number of declared areas
in the f ite and is computed as follows:

540-BITS + (J&•BITS • NU~BER•GF-AREAS)

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
01000 HCP II

P.S. 2212 5462 <E>

The DFH is never less than 1440 bits nor greater than 4320 hits
on ~ di s 1k. • I t l i s t s t h e p hr s 1 c a :l c h ar a c t er i s t i c s o f t h e f it e
i n ct ud i n g i t s --1il.e __ .t.t.Q_fL an d __ th.e _~~ ad ar:-essT~Cif--·-e a c h a r ea • r h e
fottowing file types are recognized by the MCP:

LOG
OIRECTOiU
CONTROL DECK
BACKUP PR.UH
BACKUP PUNCH
OUMPFILE
HHERPREf ER
CODE FILE
DATA fll£
VARIABLE lENGtH RECORD DAfA f ILE
INHHNSIC FILE

As discussed previously> Disk file Headers CDFH> .are t~e
structures used to identify a file on dis•. It is a
variable-length record which describes the physical attributes of
the fite and contajns pointers to each "area" of the file. When
a disk file is ftopened•• a copy of the OFH is copied into aemory.
The header in memory points to tha header on disk and vice versa.
T_~e.re wi~L __ never be more ._than one copy ()f -~he J1ead~-~--tor a fi & e
in ___ _m§_m<?.~l __ ~t ~.!:\Y. __ -.:~ .. !~ MuftTpTil-u~se·r-5-or the file wHt use the
same c~py of the header. Maintenance of di~• file headers is
covered in another sectibn. A programmatic description is given
below:

DEFINE FILE.HEAOER.OEClARATION AS #%
fH.MAPCFILE.HEADER>I•

FH.MAP(fllE.HEAOER) AS #%
DECLARE 01 DUMMY REMAPS FILE.HEADER~%

OZ fH.USERS.RANGO~ 01TC8),% FORMERLY FH.COflE.AODR
02 FH.NEWfllE BITC1)~% CLEARED WHEN NEW FILE IS FILED.
02 FILLER B!T{7)P
02 fH.fILE.ftINO BIT(8).
02 fH.SELF DSK.ADR•
02 FH.NO.USERS BIT {!)•
02 fH.USERS.OPEN.OUT BIT (4),
02 fH.OPEN.TYPE BIT (4)#
02 FH.FILE.TVPE Bif (4),
02 FH.PERMANENT BIT C4>~
02 FH.JOB.WAITING.ON.CLOSE BOOLEAN~
02 FILLER 81T(9J~ % OON'f USE UNTILL 1977

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANJ

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE>

#;%

02 . fH.HDR.SlZE:
02 FH.NO.USERS.LOCK

% NO.USERS WHO
fH.RECORO.SIZE
FILLER
FH .Reos. BLOCK

f H. BLOCKS ,.AREA
,rH.SEGS.AREA
fH.AREAS.RQST
FH. AR EA.en~
FH.EOF.POINfER

f IllER
fH.BPS.NO
FH.BLOCK.COUNT
fH.fORHAT
fH.HPf
FILLER
fH.CREATE. TIME
FILLER

fH.USER.INFO
fH. SAVE .f AC TOR
fH.CR£AIION.OAT£

FH. A CC ES S. D,A fE
fH.SER.ND

fH.MPF.ADOR

Blf(l4),% LENGTH OF MYSELF IN BITS.
BIJC4).-

HAVE IT OPENED WITH LOCK
BIT<ZOl,% LENGTH IN BITS.
BIT{4)-% DON'T USE TILL 1977
BITC20lit%

WORD~
WGRO,
811' {12),.
BIT (12)11

WORO,.
81TC4l•XOON•T USE TILL 1977
BIT(20l 11%
8IT(24l"% DON'T USE TILL 1917. IGNCREO 5.1.
BITC3>•% HITHERTO :Q. FOR RELEASE• =1.
BIT(l),.% HITHERTO 4 BITS.
BIT(.24}P
91TC16)•% HITHERTO O. HENIGE~S GENEROSITY.
B.ITCSJ,

woao,
BIT C 12 >,.
BIT (16>•

BITC16)~%
51TC24)•% omPT REUS£ "TILL 1977. 5.1 IGNORE
OSK.ADR, % DONT REUSE TILL 1977

02
02
02
02
02
02
02
OZ
02
02
02
02
02
02
02
oz
02
02
oz
02
02
Ol
02
02
02

FILLER
FH.UPOATE.VERSION
FH.OHS.WRITE.CONTROL*

BIH1h
BOOLEAN11

03 fH.OMS.ro.aE.WRITTEN
03 FH.DHS.CONTROlPOlNT

BOOLEAN,
BOOLEAN,.

02 fH. VERSHJN
02 FH.PROTECTIDN
02 FH.PROTECTION.IO
02 FILLER
02 fH~AREA.ADDRESS (1051

03 FH.UNIT
04 FH.PORI
04 fH.CHAN
04 fH.SER.NO.FlAG
04 f H.EU
03 FH.ADDR

BIH36):,,
BIT {2),.%
l:lIT (2),.%
BIT C15h%

OSK. ADR.,
:9 IT C 12) • %
BIT < 3J,. %
fHT, ,(4),, t
0.00lEAN~ %
Blf (4),. %
Bil (24);

% YEA.RPJOl\Y,.TIME
HOST RJE
HOST RJ£
HOST RJE

The 81000 HCP includes the capability to allow a file to extend
over more than one removable pjct or cartridge. Such a f jle is
known as a "Multi-Pact Fite" (~Pf). Quite obviously• thtre are
some limitations on the use ot such f~tes. The individual packs
or cartridges which contain portions of the file may not ba
removed indiscriminately. Various operational details are
contained in the •e1100 Software Operational Guide".

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLAN(

COMPANY CONFIDENTI'L
:31000 fltCP II

P.S. 2212 5462 CE>

A multi-pack fite may have only one "Base Pac~· CSP). The na1a
of the base pack is the pack id as specified by the user in the
fPB of the multi-pack file. The base pack must be on tine for
all OPENs of the file. The MCP may also require that the base
pack be on-line for other operations• such as the assignment of a
new area of disk to the file. An appropriate message witl be
typed on the console printer by the MCP if the base ~act is
required and it is not on•line. The operato~ may then ao~nt th3
base pack and the requesting program wilt continue. The base
pack must be on line when the file is closed if it was opened for
output or input/output.

A base pack may contain singte files, as welt as multi-oack
files~ in. any coabinatjon. It ~ay not, be a "continuatior pac~·
for a multi-pack file whose base pack is a different physical
pack or ca.- tr i dg·e.

The file header for a multi-pact file is contained on the base
pack. It contains atl information concerning the file, including
the addresses of every area assigned on the base pack to that
file. For each area which resides on a continuation pack~ t~e
header will contain the serial nu•ber of the continuation pac~.
This allows the HCP to control all processing of the tile and
thereby avoids the necessity of updating each continuation pack
as the file is processed.

A multi-pack file may, by definition- reside on two or more packs
or cartridges. When the file overflows or "conti~ues• to
additional oac•s~ the term "continuation pact" is used. A
multi-pact fite may reside on up to 1ixteen packs or cartridges.
There may be up to fifteen continuation pac~s assigned to one
mutti-pac~ fite.

A continuation pac• may be associated with only one base pack. A
continuation pac• may contain ~nly continuation files; it may
not be a base pack for another file. A continuation pact may
contain information associated with more than one multi-pack
file, but all of the fites must be assigned to the same base
pack.

BURROUGHS CORPORATION
COMPUTER SYSTEHS GROUP
SANIA BARBARA PLANT

CO~PANY CONFIDENTIAL
131000 HCP II

P.S. 2212 5462 (fl

Th~ file header, which is contained on the base pack for a
multi·oaci file, contains disk addresses for only those areas ot
disk which are assi9ned to the base pack. The sa•e state•ent can
be made of continutati~n packs; the file header contained on a
continuation pack contains disk addresses that are assigned on
that pact only. lhe file bead~r on the base pac~ contains the
serial number of the appropriate continuation pact in the disk
address fields of the headers.

When a file oveTflows f~om th~ base pack, the HCP will search for
another continuation· pack that is already on-tine and that is
associated with the same base pack. If such a continuation oack
is found• .the fH.e automatically over·ftows to that continuation
pact. If no such continuation pack is present on the system~ the
MCP wjll then search for a scratcb pack• one which has no files
on it~ with the same type as the base pact. "Type" here means
•restricted• or unrestricted• and is deterwined when the pack is
initialized.

If such a scratch
to that pac;tc.
halts the program
co n s o l e pr i n t er •
continuation pack

pac• is found~ the f~le automatically continues
If no such paek i,s found, the MCP te.mporarH~
and prints an appropriate message on the

The orogr~m may be continued when a suitable
is present on the system.

When a multi-pact fite is opened input- the file's header is read
into memory from the base pack. When a mutti·pack file is opened
output, and new1 a header is constructed In memory from
information in the pro9ram's FPS and information from the base
pack. During OPEN the HCP wftt find space on the system pack for
a mutti·pack fite information table. The table wilt contain
specific information about the base pack• atong with an exact
copy of the disk file header from the base oack. This copy of
the header is treated as a working copy white the file is open.
The header on the base pac~ •ay therefore not always be correct.

The format of the MPF.INFO.TABLE
MPF.INFO.TABLE per file is requiredr
users,.

is presented below. One
regardtess of the nu1ber of

BURROUGHS CORPORATION
COHPUTER SYSTEMS GROUP
SANTA BARBARA PLANJ

FIELD NAME

01 ~Pf'.INfO.TABL£
02 HPf .FOR HARO
02 MPf .BACKWARO
02 MPF. SElf
02 HPf.NAME
02 MPf. HE A DER. SIZE

02 HPF.HEAOER.AOD~ESS

02 HPf .BPS.NO
02 MPF.OPE:N.TYPE

02 MPf .NEW.FilE

02 M?f .NEW.AREA

02 MPf .CS

02 FILLER
02 MPf.BASE.PACK.f YPE

02 HPF.ARRAY

03 MPf .ONl.INE
0.4 MPF<.SERIAL.NO
04 MPf.HOR.OSK

TYPE

l392 BI TS
16 BI TS
36 BIJS
Jo SITS
30 CHAR
24 BITS

24 BitS

24 BITS
4 BITS

1 BIT

l Bl f

IHT

1 BIT
4 airs

Z4 BITS
36 Bl TS

COMPANY CONFIDENTIAL
81000 ~CP II

P.S. 2212 5462 CE>

OESC1HPTIOT\f

POINTER TO NEXT MPf TABLE.
POINTER TO PREVIOUS MPf TABLE.
POINTER TO THIS MPf TABLE.
FILE-IDENTIFIER.
SIZE Of COMPOSITE HEADER
MAINTAINED BY THE ~CP.
POINTER TO THE COMPOSITE HEADER
IN MEMORY.
BASE PACK CBP> SERIAL NUMBER.
TYPE Of FILE OPENED. SAHE AS
DFH.OPEh.JYPE IN DISK FILE HEADER.
MCP FLAG USED If THIS IS A NEW
f ILE.
HCP FLAG USED If NEW AREA WAS
ADDEO.
HCP FL~G TO MARK IF CtEAR/!TART
WAS PERFORMED SINCE T~IS ENTRY
WAS CREA'ft:O.

TYPE OF PACK USED AS BP.
l=RESTRICTED, 2=UNRESTRICTEO
USED TO RECORD ALL PACKS f~AT
ARE ON-LINE.
MAXIMUM Of 16 ITEHS IN ARRAY.
SERIAL NUMBER Of THE PACK.
DISK ADDRESS OF THE FILE HEADER
ON fHE PACK.

In add 1 ti on to any r e s tr k ti 'On s l i s t ed i n t h e tor e g o i n g ,. t h e
items below are also applicable to mutti-pack files.

1. Since a system cartridge may not be a base pack, multi-oac•
files are 3nly operational on systems with two or mo~e
drives.

2. All packs containing any part of a multi-pact file must have
unique ser'iat numbers •.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

fBl~Iffi ElL~~

COMPANY CONFIDENTIAL
91000 MCP II

P.S. 2212 5462 CEl

Aft Burroughs printers and controls have hardware capability of
spacing the paper after writing a line of output but no
capability of spacing t~e paper before writing the line. With
the advent of the ANSI •74 COBOL Lariguage in the 9.0 version of
the software, tbe need for a more efficient means of performing
the COBOL WRITE AFTER ADVANCING statement became a~parent. In
prior versions1 this operation was implemented by the cospiters,
generated two actual I/O co•municate operators for each such
statement encountered. The first of the two was a Position
communicate or a WRITE of a tine of blanks; the second was a
WRITE of the actual record with no paper motion specified. This,
of course• resulted in two communicates as ~ell as two physical
IOs for every logical WRITE AFTER ADVANCING operation. fhe
change described betow was first implemented in the 9.0 Operating
System and is jncluded in alt subsequent versions.

The goal of this modification was to reduc~ the nu•ber of
communicate operatjons to one per logical WRITE and to 'educe the
physical I/G operations to one per communicate op~ration ~sing
the existing printer hardware. This was accomptishe~ by d8laying
the initiation of the physical IID operation until the folttowin;
togicat WRITE is received. By knowing both the previous and
current logical I/O requests• a physical I/O can be initiated
which corresponds to the first request and takes advantage of the
Burroughs hardware.

The diagram in figure 1 shows the relationship between the last
logical reQuest issued by the user~ the current toqicat request
and the actual physical IID operation that will be performed.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
'.R.1000 MCP H

P.S. 2212 5462 CE>

\
c ur r e n t \ P en d i n g
Logical \ Operation
R.equest \

1 Nutt
1

Wf'i te' No Space Write 8e fore
Single Space

·-----------------·-----------------+-----------------+ Write,. I No·op11
Pending:=

Write/ No

j Wri te, No Space 1 Write~ Space l f
No Space 1

1
I
I

P end'i ng:=
Writ a/No

I Pending·:= I
I Write/No t

Wr·ite/B
Space 1

Write/8
Space 2

Write/A
Space 1

Wr i tel A
Space 2

+-----------------+-----------------·-----------------· 1 No-op,. I Wri te" No Space 1 Write/B Space 1 I
I Pending:= I Pending:= t Pending:·= I
4 Wr i te/B Space 1 I Wri te/8 Space 1 t Write/B Space l • ·-----------------·-----------------·-----------------· t Write/8 Space 2 J Write, No Space 1 Write/8 Space 1 1
1 Pending:=Null t Write/B Space 2 1 Write/8 Space 2 I
t I Pending:=Nutl t Pending:=Nitt I

·-----------------·-----------------·-----------------· t Space 1 I Write/8 Space 1 1 Write/B Sp~ce 2 I
I Pending:= t Pending:= t Pending:= t
I Write• No Spaia l Write, No Space 1 Write, No Space I

·-----------------·-----------------·-----------------+ I Space 2 I Wr·i te/B Sp~ce 2 I Write/B Space ? t
t Pending::= I Pending:= I Space 1 I

• Wri teP Ho Space I Write, No Space I Pending:= I
I j 1 Wr- it e • No Space I

·-----------------·-----------------·-----------------· Write/B t Write/8 Channel I Write# No Space 1 Write/B Space 1 I
Channel I Pending:=Null I Write/B Channel f ~rite/B Channel t

I 1 Pending:=N~tl t Pending:=N~tt 1

+-----------------·-----------------·-----------------· Writ el A ' Space Channel I Wr i te/0 Channel j WritelB Space 1 I
Ch an net • Pending:= 1 Pending.:: • Space Chan net I

• Write,. Ho Spa·ce 1 Write" No Spac~ ' Pending:= I
1 t a Write" No Space I

·-----------------·---------~-------·-----------------· Space N I Space x I Wri t,alB Space x I Write/8 Space 2 I

' Space <N-x> t Space '(N• x) ' Space '(N-1) I
I Pending::=Nutl 1 Pending·: =NuU. I Pending:=N~ll I

·-----------------·-----------------·-----------------·
figure 1 - logicat/Physicat 1/0 Relationship

In the praceeding diagram" the operations within the table
correspond to the actuat physical I/O operations that will ba
perfor,med., which will depend up,on the current logical re Quest
supplied by the user and any operations that are still pending
from the previous request. Write/B and Write/A may be read
"Write Before• and •write After•. fhe symbol (:=> say be read
"is rep~laced by"'. It can be seen in the diagram that some
logical requests will, at times, result in two physical

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PlANI

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE>

ope~ations being initiated. Under these conditions, it may be
ben.efi·cial to suppty each printer fHe with at least two bt.ffers,
if the execution time of the program is the oniy concern. Total
system throughput will not be impacted significantly reg~rdtess
of the number of printer buffers and the types of operatio~s
being performed. If the HCP must wait for the completion of ary
printer physical I/O oparation# the time that is spent waitinq
will be masked by the processing of other programs.

Along these same lines. it should be remembered that any time a
Write operation is left pending and control is returned to the
user7 the MCP must have an available buffer to sto~e the data
that is to be written. If no buffer is available, control may
not be returned to the requesting user until a buffer becomes
availabte. Again• this time ~itt be overlapped with the
processing of other programs and system throughput should not be
significantly impacted.

The action presented in the preceeding chart for a Space
operation requires some explanation. A Space of more than two
lines must be handled by the S.HCP. The Micro MCP will atteapt
to space the requested number of lines without catting the S.MCP
but this is not always possible. In the diagra~, when the
Pending operation is equal to Nutt, the Micro MCP wilt space the
paper one or two tines, indicated by •xw in the diagram~ and if
N-x is greater than zero" it wiU pass the remainder to the
S.MCP. Similarly• when the Pending operation is equal to a Write
with No Space.. the Micro MCP wi it i $Sue a Wr i te/B Space 1 or 2
lines, also indicated by nx~ in the diag~a•" and if the re•ainder
is greater than zero. pass it to the S.MCP. When the Pending
op er· at i on i s a Wr i tel a S pace 1 •. · ·~· the H i c ,, o ~c P w i t l i s s u e 3

Write/8 Space 2 and pass N-1 to the S.HCP, if N-1 > o.

The LINAGE ctause, in ANSI '74 COBOL is a mech~nism which allows
the user to define a •Logical Page" format and :request that the
Operating System maintain printer pages Which confor~ to tha
defined format• as welt as a current line position on that
logical page. In the language* the user may spec~fy the logicat
Page size, an integer which represents the number of lines that
may be printed on anr page. This attribute wilt be known as
PAGE.SIZE in the remainder of this discusion.

The user may also specify an Upper MarginP an area at the top of
each page where nothing will be printed, lower Marginr a similar
area at the bottom of each page• and a footing area~ a specified
number of lines in the page body immediately above the Lowe~
Margin area. The user may also as~ to know the number of the

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDEN;::I
81000 MCP II

P.S. 2212 5462 CE>

tine in the page body where the last line of output was printed.
This rqQuires that the Operating System maintain a tine counter~
which wilt be the number of lines written on the current page.

The implementation is called the wlogicat Page• function in the
Operating System and it includes the following:

1. Positioning to the beginning of the page body i.e. past the
top margin at OPEN or at page overflo~.

2. Reporting End-of-Page when the user writes or spaces within
the footing area and requests EDP reprirting.

3. Detecting page overflow. Page overflow is defined as
occurring whenever the execution of a WRITE' would leave the
tine counter positioned past the page body.

4. Updating the logical page description when switching from
one logical ~age size to another.

EssentiallyP the implementation obeys the rules presented in the
ANSI 9 74 COBOL specifications. The operating system ~ill
maintain a line counter• a current logical page description and a
new logical page decription. The line counter reoresents the
position on the page body following the open or the last togicat
write. The current logical page description is used to detect
end-of-page and page overftow. The new logical page desc~iption
is used to initialize the current logical page description when
page overflow is detected and to calculate the number of tines to
the first line of the next page body.

If the user has specified end•of•page reporting and the ti~e
counter is greater than or equal to the line number at ~hich the
footing begins• then on cospletion of the WRITE, EOP is reported
to the user. If the tine counter would be greater than the tine
number at which the bottom margin begins at the end of t~e
logical WRITE? an implicit positi~n to the first tine of the neat
page body is generated according to the before/afte~ variant of
the write statement. At this point the line counter will be set
to l. The number of lines to skip is calculated acco~ding to the
following formula:

lines.to.skip :=current.page.body.size - line.counter +
current.bottos.margin.size • new.top.margin.size;

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CEl

The logical Page description is updated if necessary when a write
occuis that causes page overflow or whenever an advance to top of
page occurs.

To access the line counter requires a file Attribute Communicate
from the user program. fhis witl be of no concern to ANSI •74
COBOL users; they need only be concerned with the proper syntax
in that language for referencing the tine counter. The logical
Page definition is changed to the values included in the Write
Communicate format whenever oage overflow is detected. To
accomodate the above requirementSP the format had to be expanded
as shown in figure 2 in the WRITE AFTER ADVANCING section of this
document pr'esented prev·iou.st Y•

The Logical Page implementation~ since it is implemented entirely
in software, is useabla even when the file is directed to a
8actup medium. The Logical Page implementation is also useabte
by programs that are written in languages othe~ than ANSI •74
COBOL. This is effected by the implementation of additional
syntax in the FILE Control Card. Progarms may be per~anently
modified to incorporate the required new attributes. The loqicat
Page function is activated by the PAGE.SIZE attf ibute in the file
Parameter Block. When a printer fite is opened and PAGE.SIZE
contains a value other than zero1 page format wilt be controtted
by the Logical Page software implementation and the physical
carriage cont~ot tape on the device will be completely ignored
after the file is open.

It is important to note that the Channel One punch~ as welt as
the Channel Twelve .punch in .the c'arri age<contf'ol tape is ignored
after the fite is open. According ·to ANSI '74 COBOL
specifications, this is as it shauld be hut it dictates that the
attributes ~hich govern logical p~ge format must be specified
such that the logical page size plus the upper margin plus the
lowe~ margin must total the exact number of lines on the ohysic~l
page. If this i·s not done• then eventuattv at teash lines wilt
be printed on the crease between the physical pages.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
Bl 000 MCP II

P.S. 2212 5462 CE>

The relevant attributes may be referenced in the FILE Control
Card as shown below.

Attribute

PAGE.SIZE

LOWER.fURGIN

UPPER. MARG IN

FOOTING

Abbrevtation function

P.S

L.M

U.M

roor

The number of tines between the
Upper Margin and the lower Margin.
May be sat to any value between 1
and 255 inclusive.

Th, number of lines from the page
body to the bottom of the forft.
Hay be set to .anv value between
O ~nd 255 inclusive.

The number of lines from the bottoM
<or top} of the form to the page bo~y.
May be set to ~ny value between
O and 255 inclusive.

The number of lines from the
beginning of the page body
witbin Page.size~ to the point
where the HCP wilt begin to
report end•of-oage to the user.
Hay be set to any vatue between
l and 255 inclusive.

The HCP includes the capability of directing the output data for
printer and punch files ta inte,rmediate storage. The storage
medium may~ at the U•$r•s option• b• magnetic tape or disk.
Backup files may not be directed to cassette or ftexidis• media.
A utility routine~ named SYSTEM/BACKUP. is provided to allow
users to retrieve the output data from the intermediate storage
medium. for details on this routine, refer to Product
Specification 2222 2661• System Backup.

When the output is directed to magnetic tape, •ulti-file tapes
are created unless the operator interv9nes in some manner. If
the operator does not intervene. the tape will be closed with no
rewind when the printer or punch file is ril~sed in the prograa.
The next printer or punch fite which is opened by any executing
program and directed to backup tape storage wilt then be added to
the existing tape. This process witl continue until the operator
intervenes or until the physical end of the tape reel is reached.
Operator intef'vention procedures are described in the Softli'are

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANJ

Operational Guide
Specification.

COMPANY CONf IOENTIAL
131000 HCP II

P.5. 2212 5462 !El

and in the MCP Control Syntax Product

When the output data is directed to intermediate storage on disk,
it is entered in the Oi,d O·irectory when the printer or punch
fite in the program is closed. At that time- it may be accessed
by any program, though the data contained therein may be
undecipherable unless the accessing program is written ex~ressly
for this purpose. The fil~ aay not, under anv circumstances~ be
accessed prior to the time the file is ctosed.

The OPEN routine in the HCP attempts to opt~mize the size of the
physical btocks associated with a Backup file, according to the
declared size of the logical records in the file. The bloc• wilt
typicatl~ be set to a size equivalent to three or four disk
sectors, each of 180 bytes# by the HCP. in order to predict the
block size that the MCP will select for any given logical record
size, it is necessary to.conslder the cont~ot information that
the HCP stores jn the first physical block of the file as wetl as
the decta~ed record size. fhe algorithm that is used by the MCP
to select a btoct size is not easili described. The bloct size
which is selected is stored in the file label~ for tape files•
and in the Disk file Heade~ for disk files. The togjcat record
size is also stored in these fields.

Consequently, using the Default File Attribute• which is
described in tbe Software Operational Guide and tn another part
of this specification. the user may access Backup files ~ithout
knowing the blocking factor and logicat record size in advance.
Since the algorithm that is usaj by the HCP to calculate block
size may change from version to version, this •eans of
determining the blocking factor used is preferred. The algorithm
that is included in the a.o version of the MCP is desc~ibed in
the parag~aphs that follow.

The logical record size dee.tared ·,:tn a file in a user• s program
may be any size. ff the fite is directed to Sac~up storage" it
is set to a maximum of 132 bytes. The logical record si2e is
then incremented by two bytes. This additional sixteen bit~ of
information is necessary to conta~n the formatting info~mation
which is passed with each Write and Position con~unicate
operator.

If the file is being directed to magnetic tape, the record size
is then incremented, if necess~ry, to force it to a number which
is moduto forty-eight. This is necessary since seven-tract taoe

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONFIDENTIAL
131000 MCP II

P.S. 2212 5462 CE>

unjts require block sizes which are modulo six and phase-encoded
drives reauire block sizes which are modulo sixteen. It would
not be sufficient to insure tbat only btock sizes •eet this
requirement• however. since the blocks on any tape file 1ay be
partial blocts which contain one or more records.

The buffer size witt al~ays be made large enough to contain 100
bits of control information plus 1668 bits to conta~n the
original File Parameter Block as it appeared in the user•s
program. plus, if the fHe is a P'ri.nter· file .. 1072 bits to
c-0ntain a file label plus ~ts associated spacing information. If
the orjginal file is a punch fileP a space of 648 bits is
reserved for the label in~taad of 1072. fhe one fact which
complicates this calculation is that all th~ee of the itets
listed above must begin on a logical record boundary within the
physical b 1toc1c .• Consequently,, for a fHe with a declared record
size of 132 bytes,, which is converted to 134 bytes or 1012 bits
by the OPEN routine• the fP8 will begin on the 1073rd bit in tha
first physical block of the file~ The file label, if there is
one• will begin on the 32l7th bit <3 x 10121. The first output
data record wilt then begin on the 4Z89th bit. The bloc~ wilt be
made large enough to insure that the first bloc• contains at
least one logical record in addition to alt of the information
U sted above.

for backup files which are directed to intermediate storage on
djs•~ the block size computed above is then incremented# if
necessary. to maice the size module 1440. The nu11ber of records
per bloct is then coaputed from record size and block size.
End-of-File is never reported to a user program when a Bac~uo
file is being created. The HCP automatically closes the fite
when it is full and also automatically opens a new 8ackup file.
The identifier assigned to the 'second Ute will revert to the
standard naming convention for 8actup files. The MFIO will be
set to BACKUP.PRT and. the ID field will be set to the neat
sequential number maintained by the system. Alt other Bactup
file attributesr such as the number of copies reouested, wilt be
retained in the second and subsequent files. - Only the name
requested by the user witl be lost.

The HCP at so attows users to specify the fHe' attributes Blocts
per Area <BLOCKS.AREA or B.A>• Records per Stock CRECQROS.BLOCK
or R.B)~ and Number of Are as (AREAS of" ARE> for pr inter fi te s and
these specified values wilt override the system•s default values
fo'r the same attributes. Using 'the proper setting of these
values and the automatic ctosinq and reopening dEscribed in the
preceeding paragraph, users may begin printing a Backup file
while the program whjch created it is stilt executing and
creating the second or subsequent portion of the same file.

BURROUGHS CORPORATION
COMPUTER SISJEHS GROUP
SANTA BARBARA PLANT

COMPANY CONFIO£NTIAL
131000 HCP II

?.S. 2212 5462 CE>

Records in Printer files may not be blocked. Consequentt)• the
Records per Bloci attribute is not app(icabte when the file is
directed to the printer. Records per Block is utilized onty when
the file is directed to a Backup medium. Also, the value
specified for Records per Block must be greater than a minimum
value• which is a function of the r~cord size associated Mith the
fite and which is computed by the HCP ~hen the file is opened.
It is reccomended that users not set Records per 8loct for
Printer files in the use of this facility but establish the file
size via the Blocks per Area and Number of Areas attributes only.
for a file with 132-byte records• Records per Block wilt be set
to five by the MCP unless overridden by the user. The simplest
means of determining the vatue that witt be computed for Records
per Block br the MCP for any other given record size is to direct
such a file to the backup medium and interrogate Records per
at oc1<.

The MCP insures that access to a backup file is in serial mode
only. If the user had requested more than two buffers on the
original fite, the number is reduced to two on the backup file.
In a similar manner• the MCP limits the n~mber of dist areas
requested to 25. The file type in the original FPS is then
chan9ed to indicate that the fita was directed to disk or tane
intermediate storage.

The first bloc~ in any backup file is filled almost entirely with
control jnforaation. This inform~tion is used by SYSTEM/BACKUP
when the file is printed or punched. The first twenty-four bits
of the block witt contain the logical record size, in bits, as
co mp u t e d by t he pr i or po r ti on o f t he · 0 P£ N r o u t i n e • The n ex t s 1 x
bits of the bloct wit contain the number of bfts that the record
size was incremented to aake it modulo forty-eight• if the backup
medium was magnetic tape. If the backup medium was disk, these
six bits witt be equal to zero. The next eighteen bits specify
the control information size- in bits. This fietd will contain
the number of bits which ar~ used in the first block of the file
to contain the control infor•ation, exclusive of the File
Parameter Block and the label. In the 9.Q version of the HCP~
this number wilt be equal to too~ although all of the 100 bits
may not be used.

Th e n e x t t wen t y- f o Uf' b i t s o f the bl ~ c if w i U spec if y th e f P 8 s i z e •
in bits. This number may vary from l'etease to release. for tha
9.0 version of the software• tha FPB size is 1668 bits. Th~ next
twenty-four bits will contain the size of the label• if any,
associated .iith the prin,ter or punch fHe. This field wiH
atwars contain these values, regardless of whether the file is

•

BURROUGHS CORPORATION
COMPUTER SVSIEMS GROUP
SANTA BARBARA PLANT

taoeted or not. The next four bits
specifies the type of label that is
In all cases. at the present time,
zero~ indicating a standard t abet,
file is untabelled.

3•5.:.

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE>

wilt contain a number which
contained in the label area.
this number witl be either
or one• indicatjng that the

Untess the computed logical record size of the fite is exactly
equal to the size of tha control information listed above, 100
bits for the 8.0 version of the MCP~ a filter witt be added after
the control inforsation. f~is filler wjll be of a size
sufficient to make the next field in the first block, the FPS~

begin on a logical record boundary. for example~ if the original
logical record sjze was 132 bytes and the backuo medium was disk,
the filter would consist of 964 bits.

The next field in the first block of the file will be the
original file Parameter Block as it appeared in tha user program
and before any changes were made by the OPEN routine. Only
pertinent information# delim~ted by the size specified by
FPS.SIZE wilt be included. following the fps, another fitter
wit.t prob.ably be required, to make the next field in the first
btockP the originat file labalP begin on a togtcat record
boundary.

Actuat(y, sixteen bits of spacing information precedes the file
labelJ the spacjng information thus begins on the logi~al record
boundary~ for t~e labat, all of the sixteen bits witl b9 set to
zero. These sixteen bits will be followed by the label• which is
constructed exactt y as if the file had been directed to its
intended ~edium originally. The label is atways constrticted and
stored in the Bactup file• regardless of Mhether the originat
file was labelled or not. SYSTEM/BACKUP may or may not caLse the
label to be printed or punch~d• de~ending upon whether the fita
was or was not labelled. The label in the first bloct wilt be
foltowed by a filler' if necessary, to allow the first logical
record of output data to begin on a logical record boundaTy
within tbe bloct. The first block wilt always contain at least
one logical output record.

Each logical record in the file ~ill consist of sixteen bits of
formatting information foltow~d by the user•s output data~
unaltered. If the logical record was generated by a Position
communicate operator, the contents of the data fietd are
undefined and are ignored by SYSTEM/BACKUP. The sixteen bits are
defined as foltows.

3-53

• BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~T

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 <EJ

Beginning with the 9.0 version of the software~ the sixteen bits
of carriage control information are subdivided as:

01 CARRIAGE_CONJROL
02 FILLER
02 BEFORE_Af TER
02 CHANNEL_OR_SPACING
02 TYPE

BIT (16)~
BIT (J},
BIT Cll•
BIT C8J~
BIT C4lJ

In the description above~ the BEFORE_AffER field is applicabte on
WRITE ope~ations which are directed to a printer file. A one in
this bit position indicates the operation was WRITE AFTER
ADVANCING. The CHANNEL_OR_SPACING f ietd corresponds to the eight
bits of spacing information passed on a WRITE communicate in tbe
CT.ADVERB field in the communicata operator. These bits are
defined in the Oe•and Management section of this document. b~t
the definition is repeated here for refe~ence.

CHANNEL_OR_SPACING
= 0000 - Ho paper motion
= 0001 - Skip to Channel One
= 0002 - Skip ta Channel Two

•

= 1011 - Skip to Ch~nnel Eleven
= 1100 - Skip to Chinnet Twelve
- 1101 - Skip to first line of the fora {1500 LPM

printer only)
= 1110 - Single space
= 1111 - Double space

The TYPE field in the description provides info,mation on the
type of communjcate issued by the user on this record. The
CARRIAGE_DR_SPACING vatue will have different meanings~ depending
upon the value of the TYPE field. The correspondense between the
two is shown below.

TYPE

0000
0001
0010
0011
0100

Operation

WRITE
WRITE
SPACE
SPACE
WRITE

CAftRIAGE_DR_SPACING Value

Printer Channel Number
Punch Stacker Numb~r
Number of Records to Position
Printer Channel Number on Pos~tion
Printer Spacing Information

BURROUGHS CORPORAf ION
CDHPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

3-54

COMPANY CONfIDENTI•l
81000 HCP II

P.S. 2212 5462 CE>

A Relative file consists of records which are identifie~ by
relative record numbers. The file may be thaught of as composed
of a serial string of areas~ each capable of holding a togicat
record. Each of these areas is denominated by a relative record
number. for example- the ienth record is the one addressed by
the relative record number 10 and is in the tenth record area~
whether or nGt records have bee~ written in the first through the
ninth record area. Retative files are imole~ented using direct
files.

Di~ect is the pri•itive file organization. A direct fite is
divided into a number of "record slots" of fixed length• each of
which may contain one re,cord. A record slot is "empty• if it
contains no valid record. Full record slots may be eade amptV by
deleting the record they contairi, making the contents
unaccessabte through the normal mechanism. Since att bit
patterns are potentially mea~inqful as data• a separate area in
each black of the file is maintained to indicate which record
slots within that btock have been used. There witl be one such
•Presence Bit• for each record stot in that block and the bit
vac-tor~--·itii.ts-·formed ts known as the Block Cont..-o·t Information
cac1>. ·rhe user is not au.owed fi,--fiave----a.c.c·e-ss··-to ·a:t.e--·alock-
Control Information under normal circumstances.

The Relative fHe is a direct file.'· The blocks of the Relative
file contain Block Control Information (8Cll as wetl as data
records. The number of data records in a bloc~ is conatined in
the •Rec orJ:ts_ .. __ Q.er: __ Bloc,k• _U .. t l_d of the dis~ fi_i_e he a dar: in the case
of an exTsting fite. Or1gin-alfy;--·--·-o:-.f-course~ this number is
specified by the user programmer in his Fite Declaration. The
data reco·rd, wU.t be tocat·ed on byte boundaries to confor1 with
th e a d d r e s s i n g e a pa b it i t i e 'S o f t h e lH 0 0 0 l n t er pr e t er s. T h e BC I
will therefore be padded with zeroes to insure this. When a
Relative file is originattr created. alt of the record slots are
empty. Conse quenU. y,, the pr <U ence bi ts in the ac I fl!us t be
initialized when the area is allocated.

-.... ---;; vJi'"""'/ F1h. i'~" /T

BURROUGHS CORPORATION
COMPUTER SYSTEHS GROUP
SANTA BARBARA PLANJ

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 {[)

The use of presence bits to indicate that a record h~s been
written into an available record stot means that disk areas that
are allocated to a Relative file must be initialized when they
are allocated. Alt presence bits in tbe Block Control
Information must be set to z~ro at this time.

When a dis~ area is requiredr the HCP will be responsible for
a,llocating the area• and wilt also be responsible fer
initializing presence bits. If the access mode of the file is
sequential, the ~CP just allocates the area and the Lo~ical l/O
r·outines wU.t initi.altze each bloc~ before accessing it. If the
access mode is random or dynamic~ the MCP witt initialize the
entire area being allocated by automaticatty executing a special
initializatjon program which witl run at the user•s priority.
The user will have the option of executing this program himsatfp
prior to executing the program which accesses the file, to
initialize the entire file or any areas he choses. In the
sequential mode, if the file is closed with the EOF pointer not
at the end of an area~ the MCP will tnitialize the reMainder of
that area.

The program which initializes newly allocated disk areas for
Relative file~ is catted SYSfEM/REl.INIJ. If this prog~am is
called automaticatty by the MCP as described above~ the p~og,aa
which requested the new disk area witl not be altow~d ta execute
until SYSTEM/REL.tNI1 has co•pleted the initialization of the new
area.

The FPS for a relative file is the same as for a Conventional
random file except that FfB.ACCESS is set to a value of 2~
i n d i ca t ·i n g R ·et at i v e or· an i z a t i on • ----~-····--·---~-·-.... ·-- -

The OFH for a 'etative file is the same as for a Conventional
file except that the b(ock size fi~td will include the size of
the bloct control information.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~I

3-56

COMPANY CONFIDENTIAL
81000 MC? II

P.S. 2212 5462 Cf>

The FIB far a relative fite js tbe same as for a Conventional
random fite~ except that a field ~bich identifies the f ite as
being Relative bas bean added. The field is named the
FIB.ORGANIZATION field and can assume values of zero• indicating
a Conventional o~ ANSI •14 Sequential fita~ one, jndicating a
Relative fileP and two# indicating an Indexed SeQuential fite.

Buffers for Relative files will be the same as for Conventional
files. They will.be allocated when the file is opened with one
110 descriptor for each buffer and the buffer size eQuat to the
bl~c• sizeP which is equal to the record size tim~s the nu~bar of
records per block plus the size of the bloct control infor•ation
<l bit/record made ~oduto eight).

Buffer management for Relative files wilt depend on the user's
access method - Sequential- Random ·or Dynamic. for Random access
the management of the buffers witl be the sa•e as that for
Conventional random files. READ operations will be initiated on
demand and WRITE operations wilt b~ initiated immediately after
the logical I/O operation has occurred. tf the access 1ode is
Sequential, the buffer management witt be th~ same as that for
Conventional serial files. The Open procedur• will fitt all of
the buffers and the Operating System will try to stay ahead of
the user program, initiating physical Read operations when the
tast logical record in a buffer has been delivered to a user and
initjating physical Write operations when the last logical record
o f the bu f fer i s r e,c e i v e d •

The Dynamic access mode in ANSI •14 COBOL atlows the user to
switch between the Rando• and Sequential modes. In the Dynamic
access mode. when switching from Sequential to Random, the last
block is writteB to disk if it has been updated. When switching
from Random to Se~uential1 the SMCP is called on to fill the
buffers as if an OPEN or Position had occurred. In the Dynamic
ac,cess mode" 'the access •ode desired• Random or Sequential~ must
be specified fn the comm~nicate operator generated by each
logical READ operation.

Three new communicate ope~~tions, corresponding to the verbs
DELETE, START and REWRITE h~ve been added to the 9.0 Ooeratinq
System. To simplify the implementation and to avoid potential
fite equivalence probtems~ new communicate operations for
relative files have been ad1ed to the software, rather than
modifying an existing operation. The READ, WRITE and REWRITE

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBAR• PLANT

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

communjcate operators have a format which is similar to the
format fo~ the READ• WRlfE and REWRITE communicate formats fQr
conventional files. The format for the DELETE operation. on
Relative files, is similar to the format for the same operation
on Indexed Sequential files. The ANSI •74 COBOL START verb has
been implemented as a new communicate and is handled by the Micro
MCP.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

)-53

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

Indexed Sequential files consist of two ne~ primitive file types:
Direct files and Index files. For each Indexed SeQuential file
there is one and only one data file and this fite is i•ple•ente1
as a Direct file. for each tey of the Indexed Sequential fjle
there is a corresponding file of type •index•. In the HCP code•
these two types are listed as INDEX.SEQ.DATA.SET.FILE and
INDEX.SEQ.INDEX.FILEJ they will be refferred to as Direct files
and Index files in this document.

Direct files were discussed in the documentation on Retative
files. A portion of that discussion is repeated here for
convenience. More details will be found in the preceeding
discussion. A Direct file is a primitive file type that is
divided into a number of wrecord slots• of fixed length~ each of
which may contain one record. A record slot is •empty• if it
contains no valid record. full record slots may be made empty by
deleting the records they contain• making the contents of that
st o t i n a cc e s 'i ab t e b y the nor m at me ch an i s m. Si nc e a tt b i t
patterns are potentially ••aningful as a record• a bit flag is
maintained for each record $l~t to show the validity of its
contents.

Since alt record slots are the same siz~ tMAXRECSIZE> the
absolute disk address can be easity cjleulated from th~ record
slot number. The ftle is divided into groups of record stats
called "blocks"• each consisting of •blocking factor• record
slots plus the •atoc• Control Information", a bit ~ask ~hich
indicates the presence of a valid record ptus enough filler bits
to make the con ta 1 nef' modulo eight. T h_e·re __ _j s __ .a__s_i_gnilie..ant
di fference ... b_g_t .. .w.e..an th.a Block Control .. Infot"'mation fo{' ___ .a Direct
f i t e ~in~f·-· a .. n -l n de x f i t e, h 0 we v ;-,:-~-----.. -· ---- ----------------------

.1n,g.'1..1 £.ilt.i

An Index file is the second new fit e· type. Index files contain
fixed length records organized in tables with Block C~ntrol
Informat~on to describe the table. Eacb bloct of an Index fiJe
w i l t c 0 ns.t.it_y_J!_~~-~~ ,ar ~_L~_::_t._~_;_bl e. r he i i'p or ta nee ·----i,.-r--· ihls fact
witl be explained tater.

BURROUGHS CORPORATION
COMPUTER SISTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONf ID£NTIAL
01000 HCP II

P.S. 2212 5462 <E>

The records in the .Inda• fite consist of Key/Address pairs. The
addresses point to other tables in the Index f ite or to <ecords
of the Index Sequential fite•s data fite. the Direct file. fhe
tables in the Index Hle form a tree structure and the records in
the tabl .. ~ a_c:.a-.or-Oer·-e.d_Jui_.~_~vat ue to allow._. fa~t __ ranf!i~ -~-cces~s-~-
fhe tables w~Qse entries poa.nt tQ data ·r:-e·c-or_d_s ______ are linked
togefn·er to allow fast sequential a·ccess ..

In additton to these two new file types, there must re~ide.
somewhere on disk,. information relating alt of the various fites
which compose an Indexed Sequential file. This infor•ation is
maintained" by the MCP• in a third new structure which witt he a
separate conventionat file on disk arid which witl be known as a
"Cluster" file. The name of the Cluster file will correspond to
the user's declared name for his Indexed Sequential file. In the
titCP code• thi's file type is f"efef'red to as an
INOEX.SEG.GlOSAL.fil£• though it will be called merely a Cluster
file in this document.

The Cluster file provides the abitity to referEnce the entire
Indexed Sequential file structure by si•pty referencing the
Cluster fite. ·When the Compite~s generate code which applies to
Indexed Sequential f~les, they actuatty reference the Clu~ter
file. The Cluster file will contain the names of the other files
associated with the Indexed Sequenttal file. As •entioned
previously~ there will be one Index file for each tey listed in
the Indexed Sequential flte.

The statement above does not mean that alt of the Index files
witt be opened when a Ct.~ster 1ite i~ opened. The Index files
ar·e only opened when the.~ ar·e fir·st refe.renced in the prcgraa and
this actually happens automatically. The compiters do not
generate code to opeR the Index fites. The MCP simptv detects
that the referenced Index file has not yet been opened, obtains
the necessary information from the C(.uster filh and opens the
ti te.

.~;-.._~.-:..::::___:;_::::..::._.;...;..;~~~~~~~~LU-!a:-=l~. __,,,,,,_D_i_w~----:"1JL ___ ~-~ <t~ r i n
memory, but Sequential fite is being
opene.(f~"--· .. -·--~is not necessary for'. it to be in memory a·ft~the
tTte-nas been opened. the Cluster fHe atso adds an entry to the
user's dist directory. The diagram below shows a Cluster file
schematf.calty. This particutar -fH,e has one primar Y• or '"Pri11e"
Key and one Alternate Key.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

·--------------------· • 1
Cluster

File
I
I

·--------------------· t I I

COKPANY CONFIDENTIAL
81000 'MCP II

P.s. 2212 5462 <El

•------------------+ I •-----·------------+ t
\II ·---·------..

t Primary I
I Index t
t file I +----------·

t
\II ·------ ---·--·

t A l t er n a t e t
t Ind e 1 f
1 . fH e I

·-·----·--·----+

•
\I/

+----------·
• t
J

Data
Fite

t
I
I

·----------·

This organization for Indexed Sequential fil~s offers several
ad van t a g e s o v er a :n y o the f" • E a ch f ft 1.t- t h e f i l e w h 1 ch con ta i n s
the actual data and att of the Index files~ will have fixed
:record and blocic sizes. This will simplify the oroblem of
managing the buffers that are assigned to th~ files. Both of
these file types are nothing more th•n Conventional files with
some order imposed upon the contents of the file. ConseQLentty~
the Disk File Headers• or "file Descriptors" required for each
file are the same as those for Conv~ntional files. This is
discussed in more detail later in the docu•ent.

Conceptually, this mechanism is easier to visualize and imple•ent
than wout.d be muttipte structur,es residing in one physical fit.e.
Also. any of the files may be located on different spindles~
which will clearly improve performance, since arm movement time
may be overlapped• and access to alt of the files aay occur
asynchronously. The Direct file and the Index fite may be
accessed independently of each other.

The design does impose certain restrictions, which fall in the
category of ~oparationat" ra~trictions and which do not iapact
peiformance. A checking mechanism is required to insure the
integrity of files which ~re accessed independently. The MCP
must insure that the correct version of the Index file is used
with its corresponding Dir~ct fite. Also~ some extra memory for
Disk file Headers will be :requiredP since more actuat ~eaders
wilt be ~equired. A naming convention for att of the files must
be imposed• thus removing some small amount of generality fro•
the user•s capabitities. This may actually be an advantage.
however. The naming convention is implemented in the Co~piler~
not in the HCP, though this may not be apparent to, and should
not be important to the user.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~J

COMPANY CONFIDENTIAL
fH 000 HCP II

?.S. 2212 5462 CE>

The Cluster file is a Conventional data file which contains the
information relating all the component fil8s of the indexed
Sequ~ntiat file. The structure of the Cluster file 1s similar to
the Data Base Dictionary format im the Data Management System.

·------------------------------· ' ·--------· t Ind.ex Sectuenti at 1 I
I file Gtobats 1----+ I
t i J I

+--->+--------···-------------------+ I I a I OfH.EXTENSION, Structure l I I

J •-----~------------------------• 1 I f I DfH .• £XJ£NSHlNP Structure 2 J I I

• ·----~-------------------------· 1 1 I l J' I I
a I I I 1

i +-·------i---------------------• I I I DFH.EXTENSION• Structure n J I 1
I +--------------------·-·-·····-•<-·-• f a I file Table - Contains all of f I •----t the names Bf the subfiles t t

+------------------------------•<-------· I Struc.ture o esc. s tru•c tur e 1 t

·--------~---------------------· I Structure Dase. Structure 2 I

·------------------------------· I
I

I
I

·------------------------------· I Structure Oesc. Structure n

·------------------------------·
The Of'H.EXlENSION and Structure Descrlptor fields shown above are
b o th d i s cu ·s s e d i n th e p ar a gr a p h s t h at fa U. o w .. Th e po i n t er sh o w n
above from the file Table is one of many. There is an entry for
each file in the file fable and each entry has a pointer to its
associated OFH.EXTENSION.

The data fit~ of an Indexed Sequenti~l file is a Direct file.
The blocks of the data file cont~in Black Control Info~mation
<BCIJ and data records, similar to ihe bl~cts of a Relati~e file
as presented previously. The number.of data records in a btock
is sp.ecified by the Records per Bloc'k field of the dist file
header. A similar structure is used on Indexed SeQuentiat files
in tbe Data Management System. Stock Control lnf~rmation for the
Index files associated with a•l Indexed Sequential files is
significantly different from that for Relative files.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANI

COMPANY CONFIDENTIAL
81000 MCP ll

P.S. 2212 5462 (El

Index files contain records consisting of K~y/Address pairs
within a btoek·. The ·file itset·f is a tree structure whose nodes
are blocks. Each block of ·the file is a node or tabte. The
fjrst node is the root table. ·The root table and tables on atl
tevel·s except the last at'e ·catted coarse tables. The tables 'in
the tast level of the tree are catted fine tables. Entries in
coarse tables point to the next tevet table whose highest entry
matches the key of the coat'se table entry. f'ine table entries
point to a record jn the Direct file whose ker matches the tine
table entry (See figure 3J. fine tables are linked together in
logical o~der to provide fast sequential access and easier
Current Record Pointer <CURRENT> maintenance.

The addresses in these tables are not absolute disk addresses.
Instead• they are thirty·two bit combinations of an area number,
a segment number wjthin the area and a di•ptaceaent into the
segment. This displacement is merely the record number within
the block. All addressjng of Index tables as wett as of ~ecords
in the data file is accomplished on a relative basis as opposed
to an absotute one.

The bloc•s in Index files contain Block Control Information of a
different content and format. The f~rmat and content of t~e
Block Control Information maintained in an Index file is shown
below. A simitar structure exists for DMS Index files.

Ot INOEX.f ILE SCI

02 BC.TYPE
02 BC.PRESENT.RECORD.COUNT
OZ BC.NEXT.LOGICAL.BLOCK

BIT C38),.

BIT C2)"% O=COARSE' l=FINE
BIT C12>~
BIT (24);% VALID FOR FINE TABLES

The individual records in the Indei files have a fixed for~at;
since the Key specified by the user must be contained in these
records~ the size of the rec-0rds may vary witb the keys but the
format will always be as shown below. The same format is ~sed by
the Data Management System for records ~n Index tables.

BURROUGHS CORPORATION
COMPUT£R .SYSTEMS GROUP
SANTA 8AR8Affl PLANJ

COMPANY CONFIDENTI'l
81000 MCf' [I

P.S. 2212 5462 CE)

01 INDEX.RECORD DECLARATION,% rrrR OHS AND ANSI .,. INDEX FILES

02 IR.POIN'TER•

fHlC8),,
aITCHd;P

0 3 I ff.. A RE A.DI SP•
04 IR."R£A,.NMBR
04 IR.SEG.NHBR

03 IR.OFFSET
OZ IR.KEY

BITCB>- 1 VALID FOR FI~E TABLES
BI TCKE Y. SI Zt);

The organization of an Index fjte is shown in the diagram betow.

1
\II

·-···-----·--·•.
I root I
I table I ·----·--

I I t
I 1 I

---------------- t ---------------. . ·'
\I/ \II \I/ +-····-----·-·

I coarse I
I table • +--------·-·•

I
f

··------·---·
I coarse 1
I table f +----·----··

I

•
~--19--- ·-----,--
I

\f /
I

\I/

+---------+
i coarse 1
J table t +-·-------·-+

• •
I

\I/

+---------· ·------·---+ ·-·--·----·-· ·----·-----·
• 1

f in.e
table

I f
l<------1

fine
table

• ••
l<·---1

fine
table

I
l<-•-1

fine
t abt ·e

I
a

--· I
I
I
I
• i
C n
I d
I e
I x
I
I f . ' • l
I e
t
I

• I
I
I ·-·--·------· .. ----·--·---· ··---- ----·-· ·--·--·----·-· --· • f

I
\j/

I
_____________ , _________ _

\ti \1/ \II

t
1

t
1
I

\I.I

I I
I -w-im.-

- •'•·- -~- t ·19 _..._ _

\ii \1/

+---· I
J
1

data fHe
I
J
I

·---· Fiqure 2 - Index File Organization

This structure for the Index files allows "the tmpt•mentation of
the most efficient sealf"ch and addition algori'th11ts. Linking the
ta st level of the· fine tabl~s ·together allows ef ficjent
sequential access of the records in the data file. Using thi5
link, the CURRENT need only point to the last entry accessed in
the fine tables and not to the path through the coarse tables to
the fine tables. This eliminates the need for restrictions on
the number of levets allowed in order to maintain the CURRENT.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 (£)

It atso makes checting for changes in the CURRENT•
other users accessing the fite• easier.

caused by

The Fite Parameter Block (fPB> of the Cluster file of an Indexed
Sequential file wilt be positiqned in the code file ~morg t~e
other FPBs according to the order af it*s declaration in the
user•s source code. In addition to the information rtormally
contained in an FPB for a Conventional file• a Cluster fite FPa
will contain a type field which identifies it as a Clust•r file
fPB• a pointer to the data file FPS and an integer which
indicates the number of keys associated with the Index SeQ~entiat
fite. There wilt be one FPS for each Key declared and these FP8s
wjll immediatetr follow the FPS for the data file in the code
ftle of the program. This is shown in the diagram in figure 3.

Default values are used for the file attributes of a Cluster
file. The user may not change these vatues. fhe number of dist
areas w~tt be set to one, records per block wilt be set to onep
block size vill be set to 160 bytes and blocks per area witt be
set to 50. fhe ALL.AT.OPEN boolean witl be set~ causing the disk
area to be allocated when the file is opened for the first ti~e.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANI

I I
t PROGRAM PARAMETER S
I BLOCK f

+··-1FPB.POINTER I

I :1--------·-----------·-·- I
t II II
I \\ SCRAJCHPAD AREA \\
J II CODE JI

f ''-------------------'' +·->I FPB (file OJ f

1---·------------------· t I
t FPS (file 1) 1 I ! _____________________ .,

I FPS <CLUSTER FILE) I +---t _____________________ I\

I II II \
j \\ REMAINING fp9•5 \\

t ''-------------------'' +·->I fPB CDAIA FILE> I , ____________ . _________ J

J FPB CKEJ # 1) I\

·---------------------· \ t fPB (KEV # .2) I\ \ 1 _____________________ 1 \

II : II.
\\ : \\ ' 11 _________________ ~_11 I

I FPB CKEI # HJ u t _____________________ a

\

COMPANY CONFIDENTIAL
8:1000 MCP II

P.S. 2212 5462 CE)

02 fP8.fllE.TYPE
02 fPB.IS.SUB.FPB.PIR SITCl2>••

% number of fPBs displaced fro•
% the first FPB <file 01.

02 FPB.IS.NUM.SUB.fPBS BIT C6J,•
02 fPB.IS.NUM.IO.OESC BIT C6>•*

01 KEY.PARAMETERS"
02 KE't'.flAGS"'

03 KEY.PRIME
03 KEY.DUP.AllOWED

02 KEY.OESCRIPIION,
03 KEY.OFFSET
OJ KE't.SIZf
03 Jt£Y.SIGN£0
03 KE y. DE CE NO ING

*
*

BIT Cl>••
BIT Clh*

SifC16>•*
BITC12>•*
arr c11
BIT Cl>••

·*New field in 9.0 Software

figure J - Code file on Disk

Some changes wer~ atso necessary in the Proqram Parameter Block
in the 9.0 software. The changes are required to prevent
programs which contain Relative and ·Indexed SeQuentiat files from
being execut•d on versions of the MCPs reteased prior to the 9.o
version. Further. program code files which are executed under
control of the 9.0 HCP may no tonger be executed under control of
any prior MCPs. for this reason. users who anticipate returning
to prior versions of the HCP are advised to retain copies of
their code f ites and to not execute these copies under controt of
the 9.0 software.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~J

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

Generally• the me~ory structures used in the Indexed Sequential
implementation are much like the current Data Management System
memory structures- with but a few exceptions which tate advantage
of the more specific requiraments of th~ ANSI •74 COBOL
definition. Unlike OHS~ which does not use File Information
Blocks in memory, Indexed Sequential files witl have an FIB
dictionary entry which will point to an Indexed Sequential fie.
Since the files may be shared among· the prograss that are
executing• this FIS witt contain only the information pertinent
to a specific user and will be referred to as the User Specific
Information CUSI> field.

The USI will contain a pointer to the file specific inforaation~
the information that relates onlr to the file itsetf regardtess
of who is using it. The central element tn tbi~ structure is the
information necessary to relate the various component fites of
the Indexed Sequential fH.e. This is actually global
information. global to all of the users. and witl contain a table
whose entries point to information specif icalty concerning the
component file. The structure which contains this information is
referred to as the Index Fite Structure Descriptor <STR>. fhere
wilt be one Structure Descriptor for the data file ~nd ore for
each Index fite associated with the Indexed SeQuentiat file.

Structure Descriptors contain pointers to the OfH, Buffers and
CURRENT information associated with the various Index files. The
retatlonship of the various memory structures used is shoMn
diagramaticatly in figure 4.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

+-------·--+
1 FIB OIC I (User #11
.. - -··---·--· *

I
\I/

+-----·--·

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

·------ .. --.
(User #2) t FIS OIC f .. --·-------..

1
\t I

+-------· I USI 1-----------------·--• +------------------·-·t USl f +------·-· f • ·-------· \II \II
+·-- .. ··-··--· +-----+ +-----·

+-------------------------·-tGlobatst···-->I IOO t·-->I IOD , __ •
t
I
I
I
J
I
J
J
f
1
J
I
1
f
1
t
I
j

·---------------------·-------· It\ +···--+ ·-----· '
• I a

I
\I/ ·-----------------------·

·-----· +----------------· ·----------------· t SJR 1---->ICURRENT• User #14·-·>ICURRENt~ User 12t--ttl>
+--··--+ ·----------------· ·----------------+ • •

I I +-----•
I +·---->I Dfl1 I
t +-----·
•
1 ·-----· ·-----· ·-----· •----·-->t BUF l<••>I BUF l<-·>I SUF t--ftl> ·-·----· +-----+ ·-----·

+--·-·--· ·----------------· ·----------------· +->t STR 1---->ICURRENI• User 114·-->ICURRENT• User #21--111> ·-----· ·----------------· ·----------------+ I I
I I •-----+
I +··--·>I DfH I

' ·----·-· ,J

I +-----•
+------->I 8Uf 1-·Jll>

'· +-----+
Fi gur-.e 4 - [··s· Fite Memory Structures

from the user's view point, Indexed Sequential files are more
like a Convantionat Random fite. except for the fact that
symbolic ~ey values are used~ than they are like OMS structures.
Though the Data Management System is a superset of the Indexed
Sequential implementation, the user is more likely to have
s~verat small and transient Indexed Sequential files than one
large file which he would treat as a data base.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

P~S. 2212 5462 CE>

A secondary,, but important_. goal of the design of the ANSI •74
COBOL implementation was to allo~ a smooth integratio" of
Relative and Indexed Sequential files with the Conventiori~t file
mechanisa. for this reason and for ether reas~ns# access to an
indexed Sequential FIB is via the FI9 Dictionary. which is also
used to access Conventionat file flBs. fhe FIB for an Indexed
Sequential file is itself quite different from the FIS for a
Conventional file. The Indexed Sequential file is associated
with several physical fites. whereas the Conventional file is
associated with only one. Also• more than one user •~Y share the
information, fnctuding the data buffers. of an Indexed Seq~entiat
FI0J a Conventional file FIB is used bv only one user. If two
users are accessing the same physical Conventionat fite, each
user wilt have his own Fla. ·

for these reasons, an Indexed Sequential FI8 contains three major
parts:

1. User Specific Information
2. File Glabat Infor•ation
3. Compon~nt File Specific Information

The entry in the FIS dictionary corresponding to the Indexed
Sequential fite points to the User Specific Information CUSI> of
th is Indexed Sequenti at: f IB.

The USI contains information associated with one user onl~· The
HCP must know bow the user has opened the fite• for example as
INPUT~ and how the user is accessing the file• such as
sequentially~ This informat~on is kept in the USI. User
statistics• status and MCP workspace are also kept i~ this
structure. Finally• there is a pointer to the next part of the
Indexed Sequential FIB, the global information associated with
the physicat f ite.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

01 USER.SPECIFIC.INFORMATION,

OZ FIB.COMMON.PORTION
0 J f IB. BOOLE ANS

C4 FIB.OPEN
04 f I 8. CLOSHfG
04 Fl a,.QUJPUT
04 fI8.INPU1'

03 FIB.ORGANIZATION
% 1 = RflATIVE
% 2 = IND£XED/SEQUENTlAl

oz us,1.r1a,,
OJ fIB.USI.NOT.fIRSf.TIHE.THRU
03 flB.USl.LASf.OP.ffEAD'
Ol FIB.USI.OUPLICATE
03 flB.~51.MATCH.fOUND
03 FIS.USl.UPDAIE.flAG
03 f IB.USI.fIRSJ.PASS
0.3 FILLER
OJ ff B.USl.ACCESS.HOOE
03 fIS.USI.JOB.NUMSER
03 FIB.USI.RECORD.AODRESS
03 FIB~USI.KEY.POINJER
03 F1e.us1.coHHUNICATE.WDRKSPACEP

COMPANY CONFIDENTIAL
'81000 MCP !I

P.S. 2212 5462 CE>

BITC2-20),.%
BITC58h %
BITCth %
9ITClh %
BIT{l)* %
Bif (1),, %
BIT< 4 h %

The first
220 bits of
US I are the
same as
Convent i o "al
FIBs

Blf (1),.
SIT(lh
BIT<l> ..
BIJCl>•
BITClh
Blf(l)10

04 FIB.USI.BINARY.SEARCH.ARGUEMENTS
O~ FtB.USl.INTERFACE.PADS

BIT<2>•
Bif(4h
81TC24),.
81TC24),
BIT<24).,
BlT(6lo h
SITC208h
BIT(96),
BlT<ll2},
BIT(24).,
s n ca 1 ..
HITC24H

04 FI8.U51.SAVE.STATE.AREA
03 FIB.USI.GlOBAL.POINTER
03 FIB.USl.CURRENT.STRUCTURE
03 fl8.USI.H£ADER

As shown in the above diagram~ the first 220 bits of the User
Specific Information are the same as th~ first 220 bits of •n FIB
for a Conventional file. The rest of th~ infor~ation can be seen
to be items that are peculiar to a specific user of thcl
structure. It is iAformation that is necessary for Operating
System storage of the •state• var~~bles that may be reQuired to
perform a single operation for this user.

Included in this information is a pointer to the next portion of
an Indexed SeQuential FIB, the file Global information. This
informationp tnown as the GlQ8AlS fietd~ contains infcr•ation
about the various physical files whid\ comprise an Indexed
Sequential file. Its •ain function is to provide a path to the
required files necessary t-0 complete an I/O operation. 4
secondary function is to store information global to the Indexed
Sequenti at file.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

3-10

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

The path to a particular co~ponent file is provided by a system
descriptor contained in a tabte of system descriptors. The first
entry of the table points to tha data file. The re•a1n1ng
entries point to Index files, one for each key declared; they
appear in tba order of the declaration of their corresponding
~eys. For any operation which specifies a tey, the compiler w~ll
specify the tey number, which will be used as an index into this
table.

The global information consjsts of pointers to the chain of 110
descriptors to be used for operations on ~he Indexed Seouentiat
data file• a count of users who are updating the file• and Lock
bits to support ANSI •74 COBOL•s file level tockout. Also
contained in GLOBALS are the count and flag fields necessary to
enforce the prohibitio~ on edncurrent updates. A programmatic
description is shown below.

Ol GLOBALS

02 GLOB.VERSION.NUMBER
02 GLOB.NUMBER.Of.USERS
02 GL08.NUHBER.Of .UPOATERS
02 GLOB.OISK.COPl.AODRESS
02 GLOB.SlZE.l~.8115
02 GL08.MEHORY.ADORESS
02 GLO£.LOCK.81TS
02 GLOS.IO.OESC.CHAIN.ADDRESS
02 GLOB.HAX.SlRUCTURE.HUMBER
OZ GLOB.FLAGS

03 GLOB.OMS.FILE
03 FILLER
03 GLOB.WRITE.ERROR

02 GLOB.CONCURRENT.INFO•
OJ GLOB.INUS£.COUNT
03 GLOB.CONCURRENT.FLAGS,

8lf(8),
BIT<&>
BIT(6)
OSK.ADR1
BIT<16>•
BlfCZ4),
BITC2)•
BITC24)1
BITC8l•
BIT(6)~

BIT<l>~
BIT<4>
BIT< 1 >•

04 GLOB.FILE.AVAIL SITCl>•

% AT THIS D~S INFO AND
% IS INFO ARE DIFFERENT
X Ill STR OIRECTO~Y

04 GlOB.UPOATE.REQUIREO.OR.ZNPROC BITCl>•
02 GLOB.STRUClURE.DiRECTQRY,

03 GLOB.STRUCTURE.DESCRIPTOR

Att of the pointers to subsequent portions of the Indexed
Sequential structure- alt of which are known as Structure
Descriptors~ are contained in the GLOBALS field. This siaplifies
the task of maintaining the structures and it allows the buffers
to be shared a~ong the varjous users. It adds one tevel of
indirection to alt accesses to the data of course, but tnis
expense is s~alt for the benefits it yields.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

~-11

COMPANY CONFIDENTIAL
BlOOO HCP U

P.S. 2212 5462 CEl

The Structure Descriptor is similar to an FIB for a CoRventional
file except that atl of the User Specific Information is r•moved
and maintained in the USI fietd. For the Index files of ~n
Indexed Sequenti·al structure• nacesS$f"Y ,key infof'mation is at so
tept in the Structure Descriptor. For example• the position of
the key within the data records• it•s size~ whether or not
dupticates are allowed• and whether or not it is the pTime key
are alt stored in the SIR. A programmatic description is shown
bet ow.

01 STRUCTURE_DESCRIPTOR~

02 SJR .• NUMSER
02 STR.lYPE
OZ SJR.USER.COUNI
02 STR.BUFFER.LOCK
02 SfR.8UffER.LISf.POINTER
02 STR.RECOROS.PER.B~OCK
02 SJR.SEGMEHfS.PER.BtOCK
02 SJR.RECORD.SIZ£
02 STR.8LOCK.SIZ£
02 STA.BLOCKS.PER.AREA
02 STR.SEGS.PER.AREA
02 STR.OFH.ADORESS
02 f 'ILLER
02 STft.CURRENT.POINTER
0 l 5 f R.. fl AG S

0 3 S JR.PfUME .KEY
03 SIR.DUPLICATES.ALLOWED
03 SIR.SIMPLE.KEY
03 FILLER

0 2 ST R. -SP l I J f A.C t 0 ff
0 2 Sf R • KE Y. UffO ,.

03 STR.NUMB£R.Of.SUB.KEY$
0 3 S TR. SUB,. KEY"

04 STR.ITEH.OfFSEf
04 STR. ITDt. SIZE
04 STR.ITEH.SIGNED
04 srR.ITEM.DEStE~DING

1HT ·C 8 h
BIT(4),.
BITC6h
BITC2lr
BITC24>-
8ITC t2).,
BIT(.8),.
81T·Cl6>
BlT<l6),.
BIH 16>•
B!'f(16>•
BIT<2·1tl•
BITC16),
BITCl4h

BITC1h
Bl TC I)•
SITC 1 h
9ITC5),.
BITC12),

BITCS),

BIT!16),
911'(12)~

BIT(!),.
BITClJ;

As shown tn figure~- the Structure Oescriptor:contains a pointer
to the Disk Fite Keader, the HCP-defined structure which is at
the last leve't. This stf"Ucture• as it always has, contains
information relating almost exclusivel1 to the physical
characteristics of the U.le. Any logical infor11.ation in the
header~ such as record size and records per bloc•• was obtained
froc the program which origi~atty created the file~

The format of the disk file header had to be expanded in the 9.0
version of the software to accomodate the ANSI •74 COBOL

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONfIGENTlAl
91000 HCP II

P.S. 2212 5462 CE>

implementation. Prior to the creation of the 9.0 version,
sevef"at pieces of info.-mation asso,ciated with DMS Data. Bases"
which should hav~ been part of the DfH~ were maintained
separately due to a tact of available space in the then curent
definition of the dist fite header. These fields have ~tso been
incorporated in the new disk file header. The new for~at has
been designed to prevent the occurrence of such proble•s in the
future~ whenever the need for new fields in the DfH arises.

Some efficient means of available disk space maintenance had ta
be devised for Indexed Sequential files. To accomplish ~his• the
necessarv information regarding the available space is maintained
in the Cluster fite as a data record. Wben an Indexed Seq~ential
fi.l.e _ _Js opened11 this ·information is tir-ought into me1ory------,iritr---
stor_ed ~ n a _____ memori:=-~r~e.JL wfii cn:-=.itil.J 1 mai"Eflj) at eJ~ fo\Tow_t_ne ot·sr
f i t e H ·e ? de r for th E! da. ta fi l e. Th i s----a-r .. e i --i ~s k 11' o w n as t h e 0 i s k
file H;ader Exte~~ion.

When the Indexed Sequential file is opened~ the inforaation on
the available space within the Direct fite, all of which space is
nat available as far as the system is concerned~ is brought into
memory and stored in the Df~ Extension. The for•at cf this
information in memory is as shown below.

01 OFK.IS.EXJENSION,

02 FILLER
02 OfH.15.EXTENSION.SIZE
OZ DFH.IS.EXIENSION.VEqSION
OZ OFH.tS.NEXT.FREE.RECORD
02 OFH.IS.NEXf.fREE.BLDCK
02 OFH.IS.ROOT.f A9LE
02 OFH.IS.UPOATE.FLAG

BITCl&),.
8ITCt&>•
BITC36),.
8l'.f(32l ..
BITC3Z)11
iHTCZ4>•
BIT ,Ctl;

The Indexed Sequential file system maintains two fields in the
OfH.EXTENSION of each file whjch keep track of available space
within the Direct fite. ''is available space should not be
confused with the available dist space that is maintained by the
system. Available space in an Indexed Sequentiat file or in a
Relative fite aeans that a record has never been written into an
available record slot or that a record was written at some ti•e

BURROUGHS CORPORATION
COMPUTER SYSIEHS GROUP
SANTA BARBARA PLANf

3-15

COMPANY CONFIOENJIAl
01000 MCP II

P.S. 2212 5462 CEl

but ~as subsequently and is now deleted. To the syste•• all of
the space alt,ocated to the fite is in use and none of it is
avaitabt e.

Both of the available space pointers shown above.
DFH.IS.NEXJ.FREE.RECORD and DfH.IS.NEXJ.fREE.8LOCK• will contain
addresses Gf blocks which have available space. fhe
NEXT.FREE.RECORD pointer does not actuatty point to a record but
points to the block which contains the available record stot.
Record slot allocation within a block is accomplished using the
presence bits in the Btock Control Information for that bloct.

The DfH.IS.NEXf.fREE.BLOCK field will contain the area and block
number of the next totally available bloct at the logical end cf
the file. The first disk area of the data file is allocated when
the fite is fir st opened and the NEXT.FREE.BLOCK field is set to
zero. a valid address, at that time. Also. when the file is
first opened~ the NEXT.FREE.RECORD field is se~ to aFFFFFfff;.
When the Micro MCP needs to add a record to the file ard the
NEXT.fREE.aECORO field contains ~ffFFffFFa. it aeans that no
records are available in a block that has atready been
initialized. fhe allocation must be accomplished using the
NEXT.FREE.BLOCK field.

The Micro MCP ~ill then initialize the Presence Bits fn the Stock
Contcot Information of the bloc~ addressed tty the NiXf.FREE.BlOCK
fietd~ move the address,which is in the NEXT.FREE~~ECORO fietd.
in this case aFFfff'ff;f~ to the ,first thirty-two bits of· the last
record slot in the btock~ move the address of this block to the
NEXT.FREE.RECORD field and increment the NEXT.FREE.BLOCK field.
If the incramented value of the NEXT.FREE.BLOCK field causes this
dist area to exceed the specified size of a disk area. aFFFFFfFF~
will be stored in the NEXT.FREE.BLOCK field instead. The use of
this value is discused in a subsequent paragraph.

The record which is being added is then moved to the first recGrj
slot in the newly allocated bloctc,• the presence bit for this s:tot
is set and the block is wri.tten. Tha p;t"esence bits fot" th,!
second and alt subsequent record slots within that block witt b~
set to zero, due to the initiaiization process. arFFFFfffa• the
value that was previously in the NEXT.FREE.RECORD fietd, wilt be
stored in the first thirty-t~o bits of the last record slot in
the block.

When the next re.cord is added tD the.'.' fHe" the Micro MCP wilt
again examine the NEXT.FREE.RECORD field and it wilt now contain
the address of the block that was just attocated. The Micro HCP
wilt read the btoc• into memory, if necessary, and exa•ine the
Presence Bits in the Stock Control Information. The first

BURROUGHS CORPORATION
COHPUTER SYSTEMS GROUP
SANTA BARBARA PLANJ

3•74

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

available record slot wilt be the second slot within the block.
The Presence Bit for this slot ~flt be set and, if this is the
last recoTd slot in the block? the afffffffFa stored in the first
thirty-two bits of the record slot wilt be moved back to the
NEXT.FREE.RECORD field, and the record wilt then be stored ir the
slot. If the second record slot is not the last i" the block,
dffffFfff; witl remain in the actuat last slot afid the
NEXT.FREE.RECORD field will not be changed.

Allocation in the Oirect fita will proceed in this •~nner,
asuming tha;t no 0£lETE O'perations are perfor11ed, until the 'disk
area becomes fitted and, as mentioned previou~ty~ 3FffFFFFF~ is
stored in the ~EXT.FREE.BLOCK field. This value serves as an
indicator to the Micro HCP that the next disk area has not yet
been attocated by the S.HCP. When the Micro ~CP encounters this
vatuep it merely passes cantrol to the S.HCP wbich wilt allocate
the area and store its address in the dist file header and in tha
NEXT.FREE.BLOCK f~etd. The Mic'o HCP will then initialize the
Block Control Information and proceed as was described
pr e v i o u s l 1 •

The process jYst described may be int~rrupted by the occcrrence
of a 0£LETE request f~om a user~ When this occurs• the address
in the NEXT.fftEE.ffECORO slot is stored in the first thirtr·two
bits of the record being deteted• the Presence Bit associated
with the deteted ~ecord is reset and the block is written to
disk. The address of the bloct which tontains the deleted record
is then stored in the NEXT.FREE.RECORD fietd. The next time a
f'ecor·d is added to the file.. it will conseQuently be stof'ed in
the area occupied bV the record that was f ust deleted a~d the
NEXT.FREE.RECORD field will be restored to its prior vatue. This
operation should eli~inate the need to periodically rewrite the
·entire file to etiainate tar~;e numbers of eapty record slots,. l

process commonlr known as •gatbage cottection".

Sboutd more than one record in a btoc• be deleted, the Micro HCP
only needs to insure that tba first ~bir~y-two bits of the last
available record slot jn that btock contains the address of the
next block in which a record slot is available or ~FFffffff~ if
there is no such next block. This i~ true even if att of the
records in a block ar~ deleted. No pointers need be changed• in
this latter case. until the next OELErE operation occurs.
Assuming that no new records have been added tn the interim, the
Micro MCP then needs onlJ to insure that the address of the block
which is totally empty is s~ored in the slot previously occ~piad
by the deleted recard.

Allocation of space for an Index file assoctated with an Indexed
Sequential fite is somewhat siapler than for a Data fite~ s~nce
record availability does not have to be maintajned. Whenever a

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

3- 75

COMPANY CONFIDENTl4t
81000 NCP II

P.S. 2212 5462 CE>

record is deleted• tha pointer to that record in the Index file
is destroyed and the table contained in the block is compacted.
fhe count of the actual number of entries in that block, which is
maintained in the Block Control Information of an Index fite~ is
decremented. No other action is required for the Inde~ file.

Maintenance of the NEXT.FREE.BLOCK field of an Index file is
exactty tike that for the data file. this fje(d wilt always
contain the address of the next available block at the logical
end of the fite. The Micro HCP wjtt sat the field to ~ffffffff~
when the next disk area must be allocated• exactly as is done for
the data fite.

The NEXT.FREE.RECORD field is used to address a linked list of
blocks within the fita that are completely empty. This can onty
.occur when atl of the records that were addressed through thts
block have been deleted• a situation which shoutd sel~om occur in
actual use.

The •splitting• of fine tables in the Index file is an operation
that is atways performed br the S.MCP. Any time the addition of
a record to the file causes a need for a fine table to be divided
in two, the Micro HCP passes control to the SOL portion.
Co A seq u e n U y • t h e - .S_!!}I C P _ _1Le r, form s m o s t o f t.h..L. _ ... 1Hl.a il_a. b_~ t! ___ . s p _a~ e
ma,int.enanc:e ft>ff __ l!t~_JJ'JJ1.e~.X-. _ _f..iles.1111___JAhite the ~icf"o HCP perforru the
majority of this wort for the da~a fite.

The CURRENT is a structure that• for ANSI •1• COBOL• logically
belongs in the User Specific lhformation field~ since there is
only one CURRENT per user. There are two reason~ for associating
the CURRENT with the Structure Descriptor~ however. first, OMS
has a CURRENT for each structure and a pointer exists in each STR
to t he a ppr op r i a te CUR RE NT. r o be co mp at i b 1 e ., i t h OMS " e a ch S Tl'?
of an Index•d Sequential file poiAts to the CURRENT for that
structure. A current structure number is maintain~d i~ the USI
to satisfv ANSI •74 requirements. Second# since the file can be
shared, an operation· by one user can affec·t the CURRENT of
anothef' user. To guaf"'d against thi S• each CURR£:Nf is checked
when an operation wbich can aff~ct it is performed. To aid the
search of CURRENTs1 they are lin•ed togetherr th~ first one being
pointed to by the SIR. A programmatic dBscription of the CURRENT
ti el d i s pr e s e n t e d b e l, o w •

BURROUGHS CORPURATJGH
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

01 CURRENT_OECLAR~JION•
02 CUR.LINK
02 CUR.JOB.INVOKE,

03 CUR.cm~.JOB
OJ CUR.CUR.INVOKE

02 CUR.STATUS
02 CUR.f INE.TA8LE•

03 CUR.AREA
03 CUR.BlOCK
03 CUR.RECORD

02 CUR.STATISTICS,
03 CUR.SIR.READ.COUNT
OJ CUff.SlR.WRITE.COUNT
03 CUR.SIR.REWRITE.COUNT
03 CUR.STR.OELETE.CDUNT
03 CUR.SIR.SPECIAL.COUNT
03 CUR.SfR.EXCEPfION.CDUNT
Ol CUR.SIR.PHY.READ.COUNT
03 CUR.SIR.PHY.WRITE.COUNT

3- 76

COMPANY CONFtOENTIAL
81000 HCP II

P.S. 2212 5462 (£)

0.[f(24l·

Bif{16>"
SIT(6 h
BIT(2j• % O·OEL• l•VAL

81"f(8),.
tllT(16>•
BITC12l"

BITC24),
81TC24l•
tHTCZltJ,
Blf{Z4l•
Btf(Z4l•
BITC24l•
61TC24>•
91 TC~4 H

The current is maintained for Indexed Sequential files which use
ei tner Sequential access or Dynamic access. When the user is
accessing the file sequentially, the current is maintained for
the key of reference (USl.CURRENJ.SfRUCTUREJ. for output files•
the key of reference must be the prime key and CURREWT always
points to the last entry writteB. For a new file. CURRENT is
initialized to point to the first entry but CUR.STATUS is set to
indicate the entry has not y~t been written. fo_r an old file
opent!<S OUT.PUT EXTEND, the current is . int.tLalJz_~_g to tbe f a·st
en-try.~w·r-it:J~n. "ftte Micro HCP uses the--c-urirent on output files to
insure that records are written in sequence~ a requirement of
ANSI 74 COBOL.

Se q_uen ti . .at INPUT or lllfJJ_[_~_QJJ_l'e_U.J:__fiL.ei _ _r_~_g.li ire that -~- h!t ~1.J_rr en t
points t~ th.~_._L1st recoJf_.d .. re.Bd•-, On t't1e nex:t REAO operation~ the
current is incremented to ;point to the next' ·ava'itabte record. If
the current record is deleted or the CURRENT was positioned by an
OPEN or START, then CUR.SfAfUS is set to indjcate that a record
has not yet been read. The next R£AD will deliver the record a"d
reset CUR.STATUS.

for files in Drnamic access mode~ the meaning of CURRENT i~ ~ore
complicated. The CURRENT will be handled exactly as in the case
of Sequentiat INPUT or INPUT-OUTPUT. This •eans that soce
sequences of operations aay not produce the desired intuitive
result. The exampte betow illustrates the problem.

BURROUGHS CORPORATION
COMPUTER SJSTEHS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
8Ul00 HCP I I

P.S. 2212 5462 CE>

Consider the Index table at the right.
Hhat should the result of a READ NEXT
be, in the following sequence of operations1

·---------+
I A Bl E I
I DOG I
t GOlf I

a. REAO<ABlEl1 AOOCBAKER>• READ NEXTJ +---------•
b. REAOCDOG), DELEf£(90G), ADOCECHO>- ftEAD NEXJ;
c. READ(DOG>- DELEIECOOG>• AOD<CHARLIEJ, READ NEXTJ

for our implementation the READ NEXT produces the fotlowing
resutts:
a. BAKER
b .. GO'lF
c. GOLF

The method of all ocatinq buffers in prior versions of the HCP and
in t he 9, 0 v er s i on f Of" Con v e n t i o n al f i l ·es i s known a s s tat i c
allocation. This method of allocating buffers is simple# once
the number of buffers has been chosen br the user. The buffers
are merely allocated when the file is opened and they ~e•ain
assigned to the file until ft is closed. If the number of
buffers allocated is too small• however• then operations upon the
file may be inefficient. If the number of buffers allocated is
too large~ then nothing is qained in efficency and Memory space
is wasted.

On an Indexed Sequential file particularly, the number of buffers
actuatty needed varies with the type of ooeration and the state
of the Indexed Sequentiat fite. T~e optimum number of _buffers is
best ichosen dynamicatty to avcl'id the disadvantageS--.-entTorfea ab o-v e-~ --·--···-·· ·--···-*···-·-··----·"'""'"···- --···~--............. ~,., ___ ... __ ~--

Allocating buffers on de~and and deallocating them wh€n the
memory ther occupy is required for other ourposes is known as
~.¥-Ramie allocation. Dynamic aU.ocati·on has always been u!ed for
buffers associated with· a OHS data base. It is accomplished by
calling the HCP's memory allocation procedure~ GETSPACE• whenever
a buffer is required. Deallocation is accomplished by allowing
GETSPACE to overlay OMS buffers when necessary. Dynamic
allocation has also been implemented for Indexed SeouePtiat
files.

The management of buffers associated with an Indexed Sequential
fl 1 e pre se n t s a so e c i at ~r ob l e m for f he HCP - s j n c e t her e c an be a
variable number of them• depenjing upon the operati-0n, and theJ
can be djfferent sizes, depending upon which component file is
being accessed. Jo solve the problems associated with a variable
number of buffers~ the Prioritized Memory Management algorith••

BURROUGHS CORPORATION
COMPUTER SYSfENS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
01000 MCP Ii

P.S. 2212 5462 (£)

developed for the 7.0 release should be used. This memory
manager overlays buffers whenever space is needed and the
priority of a buffer mates it a candtdate to be overlaid. The
FIFO He•ory Management algorithm can be used but perforaarce may
be impacted on a multi-programming system.

To solve the· probtems associated with variable size buffars
addressing the same lndeied Sequential fite~ all of the buffers
used for one structure are linked together and pointed to by the
structure, so that atl buffer~ in a chain are of the same size.

Th e Bu f fer lle s c r i p tor i s t he st f' u c tu r e u s e d to ma i n t a i n t he
buffers associated with the Indexed Sequential file. It contains
the necessary link fields, identification fields, and state
information. Since the memory manager may overtay the first
buffer in a chain, the memory tint field, Ml.POINTER. will
contain the structure address so that STR.SUFFER.lISf.POINtER ~ay
be updated. A programmatic description of the Buffer Descriptor
is presented below.

01 BUFfER_DESCRIPTOR•
02 BO.AREA.DISPLACEMENT•

0 l SO. AREA
03 BO.OFFSET

OZ 80.USER.COUtH
0.2 Bo. IN. MEMORY
02 SO.IO.ERROR
02 BO.WRITER.CONTROL•

03 BO.REQUIRES.A.WRITE
03 BO.CONTROL.POINT

02 BO.NEXf.8UFf£R.DESCRIPTOR
02 BD.PRtOR.BUffER.DESCRIPfOR

8IT(8>•
HIT(16h
BITC4l11
81l(1),.
BITClh

BIT.Cl>•
BlTC1li
BIT(24),,
Bl T(Z ft l.i

110 desc·riptors are shared among att the buffers. The 9£EIN artd
END addresses in tke descriptor~ may be modified when a
descriptor is used bJ. the Operating System. The number of
buffers allocated depends on the number of active structures
associated with the Indexed Sequential file. This technique
serves to minimize the number of descriptors in the dis• chainP
thus reducing the amount of processing required by GISMO~ and it
minimizes the meaory requirement~ for descriptGrs. It does
require an allocation mechanis~ for descriptors~ in addition to
one for buffers- but this expeAse has been found to be worth the
benefits.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONFIDENTIAL
B1000 MCP 11

P.S. 2212 5462 CE)

Cqncurrent REAO op er at_i lln,~ ___ on_. ~--~- r"ecord of an Indexed
Seqy!lnti at file are a4. ways ~l_~~owe_~. For the 9.0 ver·sn>n of the
software#--a-IT--To-glc-aT- upcrat-e operations• WRlfE and REWRITE• wilt
be started only after all access•s to the file have been
suspended. These ~pdate oQerations will inhibit further accesses
to the file until they complete. To users• it wjtt aopear that
concurrent updates to_the file are allowed~ though this will not
actualty be the case.

This restriction simplifies the code necessary to insure that the
appropriate buffers remain in me•ory. Since· only one ~pdate
operation can be jn process at any given time# the update
operation wilt begin with a BO.USER.COUNT of zero. pnce t~e
update operation uses a bufJer11 that buffer•s user co.unt wuHI be
-~•it.--~~---.. -·-thti-5· .. --;;;:·~ive.ni:i ng t-h;---·Mem-of.-y--·-M-anagement at gor it h• fr om
ov erl aying_ i_~t-~--- · ---·----------· ·--------.. -··--·-----.. ·

Upon co•ptetfcn of the update operation alt user counts kilt be
set to zero. For READ operations- the user count field is not
used because each buffer need be used only once during the
process of the com~unicate. The buffer is autoaaticatty
protected from being overlaid while the I/O operation is in
pr·ocess.

The code necessary to insure the integrity of the file is also
simplified. The Record Contention problems- the co•ptex probte•s
involving changes to the file w~ile another user is accessing it•
are avoided. for the simple case of one user ~t a time updating
the file• The simplified code provides better performance.

The dist I/D error procedures in the HCP perform a certain number
of retry operations each time a disk l/O operation completes ~ith
the Exception Bit- Bit l starting f~om z~ro. set to one.
Different procedures may be i~vo•ed, depending upon the type of
I/O operation that has compteted and the type ~f riontrot and
drive that encountered the error. HCP 1/0 operations are handleJ
by a different pro~edure whi~h is not as extensive as the ona
descr•bed below. The following description applies to IJO errors
on u s er I IO op er at io n s o nt y •

The I/O error procedure first checks the Memory Parity Error bit~
Bit 5 in the Result Oescriptor- received from the controt. If
the bit :is on. it performs a a.aximua of three retry operations~

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~T

togs the resut t and exits the procedure_.
any other bits in the result descriptor.

3-8J

COMPANY CONFIDENTIAL
81000 HCP U

P.S. 2212 5462 <E>

without investigating

The procedure next checii< s the tr ansmi ssfon Parity [rror bit, Bit
15 in the result descriptor.· If this bit ·is on and if the unit
being used is not a 89~82 disk cartridge- the procedure performs
a maximum of three retry operatjons. togs the result and exits
th e pr o c e d ur e w i th ou t c h ec Id n g a n y f ur the r • I f the u n i t i s a
89482, no retry operations are performed for this case but and
the investigation continues.

The procedure next checks the Not Ready bit~ Bit 2 in the result
descriptor. If this bit is on, the procedure performs a saximum
of three retry operations, logs the result and exits tba
procedure without checidri.g any furthef'.

The procedure next checks the Write loc~out bit, Bit 6 in the
result descriptor. If this bit is on, The procedure tooks at the
I/O descriptor itself. If the first three bits of the operation
code are 010. 011 or 101. which would denote Write, Initialize
and Relocate, the procedure performs a maximu• of three retry
operations~ logs the res~lt and exits the procedure without
checking further. [f the first three bits denote so•ething other
than the three operations listed• Bit 6 is ignored ard the
investigation continues.

The procedure neit performs a Logical OR operation on:

1. The Sector Address Error bit• Bit 10#
,2. The See• Timeout bit-~ Bit.ll•
J. (fhe Address Parity bit• Bit 9~ ANO not 89482>• and
4. The Data Error bit~ Bit 1.

If the result of the logicat OR ope~att~n is true- the p~ocedura
becomes complex and varies with the type of djs~ connected.
Before describing the p~ocedu~e for each type of dist, some basic
procedures should be described.

The Offset Procedure is a subroutine of the dis~ IIO E~ror
pf'ocedure. 8asicatty. it performs six retry 011erations. lf any
one of the si.x effect recovery 1lf the error; the procedltf'e is
exited i•mediately regardless of how many operations have been
performed. The term "offset• as used here denote5 positioning
the dist heads slightly off of the center of the cylinder
specified in the disk address. In all disk pack drives which ~ay
be connected to the 81000 system, offset may b~ specified in the

BURROUGHS CORPORATION
COMPUTER SYStEHS GROUP

COMPANY CONFIDENTIAL
31000 HCP II

SANTA BARBARA PLANT P.S. 2212 5462 CE>

inwar'd <positive> Of' outMard Cne·~ativel direction.

The'.first two ooer~tions requested by the aftset Procedure a~e
performed with the original l/O descriptor 4nmo'~Uied. fhe ne1t
two operations are performed with negative ofts•t and the last
two are perfof'med with positive offset. If recovery is not
effected by aRy of the six• all bits which may have been set in
the original I/O descriptor to cause the offset operations are
reset and the procedure ts exited.

The tera •strobe• as used here denotes beginning the actual read
operation sligtty bafof'e. or after the point in the rotation of
the dist Mhere it would normatty begin. The StTobe Procedure
calls the Offset Procedure a maximun of three times. This may
cause a maximum of eighteen retry oper·ations to be performed. If
any one of the eighteen effect recovery~ the procedure is exited
regardless of how many operations have been pef'formad.

fhe first call ~n the Offset Procedure is accomplished with the
original l/O descriptor in its unmodified form. This will cause
six retry operations to occur• exactly as described for tha
Offset Procedure• provided recovery is not effected by ~ny of the
s i x. T he ,,. e x t ca il t i s ae comp I i shed w i t h a bi t set i n t tt e
descriptor which wilt cause early strobe to occur. Hence,
another six retf'y operations may he p;erformed• two with earty
strobe and no offset• two with early stf'·obe and positive offset
and two with early strobe and negattve offset.

lwetve retry operatjons have been P•rformed to this point. If
the erroT has not yet been corrected~ the Offset Procedure is
a·gain cal\ed with bits set in the l/O descrlptor to cause late
strobe to occur. lhis may result in another six retry operations
being performed~ as described for the Offset Procedure• att with
bits set in th~ I/O descriptor to cause late st~Qbjng to occur.

If none
which may
procedure
Procedure·~
descriptor
Pr oc,edure.

of these eighteen op,eratiqns effect recovery,, a4t bits
have been set in the 110 descriptor are reset ard the
is exited. In the Strobe Procedure and in the Offset
if any retry operation does effect recovery. the l/O
resposible is entered in the log prior to exiting the

BURROUGHS CORPORATION
COMPUTER SVSJEHS GffOUP
SANTA BARBARA PLANT

3-82

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 221Z 5462 CE>

All varieties of dist pack that may be connected to the 81000
system and soee varieties of dis• cartridge include error
correcting capabilites in the form of a Fire Code re1ainder
stored immediately after the 1440-bit data segment. Th~
remainder is fif ty-sjx bits in length on the 201 dis• pac• and
thirtr-t~o bits in length on all others. It i1 computed and
stored by the disk hardware when the d•ta segaent is written. If
an er-rof' should occur when the data segment is tead, the data as
it should have been written may be reconstructed• provided att of
the bits in the data that are 1ncofrect reside in the sa1e
•burst . ., of bits and p·rovided the ·length of this burst qoes not
exceed a specified tiaiting nuaber of bits.

Tbe Error Correction Procedure obtains a 2.osO-bit buffer fro•
avaitable memory. If such memory is not available• the ~outine
exits ~ithout atteapting to correct the error. In alt cases~
when error correctidrt is performed, alt of the segments described
by the original desc(lptor are read and co~rect$d one sector at a
time. For atl dist devi~es whick store the 32-bit resainder but
~hich do not have the ability to correct burst errors in input
data~ the procedure •ust ooe~ate in this ·manner. Devices w~ich
are capable of performing error corre~tibri~ such as the 207 dis~
drive# are capable of doin~ $0 on multiple-sector read
operations- but this feature is not utilized by the soft~are.
Rather.. all of the sectors are .. t~'"ead one sector p·er opef'ation and
th e e x act ad dr es s e s o f · at l : fa it e d s e. ct or s ar e l o g g e d • r h i s
information would be lost on a •ulttple·sector ~ead operation.

Er~or co~rection is performed by. the software for alt varieties
of disk pack except the 207. lhe 201 ~•rdware includes error
correcting capabilities. Error correction is also performed by
the software for the 89482 Dist Cartridge. The software is
capable of correcting a six-bit error burst. fh;e 207 hardware is
capable of correcting an eleven-bit burst.

Two different varieties of 215 and 225 dist pack drives have been
delivered during the life of the B100JJ hardware. These varieties
are known as Desi~n level One (OL-1) ~nd Design Level Two <OL-2J.
For both varieties~ the Strobe Proeed~re ia·i~~~ked but there are
some operationa,t differences in tn~· hardware itself. On Ol··t
drives, the bits which cause plus and ~intis offset and early and
late strobing are ignored by the ~ardware• since it does not
jnclude these capabilities. Conseqtientlr• on DL-1 drives~ a
total of up to eighteen retry operations will be performed by the
Strobe Procedure, but they will actuatt, be nothing more than

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA 8AR0ARA PLANT

COMPANY CONFIDENTIAL
B1000 MCP H

P.S. 2212 5462 CE>

eighteen repetitions of the o~iginat 110 descriptor. Dl-2 drives
include a fult complement ~f offset and strobe capabilities. T~a
software cannot dist~nguish between the ·t~o types of drive.

If none o·f the eighteen retry o.perations caused by the S·trobe
Procedure effect recovery" the 110 de·scriptor is restored to its
original state·- and the Er,ror Correction Pro·cedur·e is invotced.
Each seg•ent described by the 1/0 descriptor is read individually
aAd error correction is per·formed• if possible,. by the software.
In all cases, the results of the recovery attempt are entered in
the Engineerin9 Log.

For 205 and 206 disk drives~ the Strobe Procedure is performed
exactly as 'it is desc..-ibed. Eighteen retry oper.ations are
performed• two operations with each possible co•bination of the
strobe and offset variants. If any of these operations effect
recovery, the l/O descriptor is restored to its original
condition and the procedure is exited. If not. the Error
Correction Procedure is invoked w'ith the I/O descriptor in its
original condition. Error correction is performed by the
software for 205 and 206 drives.

In any case' the resutts of the recovery attempt wilt be entered
in the Engineer~~g Log prior to eKitinq the procedure. fhe I/O
descriptor is always restored to its origin~t condition prior to
exiting the procedure.

207 disk drives include neither offset capabitiHes nor strobe
capabilities. The hardware does include a capabilty to vary the
threshold of a read operation but its u~~ is not recommended for
recovery purposes by the manufacturing plant. ·consequently• the
Stf"obe Pt"ocedure is not invoked for 207 df'ives. Two f'etry
operations only are performed, both using the original version o
the l/O descriptor. If either operatjon effects recovery, the
results are logged and.the procedure i~ exited. If not, tha
Error Correction Procedure is invok•d·

207 drives include error corrfcting ,capabilities in the hardwJre.
Additionally,. the hardwar·e'.-is capable of correcting aU errors
that are cof'rectable in alt s·ectors described in one tfultfpte
sector operation. This a~ltipte sector capability is not
utilized by the software, hoMever, and each sector is read and
corrected individually. lhi' is done for diagnostic pLrposes

BUfiROUGHS CORPORATI'ON
COMPUTER .S YSTEHS GROUP
SANTA BARBARA PLANI

.COMPANY CONFIDENTIAL
Hl 000 HCP II

P.S. 2212 5462 <El

only~ to isotate the address of the faitad sector<s> and insure
their entry in the Engineering log. The results of the recoverr
attempt will be togged and the procedure will be exited with the
1/0 descriptor restored to its original condition.

for all versions of disk cartridge ~xcept the 89482~ the 4400
BPI• 203 or 406 track, 64 sector per track variety of cartridge~
the error recovery proceduret are very si$ple. The pTocedure
merely repeats the original operation a maximum of three ti•es.
The results of this attempt are togged and the procedure is
exited with no further checking. There are ~o other options
ava~table in tha hardware which might help in the recovery
at te 11p t.

for the 89482 cartridge~ the recovery ~tt~mpt is slightly More
extensive. This drive has error crirrecting capabilities siaitar
to those of the 206 drive. Error co~rection on a Read operation
is performed br the software in the Error Correction Procedure
exactly as it is described. On a Write operation, the recovery
attempt is actuatty more comptex than for a disk pact.

When a Write error occurs on the 09482 cartridge. the 1/0 Error
procedure will attempt to correct the error~ jf the three retry
operatio~s mentioned above fail, by writing the data one sector
per operation. In the case of an Ad~ress Parity error~ the
procedure witl atso attempt to write that sector plus the
preceeding sector in an effort to correct the address parity.
The results of the attempt witt be logged and the procedure will
be exited when recovery is effected or when all retry attempts
have been completed.

This concludes the discussion of Data and Address Error Recovery
for the various drives that may be connect. fhe remainder of
this section describes the rema~n,ng tests in the 1/0 Error
procedure.

If the results of the Logical OR operation mentjoned previously
~ere falser the 1/0 Error procedure examines Bits 22 and 23 of
the result descriptor. If both bits ate s•t to one-· th~y
indicate that an Extended Result Descriptor was returned ~ith the
operation~ though the ERO may not be stored in memory. The
procedure stores the Extended Result Descriptor,. if it is
available~ in the Engineering Log and performs a maxi•u• of three

.J.-' "\'•.Jll•
:· ~ . : ~ . ' ..

BURROUGHS CORPORATION
COMPUTER SYSfE~S GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
91000 MCP II

P.S. 2212 5~62 {£)

retry operations usi.ng the original I/O descriptor. The resutts
of the attempt are togged and the procedure is exited with no
further checting.

finalty, if atl of the tests mentioned to this point wer~ false,
the procedure performs a maximum of thf'ee retry operations and
logs the results. Since an exception did occur. indicated by the
setting of Bit 1, the data is assu~ed to be corrupt and an
attempt is made to co~rect it.

There is one I/O Error pif'ocedure that is inv·o.ked for all tape 110
operati~ns that comptete with the Exception bit in the r~sutt
descriptor set. The procedure is invoked regardtess of ~hether
the operation was a user I/O or an HCP I/O. It is also invoked
on the co•ptetion of Test operations, where the setting of the
Excepton bit is a normal occurrence. It is also invo•ed for
Emulator Tape operations, though in this case• it may do nothjng
more than pass the result descriQtor on to the user for
resolution.

Essentiatlr• the procedure wilt retry the operation a fixed
number of times and return controt to the procedure which catted
it. If recovery was effected,. this wilt be so indicated in the
previously failed result descriptor upan return. If the
procedure was not able to ef fact recovery. the result descriptor
will contain an indication of the failure upon return. In aost
instances• the procedure will retry the operation ten times. but
this number will vary with the type of failure and the operation
at tempted.

fhe rape I/O Error procedures will be described fully in a
subsequent version of this specification.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

4-1

COMPANY COHf IOENTIAl
81000 MCP II

P.S. 2212 5462 CE>

This section of the specification has two principle parts.
S-memory management is described at the functional level.
s-memory requirements for a given system configuration are then
presented. Using the second part of this section• it shculd be
possible to estimate the amount of s-memory that wilt be reQuired
on a system to support a given program.

S-memory management technique$ were chan~ed drastically in the
7.0 varsion of the software and ware changed again in the 9.1
version. The discussion contained in the first part cf this
secti~n aav not be applicable. in alt cases. to versions of the
software released prior to the 9.1 version.

The Bl 000 so ft ware ut H iz es a "'segmen ta ti on• for• of •e•or y
management. In ~uch a systam- memory is requested and allocated
only when it is required and only in the amount that wilt exactly
satisfy the request. In other words• memory is divided into a
variable number of segments• each of which is of any s~ze, with
some obvious restrictions. A basic element in this form of
memory management is the •memory lint".

The format of the memory link was presented in a prior section.
Basically• it· contains a size field which aav contain any value
fro• zero to 1&,111-215 bits. It contains the addresses of the
memory links that precede and succeed it and the address of an
associated segment dictionary entry. It contains a nu•ber of
other fields, which wilt be discussed in turn. It is created and
maintained by the HCP and the, executing inteirpreters store
selected information tn it. In all cases# it imaediatety
precedes the segment of memory that jt describes.

Contiguous nloc•s of •e•ory are r~served fo~ system use at the
extreme ends of the memory ~n any sy~t•~~ This is dascribed in
more detail in the second part of this si~ti~n.· Between the t~o
contiguous blocks lies the af'e a known as •ti nked me11or y"'. At the
end of the reserved area at the tow end of memory~ ~here is a
dum•y meeory link known as the Lo~er Terminating Memory link
<LTML>. At the beginniBg of tbe reserved ar•a at the upper end
of memo r v ; s t he Upp er T er m 1 n a ti n g f-1 em or· y t i n 1' < U l' Hl > •

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

4 -'';) ·-
COMPANY CONFIDENTIAL

91000 HCP II
P.S. 2212 5462 (£)

The terminating memory links are created during the .Cl•ar/Start
procedure. Each has a size field of zero~ a type-field which
specifies the area as fERMINATl~G.LINK• but the "save• bit witt
be set to one in both links. This allows the aemory manage•ent
procedures to recognize the ter•inating memory tin•s. The
backward pointer in the LTML will contain aFFFFFf~; but the
forward pointer will contain the address of the next memory link,
in address orde~. Similarly, the backward pointer in the UTHL
will contain the addr~ss of the previous me•ory link in address
order; the forward pointer witl contain ~fffFFFa.

Hence• alt memory links form a chain in memory. The me•o~y link
which im•ediately precedes each allocated me•ory area ~jfl
contain the address of the succeeding and preceding memory tints
in the forward and backward pointer field respectively. The
chain wilt be ter•inated in the forward direction by the upper
terminating memory tin• and in the bactward direction by the
lower terminating memory link.

The area known as linked memory is an exa1pte of a •memory
subspace•# as this term js used herein. There may be ~ther
memory subspaces wjtbin linked memory. The Run Structure
<Base/limit area> of certain programs may also be divided a~d
allocated upon request by the software. The same procedt.1res tn
the software are used to·manage thes~ smaller aemory subspaces as
af'e used to manage .t.i n~ed memory.

Memory requests may originate in a number of diverse tanners.
This is evidenced by the large nu~ber of different valu~s the
type field of a memory lt~t may contain. The •dst common
occurrence of a aemo~y request is fo~ a code segaent to be
brought into memory. Other requests originate when a file is
opened# when the HCP needs additional temporary storage for the
per f Of' ma n·c e o f one o f i t s t a s k s ·" when add i ti on at s pace i s
required to botd a queue ••ssage~ and so ·torth.

There is probabily no need to di scus.s each ··different type of
me•ory request. Many of the numbers assig~ed ~o each d~fferent
type of memory request are for the benefit of the Ou•~IAnalyze~
program onty and have onlr pathotogicat use. The different types
of requests have common characteristics and may hence be grouped
into "classes•. The common characteristics will be described and
explained.

>

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
31000 HCP U

P.S. 221Z 5462 (£)

Parameters that are passed with a me~ory request are the size of
the required aemory area in bits• the address of the dictionary
entry which witt be associated with the memory area. if anv• the
address of the Run Structure Nucleus of the program which caused
the request, jf any• the type field to be sto~ed in the memory
link• the oriority of the request, a boolean variable ~hich
specifies that the •e•ory should be allocated at the hig,est
possib(e physical address and a boolean which specifies that tha
memory aust be allocated above the •fence".

The HCP has one set of stacks, only• to store the variables that
it must m3nipu 1late in the performance of· any ·function. This set
of stacts cannot be stored anywhere else; they •ust be
maintained in memof'y until the function ·bas been perfof'med.
Consequentty. once the HCP begins performing any function• it can
perform no other function until the original tas~ is complete.

Almost alt MCP functions require more than one MCP code segment
to eomptete. A file Open may require mdre than thirt, code
segments to be brougbt,into memory~ The nusber of code segments
required coutd obviously be reduced by ma•ing each code segment
larger but this would also reduce the possibility of findi"g
sufficient aemory on small srstams. It would also possibtr cause
mor·e user code segments to be re,move·d from me111ory to make roo11
for the larger HCP segment.

Should the MCP begin performing a certain reQuest and not be able
to find sufficient memory to contain a necessary code seg•ent~
the system would have to halt. A Clear/Start would then be
~equired1 with its ~esulting loss of all programs that were
running at the time. In order to insure that th~re wilt alwafs
be sufficient me•ory t~ bring in the l~rgest MCP code segment, a
fence is established in liefttof-y,. belo'W :whic~1i only code segments
are allowed to reside. The location of the fence •ay be
calculated by adding the size of the largest HCP code segment a~d
its asso~iated segment dictionary to the address of the lower
terminating memory tink.

Certain exceptions to tha stateme~ts in the paragraph above
exist. Code segments 11ar not be over·l~~y,~ble· at atl times. To
bring a code segment into ~emory. the •~m~ry area is allocated
and an I/O operation initiated. Jhe me•ory area may "ot be
deallocated until the I/O operation is complete. Should the HCP
encounter such a situation and not be able to find a required
memory area anywhere ·etse in raemory~ it wHl wait for the
completion of the operation.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PlANf

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

Certain code segments associated with MICR applications progra•s
are atso not overtayabl·e. This is also true of se911ents of the
interpreter used br such programs. Consequently, the fact that a
memory request is for a code segment is not sufficient to
determine whether the memory should ba allocated belo~ the fence
and the boolean variable is required •

.tll.lil!!l Z!llili. JJ E !~.tiE.k lS.EJliUJA!Ull tHi:

Checkerboarding. also known as External Fragmentation• is the
condition which exists when memory contains a targe nulber of
permanently-allocated areas~ or "save" areas, ·most of ~hith are
separated by small overtayabte areas. In such a situation• the
total memory available may well be large enough to satisfy a
given request but no single contiguous overlayable area is
sufficiently large. This situation can have a serious impact
upon performance.

To minimize the possib~lity of the occu~rence of checkerbcarding•
the HCP attempts to altocate atl memory denoted as
non-overlayable or •save• at the highest possible physical
address. Examples of ite•s which are so allocated are p'ogra•
run structures. files and I/O buffer areas.

When a request for memory allocation is received• the management
algorithm must select a •victimw, a portion of semory which is
already allocated which may be deallocated and assigned to
satisfy the new reQuest. The area to be allocated may also be
mar•ed Available• of course~ though this is seldom the case.
"Victim Selection• is the process of d~ter•ining which allocated
memory segment or segments Mitt be deallocated. This is the most
intricate tast of the •anagement atgorithmP the tas~ which
reQuires the most attention to strategy and the task which is
most influential upon the performance of the system. Two victi•
setectjon algorithms are provided ~n the software. Users may
choose either the priority Victim Selector or the Second Chance
Victim Selector via a system option. The change is only
effeccted during a Clear/Strat operation.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLAHf

COMPANY CONfIDEHTIAl
81000 MCP II

P.S. 2212 5462 CE>

Prior to the 7.0 release, victim selection was essentially a
round-robin among reque,sts. The M:CP, kept a 1;:1ointer Mhich served
as the starting point of each search and was updated after each
attocation to point to the end of the newly a4tocated area~ This
pointer js typically referred to as the •teft-off pointerw. The
round-robin algorithm bad the advantages of being coaputationatty
simple and it serwed to minimize externat fragaentation, but
there a'e some serious disadv~ntages associated with this victi•
setecti~n algorithm. Specifically-

1. It has no knowledge of which segments are actually i~ use
etements of the •woriing set•• and

2. The memory resources of each job have equal importance.
Unlike processor scheduling. the mamory is not allocated on a
prior; ty basis.

These flaws lead to some bad performance dagradations in certain
situations. One such oroble• is the •cascading• phenomenon.

Using Denning•s definition, a program•s worki~g set wcr, tJ is
the set of all segments accessed by the prograa in the interval
CT-t- TJ. Denote the size of this set (in MCPII context. size is
in bits>• as W<T• t). Jbis definition affords us useful
information with which to manage real store whenever the change
("drift"> from the set WO(TO. t) t~ the set Wt<Tl~ tl i! small
for the interval (JO, TlJ. The assumption behind working set
management is that for many programs• the drift is indeed small
during most of ,their execution tifetimes.

Postulate a situation where the code and dictionary segments of a
single job completety fill ovartay~ble ·~•ory. The round-robin
algorithm, having no information co~cerni~g W<T• tl made a choice
of victims among the resident segmin~i which was essentially
random with respect to this' information'. · Cat.t the ratio
WCTJll' t)/(si.ie of overtayable ·memory> the saturation ratio s.
Then the probability is approxim~t~ty S that th~ incoming segment
wi tl ovef'lay one or more elements of W(T.;. 't). The ,ovef"tayed
seg3ent• of course• will immediately be needed ,again •nd has a
probability of about S of overlaying another eleaent of W<T• tl.
Thi' sets up an undesirable osciltation which shoutd eve~tLatly
damp back to stabititv• assuming no futther external
perturbances. The probable number of extra overlays reQuired to
reach stability increases wjth s~ and becomes ~uite large when S
exceeds• say# 0.9. We call this oscillation "casc~~ing• of
overlays. For targe values of s, alsost all time is cons~med in
waitjng for I/O on the backing stare, so very little wor~ gets
done. This is the situatton commonly known as "thrashing".

'-;,· ·.' .t

BURROUGHS CORPORAJIUN
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANI

COMPANY CONFIDENTIAL
Bl 000 MCP U

P.S. 2212 5462 {£)

Now. suppose the memory manager has some knowledge of t~a
etements of W<l• tJ. If the saturation ratio is not too ctose to
one- it wilt usually be possible t~ select a window containing no
etement of W(f, t). fhe chance of cascadin~ segaents is thereby
decreased in configurattcns running with S in th~ ra~ge of 0.5 to
0.75. The difficulty is that elements of wcr~ t> now clutter
•emory and increase external fragmentation. As S appro~ches Ccr
exceeds) one, this becomes an important toss and makes selection
difficult for the meaory manager. At this point~ the advantages
of the round-robin ~trategy begin to outweigh the advantages cf
utilizing worting set information.

In order to determine whether or not a code 'Seg•ent in we1ory is
currently being used• usage bits ~ere added to the memory link in
the 1.0 version of the software. These appear in the
programmatic description of the memory tin• as
Hl.PREVIOUS.S~AN.TOUCH and ML.CURRENJ.SCAN.TOUCH. Whenever an
interpreter accesses a code segment dictionary entry and finds
the associated code segment present in taemory# it sets the
current scan touch bit to a value of one. Interpreters make such
an access whenever they are reinstated and whenever a code
segment transition occu~s. It is not necessary for interpreters
to set the bit in memory links which are associated with segme~t
dicth>naries. These are u·suall,y marked as save space if any of
their code segments are present 1n memory~ Also. data seg•ents
are always overlaid in a round-robin fashion~ regardless of the
victim selector tbat is curre~tty being used on a syste•·

The Seconq Chance victifl. selection algor'tihm,t first introduced in
the 9.1 version of the MCP, addresses the first faiting of the
~ound-robin algorithm~ the tack of thowtedge of the wor•ing set
of the code being us·ed. Also~ the Second Chance atgoritht1
completely supplants the old round-robi~ strategy. The tatter is
no longer available for use. The' change is cosp(etely
transparent to users and the only notjceable effect should be an
·i•provement in performance in installations where the. round-robin
algorithm was used prio!f' to f'elease of the 9.l s,oftware.

The Second Chance ,algorithm utUi:zes the left-off pointer
described for the round-robin algoritKm. It begins searching for
a memory space tarqe enough to satisf, the request at the
left-off pointer but it will not setect any space whose touch
bit, ML.CURRENT.SCAN.TOUCH, is set. Upon encountering a me~o~y

EUHROUGHS_ CORPOR.AT ION
COMPUTER $YSTEMS GROUP
SANTA BARBARA PlANl

COMPANY CONFIDENTIAL
81000 NCP II

P.S. 2212 5462 CE>

segment whose touch bit is set- it resets the bit and continues
to the next memor~ l~nk. It wilt allocate the first segwent it
encounters that i' sufficiently large and whose touch bit is
reset.

This algorithm thus has the •ajor advantage of the round-robin
algorithm; it is comput.ationatly simple and the procesin9
required i' minimized. Unli~e the Prio~iti2ed victim selection
algorithm described belo~, it requires no knowledge or action on
the part of the user.

fBl.fJB.llI 11C.!l.tl .S£Lf.tlllHJ

The second failing in the round-robin strategy is its inability
ta insure rapid turnaround to jobs which are designated as high
priority. In HCPll• prior to the 7.0 release~ only the processor
was allocated on the basis of priority. A high priority
application was contending for the memory r&source on exactly the
sa11e foot1ng as a low priority •back'gtound" job. l'his led to
severe performance degradation for users ~hich required many
overlayable m~wory resou~ces but frequently retinqui~hed
pTocessor contro.l to make o?er ati ng systet1. requests~. In
particularP dataeomm appUcation.s running in mut·tipte job shops
were suffering badly. Background jobs tended to usurp critical
resources forcing the datacomm application to toose control stitl
•ore frequently, allowing background Jobs to run• grab more
memory resources~ and so forth.

The Prioritized memory management algorithm~ first introduced in
the r.o version of the HCP,. addresses- both of these probtems.
The priority victi• selector ma*es its choices on the basis of a
priority fiefd in each •emory linJ<,. This Held is ma·intained by
runtime use of worting set infor•ation. The priority fietd wjtt
be maintained at its original vatue as long as the code segment
is not used. This field is known as the Residence Priority field
and is shown on the programmatic memory link descrjption as
ML.RESIDENCE.PRIORITY.

Associated with each program running on the system is a Memory
Priority field. The memory priorJty v;t~ue determines the ability
of the program•s code segments :to overl,.._y the code seg11ent s of
other programs running on the systefll. Me1ory Priority 'is stored
in ead1 memory t.ink associated with eac.h of the program•s code
segments. It is shown progratnatically as Ml.JNCO·MING.PfHORITY.
Memory priority is also stored iriitially in the Residence
Priority field. Whenever a request for a new tode seg•ent to be
brought into memori is received~ the memorr priority of the
assoctated program is compa~ad to the residence priority of every
memory tint currently present in the system aemory. The current

'\. 1',. ~. •· ·-'

BURROUGHS CORPQRATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
91000 MCP II

P.S. 221Z 5~62 CE>

imp(ementatton of the victim selector atways chooses a victim
having the lowest residence priority.

An exception must be made for HCP code seg•ents. As presented in
a prior paragraph. the HCP cannot be d~nied a requested code
overlay wf thout halting the system. Consequently• MCP code
segments have an imperative incoming p.riority~ but their
residen~e priority value wilt decay at a rate equal to or g~eater
than the programs running on the syste•·

At a user-specified interval# a routine in GISHO known as the
sweeper is executed. This routiAe Moves the setting of the
current touch bit to the previous touch bit• destroying the prior
setting of the pt"evi ous bit and setting the value of the current
touch bit to zero. This routine is discardable and is eliainated
by the initializer if the system is running with the Second
Chance victim s~tector.

The default time period between executions of the sweeper is 8CG
milliseconds. U~ers may vary this time perjod via a k•yboa•d
instruction within certain ranges. Since the sweeper routine may
be eKecuted between any two s-o?erations, all code in the
software which manipulates memory links must always insure that
the chain formed by the address pointe~ fietds is intact.

After the s~eeper has moved the currant touch bit to the orevious
touch bit, it then examines the previous touch bit. If the value
is zero, it increments the current decay interval field~
HL.CURRENT.DK.INJ, by the value of the sweep interval. If the
value of the current decay interval is equal to or greater than
the specified decay :inteval:P HL.OK.INT£RVAt, the residence
priority fi•ld js decremented.

The default vatue of the specJfjed decay intervat is zero. Users
may s p e c i f y di f t er en t de c ay i n :t er val val u e·s vi a a k e y board
instruction. Users may also specif·y· .urat certai:n code seg•ents
within a program are i•portant and t~-~ tbeir residence priority
should not decay until the specified de~~, Interval has elapsed.
This is acco111ptished via a suppl,ied normal-state prog.ra• whicn
manipulates code files resident on dis~. The residence priority
of code segments wbich are not marked as important wilt decay
after the default decay inter~al• zero seconds~ has elapsed.
Ho ti ce,, however• th at thi s '.cannot occur for at teas t one sw eeo
inter vat..

When executing with the priority victi11 selectot« .. the MCP stilt
ma~ntains a left-off pointer. When the system is thrashing. when
the residence priority fields of all memory tints have eQuat

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANJ

COMPANY CONFIDENTIAL
81000 f'CP Il

P.S. 2212 5462 CE)

values, the victim selected wiU continue to be the next 11e11ory
area below the left-off pointer.

0Ae of the serious problems confronting virtual storage syste•s
is memory thrashing. On the BtOOO system- memory thrashing
occurs when the working set of procedures for ~.- P4"'0gf'am or set of
programs will not fit within the portion of 1ain aemory av~itable
for overlays. Wtten this state occurs,. the system•s pe·rtor11anca
begins to de~rade. The amount of degradation depends oti the
overlay space available~ the size and number of segments
competing for memory_. and the frequency of se~1aent transitions.

As the amount of main «emory is reduced for a constant
programming task, the amount Gf degradation due to •emory
oveiflays normatty appears very gr·adual at fir·st. As the
avail~bte memory is further reduced~ a point wilt be reached
where the degradation due to overlays increases rapidly. lhis is
the point where the main Mork~ng set of procedures no longer fit
in main memory and are competing for space. this pofnt is
defined as the thra.shing point and is sh·own in Figure 4.1.

l fr t
I *

45 ... • I
I *
t * I
I •
• * I

30 • ..
I * 1

• REGION * +-- THRASHING POINT

• A)(·I I
I * I

15 • t ~t.OW X<--+

• EXECUTION •••tX
I TIMES) 1 1r11•1r•••X
I
1

·------------·---·---·-------+-------·---------------------24 36 60 72

HEHOffY SIZE <K BYTESJ

FIGURE 4.1: MEMORY VS EXECUTION TIME

EXAMPLE PROGRA" ARM020

BURROUGHS CORPORATION
COMPUTER SYSIEMS GROUP
SANTA BARBARA PLANT

As seen in figure 4.t. execution of the
less me•ory than indicated by the
iAef ficieAt execution times in r~gion A.

4-10

COMPANY CONFIDENTIAL
81000 MCP H

P.S. 2212 5462 <E>

prograsming task with
thrashing point yields

Beginning with the 7.0 version of the software, the MCP includes
a progra•matic facility for detecting a th~ashing condition in
the syste•. The facility is included in GIS~O as • discardable
segmentJ it is retained or discarded during the Ctear/~tart
operation based upon the setting of a system option. It aay be
used with either victim selection algorithm. It Must be vsed if
the prior·ity victht selection .algorithm is used.

The facility is actuated by a clock maintained in the software.
It utilizes a count of the number of overlay operations perfor•ed
bV the software. The count is atso maintained in the software•
of course. The ~weeper routine discussed prevfousty is actuated
by the same cloc• that actuates the thrashing detection routine.

At a user-selected interval~ the thrashing detector compares the
nu1ber of overtays which occurred during the interval to a
user-specified target number of overlays. If the overlay target
is exceeded• the thrashing detector suspends teeporarity the
execution of the sweeper routine and begiris a count of the number
of consecutive intervals during which the nuaber of overlays
exceeds the target number. The allowable number of intervals
during wbich thrashing, as defjned by the user~ is detected is
:t'hre·a.

If the thrashing condition persists for three intervals, tbe
software informs the operator via a SPO message. The •essage
wilt be repeated at N.SECOND intervals until the condition abates
or untjt the operator requests• via 4nother SPO message~ that it
not be displayed continually. The s~ftw•re also disables the
schedule when thrashing is detected so that no new jobs are
injtiated. The schedule will be automaticatlr enabled again when
a program currenttr being executed terminates.

J!E.H.DBl lIUIJALlZ!l l!Ui

Memory is initially allocated by t~e software during the
Clear/Start ooeration. This single operation is composed of
severat compon,ents. For di s,cussion purpos'es.. it may be thought
of as two separate operations. Jhe first of the two is the
execution of a stand-alone roatine, comaonly tnown as the
Initializer and stored in the disk diTectory as SYSTEM/Iftil. The
initiali,zer, is brought into memory by the c,\ear/Sta.rt code
contained on the cassette. The second op.eration :is ,the exect.:tion
of some code ~n the MCP- contained in Page Zero, Segment Ona cf

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

4-tl

COMPANY CONFIDENTIAL
81000 MCP II

p.s. 2212 5462 <E>

At the co•pletion of the initializer~ m~mory will be formatted as
shown in Figure 4.2. Permanantty allocated areas will be located
at each end of me~ory. linted memory will consist of four tin~s
onty. The processor is then passed to the MCP•s code seg•ent for
completion of the Clear/Start bperation. Upon completion of the
HCP code, linked memory ~ill be formatted as shown in figure ~.3.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANIA B~ftBARl PLANf

COMPANY CONFIDENTIAL
31000 MCP II

p.s. 2212 5462 er>

---------------------------------• GISHO DATA SPACE I

t-------------------------------1 I NfERRUPf QUEUE I

·-------------------------------· I
I

See Note 2 I
I

·--------~----------------------· FIRMWARE TRACE SPACE

·-------------------------------! t GISMO COO£ l

·-------------------------------· I MICRO MCP OAfA SPACE I

·-------------------------------t I HCP RUN STRUCTURE NUCLEUS I

------>1--------~----------------------1

MAXIMUM ADDRESS

I
I
t
I

I tUTML1 See Note 1

• liniked
Memory

J
I
t
I

• I

1----· 'SOL IN fE RPR£ TER 1----·
l Ml I

·-------------------------------· I 1
I I
I I
I ----1 I

• '4l I I

1-------------------------------1 I HCP SEGMENr o~ 1

I lfMl I Hl · i

I

' ' 1----->1-------------------------------· I HCP SE GMEN f o. 0 t

·-------------------------------· I CHIP ERROR f ABL£ t

·----~---~-~----~---------------· • COlD/STARt VARIABLES
I .a9~-~-... _49_ ,,.. ... -- .• ·- ·19·!9 -·- -- - .;;·~:m - .• 1.,..,.,
' '-,INTERPRETER DICTIONARY I

·-------------------------------· I HCP SEGMENT & ?AGE DICTIONARY I

·--~----------------------------· I :MCP STACKS 1

---------------------------------ADDRESS ZERO

figure 4.2 Meaory format After Initialization

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE>

1. •uTMt• and •LfHL" are acronyms for upper and tower
terminating memory links. These two links have a size fietd
of zero and a type field whtcb denotes a ter•tnating memory
lint. The upper ljnk has a forward pointer of ~fFFFFfaJ the
lower tint has a backward pointar of 3fffffF~. The lints are
used to mark the boundaries of tinted memory for the memory
allocation routines. Me1ory allocated by these routines will
always lie between these two lints.

2. It is possible• during the lni~i•li7ation procedure. for the
operator to specify a •aximum s~•emory address that is tess
than the actual •axiaum address of. ~a3ory· on the ~ystem.
When this is done# a proportionate a•ount of Memory is
reserved at the location shown. fhis me•ory is. in effect~
deleted from the system. Memory may also be deleted via
certain keyboard instructions available to the operator. In
the latter case, the deleted memory mar tie at al•ost any
address in the syste•·

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP tI

P.S. 2212 5462 {f)

I UHR 1

·----· SOL INTERPRETER 1------1
I Ml t I

·--------------------------------· I PO~T/CHANNEl fABLE1 I
1----1 SPO VARIABLES A~D BUFFER t
I Hl I 1

·--------------------------------· I IOAT• TAPE PAUSE AND I
t----1 TAPE LOCK DESCRIPfORS I
t Ml I t

·--------------------------------· t AOO!ilONAl PORT/CHANNEL I
1----t TABLE I
1 HL t I

·--------------------------------· I QUEUE DISK fEHPlAIE
1----1 .
I ML I

I
I
I

·--------------------------·-----1
1,--,--t
I Hl I

MICRO HCP SEGMENT
OICJIONARY

I

' 1

·--------------------------------· I SOL INTERPRETER SEGMENT t
1----1 DICTI-ONARV t
• ~l I I
I t9-S.-=••--·••".;.:,~-.·-··• fl9 .. ,.._.._ ···--!•'•, ... ,
1 •----r
I Mt t

ERO A:R(A t
I

' ·--------------------------------·
' I See Note 1
I
• I

FENCE LOCATION: I~~ - - - - - - - -
·1

I lfMl f

J
I
I

' ~ .. - - .. ,
1
I
I

-~--------------------------------
Figure 4.J Linted Memory format After Clear/Start

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP·
SANTA BARSAff A PLANT

4-1')

COMPANY CONFIDENTIAL
81000 MCP H

P.S. 2212 54&2 (£)

1. Though nothing ts shown as present in figure 4.3 between the
SDL Interpreter Segment Dictionary and the lower Jerainating
Memory lint. this area will typically be filled with ~CP code
segments at the completion of the Clear/Start O?eration.

2. The purpose of the fence shown ~n figure '·J was discussed
previously. The location of the fence is retained in the MCP
st a cit s • It 1 s not n ec e s s ar y to r e s,er v e an v me m or y at a U at
the fence location.

The memory that wilt be required to execute a given program or
set of orograms is composed of four components. There are the
static requirements of the operating system~ the dynamic
requirements of the operating system~ the static requirements of
the program and the dynaeic requirements of the program.

Static requirements are composed of the data spaces necessBry to
operate the system and the program. Once the static requi~e•ents
are established• they typfcallr do not change. for exa•pte, once
a program has atl of its files open- the Memory required for the
File Info~mation Stocks and the buffers remain fixed until the
files are closed. In the case of the HCP• once the system is
Ctear/Started, the static requirements remain fixed untit the
system is Clear/Started again.

Dynamic require•ents are exclusivat1 code seg1ents. Assu•ing
that a wor•jng set of the code segments of a progra• is
estabtjshed, the dynamic requirements for that progr~m will then
be the total amount of memory that is required to corttain t~e
code segments that are a part of the worting set. The operating
system•s working set depends~ of course? upon the communicate
operators that are issued by the program in its own working set.

Those ite•s shown in figures 4.2 and 4.3 co•prise t·he static
memory requirements of the operating syst••· Each item will now
be discussed and a means of determining the amount of me•ory
required by the item wjtt be presented. The ~umericat values
oresented herein apply to the 9.0 version of the MCP only.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PlANI

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5~62 (£)

MCP Stacks

The stacks ased
zero in S·memory.
stacks wi U be
co·nf i gur at ion.
4302 bytes.

by the MCP will always reside at location
For each reteased version of the MCP• the

of a fixed size• regardless of the machine
T~e stacks require roughly 34.416 bits or

HCP Page Dictionary and Segm•nt Zero Dictionary

These two iteas may never be overlaid and are •ajntained in
memory immediately above the HCP stacks. fh~y will also be
of a fixed size for each released version of the MCP. The
10.0 version of the HCP code is divided into thirty-four
segment pages and Page Zero contains thirteen segments. Each
entry consists of a system descriptor~ which requires 80 bjts
or 10 bytes. for the 10.0 version of the HCP• this item
requi~es 3760 bits or %10 bytes of memory.

Interpreter Dictionary

An I n t er pr et er D i ct i on ar y ·en tr y r e Q u i r e s 2 2 4 b i t s or 2 8
bytes. The number of interpreters that •ay be u~ed on a
system at any given time, and hence the number of entries
allowed in the Interpreter Dictionary~ may be specified by
the user to be any· value between 3 and lt. · If the user does
not specify this number~ the Cold/Start routine witt set this
value to six. The memory required for the Interpreter
Dictionary may be calculated by multiplying the number of
interpreters atlowed by the size of one entry.

Cold/Start Variables

The variables contained in this area are originally set by
the Cold/Start routine. Many of them may·be changed by the
operator. The memory allocated for their storage may not be
changed. It will also be a constant value for each version
of the operating system. For the 10.0 version~ the memory
required is 2256 bi fs or 282 bytes.

Chip Error Table

This area is allocated on a·irsoo and 81900 series wachines
only. Oft alt other machines, ~o memory is required for this
item. ·on the B18QO and 81900# the area is used.to store the
addresses of memory· locations which are experiencing
correctable memory parity erro~s. The size of th~ area in
bits •av be calculated by 40 plus (32 times the nu~ber of
entries allowed in the table>. The operator may specify th~
number of entries the table should contain. The default

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFID~NTIAL
81000 MCP 11

P.S. 2212 5462 (£)

vatue for the number of entries wjtl be ane entry per 16K
bytes of S·memorr on tbe system.

MCP Code in Page Zero, Segment Zero

This code segment is normally referred to as ·s~g•ent Zero•
and the si1e of the segment is a constant for each reCeased
version of the HCP. This is the only MCP code segment which
does not require a memory link, since it is outside of tinted
memory. lhe code segment requires roughly 53,490 bits or
6686 bytes of •emory.

Upper and lower Terminating Memory Links

In the 10.0 verson of the software, a memory link requjres
187 bits of aemory. These two then require 374 bits or \/
bytes.

SDL Interpreter

The sizes of the SOL Interpreters presented here are for
reference onty. Accurate size figures and figures for the
~arious segments of the interpreters are provided in the
appropriate product specification. Segment Zero of tha
S-Processor version of the SOL Interpreter requjres 8166
bytes. The same segment of the H-Pracessor version requ~res
6024 bytes.

HCP Run Structure Nucleus

The MCP requires a Run Structure Nucleus field as does every
other program which executes on the system. for the 9.0
version of the software~ 2386 bits or 298 bytes are allocated
f6r this field.

Micro HCP Data Space

Currently• 1249 bits or 156 bytes are allocated for this
space. This reQuirement is a constant and is not dependent
upon machine confjguration nor systeM options selected~ but a
dual orocessor conf~guration witl require two such spaces.

GISHD Code

GISMO is not segmented. Selected portions of the GIS*O code
are •discarded• by the Initialization routine if they are not
required on a qiven system configuration with a given set of
system options selected. fhe amount of memory that witl ~e

8URROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
Bl 000 MCP II

P.S. 2212 5462 (£)

reQuired to contain GISMO must therefore always be
cat cut at ed.

The Main Bloct of GISHO requires 5500 bytes of memory. ~o
memory link is required. fhe amounts of meaory shown in t~e
following table should be added if the condition specified is
true.

System equipped with Memory Base 5
Processor is a 81830
Processor is 81720 series
Processor is 81860 series
Processor is Dual 818XX
Reference address check option set
fhrashing detection option set
Prioritized memory manaqement option set
TOUT opti,on set

104 bytes
4 36 by ta s
Stt 0 ·bytes
642 bytes

1070 bytes
138 bytes
142 bytes
3Sft bytes
100 bytes

In the list aboveP the cassette device on the processor
console is not considered a peripheral. Neither the cassette
peripheral segaent nor the magnatjc tape or cassette !egment
should be added due to the console cass~tte.

The control exchanges segment should be added when the system
is eQuipped with two or more disk or tape controls and the
controls address the same peripheral units. High-speed
controls are all disk pack controls and any controls which
address phase-encoded tape drives. Under no conditions is it
necessary to add any GISNO code segment more than once. The
Dual Processor segment and the 81860 segment Must both be
added if the system_ is a dual processor version.

Fir•ware Trace Space

fhis area is attocated o~ly when running with trace versions
of the SDL Interpreter. It should never be allocated in a
customer•s machine. It requires 1,440 bits.

In terf" upt Queue

Since interrupts occur asynchronously on the 81000 system,
they must be queued until they can be handled by the
app~opriate operating system routines. One entry in the
inter~upt queue requires thirty-six bits. forty-two bits are
required for pointers and counters. The number of entries
which may be queued on a given system depends upon the amount
of meaory on the system. The number of entries that will be
allocated may be determined from the follo~ing table.

S-Hemory on System Entries

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

Less than 64K bytes

4• 1 ')

CO~PANY CONflDENflAl
81000 MCP 1£

P.S. 2212 5462 <E>

At least 64K bytes but less than 96K bytes
At least 96K bytes but less than 128K bytes
128K bytes or more

16
20
25
JO

The smallest amount of •emory that will be allocated fo~ the
interrupt queue 1s then C42 • (16 X 36) or 618 bits. fh"i:!
largest amount is 1122 bits.

GISMO Data Space

The GISMO data space is a wort area required by GISMO. It is
a fixed size and amounts to 376 bits.

DCPU DATA SPACE

This 1-s also a work area. It is reqidred en aH dlial
processor machines and requires 350 bits.

looking now at figure 4.l, the HCP. prior to completing the
Clear/Start operation. will allocate space for those addjtional
items ~ho~n on the figure~ fhe location of the •fence• is not
important to. the discussion of the memory requir·ements of the
HCP. The fence is merely a means of guaranteeing that the MCP
wilt always find space for its own purposes when such space is
needed. The system would be forced to halt if the HCP could not
find the space required.

All of the items shown in figure 4~3 reside in linked •eaory.
One memory link Cl87 bitsl is required to describ~ each of the
1te11 s t n figure it. l

Extended Result Descriptor Ar•a

One extended result descriptor# I/O descriptor and buffer is
·requh'"ed for each SN head..,.p,er-track disk con trot and·· for each
disk pack spindle ~n the system. Each descriptor and fts
associated buff~r requires 256 bits. This reQuire•ent
applies to att disk pack drives interfaced to the 81000
system but not to cartridge drives. The memory required~ in
bits, may be calculated br Z56 X C5N controls • disk pack
spindles> • memory link •

... \ ..

BURROUGHS CORPORATION
COMPUTER SYST~MS GROUP
SANTA BARBARA PLANf

SOL Interpreter Segment Dictionary

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 (£)

The seg•ent dictionary of the SOL Interpreter is considered
non-overlayable1 since it contains a descri~tor for seg•ert
zero of the interpreter which must be non-overlayable to
execute segment zero of the HCP. The size of this areaP in
bits- may be calcutated by 64 plus (80 times the num6er of
segments which comprise the interpretarJ plu• the space
required for one 11emory U nt. The SDL lnterpf'eter contains 6
segments, plus ~egaent Zero.

Micro HCP Segment Dictionary
•

This segment dictionary is also considered non~overtay~bte.
Its size may be calculated in the same manner as the siz~ of
th·e SOL Inter·preter segment dictionary. 6#t plus (80 t11es the
nuaber of segments> plus space for one •amory link. fhe
Micro MCP contains 18 seg~ents~ plus Segaent Zero. The
segment dictienary therefore requires 110 bytes.

Queue Dist Template

The HCP reserves 500 segments of system disk for its own
t~aporary use. The addr~ss of this reserved area of dist.
known as Queue Disk• is stored in the •emory area tnown as
the Queue Disk Template. This memory area· will also contain
one bit to denote the availability of each of the 503
segments, a 24-b'i t field which wit(be· used to store the
memory address o·f the next Queue O i st> f empt ate if an
add i t i on al 5 O O s e gm e n t s must b e all o ca t e d ,~an d a 12 8 - bi t fi a l d
known as the Communicate Splitter Mask. This latter field is
used to determine which communicate operations may be handlsd
by the Micro MCP. The size of the initiat Queue Disk
Template field is therefore, 500•36+24+128 or 688 bits.
Additional Qyeue Disk Template fields• if required• witl
occupy 560-bit areas. One memory lint is required on each
Queue Disk Template allocated.

Additional Port/Channet Tables

The HCP and GISMO communicate in a number of ways. One such
way is the Port/Channel table. One Port/Channel table is
allocated with the SPO variables and buffer at the high end
of tinted memory. If the system is equipped with 1utti-line
controls• an additional Port/Channel table wilt be required
for each one. A Port/Channel table requires 768 bits of
memory plus the space required for one me•ory link.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

IOAT Cl/O Assignment Table>

4-?.l

COMPANY CONFIOEHTIAL
31000 MCP II

P.S. 2212 5462 (El

Several items are grouped together in the space reserved for
the IOAT. The IOAT itself requires one entry of 512 bits for
each peripheral unit connected to the S'ystem with th·e
exception of the SPO. Each dist pack spindti is considered a
peripheral unit. Head-per-track disk is not. Data
communications devices are not considered peripheral ~nits
for the purpose of calculating IOAT size, but eacn
single-line control connected to the system reQuires one IOAf
entry. One •Pause• descriptGr• requiring 96 bits of aemoryr
is required for each tape control~ cassette control and
MTC•2/HfC•4 exchange on the system. One "lock" descri~tor~
requ1r1ng 168 bits of memory- is required for each tape and
cassette unit connected to the system. One 1/0 descriptor of
248 bits is required if any number of f'lexidisk units are
connected to the system. One memory link is required to
describe the area containing these items.

Port/Channel Table• SPO Variables and Buffer

Information which the HCP needs to perform its function which
is primarily concerned with the system SPO but also includes
information on other aspects of the system is saintained in
the area known as SPO Variables. This information requires
1351 bits of memory. The Port/Channel table requires 766
bits and the SPO buffer requires 560 bits- for a total of
2619 bits. One memory link is required to describe the area.

The operating system•s dynamic memory require•ents are determinej
sotety by the size of the code segment which perfor•s the
fu nc ti on s requested by the 1J se r in the work 1 n g set of hi s
program. In determining this requirement' it is necessary to
know what the program in question is doing. While programs could
be and are written which have file open and close operations as a
part of their working set, this is not normally the case. The
vast majority of programs request onty those functions which are
micro-coded and inctuded in the Micro MCP in their working set
code. Th~s statement is not true for programs which use OHS.

Thjs document will not present the memory require•ents for
programs which use OMS. This information will probably be added
at some point in the future* but for the present• only the code
segment sizes for operations believed to be cosaon and exctu~ive
of DMS operations will be presented.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CEl

The list below presents a brief descriptiQn of the function and
the memor' requirement for each of the Micro MCP segments.

SEGMENT.ZERO - 2306 Bytes

Segment Zero of the Micro MCP is always required ir •e~ory
when programs are executing.

SERIAL - 1960 Bytes

This code segment handles reads and writes on serial files
that are opened input or output but not in any combination
form• such as input-output. Also. some files assigned to
data ~ecorders may not require this segment.

SEQUENTIAl - 762 Bytes

This code segment handles reads and writes on seQuential disk
files that are opened input-output.

RANDOM - 944 Bytes

Thjs code segment handles reads• writes and seeks on code
segments whose access mode is random. This code seqnent is
required for all random disk files. even if the access mode
is delayed random.

COMP.WAIT - 1136 Bytes

This code segment is required to handle complex wait
communicate operations. Alt data com•unications handters
generated by the NOL coapiler require the complex wait code
to be present.

DATA.RECOR • 344 Bytes

This code segment is required to handle reads and writes on
files which are assigned to data recorders and which are
opened input-output or input with stacker selection
capabilities requested.

Hl.PRI.ANO • 1292 Bytes

This code segment is required to handle alt communicate
operations on files which are assigned ta reader-sorters.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

QUEUE.READ • 856 Bytes

COMPANY CONFIDENTIAL
81000 MCP II

?.S. 2212 5462 CE>

This code segment handles read and write operations on
queues. Please refer ta the paragraph at the end of this
list.

PQM.GQH - 2&14 Bytes

CPut Queue Message.Get Queue Message>. This code seg•ent
handles reads and writes on files assigned to Queues and to
~emote files. Please refer to the paragraph at the end of
this list.

REMOTE.WR! - 2300 Bytes

This code segment is required to handle wr~tes or files
assigned to remote files. Please refer to the paragrap~ at
the end of this list.

REMOTE.REA - 2890 Bytes

This code segment handles reads on files as9igned to re•ote
files. It is also required to handle many NDL/MACRJ
communicates. Please refer to the paragraph at the end of
this list.

DC.INITIAT • 410 Bytes

This code segment handles the DC.INITIATE.IO communicate
operation. This communicate is jssued by ati data
communications handlers generated by the NOL compiler.

MESSAGE.CO - 208 Sytes

This code segment is required to handle the message count
communicate operator• also issued by atl data communications
handlers generated by the NOL compiler.

VARIABLE.L - 412 Bytes

This code segment handles read and write operations on- taoe
and disk files which use variabte-tangth records. It is
required in addition to the SERIAL code segment.

BURROUGHS CORPORATION
COMPUTER SJSJEHS GROUP
SANTA BARBARA PLANT

EMULATOR.f - 506 Bytes

COMPANY CONf IOEHTIAl
81000 MCP II

P.S. 2212 5462 CE>

This code segment is required to handle com•unicate
operations requested by any emulator interpreter on files
assigned to tape.

DELAYED.RA - 592 Bytes

This code segment, in addition to the random code seg1ent~ is
required to handle reads~ writes and seeks on files whose
access type is delayed rando~. Emulator disk files are in
this category.

INDEXED.SE - 3020 Bytes

This seqment is used fGr I/O operations on Indexed Seq,ential
files• first introduced in the 9.0 version of the software
and described in the section of the document on the I/O
Subsystem.

RELATIVE - 3638 Bytes

This segment is used for l/O operations performed on Relative
files~ also described in the I/O Subsystem section.

!PC.CODE • 568 Bytes

This segment is used to pe~form Inter-Process communicationp
a part of the ANSI 1 74 COBOL implementation first inctuded in
the 9.0 software.

Alt cod9 necessary to handle queues. remote fites, th~
DC.INITIATE.IO communicate and the MESSAGE.COUNT communicate are
included in the Micro-HCP. Microcoding these functions resutted
in some substantiat performance improvements for aost data
communications applications. There are several reasons for the
improvement~ the most obviGus being the greater efficiency of the
code. Another factor is that a minimal amount of state
information must be saved when communicating with the Micro-HCP.

A third factor is the elimination of the "bottleneck• problem. as
it has come to be catted, for data communications applications.
This problem arises fro• the fact that HCPII is a flat structure
and is capable of performing one thing at a time only. In other
words• once the HCP begins oerforming an open req~est for
example~ it can do nothing else until it completes the open. An

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANI

~-25

COMPANY CONFIDENTI~l
BlOOO MCP II

P.S. Zlll 5462 (£)

open, of course, requires many 3ccesses to the disk subsyste• and
the MCP must wait on the c-0mpletion of each one. Normal-state
programs are free to execute white the MCP is waiting on each
access• provided they do not request an HCP service which must be
handled by MCPII.

Consequently# user programs may now use the queue subsystem and
the other items mentioned above white MCPII is servicing another
request for other users. In previous releases, these sa1e user
programs had to wait until the MCP completed servicing the
request it was working on at the time. Unfortunately, howevar~
all requests for functions in the queue subsystem a'e not handled
by the Micro-HCP. Many of them, and possibly atl of them• may
stilt be handled by MCPII.

Att memory management functions are stilt handled by SOL code in
MCPII. Any queue request which involves memo~y management witl
therefore have to be handled by MCPII. This wilt •ost often
occur in situations where the available memory on a system ~s
limited. Queue buffers may be written to disk by ~CPII• and
hence removed from memory, ~heAever the MCP needs space for
something else. This will cause MCPII to be invoked when a
program attempts to read a queue entry from that buffer.

further, if a producer of queue entries fitls an entire buffer
before the consumer can empty it, a new memory buffer kill ba
required. MCPII wilt be invoked to accomplish the allocation.
Unfortunately• in both of these instances• the entire working set
of Micro-HCP queue handling segments will be brought into memory.
only to determine that SDL MCP segments are ready required. This
can 'esutt in substantial perfGrmance degradation~ particularly
on systems where available memory is tiaited.

The situation described can be avoided, of course, by insuring
that the consumer of queue entrjes removes the• fro• the queue at
the same rate that the producer enters them. Since it is onty
rarely possible for the progra•mer to insure that synchronization
exists• a system option has also been provided in the 6.1 release
which will jnsure that alt queue requests are ha~dted excl~sivety
by the SDt MCP. By setting the option• the user may insure that
performance does not degrade when going to the 6.1 release. as a
result of the microcoded queue i~ptementation• though he wilt
receive no benefit from it at all.

Six new segments were added to the Micro•MCP to accomodate the
data communications facilities in the 6.1 release. The new
segments are QUEUE.READ through MESSAGE.COUNT inclusively.
Typically• data communication applications which use a handier
program generated by the NOL compiler should consider atl six

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONf IDENTI'l
81000 MCP II

P.S. 2212 5462 CE>

segments to be a part of their working set, though anly the first
four of the six are ~onc9rned with the queue imptementation. The
MESSAGE.COUNT segment is invo~ed by the co•municate operator of
the same name and is used to determine whether or not a 1essage
exjsts in the queues. The DC.INITIATE.IO segment is also invoked
by the communicate operator of the same name and should always be
considered a part of the working set for any data communications
appt icat ions.

The static •emory r•quirements of a program, that memory which is
required for everything exceot the program's coder may be diYided
into two classes. Three items which are required are fixed in
size and the user has no controt over them. The user actuatty
has tittle control over many of the static requiraments# though
there are some items which he may cause to vary. Items in the
l~tter category are referred to as conditional cequirements.

The fixed requirements of the Program Static Me•ory are composed
of three components. These are listed below.

Run Structure Nucleus

This is a table of information constructed by the MCP when
the program reaches BOJ. It is a fixed size of 2386 bits.

Interpreter Segment Zero

The size of Segment Zero- the non-overla~able segment- of the
Interpreter being used must be determined and added. Space
for one memory link ~ust be included.

Interpreter Se gm en t Di ct onar y

The number of segments in the Interpreter ~ust be determined.
fhe space required for its segment dictionary is then ten
bytes times the number of segments plus space for one meaory
link. ClO X number of segments> • memory link.

The following are the corditionat items which must be included in
the calculation of Program Dependent Static Requirements.

Program Code Segment Ojctionary

The number of code segments which comprise the progra~ may be

BURROUGHS CORPORATiON
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

4-27

COMPANY CONFIDENTIAL
81000 MCP 11

P.S. 2212 5462 (£)

determined from the compiler listing of the program. Code
segment dictionary space in bytes js then determined by (10 X
number of segments) + memory lint.

Oata D'ictionar y

The number of data segments used by the p~ogram is known to
the programmer and is av~itabte from the compiler listing.
The space for the data dictionary in bytes is catcutated by
(10 X number of data segments). No memory link is required.

Base-Limit Area <also known as Program Run Structure>

This number is Teadily available from the compiter listing.
It is the total data space required by the program (between
Base and limit Registers>. Space for one 1emory link 1ust be
added.

file Dictionary

There is one entry in the Hle dictionary for each file
declared in the program, regardless of whether it is ever
used or not. file Dictionary space is given by (10 X number
of files declared>. No memory link is requjred.

file Information Block <FIB> Space

This may be calculated in bits by:

1048 x Number of HICR files open plus
796 x Number of Printer Files open plus
605 x Number of Remote files open plus
796 x Nu•ber of Tape ftles open plus

1048 x Number of Dist Files open plus
433 x Number of Queue f ites open plus

1046 x Number of att other files open at the time.

f I B H ·e 11 or y l i n k s

One memory tink is required for each fite that is open.

Total Buffer Space

The number of and the size of the buffer areas associated
w i th each fi le that 1 s -open may be de t er mi n e d from a comp it e,.
list~ng. This size should be totaled and added. if the code
file on disk has been modified, however, the size given on
the listing may be incorrect. True buffer size may be

BURROUGHS CORPORATION
COMPUTER srSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 (£)

deter~ined through an MCP keyboard instruction.
01000 Software Operational Guide.>

CRef er to

I/O Descriptors

There is one I/O descriptorp which requires 272 bits cf
space• for each buffer in each file that is open.

Disk File Headers

Disk file headers are maintainedP either in memory or on
disk, for alt dist files that are open. If the fite is
processed in a random access mode• the header is maintained
in memory. Otherwise~ the header is stored on disk and
brought into memory when new disk areas are atlocated. Each
header witl require 580 bits plus 36 bits for each area
requested by the fite declaration- regardless of whether of
not the area is allocated• plus space for one semory link.
This area is required only when the header is in memor~.

Header Dictionaries

Oisk file headers are addressed by the HCP through
dictionaries. These dictionaries are segmented. One segment
contains space for ten dictionary entries. Each dictionary
entry is a system descriptor and requires 60 bits of memor~.
The space required for header dictionaries may be calculated
by (800 + memory link) X ((disk fites open NOD 10) • 1) bits.

To determine the working set of segments for any progra• one must
know where a program spends its time or its ~main tine• of
procedure catts. The corresponding seg•ent sjzes must then be
added up for this matn sequence. Segment sizes can be obtained
from compiler listings. for RPG prog~ams, att code segments ~ust
be included in the working set. for alt othe' programs the
compilers produce a list of code segaents and sizes. Then the
working set segments shoutd be listed and totalled. All segment
sizes shoutd have 20 bytes added to account for the size of an
associated memory link.

As previously discussed- if any interpreter segeents are ~sed br
the program, these must also be inctudad in the total.

BURROUGHS CORPORATIDN
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANl

COMPANY CONFIDENTIAL
01000 HCP II

P.S. 2212 5462 CE>

The function of H-memorv management is to best manage the
available control memory CH-memory> in a dynamically chanqjng
environment. There are four events whtch are able to affect the
system's demand for H·memory by the iptroduction or removal of
interpreters:

BOJ
£OJ
ROLLIN
ROLLO UT

Upon the occurrence of any of
changes, the new demands
reallocated.

these~ if the interpreter set
wjlt be evaluated and M·•emory

One of tw~ allocation schemes wilt be employed:

lll~1BlfllH11lN

This method distributes the available M·memory staticatly among
the active interpreters. The size of each portion depends on tba
interpreter•s needs• ·and the available amount of H-semory. The
portion of the interpreter ~hich is not able to be placed in
M-mamory remains in s-memory. As the number of active
interpreters increases~ this allocation sche•e remains in effect
until further dispers4on of H•mamorv would result in a severe
performance degradation. W~en thi~ threshold is 'eached, the
second allocation scheme is put into effect.

This method dynamicatty shares M•memoryp in the form of n fixed
s i z ,e pa g e s, a mo n g gr e at er t h a n · n i n t er pr e t e r s <: on t e n d i n g f or
these pages. When an in.tfH"pf"et,!r succeeds in capturing a page of
M-memory. the low-order portion of the interpreter wilt be copied
into the page from S·memory. However• when the page is
re-captured by another interpreter• since there is no sechanism
for transferring information from ff-memory to s-memory# the
information in that page will be lost. Hence~ all active
interpreters must be entirely in s-memory.

DETAILED DESCRIPTION

BURROUGHS CORPORATION
COHPUT£R SYSTEMS GROUP
SANTA BARBARA PLANT

s-.~

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 Cf)

1. When a new interpreter is to be brought into memory" the
procedure •ff.JN.M.OUT" is called. This may be catted either
from BOJ, EOJ, ROLL.IN~ or ROLL.OUT. The last entry in the
interpreter dictionary is first stored in •01c.LASJ.toc•.
Then the interpreter dictionary is searched for entries
whose usercount is equal to zero <thus no longer in use>.
These entries are deleted by calling "M.CLEARour~.

The previous allocation method is then stored. If there is
no H.HEHORY on the system (81710 series), then the procedure
" N 0 • M • i s c al t e d • NO • H e .x a mi n e s i n t ur n • ea c h e n t T y 1 n t '1 e
interpreter dictionary to ascertain if it is in S.MEMORY or
not~ and if not• the procedure •o.ro.s• is catted to bring
i n t he i n te r pre t er fro 11 d is k • T he pre s an c e o i t i s t he n s e t
<attbough the system has no M.MEHORYJ# and a pseudo M.MEMORY
address is calcutated and stored in "10.M.ADORw. NO.M then
exits to H.IN.M.OUT and thence to the procedure which called
M. IN. M. 0 U 'f.

Assuming that H.HEHORY does exist, the totat minimum n~mber
of ff.MEMORY pages required for alt interpreters is added to
that required for CSH• then this total nu•ber of pages is
compared to the total number of pages of H.~EMORY availab·te
on the system.

If the total number of paqes required is greater than those
available, then the contention method is invoked, othe~wise
the distribution method is invoked. fhe contention method
wjl(be discussed first. for the distribution aethod.
proceed to step 6.

2. The contention method calls the procedure "CNTN.SETUP•.
CNTN.S£TUP first checks to see if the pages remaining after
CSH is attocated is less than 2, and if so. then att the
interpreters will be contending for the rema1n1n9 page,
including SOL• and the procedure contention ts catted
(proceed to step 3). If the number of reftaining pages after
allocating CSM is not less than 2~ then this number of pages
is stored in "ff.NUMBER.PAGES•. The SOL interpreter is
assigned a page, plus any fraction of a page which may be
teft over. This may occur If CSH does not occupy exactly a
futl page, normally 1024 words. Next, the number of active
interpreters is counted and this number comoared against
M.NUHBER.PAGES. If M.NUHSER.PAGES is greater than or equal
to the number of active interpreters, then the distribution
method is catted (proceed to step 6). CTbis could be caused
by an in~erpreter with a very large minimus requireme~t.>

3. The pf'oc edur e con tent ion f i1r st a seer tai ns if the S Ol
interpreter is pat' ti ally resident in S.ME MORY~ and e i tner
M.NUMBER.PAGES is eQuat to l' or the p-0rtion of the SOL
interpreter in M.MEMORY is greater than the size allocated

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~T

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CEl

for SOL. If so, then the procedure •ttit.ro.s• is catted•
etse proceed to step •· HIL.TO.S saves the current S.MEMORY
address of the SOL interpretar. and stores the disk address
of the SOL interpreter in the interpreter dictionary entry
for SDL. The procedure wo.TO.S" is then catted to b~ing fn
the interpreter from disk. o.to.s too:ks fof' memory for the
interpreter• makes the found address mod. 16• reads the
intef'pr-eter into memory .and marks the interpreter dictionary
entry present. If sufficient •esory space was not found,
then the previous (partial> SOL interpreter is restored in
s.HEMORY• and alt procedures exited~ returning alt zeros to
the procedure which called M.IN.K.OUT. Otherwise, the new
copy <complete> is marked not present in M.HEHORY and t~e
memory space of the old partial copy marted available.
HIL.ro.s now exits• returni"g to the contention p~ocedure
(proceed to step 5).

4. If neither •M.NUMBER.PAGES" is equal to 1 nor the portion of
the SOL interpreter in H.MEMORY is greater than that
allocated for SOL, and if the portion of the SOL interpreter
in H.MEMORY is less than that allowed• then the p'ocedure
•LK.OUT.MOR• is called to move more of the SOL interpreter
from S.MEHORY to M.MEHORY.

5. The procedure •H.CLEAROUT• is then called to clear out of
the interpreter dictionary att partially f'esident
interpreters• with the exception of SOL. Each entry in the
inte~preter dictionary is then in turn examined~ and passed
through the procedure •cNJN.LOAOR• until all entries are
examined, at which time contention is exited to M.IN.M.OUf
<proceed to step 10).

The function of the procedure "CNTN.LOADR• is to toad
interpreters either from disk to S.MEMORY, and/or fro~
s.HEMORY to M.MEHORY. It first examines the interpreter
dictionarr entry to determine whether the interpreter is on
disk or in S.MEHORJ. If it is not in s.MEMORY1 then the
procedure wo.rn.s• is called to bring the interpreter in
from disk. If sufficient memory space is not found~ then
o.ro.s exits through all procedures, returning atl ze~os to
the procedure which called M.IN.H.OUT. "IO.H.ADOR• and
"10.TOPM" are calculated. Each interpreter is set up for
one page of memory. If there is available M.MEMORY left•
then tbe paga is overlayed from S.MEMORY to ~.MEMORY
(proceed to step lOJ.

6. I f the to ta 4. numb er o t pa g e s r e q u i r e d i s not gr e ate f' t ha n
those avaitabte. then the distribution method is invoked,
and the p~ocedure "REDISTRIBUTION• catted. The procedure
redistribution calcutates whether the amount of available
M.M£MORY is exactly of a size required to house the •inimu•

BURROUGHS CORPORATION
COMPUTER SYSTEHS GROUP
SANTA BARBARA PLAN(

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 <E>

r eq uir eme nts of at l int er pr et er s and CSM.
procedure "H.GRINDER" is called passing
<Proceed to step 7).

If so11 then tt1e
a vatue of 1.

Otherwise~ the total amount of memory required to house t~e
maximum requirements of all interpreters and CSH is
calculated and compared against the total aaount of M.MEMORY
available. and If less than or equat to the amount of
M.HEMORY available• then the procedure M.GRINOER is catted•
passing a value (field WHICH) of zero (proceed to step 7).

If neither of the above conditions is met <that is•_ neither
the minimum nor the maximum of all interpreters will fit in
M.MEMBRY> then the procedure "DISTRIBUTE• js called• pa5sing
a value <field HUH> of zero. The procedure distribute
stores the •aximum available H.HEHORY~ amount required for
CSM• then if HUH= o, it initially assigns each interpreter
i ts m i n i mu IR r e q u i r e d s p a c e • i n er em e n t s e a c h on e i n t u r n b y
one page• until all available M.HEMDRY is allocated. If HUH
= 1- each interpreter's minimum is assumed to be zero, then
incremented by one paga until alt available H.MEHORY is
allocated. The procedure M.GRINOER is then called. passin~
a vatue (field WHICH> of z.

1. The cain function of H.GRINOER is to reallocate M.MEMORY one
of three different ways, depending on the values of "WHICH".
M.GRINDER examines· each ~nterpreter dictionary entry in
turn. After having examined all interpreters~ tf there is
still some H.MEHORY rema1n1ng• then proceed to step 9,
otherwise proceed to step 10.

If the entry being examined is not in M.MEMORY• or the page
being examined is not the current M.MEMORY page. then
proceed tq step 9. Otherwise• if the sjze of this page in
H.HEMORY is not the size it should be- proceed to step a.

If this M.HEHORr page is the correct size; and if the
1 n t er pr et er i s e i t her p ar ti at l y r ,e s i dent i n S. MEMO R Y or i f
the total length of the interprete~ is less than or ecuat to
the amount of this interpreter currentty in "·MEMORY <i.e ••
the interpreter is entirely in ~.MEMORY); and this
interpreter is not in S.MEMORY• then proceed to step 9.

Otherwise (that is• the interpreter is entirely resident in
S.HEHORY, so the portion of S.HEHORY which was copied to
M.MEHORY must be returned>- the interpreter is ma~ked as
partiatty resident in S.HEMORY. If the total length of the
interpreter is less than or equal to the amount of the
interpreter cu.-rentl y in M.MEMORY" then the procedure
ftAll.IN.M" js called to return the entire s.HEMORY space for
this interpreter. Otherwjse, the procedure •LK.OUT.tEM" is
called to return the S.MEHDRY space corresp-0nding to that
portion of the interpreter whjcb has been copied into

5-5

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

a.

M.MEMORY.

If the amount of the interpreter in M.MEMORY is less
the amount allocated in "·MEMORY for this interpreter
the procedure "LK.OUT.MOR" is catted to copy more of
interpreter from S.H£HDRY to M.HEHORY.

than
then

the

9. If this point is reached, then the appropriate interpreter
must be brought in from disk.

The procedure •M.ClEAROUf" is catted to clear o~t atl
partial interpreters from the interpreter dictionary <with
the exception of the SOL interpreter and already titted
interpreters>.

If the current entry in the interpreter dictionary is sot
then the procedure HIL.TO.S is called (refer to step 3 for
the functions of HIL.f0.5). If sufficient memory space is
not found in HIL.fo.s. then exf t through att procedures
passing a value of all zeros to the procedure which called
M.IN.M.OUT. Next, each entry in the interpreter dictionary
is examined in turn• and if present in s.MEHORY but not in
M.MEMDRY, then the procedure ns.TO.H" is catted to overlay
the appropriate page from S.MEHORY to M.MEMORY~ and to
return either the entire S.M£MORY space occupied by the
interpreter o' else to return only the portion overlaid.
Each entry in the interpreter dictionary is once again
examined in turn, and if the presence bit is set, proceed to
step 10.

If the presence bit is not set- then the procedure O.To.s is
catted to bring in tbe interpreter from disk to memory
(refer to step 3 for a description of O.TO.Sl. If
sufficient memory is not found in D.Jo.s, then all
procedures are exited• passing a value of alt zeros to the
procedure which called H.IN.M.OUT.

The procedure s.ro.M is then catted <see description above>.

10. At this p-0int, the allocation method (either distribution or
contentiBn) has been decided and executed• and control
passed back to H.IN.M.OUT.

If the new allocation method chosen was successful~ and if
the new allocation method is the same as the old one•
proceed to step 11. If the naw method is distribvtion
(therefore, the old was contention>• then the procedure
RELEASE.A.SEG is catted to mark the HCP seg•ent REI~.STATE
availabte <reset save bit in the memory l1nkl. If the new
method is contention~ then the procedure SAV£.A.SEG is
catted to mark the HCP segment REIN.STATE saved Cset save

BURROUGHS CORPORATION
COMPUTER SYSTEHS GROUP
SANTA BARBARA PLA~J·

bit in the memory link).

5-&

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

11. If the value passes to M.GRINOER (WHICH> was 0 or 1. Then
retu'n from M.GRINDER through redistribution- to M.IN.M.OUT.
If the value passed to M.GRINOER (WHICH> was 2. then return
from M.GRINOER through DISTRIBUTE to REDISTRIBUTION~ to
H.IN.M.OUT and thance to the procedure which called
M.IN.M.OUJ.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIOENfIAl
Bl 000 MCP U

P.S. 2212 5462 (£)

Viewing the MCP as a manager of processes emphasizes its role in
the manageaent of job execution. That part of the HCP concerned
with such management may be termed the •process controller•.
White the process controtler is not a distinct module in the Mcp,
it is a convenient term to describe all those djstinct functions
which, taken together• form a conceptual package. Certain of
these functions~ namely "ROLLIN-. •ROLLOUJ", •cAUS[•, "HANG
PROGRAM•, are best understood within this context and ~itl be
discussed in depth in this section.

The actual execution of programs• the allocation of processor
time to p~ocesses which are ready to execute and are, therefore~
in the Ready Queue. is accomplished by micro code contained in
GISHO know~ as the "Micro Scheduler•. fhe Micro Scheduler is a
part of the process controller. The Micro Scheduler is
responsibte for the allocation of att processor time on atl
processors which may be attached to the system.

The process controller is driven by the occurrence of certain
software events, called "soft events•• which can be identified
and anticipated by the HCP. When a process sub•its a reQuest to
the MCP• the process mar or may not be required to wait. If a
wait is necessary, the HCP is abte to anticipate the event upon
which that process ~ust wait. Thus the MCP can tabel the job as
waiting for some •soft event"• suspend the job by placing it in
the "wait queue•, and continue to execute tts other duties. When
the soft event •happens•, the Micro MCP can search the wait queue
to discover the process marted waiting for the happening of that
event.

The •HANG PROGRAM" function, which places programs in the wait
queue. and the "CAUSE" function~ which takes programs from tha
wait queue, are crucial. Both functions •ust be cognizant of the
same soft events. "HANG PROGRAM• is responsible for creating a
unique bit string which will represent the soft event for a
process. On the other end "CAUSE• must have the proper soft
event generated fGr it, so that the waiting process can be
located.

The main asset of this method of process manipulation is to free
the HCP from waiting for the co•pletion of I/O operations. It is
able to initiate a requested operatjon and to independentlv match
a soft event with its correspoAdin~ process at a future tite when
the operation has been completed.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-2

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

The process controtter receives inputs from two sources: an •110
DEVICE• or a "CONTROL DEVICE". Both may affect processes in the
system. User demands u~on the system are submitted through a
control davice which may accept only control language statesents.
On the 81000# the supervis-0ry printer <SPOJ may only be used as a
control device. The card reader m•y be dynamically assigned as a
control device or an I/O device. Alt other peripheral devices
may be used as I/O dEvices only. In addition• a progra• •ay act
as a control device by sending a com•unicate to the HCP which
contains a control language statement. See •PROGRAM
COMMUNICATES•.

Control language statements, of direct interest to the process
controiler, may be divided into three categories:

(1) Statements which generate
suspended process become
peripheral device>

a soft
active-

event (e.g., atlow a
direct a process to a

<21 Statements which cause job suspension

(3) Statements which request job execution and provide att the
approp,iate parameters

If the control language statement requested that a job be
executed, the wcontrol language Processor• directs that the job
be scheduled. Briefly, the scheduling function involves placing
it in the •schedule queue" but allocating no machine resources.
In the MCP outer loop. the schedule queue is periodically
checked• and the first job in the queue is initiatized.

•Program Initialization• involves allocating the 1achine
resources and setting up the structures necessary for program
execution. Once the job has been initialized' it is ptaced in
the -READY QUEUE" to await actual execution.

Once a program has been initialized• it wilt move in and out of
six possible states during the course of its life in the system:

READY QUEUE
COMMUNICATE QUEUE
WAIJ QUEUE
NOT QUEUED• EXECUTING
NOT QUEUED• COMMUNICATE BEING ANALYZED
M COHMUNICAfE QUEU£

BURROUGHS CDRPORATJON
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5~62 CEl

The ready queue contains jobs which are ready to run. fhe
communicate queue contains jobs which have requested some HCP
function. The wait queue contains jobs which are waiting for the
happening of a •soft event•.

The queuing mechanism is managed as follows. Alt run str~ctures
are linked in memory by priority. A field in the run str~cture
nucleus. •RS.Q.IDENT"~ specifies the current state of the
process. The first member of a queue can thus be found by
searching the linked list of run structures untit the proper
value in RS.Q.IDENT is found.

A job waiting in the ready queue represents a demand for
processor time upon the system. This queue is interrogated by
the Micro Scheduler. If a job is found• the reinstate function,
which is performed by the Micro Schedutar in GISHO~ is called in
preparation for turning the p~ocessor over to that job. Briefly~
the reinstate function performs certain housekeeping duties anJ
causes a processor to begin execution of that job.

The pro~ram w4tl execute until one of three things happen:

Cl) The program•s interpreter discovers an interrupt which
requtres the HCP's attention.

CZ) The program needs some HCP service performed before it can
continue

C3> The 1aster processor instructs the slave to idle.

ln any case a communicate message is built tn a field catted
RS.COHMUNICATE.MSG.PTR in the progra••s Run Structure Nucleus and
control is passed bact to the Micro Scheduler.

The contents of RS.COMHUNICAJE.MSG.PTR• analyzed by
•communicate handler" in the Micro Scheduler. specifies
action is to be taken up-0n the prGgram. In the case of
above• the message will siuply contain a request to be put
in the ready queue. <The Micro Scheduler then returns to
outer loop where it independently discovers the INTERRUPT.>

the
what
(1)

back
its

A request for service C2> may or mar not require that the program
wait for the happening of some soft event. If the request can
immediately be serviced. the Micro Scheduler does so and places
the job bact in the ready queue. If the prograa Must waitr

BURROUGHS CORPORATION
COMPUTER SYSJEHS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
SlOOO MCP II

P.S. 221Z 5462 CE>

however. the •HANG PROGRAM" function is called.

•HANG PROGRAM• puts the job in the wait Queue and labels it as
waiting on the approp~iate soft event. Depending on the reason
for the wait• the program may or may not be •rolled out•. The
"ROLLour• function witt copy all but a cent~at core of the
prog,am•s Run Structure Nucleus to disk. For a detaited
discussion of these functions. see their respective sections
below.

The progTam will remain in the wait queue until the event upon
which it was waiting has bean •caused•. The soft event upon
which a job must wait may come from three basic sources:

<1> I/O interrupts

C2> Control language statements

(3) MCP

I/O interrupts are •hard events" whjch must be transformed into
soft events before they may be associated wtth a process. A hard
event is any asynchronous occurrence in the hardware of which the
software must be cognizant. The occurence of such a hard event
is usuatty man~fested by a flag in the processor. The function
of "I/O COMPLETE• is to transform those hard ewents of interest
to a process into its corresponding soft event.

Some control language statements will cause the control language
processor to generate soft events. Such statements signify the
happening of some event a process might be waiting for Ce.g.~
•AX"1 •tt•~ "UL•, ftGO"' and "OK").

Other soft events are generated internatt1 by the MCP. For
example• processes waiting on a no••emory condition or a parent
program waiting for the termination of a nested program aLst be
notified when they are abte to resume processing. The HCP
generates such soft events.

At the point when the soft event has been generated <from
whatever source>• one can say that the "event has happened".
This soft event is used by the Micro Scheduler function to locate
the corresponding process in the wait queue.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~J

COMPANY CONf IDENTiAl
81000 MCP II

P.S. 2212 5462 CE>

If the process is jn memory Chad not been rolled out), tbe Micro
Scheduler analyzes the reason that the process had been waiting
to determine whether or not the tast communicate was co•pteted.
If it was, the job is put in the ready queue to await
reinstateaent. If the communicate was not completed- the job is
put in the communicate queue to wa•t for the reinitiation of the
communicate by the communicate handle~.

If the process was not in memory and memory is available, then
the "ROLLIN" function is catted. Its duty is to re-establish the
run structure that had been •rolled out• to disk. The reason for
waiting is then analyzed in the same manner described above. If
there was no memory availabte for rott-in, then the job is put
back in the wait queue to wait for memory. The wait reason will
be updated to reftact this status change and to specify into
which queue the job would have gone had memory been available.
When memof y becomes avaitable~ the job will be put directly tnto
the specified queue.

The process wilt continue to be manipulated tn this fashion until
it has completed execution. At that ti•e it witl reQuest the
end-of-job function from the MCP and terminate.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

7-l

COMPANY CONf IOENTlll
01000 HCP II

P.S. 2212 5462 Cf>

The HCP can be viewed as a program whose sole duty is to respond
to demands made upon it br the system. This seemingly innocuous
statement is valid even though the HCP is a vastly coeple•
program. The compleiity arises• however, by virtue of the
diversity of demands to which the MCP is able to respond.

There are five basic categories of demands to which the MCP
initially responds. These categories are recognized at the
outermost or most global level of the HCP~ which iteratively
searches tor each. Once a. demand is found, it is analyzed at
increasing levels of detail and resolved according to its
specific request. Control is then returned to the oute~ loop
which continues to search for demands.

The five types of demands recognized by the HCP•s outer tocp are
described below.

11.tftB l.[1jl£BB!Jf1

The first type of demand recognized by the MCP is called a timer
inter~upt. There are two fields in the MCP's global data space:
A software maintained system clock and a cloc~ mask. Ever~ tenth
of a second an iaterrupt is caused by the hardware. GISMO
detects this interrupt and bumps the system clock~ Every ti•e
the HCP begins its loop searching for demands• it checks to see
if the value of .the system clock has exceeded the value of the
clock mast. If it has. the MCP catts the •N.SECONOw routine to
perform its housekeeping duties and resets the clock mask to so•e
value greater than tbe svstem clock. See "N.SECOND routine•.

ilJl lllEBB.Uf I..S

An I/O irterrupt is a soft mechanism by which GISMO notifies the
MCP that an I/O operation is complete. GISMO wilt only do so
when the HCP requests that it be notified or when an exceptjon
condition has occur~ed on the 1/0 operation. fhis should not be
confus·ed with a •service request" t~pe of interrupt. This
service request is a hard level in the processor and is used to
no t i f y t h e so f t w ar e t h at a b ar d w ar e I I 0 con tr o t i s i n n e e d o f
service.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 54&2 CE>

The HCP witt request notification of the
completion only when there is a need for it to
does not request tha return of I/O complete
l/O operations unless the program which caused
be initiated is waiting on the 1/0 operation.
further in the sections of the specification
WRITE.

occurrence of I/D
know. The HCP

i n t err up t s on u s er
the operation to

This is discussed
covering READ and

When an 110 operation is completed, GISMO stores the resutt
descriptor associated with the opeiation in its proper location
in memory. lhe field is known as the •result descriptor field"
and is a part of the actual 1/0 descriptor. fhere is art area
allocated in memory known as the interrupt stack, which is
actually a ~ueue of I/O complete tnterrupts. GISHO• after
storing the result descriptor. if the inter~upt ~equest bit in
tbe descriptor was on~ stores the address of the resutt
descr~ptor in the interrupt stack and •causes• the MCP• if it is
waiting. In its outer loop, tbe HCP requests that GISHO deliver
the address on the top of the interrupt stack. It analyzes the
descriptor at that address and takes the appropriate action. fhe
HCP continues to request addresses from GISHO in this fashion
until the stac• has been exhausted.

Upon ~eceiving a descriptor•s address from GISHO• the HCP invokes
a routine catted •10.COHPLET£• to begin the anatysjs. Depending
on the value found in a field of the result descriptor~
IO.COHPLEJE jnvokes one of the fottowing HCP facilities. each of
which is discussed in depth, on the following pages.

CAUSE MECHANISM
CONTROL LANGUAGE
IOAT HAINfENANCE
1/0 ERROR HANOLER
SPO MAINTENANCE

CSEE •PROCESS MANAGEMENT•)
PROCESSOR

JDB ~.CliE,iUJLlt:J.G AttIJ l.tUlJ!LllillIU:t

After exhausting the interrupt stack• and if an ~CP globat~
•CHANGE.BIT•• is true1 the MCP checks the •schedule queuew ta
deter~ine if any jobs have bean scheduled for execution.
CHANGE.BIT wilt be f atse whenever a previous attempt at program
initialization failed because of insufficient memory, and nothing
has intervened to create a possibility of success at this
attempt. The program initialization routine sets CHANGE.SIT to
?ero <false> whanever an initialization faits. lt is set to one
(true) whenever a btoct of memory is freed by job termination or
•rotlout"' whenever a new job is placed at the top of the active

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
91000 MCP II

P.S. 2212 5462 CE>

schedule• or whenever explicittr set by the "PS" control language
statement. The MCP is thus abte to ~aximtze its own resources by
by-passing a futile atte•Pt at job initialization.

The schedule queue contains an active and a waiting schedule.
Both are lin*ed lists on disk which contain those jobs awaiting
execution but for which no memory resources have yet been
allocated. The control language processor identifies a request
fo~ a job to be executed. It builds a log entry <see "LOGGING
INFORMATION•> for that job and tinks it by priority and time of
request to other jobs waiting to be initiatized. See "CONTROL
LANGUAGE PROCESSOR" for exact specifications. The active
schedule lists those jobs that are ready to run. The waiting
schedule contains those jobs whose initialization must await the
occurrence of some event <i.e.P the ter•ination of another job or
operator controt message). Wnen the event happens, the job is
transferred from the waiting schedute to the active schedute~
where the HCP will find it.

The HCP selects the first job in the active sched~le for
initialization. once the job has been de-Queued, control is
passed to the "program initializer" which atlocates the machine
resources and sets up tbe structures necessary for the program•s
execution.

A program may request certain services from the MCP. These
requests ~epresent another class of de•ands to which the HCP aust
respond. The •communicate queue• contains jobs which have
submitted such a reQ~est.

The queuing mechanism is managed as follows. Each run structure
nucleus contains two fields: "RS.COHMUNICAIE.MSG.PTR• which is a
standard message area and •ffS.Q.IDENT• which specifies in which
Queue- if any, the program is. fhe vatue of RS.Q.IOENT may be:

0
1

11
-2
10

3

=
=
=
=
=
=

READY QUEUE
COHMUNICATE QUEUE
WAIT QUEUE
NOT QUEUED Ci.e •• running)
MHCP COMMUNICATE QUEUE
EXTERMINATE QUEUE

All run structures are linked together by priority. Thus the
members of a given queue may be discovered by searching the
tinked list of run structures and checking RS.Q.10£NI.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 <E>

The first job in the communicate queue is serviced according to
the contents of RS.COMHUNICAfE.HSG.PIR. The message is initially
analyzed by the communicate message handling routine whjch calls
the proper subroutine to further analyze the message and take the
appropriate action. The proper subroutine is d~termined by the
first two bits of this •essage area called "RS.IlYPE•. The
values and corresponding aeanings of this fietd are as follows:

00 = INTERPRETER GENERATED COMMUNICATES
01 = PROGRAM GENERAIED COMMUNICATES
10 = UNOEFINEO
11 - f IlE CLEANUP COMMUNICATE

Interpreter generated communicates contain reQuests from the
program's interpreter for services which are unrelated to the
progC"a11(' s code. These include requests fof" 11i ss ing segments ..
tr ace and run ti me error messages" etc.

Program generated communicates are
services such as I/O operations.
wPROGRAH COMMUNICATES•.

reQuests for code related
These are specified under

Jhe file cleanup co••unicate is an MCP generated communicate used
in conjunction with program end-of-job.

fBll.§BAtt .BtlH.SIJIE

To be specified.

All object programs communicate with the HCP by mea~s of a
Communicate S•operator. fhe operator se~ves to transfer control
fr om t he u s er • s i n t er pr et er to t he MC P • s • Th o ugh 111 an y
communicates are now handled by aicro·code in the Hicro-MCPP the
means of communication has not changed. The compiler generates
code which establishes an area in the program•s run str~cture.
This area generally conforms to a standard format which is
recognizable by the MCP. The fields in this area are defined
arbitrarily, however. Only the first twelve bits of the field
must conform to the format presented betow.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP H

P.S. 2212 5462 Cf>

Note:

---------------------------------------VERB
OBJECT
ADVERB
cr.1
cr.2
CT.3
Cf .4
cr.s
CT.6
CJ,.1
er.a
CT.9
cr.10
cr.11
cr.12
CT.13
CT .14
CT .• 15

0 - 11
12 - 35
16 - 41
46 - 11
.12 - 95
96 - 119

120 - t43
144 - 167
168 - 191
192 - ,215
216 - 239
240 - 263
264 - 297
298 - 321
J2.2 - 345
346 - 369
370 - 393
J9ft - 417

Alt co•municates return a value of ~000000000000; or
aoooo1aooooooa in the RS.REINSJATE.HSG.PTR unless
otherwise ~pecif ied.

Att interpreters# when executing the Communicate S•operator,
store a pointer to the reserved- formatted memory area in the
fietd called RS.COMHUNICATE.HSG.PTR of the RS.NUCLEUS of the
program being executed. Tbis forty-eight bit field specifies not
onty the relative address of the cosmunicate area. but at so the
size of the area in bits. for further inforsation on this aspect
of the operation- ~efer to the progra•matic description of the
Run Structure Nucleus.

If the HCP needs to convey information back to the object p~o9ram
after executing the requested communicate- it does so by setting
the field called RS.REINSfATE.HSG.PTR to a selected value. If no
information is to be conveyed, this field is set to either
~oaooooooooa or aoooo1sooooooa before reinstating the p~ogram.
Other vatues, and their associated meanings depend upon the type
of communicate being executed, and are described for each
cbmmunicate in the sections which fottow.

1-&

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONFIDENTIAL
31000 HCP II

P.S. 2212 5462 (£)

Cf .VERB

CT.VERB
CT.OBJECT
CT.AOVERB

00
ILLEGAL COMMUNICATE

01
FILE.NUMBER
Bil
0
1

REPORT & RETURN TO USER ON EOf
REPORT & RETURN TO USER ON PARITY

2 REPORT & RETURN TO USER ON INCOMPLETE I/O
3
4-&
7

LENGTH AODffESS PAIR IS PRESEHJ FOR RESULT MASK FIELD

CT.l
CT.2
Cl.3

STACKERS·-STACKER # IS IN CT.3
8-11
LOGICAL RECORD BIT lENGlH
LOGICAL RECORD BASE RELAJIVE BIT ADDRESS
RANDOM FILE ACTUAL BINARY DISK KEY
<RECORD NUMBER INSERTED BY HCP FOR SERIAL
OR
LENGTH Of KEY FOR REMOTE FILES

CT.4 ADDRESS Of KEY FOR REMOTE FILES ONLY
CT.5 LENGIH IN BITS Of RESULT MASK
CT.6 BASE RELATIVE ADDRESS Of RESULT MASK FIELD
REINSTATE.MSG.PTR VALUES

0 GOOD READ
1 END Of f ILE
2 I/O ERROR
3 INCOHPLEJE l/O
4 IMPOSSIBLE SEARCH <RPG SEARCH OP>

fllES>

A READ communicate on the 01000 System serves to deliver a
logical record to the user program. It does this by moving the
record from the I/O buffer araa in memory, where it was
previously stored by the CSM* to the user•s Run 5t~ucture
CBase/limtt> area. In almost all cases, the READ• WRITE and SEEK
communicates are performed by the Mlcro-MCP. This has been true
since the 5.1 release of the software.

Jhe information passed in the communicate area must include a
unique file number. This number is assigned by the compilers and
is passed to the MCP in CT.OBJECT. The sa•e statement is true
for alt commMnicates which deal with an 1/0 operation. s~ch as
WRITE. SE£K, OPEN- CLOSE• POSITION and so forth.

The communicate information must also contain the base-relative
address of the memory area where the record is to be stored and
the length• in bits, of this area. These items are passed in
CT.2 and Cf.IP respectivety.

the user program to wait until a requested I/O completes. It~
for example~ the prograa is reading cards and the card reader is
not ·readyP it may be a tong ti•e until the operation completes.
Fo~ such programs, the third bit in CT.ADVERB is used. Setting

BUR~OUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

l•B

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 <E>

this bit causes the HCP to return control to the user p~ogram,
regardless of whether a record was delivered or not. If no
record ~as delivered• the pro9r3m is informed of the situation by
setting proper vatues in RS.REINSTAJE.MSG.PTR. This is discvssed
in more detail tater in this section.

Remote files may consist of more
terminal. In such a case, it is
to specify the identification of
from. This is accomplished
proper vatues.

than one data communications
necessary for the cbject program
the terminal it wishes to read
by setting CT.3 and CT.4 to the

In all three of the cases described previously- where bits one•
two or three are set jn CT.ADVERB~ it is necessary for the MCP to
inform the user prog~am of the existing condition. This is
accomptished by setting a field jn the RS.NUCLEUS to a specific
value prior to reinstating the orogram. The field is defined as
RE.REINSJATE.MSG.PTR and is accessed by the user•s interpreter as
soon as it is reinstated, after doing a communicate. If a valid
record was delivered to the user• the message field is set to a
value of zero. It will be set to one. two or three if the
respective bits are on in Cf.ADVERB and the condition assigned to
these bits exists.

If a user program REAO communicate encounters an end•of•file
conditio~ and bit one in CT.ADVERB is not set, the program will
be discontinued by the MCP. If a user I/O operatjon results in
an irrecoverable error and bit two is not set in the READ
communicate which requests the record, the prog~am witl be
discontinued by the MCP. If a user program requests the data
from an l/O operation which is not iyet complete and bit three of
the adverb is not set, the progr~m is merely forced to wait for
the I/D completion.·

for files which are assigned to Data Recorders and other selected
card Input/Output devices, the user may specify that the card
which ~as read is to be routed to a certain physicat stacker on
the device. This is accomplished by setting the specified bit in
CT.ADVERB to one and by setting CT.3 to the binary number which
designate! the physical stacker. In this case. there is never a
need for ~ore than one buffer area to be assigned to the file~

and the MCP OPEN routine wilt prevent this from hapoening. Card
l/O operations in this case are not "buffered~ and card
throughput witl decrease accordingly.

for random disk files, a READ communicate may not result in an
1/0 operation being initiated. If the user who does the READ is
the sole user of the file and if the block which contains the
requested record is atreadr ift memory in one of the user's b~ffer

r-9

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
91000 HCP II

P.S. 2212 5462 Ct>

areas# the requested record will be simply moved to his wort
area. This actinn is not performed if there is more than one
user of the file.

Cf .VERB
CT.OBJECT
CT.ADVERB

CT.l
cr.2
cr.3

CT.4
CT.5
CT.6

02
FILE.NUMBER
BIT
0
1
2
3
4-5
6

REPORT & RETURN TO USER ON EOF
REPORT & RETURN ro USER ON PARITY
REPORT & RETURN TO USEff ON INCOMPLETE 1/0
LENGTH ADDRESS PAIR IS PRESENT FOR RESULT HASK FIELIT

QUEUE FILES: WRITE TO FRONT OF
QUEUE (•STACK").

1 STACKERS--SJACKER • IS IN cr.3
8-ll PRINTER SPACING (4 Bii VALUE>

0 NO PAPER ADVANCE
1 SKIP TO CHANNEL 1 AFTER PRINTING
2 SXIP TO CHANNEL 2 AFTER PRINTING
3 SKIP 10 CHANNEL 3 AfTER PRINTING
4 SKIP TO CHANNEL 4 AFTER PRINTING
5 SKIP TO CHANNEL 5 AFTER PRINfING
6 SKIP TO CHANNEL 6 AFTER PRINTING
1 SKIP TO CHANNEL 1 AFTER PRINTING
8 SKIP JO CHANNEL 8 AfTER PRINTING
9 SKIP TO CHANNEL 9 AFTER PRINTING
A SKIP ro CHANNEL 10 AFTER PRINTING
0 SKIP ro CHANNEL 11 AFTER PRINTING
C SKIP TO CHANNEL 12 AFTER PRINTING
D SKIP IO TOP Of FORM (1500 lPH PRINTER ONLY>
E SINGLE SPACE AfTEa PRINTING
f DOUBLE SPACE AFTER PRINTING

LOGICAL RECORD BIT LENGTH
LOGICAL RECORD BASE RELATIVE SIT ADDRESS
RANDOM FILE ACTUAL BINARY DISK KEY
CRECORD NUMBER INSERTED BY MCP FOR SERtAL FILES>
OR
LENGTH OF KEY FOR REMOTE FILES
ADDRESS OF KEY FOR REMOTE FILES ONLY
LENGTH IN BITS Of RESULT MASK
BASE RElAfIVE ADDRESS Of RESULT HASK FIELD

REINSTATE.HSG.PTR VALUES
0 GOOD W~ITE
1 END OF FILE
2 I/O ERROR
3 INCOMPLETE I/O

A WRITE communicate on the 81000 system operates in a manner
similar to READ. The user program constructs a logical record

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA dARBARA PLANT

7-10

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE>

somewhere within its Run Structure and communicates with the "CP.
The HCP will then move the data from the ~ort area, the address
and length of which are described by CT.2 and CT.1 respectivety
to the next availab4e I/O buffer area. The program will ba
allowed to continue as soon as the ~ovement of the data occursJ
it is not forced to wait for completion of the actual I/O
operation.

As in the case of the READ communicate, either blank-fitl or
truncation of the record will occur, depending upon the sizes of
the work area and the fite•s lagicat record. The buffer ~tll be
released• which means that the corresponding l/O operation will
be initiated• as soon as the buffer area has been filled to
capacity. A progra• is forced to wait for I/O completion if the
HCP cannot find an avaitabte buffer to which it can •ove the
record. A buffer is unavailable if the previous I/O operation•
which may have been initiated some ti•e ago- is not yet coaptete.

End-of-file is ftOt reported to a user on an output file except in
the cases of disk files and some printer files. End•of•f ile for
a disk fite is defined to be an attempt by the user to write past
the declared size of the file. Tbe declared size of att disk

...;··· ·- . ·----·-·--·-----·--· ········--· ·-'······-" ---

fi i es... i s •Cl i n·t a1 ne d in t be . fi .. t.e. futa.d:ar_" .. -~ o..ermane nt e nt i t y
createa···-wh·e-n the fHe is opene-·d output far the first time.

For files assigned to printers, end-of-file may be defined to be
the sensing by the hardware of the physical end cf the page. In
all cases. this is not actually the end of the page. but rather
the sensing of a channel twelve punch in the Carriage Control
Tape. This sensing will be reported to user progra•s, if
requested by setting bit one in CT.ADVERB and by setting a bit in
the FPa for the file. Notice that, because of the fact that the
HCP is examining the result -0f I/O operations which may have been
initiated some time ago* end-of-page is not repoTted when it
occurs, but •nft write operations later• where •n• is the n~mber
of buffers assiqned to the file.

I/D errors are atso reported to user programs on the WRITE
communicate, if requested. This infor•ation is necessarily of
little practical use, on any Burroughs operating system.
Ostensibly• the I/O error routines of the MCPCs> should be of
such a nature that the need to report this occurrence never
ar i se s.

The sa•e Data Communications applications which use bit three of
the adverb on READ• use it in a similar manner on WRITE. When
using this bit in the adverb~ control is returned to the user
when a WRITE is requested but the buffer that should be used is
not yet avaitable to the MCP. Again• this can be caused br the

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~T

device itself going not ready.

1-11

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE>

Printer spacing information must be passed to the MCP or each
WRITE co~municate for a fite which is assigned to a printer.
This is accomplished by setting the proper bits in the adwErb- as
pictured in the preceding.

Serial disk files may be opened by the u•er program for both
input and output operations. In other words~ the file way be
opened in such a manner that both a READ and a WRITE communicate
are acceptable, with no intervening Close and Open. Wher this
type of OPEN communicate occurs~ the MCP will pre-fitl all of the
buffers, as if the file had been opened INPUT only, but the
buffers are released at different points in the READ and WRITE
communjcate processing.

The MCP will not move buffer pointers at the conclusion of a REAO
communicate, as it normally does. Instead. it must wait until
the next com~unicate operator associated with that file is
received. If the succeeding coamunicate is a WRITE• ft witl •ove
the data from the work area to the buffer and change the
operation code in the I/O descriptor to a Write. It will mark
the program •ready to be reinstated•• and then rotate the buffers
in anticipation of the next communicate operator. In this
specification. the term •rotate the buffers• means that the MCP
moves the necessary buffer pointers and initiates the I/O if
necessary.

If the next communicate received at this point is a WRITE, the
HCP• after insuring that the next buffer is available fer use•
will move the data again, from the wort area to ths buffer and
rotate the buffer pointers. If the communicate had been a READ•
the HCP would have •oved the data in the opposjte direction and
it would not have rotated the buffer pointers.

In summary, for this type of file• two successive REAO operations
wilt move two successive records from the file to the use~•s wort
area. Two successive WRITE operations will cause two successive
records to be written into the file. A sequence of operations
such as READ-WRITE-READ-WRITE wilt cause two successive records
to be delivered to the user and the same records• but not
necessarily the same data• to be written in the file. The
End-of-File pointer for a sequential file mar be extended ~hen
the file is opened in this manner.

Disk files which contain variable-length records mar not be
opened for both input and output operations- or for random access
processing.

1-12

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE>

for Sequential I/O files, a physical I/O
necessarily initiated each time the user progra•
for btoc•ed files' if the user has done a WRITE
the block, the operation will be initiated only
pointers are moved past the end of the block.

operation is not
does ,a WRITE.

on any record in
when the b~f fer

For data communicatians files, the fields described as CJ.J and
CT.4 are us~d on WRITE commun~cates exactly as they are on READ
communicates.

for random disk fites a WRITE communicate may result in more than
one physical I/O operation. If the file is blocked, the block
whjch contains the requested record must be in a buffer in me~orr
before the record is inserted in the block and actually written
to disk. This is due to the fact that the hardware can only
initiate I/O operations and terminate them on segment boundaries.

If the block which contains the reque5ted record is not in memory
when the WRITE is issued• the HCP will initiate a Read oµeration,
force the requesting user to wait for its completion• move the
record into its respective position in the block after the 1/0
completes• allow the user to be reinstated at this poirt and
initiate the requested Write operation• if the fite is being
accessed In the RANDOM mode.

In the 6.l release of the software~ a file access method known as
DELAJED RANDOM was iapleaented. When DELAYED RANDOM is used, the
first request for a logical record of a given bloc• of a DELAYED
RANDOM fite witt resutt in a physical I/O which reads the
necessary block into memory. Subsequent accesses to the block
wilt not generate any physical l/O•s as.tong as the block remains
in memory. A block is overlayed if a request is made for a bloc~
not currently in •emory, at this time the least recently accessed
block is chosen as the one to overlay. If the chosen block has
oeen updated in memory it is written to disk before the new block
is read. Periodically~ all blocks that have been updated in
memory are written to dist by the SMCP.

CT.~£RB

CT.OBJECT
CT.ADVERB
cr.1
CT.2
CT.3

03
FILE.NUMBER

RANDOM FILE ACTUAL BINARY DISK KEY

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA dARBARA PLANT

7-lJ

COMPANY CONFIDENTIAL
BlOOO HCP II

P.S. 2212 5462 CEl

The SEEK communicate is an instruction to the MCP to position the
arms properly, on movable-arm dev~ces. and to fill one of the
buffers assigned to the file with the block of data which
contains the requested logical record. This communicate is
applicable to random disk files only. The user is not forced ta
wait for the completion of an I/O operation initiated by a SEEK
cosmunicate. He may be forced to wait if there is no buffer
available to use for the operation.

The SEEK communicate may be used by the user programmer to mas~
some or all of the time required by a READ co•municate with
computation. It •ay also be used~ prior to a WRITE commuricate,
to etjminate the necessity of waiting for a buffer to be
pre-filled when using blocked files.

No data is moved to or from the user's work area by the logic of
a SEEK co•municate.

~1HUE.B &1HUBUL

Cf .VERB
CT.OBJECT
CT .AflYERB

CT .1
CT.2
CT.l

04
flLE.NUM9ER
BIT
0•4
5
6
1
8
9
10

TRANSFER
POCKET SELECT
sroP··n.ow
BATCH-COUflU
POCKET LIGHT

11 ENO OR SE
POCKET NUMBER
BASE RELATIVE
81 ·r lENGTH or

TRANSFER ADDRESS
TRANSFERRED DATA

The SORTER CONTRaL communicate is used in conjunction with files
assigned to Reader-Sorters only. Such files mar be utitized
p~operly in COBOL programs only. Other languages may include
portions of the syntax necessary for proper use of a
Reader-SorterP though only COBOL contains ,everything that is
necessary.

When the HCP receives an I/O Complete interrupt from the
Reader-Sorter- it immediately references the program which is
using that sorter, determines the memory address of the "USE
ROUTINE wor~ areaft, and places a formatted copy of the result
descriptor from the 1/0 operation fotlowed by an image of the
item itself in the work area. It then reinstates the user at the
code address of his USE ROUTINE. (for additional information on

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BAR9ARA PLANT

7-14

COMPANY CONFIDENTIAL
1HOOO HCP II

P.S. 2212 5462 CE>

1te• Processing~ refer to the 91000 COBOL Reference Manual~ for~
Nu mb er 10S119 7 • >

The HCP takes the action described above regardless of other
processing that is occurring. The action described is coamonly
known as "High-Priority Interrupt Handting"'.

Only three of the five possibl~ adverb bits may be set in a
communicate addressed to the MCP white th€ user program is
executing the USE ROUTINE. These three bits are TRANSFER~
SJOP-fLOW and POCKET SELECT. The TRANSFER bit is discussed in a
subsequent paragraph. If the POCKET SELECT bit is set~ the MCP
will use the value in CT.las the pocket number on the sorter for
that item. If the STOP·FLOW bit is set in the adverb, the HCP
witt also issue the appropriate I/O Descriptor to the sorter. •
After receiving the communicate, regardless of the adverb bits~
the HCP will continue doing whatever it was doing at the time the
interrupt was receivedJ the user must give up control at this
point.

Pocket selectiofl on the sorter thus happens asynchronously ~ith

everything that is occurring on the system• except the sorter.
This is currently the only device connected to the 81000 which
operates in such a manner. The necessitr for this action is
dictated by the fact that the sorter is actually a •real-time•
device and ~ust be serviced in a specific time period after a
check has been read by the hardware.

The TRANSFER bit and its function was added to the a.o ver!ion of
the MCP. When the TRANSFER bit is not set- which witl be the
case for all programs compiled prior to the 8.0 release of the
software, the HCP• upon receiving the POtKEl SELECT co~municate•
wilt dispatch the poctet number supptied to the sorter control
and place an image of tbe item in a •tank• area in •emory. The
number of items that may be conta~ned in the tank area is
specified by the user and corresponds to tbe number of buffers
requested for the sorter file. In actuality• there wilt te ontr
one buffer and 1/0 descriptor, regardless of the numDer
requested, but the buffers requested will be used to determine
the size of the tant area.

Item images wilt be removed from the tank when the user proqra~
does a SORTER READ operation on the sorter file. The images witl
be delivered tn sequence to the program. Dbviousty, the tan•
area witt become full if items are introduc~d to the system ~ore
rapidly than the user program does SORTER READ operations. If
this occ~rs~ the HCP will dispatch a SfOP-flOW I/O descriptor to
the sorter controt11 thus stopping the intr·oduction of i·tems.
flow ~ill be automatically started by the HCP when the tark area

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

is again empty. In this
fOO_LAfE_ro_POCKET_SElECT and
oc cur,r in g.

r-15

COMPANY CONFIDENTIAL
91000 MCP II

P.S. 2212 5462 (£)

~anner~ the syste~ prevents
fOO_lATE_JO_REAO condttions from

If the TRANSFER bit is set in the SORTER CONTROL communicate, the
HCP will not tank the actual image of the item but will store the
data at the location specified by CT.2 and CT.J fTom the
program•s run structure. In this manner- the user may ca~se the
HCP to tan• whatever he chooses• thus eliminating the need for
several program•ing steps from the user program. A maximu~ of
one hund~ed characters may be passed and tanked per item.

The BAJCH·COUMJ bit in the adverb is used to advance the batch
counter on the sorter by one• each time it is received by the
HCP. This adverb bit will only be accepted by the HCP when the
user prog~am is not in the POCKET SELECT USE ROUTINE• and a High
Priority Interrupt condition does not exist.

Each pocket on a Reader-Sorter has a red indicator tamp. visible
to the operator- above it. The lights aay be turned o~
programaticatty by the object program issuing a SORTER CONTROL
communicate with the POCKET LIGHT bit in the adverb set. Upon
receiving such a communicate# the MCP will issue an I/J
descriptor to the sorter which wilt instruct it it turn on the
tight above the poc~et specified by CT.t. The hardware will onty
take such action when the flow of items through the sorter bas
been stopped. The same is true of the SATCH COUNT operation.

CT.VERB
CT.OBJECT
CT.ADVERB
CT.'l
CT .2

05
F:ILE.NUMBEft

READ AREA Bil LENGTH
READ AREA BASE RELATIVE BIT ADDRESS

'Ch e c k C H em l i m age s ar e D as s e d to t he u s er pr o gr am
asynchronously. As described abover an item image is passed to
the program whenever one is available to the system. The user
program is expecting to READ these images synchronousty, however,
by issuing SORTER READ communicates.

The HCP therefore temporarily stores these is.ages in •e•ory.
passing them to the user program in succession, upon rece1v1ng
this communicate. <Notice that the user program has already seen
the images in his POCKET SELECT USE ROUTINE.) This operation is
commonly known as •tanking•.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP ll

P.S. 2212 5462 CEl

The operation of the SORTER READ communicate is similar to that
of READ. Item images are passed to the user's work area by the
MCPJ the length and location of the work area is specified by
cr.1 and cr.2 respectively.

There is actualty a secondary purpose to the SORTER READ
communicateJ it informs the KCP fo the use' program's processing
rate. As described above• images are passed fmmediatety to tha
user for pocket selection but any other communicate from within a
POCKEf SELECT USE ROUTINE is prohibited. The images may not be
written to dist or saved by the user in any manner, except when
they are received via a SORTER READ communicate.

Therefore, if the soft •tanks• of item images maintained by the
MCP begin to fill up- which indicates that the sorter is
deliver~ng images faster than the user can proces~ them- the HCP
will automatically stop flow on the sorter until the user prograM
catches up. The sorter may therefore operate sporadicatty, in
bursts, but all items will at least be pocket selected.

fhe image of the item in the tank is preceded by a twenty-fou~
digit <ninety-six bit) expansion of the actual result descriptor
received from t~e hard~are in connection with tbat item. Jhis is
passed to the user program on the SORTER READ communicate' just
as it is olaced in his USE ROUTINE work area prior to reinstating
his USE ROUTINE.

Though only two communicate formats are implemented for use with
Reader-Sorters1 the HCP must do a tot more to make this operation
possible. A program which opens a sorter causes manr different
items to be mar~ad non·overtayabte in memory. This is described
more fully under the OPEN communicate. For a more comprehensive
explanation of Reader-Sorter operation~ refer to the 81000 COBOL
Reference Hanuat, Form Number 1057197.

CT.VERB
CT.OBJECT
CT.ADVERB

06
IN~OKE
BIT
0
1
2

3
4
5
6-il

NUMBER & PATH NUMBER

INCLUDES PACKIO OF DICTIONARY

DH.STATUS FORMAT
O=BINARY
1=4-BIT DECIHAL
ON EXC£PTION
UPDATE
REOffGANIZAfION C REORG ONLVJ

7-17

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 (E)

CT.1
cr.2
CT.3
CT.4
cr.s

CT.G

Ct.VERB
CT.OBJECT
CT.ADVERB

cr.1
cr.2

CT.VERB
CT.OBJECJ
CT.ADVERB

DH.STATUS REGISTER SIT LENGTH
OM.STATUS REGISTER BASE RELATIVE BIT ADDRESS
OAJA BASE NAME BAS£ RELATIVE BIT ADDRESS
DATA SASE NAME BIT LENGTH
PACKID BASE RELATIVE BIT ADDRESS (BIT 0 or

CT.ADVERB = 1)
PACKIO BIT LENGTH CBIT 0 Of CT.ADVERB = 11

01

BIT
o-.l
2

3
4-11

OM.STATUS FORMAT
O=BINARY
1=4-BIT OECIHAl
ON EXCEPTION

OH.SIATUS REGISTER BIT LENGTH
OH.STATUS REGISTER BASE RELATIVE BIT ADDRESS

08
FILE.NUMBER
BIT
0 INPUT
1 DU IP UT
2 NEW f IlE
3 PUNCH
4 PRINT
5 NO REWIND/INTERPRET COATA RECORDERS)
6 REVERSE/POC~ET CCARD PUNCH>
1 LOCK
8 LOCKOUT
9 REPORT FILE MISSING

10 REPORT FILE LOCKED
11 QV£RRIOE NA~ING CONVENTION AND SECURIT~

REINSTATE.MSG.PTR VALUES
0 GOOD OPEN
1 FILE NOT PRESENT <INPUT DISK>

PACK NOT PRESENT {OUTPUT DISK)

2
NO MORE FILES ON HUlfI•FllE REEL CiAPEl

FILE LOCKED CDISK FILES ONLY)

The OPEN communicate serves primarily to associate a ~hysical
file with the logical file declared in the user's program. Tha
communicate has other functions and is also used when such an
association has already been made. Basicatty, the processing
invo•ed by an OPEN communicate obeys the rules set forth in the

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANI

definition of t~e COBOL language.

7-td

COKPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

The object program must pass the unique file number assigred to
the fite by the compiler in CT.OBJEcr. The KCP wilt use this
number to obtain the disk address of the FPB constructed by the
compiler for that file. It will read the FPB into semory.
attocate memory to contain the FIB• the proper number of I/O
descriptors and the buffer areas for the file. It will then
construct the FIB• based upon the information in the fp9, the
physical characteristics of the device assigned to the file and•
in some cases. the logical characteristics of an existing file.

The memory area atlocated for a file is• except in the case of a
Data Management file, a contiguous area. One me#ory tink only is
necessary to describe a f~le area. The file area witl contain
alt of the items mentioned in the preceding paragraph. fIBs vary
in size~ depending on the type of device assigned. No memory is
atlocated fo~ this purpose until a device assign•ent has been
made.

One of the first tests made in the OPEN routine is, "Is the file
already Open?". This ts a violation of the rules of atl
languages and the HCP has no c~oice, if the test is true• but to
discontinue the program. There cannot be two consecutive OPE~
communicates on the same file without an intervening CLOSE
communicate.

Another preliminary test is• "Has a device assigflment atread)
been made?". If true, the OPEN processing follcws a different
course. Device assignment is of prime importance to the OPEN
routine.

A third preliminary test is whether or not the file is to be
assigned to disk. If the file is a disk filt# the co~rse of
action followed is described under the heading •oisk file
Assignment". The ~emainder of the discussion under Device
Assignment applies to non-disk fitesP that are bejng Opened for
the first time.

The next major test made by the DPEN routine is whether the file
is being opened for input• output or both. Onty certair card
devices~ such as Data Recorders- may be opened for both input and
output, exclusive of disk files. Certa~n other co•binatio"s of
the various bits jn the adverb are also illegal. These will be
discussed in turn. for the case mentioned above, atte•ptinq to

7-19

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE>

open a card reader, for example• for output purposes ~ill result
in the program being OS-ed by the MCP.

If the f jte is being opened input. the HCP wilt attempt to match
the external names in the FPS 4f the file~ FPS.MULTI.FILE.ID and
fPB.fILE.ID, with the labels read previously by the ST4TUS
routine on each peripheral device. If no match is found~ the
operator is notified and the program is forced to wait urtil a
file with the requested label is introduced to the system, or
until the operator resolves the •No Fite• condition is some other
manner. System SPO and Cont,ot Card syntax is available to allow
the operator this alternative. The program wilt removed fro~
memory if possible.

If a match is found on two or more units,
notified of this also and again~ the program is
The MCP cannot recover automaticatlv from this
operator •ust inform ~t that he has resolved the
situation. Again• system SPO and Control
available to do this.

the operator is
forced to wait.
condition; the
wouplicate Fite•

Card syntax is

The HCP's Control Card routine is invoked whenever a card input
device goes from a Not Ready condition to a Ready condition. The
routine then reads the first card from the device. If this card•
or in some cases, a subsequent card causes a job to be scheduled
for executiOAP the Control Card routine retains control of the
HCP, reads the next card, and processes it. It ~ill continue to
retain control until the card reader goes not ready~ or urtil a
DATA card is encountered. If the Control Card routine tersinates
processing due to the encouAtering of a DATA card1 the physical
input file described by the DATA card is associated with the last
job which it placed in the schedule. This is only true if the
Control Card routine did not lose control bet~een the ti•e it
encountered the card which caused a job to be schedulea ard the
time it encountered the DATA card.

The MCP wilt not report a Duplicate File situation, if one
exists• if the input file being opened is a card file or a
pseudo-reader file and if the job has a physical file associated
with it in the manner described above. Rather• the MCP meretr
allows the assocjated physical file to be opened by the job~
provided the external identifiers in the physical label and in
the fPB are equat.

Control Card syntax is provided to allow the operator to specify
the physical unit which contains a specific logical file. This
specificatjon •ar be made when the job is scheduled for execution
or it may be made permanently by modifying the fPB in the
program•s code file on disk. If such a specification has beer

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

1-20

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 221Z 5462 CE>

made, the HC~•s OPEN routine will not attempt to match external
identifiers- but w~lt s~mptr assign the physical file on the
requested unit to the logicat file being opened, provided~ of
course~ that the unit is available for such an assignment. It
should be noted that making such a specification in an FPB also
changes the hardware t)pe in the FPB to match the hardware type
of the unit specified. Unjts are specified by mnemonic nate.

If the unit being opened is a tape unit~ additional tests are
necessary before the device ~ay be assigned. The Reel Number
field in the untt•s label must match the corresponding field in
the logical file•s FPB. for tape unitsr Mutti·File Identifiers~
file Identifiers and Reel Numbers must all be eQual. Also. in
the case of a tape file• Controt Card syntax is provided to atlo~
the operator to specify the Serial Number of a particular reel of
tape. If this is done~ alt four conditions must be met. As in
the case of unit mnemonic specification~ Serial Number
specification may be made ~hen the jab is scheduled for executio"
or it may be made permanentty.

The HCP will allow tape files to be opened when the user
programmer does not know the logical record and physical block
sizes actually written on the tape. These fields are left
unspecified in the FPB by the compiler but the default bit in the
fpa, fPB.DEFAULJ, is turned on. The recording mode of ~ tape
file may also be left unspecified if the bit is set. The HCP
will inse~t the proper values into these fields when the tape is
opened, provided the information is present in the taoe•s label.
If the information is not present• the program witl be
djscontinued Mhen the OPEN is attempted.

The HCP wilt atso insert vatues for record and block sizEs when
att card input fites are opened and FPB.DEFAULJ is set.

The HCP will discontinue any program which atteapts to open a
fite contained on seven-trac• tape if the logical record size
contained in the FPS for the file is not modulo six and if the
programmer has specified the tape to be read without hard~are
translation to EBCDIC. This is true regardless of which bit~
Input or Output, is set in the Adverb.

When the HCP receives a request to OPEN a file for output
purposes, one of the first items that must be checked is whether
or not the file should be assigned to a Backup device. which may
be tape or disk. If the user has requested that the file be
directed to backup. this witl occur before the search for a
suitable output unit is made. Bac•up capabilities are discussed
in a separate part of this document.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

r -21

COMPANY CONFICENTIAL
81000 HCP II

P.S. 2212 5462 CE>

Assuming that the file is not to be sent to Backup, the MCP next
checks to see if the user programmer has requested that the file
have special forms for output. fhis test is made for all output
files, regardtess of device type. If FPB.fOR~S is set to one~
which indicates that special forms are requi~ed, the MCP witl
print an appropriate message and force the program to wait until
the operator replies in the proper manner. Syntax is provided to
atlow this. When the operato~ replies, the OPEN routine is agai~
invo~ed and the fite ~ill be assigned to the device specified by
the operator, is any, provided the unit available.

In the absence of a forms spectfication by the user' the MCP will
search the IOAl for an available unit of the type specified by
FPB.HDWR. As described in a prior section. certain values which
this field may contain are not actually hardware types but
specify a group of types, such as •any tape#• •any head-per•track
disk" and so forth. In order to be available for output
purposes, the unit must be ready, must not be currently in use by
another program and must be write enabled~

If the HCP cannot find an available unit of the type reQuested•
it Kill check to see if it is permissible to direct the output to
a Backup device. If so, it will attempt to do so. This is also
discussed in the section of this specification describing the
Backup operation.

If there is no available unit of the type specified by the user
and if it is not permi ssibl·a to direct the file to a Backup
device, the MCP witl print a message on the SPO to infor• the
operator that such a unit is required before the program. which
witt be identified~ can proceed. The program will be forced to
wait at this point- and wilt be removed from memory. if possible.

The HCP may recover the program from this co~dition
automaticattr- with no operator intervention. If a suitable unit
becomes available for· output purposes• the OPEN com1u.n1cate
processing for the program will be repeated. Control Card and
Keyboard syntax is provided to allow the operator to override the
hardware type specified in the user•s FPS. Syntax is also
provided to allow the operator to force the OPEN processing to be
repeated. In this case• the MCP merely tries again.

The MCP will automatically discontinue any program which attempts
to OPEN• ·for output purposeh a fite whose hardware type
specifies a paper tape reader. a reader-sorter• a card reader~ a
System SPO or an unknown device.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

1-22

COMPANY CONFIOENT1Al
91000 MCP II

P.S. 2212 5462 (£)

Certain devices on the 81000 may be opened for both input and
output operations. Thes9 dev~ces are atl card devicesJ no taoe
unit may be opened for both types of operations• except via the
£mutator fape constructs. At the present th1e .. there are only
three such devices, and they have come to be comaonty •nown as
~oata Recordersw. Actually• according to the 81000 Syste•s
Index• P.s. 1904 5681P they are the:

1. 89418-2 BO-Column Keypunch-Printer
2. 09419-2 96-Cotumn Keypunch-Printer
3. 89419-6 96-Column Keypunch-Printer-Sorter

All of the devices in the above list have one •wait Station•. 4
Wait Station is used for holding the physical card after it has
been read• or at least fed from the input hopper• and before it
is.printed or punched or both. Alt of the devices listed have at
least one hardware buffer~ ca~abte of holding the informatjon
contained on one card. This buffer is used on input operations
only. "Input" as used here will mean input to the computer.

The table below present the number of input hoppers and output
stackers on each physical device.

Device Hoppers
<Input>

St act er s
<Output>

---B9lt18-2
89419-2
H9419-6

2
2
2

Three different 110 Controls are used to interface the devices to
the 61000 system. They are:

1. HFC-1 CP.S. 2208 3034)
z. HFC-2 <P.S. 2208 3034)
l. CRPC (f.S. 2211 1371)

The following I/O operations are defined in the appropriate
product specification for all of the controls.

READ - (from the buffer in the oer·ipherat.>.
known~ for conversational purposes, as the
var i an t s are :

St,actc.er Select
In hi b; t feed
Hopper Select

This operation is
REPEAT.READ. Yalid

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COHPANJ CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 (£)

STACKER.SELECT.ANO.READ CRead the information from the next
card in the hopper>. Valid variants are:

Stacker Select
Inhibit Feed
Hopper Select

PUNCH. Valid variants are:
Stac~er Select
Inhibit reed
Hopper Select

PRINT. Valid variants are:
Stacker Select
Inhibit feed
Hopper Setect

PUNCH-PRINT. Valid variants are:
Stacker Select
Unequal Data
Inhibit feed
Hopper Select

PUNCH-PRINT.AND.READ Valid variants are:
Stacker Select
Unequal Data
Happer Select

The Stacker Select variant is actually a three-bit field in the
I/O Descriptor. When the three bits are set to numgric values
other than zero and seven, the device foutes the card to the
stacker selected by the descriptor. Valid numeric values for the
devices range from one to six. The HCP does not~ and cannot~
edit the numeric value passed by the object program to ascertain
that it is valid for the connected device.

The UneQuat Data variant is valid only in 1/0 descriptors whic~
cause a Punch-Print ope~ation to be performed. If the variant is
not set' the device w~lt print the same infor•ation that is
punched on the card. In other words• the beginning memory
address for the information to be printed is the sase as the
beginning memory address for the information to be punched. If
the variant is set, the jnformation to be printed will be taken
from a memory location which im•ediately follows the information
that is punched.

The Inhibit feed variant causes the Wait Station in the de~ice to
be empty at the completion of the operation. No cards will be

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFICENTIAL
81000 MCP II

P.S. 2212 5462 CE>

fed from the input hoppers if this variant is set in the
descriptor.

The Hopper Select variant causes the feed card to be taker froa
the sacGndary input hopper, if there is one. If the Inhibit feed
variant is set• the Hopper Select variant is ignored.

There is a timitationP which was mentioned briefly in a prior
paragraph. The MCP cannot distinguish between the 89419•2• which
has two output stackers• and the 89419-6, which has six. The HCP
does not edit stacker numbers before it sends them to the
control. Therefore, programs which utilize all six stackers on
the 89419-6 may not be transported to systems which do not have
such a device. Even if the HCP could distinguish between the two
devfces. the editing would have to be micro-coded and would
seriously degrade performance.

fhe capabilities available to the object programmer are
programmaticatty selected by variants on the OPEN communicate and
by variants on the READ and WRITE communicates. The discussio~
is categorized according to the different types of OPEN
availabte.

When the HCP receives an OPEN request with none of the bits in
the ADVERB area set• it will assuse that the program onlr wants
the information contained on the cards and does not intend to do
stacker selection~ Read-Punch operations, or any other variatior
available in the hardware. The 110 descriptors constructed as a
result of this type of OPEN will all be of the Repeat.Read type.
There mar be any number of buffers associated with the file. Alt
of the buffers witt be filled when the fiie is opened. Stacker
Selection is not attowed when the file is opened in this •anner.

When the HCP receives an OPEN request wtth the Pocket bit set• it
wjll construct one descriptor, the operator field of which wilt
contain a SfACKER.SELECT.AND.READ instruction. The buffer wilt
not be fitted when the file is opened. The first READ on the
file will cause the first card in the data deck to be moved past
the read head and stopped in the Wait Station. The data from the
card witl be transferred to the object program•s work area before
control is returned to the program. Stacker Select information
passed on the first read may or may not be passed on to the
device and will have no effect at all~

The second and all subsequent reads should have Stacker Selection
information associated with them. The HCP will not• however,
include code to insure this. The MCP will not allow mare than
one buffe~ to be associated with this type of file.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANJ

7-25

COMPANY CONFIDENTIAL
31000 MCP II

P.S. 2212 5462 CE>

Ttiis action is distinctl) different from the most common type cf
READ request handled by the MCP. fhe actual operation is always
issued after the communicate is received• and never before, as it
is with atmost all types of input files. The I/O operation can
never be comleted ahead of the demand for it. This operation is~
however~ similar to the current MCP action for Sequential I/O
files on Dist. The file can actually be thought of as an
Input/Output fi(e, for all practical purposes. It sust be
considered such a file by the HCP,, in order for the 1/0 to be
initiated at the proper time in a card read cycle. The OUTPUT
bit in the OPEN adverb should never be set when the OPEN is
requested• however. This will cause the communicate to have an
entirety different meaning.

Quite obviousty_. due to the differences in timing• it is
11 a n d at or y t ha t t he ob j e c t pr o gr am c l o s e and re -ope n t h e fi t e i n
order to change from pure INPUJ to INPUT WITH Sf ACKERS, and
conver set y.

A number of variations are possible ~hen the device is opened as
an output file. There var.iations are:

1. PUNCH
2. PRINT
3. INTERPRET
4. POCKET

The Pocket variant may be applied to any of the first four
variations, or it may be the only adverb associated with the OPEH
statement. The HCPP upon receiving an OPEN communicate without
PUNCH~ PRINT or INTERPRET requested, witl assume that P~nch is
desired. Therefo~e, OPEN OUTPUT is equivalent to OPEN OUTPUT
WITH PUNCH and OPEN OUTPUT WITH SIACKERS is equivalent to OPEN
OUTPUT WITH PUNCH~ STACKERS.

OPEN OUTPUT MITH PRINf means that the program does not want to
punch anything into the cards. It only wants to print
information.

OPEN OUTPUT WITH PUNCH• PRINT means that the program wants to
punch information into the cards and wants to print different
informatiQn on them. The HCP will allocate the number of buffers
'equested by the program; each buffer will be 192 bytes long.
The MCP witl expect to receive 192 bytes of infor~ation or each
WRITE communicate• 96 of which will be punched in the card and 96
of which wilt be printed. As always* it ts not mandator) that

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFICENTIAL
81000 HCP II

P.S. 2212 54&2 CE>

the prog~am deliver the full 192 bytes. The move from the work
area to the buffer is left•justified with blank fill.

OPEN OUTPUT WITH INTERPRET means that the progra• wants to punch
96 bytes of information into the cards and print the same data.
The HCP will allocate the nu•ber of buffers reQuested; which
must be at least two. each will be 96 bytes in length. The 110
descriptor constructed will specify a PUNCH-PRINT operation- and
the UNEQUAL DATA bit will be set to zero. The INTERPRET reQuest
witl have precedence over PUNCH~ PRINT and a combination of the
two. OPEN OUTPUT WITH PUNCH~ PRINlr INTERPRET should probably be
rejected as a syntax error by the compilers. fhe HCP will accept
the co••unicate# however• and assume that the progra~aer meant
only INTERPRET. The same applies to OPEN OUTPUT WITH PUNCH•
INTERPRET and OPEN OUTPUT WITH PRINT~ INTERPRET.

The POCKET variant may be specified on any valid reQuest for an
OPEN OUTPUT. The variant is ignored by the HCP on the OPEN
request. This is not true for OPEN INPUT WITH STACKERS. It must
be true for OPEN OUTPUT. however~ to avoid problems which mar
arise when the device assigned to the file is changed by.a FILE
card or an "OU• message. The YRITE co•municate contains a bit
which requests stac~er selection. The MCP examines this bit and
takes appropriate action on each WRIIE communicate.

All of the variations possible when a file is opened OUTPUT are
also possible when the file ts opened INPUT.OUTPUT When the HCP
receives an OPEN INPUT.OUTPUT request with none of the variants
set• it assumes that the user wants to read the information fro•
the cards, and punch additional information into them. and print
the same information on them. Therefore~ OPEN INPUT.OUTPUT is
equivalent to OPEN INPUT.OUTPUT WITH INTERPRET.

The adverbs PUNCH and PRINJ are relatively useless when the file
is opened INPUT.OUTPUT. Both punching and printing occur when
the PUNCK-PRINJ.AND.REAO I/O operator is dispatched to tha
control. There is no way the devjce can be made to print and
read or punch and read onty. These opeations can be simulated•
of course• by setting the UNEQUAL.DATA bit in the descriptor and
loading the proper portion of the buffer with blanks. This
reQuires some action on the part of the program•er.

The UNEQUAL.DATA bit is set in the I/O descriptor when the MCP
receives an OPEN communitate with both the PUNCH and PRINT bits
set in the adverb. As in the case of OPEN OUTPUT• the INTERPRET
bit has p~ecedence over both PUNCH and PRINT. OPEN INPUT.OUfPUJ
WITH PUNCH• PRINT• INTERPRET should be considered a syntax error
by the compilers. When the HCP receives such a reQuest~

however. it generates a PUNCH-PRINT.AND.READ 1/0 descriptor with

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

the UNEQUAL.DATA variant reset.

1-21

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE>

files opened wit- various attributes require or can onty use
various number of buffers.

Attributes

----*-----
Input only~ not Stackers
Input only with Stackers
Output only
Output and Input

Requires

1
1
2
3

Can Use

infinite
1

infinite
l

If the number of buffers specified for a file ts less than the
number required, it will be allocated the number required. If
the number specified is more t~an the number that can be
effectively used~ it will be allocated only the number it can
use.

As fn the case of OPEN INPUT WITH STACKERS~ the HtP will not fitl
the buffers when the file is opened. The first READ iss~ed for
the file will cause a card to be fed~ read and stopped in the
wait station. The information from the card witl be passed to
the object program at that point. lt may be necessary for the
MCP to treat the first READ on such a file differently f~o• all
other reads. This should be of no concern to either the co•piler
or the object programmer.

After the first READ on the file1 the MCP wilt normally expect to
receive two communicates for each card passed through the device.
There shotd be one WRITE request and one READ request for each
physical card. The program should pass 96 bytes• or 192 bytes,
of information to the HCP on each WRITE request. The information
will be moved from the program•s ~ork area to the buffer on th~
WRITE com~unicate. Iha actual IIO operation ~ill be initiated at
this ti~e and the progra• w~tl be allowed to continue, without
waiting fo' the completion of the ope~ation.

The HCP ~itt normally expect to receive a READ communjcate at
this point, and the program •ay be forced to wait for the
comptetion of the I/O operation issued previously. After
completion, the information read from the card will be passed on
the READ communicate• as atways.

It is not mandatory that the p<ogram always follow the REAC/WRlTE
sequence described in the foregoing. If the program issues two
successive WRIT£ requests, the input information on one of the

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
31000 MCP II

P.S. 2212 5462 CEJ

cards involved witt be lost to the program. fhe conseqyences if
a program issuei two successive REAO requests are somewhat more
dire. fhe information punched and prtnted on the first card will
atso be punched and printed on the second. Though this sounds
rather bad• this could possibly be of some use to someone.

Since the actual IJO operation for this type of OPEN is initiated
on the WRITE communicate, any stacker selection information •ust
be passed along with the WRITE communicate. Stacker information
passed on the READ wilt be ignored.

The MCP witl automaticalty discontinue programs that atteapt to
OPEN a file on any of these devices if:

1. Neither
Adverb,

the Input bit nor the Output bit is on in the

2. Both the Print and the Interpret bits are on in the adverb
or.

3. The program is attempting to use a 96-column device in the
binary recording mode.

When a user program attempts to OPEN a file which is assigned to
disk• the first test made in the Open Routine is whether the file
is a new fite which the program is creating for the first time or
an old file which already exists in the disk directory. In the
first case• a disk file header will eventually be constructed in
memory by the OPEN routine. In the second case. the dist file
header already exists and js stored in the directory and will
have to be brought into memory by the Routine. The Open
procedure for a new file will be discussed fjrst.

Programs which attempt to open new files for input and output in
the serial access aode will be automatically discontinued at this
point. Also. programs which attempt to open a new Hutti-Pack
Fite and have blanks in tbe PACK.IO field or the fP8 will be
automatically discontinued.

If tha Open communicate specifies that the file is a code fileP
the proper names for the file will be stored in the fPB at this
point. Atsor the number of disk areas requested in the FP8 will
be auto•aticalty set to one. fhe fact that this is a cede file
wilt be recorded by the HCP in the FPS for the fite. This
information is required whan the file is closed.

BURROUGHS CORPORATION
COMPUTER SYSfEMS GfiOUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 "CP Ii

P.S. 2212 5462 CEJ

If the PACK.ID field of the FPB contains something other than
EBCDIC blanks, the program is requesting that the file be
directed to a user pack with that IO. fhe HCP w4tt. at this
point, examine the Pac~ Information Table maintained i~ sesory
for a pack with the corresponding identifier. If such a pack is
present on the system• the routine continues. Otherwise• if the
user has requested that he be notified when the pack is not
present by setting the REPORT FILE MISSING bit in the adverb• he
wjtt be so notified at this point and control wilt be returned to
the user through the normal processor queue mechanis•s.

If the REPORT FILE MISSING bit is not set~ a message to the
operator will be displayed and the prGgram wilt be suspended
until the requested pact is introduced to the system or the
operaor overrides the PACK.ID specified. Control syntax is
provided to altow the operator several means of accom~lishing
this.

If the file being opened is a multipac• file and if the serial
number of the physical pack is zero or if the pack is already a
continuation pack for another multipack file, the program ~itl be
automatically discontinued. If the number of areas requested for
the file by the programmer is greater than 105~ it ~ill be
automatically set to 105 by the MCP. In the latter case. no
warning is sent to the operator.

Memory for the file header is allocated at this point. If the
user had requested that the disk areas to be assigned to the file
be allocated when the file is opened, the allocation is done at
this point• provided sufficient disk is available. If sufficient
disk is not available. the program is suspended and an
appropriate message is displayed on the SPO.

The file Header is no~ constructed in memory, based upon
information contained in the fPB. The ultimate dispensation of
the header is dependent upon the type of CLOSE communicate
performed on the f ite.

At this point in the OPEN processing, th~ logic becomes the same
for new and otd files. Before proceeding with a description of
the logic at this point, it will be advantageous to describe the
processing which occurs w'en the user opens an existing file.

When the user requests an Open of an existing fite, the first
occurrence is a determination of whether or not the file is
present on the system. Att three names in the FPS aust match an

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

?.S. 2212 5462 C£l

existing file if the name fields contain something other than
EBCOIC blanks.

If the PACK.IO Field is btants the fite is assumed to reside on
system dist. The directory on the system disk wilt be searched.
If the PACK.ID field is not blanks, it specifies that the file
exists on a removable user pack of that name. If there is no
such pack on the system at that time, the program is suspended,
with an appropriate operator message, until the pack is
introduced to the system or the operator overrides the PACK.ID in
the FPB. There are several means provided for the operator to
accomplish this. If the REPORT.FILE.MISSING bit is set in the
communfcate adverb, the program is not suspended- but control is
returned to it through the normat processor queues and the fact
that the pack is not present is reported to it. In either c~se~
the OPEN cannot proceed past this point.

After the decision above• the MCP next searches the directory on
system dis~ or on a user pack for a file identified by the names
1n FPB.HfID- and FPS.ID. If the fiie is not found• the action is
identical to that described above. If the file is found. further
decisions are necessary.

If the LOCK bit is set in the OPEN adverb, there may be nc other
users who are writing to the file. There may be other users of
the file• but none of them may be using the file for output. If
the LOCKOUT bit is set in the OPEN adverb, there may be no other
users of the file; the user who is presently opening the file
must be the sole user. If these conditions are not met1 an
operator message is displayed and• depending upon the setting of
the REPORT FILE LOCKED bit in the adverb, the user is either
suspending or notified of the condition.

Assuming that alt of the conditions specified are met
satisfactority, the file Header is brought into memory by the
MCP11 if it is not there already,,. and the user count field in the
header is incremented. If the llUTPUT bit in the adverb is set•
the output user count field is also incremented.

At this point in the OPEN processing• all of the paths converge.
If the file is not a djsk file• a device has been assigned to it.
If the file is a dis~ file. the Fite Header ts in wemoTy and its
associated disk areas. if any, are essentially "assigned" to the
file. The Fite Information Block <FIB> must now be constructed.

Construction of the FIB is a rather mechanical process. After
initializing certain fields in the I/O Assignment Table CIOAT>•
memo~y to contain the FIB is altocated. if this has not already

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
BlOOO MCP II

P.S. 2212 5462 CE>

occurred. As mentioned in a prior section, the amount of aemory
allocated for an FIB is dependent upon the type of device
assigned.

The FIB itself is constructed from information contained in the
FPB• from information in the Disk file Header~ and from the
parameters passed in the OPEN co•municate. After this occurs.
the I/O descriptors are constructed. Memory space which contains
the I/O descriptors and their associated buffers is attocated
with the FIB, such that the FIB contains not only the file
information but also the descriptors and buffer areas. The
memory necessary is then a contiguous block. This statement does
not apply to Data Management System buffers~ ~hich are atlocated
separately.

for serial~ input only files, each I/O descriptor is initiated as
it js constructed. The buffers are hence "pre•f itled" by the
operating system when the file is opened. This is true cf att
files except those assigned to a reader-sorter and those assigned
to a data recorder where the user has specified that stacker
selection is to be performed on tbe cards.

for output fites which are not assigned to disk• labels are
constructed and written according to the user•s specifications.
Tape labels are discussed in the portion of this document which
describes Magnetic Tapa Management. for input files, the device
assigned will be positioned such that the first READ issued by
the program yeilds the first physical record fro• the device.
This is often accomplished by the Open routine.

If the user has requested that translation be performed by the
software- memory to contain the Translation Table specjf ied b)
the user is allocated by the Open routine. The Transtatio~ Table
is also brought into memory by the Open routine and pointers to
it are constructed in the FIB. If the specified Translation
Table is not present on disk at the time of the Open. the prograa
is suspended and an appropriate operator message is disptayed.

If the LOG ~ystem Option. is set- entries are made in the log when
the fite is opened. The fPB for the file is also the tog entr1
and certain fields therin are updated and •odified. At the
conclusion of the Open processing, control is returned to tha
user if OPEN was invoked by a communicate. In all languages
except COBOL• OPEN may be invoked by a READ~ WRITE or SEEK
communicate. If this was the case• control is returned to the
appropriate coamunicate handler via the systems processor aueues.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

CT.VE.RE
CJ.OBJECf
CT.ADVERB

09
FILE.NUMBER
Bii
0 R'E£l
1 RELEASE
2 ?URGE
3 REMOVE
4 CRUNCH
5 MO REWIND

COMPANY CONFIDENTIAL
RlOOO HCP II

P.S. 2212 5462 (El

6 OVERRIDE NAME CONVENTION AND SECURITY
1 LOCK
8 If NOT CLOSED
9 ROLLO UT
10 AUDIT SWITCH
11 TERMINATE

The CLOSE communicate allows the user to specify the dispensation
of files that he has created. Should a program terminate without
performing a Close on anv file that he has opened# the HCP will
assume that the device assigned to the file is to be returned to
tbe system~s resources and that the data contained in the file
should not be retained.

A second purpose of the Close routine is to bring the I/O
activity on a device• which happens somewhat asynchronously with
a program's processing, to an orderly hat,t. It also returns any
memory assigned to the file to the system. Cleartv~ an I/G
descriptor and buffer area cannot be returned to available memo~y
until the I/O operation it dascrjhes is complete. In order to
accomplish this• it is often necessary for the Close routine to
give up control of the processor and regain it when certain l/D
operations go to completion.

fhe first test performed by the Close rGutine is whether or not
the file has ever been opened. A CLOSE communicate issued for
such a file is considered a program~ing error and the program
will be discontinued at this point. This is done primarily to
inform the object programmer of tbe fact that there is something
is wrong.

The second test pe,formed by the Close ~outine is whether or not
the file is ope,n now. It 'is consider,ed a programming erf'or if a
user requests a Close on a file that is already closed, as
opposed to never having been opened, if ~he IF NGf CLOSED bit is
not set in the CLOSE communicate adverb. The program witt be
automatically discontinued if this er,or is detected. If the If
NOT CLOSED bit is set in the adverb and ~he file is already
closed, control is returned to the user program through the

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

1-33

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CEJ

normal processor queue mechanis~. Alt other bits in the adverb
wilt have no effect and the file is not closed a second time.

Before proceeding with a description of the mechanics of the
CLOSE co~municate~ it will be beneficial to explain the function
of the various bits jn the adverb. The REEL bit is used on files
which are assigned to magnetic tape onty. It is ignored by the
code if the file is assigned to any other device. It causes the
HCP to close the reel of magnetic tape that is currently being
processed. The fite will be closed and the reel witl be locked
by the MCP. If the user program issues another OPEN cosmunicate
for the file, the next reel·of the file, in numerical seQuence,
wilt be taught by the Open routine.

It is not necessary for the user program to issue CLOSE REEL
communicates when the physical end of the reel is encountered.
This is done automatically by the MCP. Reel-to-reel tra~sitjon
is accomplished without the involvement of the user proq~am.

The RELEASE bit in the adverb means that the resources assigned
to the file are to be returned to the system. New disk files
which are closed with RELEASE witt have their assig"ed disk
areas~ if any, returned to the list of available disk. Permanent
disk fites which are closed with RELEASE will have their user
count fields decremented but will remain in the dis• directory.
Devices other than disk will be marked available for use b) other
jobs, provided their physical status permits.

The PURGE function is applicable to files assigned to disk or
tape onty. It is ignored if the file is assigned tc other
devices. If a CLOSE PURGE is performed on a file which i~
assigned to a tape unit, the tape reel wilt be rewoLnd and
purged, provided it is write-enabled. If it is not
write-enabled, CLOSE PURGE will be equivatent to CLOSE RELEASE.
for a parmanent disk file which is closed with PURGE• the file is
removed from the directory• provided the user who is doing the
CLOSE is tha sole user of the file, and the disk space assiqned
to the file will be returned to the available table. A new dis~
file, often tnown as a •temporary" file1 witl not yet be entered
in the dis• directoryr but the disk space assigned to it will be
~eturned to the available tabte atso. In the case of a te•porary
file# there can be only one user and it is not necessary to check
user counts before purging.

lhe LOCK bit in the adverb is intended to be used on files Mhich
are assigned to dis• and tape only. It is ignored if the file is
assigned to other devices. When a file assigned to tape is
closed with LOCK• the tape reel is rewound and the unit's status
is marked as "locked• in the IOAT. The unit will rot be

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
BlOOO MCP II

P.S. 2212 5462 CE>

available for use by other jobs until the operator intervenes~
either by making the unit not ready and then making it ready or
by entering a •Ready• message on the SPO. .The intended purpose
of th~s function is to prevent the MCP from assigning the unit to
other jobs before the operator has had a chance to resove any
tape files which may have been created on the unit.

The LOCK bit• when set on a CLOSE directed to a file which is
assigned to disk, causes the file to be entered in the dis~
directory if it is a temporary file1 subject to the restrictions
below. If the fite is a permanent file which is atready in the
directory, the LOCK function is equivalent to the RELEASE
function.

A file may not have its name entered in the disk directory if
there is already a file by that name in the directory. A user
who attempts to CLOSE LOCK a file• the naae of which is already
in the directory causes what is kAawn as a "Duplicate Library•
condition. The program witt be suspended at this point and an
operator message describing the conflict will be displared. fhe
operator must intervene at this pojnt and cause the existing file
to be removed• or instruct the MCP to change the CLOSE LOCK
communicate to a CLGSE PURGE or CLOSE RELEASE. Syntax is
provided to attow this.

fhe REMOVE bit in the adverb is fAtended to be used on disk files
only. Its function is to allow temporary dist files to be Closed
with LOCK without operator intervention. It operates in a manner
simitar to CLOSE LOCK except that if a Duplicate Library
condition ari.ses1 the existing file is removed from the directory
and the dis• space assigned to it is returAed to the availabte
table automaticalty. The function is performed by the HCP with
no operator intervention required. fhe new disk file is then
entered into the directory and control is returned to the ~ser.

The CRUNCH bit in the adverb was originally intended for use by
the compilers. This restriction is not enforced• however. and it
may be used bf any program whose source language includes the
construct necessary to set the bit in the Cocmunicate format.
Its purpose is to return any disk that was requested but not used
by the file to the available disk table. The unused disk must
lie beyond the End-of-Fite pointer for the file and the file may
have no more than one disk area assigned to it. When a Close
with CRUNCH operation ·is performed on a file~ atways in
conjunction with the LOCK bit' the number of segments per area in
the file header is modified by the Ctose routine such that it is
exactly equal to the amount of disk used. The header is then
written to disk- per the LOCK bit> and the unused space is
returned to the system.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE>

The NO REWIND bit when set is appticabte to magnetic tape files
only. It causes the magnetic tape to be positioned immediately
beyond the last label record written. The unit remains assigneJ
to the program and is not avaitabte for use by anyone else. The
user then has the option of opening another file in the forward
direction, thus creating or continuing a multi-file tape, or of
opening the file just written as input in the reverse direction.

The If NOT CLOSED bit allows a user to close a file that is
already closed. Ordinarily• this is a programming error and witl
result in the user•s being terminated by the MCP, as described in
a prior paragraph. This bit is me~ety a means of avoiding
termination.

file Information Blocks, I/O descriptors and buffer areas reQuire
substantial amounts of memory. The ROLLOUT bjt in a CLOSE
Communicate was provided to allow a user to temporarity close a
file, leaving the associated device assigned to the program, and
have the FIB stored on disk so that it does not waste memory
space. When the file is reopened, it is merely a matter of
reading the FIB in from disk, updating certain fields therin• and
proceeding. This is often quic•er than recreating the ent~re FIB
and it elimiates tbe possibility of another program gaining
control of the peripheral device in the interim.

The TERMINATE bit in the CLOSE adverb is set when the HCP's
termination routines call the Close routine. This occurs antr
when a program terminates~ normally or abnormally• and the
peripheral devices are ~titl assigned to the program.

The HCP insures that the external names associated with a file
assigned to disk are proper names when the f ite is closed. When
a compiler closes the code file it has generated• the external
names of the file are inserted by the Close rout,ne based upon
information supplied by the u~er in the Compite Control Card.
Also. the HCP will not allow a disk file to be closed with LOCK
with a blank mutti•fite IO. The internal name of the file wilt
be inserted in FPB.MFID and an operator message wilt be printed
when thf s is attempted.

fh,e FPS.LOCK boolean,. · if set• wU.t cause the t.OCK bit in the
CLOSE adverb to be turned on when the file is closed, provided
the TERMINAJE bit is also set. This causes the file to be
entered in the disk directorv and was added as an aid to
debugging. Occasionally, when a program has a fatal error- disk
files that the program was using at the time are helpful to the
object programmer in determining what caused the error. loc•jnq
the file in the directory en~bles the prog~ammer to loot at the
data he was processing whan the error occurred.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~J

COMPANY CO~FIDENTIAL
81000 HCP II

P.S. 2212 5462 CE)

The CRUNCH bit in the adverb witl be turned on automaticatly by
the MCP if the file being cl-0sed is a bactup file, a pseudo-dee~
or a code file. The LOCK bit will be turned on if the file is a
bactup file or a code fite and if it should be entered in the
directory. This latter case can only be determined from
information contained on the Compile card which is not readily
available to the compiler.

Any file which was opened with the output bit set in the OPEN
adverb• any file to wbfch the user may have been issuing WRITE
communicates, requires some special attention by the MCP during
the Close procedure. Since physical I/O operations happen
asynchronously with the user program. output I/O operations may
have been initiated or marked ready for initiation and be
incomplete or not even in process at the time the MCP receives
the CLOSE communicate. the actual Close operation must thErefo~e
wait for the completion of atl output I/O operations associated
with the fite that is being closed.

Input fites present some similar urobtems. Since att of the
user•s buffers are fitted when the file is opened, proviGed the
file is accessed serially, and since the HCP attempts to stay
ahead of the user program in initiating I/O ope,ations, as soon
as the user has read all of the records from a buffer, physical
I/O operations may be in process or marked ready for initiation
when the file is closed. In the case of an input file• it is not
necessary for tha HCP to wait for I/O completion. Any operations
which have not been physically initiated may be cancelled by
removing them from the channel chain. The HCP must wait for the
completion of an) I/O operations tbat are already physicatty in
process~ but this Is a relatively short time period.

In the case of Sequential 1/0 and Delayed Rando• disk files• the
data in the buffer •ay have been altered by a Write operatio"
from the user but the IIO descriptor may net yat have been marked
ready for initiation. The Close routine wilt insure that all
such buffers are actually written to disk prior to the completion
of the Close operation. Siailarty, for seriat. blocked output
files, the user may have done several write operations but not
yet fitted an entire buffer. The I/O descriptor in this case
also will not yet be marked ready for initiation but the buffer
will contain data which must be written to the physical media.
The Close routine witl initiate att such operations and insu~e
that they are completed satisfactorily before allowing the file
to be closed.

In order for the events described in the oreceding paragraph to
occur, the physical media must remain accessible. In other

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

1-11

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 ([J

words, if the unit goes not ready and there are I/O operations
which must be completed before a Close can occur, the program
wilt remain in a waiting condition until the unit goes back to d

ready condition and the necessary operations are complete.
Keyboard syntax is provided, however~ to allow the operator to
override this ~estriction. The syntax shoutd be used only ~hen
the user program Js being aborted. The output data in the
buffers witl be lost if the syntax is invoked and the data in the
file wttt be suspect. Further, if the device is a magnetic tape.
the HCP witl not be able to w~ite closing tape marks and labels
on the media and an I/O error wilt result when the tape is read.
Possibly, no I/O error will result, which may be worse.

The Close routine next begins operations which are dependent upon
the type of device assigned. In the case of a card reader which
is closed by a user, the device may contain cards which have not
yet been read by the prog~a~. The "CP will cause the cards to be
passed through the reader• stopping when the device goes not
ready or when the next controt card is encountered.

In the case of a reader-sorter. code segments would have been
marked non-overtarabte in memory when the file was opened. fhese
code segments will be marked overlayable by the Close routine,
provided the user who issued the CLOSE is the sole user of a
sorter. Reader-sorter files may only be closed when the flow ot
documents is stopped. Also, they may onty be Closed witb
Release. The MCP wjtl interpret atl Close operations on sorter
files to be Close with Release~ regardless of the setting of the
RELEASE bit in the adverb.

Sy far, the most complicated processing occurs when the file is
assigned to disk. If the file is a multipack file1 the Ba!e Pack
must be on-line at the time of the Close. The Close procedure
will not proceed past this point if it is not.

The HCP next attempts to do
previously. New dist files
directory~ provided there is no
atready in the directory.

the
will
file

LOCK function described
be entered in the disk

with an identicat naae

Existing files jn the disk directory cannot be removed under any
circumstances if they are in use. Simltarly1 files classified as
"System" files cannot be removed~ even though their user-count
field in the disk header is zero. The HCP code file being used
is an example of such a file. Existing files wilt be removed by
the Close routine if the REMOVE bit is set in the CLOSE adverb or
the RMOV system option is set~ if the Close routine encounters a
duplicate file in its p'ocessing. If neither of t~e abo~e
conditions are true, the program w~ll be suspended at this point

BURROUGHS CORPORATION
COHPUT£R SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONf ICENTIAL
81000 MCP II

P.S. 2212 5462 CEJ

and the operator must intervene to resolve the conflict.

lf the file is a permanent file and if the user has added records
to the file while it was open~ the end-of-file oointer in the
fite header wilt be adjusted by the Close 'outine.

If the PURGE bit is set in the adverb and the file is a permanent
file or if the file was temporary and is being Closed with
Release~ the disk space used by the file is returned to the
available table.

If the file being closed is assigned to tape#
writes tape aarks and labels on the tape.
routine sends a re~ind descriptor to the unit,
by the type of Ctose being performed.

the Close rovtine
Also, the Close

if n-0t prohibited

The information in the IDAT is updated by the Close routine.
Test and Wait for Ready 1/0 descriptors are re-initiated• if
appropriate. Alt of the user•s I/O descriptors are removed fro•
the I/O chain.

Information in the FPB is updated and sto~ed on disk in the
working copy of the fPB. Finattr• the memory assigned to the
file is returned to the system•s available memcry. Control is
returned to the user through the normal processor queue
mechanisms.

CT.VERB
cr.OBJECJ
CT.ADVERB

10
FILE.NUMBER
BIT
0
1
2
3-1

REPORT l RETURN 'O USER ON EDF
REPORT & RETURN JO USER ON PARITY
REPORT l RETURN TO USER ON INCOMPLETE I/O

8 POSITION TO END Of Fil£
9 cr.1 CONTAI~S PRINTER CHANNEL NUMBER
10 CT.l CONTAINS RECORD COUNT AS A FIXED NUMBER
11 CT.t CONTAINS RECORD NUMBER DESIRED

CT.1 DEFINED 8Y BITS IN CT.ADVERB
REINSfAJE.MSG.PTR VALUES

0 GOOD POSITION
1 ENO or FILE (OR END Of PAGE ON PRINTER>
2 I/O ERROR
3 INCOMPLETE I/O

BURROUGHS CORPORATION
COMPUTER SYSTEHS GROUP
SANTA BARBARA PLANT

CO~PANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE)

The POSITION communicate atlows the user to change the physicat
and logical position on a file. It is used with serial files
ontv~ of course. The fite may be assigned to disk, tape or to 3

printer. The communicate is ignored if the fite is assigred to
any other device.

Positioning a printer file will be discussed first. If the
POSITION communicate is directed to a printer fite. cr.1 wilt
contain either a channel number which wilt correspond to a punch
in a carriage control tape, or a number ~hich wilt specify the
number of lines tha printer should be spaced. If bit 10 in
CT.ADVERB is on, cr.1 will be assumed to contain the channel
number. If the bit is off, CT.1 will be assumed to contain the
number of lines.

The Position routine wilt always space the printer the number of
lines requested. Due to the design of the 01000 Printer
Controls, it spaces the printer two lines per descriptor and• if
the number of tines requested was an odd number, issues a space
operator for one line to complete the operation. If a channel
twetve punch in th9 carriage control tape is reported anytime
during the spacingP End-of-page is reported to the progra• wh~n
the operatjon is complete. It is therefore possible, though
highly inefficient• to cause several pages of paper to be passed
through the printer with one POSITION communicate. End-cf-page
is always reported to the user, if it was reported to the MCP.
regardless of whether of not he has jnctuded code to handle the
situation. Programs are not automatically discontinued if there
is no such code.

If CT.1 contains a channel number, ~nd if the channel number is
less than twelve, the routine constructs and sends an l/D
descriptor to cause the printer to space to the recuestea
channel. If the channel AUmber if cr.1 is twelve or greater. a
message is printed on the SPO and the communicate is ignored.

With some restrictions, disk files may be positioned forward or
backward a specific number of records or they may be positioned
to a specific record number within the file or they may be
positioned to the end of the file. The file may be opened for
input or for output but it may not be opened for both.

Random dist files and files with variable length records say not
be positioned at all. Attempting to do so witl result in the HCP
automatically discontinuing the program.

Input disk files may be positioned to the end of the file, out
~ay not be positioned beyond. Attempting to do so will result in

BURROUGHS CORPORATION
COMPUTER SYSTEHS GROUP
SANTA BARBARA PLANJ

COMPANY CONf IOENTIAl
81000 HCP II

P.S. 2212 5462 <EJ

the file be1ng positioned to the end of the file. Outout disk
files may be positioned beyond the end-of-fite pointer but may
not be positioned beyond the declared physical bounds of the
file. The ndeclared physical bounds" of a file are the number of
records per area declared times the number of areas in the file
de cl ar at i on.

Files may not be positioned to a negative record nuaber.
Attempting to do so wilt result in the file being positioned to
the ftrst record in the file automaticatty.

In alt cases mentioned above• the first bit in the adverb &ust be
set. Attempt~ng to position a disk file to or beyond the
end-of•file pointer or to the first record in the file or a prior
'ecord will res~lt in the MCP automatically discontinuing the
program if the Report and Return EOF bit is not set. This is
applicable regardless of whether the file is opened for input or
output purposes.

files assigned to tape may also be positioned forward and
backward• provided the file does not contain var~abte-tength
records. Attempting to position such a file witt result in the
program being discontinued by the HCP. Also~ tape files wilt be
positioned to the first record in a file or to the
end-of-the-file• provided the first bit in the adverb is set, in
the same manner as disk files.

In order to function property~ the HCP maintains a record count
for all tape files on a "per reetft basis. When the Position
routine receives the communicate, it first computes the record
number desired by the program. If the record count desired
exceeds the current record count~ the tape is positioned in the
forward direction to the desired record.

The record count for any reel of tape is set to zero when the
file is opened. This is applicable regardless of the type of
Ct a s e pr e v i o u st y p er tor med on th e f H e " i f th ·er e w a s. a pr i or
Ctose. Hence, when a tape reel is opened in the reverse
direction• Record One is actually the tast physical record on the
tape. The "forward" direction is therefore defined to be the
direction that the tape is currently being passed. When a file
is opened reverse, a "Backspace• operation witl cause it to move
toward the physical end of the reel.

Tape files may not be positioned to the end of the file if the
fite is opened output or if it is opened reverse or if it is not
an ANSII·tabeled tape. When a Position to end-of-fite occurs,
t~e record count field maintained by the MCP Kill be lost• since

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
BlOOO MCP 11

P.S. 221Z 5462 CEl

the I/O operator addressed to the unit will be a "Space to Tape
Hart". The record count field must therefore be recovered from
the ending label and ANSII labels are the only tabets which
guarantee that a record count field is present.

The 81000 tape subsystem is capable of spacing tape one physical
record per I/O operation or to a tape mark. It is not capable of
spacing for a specified number of physical blocks with ore I/O
descriptor. Hence. spacing to a specific record occurs one btoct
at a time. Irrecoverable 110 errors encountered on any of the
blocks wjtt result in the p~ogram•s being automatically
discontinued by the MCP if the second bit in the adverb is not
set. If the second bit is set, the I/O erro~ will be reported to
the program and the position communicate will ba terminated. At
this point, the record count field maintained by the MCP will not
be reliable.

If a tape mark is encountered while the MCP is spacing the tape
to a specific recGrd- End-of-Fite will be reported to the progra~
if the first bit in the adverb is set. The prog~am will be
automatically discontinued if it is not.

CT.VERB
CT.OBJECT
c·r. ADVERB

cr.1
CT.2

11
FILE.NUMBER
Bil
0-10
11 O=READ

!=WRITE
RECEIVING FIELD BIT LENGTH
RECEIVING FIELO BASE RELATIVE BIT ADDRESS

The ACCESS.FPS Communicate allows the user access to any of his
file Parageter Blocks. The working copy only of the FPB way be
accessed by this communicate. The FPB is read directty from disk
into the user's run structure. The address and size passed ir
the communicate must lie wholtr w•thin the run structure. The
program wilt be automatically discontinued bV the HCP if this
rule is violated.

Information is not formatted by the MCP. If the FPB definition
in the HCP is changed for any release of the software, it is the
user•s responsibility to make corresponding changes in his
program.

The communicate operation is ignored if CT.OBJECT specifies a
file which is non-existent or if the user attempts to read less

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

than 56 bits of an FPB.

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

Changes made to the FPB white the file is open will rot be
effective until the file ts opened again. Due to the fact that
the Close procedures use fields in the FPB- changing a file
Parameter Stock white a file is open may result in unpredictable
errors and even system halts.

CT.VER8
CT.OBJECT
CT.ADVERB

CT.l
cr.2

12
FILE.NUMBER
Bil
0-10
11 FORMAT

O=CHARACTER
!=BINARY

RECEIVING FIELD BIT LENGTH
RECEIVING FIELD BASE RELATIVE BIT ADDRESS

The ACCESS.FIB communicate does not really access the entire FIS.
It returns only the End-of-File pointer and the type of hardware
device assigned to the file. It returns these items in either
binary or decimal format. The End-of-Fite oointer is twenty-four
bits or eight bytes. The hardware type is six bits or two bytes
respectively.

Programs will be automatically discontinued if the receivirg file
is not wholly contained within the program•s run structure. An
ACCESS.FIB communicate for a file that is not open ~ill be
tgnored.

~!IA illEBLAI
CT.VERB
CT.OBJECT

13
BASE RELATIVE Bil ADDRESS Of 76 BIT FIELD IN fDRHAJ OF :
4 BITS
24 Blf S BEGINNING ADDRESS
24 BITS ENDING ADDRESS
24 BITS RELATIVE DISK ADDRESS

fhis communicate is issued by programs which are written in SOL
and which include paged arravs only. The 5Dl Compiler generates
code ~hich manages the paged array space and this communicate is
the means whereby it transfers information in the paged arrays to
and from disk.

7-4)

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 54fi2 CEJ

The area describEd by the fields listed above must tie wholly
within the program's run structure. Violation of this r~le will
result in the automatic discontinuation of the orogram.

The relative disk address passed must lie within the disk overlay
area attocated to the program. This has been discussed
previousty under program BOJ facilities.

Oue to hardware (imitations, the overlay area can be no smaller
than 56 bits.

This communicate is not used by COBUL, RPG or any other program
written in a source language other than SOL.

This com~untcata uses the program's overlay descriptor in the Run
Structure Nucleus. The program is placed in the WAIJ.Q until the
I/O operation initiated by the procedure goes to coap(etion. At
that time~ control is returned to the program through the normat
processor queues.

CT.VERB
CT.OBJECT

CT.ADVERB

14
BASE RELATIVE ADDRESS OF 30 CHARACTER FILE IDENTIFIER :
PACK.ID CAT MFID CAT fIO
BIT
o-s
6 OVERRIDE USERCOOE HAHING CONVENTION AND SECURITY
1 REPORT SECURITY VIOLATION
8- 11
10-11 O=WRITE

l=REAO
2=READ & fORHAf IN BINARY
3:R£AD & FO~HAT IN CHARACTERS

CT.I RECEIVING FIELD arr LENGTH
CT.? RECEIVING fIELD BASE RELATIVE Blf ADDRESS
REINSTAJE.MSG.PTR VALUES

0 COMMUNICATE COMPLETE
1 FILE NOf PRESENT OR SECURITY VIOLATION ~NO

CT.ADVERB BIT 1=0
2 SECURITY VIOLATION AND CT.ADVERB BIJ 7=1

This communicate allows the user access to disk file headers
contained in the system•s disk directory. The receiving or
sending file described by Cf.1 and CJ.2 must lie within the
program•s run structure. If it does not, the progra• kill be
automatically discontinued by the HCP. The fietd in the run
structure which specifies the file identifier must be exactly

BURROUGHS CORPORATIOH
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CO~f IOENTIAt
91000 HCP II

P.S. 2212 5462 CEl

thirty characters in tength and must conform to the fixed format
described in the Communicate layout above.

This communicate has four variations as defined by CT.ADVERB. If
CT.ADVERB contains a zero or a one• the sending or receivjnq
field is assumed to correspond exactly to the current definition
of a disk file header. The "current" definition meafls the
definition used in the actual MCP that is handling the
communicate operator• and not the definition used in any
subsequent HCP.

If CT.ADVERB is set to zero~ certain fields are ~cved from tho
program's run structure to the actuat disk file header and
written to the disk directory. Onty selected fields may be
written; those not setected are ignored.

If CT.ADVERB is a one, infor•ation is moved directly from the
file header to the rece1vang field specif~ed. The •ove is
left-justified with zero fitl. The entire file header ~ay be
read in this manner.

If CT.ADVERB is a two or a three, the fietds listed in the table
below only are moved to the program's run structure. The
formatted move also occurs left-justified with no filling. If
the receiving field is not sufficienttr ton~~ the •ove is merety
truncated from the right.

FIELD NAME

OPEN.TYPE
NO.USERS (Number of Users>
RECORD.SIZE
RECORDS.PER.BLOCK
£OF.POINTER
SEGMENTS.PER.AREA
USERS.OPEN.OUTPUT
FILE.TYPE
PERMANENT
BLOCKS.PER.AREA
AREAS.RQST <Requested)
AREA.COUNTER
SAVE.FACTOR
CREATION.DATE
ACCESS.DATE Clast)
REC.SIZE
HPF (Multi-Pack file)
PROJECTION
PROTECTION.IO

LENGTH
CBI JS)

24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

1
2
z

LENGTH
CCHARAClERSl

1
2
4
4
8
8
1
2
l
6
3
3
3
5
s
5
t
1
1

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONFICENTIAl
81000 MCP II

P.S. 221? 5462 (£)

If the file is not present in the dis• directory, the orogram is
notified by inserting a one in the RS.REINSTATE.MSG.PTR. In
either case, contrat js returned to the progras through the
normal processor queue mechanism.

(lJf!llH.Q.IUEl ilH:U

CT.VERB
CT.OBJECT
CT.ADVERB

CT.1
CT .2
CT.3
CT.4
CT.5
CT.6

15
INVOKE NUMBER & PATH NUMBER Of THE PATH-NAME
BIT
0 RETURN LISI HEADS CREORG ONLY)
1 RETURN LOGICAL ADDRESS CREORG ONLY>
2 OM.Sf ATUS FORMAT

O=BINARY
1=4•tHT DECUO.l

3 ON EXCEPTION
it
5 MODIFY
6-10 SELECTION EXPRESSION

0 NEXT
1 PRIOR
2 FIRST
3 lASf
4 NEXT AT
5 CURRENT
6 AT

11 DATA SET SELECTION EXPRESSION
OM.STATUS REGISTER BIT LENGTH
DH.STATUS REGISTER BASE RELATIVE BIT ADDRESS
DATASET RECORD WORK AREA BIT LENGTH
DATASET RECORD WORK AREA BASE RELATIVE BIT ADDRESS
SEARCH KEY CCAT Of COMPONENT NAMES> BASE R£lAJIVE 8IJ AOR.
INVOKE NUMBER & PATH NUMBER OF DATASET-NAME

Refer to P.S. 2212 5410.

~HUlE .UUU

CT.VERB
CT.OBJECT

CT.ADVERB

16
INVOKE NUMBER & PArH NUMBER

<SUBSET IF INSERT>
BIT
0
1
2

3
4
5
6

INSERT

OM.STATUS FORMAT
O=BINARY' ·
l=4•BIT DECIMAL
ON EXCEPTION
BEGIN TRANSACTION CNOT INSERT)
INCLUDES.LIST.HEADS <REORG ONLY>
E~O TRA~SACTION CflOT INSERT>

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 <E>

7 NO AUDIT <BEGIN OR END TRANSACTION ONLY>
8 SYNC CENO TRANSACTION ONLY>
9
10 STORE INDEXES ONLY <REORG ONLY)
11 PSEUDO CREATE CREORG ONLY)

CT.t OM.STATUS REGISTER SIT LENGTH
cr.2 OH.STATUS REGISTER BASE RELATIVE BIT ADDRESS
Cf .3 DATASET RECORD WORK AREA BIT LENGTH <NOT INSERTl

INVOKE NUMBER & PATH NUMBER OF DATASET CINSERT>
CT.4 DATASET RECORO WORK AREA BASE RELATIYE BIT ADDRESS

CNOT INSERT>

Refer to P.S. 2212 5•10.

UtLEIE iQ~l
CT.VERB
CT.OBJECT

CT.ADVERB

cr.t
CT.2
CT.3

CT.4

11
INVOXE NUMBER & PATH
<SUBSET IF REMOVE>

NUMBER

BIT
0
1
2

3
4-11

REMOVE

DH.STATUS FORMAT
O:BINARY
1=4•BIT DECIMAL
ON EXCEPTION

OM.STATUS REGISTER BIT LENGTH
OM.SfATUS REGISTER BASE RELATIVE BIT ADDRESS
DATASET RECORD WORK AREA BIT LENGTH CNOT REMOVE>
INVOKE NUMBER & PATH NUMBER OF DATASET <REMOVE>
DATASET RECORD WORK AREA BASE RELATIVE BIT ADDRESS

CNOT INSERT)

Refer to P.S. 2212 5410.

CT.VERB
CT.OBJECT
CT.ADVERB

cr.1
CT.2

18
INVOKE NUMBER &
BIT

PATH NUHSER

0
1
2

l
4-11

RECREATE
OH.STATUS FORMAT
0=8INARY
1=4-BIT DECIMAL
ON EXCEPTION

OM.STATUS REGISTER SIT LENGTH
OM.STATUS REGISTER SASE RELATIVE BIT ADDRESS

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

?-4!

COMPANY CONFIDENTIAL
81000 ~CP II

?.S. 2212 5462 CE>

CT.3
CT.4

DATASET RECORD WORK AREA BIT LENGTH
DATASET RECORD WORK AREA BASE RELATIVE BIT ADDRESS

Refer to P.S. 2212 5410.

CT.VERB 19
CT.OBJECT FILE.NUMBER
CT.~OVERB BIT

0-7 NOT USED
8•11 0 = REAO FORWARD

1 = READ REYERSE
4 = WRITE

REINSTATE.MSG.PTR VALUES
0 6000 SWITCH
1 FILE NOT OPEN
2 WRONG DIRECTION OR NOT A TAPE FILE
3 ENO Of FILE

This operator was added to facilitate the implementation of the
Tape Sort feature. It has found use in other apptications since
that time. Essentially, it meratv changes the direction of a
tape file without time-consuming Ctose and Open invocation.

There is no way that this communicate can cause discontinuation
of a program. Att errors are merely reported to the p~ogra•.
The file may be changed from input to output, provided it is not
being read in the reverse direction. Direction may be charged or
the same communicate which changes the I/D mode. In other words.
a file may be changed from input and reverse to outoLt and
forward with one communicate.

Buffers are fitted by the MCP as a function of this commu~icate.
No fields in the FIB are changed~ however. ConseQuentty, use of
this communicate is not practical on blocked files.

This communicate will not function if one of the file's buffers
has already encountered the ph~sicat end of the fite.

CT.VERB 20

This Communicate calls the Terminate Procedure directly. fha
Terminate Procedure is also called when a program f s being

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CDNFIOENTIAL
81000 HCP II

P.S. 2212 5462 CE>

discontfnued. There is very tittle difference between a normal
terminate procedure, where the routine is catted via a
Communicate and an abnormal one, where the procedure is catted by
the HCP to discontinue a program.

Programs may not be terminated if they are using a reader-sorter
and the device is operating. In this case. the terminate
rountine will wait unt~l the flow is stopped an the sorter and
then proceed with the termination. This is due to the fact that
High-Priority Interrupts from the sorter can only be handled in
code written exclusively far that purpose. At any rate• alt of
this witt be transparent to the user and the program wilt be
terminated, though not necessarily at the time the Terminate
Procedure is first invoked.

A similar situation exists if the program has Data Management
operations in process. 1/0 Comptete on such an operation can
only be handled by Data Management code• and the Terminate
Procedure wilt be forced to wait for completion of an) such
operations.

The Terminate Procedure mar also have to wait fDr Rott-in and
Roll-Out operations to be completed. The prograa must be present
in memory before it can be terminated.

As mentioned previously, all of the conditions listed to this
point are transparent to the user. The Terminate Procedure bas
its own mechanisms for waiting for such events to be complete.
No action is required on the part of the user.

The queue of keyboard messages antered via the Accept response
witl be purged of any messages intended for this program at this
point. Refer to the Software Operational Guide explanation of
the wAX" message for details on this queue.

At this point' the Terminate Procedure wilt wait for any code or
data overlays which aar be in process to go to completion. The
Terminate Procedure. if it must wait for such an event• yields
control to the outer loop of the MCP. The Procedure Milt be
continued when the (/0 goes to completion.

Any l/O operation which ~as initiated by the proqram and which
did not use the normal File I/O mechanism wilt be halted and
delinked from the channel chain at this point. Examptes of such
operations are dis• I/O initiated by the Disk Initiali2ation
utilities and alt Cata Communications I/3 operations. fe•porary
disk storage obtained by the MCP to execute the prograa is

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

returned to the disk available tabte.

7- 4:J

COMPANY CO~ftOENTIAL
31000 HCP II

P.S. 2212 5462 CEJ

The Terminate Procedure next proceeds to close all the files
which are assoctated with the program and which are not yet
closed. A file which is closed by a user with no bits set in the
Close Adverb or with the NO REWINO bit set ~n the adverb is not
considered closed by the HCP. The unit, in these cases• remains
assigned to the program~ even though there can be no 1/0 in
process for the file. The unf t must be returned to the list of
available resources when the program terminates. Files are
always Closed with Release by the Ter~inate Procedure• except
when the file is assigned to dis~ and FPS.LOCK is set.

The Terminate Procedure next performs those functions associated
with memory assigned to the program. The code segment djct~onary
user count is decremented. If it becomes zero, memory occurpies
by the code segments and the segment dictionary is returned to
the available memory tist. Si•ilarly, the user count for the
Interpreter used by the program is decremented. If it becomes
zero. memory occupied by the interpreter and its segments is also
returned. If the inte~preter was partially or totally resident
in H-Memorv• it is ramoved. This may result in a change in tha
mode of M-Memory management. If so, it is performed at this
point.

Similar functions are performed on any Intrinsic Code the ~rogram
may have been using. The user count for the Intrinsic file and
for the Code file itself are decremented and stored in the disk
file header in the disk directory.

If the Log option is set~ the Log is updated at this point. In
addition to the type of termiQation~ a count of code overlays, a
count of data overlays- the current time and date and the amount
of processor time used br the progra• are stored in the tog.

The program•s overlay descriptor is removed from the disk chain
a SPO message is printed if the EOJ option is setP and if this
pro9ram was executed by anGther using the PROGRAM.CALL
communicate• the catting program is marked ready to run. Memory
occupied by the prograa~s run structure is returned to the
avaitabte pool. The number of lobs running is decremented. A
bit is set which will cause the next execution of the OUTER.LOOP
to check the active job schedule.

If any programs are ~n the Waiting schedule and are waiting for
the successful termination of this program~ they are moved to the
Active schedute, provided this is a normal termination. If this
program was a •compile and Go" or a •compile and Save", the code

7-50

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
. 81000 HCP II

P.S. 2212 5462 CE>

file generated is placed in the active schedule.

f B£t 1UHl
CT.VERB
CT.OBJECT
CT.ADVERB

cr.1
cr.z

21
INVOKE NUMBER & PATH NUMBER
BIT
o-t
2

3
4-11

OM.STATUS FORMAT
O=BINARY
1=4-BIT DECIMAL
ON EXCEPTION

OM.STATUS REGISTER arr LENGTH
OM.STATUS ~EGISTER BASE RELATIVE BIT ADDRESS

Refer to P.s. 2212 5470.

CT.VERB
CT.OBJECT
CT.ADVERB

22
BASE RELATIVE 811 ADDRESS or WHERE TO PUT THE RESULT
BIT
0
1-2

5
6-7

8-9

10
11

1=0AfE REQUESTED
FORMAT
0 YY/DDD
1 HHIOD/YY
2 YY/HH/DO
3 00/HHIYY

(JULIAN)

REPRESENTATION
0 BINARY
1 4-BIT DECIMAL
2 8•8If DECIMAL
l=TIHE REQUESTED
FORMAT
0 COUNTER
1 HH:MM:ss.s (24-HOUR CLOCK)
2 HH:MM:ss.s TT (12-HOUR CLOCK,
REPRESENTATION
0 BINARY
1 4-BIT DECIMAL
2 6-BIT DECIMAL
l=TOO~YS.NAME REQUESTED

TT=AM/FH>

NOTE : TODAYS.NAME RETURNS 9 CHARACTERS LEFT JUSTIFIED

FORMAT BINARY 4•8IT OECIMAL 8-BIT DECIMAL
••
YY/CDO CJULIANl 7+9=16 6+12=20 16+24=40
MM/00/YY 4+5+1=16 8•8•8=24 16+16•16=48

7-51

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANJ

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 <E>

YY/HM/OD
DD/MH/YY
COUNTER
HH:MH:ss.s
HH:HM:ss.s Tl
TODAYS.NAME

7+4+5=16
5+4•7=16
20
5•6•6+4=21
4•6•6•4•l&=3i

l~lllJLlZ~B lLQ

23

8•8•8=24
8•8•=24
24
8+8•6•4=28
8+8+8+4+16=44

CT.VERB
CT.OBJECT BASE RELATIVE ADDRESS or

CT.ADVERB VAlU£

6 BYTE UNIT MNEMONIC
OR
I/O DESCRIPTOR

0 ASSIGN UN!f TO THIS PROGRAM
l RELEASE UNIT
2 INVALID

16•16+16=46
1&•16*16=48
48
16•16+16•8=5&
1o+1G+l6+8•16=72
72 (9 CHAR~ LEFT JUST.J

3 LINK IN THE 110 DESCRIPTOR ANO INITIATE
4 INVALID

REINSTATE.MSG.PTR VALUES
IF CT.AOYERB=O TH£N
PORT, CHANNEL ANO U~IT OF DEVICE REQUESTED

PORf BIT (J)

C~ANN£l BIT C4>
FILLER Bil (1)
UNIT BIT (4)

ALL OTHER CASES
0 GOOD COMMUNICATE
1 DISPATCH JD INVALID PORT OR CHANNEL

This communicate is intended for; in-plant use only. Anyone
outside of Santa Barbara Plant who attempts to use this
communicate does so at his own risk. The communicate foraat and
function may be changed fro~ time to time. No notice of such
change wilt be supplied to any user prior to the change. Such
information will be available on reQuest.

Released MCP•s will not allow a Write descriptor to be initiated
on system disk. Attempting to do so will result in the proqram•s
being OS-ed.

The HCP does not assure that the A and B addresses in the I/O
Descriptor are bounded by the program•s Base/li•it registers. It
is the prog~ammer's responsibility to do this. Failure to do so
wilt result in unidentifiable system halts.

To use this communicate, the programmer should first issue it
with CT.ADVERB set to zero and ct.OBJECT pointing to a

7-5.2

BURROUGHS CORPORATION
COMPUTER SYSJEHS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
31000 MCP II

P.S. 2212 5462 CE>

six-character unit mnemonic. If the requested unit is not
available for any reason- the calling program will be DS·ed. If
the unit is availabte, it will be assigned to the catting
program. It is possible to read any unit without reQuestirg that
the unit ba assigned to you.

After the unit is assigned to the program, the communicate may be
issued with CT.ADVERB set to two or three. The HCP copies the
I/O Descriptor outside the base•timit before it links irto the
chain. When the 1/0 co~pletes• the IO.ACTUAL.ENO and IO.RESUlf
are moved back into the base~timit area. When the l/O operation
is completed~ the I/O descriptor is removed from the associated
channel chain. In order to again execute the I/O~ the program
must issue another communicate with CT.ADVERB set to two or
three.

The program should j~sue the communicate with CT.ADVERB set to
one before it goes to end-of-job.

It should be emphasized that this communicate was added to the
HCP for purposes of on-line pack initiatization only and is
intended for use only by that programr in the form supplied by
Santa Barbara Plant. Requests for maintenance or support fro•
any other source wHt be ignored.

l!Al! 1~fi:UQZEl

CT.VERB 24
LENGTH Of TIME IN lOfHS OF A SECOND Cf .OBJECT

FUNCTION PROGRAM IS PUT TO SLEEP FDR SPECIFIED LENGTH Of Tl~E

Zie
er. VERB 25
CT.OBJECT
CT.AOYE'RB
CT.l MESSAGE AREA BIT LENGTH
cr.2 MESSAGE AREA BASE RELATIVE BIT ADDRESS
REINSTATE.MSG.PTR VALUES

0 NO ERRORS IN ZIP TEXT
1 ZIPPED INVALID CONTROL CARO

This communicate provides a means for progra•s to pass
cards and keyboard messages to the MCP. There
restrictions on the messages which may be passed. No
are returned to the prog1"am by this procedure;
information returned is an indication of whether or
syntax of the control instruction was valid.

controt
are no

aessages
the only
not tha

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLAMf

7-55

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

Any program placed in the schedule as a result of a control
'essage received from a ZIP Communicate wilt execute
asynchronously with and indape"dently of the orogram which
executed the ZIP• unless program~atic 1eans for synchronizing the
two programs are provided in the programs.

If the control instructions passed via the ZIP coamunicate are
invalid, a message is printed on the SPO to inform the system
operator of the occurrence. This is necessary, since invalid
control instructions can result in incorrect operational
behavior.

CT.VERB
CT.OBJECT
CT.ADVERB

26

BIT
0
1-11

RETURN If ND MESSAGE

cr.1 MESSAGE AREA BIT LENGTH
cr.z MESSAGE AREA SASE RELATIVE BIT AOOAESS
REINSTATE.MSG.PTR VALUES

0 MESSAGE Of LENGTH ZERO
~Ffffff; NO MESSAGE PRESENT
ANY OTHER VALUE LENGTH Of MESSAGE IN BITS

This communicate was provided as a means of implementing the
COBOL ACCEPT verb. Its ~se is not restricted to programs ~ritten
in a particular language; it may be used by any progra•.

The receiving field must tie within the bounds of the program•s
run structure. The program wilt be forced to wait for an
operator response if bit one in the adverb is a zero and if there
is no message in the Accept Queue for the program. Control is
returned to the program through the nof •al processor queues when
a response from the operator is received.

Messages are moved to the receiving field left-justifjed with
blank fill.

DJ~fLAl

CT.VERB 27
CT.OBJECT
CT.ADVERB BIT

0-10

7-54

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 (£)

CT.l
CT.2

11 O=CRUNCH BLANKS OUT Of MESSAGE
l=PRINT MESSAGE AS IS

MESSAGE AREA air LENGTH
MESSAGE AREA BASE RELATIVE BIT AOORESS

This communicate was provided as a means of implementing the
COBOL DISPLAJ verb. like ACCEPT• it may be used by any program.
It serves •erety to print the message described by cr.t and cr.z
on tne SPO.

If bit eleven in the adverb is set, the MCP wilt ref or-rnat the
entire message such that non-blank fields in the message are
separated by no more than one olantr. This is serely a
convenience for the user programmer which may be used when the
spacing of the words in the message up.on the SPO is not
important.

CT.VERB 26

This communicate is not impte~ented.
and control is returned to the user.

If received, it is ignored

~.C Bl HAl:HlL.EB

CT.VERB
er .OBJEC'f
CT. AiHIERB

CT.1
CT .z
er .• 3
CT.4
cr.G
c·r. r

29
BASE RELATIVE ADDRESS Of SORT INFORMATION JAELE
BIT "12>
1 • SORT.RESTART
2 - SORT.OUPCHECK
l - -SORT.Wt.PIO
4 - SORT.W2.PID
5•12 FILLER
BASE RELATIVE BIT ADDRESS Of SURI KEY TABLE
INPUT FILE.NUMBER OR ADDR Of MERGE.INPUT.TABLE If MERGE
OUTPUT FILE.NUMBER
JRANSLATE fILE.NU"BER OR NOT 0
DATA.ADDRESS CDELETE.K£Y.TABLE>
If CSORT.Wl.PID := Wt.PIO.FLAG> THEN

DATA.ADDRESS CWl.PIO> ELSE 0
If <SORT.W2.PIO := WZ.PID.flAG> THEN

DATA.ADDRESS CY2.PIOJ ELSE 0

This communicate provides a means for the user program to call
the Sort Intrinsic. for details on the implementation~ refer to
the proper Sort or Merge Product Specification.

7-55

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 <E>

CT.VERB
CT.OBJ£CT

30
TRACE fl.AG S

This communicate is used by alt interpretars which include frace
capabilities. Its use is not restricted to SOL only. The
communicate is merely a neans of turning the Trace on and off.
The print line is passed via a type 61 interrupt fro• the
interpreter. The code invoked by this interrupt is tittle more
than a catl on the SOL Read/Write Procedure in the MCP.

CT.VERB
CT.OBJECf
CT.ADVERB

CT.1
cr.2
CT.3

31
fIL£.NUKBER
BIT
0-2

3-B

OP.CODE
0 ·- ,R·E AO
1 = WR 1·r ,£
2 = SPACE
3 = REWI NO
4 = TEST

OP.COOE.YARIANT
3 = REVERSE (READ• SPACEl• ERASE (WRITE>•

JEST.WAIT.READY.NOT.REWIND <TEST)
4 = ONE.RECORD (SPACE), fAPE.MARK <WRITE>•

5
6

1-a
'9-11

9
10
11

JEST.WAIT.NOT.READY CTEST>
=ODO.PARITY CREAO• SPACE- WRITE>
= NOISE <READ~ SPACEl
= NO'f USED

SCHEDULING.VARIANTS
= FETCH.RESULf
= DONT.WAIT
= REPORT ANO RETURN ON IO ERROR

USER TAPE BUFFER BIT LENGTH
USER TAPE BUFFER 3ASE RELATIVE ADDRESS
USER EiROR MASK <BIT SET IMPLIES USER WILL HANDLE THE

CORRESPONDING ERROR)
BIT
0 <MAY NOT USE>
1 CHAY NOT USE>
2 NOT READY
3 PARITY CNOT ON fESf)
4 ACCESS CNDJ ON TEST)
5 TRANSMISSION CON TEXT ONLY>
6 ENO.OF.TAPE
1 BEGINNING.Of .TAPE
8 WRITE.LOCK.OUT
9 END.OF.FILE (NOT ON JEST>· UNIT.PRESENT co~

TEST)

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

10
11
12-16
11
18
19
zo
21
22
23

REWINDING
TIME.OUT CNOT ON TEST>
CHAY NOT USE>
SHORT.RECORD
LONG.RECORD
DROPOUT
INITIATE.LATE
CHAY NOT USE>
TRANSMISSION.ERROR.MEC
TRANSMISSION.ERROR.HTC

7-56

COMPANY CONFIDENTI4L
31000 MCP II

P.S. 2212 5462 CE>

CT.4 BASE RELATIVE ADDRESS OF USER•S 46 BIT RESULT
BIT 0•23 Of RESULT CONTAIN THE RESULT DESCRIPTOR
BiT 2~-47 Of RESULT CONTAIN THE ACTUAL LENGTH

REINSTATE.MSG.PTR VALUES
0 = RESULT RETURNED
1 = IO.ERROR
2 = RESULT NOT AVAILABLE

This communicate was added so that the E~ulators of
second-generation hardwa'e produced by Santa Barbara Plant Might
be operated under control of the MCP. It was necessary to add a
new communicate to do this• since prog~ams written for these
machines routinely manipulate magnetic tape in manners which
violate the rules -Of the HCP•s logical I/O sechanisms. The
normal file mechanisms in the MCP, which wer~ promulgated upon
the specifications of the COBOL language~ are certainty
inadequate to atlow all of the many tape operations which were
co~mon to second generation machines.

Essentiatty, the procedure builds an I/O descriptor according to
the specifications passed by the communicate format and injtiates
it. The Emulator progra• is not allowed to execute until the I/O
operation goes to completion. The procedure is re-entered at
completion of the operation and the program is then alloked to
continue.

The procedure first tests to see if the file is Open. If it is
not1 the Open procedure is called directly from the com~unicate
and control is returned to it when the open completes. At this
point• the procedure continLes provided the open was successfut.
If it was not• the emulator program would have been placed in one
of the processor queues and marked waiting. In the latter case•
the communicate procedure merelr returns controt to the outer
loop of the HCP.

The procedure next perfor•s minor editing on the files passed ir
the communicate format. If the operator request involves a data
transfer~ the buffer area described must lie wholly within the
bounds of the user's run structure. Due to hardwa~e

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

1-5l

COMP~NY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 (£)

restrictions, certain variants and combinations thereof are
invalid for certain operation codes. The variants here are those
passed in bits three through seven of the coamunicate adverb.
Validity of the variants is checked by the procedure. If the
user has violated either the bounds check or the variant check,
the program is auto~atically discontinued by the HCP.

The procedure next constructs an I/O Descriptor which corresponds
to that requested by the user. The I/O Descriptor is outside tha
user•s run st~ucture. A full tape file FIB is allocated~ atong
with space for one I/O descriptor~ by the Open Procedure. T~is
is done even though many of the fields in it are not used by the
Emulator Tape Handler routines directly. Most of the fields are
rrequir ed by the Close Procedure.

The requested I/O operation is then initiated and the program is
marked waiting for its completion. Control is returned to the
outer loop of the HCP at this point and the MCP is free to
service other users.

When the I/O operation completes, the procedure is again invoked.
It first moves the result descriptor recaived with the l/O
concatenated with a twenty-four bit field which will specify the
actual length of the operation just completed. The tength of the
operation is specified in bits. Also, prior to doing the 1ove of
the result descriptor, the procedure verifies that the receiving
field is within the run structure of the program. If it is not#
the program is automatically discontinued.

If the exception bit is set in the result descriptor, the
procedure determines if the exception condition is one that the
user has inctuded code to handle himself. If it is, control is
returned to the user through the normal processor aueue
mechanism. If the user does not have code to correct the error
himself~ the procedure calls the MCP 4 s l/O Error procedure
directly. I/O Error wilt then retry a number of tires and
eventually return control to the Emulator Tape Handler. If the
error was irrecoverable~ the program is discontinued. OtherwiseP
control is returned to the user.

CT.VERB 32

This com$unicate was added so that job streaming aay be
terminated at the discretion of the user. It functions exactly
as the STOP communicate does except that instead of a standard
End-of-Job message- it causes •COBOL ABNORMAL END~ to be printed

7-58

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANI

COMPANY CONfIOENfIAL
81000 HCP II

P.S. 2212 5462 (El

on the SPD. Also, any programs that are in the Waiting Schedule
waiting for this job to finish will not be moved to the active
schedule by the abnormat termination.

CJ.VERB
CT.OBJECT
CT.ADVERB
cr.1
c r .2

33
FILE.NUMBER
CLOSE TYPE
END-OF-FILE POINTER
RECORD SIZE

This communicate serves to terminate .. in a normal manner,. the
Sort and Merge Intrinsics and to -return controt to the catting
program. for detaits on its operation, refer to the appropriate
Sort or Marge product specifjcation.

Cf .VERB
CT .oa,JECf

35
BIT 0 <HIGH ORDER BIT>
O=lHAW
l=f R££ZE

Depending upon the functions being performed by a user progra•~
it may not be permissabte for the HCP to change the memory
location of the program's run structure or to rott it out to
disk. The most obvious example of this is the Dis~
Initialization Utitities. which have actual I/O Descriptors
within thei~ run structure. There are several other such cases.

The field in the Run Structure Nucleus~ RS.TEMPORARY.FREEZE~
gjves notice to the MCP•s Rott Out procedures that this run
structure may not be moved. This communicate provides a
programmatic means of bumping and decrementing that field.

CT.VERB
48 SITS

36
SDL DESCRIPTOR (WHERE 10 PUT INFO) IN FORMAT :
16 SITS=LENGfH
24 BITS=ADORESS
RETURNS COMPILE CARO INFO IN FOLLOWING fORHAT :
#CHARS INFO
•• • • •
30
02
10

•••••••••••••••••••••••••••••••••••••••
OBJECT NAME
EXECUTE TYPE
PACK.NAME Of THE RUN~ING PROGRAM

BURROUGHS CORPORATION
COHPUT£R SYSTEMS GROUP
SANTA 8ARBA~A PLANI

30
10
02
06
06
20
07
01
.3& BITS
04 Bif S
10
10
04
20
01
04
01

7-59

COMPANY CONFIDENTIAL
81000 HCP [I

P.S. 2212 5462 CE>

INTERPRETER NAME Of THE RUNNING PROGRAM
INTRINSIC NAME <PACK & FAMILY)
PRIORITY
SESSION
JOB NUMBER
lST & 2ND NAMES Of RUNNING PROGRAM
CHARGE NUMBER
f IlLE'R
OATE CO'HPilEO
f ILLER
USERCODE
PASSWORD
PAR£Nf JOB NUMBER
PARENT QUEUE IDENTIFIER
LOG SPO
SECONOS BEFORE DECAY
PRIVIl£G£0

This communicate returns selected fields from the working copy of
the Program Parameter Block to the user~s run structure. Tha
rece1w1ng field described by the SOL Descriptor must lie wholly
withtn the run structure. The program wilt be automatically
discontinued if it does not. The fields ~eturned are p~esented
in the fixed format shown in the table above.

CT.VERB 37
VALUE IS RETURNED IN COMMUNICATE MESSAGE POINTER AS
SELF RELATIVE DESCRIPTOR

This communicate returns the relative address of the dynaaic, or
ove.rlayable,. area in the run structure. It is intended for use
by programs written in SOL only.

CT.VERO 38
USED BY All LANGUAGES~ INCLUDING SOL.

This communicate causes the program•s run structure and othe~
pertinent information to be dumped to disk and tocked in the
directory with a unique name. fhe information may be processed~
formatted and printed tater by a normat state program wrjtten for
that purpose.

Programs which are already in the process of terminating ~ay not
be dumped. This is academic in this case• however• since a

7-60

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE>

program which was terminating could not issue the communicate.
Programs which are rolled out to disk witt be rolled bac• in and
du 111 p e d, v i a a n op er at or • s act ·i on , pro v i dad s u f f i ci en t "e 11 or y i s
available. Aga1n, if the progra• were rotted out to disk• it
could not possibly have issued the communicate.

The amount of dist which will be required to contain the dump
fite usually exceeds by a considerable margin that required ta
contain just the Base/Limit area of the program. In addition ta
the ron structure• the dump fijle wilt also contain the file
Oictionary. the FIB•s and buffers# the Data Dictionary and att
data segments• the code dictionary and the code segments which
are present in memory at the time, and other miscellaneous
information. If sufficient dtst is not available• a message witl
be printed on the SPO and a one will be returned to the program
in RS.REINSTATE.KSG.PTR. The program will be allowed to continue
pr o c es s i n g •

The format of a dump file is as follows:

1. A 8 Pointer" record~ which is described below.

2. The program's run structure and Run St~ucture Nucleus.

3. The Data Dictionary.

4. Every data segment in the dictionary. Segments which are
not in memory will be copied to the duap file fro• their
location on disk.

5. The File Dictionary.

6. Each FIB and its associated I/O Descriptors and buffers.
This includes all files that are open and those that are
closed with no form of release.

1. The wor~ing copy of the Program Parameter Block.

a. The working copy of the initiat scratchpad settings.

9. The working copies of all File Parameter Blocks.

10. If the program is wrjtten in SOL• the LAYOUT.TABLE.

Control is returned to the progr·am through the normal processor
queue mechanism. Actually- the program is marked ready to rvn
after the scratchpad is copied.

The format of the "Pointer" record is:

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

DUHPf ILE.NUMBER
TIME.Of .DUMP
HCP.DATE
RELEASE.HCP
lIMIT.REGJ:SfER
OAJA .• DIC.PTR
DATA.SEGS.PTR
f I8.0IC.PTR
f IB.PTR
PPB.PTR
NET.CONTROL.MACRO
HCP.RELEASE.LEVEL
LAYOUT.TABLE.PJR
LAYOUT.TABLE.SIZE
DUMP.SYS f £M .• IO

39

BI TC 24 >
BITC36l
BIH'.16>
BIT< 4 >
BITC24)
BIT< 24)
81TC24J
8[1(24)
S.iT<24}
8IfC24)
BIT(4)
8If(16>
8[l(24)
a.1re2s. >
8IT<12)

COMPANY CONf IOENTIAL
81000 HCP JI

p.s. 2212 5462 <E>

% Julian Date plus Time
% HCP Version Date

% Relative Dist Address
% Relative Disk Address
Z Relative Disk Address
% Relative Disk Address
% Relative Disk Address
% 1 if Data Communications Handler

CT.VERB
CT.OBJECT SESSION IS PUT INTO RS.REINSTATE.HSG.PTR

CT.VERB
24 BITS
24 BITS
24 BITS

40
PORT

. CHANNEl
BASE RELATIVE ADDRESS OF I/O DESCRIPTOR

This cosmunicate provides the capability of initiatirg I/O
descriptors on the data communications equipaent which ~ay be
attached to a system. The 110 descriptor itself if constructed
by the program, whjch is usually the Data Communications Handler
program generated by the NOL Compiler. This is not a
requirement- however, and no test for this condition is 1ade by
the code in the HCP. The communicate operator may be used by any
program whose source language contains the prop~r syntax.

The prog~am wilt be automatically discontinued by the HCP if th9
requested 1/0 control is not a data communications control or if
the control is already in use by another program. Also~ if the
address of the I/O descriptor does not tte within the program's
run structure or if the program attempts to initiate an I/O
descriptor with the •high priority interrupt request• bit set,
the program will be automaticalty discontinued.

After the editing described above has been performed- the
requested operati,on is initi at,ed. Controt is returned to tha
user through the no~mal processor queue mechanism. The program

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONFIDENTIAL
81000 MCP 11

?.S. 2212 5462 CE>

is not forced to wait for the completion of the operation
initiatedJ control is returned immediately after the initiation.

CT.VERB
CT.OBJECT
DESCl
DESC2
QUEUE.PTR

CT.OBJECT
DESCl
OESC2

NOTE:

CT.OBJECT
DESCl
OESC2
RMT.Fl

CT.OBJECT
DESCl
OESC2
ST.NR

CT.VERB
DESC

PARAMETER
MODE

0

1

41
INDICATES FUNCTION
Blf 1•48 MESSAGE AREA 1
BIT 49-96 MESSAGE AREA 2
BIT 97•106 REMOTE f ILE NUMBER OR STATION NUMBER

11
RESULT AREA
DC.WRITE MESSAGE
NUMBER Af SU8STR<DESC2•6-2) IS MESSAGE TYPE
40=f INISH OPEN
41=NOL/MACRO PRESENT
42=ATTACH STATIONS TO REHOTE FILE
43=0ETACH SJATIO~S fROM REMOTE FILE

12
MESSAGE HEADER
MESSAGE
REMOTE FILE TO WHICH THE MESSAGE IS DESTINED

13
MESSAGE HEADER
MESSAGE
STATION NUMBER

42
BIT 0-47 DESCRIPTOR TO PARAMETER LIST.

LIST LAYOUT
BIT (4}
SEf All PARAHETERS IN LIST EXCEPT USERCODE AND

PASSWORD. THESE MUST BE SUPPLIED TO FIND
CORRECT ENTRY.

SET All PARAMETERS IN LIST EXCEPT INDEX. INDEX
MUST BE SUPPLIED TO FINO ENTRY.

SET OVERRIDE. USERCODE AND PASSWORD MUST BE

BURROUGHS CORPORATION
CDHPUTEa SYSTEMS GROUP
SANTA BARBARA PLANJ

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

PRESENT JO FINO ENTRY.
3 SET OVERRIDE. INDEX MUST BE SUPPLIED TO FIND ENTRY.
4 ADD ENJRY. All FIELDS HAVE TO BE SUPPLIED.
5 DELEfE ENTRY. USERCOOE ANO PASSWORD MUST BE

SUPPlIED TO FIND ENTRY.
6 INITIALIZE All OVERRIDE BITS.
1 CHANGE BY USERCOOE. ALL ENTRIES FOR A GIVEN USER·

CODE CAN BE CHANGED WITH ONE COMMUNICATE. USER·
CODE HUST BE PRESENT. PACK FIELD MUST NOT BE
EQUAL TO ZERO TO CHANGE IT. CHARGE NUMBER MUST
NOT BE EQUAL TD ZERO TO CHANGE IT. PRIORITY MUST
NOT BE EQUAL TO ZERO TO CHANGE IT.

8 DELETE ALL RECORDS FOR A GIVEN USERCODE. USER-
CODE MUST BE PRESENT.

9 SET All PARAMETERS IN LIST EXCEPT USERCODE AND
PASSWORD. ONLY USERCODE HAS TO BE SUPPLIED
BECAUSE SEARCH STOPS DN FIRST ENCOUNTER Of
GIVEN USERCODE.

10 CHA~GE BY INDEX. INOEX MUST BE PRESENT.
PRIORITY CAN BE CHANGED BY SETTING FIELD TO NON
ZERQ. CHARGE CAN 8£ CHANGED BY SETTING CHARGE
FIELD fO NON-ZERO. PASSWORD CAN 8£ CHANGED BY
SETTING PASSWORD TO NON-ZERO.

11 CLEAR PACK OVERRIDE FJELD FOR All OCCURRENCES OF
THIS USERCODE. USERCODE MUSf BE SUPPLIED.

12 CLEAR PACK OVERRIDE BIT FOR All OCCURRENCES Of
THIS USERCOOE. INOEX MUST BE SUPPLIED.

INDEX BIT CtO>
USERCODE CHARACTER <10)

WHEN SET BY PROGRAM CHODE = Qp 2• 4~ 5* 1• a. 9, 11>•
THE USERCOOE HAY oa MAY NOT CONTAIN PARENTMESES.
IF PAREffS ARE NOT FOUND, ONlf THE FIRST EIGHT
USED.

WHEN SET BY HCP (MODE = ll
USERCOOE Will ALWAYS CONTAIN PARENTHESES.

PASSWORD CHARACTER ClO)
PACK NAME CHARACTER C10)
CHARGE ' SIT (24)
PRIORITY BIT (4)
PRlYILGD BIT (1)
OVERRIDE SIT (1)
REINSTATE.MSG.PTR VAlUES

CT.VERB
48 BITS

0 NO ERRORS.
1 ERROR ON INPUT: EITHER INDEX IS WRONG OR

USERCOOE/PASSWDRD IS NOT PRESENT.
2 •csYSJEM)/USERCJDE" FILE NOT IN "US· SLOT.

44
SOL DESCRIPTOR
24 BIT LENGTH OF TEXT

7-&4

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

r.s. 2212 5462 CE>

24 BIT BASE R£lATIYE ADDRESS Of TEXT

This communicate functions in a ~anner similar to the ZIP
communicate described previousty~ with one notabte exception.
The prograM which issues this communicate is suspended• and
removed from memory. until the p~ogram which is initiated by the
communicate goes to end-of-job. This coMmunicate, then• provides
a means for one program to call another and wait for its
comptetion. The text which is addressed by the forty•eight bits
passed with the communicate should be valid MCP Control Card
syntax which causes the execution of a program.

Unfortunately• no means are provided for passing parameters
between the two programs involved. This can be done onty via the
Fite mechanism of the HCP. The FILE Control Card• described in
the Software Operationat Guide• does provide some assistance in
this area.

The text passed by the communicate must lie within the program•s
run structure. The program will be automatically discontirued it
it does not. No further editing is performed by the commu~icate.
The program which issued the communicate is not infor•ed of the
validity of the control syntax passed.

CT.VERB
Cf .OBJECT
CT.ADVERB

46
BASE MELATIVE ADDRESS Of MESSAGE
SIT
0 !=LOADED O=OUMPEO
1-11

This cowmunicate causes the thirty bytes beginning at the address
specified by CT.OBJECT concatenated with either the word "LOADED•
or the word "OUMPEo•, depending upon the setting of bit 1 of the
adverb, to be displayed upon the SPO if and onty if the Lia
system option is set. Refer to the Software Operational Gujde
for details on the LIB option. All non-btank EBCDIC fields in
the message witt be s~ifted to the left before printing ~ntil
they are separated by no more than one EBCDIC blank.

er.VERB
CT.OBJECT
CT.AOWERB

cr.1-ETC.

47
NUMBER Of EVENTS
FIRST EVENT 10 CHECK CCHECKEO IN CIRCULAR

FASHION FROM THIS POINT).
BIT ENCODED £VENTS CNUHBER SPECIFIED BY Cf.OBJECT

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANI

COMPANY CONFIDE~TIAL
81000 HCP U

P.S. 2212 5462 CEJ

MAX=l5.).
0- 3 EVENT TYPE
4• 1 EVENT PARAHl
8-15 EVENf PARAH2

16•24 EVENT PARAMl
EVENT TYPES:

0 - NULL • PARAM1,2,3 : NOT USED
1 - SPO INPUT PRESENT • PARAM1~2•3 : NOT USED
2 - TIME • PARAH1,z,3 : CONCATENATED BIT 20

fIELO CONTAINING THE LENGTH OF TIME 10
WAIT IN lOTHS Of A 5£COND

3 - READ OK -PARAMl: NOT USED1 PARAM2:
FILE NUMBER• PARAH3: 'EMBER NUMBER IF FILE IS
Q-f IlE-F AMIL Y

4 - WRITE OK - PARAM1,z,3: SAME AS REAO OK
5 - QUEUE WRifE OCCURRED - PARAM1: NOT USED•

PARAKZ: FILE NUMBER Of Q-FILE·FAMILY•
PARAM3: NOT USED

6 - DATA COMH IO COMPLETE - PARAM1,z,3: NOT USED
REINSTATE.HSG.PTR VALUES

ZERO RELATIVE INDEX TD THE COMMUNICATE EVENT LIST ELEMENT
WHICH IS COHPLEf E

CT.WERB
CT.OBJECT
Cf .ADVERB

cr.1
cr.2

FUNC fIDN

48
f llE.NUMBER
0 DECIMAL FORMAT RESULTS If TRUE

CD80l (8 PJC 999")
ELSE SINARY <BIT (24))

1-11
RESULT FIELD LENGTH
BASE RELATIVE RESULT FIELD ADDRESS
RETURN THE COUNT or THE MESSAGES CONTAINED
IN THE QUEUE-FILE SPECIFIED. If fHE OBJECT
IS A QUEUE-FILE-FAMILY• THE COUNT WILL BE
RETURNED AS A lEFT-JUSJlfIED ARRAY Of
24•81T COUNTS, ONE FDR EACH MEMBER Of
THE FAHIL't'.

CT.VERB 50

Refer to P.S. 2212 5•70.

~1£AllBUBll£.S

CT.VERB
CT.OBJECT

51
f IlE NUHHER

7-6b

8URROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 (£1

c·r .ADVERB
cr.1
cr.2

Cf .VERB
CT'.OBJ£XT
Cf .ADVERB
CT.1
CT.2

COMMUNICATE LEVEL CHK 7.0 LEVEL=l>
TOTAL ATTRIBUTES CMUST BE 1 IN 7.0)
BASE RELATl~E ADDRESS OF AlfRIBUTE LISJ

52
f IlE NUMBER
COMMUNICATE LEVEL CMK 7.0 LEVEL=l>
TOTAL ATTRIBUTES !MUST BE l IN 7.0)
BASE RELATIVE ADDRESS OF ATTRIBUIE LIST

Cf .VERB 55
CT.OBJECT 0 - CT.3 CONTAINS AN ABSOLUTE MEMORY ADDRESS

1 - HINTS. CT.3 WILL BE USED AS AN OFFSET
INTO THE FIELD

2 • RS.NUCLEUS. USE OF CT.ADVERB ANO CT.l IS
DESCRIBED BELOW

3 - IOAT~ USE Of CT.ADVERB AND CT.3 IS DES•
CRIBEO 8ELOW

' - OCH.SCRATCH.HEM
5 - PACK.INFO fABLE
6 - SPO.SQ

Cf .AOV£R8 SEE BELOW
CT.I and cr.2 A BASE·RELAfIVE SOL DESCRIPTOR WHICH SPECIFIES

THE RECEIVING FIELD IN THE PROGRAM. THE FIRST
EIGHT BITS Of cr.1 ARE IGNORED BY THE MCP

CT.3 SEE BELOW

S 1 n c e HI N TS a c tu al l y beg i n s at ab sot u t e lo ca t i on 2 H'' o,. t h er e i s
no functional difference between reading an absolute me~ory
location and reading HINTS with an offset. Botb setti~gs of
CT.OBJECT are allowed to accomodate possible future expansion to
the function of accessing HINTS.

When reading Run Structure Nuclei" alt nuclei are retuc11ed if
CT.ADVERB is set to zero. The number of nuclei that are
currently present in menrnry is returned as a self-relative value
in RS.REINSTAIE.HSG.PTR. Atl of the nuclei wtlt be copied to the
receiving field in the program in the order that they are linkej
in memory and up to the limit contained in the size specificatio~
in CT.1. If the nuclei of all executing programs are transferred
to the receiving field before it is exhausted~ the resaininq
portion of the field will be set to blanks.

To access the Run Struct~re Nucleus of one particular executing
program, CT.AOVERB should be set to one and the job number of the

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

1-&!

COMPANY CONFIDENTIAL
81000 MCP I!

P.S. 2212 5462 {EJ

program should be contained as a twenty-four bit binary value in
CT.3. If CT.J contains zero, the nucleus of the reauestinq
program witt be returned. If the nucleus of the program
specified by Cl.3 is not in memory for any reason, the receivinq
field wilt be set to ~FFFfFf~ and filled with blanks and a
sett-relative value of one will be returned in
RS.REINSTATE.MSG.PIR.

When readjng the [OAT~ if CT.ADVERB is set to zero, CT.3 will be
used as an offset into the IOAT and the remaining portion of the
tabte witt be transferred~ up to the tfmit specified in CT.t.
The . value of CT.J may be ze~o. of course. and the entire t3ble
may be transferred. If CT.ADVERB is set to one• CT.3 will be
assumed to contain the twenty-four bit binary vatue of a file
number associated with a file which the program currently has
open. All of the IOAT entries which fottow the associated entr~
may be transferredr depending upon the value contained in cr.1.
If the fite ts not open or is not present in memory for an~
reason~ ~ffffff~ witl be transferred~ the remainder of the
rece1v1ng field wf tl be set to blanks and RS.REINSTATE.~SG.PfR
witl be set to a self-relative value of one.

If CT.ADVERB is set to a value of two when reading the IOAT, the
tow-order twelve bits of CT.3 witl be assumed to cortain a
Port/Channel/Unit combination in the following format:

Bits 12 - 14
Bits 15 - 18
Sits 19 - 23

Port
Channel
Unit

The HCP witl scan the IOAT for the entry associated with the
specified unit and wilt return that entry plus att subsequent
entries up to the limit of the IUAT or that specified in cr.1.
If the specified unit is not present in the IOAf, the HCP will
set the receiving field to ~FFfFFFa followed by btan~s and will
set RS.REINSTAT£.HSG.PTR to a self-relative value of one.

CT.VERB
CT.OBJECT
CT.ADVERB

56
FILE
BIT
0
1
2
3
4-5
G-7

NUMBER

REPORT TO USER ON PARITY

RESULT MASK FIELDS PRESENT

RELATIONAL OPERATOR
0 EQUAL TO
1 GREATER THAN

7-68

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
131000 HCP II

P.S. 2212 5462 CE>

CJ.1
CT.2
cr.3
CT.4
cr.s
CT .6
er,. 1

2 NOT LES THAN (> t =>
6•10 SELECTION CONDITION

0 NEXT
l PRIOR
2 FIRST
3 LAST
4 NEXT AT
5 CURRENT
6 AT
1 RANDOM

11
LENGTH Of RESULT MASK
ADDRESS Df RESULT MASK

S TfWCfURE NUMBER
KEY ADDRESS
KEY LENGTH

ltiDfl£Q ~Ei~E~Il!L B£AQ

CT .• YERIB
CT.OBJECT
CT.ADVERB

cr.1
CT.2
CT.3
CT.4
CT.5
CT.6
cr.r

'57
FILE
BIT
0
1
2
3
4-5
&-1

11

NUMBER

REPORT JO USER ON EOF
REPORT JO USER ON PARITf

RESULT MASK FIElOS PRESENT

RELATIONAL OPERATOR
C EQUAL TO

I 1 GREATER THAN
2 NOT LESS THAN(> l =>
SELECTION CONDITION
0 NEXT
1 PRIOR
2 f IRST
3 LAS f
4 NEXT AT
5 CU~RE NT
6 Af
7 RANOOM

LENGTH OF RESULT MASK
ADDRESS Of RESULT MASK
LOGICAL RECORD LENGTH
LOGICAL RECORD ADDRESS
S tRUC TURE NUMBER
K£l' ADDRESS

7-69

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP H

P.S. 2212 5462 CE>

CT.VERB
CT. u8.J[CT
CT.ADVERB

c r .1
CT.2
CT. 3
Cf,.4
CT.5
CL. 6
cr.1

CT •. VERB
CT.OBJECT
CT.ADVERB

cf .1
CT.2
CT.l
CT .4
CT .• 5
CT .6
cr.r

CT.VERB
CJ.OBJECT
CT.ADVERB

CT.1
CT .2
CT.3
c r .4
CT.5
CT.&

58
FILE NUMBER
Bil
0 REPORT TO USER DN EDF
1 REPORT TO USER ON PARIIY
,2
3 RESULT MASK fl£LDS PRESENT
4-11
LENGTH or RESULT MASK
ADOR£SS Of RESULT MASK
LOGICAL RECORD LENGTH
LOGICAL RECORD ADDRESS
STRUCTURE NUMBER
KEY AODRES S

59
f IlE NUMBER
Bil
0
1 REPORT TO USER ON PARITY
2
l RESULT MASK FIELDS PRESENT
4-11
LENGTH Of RESULT MASK
ADDRESS OF RESULT MASK
LOGICAL RECORD LENGTH
LOGICAL RECORD ADDRESS
STRUCTURE t.WM!3ER
KEY AO ORES S

60
FILE NUMBER
BIT
0
l REPORT TO USER ON PARITY
2
3 RESULT MASK FIELDS PRESENT
4-11
LENGTH OF RESULT MASK
AOORESS OF RESULT MASK

STRUCTURE NUMBER
KEY ADDRESS

7-10

aURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 CE)

CT.7

H.ELAllJE llJJ kYlS!Ul:il.k!lE - .SlABI

CT.VERB
CT .OBJECT
CT.ADVERB

CT.1
CT •. 2
CT.3

c r .4

61
f'IlE NUMBER
BIT
0
1
2
.J
r.-5
6-7

e-11

REPORT TD USER ON EOF
REPORT AMO RETURN TO USER ON PARITY
REPORT AND RETURN TO USER <INCOMPLETE I/0)
RESULT MASK FIELD PRESENT

RELATIONAL OPERATOR
0 EQUAL TO
l GREATER THAN
2 NOT LESS THAN

LOGICAL RECORD SIT LENGTH
LOGICAL RECORD BASE RELATIVE BIT ADDRESS
ACTUAL BINARY DISK KEY <RELATIVE KEY>
SUPPLIED 3Y USER

CT.5 LENGTH IN BITS or RESULT MASK FIELD
CT.6 BASE RELATIVE ADDRESS OF RESULT MASK FIELD
REINSfATE.HiG.PfR

0 GOOD READ
1 ENO Of f IlE
2 tlO ERROR
J INCOMPLETE 1/0

<ADDITIONAL ITEHS FOR FIL£ STATUS DEFINED IN THE SEQUENTIAL
FILES DESIGN SPECIFICATION>

CT.VERB
CT.OBJECT
CT.ADVERB

cr.1
cr.2
CT.3

CT.4
CT.5

62
FILE
BIT
0
1
2
3
4

5-11

NU .. 8£R

REPORT 10 USER ON EOF
REPORT ANO RETURN TO USER ON PARITY
REPORT ANO RETURN TO USER CINCOMPLEJE I/OJ
RESULT MASK FIELD PRESENT
ACCESS TY PE
0 SEQUENTIAL CNEXT>
l RANDOM CAT KEY>

LOGICAL RECORO BIT LENGTH
LOGICAL RECORD BASE RELATIVE BIT ADDRESS
ACTUAL BINARY DISK KEY FOR RANOOM OR DYNAMIC
FILES <SUPPLIED BY USER; NOTHING IF IN
SEQ U ENT I AL M 0 0 E)

LENGTH IN BITS Of RESULT HASK FIELD

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
\31000 MCP II

P.S. 2212 5462 CE>

CT.6 BASE RELATIVE ADDRESS Of RESULT MASK FIELD
REINSTATE.HSG.PfR

0 GOOD REAO
l END Of FILE
2 110 ERROR
3 INCOMPLETE 1/0

CAOOITiONAL ITEMS FOR FILE STATUS DEFINED IN THE SEQUENTIAL
FILES DESIGN SPECIFICATION>

er .v£R,s
CT.OBJECT
CT.ADVERB

CT. t
cr.2
CT.3

CT.4

63
f IlE NUMBER
BIT
0
1
2
3
4

5-11

REPORT TD USER ON Ear
REPORT ANO RETURN TO USER ON PARITY
REPORT AND RETURN TO USER CINCOHPL£TE I/0)
RESULT MASK FIELD PRESENT
ACCESS TYPE
0 SEQUENTIAL (NEXT>
1 RANDOM (AT KEY)

LOGICAL RECORD BIT LENGTH
LOGICAL RECORD BASE RELATIVE BIJ ADDRESS
ACTUAL BINARY DISK KEY FOR RANDOM DR DTNA~IC
FILES <SUPPLIED BY USERJ NOTHING IF IN
S£QUENTI .AL MODE>

CT.5 LENGTH IN BITS Of RESULT MASK FIELD
CT.6 BASE RElAJIVE ADDRESS OF RESULT MASK FIELD
REINSTATE.HSG.PTR

0 GOOO READ
1 END Of FILE
7- l/O ERROR
3 INCOMPLETE 1/0

CADDITIONAL ITEMS FOR FILE STATUS DEFINED IN THE SEIUENT!Al
FILES DESIGN SPECIFICAflONJ

THE REWRITE COMMUNICATE WILL BE ESSENTIALLY THE SAHE AS
THE WRITE, sur WILL NAVE A DISTINCf MEANING IN LOGICAL I/il

Bf L!Ill£ lLil kiltf.t!!Jf:ilJ;;Al(= ,DfLfIE

CT.VERB
CT.OBJECT
CT.ADVERB

64
f ILE
BIT
0
1
2
3
4

NUMBER

REPORT JO USER ON EOF
REPORT AND RETURN TO USER ON PARITY
REPORT AND RETURN TO USER <INCOMPLEfE I/0)
RESULT MASK FIELD PRESENT
ACCESS lYP£
0 SEQUENTIAL CNEXJ)

1-11.

BURROUGHS CORPORATION
COHPUIER SYSTEMS GROUP
SANTA BARBARA PLANJ

COMPANY CONFIDENTIAL
B1000 HCP U

P.S. 2212 5462 CEl

CT.1
CT.?.
CT.J

CT.4

1 RANDOM (AT KEY>
s-·11

ACTUAL BINARY DISK KEY FOR RANDOM OR DYNAMIC
FILES CSUPPLIEO BY USER; NOTHING If IN
SEQUENTIAL HOO£)

CT.5 LENGTH IN BITS Of RESULT MASK FIELD
CT.6 BASE RELATIVE ADDRESS Of RESULT MASK FIELD
REINSTAJE.HSG.PTR

l"J GOOO READ
1 END Of FILE
2 I/O ERROR
3 INCOMPLETE l/O

CAODITIONAL ITEMS FOR FILE STATUS DEFINED IN THE SEQUENTIAL
FILES DESIGN SPECIFICATION>

CT. VER:S
er.OBJECT
CT.ADVERB

CT.1
CT.2
CT.3

CT.4

65
f.llE NUMBER
s1.r
0
1
2
3
4

5-11

REPORT ro USER ON EOF
REPORT AND RETURN TO USER ON PARITY
REPORT AND RETURN TO USER CINCOHPLETE I/OJ
RESULT MASK FIELD PRESENf
ACC£S5 TYPE
0 SEQUENTIAL <NEXT)
1 RANDOM CAT KEY>

LOGICAL RECORD 8IT LENGTH
LOGICAL RECORD SASE RELATIVE BIT ADDRESS
ACTUAL BINARY DISK KEY FOR RANDOM O~ DYNA~IC
FILES (SUPPLIED BY USERJ NOTHING If IN
SEQUENTIAL MODE>

CT.5 LENGTH IN SITS OF RESULT MASK flELO
CT.6 BASE RELATIVE ADDRESS Of RESULT MASK FIELD
REINSTATE.MSG.PTR

0 GOOD READ
1 ENO Of f ILE
2 I/O ER 1ROR
3 INCOMPLETE I/O

CAODITIONAl ITEMS FOR FILE STATUS DEFINED IN THE SEQUENTIAL
FILES DESIGN SPECIFICATION)

Cl.VERB
CT.OBJECT
CT.ADVERB

66
f ILE NUMBER
SIT

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANJ

COMPANY CONFIDENTIAL
BlOOO MCP II

P.S. 2212 5462 CE>

cr.1
CT.Z
CT.3
CT.4
CT.5
CT.n

CT.VERB
CT.OBJECT
CT.ADVERB

CT.1

CT.2
CT.3

0
1
2
3

4•1t

REPORT AND RETURN TO USER ON EOf
REPORT AND RETURN TO USER ON PARITY
REPORT ANO RETURN TO USEA ON INCOMPLETE l/O
LENGTH ADDRESS PART IS PRESENT FOR THE RESULT
MASK

LOGICAL RECORD BIT LENGTH
LOGICAL RECORD BASE RELATIVE BIT ADDRESS.
RANDOM FILE ACTUAL BINARY KEY

LENGTH IN BITS Of RESULT MASK
BASE RElATIVE ADDRESS Of RESULT MASK FIELD

67
FIL£ NUMBER
BIT
a
1
2
3-11

REPORl.flLE.HISSING
REPORf.FILE.lOCKED
REPORT.EXCEPTION <SECURITY ERRORS>

CfHE OPEN TYPE IS TAKEN FROM fHE FPB.AOVERB ANO
FPB.EXPANDED.AOVERB FIELDS>
LENGTH Of USERCODE/PASSWORD FIELD
Clf OPEN.ON.BEHALF.OF>

BASE RELATIVE ADDRESS Of USERCOOE/PASSWORC FIELD
OPEN STATUS - R£SERVEO fOR THE SMCP TO KEEP TRACK
Of WHERE ro RESUME If THE ENTIRE OPEN CANNOT SE
COM?LET£0.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONf IOENTIAl
Bl 000 MCP I1

P.S. 2212 5462 CE>

A message queue system has existed in MCP II since 1973. This
section describes the current Queue implementation and the
interfaces between the Queue system and other system software.

fhe word "Queue" as used in this document, most often refers to
the actual data structure maintained by the operatjng system.
This data structure is used as a means of inter·process
communication. Queues may have various attributes just as files
do. for exampte, Queue$ may have two ten-character na•es, user
counts, message counts, and so forth. The data structure is used
to address a list of messages. This list mar be empty. A Queue
user may add to the back or remove from the front of this list.
The Queue may be shared -- one or more processes •av put messages
in the list and one or more processes may remove messages. Onty
the MCP may access the data structure directly. User programs
must use other mechanisms~ which are constructed from this data
structure~ such as Queue Files or Remote files.

r h e des 1 g n o f the d a ta st r u ct ur e < r i g ur e 8 - 1 > w a s strong t r
affected by the need to reduce the S·memory needs of cueues.
Reusable structures like message buffers and message descriptors
are pooled for the use of the whole queue system. The memory
space used by empty 1essage buffers and descriptors is not
automatically returned to the systeB. The Queue impteMentation~
rather, retains them for later use. This results in cuicker
ailtiocation when this space is r,e.quired again and in less
disturbance of the work~ng set of the code in the system. Since
Queue Files and Remote Files are unblocked, their FIB's need not
have buffers. This m~nimizes the amount of memory required to
contain the FIB.

A Queue Fite Family may consist of a maximum of 1023 Queuesr each
having the same first name or HFID and the same attributes. A
Queue Fite Family is shown diagrammaticat&y in Figura 8•2. 4
user program may REAO a message from one of the individual Queues
in the fanily or it may request a message from any queue in the
family. On a WRITE operation~ however~ the individuat family

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

member must be specified.

COMPANY CONFIDENTIAL
91000 HCP Il

P.S. 2212 5462 CEJ

If individual Queues of a Queue Fite family are to be addressed~
the individual member must be spacif ied by an ordinat nu~ber• or
key, much tike Switch files in certain languages. A key of zero
specified on a Read of a Queue File family means that the user
wilt accept a message from any of the individual Queues which
comprise the family. V\i/V\.~eft',flv!~~

for a given Queue. the Queue name, maximum tength• pointers to
first and last messages. etc• are stored in the Queue Descriptor.
The descriptor ~ust be in mesory during the existence of the
Queue. Users of the Queue are given "Q-keys•, which serve as
pointers to the Queue Oescripto~. when the Queue Fite is opened
and the user has specified the d•sired attributes -0f th~ Q~eue.
ror a Queue Fite... the Q-key is ·stored in the fi.le's FI9. If the
Queue is empty. the 160-bit descriptor js the only ~e~ory

structure dedicatad solely to the Queue.

Messages stored in a queue may reside on disk or in memory. At
Queue creation,. an area of system disk is obtained for the Queue
large enough to hold Q.M~X.HESSAGES of si2e Q.MAX.MESSAGE.SIZE.
These two attributes are normally specified by the user. A Queue
specified to contain a maximum of 255 messages, each of a 1aximu•
size of 200 bytes will require 255 •<<200+179) DIV 180) or 510
disk segments1 where DIV denotes an Integer Divide operation.
The required disk space witt be allocated when the Queue is
opened, orior to the time it is actually reQuired. This is done
to minimize the processjng required to store the message or dis~.
Users who have minimal amounts of disk storage available may
control the amount that is required by Queues by manip~lating
Q.HAX.HESSAGES. The disk space that is allocated to Queues is
not locked in the directory. If the system fails white Qteues
are active, the dist is returned to the available list during the
ensuing Clear/Start operation. Disk is always allocated ta
Queues, even if sufficient memory is avajlabte to contain the
maximum number of messages.

Queue messages are written to disk when a message being put into
a queue makes the count of messages in memory equal to tha
attribute Q.BUffERS. When this situation occurs. a dist Write
operation on the last message in memory in the Queue is
init~ated. This will make one of the buffers availabte for an
ensuing insertion in the Queue. There is one exception to this

BURROUGHS CORPORATION
COMPUTER SYSTEffS GROUP
SANTA BARBARA PLANT

d-.s

COMPANY CO~f IOENTIAL
81000 HCP II

P.S. 2212 5462 CE>

statement. The disl Write operation will not be initiated by the
Queue routines if the attribute Q.BUFFERS is equal to or greater
than the attribute Q.MAX.HESSAGES. In this case• messages
associated with the Queue may only be written to disk by the
Memory Management routines. The Memory Management routines may
write Queue messages to dist anytime memory is required in the
system. This ensures that Queue messages witt not f i1l memory to
the point where thrashing occurs.

When a user removes, o~ READS• a message from a Queue the first
message in the Queue is transferred to his Run Structure ard the
next message in the Queue is examined to determine if it is on
disk. If it is~ a look-ahead disk Read operation is initiated to
m~niaize the time that the user will have to wait for deli~ery of
the next Queue message.

The l/O descriptors that are used for the disk Read and Write
operations just described reside in the Queue File's FIB. For
each mode of use- input or o~tput, a program opering a Queue Fite
is given one I/O descriptor. A file opened input and output is
given two I/O descriptors. I/O descriptors are shared among all
members of a Queue file family. so that no Queue File FIS witt
ever contain more than tho 110 descriptors.

The method of storing messages in the queue is by means of a
linked list of Message Descriptors. Each Message Descriptor CHO>
consists of an 80-bit system descriptor and two link fields~ for
a total of 128 bits each. The system descriptor actually
describes the message text~ according to normal HCP conventions.

To reduce checkerboarding. MD•s are allocated in blocks of ten.
Assigning a Message Descriptor to a message is accomplished b~
searching the bloct<s> of ten for an available HO. If no~e are
available• memory space for an additional block of ten is
obtained via a call on the Memroy Management routines. The
blocks of Message Descriptors are surveyed periodically to
consotidate and return unused blocks to tha system. At least one
bloc~ is retained as tong as any Queues exist.

If a queued message is in memory• the m~mory area which contains
the message is ~nown as a Message Buffer CHBJ. The ML.TYPE fietd
in the memory link which describes tha area wilt be set ta a
unique value which denotes a Message Buffer. No Queue witt ever

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BAR8ARA PLANT

COMPANY CONFIDENTI•L
81000 MCP II

P.S. 2212 5462 CEl

have more than Q.8Uff£RS messages in memorr at any time,
including those messages which are in trans~t between memory and
disk. Actually. since the Hemory Management routines are capable
of writing Queue messages to; disk and removing them from •e•ory,
the Queue routines cannot quarantee that any messages will be in
memory at any given time.

i~fMf AIIBIBUifJ

In addition to attributes co3mon to all files~ the user may
specify two attributes whose interpretation has meaning for Queue
files only:

1. Q.HAX.HESSAGES - the maximum number of massages a QuEue can
store• at which point it is considered futt Cmaximua 1021>.

z. Q.fAHILY.SIZE the number of sub-queues in a Que~e fjte
Family Cmaximum 1023).

In addition' Q.BUfFERS as described in the foregoing may be
specified by the BUFFERS file attribute. Thus~ the user may have
some control over the number of messaqes that may be contained in
memory at any given time. In the COBOL language, a QueLe File
Declaration may appear as:

SELECT MY.Q ~SSIGN TO QUEUE •
•

•
FD MY.Q VALUE Gf Q.HAX.MESSAGES IS 20

RESERVE 3 ALTERNATE AREAS.
01 MY.Q.BUF PIC X(80J.

SELECT MY.QfF ASSIGN TO QUEUE •
•
•
• ro MY.QfF FILE CONTAINS 3 QUEUES
VALUE OF Q.MAX.MESSAGES IS 10
RESERVE 2 ALTERNATE AREAS.

01 HY.Qff.BUF PiC X(80).

If a Queue file Family is op~ned, the same attributes apply to
every me•ber individually. In HV.Qff above• for exampteP all
three members may hold tan messages. each having a maximum of t~o
in memory.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
B1000 HCP II

P.S. 2212 5462 CEl

The name assigned to a Queue file is specifed by the user as the
MfIO/FIO combination. For a Queue file family, the MFID is
specified by the user and is taken to be the first ten
characters, and an fID is synthesized from the member number for
each queue in the family. The first member of MY.Qff would be
named "HY.Qff/#00000001".

When a Queue Fite is opened, the MCP compares the 20•character
name with the na~es of all Queues currently in existence. If a
Queue of that name if found, the opener is linked to the existing
queue and the Queue•s user count ~s incremented. If the Queue
does not exist, a new Queue is created with the attributes
provided by the FPB. Queue attribute binding occurs when the
Queue is first created, by the first process to open the tueue
Fite. If two programs share a Queue <e.g •• both agree on the
name), the first program to open the shared Que~e file birds the
attributes.

Blocking of records is not atlowed in Queue files. The Record
Size attribute determines the upper limit on the length of a
message whjch may be stored in a queue file.

i~f~t ElLE LOiJCAL lL~ OfEdJllQ~~

Queue file logical 1/0 operations are rather simple ana
straightforward. As mentioned pfeviousty, ~lt Queue Fites must
be unbtoc•ed. Truncation or blank fill may occur, dependirg upon
the size of the user•s work area and the size of the •essage
being moved. exactly as is done on alt other tog~cal I/D
operations an 81000 systems. The user may reQuest that three
different exception conditions be reported to hin on atl Queue
file logical l/O operations. These three conditions arer ir
COBOL syntax:

1. ON ENO-OF-fllE

2. ON EXCEPTION• and

3. ON INCOMPLETE-IO.

On READ operations, END·OF-FILE is reported to the user when the
Queue file is empty and no program exists which has the Queue
opened for output. EXCEPTION is reported on Queue Fite Famities
only and on READ operations ontyr and actuatty denotes an invalid
key passed on the READ to specify the desired family· 1embar.
INCOMPLElE·IO ts reported if tha Queue is empty but programs
stilt exist which have the Queue opened for output purposes. All
three conditions are reported only if requested, of course.
failure to request that ENO-OF·FIL£ or EXCEPTION be reported will

BURROUGHS CORPORATION
COHPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
HlOOO HCP II

P.S. 2212 5462 CEl

be considered a prog,am error if either condition occurs and the
program will be discontinued.

fhe precise meaning of EOf on READ is that Cal the last writer on
this Queue has closed his Queue Fite and (b) the Queue js empty.
EOf is treated as a pseudo-message in the Queue. That is, when
the last message has been read from.the Queue file~ the Fite
still exists and actually remains •not empty" for WAIT purposes.
A subsequent READ will result in the EOf branch being taken. The
Queue is then empty, but still in EOf status' so if yet another
READ is issued on the Queue file1 the reader will again take the
EOF branch. EOf can be cleared by either the reader ctosing and
reopening the file or by the opening of the Queue by a new
writ e 1r.

READs to specific members of a Queue file Family are treated
exactly tike READs on single Queue files. An unspecific HEAD on
a Queue file Family will return EOf only if all members of the
FamH.y are at EOf Ci.e.,. empty.- no writers>. When the last
writer closes any member queue of a QFF. the event
Q.WRITE.OCCURRED will be caused for the Qff; this will put a
reader in the REAOY.Q when it WAITS on this event.

A MESSAGE COUNT communicate operator is implemented to enable
user programs to determine if any messages are present in the
Queue files they are using. This function is described in a
later paragraph. A MESSAGE COUNT communicate issued for a Queue
that is mar•ed as being at END-DF-fILE will show the EDF status
as a pseudo-message - the count for that particular Queue file
wi(l be one mo~e than the count of reat messages. When the
Teader executes a specific REAO on the member Queue which is at
EOf, the EOF branch will be taken. The next MESSAGE.COUNT witt
show the •ember Queue as containing no messages. Another READ on
the ~embe~ witl result in the EDF branch being taten again, as is
done for a singta Queue file.

On Queue WRITE operations, ENO-OF-FILE is not defined and witt
never occur. EXCEPTION has the same meaning as it does for REAO
operations - it denotes an invalid key condition on Queue File
families only. INCOMPLETE-10 will be reported• if reooe!ted~
when the Queue is full and there is no space available to sto~e
the message that is being written. If no INCOHPLEfE·IO report is
rquested and the Queue is full when a WRITE occucs, the progra•
is suspended until space is available in the Queue.

As 11e n t fo n e d pre v i o us l y ii' w he n a t o g i c at I I 0 r e Q u es t i s d if' e c t e d
to a Queue Fjle Family, a key must be included to identify the
specific Queue in the family to which the operation is directed.
This is similar to Swjtch files in the SDL Language. family

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONFIDENTIAL
HlOOO HCP 11

P.S. 2212 5462 CE>

members are nu•bered logically from one to n. Giving a tey of
zero on ·a READ is defined as an unspecified read. The •embers
witl be searched• beginning with number one, and the first queue
member found not empty wilt be read. A key of zero on a write is
invalid.

HB111N~ IQ !Hf IQf DE ! iMEY£ ElLE

Writing to the top of a Queue file is allowed in the HCP thouqh
it may or may not be allowed in a given language. A message
written to a queue file normally goes to the bottom of the Queue
though some rare occurrences in applications may require the
converse. This capability is invoked in the comeLnicate
operation by setting bit 7 of CT.ADVERB.

This communicate operation returns the count of messaqes in the
Queue fite specjfied. If a Queue file Family is specifiedr the
count of each member witl be returned in an array Cmembe'f' one in
the first position• member two in the second~ etc.>~ up to the
limit of the result field. Counts will be retu~ned either in
decimal <COBOL wPICTURE 999") Gr binary CSDL "BIJC24>"> depending
on the value of the first bit of CT.ADVERB. Jhis operation may
not be implemented in alt languages.

format:

CT.VERB
CT.OBJECT
c T • A 0 VE R B a I r 1
c r.1
Cl.Z

48 CHEX ~30d)
file Number
Decimal format results if true
Result f iald length in bits
Result field address

BURROUGHS CORPORATION
COMPUTER SYSJEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP Ii

P.S. 2212 5462 (£)

Writer FIB Reader FIB

rr Dev ice= Queue *

• Oevi,ce=Queue *

Ir

*
..
*

*
tr

fr

*
****fr*fr1ffr*•***** Queue Descriptor ********•*******

Q KEY Q XEY *
*******'********* * Q.LABEL="HY.Q" * ****************
• Read •
•IO Descriptor, *

* Q.MAX.MESSAGES=lO * * Write *
* Q.MSG.COUNT=3 • -~>•IO Descriptor *
* Q.BUFFERS=2 * t ********•*******
* Q.NOT.FULL=TRUE * I I f
* -Q. NOT .• EMPTY=i'RUE • -,.,.... t I

-----·---------·>• Q.f IRST * 1 J I
I -·----·>• Q.tASf * I J I
1 f ********************* I I t
t t------···---·----------------····-·- i I f I MDI MD2 HD3 V t 4

*************••---->••••••********•---->•••··············· 1 f
* IN S-Kemory • * On Disk • * In Process Out * J t
***************<----·············••<----****************** 4 1

I I I I
I j MB I 4

MB Y I **~*************** I 4
****************** 1 * "JHIRD HESSAGE •<·-a I
* "f IRST MESSAGE * I * T£XT" • I
• TEXT" • t ******•*******•*** t
****************** l I

' ************************ •
I • System Disk * I
I ***********•************ I
I * * I
I ************************ I
f-·-···>• "SECOND MESSAGE fEXT"• I

************************ '
* "THIRD MES> ••••••••• •<··-I
********•***************

*

figure 8-1: Two Programs Communicating in a Queue File Called "MY.Q".
The Queue contains three messages.

BURROUGHS CORPORATION
COMPUTER SYSTEMS .GROUP
SANTA BARBARA PLANT

f 18
******~*********************
* ~MY.Qff" •

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

* f IB.MVUSE = INPUT/OUTPUJ *
* f IB.Q.fAMilY = TRUE *
* flB.Q.fAMILY.SIZE. = 3 *

* "MY.QFf" *
* "##00000001 *

·······················•****
* Q.KEY 1 *

* Q.BUFFERS = 2 •
* Q.HAX.MESSAGES=lO *
• Q.MSG.CT = 0 *

**************************** FIRST * lAST *
* *********************

READ IO DESCR *

* WRITE IO DESCR

* "HY.QFf" *
* 8 ##00000002 *
* Q.BUFFERS = 2 *
* Q.MAX.HSG~COUNT=lO •
* Q.HSG.Cf = 1 *
******************•***
* FIRST * LAST *

* "HY.QfF" *
* "#100000003 •
* Q.BUFFERS = Z *
* Q.MAX.MSG.COUNT = 10 *
* Q.HSG.CT = Z •

* FIRST * lAST

MO

* *

MD
*************•

MO

* *

figure a-2: A Queue-file Family with three •embers.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

R·tJ

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

Another means of accomplishing inter-process communication is th~
Inter-Program Communication Module, first impleaented in the 9.0
software to satisfy the requirements of the ANSI '74 COBOL
language. According to the specifications of that languagep th~
facility provides synchronous CALL and EXIT verbs, as well as d

shared data implementation. The module provides a facility to
transfer control from one program to another and the ability for
both programs to have access to the same data items. The names
of the programs to which control is to be passsed •ay or aay not
be known at compile time. Additionally- this module provides the
abitity to determine the availability of memory for the progra~
to which control is being passed.

fhe definition of a "Run Unit" is critical to the implementation
of the CALL/CANCEL mechanism described in the ANSI '74 COBOL
specifications. The execution of any program via an EXECUTE
control instruction does not establish a R~n Unit. A Run Unit is
established only when an executed program initiates another
program via the CALL communicate. That called program is now a
member of the Run Unit associated with the program that was
originally executed. Similarly- any program calted by a p~ogram
within the Run Unit becomes part of that Run Unit and remains in
that Run Unit until terminated or cancelled. A job cannot be a
member of more than one run unit. The following figure
represents seven programs CA - G> which have been called within a
run unit.

?~evious
Path

r
•

•
.o

• •
•

A <A was Executed)

• I <---- Current Path
B . \

\
c
1
I

G E

The connecting lin•s are generated by and represent the last used
pathP and the link exists until a return CEXIT PROGRAM> is
accomplished. Once a called program has been exited co. r~ G>•
it remains suspended in its current state. The only path that is
of interest is the path last traversed.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-tt

COMPANY CONFIDENTIAL
81000 HCP Ii

P.S. 2212 5462 CE>

The current path is important in order to check the validity of d

CALL or CANCEL statementJ if a program tries to CALL or CANCEL
itself or any of its predecessors, the entire run unit witl be
os•ed. Jhe other links are unimportantr as any program in the
run unit can CALL or delete other exjsting programs• with the
previously mentioned exceptions- or can CALL new programs.

Ifr for example~ program 'E' cancets program •o• then the Run
Unit would consist of all of the foltowing programs and appears
as:

A Urlattached
J Programs
J f, G
B
I
I
c
I
I
E

A CALL to any of these programs witl result in a transfer of
control to the existing state• whereas a CALl to any other
program, including •o•, wilt cause an initial state copy to be
invoked before control is transferred. The termination• via STCP
RUN or ABORT, of any program in a Run Unit wilt result in the
removal of all prograas in that Run Unit from memory.

For those not familiaT with the ANSI •74 COBOL definition of
Inter-Program Co•munication• alt programs within a R~n Unit
execute synchronously. No t~o programs in a Run Unit may be
executing simultaneously at any time and consequently, there a~e
no oroblems associated with t~o or more programs contending for
the use of shared data. Control is passed to a program via the
CALL verb. The program which contains the CALL will not be
allowed to execute again until the catted program perforas an
EXIT PROGRAM verb.

The calling program may specify one or more data iteas to which
the called program has access. The shared data may be any 01 or
17 level item described in the calling program This includes
items whose addresses have been received through a CALL. The
data items may be named and defined differently in each progra~
as long as the length of the item remains the same in each
program. This mechanis• is stricly a "pass by name" facility.
Parameters cannot be passed by value. Additionally~ storage f~r

BURROUGHS "coRPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

3-12

CO~PANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5462 <El

the shared data is never allocated in the called program. In
other words, the address of the data, onty, is always passed to
the catled orogram.

In order to maintain all of the necessary information regarding
the programs which comprise a Run Unft, several fields we~e addea
to the Run Structure Nucteus• RS.NUCLEUS' the field in mesory
which contains information about each program that is executing,
in the 9.0 version of the MCP. This field~ as it has always
been~ is shared by the Operating System and the user program•s
interpreter. The following is a list of the fields which were
added in th9 9.0 version and a brief description of each.

When a job initiates a CALL, he establishes a RUN UNIT. This Run
Unit ts identified by his own Ctbe originator•s) job number.
RS.RUN.UNIT~ for any job in the Run Unit• witl contain the job
number of the program whick initiated the Run Unit.

This field witt contain zer~ for the job that initiated the run
unit and for any job in the Run Unit that has done an EXIf
PROGRAM. for any job that is currently active in the Run Unit# a
job that has not dona an EXIT~ this field will contain the joo
number of his caller.

This fietd will contain t~e absolute address cf the
!PC.DICTIONARY through which parameters wilt be accessed within
the catting job's base-limit space. The field will be zero if
the dictionary does not exist. This is the list of parameters
that this job will pass. The !PC.DICTIONARY is adjacent to th~
RS.NUCLEUS and found ontv in the callers Run Structure Nucleus.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANf

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

Jhis field witl contain the absolute address of the
IPC.PARAHET£R.LIST. This space will be adjacent to the Run
Structure Nucleus for any catted job that can receive parameters.
The IPC.PIRAHEIER.LIST wjll be a serie~ of 24 bit fields. The
first field wilt contain the number of parameters that this job
is capable of recejving. The remaining fields in the list witt
cont a i n the t e ng th i n bi ts o f ea c n par am et ·e'r • r hi s ti s t i s bu i l t
only for the called program from the IPC.PARAMETER.LIST in the
catted program•s code file that is generated by the comoiter. If
the job cannot receive parameters. this field wilt contain zero.

This field will contain the number of entries in this p~ogram's
IPC Dictionary.

This field is used to store the type of execution that originated
th e j ob • I f t he j ob i s no t an E x e c u t e t y p e or a C a l l t y p e ~ t h e n
it cannot be catted. The field can contain the fottowing values:

1 = Execute
2 ·- Compile and Go
3 = Co mp it e for Syntax
4 = Compite to l i br a,r y
5 : Co mp i 4. e and Save
6 = Go Parr t of Compile and Go
1 ·- Go Part of Comp·ile and Save
8 - Cat:l

B~.1..f!l!!E j;J:t!B!Cl~iUl.21

This field will contain the name of this program. In the case of
compiaations~ denoted by he vatue of the previous field, it witt
contain the name of the compiler as welt.

~-14

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFICENTIAL
BlOOO HCP II

P.S. 2212 5462 CE>

This fietd wilt contain the Limit Register of this job's caller.

This field is a dummy avent for any IPC hang or suspensio" of
executjan. If a program is waiting on RS.IPC.EVENT and is
currently passive, which will be indicated by a zero value in
RS.RUN.UNIT.LINK, the RS.STATUS will be set to. a vatue to
indicate •waiting to be Called". If the program is currently
active, indicated by a non-zero value in RS.RUN.UNIT.LINK, the
RS.STATUS witl be set to a value indicating •waiting on callee
program".

If this boolean is true~ then at least one CANCEL communicate has
been issued against this program. Whsn this is true~ this
particular job is effectively no tonger a member of the Run Unit
and is waiting to be terainated by the SHCP.

It was also necessary to make changes in the Program
Bloc•• the two-sector field that is generated by the
and stored in the code file• to .accomodate
implementation. A list of the fietds that have been
presented below.

Parameter
ccipiters

the IPC
added is

This field indicates the nu~ber of entries in the
IPC.PARAMETER.LIST. If tnis field is not equal to zero- it
indicates to the HCP that this program can only be called - it
can never be EXECUJEd.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-15

COMPANY CONfIDENTI4l
81000 MCP II

P.S. 2212 54&2 CE>

This field is used to store the relative disk address in the code
file of the IPC.PARAHETER.LIST. The !PC.PARAMETER.LIST wilt be a
series of 24 bit fields that contain the length in bits of the
parameters that may be passed to this program with a CALL.

This field indicates the maximum number of oarameters to be
passed by this program through a CALL, which witl also be the
number of entries in the IPC Dictionary.

It was also necessary to add a field to the format of the Progra•
Parameter Stock that is used by the McP· after the job is
scheduled for execution. This field~ known as PPB.RUN.UNIT. is
sixteen bits in length and is used to contain the Job number of
the run unit that this program wilt become a part of.

The IPC~DICTIONARY is a list of System Descriptors built by the
program to describe the parameters to be passed on a CALL. This
dictionary wilt be within the space defined by RS.IPC.DICT in the
RS.NUCLEUS of the calling program. The tength of this dictionary
is passed in the CALL communicate. The Micro MCP wilt verif)
that the number and length of parameters passed match the
IPC.PARAMETER.LISf of the called program.

~

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANJ

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

One new communicate operator was added to the Operating System to
accomodate the IPC implementation. This operator is generated by
the Compilers to implement the CALL, CANCEL and EXIT PRDGR-M
verbs. It may be handled by the Micro MCP or the SOL MCP~
depending upon the circuastances. Its format is presentea below
and in the Demand Management section.

CT.VERB
CT.OBJECT

CT.ADVERB

cr.1

cr.2

41
0 = CALL
1 = CANCEL
2 = EXIT PROGRAM CNo EOJJ
Bit

0 - if CALL~ return on NO "EHORY
1-11 - Not used

Base relative address of a 30 character
field that contains the name of the job
to be catted or cancelled.
Number of parameters to be passed

RS.REINSTATE.MSG.PTA values returned if requested:

0 - Communicate completed as requested.
l • for CALL' insufficient memory to complete the CALL.

- For EXIT PROGRAM, the program was initiated by an
EXECUf£ instruction as opposed to a CALL.

• Not used for CANCEL.

One of the primary objectives of the IPC implementation was
performance. Therefore~ as much as possible of the IPC f~nction
was implemented in the Micro MCP. In the ANSI •74 COB~l
Language, the CALL and CANCEL verbs require the specification of
program names within the source text. On the BICOO syste•• the
name of a pro9~am may be unknown to the user when the orog~am is
compiled, since the Run Unit may be executed under a Usercode.

fo simplify the task of associating program na~es with those
specified by a program in a CALL or CANCEL co•~unicate• a new
system structure was implemented. A programmatic description of
the structure• IPC.RUN.UNtT.LIST• is presented betow

BURR-OYGHWS" C'!PJfPORAT ION
~OMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

01 IPC.RUN.UNIT.LIST

02 IPC.RUN.UNIT.NUHBER
02 IPC.PGM.NAME
02 IPC.PGM.JOB.NUHBER
02 IPC.PGM.LR
02 IPC.fORWARO.LINK

BIHJ20),

BIT C16).
CHARC 30),
BIT {16),,
BIT (24)11
BIT (24);

COMPANY CONFIOENTIAL
81000 HCP II

P.S. 2212 5~62 CE>

IPC.RUN.UNIT.LIST is a linked serial list which includes alt
members of all Run Units. The entries in this list aren't in any
part icut ar order and ar'e not grouped by Run Unit. The SOL
portion of the MCP is responsible for the managemert and
maintainence of all IPC.RUN.UHIT.LISJs. The first
!PC.RUN.UNIT.LIST is addressed by a field in the MCP•s stac~.
Both the S.HCP and the Micro HCP CM.HCP> access these strYctures
for information.

The MICRO HCP receives all CALL communicates. Any named job is
considered a candidate for a CAll by the Micro MCP. If the
requested job is not currently l member of the cor<ect Run UAit,
then the CALL request will be transferred from the Micro ~CP to
the SOL portion of the MCP• to make the called program present.

To determine if the requested job is a member of the correct Run
Unit• the Micro HCP searches the list of Run Units~ be~inning
with the first1 which is addressed br a field in the MCP stacks.
Each program that is a member of any Run Unit will be found in
the serially link list described by the IPC.RUN.UNIT.tIST
structure.

If the program is present, the Micro HCP wJll first examine the
program's RS.CANCELED boolean in its Run Structure Nucleus. If
this boolean is true. then this copy of the program has bee~
cancelled and a new copy must be initiated. CANCEL operations•
like all program termination operations do not happen
immediately. If a new copy must be initiated, the Micro HCP will
catl the S.MCP to initiate a new copy of the same program. S.HCP
operations• upon receiving a CALL communicate• are described in
later paragraphs.

If the RS.CANCELLED boolean is false- than the Micro ~CP checks
to determine whethef the catted job is active or passive, which
will be indicated by the RS.RUN.UNIT.LINK fietd of the Run
Structure Nucleus. If the job is atready active• ther soae
theoretically impossible error has occu~red and the Micro HCP
must call the S.HCP so that the Run Unit can be terminated. If

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANI

COMPANY CONFIDENTIAL
81000 HCP II

P.S. 2212 5~62 CE>

the called program is found to be passiveP then the ~icro HCP
will next check to insure that the number of parameters to be
passed, if any, agree. This will be indicated by the calling
p~ogram•s RS.IPC.DICT field being equal to the catted progra~'s
!PC.PARAMETER.LIST.

If the number of parameters do not match# then the Micro HCP
calls the S.HCP for teraination of the run unit. If the nu•oer
of parameters do agree, the Micro HCP next chec~s to insure that
the length specif~ed for each passed parameter is the same in the
calling program and the called program. If any of the length
descriptions are not equal# the Micro MCP witl catt the S.MCP for
termination of the entire Run Unit.

If para•eters are being passed, if the number of parameters is
equal and if they all have equal length attributes, then in the
catl ing program's Run structure Nucleuh the Micro MC? incre1ents
the RS.TEMPORARY.FREEZE field• to fix the program in megory ana
sets the RS.RUN.UNIT.LINK fietd to the catler's job number. In
the Run Structure Nucleus of the called job, it sets the
RS.CALLERS.LR field to the limit register of the calling program.
it then hangs the catting program on its RS.IPC.EWENT field and
sets the calter•s RS.STATUS field to "waiting on the called
program" and marks the called job "ready to run•. It shoLld be
noted that tt is not necessary to freeze the calling progra~ in
memory if parameters are not passed.

Considering the case where the catted program is not a me•ber of
the Run Unit and the S.HCP is catted upon to exec~te the
requested program~ whenever the S.HCP receives a CALL comm~nicate
and usercodes are involved, it witl first search the list of Run
Units, using all permutations of the usercoded name- to determine
if the job exists in the Run Unit under a different name. if so,
the new name and corresponding information will be entered into
the Run Unit list and control witt be returned to the Micro ~CP.
If Usercodes are not involved and if the name does not exist in
the Run Unit list# then execution of the job must be attempted.

The S.MCP must then determine that the requested program is
present on disk. If not present~ the program which issued the
CALL will be hung until the requested program is made present.
If the requested program is present on disk• the S.MCP must then
determine that there is enough memory to execute tha requested
program. If there is insufficient mamury- The program which
performed the CALL may have as•ed to be notjfied of this fact.
If so~ the catted job will not be scheduled but the progra1 which
performed the CALL witt be notified of the insufficient •emory
condition. If the program which performed the CALL did not
request ta be nofitied, the called program wilt be scheduled and
the calljng program wilt not be allowed to execute until the

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

6-19

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 2212 5462 <EJ

called program does an EXIT PROGRAM communicate.

Actually~ after the called program reaches aoJ, the 5.MCP will
hang the catted program on his own RS.IPC.EVENT with RS.StAfUS
set to •waiting to be calladtt and put the catting proqram bac• in
the H.COKH.Q. This allows the Micro HCP to co~plete the CALL
operation.

Alt aspects of the CANCEL and EXIT PROGRAM communicate opertors
are handled by the Micro HCP. Upon receiving a CANCEL operator~
the Micro HCP aust first deter•ine if the job exists in the Ron
Unit and whether it is active or oassive. If it is not present
or the program is present but its RS.CANCELED boolean is true~
the request is ignored and the cancelling job is rei~stated. If
it is present and passive, the Micro MCP will then place the
specified program in the EXTERMINATE.Q~ set the RS.CANCELED
boolean and return control to the job which issued the
communicate. The EXTERHINATE.Q will cause termination of the
job.

A request to CANCEL a job that is both a member of the R~n Unit
and active is a violation of the COBOL spec•fications and wilt
result in termination of the entire Run Unit.

lf& ~!ll f BQiBAH QffBAIJQ~

If a called job issues an EXIT PROGRAM communicate operation, the
Micro HCP will hang the issuing program on its RS.IPC.EVENf
fietd~ setting RS.STATUS to "Waiting to be catted·~ decre•ent
RS.TEMPORARY.FREEZE in the Run Structure Nucleus of the program
that called the issuing program and mark the calling progra~
ready to run. If a program that was not catted issues the
communjcate• the communicate witt be ignored and control wilt ba
immediately returned to that program.

If any program in a Run Unit performs a STOP RUN comm~nicate
operator~ the entire Run Unit wilt be cancelled and alt progra•s
in the Run Unit will be discontinued. Similarly. if any program
in the Run Unit terminates abnormally, the entire Run Unit will
be discontinued. Programs within a Run Unit may only stop
execution via the EXIT PROGRAM verb. Normal terminat~on will
occur when the program that initiated the Run Unit terminates.

BUR R1JUGH's· CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
8100\l HCP II

P.S. 2212 5462 (£)

Upon termination, for any reason, of any member of a oarticular
Run Unit, the S.MCP will immediately delint atl entries
pertaining to the specified Run Unit from the Run Unit List.
When the parent of a Run Unit goes to a normal EOJ, then alt jobs
attached to that run unit will be cancelled. If any job in a run
unit is aborted' then the entire run unit will be aborted. If
one pragram in a Run Unit does a CANCEL on another progra• in the
same run unit, then the cancelled job must be delinked from the
run unit and sent to EOJ.

The transfer of information between the Micro HCP and the S.HCP
is accomplished using an existing mechanism. This mechanisw
utH1zes the Run Structure NucteU'S field,. RS.M.PR08LEM. All
instances of such required communication are shown in the
following table. The table shows the value that wilt be stored
in the RS.HPROB.P2 field, a subfield of RS.H.PR08LEH, the
condition that caused the communication and the action that will
be taken br the S.MCP. Whenever such communication is necessary,
the RS.HPROS.Pl field, also a subfield~ will be set to a value of
9, which will indicate the family of oroblems related to IPC.

RS.HPR08.P2 =

0

1

2

5

Error Description

Requested orogram not
not in mix.

Number of parameters
do not match.

Par a met ,1;H· s pe c s •
do not agr ·ee.

Attempted recursive
CALL

Attempted CANCEL
of predecessor.

Invalid Communicate
parameters.

Found requested job
and RS.CANCELED true

Required A:ction

S.MCP should ma•e
program present.

S.KCP wilt OS entire
Run Unit.

5.MCP will OS entire
Run Unit.

S.MCP wilt OS entire
Run Un'it.

S.HCP will OS entire
Run Unit.

S.MCP will OS entire
Run Unit.

Terainate specified
job and ma~e new
copy present.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 HCP ll

P.S. 2212 5462 CE>

If any member of the Run Unit, regardless of whether the
specified program is active or passive is OS·ed~ DP-ed~ or DM-ed~
the entire Run Unit will be dumped and, if DS-ed or OP-ed,
terminated.

After the Micro MCP processes an IPC communicate~ it witl not
purposely mark the appropriate job JO.BE.ROLLED.OUf. If the
S.ffCP needs memory. it will follow the noreal selection process
in determining a candidate{s) for Roll-out. There will be no
special consideration given to •embers of Run Units.

Each called program wilt actually become a TASK associated with
the o~iginator of the Run Untt. By becoming a TASK as opposed to
a normal job, several advantages wilt be realized.

1> TASKS are not subject to MIX limits and other scheduling
con str1 in ts,.

21 There wilt be correspond~ng entries in the SYSTEM/LOG.

Information passed for the progra•s name in the CALL/CANCEL
communicate will be subject to the same na~ing restrictions as a
file with respect to OS or DP conditions, e.g., CAlling a proqra•
with a blank HFID will result in the ter1ination of the entir€
Run Unit.

BURROUGl-f~ Cl1RPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLAN(

ACCEPT 7-51
ACCESS DISK FILE HEADER <DFHl 7-43
ACCESS FILE INFORMATION BLOCK (f IB> 1-•2
ACCESS f IlE PARAMETER BLOCK (f PBl 1•41
ACCESS USERCODE FILE 7-62
ACCESS.GLOBALS 7-66
ACJI~E SCHEDULE 7-3
ANSII Tape labels 3-26

COMPANY CO~FICENTIAL
01000 MCP II

P.S. 2212 5462 <E>

Available Space Allocation, Index Files l-74
Available Space Allocation• Indexed Sequential files J-72

Backup Fite "Early Start• Capabitity 3-50
BACKUP FILE BLOCKING FACTORS 3-49
BACKUP FILE CONTROL INFORMATION 3-51
BACKUP FILE LOGICAL RECORD FORMAT 3•52
BASE PACKS 3•40
Block Control Information - Indexed Sequential Files 3•62
Block Control Information - Rel~tive Files 3-54

CA/RC CYCLES 3-8
CHANGE.ATTRIBUTES 7•66
CHANNEL TABLE 3-6
CLOSE 7-32
CLOSE COM> 1-17
Cluster files 3-59
COBOL PROGRAM ABNORMAL ENO 7•57
CODE FILES, PROGRAM PARAMETER BLOCKS AND FILE PARAMETER BLOCKS 2-6
COMMUNICATE FORMAT 7-5
COMMUNICATES 7-3
COMPILE CARO INFORMATION 7-58
COMPILERS 1•3
COMPLEX WAIT <MICRO HCP> 7-64
Concurrent Update Operations 3-79
CONTENTION S-1
CONTINUATION PACKS 3-40
CONVENTIONAL FILES 3-33
CREAT£/RfCREAT£ COH> 7-46
CURRENT Maintenance 3•76
Current Record Pointer <CURRENT> 3-75

Data and Address Error Recovery - Dist Cartridges l-84
Data and Address Error Recovery - 205 And 206 Drives 3-83
Data and Address Error Racovery - 207 Drives 3-83
Data and Address Error Recovery - 215 And 225 Drives 3-e2
OAfA AND FILE DICTIONARIES 2•12
OATA OVERLAY 1-42
DATA TRANSFERS 3•12

0URROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

DC.INITIATE.IO 7-61
DC WRITE 7•62
DELETE COM> 1•46
DEMAND MANAGEMENT 7•1
DESIGN PHILOSOPHY 8-1
Direct files 3-54. 3-58
DISK DIRECTORY 3•37
DISK FILE HEADER 2-5, 3•37
Disk file Header Extensions 3-72
Dist File Header format changes
DISK FILE IDENllfICAlION 3-38
Disk File OPEN 7-28
DISK I/O CHAINING 3•14
Dis• I/O Error Procedures 3-79
DISK 110 OVERLAPPED SEEKS 3-15
DISK IDENTIFICATION - PACK LABELS
DISK SPACE ALLOCATION 3-36
DISPLAY 7-53
DISTRIBUTION 5-1
DYNAMIC MEMORY BASE 7-59

EMULATOR TAPE (MICRO HCP> 1•55

FIB Dictionaries 3•67

3-71

FILE ACCESS ANO IDENTIFICATION 3-37
file Identifiers 3-35
FILE INFORMATION BLOCKS 2-9
FILE NAMING CONVENTIONS 3-35
fllE STRUCTURES 3•33
FIND/MODIFY COM> 1-45
fl RH WARE 1•4
FREE (OM) 1-so
FREEZE/THAW RUN STRUCTURE 1-se

GENERAL MEMORY MANAGEMENT CONCEPTS 4•1
GET SESSION NUMBER 7-61
GET.ATTRIBUTES 7-65
GISMO 1•4
GISMO - THE 1/0 DRIVER 3-4
GISHO/HAROWARE INTERFACE J-7

~ARO EVENTS 6-4
HIGH-PRIORITY INTERRUPT HANDLING 7-14

I/O ASSIGNMENT TABLE 3•18
I/O CHAINING ·3·13
IIO CONTROL 1•5
I/O DESCRIPTORS 3-2
I/D INTERRUPTS 7-1
I/O SUB-SYSTEM 1-5
Index File Table Splitting 1-75
Index files 3-58

IK·l

COMPANY CONf ICENTIAL
01000 MCP II

P.S. 2212 5462 <El

Indexed Sequential Available Space Allocation 3-72
Indexed Sequential Buffer Descriptor <BD> 3-78

rx-~

RROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CO~f IDENTIAL
81000 MCP II

P.S. 2212 5462 CE>

Indexed Sequential Buffer Management 3-77
Indexed Sequential Data file Available Space Allocation 3-72
Indexed Sequential Data file Structure 3•61
INOEXEO SEQUENllAl DELEfE 7•69
Indexed Sequential Disk Fite Header Extension 3-72
Indexed Sequential Fite Global Information <GLOBALS> J-69
Indexed Sequential fites 3-58
IndeKed Sequential fPB 3-64
Indexed Sequentiat GLOBALS Field 3-69
Indexed Sequential I/O Descriptors 3•78
Indexed Sequential Index File Structure 3-62
Indexed Sequential Memory Structures 3-66
INDEXED SEQUENTIAL POSITION 7•67
INDEXED SEQUENJIAL READ 7-68
INDEXED SEQUENTIAL REWRITE 7•69
Indexed Sequential Structure Descriptor 3-71
Indexed Sequential Structure Descriptor (STR> 3-70
Indexed Sequential User Specific Information CUSI> J-68
INDEXED SEQUENTIAL WRITE 7•69
INDEXEO/SEQUENflAL OPEN 1•73
INITIALIZER I/O 7-51
INTER-PROCESS COHHUNICATION B-1
INTER-PROGRAM COMMUNICATION 8-10
INTERPRETER 1-4
INTERPRETER MANAGEMENT, PARAMETER BLOCKS AND DICTIONARIES 2-5
INTERPRETER PARAMETER BLOCK 2-6
INTERPRETIVE PROCESSING 1•2
INTERRUPT RESOLUTION 1-5
INTERRUPT STACK 7-2
INTRODUCTION 1-l
IPC CALL OPERATION 8-11
IPC CANCEL OPERATION 8-19
lPC CANDIDATES FDR ROLL-OUT 8•21
IPC COMMUNICATE OPERATOR 8•16
IPC EXIT PROGRAM OPERATION 6•19
IPC IMPLE~ENfATION Of SHARED DATA 8•11
IPC MICRO MCP/S.MCP COMMUNICATION 8•20
IPC PROGRAM DUMPS 8-21
IPC PROGRAM NAME SPECIFICAJIONS 8-21
IPC Program Parameter Block Changes 8•14
IPC RUN STRUCTURE NUCLEUS CHANGES 8•12
IPC TASK CONSIDERATIONS 8•21
IPC TERMINATION CONSIOERAfIONS 8-19
IPC Verb Operation 8-16
IPC.DICTlONARY 8-15

JOB SCHEDULING AND IHITIALIZATlON 7-2

LINAGE Clause 3•45
lINKEO MEMORY 4•1

1-54
3•36

LOAD.DUMP MESSAGE
LOGICAL DISK FILES
Logicat Page Function 3-45

BURROUGHS CORPORATION
CO~PUTER SYSTEMS GROUP
SANTA BARBARA PLANT

M-HEHORY MANAGEMENT 5•1
MACHINE ARCHITECTURE 1-3
HCP OUTER LOOP 7-1
MEMORY OUMP ro DISK 7•59
MEMORY INITIALIZATION 4-10
MEMORY MANAGEMENT AND MEMORY LINKS 2-1
MEMORY REQUIREMENTS 4•15
~ESSAGE HUffERS 8-1
MESSAGE COUNT T-65
~ESSAG£ 0£SCalPfORS 8-3
HESSAGE.COUNf COMMUNICATE 8-7
MICRO/HCP 1-4
~INIMIZAJION Of ftCHECKERBOARDING• \-4
MONITORl~G Of PERIPHERAL SIATUS 3-18
~ULTI-PAC~ FILE GENERAL RESTRICTIONS 3•42
MULTI-PACK FILE INFORMATION TABLE 3•41
MULTI-PACK FILES 3-39

~.SECOND 7-1
NOL/MACRO COMMUNICATES 7•62

OPEN 7-11
OPEN COH> 7-16
OPERATING SYSTEM DYNAMIC REQUIREMENtS 4•21
OPERATI~G SYSTEM SfATIC REQUIREMENTS 4-15

PACK INFORMATION TABLE 3-25
PACK LABEL 3•24
PE/NRZ EXCHANGES 3-31
PHYSICAL DISK FILES 3-36

COMPANY CONFIDENTIAL
Rl0-00 HCP II

~.s. 2212 5462 CE>

POSITION (MICRO MCP <BACKUP FILES ONLY)) 7-38
PRINTER AND PUNCH BACKUP CAP~BILITIES 3•48
PRINTER FILES 3-43
PRIORITY VICTIM SELECTION .4•7
PROCESS (PROGRAM> MANAGEMENT 6-1
PROCESSOR ALLOCATION t-5 .
PROCESSOR 1/0 INSTRUCTlD~S 3•8
PROG.IPC.HAX.S£ND.PARAM5 Bl1(16) ~-15
PROG.IPC.PTR BIT<24) 8-15 I

PROG.tPC.SIZE BIT(16l 8-14
PROGRAM CALLER 7-63
PROGRAM COMMUNICATES 7-4
PROGRAM INITIALIZER 7-3
PROGRAM PARAMETER 8LOCK 2-6
Program Parameter Block Chan.ges 3-65
PROGRAM REINSJAJE 7-4
PROGRAM-DEPENDENT DYNAMIC REQUIREMENTS 4-28
PROGRAM-DEPENDENT STATIC REQUIREMENtS. 4-26
PROGRAHHATIC DEJECTION Of ME~CRY THRASHING 4•9

QUEUE ATTRIBUTES 8-4
QUEUE DESCRIPTORS 8•2'
QUEUE DISK 8-2
QUEUE FILE FAMILIES 8-1

I x-i}

~URROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 MCP II

P.S. 22ll 5462 CEJ

QUEUE FILE LOGICAL I/O OPERAfIDNS
QUEUE SYSTEM AND INTERFACES 8-1
QUICK QUEUE WRITE CREMOfE FILES>
QUICK QUEUE WRITE CSIATION ~UMBER>

8-5

.7-62
.7-62

RE-ENTRANT PROCESSING ANO CODE SEGMENT DICTIONARIES 2-12
READ CHICRO MCP> 7•6
RECOVERY COMPLETE 7•65
Reference Address 3•5
RELATED DOCUMENTATION 1-1
Relative Disk file Headers <OfHsl 3-55·
Relative Fite Buffer Management 3-56
Relative Fite Communicate Operators 3·56
Relative fH e .Oat a Structure · 3-54
Relative file Disk Initialization 3·55
Relative Fite Information Blocks CFIBs> 3-56
Relative file Parameter Blocks CF?Bs> 3-55
Retative Files 3-54
RELATIVE 1/0 COMMUNICATE - DELETE 7·•_71
RELAJIVE l/D COMMUNICATE - REAO 7•72
RELATIVE 110 COMMUNICAfE - REWRITE 7-71
RELATIVE 1/0 COMMUNICATE - START 1-70
RELATIVE 110 COMMUNICATE - WRITE 7•70
Remainder of the Disk 110 Er·ror Procedure 3•84
ROUND-ROBIN VICTIM SELECIION 4-5
RS.CALLERS.LR BifC24) 8•14
RS.CANCELED 811(1} 8-14.
RS.EXECUTE.TYPE 8IT(4} 8•13
RS.IPC.DICT BIJC24) 8•1Z
RS.IPC.OICT.SIZE ett<16) 8•13
RS.IPC.EVENT BIT (1) 8•14
RS.IPC.PARAHETER.LISJ BITC24) 8•13
RS.NAME CHARACTERClOJ 8-13
RS.RUN.UNIT Blf(l&) a-12
RS.RUN.UNIT.LINK BITC16l 8-1?
RUN STRUCTURE 2•10
RUN STRUCTURE NUCLEUS 2•1!
RUN UNIT DEFINITION 8-10

S·HACHINE 1•2
S-HEHORY ~ANAGEHENT AND MEMORY REQUIREMENTS 4•1
SOL HCP t-4
SOL TRACE T-55
SECOND CHANCE VICTIM SElECfION 4•6
SEEK CMICRO HCP> 7-12
SEGMENT DICTIONARIES ANO SYSTEM DESCRIPTORS 2-3
SEQUENTIAL REWRITE <MMCP) 7-72
SERVICE REQUESI J-9
SOFT EVENTS 6-1
SOFT l/fi t-5
SOFT MACHINE 1-2
SOFTWARE 1•3
SORT EOJ 7-58
SORT HANDLER 7-54

&UjiDUGHS CORPORATION
-~PUTER SYSTEMS GROUP
SANTA BARBARA PLANT

SORTER CONTROL 7•13
SORTER READ CMICRO HCP>
STATUS COUNTS 1•10
STATUS PROCEDURE 3-23
STORE (OM) 7•45
SWITCH.TAPE.DIRECTION
SYSTEM/REL.INIT 3-55

TAPE I/O CHAINING 3•16

l-15

7-47

Tape 110 Error Procedures l-85

r x ·s

COMPANY CONFIDENTIAL
EUOOO MCP II

P.S. 2212 5462 CEJ

TAPE LABELLING, INITIALIZATION AND PURGING 3-26
TERMINATE <STOP RUN> 1•41
TERMINOLOGY AND DEflNIJIONS 2•1
TEST.AND.WAIT I/O OPERATORS 3-23
The Error Correction Procedure J-82
THE FENCE 4-.3
THE 1/0 SUBSYSTEM 3-1
The Off set Procedure 3·80
The Strobe Procedure J-81
TIME/DATE/DAY 7-50
TIMER INTERRUPT 7-1
TYPES or MEMORY REQUESTS 4-2

UNIT MNEMONICS 3-22
USE/RETURN 7-54
USI 3-68

VICTIM SELECTION 4•4
VIRTUAL MEMORY 2-3

WAIT (SNOOZE) 7-52
WAITING SCHEDULE 7-3
WORKING SET DETERMINATION 4•6
WRITE (MICRO HCP) 1-9
WRITING TO THE TOP or A QUEUE FILE 8-7

ZIP ·7-52

9.0 Disk file Headers 3-71-

	0001
	0002
	0003
	0004
	0005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	7-68
	7-69
	7-70
	7-71
	7-72
	7-73
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	IX-1
	IX-2
	IX-3
	IX-4
	IX-5
	IX-6

